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Discrete Choice Methods with Simulation

This book describes the new generation of discrete choice meth-
ods, focusing on the many advances that are made possible by
simulation. Researchers use these statistical methods to examine
the choices that consumers, households, firms, and other agents
make. Each of the major models is covered: logit, generalized
extreme value (including nested and cross-nested logits), probit,
and mixed logit, plus a variety of specifications that build on
these basics. Simulation-assisted estimation procedures are
investigated and compared, including maximum simulated
likelihood, the method of simulated moments, and the method
of simulated scores. Procedures for drawing from densities
are described, including variance reduction techniques such
as antithetics and Halton draws. Recent advances in Bayesian
procedures are explored, including the use of the Metropolis–
Hastings algorithm and its variant Gibbs sampling. No other
book incorporates all these topics, which have risen in the past
20 years. The procedures are applicable in many fields, includ-
ing energy, transportation, environmental studies, health, labor,
and marketing.

Professor Kenneth E. Train teaches econometrics, regulation,
and industrial organization at the University of California,
Berkeley. He also serves as Vice President of National Economic
Research Associates (NERA), Inc. in San Francisco, California.
The author of Optimal Regulation: The Economic Theory of
Natural Monopoly (1991) and Qualitative Choice Analysis
(1986), Dr. Train has written more than 50 articles on economic
theory and regulation. He chaired the Center for Regulatory
Policy at the University of California, Berkeley, from 1993 to
2000 and has testified as an expert witness in regulatory pro-
ceedings and court cases. He has received numerous awards for
his teaching and research.

i



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-FMA CB495/Train September 18, 2002 10:54 Char Count= 0

published by the press syndicate of the university of cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Kenneth E. Train 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times Roman 11/13 pt. System LATEX 2ε [tb]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Train, Kenneth.
Discrete choice methods with simulation / Kenneth E. Train.

p. cm.
Includes bibliographical references and index.
ISBN 0-521-81696-3 – ISBN 0-521-01715-7 (pb.)
1. Decision making – Simulation methods. 2. Consumers’ preferences –

Simulation methods. I. Title.
HD30.23 .T725 2003
003′.56 – dc21 2002071479

ISBN 0 521 81696 3 hardback
ISBN 0 521 01715 7 paperback

iv



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-FMA CB495/Train September 18, 2002 10:54 Char Count= 0

Contents

1 Introduction page 1
1.1 Motivation 1
1.2 Choice Probabilities and Integration 3
1.3 Outline of Book 7
1.4 Topics Not Covered 8
1.5 A Couple of Notes 11

Part I Behavioral Models
2 Properties of Discrete Choice Models 15

2.1 Overview 15
2.2 The Choice Set 15
2.3 Derivation of Choice Probabilities 18
2.4 Specific Models 21
2.5 Identification of Choice Models 23
2.6 Aggregation 33
2.7 Forecasting 36
2.8 Recalibration of Constants 37

3 Logit 38
3.1 Choice Probabilities 38
3.2 The Scale Parameter 44
3.3 Power and Limitations of Logit 46
3.4 Nonlinear Representative Utility 56
3.5 Consumer Surplus 59
3.6 Derivatives and Elasticities 61
3.7 Estimation 64
3.8 Goodness of Fit and Hypothesis Testing 71
3.9 Case Study: Forecasting for a New

Transit System 75
3.10 Derivation of Logit Probabilities 78

v



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-FMA CB495/Train September 18, 2002 10:54 Char Count= 0

vi Contents

4 GEV 80
4.1 Introduction 80
4.2 Nested Logit 81
4.3 Three-Level Nested Logit 90
4.4 Overlapping Nests 93
4.5 Heteroskedastic Logit 96
4.6 The GEV Family 97

5 Probit 101
5.1 Choice Probabilities 101
5.2 Identification 104
5.3 Taste Variation 110
5.4 Substitution Patterns and Failure of IIA 112
5.5 Panel Data 114
5.6 Simulation of the Choice Probabilities 118

6 Mixed Logit 138
6.1 Choice Probabilities 138
6.2 Random Coefficients 141
6.3 Error Components 143
6.4 Substitution Patterns 145
6.5 Approximation to Any Random Utility Model 145
6.6 Simulation 148
6.7 Panel Data 149
6.8 Case Study 151

7 Variations on a Theme 155
7.1 Introduction 155
7.2 Stated-Preference and Revealed-Preference Data 156
7.3 Ranked Data 160
7.4 Ordered Responses 163
7.5 Contingent Valuation 168
7.6 Mixed Models 170
7.7 Dynamic Optimization 173

Part II Estimation
8 Numerical Maximization 189

8.1 Motivation 189
8.2 Notation 189
8.3 Algorithms 191
8.4 Convergence Criterion 202
8.5 Local versus Global Maximum 203
8.6 Variance of the Estimates 204
8.7 Information Identity 205



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-FMA CB495/Train September 18, 2002 10:54 Char Count= 0

Contents vii

9 Drawing from Densities 208
9.1 Introduction 208
9.2 Random Draws 208
9.3 Variance Reduction 217

10 Simulation-Assisted Estimation 240
10.1 Motivation 240
10.2 Definition of Estimators 241
10.3 The Central Limit Theorem 248
10.4 Properties of Traditional Estimators 250
10.5 Properties of Simulation-Based Estimators 253
10.6 Numerical Solution 260

11 Individual-Level Parameters 262
11.1 Introduction 262
11.2 Derivation of Conditional Distribution 265
11.3 Implications of Estimation of θ 267
11.4 Monte Carlo Illustration 270
11.5 Average Conditional Distribution 272
11.6 Case Study: Choice of Energy Supplier 273
11.7 Discussion 283

12 Bayesian Procedures 285
12.1 Introduction 285
12.2 Overview of Bayesian Concepts 287
12.3 Simulation of the Posterior Mean 294
12.4 Drawing from the Posterior 296
12.5 Posteriors for the Mean and Variance

of a Normal Distribution 297
12.6 Hierarchical Bayes for Mixed Logit 302
12.7 Case Study: Choice of Energy Supplier 308
12.8 Bayesian Procedures for Probit Models 316

Bibliography 319
Index 331



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-FMA CB495/Train September 18, 2002 10:54 Char Count= 0

viii



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-01Drv CB495/Train KEY BOARDED September 18, 2002 11:2 Char Count= 0

1 Introduction

1.1 Motivation

When I wrote my first book, Qualitative Choice Analysis, in the mid-
1980s, the field had reached a critical juncture. The breakthrough con-
cepts that defined the field had been made. The basic models – mainly
logit and nested logit – had been introduced, and the statistical and eco-
nomic properties of these models had been derived. Applications had
proven successful in many different areas, including transportation, en-
ergy, housing, and marketing – to name only a few.

The field is at a similar juncture today for a new generation of proce-
dures. The first-generation models contained important limitations that
inhibited their applicability and realism. These limitations were well
recognized at the time, but ways to overcome them had not yet been
discovered. Over the past twenty years, tremendous progress has been
made, leading to what can only be called a sea change in the approach
and methods of choice analysis. The early models have now been sup-
plemented by a variety of more powerful and more flexible methods.
The new concepts have arisen gradually, with researchers building on
the work of others. However, in a sense, the change has been more like
a quantum leap than a gradual progression. The way that researchers
think about, specify, and estimate their models has changed. Importantly,
a kind of consensus, or understanding, seems to have emerged about the
new methodology. Among researchers working in the field, a definite
sense of purpose and progress prevails.

My purpose in writing this new book is to bring these ideas together,
in a form that exemplifies the unity of approach that I feel has emerged,
and in a format that makes the methods accessible to a wide audience.
The advances have mostly centered on simulation. Essentially, simu-
lation is the researcher’s response to the inability of computers to per-
form integration. Stated more precisely, simulation provides a numerical

1
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2 Introduction

approximation to integrals, with different methods offering different
properties and being applicable to different kinds of integrands.

Simulation allows estimation of otherwise intractable models. Prac-
tically any model can be estimated by some form of simulation.
The researcher is therefore freed from previous constraints on model
specification – constraints that reflected mathematical convenience
rather than the economic reality of the situation. This new flexibility
is a tremendous boon to research. It allows more realistic representation
of the hugely varied choice situations that arise in the world. It enables
the researcher to obtain more information from any given dataset and, in
many cases, allows previously unapproachable issues to be addressed.

This flexibility places a new burden on the researcher. First, the meth-
ods themselves are more complicated than earlier ones and utilize many
concepts and procedures that are not covered in standard econometrics
courses. Understanding the various techniques – their advantages and
limitations, and the relations among them – is important when choosing
the appropriate method in any particular application and for developing
new methods when none of the existing models seems right. The purpose
of this book is to assist readers along this path.

Second, to implement a new method or a variant on an old method,
the researcher needs to be able to program the procedure into computer
software. This means that the researcher will often need to know how
maximum likelihood and other estimation methods work from a compu-
tational perspective, how to code specific models, and how to take exist-
ing code and change it to represent variations in behavior. Some models,
such as mixed logit and pure probit (in addition, of course, to standard
logit), are available in commercially available statistical packages. In
fact, code for these and other models, as well as manuals and sample
data, are available (free) at my website http://elsa.berkeley.edu/∼train.
Whenever appropriate, researchers should use available codes rather
than writing their own. However, the true value of the new approach to
choice modeling is the ability to create tailor-made models. The com-
putational and programming steps that are needed to implement a new
model are usually not difficult. An important goal of the book is to
teach these skills as an integral part of the exposition of the models
themselves. I personally find programming to be extremely valuable
pedagogically. The process of coding a model helps me to understand
how exactly the model operates, the reasons and implications of its
structure, what features constitute the essential elements that cannot be
changed while maintaining the basic approach, and what features are
arbitrary and can easily be changed. I imagine other people learn this
way too.
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Introduction 3

1.2 Choice Probabilities and Integration

To focus ideas, I will now establish the conceptual basis for discrete
choice models and show where integration comes into play. An agent
(i.e., person, firm, decision maker) faces a choice, or a series of choices
over time, among a set of options. For example, a customer chooses
which of several competing products to buy; a firm decides which
technology to use in production; a student chooses which answer to
give on a multiple-choice test; a survey respondent chooses an integer
between 1 and 5 on a Likert-scale question; a worker chooses whether
to continue working each year or retire. Denote the outcome of the de-
cision(s) in any given situation as y, indicating the chosen option or
sequence of options. We assume for the purposes of this book that the
outcome variable is discrete in that it takes a countable number of values.
Many of the concepts that we describe are easily transferable to situa-
tions where the outcome variable is continuous. However, notation and
terminology are different with continuous outcome variables than with
discrete ones. Also, discrete choices generally reveal less information
about the choice process than continuous-outcome choices, so that the
econometrics of discrete choice is usually more challenging.

Our goal is to understand the behavioral process that leads to the
agent’s choice. We take a causal perspective. There are factors that col-
lectively determine, or cause, the agent’s choice. Some of these factors
are observed by the researcher and some are not. The observed factors
are labeled x , and the unobserved factors ε. The factors relate to the
agent’s choice through a function y = h(x, ε). This function is called
the behavioral process. It is deterministic in the sense that given x and
ε, the choice of the agent is fully determined.

Since ε is not observed, the agent’s choice is not deterministic and
cannot be predicted exactly. Instead, the probability of any particular
outcome is derived. The unobserved terms are considered random with
density f (ε). The probability that the agent chooses a particular outcome
from the set of all possible outcomes is simply the probability that the
unobserved factors are such that the behavioral process results in that
outcome: P(y | x) = Prob(ε s.t. h(x, ε) = y).

We can express this probability in a more usable form. Define an
indicator function I [h(x, ε) = y] that takes the value of 1 when the
statement in brackets is true and 0 when the statement is false. That
is, I [·] = 1 if the value of ε, combined with x , induces the agent to
choose outcome y, and I [·] = 0 if the value of ε, combined with x ,
induces the agent to choose some other outcome. Then the probability
that the agent chooses outcome y is simply the expected value of this
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4 Introduction

indicator function, where the expectation is over all possible values of
the unobserved factors:

P(y | x) = Prob(I [h(x, ε) = y] = 1)

=
∫

I [h(x, ε) = y] f (ε) dε.(1.1)

Stated in this form, the probability is an integral – specifically an integral
of an indicator for the outcome of the behavioral process over all possible
values of the unobserved factors.

To calculate this probability, the integral must be evaluated. There are
three possibilities.

1.2.1. Complete Closed-Form Expression

For certain specifications of h and f , the integral can be ex-
pressed in closed form. In these cases, the choice probability can be
calculated exactly from the closed-form formula. For example, consider
a binary logit model of whether or not a person takes a given action, such
as buying a new product. The behavioral model is specified as follows.
The person would obtain some net benefit, or utility, from taking the
action. This utility, which can be either positive or negative, consists of
a part that is observed by the researcher, β ′x , where x is a vector of
variables and β is a vector of parameters, and a part that is not observed,
ε: U = β ′x + ε. The person takes the action only if the utility is positive,
that is, only if doing so provides a net benefit. The probability that the per-
son takes the action, given what the researcher can observe, is therefore
P = ∫

I [β ′x + ε > 0] f (ε) dε, where f is the density of ε. Assume that
ε is distributed logistically, such that its density is f (ε) = e−ε/(1 + e−ε)2

with cumulative distribution F(ε) = 1/(1 + e−ε). Then the probability
of the person taking the action is

P =
∫

I [β ′x + ε > 0] f (ε) dε

=
∫

I [ε > −β ′x] f (ε) dε

=
∫ ∞

ε=−β ′x
f (ε) dε

= 1 − F(−β ′x) = 1 − 1

1 + eβ ′x

= eβ ′x

1 + eβ ′x .
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For any x , the probability can be calculated exactly as P = exp(β ′x)/
(1 + exp(β ′x)).

