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1 Introduction

1.1 Motivation

When I wrote my first book, Qualitative Choice Analysis, in the mid-
1980s, the field had reached a critical juncture. The breakthrough con-
cepts that defined the field had been made. The basic models — mainly
logit and nested logit — had been introduced, and the statistical and eco-
nomic properties of these models had been derived. Applications had
proven successful in many different areas, including transportation, en-
ergy, housing, and marketing — to name only a few.

The field is at a similar juncture today for a new generation of proce-
dures. The first-generation models contained important limitations that
inhibited their applicability and realism. These limitations were well
recognized at the time, but ways to overcome them had not yet been
discovered. Over the past twenty years, tremendous progress has been
made, leading to what can only be called a sea change in the approach
and methods of choice analysis. The early models have now been sup-
plemented by a variety of more powerful and more flexible methods.
The new concepts have arisen gradually, with researchers building on
the work of others. However, in a sense, the change has been more like
a quantum leap than a gradual progression. The way that researchers
think about, specify, and estimate their models has changed. Importantly,
a kind of consensus, or understanding, seems to have emerged about the
new methodology. Among researchers working in the field, a definite
sense of purpose and progress prevails.

My purpose in writing this new book is to bring these ideas together,
in a form that exemplifies the unity of approach that I feel has emerged,
and in a format that makes the methods accessible to a wide audience.
The advances have mostly centered on simulation. Essentially, simu-
lation is the researcher’s response to the inability of computers to per-
form integration. Stated more precisely, simulation provides a numerical
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approximation to integrals, with different methods offering different
properties and being applicable to different kinds of integrands.

Simulation allows estimation of otherwise intractable models. Prac-
tically any model can be estimated by some form of simulation.
The researcher is therefore freed from previous constraints on model
specification — constraints that reflected mathematical convenience
rather than the economic reality of the situation. This new flexibility
is a tremendous boon to research. It allows more realistic representation
of the hugely varied choice situations that arise in the world. It enables
the researcher to obtain more information from any given dataset and, in
many cases, allows previously unapproachable issues to be addressed.

This flexibility places a new burden on the researcher. First, the meth-
ods themselves are more complicated than earlier ones and utilize many
concepts and procedures that are not covered in standard econometrics
courses. Understanding the various techniques — their advantages and
limitations, and the relations among them — is important when choosing
the appropriate method in any particular application and for developing
new methods when none of the existing models seems right. The purpose
of this book is to assist readers along this path.

Second, to implement a new method or a variant on an old method,
the researcher needs to be able to program the procedure into computer
software. This means that the researcher will often need to know how
maximum likelihood and other estimation methods work from a compu-
tational perspective, how to code specific models, and how to take exist-
ing code and change it to represent variations in behavior. Some models,
such as mixed logit and pure probit (in addition, of course, to standard
logit), are available in commercially available statistical packages. In
fact, code for these and other models, as well as manuals and sample
data, are available (free) at my website http://elsa.berkeley.edu/~train.
Whenever appropriate, researchers should use available codes rather
than writing their own. However, the true value of the new approach to
choice modeling is the ability to create tailor-made models. The com-
putational and programming steps that are needed to implement a new
model are usually not difficult. An important goal of the book is to
teach these skills as an integral part of the exposition of the models
themselves. I personally find programming to be extremely valuable
pedagogically. The process of coding a model helps me to understand
how exactly the model operates, the reasons and implications of its
structure, what features constitute the essential elements that cannot be
changed while maintaining the basic approach, and what features are
arbitrary and can easily be changed. I imagine other people learn this
way too.
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1.2 Choice Probabilities and Integration

To focus ideas, I will now establish the conceptual basis for discrete
choice models and show where integration comes into play. An agent
(i.e., person, firm, decision maker) faces a choice, or a series of choices
over time, among a set of options. For example, a customer chooses
which of several competing products to buy; a firm decides which
technology to use in production; a student chooses which answer to
give on a multiple-choice test; a survey respondent chooses an integer
between 1 and 5 on a Likert-scale question; a worker chooses whether
to continue working each year or retire. Denote the outcome of the de-
cision(s) in any given situation as y, indicating the chosen option or
sequence of options. We assume for the purposes of this book that the
outcome variable is discrete in that it takes a countable number of values.
Many of the concepts that we describe are easily transferable to situa-
tions where the outcome variable is continuous. However, notation and
terminology are different with continuous outcome variables than with
discrete ones. Also, discrete choices generally reveal less information
about the choice process than continuous-outcome choices, so that the
econometrics of discrete choice is usually more challenging.

Our goal is to understand the behavioral process that leads to the
agent’s choice. We take a causal perspective. There are factors that col-
lectively determine, or cause, the agent’s choice. Some of these factors
are observed by the researcher and some are not. The observed factors
are labeled x, and the unobserved factors . The factors relate to the
agent’s choice through a function y = h(x, €). This function is called
the behavioral process. It is deterministic in the sense that given x and
&, the choice of the agent is fully determined.

Since ¢ is not observed, the agent’s choice is not deterministic and
cannot be predicted exactly. Instead, the probability of any particular
outcome is derived. The unobserved terms are considered random with
density f(¢). The probability that the agent chooses a particular outcome
from the set of all possible outcomes is simply the probability that the
unobserved factors are such that the behavioral process results in that
outcome: P(y|x) = Prob(e s.t. h(x, &) = y).

We can express this probability in a more usable form. Define an
indicator function I[h(x, &) = y] that takes the value of 1 when the
statement in brackets is true and 0 when the statement is false. That
is, I[-] =1 if the value of ¢, combined with x, induces the agent to
choose outcome y, and I[-] = O if the value of &, combined with x,
induces the agent to choose some other outcome. Then the probability
that the agent chooses outcome y is simply the expected value of this
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indicator function, where the expectation is over all possible values of
the unobserved factors:

P(y|x)=Prob({/[h(x,e) = y] = 1)
(1.1 = f][h(x, e)=ylf(e)de.

Stated in this form, the probability is an integral — specifically an integral
of an indicator for the outcome of the behavioral process over all possible
values of the unobserved factors.

To calculate this probability, the integral must be evaluated. There are
three possibilities.

1.2.1. Complete Closed-Form Expression

For certain specifications of 4 and f, the integral can be ex-
pressed in closed form. In these cases, the choice probability can be
calculated exactly from the closed-form formula. For example, consider
a binary logit model of whether or not a person takes a given action, such
as buying a new product. The behavioral model is specified as follows.
The person would obtain some net benefit, or utility, from taking the
action. This utility, which can be either positive or negative, consists of
a part that is observed by the researcher, 8'x, where x is a vector of
variables and g is a vector of parameters, and a part that is not observed,
e: U = B'x + €. The person takes the action only if the utility is positive,
thatis, only if doing so provides a net benefit. The probability that the per-
son takes the action, given what the researcher can observe, is therefore
P = f I[B'x + ¢ > 0] f(¢)de, where f is the density of . Assume that
¢ isdistributed logistically, such thatits density is f(¢) = e™*/(1 + e ¢)?
with cumulative distribution F(e) = 1/(1 4+ e~?). Then the probability
of the person taking the action is

P:/I[,B’x-l—s > 0]f(e)de

_ / Ie > —Fx1f(e)de

= /OO f(e)de
e=—pf'x

1

=1-F(-Bx)=1— ——
(=B'x) e

ePx

1+ efx’
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For any x, the probability can be calculated exactly as P = exp(8'x)/
(1 + exp(B'x)).

Other models also have closed-form expressions for the probabilities.
Multinomial logit (in Chapter 3), nested logit (Chapter 4), and ordered
logit (Chapter 7) are prominent examples. The methods that I described
in my first book and that served as the basis for the first wave of interest in
discrete choice analysis relied almost exclusively on models with closed-
form expressions for the choice probabilities. In general, however, the
integral for probabilities cannot be expressed in closed form. More to
the point, restrictions must be placed on the behavioral model /4 and
the distribution of random terms f in order for the integral to take
a closed form. These restrictions can make the models unrealistic for
many situations.

1.2.2. Complete Simulation

Rather than solve the integral analytically, it can be approxi-
mated through simulation. Simulation is applicable in one form or an-
other to practically any specification of # and f. Simulation relies on the
fact that integration over a density is a form of averaging. Consider the
integral f = f t(e) f(e)de, where t(¢) is a statistic based on & which has
density f(e). This integral is the expected value of ¢ over all possible
values of ¢. This average can be approximated in an intuitively straight-
forward way. Take numerous draws of € from its distribution f, calculate
t(e) for each draw, and average the results. This simulated average is an
unbiased estimate of the true average. It approaches the true average as
more and more draws are used in the simulation.

This concept of simulating an average is the basis for all simulation
methods, at least all of those that we consider in this book. As given in
equation (1.1), the probability of a particular outcome is an average of
the indicator /(-) over all possible values of . The probability, when
expressed in this form, can be simulated directly as follows:

1. Take a draw of ¢ from f(¢). Label this draw &', where the
superscript denotes that it is the first draw.

2. Determine whether i (x, g!) = y with this value of . If so, create
I' = 1; otherwise set I' = 0.

3. Repeat steps 1 and 2 many times, for a total of R draws. The
indicator for each draw is labeled I” forr =1, ..., R.

4. Calculate the average of the /”’s. This average is the simulated
probability: P(y | x) = % Zle I". It is the proportion of times
that the draws of the unobserved factors, when combined with
the observed variables x, result in outcome y.
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As we will see in the chapters to follow, this simulator, while easy to
understand, has some unfortunate properties. Choice probabilities can
often be expressed as averages of other statistics, rather than the average
of an indicator function. The simulators based on these other statistics
are calculated analogously, by taking draws from the density, calculating
the statistic, and averaging the results. Probit (in Chapter 5) is the most
prominent example of a model estimated by complete simulation. Vari-
ous methods of simulating the probit probabilities have been developed
based on averages of various statistics over various (related) densities.

1.2.3. Partial Simulation, Partial Closed Form

So far we have provided two polar extremes: either solve the
integral analytically or simulate it. In many situations, it is possible to
do some of both.

Suppose the random terms can be decomposed into two parts labeled
€1 and ¢&;. Let the joint density of ¢, and ¢, be f(¢) = f(e1, &). The
joint density can be expressed as the product of a marginal and a condi-
tional density: f(e1, €2) = f(e2|€1) - f(e1). With this decomposition,
the probability in equation (1.1) can be expressed as

P(y|x) = / Ith(x, €) = y1/(e) de

=/ [/ I[h(x,Sl,Sz)=y]f(82|81)d82} fler)de;.

&2

Now suppose that a closed form exists for the integral in large brackets.
Label this formula g(g;) = fsz I[h(x, &1, &) = y]f(e2 | £1) de,, which
is conditional on the value of ¢;. The probability then becomes
P(iy|x)= fel g(ey) f(e1)de,. If a closed-form solution does not ex-
ist for this integral, then it is approximated through simulation. Note
that it is simply the average of g over the marginal density of ;. The
probability is simulated by taking draws from f(e;), calculating g(e)
for each draw, and averaging the results.

This procedure is called convenient error partitioning (Train, 1995).
The integral over &; given ¢ is calculated exactly, while the integral over
1 is simulated. There are clear advantages to this approach over com-
plete simulation. Analytic integrals are both more accurate and easier to
calculate than simulated integrals. It is useful, therefore, when possible,
to decompose the random terms so that some of them can be integrated
analytically, even if the rest must be simulated. Mixed logit (in Chap-
ter 6) is a prominent example of a model that uses this decomposition
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effectively. Other examples include Gourieroux and Monfort’s (1993)
binary probit model on panel data and Bhat’s (1999) analysis of ordered
responses.

1.3 Outline of Book

Discrete choice analysis consists of two interrelated tasks: specification
of the behavioral model and estimation of the parameters of that model.
Simulation plays a part in both tasks. Simulation allows the researcher to
approximate the choice probabilities that arise in the behavioral model.
As we have stated, the ability to use simulation frees the researcher
to specify models without the constraint that the resulting probabilities
must have a closed form. Simulation also enters the estimation task.
The properties of an estimator, such as maximum likelihood, can change
when simulated probabilities are used instead of the actual probabilities.
Understanding these changes, and mitigating any ill effects, is important
for a researcher. In some cases, such as with Bayesian procedures, the
estimator itself is an integral over a density (as opposed to the choice
probability being an integral). Simulation allows these estimators to be
implemented even when the integral that defines the estimator does not
take a closed form.

The book is organized around these two tasks. Part I describes be-
havioral models that have been proposed to describe the choice process.
The chapters in this section move from the simplest model, logit, to
progressively more general and consequently more complex models. A
chapter is devoted to each of the following: logit, the family of gener-
alized extreme value models (whose most prominent member is nested
logit), probit, and mixed logit. This part of the book ends with a chapter
titled “Variations on a Theme,” which covers a variety of models that
build upon the concepts in the previous chapters. The point of this chap-
ter is more than simply to introduce various new models. The chapter
illustrates the underlying concept of the book, namely, that researchers
need not rely on the few common specifications that have been pro-
grammed into software but can design models that reflect the unique
setting, data, and goals of their project, writing their own software and
using simulation as needed.

Part IT describes estimation of the behavioral models. Numerical max-
imization is covered first, since most estimation procedures involve
maximization of some function, such as the log-likelihood function.
We then describe procedures for taking draws from various kinds of
densities, which are the basis for simulation. This chapter also describes
different kinds of draws, including antithetic variants and quasi-random
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sequences, that can provide greater simulation accuracy than indepen-
dentrandom draws. We then turn to simulation-assisted estimation, look-
ing first at classical procedures, including maximum simulated likeli-
hood, method of simulated moments, and method of simulated scores.
Finally, we examine Bayesian estimation procedures, which use simula-
tion to approximate moments of the posterior distribution. The Bayesian
estimator can be interpreted from either a Bayesian or classical perspec-
tive and has the advantage of avoiding some of the numerical difficulties
associated with classical estimators. The power that simulation provides
when coupled with Bayesian procedures makes this chapter a fitting
finale for the book.

14  Topics Not Covered

I feel it is useful to say a few words about what the book does not cover.
There are several topics that could logically be included but are not.
One is the branch of empirical industrial organization that involves esti-
mation of discrete choice models of consumer demand on market-level
data. Customer-level demand is specified by a discrete choice model,
such as logit or mixed logit. This formula for customer-level demand is
aggregated over consumers to obtain market-level demand functions that
relate prices to shares. Market equilibrium prices are determined as the
interaction of these demand functions with supply, based on marginal
costs and the game that the firms are assumed to play. Berry (1994)
and Berry et al. (1995) developed methods for estimating the demand
parameters when the customer-level model takes a flexible form such as
mixed logit. The procedure has been implemented in numerous markets
for differentiated goods, such as ready-to-eat cereals (Nevo, 2001).

I have decided not to cover these procedures, despite their importance
because doing so would involve introducing the literature on market-
level models, which we are not otherwise considering in this book. For
market demand, price is typically endogenous, determined by the in-
teraction of demand and supply. The methods cited previously were
developed to deal with this endogeneity, which is probably the central
issue with market-level demand models. This issue does not automati-
cally arise in customer-level models. Prices are not endogenous in the
traditional sense, since the demand of the customer does not usually
affect market price. Covering the topic is therefore not necessary for our
analysis of customers’ choices.

It is important to note, however, that various forms of endogeneity
can indeed arise in customer-level models, even if the traditional type of
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endogeneity does not. For example, suppose a desirable attribute of prod-
ucts is omitted from the analysis, perhaps because no measure of it exists.
Price can be expected to be higher for products that have high levels of
this attribute. Price therefore becomes correlated with the unobserved
components of demand, even at the customer level: the unobserved part
of demand is high (due to a high level of the omitted attribute) when
the price is high. Estimation without regard to this correlation is incon-
sistent. The procedures cited above can be applied to customer-level
models to correct for this type of endogeneity, even though they were
originally developed for market-level data. For researchers who are con-
cerned about the possibility of endogeneity in customer-level models,
Petrin and Train (2002) provide a useful discussion and application of
the methods.

A second area that this book does not cover is discrete—continuous
models. These models arise when a regression equation for a continuous
variable is related in any of several ways to a discrete choice. The most
prominent situations are the following.

1. The continuous variable depends on a discrete explanatory
variable that is determined endogenously with the dependent
variable. For example, consider an analysis of the impact of job-
training programs on wages. A regression equation is specified
with wages as the dependent variable and a dummy variable for
whether the person participated in a job-training program. The
coefficient of the participation dummy indicates the impact of
the program on wages. The situation is complicated, however, by
the fact that participation is voluntary: people choose whether to
participate in job-training programs. The decision to participate
is at least partially determined by factors that also affect the per-
son’s wage, such as the innate drive, or “go-for-it” attitude, of the
person. Estimation of the regression by ordinary least squares is
biased in this situation, since the program-participation dummy
is correlated with the errors in the wage equation.

2. A regression equation is estimated on a sample of observations
that are selected on the basis of a discrete choice that is de-
termined endogenously with the dependent variable. For exam-
ple, a researcher might want to estimate the effect of weather
on peak energy load (that is, consumption during the highest-
demand hour of the day). Data on energy loads by time of day are
available only for households that have chosen time-of-use rates.
However, the households’ choice of rate plan can be expected
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to be related to their energy consumption, with customers who
have high peak loads tending not to choose time-of-use rates,
since those rates charge high prices in the peak. Estimation of
the regression equation on this self-selected sample is biased
unless the endogeneity of the sample is allowed for.

3. The continuous dependent variable is truncated. For example,
consumption of goods by households is necessarily positive.
Stated statistically, consumption is truncated below at zero, and
for many goods (such as opera tickets) observed consumption
is at this truncation point for a large share of the population.
Estimation of the regression without regard to the truncation
can cause bias.

The initial concepts regarding appropriate treatment of discrete—
continuous models were developed by Heckman (1978, 1979) and Dubin
and McFadden (1984). These early concepts are covered in my earlier
book (Train, 1986, Chapter 5). Since then, the field has expanded tremen-
dously. An adequate discussion of the issues and procedures would take
a book in itself. Moreover, the field has not reached (at least in my view)
the same type of juncture that discrete choice modeling has reached.
Many fundamental concepts are still being hotly debated, and poten-
tially valuable new procedures have been introduced so recently that
there has not been an opportunity for researchers to test them in a vari-
ety of settings. The field is still expanding more than it is coalescing.

There are several ongoing directions of research in this area. The
early procedures were highly dependent on distributional assumptions
that are hard to verify. Researchers have been developing semi- and
nonparametric procedures that are hopefully more robust. The special
1986 issue of the Journal of Econometrics provides a set of important
articles on the topic. Papers by Lewbel and Linton (2002) and Levy
(2001) describe more recent developments. Another important devel-
opment concerns the representation of behavior in these settings. The
relation between the discrete and continuous variables has been gen-
eralized beyond the fairly simple representation that the early methods
assumed. For example, in the context of job training, it is likely that
the impact of the training differs over people and that people choose to
participate in the training program on the basis of the impact it will have
on them. Stated in econometric terms: the coefficient of the participation
dummy in the wage equation varies over people and affects the value of
the dummy. The dummy is correlated with its own coefficient, as well
as with the unobserved variables that enter the error of the regression.
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A recent discussion of approaches to this issue is provided by Carneiro
et al. (2001).

1.5 A Couple of Notes

Throughout the book, I refer to the researcher as “she” and the decision
maker as “he.” This usage, as well as being comparatively gender-neutral
(or at least symmetrically noninclusive), allows both people to be re-
ferred to in the same paragraph without confusion.

Many colleagues have provided valuable comments and sugges-
tions on earlier drafts of the book. I am very grateful for this help. I
thank Greg Allenby, Moshe Ben-Akiva, Chandra Bhat, Denis Bolduc,
David Brownstone, Siddhartha Chib, Jon Eisen-Hecht, Florian Heiss,
David Hensher, Joe Herriges, Rich Johnson, Frank Koppelman, Jordan
Louviere, Aviv Nevo, Juan de Dios Ortiazar, Ken Small, Joan Walker,
Cliff Winston, Joachim Winter, and the students in my graduate econo-
metrics course.

I welcome readers to contact me if you feel I have not covered material
that you consider important, or if I have confused rather than clarified
any of the material that I do cover. Hopefully, another edition of this
book will someday materialize.
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2 Properties of Discrete Choice Models

2.1 Overview

This chapter describes the features that are common to all discrete choice
models. We start by discussing the choice set, which is the set of options
that are available to the decision maker. We then define choice probabili-
ties and derive them from utility-maximizing behavior. The most promi-
nent types of discrete choice models, namely logit, generalized extreme
value (GEV), probit, and mixed logit, are introduced and compared
within the context of this general derivation. Utility, as a constructed
measure of well-being, has no natural level or scale. This fact has im-
portant implications for the specification and normalization of discrete
choice models, which we explore. We then show how individual-level
models are aggregated to obtain market-level predictions, and how the
models are used for forecasting over time.

2.2 The Choice Set

Discrete choice models describe decision makers’ choices among al-
ternatives. The decision makers can be people, households, firms, or
any other decision-making unit, and the alternatives might represent
competing products, courses of action, or any other options or items
over which choices must be made. To fit within a discrete choice frame-
work, the set of alternatives, called the choice set, needs to exhibit three
characteristics. First, the alternatives must be mutually exclusive from
the decision maker’s perspective. Choosing one alternative necessarily
implies not choosing any of the other alternatives. The decision maker
chooses only one alternative from the choice set. Second, the choice
set must be exhaustive, in that all possible alternatives are included.
The decision maker necessarily chooses one of the alternatives. Third,
the number of alternatives must be finite. The researcher can count the
alternatives and eventually be finished counting.

15
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The first and second criteria are not restrictive. Appropriate definition
of alternatives can nearly always assure that the alternatives are mutually
exclusive and the choice set is exhaustive. For example, suppose two
alternatives labeled A and B are not mutually exclusive because the
decision maker can choose both of the alternatives. The alternatives can
be redefined to be “A only,” “B only,” and “both A and B,” which are
necessarily mutually exclusive. Similarly, a set of alternatives might not
be exhaustive because the decision maker has the option of not choosing
any of them. In this case, an extra alternative can be defined as “none
of the other alternatives.” The expanded choice set, consisting of the
original alternatives plus this new one, is clearly exhaustive.

Often the researcher can satisfy these two conditions in several
different ways. The appropriate specification of the choice set in these
situations is governed largely by the goals of the research and the data
that are available to the researcher. Consider households’ choice among
heating fuels, a topic which has been studied extensively in efforts to
forecast energy use and to develop effective fuel-switching and energy
conservation programs. The available fuels are usually natural gas, elec-
tricity, oil, and wood. These four alternatives, as listed, violate both mu-
tual exclusivity and exhaustiveness. The alternatives are not mutually
exclusive because a household can (and many do) have two types of
heating, e.g., a natural gas central heater and electric room heaters, or
a wood stove along with electric baseboard heating. And the set is not
exhaustive because the household can have no heating (which, unfor-
tunately, is not as rare as one might hope). The researcher can handle
each of these issues in several ways. To obtain mutually exclusive al-
ternatives, one approach is to list every possible combination of heating
fuels as an alternative. The alternatives are then defined as: “electric-
ity alone,” “electricity and natural gas, but no other fuels,” and so on.
Another approach is to define the choice as the choice among fuels for the
“primary” heating source. Under this procedure, the researcher develops
a rule for determining which heating fuel is primary when a household
uses multiple heating fuels. By definition, only one fuel (electricity, nat-
ural gas, oil, or wood) is primary. The advantage of listing every possible
combination of fuels is that it avoids the need to define a “primary” fuel,
which is a difficult and somewhat arbitrary distinction. Also, with all
combinations considered, the researcher has the ability to examine the
factors that determine households’ use of multiple fuels. However, to
implement this approach, the researcher needs data that distinguish the
alternatives, for example, the cost of heating a house with natural gas
and electricity versus the cost with natural gas alone. If the researcher re-
stricts the analysis to choice of primary fuel, then the data requirements
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are less severe. Only the costs associated with each fuel are needed. Also,
a model with four alternatives is inherently easier to estimate and fore-
cast with than a model with the large number of alternatives that arises
when every possible combination of fuels is considered. The researcher
will need to take these trade-offs into consideration when specifying the
choice set.

The same type of issue arises with regard to exhaustiveness. In our case
of heating-fuel choice, the researcher can either include “no heating” as
an alternative or can redefine the choice situation as being the choice
of heating fuel conditional on having heating. The first approach allows
the researcher to examine the factors that relate to whether a household
has heating. However, this ability is only realized if the researcher has
data that meaningfully relate to whether or not a household has heating.
Under the second approach, the researcher excludes from the analysis
households without heating, and, by doing so, is relieved of the need for
data that relate to these households.

As we have just described, the conditions of mutual exclusivity and
exhaustiveness can usually be satisfied, and the researcher often has sev-
eral approaches for doing so. In contrast, the third condition, namely, that
the number of alternatives is finite, is actually restrictive. This condition
is the defining characteristic of discrete choice models and distinguishes
their realm of application from that for regression models. With regres-
sion models, the dependent variable is continuous, which means that
there is an infinite number of possible outcomes. The outcome might be
chosen by a decision maker, such as the decision of how much money
to hold in savings accounts. However, the alternatives available to the
decision maker, which are every possible monetary value above zero, is
not finite (at least not if all fractions are considered, which is an issue we
return to later.) When there is an infinite number of alternatives, discrete
choice models cannot be applied.

Often regression models and discrete choice models are distinguished
by saying that regressions examine choices of “how much” and dis-
crete choice models examine choice of “which.” This distinction, while
perhaps illustrative, is not actually accurate. Discrete choice models can
be and have been used to examine choices of “how much.” A prominent
example is households’ choice of how many cars to own. The alternatives
are 0, 1, 2, and so on, up to the largest number that the researcher con-
siders possible (or observes). This choice set contains a finite number of
mutually exclusive and exhaustive alternatives, appropriate for analysis
via discrete choice models. The researcher can also define the choice
set more succinctly as 0, 1, and 2 or more vehicles, if the goals of the
research can be met with this specification.
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When considered in this way, most choices involving “how many” can
be represented in a discrete choice framework. In the case of savings ac-
counts, every one-dollar increment (or even every one-cent increment)
can be considered an alternative, and as long as some finite maximum
exists, then the choice set fits the criteria for discrete choice. Whether
to use regression or discrete choice models in these situations is a spec-
ification issue that the researcher must consider. Usually a regression
model is more natural and easier. A discrete choice model would be
used in these situations only if there were compelling reasons for do-
ing so. As an example, Train et al. (1987a) analyzed the number and
duration of phone calls that households make, using a discrete choice
model instead of a regression model because the discrete choice model
allowed greater flexibility in handling the nonlinear price schedules that
households face. In general, the researcher needs to consider the goals of
the research and the capabilities of alternative methods when deciding
whether to apply a discrete choice model.

2.3 Derivation of Choice Probabilities

Discrete choice models are usually derived under an assumption of
utility-maximizing behavior by the decision maker. Thurstone (1927)
originally developed the concepts in terms of psychological stimuli,
leading to a binary probit model of whether respondents can differen-
tiate the level of stimulus. Marschak (1960) interpreted the stimuli as
utility and provided a derivation from utility maximization. Following
Marschak, models that can be derived in this way are called random
utility models (RUMs). It is important to note, however, that models
derived from utility maximization can also be used to represent decision
making that does not entail utility maximization. The derivation assures
that the model is consistent with utility maximization; it does not pre-
clude the model from being consistent with other forms of behavior. The
models can also be seen as simply describing the relation of explanatory
variables to the outcome of a choice, without reference to exactly how
the choice is made.

Random utility models (RUMs) are derived as follows. A decision
maker, labeled n, faces a choice among J alternatives. The decision
maker would obtain a certain level of utility (or profit) from each al-
ternative. The utility that decision maker n obtains from alternative j
is Uyj, j=1,...,J. This utility is known to the decision maker but
not, as we see in the following, by the researcher. The decision maker
chooses the alternative that provides the greatest utility. The behavioral
model is therefore: choose alternative i if and only if U,; > U,; Vj # i.
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Consider now the researcher. The researcher does not observe the
decision maker’s utility. The researcher observes some attributes of the
alternatives as faced by the decision maker, labeled x,,; V j, and some at-
tributes of the decision maker, labeled s,,, and can specify a function that
relates these observed factors to the decision maker’s utility. The func-
tion is denoted V,; = V(x,;, s,) Vj and is often called representative
utility. Usually, V depends on parameters that are unknown to the re-
searcher and therefore estimated statistically; however, this dependence
is suppressed for the moment.

Since there are aspects of utility that the researcher does not or cannot
observe, V,; # U,;. Utility is decomposed as U,; = V,; + ¢,;, where
&y captures the factors that affect utility but are not included in V,,;. This
decomposition is fully general, since ¢,; is defined as simply the differ-
ence between true utility U,,; and the part of utility that the researcher
captures in V,,;. Given its definition, the characteristics of ¢,;, such as its
distribution, depend critically on the researcher’s specification of V,,;.
In particular, ¢,; is not defined for a choice situation per se. Rather, it is
defined relative to a researcher’s representation of that choice situation.
This distinction becomes relevant when evaluating the appropriateness
of various specific discrete choice models.

The researcher does not know ¢,; Vj and therefore treats these terms
as random. The joint density of the random vector ¢, = (&,,1, ..., &)
is denoted f(g,). With this density, the researcher can make probabilis-
tic statements about the decision maker’s choice. The probability that
decision maker n chooses alternative i is

Pm‘ :PI'Ob(Um' > Unj V_] 75 l)
= Prob(V,i + €, > V,j + &, Vj #1)
2.1 = Prob(e,; — €ni < Vi — Vyj Vj #10).

This probability is a cumulative distribution, namely, the probability that
each random term ¢,; — &,; is below the observed quantity V,; — V,,;.
Using the density f(&,), this cumulative probability can be rewritten as

Py = PrOb(Snj —&ni < Vi — an V.] 7é l)

QD = [y e < Vi = Vig Vi £ DS
&

where [(-) is the indicator function, equaling 1 when the expression in

parentheses is true and O otherwise. This is a multidimensional integral

over the density of the unobserved portion of utility, f(g,). Different

discrete choice models are obtained from different specifications of this

density, that is, from different assumptions about the distribution of the
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unobserved portion of utility. The integral takes a closed form only for
certain specifications of f(-). Logit and nested logit have closed-form
expressions for this integral. They are derived under the assumption that
the unobserved portion of utility is distributed iid extreme value and a
type of generalized extreme value, respectively. Probit is derived under
the assumption that f(-) is a multivariate normal, and mixed logit is
based on the assumption that the unobserved portion of utility consists
of a part that follows any distribution specified by the researcher plus a
part that is iid extreme value. With probit and mixed logit, the resulting
integral does not have a closed form and is evaluated numerically through
simulation. Each of these models is discussed in detail in subsequent
chapters.

The meaning of choice probabilities is more subtle, and more
revealing, than it might at first appear. An example serves as illustra-
tion. Consider a person who can take either a car or a bus to work. The
researcher observes the time and cost that the person would incur under
each mode. However, the researcher realizes that there are factors other
than time and cost that affect the person’s utility and hence his choice.
The researcher specifies

V.=aT, + BM,,
Vi = aTy + BM,,

where T, and M, are the time and cost (in money) that the person incurs
traveling to work by car, T, and M, are defined analogously for bus,
and the subscript n denoting the person is omitted for convenience. The
coefficients « and B are either known or estimated by the researcher.
Suppose that, given o and 8 and the researcher’s measures of the time
and cost by car and bus, it turns out that V, = 4 and V;, = 3. This means
that, on observed factors, car is better for this person than bus by 1 unit.
(We discuss in following text the normalization of utility that sets the
dimension of these units.) It does not mean, however, that the person
necessarily chooses car, since there are other factors not observed by the
researcher that affect the person. The probability that the person chooses
bus instead of car is the probability that the unobserved factors for bus
are sufficiently better than those for car to overcome the advantage that
car has on observed factors. Specifically, the person will choose bus if the
unobserved portion of utility is higher than that for car by at least 1 unit,
thus overcoming the 1-unit advantage that car has on observed factors.
The probability of this person choosing bus is therefore the probability
that &, — ¢, > 1. Likewise, the person will choose car if the unobserved
utility for bus is not better than that for car by at least 1 unit, that is, if
&y, — & < 1. Since 1 is the difference between V. and V), in our example,
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the probabilities can be stated more explicitly as
P. =Prob(g, — e, < V. —Vp)
and

P, =Prob(gp, — &, > V. — V)
= Prob(e, — g, <V}, — V).

These equations are the same as equation (2.1), re-expressed for our
car-bus example.

The question arises in the derivation of the choice probabilities: what
is meant by the distribution of ¢,? The interpretation that the researcher
places on this density affects the researcher’s interpretation of the choice
probabilities. The most prominent way to think about this distribution
is as follows. Consider a population of people who face the same ob-
served utility V,,; Vj as person n. Among these people, the values of
the unobserved factors differ. The density f(e,) is the distribution of
the unobserved portion of utility within the population of people who
face the same observed portion of utility. Under this interpretation, the
probability P,; is the share of people who choose alternative i within
the population of people who face the same observed utility for each
alternative as person n. The distribution can also be considered in sub-
jective terms, as representing the researcher’s subjective probability that
the person’s unobserved utility will take given values. In this case, P,;
is the probability that the researcher ascribes to the person’s choosing
alternative i given the researcher’s ideas about the unobserved portions
of the person’s utility. As a third possibility, the distribution can repre-
sent the effect of factors that are quixotic to the decision maker himself
(representing, e.g., aspects of bounded rationality), so that P,; is the
probability that these quixotic factors induce the person to choose alter-
native i given the observed, nonquixotic factors.

2.4  Specific Models

Logit, GEV, probit, and mixed logit are discussed at length in the sub-
sequent chapters. However, a quick preview of these models is useful at
this point, to show how they relate to the general derivation of all choice
models and how they differ within this derivation. As stated earlier, dif-
ferent choice models are derived under different specifications of the
density of unobserved factors, f(e,). The issues therefore are what dis-
tribution is assumed for each model, and what is the motivation for these
different assumptions.
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Logit (discussed in Chapter 3) is by far the most widely used discrete
choice model. It is derived under the assumption that ¢,; is iid extreme
value for all i. The critical part of the assumption is that the unobserved
factors are uncorrelated over alternatives, as well as having the same
variance for all alternatives. This assumption, while restrictive, provides
a very convenient form for the choice probability. The popularity of
the logit model is due to this convenience. However, the assumption
of independence can be inappropriate in some situations. Unobserved
factors related to one alternative might be similar to those related to
another alternative. For example, a person who dislikes travel by bus
because of the presence of other riders might have a similar reaction to
rail travel; if so, then the unobserved factors affecting bus and rail are
corrrelated rather than independent. The assumption of independence
also enters when a logit model is applied to sequences of choices over
time. The logit model assumes that each choice is independent of the
others. In many cases, one would expect that unobserved factors that
affect the choice in one period would persist, at least somewhat, into the
next period, inducing dependence among the choices over time.

The development of other models has arisen largely to avoid the inde-
pendence assumption within a logit. Generalized extreme-value models
(GEYV, discussed in Chapter 4) are based, as the name implies, on a gener-
alization of the extreme-value distribution. The generalization can take
many forms, but the common element is that it allows correlation in
unobserved factors over alternatives and collapses to the logit model
when this correlation is zero. Depending on the type of GEV model,
the correlations can be more or less flexible. For example, a compar-
atively simple GEV model places the alternatives into several groups
called nests, with unobserved factors having the same correlation for all
alternatives within a nest and no correlation for alternatives in different
nests. More complex forms allow essentially any pattern of correlation.
GEV models usually have closed forms for the choice probabilities, so
that simulation is not required for their estimation.

Probits (Chapter 5) are based on the assumption that the unobserved
factors are distributed jointly normal: &), = (&,1, ..., &,7) ~ N(0, Q).
With full covariance matrix €2, any pattern of correlation and het-
eroskedasticity can be accommodated. When applied to sequences of
choices over time, the unobserved factors are assumed to be jointly nor-
mal over time as well as over alternatives, with any temporal correlation
pattern. The flexibility of the probit model in handling correlations over
alternatives and time is its main advantage. Its only functional limitation
arises from its reliance on the normal distribution. In some situations,
unobserved factors may not be normally distributed. For example, a
customer’s willingness to pay for a desirable attribute of a product is
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necessary positive. Assuming that this unobserved factor is normally
distributed contradicts the fact that it is positive, since the normal distri-
bution has density on both sides of zero.

Mixed logit (Chapter 6) allows the unobserved factors to follow any
distribution. The defining characteristic of a mixed logit is that the un-
observed factors can be decomposed into a part that contains all the
correlation and heteroskedasticity, and another part that is iid extreme
value. The first part can follow any distribution, including non-normal
distributions. We will show that mixed logit can approximate any dis-
crete choice model and thus is fully general.

Other discrete choice models (Chapter 7) have been specified by re-
searchers for specific purposes. Often these models are obtained by
combining concepts from other models. For example, a mixed probit is
obtained by decomposing the unobserved factors into two parts, as in
mixed logit, but giving the second part a normal distribution instead of
extreme value. This model has the generality of mixed logit and yet for
some situations can be easier to estimate. By understanding the deriva-
tion and motivation for all the models, each researcher can specify a
model that is tailor-made for the situation and goals of her research.

2.5 Identification of Choice Models

Several aspects of the behavioral decision process affect the specification
and estimation of any discrete choice model. The issues can be summa-
rized easily in two statements: “Only differences in utility matter” and
“The scale of utility is arbitrary.” The implications of these statements
are far-reaching, subtle, and, in many cases, quite complex. We discuss
them below.

2.5.1. Only Differences in Utility Matter

The absolute level of utility is irrelevant to both the decision
maker’s behavior and the researcher’s model. If a constant is added to the
utility of all alternatives, the alternative with the highest utility doesn’t
change. The decision maker chooses the same alternative with U,; Vj
as with U,;; + k Vj for any constant k. A colloquial way to express this
fact is, “A rising tide raises all boats.”

The level of utility doesn’t matter from the researcher’s perspec-
tive either. The choice probability is P,; = Prob(U,; > U,; Vj #1i) =
Prob(U,; — U,; > 0 Vj # i), which depends only on the difference
in utility, not its absolute level. When utility is decomposed into the
observed and unobserved parts, equation (2.1) expresses the choice
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probability as P,; = Prob(e,; — €,; < V,,; — V,,; Vj # i), whichalso de-
pends only on differences.

The fact that only differences in utility matter has several implications
for the identification and specification of discrete choice models. In
general it means that the only parameters that can be estimated (that is,
are identified) are those that capture differences across alternatives. This
general statement takes several forms.

Alternative-Specific Constants

It is often reasonable to specify the observed part of utility to
be linear in parameters with a constant: V,; = x, j,B + k; Vj, where x,;
is a vector of variables that relate to alternative j as faced by decision
maker n, B are coefficients of these variables, and k; is a constant that
is specific to alternative j. The alternative-specific constant for an al-
ternative captures the average effect on utility of all factors that are not
included in the model. Thus they serve a similar function to the con-
stant in a regression model, which also captures the average effect of all
unincluded factors.

When alternative-specific constants are included, the unobserved por-
tion of utility, €,;, has zero mean by construction. If ¢,; has a nonzero
mean when the constants are not included, then adding the constants
makes the remaining error have zero mean: that is, if U,; = x,’”. B+ ey
with E(g,;)* =k; # 0,then U,; = x,;j,B +kj + &, with E(g,,;) = 0. It
is reasonable, therefore, to include a constant in V,,; for each alternative.
However, since only differences in utility matter, only differences in
the alternative-specific constants are relevant, not their absolute levels.
To reflect this fact, the researcher must set the overall level of these
constants.

The concept is readily apparent in the car—bus example. A specifica-
tion of utility that takes the form

Ue =aT, + M, + k) + &,

Up = aT,+ BMy, + k) + &,
with k) — k® = d, is equivalent to a model with

Ue =aT. + BM: + k} + &,

Up = aTy + BMpy + kj + &5,
where the difference in the new constants is the same as the difference
in the old constants, namely, k} — k! = d = k — k¥. Any model with

the same difference in constants is equivalent. In terms of estimation, it
is impossible to estimate the two constants themselves, since an infinite
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number of values of the two constants (any values that have the same
difference) result in the same choice probabilities.

To account for this fact, the researcher must normalize the absolute
levels of the constants. The standard procedure is to normalize one of
the constants to zero. For example, the researcher might normalize the
constant for the car alternative to zero:

U.=aT. + IBMC + &c,
U, = OlTb +,3Mb +kb + &p.

Under this normalization, the value of k;, is d, which is the difference
in the original (unnormalized) constants. The bus constant is interpreted
as the average effect of unincluded factors on the utility of bus relative
to car.

With J alternatives, at most J — 1 alternative-specific constants can
enter the model, with one of the constants normalized to zero. It is irrel-
evant which constant is normalized to zero: the other constants are inter-
preted as being relative to whichever one is set to zero. The researcher
could normalize to some value other than zero, of course; however, there
would be no point in doing so, since normalizing to zero is easier (the
constant is simply left out of the model) and has the same effect.

Sociodemographic Variables

The same issue affects the way that socio-demographic variables
enter a model. Attributes of the alternatives, such as the time and cost
of travel on different modes, generally vary over alternatives. However,
attributes of the decision maker do not vary over alternatives. They can
only enter the model if they are specified in ways that create differences
in utility over alternatives.

Consider for example the effect of a person’s income on the decision
whether to take bus or car to work. It is reasonable to suppose that a
person’s utility is higher with higher income, whether the person takes
bus or car. Utility is specified as

U.=aT, + M, +0°Y + ¢,
Uy = aT, + BMy + 6,Y + ky + &,

where Y is income and 60 and 67 capture the effects of changes in
income on the utility of taking car and bus, respectively. We expect
that #° > 0 and §) > 0, since greater income makes people happier no
matter what mode they take. However, 60 # 6, since income probably
has a different effect on the person depending on his mode of travel.
Since only differences in utility matter, the absolute levels of 6° and 6;
cannot be estimated, only their difference. To set the level, one of these
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parameters is normalized to zero. The model becomes
UC - aTc + ﬂMc + &,
Ub = OlTb + /3Mb + 91,Y + kb + &p,

where 6, = 00 — 6° and is interpreted as the differential effect of income
on the utility of bus compared to car. The value of 6, can be either positive
or negative.

Sociodemographic variables can enter utility in other ways. For ex-
ample, cost is often divided by income:

U.=aT. + IBML/Y + &,
Uy =al, + BMp/Y +6,Y + ky, + ¢p.

The coefficient of cost in this specification is 8/ Y. Since this coefficient
decreases in Y, the model reflects the concept that cost becomes less
important in a person’s decision making, relative to other issues, when
income rises.

When sociodemographic variables are interacted with attributes of
the alternatives, there is no need to normalize the coefficients. The
sociodemographic variables affect the differences in utility through
their interaction with the attributes of the alternatives. The difference
U.—U,=...86(M.— My)/Y ...varies with income, since costs differ
over alternatives.

Number of Independent Error Terms

As given by equation (2.2), the choice probabilities take the
form

P, = / I(enj — i < Vii = Viy Vj # ) fen) ey,
&

This probability is a J-dimensional integral over the density of the J error
terms in &, = (&,1, ..., &,7). The dimension can be reduced, however,
through recognizing that only differences in utility matter. With J errors
(one for each alternative), there are J — 1 error differences. The choice
probability can be expressed as a (J — 1)-dimensional integral over the
density of these error differences:

P,; = Prob(U,; > U,; Vj # i)
= PI‘Ob(Snj —&pi < Vi — an V-] # l)
= PI‘Ob(énj,' < Vni - an Vj 7& i)

= /I(gnji < Vai — Vi Vj #1)g(&ni) d&p;
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where &,;; = €,; — &,; is the difference in errors for alternatives i and j;
Eni = (Entis ..., Enyi) is the (J — 1)-dimensional vector of error differ-
ences, with the . .. over all alternatives except i; and g(-) is the density
of these error differences. Expressed in this way, the choice probability
is a (J — 1)-dimensional integral.

The density of the error differences g(-), and the density of the original
errors, f(-), are related in a particular way. Suppose a model is speci-
fied with an error for each alternative: ¢, = (¢,,1, .. ., &,s) with density
f(g,). This model is equivalent to a model with J — 1 errors defined as
Enjk = €nj — &k for any k and density g(&,;) derived from f (¢, ). For any
f(e,), the corresponding g(&,x) can be derived. However, since ¢, has
more elements than &,, there is an infinite number of densities for the
J error terms that give the same density for the J — 1 error differences.
Stated equivalently, any g(&,;) is consistent with an infinite number of
different f(e,)’s. Since choice probabilities can always be expressed as
depending only on g(&,), one dimension of the density of f(g,) is not
identified and must be normalized by the researcher.

The normalization of f(e,) can be handled in various ways. For some
models, such as logit, the distribution of the error terms is sufficiently
restrictive that the normalization occurs automatically with the assump-
tions on the distribution. For other models, such as probit, identification
is often obtained by specifying the model only in terms of error differ-
ences, that is, by parameterizing g(-) without reference to f(-). In all but
the simplest models, the researcher needs to consider the fact that only
the density of error differences affects the probabilities and therefore is
identified. In discussing the various models in subsequent chapters, we
will return to this issue and how to handle it.

2.5.2. The Overall Scale of Utility Is Irrelevant

Just as adding a constant to the utility of all alternatives does
not change the decision maker’s choice, neither does multiplying each
alternative’s utility by a constant. The alternative with the highest utility
is the same no matter how utility is scaled. The model U? ;= Vaj T &njVJj
is equivalent to Unlj = AV, + Ag,; Vj for any A > 0. To take account
of this fact, the researcher must normalize the scale of utility.

The standard way to normalize the scale of utility is to normalize
the variance of the error terms. The scale of utility and the variance
of the error terms are definitionally linked. When utility is multiplied
by A, the variance of each ¢,; changes by A2: Var(he, i) = A2 Var(e, i)
Therefore normalizing the variance of the error terms is equivalent to
normalizing the scale of utility.
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Normalization with iid Errors

If the error terms are assumed to be independently, identically
distributed (iid), then the normalization for scale is straightforward. The
researcher normalizes the error variance to some number, which is usu-
ally chosen for convenience. Since all the errors have the same variance
by assumption, normalizing the variance of any of them sets the variance
for them all.

When the observed portion of utility is linear in parameters, the nor-
malization provides a way of interpreting coefficients. Consider the
model U,?]. =X B+ 82]. where the variance of the error terms is
Var(egj) = o2, Suppose the research normalizes the scale by setting the
error variance to 1. The original model becomes the following equiva-
lent specification: Unlj = x;lj(ﬂ Jo)+¢g) ; with Var(e) ;) = 1. The original
coefficients g are divided by the standard deviation of the unobserved
portion of utility. The new coefficients §/o reflect, therefore, the effect
of the observed variables relative to the standard deviation of the unob-
served factors.

The same concepts apply for whatever number the researcher chooses
for normalization. As we will see in the next chapter, the error variances
in a standard logit model are traditionally normalized to 72 /6, which is
about 1.6. In this case, the preceding model becomes U,; = x,’lj (B/o)
V1.6 + &,; with Var(e,;) = 1.6. The coefficients still reflect the vari-
ance of the unobserved portion of utility. The only difference is that the
coefficients are larger by a factor of v/1.6.

While it is immaterial which number is used by the researcher for nor-
malization, interpretation of model results must take the normalization
into consideration. Suppose, for example, that a logit and an independent
probit model were both estimated on the same data. As stated earlier,
the error variance is normalized to 1.6 for logit. Suppose the researcher
normalized the probit to have error variances of 1, which is traditional
with independent probits. This difference in normalization must be kept
in mind when comparing estimates from the two models. In particu-
lar, the coefficients in the logit model will be +/1.6 times larger than
those for the probit model, simply due to the difference in normaliza-
tion. If the researcher does not take this scale difference into account
when comparing the models, she might inadvertently think that the logit
model implies that people care more about the attributes (since the co-
efficients are larger) than implied by the probit model. For example, in
a mode choice model, suppose the estimated cost coefficient is —0.55
from a logit model and —0.45 from an independent probit model. It is
incorrect to say that the logit model implies more sensitivity to costs
than the probit model. The coefficients in one of the models must be
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adjusted to account for the difference in scale. The logit coefficients can
be divided by +/1.6, so that the error variance is 1, just as in the probit
model. With this adjustment, the comparable coefficients are —0.43 for
the logit model and —0.45 for the probit model. The logit model implies
less price sensitivity than the probit. Instead, the probit coefficients could
be converted to the scale of the logit coefficients by multiplying them
by +/1.6, in which case the comparable coefficients would be —0.55 for
logit and —0.57 for probit.

A similar issue of interpretation arises when the same model is es-
timated on different data sets. The relative scale of the estimates from
the two data sets reflects the relative variance of unobserved factors in
the data sets. Suppose mode choice models were estimated in Chicago
and Boston. For Chicago, the estimated cost coefficient is —0.55 and
the estimated coefficient of time is —1.78. For Boston, the estimates
are —0.81 and —2.69. The ratio of the cost coefficient to the time co-
efficient is very similar in the two cities: 0.309 in Chicago and 0.301
in Boston. However, the scale of the coefficients is about fifty percent
higher for Boston than for Chicago. This scale difference means that
the unobserved portion of utility has less variance in Boston than in
Chicago: since the coefficients are divided by the standard deviation of
the unobserved portion of utility, lower coefficients mean higher stan-
dard deviation and hence variance. The models are revealing that factors
other than time and cost have less effect on people in Boston than in
Chicago. Stated more intuitively, time and cost have more importance,
relative to unobserved factors, in Boston than in Chicago, which is con-
sistent with the larger scale of the coefficients for Boston.

Normalization with Heteroskedastic Errors

In some situations, the variance of the error terms can be dif-
ferent for different segments of the population. The researcher cannot
set the overall level of utility by normalizing the variance of the errors
for all segments, since the variance is different in different segments.
Instead, the researcher sets the overall scale of utility by normalizing the
variance for one segment, and then estimates the variance (and hence
scale) for each segment relative to this one segment.

For example, consider the situation described in the previous section,
where the unobserved factors have greater variance in Chicago than
in Boston. If separate models are estimated for Chicago and Boston,
then the variance of the error term is normalized separately for each
model. The scale of the parameters in each model reflects the variance
of unincluded factors in that area. Suppose, however, that the researcher
wants to estimate a model on data for both Chicago and Boston. She
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cannot normalize the variance of the unobserved factors for all travelers
to the same number, since the variance is different for travelers in Boston
than for those in Chicago. Instead, the researcher sets the overall scale
of utility by normalizing the variance in one area (say Boston) and then
estimates the variance in the other area relative to that in the first area
(the variance in Chicago relative to that in Boston).

The model in its original form is

Upyj = aly + BM,; + 85}- Vn in Boston
Unj = O[Tnj + ,BMnj + 8,% Vn in Chicago,

where the variance of sfj is not the same as the variance of srfj. Label
the ratio of variances as k = Var(encj) / Var(efj). We can divide the utility

for travelers in Chicago by +/k; this division doesn’t affect their choices,
of course, since the scale of utility doesn’t matter. However, doing so
allows us to rewrite the model as

U,j =aT,; + BM,; + €, Yn in Boston
U,j = (@/VKk)T,j + (B/vk)M,j + &,; ¥n in Chicago,

where now the variance of ¢,; is the same for all n in both cities (since
Var(e$; //k) = (1/ k)Var(e$;) = [Var(e 5,/ Var(e ) Var(eS,) = Var(ef).
The scale of utility is set by normalizing the variance of ¢,;. The param-
eter k, which is often called the scale parameter, is estimated along with
B and «. The estimated value k of k tells the researcher the variance of
unobserved factors in Chicago relative to that in Boston. For example,
k = 1.2 implies that the variance of unobserved factors is twenty percent
greater in Chicago than in Boston.

The variance of the error term can differ over geographic regions,
data sets, time, or other factors. In all cases, the researcher sets the
overall scale of utility by normalizing one of the variances and then
estimating the other variances relative to the normalized one. Swait and
Louviere (1993) discuss the role of the scale parameter in discrete choice
models, describing the variety of reasons that variances can differ over
observations. As well as the traditional concept of variance in unobserved
factors, psychological factors can come into play, depending on the
choice situation and the interpretation of the researcher. For example,
Bradley and Daly (1994) allow the scale parameter to vary over stated
preference experiments in order to allow for respondents’ fatigue in
answering the survey questions. Ben-Akiva and Morikawa (1990) allow
the scale parameter to differ for respondents’ stated intentions versus
their actual market choices.
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Normalization with Correlated Errors

In the discussion so far we have assumed that ¢,,; is independent
over alternatives. When the errors are correlated over alternatives, nor-
malizing for scale is more complex. We have talked in terms of setting
the scale of utility. However, since only differences in utility matter, it is
more appropriate to talk in terms of setting the scale of utility differences.
When errors are correlated, normalizing the variance of the error for one
alternative is not sufficient to set the scale of utility differences.

The issue is most readily described in terms of a four-alternative
example. The utility for the four alternatives is U,; = V,,; +&,j, j =
1,...,4. The error vector &, = (g,1, ..., &,4) has zero mean and co-
variance matrix

011 O12 013 Ol4

. o o o
23) Q= 22 23 24 ,
: : 033 034
044

where the dots refer to the corresponding elements in the upper part of
the symmetric matrix.

Since only differences in utility matter, this model is equivalent to
one in which all utilities are differenced from, say, the first alterna-
tive. The equivalent model is U,,jl = anl — &yj1 for j = 2,3, 4, where
U,,jl =U,; — Uy, an1 =V, — V,1, and the vector of error differ-
ences 1S &,1 = ((e.2 — €n1), (€43 — €n1), (€44 — €41)). The variance of
each error difference depends on the variances and covariances of the
original errors. For example, the variance of the difference between
the first and second errors is Var(§,»1) = Var(e,» — &,1) = Var(g,;) +
Var(e,n) — 2 Cov(e,1, €2) = 011 + 022 — 201,. We can similarly calcu-
late the covariance between &5, which is the difference between the first
and second errors, and &,3;, which is the difference between the first and
third errors: Cov(&,21, £:31) = E(&n2 — €01)(En3 — 1) = E(€n28n3 —
£12En1 — En3Enl + En1€n1) = 023 — 021 — 031 +011. The covariance
matrix for the vector of error differences becomes

. o1+ 03 — 201 011+ 023 — 01— 013 011+ 024 — 012 — 014
Q= : o11 + 033 — 2013 011 + 034 — 013 — 014
O11 + 044 — 2014

Setting the variance of one of the original errors is not sufficient to
set the variance of the error differences. For example, if the variance
for the first alternative is set to some number o;; = k, the variance of
the difference between the errors for the first two alternatives becomes
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k + 025 — o12. An infinite number of values for 07, — o7, provide equiv-
alent models.

A common way to set the scale of utility when errors are not iid
is to normalize the variance of one of the error differences to some
number. Setting the variance of an error difference sets the scale of utility
differences and hence of utility. Suppose we normalize the variance of
&y21 to 1. The covariance matrix for the error differences, expressed in
terms of the covariances of the original errors, becomes

I (o11+023 —0pp—013)/m (011 +024 —012—014)/m
(2.4) . (011 +033 —2013)/m (011 +034 — 013 —0ow)/m |,
: : (011 + 044 —2014)/m

where m = o1 + 025 — 207,. Utility is divided by /o + 022 — 201>
to obtain this scaling.

Note that when the error terms are iid, normalizing the variance of
one of these errors automatically normalizes the variance of the error
differences. With iid errors, 0; = 0;; and 0;; = O fori # j. Therefore,
if o1 is normalized to k, then the variance of the error difference be-
comes o011 + 02 — 2013 = k + k — 0 = 2k. The variance of the error
difference is indeed being normalized, the same as with non-iid errors.

Normalization has implications for the number of parameters that can
be estimated in the covariance matrix. The covariance of the original
errors, €2 in equation (2.3), has ten elements in our four-alternative ex-
ample. However, the covariance matrix of the error differences has six
elements, one of which is normalized to set the scale of utility differ-
ences. The covariance matrix for error differences with the variance of
the first error difference normalized to k takes the form

k Wap  Wqc
Yk
(2.5) =1 o o],
Wee

which has only five parameters. On recognizing that only differences
matter and that the scale of utility is arbitrary, the number of covariance
parameters drops from ten to five. A model with J alternatives has at
most J(J — 1)/2 — 1 covariance parameters after normalization.
Interpretation of the model is affected by the normalization. Suppose
for example that the elements of matrix (2.5) were estimated. The param-
eter wyy, 1S the variance of the difference between the errors for the first
and third alternatives relative to the variance of the difference between
the errors for the first and second alternatives. Complicating interpreta-
tion even further is the fact that the variance of the difference between
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the errors for two alternatives reflects the variances of both as well as
their covariance.

As we will see, the normalization of logit and nested logit models is
automatic with the distributional assumptions that are placed on the error
terms. Interpretation under these assumptions is relatively straightfor-
ward. For mixed logit and probit, fewer assumptions are placed on the
distribution of error terms, so that normalization is not automatic. The
researcher must keep the normalization issues in mind when specifying
and interpreting a model. We return to this topic when discussing each
discrete choice model in subsequent chapters.

2.6  Aggregation

Discrete choice models operate at the level of individual decision makers.
However, the researcher is usually interested in some aggregate measure,
such as the average probability within a population or the average re-
sponse to a change in some factor.

In linear regression models, estimates of aggregate values of the de-
pendent variable are obtained by inserting aggregate values of the ex-
planatory variables into the model. For example, suppose #,, is housing
expenditures of person n, y, is the income of the person, and the model
relating them is 4, = o 4+ By,. Since this model is linear, the average
expenditure on housing is simply calculated as o + 8y, where y is av-
erage income. Similarly, the average response to a one-unit change in
income is simply B, since B is the response for each person.

Discrete choice models are not linear in explanatory variables, and
consequently, inserting aggregate values of the explanatory variables
into the models will not provide an unbiased estimate of the average
probability or average response. The point can be made visually. Con-
sider Figure 2.1, which gives the probabilities of choosing a particular
alternative for two individuals with the observed portion of their utility
(their representative utility) being a and b. The average probability is
the average of the probabilities for the two people, namely, (P, + Pp)/2.
The average representative utility is (@ + b)/2, and the probability eval-
uated at this average is the point on the curve above (a + b)/2. As shown
for this case, the average probability is greater than the probability eval-
uated at the average representative utility. In general, the probability
evaluated at the average representative utility underestimates the aver-
age probability when the individuals’ choice probabilities are low and
overestimates when they are high.

Estimating the average response by calculating derivatives and elastic-
ities at the average of the explanatory variables is similarly problematic.
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Figure 2.1. Difference between average probability and probability calculated
at average representative utility.

Choice
probability
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2 utility

Figure 2.2. Difference between average response and response calculated at
average representative utility.

Consider Figure 2.2, depicting two individuals with representative util-
ities a and b. The derivative of the choice probability for a change in
representative utility is small for both of these people (the slope of the
curve above a and b). Consequently, the average derivative is also small.
However, the derivative at the average representative utility is very large
(the slope above (a + b)/2). Estimating the average response in this way
can be seriously misleading. In fact, Talvitie (1976) found, in a mode
choice situation, that elasticities at the average representative utility can
be as much as two or three times greater or less than the average of the
individual elasticities.
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Aggregate outcome variables can be obtained consistently from dis-
crete choice models in two ways, by sample enumeration or segmenta-
tion. We discuss each approach in the following sections.

2.6.1. Sample Enumeration

The most straightforward, and by far the most popular, approach
is sample enumeration, by which the choice probabilities of each deci-
sion maker in a sample are summed, or averaged, over decision makers.
Consider a discrete choice model that gives probability P,; that decision
maker n will choose alternative i from a set of alternatives. Suppose
a sample of N decision makers, labeled n =1, ..., N, is drawn from
the population for which aggregate statistics are required. (This sample
might be the sample on which the model was estimated. However, it
might also be a different sample, collected in a different area or at a
later date than the estimation sample.) Each sampled decision maker n
has some weight associated with him, w,, representing the number of
decision makers similar to him in the population. For samples based on
exogenous factors, this weight is the reciprocal of the probability that
the decision maker was selected into the sample. If the sample is purely
random, then w, is the same for all n; and if the sample is stratified
random, then w,, is the same for all » within a stratum.

A consistent estimate of the total number of decision makers in the
population who choose alternative i, labeled N;, is simply the weighted
sum of the individual probabilities:

Ni = anpm'-
n

The average probability, which is the estimated market share, is N;/N.
Average derivatives and elasticities are similarly obtained by calculating
the derivative and elasticity for each sampled person and taking the
weighted average.

2.6.2. Segmentation

When the number of explanatory variables is small, and those
variables take only a few values, it is possible to estimate aggregate
outcomes without utilizing a sample of decision makers. Consider, for
example, a model with only two variables entering the representative
utility of each alternative: education level and gender. Suppose the edu-
cation variable consists of four categories: did not complete high school,
completed high school but did not attend college, attended college but
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did not receive a degree, received a college degree. Then the total num-
ber of different types of decision makers (called segments) is eight: the
four education levels for each of the two genders. Choice probabilities
vary only over these eight segments, not over individuals within each
segment.

If the researcher has data on the number of people in each segment,
then the aggregate outcome variables can be estimated by calculating
the choice probability for each segment and taking the weighted sum of
these probabilities. The number of people estimated to choose alternative
iis

8
Ni = E wSPSi’
s=1

where Pj; is the probability that a decision maker in segment s chooses
alternative i, and wy is the number of decision makers in segment s.

2.7  Forecasting

For forecasting into some future year, the procedures described earlier
for aggregate variables are applied. However, the exogenous variables
and/or the weights are adjusted to reflect changes that are anticipated
over time. With sample enumeration, the sample is adjusted so that it
looks like a sample that would be drawn in the future year. For example,
to forecast the number of people who will choose a given alternative five
years in the future, a sample drawn from the current year is adjusted to
reflect changes in socioeconomic and other factors that are expected to
occur over the next five years. The sample is adjusted by (1) changing
the value of the variables associated with each sampled decision maker
(e.g., increasing each decision maker’s income to represent real income
growth over time), and/or (2) changing the weight attached to each de-
cision maker to reflect changes over time in the number of decision
makers in the population that are similar to the sampled decision maker
(e.g., increasing the weights for one-person households and decreasing
weights for large households to reflect expected decreases in household
size over time).

For the segmentation approach, changes in explanatory variables over
time are represented by changes in the number of decision makers in
each segment. The explanatory variables themselves cannot logically be
adjusted, since the distinct values of the explanatory variables define the
segments. Changing the variables associated with a decision maker in
one segment simply shifts the decision maker to another segment.
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2.8 Recalibration of Constants

As described in Section 2.5.1, alternative-specific constants are often
included in a model to capture the average effect of unobserved factors.
In forecasting, it is often useful to adjust these constants, to reflect the
fact that unobserved factors are different for the forecast area or year
compared to the estimation sample. Market-share data from the forecast
area can be used to recalibrate the constants appropriately. The recali-
brated model can then be used to predict changes in market shares due
to changes in explanatory factors.