Other models also have closed-form expressions for the probabilities.
Multinomial logit (in Chapter 3), nested logit (Chapter 4), and ordered
logit (Chapter 7) are prominent examples. The methods that I described
in my first book and that served as the basis for the first wave of interest in
discrete choice analysis relied almost exclusively on models with closed-
form expressions for the choice probabilities. In general, however, the
integral for probabilities cannot be expressed in closed form. More to
the point, restrictions must be placed on the behavioral model h and
the distribution of random terms f in order for the integral to take
a closed form. These restrictions can make the models unrealistic for
many situations.

1.2.2. Complete Simulation

Rather than solve the integral analytically, it can be approxi-
mated through simulation. Simulation is applicable in one form or an-
other to practically any specification of h and f . Simulation relies on the
fact that integration over a density is a form of averaging. Consider the
integral t̄ = ∫

t(ε) f (ε) dε, where t(ε) is a statistic based on ε which has
density f (ε). This integral is the expected value of t over all possible
values of ε. This average can be approximated in an intuitively straight-
forward way. Take numerous draws of ε from its distribution f , calculate
t(ε) for each draw, and average the results. This simulated average is an
unbiased estimate of the true average. It approaches the true average as
more and more draws are used in the simulation.

This concept of simulating an average is the basis for all simulation
methods, at least all of those that we consider in this book. As given in
equation (1.1), the probability of a particular outcome is an average of
the indicator I (·) over all possible values of ε. The probability, when
expressed in this form, can be simulated directly as follows:

1. Take a draw of ε from f (ε). Label this draw ε1, where the
superscript denotes that it is the first draw.

2. Determine whether h(x, ε1) = y with this value of ε. If so, create
I 1 = 1; otherwise set I 1 = 0.

3. Repeat steps 1 and 2 many times, for a total of R draws. The
indicator for each draw is labeled I r for r = 1, . . . , R.

4. Calculate the average of the I r ’s. This average is the simulated
probability: P̌(y | x) = 1

R

∑R
r=1 I r . It is the proportion of times

that the draws of the unobserved factors, when combined with
the observed variables x , result in outcome y.
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As we will see in the chapters to follow, this simulator, while easy to
understand, has some unfortunate properties. Choice probabilities can
often be expressed as averages of other statistics, rather than the average
of an indicator function. The simulators based on these other statistics
are calculated analogously, by taking draws from the density, calculating
the statistic, and averaging the results. Probit (in Chapter 5) is the most
prominent example of a model estimated by complete simulation. Vari-
ous methods of simulating the probit probabilities have been developed
based on averages of various statistics over various (related) densities.

1.2.3. Partial Simulation, Partial Closed Form

So far we have provided two polar extremes: either solve the
integral analytically or simulate it. In many situations, it is possible to
do some of both.

Suppose the random terms can be decomposed into two parts labeled
ε1 and ε2. Let the joint density of ε1 and ε2 be f (ε) = f (ε1, ε2). The
joint density can be expressed as the product of a marginal and a condi-
tional density: f (ε1, ε2) = f (ε2 | ε1) · f (ε1). With this decomposition,
the probability in equation (1.1) can be expressed as

P(y | x) =
∫

I [h(x, ε) = y] f (ε) dε

=
∫

ε1

[ ∫
ε2

I [h(x, ε1, ε2) = y] f (ε2 | ε1) dε2

]
f (ε1) dε1.

Now suppose that a closed form exists for the integral in large brackets.
Label this formula g(ε1) ≡ ∫

ε2
I [h(x, ε1, ε2) = y] f (ε2 | ε1) dε2, which

is conditional on the value of ε1. The probability then becomes
P(y | x) = ∫

ε1
g(ε1) f (ε1) dε1. If a closed-form solution does not ex-

ist for this integral, then it is approximated through simulation. Note
that it is simply the average of g over the marginal density of ε1. The
probability is simulated by taking draws from f (ε1), calculating g(ε1)
for each draw, and averaging the results.

This procedure is called convenient error partitioning (Train, 1995).
The integral over ε2 given ε1 is calculated exactly, while the integral over
ε1 is simulated. There are clear advantages to this approach over com-
plete simulation. Analytic integrals are both more accurate and easier to
calculate than simulated integrals. It is useful, therefore, when possible,
to decompose the random terms so that some of them can be integrated
analytically, even if the rest must be simulated. Mixed logit (in Chap-
ter 6) is a prominent example of a model that uses this decomposition
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effectively. Other examples include Gourieroux and Monfort’s (1993)
binary probit model on panel data and Bhat’s (1999) analysis of ordered
responses.

1.3 Outline of Book

Discrete choice analysis consists of two interrelated tasks: specification
of the behavioral model and estimation of the parameters of that model.
Simulation plays a part in both tasks. Simulation allows the researcher to
approximate the choice probabilities that arise in the behavioral model.
As we have stated, the ability to use simulation frees the researcher
to specify models without the constraint that the resulting probabilities
must have a closed form. Simulation also enters the estimation task.
The properties of an estimator, such as maximum likelihood, can change
when simulated probabilities are used instead of the actual probabilities.
Understanding these changes, and mitigating any ill effects, is important
for a researcher. In some cases, such as with Bayesian procedures, the
estimator itself is an integral over a density (as opposed to the choice
probability being an integral). Simulation allows these estimators to be
implemented even when the integral that defines the estimator does not
take a closed form.

The book is organized around these two tasks. Part I describes be-
havioral models that have been proposed to describe the choice process.
The chapters in this section move from the simplest model, logit, to
progressively more general and consequently more complex models. A
chapter is devoted to each of the following: logit, the family of gener-
alized extreme value models (whose most prominent member is nested
logit), probit, and mixed logit. This part of the book ends with a chapter
titled “Variations on a Theme,” which covers a variety of models that
build upon the concepts in the previous chapters. The point of this chap-
ter is more than simply to introduce various new models. The chapter
illustrates the underlying concept of the book, namely, that researchers
need not rely on the few common specifications that have been pro-
grammed into software but can design models that reflect the unique
setting, data, and goals of their project, writing their own software and
using simulation as needed.

Part II describes estimation of the behavioral models. Numerical max-
imization is covered first, since most estimation procedures involve
maximization of some function, such as the log-likelihood function.
We then describe procedures for taking draws from various kinds of
densities, which are the basis for simulation. This chapter also describes
different kinds of draws, including antithetic variants and quasi-random
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sequences, that can provide greater simulation accuracy than indepen-
dent random draws. We then turn to simulation-assisted estimation, look-
ing first at classical procedures, including maximum simulated likeli-
hood, method of simulated moments, and method of simulated scores.
Finally, we examine Bayesian estimation procedures, which use simula-
tion to approximate moments of the posterior distribution. The Bayesian
estimator can be interpreted from either a Bayesian or classical perspec-
tive and has the advantage of avoiding some of the numerical difficulties
associated with classical estimators. The power that simulation provides
when coupled with Bayesian procedures makes this chapter a fitting
finale for the book.

1.4 Topics Not Covered

I feel it is useful to say a few words about what the book does not cover.
There are several topics that could logically be included but are not.
One is the branch of empirical industrial organization that involves esti-
mation of discrete choice models of consumer demand on market-level
data. Customer-level demand is specified by a discrete choice model,
such as logit or mixed logit. This formula for customer-level demand is
aggregated over consumers to obtain market-level demand functions that
relate prices to shares. Market equilibrium prices are determined as the
interaction of these demand functions with supply, based on marginal
costs and the game that the firms are assumed to play. Berry (1994)
and Berry et al. (1995) developed methods for estimating the demand
parameters when the customer-level model takes a flexible form such as
mixed logit. The procedure has been implemented in numerous markets
for differentiated goods, such as ready-to-eat cereals (Nevo, 2001).

I have decided not to cover these procedures, despite their importance
because doing so would involve introducing the literature on market-
level models, which we are not otherwise considering in this book. For
market demand, price is typically endogenous, determined by the in-
teraction of demand and supply. The methods cited previously were
developed to deal with this endogeneity, which is probably the central
issue with market-level demand models. This issue does not automati-
cally arise in customer-level models. Prices are not endogenous in the
traditional sense, since the demand of the customer does not usually
affect market price. Covering the topic is therefore not necessary for our
analysis of customers’ choices.

It is important to note, however, that various forms of endogeneity
can indeed arise in customer-level models, even if the traditional type of
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endogeneity does not. For example, suppose a desirable attribute of prod-
ucts is omitted from the analysis, perhaps because no measure of it exists.
Price can be expected to be higher for products that have high levels of
this attribute. Price therefore becomes correlated with the unobserved
components of demand, even at the customer level: the unobserved part
of demand is high (due to a high level of the omitted attribute) when
the price is high. Estimation without regard to this correlation is incon-
sistent. The procedures cited above can be applied to customer-level
models to correct for this type of endogeneity, even though they were
originally developed for market-level data. For researchers who are con-
cerned about the possibility of endogeneity in customer-level models,
Petrin and Train (2002) provide a useful discussion and application of
the methods.

A second area that this book does not cover is discrete–continuous
models. These models arise when a regression equation for a continuous
variable is related in any of several ways to a discrete choice. The most
prominent situations are the following.

1. The continuous variable depends on a discrete explanatory
variable that is determined endogenously with the dependent
variable. For example, consider an analysis of the impact of job-
training programs on wages. A regression equation is specified
with wages as the dependent variable and a dummy variable for
whether the person participated in a job-training program. The
coefficient of the participation dummy indicates the impact of
the program on wages. The situation is complicated, however, by
the fact that participation is voluntary: people choose whether to
participate in job-training programs. The decision to participate
is at least partially determined by factors that also affect the per-
son’s wage, such as the innate drive, or “go-for-it” attitude, of the
person. Estimation of the regression by ordinary least squares is
biased in this situation, since the program-participation dummy
is correlated with the errors in the wage equation.

2. A regression equation is estimated on a sample of observations
that are selected on the basis of a discrete choice that is de-
termined endogenously with the dependent variable. For exam-
ple, a researcher might want to estimate the effect of weather
on peak energy load (that is, consumption during the highest-
demand hour of the day). Data on energy loads by time of day are
available only for households that have chosen time-of-use rates.
However, the households’ choice of rate plan can be expected
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to be related to their energy consumption, with customers who
have high peak loads tending not to choose time-of-use rates,
since those rates charge high prices in the peak. Estimation of
the regression equation on this self-selected sample is biased
unless the endogeneity of the sample is allowed for.

3. The continuous dependent variable is truncated. For example,
consumption of goods by households is necessarily positive.
Stated statistically, consumption is truncated below at zero, and
for many goods (such as opera tickets) observed consumption
is at this truncation point for a large share of the population.
Estimation of the regression without regard to the truncation
can cause bias.

The initial concepts regarding appropriate treatment of discrete–
continuous models were developed by Heckman (1978, 1979) and Dubin
and McFadden (1984). These early concepts are covered in my earlier
book (Train, 1986, Chapter 5). Since then, the field has expanded tremen-
dously. An adequate discussion of the issues and procedures would take
a book in itself. Moreover, the field has not reached (at least in my view)
the same type of juncture that discrete choice modeling has reached.
Many fundamental concepts are still being hotly debated, and poten-
tially valuable new procedures have been introduced so recently that
there has not been an opportunity for researchers to test them in a vari-
ety of settings. The field is still expanding more than it is coalescing.

There are several ongoing directions of research in this area. The
early procedures were highly dependent on distributional assumptions
that are hard to verify. Researchers have been developing semi- and
nonparametric procedures that are hopefully more robust. The special
1986 issue of the Journal of Econometrics provides a set of important
articles on the topic. Papers by Lewbel and Linton (2002) and Levy
(2001) describe more recent developments. Another important devel-
opment concerns the representation of behavior in these settings. The
relation between the discrete and continuous variables has been gen-
eralized beyond the fairly simple representation that the early methods
assumed. For example, in the context of job training, it is likely that
the impact of the training differs over people and that people choose to
participate in the training program on the basis of the impact it will have
on them. Stated in econometric terms: the coefficient of the participation
dummy in the wage equation varies over people and affects the value of
the dummy. The dummy is correlated with its own coefficient, as well
as with the unobserved variables that enter the error of the regression.
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A recent discussion of approaches to this issue is provided by Carneiro
et al. (2001).

1.5 A Couple of Notes

Throughout the book, I refer to the researcher as “she” and the decision
maker as “he.” This usage, as well as being comparatively gender-neutral
(or at least symmetrically noninclusive), allows both people to be re-
ferred to in the same paragraph without confusion.