An iterative process is used to recalibrate the constants. Let oz? be
the estimated alternative-specific constant for alternative j. The super-
script O is used to indicate that these are the starting values in the iterative
process. Let S; denote the share of decision makers in the forecast area
that choose alternative j in the base year (usually, the latest year for
which such data are available.) Using the discrete choice model with
its original values of oz? Vj, predict the share of decision makers in the
forecast area who will choose each alternative. Label these predictions
S’}) V j. Compare the predicted shares with the actual shares. If the actual
share for an alternative exceeds the predicted share, raise the constant
for that alternative. Lower the constant if the actual share is below the
predicted. An effective adjustment is

oejl- = oe? —{—ln(Sj/S“jO).

With the new constants, predict the share again, compare with the actual
shares, and if needed adjust the constants again. The process is repeated
until the forecasted shares are sufficiently close to the actual shares. The
model with these recalibrated constants is then used to predict changes
from base-year shares due to changes in observed factors that affect
decision makers’ choices.
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3.1 Choice Probabilities

By far the easiest and most widely used discrete choice model is logit.
Its popularity is due to the fact that the formula for the choice proba-
bilities takes a closed form and is readily interpretable. Originally, the
logit formula was derived by Luce (1959) from assumptions about the
characteristics of choice probabilities, namely the independence from ir-
relevant alternatives (I11A) property discussed in Section 3.3.2. Marschak
(1960) showed that these axioms implied that the model is consistent
with utility maximization. The relation of the logit formula to the distri-
bution of unobserved utility (as opposed to the characteristics of choice
probabilities) was developed by Marley, as cited by Luce and Suppes
(1965), who showed that the extreme value distribution leads to the
logit formula. McFadden (1974) completed the analysis by showing the
converse: that the logit formula for the choice probabilities necessarily
implies that unobserved utility is distributed extreme value. In his Nobel
lecture, McFadden (2001) provides a fascinating history of the develop-
ment of this path-breaking model.

To derive the logit model, we use the general notation from Chapter 2
and add a specific distribution for unobserved utility. A decision maker,
labeled n, faces J alternatives. The utility that the decision maker obtains
from alternative j is decomposed into (1) a part labeled V,,; that is known
by the researcher up to some parameters, and (2) an unknown part ¢,;
thatis treated by the researcher asrandom: U,,; = V,,; + ¢,; Vj. The logit
model is obtained by assuming that each ¢,; is independently, identically
distributed extreme value. The distribution is also called Gumbel and
type I extreme value (and sometimes, mistakenly, Weibull). The density
for each unobserved component of utility is

(31) f(gn]) — e—s,,,-e—e—snj ,
and the cumulative distribution is

(32)  Fle,) =e*
38
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The variance of this distribution is 72/6. By assuming the variance is
72 /6, we are implicitly normalizing the scale of utility, as discussed in
Section 2.5. We return to this issue, and its relevance to interpretation,
in the next section. The mean of the extreme value distribution is not
zero; however, the mean is immaterial, since only differences in utility
matter (see Chapter 2), and the difference between two random terms
that have the same mean has itself a mean of zero.

The difference between two extreme value variables is distributed
logistic. That s, if ,; and &,,; are iid extreme value, then &7 ji = Enj — Eni
follows the logistic distribution

o

e’ nji

nji
This formula is sometimes used in describing binary logit models, that
is, models with two alternatives. Using the extreme value distribution for
the errors (and hence the logistic distribution for the error differences)
is nearly the same as assuming that the errors are independently normal.
The extreme value distribution gives slightly fatter tails than a normal,
which means that it allows for slightly more aberrant behavior than the
normal. Usually, however, the difference between extreme value and
independent normal errors is indistinguishable empirically.

The key assumption is not so much the shape of the distribution as
that the errors are independent of each other. This independence means
that the unobserved portion of utility for one alternative is unrelated
to the unobserved portion of utility for another alternative. It is a fairly
restrictive assumption, and the development of other models such as
those described in Chapters 4—6 has arisen largely for the purpose of
avoiding this assumption and allowing for correlated errors.

It is important to realize that the independence assumption is not as
restrictive as it might at first seem, and in fact can be interpreted as a
natural outcome of a well-specified model. Recall from Chapter 2 that
&pj 18 defined as the difference between the utility that the decision maker
actually obtains, U,;, and the representation of utility that the researcher
has developed using observed variables, V,;. As such, ¢,; and its distri-
bution depend on the researcher’s specification of representative utility;
it is not defined by the choice situation per se. In this light, the assump-
tion of independence attains a different stature. Under independence, the
error for one alternative provides no information to the researcher about
the error for another alternative. Stated equivalently, the researcher has
specified V,; sufficiently that the remaining, unobserved portion of utility
is essentially “white noise.” In a deep sense, the ultimate goal of the
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researcher is to represent utility so well that the only remaining aspects
constitute simply white noise; that is, the goal is to specify utility well
enough that a logit model is appropriate. Seen in this way, the logit model
is the ideal rather than a restriction.

If the researcher thinks that the unobserved portion of utility is cor-
related over alternatives given her specification of representative utility,
then she has three options: (1) use a different model that allows for cor-
related errors, such as those described in Chapters 4-6, (2) respecify
representative utility so that the source of the correlation is captured
explicitly and thus the remaining errors are independent, or (3) use the
logit model under the current specification of representative utility, con-
sidering the model to be an approximation. The viability of the last
option depends, of course, on the goals of the research. Violations of
the logit assumptions seem to have less effect when estimating average
preferences than when forecasting substitution patterns. These issues
are discussed in subsequent sections.

We now derive the logit choice probabilities, following McFadden
(1974). The probability that decision maker n chooses alternative i is

Py = PrOb(Vni + &ni > an + Enj V.] 5& l)
3.4) = Prob(e,; < &pi + Vi — Vyj Vj #10).
If ¢,; is considered given, this expression is the cumulative distribution
for each g,; evaluated at ¢,; + V,; — V,;;, which, according to (3.2),
is exp(—exp(—(&ni + Vni — Vij))). Since the &’s are independent, this

cumulative distribution over all j # i is the product of the individual
cumulative distributions:

— o EnitVni=Vnj)
Pni|8ni:l_[ee "
J#
Of course, ¢,; is not given, and so the choice probability is the integral
of P,; | e,; over all values of ¢,; weighted by its density (3.1):

_ o EnitVni=Vnj) e . _p—ni
(3.5) P, =/<l_[e e f>e Ei o= M o

J#
Some algebraic manipulation of this integral results in a succinct, closed-
form expression:

evm'
eV’
> ;e

which is the logit choice probability. The algebra that obtains (3.6) from
(3.5) is given in the last section of this chapter.

(3.6) Py =
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Representative utility is usually specified to be linear in parameters:
V.j = B'x,j, where x,; is a vector of observed variables relating to al-
ternative j. With this specification, the logit probabilities become

eﬂ,xni
. ﬂ/xnj '
2

Under fairly general conditions, any function can be approximated ar-
bitrarily closely by one that is linear in parameters. The assumption
is therefore fairly benign. Importantly, McFadden (1974) demonstrated
that the log-likelihood function with these choice probabilities is glob-
ally concave in parameters 8, which helps in the numerical maximization
procedures (as discussed in Chapter 8). Numerous computer packages
contain routines for estimation of logit models with linear-in-parameters
representative utility.

The logit probabilities exhibit several desirable properties. First, P,; is
necessarily between zero and one, as required for a probability. When V,;;
rises, reflecting an improvement in the observed attributes of the alter-
native, with V,,; Vj # i held constant, P,; approaches one. And P,; ap-
proaches zero when V,;; decreases, since the exponential in the numerator
of (3.6) approaches zero as V,,; approaches —oo. The logit probability for
an alternative is never exactly zero. If the researcher believes that an alter-
native has actually no chance of being chosen by a decision maker, the re-
searcher can exclude that alternative from the choice set. A probability of
exactly 1 is obtained only if the choice set consists of a single alternative.

Second, the choice probabilities for all alternatives sum to one:
ZiJ: L Pi =) exp(Vii)/ D2 jexp(Vyy) = 1. The decision maker neces-
sarily chooses one of the alternatives. The denominator in (3.6) is simply
the sum of the numerator over all alternatives, which gives this summing-
up property automatically. With logit, as well as with some more complex
models such as the nested logit models of Chapter 4, interpretation of
the choice probabilities is facilitated by recognition that the denominator
serves to assure that the probabilities sum to one. In other models, such
as mixed logit and probit, there is no denominator per se to interpret in
this way.

The relation of the logit probability to representative utility is sigmoid,
or S-shaped, as shown in Figure 3.1. This shape has implications for the
impact of changes in explanatory variables. If the representative utility of
an alternative is very low compared with other alternatives, a small in-
crease in the utility of the alternative has little effect on the probability of
its being chosen: the other alternatives are still sufficiently better such that
this small improvement doesn’t help much. Similarly, if one alternative

P, =
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Pm'

Figure 3.1. Graph of logit curve.

is far superior to the others in observed attributes, a further increase in its
representative utility has little effect on the choice probability. The point
at which the increase in representative utility has the greatest effect on
the probability of its being chosen is when the probability is close to 0.5,
meaning a 50-50 chance of the alternative being chosen. In this case, a
small improvement tips the balance in people’s choices, inducing a large
change in probability. The sigmoid shape of logit probabilities is shared
by most discrete choice models and has important implications for policy
makers. For example, improving bus service in areas where the service
is so poor that few travelers take the bus would be less effective, in terms
of transit ridership, than making the same improvement in areas where
bus service is already sufficiently good to induce a moderate share of
travelers to choose it (but not so good that nearly everyone does).

The logit probability formula is easily interpretable in the context
of an example. Consider a binary choice situation first: a household’s
choice between a gas and an electric heating system. Suppose that the
utility the household obtains from each type of system depends only
on the purchase price, the annual operating cost, and the household’s
view of the convenience and quality of heating with each type of system
and the relative aesthetics of the systems within the house. The first two
of these factors can be observed by the researcher, but the researcher
cannot observe the others. If the researcher considers the observed part
of utility to be a linear function of the observed factors, then the utility
of each heating system can be written as: U, = PP, + 8,0C, + ¢,
and U, = PP, + 5,0C, + ¢, where the subscripts g and e denote
gas and electric, PP and OC are the purchase price and operating cost,
B1 and B, are scalar parameters, and the subscript n for the household
is suppressed. Since higher costs mean less money to spend on other
goods, we expect utility to drop as purchase price or operating cost rises
(with all else held constant): 8; <0 and 8, <O0.
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The unobserved component of utility for each alternative, ¢, and &,
varies over households depending on how each household views the
quality, convenience and aesthetics of each type of system. If these unob-
served components are distributed iid extreme value, then the probability
that the household will choose gas heating is

oB1PP+B0C,

G.7)  Pg= ePIPP+B:0C, | oBiPP.+5,0C,

and the probability of electric heating is the same but with exp(8;PP, +
B,0C,) as the numerator. The probability of choosing a gas system
decreases if its purchase price or operating cost rises while that of the
electric system remains the same (assuming that 8, and §, are negative,
as expected).

As in most discrete choice models, the ratio of coefficients in this
example has economic meaning. In particular, the ratio 8,/ 8, represents
the household’s willingness to pay for operating-cost reductions. If 8,
were estimated as —0.20 and B, as —1.14, these estimates would imply
that households are willing to pay up to (—1.14)/(—0.20) = 5.70 dollars
more for a system whose annual operating costs are one dollar less. This
relation is derived as follows. By definition, a household’s willingness
to pay for operating-cost reductions is the increase in purchase price
that keeps the household’s utility constant given a reduction in operating
costs. We take the total derivative of utility with respect to purchase price
and operating cost and set this derivative to zero so that utility doesn’t
change: dU = B, dPP + B, dOC = 0. We then solve for the change in
purchase price that keeps utility constant (i.e., satisfies this equation) for
a change in operating costs: d0PP/0OC = —f,/8;. The negative sign
indicates that the two changes are in the opposite direction: to keep
utility constant, purchase price rises when operating cost decreases.

In this binary choice situation, the choice probabilities can be ex-
pressed in another, even more succinct form. Dividing the numerator and
denominator of (3.7) by the numerator, and recognizing that exp(a)/
exp(b) = exp(a — b), we have

1
Pe=1 T ¢(BIPPAB0C)—(BIPP,+5,0C,)

In general, binary logit probabilities with representative utilities V,;;
and V,» canbe written P,; = 1/(1 + exp(V,o — V1)) and Py = 1/(1 +
exp(Vu1 — Vip)). If only demographics of the decision maker, s,, enter
the model, and the coefficients of these demographic variables are nor-
malized to zero for the first alternative (as described in Chapter 2), the
probability of the first alternative is P,; = 1/(1 4 e**"), which is the
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form that is used in most textbooks and computer manuals for binary
logit.

Multinomial choice is a simple extension. Suppose there is a third
type of heating system, namely oil-fueled. The utility of the oil system
is specified as the same form as for the electric and gas systems: U, =
B1PP, + B,0C, + ¢,. With this extra option available, the probability
that the household chooses a gas system is

oB1PP+B0C,

P, = ,
8 7 oBiPP+50C, | oBIPP+B0C, 1 oBiPP,+5,0C,

which is the same as (3.7) except that an extra term is included in the
denominator to represent the oil heater. Since the denominator is larger
while the numerator is the same, the probability of choosing a gas system
is smaller when an oil system is an option than when not, as one would
expect in the real world.

3.2 The Scale Parameter

In the previous section we derived the logit formula under the assumption
that the unobserved factors are distributed extreme value with variance
72 /6. Setting the variance to 72 /6 is equivalent to normalizing the model
for the scale of utility, as discussed in Section 2.5. It is useful to make
these concepts more explicit, to show the role that the variance of the
unobserved factors plays in logit models.

In general, utility can be expressed as U}, = V,,; + €7,;, where the un-
observed portion has variance o> x (772/6). That is, the variance is any
number, re-expressed as a multiple of 772/6. Since the scale of utility is
irrelevant to behavior, utility can be divided by o without changing be-
havior. Utility becomes U,; = V,;j /o + €,; whereg,; = &7 j /o . Now the
unobserved portion has variance 2 /6: Var(e, ;) = Var(e?, i Jo) = (1/c?)
Var(e}) = (1/0%) x 02 x (w?/6) = m?/6. The choice probability is

e Vil

ni = s
. an/U
D€

which is the same formula as in equation (3.6) but with the representative
utility divided by o. If V,; is linear in parameters with coefficient g*,
the choice probabilities become

e(ﬂ*/g)/xni
S P

Each of the coefficients is scaled by 1/0. The parameter o is called the

P, =
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scale parameter, because it scales the coefficients to reflect the variance
of the unobserved portion of utility.

Only the ratio 8*/o can be estimated; 8* and o are not separately
identified. Usually, the model is expressed in its scaled form, with
B = B*/o, which gives the standard logit expression

e.B/xm'
> j ePxni’

The parameters S are estimated, but for interpretation it is useful to
recognize that these estimated parameters are actually estimates of the
“original” coefficients §* divided by the scale parameter o. The coef-
ficients that are estimated indicate the effect of each observed variable
relative to the variance of the unobserved factors. A larger variance in
unobserved factors leads to smaller coefficients, even if the observed
factors have the same effect on utility (i.e., higher o means lower § even
if 8* is the same).

The scale parameter does not affect the ratio of any two coefficients,
since it drops out of the ratio; for example, B1/8, = (B]/0)/(B5 /o) =
Bi/B5, where the subscripts refer to the first and second coefficients.
Willingness to pay, values of time, and other measures of marginal rates
of substitution are not affected by the scale parameter. Only the inter-
pretation of the magnitudes of all coefficients is affected.

So far we have assumed that the variance of the unobserved factors
is the same for all decision makers, since the same o is used for all n.
Suppose instead that the unobserved factors have greater variance for
some decision makers than others. In Section 2.5, we discuss a situation
where the variance of unobserved factors is different in Boston than
in Chicago. Denote the variance for all decision makers in Boston as
(08)2(?/6) and that for decision makers in Chicago as (o €)*(7r%/6).
The ratio of variance in Chicago to that in Boston is k = (6 /o 8)%. The
choice probabilities for people in Boston become

Pm':

e:B/xni
2
and for people in Chicago

Py =

BV o

Pi=—
" Z] e(ﬂ/‘/;)/xnj

where B = B*/o 8. The ratio of variances k is estimated along with the
coefficients 8. The estimated S’s are interpreted as being relative to the
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variance of unobserved factors in Boston, and the estimated k provides
information on the variance in Chicago relative to that in Boston. More
complex relations can be obtained by allowing the variance for an ob-
servation to depend on more factors. Also, data from different data sets
can often be expected to have different variance for unobserved fac-
tors, giving a different scale parameter for each data set. Ben-Akiva and
Morikawa (1990) and Swait and Louviere (1993) discuss these issues
and provide more examples.

3.3  Power and Limitations of Logit

Three topics elucidate the power of logit models to represent choice
behavior, as well as delineating the limits to that power. These topics
are: taste variation, substitution patterns, and repeated choices over time.
The applicability of logit models can be summarized as follows:

1. Logit can represent systematic taste variation (that is, taste vari-
ation that relates to observed characteristics of the decision
maker) but not random taste variation (differences in tastes that
cannot be linked to observed characteristics).

2. Thelogit model implies proportional substitution across alterna-
tives, given the researcher’s specification of representative util-
ity. To capture more flexible forms of substitution, other models
are needed.

3. If unobserved factors are independent over time in repeated
choice situations, then logit can capture the dynamics of re-
peated choice, including state dependence. However, logit can-
not handle situations where unobserved factors are correlated
over time.

We elaborate each of these statements in the next three subsections.

3.3.1. Taste Variation

The value or importance that decision makers place on each
attribute of the alternatives varies, in general, over decision makers. For
example, the size of a car is probably more important to households with
many members than to smaller households. Low-income households are
probably more concerned about the purchase price of a good, relative
to its other characteristics, than higher-income households. In choosing
which neighborhood to live in, households with young children will be
more concerned about the quality of schools than those without children,
and so on. Decision makers’ tastes also vary for reasons that are not
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linked to observed demographic characteristics, just because different
people are different. Two people who have the same income, education,
etc., will make different choices, reflecting their individual preferences
and concerns.

Logit models can capture taste variations, but only within limits. In
particular, tastes that vary systematically with respect to observed vari-
ables can be incorporated in logit models, while tastes that vary with
unobserved variables or purely randomly cannot be handled. The fol-
lowing example illustrates the distinction.

Consider households’ choice among makes and models of cars to
buy. Suppose for simplicity that the only two attributes of cars that the
researcher observes are the purchase price, PP; for make/model j, and
inches of shoulder room, SR, which is a measure of the interior size
of a car. The value that households place on these two attributes varies
over households, and so utility is written as

(38) Un] = OlnSRj + ﬁnPPJ + gnja

where o, and B, are parameters specific to household 7.

The parameters vary over households reflecting differences in taste.
Suppose for example that the value of shoulder room varies with the
number of members in the households, M,,, but nothing else:

a, = pM,,

so that as M,, increases, the value of shoulder room, «,,, also increases.
Similarly, suppose the importance of purchase price is inversely related
to income, I,,, so that low-income households place more importance on
purchase price:

Bn=0/1,.
Substituting these relations into (3.8) produces
U,j = p(M,SR;) +0(PP;/1I,) + ¢&,;.

Under the assumption that each ¢, is iid extreme value, a standard logit
model obtains with two variables entering representative utility, both
of which are an interaction of a vehicle attribute with a household
characteristic.

Other specifications for the variation in tastes can be substituted. For
example, the value of shoulder room might be assumed to increase with
household size, but at a decreasing rate, so thato, = pM,, + ¢ M 3 where
p is expected to be positive and ¢ negative. Then U,; = p(M,SR;) +
¢(M35Rj) + 0(PP;/1,) + &,;, which results in a logit model with three
variables entering the representative utility.
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The limitation of the logit model arises when we attempt to allow tastes
to vary with respect to unobserved variables or purely randomly. Suppose
for example that the value of shoulder room varied with household size
plus some other factors (e.g., size of the people themselves, or frequency
with which the household travels together) that are unobserved by the
researcher and hence considered random:

ay = pM, + wn,

where p, is a random variable. Similarly, the importance of purchase
price consists of its observed and unobserved components:

Bn =0/ + ny.
Substituting into (3.8) produces
Un.i = p(MnSR]) + I’LHSRj + Q(PP]/IH) + )’)nPPj + Enj -

Since u, and 7, are not observed, the terms ©,SR; and n,PP; become
part of the unobserved component of utility,

Unj = ,O(MnSRJ) + Q(PP]/In) + énﬁ

where &,; = 1, SR; +n,PP; + ¢,;. The new error terms &,,; cannot pos-
sibly be distributed independently and identically as required for the
logit formulation. Since 1, and 7, enter each alternative, &,; is neces-
sarily correlated over alternatives: Cov(&,;, £,r) = Var(u,)SR;SR; +
Var(n, )PP ;PP; # 0O for any two cars j and k. Furthermore, since SR;
and PP; vary over alternatives, the variance of &,; varies over al-
ternatives, violating the assumption of identically distributed errors:
Var(é,;) = Var(u,ﬂSR? + Var(n,,)PP§ + Var(g,;), which is different for
different j.

This example illustrates the general point that when tastes vary sys-
tematically in the population in relation to observed variables, the varia-
tion can be incorporated into logit models. However, if taste variation is
at least partly random, logit is a misspecification. As an approximation,
logit might be able to capture the average tastes fairly well even when
tastes are random, since the logit formula seems to be fairly robust to
misspecifications. The researcher might therefore choose to use logit
even when she knows that tastes have a random component, for the sake
of simplicity. However, there is no guarantee that a logit model will
approximate the average tastes. And even if it does, logit does not pro-
vide information on the distribution of tastes around the average. This
distribution can be important in many situations, such as forecasting the
penetration of a new product that appeals to a minority of people rather
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than to the average tastes. To incorporate random taste variation appro-
priately and fully, a probit or mixed logit model can be used instead.

3.3.2. Substitution Patterns

When the attributes of one alternative improve (e.g., its price
drops), the probability of its being chosen rises. Some of the people
who would have chosen other alternatives under the original attributes
now choose this alternative instead. Since probabilities sum to one over
alternatives, an increase in the probability of one alternative necessarily
means a decrease in probability for other alternatives. The pattern of
substitution among alternatives has important implications in many situ-
ations. For example, when a cell-phone manufacturer launches a new
product with extra features, the firm is vitally interested in knowing the
extent to which the new product will draw customers away from its
other cell phones rather than from competitors’ phones, since the firm
makes more profit from the latter than from the former. Also, as we
will see, the pattern of substitution affects the demand for a product and
the change in demand when attributes change. Substitution patterns are
therefore important even when the researcher is only interested in market
share without being concerned about where the share comes from.

The logit model implies a certain pattern of substitution across alter-
natives. If substitution actually occurs in this way given the researcher’s
specification of representative utility, then the logit model is appropri-
ate. However, to allow for more general patterns of substitution and
to investigate which pattern is most accurate, more flexible models are
needed. The issue can be seen in either of two ways, as a restriction on
the ratios of probabilities and/or as a restriction on the cross-elasticities
of probabilities. We present each way of characterizing the issue in the
following discussion.

The Property of Independence
from Irrelevant Alternatives

For any two alternatives i and k, the ratio of the logit probabil-
ities is

Vni Vn j
P, ni € / Z j e

Pnk eVnk/ ZJ evnf
Vi

¢ — eVni_Vnk'

evnk

This ratio does not depend on any alternatives other than i and k. That is,
the relative odds of choosing i over k are the same no matter what other
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alternatives are available or what the attributes of the other alternatives
are. Since the ratio is independent from alternatives other than i and &,
it is said to be independent from irrelevant alternatives. The logit model
exhibits this independence from irrelevant alternatives, or 11A.

In many settings, choice probabilities that exhibit IIA provide an ac-
curate representation of reality. In fact, Luce (1959) considered IIA to
be a property of appropriately specified choice probabilities. He derived
the logit model directly from an assumption that choice probabilities ex-
hibit ITA, rather than (as we have done) derive the logit formula from an
assumption about the distribution of unobserved utility and then observe
that ITA is a resulting property.

While the IIA property is realistic in some choice situations, it is
clearly inappropriate in others, as first pointed out by Chipman (1960)
and Debreu (1960). Consider the famous red-bus—blue-bus problem. A
traveler has a choice of going to work by car or taking a blue bus. For
simplicity assume that the representative utility of the two modes are the
same, such that the choice probabilities are equal: P, = Py, = %, where
¢ is car and bb is blue bus. In this case, the ratio of probabilities is one:
Pe/Ppy = 1.

Now suppose that ared bus is introduced and that the traveler considers
the red bus to be exactly like the blue bus. The probability that the traveler
will take the red bus is therefore the same as for the blue bus, so that
the ratio of their probabilities is one: P,/ Py, = 1. However, in the logit
model the ratio P,/ Py is the same whether or not another alternative, in
this case the red bus, exists. This ratio therefore remains at one. The only
probabilities for which P./Py,, =1 and P,/ Py, = 1 are P. = Py, =
P, = % which are the probabilities that the logit model predicts.

Inreal life, however, we would expect the probability of taking a car to
remain the same when a new bus is introduced that is exactly the same as
the old bus. We would also expect the original probability of taking bus
to be split between the two buses after the second one is introduced. That
is, we would expect P. = % and Py, = P, = i. In this case, the logit
model, because of its IIA property, overestimates the probability of tak-
ing either of the buses and underestimates the probability of taking a car.
The ratio of probabilities of car and blue bus, P./ Py, actually changes
with the introduction of the red bus, rather than remaining constant as
required by the logit model.

This example is rather stark and unlikely to be encountered in the real
world. However, the same kind of misprediction arises with logit models
whenever the ratio of probabilities for two alternatives changes with the
introduction or change of another alternative. For example, suppose a
new transit mode is added that is similar to, but not exactly like, the
existing modes, such as an express bus along a line that already has
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standard bus service. This new mode might be expected to reduce the
probability of regular bus by a greater proportion than it reduces the
probability of car, so that ratio of probabilities for car and regular bus
does not remain constant. The logit model would overpredict demand
for the two bus modes in this situation. Other examples are given by, for
example, Ortuzar (1983) and Brownstone and Train (1999).

Proportional Substitution

The same issue can be expressed in terms of the cross-elasticities
of logit probabilities. Let us consider changing an attribute of alternative
J. We want to know the effect of this change on the probabilities for all
the other alternatives. Section 3.6 derives the formula for the elasticity
of P,; with respect to a variable that enters the representative utility of
alternative j:

Eian = _,Bzznjpnj,

where z,,; is the attribute of alternative j as faced by person n and B; is
its coefficient (or, if the variable enters representative utility nonlinearly,
then B, is the derivative of V,; with respect to z,;).

This cross-elasticity is the same for all i : i does not enter the formula.
An improvement in the attributes of an alternative reduces the probabil-
ities for all the other alternatives by the same percentage. If one alter-
native’s probability drops by ten percent, then all the other alternatives’
probabilities also drop by ten percent (except of course the alternative
whose attribute changed; its probability rises due to the improvement).
A way of stating this phenomenon succinctly is that an improvement in
one alternative draws proportionately from the other alternatives. Simi-
larly, for a decrease in the representative utility of an alternative, the
probabilities for all other alternatives rise by the same percentage.

This pattern of substitution, which can be called proportionate shift-
ing, i1s a manifestation of the IIA property. The ratio of probabilities
for alternatives i and k stays constant when an attribute of alternative
Jj changes only if the two probabilities change by the same proportion.
With superscript 0 denoting probabilities before the change and 1 after,
the IIA property requires that

1 0
Pni _ Pni
1 — po
Pnk Pnk

when an attribute of alternative j changes. This equality can only be
maintained if each probability changes by the same proportion: P,ii =
APY and P!, = A P? , where both A’s are the same.
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Proportionate substitution can be realistic for some situations, in
which case the logit model is appropriate. In many settings, however,
other patterns of substitution can be expected, and imposing propor-
tionate substitution through the logit model can lead to unrealistic fore-
casts. Consider a situation that is important to the California Energy
Commission (CEC), which has the responsibility of investigating poli-
cies to promote energy efficient vehicles in California and reducing the
state’s reliance on gasoline for cars. Suppose for the sake of illustration
that there are three kinds of vehicles: large gas cars, small gas cars,
and small electric cars. Suppose also that under current conditions the
probabilities that a household will choose each of these vehicles are
.66, .33, and .01, respectively. The CEC is interested in knowing the
impact of subsidizing the electric cars. Suppose the subsidy is sufficient
to raise the probability for the electric car from .01 to .10. By the logit
model, the probability for each of the gas cars would be predicted to drop
by the same percentage. The probability for large gas car would drop by
ten percent, from .66 to .60, and that for the small gas car would drop
by the same ten percent, from .33 to .30. In terms of absolute numbers,
the increased probability for the small electric car (.09) is predicted by
the logit model to come twice as much from large gas cars (.06) as from
small gas cars (0.03).

This pattern of substitution is clearly unrealistic. Since the electric car
is small, subsidizing it can be expected to draw more from small gas cars
than from large gas cars. In terms of cross-elasticities, we would expect
the cross-elasticity for small gas cars with respect to an improvement
in small electric cars to be higher than that for large gas cars. This
difference is important in the CEC’s policy analysis. The logit model
will overpredict the gas savings that result from the subsidy, since it over-
predicts the substitution away from large gas cars (the “gas guzzlers”)
and underpredicts the substitution away from small “gas-sipper” cars.
From a policy perspective, this misprediction can be critical, causing
a subsidy program to seem more beneficial than it actually is. This is
the reason that the CEC uses models that are more general than logit to
represent substitution across vehicles. The nested logit, probit, and mixed
logit models of Chapters 4—6 provide viable options for the researcher.

Advantages of 1IA

As just discussed, the IIA property of logit can be unrealistic
in many settings. However, when IIA reflects reality (or an adequate
approximation to reality), considerable advantages are gained by its em-
ployment. First, because of the IIA, it is possible to estimate model
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parameters consistently on a subset of alternatives for each sampled
decision maker. For example, in a situation with 100 alternatives, the
researcher might, so as to reduce computer time, estimate on a subset
of 10 alternatives for each sampled person, with the person’s chosen
alternative included as well as 9 alternatives randomly selected from the
remaining 99. Since relative probabilities within a subset of alternatives
are unaffected by the attributes or existence of alternatives not in the
subset, exclusion of alternatives in estimation does not affect the con-
sistency of the estimator. Details of this type of estimation are given in
Section 3.7.1. This fact has considerable practical importance. In ana-
lyzing choice situations for which the number of alternatives is large,
estimation on a subset of alternatives can save substantial amounts of
computer time. At an extreme, the number of alternatives might be so
large as to preclude estimation altogether if it were not possible to utilize
a subset of alternatives.

Another practical use of the IIA property arises when the researcher
is only interested in examining choices among a subset of alternatives
and not among all alternatives. For example, consider a researcher who
is interested in understanding the factors that affect workers’ choice
between car and bus modes for travel to work. The full set of alternative
modes includes walking, bicycling, motorbiking, skateboarding, and so
on. If the researcher believed that the IIA property holds adequately
well in this case, she could estimate a model with only car and bus as the
alternatives and exclude from the analysis sampled workers who used
other modes. This strategy would save the researcher considerable time
and expense developing data on the other modes, without hampering her
ability to examine the factors related to car and bus.

Tests of ITA

Whether IIA holds in a particular setting is an empirical ques-
tion, amenable to statistical investigation. Tests of IIA were first devel-
oped by McFadden et al. (1978). Two types of tests are suggested. First,
the model can be reestimated on a subset of the alternatives. Under IIA,
the ratio of probabilities for any two alternatives is the same whether or
not other alternatives are available. As a result, if IIA holds in reality,
then the parameter estimates obtained on the subset of alternatives will
not be significantly different from those obtained on the full set of alter-
natives. A test of the hypothesis that the parameters on the subset are the
same as the parameters on the full set constitutes a test of ITA. Hausman
and McFadden (1984) provide an appropriate statistic for this type of
test. Second, the model can be reestimated with new, cross-alternative
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variables, that is, with variables from one alternative entering the utility
of another alternative. If the ratio of probabilities for alternatives i and
k actually depends on the attributes and existence of a third alternative
Jj (in violation of IIA), then the attributes of alternative j will enter sig-
nificantly the utility of alternatives i or k within a logit specification.
A test of whether cross-alternative variables enter the model therefore
constitutes a test of IIA. McFadden (1987) developed a procedure for
performing this kind of test with regressions: with the dependent vari-
able being the residuals of the original logit model and the explanatory
variables being appropriately specified cross-alternative variables. Train
et al. (1989) show how this procedure can be performed conveniently
within the logit model itself.