Many colleagues have provided valuable comments and sugges-
tions on earlier drafts of the book. I am very grateful for this help. I
thank Greg Allenby, Moshe Ben-Akiva, Chandra Bhat, Denis Bolduc,
David Brownstone, Siddhartha Chib, Jon Eisen-Hecht, Florian Heiss,
David Hensher, Joe Herriges, Rich Johnson, Frank Koppelman, Jordan
Louviere, Aviv Nevo, Juan de Dios Ortúzar, Ken Small, Joan Walker,
Cliff Winston, Joachim Winter, and the students in my graduate econo-
metrics course.

I welcome readers to contact me if you feel I have not covered material
that you consider important, or if I have confused rather than clarified
any of the material that I do cover. Hopefully, another edition of this
book will someday materialize.
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2 Properties of Discrete Choice Models

2.1 Overview

This chapter describes the features that are common to all discrete choice
models. We start by discussing the choice set, which is the set of options
that are available to the decision maker. We then define choice probabili-
ties and derive them from utility-maximizing behavior. The most promi-
nent types of discrete choice models, namely logit, generalized extreme
value (GEV), probit, and mixed logit, are introduced and compared
within the context of this general derivation. Utility, as a constructed
measure of well-being, has no natural level or scale. This fact has im-
portant implications for the specification and normalization of discrete
choice models, which we explore. We then show how individual-level
models are aggregated to obtain market-level predictions, and how the
models are used for forecasting over time.

2.2 The Choice Set

Discrete choice models describe decision makers’ choices among al-
ternatives. The decision makers can be people, households, firms, or
any other decision-making unit, and the alternatives might represent
competing products, courses of action, or any other options or items
over which choices must be made. To fit within a discrete choice frame-
work, the set of alternatives, called the choice set, needs to exhibit three
characteristics. First, the alternatives must be mutually exclusive from
the decision maker’s perspective. Choosing one alternative necessarily
implies not choosing any of the other alternatives. The decision maker
chooses only one alternative from the choice set. Second, the choice
set must be exhaustive, in that all possible alternatives are included.
The decision maker necessarily chooses one of the alternatives. Third,
the number of alternatives must be finite. The researcher can count the
alternatives and eventually be finished counting.

15



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-02Drv CB495/Train KEY BOARDED September 18, 2002 11:15 Char Count= 0

16 Behavioral Models

The first and second criteria are not restrictive. Appropriate definition
of alternatives can nearly always assure that the alternatives are mutually
exclusive and the choice set is exhaustive. For example, suppose two
alternatives labeled A and B are not mutually exclusive because the
decision maker can choose both of the alternatives. The alternatives can
be redefined to be “A only,” “B only,” and “both A and B,” which are
necessarily mutually exclusive. Similarly, a set of alternatives might not
be exhaustive because the decision maker has the option of not choosing
any of them. In this case, an extra alternative can be defined as “none
of the other alternatives.” The expanded choice set, consisting of the
original alternatives plus this new one, is clearly exhaustive.

Often the researcher can satisfy these two conditions in several
different ways. The appropriate specification of the choice set in these
situations is governed largely by the goals of the research and the data
that are available to the researcher. Consider households’ choice among
heating fuels, a topic which has been studied extensively in efforts to
forecast energy use and to develop effective fuel-switching and energy
conservation programs. The available fuels are usually natural gas, elec-
tricity, oil, and wood. These four alternatives, as listed, violate both mu-
tual exclusivity and exhaustiveness. The alternatives are not mutually
exclusive because a household can (and many do) have two types of
heating, e.g., a natural gas central heater and electric room heaters, or
a wood stove along with electric baseboard heating. And the set is not
exhaustive because the household can have no heating (which, unfor-
tunately, is not as rare as one might hope). The researcher can handle
each of these issues in several ways. To obtain mutually exclusive al-
ternatives, one approach is to list every possible combination of heating
fuels as an alternative. The alternatives are then defined as: “electric-
ity alone,” “electricity and natural gas, but no other fuels,” and so on.
Another approach is to define the choice as the choice among fuels for the
“primary” heating source. Under this procedure, the researcher develops
a rule for determining which heating fuel is primary when a household
uses multiple heating fuels. By definition, only one fuel (electricity, nat-
ural gas, oil, or wood) is primary. The advantage of listing every possible
combination of fuels is that it avoids the need to define a “primary” fuel,
which is a difficult and somewhat arbitrary distinction. Also, with all
combinations considered, the researcher has the ability to examine the
factors that determine households’ use of multiple fuels. However, to
implement this approach, the researcher needs data that distinguish the
alternatives, for example, the cost of heating a house with natural gas
and electricity versus the cost with natural gas alone. If the researcher re-
stricts the analysis to choice of primary fuel, then the data requirements
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are less severe. Only the costs associated with each fuel are needed. Also,
a model with four alternatives is inherently easier to estimate and fore-
cast with than a model with the large number of alternatives that arises
when every possible combination of fuels is considered. The researcher
will need to take these trade-offs into consideration when specifying the
choice set.

The same type of issue arises with regard to exhaustiveness. In our case
of heating-fuel choice, the researcher can either include “no heating” as
an alternative or can redefine the choice situation as being the choice
of heating fuel conditional on having heating. The first approach allows
the researcher to examine the factors that relate to whether a household
has heating. However, this ability is only realized if the researcher has
data that meaningfully relate to whether or not a household has heating.
Under the second approach, the researcher excludes from the analysis
households without heating, and, by doing so, is relieved of the need for
data that relate to these households.

As we have just described, the conditions of mutual exclusivity and
exhaustiveness can usually be satisfied, and the researcher often has sev-
eral approaches for doing so. In contrast, the third condition, namely, that
the number of alternatives is finite, is actually restrictive. This condition
is the defining characteristic of discrete choice models and distinguishes
their realm of application from that for regression models. With regres-
sion models, the dependent variable is continuous, which means that
there is an infinite number of possible outcomes. The outcome might be
chosen by a decision maker, such as the decision of how much money
to hold in savings accounts. However, the alternatives available to the
decision maker, which are every possible monetary value above zero, is
not finite (at least not if all fractions are considered, which is an issue we
return to later.) When there is an infinite number of alternatives, discrete
choice models cannot be applied.

Often regression models and discrete choice models are distinguished
by saying that regressions examine choices of “how much” and dis-
crete choice models examine choice of “which.” This distinction, while
perhaps illustrative, is not actually accurate. Discrete choice models can
be and have been used to examine choices of “how much.” A prominent
example is households’ choice of how many cars to own. The alternatives
are 0, 1, 2, and so on, up to the largest number that the researcher con-
siders possible (or observes). This choice set contains a finite number of
mutually exclusive and exhaustive alternatives, appropriate for analysis
via discrete choice models. The researcher can also define the choice
set more succinctly as 0, 1, and 2 or more vehicles, if the goals of the
research can be met with this specification.
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When considered in this way, most choices involving “how many” can
be represented in a discrete choice framework. In the case of savings ac-
counts, every one-dollar increment (or even every one-cent increment)
can be considered an alternative, and as long as some finite maximum
exists, then the choice set fits the criteria for discrete choice. Whether
to use regression or discrete choice models in these situations is a spec-
ification issue that the researcher must consider. Usually a regression
model is more natural and easier. A discrete choice model would be
used in these situations only if there were compelling reasons for do-
ing so. As an example, Train et al. (1987a) analyzed the number and
duration of phone calls that households make, using a discrete choice
model instead of a regression model because the discrete choice model
allowed greater flexibility in handling the nonlinear price schedules that
households face. In general, the researcher needs to consider the goals of
the research and the capabilities of alternative methods when deciding
whether to apply a discrete choice model.

2.3 Derivation of Choice Probabilities

Discrete choice models are usually derived under an assumption of
utility-maximizing behavior by the decision maker. Thurstone (1927)
originally developed the concepts in terms of psychological stimuli,
leading to a binary probit model of whether respondents can differen-
tiate the level of stimulus. Marschak (1960) interpreted the stimuli as
utility and provided a derivation from utility maximization. Following
Marschak, models that can be derived in this way are called random
utility models (RUMs). It is important to note, however, that models
derived from utility maximization can also be used to represent decision
making that does not entail utility maximization. The derivation assures
that the model is consistent with utility maximization; it does not pre-
clude the model from being consistent with other forms of behavior. The
models can also be seen as simply describing the relation of explanatory
variables to the outcome of a choice, without reference to exactly how
the choice is made.

Random utility models (RUMs) are derived as follows. A decision
maker, labeled n, faces a choice among J alternatives. The decision
maker would obtain a certain level of utility (or profit) from each al-
ternative. The utility that decision maker n obtains from alternative j
is Unj , j = 1, . . . , J . This utility is known to the decision maker but
not, as we see in the following, by the researcher. The decision maker
chooses the alternative that provides the greatest utility. The behavioral
model is therefore: choose alternative i if and only if Uni > Unj ∀ j �= i .
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Consider now the researcher. The researcher does not observe the
decision maker’s utility. The researcher observes some attributes of the
alternatives as faced by the decision maker, labeled xnj ∀ j , and some at-
tributes of the decision maker, labeled sn , and can specify a function that
relates these observed factors to the decision maker’s utility. The func-
tion is denoted Vnj = V (xnj , sn) ∀ j and is often called representative
utility. Usually, V depends on parameters that are unknown to the re-
searcher and therefore estimated statistically; however, this dependence
is suppressed for the moment.

Since there are aspects of utility that the researcher does not or cannot
observe, Vnj �= Unj . Utility is decomposed as Unj = Vnj + εnj , where
εnj captures the factors that affect utility but are not included in Vnj . This
decomposition is fully general, since εnj is defined as simply the differ-
ence between true utility Unj and the part of utility that the researcher
captures in Vnj . Given its definition, the characteristics of εnj , such as its
distribution, depend critically on the researcher’s specification of Vnj .
In particular, εnj is not defined for a choice situation per se. Rather, it is
defined relative to a researcher’s representation of that choice situation.
This distinction becomes relevant when evaluating the appropriateness
of various specific discrete choice models.

The researcher does not know εnj ∀ j and therefore treats these terms
as random. The joint density of the random vector εn = 〈εn1, . . . , εn J 〉
is denoted f (εn). With this density, the researcher can make probabilis-
tic statements about the decision maker’s choice. The probability that
decision maker n chooses alternative i is

Pni = Prob(Uni > Unj ∀ j �= i)

= Prob(Vni + εni > Vnj + εnj ∀ j �= i)

= Prob(εnj − εni < Vni − Vnj ∀ j �= i).(2.1)

This probability is a cumulative distribution, namely, the probability that
each random term εnj − εni is below the observed quantity Vni − Vnj .
Using the density f (εn), this cumulative probability can be rewritten as

Pni = Prob(εnj − εni < Vni − Vnj ∀ j �= i)

=
∫

ε

I (εnj − εni < Vni − Vnj ∀ j �= i) f (εn) dεn,(2.2)

where I (·) is the indicator function, equaling 1 when the expression in
parentheses is true and 0 otherwise. This is a multidimensional integral
over the density of the unobserved portion of utility, f (εn). Different
discrete choice models are obtained from different specifications of this
density, that is, from different assumptions about the distribution of the
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unobserved portion of utility. The integral takes a closed form only for
certain specifications of f (·). Logit and nested logit have closed-form
expressions for this integral. They are derived under the assumption that
the unobserved portion of utility is distributed iid extreme value and a
type of generalized extreme value, respectively. Probit is derived under
the assumption that f (·) is a multivariate normal, and mixed logit is
based on the assumption that the unobserved portion of utility consists
of a part that follows any distribution specified by the researcher plus a
part that is iid extreme value. With probit and mixed logit, the resulting
integral does not have a closed form and is evaluated numerically through
simulation. Each of these models is discussed in detail in subsequent
chapters.

The meaning of choice probabilities is more subtle, and more
revealing, than it might at first appear. An example serves as illustra-
tion. Consider a person who can take either a car or a bus to work. The
researcher observes the time and cost that the person would incur under
each mode. However, the researcher realizes that there are factors other
than time and cost that affect the person’s utility and hence his choice.
The researcher specifies

Vc = αTc + βMc,

Vb = αTb + βMb,

where Tc and Mc are the time and cost (in money) that the person incurs
traveling to work by car, Tb and Mb are defined analogously for bus,
and the subscript n denoting the person is omitted for convenience. The
coefficients α and β are either known or estimated by the researcher.

Suppose that, given α and β and the researcher’s measures of the time
and cost by car and bus, it turns out that Vc = 4 and Vb = 3. This means
that, on observed factors, car is better for this person than bus by 1 unit.
(We discuss in following text the normalization of utility that sets the
dimension of these units.) It does not mean, however, that the person
necessarily chooses car, since there are other factors not observed by the
researcher that affect the person. The probability that the person chooses
bus instead of car is the probability that the unobserved factors for bus
are sufficiently better than those for car to overcome the advantage that
car has on observed factors. Specifically, the person will choose bus if the
unobserved portion of utility is higher than that for car by at least 1 unit,
thus overcoming the 1-unit advantage that car has on observed factors.
The probability of this person choosing bus is therefore the probability
that εb − εc > 1. Likewise, the person will choose car if the unobserved
utility for bus is not better than that for car by at least 1 unit, that is, if
εb − εc < 1. Since 1 is the difference between Vc and Vb in our example,
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the probabilities can be stated more explicitly as

Pc = Prob(εb − εc < Vc − Vb)

and

Pb = Prob(εb − εc > Vc − Vb)

= Prob(εc − εb < Vb − Vc).