The advent of models that do not exhibit ITA, and especially the de-
velopment of software for estimating these models, makes testing I1A
easier than before. For more flexible specifications, such as GEV and
mixed logit, the simple logit model with IIA is a special case that arises
under certain constraints on the parameters of the more flexible model. In
these cases, IIA can be tested by testing these constraints. For example, a
mixed logit model becomes a simple logit if the mixing distribution has
zero variance. IIA can be tested by estimating a mixed logit and testing
whether the variance of the mixing distribution is in fact zero.

A test of IIA as a constraint on a more general model necessarily
operates under the maintained assumption that the more general model
is itself an appropriate specification. The tests on subsets of alterna-
tives (Hausman and McFadden, 1984) and cross-alternative variables
(McFadden, 1987; Train et al., 1989), while more difficult to perform,
operate under less restrictive maintained hypotheses. The counterpoint
to this advantage, of course, is that, when IIA fails, these tests do not
provide as much guidance on the correct specification to use instead of
logit.

3.3.3. Panel Data

In many settings, the researcher can observe numerous choices
made by each decision maker. For example, in labor studies, sampled
people are observed to work or not work in each month over several years.
Data on the current and past vehicle purchases of sampled households
might be obtained by aresearcher who is interested in the dynamics of car
choice. In market research surveys, respondents are often asked a series
of hypothetical choice questions, called “stated preference” experiments.
For each experiment, a set of alternative products with different attributes
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is described, and the respondent is asked to state which product he
would choose. A series of such questions is asked, with the attributes
of the products varying so as to determine how the respondent’s choice
changes when the attributes change. The researcher therefore observes
the sequence of choices by each respondent. Data that represent repeated
choices like these are called panel data.

If the unobserved factors that affect decision makers are independent
over the repeated choices, then logit can be used to examine panel data
in the same way as purely cross-sectional data. Any dynamics related to
observed factors that enter the decision process, such as state dependence
(by which the person’s past choices influence their current choices) or
lagged response to changes in attributes, can be accommodated. How-
ever, dynamics associated with unobserved factors cannot be handled,
since the unobserved factors are assumed to be unrelated over choices.

The utility that decision maker n obtains from alternative j in period
or choice situation ¢ is

Unjt = ant + Enjt V,]’ r.

If &,;; is distributed extreme value, independent over n, j, and, impor-
tantly, ¢, then, using the same proof as for (3.6), the choice probabilities
are

eVnit

==y
. eVhit
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Each choice situation by each decision maker becomes a separate ob-
servation. If representative utility for each period is specified to depend
only on variables for that period; for example, V,,;; = B'x,;, where x,j;
is a vector of variables describing alternative j as faced by » in period
t, then there is essentially no difference between the logit model with
panel data and with purely cross-sectional data.

Dynamic aspects of behavior can be captured by specifying represen-
tative utility in each period to depend on observed variables from other
periods. For example, a lagged price response is represented by entering
the price in period ¢t — 1 as an explanatory variable in the utility for pe-
riod ¢. Prices in future periods can be entered, as by Adamowicz (1994),
to capture consumers’ anticipation of future price changes. Under the as-
sumptions of the logit model, the dependent variable in previous periods
can also be entered as an explanatory variable. Suppose for example
that there is inertia, or habit formation, in people’s choices such that
they tend to stay with the alternative that they have previously chosen

3.9 P,
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unless another alternative provides sufficiently higher utility to warrant
a switch. This behavior is captured as V,;; = ay,j;—1) + Bxnjr, where
ynj: = lifnchose j inperiod t and 0 otherwise. Witha > 0, the utility of
alternative j in the current period is higher if alternative j was consumed
in the previous period. The same specification can also capture a type
of variety seeking. If « is negative, the consumer obtains higher utility
from not choosing the same alternative that he chose in the last period.
Numerous variations on these concepts are possible. Adamowicz (1994)
enters the number of times the alternative has been chosen previously,
rather than simply a dummy for the immediately previous choice.
Erdem (1996) enters the attributes of previously chosen alternatives,
with the utility of each alternative in the current period depending on
the similarity of its attributes to the previously experienced attributes.

The inclusion of the lagged dependent variable does not induce in-
consistency in estimation, since for a logit model the errors are assumed
to be independent over time. The lagged dependent variable y,,—1) is
uncorrelated with the current error ¢,;, due to this independence. The
situation is analogous to linear regression models, where a lagged de-
pendent variable can be added without inducing bias as long as the errors
are independent over time.

Of course, the assumption of independent errors over time is severe.
Usually, one would expect there to be some factors that are not observed
by the researcher that affect each of the decision makers’ choices. In par-
ticular, if there are dynamics in the observed factors, then the researcher
might expect there to be dynamics in the unobserved factors as well. In
these situations, the researcher can either use a model such as probit or
mixed logit that allows unobserved factors to be correlated over time,
or respecify representative utility to bring the sources of the unobserved
dynamics into the model explicitly such that the remaining errors are
independent over time.

34 Nonlinear Representative Utility

In some contexts, the researcher will find it useful to allow parameters to
enter representative utility nonlinearly. Estimation is then more difficult,
since the log-likelihood function may not be globally concave and
computer routines are not as widely available as for logit models with
linear-in-parameters utility. However, the aspects of behavior that the
researcher is investigating may include parameters that are interpretable
only when they enter utility nonlinearly. In these cases, the effort of
writing one’s own code can be warranted. Two examples illustrate this
point.



Logit 57
Example 1: The Goods-Leisure Tradeoff

Consider a workers’ choice of mode (car or bus) for trips to work.
Suppose that workers also choose the number of hours to work based on
the standard trade-off between goods and leisure. Train and McFadden
(1978) developed a procedure for examining these interrelated choices.
As we see in the following, the parameters of the workers’ utility function
over goods and leisure enter nonlinearly in the utility for modes of travel.

Assume that workers’ preferences regarding goods G and leisure L
are represented by a Cobb—Douglas utility function of the form

U=0-8InG+BInL.

The parameter S reflects the worker’s relative preference for goods and
leisure, with higher 8 implying greater preference for leisure relative to
goods. Each worker has a fixed amount of time (24 hours a day) and
faces a fixed wage rate, w. In the standard goods—leisure model, the
worker chooses the number of hours to work that maximizes U subject
to the constraints that (1) the number of hours worked plus the number of
leisure hours equals the number of hours available, and (2) the value of
goods consumed equals the wage rate times the number of hours worked.

When mode choice is added to the model, the constraints on time
and money change. Each mode takes a certain amount of time and costs
a certain amount of money. Conditional on choosing car, the worker
maximizes U subject to the constraint that (1) the number of hours
worked plus the number of leisure hours equals the number of hours
available after the time spent driving to work in the car is subtracted
and (2) the value of goods consumed equals the wage rate times the
number of hours worked minus the cost of driving to work. The utility
associated with choosing to travel by car is the highest value of U that
can be attained under these constraints. Similarly, the utility of taking the
bus to work is the maximum value of U that can be obtained given the
time and money that are left after the bus time and cost are subtracted.
Train and McFadden derived the maximizing values of U conditional
on each mode. For the U given above, these values are

Uj=—-a (cj/wﬂ + wl_ﬁtj) for j = car and bus.

The cost of travel is divided by w”, and the travel time is multiplied
by w'!'™#. The parameter B, which denotes workers’ relative prefer-
ence for goods and leisure, enters the mode choice utility nonlinearly.
Since this parameter has meaning, the researcher might want to estimate
it within this nonlinear utility rather than use a linear-in-parameters
approximation.
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Example 2: Geographic Aggregation

Models have been developed and widely used for travelers’ choice of
destination for various types of trips, such as shopping trips, within
a metropolitan area. Usually, the metropolitan area is partitioned into
zones, and the models give the probability that a person will choose to
travel to a particular zone. The representative utility for each zone de-
pends on the time and cost of travel to the zone plus a variety of variables,
such as residential population and retail employment, that reflect reasons
that people might want to visit the zone. These latter variables are called
attraction variables; label them by the vector a; for zone j. Since it
is these attraction variables that give rise to parameters entering nonli-
nearity, assume for simplicity that representative utility depends only
on these variables.

The difficulty in specifying representative utility comes in recognizing
that the researcher’s decision of how large an area to include in each
zone is fairly arbitrary. It would be useful to have a model that is not
sensitive to the level of aggregation in the zonal definitions. If two zones
are combined, it would be useful for the model to give a probability
of traveling to the combined zone that is the same as the sum of the
probabilities of traveling to the two original zones. This consideration
places restrictions on the form of representative utility.

Consider zones j and k, which, when combined, are labeled zone c.
The population and employment in the combined zone are necessarily
the sums of those in the two original zones: a; + a; = a.. In order
for the models to give the same probability for choosing these zones
before and after their merger, the model must satisfy

Pnj + Pu = Py,
which for logit models takes the form

evnj + eVnk evm'

ean + evnk + ZZ;&],k evn/é evm- + Zl;ﬁj,k eVni .

This equality holds only when exp(V,;) + exp(Vur) = exp(V,). If
representative utility is specified as V,, = In(8'a,) for all zones
¢, then the inequality holds: exp(In(f'a;)) + exp(In(B'ar)) = B'a; +
B'ar = B'a. = exp(In(B’a.)). Therefore, to specify a destination choice
model that is not sensitive to the level of zonal aggregation, repre-
sentative utility needs to be specified with parameters inside a log
operation.
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3.5 Consumer Surplus

For policy analysis, the researcher is often interested in measuring the
change in consumer surplus that is associated with a particular policy.
For example, if a new alternative is being considered, such as building
a light rail system in a city, then it is important to measure the benefits
of the project to see if they warrant the costs. Similarly, a change in the
attributes of an alternative can have an impact on consumer surplus that
is important to assess. Degradation of the water quality of rivers harms
the anglers who can no longer fish as effectively at the damaged sites.
Measuring this harm in monetary terms is a central element of legal
action against the polluter. Often the distributional effects of a policy
are important to assess, such as how the burden of a tax is borne by
different population groups.

Under the logit assumptions, the consumer surplus associated with a
set of alternatives takes a closed form that is easy to calculate. By defi-
nition, a person’s consumer surplus is the utility, in dollar terms, that the
person receives in the choice situation. The decision maker chooses the
alternative that provides the greatest utility. Consumer surplus is there-
fore CS,, = (1/a,) max;(U,; V;), where a,, is the marginal utility of in-
come: dU, /dY, = «a,, with Y,, the income of person n. The division by
o, translates utility into dollars, since 1/, = dY,,/dU,. The researcher
does not observe U,; and therefore cannot use this expression to cal-
culate the decision maker’s consumer surplus. Instead, the researcher
observes V,; and knows the distribution of the remaining portion of util-
ity. With this information, the researcher is able to calculate the expected
consumer surplus:

1
E(CS,) = —E[max;(V,; +¢&,; V;)I,

n

where the expectation is over all possible values of ¢,,;. Williams (1977)
and Small and Rosen (1981) show that, if each g,; is iid extreme value
and utility is linear in income (so that «, is constant with respect to
income), then this expectation becomes

J
(3.10) E(CS,)= —In (Z ve> +C,

n J: 1

where C is an unknown constant that represents the fact that the absolute
level of utility cannot be measured. As we see in the following, this
constant is irrelevant from a policy perspective and can be ignored.
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Note that the argument in parentheses in this expression is the de-
nominator of the logit choice probability (3.6). Aside from the division
and addition of constants, expected consumer surplus in a logit model
is simply the log of the denominator of the choice probability. It is often
called the log-sum term. This resemblance between the two formulas
has no economic meaning, in the sense that there is nothing about a
denominator in a choice probability that makes it necessarily related to
consumer surplus. It is simply the outcome of the mathematical form of
the extreme value distribution. However, the relation makes calculation
of expected consumer surplus very easy, which is another of the many
conveniences of logit.

Under the standard interpretation for the distribution of errors, as
described in the last paragraph of Section 2.3, E(CS,) is the average
consumer surplus in the subpopulation of people who have the same
representative utilities as person n. The total consumer surplus in the pop-
ulation is calculated as the weighted sum of E(CS,,) over a sample of
decision makers, with the weights reflecting the numbers of people in
the population who face the same representative utilities as the sampled
person.

The change in consumer surplus that results from a change in the
alternatives and/or the choice set is calculated from (3.10). In particular,
E(CS,) is calculated twice: first under the conditions before the change,
and again under the conditions after the change. The difference between
the two results is the change in consumer surplus:

1 I A
AE(CS,)=— |In e'w | —In e ||,
where the superscripts 0 and 1 refer to before and after the change. The
number of alternatives can change (e.g., a new alternative can be added)
as well as the attributes of the alternatives. Since the unknown constant
C enters expected consumer surplus both before and after the change, it
drops out of the difference and can therefore be ignored when calculating
changes in consumer surplus.

To calculate the change in consumer surplus, the researcher must
know or have estimated the marginal utility of income, «,,. Usually a
price or cost variable enters the representative utility, in which case the
negative of its coefficient is ¢, by definition. (A price or cost coefficient
is negative; the negative of a negative coefficient gives a positive «;,.)
For example, in the choice between car and bus, utility is U,; = Bit,; +
Bac,j, wheret is time, ¢ is cost, and both B; and B, are negative, indicating
that utility decreases as the time or cost for a trip increases. The negative
of the cost coefficient, —fB,, is the amount that utility rises due to a
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one-dollar decrease in costs. A one-dollar reduction in costs is equivalent
to a one-dollar increase in income, since the person gets to spend the
dollar that he saves in travel costs just the same as if he got the extra
dollar in income. The amount — g, is therefore the increase in utility
from a one-dollar increase in income: the marginal utility of income. It
is the same amount in this case for all n. If ¢,,; entered the representative
utility interacting with characteristics of the person other than income,
as in the product c,; H,, where H, is household size, then the marginal
utility of income would be —f, H,, which varies over n.

Throughout this discussion, o, has been assumed to be fixed for a
given person independent of his income. The formula (3.10) for ex-
pected consumer surplus depends critically on the assumption that the
marginal utility of income is independent from income. If the marginal
utility of income changes with income, then a more complicated for-
mula is needed, since «;, itself becomes a function of the change in
attributes. McFadden (1999) and Karlstrom (2000) provide procedures
for calculating changes in consumer surplus under these conditions.

The conditions for using expression (3.10) are actually less severe than
stated. Since only changes in consumer surplus are relevant for policy
analysis, formula (3.10) can be used if the marginal utility of income is
constant over the range of implicit income changes that are considered
by the policy. Thus, for policy changes that change consumer surplus by
small amounts per person relative to income, the formula can be used
even though the marginal utility of income in reality varies with income.

The assumption that «,, does not depend on income has implications
for the specification of representative utility. As already discussed, o,
is usually taken as the absolute value of the coefficient of price or cost.
Therefore, if the researcher plans to use her model to estimate changes
in consumer surplus and wants to apply formula (3.10), this coefficient
cannot be specified to depend on income. In the mode choice example,
cost can be multiplied by household size, so that the cost coefficient, and
hence the marginal utility of income, varies over households of different
size. However, if the cost is divided by the household’s income, then the
coefficient of cost depends on income, violating the assumption needed
for expression (3.10). This violation may not be important for small
changes in consumer surplus, but certainly becomes important for large
changes.

3.6 Derivatives and Elasticities

Since choice probabilities are a function of observed variables, it is
often useful to know the extent to which these probabilities change
in response to a change in some observed factor. For example, in a
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household’s choice of make and model of car to buy, a natural question is:
to what extent will the probability of choosing a given car increase if the
vehicle’s fuel efficiency is improved? From competing manufacturers’
points of view, a related question is: to what extent will the probability
of households’ choosing, say, a Toyota decrease if the fuel efficiency of
a Honda improves?

To address these questions, derivatives of the choice probabilities are
calculated. The change in the probability that decision maker n chooses
alternative i given a change in an observed factor, z,;, entering the repre-
sentative utility of that alternative (and holding the representative utility
of other alternatives constant) is

0P, _ (e /3, e™)
azni B 8Zni
eV"" 8Vm eV'”' Vi BV,,,-
> eV 9z, (Zve)ze 0Zni
- p, )
ni
Vi
= —Pni(1 - Pni)-
azni
If representative utility is linear in z,,; with coefficient 8., the derivative
becomes B, P,;(1 — P,;). This derivative is largest when P,; = 1 — P,;,
which occurs when P,; = .5. It becomes smaller as P,; approaches zero
or one. The sigmoid probability curve in Figure 3.1 is consistent with
these facts. Stated intuitively, the effect of a change in an observed
variable is largest when the choice probabilities indicate a high degree
of uncertainty regarding the choice. As the choice becomes more certain
(i.e., the probabilities approach zero or one), the effect of a change in an
observed variable lessens.
One can also determine the extent to which the probability of choosing
a particular alternative changes when an observed variable relating to
another alternative changes. Let z,; denote an attribute of alternative
J. How does the probability of choosing alternative i change as z,;
increases? We have

P e/ > e')

aan o 8an
Vm'

— e ean 8an
(Xet)" 0w
oV,;

= —ﬁPM P,j.

nj



Logit 63

When V,,; is linear in z,,; with coefficient 8., then this cross-derivative
becomes —B, P,; P,;. If z,,; is a desirable attribute, so that j; is positive,
then raising z,; decreases the probability of choosing each alternative
other than j. Furthermore, the decrease in probability is proportional to
the value of the probability before z,; was changed.

A logically necessary aspect of derivatives of choice probabilities
is that, when an observed variable changes, the changes in the choice
probabilities sum to zero. This is a consequence of the fact that the prob-
abilities must sum to one before and after the change; it is demonstrated
for logit models as follows:

J
Py AV, O Vy;
Z m=—n]Pnj(1_Pnj)+Z(_ n])Panni

= 0znj  Oznj oy 0Zpj
AV,
= 8_]Pnj |:(1 - Pnj) - Z Pnij|
an l;ﬁj
Vi
= ?ﬂjjpnj[(l - Pnj) - (1 - Pnj)]
= 0.

In practical terms, if one alternative is improved so that the probability
of its being chosen increases, the additional probability is necessarily
drawn from other alternatives. To increase the probability of one al-
ternative necessitates decreasing the probability of another alternative.
While obvious, this fact is often forgotten by planners who want to im-
prove demand for one alternative without reducing demand for other
alternatives.

Economists often measure response by elasticities rather than deriva-
tives, since elasticities are normalized for the variables’ units. An elas-
ticity is the percentage change in one variable that is associated with a
one-percent change in another variable. The elasticity of P,; with respect
to z,;, a variable entering the utility of alternative i, is

Ei,, = O il
azni Pni

aVni ni

= S P(l — Py

aZni Pni

8Vni
= rzni(l — Py).

an

If representative utility is linear in z,; with coefficient 8, then E;,, =
ﬁzzni(l — Pyi).
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The cross-elasticity of P,; with respect to a variable entering alterna-
tive j is

Pz
LZnj azn] Pni
oVyj
=== j Pﬂjv
3an
which in the case of linear utility reduces to E;;,, = — B.2,jPyj. As

discussed in Section 3.3.2, this cross-elasticity is the same for all i: a
change in an attribute of alternative j changes the probabilities for all
other alternatives by the same percent. This property of the logit cross-
elasticities is a manifestation, or restatement, of the IIA property of the
logit choice probabilities.

3.7 Estimation

Manski and McFadden (1981) and Cosslett (1981) describe estimation
methods under a variety of sampling procedures. We discuss in this sec-
tion estimation under the most prominent of these sampling schemes.
We first describe estimation when the sample is exogenous and all alter-
natives are used in estimation. We then discuss estimation on a subset of
alternatives and with certain types of choice-based (i.e., nonexogenous)
samples.

3.7.1. Exogenous Sample

Consider first the situation in which the sample is exogenously
drawn, that is, is either random or stratified random with the strata de-
fined on factors that are exogenous to the choice being analyzed. If the
sampling procedure is related to the choice being analyzed (for example,
if mode choice is being examined and the sample is drawn by selecting
people on buses and pooling them with people selected at toll booths),
then more complex estimation procedures are generally required, as dis-
cussed in the next section. We also assume that the explanatory variables
are exogenous to the choice situation. That is, the variables entering
representative utility are independent of the unobserved component of
utility.

A sample of N decision makers is obtained for the purpose of esti-
mation. Since the logit probabilities take a closed form, the traditional
maximum-likelihood procedures can be applied. The probability of per-
son n choosing the alternative that he was actually observed to choose
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can be expressed as

[ [y,
i

where y,; =1 if person n chose i and zero otherwise. Note that since
vyni = 0 for all nonchosen alternatives and P,; raised to the power of zero
is 1, this term is simply the probability of the chosen alternative.
Assuming that each decision maker’s choice is independent of that
of other decision makers, the probability of each person in the sample
choosing the alternative that he was observed actually to choose is

N
L) =[] e,
n=1 i

where 8 is a vector containing the parameters of the model. The log-
likelihood function is then

N
Gl LLB) =YY yuln Py
n=1 i

and the estimator is the value of S that maximizes this function.
McFadden (1974) shows that LL(B) is globally concave for linear-in-
parameters utility, and many statistical packages are available for esti-
mation of these models. When parameters enter the representative utility
nonlinearly, the researcher may need to write her own estimation code
using the procedures described in Chapter 8.

Maximum likelihood estimation in this situation can be reexpressed
and reinterpreted in a way that assists in understanding the nature of
the estimates. At the maximum of the likelihood function, its derivative
with respect to each of the parameters is zero:

dLL(B)
g

The maximum likelihood estimates are therefore the values of 8 that
satisfy this first-order condition. For convenience, let the representative
utility be linear in parameters: V,; = B'x,;. This specification is not
required, but makes the notation and discussion more succinct. Using
(3.11) and the formula for the logit probabilities, we show at the end of
this subsection that the first-order condition (3.12) becomes

(B13) DD (i = Paidni =0.

(3.12) 0.
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Rearranging and dividing both sides by N, we have

(314) % Xn: Z YniXni = % Xn: Z Prixpi.

This expression is readily interpretable. Let X denote the average
of x over the alternatives chosen by the sampled individuals: X =
(1/N) ", > ynixni. Let & be the average of x over the predicted choices
of the sampled decision makers: £ = (1/N) ), >, P,ixni. The ob-
served average of x in the sample is X, while X is the predicted average.
By (3.14), these two averages are equal at the maximum likelihood es-
timates. That is, the maximum likelihood estimates of 8 are those that
make the predicted average of each explanatory variable equal to the
observed average in the sample. In this sense, the estimates induce the
model to reproduce the observed averages in the sample.

This property of the maximum likelihood estimator for logit models
takes on a special meaning for the alternative-specific constants. An
alternative-specific constant is the coefficient of a dummy variable that
identifies an alternative. A dummy for alternative j is a variable whose
value in the representative utility of alternative i is d; =1 fori = j and
zero otherwise. By (3.14), the estimated constant is the one that gives

% Z Z )’m'd,i] = % Z Z Pnidi]7
n 1 n 1
S; =5,

where §; is the share of people in the sample who chose alternative j,
and § ; is the predicted share for alternative j. With alternative-specific
constants, the predicted shares for the sample equal the observed shares.
The estimated model is therefore correct on average within the sample.
This feature is similar to the function of a constant in a linear regression
model, where the constant assures that the average of the predicted value
of the dependent variable equals its observed average in the sample.

The first-order condition (3.13) provides yet another important inter-
pretation. The difference between a person’s actual choice, y,;, and the
probability of that choice, P,;, is a modeling error, or residual. The left-
hand side of (3.13) is the sample covariance of the residuals with the
explanatory variables. The maximum likelihood estimates are therefore
the values of the B’s that make this covariance zero, that is, make the
residuals uncorrelated with the explanatory variables. This condition
for logit estimates is the same as applies in linear regression models.
For a regression model y, = 'x, + ¢,, the ordinary least squares esti-
mates are the values of g thatset ) _, (v, — B'x,)x, =0. This fact is veri-
fied by solving for B: B = (3, x,x,) "' (3_, Xnyx), which is the formula
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for the ordinary least squares estimator. Since y, — 8'x, is the residual
in the regression model, the estimates make the residuals uncorrelated
with the explanatory variables.

Under this interpretation, the estimates can be motivated as providing
a sample analog to population characteristics. We have assumed that the
explanatory variables are exogenous, meaning that they are uncorrelated
in the population with the model errors. Since the variables and errors
are uncorrelated in the population, it makes sense to choose estimates
that make the variables and residuals uncorrelated in the sample. The
estimates do exactly that: they provide a model that reproduces in the
sample the zero covariances that occur in the population.

Estimators that solve equations of the form (3.13) are called method-
of-moments estimators, since they use moment conditions (correlations
in this case) between residuals and variables to define the estimator.
We will return to these estimators when discussing simulation-assisted
estimation in Chapter 10.

We asserted without proof that (3.13) is the first-order condition for
the maximum likelihood estimator of the logit model. We give that proof
now. The log-likelihood function (3.11) can be reexpressed as

LL(B) =D ) yiIn Py

el3 Xni
=22 | s
= Z Z yni(ﬁ/xni) - Z Z Yni 111( Z eﬁ/)‘"i>_
n i n i ]
The derivative of the log-likelihood function then becomes

dLL(B) _ Don i Yni(B'Xni) >, Y yni In( X P )
ap dg dp

= Z Zynixnz Z Zym Z Pyjxnj

= Z Zynixni - Z (Z Pn]xn]> Zym
:;Z)’mxm _Z<Z xn/>

= Z Z()’m‘ — Pui)Xni.

Setting this derivative to zero gives the first-order condition (3.13).
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Estimation on a Subset of Alternatives

In some situations, the number of alternatives facing the decision
maker is so large that estimating model parameters is very expensive or
even impossible. With a logit model, estimation can be performed on
a subset of alternatives without inducing inconsistency. For example, a
researcher examining a choice situation that involves 100 alternatives can
estimate on a subset of 10 alternatives for each sampled decision maker,
with the person’s chosen alternative included as well as 9 alternatives
randomly selected from the remaining 99. If all alternatives have the
same chance of being selected into the subset, then estimation proceeds
on the subset of alternatives as if it were the full set. If alternatives
have unequal probability of being selected, more complicated estimation
procedures may be required. The procedure is described as follows.

Suppose that the researcher has used some specific method for ran-
domly selecting alternatives into the subset that is used in estimation for
each sampled decision maker. Denote the full set of alternatives as F
and a subset of alternatives as K. Let ¢(K | i) be the probability under
the researcher’s selection method that subset K is selected given that the
decision maker chose alternative i. Assuming that the subset necessarily
includes the chosen alternative, we have ¢(K | i) = Oforany K that does
not include i. The probability that person n chooses alternative i from
the full set is P,;. Our goal is to derive a formula for the probability that
the person chooses alternative i conditional on the researcher selecting
subset K for him. This conditional probability is denoted P,(i | K).

This conditional probability is derived as follows. The joint prob-
ability that the researcher selects subset K and the decision maker
chooses alternative i is Prob(K, i) = q(K |i)P,;. The joint probability
can also be expressed with the opposite conditioning as Prob(K, i) =
P,(i | K)Q(K) where Q(K) = ZjeF P,jq(K | j) is the probability of
the researcher selecting subset K marginal over all the alternatives that
the person could choose. Equating these two expressions and solving
for P,(i | K), we have

Piq(K |i)
Y ier Paja(K 1)
_ eg(K D)
Y jerea(K 1))
_ e"g(K D)
ek q(K | )’

where the second line has canceled out the denominators of P,; and

Py(i| K) =

(3.15)
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P,; Vj, and the third equality uses the fact that g(K | j) = O for any j
notin K.

Suppose that the researcher has designed the selection procedure so
that g(K | j)is the same for all j € K. This property occurs if, for exam-
ple, the researcher assigns an equal probability of selection to all noncho-
sen alternatives, so that the probability of selecting j into the subset when
i is chosen by the decision maker is the same as for selecting i into the
subset when j is chosen. McFadden (1978) calls this the “uniform con-
ditioning property,” since the subset of alternatives has a uniform (equal)
probability of being selected conditional on any of its members being
chosen by the decision maker. When this property is satisfied, g(K | j)
cancels out of the preceding expression, and the probability becomes

eVni
=
2jex e

which is simply the logit formula for a person who faces the alternatives
in subset K.

The conditional likelihood function under the uniform conditioning
property is

Py | K) =

Vni

e

CLL = iIn ———,
(B) Z ZK KALS S
where K, is the subset selected for person n. This function is the same
as the log-likelihood function given in (3.11) except that the subset of
alternatives K, replaces, for each sampled person, the complete set.
Maximization of CLL provides a consistent estimator of 8. However,
since information is excluded from CLL that LL incorporates (i.e., infor-
mation on alternatives not in each subset), the estimator based on CLL
is not efficient.

Suppose that the researcher designs a selection process that does not
exhibit the uniform conditioning property. In this case, the probability
q(K | i) can be incorporated into the model as a separate variable. The
expression in (3.15) can be rewritten as

Vot Ing(K |i)

> g eVt na® I
J

Py(i| K) =

A variable z,; calculated as Ing(K,, | j) is added to the representative
utility of each alternative. The coefficient of this variable is constrained
to 1 in estimation.

The question arises: why would a researcher ever want to design
a selection procedure that does not satisfy the uniform conditioning
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property, since satisfying the property makes estimation so straightfor-
ward? An illustration of the potential benefit of nonuniform conditioning
is provided by Train et al. (1987a) in their study of telecommunications
demand. The choice situation in their application included an enormous
number of alternatives representing portfolios of calls by time of day,
distance, and duration. The vast majority of alternatives were hardly
ever chosen by anyone in the population. If alternatives had been se-
lected with equal probability for each alternative, it was quite likely
than the resulting subsets would consist nearly entirely of alternatives
that were hardly ever chosen, coupled with the person’s chosen alter-
native. Comparing a person’s chosen alternative with a group of highly
undesirable alternatives provides little information about the reasons for
a person’s choice. To avoid this problem, alternatives were selected in
proportion to the shares for the alternatives in the population (or, to be
precise, estimates of the population shares). This procedure increased
the chance that relatively desirable alternatives would be in each subset
of alternatives that was used in estimation.

3.7.2. Choice-Based Samples

In some situations, a sample drawn on the basis of exogenous
factors would include few people who have chosen particular alterna-
tives. For example, in the choice of water heaters, a random sample of
households in most areas would include only a small number who had
chosen solar water-heating systems. If the researcher is particularly in-
terested in factors that affect the penetration of solar devices, a random
sample would need to be very large to assure a reasonable number of
households with solar heat.

In situations such as these, the researcher might instead select the
sample, or part of the sample, on the basis of the choice being analyzed.
For example, the researcher examining water heaters might supplement
a random sample of households with households that are known (per-
haps through sales records at stores if the researcher has access to these
records) to have recently installed solar water heaters.

Samples selected on the basis of decision makers’ choices can be
purely choice-based or a hybrid of choice-based and exogenous. In a
purely choice-based sample, the population is divided into those that
choose each alternative, and decision makers are drawn randomly within
each group, though at different rates. For example, a researcher who is
examining the choice of home location and is interested in identifying
the factors that contribute to people choosing one particular community
might draw randomly from within that community at the rate of one out
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of L households, and draw randomly from all other communities at a
rate of one out of M, where M is larger than L. This procedure assures
that the researcher has an adequate number of people in the sample from
the area of interest. A hybrid sample is like the one drawn by the re-
searcher interested in solar water heating, in which an exogenous sample
is supplemented with a sample drawn on the basis of the households’
choices.