These equations are the same as equation (2.1), re-expressed for our
car–bus example.

The question arises in the derivation of the choice probabilities: what
is meant by the distribution of εn? The interpretation that the researcher
places on this density affects the researcher’s interpretation of the choice
probabilities. The most prominent way to think about this distribution
is as follows. Consider a population of people who face the same ob-
served utility Vnj ∀ j as person n. Among these people, the values of
the unobserved factors differ. The density f (εn) is the distribution of
the unobserved portion of utility within the population of people who
face the same observed portion of utility. Under this interpretation, the
probability Pni is the share of people who choose alternative i within
the population of people who face the same observed utility for each
alternative as person n. The distribution can also be considered in sub-
jective terms, as representing the researcher’s subjective probability that
the person’s unobserved utility will take given values. In this case, Pni

is the probability that the researcher ascribes to the person’s choosing
alternative i given the researcher’s ideas about the unobserved portions
of the person’s utility. As a third possibility, the distribution can repre-
sent the effect of factors that are quixotic to the decision maker himself
(representing, e.g., aspects of bounded rationality), so that Pni is the
probability that these quixotic factors induce the person to choose alter-
native i given the observed, nonquixotic factors.

2.4 Specific Models

Logit, GEV, probit, and mixed logit are discussed at length in the sub-
sequent chapters. However, a quick preview of these models is useful at
this point, to show how they relate to the general derivation of all choice
models and how they differ within this derivation. As stated earlier, dif-
ferent choice models are derived under different specifications of the
density of unobserved factors, f (εn). The issues therefore are what dis-
tribution is assumed for each model, and what is the motivation for these
different assumptions.
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Logit (discussed in Chapter 3) is by far the most widely used discrete
choice model. It is derived under the assumption that εni is iid extreme
value for all i . The critical part of the assumption is that the unobserved
factors are uncorrelated over alternatives, as well as having the same
variance for all alternatives. This assumption, while restrictive, provides
a very convenient form for the choice probability. The popularity of
the logit model is due to this convenience. However, the assumption
of independence can be inappropriate in some situations. Unobserved
factors related to one alternative might be similar to those related to
another alternative. For example, a person who dislikes travel by bus
because of the presence of other riders might have a similar reaction to
rail travel; if so, then the unobserved factors affecting bus and rail are
corrrelated rather than independent. The assumption of independence
also enters when a logit model is applied to sequences of choices over
time. The logit model assumes that each choice is independent of the
others. In many cases, one would expect that unobserved factors that
affect the choice in one period would persist, at least somewhat, into the
next period, inducing dependence among the choices over time.

The development of other models has arisen largely to avoid the inde-
pendence assumption within a logit. Generalized extreme-value models
(GEV, discussed in Chapter 4) are based, as the name implies, on a gener-
alization of the extreme-value distribution. The generalization can take
many forms, but the common element is that it allows correlation in
unobserved factors over alternatives and collapses to the logit model
when this correlation is zero. Depending on the type of GEV model,
the correlations can be more or less flexible. For example, a compar-
atively simple GEV model places the alternatives into several groups
called nests, with unobserved factors having the same correlation for all
alternatives within a nest and no correlation for alternatives in different
nests. More complex forms allow essentially any pattern of correlation.
GEV models usually have closed forms for the choice probabilities, so
that simulation is not required for their estimation.

Probits (Chapter 5) are based on the assumption that the unobserved
factors are distributed jointly normal: ε′

n = 〈εn1, . . . , εn J 〉 ∼ N (0, 
).
With full covariance matrix 
, any pattern of correlation and het-
eroskedasticity can be accommodated. When applied to sequences of
choices over time, the unobserved factors are assumed to be jointly nor-
mal over time as well as over alternatives, with any temporal correlation
pattern. The flexibility of the probit model in handling correlations over
alternatives and time is its main advantage. Its only functional limitation
arises from its reliance on the normal distribution. In some situations,
unobserved factors may not be normally distributed. For example, a
customer’s willingness to pay for a desirable attribute of a product is
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necessary positive. Assuming that this unobserved factor is normally
distributed contradicts the fact that it is positive, since the normal distri-
bution has density on both sides of zero.

Mixed logit (Chapter 6) allows the unobserved factors to follow any
distribution. The defining characteristic of a mixed logit is that the un-
observed factors can be decomposed into a part that contains all the
correlation and heteroskedasticity, and another part that is iid extreme
value. The first part can follow any distribution, including non-normal
distributions. We will show that mixed logit can approximate any dis-
crete choice model and thus is fully general.

Other discrete choice models (Chapter 7) have been specified by re-
searchers for specific purposes. Often these models are obtained by
combining concepts from other models. For example, a mixed probit is
obtained by decomposing the unobserved factors into two parts, as in
mixed logit, but giving the second part a normal distribution instead of
extreme value. This model has the generality of mixed logit and yet for
some situations can be easier to estimate. By understanding the deriva-
tion and motivation for all the models, each researcher can specify a
model that is tailor-made for the situation and goals of her research.

2.5 Identification of Choice Models

Several aspects of the behavioral decision process affect the specification
and estimation of any discrete choice model. The issues can be summa-
rized easily in two statements: “Only differences in utility matter” and
“The scale of utility is arbitrary.” The implications of these statements
are far-reaching, subtle, and, in many cases, quite complex. We discuss
them below.

2.5.1. Only Differences in Utility Matter

The absolute level of utility is irrelevant to both the decision
maker’s behavior and the researcher’s model. If a constant is added to the
utility of all alternatives, the alternative with the highest utility doesn’t
change. The decision maker chooses the same alternative with Unj ∀ j
as with Unj + k ∀ j for any constant k. A colloquial way to express this
fact is, “A rising tide raises all boats.”

The level of utility doesn’t matter from the researcher’s perspec-
tive either. The choice probability is Pni = Prob(Uni > Unj ∀ j �= i) =
Prob(Uni − Unj > 0 ∀ j �= i), which depends only on the difference
in utility, not its absolute level. When utility is decomposed into the
observed and unobserved parts, equation (2.1) expresses the choice
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probability as Pni = Prob(εnj − εni < Vni − Vnj ∀ j �= i), which also de-
pends only on differences.

The fact that only differences in utility matter has several implications
for the identification and specification of discrete choice models. In
general it means that the only parameters that can be estimated (that is,
are identified) are those that capture differences across alternatives. This
general statement takes several forms.

Alternative-Specific Constants

It is often reasonable to specify the observed part of utility to
be linear in parameters with a constant: Vnj = x ′

njβ + k j ∀ j , where xnj

is a vector of variables that relate to alternative j as faced by decision
maker n, β are coefficients of these variables, and k j is a constant that
is specific to alternative j . The alternative-specific constant for an al-
ternative captures the average effect on utility of all factors that are not
included in the model. Thus they serve a similar function to the con-
stant in a regression model, which also captures the average effect of all
unincluded factors.

When alternative-specific constants are included, the unobserved por-
tion of utility, εnj , has zero mean by construction. If εnj has a nonzero
mean when the constants are not included, then adding the constants
makes the remaining error have zero mean: that is, if Unj = x ′

njβ + ε∗
nj

with E(εnj )∗ = k j �= 0, then Unj = x ′
njβ + k j + εnj with E(εnj ) = 0. It

is reasonable, therefore, to include a constant in Vnj for each alternative.
However, since only differences in utility matter, only differences in
the alternative-specific constants are relevant, not their absolute levels.
To reflect this fact, the researcher must set the overall level of these
constants.

The concept is readily apparent in the car–bus example. A specifica-
tion of utility that takes the form

Uc = αTc + βMc + k0
c + εc,

Ub = αTb + βMb + k0
b + εb,

with k0
b − k0

c = d , is equivalent to a model with

Uc = αTc + βMc + k1
c + εc,

Ub = αTb + βMb + k1
b + εb,

where the difference in the new constants is the same as the difference
in the old constants, namely, k1

b − k1
c = d = k0

b − k0
c . Any model with

the same difference in constants is equivalent. In terms of estimation, it
is impossible to estimate the two constants themselves, since an infinite
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number of values of the two constants (any values that have the same
difference) result in the same choice probabilities.

To account for this fact, the researcher must normalize the absolute
levels of the constants. The standard procedure is to normalize one of
the constants to zero. For example, the researcher might normalize the
constant for the car alternative to zero:

Uc = αTc + βMc + εc,

Ub = αTb + βMb + kb + εb.

Under this normalization, the value of kb is d, which is the difference
in the original (unnormalized) constants. The bus constant is interpreted
as the average effect of unincluded factors on the utility of bus relative
to car.

With J alternatives, at most J − 1 alternative-specific constants can
enter the model, with one of the constants normalized to zero. It is irrel-
evant which constant is normalized to zero: the other constants are inter-
preted as being relative to whichever one is set to zero. The researcher
could normalize to some value other than zero, of course; however, there
would be no point in doing so, since normalizing to zero is easier (the
constant is simply left out of the model) and has the same effect.

Sociodemographic Variables

The same issue affects the way that socio-demographic variables
enter a model. Attributes of the alternatives, such as the time and cost
of travel on different modes, generally vary over alternatives. However,
attributes of the decision maker do not vary over alternatives. They can
only enter the model if they are specified in ways that create differences
in utility over alternatives.

Consider for example the effect of a person’s income on the decision
whether to take bus or car to work. It is reasonable to suppose that a
person’s utility is higher with higher income, whether the person takes
bus or car. Utility is specified as

Uc = αTc + βMc + θ0
c Y + εc,

Ub = αTb + βMb + θ0
b Y + kb + εb,

where Y is income and θ0
c and θ0

b capture the effects of changes in
income on the utility of taking car and bus, respectively. We expect
that θ0

c > 0 and θ0
b > 0, since greater income makes people happier no

matter what mode they take. However, θ0
c �= θ0

b , since income probably
has a different effect on the person depending on his mode of travel.
Since only differences in utility matter, the absolute levels of θ0

c and θ0
b

cannot be estimated, only their difference. To set the level, one of these
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parameters is normalized to zero. The model becomes

Uc = αTc + βMc + εc,

Ub = αTb + βMb + θbY + kb + εb,

where θb = θ0
b − θ0

c and is interpreted as the differential effect of income
on the utility of bus compared to car. The value of θb can be either positive
or negative.

Sociodemographic variables can enter utility in other ways. For ex-
ample, cost is often divided by income:

Uc = αTc + βMc/Y + εc,

Ub = αTb + βMb/Y + θbY + kb + εb.

The coefficient of cost in this specification is β/Y . Since this coefficient
decreases in Y , the model reflects the concept that cost becomes less
important in a person’s decision making, relative to other issues, when
income rises.

When sociodemographic variables are interacted with attributes of
the alternatives, there is no need to normalize the coefficients. The
sociodemographic variables affect the differences in utility through
their interaction with the attributes of the alternatives. The difference
Uc − Ub = . . . β(Mc − Mb)/Y . . . varies with income, since costs differ
over alternatives.

Number of Independent Error Terms

As given by equation (2.2), the choice probabilities take the
form

Pni =
∫

ε

I (εnj − εni < Vni − Vnj ∀ j �= i) f (εn) dεn.

This probability is a J-dimensional integral over the density of the J error
terms in εn = 〈εn1, . . . , εn J 〉. The dimension can be reduced, however,
through recognizing that only differences in utility matter. With J errors
(one for each alternative), there are J − 1 error differences. The choice
probability can be expressed as a (J − 1)-dimensional integral over the
density of these error differences:

Pni = Prob(Uni > Unj ∀ j �= i)

= Prob(εnj − εni < Vni − Vnj ∀ j �= i)

= Prob(ε̃nji < Vni − Vnj ∀ j �= i)

=
∫

I (ε̃nji < Vni − Vnj ∀ j �= i)g(ε̃ni ) d ε̃ni
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where ε̃nji = εnj − εni is the difference in errors for alternatives i and j ;
ε̃ni = 〈ε̃n1i , . . . , ε̃n J i 〉 is the (J − 1)-dimensional vector of error differ-
ences, with the . . . over all alternatives except i ; and g(·) is the density
of these error differences. Expressed in this way, the choice probability
is a (J − 1)-dimensional integral.

The density of the error differences g(·), and the density of the original
errors, f (·), are related in a particular way. Suppose a model is speci-
fied with an error for each alternative: εn = 〈εn1, . . . , εn J 〉 with density
f (εn). This model is equivalent to a model with J − 1 errors defined as
ε̃njk = εnj − εnk for any k and density g(ε̃nk) derived from f (εn). For any
f (εn), the corresponding g(ε̃nk) can be derived. However, since εn has
more elements than ε̃nk , there is an infinite number of densities for the
J error terms that give the same density for the J − 1 error differences.
Stated equivalently, any g(ε̃nk) is consistent with an infinite number of
different f (εn)’s. Since choice probabilities can always be expressed as
depending only on g(ε̃nk), one dimension of the density of f (εn) is not
identified and must be normalized by the researcher.