Estimation of model parameters with samples drawn at least partially
on the basis of the decision maker’s choice is fairly complex in general,
and varies with the exact form of the sampling procedure. For inter-
ested readers, Ben-Akiva and Lerman (1985, pp. 234-244) provide a
useful discussion. One result is particularly significant, since it allows
researchers to estimate logit models on choice-based samples without
becoming involved in complex estimation procedures. This result, due to
Manski and Lerman (1977), can be stated as follows. If the researcher is
using a purely choice-based sample and includes an alternative-specific
constant in the representative utility for each alternative, then estimating
a logit model as if the sample were exogenous produces consistent esti-
mates for all the model parameters except the alternative-specific con-
stants. Furthermore, these constants are biased by a known factor and
can therefore be adjusted so that the adjusted constants are consistent.
In particular, the expectation of the estimated constant for alternative j,
labeled &, is related to the true constant a;f by

E(@;) = oe;'f —1In(A;/S)),

where A; is the share of decision makers in the population who chose
alternative j, and §; is the share in the choice-based sample who
chose alternative j. Consequently, if A ; is known (that is, if population
shares are known for each alternative), then a consistent estimate of the
alternative-specific constant is the constant @; that is estimated on the
choice-based sample plus the log of the ratio of the population share to
the sample share.

3.8 Goodness of Fit and Hypothesis Testing

We discuss goodness of fit and hypothesis testing in the context of logit
models, where the log-likelihood function is calculated exactly. The
concepts apply to other models, with appropriate adjustment for simula-
tion variance, when the log-likelihood function is simulated rather than
calculated exactly.
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3.8.1. Goodness of Fit

A statistic called the likelihood ratio index is often used with
discrete choice models to measure how well the models fit the data.
Stated more precisely, the statistic measures how well the model, with
its estimated parameters, performs compared with a model in which
all the parameters are zero (which is usually equivalent to having no
model at all). This comparison is made on the basis of the log-likelihood
function, evaluated at both the estimated parameters and at zero for all

parameters.
The likelihood ratio index is defined as
_ . _LLB
LL(0)’

where LL(;@ ) is the value of the log-likelihood function at the estimated
parameters and LL(0) is its value when all the parameters are set equal to
zero. If the estimated parameters do no better, in terms of the likelihood
function, than zero parameters (that is, if the estimated model is no better
than no model), then LL(8) = LL(0) and so p = 0. This is the lowest
value that p can take (since if LL(8) were less than LL(0), then A would
not be the maximum likelihood estimate).

At the other extreme, suppose the estimated model was so good that
each sampled decision maker’s choice could be predicted perfectly. In
this case, the likelihood function at the estimated parameters would
be one, since the probability of observing the choices that were actually
made is one. And, since the log of one is zero, the log-likelihood function
would be zero at the estimated parameters. With LL(3) = 0, p = 1. This
is the highest value that p can take. In summary, the likelihood ratio index
ranges from zero, when the estimated parameters are no better than zero
parameters, to one, when the estimated parameters perfectly predict the
choices of the sampled decision makers.

It is important to note that the likelihood ratio index is not at all similar
in its interpretation to the R? used in regression, despite both statistics
having the same range. R? indicates the percentage of the variation
in the dependent variable that is “explained” by the estimated model.
The likelihood ratio has no intuitively interpretable meaning for values
between the extremes of zero and one. It is the percentage increase
in the log-likelihood function above the value taken at zero para-
meters (since p = 1 — LL(8)/LL(0) = (LL(0) — LL(B))/LL(0)). How-
ever, the meaning of such a percentage increase is not clear. In com-
paring two models estimated on the same data and with the same set
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of alternatives (such that LL(0) is the same for both models), it is usu-
ally valid to say that the model with the higher p fits the data better.
But this is saying no more than that increasing the value of the log-
likelihood function is preferable. Two models estimated on samples that
are not identical or with a different set of alternatives for any sampled
decision maker cannot be compared via their likelihood ratio index
values.

Another goodness-of-fit statistic that is sometimes used, but should
actually be avoided, is the “percent correctly predicted.” This statistic
is calculated by identifying for each sampled decision maker the alter-
native with the highest probability, based on the estimated model, and
determining whether or not this was the alternative that the decision
maker actually chose. The percentage of sampled decision makers for
which the highest-probability alternative and the chosen alternative are
the same is called the percent correctly predicted.

This statistic incorporates a notion that is opposed to the meaning
of probabilities and the purpose of specifying choice probabilities. The
statistic is based on the idea that the decision maker is predicted by
the researcher to choose the alternative for which the model gives the
highest probability. However, as discussed in the derivation of choice
probabilities in Chapter 2, the researcher does not have enough infor-
mation to predict the decision maker’s choice. The researcher has only
enough information to state the probability that the decision maker will
choose each alternative. In stating choice probabilities, the researcher
is saying that if the choice situation were repeated numerous times (or
faced by numerous people with the same attributes), each alternative
would be chosen a certain proportion of the time. This is quite differ-
ent from saying that the alternative with the highest probability will be
chosen each time.

An example may be useful. Suppose an estimated model predicts
choice probabilities of .75 and .25 in a two-alternative situation. Those
probabilities mean that if 100 people faced the representative utilities that
gave these probabilities (or one person faced these representative utilities
100 times), the researcher’s best prediction of how many people would
choose each alternative are 75 and 25. However, the “percent correctly
predicted” statistic is based on the notion that the best prediction for
each person is the alternative with the highest probability. This notion
would predict that one alternative would be chosen by all 100 people
while the other alternative would never be chosen. The procedure misses
the point of probabilities, gives obviously inaccurate market shares, and
seems to imply that the researcher has perfect information.
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3.8.2. Hypothesis Testing

As with regressions, standard ¢-statistics are used to test hy-
potheses about individual parameters in discrete choice models, such as
whether the parameter is zero. For more complex hypotheses, a likeli-
hood ratio test can nearly always be used, as follows. Consider a null
hypothesis H that can be expressed as constraints on the values of the
parameters. Two of the most common hypotheses are (1) several pa-
rameters are zero, and (2) two or more parameters are equal. The con-
strained maximum likelihood estimate of the parameters (labeled ,B )
is that value of 8 that gives the highest value of LL without violat-
ing the constralnts of the null hypothes1s H. Define the ratio of likeli-
hoods, R = L(B )/L(,B) where,B is the (constrained) maximum value
of the likelihood function (not logged) under the null hypothesis H, and
B is the unconstrained maximum of the likelihood function. As in like-
lihood ratio tests for models other than those of discrete choice, the test
statistic defined as —2 log R is distributed chi-squared with degrees of
freedom equal to the number of restrictionsA Ii{mplied by the null hypo-
thesis. Therefore, the test statistic is —2(LL(8 ) — LL()). Since the log
likelihood is always negative, this is simply two times the (magnitude of
the) difference between the constrained and unconstrained maximums
of the log-likelihood function. If this value exceeds the critical value
of chi-squared with the appropriate degrees of freedom, then the null
hypothesis is rejected.

Null Hypothesis I: The Coefficients of Several
Explanatory Variables Are Zero

To test this hypothesis, estimate the model twice: once with these
explanatory variables included, and a second time without them (since
excluding the variables forces their coefficients to be zero). Observe the
maximum value of the log-likelihood function for each estimation; two
times the difference in these maximum values is the value of the test
statistic. Compare the test statistic with the critical value of chi-squared
with degrees of freedom equal to the number of explanatory variables
excluded from the second estimation.

Null Hypothesis II: The Coefficients of the First
Two Variables Are the Same

To test this hypothesis, estimate the model twice: once with each
of the explanatory variables entered separately, including the first two;
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then with the first two variables replaced by one variable that is the sum
of the two variables (since adding the variables forces their coefficients
to be equal). Observe the maximum value of the log-likelihood function
for each of the estimations. Multiply the difference in these maximum
values by two, and compare this figure with the critical value of chi-
squared with one degree of freedom.

3.9  Case Study: Forecasting for a New
Transit System

One of the earliest applications of logit models, and a prominent test of
their capabilities, arose in the mid-1970s in the San Francisco Bay area.
A new rail system, called the Bay Area Rapid Transit (BART), had been
built. Daniel McFadden obtained a grant from the National Science
Foundation to apply logit models to commuters’ mode choices in the Bay
area and to use the models to predict BART ridership. I was lucky enough
to serve as his research assistant on this project. A sample of commuters
was taken before BART was open for service. Mode choice models were
estimated on this sample. These estimates provided important infor-
mation on the factors that enter commuters’ decisions, including their
value of time savings. The models were then used to forecast the choices
that the sampled commuters would make once BART became available.
After BART had opened, the commuters were recontacted and their
mode choices were observed. The predicted share taking BART was
compared with the observed share. The models predicted quite well,
far more accurately than the procedures used by the BART consultants,
who had not used discrete choice models.

The project team collected data on 771 commuters before BART was
opened. Four modes were considered to be available for the trip to work:
(1) driving a car by oneself, (2) taking the bus and walking to the bus stop,
(3) taking the bus and driving to the bus stop, and (4) carpooling. The time
and cost of travel on each mode were determined for each commuter,
based on the location of the person’s home and work. Travel time was
differentiated as walk time (for the bus—walk mode), wait time (for both
bus modes), and on-vehicle time (for all the modes). Characteristics of
the commuter were also collected, including income, household size,
number of cars and drivers in the household, and whether the commuter
was the head of the household. A logit model with linear-in-parameters
utility was estimated on these data.

The estimated model is shown in Table 3.1, which is reproduced
from Train (1978). The cost of travel was divided by the commuter’s
wage to reflect the expectation that workers with lower wages are more
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Table 3.1. Logit model of work trip mode choice

Explanatory Variable* Coefficient t-Statistic
Cost divided by post-tax wage,
cents/minute (1—4) —0.0284 431
Auto on-vehicle time, minutes (1, 3, 4) —0.0644 5.65
Transit on-vehicle time, minutes (2, 3) —0.0259 2.94
Walk time, minutes (2, 3) —0.0689 5.28
Transfer wait time, minutes (2, 3) —0.0538 2.30
Number of transfers (2, 3) —0.1050 0.78
Headway of first bus, minutes (2, 3) —0.0318 3.18
Family income with ceiling $7500 (1) 0.00000454  0.05
Family income — $7500 with floor 0,
ceiling $3000 (1) —0.0000572 0.43
Family income — $10,500 with floor 0,
ceiling $5000 (1) —0.0000543 0.91
Number of drivers in household (1) 1.02 4.81
Number of drivers in household (3) 0.990 3.29
Number of drivers in household (4) 0.872 4.25
Dummy if worker is head of household (1) 0.627 3.37
Employment density at work location (1) —0.0016 227
Home location in or near central
business district (1) —0.502 4.18
Autos per driver with ceiling one (1) 5.00 9.65
Autos per driver with ceiling one (3) 2.33 2.74
Autos per driver with ceiling one (4) 2.38 5.28
Auto alone dummy (1) —5.26 5.93
Bus with auto access dummy (1) —5.49 5.33
Carpool dummy (1) —3.84 6.36
Likelihood ratio index 0.4426
Log likelihood at convergence —595.8
Number of observations 771
Value of time saved as a
percentage of wage:
Auto on-vehicle time 227 3.20
Transit on-vehicle time 91 2.43
Walk time 243 3.10
Transfer wait time 190 2.01

¢ Variable enters modes in parentheses and is zero in other modes. Modes: 1. Auto alone.
2. Bus with walk access. 3. Bus with auto access. 4. Carpool.

concerned about cost than higher-paid workers. On-vehicle time enters
separately for car and bus travel to indicate that commuters might find
time spent on the bus to be more, or less, bothersome than time spent
driving in a car. Bus travel often involves transfers, and these transfers
can be onerous for travelers. The model therefore includes the number
of transfers and the expected wait time at the transfers. The headway
(i.e., the time between scheduled buses) for the first bus line that the
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commuter would take is included as a measure of the maximum amount
of time that the person would need to wait for this bus.

The estimated coefficients of cost and the various time components
provide information on the value of time. By definition, the value of time
is the extra cost that a person would be willing to incur to save time.
The utility takes the form U,; = ac,;/w, + Bt,j + ..., where c is cost
and ¢ is time. The total derivative with respect to changes in time and
cost is dU,; = (a/w,)dc,; + B dt,;, which we set equal to zero and
solve for dc/dt to find the change in cost that keeps utility unchanged
for a change in time: dc/dt = —(8/a)w,. The value of time is therefore
a proportion 8/« of the person’s wage. The estimated values of time
are reported at the bottom of Table 3.1. The time saved from riding
on the bus is valued at 91 percent of wage ((—.0259/—.0284) x 100),
while the time saved from driving in a car is worth more than twice as
much: 227 percent of wage. This difference suggests that commuters
consider driving to be considerably more onerous than riding the bus,
when evaluated on a per-minute basis. Commuters apparently choose
cars not because they like driving per se but because driving is usually
quicker. Walking is considered more bothersome than waiting for a bus
(243 percent of wage versus 190 percent), and waiting for a bus is more
bothersome than riding the bus.

Income enters the representative utility of the auto-alone alternative.
It enters in a piecewise linear fashion to allow for the possibility that
additional income has a different impact depending on the overall level of
income. None of the income variables enters significantly. Apparently
dividing travel cost by wage picks up whatever effect income might
have on the mode choice of a commuter. That is, higher wages induce
the commuter to be less concerned about travel costs but do not induce
a predilection for driving beyond the impact through cost. The number
of people and the number of vehicles per driver in the household have
a significant effect on mode choice, as expected. Alternative-specific
constants are included, with the constant for the bus—walk alternative
normalized to zero.

The model in Table 3.1 was used to predict the mode choices of
the commuters after BART was open for service. The choice set was
considered to be the four modes listed previously plus two BART modes,
differentiated by whether the person takes the bus or drives to the BART
station. Table 3.2 presents the forecasted and actual shares for each
mode. BART demand was forecast to be 6.3 percent, compared with an
actual share of 6.2 percent. This close correspondence is remarkable.

The figures in Table 3.2 tend to mask several complications that
arose in the forecasting. For example, walking to the BART station was
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Table 3.2. Predictions for after BART opened

Actual Share Predicted Share
Auto alone 59.90 55.84
Bus with walk access 10.78 12.51
Bus with auto access 1.426 2411
BART with bus access 0.951 1.053
BART with auto access 5.230 5.286
Carpool 21.71 22.89

originally included as a separate mode. The model forecasted this option
very poorly, overpredicting the number of people who would walk to
BART by a factor of twelve. The problem was investigated and found
to be primarily due to differences between the experience of walking to
BART stations and that of walking to the bus, given the neighborhoods
in which the BART stations are located. These issues are discussed at
greater length by McFadden et al. (1977).

3.10 Derivation of Logit Probabilities

It was stated without proof in Section 3.1 that if the unobserved compo-
nent of utility is distributed iid extreme value for each alternative, then
the choice probabilities take the form of equation (3.6). We now derive
this result. From (3.5) we have
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where s is g,;. Our task is to evaluate this integral. Noting that V,;; —
Vi = 0 and then collecting terms in the exponent of e, we have
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Define t = exp(—s) such that —exp(—s)ds = dt. Note that as s ap-
proaches infinity, ¢ approaches zero, and as s approaches negative
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infinity, ¢ becomes infinitely large. Using this new term,
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as required.
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4 GEV

4.1 Introduction

The standard logit model exhibits independence from irrelevant alterna-
tives (IIA), which implies proportional substitution across alternatives.
As we discussed in Chapter 3, this property can be seen either as a
restriction imposed by the model or as the natural outcome of a well-
specified model that captures all sources of correlation over alternatives
into representative utility, so that only white noise remains. Often the
researcher is unable to capture all sources of correlation explicitly, so
that the unobserved portions of utility are correlated and IIA does not
hold. In these cases, a more general model than standard logit is needed.

Generalized extreme value (GEV) models constitute a large class
of models that exhibit a variety of substitution patterns. The unifying
attribute of these models is that the unobserved portions of utility for all
alternatives are jointly distributed as a generalized extreme value. This
distribution allows for correlations over alternatives and, as its name
implies, is a generalization of the univariate extreme value distribution
that is used for standard logit models. When all correlations are zero,
the GEV distribution becomes the product of independent extreme value
distributions and the GEV model becomes standard logit. The class
therefore includes logit but also includes a variety of other models.
Hypothesis tests on the correlations within a GEV model can be used
to examine whether the correlations are zero, which is equivalent to
testing whether standard logit provides an accurate representation of the
substitution patterns.

The most widely used member of the GEV family is called nested
logit. This model has been applied by many researchers in a variety
of situations, including energy, transportation, housing, telecommuni-
cations, and a host of other fields; see, for example, Ben-Akiva (1973),
Train (1986, Chapter 8), Train et al. (1987a), Forinash and Koppelman
(1993), and Lee (1999). Its functional form is simple compared to other
types of GEV models, and it provides a rich set of possible substitution
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patterns. Sections 4.2 and 4.3 describe the specification and estimation
of nested logit models. This description is useful in itself, since nested
logit models are so prominent, and also as background for understand-
ing more complex GEV models. In Section 4.4, we turn to other GEV
models that researchers have implemented, with special emphasis on two
of the most promising of these, namely, the paired combinatorial logit
(PCL) and generalized nested logit (GNL). The chapter’s final section
describes the entire class of GEV models and how new specifications
within the class are generated.

Only a small portion of the possible models within the GEV class
have ever been implemented. This means that the full capabilities of
this class have not yet been fully exploited and that new research in
this area has the potential to find even more powerful models than those
already used. An example of this potential is evidenced by Karlstrom
(2001), who specified a GEV model of a different form than had ever
been used before and found that it fitted his data better than previously
implemented types of GEV models. GEV models have the advantage
that the choice probabilities usually take a closed form, so that they can
be estimated without resorting to simulation. For this reason alone, GEV
models will continue to be the source of new and powerful specifications
to meet researchers’ needs.

4.2  Nested Logit

4.2.1. Substitution Patterns

A nested logit model is appropriate when the set of alternatives
faced by a decision maker can be partitioned into subsets, called nests,
in such a way that the following properties hold:

1. For any two alternatives that are in the same nest, the ratio of
probabilities is independent of the attributes or existence of all
other alternatives. That is, IIA holds within each nest.

2. For any two alternatives in different nests, the ratio of probabil-
ities can depend on the attributes of other alternatives in the two
nests. IIA does not hold in general for alternatives in different
nests.

An example can best explain whether a set of alternatives can be so
partitioned. Suppose the set of alternatives available to a worker for his
commute to work consists of driving an auto alone, carpooling, taking the
bus, and taking rail. If any alternative were removed, the probabilities of
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Table 4.1. Example of 1IA holding within nests of alternatives: Change
in probabilities when one alternative is removed

Probability

With Alternative Removed

Alternative  Original ~ Auto Alone Carpool Bus Rail

Auto alone .40 — 45 (+12.5%) .52 (+30%) .48 (+20%)
Carpool .10 20 (+100%) — A3 (+30%) .12 (+20%)
Bus .30 A8 (+60%) .33 (+10%) — 40 (+33%)
Rail .20 32 (+60%) .22 (+10%) 35 (+70%) —

the other alternatives would increase (e.g., if the worker’s car were being
repaired, so that he could not drive to work by himself, then the probabil-
ities of carpool, bus, and rail would increase). The relevant question in
partitioning these alternatives is: by what proportion would each prob-
ability increase when an alternative is removed? Suppose the changes
in probabilities occur as set forth in Table 4.1. Note that the probabili-
ties for bus and rail always rise by the same proportion whenever one
of the other alternatives is removed. IIA therefore holds between these
two alternatives. Let us put these alternatives in a nest and call the nest
“transit.” Similarly, the probability of auto alone and carpool rise by the
same proportion whenever one of the other alternatives is removed. IIA
holds between these two alternatives, and so we put them into a nest
called “auto.” ITIA does not hold between either of the auto alternatives
and either of the transit alternatives. For example, when the auto-alone
alternative is removed, the probability of carpool rises proportionately
more than the probability of bus or rail. With our two nests, we can state
the patterns of substitution succinctly as: IIA holds within each nest but
not across nests. A nested logit model with the two auto alternatives in
one nest and the two transit alternatives in another nest is appropriate to
represent this situation.

A convenient way to picture the substitution patterns is with a tree
diagram. In such a tree, each branch denotes a subset of alternatives
within which IIA holds, and every leaf on each branch denotes an alter-
native. For example, the tree diagram for the worker’s choice of mode
just described is given in Figure 4.1. The (upside down) tree consists
of two branches, labeled “auto” and “transit,” for the two subsets of
alternatives, and each of the branches contains two twigs for the two
alternatives within the subset. There is proportional substitution across
twigs within a branch but not across branches.
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Auto Transit

Auto Carpool Bus Rail
alone

Figure 4.1. Tree diagram for mode choice.

4.2.2. Choice Probabilities

Daly and Zachary (1978), McFadden (1978), and Williams
(1977) showed, independently and using different proofs, that the nested
logit model is consistent with utility maximization. Let the set of al-
ternatives j be partitioned into K nonoverlapping subsets denoted B,
B», ..., Bk and called nests. The utility that person n obtains from alter-
native j in nest By is denoted, as usual, as U,; = V,;; + &,;, where V,,;
is observed by the researcher and ¢,; is a random variable whose value
is not observed by the researcher. The nested logit model is obtained
by assuming that the vector of unobserved utility, &, = (€1, ..., EnJ),
has cumulative distribution

K A
4.1) exp(—Z(Ze‘s"fﬂ’) )

k=1 jEBk

This distribution is a type of GEV distribution. It is a generalization
of the distribution that gives rise to the logit model. For logit, each
&,; 1s independent with a univariate extreme value distribution. For this
GEYV, the marginal distribution of each ¢,; is univariate extreme value.
However, the ¢,;’s are correlated within nests. For any two alternatives
J and m in nest By, &,; is correlated with ¢,,,. For any two alternatives
in different nests, the unobserved portion of utility is still uncorrelated:
Cov(e,j, €um) = O forany j € By and m € B, with £ # k.

The parameter XA, is a measure of the degree of independence in un-
observed utility among the alternatives in nest k. A higher value of A;
means greater independence and less correlation. The statistic 1 — Ay
is a measure of correlation, in the sense that as A, rises, indicating less
correlation, this statistic drops. As McFadden (1978) points out, the cor-
relation is actually more complex than 1 — A, but 1 — A; can be used
as an indication of correlation. A value of A; = 1 indicates complete
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independence within nest k, that is, no correlation. When A, = 1 for all
k, representing independence among all the alternatives in all nests, the
GEV distribution becomes the product of independent extreme value
terms, whose distribution is given in (3.2). In this case, the nested logit
model reduces to the standard logit model.

As shown by the authors cited earlier, this distribution for the unob-
served components of utility gives rise to the following choice proba-
bility for alternative i € By:

. . A—1
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We can use this formula to show that IIA holds within each subset
of alternatives but not across subsets. Consider alternatives i € B; and
m € By. Since the denominator of (4.2) is the same for all alternatives,
the ratio of probabilities is the ratio of numerators:
. =1
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Ifk = £ (i.e., i and m are in the same nest) then the factors in parentheses
cancel out and we have

Pl’ll evm v
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This ratio is independent of all other alternatives. For k # € (i.e.,i and m
are in different nests), the factors in parentheses do not cancel out. The
ratio of probabilities depends on the attributes of all alternatives in the
nests that contain i and m. Note, however, that the ratio does not depend
on the attributes of alternatives in nests other than those containing i
and m. A form of ITA holds, therefore, even for alternatives in different
nests. This form of IIA can be loosely described as “independence from
irrelevant nests” or IIN. With a nested logit model, ITA holds over al-
ternatives in each nest and IIN holds over alternatives in different nests.
This property of nested logit models is reinforced in the next section
when we decompose the nested logit probability into two standard logit
probabilities.

When A; = 1 for all k£ (and hence 1 — A; = 0), indicating no correla-
tion among the unobserved components of utility for alternatives within
a nest, the choice probabilities become simply logit. The nested logit
model is a generalization of logit that allows for a particular pattern of
correlation in unobserved utility.
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The parameter A can differ over nests, reflecting different correlation
among unobserved factors within each nest. The researcher can con-
strain the A;’s to be the same for all (or some) nests, indicating that the
correlation is the same in each of these nests. Hypothesis testing can be
used to determine whether constraints on the A;’s are reasonable. Testing
the constraint A; = 1 Vk is equivalent to testing whether the standard
logit model is a reasonable specification against the more general nested
logit. These tests are performed most readily with the likelihood ratio
statistic described in Section 3.8.2.

The value of A; must be within a particular range for the model to be
consistent with utility-maximizing behavior. If A; Vk is between zero and
one, the model is consistent with utility maximization for all possible
values of the explanatory variables. For A; greater than one, the model
is consistent with utility-maximizing behavior for some range of the
explanatory variables but not for all values. Kling and Herriges (1995)
and Herriges and Kling (1996) provide tests of consistency of nested logit
with utility maximization when A; > 1; and Train et al. (1987a) and Lee
(1999) provide examples of models for which A; > 1. A negative value
of A; is inconsistent with utility maximization and implies that improving
the attributes of an alternative (such as lowering its price) can decrease
the probability of the alternative being chosen. With positive Ay, the
nested logit approaches the “elimination by aspects” model of Tversky
(1972) as A, — O.

In the notation that we have been using, each X; is a fixed parame-
ter, which implies that all decision makers have the same correlations
among unobserved factors. In reality, correlations might differ over de-
cision makers based on their observed characteristics. To accommodate
this possibility, each A; can be specified to be a parametric function of
observed demographics or other variables, as long as the function main-
tains a positive value. For example, Bhat (1997) specifies A = exp(«z,),
where z,, is a vector of characteristics of decision maker n, and « is a
vector of parameters to be estimated along with the parameters that enter
representative utility. The exponential transformation assures that A is
positive.

4.2.3. Decomposition into Two Logits

Expression (4.2) is not very illuminating as a formula. However,
the choice probabilities can be expressed in an alternative fashion that
is quite simple and readily interpretable. Without loss of generality, the
observed component of utility can be decomposed into two parts: (1) a
part labeled W that is constant for all alternatives within a nest, and
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(2) a part labeled Y that varies over alternatives within a nest. Utility is
written as

43) Uyy=Wu+Y, +ey
for j € By, where:

W,x depends only on variables that describe nest k. These variables
differ over nests but not over alternatives within each nest.

Y,;j depends on variables that describe alternative j. These variables
vary over alternatives within nest k.

Note that this decomposition is fully general, since for any W, Y,;
is defined as V,,; — W.

With this decomposition of utility, the nested logit probability can
be written as the product of two standard logit probabilities. Let the
probability of choosing alternative i € By be expressed as the product
of two probabilities, namely, the probability that an alternative within
nest By, is chosen and the probability that the alternative i is chosen given
that an alternative in By is chosen:

P,; = Py B, Pup,,

where P,;|p, is the conditional probability of choosing alternative i
given that an alternative in nest By is chosen, and P, p, is the marginal
probability of choosing an alternative in nest By (with the marginality
being over all alternatives in By). This equality is exact, since any prob-
ability can be written as the product of a marginal and a conditional
probability.

The reason for decomposing P,; into a marginal and a conditional
probability is that, with the nested logit formula for P,;, the marginal
and conditional probabilities take the form of logits. In particular, the
marginal and conditional probabilities can be expressed as

e Wkl
4.4) Pp = —Zle R
e ni/n
4.5)  Puip = m,
where

Ink =1In Z eY"j/)\k.

JEBk
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The derivation of these expressions from the choice probability (4.2)
simply involves algebraic rearrangement. For interested readers, it is
given in Section 4.2.5.

Stated in words, the probability of choosing an alternative in By, takes
the form of the logit formula, as if it resulted from a model for a choice
among nests. This probability includes variables W, that vary over
nests but not over alternatives within each nest. It also includes a quan-
tity called I,;, whose meaning we elucidate in subsequent text. The
conditional probability of choosing i given that an alternative in By is
chosen is also given by a logit formula, as if it resulted from a model
for the choice among the alternatives within the nest. This conditional
probability includes variables Y,,; that vary over alternatives within the
nest. Note that these variables are divided by Ay, so that, when Y,; is
linear in parameters, the coefficients that enter this conditional proba-
bility are the original coefficients divided by A. It is customary to refer
to the marginal probability (choice of nest) as the upper model and to
the conditional probability (choice of alternative within the nest) as the
lower model, reflecting their relative positions in Figure 4.1.

The quantity 7, links the upper and lower models by bringing infor-
mation from the lower model into the upper model. Ben-Akiva (1973)
first identified the correct formula for this link. In particular, 7, is the
log of the denominator of the lower model. This formula has an import-
ant meaning. Recall from the discussion of consumer surplus for a logit
model (Section 3.5) that the log of the denominator of the logit model
is the expected utility that the decision maker obtains from the choice
situation, as shown by Williams (1977) and Small and Rosen (1981).
The same interpretation applies here: A; I, is the expected utility that
decision maker n receives from the choice among the alternatives in nest
By. The formula for expected utility is the same here as for a logit model
because, conditional on the nest, the choice of alternatives within the nest
is indeed a logit, as given by equation (4.5). I, is often called the inclu-
sive value or inclusive utility of nest By. It is also called the “log-sum
term” because it is the log of a sum (of exponentiated representative
utilities). The term “inclusive price” is sometimes used; however, the
negative of I,; more closely resembles a price.

The coefficient A, of I,,; in the upper model is often called the log-sum
coefficient. As discussed, A, reflects the degree of independence among
the unobserved portions of utility for alternatives in nest By, with a lower
A indicating less independence (more correlation).

It is appropriate that the inclusive value enters as an explanatory vari-
able in the upper model. Stated loosely, the probability of choosing nest
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By depends on the expected utility that the person receives from that
nest. This expected utility includes the utility that he receives no matter
which alternative he chooses in the nest, which is W, plus the expected
extra utility that he receives by being able to choose the best alternative
in the nest, which is A; 1.

Recall that the coefficients that enter the lower model are divided
by Ak, as given in equation (4.5). Models have been specified and es-
timated without dividing by A; in the lower model. Daly (1987) and
Greene (2000) describe such a model, and the software package STATA
includes it as its nested logit model in the nlogit command. The pack-
age NLOGIT allows either specification. If the coefficients in the lower
model are not divided by X, the choice probabilities are not the same
as those given in equation (4.2). As shown in the derivation in Sec-
tion 4.2.5, the division by A, is needed for the product of the conditional
and marginal probabilities to equal the nested logit probabilities given
by equation (4.2). However, the fact that the model does not give the
probabilities in equation (4.2) does not necessarily mean that the model
is inappropriate. Koppelman and Wen (1998) and Hensher and Greene
(2002) compare the two approaches (dividing by A versus not) and show
that the latter model is not consistent with utility maximization when
any coefficients are common across nests (such as a cost coefficient that
is the same for bus and car modes). Heiss (2002) points out the con-
verse: if no coefficients are common over nests, then the latter model is
consistent with utility maximization, since the necessary division by A;
in each nest is accomplished implicitly (rather than explicitly) by allow-
ing separate coefficients in each nests such that the scale of coefficients
differs over nests. When coefficients are common over nests, she found
that not dividing by A, leads to counterintuitive implications.

4.2.4. Estimation

The parameters of a nested model can be estimated by standard
maximum likelihood techniques. Substituting the choice probabilities of
expression (4.2) into the log-likelihood function gives an explicit func-
tion of the parameters of this model. The values of the parameters that
maximize this function are, under fairly general conditions, consistent
and efficient (Brownstone and Small, 1989).