The normalization of f (εn) can be handled in various ways. For some
models, such as logit, the distribution of the error terms is sufficiently
restrictive that the normalization occurs automatically with the assump-
tions on the distribution. For other models, such as probit, identification
is often obtained by specifying the model only in terms of error differ-
ences, that is, by parameterizing g(·) without reference to f (·). In all but
the simplest models, the researcher needs to consider the fact that only
the density of error differences affects the probabilities and therefore is
identified. In discussing the various models in subsequent chapters, we
will return to this issue and how to handle it.

2.5.2. The Overall Scale of Utility Is Irrelevant

Just as adding a constant to the utility of all alternatives does
not change the decision maker’s choice, neither does multiplying each
alternative’s utility by a constant. The alternative with the highest utility
is the same no matter how utility is scaled. The modelU 0

nj = Vnj + εnj ∀ j
is equivalent to U 1

nj = λVnj + λεnj ∀ j for any λ > 0. To take account
of this fact, the researcher must normalize the scale of utility.

The standard way to normalize the scale of utility is to normalize
the variance of the error terms. The scale of utility and the variance
of the error terms are definitionally linked. When utility is multiplied
by λ, the variance of each εnj changes by λ2: Var(λεnj ) = λ2 Var(εnj ).
Therefore normalizing the variance of the error terms is equivalent to
normalizing the scale of utility.
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Normalization with iid Errors

If the error terms are assumed to be independently, identically
distributed (iid), then the normalization for scale is straightforward. The
researcher normalizes the error variance to some number, which is usu-
ally chosen for convenience. Since all the errors have the same variance
by assumption, normalizing the variance of any of them sets the variance
for them all.

When the observed portion of utility is linear in parameters, the nor-
malization provides a way of interpreting coefficients. Consider the
model U 0

nj = x ′
njβ + ε0

nj where the variance of the error terms is
Var(ε0

nj ) = σ 2. Suppose the research normalizes the scale by setting the
error variance to 1. The original model becomes the following equiva-
lent specification: U 1

nj = x ′
nj (β/σ ) + ε1

nj with Var(ε1
nj ) = 1. The original

coefficients β are divided by the standard deviation of the unobserved
portion of utility. The new coefficients β/σ reflect, therefore, the effect
of the observed variables relative to the standard deviation of the unob-
served factors.

The same concepts apply for whatever number the researcher chooses
for normalization. As we will see in the next chapter, the error variances
in a standard logit model are traditionally normalized to π2/6, which is
about 1.6. In this case, the preceding model becomes Unj = x ′

nj (β/σ )√
1.6 + εnj with Var(εnj ) = 1.6. The coefficients still reflect the vari-

ance of the unobserved portion of utility. The only difference is that the
coefficients are larger by a factor of

√
1.6.

While it is immaterial which number is used by the researcher for nor-
malization, interpretation of model results must take the normalization
into consideration. Suppose, for example, that a logit and an independent
probit model were both estimated on the same data. As stated earlier,
the error variance is normalized to 1.6 for logit. Suppose the researcher
normalized the probit to have error variances of 1, which is traditional
with independent probits. This difference in normalization must be kept
in mind when comparing estimates from the two models. In particu-
lar, the coefficients in the logit model will be

√
1.6 times larger than

those for the probit model, simply due to the difference in normaliza-
tion. If the researcher does not take this scale difference into account
when comparing the models, she might inadvertently think that the logit
model implies that people care more about the attributes (since the co-
efficients are larger) than implied by the probit model. For example, in
a mode choice model, suppose the estimated cost coefficient is −0.55
from a logit model and −0.45 from an independent probit model. It is
incorrect to say that the logit model implies more sensitivity to costs
than the probit model. The coefficients in one of the models must be
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adjusted to account for the difference in scale. The logit coefficients can
be divided by

√
1.6, so that the error variance is 1, just as in the probit

model. With this adjustment, the comparable coefficients are −0.43 for
the logit model and −0.45 for the probit model. The logit model implies
less price sensitivity than the probit. Instead, the probit coefficients could
be converted to the scale of the logit coefficients by multiplying them
by

√
1.6, in which case the comparable coefficients would be −0.55 for

logit and −0.57 for probit.
A similar issue of interpretation arises when the same model is es-

timated on different data sets. The relative scale of the estimates from
the two data sets reflects the relative variance of unobserved factors in
the data sets. Suppose mode choice models were estimated in Chicago
and Boston. For Chicago, the estimated cost coefficient is −0.55 and
the estimated coefficient of time is −1.78. For Boston, the estimates
are −0.81 and −2.69. The ratio of the cost coefficient to the time co-
efficient is very similar in the two cities: 0.309 in Chicago and 0.301
in Boston. However, the scale of the coefficients is about fifty percent
higher for Boston than for Chicago. This scale difference means that
the unobserved portion of utility has less variance in Boston than in
Chicago: since the coefficients are divided by the standard deviation of
the unobserved portion of utility, lower coefficients mean higher stan-
dard deviation and hence variance. The models are revealing that factors
other than time and cost have less effect on people in Boston than in
Chicago. Stated more intuitively, time and cost have more importance,
relative to unobserved factors, in Boston than in Chicago, which is con-
sistent with the larger scale of the coefficients for Boston.

Normalization with Heteroskedastic Errors

In some situations, the variance of the error terms can be dif-
ferent for different segments of the population. The researcher cannot
set the overall level of utility by normalizing the variance of the errors
for all segments, since the variance is different in different segments.
Instead, the researcher sets the overall scale of utility by normalizing the
variance for one segment, and then estimates the variance (and hence
scale) for each segment relative to this one segment.

For example, consider the situation described in the previous section,
where the unobserved factors have greater variance in Chicago than
in Boston. If separate models are estimated for Chicago and Boston,
then the variance of the error term is normalized separately for each
model. The scale of the parameters in each model reflects the variance
of unincluded factors in that area. Suppose, however, that the researcher
wants to estimate a model on data for both Chicago and Boston. She
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cannot normalize the variance of the unobserved factors for all travelers
to the same number, since the variance is different for travelers in Boston
than for those in Chicago. Instead, the researcher sets the overall scale
of utility by normalizing the variance in one area (say Boston) and then
estimates the variance in the other area relative to that in the first area
(the variance in Chicago relative to that in Boston).

The model in its original form is

Unj = αTnj + βMnj + εB
nj ∀n in Boston

Unj = αTnj + βMnj + εC
nj ∀n in Chicago,

where the variance of εB
nj is not the same as the variance of εC

nj . Label
the ratio of variances as k = Var(εC

nj )/Var(εB
nj ). We can divide the utility

for travelers in Chicago by
√

k; this division doesn’t affect their choices,
of course, since the scale of utility doesn’t matter. However, doing so
allows us to rewrite the model as

Unj = αTnj + βMnj + εnj ∀n in Boston

Unj = (α/
√

k)Tnj + (β/
√

k)Mnj + εnj ∀n in Chicago,

where now the variance of εnj is the same for all n in both cities (since
Var(εC

nj/
√

k) = (1/k)Var(εC
nj ) = [Var(εB

nj )/Var(εC
nj )]Var(εC

nj ) = Var(εB
nj ).

The scale of utility is set by normalizing the variance of εnj . The param-
eter k, which is often called the scale parameter, is estimated along with
β and α. The estimated value k̂ of k tells the researcher the variance of
unobserved factors in Chicago relative to that in Boston. For example,
k̂ = 1.2 implies that the variance of unobserved factors is twenty percent
greater in Chicago than in Boston.

The variance of the error term can differ over geographic regions,
data sets, time, or other factors. In all cases, the researcher sets the
overall scale of utility by normalizing one of the variances and then
estimating the other variances relative to the normalized one. Swait and
Louviere (1993) discuss the role of the scale parameter in discrete choice
models, describing the variety of reasons that variances can differ over
observations. As well as the traditional concept of variance in unobserved
factors, psychological factors can come into play, depending on the
choice situation and the interpretation of the researcher. For example,
Bradley and Daly (1994) allow the scale parameter to vary over stated
preference experiments in order to allow for respondents’ fatigue in
answering the survey questions. Ben-Akiva and Morikawa (1990) allow
the scale parameter to differ for respondents’ stated intentions versus
their actual market choices.
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Normalization with Correlated Errors

In the discussion so far we have assumed that εnj is independent
over alternatives. When the errors are correlated over alternatives, nor-
malizing for scale is more complex. We have talked in terms of setting
the scale of utility. However, since only differences in utility matter, it is
more appropriate to talk in terms of setting the scale of utility differences.
When errors are correlated, normalizing the variance of the error for one
alternative is not sufficient to set the scale of utility differences.

The issue is most readily described in terms of a four-alternative
example. The utility for the four alternatives is Unj = Vnj + εnj , j =
1, . . . , 4. The error vector εn = 〈εn1, . . . , εn4〉 has zero mean and co-
variance matrix

(2.3) 
 =




σ11 σ12 σ13 σ14

· σ22 σ23 σ24

· · σ33 σ34

· · · σ44


 ,

where the dots refer to the corresponding elements in the upper part of
the symmetric matrix.

Since only differences in utility matter, this model is equivalent to
one in which all utilities are differenced from, say, the first alterna-
tive. The equivalent model is Ũnj1 = Ṽnj1 − ε̃nj1 for j = 2, 3, 4, where
Ũnj1 = Unj − Un1, Ṽnj1 = Vnj − Vn1, and the vector of error differ-
ences is ε̃n1 = 〈(εn2 − εn1), (εn3 − εn1), (εn4 − εn1)〉. The variance of
each error difference depends on the variances and covariances of the
original errors. For example, the variance of the difference between
the first and second errors is Var(ε̃n21) = Var(εn2 − εn1) = Var(εn1) +
Var(εn2) − 2 Cov(εn1, εn2) = σ11 + σ22 − 2σ12. We can similarly calcu-
late the covariance between ε̃n21, which is the difference between the first
and second errors, and ε̃n31, which is the difference between the first and
third errors: Cov(ε̃n21, ε̃n31) = E(εn2 − εn1)(εn3 − εn1) = E(εn2εn3 −
εn2εn1 − εn3εn1 + εn1εn1) = σ23 − σ21 − σ31 + σ11. The covariance
matrix for the vector of error differences becomes


̃1 =
(

σ11 + σ22 − 2σ12 σ11 + σ23 − σ12 − σ13 σ11 + σ24 − σ12 − σ14

· σ11 + σ33 − 2σ13 σ11 + σ34 − σ13 − σ14

· · σ11 + σ44 − 2σ14

)
.

Setting the variance of one of the original errors is not sufficient to
set the variance of the error differences. For example, if the variance
for the first alternative is set to some number σ11 = k, the variance of
the difference between the errors for the first two alternatives becomes
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k + σ22 − σ12. An infinite number of values for σ22 − σ12 provide equiv-
alent models.

A common way to set the scale of utility when errors are not iid
is to normalize the variance of one of the error differences to some
number. Setting the variance of an error difference sets the scale of utility
differences and hence of utility. Suppose we normalize the variance of
ε̃n21 to 1. The covariance matrix for the error differences, expressed in
terms of the covariances of the original errors, becomes

(2.4)


1 (σ11 + σ23 − σ12 − σ13)/m (σ11 + σ24 − σ12 − σ14)/m

· (σ11 + σ33 − 2σ13)/m (σ11 + σ34 − σ13 − σ14)/m
· · (σ11 + σ44 − 2σ14)/m


 ,

where m = σ11 + σ22 − 2σ12. Utility is divided by
√

σ11 + σ22 − 2σ12

to obtain this scaling.
Note that when the error terms are iid, normalizing the variance of

one of these errors automatically normalizes the variance of the error
differences. With iid errors, σ j j = σi i and σi j = 0 for i �= j . Therefore,
if σ11 is normalized to k, then the variance of the error difference be-
comes σ11 + σ22 − 2σ12 = k + k − 0 = 2k. The variance of the error
difference is indeed being normalized, the same as with non-iid errors.

Normalization has implications for the number of parameters that can
be estimated in the covariance matrix. The covariance of the original
errors, 
 in equation (2.3), has ten elements in our four-alternative ex-
ample. However, the covariance matrix of the error differences has six
elements, one of which is normalized to set the scale of utility differ-
ences. The covariance matrix for error differences with the variance of
the first error difference normalized to k takes the form

(2.5) 
̃∗
1 =


 k ωab ωac

· ωbb ωbc

· · ωcc


 ,

which has only five parameters. On recognizing that only differences
matter and that the scale of utility is arbitrary, the number of covariance
parameters drops from ten to five. A model with J alternatives has at
most J (J − 1)/2 − 1 covariance parameters after normalization.

Interpretation of the model is affected by the normalization. Suppose
for example that the elements of matrix (2.5) were estimated. The param-
eter ωbb is the variance of the difference between the errors for the first
and third alternatives relative to the variance of the difference between
the errors for the first and second alternatives. Complicating interpreta-
tion even further is the fact that the variance of the difference between
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the errors for two alternatives reflects the variances of both as well as
their covariance.

As we will see, the normalization of logit and nested logit models is
automatic with the distributional assumptions that are placed on the error
terms. Interpretation under these assumptions is relatively straightfor-
ward. For mixed logit and probit, fewer assumptions are placed on the
distribution of error terms, so that normalization is not automatic. The
researcher must keep the normalization issues in mind when specifying
and interpreting a model. We return to this topic when discussing each
discrete choice model in subsequent chapters.

2.6 Aggregation

Discrete choice models operate at the level of individual decision makers.
However, the researcher is usually interested in some aggregate measure,
such as the average probability within a population or the average re-
sponse to a change in some factor.

In linear regression models, estimates of aggregate values of the de-
pendent variable are obtained by inserting aggregate values of the ex-
planatory variables into the model. For example, suppose hn is housing
expenditures of person n, yn is the income of the person, and the model
relating them is hn = α + βyn . Since this model is linear, the average
expenditure on housing is simply calculated as α + β ȳ, where ȳ is av-
erage income. Similarly, the average response to a one-unit change in
income is simply β, since β is the response for each person.

Discrete choice models are not linear in explanatory variables, and
consequently, inserting aggregate values of the explanatory variables
into the models will not provide an unbiased estimate of the average
probability or average response. The point can be made visually. Con-
sider Figure 2.1, which gives the probabilities of choosing a particular
alternative for two individuals with the observed portion of their utility
(their representative utility) being a and b. The average probability is
the average of the probabilities for the two people, namely, (Pa + Pb)/2.
The average representative utility is (a + b)/2, and the probability eval-
uated at this average is the point on the curve above (a + b)/2. As shown
for this case, the average probability is greater than the probability eval-
uated at the average representative utility. In general, the probability
evaluated at the average representative utility underestimates the aver-
age probability when the individuals’ choice probabilities are low and
overestimates when they are high.

Estimating the average response by calculating derivatives and elastic-
ities at the average of the explanatory variables is similarly problematic.
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Choice 
probability

Representative 
utility

a ba + b
2

Pb

Pa

Average 
probability

Probability at 
average

Figure 2.1. Difference between average probability and probability calculated
at average representative utility.

Choice 
probability

Representative 
utility

a ba + b
2

Figure 2.2. Difference between average response and response calculated at
average representative utility.

Consider Figure 2.2, depicting two individuals with representative util-
ities a and b. The derivative of the choice probability for a change in
representative utility is small for both of these people (the slope of the
curve above a and b). Consequently, the average derivative is also small.
However, the derivative at the average representative utility is very large
(the slope above (a + b)/2). Estimating the average response in this way
can be seriously misleading. In fact, Talvitie (1976) found, in a mode
choice situation, that elasticities at the average representative utility can
be as much as two or three times greater or less than the average of the
individual elasticities.
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Aggregate outcome variables can be obtained consistently from dis-
crete choice models in two ways, by sample enumeration or segmenta-
tion. We discuss each approach in the following sections.

2.6.1. Sample Enumeration

The most straightforward, and by far the most popular, approach
is sample enumeration, by which the choice probabilities of each deci-
sion maker in a sample are summed, or averaged, over decision makers.
Consider a discrete choice model that gives probability Pni that decision
maker n will choose alternative i from a set of alternatives. Suppose
a sample of N decision makers, labeled n = 1, . . . , N , is drawn from
the population for which aggregate statistics are required. (This sample
might be the sample on which the model was estimated. However, it
might also be a different sample, collected in a different area or at a
later date than the estimation sample.) Each sampled decision maker n
has some weight associated with him, wn , representing the number of
decision makers similar to him in the population. For samples based on
exogenous factors, this weight is the reciprocal of the probability that
the decision maker was selected into the sample. If the sample is purely
random, then wn is the same for all n; and if the sample is stratified
random, then wn is the same for all n within a stratum.

A consistent estimate of the total number of decision makers in the
population who choose alternative i , labeled N̂i , is simply the weighted
sum of the individual probabilities:

N̂i =
∑

n

wn Pni .

The average probability, which is the estimated market share, is N̂i/N .
Average derivatives and elasticities are similarly obtained by calculating
the derivative and elasticity for each sampled person and taking the
weighted average.

2.6.2. Segmentation

When the number of explanatory variables is small, and those
variables take only a few values, it is possible to estimate aggregate
outcomes without utilizing a sample of decision makers. Consider, for
example, a model with only two variables entering the representative
utility of each alternative: education level and gender. Suppose the edu-
cation variable consists of four categories: did not complete high school,
completed high school but did not attend college, attended college but
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did not receive a degree, received a college degree. Then the total num-
ber of different types of decision makers (called segments) is eight: the
four education levels for each of the two genders. Choice probabilities
vary only over these eight segments, not over individuals within each
segment.

If the researcher has data on the number of people in each segment,
then the aggregate outcome variables can be estimated by calculating
the choice probability for each segment and taking the weighted sum of
these probabilities. The number of people estimated to choose alternative
i is

N̂i =
8∑

s=1

ws Psi ,

where Psi is the probability that a decision maker in segment s chooses
alternative i , and ws is the number of decision makers in segment s.

2.7 Forecasting

For forecasting into some future year, the procedures described earlier
for aggregate variables are applied. However, the exogenous variables
and/or the weights are adjusted to reflect changes that are anticipated
over time. With sample enumeration, the sample is adjusted so that it
looks like a sample that would be drawn in the future year. For example,
to forecast the number of people who will choose a given alternative five
years in the future, a sample drawn from the current year is adjusted to
reflect changes in socioeconomic and other factors that are expected to
occur over the next five years. The sample is adjusted by (1) changing
the value of the variables associated with each sampled decision maker
(e.g., increasing each decision maker’s income to represent real income
growth over time), and/or (2) changing the weight attached to each de-
cision maker to reflect changes over time in the number of decision
makers in the population that are similar to the sampled decision maker
(e.g., increasing the weights for one-person households and decreasing
weights for large households to reflect expected decreases in household
size over time).

For the segmentation approach, changes in explanatory variables over
time are represented by changes in the number of decision makers in
each segment. The explanatory variables themselves cannot logically be
adjusted, since the distinct values of the explanatory variables define the
segments. Changing the variables associated with a decision maker in
one segment simply shifts the decision maker to another segment.
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2.8 Recalibration of Constants

As described in Section 2.5.1, alternative-specific constants are often
included in a model to capture the average effect of unobserved factors.
In forecasting, it is often useful to adjust these constants, to reflect the
fact that unobserved factors are different for the forecast area or year
compared to the estimation sample. Market-share data from the forecast
area can be used to recalibrate the constants appropriately. The recali-
brated model can then be used to predict changes in market shares due
to changes in explanatory factors.

An iterative process is used to recalibrate the constants. Let α0
j be

the estimated alternative-specific constant for alternative j . The super-
script 0 is used to indicate that these are the starting values in the iterative
process. Let Si denote the share of decision makers in the forecast area
that choose alternative j in the base year (usually, the latest year for
which such data are available.) Using the discrete choice model with
its original values of α0

j ∀ j , predict the share of decision makers in the
forecast area who will choose each alternative. Label these predictions
Ŝ j

0 ∀ j . Compare the predicted shares with the actual shares. If the actual
share for an alternative exceeds the predicted share, raise the constant
for that alternative. Lower the constant if the actual share is below the
predicted. An effective adjustment is

α1
j = α0

j + ln
(
Sj/Ŝ j

0
)
.

With the new constants, predict the share again, compare with the actual
shares, and if needed adjust the constants again. The process is repeated
until the forecasted shares are sufficiently close to the actual shares. The
model with these recalibrated constants is then used to predict changes
from base-year shares due to changes in observed factors that affect
decision makers’ choices.
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3 Logit

3.1 Choice Probabilities

By far the easiest and most widely used discrete choice model is logit.
Its popularity is due to the fact that the formula for the choice proba-
bilities takes a closed form and is readily interpretable. Originally, the
logit formula was derived by Luce (1959) from assumptions about the
characteristics of choice probabilities, namely the independence from ir-
relevant alternatives (IIA) property discussed in Section 3.3.2. Marschak
(1960) showed that these axioms implied that the model is consistent
with utility maximization. The relation of the logit formula to the distri-
bution of unobserved utility (as opposed to the characteristics of choice
probabilities) was developed by Marley, as cited by Luce and Suppes
(1965), who showed that the extreme value distribution leads to the
logit formula. McFadden (1974) completed the analysis by showing the
converse: that the logit formula for the choice probabilities necessarily
implies that unobserved utility is distributed extreme value. In his Nobel
lecture, McFadden (2001) provides a fascinating history of the develop-
ment of this path-breaking model.

To derive the logit model, we use the general notation from Chapter 2
and add a specific distribution for unobserved utility. A decision maker,
labeled n, faces J alternatives. The utility that the decision maker obtains
from alternative j is decomposed into (1) a part labeled Vnj that is known
by the researcher up to some parameters, and (2) an unknown part εnj

that is treated by the researcher as random: Unj = Vnj + εnj ∀ j . The logit
model is obtained by assuming that each εnj is independently, identically
distributed extreme value. The distribution is also called Gumbel and
type I extreme value (and sometimes, mistakenly, Weibull). The density
for each unobserved component of utility is

(3.1) f (εnj ) = e−εnj e−e−εnj
,

and the cumulative distribution is

(3.2) F(εnj ) = e−e−εnj
.

38
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The variance of this distribution is π2/6. By assuming the variance is
π2/6, we are implicitly normalizing the scale of utility, as discussed in
Section 2.5. We return to this issue, and its relevance to interpretation,
in the next section. The mean of the extreme value distribution is not
zero; however, the mean is immaterial, since only differences in utility
matter (see Chapter 2), and the difference between two random terms
that have the same mean has itself a mean of zero.

The difference between two extreme value variables is distributed
logistic. That is, if εnj and εni are iid extreme value, then ε∗

nji = εnj − εni

follows the logistic distribution

(3.3) F
(
ε∗

nji

) = eε∗
nji

1 + eε∗
nji

.

This formula is sometimes used in describing binary logit models, that
is, models with two alternatives. Using the extreme value distribution for
the errors (and hence the logistic distribution for the error differences)
is nearly the same as assuming that the errors are independently normal.
The extreme value distribution gives slightly fatter tails than a normal,
which means that it allows for slightly more aberrant behavior than the
normal. Usually, however, the difference between extreme value and
independent normal errors is indistinguishable empirically.

The key assumption is not so much the shape of the distribution as
that the errors are independent of each other. This independence means
that the unobserved portion of utility for one alternative is unrelated
to the unobserved portion of utility for another alternative. It is a fairly
restrictive assumption, and the development of other models such as
those described in Chapters 4–6 has arisen largely for the purpose of
avoiding this assumption and allowing for correlated errors.

It is important to realize that the independence assumption is not as
restrictive as it might at first seem, and in fact can be interpreted as a
natural outcome of a well-specified model. Recall from Chapter 2 that
εnj is defined as the difference between the utility that the decision maker
actually obtains, Unj , and the representation of utility that the researcher
has developed using observed variables, Vnj . As such, εnj and its distri-
bution depend on the researcher’s specification of representative utility;
it is not defined by the choice situation per se. In this light, the assump-
tion of independence attains a different stature. Under independence, the
error for one alternative provides no information to the researcher about
the error for another alternative. Stated equivalently, the researcher has
specified Vnj sufficiently that the remaining, unobserved portion of utility
is essentially “white noise.” In a deep sense, the ultimate goal of the
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researcher is to represent utility so well that the only remaining aspects
constitute simply white noise; that is, the goal is to specify utility well
enough that a logit model is appropriate. Seen in this way, the logit model
is the ideal rather than a restriction.

If the researcher thinks that the unobserved portion of utility is cor-
related over alternatives given her specification of representative utility,
then she has three options: (1) use a different model that allows for cor-
related errors, such as those described in Chapters 4–6, (2) respecify
representative utility so that the source of the correlation is captured
explicitly and thus the remaining errors are independent, or (3) use the
logit model under the current specification of representative utility, con-
sidering the model to be an approximation. The viability of the last
option depends, of course, on the goals of the research. Violations of
the logit assumptions seem to have less effect when estimating average
preferences than when forecasting substitution patterns. These issues
are discussed in subsequent sections.

We now derive the logit choice probabilities, following McFadden
(1974). The probability that decision maker n chooses alternative i is

Pni = Prob(Vni + εni > Vnj + εnj ∀ j �= i)

= Prob(εnj < εni + Vni − Vnj ∀ j �= i).(3.4)

If εni is considered given, this expression is the cumulative distribution
for each εnj evaluated at εni + Vni − Vnj , which, according to (3.2),
is exp(− exp(−(εni + Vni − Vnj ))). Since the ε’s are independent, this
cumulative distribution over all j �= i is the product of the individual
cumulative distributions:

Pni | εni =
∏
j �=i

e−e−(εni +Vni −Vnj )

.

Of course, εni is not given, and so the choice probability is the integral
of Pni | εni over all values of εni weighted by its density (3.1):

(3.5) Pni =
∫ (∏

j �=i

e−e−(εni +Vni −Vnj )

)
e−εni e−e−εni dεni .

Some algebraic manipulation of this integral results in a succinct, closed-
form expression:

(3.6) Pni = eVni∑
j eVnj

,

which is the logit choice probability. The algebra that obtains (3.6) from
(3.5) is given in the last section of this chapter.