Computer routines are available in commercial software packages for
estimating nested models by maximum likelihood. Hensher and Greene
(2002) provide a guide for nested logits using available software. Num-
erical maximization is sometimes difficult, since the log-likelihood func-
tion is not globally concave and even in concave areas is not close to
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a quadratic. The researcher may need to help the routines by trying dif-
ferent algorithms and/or starting values, as discussed in Chapter 8.

Instead of performing maximum likelihood, nested logit models can
be estimated consistently (but not efficiently) in a sequential fashion,
exploiting the fact that the choice probabilities can be decomposed into
marginal and conditional probabilities that are logit. This sequential
estimation is performed “bottom up.” The lower models (for the choice
of alternative within a nest) are estimated first. Using the estimated
coefficients, the inclusive value is calculated for each lower model. Then
the upper model (for choice of nest) is estimated, with the inclusive value
entering as explanatory variables.

Sequential estimation creates two difficulties that argue against its use.
First, the standard errors of the upper-model parameters are biased down-
ward, as Amemiya (1978) first pointed out. This bias arises because the
variance of the inclusive value estimate that enters the upper model is not
incorporated into the calculation of standard errors. With downwardly
biased standard errors, smaller confidence bounds and larger ¢-statistics
are estimated for the parameters than are true, and the upper model will
appear to be better than it actually is. Ben-Akiva and Lerman (1985,
p. 298) give a procedure for adjusting the standard errors to eliminate
the bias.

Second, it is usually the case that some parameters appear in several
submodels. Estimating the various upper and lower models separately
provides separate estimates of whatever common parameters appear in
the model. Simultaneous estimation by maximum likelihood assures that
the common parameters are constrained to be the same wherever they
appear in the model.

These two complications are symptoms of a more general circum-
stance, namely, that sequential estimation of nested logit models, while
consistent, is not as efficient as simultaneous estimation by maximum
likelihood. With simultaneous estimation, all information is utilized in
the estimation of each parameter, and parameters that are common across
components are necessarily constrained to be equal. Since commercial
software is available for simultaneous estimation, there is little reason
to estimate a nested logit sequentially. If problems arise in simultaneous
estimation, then the researcher might find it useful to estimate the model
sequentially and then use the sequential estimates as starting values in
the simultaneous estimation. The main value of the decomposition of
the nested logit into its upper and lower components comes not in its use
as an estimation tool but rather as an heuristic device: the decomposition
helps greatly in understanding the meaning and structure of the nested
logit model.
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4.2.5. Equivalence of Nested Logit Formulas

We asserted in Section 4.2.3 that the product of the marginal and
conditional probabilities in (4.4) and (4.5) equals the joint probability
in (4.2). We now verify this assertion:
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where the next-to-last equality is because I,z = In ) jeB. eli/™ recog-
nizing that e*b¢ = e**+<In?,

4.3  Three-Level Nested Logit

The nested logit model that we have discussed up this this point is
called a two-level nested logit model, because there are two levels of
modeling: the marginal probabilities (upper model) and the conditional
probabilities (lower models). In the case of the mode choice, the two
levels are the marginal model of auto versus transit and the conditional
models of type of auto or transit (auto alone or carpool given auto, and
bus or rail given transit).

In some situations, three- or higher-level nested logit models are ap-
propriate. Three-level models are obtained by partitioning the set of
alternatives into nests and then partitioning each nest into subnests. The
probability formula is a generalization of (4.2) with extra sums for the
subnests within the sums for nests. See McFadden (1978) or Ben-Akiva
and Lerman (1985) for the formula.

As with a two-level nested logit, the choice probabilities for a three-
level model can be expressed as a series of logits. The top model
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Neighborhood ~ Nob Haight Telegraph Mission
Hill Ashbury Hill District
Number of /y\ /y\ /y\ /y\

bedrooms 1 2 3 1 2 3+ 1 2 3 1 2 3+
= AAMAAAAAAAA
Figure 4.2. Three-level nested logit.

describes the choice of nest; the middle models describe the choice of
subnest within each nest; and the bottom models describe the choice
of alternative within each subnest. The top model includes an inclusive
value for each nest. This value represents the expected utility that the
decision maker can obtain from the subnests within the nest. It is cal-
culated as the log of the denominator of the middle model for that nest.
Similarly, the middle models include an inclusive value for each subnest,
which represents the expected utility that the decision maker can obtain
from the alternatives within the subnest. It is calculated as the log of the
denominator of the bottom model for the subnest.

As an example, consider a household’s choice of housing unit within
a metropolitan area. The household has a choice among all the available
housing units in the city. The housing units are available in different
neighborhoods in the city and with different numbers of bedrooms. It is
reasonable to assume that there are unobserved factors that are common
to all units in the same neighborhood, such as the proximity to shopping
and entertainment. The unobserved portion of utility is therefore ex-
pected to be correlated over all units in a given neighborhood. There
are also unobserved factors that are common to all units with the same
number of bedrooms, such as the convenience of working at home. We
therefore expect the unobserved utility to be even more highly correlated
among units of the same size in the same neighborhood than between
units of different size in the same neighborhood. This pattern of corre-
lation can be represented by nesting the units by neighborhood and then
subnesting them by number of bedrooms. A tree diagram depicting this
situation is given in Figure 4.2 for San Francisco. There are three levels
of submodels: the probability for choice of neighborhood, the probabil-
ity for choice of number of bedrooms given the neighborhood, and the
choice of unit given the neighborhood and number of bedrooms.
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A nested logit model with this nesting structure embodies IIA in the
following ways.

1. Theratio of probabilities of two housing units in the same neigh-
borhood and with the same number of bedrooms is independent
of the characteristics of all other units. For example, lowering
the price of a two-bedroom apartment in Pacific Heights draws
proportionately from all one-bedroom units on Russian Hill.

2. Theratio of probabilities of two housing units in the same neigh-
borhood but with different numbers of bedrooms is indepen-
dent of the characteristics of units in other neighborhoods but
depends on the characteristics of units in the same neighbor-
hood that have the same number of bedrooms as either of these
units. Lowering the price of a two-bedroom apartment in Paci-
fic Heights draws proportionately from one- and two-bedroom
units on Russian Hill, but draws disproportionately from two-
bedroom units in Pacific Heights relative to one-bedroom units
in Pacific Heights.

3. The ratio of probabilities of two housing units in different neigh-
borhoods depends on the characteristics of all the other hous-
ing units in those neighborhoods but not on the characteris-
tics of units in other neighborhoods. Lowering the price of a
two-bedroom apartment in Pacific Heights draws proportion-
ately from all units outside Pacific Heights but draws dispropor-
tionately from units in Pacific Heights relative to units outside
Pacific Heights.

Each layer of a nesting in a nested logit introduces parameters that
represent the degree of correlation among alternatives within the nests.
With the full set of alternatives partitioned into nests, the parameter A
is introduced for nest &, as described for two-level models. If the nests
are further partitioned into subnests, then a parameter o, is introduced
for subnest m of nest k. Using the decomposition of the probability into
a series of logit models, o, is the coefficient of the inclusive value in
the middle model, and A0, is the coefficient of the inclusive value in
the top model. Just as for a two-level nested logit, the values of these
parameters must be in certain ranges to be consistent with utility maxi-
mization. If 0 < A; < 1 and 0 < 0, < 1, then the model is consistent
with utility maximization for all levels of the explanatory variables. A
negative value for either parameter is inconsistent with utility maximiza-
tion. And values greater than one are consistent for arange of explanatory
variables.
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4.4 Overlapping Nests

For the nested logit models that we have considered, each alternative
is a member of only one nest (and, for three-level models, only one
subnest). This aspect of nested logit models is a restriction that is some-
times inappropriate. For example, in our example of mode choice, we
put carpool and auto alone into a nest because they have some similar
unobserved attributes. However, carpooling also has some unobserved
attributes that are similar to bus and rail, such as a lack of flexibility in
scheduling (the worker cannot go to work whenever he wants each day
but rather has to go at the time that the carpool has decided, similarly to
taking a bus or rail line with fixed departure times). It would be useful to
have a model in which the unobserved utility for the carpool alternative
could be correlated with that of auto alone and also correlated, though to
a different degree, with that of bus and rail. Stated equivalently, it would
be useful for the carpool alternative to be in two nests: one with auto
alone and another with bus and rail.

Several kinds of GEV models have been specified with overlapping
nests, so that an alternative can be a member of more than one nest.
Vovsha (1997), Bierlaire (1998), and Ben-Akiva and Bierlaire (1999)
have proposed various models called cross-nested logits (CNLs) that
contain multiple overlapping nests. Small (1987) considered a situation
where the alternatives have a natural order, such as the number of cars
that a household owns (0, 1, 2, 3,...) or the destination for shopping
trips, with the shopping areas ordered by distance from the household’s
home. He specified a model, called ordered generalized extreme value
(OGEYV), in which the correlation in unobserved utility between any two
alternatives depends on their proximity in the ordering. This model has
overlapping nests like the CNLs, but each nest consists of two alterna-
tives, and a pattern is imposed on the correlations (higher correlation
for closer pairs). Small (1994) and Bhat (1998b) described a nested ver-
sion of the OGEYV, which is similar to a nested logit except that the
lower models (for the alternatives given the nests) are OGEYV rather than
standard logit. Chu (1981, 1989) proposed a model called the paired
combinatorial logit (PCL) in which each pair of alternatives constitutes
a nest with its own correlation. With J alternatives, each alternative is
a member of J — 1 nests, and the correlation of its unobserved utility
with each other alternative is estimated. Wen and Koppelman (2001)
have developed a generalized nested logit (GNL) model that includes
the PCL and other cross-nested models as special cases. I describe in
the following subsections the PCL and GNL, the former because of its
simplicity and the latter because of its generality.
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4.4.1. Paired Combinatorial Logit

Each pair of alternatives is considered to be a nest. Since each
alternative is paired with each of the other alternatives, each alternative
is member of J — 1 nests. A parameter labeled A;; indicates the degree
of independence between alternatives i and j. Stated equivalently: 1 —
Aij is a measure of the correlation between the unobserved utility of
alternative i and that of alternative j. This parameter is analogous to the
M in anested logit model, where A indicates the degree of independence
of alternatives within the nest and 1 — A, is a measure of correlation
within the nest. And as with nested logit, the PCL model becomes a
standard logit when A;; = 1 for all pairs of alternatives.

The choice probabilities for the PCL model are

Zj;éi eVm/)wj(eVm/)wj + ean/)»fj))»ijfl
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The sum in the numerator is over all J — 1 nests that alternative i is
in. For each of these nests, the term being added is the same as the
numerator of the nested logit probability (4.2). Thus, the PCL is like
the nested logit except that it allows i to be in more than one nest. The
denominator in the PCL also takes the same form as in a nested logit: it
is the sum over all nests of the sum of the exp(V /A)’s within the nest,
raised to the appropriate power A. If 1;; is between zero and one for all
ij pairs, then the model is consistent with utility maximization for all
levels of the data. It is easy to verify that P,; becomes the standard logit
formula when A;; = 1 Vi, j. In their application, Koppelman and Wen
(2000) found PCL to perform better than nested logit or standard logit.

The researcher can test the hypothesis that A;; = 1 for some or all of
the pairs, using the likelihood ratio test of Section 3.8.2. Acceptance of
the hypothesis for a pair of alternatives implies that there is no significant
correlation in the unobserved utility for that pair. The researcher can also
place structure on the pattern of correlation. For example, correlations
can be assumed to be the same among a group of alternatives; this
assumption is imposed by setting A;; = Ay, for all i, j, k, and £ in the
group. Small’s OGEV model is a PCL model in which A;; is specified
to be a function of the proximity between i and j. With a large number
of alternatives, the researcher will probably need to impose some form
of structure on the A;;’s, simply to avoid the proliferation of parameters
that arises with large J. This proliferation of parameters, one for each
pair of alternatives, is what makes the PCL so flexible. The researcher’s
goal is to apply this flexibility meaningfully for his particular situation.

As discussed near the end of Section 2.5, since the scale and level
of utility are immaterial, at most J(J — 1)/2 — 1 covariance parameters

4.6) P, =
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can be estimated in a discrete choice model. A PCL model contains
J(J —1)/2 X’s: one for each alternative paired with each other alter-
native, recognizing that i paired with j is the same as j paired with i.
The number of A’s exceeds the number of identifiable covariance pa-
rameters by exactly one. The researcher must therefore place at least
one constraint on the A’s. This can be accomplished by normalizing one
of the A’s to 1. If structure is imposed on the pattern of correlation,
as described in the previous paragraph, then this structure will usually
impose the normalization automatically.

4.4.2. Generalized Nested Logit

Nests of alternatives are labeled By, Bs, ..., Bx. Each alterna-
tive can be a member of more than one nest. Importantly, an alternative
can be in a nest to varying degrees. Stated differently, an alternative
is allocated among the nests, with the alternative being in some nests
more than other nests. An allocation parameter o j; reflects the extent
to which alternative j is a member of nest k. This parameter must be
nonnegative: o jy > 0V, k. A value of zero means that the alternative is
not in the nest at all. Interpretation is facilitated by having the allocation
parameters sum to one over nests for any alternative: ) , ajx = 1 V.
Under this condition, « j; reflects the portion of the alternative that is
allocated to each nest.

A parameter A is defined for each nest and serves the same function
as in nested logit models, namely to indicate the degree of independence
among alternatives within the nest: higher A, translates into greater in-
dependence and less correlation.

The probability that person n chooses alternative i is
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This formula is similar to the nested logit probability given in equa-
tion (4.2), except that the numerator is a sum over all the nests that
contains alternative i, with weights applied to these nests. If each alter-
native enters only one nest, with o j; = 1 for j € By and zero otherwise,
the model becomes a nested logit model. And if, in addition, A; = 1 for
all nests, then the model becomes standard logit. Wen and Koppelman
(2001) derive various cross-nested models as special cases of the GNL.

To facilitate interpretation, the GNL probability can be decomposed as
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where the probability of nest & is
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4.5  Heteroskedastic Logit

Instead of capturing correlations among alternatives, the researcher may
simply want to allow the variance of unobserved factors to differ over
alternatives. Steckel and Vanhonacker (1988), Bhat (1995), and Recker
(1995) describe a type of GEV model, called heteroskedastic extreme
value (HEV), that is the same as logit except for having a different vari-
ance for each alternative. Utility is specified as U,; = V,,; + €,j, where
gy is distributed independently extreme value with variance (9;7)*/6.
There is no correlation in unobserved factors over alternatives; however,
the variance of the unobserved factors is different for different alterna-
tives. To set the overall scale of utility, the variance for one alternative is
normalized to 2/6, which is the variance of the standardized extreme
value distribution. The variances for the other alternatives are then esti-
mated relative to the normalized variance.

The choice probabilities for this heteroskedastic logit are (Bhat, 1995)

Py = / |:l_[e_e_wm_vnjwww:|e_e"‘e_wdw,
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where w = ¢,;/6;. The integral does not take a closed form; however, it
can be approximated by simulation. Note that exp(— exp(—w)) exp(—w)
is the extreme value density, given in Section 3.1. P,; is therefore the
integral of the factor in square brackets over the extreme value den-
sity. It can be simulated as follows: (1) Take a draw from the ex-
treme value distribution, using the procedure described in Section 9.2.3.
(2) For this draw of w, calculate the factor in brackets, namely,
]_[j# exp(— exp(—(vn; — V,j +0;w)/6;)). (3) Repeat steps 1 and 2
many times, and average the results. This average is an approximation to
P,;. Bhat (1995) shows that, since the integral is only one-dimensional,
the heteroskedastic logit probabilities can be calculated effectively with
quadrature rather than simulation.
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4.6  The GEV Family

We now describe the processs that McFadden (1978) developed to gen-
erate GEV models. Using this process, the researcher is able to develop
new GEV models that best fit the specific circumstances of his choice
situation. As illustration, we show how the procedure is used to generate
models that we have already discussed, namely logit, nested logit, and
paired combinatorial logit. The same procedure can be applied by a re-
searcher to generate new models with properties that meet his research
needs.

For notational simplicity, we will omit the subscript n denoting the
decision maker. Also, since we will be using exp(V;) repeatedly, let’s
denote it more compactly by Y;. That is, let Y; = exp(V;). Note that Y;
is necessarily positive.

Consider a function G that depends on Y; for all j. We denote this
function G = G(Y1, ..., Y,). Let G; be the derivative of G with respect
to Y;: G; = 0G/dY;. If this function meets certain conditions, then a
discrete choice model can be based upon it. In particular, if G satisfies
the conditions that are listed in the next paragraph, then

Y;G;
48) P =

is the choice probability for a discrete choice model that is consistent

with utility maximization. Any model that can be derived in this way is a

GEV model. This formula therefore defines the family of GEV models.
The properties that the function must exhibit are the following:

1. G > 0 for all positive values of Y; V.

2. G is homogeneous of degree one. That is, if each Y; is
raised by some proportion p, G rises by proportion p also:
G(pYy,...,pYy) = pGYy, ..., Y ). Actually, Ben-Akiva and
Francois (1983) showed that this condition can be relaxed to
allow any degree of homogeneity. We retain the usage of degree
one, since doing so makes the condition easier to interpret and
is consistent with McFadden’s original description.

.G — ooasY; — oo forany j.

4. The cross partial derivatives of G change signs in a particular
way. Thatis, G; > Oforalli, G;; = dG;/dY; < Oforall j # i,
Gijr = 0G;;/3Y; > O for any distinct i, j, and k, and so on for
higher-order cross-partials.

(98]

There is little economic intuition to motivate these properties, particu-
larly the last one. However, it is easy to verify whether a function exhibits
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these properties. The lack of intuition behind the properties is a blessing
and a curse. The disadvantage is that the researcher has little guidance
on how to specify a G that provides a model that meets the needs of his
research. The advantage is that the purely mathematical approach allows
the researcher to generate models that he might not have developed while
relying only on his economic intuition. Karlstrom (2001) provides an
example: he arbitrarily specified a G (in the sense that it was not based
on behavioral concepts) and found that the resulting probability formula
fitted his data better than logit, nested logit, and PCL.

We can now show how logit, nested logit, and PCL models are ob-
tained under appropriate specifications of G.

Logit

LetG = Z,J':1 Y;. This G exhibits the four required properties:
(1) The sum of positive Y ;’s is positive. (2) If all Y;’s are raised by a
factor p, G rises by that same factor. (3) If any Y; rises without bound,
then G does also. (4) The first partial derivative is G; = dG/dY; =1,
which meets the criterion that G; > 0. And the higher-order derivatives
are all zero, which clearly meets the criterion, since they are > 0 or < 0
as required.
Inserting this G and its first derivative G; into (4.8), the resulting
choice probability is

Y,G;

G

Y;

7
Zj:l Y;

v;

P =

e
Z]j.=1 er

which is the logit formula.

E)

Nested Logit

The J alternatives are partitioned into K nests labeled
B, ..., Bg.Let

G-y yi)”
-3 (zvm)”

JE€By

with each A; between zero and one. The first three properties are easy
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to verify. For the fourth property, we calculate the first partial derivative

A—1
1 .
G; = ,\k( ) Yjw) . (/21

JEBy

Ax—1
(1/20)—1 /M
=, ( > Y, )

JEBy

fori € By. Since Y; > 0V, we have G; > 0, as required. The second

cross partial derivative is
G — 0G;
Y,

=2 q

=g — I)Yi(l/)xk)—l( Z Y/}/M) )\_erl/xk)—l

JEBy k

A — 1 1/r0)—1 1/x e
— . - k
= " YY)/ ( E Yj >

JEBy

for m € By and m #i. With A; < 1, G;; <0, as required. For j in
a different nest than i, G;; = 0, which also meets the criterion. Higher
cross-partials are calculated similarly; they exhibit the required property
if0 <A <1.

The choice probability becomes

Y;G;
G

J—1
(I/A)—1 1/X¢
YiYi ‘ (ZjeBk Yj [)
A
K 1/2
D e (ZjeBg Yj l)
Ae—1
/0 1/2
Y, L<ZjeBk Yj l)
Ag
K 1/2
> =i <ZjeB( Yj é)
Ae—1
(6‘/")1”"(2/'63,((3‘/")1/“) k
Ag
K .
Zl:l <ZjeB[(eVJ)1/M>
-1
ev,-/xk(z, evjm)“
JE€Bk
= Py
K .
ZE:I (ZjeBl e‘““)

which is the nested logit formula (4.2).

P, =
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Paired Combinatorial Logit

Let

J 2
G = Z (Ykl/)»ke + Yﬁl/)w) ke

The required properties are verified in the same way as for the nested
logit. We have

. e I | S
G = Z)Lﬂ(Yil/k” + ij”> ’ TY;WU) !
J#i ij
Ly . A\ il
_ Z y (/) I(Yim” i le/&;)
JF#
And so the choice probability is
Y, G,
G
Y; Zj;éi Yi(l/)\ij)*] (Yl/%/ + Yl/?»,,>

194
ED k+1( y Ve +Y1/Au)
N ~1
Z#i Yi(l/x,,)<Y1/A,, " Yl/A,,)
Ake
J-1 J 1/ ke 1/A
I By (Yk/ 4+ Yz/ ke)
Zj;éi eVilkii(eVilkii 4 @Vilhijyhii=1

J=1 7 Vic/hke Ve/heYhre
i Zz=k+1(e K/ ke A @Ve/hee e

which is the PCL formula (4.6).

P =

Generalized Nest Logit

The reader can verify that the GNL probabilities in equation
(4.7) are derived from

G = Z(Z(%kY )1/“) k-

k=1 \jeBy

Using the same process, researchers can generate other GEV models.
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5.1 Choice Probabilities

The logit model is limited in three important ways. It cannot represent
random taste variation. It exhibits restrictive substitution patterns due to
the ITA property. And it cannot be used with panel data when unobserved
factors are correlated over time for each decision maker. GEV models
relax the second of these restrictions, but not the other two. Probit models
deal with all three. They can handle random taste variation, they allow
any pattern of substitution, and they are applicable to panel data with
temporally correlated errors.

The only limitation of probit models is that they require normal distri-
butions for all unobserved components of utility. In many, perhaps most
situations, normal distributions provide an adequate representation of
the random components. However, in some situations, normal distribu-
tions are inappropriate and can lead to perverse forecasts. A prominent
example relates to price coefficients. For a probit model with random
taste variation, the coefficient of price is assumed to be normally dis-
tributed in the population. Since the normal distribution has density on
both sides of zero, the model necessarily implies that some people have
a positive price coefficient. The use of a distribution that has density
only on one side of zero, such as the lognormal, is more appropriate and
yet cannot be accommodated within probit. Other than this restriction,
the probit model is quite general.

The probit model is derived under the assumption of jointly normal
unobserved utility components. The first derivation, by Thurstone (1927)
for a binary probit, used the terminology of psychological stimuli, which
Marschak (1960) translated into economic terms as utility. Hausman
and Wise (1978) and Daganzo (1979) elucidated the generality of the
specification for representing various aspects of choice behavior. Utility
is decomposed into observed and unobserved parts: U,,; = V,,; +¢,; V.
Consider the vector composed of each ¢,;, labeled €, = (&,1, ..., &,7).

101
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We assume that g, is distributed normal with a mean vector of zero and
covariance matrix €2. The density of g, is

1 —18/ Q—la
e = et
The covariance €2 can depend on variables faced by decision maker n, so
that 2, is the more appropriate notation; however, we omit the subscript
for the sake of simplicity.
The choice probability is

Ppi = Prob(Vyi + &, > Vyj + €, Vj #1)

G = / Vi + 60 > Vg + 60 ¥ % )b(En) den,

where /(-) is an indicator of whether the statement in parentheses holds,
and the integral is over all values of ¢,. This integral does not have a
closed form. It must be evaluated numerically through simulation.

The choice probabilities can be expressed in a couple of other ways
that are useful for simulating the integral. Let B,; be the set of error
terms ¢, that result in the decision maker choosing alternative i: B,; =
{en s.t. Vii + €4 > Vyj + €, Vj # i}. Then

(52) Pm' :f ¢(8n)d8nv
e, €B;

which is an integral over only some of the values of ¢, rather than all
possible values, namely, the ¢,’s in By;.

Expressions (5.1) and (5.2) are J-dimensional integrals over the J
errors &,;, j =1,...,J. Since only differences in utility matter,
the choice probabilities can be equivalently expressed as (J — 1)-
dimensional integrals over the differences between the errors. Let us dif-
ference against alternative i, the alternative for which we are calculating
the probability. Define Unj,» =U,j — Uy, an,- =V, — Vii,and &,;; =
€nj — €ni. Then P, = Prob(f],,j,» < 0 Vj #1i). That is, the probabil-
ity of choosing alternative i is the probability that all the utility dif-
ferences, when differenced against i, are negative. Define the vector
& = (En1is ..., &ny1) Where the “...” is over all alternatives except i,
so that &,; has dimension J — 1. Since the difference between two nor-
mals is normal, the density of the error differences is

1 L &
3 .) = e—i%ﬁfﬁni,
¢( ﬂl) (27T)_%(J_1)|Ql|1/2
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where €, is the covariance of &,;, derived from 2. Then the choice
probability expressed in utility differences is

(53) Py = f I(Vji + Bujs < OV 2 D)(Enr) B,

which is a (J — 1)-dimensional integral over all possible values of the
error differences. An equivalent expression is

(54) Pm' = / - ¢(§ni)d§ni’

niEBni

where B,; = {&, s.t. f/nﬂ +&,ji <0 Vj#i}, which is a (J —1)-
dimensional integral over the error differences in B,;.

Expressions (5.3) and (5.4) utilize the covariance matrix €; of the
error differences. There is a straightforward way to derive Q; from the
covariance of the errors themselves, 2. Let M; be the (J — 1) identity
matrix with an extra column of —1°s added as the ith column. The extra
column makes the matrix have size J/ — 1 by J. For example, with J = 4
alternatives and i = 3,

1 0 -1 0
Mi=|0 1 -1 0
00 —1 1

This matrix can be used to transform the covariance matrix of errors
into the covariance matrix of error differences: Q; = M; QM !. Note that
Qiis (J —1)x (J —1) while Qis J x J, since M; is (J — 1) x J.
As an illustration, consider a three-alternative situation with errors
(en1, €n2, €n3) that have covariance

011 012 013
Q=|on on on
013 023 033

Suppose we takes differences against alternative 2. We know from first
principles that the error differences (&,12, &,32) have covariance

Enl — En2
Cov| " "
En3 — En2
o1 + o2 — 2012 013 + 02 — 012 — 023
013 + 020 — 012 — 023 033 + 022 — 2023

93
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This covariance matrix can also be derived by the transformation €, =
M,QM;:

1 o1l 012 013 1 0
0 ) o1 02 023 -1 -1
o1z 023 033 0

o1 +013 —0pn+ 03 —023+ 033

1 0
( 011 — 012 012 — 022 013 — 023 ) -1 -
0 1

01l — 012 — 012 +02n  —012+ 0+ 013 — 023
—012 + 013+ 02 —023 0O — 023 — 023+ 033

_( outon—201n 013+ 0n =01 =023
013 + 022 — 012 — 023 o33+ 03— 2003 )

As we will see, this transformation by M; comes in handy when simu-

lating probit probabilities.

5.2 Identification

As described in Section 2.5, any discrete choice model must be normal-
ized to take account of the fact that the level and scale of utility are irrele-
vant. The level of utility is immaterial because a constant can be added to
the utility of all alternatives without changing which alternative has the
highest utility: the alternative with the highest utility before the constant
is added still has the highest utility afterward. Similarly, the scale of
utility doesn’t matter because the utility of each alternative can be mul-
tiplied by a (positive) constant without changing which alternative has
the highest utility. In logit and nested logit models, the normalization for
scale and level occurs automatically with the distributional assumptions
that are placed on the error terms. As a result, normalization does not
need to be considered explicitly for these models. With probit models,
however, normalization for scale and level does not occur automatically.
The researcher must normalize the model directly.

Normalization of the model is related to parameter identification. A
parameter is identified if it can be estimated, and is unidentified if it
cannot be estimated. An example of an unidentified parameter is k in
the utility specification U,; = V,,; + k + &,;. While the researcher might
write utility in this way, and might want to estimate k to obtain a measure
of the overall level of utility, doing so is impossible. The behavior of the
decision maker is unaffected by k, and so the researcher cannot infer its
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value from the choices that decision makers have made. Stated directly,
parameters that do not affect the behavior of decision makers cannot be
estimated. In an unnormalized model, parameters can appear that are not
identified; these parameters relate to the scale and level of utility, which
do not affect behavior. Once the model is normalized, these parameters
disappear. The difficulty arises because it is not always obvious which
parameters relate to scale and level. In the preceding example, the fact
that k is unidentified is fairly obvious. In many cases, it is not at all
obvious which parameters are identified. Bunch and Kitamura (1989)
have shown that the probit models in several published articles are not
normalized and contain unidentified parameters. The fact that neither
the authors nor the reviewers of these articles could tell that the models
were unnormalized is testimony to the complexity of the issue.

I provide in the following a procedure that can always be used to
normalize a probit model and assure that all parameters are identified. Itis
not the only procedure that can be used; see, for example, Bunch (1991).
In some cases a researcher might find other normalization procedures
more convenient. However, the procedure I give can always be used,
either by itself or as a check on another procedure.

I describe the procedure in terms of a four-alternative model. Gen-
eralization to more alternatives is obvious. As usual, utility is ex-
pressed as U,j = V,,; + €45, j = 1,..., 4. The vector of errors is ¢, =
(&nl, - - - » Ena). Itisnormally distributed with zero mean and a covariance
matrix that can be expressed explicitly as

011 O12 013 Ol4

. o log log
(55) Q= 22 23 24 ’
: : 033 034
044

where the dots refer to the corresponding elements on the upper part
of the matrix. Note that there are ten elements in this matrix, that is,
ten distinct o’s representing the variances and covariances among the
four errors. In general, a model with J alternatives has J(J + 1)/2
distinct elements in the covariance matrix of the errors.

To take account of the fact that the level of utility is irrelevant, we take
utility differences. In my procedure, I always take differences with re-
spect to the first alternative, since that simplifies the analysis in a way that
we will see. Define error differences as &,;1 = &,; — €,1 for j =2, 3, 4,
and define the vector of error differences as £,,; = (8,21, €,31, €n41). Note
that the subscript 1 in &,; means that the error differences are against
the first alternative, rather than that the errors are for the first alternative.
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The covariance matrix for the vector of error differences takes the form
y 0 63 O
Q=+ 63 0O0u],
. C O

where the 6’s relate to the original o’s as follows:

02 = 02 + 011 — 20712,
033 = 033 + 011 — 2013,
Osq = 044 + 011 — 2014,
O3 = 023 + 011 — 012 — 013,
0r4 = 024 + 011 — 012 — 014,
034 = 034 + 011 — 013 — O14.
Computationally, this matrix can be ~obtained using the transformation
matrix M; defined in Section 5.1 as Q; = M, QM.
To set the scale of utility, one of the diagonal elements is normalized.

I set the top-left element of Q;, which is the variance of &, to 1. This
normalization for scale gives us the following covariance matrix:

1635 65
(5.6) Q= 05 6%
a4

The 6*’s relate to the original o’s as follows:

033 + 011 — 2013
9
02 + 011 — 2012

*
33 —

. Outo —201
o + o011 — 20712

x _ 03+ 011—01p—013
23 = )
02 + o011 — 2012

" 024+ 011 — 012 — 014
264 = )
02 + o011 — 2012

* 034+ 011 — 013 — 014

34 =
02 + 011 — 2012

There are five elements in QT These are the only identified parameters
in the model. This number is less than the ten elements that enter 2. Each
6* is a function of the o’s. Since there are five 6*’s and ten ¢ ’s, it is not
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possible to solve for all the o’s from estimated values of the 8*’s. It is
therefore not possible to obtain estimates of all the o’s.