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-03Drv CB495/Train KEY BOARDED August 20, 2002 12:14 Char Count= 0

Logit 41

Representative utility is usually specified to be linear in parameters:
Vnj = β ′xnj , where xnj is a vector of observed variables relating to al-
ternative j . With this specification, the logit probabilities become

Pni = eβ ′xni∑
j eβ ′xnj

.

Under fairly general conditions, any function can be approximated ar-
bitrarily closely by one that is linear in parameters. The assumption
is therefore fairly benign. Importantly, McFadden (1974) demonstrated
that the log-likelihood function with these choice probabilities is glob-
ally concave in parameters β, which helps in the numerical maximization
procedures (as discussed in Chapter 8). Numerous computer packages
contain routines for estimation of logit models with linear-in-parameters
representative utility.

The logit probabilities exhibit several desirable properties. First, Pni is
necessarily between zero and one, as required for a probability. When Vni

rises, reflecting an improvement in the observed attributes of the alter-
native, with Vnj ∀ j �= i held constant, Pni approaches one. And Pni ap-
proaches zero when Vni decreases, since the exponential in the numerator
of (3.6) approaches zero as Vni approaches −∞. The logit probability for
an alternative is never exactly zero. If the researcher believes that an alter-
native has actually no chance of being chosen by a decision maker, the re-
searcher can exclude that alternative from the choice set. A probability of
exactly 1 is obtained only if the choice set consists of a single alternative.

Second, the choice probabilities for all alternatives sum to one:∑J
i=1 Pni = ∑

i exp(Vni )/
∑

j exp(Vnj ) = 1. The decision maker neces-
sarily chooses one of the alternatives. The denominator in (3.6) is simply
the sum of the numerator over all alternatives, which gives this summing-
up property automatically. With logit, as well as with some more complex
models such as the nested logit models of Chapter 4, interpretation of
the choice probabilities is facilitated by recognition that the denominator
serves to assure that the probabilities sum to one. In other models, such
as mixed logit and probit, there is no denominator per se to interpret in
this way.

The relation of the logit probability to representative utility is sigmoid,
or S-shaped, as shown in Figure 3.1. This shape has implications for the
impact of changes in explanatory variables. If the representative utility of
an alternative is very low compared with other alternatives, a small in-
crease in the utility of the alternative has little effect on the probability of
its being chosen: the other alternatives are still sufficiently better such that
this small improvement doesn’t help much. Similarly, if one alternative
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Pni

Vni

1

0

Figure 3.1. Graph of logit curve.

is far superior to the others in observed attributes, a further increase in its
representative utility has little effect on the choice probability. The point
at which the increase in representative utility has the greatest effect on
the probability of its being chosen is when the probability is close to 0.5,
meaning a 50–50 chance of the alternative being chosen. In this case, a
small improvement tips the balance in people’s choices, inducing a large
change in probability. The sigmoid shape of logit probabilities is shared
by most discrete choice models and has important implications for policy
makers. For example, improving bus service in areas where the service
is so poor that few travelers take the bus would be less effective, in terms
of transit ridership, than making the same improvement in areas where
bus service is already sufficiently good to induce a moderate share of
travelers to choose it (but not so good that nearly everyone does).

The logit probability formula is easily interpretable in the context
of an example. Consider a binary choice situation first: a household’s
choice between a gas and an electric heating system. Suppose that the
utility the household obtains from each type of system depends only
on the purchase price, the annual operating cost, and the household’s
view of the convenience and quality of heating with each type of system
and the relative aesthetics of the systems within the house. The first two
of these factors can be observed by the researcher, but the researcher
cannot observe the others. If the researcher considers the observed part
of utility to be a linear function of the observed factors, then the utility
of each heating system can be written as: Ug = β1PPg + β2OCg + εg

and Ue = β1PPe + β2OCe + εe, where the subscripts g and e denote
gas and electric, PP and OC are the purchase price and operating cost,
β1 and β2 are scalar parameters, and the subscript n for the household
is suppressed. Since higher costs mean less money to spend on other
goods, we expect utility to drop as purchase price or operating cost rises
(with all else held constant): β1 < 0 and β2 < 0.
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The unobserved component of utility for each alternative, εg and εe,
varies over households depending on how each household views the
quality, convenience and aesthetics of each type of system. If these unob-
served components are distributed iid extreme value, then the probability
that the household will choose gas heating is

(3.7) Pg = eβ1PPg+β2OCg

eβ1PPg+β2OCg + eβ1PPe+β2OCe

and the probability of electric heating is the same but with exp(β1PPe +
β2OCe) as the numerator. The probability of choosing a gas system
decreases if its purchase price or operating cost rises while that of the
electric system remains the same (assuming that β1 and β2 are negative,
as expected).

As in most discrete choice models, the ratio of coefficients in this
example has economic meaning. In particular, the ratio β2/β1 represents
the household’s willingness to pay for operating-cost reductions. If β1

were estimated as −0.20 and β2 as −1.14, these estimates would imply
that households are willing to pay up to (−1.14)/(−0.20) = 5.70 dollars
more for a system whose annual operating costs are one dollar less. This
relation is derived as follows. By definition, a household’s willingness
to pay for operating-cost reductions is the increase in purchase price
that keeps the household’s utility constant given a reduction in operating
costs. We take the total derivative of utility with respect to purchase price
and operating cost and set this derivative to zero so that utility doesn’t
change: dU = β1 dPP + β2 dOC = 0. We then solve for the change in
purchase price that keeps utility constant (i.e., satisfies this equation) for
a change in operating costs: ∂PP/∂OC = −β2/β1. The negative sign
indicates that the two changes are in the opposite direction: to keep
utility constant, purchase price rises when operating cost decreases.

In this binary choice situation, the choice probabilities can be ex-
pressed in another, even more succinct form. Dividing the numerator and
denominator of (3.7) by the numerator, and recognizing that exp(a)/
exp(b) = exp(a − b), we have

Pg = 1

1 + e(β1PPe+β2OCe)−(β1PPg+β2OCg) .

In general, binary logit probabilities with representative utilities Vn1

and Vn2 can be written Pn1 = 1/(1 + exp(Vn2 − Vn1)) and Pn2 = 1/(1 +
exp(Vn1 − Vn2)). If only demographics of the decision maker, sn , enter
the model, and the coefficients of these demographic variables are nor-
malized to zero for the first alternative (as described in Chapter 2), the
probability of the first alternative is Pn1 = 1/(1 + eα′sn ), which is the
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form that is used in most textbooks and computer manuals for binary
logit.

Multinomial choice is a simple extension. Suppose there is a third
type of heating system, namely oil-fueled. The utility of the oil system
is specified as the same form as for the electric and gas systems: Uo =
β1PPo + β2OCo + εo. With this extra option available, the probability
that the household chooses a gas system is

Pg = eβ1PPg+β2OCg

eβ1PPg+β2OCg + eβ1PPe+β2OCe + eβ1PPo+β2OCo
,

which is the same as (3.7) except that an extra term is included in the
denominator to represent the oil heater. Since the denominator is larger
while the numerator is the same, the probability of choosing a gas system
is smaller when an oil system is an option than when not, as one would
expect in the real world.

3.2 The Scale Parameter

In the previous section we derived the logit formula under the assumption
that the unobserved factors are distributed extreme value with variance
π2/6. Setting the variance to π2/6 is equivalent to normalizing the model
for the scale of utility, as discussed in Section 2.5. It is useful to make
these concepts more explicit, to show the role that the variance of the
unobserved factors plays in logit models.

In general, utility can be expressed as U ∗
nj = Vnj + ε∗

nj , where the un-
observed portion has variance σ 2 × (π2/6). That is, the variance is any
number, re-expressed as a multiple of π2/6. Since the scale of utility is
irrelevant to behavior, utility can be divided by σ without changing be-
havior. Utility becomes Unj = Vnj/σ + εnj where εnj = ε∗

nj/σ . Now the
unobserved portion has variance π2/6: Var(εnj ) = Var(ε∗

nj/σ ) = (1/σ 2)
Var(ε∗

nj ) = (1/σ 2) × σ 2 × (π2/6) = π2/6. The choice probability is

Pni = eVni /σ∑
j eVnj /σ

,

which is the same formula as in equation (3.6) but with the representative
utility divided by σ . If Vnj is linear in parameters with coefficient β∗,
the choice probabilities become

Pni = e(β∗/σ )′xni∑
j e(β∗/σ )′xnj

.

Each of the coefficients is scaled by 1/σ . The parameter σ is called the
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scale parameter, because it scales the coefficients to reflect the variance
of the unobserved portion of utility.

Only the ratio β∗/σ can be estimated; β∗ and σ are not separately
identified. Usually, the model is expressed in its scaled form, with
β = β∗/σ , which gives the standard logit expression

Pni = eβ ′xni∑
j eβ ′xnj

.

The parameters β are estimated, but for interpretation it is useful to
recognize that these estimated parameters are actually estimates of the
“original” coefficients β∗ divided by the scale parameter σ . The coef-
ficients that are estimated indicate the effect of each observed variable
relative to the variance of the unobserved factors. A larger variance in
unobserved factors leads to smaller coefficients, even if the observed
factors have the same effect on utility (i.e., higher σ means lower β even
if β∗ is the same).

The scale parameter does not affect the ratio of any two coefficients,
since it drops out of the ratio; for example, β1/β2 = (β∗

1 /σ )/(β∗
2 /σ ) =

β∗
1 /β∗

2 , where the subscripts refer to the first and second coefficients.
Willingness to pay, values of time, and other measures of marginal rates
of substitution are not affected by the scale parameter. Only the inter-
pretation of the magnitudes of all coefficients is affected.

So far we have assumed that the variance of the unobserved factors
is the same for all decision makers, since the same σ is used for all n.
Suppose instead that the unobserved factors have greater variance for
some decision makers than others. In Section 2.5, we discuss a situation
where the variance of unobserved factors is different in Boston than
in Chicago. Denote the variance for all decision makers in Boston as
(σ B)2(π2/6) and that for decision makers in Chicago as (σ C )2(π2/6).
The ratio of variance in Chicago to that in Boston is k = (σ C/σ B)2. The
choice probabilities for people in Boston become

Pni = eβ ′xni∑
j eβ ′xnj

,

and for people in Chicago

Pni = e(β/
√

k)′xni∑
j e(β/

√
k)′xnj

,

where β = β∗/σ B . The ratio of variances k is estimated along with the
coefficients β. The estimated β’s are interpreted as being relative to the
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variance of unobserved factors in Boston, and the estimated k provides
information on the variance in Chicago relative to that in Boston. More
complex relations can be obtained by allowing the variance for an ob-
servation to depend on more factors. Also, data from different data sets
can often be expected to have different variance for unobserved fac-
tors, giving a different scale parameter for each data set. Ben-Akiva and
Morikawa (1990) and Swait and Louviere (1993) discuss these issues
and provide more examples.

3.3 Power and Limitations of Logit

Three topics elucidate the power of logit models to represent choice
behavior, as well as delineating the limits to that power. These topics
are: taste variation, substitution patterns, and repeated choices over time.
The applicability of logit models can be summarized as follows:

1. Logit can represent systematic taste variation (that is, taste vari-
ation that relates to observed characteristics of the decision
maker) but not random taste variation (differences in tastes that
cannot be linked to observed characteristics).

2. The logit model implies proportional substitution across alterna-
tives, given the researcher’s specification of representative util-
ity. To capture more flexible forms of substitution, other models
are needed.

3. If unobserved factors are independent over time in repeated
choice situations, then logit can capture the dynamics of re-
peated choice, including state dependence. However, logit can-
not handle situations where unobserved factors are correlated
over time.

We elaborate each of these statements in the next three subsections.

3.3.1. Taste Variation

The value or importance that decision makers place on each
attribute of the alternatives varies, in general, over decision makers. For
example, the size of a car is probably more important to households with
many members than to smaller households. Low-income households are
probably more concerned about the purchase price of a good, relative
to its other characteristics, than higher-income households. In choosing
which neighborhood to live in, households with young children will be
more concerned about the quality of schools than those without children,
and so on. Decision makers’ tastes also vary for reasons that are not
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linked to observed demographic characteristics, just because different
people are different. Two people who have the same income, education,
etc., will make different choices, reflecting their individual preferences
and concerns.

Logit models can capture taste variations, but only within limits. In
particular, tastes that vary systematically with respect to observed vari-
ables can be incorporated in logit models, while tastes that vary with
unobserved variables or purely randomly cannot be handled. The fol-
lowing example illustrates the distinction.

Consider households’ choice among makes and models of cars to
buy. Suppose for simplicity that the only two attributes of cars that the
researcher observes are the purchase price, PP j for make/model j , and
inches of shoulder room, SR j , which is a measure of the interior size
of a car. The value that households place on these two attributes varies
over households, and so utility is written as

(3.8) Unj = αnSR j + βnPP j + εnj ,

where αn and βn are parameters specific to household n.
The parameters vary over households reflecting differences in taste.

Suppose for example that the value of shoulder room varies with the
number of members in the households, Mn , but nothing else:

αn = ρMn,

so that as Mn increases, the value of shoulder room, αn , also increases.
Similarly, suppose the importance of purchase price is inversely related
to income, In , so that low-income households place more importance on
purchase price:

βn = θ/In.