In general, a model with J alternatives and an unrestricted covariance
matrix will have [(J — 1)J /2] — 1 covariance parameters when normal-
ized, compared to the J(J + 1)/2 parameters when unnormalized. Only
[(J — 1)J /2] — 1 parameters are identified. This reduction in the num-
ber of parameters is not a restriction. The reduction in the number of
parameters is a normalization that simply eliminates irrelevant aspects
of the original covariance matrix, namely the scale and level of utility.
The ten elements in 2 allow for variance and covariance that is due
simply to scale and level, which has no relevance for behavior. Only the
five elements in Q’f contain information about the variance and covari-
ance of errors independent of scale and level. In this sense, only the five
parameters have economic content, and only the five parameters can be
estimated.

Suppose now that the researcher imposes structure on the covariance
matrix. That is, instead of allowing a full covariance matrix for the
errors, the researcher believes that the errors follow a pattern that implies
particular values for, or relations among, the elements in the covariance
matrix. The researcher restricts the covariance matrix to incorporate this
pattern.

The structure can take various forms, depending on the application.
Yai et al. (1997) estimate a probit model of route choice where the covari-
ance between any two routes depends only on the length of shared route
segments; this structure reduces the number of covariance parameters to
only one, which captures the relation of the covariance to shared length.
Bolduc et al. (1996) estimate a model of physicians’ choice of location
where the covariance among locations is a function of their proximity
to one another, using what Bolduc (1992) has called a “generalized au-
toregressive” structure. Haaijer er al. (1998) impose a factor-analytic
structure that arises from random coefficients of explanatory variables;
this type of structure is described in detail in Section 5.3. Elrod and Keane
(1995) impose a factor-analytic structure, but one that arises from error
components rather than random coefficients per se.

Often the structure that is imposed will be sufficient to normalize
the model. That is, the restrictions that the researcher imposes on the
covariance matrix to fit her beliefs about the way the errors relate to
each other will also serve to normalize the model. However, this is not
always the case. The examples cited by Bunch and Kitamura (1989) are
cases where the restrictions that the researcher placed on the covariance
matrix seemed sufficient to normalize the model but actually were not.
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The procedure that I give in the preceding text can be used to deter-
mine whether the restrictions on the covariance matrix are sufficient to
normalize the model. The researcher specifies €2 with her restrictions
on its elements. Then the stated procedure is used to derive Q, which
is normalized for scale and level. We know that each element of QT
is identified. If each of the restricted elements of 2 can be calculated
from the elements of Q’f, then the restrictions are sufficient to normalize
the model. In this case, each parameter in the restricted €2 is identified.
On the other hand, if the elements of 2 cannot be calculated from the
elements of QT, then the restrictions are not sufficient to normalize the
model and the parameters in €2 are not identified.

To illustrate this approach, suppose the researcher is estimating a four-
alternative model and assumes that the covariance matrix for the errors
has the following form:

1+p o 0 0
1+p 0 0

Q=
: I+p p
l+p

This covariance matrix allows the first and second errors to be correlated,
the same as the third and fourth alternatives, but allows no other corre-
lation. The correlation between the appropriate pairs is p/(1 4+ p). Note
that by specifying the diagonal elements as 1 + p, the researcher assures
that the correlation is between —1 and 1 for any value of p, as required
for a correlation. Is this model, as specified, normalized for scale and
level? To answer the question, we apply the described procedure. First,
we take differences with respect to the first alternative. The covariance
matrix of error differences is

. 0 03 0
Q= - 03 64],
. . Oy

where the 6’s relate to the original o’s as follows:

00 =2,
03 =2+ 2p,
Osa =2+ 2p,
O3 =1,
024 = 1,

O3y =14 2p.
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We then normalize for scale by setting the top-left element to 1. The
normalized covariance matrix is

103 0%
QTZ : 933 9?4 )
04

where the 6*’s relate to the original o’s as follows:

n=1+p,
0 =1+0,
s _ 1
23 = 7>
s _ 1
2% =73

i
03 =75 +0p.

Note that 0%, = 0%, = 0%, — 1 and that the other 6*’s have fixed values.

There is one parameter in Q7, as there is in Q. Define & = 1 4+ p. Then
Qs

toll
— %

Il

D DI=
(a)

|

|—

The original p can be calculated directly from 6. For example, if 6
is estimated to be 2.4, then the estimate of p is 6 — 1 = 1.4 and the
correlationis 1.4/2.4 = .58. The fact that the parameters that enter 2 can
be calculated from the parameters that enter the normalized covariance
matrix 2} means that the original model is normalized for scale and level.
That is, the restrictions that the researcher placed on €2 also provided
the needed normalization.

Sometimes restrictions on the original covariance matrix can appear to
be sufficient to normalize the model when in fact they do not. Applying
our procedure will determine whether this is the case. Consider the same
model, but now suppose that the researcher allows a different correlation
between the first and second errors than between the third and fourth
errors. The covariance matrix of errors is specified to be

1+ p1 £1 0 0
14 p 0 0

Q=
I+p

1+ p2
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The correlation between the first and second errors is p; /(1 + p;), and
the correlation between the third and fourth errors is p> /(1 + p2). We
can derive ; for error differences and then derive Q’f by setting the
top-left element of Q; to 1. The resulting matrix is

1
1 11
Q=1 0 06—
6

where now 8 = 1 4 (p; + p2)/2. The values of p; and p; cannot be cal-
culated from a value of 6. The original model is therefore not normalized
for scale and level, and the parameters p; and p; are not identified. This
fact is somewhat surprising, since only two parameters enter the origi-
nal covariance matrix 2. It would seem, unless the researcher explicitly
tested in the manner we have just done, that restricting the covariance
matrix to consist of only two elements would be sufficient to normalize
the model. In this case, however, it is not.

In the normalized model, only the average of the p’s appears: (p; +
02)/2. It is possible to calculate the average p from 6, simply as 6 — 1.
This means that the average p is identified, but not the individual values.
When p; = p;, as in the previous example, the model is normalized
because each p is equal to the average p. However, as we now see, any
model with the same average p’s is equivalent, after normalizing for scale
and level. Hence, assuming that p; = p, is no different than assuming
that p; = 30,, or any other relation. All that matters for behavior is the
average of these parameters, not their values relative to each other. This
fact is fairly surprising and would be hard to realize without using our
procedure for normalization.

Now that we know how to assure that a probit model is normalized
for level and scale, and hence contains only economically meaningful
information, we can examine how the probit model is used to represent
various types of choice situations. We look at three situations in which
logit models are limited and show how the limitation is overcome with
probit. These situations are taste variation, substitution patterns, and
repeated choices over time.

5.3 Taste Variation

Probit is particularly well suited for incorporating random coefficients,
provided that the coefficients are normally distributed. Hausman and
Wise (1978) were the first, to my knowledge, to give this derivation.
Haaijer er al. (1998) provide a compelling application. Assume that
representative utility is linear in parameters and that the coefficients



Probit 111

vary randomly over decision makers instead of being fixed as we have
assumed so far in this book. The utility is U,; = B,x,; + €,j, where
B, is the vector of coefficients for decision maker n representing that
person’s tastes. Suppose the 8, is normally distributed in the population
with mean b and covariance W: 8, ~ N(b, W). The goal of the research
is to estimate the parameters » and W.

The utility can be rewritten with 8, decomposed into its mean and de-
viations from its mean: U,; = b'x,;; + B;xnj + &nj, where Bn =b— B,.
The last two terms in the utility are random; denote their sum as 7,; to
obtain U,; = b'x,; + n,;. The covariance of the ,;’s depends on W as
well as the x,;’s, so that the covariance differs over decision makers.

The covariance of the n,;’s can be described easily for a two-
alternative model with one explanatory variable. In this case, the utility
is

Un = ﬁnxnl + &nt,s

Unp = ,ann2 + &n2.
Assume that B, is normally distributed with mean b and variance og.
Assume that ¢,; and ¢,; are identically normally distributed with vari-

ance o,. The assumption of independence is for this example and is not
needed in general. The utility is then rewritten as

Un = bxu1 + N1,
UnZ = ban + Nn2,
where 1,,; and 7, are jointly normally distributed. Each has zero mean:
Em,j) = E(B,x,j + &,;) = 0. The covariance is determined as follows.
The variance of each is V(1) = V(B,xnj + &nj) = xﬁjoﬁ + o,. Their
covariance is
COV(nnla 77n2) = E[(annl + Snl)(annZ + 8n2)]
~2 ~ ~
= E(lgnxnlan + &n&n2 + Enlﬂban + 8n2,3nxnl)
= Xn1Xn208.

The covariance matrix is

2
Q= X108 + o, Xn1Xn208
- 2
Xn1Xn208 X208 + O

Y x,%l Xn1Xn2 ‘o 1 0
= P\ xp1xm2 x,fz N0 1)°

One last step is required for estimation. Recall that behavior is not
affected by a multiplicative transformation of utility. We therefore need
to set the scale of utility. A convenient normalization for this case is
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o0, = 1. Under this normalization,

2
_ X5 Xn1Xn2 1 0
= Uﬂ(xnlxnz xflz ) T <0 1)'

The values of x,; and x,, are observed by the researcher, and the pa-
rameters b and og are estimated. Thus, the researcher learns both the
mean and the variance of the random coefficient in the population. Gen-
eralization to more than one explanatory variable and more than two
alternatives is straightforward.

54 Substitution Patterns and Failure of ITA

Probit can represent any substitution pattern. The probit probabilities do
not exhibit the ITA property that gives rise to the proportional substitution
of logit. Different covariance matrices €2 provide different substitution
patterns, and by estimating the covariance matrix, the researcher deter-
mines the substitution pattern that is most appropriate for the data.

A full covariance matrix can be estimated, or the researcher can im-
pose structure on the covariance matrix to represent particular sources
of nonindependence. This structure usually reduces the number of the
parameters and facilitates their interpretation. We consider first the situa-
tion where the researcher estimates a full covariance matrix, and then
turn to a situation where the researcher imposes structure on the covari-
ance matrix.

Full Covariance: Unrestricted Substitution Patterns

For notational simplicity, consider a probit model with four al-
ternatives. A full covariance matrix for the unobserved components of
utility takes the form of €2 in (5.5). When normalized for scale and level,
the covariance matrix becomes QT in (5.6). The elements of QT are
estimated. The estimated values can represent any substitution pattern;
importantly, the normalization for scale and level does not restrict the
substitution patterns. The normalization only eliminates aspects of 2
that are irrelevant to behavior.

Note, however, that the estimated values of the 6*’s provide essentially
no interpretable information in themselves (Horowitz, 1991). For exam-
ple, suppose 6%, is estimated to be larger than 6,. It might be tempting
to interpret this result as indicating that the variance in unobserved util-
ity of the third alternative is greater than that for the fourth alternative;
that is, that o33 > o44. However, this interpretation is incorrect. It is
quite possible that 6%, > 0%, and yet 044 > 033, if the covariance o3 is
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sufficiently greater than 4. Similarly, suppose that 6,3 is estimated to
be negative. This does not mean that unobserved utility for the second
alternative is negatively correlated with unobserved utility for the third
alternative (that is, op3 < 0). It is possible that 0,3 is positive and yet
o012 and o3 are sufficiently large to make 673, negative. The point here
is that estimating a full covariance matrix allows the model to represent
any substitution pattern, but renders the estimated parameters essentially
uninterpretable.

Structured Covariance: Restricted
Substitution Patterns

By imposing structure on the covariance matrix, the estimated
parameters usually become more interpretable. The structure is a re-
striction on the covariance matrix and, as such, reduces the ability of the
model to represent various substitution patterns. However, if the struc-
ture is correct (that is, actually represents the behavior of the decision
makers), then the true substitution pattern will be able to be represented
by the restricted covariance matrix.

Structure is necessarily situation-dependent: an appropriate structure
for a covariance matrix depends on the specifics of the situation being
modeled. Several studies using different kinds of structure were de-
scribed in Section 5.2. As an example of how structure can be imposed
on the covariance matrix and hence substitution patterns, consider a
homebuyer’s choice among purchase-money mortgages. Suppose four
mortgages are available to the homebuyer from four different institu-
tions: one with a fixed rate, and three with variable rates. Suppose the
unobserved portion of utility consists of two parts: the homebuyer’s con-
cern about the risk of rising interest rates, labeled r,,, which is common
to all the variable-rate loans; and all other unobserved factors, labeled
collectively 7,;. The unobserved component of utility is then

Enj = _rndj + Mnj»

where d; = 1 for the variable-rate loans and O for the fixed-rate loan,
and the negative sign indicates that utility decreases as concern about
risk rises. Assume that r,, is normally distributed over homebuyers with
variance o, and that n,; V; is iid normal with zero mean and variance

w. Then the covariance matrix for e, = (,1, ..., €,4) 18
0O 0 0 O 1 0 00
o o o -1 0 0
Q= o o to 1 0
o 1
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The model needs to normalized for scale but, as we will see, is already
normalized for level. The covariance of error differences is

o o o 2 1 1
Q= o o|l4+w|- 2 1
o -2

This matrix has no fewer parameters than 2. That is to say, the model was
already normalized for level. To normalize for scale, set o + 2w = 1.
Then the covariance matrix becomes

16 6
r=|- 1 0],
1

where 6 = (0 + w)/(0 + 2w). The values of o and w cannot be cal-
culated from 6. However, the parameter 6 provides information about
the variance in utility due to concern about risk relative to that due to
all other unobserved factors. For example, suppose 6 is estimated to be
0.75. This estimate can be intrepreted as indicating that the variance in
utility attributable to concern about risk is twice as large as the variance
in utility attributable to all other factors:

6 =0.75,
TrP 075
o+ 2w
o+ w=0.75% + 1.5,
0.25¢0 = 0.5w,
o =2w.

Stated equivalently, & = 0.75 means that concern about risk accounts
for two-thirds of the variance in the unobserved component of utility.

Since the original model was already normalized for level, the model
could be estimated without reexpressing the covariance matrix in terms
of error differences. The normalization for scale could be accomplished
simply by setting w = 1 in the original Q2. Under this procedure, the
parameter o is estimated directly. Its value relative to 1 indicates the
variance due to concern about risk relative to the variance due to percep-
tions about ease of dealing with each institution. An estimate § = 0.75
corresponds to an estimate 6 = 2.

5.5 Panel Data

Probit with repeated choices is similar to probit on one choice per deci-
sion maker. The only difference is that the dimension of the covariance
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matrix of the errors is expanded. Consider a decision maker who faces
a choice among J alternatives in each of 7' time periods or choices
situations. The alternatives can change over time, and J and T can dif-
fer for different decision makers; however, we suppress the notation
for these possibilities. The utility that decision maker n obtains from
alternative j in period ¢ is U,j; = V,j; + €,j;. In general, one would
expect &,j; to be correlated over time as well as over alternatives, since
factors that are not observed by the researcher can persist over time.
Denote the vector of errors for all alternatives in all time periods as
En = €011y e oo s EnT1s En12s oo o> End2s ooy EnlT» - - - » EngT). The covari-
ance matrix of this vector is denoted 2, which has dimension JT x JT.

Consider a sequence of alternatives, one for each time period, i =
{i1, ..., ir}. The probability that the decision maker makes this sequence
of choices is

Py = PrOb(Uni,t > Unjt V.] 75 i1, Vt)
= Prob(Vyi,s + €nise > Viji + €nji YJj # is, V1)

= / ¢(8n)d8n
£, €B,

where B, = {¢&, s.t. Vyi;s + €nijt > Viji + &nje Yj # i, Yt} and ¢(g,) is
the joint normal density with zero mean and covariance 2. Compared
to the probit probability for one choice situation, the integral is simply
expanded to be over JT dimensions rather than J.

It is often more convenient to work in utility differences. The prob-
ability of sequence i is the probability that the utility differences are
negative for each alternative in each time period, when the differences
in each time period are taken against the alternative identified by i for
that time period:

Pni = PrOb(Unji,t < O VJ ?é its Vt)
[ s,
&

n€By

where Unji,t = Unjl - Uni,t; 5;, = ((8n11 - 8111'11)’ e (811]1 - Enill)’ s
(&n1T — €niyT)s - -+ (EnyT — Enipr)) With each. .. being over all alter-
natives except i;, and the matrix B, is the set of &,’s for which
U,,ji,, < 0Vj#i, Vt. This is a (J — 1)T-dimensional integral. The
density ¢(&,) is joint normal with covariance matrix derived from 2. The
simulation of the choice probability is the same as for situations with one
choice per decision maker, which we describe in Section 5.6, but with a
larger dimension for the covariance matrix and integral. Borsch-Supan
et al. (1991) provide an example of a multinomial probit on panel data
that allows covariance over time and over alternatives.
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For binary choices, such as whether a person buys a particular product
in each time period or works at a paid job each month, the probit model
simplifies considerably (Gourieroux and Monfort, 1993). The net utility
of taking the action (e.g., working) in period ¢ is U,; = V,; + &,;, and
the person takes the action if U,, > 0. This utility is called net utility
because it is the difference between the utility of taking the action and
that of not taking the action. As such, itis already expressed in difference
terms. The errors are correlated over time, and the covariance matrix for
Enlys -+, Enr 18 2, Whichis T x T.

A sequence of binary choices is most easily represented by a set of
T dummy variables: d,, = 1 if person n took the action in period f,
and d,;, = —1 otherwise. The probability of the sequence of choices
dy=dy1,...,dyy s

P4, = Prob(Uy,d,; > 0 Vt)
- PI‘Ob(dem “l_ gntdn[ > 0 V[)

= / @(en) dey,
e, €B,

where B, is the set of ¢,’s for which V,,d,, + ¢,,d,,; > 0Vt, and ¢(¢,,)
is the joint normal density with covariance £2.

Structure can be placed on the covariance of the errors over time.
Suppose in the binary case, for example, that the error consists of a
portion that is specific to the decision maker, reflecting his proclivity
to take the action, and a part that varies over time for each decision
maker: &,, = n, + WLn, Where w,, is iid over time and people with a
standard normal density, and 7, is iid over people with a normal density
with zero mean and variance o. The variance of the error in each period
is V(en) = V(, + n:) = 0 + 1. The covariance between the errors
in two different periods ¢ and s is Cov(ey, €,5) = E(My + tnt)(n +
Ins) = o. The covariance matrix therefore takes the form

Q- o co+1 o .- o

Only one parameter, o, enters the covariance matrix. Its value indicates
the variance in unobserved utility across individuals (the variance of 7,,)
relative to the variance across time for each individual (the variance of
Une). It 1s often called the cross-subject variance relative to the within-
subject variance.
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The choice probabilities under this structure on the errors can be eas-
ily simulated using the concepts of convenient error partitioning from
Section 1.2. Conditional on n,, the probability of not taking the action
in period ¢ is Prob(V,; + 1, + tiny < 0) = Prob(u,; < — (Vi + 110)) =
O(—(V,r + n,)), where @(-) is the cumulative standard normal func-
tion. Most software packages include routines to calculate this func-
tion. The probability of taking the action, conditional on 7,, is then
1 — ®(—(Vye + 1)) = ©(V,y + 1,). The probability of the sequence of
choices d,, conditional on 1,, is therefore [ [, ®((V,; + n,)d,;), which
we can label H,4, (n,,).

So far we have conditioned on 7,, when in fact 7, is random. The
unconditional probability is the integral of the conditional probability
H,q,(n,) over all possible values of n,:

Pnd,, = /Hndn(nn)¢(nn)dnn

where ¢(n,,) is the normal density with zero mean and variance . This
probability can be simulated very simply as follows:

1. Take a draw from a standard normal density using a random
number generator. Multiply the draw by +/o, so that it becomes
a draw of 7,, from a normal density with variance o .

2. For this draw of n,, calculate H,4,(1,).

3. Repeat steps 1-2 many times, and average the results. This ave-
rage is a simulated approximation to P, , .

This simulator is much easier to calculate than the general probit sim-
ulators described in the next section. The ability to use it arises from
the structure that we imposed on the model, namely, that the time
dependence of the unobserved factors is captured entirely by a ran-
dom component 7, that remains constant over time for each person.
Gourieroux and Monfort (1993) provide an example of the use of this
simulator with a probit model of this form.

The representative utility in one time period can include exogenous
variables for other time periods, the same as we discussed with respect
to logit models on panel data (Section 3.3.3). That is, V,; can include
exogenous variables that relate to periods other than 7. For example, a
lagged response to price changes can be represented by including prices
from previous periods in the current period’s V. Anticipatory behavior
(by which, for example, a person buys a product now because he correctly
anticipates that the price will rise in the future) can be represented by
including prices in future periods in the current period’s V.
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Entering a lagged dependent variable is possible, but introduces two
difficulties that the researcher must address. First, since the errors are
correlated over time, the choice in one period is correlated with the
errors in subsequent periods. As aresult, inclusion of a lagged dependent
variable without adjusting the estimation procedure appropriately results
in inconsistent estimates. This issue is analogous to regression analysis,
where the ordinary least squares estimator is inconsistent when a lagged
dependent variable is included and the errors are serially correlated.
To estimate a probit consistently in this situation, the researcher must
determine the distribution of each ¢,; conditional on the value of the
lagged dependent variables. The choice probability is then based on this
conditional distribution instead of the unconditional distribution ¢(-)
that we used earlier. Second, often the researcher does not observe the
decision makers’ choices from the very first choice that was available
to them. For example, a researcher studying employment patterns will
perhaps observe a person’s employment status over a period of time (e.g.,
1998-2001), but usually will not observe the person’s employment status
starting with the very first time the person could have taken a job (which
might precede 1998 by many years). In this case, the probability for
the first period that the researcher observes depends on the choices of
the person in the earlier periods that the researcher does not observe. The
researcher must determine a way to represent the first choice probability
that allows for consistent estimation in the face of missing data on earlier
choices. This is called the initial conditions problem of dynamic choice
models. Both of these issues, as well as potential approaches to dealing
with them, are addressed by Heckman (1981b, 1981a) and Heckman and
Singer (1986). Due to their complexity, I do not describe the procedures
here and refer interested and brave readers to these articles.

Papatla and Krishnamurthi (1992) avoid these issues in their probit
model with lagged dependent variables by assuming that the unobserved
factors are independent over time. As we discussed in relation to logit on
panel data (Section 3.3.3), lagged dependent variables are not correlated
with the current errors when the errors are independent over time, and
they can therefore be entered without inducing inconsistency. Of course,
this procedure is only appropriate if the assumption of errors being
independent over time is true in reality, rather than just by assumption.

5.6 Simulation of the Choice Probabilities

The probit probabilities do not have a closed-form expression and must
be approximated numerically. Several nonsimulation procedures have
been used and can be effective in certain circumstances.
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Quadrature methods approximate the integral by a weighted func-
tion of specially chosen evaluation points. A good explanation for these
procedures is provided by Geweke (1996). Examples of their use for pro-
bit include Butler and Moffitt (1982) and Guilkey and Murphy (1993).
Quadrature operates effectively when the dimension of the integral is
small, but not with higher dimensions. It can be used for probit if the
number of alternatives (or, with panel data, the number of alternatives
times the number of time periods) is no more than four or five. It can also
be used if the researcher has specified an error-component structure with
no more than four or five terms. However, it is not effective for general
probit models. And even with low-dimensional integration, simulation
is often easier.

Another nonsimulation procedure that has been suggested is the Clark
algorithm, introduced by Daganzo et al. (1977). This algorithm utilizes
the fact, shown by Clark (1961), that the maximum of several normally
distributed variables is itself approximately normally distributed. Unfor-
tunately, the approximation can be highly inaccurate in some situations
(as shown by Horowitz et al., 1982), and the degree of accuracy is dif-
ficult to assess in any given setting.

Simulation has proven to be very general and useful for approximat-
ing probit probabilities. Numerous simulators have been proposed for
probit models; a summary is given by Hajivassiliou et al. (1996). In
the preceding section, I described a simulator that is appropriate for a
probit model that has a particularly convenient structure, namely a bi-
nary probit on panel data where the time dependence is captured by one
random factor. In the current section, I describe three simulators that
are applicable for probits of any form: accept—reject, smoothed accept—
reject, and GHK. The GHK simulator is by far the most widely used
probit simulator, for reasons that we discuss. The other two methods are
valuable pedagogically. They also have relevance beyond probit and can
be applied in practically any situation. They can be very useful when
the researcher is developing her own models rather than using probit or
any other model in this book.

5.6.1. Accept—Reject Simulator

The accept-reject (AR) is the most straightforward simulator.
Consider simulating P,;. Draws of the random terms are taken from
their distributions. For each draw, the researcher determines whether
those values of the errors, when combined with the observed variables
as faced by person n, would result in alternative i being chosen. If so,
the draw is called an accept. If the draw would result in some other
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alternative being chosen, the draw is a reject. The simulated probability
is the proportion of draws that are accepts. This procedure can be applied
to any choice model with any distribution for the random terms. It was
originally proposed for probits (Manski and Lerman, 1981), and we give
the details of the approach in terms of the probit model. Its use for other
models is obvious.

We use expression (5.1) for the probit probabilities:

Py = fl(vni + &ni > an + &nj Vj# i)p(en) den,

where /(-) is an indicator of whether the statement in parentheses holds,
and ¢(¢,) is the joint normal density with zero mean and covariance €2.
The AR simulator of this integral is calculated as follows:

1. Draw a value of the J-dimensional vector of errors, ¢,, from
a normal density with zero mean and covariance 2. Label the
draw ¢) withr = 1, and the elements of thedraw as¢; |, ..., €, ;.

2. Using these values of the errors, calculate the utility that each
alternative obtains with these errors. That is, calculate Urfj =
Vﬂj + 8; j Vj .

3. Determine whether the utility of alternative i is greater than that
for all other alternatives. That is, calculate I" = 1if U, > U;. i
indicating an accept, and I” = 0 otherwise, 1nd1cat1ng a reject.

4. Repeat steps 1-3 many times. Label the number of repetitions
(including the first) as R, so that r takes values of 1 through R.

5. The simulated probability is the proportion of draws that are
accepts: Py = = Y 1 I".

The integral f I1()p(ey)de is approxmlated by the average % Z I' (")
for draws from ¢() Obviously, P,; is unbiased for P,;: E(Pm) =
% LSNYEN ()] = % LS P, = P,;, where the expectation is over differ-
ent sets of R draws. The variance of P,” over different sets of draws
diminishes as the number of draws rises. The simulator is often called
the “crude frequency simulator,” since it is the frequency of times that
draws of the errors result in the specified alternative being chosen. The
word “crude” distinguishes it from the smoothed frequency simulator
that we describe in the next section.

The first step of the AR simulator for a probit model is to take a
draw from a joint normal density. The question arises: how are such
draws obtained? The most straightforward procedure is that described
in Section 9.2.5, which uses the Choleski factor. The covariance matrix
for the errors is €2. A Choleski factor of €2 is a lower-triangular matrix L
such that L L’ = Q. It is sometimes called the generalized square root of
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Q. Most statistical software packages contain routines to calculate the
Choleski factor of any symmetric matrix. Now suppose that n is a vector
of J iid standard normal deviates such that n ~ N (0, I), where I is the
identity matrix. This vector can be obtained by taking J draws from a
random number generator for the standard normal and stacking them
into a vector. We can construct a vector ¢ that is distributed N (O, 2) by
using the Choleski factor to tranform 7. In particular, calculate ¢ = L.
Since the sum of normals is normal, € is normally distributed. Since n
has zero mean, so does . The covariance of ¢ is Cov(e) = E(gg’) =
E(Ln(Ln))=E(Lny'L'Y=LE(mqy)L' = LIL' = LL' = Q.

Using the Choleski factor L of €2, the first step of the AR simulator
becomes two substeps:

1A. Draw J values from a standard normal density, using a random
number generator. Stack these values into a vector, and label the
vector n".

IB. Calculate &, = Ln".

Then, using &), calculate the utility of each alternative and see whether
alternative i has the highest utility.

The procedure that we have described operates on utilities and ex-
pression (5.1), which is a J-dimensional integral. The procedure can be
applied analogously to utility differences, which reduces the dimension
of the integral to J — 1. As given in (5.3), the choice probabilities can
be expressed in terms of utility differences:

P, = /I(ani + &nji <O0Vj #)P(En) dEni,

where ¢(&,;) is the joint normal density with zero mean and covariance
Qi =M, QM. This integral can be simulated with AR methods through
the following steps:

1. Draw &, = L;n" as follows:
(a) Draw J — 1 values from a standard normal density using a
random number generator. Stack these values into a vector,
and label the vector n".
(b) Calculate &, = L;n", where L; is the Choleski factor of Q.
2. Using these values of the errors, calculate the utility difference
for each alternative, differenced against the utility of alternative
i. That is, calculate U,:jl- =V = Ve + 8, Vj#IL
3. Determine whether each utility difference is negative. That is,
calculate /" = 1if U,;; <0V # i, indicating an accept, and
I" = 0 otherwise, indicating a reject.
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4. Repeat steps 1-3 R times.
5. The simulated probability is the number of accepts divided by
the number of repetitions: P,; = % Zle I

Using utility differences is slightly faster computationally than using
the utilities themselves, since one dimension is eliminated. However, it
is often easier conceptually to remain with utilities.

As just stated, the AR simulator is very general. It can be applied to
any model for which draws can be obtained for the random terms and
the behavior that the decision maker would exhibit with these draws
can be determined. It is also very intuitive, which is an advantage from
a programming perspective, since debugging becomes comparatively
easy. However, the AR simulator has several disadvantages, particularly
when used in the context of maximum likelihood estimation.

Recall that the log-likelihood function is LL = 3 . dy; log Py,
where d,j = 1 if n chose j and O otherwise. When the probabilities
cannot be calculated exactly, as in the case of probit, the simulated
log-likelihood function is used instead, with the true probabilities re-
placed with the simulated probabilities: SLL = Y~ 3" d,,; log P,;. The
value of the parameters that maximizes SLL is called the maximum
simulated likelihood estimator (MSLE). It is by far the most widely
used simulation-based estimation procedure. Its properties are described
in Chapter 8. Unfortunately, using the AR simulator in SLL can be
problematic.

There are two issues. First, Iv’ni can be zero for any finite number of
draws R. That s, it is possible that each of the R draws of the error terms
result in a reject, so that the simulated probability is zero. Zero values
for Iv’ni are problematic because the log of Iv’m is taken when it enters
the log-likelihood function and the log of zero is undefined. SLL cannot
be calculated if the simulated probability is zero for any decision maker
in the sample.

The occurrence of a zero simulated probability is particularly likely
when the true probability is low. Often at least one decision maker in a
sample will have made a choice that has alow probability. With numerous
alternatives (such as thousands of makes and models for the choice of
car), each alternative has a low probability. With repeated choices, the
probability for any sequence of choices can be extremely small; for
example, if the probability of choosing an alternative is 0.25 in each of
10 time periods, the probability of the sequence is (0.25)'°, which is less
than 0.000001.

Furthermore, SLL needs to be calculated at each step in the search
for its maximum. Some of the parameter values at which SLL is
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Figure 5.1. The AR simulator is a step function in parameters.

calculated can be far from the true values. Low probabilities can occur at
these parameter values even when they do not occur at the maximizing
values.

Nonzero simulated probabilities can always be obtained by taking
enough draws. However, if the researcher continues taking draws until
at least one accept is obtained for each decision maker, then the number
of draws becomes a function of the probabilities. The simulation process
is then not independent of the choice process that is being modeled, and
the properties of the estimator become more complex.

There is a second difficulty with the AR simulator for MSLE. The
simulated probabilities are not smooth in the parameters; that is, they
are not twice differentiable. As explained in Chapter 8, the numerical
procedures that are used to locate the maximum of the log-likelihood
function rely on the first derivatives, and sometimes the second deriva-
tives, of the choice probabilities. If these derivatives do not exist, or do
not point toward the maximum, then the numerical procedure will not
perform effectively.

The AR simulated probability is a step function, as depicted in Fig-
ure 5.1. P,; is the proportion of draws for which alternative i has the
highest utility. An infinitesimally small change in a parameter will usu-
ally not change any draw from a reject to an accept or vice versa. If
U, is below U, for some j at a given level of the parameters, then it
will also be so for an infinitesimally small change in any parameter. So,
usually, P, ; 1s constant with respect to small changes in the parameters.
Its derivatives with respect to the parameters are zero in this range. If the
parameters change in such a way that a reject becomes an accept, then
P, ; rises by a discrete amount, from M /R to (M + 1)/ R, where M is the
number of accepts at the original parameter values. P, j 1 constant (zero
slope) until an accept becomes a reject or vice versa, at which point P, ¥
jumps by 1/R. Its slope at this point is undefined. The first derivative of
P, ; with respect to the parameters is either zero or undefined.
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This fact hinders the numerical procedures that are used to locate
the maximum of SLL. As discussed in Chapter 8, the maximization
procedures use the gradient at trial parameter values to determine the
direction to move to find parameters with higher SLL. With the slope
13,,.,- for each n either zero or undefined, the gradient of SLL is either zero
or undefined. This gradient provides no help in finding the maximum.

This problem is not actually as drastic as it seems. The gradient of SLL
can be approximated as the change in SLL for a non-infinitesimally small
change in the parameters. The parameters are changed by an amount that
is large enough to switch accepts to rejects and vice versa for at least
some of the observations. The approximate gradient, which can be called
an arc gradient, is calculated as the amount that SLL changes divided
by the change in the parameters. To be precise: for parameter vector
B of length K, the derivate of SLL with respect to the kth parameter
is calculated as (SLL! — SLL?)/(8} — BY), where SLL is calculated at
the original 8 with kth element ﬁ,? and SLL' is calculated at ,8; with all
the other parameters remaining at their original values. The arc gradient
calculated in this way is not zero or undefined, and provides information
on the direction of rise. Nevertheless, experience indicates that the AR
simulated probability is still difficult to use.

5.6.2. Smoothed AR Simulators

One way to mitigate the difficulties with the AR simulator is to
replace the 0—1 AR indicator with a smooth, strictly positive function.
The simulation starts the same as with AR, by taking draws of the random
terms and calculating the utility of each alternative for each draw: U, ;.
Then, instead of determining whether alternative i has the highest utility
(that is, instead of calculating the indicator function /"), the simulated
utilities U,; Vj are entered into a function. Any function can be used
for 51mulat1ng P,; as long as it rises when U,; rises, declines when U "
rises, is strictly positive, and has defined ﬁrst and second derlvatlves
with respect to U, ; Vj. A function that is particularly convenient is the
logit function, as suggested by McFadden (1989). Use of this function
gives the logit-smoothed AR simulator.

The simulator is implemented in the following steps, which are the
same as with the AR simulator except for step 3.

1. Draw a value of the J-dimensional vector of errors, ¢,, from
a normal density with zero mean and covariance 2. Label the
draw ¢; withr = 1, and the elements of thedraw as¢; |, ..., €, ;.
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2. Using these values of the errors, calculate the utility that each
alternative obtains with these errors. That is, calculate U,; =
Vij + e, VJ.

3. Put these utilities into the logit formula. That is, calculate

e nl/)\‘

Z eU’ /A’

where A > 0 is a scale factor specified by the researcher and
discussed in following text.
4. Repeat steps 1-3 many times. Label the number of repetitions
(including the first) as R, so that r takes values of 1 through R.
5. The simulated probability i is the number of accepts divided by
the number of repetitions: P,; = % LyR s

S, =

Since §” > 0 for all finite values of Uy, the simulated probability is
strictly positive for any draws of the errors. It rises with U,; and declines
whenU,;, j # i,rises. Itis smooth (twice differentiable), smce the logit
formula 1tself is smooth.

The logit-smoothed AR simulator can be applied to any choice model,
simply by simulating the utilities under any distributional assumptions
about the errors and then inserting the utilities into the logit formula.
When applied to probit, Ben-Akiva and Bolduc (1996) have called it
“logit-kernel probit.”

The scale factor A determines the degree of smoothing. As A — 0, S”
approaches the indicator function /”. Figure 5.2 illustrates the situation
for a two-alternative case. For a given draw of ¢), the utility of the
two alternatives is calculated. Consider the simulated probability for
alternative 1. With AR, the 01 indicator function is zero if U}, is below
U;,,andoneif U}, exceeds U ,. Withlogit smoothing, the step function
is replaced by a smooth sigmoid curve. The factor A determines the
proximity of the sigmoid to the 0—1 indicator. Lowering A increases the
scale of the utilities when they enter the logit function (since the utilities
are divided by A). Increasing the scale of utility increases the absolute
difference between the two utilities. The logit formula gives probabilities
that are closer to zero or one when the difference in utilities is larger.
The logit-smoothed S” therefore becomes closer to the step function as
A becomes closer to zero.

The researcher needs to set the value of L. A lower value of A makes
the logit smoother a better approximation to the indicator function. How-
ever, this fact is a double-edged sword: if the logit smoother approxi-
mates the indicator function too well, the numerical difficulties of using
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Figure 5.2. AR smoother.

the unsmoothed AR simulator will simply be reproduced in the logit-
smoothed simulator. The researcher wants to set A low enough to obtain
a good approximation but not so low as to reintroduce numerical diffi-
culties. There is little guidance on the appropriate level of A. Perhaps the
best approach is for the researcher to experiment with different A’s. The
same draws of ¢, should be used with every A, so as to assure that differ-
ences in results are due to the change in the A rather than to differences
in the draws.

McFadden (1989) describes other smoothing functions. For all of
them, the researcher must specify the degree of smoothing. An advantage
of the logit smoother is its simplicity. Also, we will see in Chapter 6 that
the logit smoother applied to a probit or any other model constitutes
a type of mixed logit specification. That is, instead of seeing the logit
smoother as providing an approximation that has no behavioral relation
to the model (simply serving a numerical purpose), we can see it as
arising from a particular type of error structure in the behavioral model
itself. Under this interpretation, the logit formula applied to simulated
utilities is not an approximation but actually represents the true model.

5.6.3. GHK Simulator

The most widely used probit simulator is called GHK, after
Geweke (1989, 1991), Hajivassiliou (as reported in Hajivassiliou and
McFadden, 1998), and Keane (1990, 1994), who developed the pro-
cedure. In a comparison of numerous probit simulators, Hajivassiliou
et al. (1996) found GHK to be the most accurate in the settings that
they examined. Geweke et al. (1994) found the GHK simulator works
better than smoothed AR. Experience has confirmed its usefulness and
relative accuracy (e.g., Borsch-Supan and Hajivassiliou, 1993).
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The GHK simulator operates on utility differences. The simulation of
probability P,; starts by subtracting the utility of alternative i from each
other alternative’s utility. Importantly, the utility of a different alternative
is subtracted depending on which probability is being simulated: for P,;,
U,; is subtracted from the other utilities, while for P,;, U,; is subtracted.
This fact is critical to the implementation of the procedure.

I will explain the GHK procedure first in terms of a three-alternative
case, since that situation can be depicted graphically in two dimensions
for utility differences. I will then describe the procedure in general for
any number of alternatives. Bolduc (1993, 1999) provides an excellent
alternative description of the procedure, along with methods to simulate
the analytic derivatives of the probit probabilities. Keane (1994) provides
a description of the use of GHK for transition probabilities.

Three Alternatives

We start with a specification of the behavioral model in util-
ities: U,j = Vy,j + €4j, j = 1,2,3. The vector ¢, = (&,1, &n2, €n3) ~
N(0, 2). We assume that the reseacher has normalized the model for
scale and level, so that the parameters that enter €2 are identified. Also,
Q can be a parametric function of data, as with random taste variation,
though we do not show this dependence in our notation.

Suppose we want to simulate the probability of the first alternative,
P,1. We reexpress the model in utility differences by subtracting the
utility of alternative 1:

Unj —Un = (an - an) + (Snj — &n1),
Uij1 = Vij1 + &nj1,
for j = 2, 3. The vector &, = (&,21, &,31) is distributed N (0, Q,), where
Q, is derived from .
‘We take one more transformation to make the model more convenient
for simulation. Namely, let L; be the Choleski factor of €2;. Since €2

is 2 x 2 in our current illustration, L; is a lower-triangular matrix that
takes the form

L, = (C““ 0 )
Cab Cob

Using this Choleski factor, the original error differences, which are cor-
related, can be rewritten as linear functions of uncorrelated standard
normal deviates:

En21 = CaaM,
En3l = CapM1 + ConN2,
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where 1 and n, are iid N(O, 1). The error differences &,,; and &,3;
are correlated because both of them depend on n;. With this way of
expressing the error differences, the utility differences can be written

Un21 = Vo1 + Caanis

Unzt = Vpz1 + capnt + copna.

The probability of alternative 1 is P, = Prob(U,»; <0 and U,3; <
0) = Prob(V;21 + &,21 < 0 and V31 + &,31 < 0). This probability is hard
to evaluate numerically in terms of the &’s, because they are correlated.
However, using the transformation based on the Choleski factor, the
probability can be written in a way that involves independent random
terms. The probability becomes a function of the one-dimensional stan-
dard cumulative normal distribution:

Py = Prob(Vo1 + caami <0 and V31 + capni + coptz < 0)
= Prob(V,o1 + caami <0)
x Prob(V31 + capti + copnz <0 | Viar + caami <0)
= Prob(n < —Vi21/¢aa)
x Prob(m < —(Vua1 + cavmi)/con | m < =Vi21/Caa)

— Vo “Varfeas (01 4 capm
=<D(—> X/ O ——— )M dn,
Caa n1=—00 Cbb

where ®(-) is the standard normal cumulative distribution evaluated at
the point in the parentheses, and ¢(-) is the standard normal density. The
first factor, ®(— V2, /Caa), 18 €asy to calculate: it is simply the cumulative
standard normal evaluated at —V,m/ caq- Computer packages contain
fast routines for calculating the cumulative standard normal. The second
factor is an integral. As we know, computers cannot integrate, and we
use simulation to approximate integrals. This is the heart of the GHK
procedure: using simulation to approximate the integral in P,;.

Let us examine this integral more closely. It is the integral over a
truncated normal, namely, over n; up to — Vool /Caq- The simulation pro-
ceeds as follows. Draw a value of 1; from a standard normal density trun-
cated above at — V5 /Caq- For this draw, calculate the factor O(—(V,31 +
capN1)/Cpp)- Repeat this process for many draws, and average the results.
This average is a simulated approximation to | UTZ—Z]O/OC D(—(Vp31 +
cap1)/Crp)P(n1) dny. The simulated probability is then obtained by mul-
tiplying this average by the value of ®(— Vi1 /Caa), Which is calculated
exactly. Simple enough!

The question arises: how do we take a draw from a truncated normal?
We describe how to take draws from truncated univariate distributions
in Section 9.2.4. The reader may want to jump ahead and quickly view



Probit 129

M,

-V /cau n,

n2l

A

Figure 5.3. Probability of alternative 1.

that section. For truncated normals, the process is to take a draw from a
standard uniform, labeled p. Then calculate n = &~ (uP(— V2 /Caa))-
The resulting n is a draw from a normal density truncated from above
at — VnZl /Caa .

We can now put this all together to give the explicit steps that are used
for the GHK simulator in our three-alternative case. The probability of
alternative 1 is

_‘721 _VnZI/Caa _‘731—'_6 bnl
Py =<D( - > X/ O ——=— )M dn.
Caa n=—00 Chb

This probability is simulated as follows:

1. Calculate k = ®(—V,21/Caa).

2. Draw a value of 1, labeled n/, from a truncated standard normal
truncated at — V5 /Caq- This is accomplished as follows:
(a) Draw a standard uniform u”.
(b) Calculate 1} = &~ 11" D(— V21 /Caa))-

. Calculate g" = ®(— (V31 + cabnq)/cbb). 5

. The simulated probability for this draw is P;, =k x g".

5. Repeat steps 1-4 R times, and average the results. This average

is the simulated probability: P,; = (1/R) Y. f’,’ll.

B~ W

A graphical depiction is perhaps useful. Figure 5.3 shows the prob-
ability for alternative 1 in the space of independent errors n; and 7;.
The x-axis is the value of 7, and the y-axis is the value of n,. The line
labeled A is where 5 is equal to —V21/Caa- The condition that 7, is
below —V,5; /Caq 18 met in the striped area to the left of line A. The line
labeled B is where 1, = —(V,;31 + ¢pai1)/Cps. Note that the y-intercept
is where n; = 0, so that , = — V131 /cpp at this point. The slope of the
line is —cp,/cpp. The condition that 1, < —(Vyz1 + CpaN1)/Cpp 18 satis-
fied below line B. The shaded area is where 7 is to the left of line A and
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Figure 5.4. Probability that 7, is in the correct range, given 7.

1, is below line B. The mass of density in the shaded area is therefore
the probability that alternative 1 is chosen.

The probability (i.e., the shaded mass) is the mass of the striped area
times the proportion of this striped mass that is below line B. The striped
area has mass ®(—V,; /caa). This is easy to calculate. For any given
value of 7, the portion of the striped mass that is below line B is also
easy to calculate. For example, in Figure 5.4, when 1, takes the value 7,
then the probability that n, is below line B is the share of line C’s mass
that is below line B. This share is simply ®(—(V,;31 + ca1})/cpp). The
portion of the striped mass that is below line B is therefore the average
of ®(—(V,31 + capny)/cpp) over all values of n; that are to the left of
line A. This average is simulated by taking draws of 1, to the left of line
A, calculating d>(—(\7,13 1 + capn])/cpp) for each draw, and averaging the
results. The probability is then this average times the mass of the striped
area, CIJ(_f/rz21/6'¢1zz)-

General Model

We can now describe the GHK simulator in general terms
quickly, since the basic logic has already been discussed. This succinct
expression serves to reinforce the concept that the GHK simulator is
actually easier than it might at first appear.

Utility is expressed as

Unjzvnj+8nj, j=1,...,],
8;,2(%1,---,8”1), g, J x 1,

en ~ N(O, 2).
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Transform to utility differences against alternative i:

Unji = Vaji + Enjis J#i

&= (Buly.s8ny), where .. .1s over all except i,
it (J —1)x1,

Eni ~ N(O, 2)),

where ; is derived from .
Reexpress the errors as a Choleski transformation of iid standard

normal deviates.

Li S.t. LZL: = Qi,

C11 0 0
¢ ¢ 0 0
Li=le¢y e oen 0 0

Then, stacking utilities U,’”. = O, ..., 0,5, we get the vector form

of the model,
0}11’ = Vni + Li Urs
, Ny—1.n) is a vector of iid standard normal deviates:

where 17, = (N1, - . .
naj ~ N(O, 1) Vj. Written explicitly, the model is

Unii = Vari + cuim,

Unzi = Viai + ca1m + c2ma,

Unzi = Vuzi + c3im + c2m2 + €333,
and so on. The choice probabilities are

Py =Prob(U,;; <0 Vj #i)

—V;
= Prob(m < ik )
‘1

~ (Vi +021771)‘ _ani>
n <
i

x Prob (172 <
2

—~(Vzi + caim + caamn)

C33
_(Vn2i + 621771))

x Prob (n3 <

_ani
and 1, <
C11 (&%)

nm <
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The GHK simulator is calculated as follows:

1. Calculate

_ani _ani
Prob| n; < = .
C11 11

2. Draw avalue of 11, labeled n7, from a truncated standard normal
truncated at — V), /c11. This draw is obtained as follows:
(a) Draw a standard uniform p].
(b) Calculate 1} = ®~(u) D(=V,1:/c11)).

3. Calculate

~(Vyai + ¢
Prob(nz - (Vaai +c21m1) 0 = 771)
2
@ — (Vi + caim}) ‘
2

4. Draw a value of 1, labeled 7}, from a truncated standard nor-
mal truncated at —(V,,; + ¢ n7)/c2. This draw is obtained as
follows:

(a) Draw a standard uniform 5.
(b) Caleulate 75 = &~ (s ®(—(Voi + c211})/c22))-

5. Calculate

—(Vu3i + 311 + c32m2) - -
Prob| n; < n=ny, n2=1n,
€33
@ —(Vizi + c3im} + c3mb)
¢33 '

6. And so on for all alternatives but i.
7. The simulated probability for this rth draw of ny, n,...is
calculated as

“r — Vi
Pni =
cil

" @ (-(Vnzi + Czﬂ?f))

(&)

D <_(Vn3i + 3y + c32'7§)>

€33

X e
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8. Repeat steps 1-7 many times, forr =1, ..., R.
9. The simulated probability is

« 1 y
Pin:EZPirn‘

GHK Simulator with Maximum
Likelihood Estimation

There are several issues that need to be addressed when us-
ing the GHK simulator in maximum likelihood estimation. First, in the
log-likelihood function, we use the probability of the decision maker’s
chosen alternative. Since different decision makers choose different al-
ternatives, P,; must be calculated for different i’s. The GHK simulator
takes utility differences against the alternative for which the probability
is being calculated, and so different utility differences must be taken for
decision makers who chose different alternatives. Second, for a person
who chose alternative i, the GHK simulator uses the covariance matrix
Q;, while for a person who chose alternative j, the matrix Q j 18 used.
Both of these matrices are derived from the same covariance matrix 2
of the original errors. We must assure that the parameters in €; are con-
sistent with those in Q j» in the sense that they both are derived from a
common 2. Third, we need to assure that the parameters that are esti-
mated by maximum likelihood imply covariance matrices €2; Vj that
are positive definite, as a covariance matrix must be. Fourth, as always,
we must make sure that the model is normalized for scale and level of
utility, so that the parameters are identified.

Researchers use various procedures to address these issues. I will
describe the procedure that I use.

To assure that the model is identified, I start with the covariance matrix
of scaled utility differences with the differences taken against the first
alternative. This is the matrix Q;, whichis (J — 1) x (J — 1). To assure
that the covariance matrix is positive definite, I parameterize the model
in terms of the Choleski factor of €2;. That is, I start with a lower-
triangular matrix that is (J — 1) x (J — 1) and whose top-left element
is 1:
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The elements ¢y, of this Choleski factor are the parameters that are esti-
mated in the model. Any matrix that is the product of a lower-triangular
full-rank matrix multiplied by itself is positive definite. So by using the
elements of L as the parameters, [ am assured that Q is positive definite
for any estimated values of these parameters.

The matrix 2 for the J nondifferenced errors is created from L. I
create a J x J Choleski factor for 2 by adding a row of zeros at the top
of L; and a column of zeros at the left. The resulting matrix is

0o ...
1 0

1 ¢ 0
31 ¢ ¢ 0

(e NeleNe]l
[=NeleNe

Then Q is calculated as LL'. With this €, I can derive €2; for any j.
Note that €2 constructed in this way is fully general (i.e., allows any
substitution pattern), since it utilizes all the parameters in the normal-
ized Q] .

Utility is expressed in vector form stacked by alternatives: U, = V,, +
&n, €n ~ N(0, 2). Consider a person who has chosen alternative i. For
the log-likelihood function, we want to calculate P,;. Recall the matrix
M; that we introduced in Section 5.1. Utility differences are taken using
this matrix: U,; = M;U,, V,; = M;V,, and &,; = M;e,. The covariance
of the error differences &,; is calculated as ; = M; QM;. The Choleski
factor of €2; is taken and labeled L;. (Note that L; obtained here will
necessarily be the same as the L; that we used at the beginning to
parameterize the model.) The person’s utility is expressed as: U,; =
Vi+L; n., Where i, is a (J — 1)-vector of iid standard normal deviates.
The GHK simulator is applied to this expression.

This procedure satisfies all of our requirements. The model is neces-
sarily normalized for scale and level, since we parameterize it in terms
of the Choleski factor L; of the covariance of scaled error differences,
Q. Each €; is consistent with each other Q j for j # i, because they
are both derived from the same €2 (which is constructed from L). Each
; is positive definite for any values of the parameters, because the pa-
rameters are the elements of L. As stated earlier, any matrix that is the
product of a lower-triangular matrix multiplied by itself is positive def-
inite, and so ; = LL’ is positive definite. And each of the other Q S,
for j =2,..., J,is also positive definite, since they are constructed to
be consistent With 1, which is positive definite.
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GHK as Importance Sampling

As I described in the three-alternative case, the GHK simulator
provides a simulated approximation of the integral

_VWZI/CA(J _‘N/
/ <I>< 131 +Cab771> S,
n

|=—00 Chbb

The GHK simulator can be interpreted in another way that is often useful.

Importance sampling is a way of transforming an integral to be more
convenient to simulate. The procedure is described in Section 9.2.7, and
readers may find it useful to jump ahead to view that section. Impor-
tance sampling can be summarized as follows. Consider any integral
i = [t(e)g(e)de over a density g. Suppose that another density exists
from which it is easy to draw. Label this other density f(¢). The den-
sity g is called the target density, and f is the generating density. The
integral can be rewritten as f = f [t(e)g(e)/f(e)] f(e)de. This integral
is simulated by taking draws from f, calculating ¢(¢)g(¢)/f(¢) for each
draw, and averaging the results. This procedure is called importance
sampling because each draw from f is weighted by g/f when taking
the average of ¢; the weight g/f is the “importance” of the draw from
f. This procedure is advantageous if (1) it is easier to draw from f than
g, and/or (2) the simulator based on #(¢)g(¢)/f(¢) has better properties
(e.g., smoothness) than the simulator based on #(¢).

The GHK simulator can be seen as making this type of transformation,
and hence as being a type of importance sampling. Let 1 be a vector
of J — 1 iid standard normal deviates. The choice probability can be
expressed as

5.7 Pu= /I(n € B)g(n)dn,

where B = {n s.t. Unj,- <0V j#i} is the set of n’s that result in ¢
being chosen; g(n) = ¢(n1) - - - ¢(ns—1) is the density, where ¢ denotes
the standard normal density; and the utilities are

Unti = Vi + cumn,
Ui = Vi + co1m1 + coma,

Unszi = Vp3i + c31m1 + c3212 + €3313,
and so on.

The direct way to simulate this probability is to take draws of 7,
calculate I(n € B) for each draw, and average the results. This is the
AR simulator. This simulator has the unfortunate properties that it can
be zero and is not smooth.
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For GHK we draw 7 from a different density, not from g(#). Recall
that for GHK, we draw 5, from a standard normal density truncated at
— ~,,1,~/cll. The density of this truncated normal is ¢(n;)/P(— V,,li/cll),
that is, the standard normal density normalized by the total probability
below the truncation point. Draws of 1,, 3, and so on are also taken
from truncated densities, but with different truncation points. Each of
these truncated densities takes the form ¢(n;)/®(-) for some truncation
point in the denominator. The density from which we draw for the GHK
simulator is therefore

o) 9012)

5.8 f(n)= { S(=Vaii/en) T D(=Vizitean)/cn) x--- forn e B,
0

forn ¢ B.
Note that we only take draws that are consistent with the person choosing
alternative i (since we draw from the correctly truncated distributions).
So f(n) =0forn ¢ B.

Recall that for a draw of 1 within the GHK simulator, we calculate:

~ _ani
C11

" q)<_(vn2i + 621771))

(&)]

5.9 X e

Note that this expression is the denominator of f(n) for n € B, given in
equation (5.8). Using this fact, we can rewrite the density f(n) as

_ | g/ Pui(n) for ne B,
f(n)_{O for n ¢ B.

With this expression for f(7n), we can prove that the GHK simulator,
P;,(n), is unbiased for P,;(n):

ﬂmm»=/mmvan

- g(m)
Lw e R

1243

= / g(n)dn
neB

= /1(77 € B)g(n)dn
= Pi.
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The interpretation of GHK as an importance sampler is also obtained
from this expression:

Py, = fl(n € B)g(n)dn

f(m)
= |1 B g
/(ne )g(n)f(n) n

g(m
=1 B)———— d by (5.6.3
/ e By By P4 Y63

_ / I1(n € BYBu(n) f(n)dn

_ f Bo(n)f(m)dn,

where the last equality is because f (1) > 0 only when n € B. The GHK
procedure takes draws from f(n), calculates P,-n(n) for each draw, and
averages the results. Essentially, GHK replaces the 0-1 I(n € B) with
smooth P;,(17) and makes the corresponding change in the density from

g(m) to f(m).
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6.1 Choice Probabilities

Mixed logit is a highly flexible model that can approximate any random
utility model (McFadden and Train, 2000). It obviates the three limita-
tions of standard logit by allowing for random taste variation, unre-
stricted substitution patterns, and correlation in unobserved factors over
time. Unlike probit, it is not restricted to normal distributions. Its deriva-
tion is straightforward, and simulation of its choice probabilities is com-
putationally simple.

Like probit, the mixed logit model has been known for many years
but has only become fully applicable since the advent of simulation.
The first application of mixed logit was apparently the automobile de-
mand models created jointly by Boyd and Mellman (1980) and Cardell
and Dunbar (1980). In these studies, the explanatory variables did not
vary over decision makers, and the observed dependent variable was
market shares rather than individual customers’ choices. As a result, the
computationally intensive integration that is inherent in mixed logit (as
explained later) needed to be performed only once for the market as a
whole, rather than for each decision maker in a sample. Early applica-
tions on customer-level data, such as Train ef al. (1987a) and Ben-Akiva
et al. (1993), included only one or two dimensions of integration, which
could be calculated by quadrature. Improvements in computer speed
and in our understanding of simulation methods have allowed the full
power of mixed logits to be utilized. Among the studies to evidence this
power are those by Bhat (1998a) and Brownstone and Train (1999) on
cross-sectional data, and Erdem (1996), Revelt and Train (1998), and
Bhat (2000) on panel data. The description in the current chapter draws
heavily from Train (1999).

Mixed logit models can be derived under a variety of different behav-
ioral specifications, and each derivation provides a particular interpre-
tation. The mixed logit model is defined on the basis of the functional
form for its choice probabilities. Any behavioral specification whose

138
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derived choice probabilities take this particular form is called a mixed
logit model.

Mixed logit probabilities are the integrals of standard logit probabil-
ities over a density of parameters. Stated more explicitly, a mixed logit
model is any model whose choice probabilities can be expressed in the
form

Pui = / La(B)f(B)dB,

where L,;(f8) is the logit probability evaluated at parameters §:

A
J .

and f(B) is a density function. V,;(8) is the observed portion of the
utility, which depends on the parameters §. If utility is linear in 8, then
V,.i(B) = B'x,;. In this case, the mixed logit probability takes its usual
form:

B'xni
o Pi= [ (§m )roas.
J

The mixed logit probability is a weighted average of the logit formula
evaluated at different values of §, with the weights given by the density
f(B).Inthe statistics literature, the weighted average of several functions
is called a mixed function, and the density that provides the weights is
called the mixing distribution. Mixed logit is a mixture of the logit
function evaluated at different 8’s with f(8) as the mixing distribution.

Standard logit is a special case where the mixing distribution f(8) is
degenerate at fixed parameters b: f(8) = 1 for § = b and O for 8 # b.
The choice probability (6.1) then becomes the simple logit formula

eb/xm'

B Zj b’

The mixing distribution f(B) can be discrete, with 8 taking a fi-
nite set of distinct values. Suppose B takes M possible values labeled
by, ..., by, with probability s, that 8 = b,,. In this case, the mixed logit
becomes the latent class model that has long been popular in psychol-
ogy and marketing; examples include Kamakura and Russell (1989) and
Chintagunta et al. (1991). The choice probability is

Pni

b/ Xni

M e m
Pm' = E S\l < — |-
b, Xpj
m=1 Z/ ¢ !
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This specification is useful if there are M segments in the population,
each of which has its own choice behavior or preferences. The share of
the population in segment m is s,,, which the researcher can estimate
within the model along with the b’s for each segment.

In most applications that have actually been called mixed logit (such
as those cited in the introductory paragraphs in this chapter), f(8) is
specified to be continuous. For example, the density of 8 can be specified
to be normal with mean b and covariance W. The choice probability
under this density becomes

PLE
Pi= (W)cb(ﬁ b, W)dp.

where ¢(B8 | b, W) is the normal density with mean b and covariance
W. The researcher estimates b and W. The lognormal, uniform, triangu-
lar, gamma, or any other distribution can be used. As will be shown in
Section 6.5, by specifying the explanatory variables and density appro-
priately, the researcher can represent any utility-maximizing behavior by
a mixed logit model, as well as many forms of non-utility-maximizing
behavior.

Tests for the need for a nondegenerate mixing distribution, as well
as the adequacy of any given distribution, have been developed by
McFadden and Train (2000) and Chesher and Santos-Silva (2002). Sev-
eral studies have compared discrete and continuous mixing distributions
within the context of mixed logit; see, for example, Wedel and Kamakura
(2000) and Ainslie et al. (2001).

An issue of terminology arises with mixed logit models. There are two
sets of parameters in a mixed logit model. First, we have the parameters
B, which enter the logit formula. These parameters have density f(8).
The second set are parameters that describe this density. For example,
if B is normally distributed with mean b and covariance W, then b and
W are parameters that describe the density f(8). Usually (though not
always, as noted in the following text), the researcher is interested in
estimating the parameters of f.

Denote the parameters that describe the density of 8 as 8. The more
appropriate way to denote this density is f(8 | 8). The mixed logit
choice probabilities do not depend on the values of B. These proba-
bilities are P,; = an,-(,B)f(,B | ) dB, which are functions of 8. The
parameters § are integrated out. Thus, the B’s are similar to the ¢,;’s, in
that both are random terms that are integrated out to obtain the choice
probability.
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Under some derivations of the mixed logit model, the values of 8 have
interpretable meaning as representing the tastes of individual decision
makers. In these cases, the researcher might want to obtain information
about the B’s for each sampled decision maker, as well as the 6 that
describes the distribution of §’s across decision makers. In Chapter 11,
we describe how the researcher can obtain this information from es-
timates of 6 and the observed choices of each decision maker. In the
current chapter, we describe the estimation and interpretation of 6, us-
ing classical estimation procedures. In Chapter 12, we describe Bayesian
procedures that provide information about € and each decision maker’s
B simultaneously.

6.2 Random Coefficients

The mixed logit probability can be derived from utility-maximizing be-
havior in several ways that are formally equivalent but provide different
interpretations. The most straightforward derivation, and most widely
used in recent applications, is based on random coefficients. The deci-
sion maker faces a choice among J alternatives. The utility of person n
from alternative j is specified as

’
Unj = ,annj + Enjs

where x,; are observed variables that relate to the alternative and deci-
sion maker, 8, is a vector of coefficients of these variables for person
n representing that person’s tastes, and ¢,; is a random term that is iid
extreme value. The coefficients vary over decision makers in the pop-
ulation with density f(8). This density is a function of parameters
that represent, for example, the mean and covariance of the 8’s in the
population. This specification is the same as for standard logit except
that 8 varies over decision makers rather than being fixed.

The decision maker knows the value of his own B, and ¢,;’s for all j
and chooses alternative i if and only if U,; > U,; Vj # i.The researcher
observes the x,;’s but not B, or the ,;’s. If the researcher observed B,,
then the choice probability would be standard logit, since the ¢,;’s are
iid extreme value. That is, the probability conditional on B, is

eﬂy/,-xni
ebini
2. e

However, the researcher does not know 8, and therefore cannot condition
on B. The unconditional choice probability is therefore the integral of

Lni(/gn) =
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L,;(B,) over all possible variables of j,,:

eﬂ/xni
Py = /<W>f(,3)d,3,

which is the mixed logit probability (6.1).

The researcher specifies a distribution for the coefficients and esti-
mates the parameters of that distribution. In most applications, such as
Revelt and Train (1998), Mehndiratta (1996), and Ben-Akiva and Bolduc
(1996), f(B) has been specified to be normal or lognormal: 8 ~ N (b, W)
orln 8 ~ N(b, W) with parameters b and W that are estimated. The log-
normal distribution is useful when the coefficient is known to have the
same sign for every decision maker, such as a price coefficient that is
known to be negative for everyone. Revelt and Train (2000), Hensher
and Greene (2001), and Train (2001) have used tria