Substituting these relations into (3.8) produces

Unj = ρ(MnSR j ) + θ (PP j/In) + εnj .

Under the assumption that each εnj is iid extreme value, a standard logit
model obtains with two variables entering representative utility, both
of which are an interaction of a vehicle attribute with a household
characteristic.

Other specifications for the variation in tastes can be substituted. For
example, the value of shoulder room might be assumed to increase with
household size, but at a decreasing rate, so that αn = ρMn + φM2

n where
ρ is expected to be positive and φ negative. Then Unj = ρ(MnSR j ) +
φ(M2

n SR j ) + θ (PP j/In) + εnj , which results in a logit model with three
variables entering the representative utility.
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The limitation of the logit model arises when we attempt to allow tastes
to vary with respect to unobserved variables or purely randomly. Suppose
for example that the value of shoulder room varied with household size
plus some other factors (e.g., size of the people themselves, or frequency
with which the household travels together) that are unobserved by the
researcher and hence considered random:

αn = ρMn + µn,

where µn is a random variable. Similarly, the importance of purchase
price consists of its observed and unobserved components:

βn = θ/In + ηn.

Substituting into (3.8) produces

Unj = ρ(MnSR j ) + µnSR j + θ (PP j/In) + ηnPP j + εnj .

Since µn and ηn are not observed, the terms µnSR j and ηnPP j become
part of the unobserved component of utility,

Unj = ρ(MnSR j ) + θ (PP j/In) + ε̃nj ,

where ε̃nj = µnSR j + ηnPP j + εnj . The new error terms ε̃nj cannot pos-
sibly be distributed independently and identically as required for the
logit formulation. Since µn and ηn enter each alternative, ε̃nj is neces-
sarily correlated over alternatives: Cov(ε̃nj , ε̃nk) = Var(µn)SR j SRk +
Var(ηn)PP j PPk �= 0 for any two cars j and k. Furthermore, since SR j

and PP j vary over alternatives, the variance of ε̃nj varies over al-
ternatives, violating the assumption of identically distributed errors:
Var(ε̃nj ) = Var(µn)SR2

j + Var(ηn)PP2
j + Var(εnj ), which is different for

different j .
This example illustrates the general point that when tastes vary sys-

tematically in the population in relation to observed variables, the varia-
tion can be incorporated into logit models. However, if taste variation is
at least partly random, logit is a misspecification. As an approximation,
logit might be able to capture the average tastes fairly well even when
tastes are random, since the logit formula seems to be fairly robust to
misspecifications. The researcher might therefore choose to use logit
even when she knows that tastes have a random component, for the sake
of simplicity. However, there is no guarantee that a logit model will
approximate the average tastes. And even if it does, logit does not pro-
vide information on the distribution of tastes around the average. This
distribution can be important in many situations, such as forecasting the
penetration of a new product that appeals to a minority of people rather
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than to the average tastes. To incorporate random taste variation appro-
priately and fully, a probit or mixed logit model can be used instead.

3.3.2. Substitution Patterns

When the attributes of one alternative improve (e.g., its price
drops), the probability of its being chosen rises. Some of the people
who would have chosen other alternatives under the original attributes
now choose this alternative instead. Since probabilities sum to one over
alternatives, an increase in the probability of one alternative necessarily
means a decrease in probability for other alternatives. The pattern of
substitution among alternatives has important implications in many situ-
ations. For example, when a cell-phone manufacturer launches a new
product with extra features, the firm is vitally interested in knowing the
extent to which the new product will draw customers away from its
other cell phones rather than from competitors’ phones, since the firm
makes more profit from the latter than from the former. Also, as we
will see, the pattern of substitution affects the demand for a product and
the change in demand when attributes change. Substitution patterns are
therefore important even when the researcher is only interested in market
share without being concerned about where the share comes from.

The logit model implies a certain pattern of substitution across alter-
natives. If substitution actually occurs in this way given the researcher’s
specification of representative utility, then the logit model is appropri-
ate. However, to allow for more general patterns of substitution and
to investigate which pattern is most accurate, more flexible models are
needed. The issue can be seen in either of two ways, as a restriction on
the ratios of probabilities and/or as a restriction on the cross-elasticities
of probabilities. We present each way of characterizing the issue in the
following discussion.

The Property of Independence
from Irrelevant Alternatives

For any two alternatives i and k, the ratio of the logit probabil-
ities is

Pni

Pnk
= eVni /

∑
j eVnj

eVnk /
∑

j eVnj

= eVni

eVnk
= eVni −Vnk .

This ratio does not depend on any alternatives other than i and k. That is,
the relative odds of choosing i over k are the same no matter what other
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alternatives are available or what the attributes of the other alternatives
are. Since the ratio is independent from alternatives other than i and k,
it is said to be independent from irrelevant alternatives. The logit model
exhibits this independence from irrelevant alternatives, or IIA.

In many settings, choice probabilities that exhibit IIA provide an ac-
curate representation of reality. In fact, Luce (1959) considered IIA to
be a property of appropriately specified choice probabilities. He derived
the logit model directly from an assumption that choice probabilities ex-
hibit IIA, rather than (as we have done) derive the logit formula from an
assumption about the distribution of unobserved utility and then observe
that IIA is a resulting property.

While the IIA property is realistic in some choice situations, it is
clearly inappropriate in others, as first pointed out by Chipman (1960)
and Debreu (1960). Consider the famous red-bus–blue-bus problem. A
traveler has a choice of going to work by car or taking a blue bus. For
simplicity assume that the representative utility of the two modes are the
same, such that the choice probabilities are equal: Pc = Pbb = 1

2 , where
c is car and bb is blue bus. In this case, the ratio of probabilities is one:
Pc/Pbb = 1.

Now suppose that a red bus is introduced and that the traveler considers
the red bus to be exactly like the blue bus. The probability that the traveler
will take the red bus is therefore the same as for the blue bus, so that
the ratio of their probabilities is one: Prb/Pbb = 1. However, in the logit
model the ratio Pc/Pbb is the same whether or not another alternative, in
this case the red bus, exists. This ratio therefore remains at one. The only
probabilities for which Pc/Pbb = 1 and Prb/Pbb = 1 are Pc = Pbb =
Prb = 1

3 , which are the probabilities that the logit model predicts.
In real life, however, we would expect the probability of taking a car to

remain the same when a new bus is introduced that is exactly the same as
the old bus. We would also expect the original probability of taking bus
to be split between the two buses after the second one is introduced. That
is, we would expect Pc = 1

2 and Pbb = Prb = 1
4 . In this case, the logit

model, because of its IIA property, overestimates the probability of tak-
ing either of the buses and underestimates the probability of taking a car.
The ratio of probabilities of car and blue bus, Pc/Pbb, actually changes
with the introduction of the red bus, rather than remaining constant as
required by the logit model.

This example is rather stark and unlikely to be encountered in the real
world. However, the same kind of misprediction arises with logit models
whenever the ratio of probabilities for two alternatives changes with the
introduction or change of another alternative. For example, suppose a
new transit mode is added that is similar to, but not exactly like, the
existing modes, such as an express bus along a line that already has
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standard bus service. This new mode might be expected to reduce the
probability of regular bus by a greater proportion than it reduces the
probability of car, so that ratio of probabilities for car and regular bus
does not remain constant. The logit model would overpredict demand
for the two bus modes in this situation. Other examples are given by, for
example, Ortuzar (1983) and Brownstone and Train (1999).

Proportional Substitution

The same issue can be expressed in terms of the cross-elasticities
of logit probabilities. Let us consider changing an attribute of alternative
j . We want to know the effect of this change on the probabilities for all
the other alternatives. Section 3.6 derives the formula for the elasticity
of Pni with respect to a variable that enters the representative utility of
alternative j :

Eiznj = −βzznj Pnj ,

where znj is the attribute of alternative j as faced by person n and βz is
its coefficient (or, if the variable enters representative utility nonlinearly,
then βz is the derivative of Vnj with respect to znj ).

This cross-elasticity is the same for all i : i does not enter the formula.
An improvement in the attributes of an alternative reduces the probabil-
ities for all the other alternatives by the same percentage. If one alter-
native’s probability drops by ten percent, then all the other alternatives’
probabilities also drop by ten percent (except of course the alternative
whose attribute changed; its probability rises due to the improvement).
A way of stating this phenomenon succinctly is that an improvement in
one alternative draws proportionately from the other alternatives. Simi-
larly, for a decrease in the representative utility of an alternative, the
probabilities for all other alternatives rise by the same percentage.

This pattern of substitution, which can be called proportionate shift-
ing, is a manifestation of the IIA property. The ratio of probabilities
for alternatives i and k stays constant when an attribute of alternative
j changes only if the two probabilities change by the same proportion.
With superscript 0 denoting probabilities before the change and 1 after,
the IIA property requires that

P1
ni

P1
nk

= P0
ni

P0
nk

when an attribute of alternative j changes. This equality can only be
maintained if each probability changes by the same proportion: P1

ni =
λP0

ni and P1
nk = λP0

nk , where both λ’s are the same.
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Proportionate substitution can be realistic for some situations, in
which case the logit model is appropriate. In many settings, however,
other patterns of substitution can be expected, and imposing propor-
tionate substitution through the logit model can lead to unrealistic fore-
casts. Consider a situation that is important to the California Energy
Commission (CEC), which has the responsibility of investigating poli-
cies to promote energy efficient vehicles in California and reducing the
state’s reliance on gasoline for cars. Suppose for the sake of illustration
that there are three kinds of vehicles: large gas cars, small gas cars,
and small electric cars. Suppose also that under current conditions the
probabilities that a household will choose each of these vehicles are
.66, .33, and .01, respectively. The CEC is interested in knowing the
impact of subsidizing the electric cars. Suppose the subsidy is sufficient
to raise the probability for the electric car from .01 to .10. By the logit
model, the probability for each of the gas cars would be predicted to drop
by the same percentage. The probability for large gas car would drop by
ten percent, from .66 to .60, and that for the small gas car would drop
by the same ten percent, from .33 to .30. In terms of absolute numbers,
the increased probability for the small electric car (.09) is predicted by
the logit model to come twice as much from large gas cars (.06) as from
small gas cars (0.03).

This pattern of substitution is clearly unrealistic. Since the electric car
is small, subsidizing it can be expected to draw more from small gas cars
than from large gas cars. In terms of cross-elasticities, we would expect
the cross-elasticity for small gas cars with respect to an improvement
in small electric cars to be higher than that for large gas cars. This
difference is important in the CEC’s policy analysis. The logit model
will overpredict the gas savings that result from the subsidy, since it over-
predicts the substitution away from large gas cars (the “gas guzzlers”)
and underpredicts the substitution away from small “gas-sipper” cars.
From a policy perspective, this misprediction can be critical, causing
a subsidy program to seem more beneficial than it actually is. This is
the reason that the CEC uses models that are more general than logit to
represent substitution across vehicles. The nested logit, probit, and mixed
logit models of Chapters 4–6 provide viable options for the researcher.

Advantages of IIA

As just discussed, the IIA property of logit can be unrealistic
in many settings. However, when IIA reflects reality (or an adequate
approximation to reality), considerable advantages are gained by its em-
ployment. First, because of the IIA, it is possible to estimate model
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parameters consistently on a subset of alternatives for each sampled
decision maker. For example, in a situation with 100 alternatives, the
researcher might, so as to reduce computer time, estimate on a subset
of 10 alternatives for each sampled person, with the person’s chosen
alternative included as well as 9 alternatives randomly selected from the
remaining 99. Since relative probabilities within a subset of alternatives
are unaffected by the attributes or existence of alternatives not in the
subset, exclusion of alternatives in estimation does not affect the con-
sistency of the estimator. Details of this type of estimation are given in
Section 3.7.1. This fact has considerable practical importance. In ana-
lyzing choice situations for which the number of alternatives is large,
estimation on a subset of alternatives can save substantial amounts of
computer time. At an extreme, the number of alternatives might be so
large as to preclude estimation altogether if it were not possible to utilize
a subset of alternatives.

Another practical use of the IIA property arises when the researcher
is only interested in examining choices among a subset of alternatives
and not among all alternatives. For example, consider a researcher who
is interested in understanding the factors that affect workers’ choice
between car and bus modes for travel to work. The full set of alternative
modes includes walking, bicycling, motorbiking, skateboarding, and so
on. If the researcher believed that the IIA property holds adequately
well in this case, she could estimate a model with only car and bus as the
alternatives and exclude from the analysis sampled workers who used
other modes. This strategy would save the researcher considerable time
and expense developing data on the other modes, without hampering her
ability to examine the factors related to car and bus.

Tests of IIA

Whether IIA holds in a particular setting is an empirical ques-
tion, amenable to statistical investigation. Tests of IIA were first devel-
oped by McFadden et al. (1978). Two types of tests are suggested. First,
the model can be reestimated on a subset of the alternatives. Under IIA,
the ratio of probabilities for any two alternatives is the same whether or
not other alternatives are available. As a result, if IIA holds in reality,
then the parameter estimates obtained on the subset of alternatives will
not be significantly different from those obtained on the full set of alter-
natives. A test of the hypothesis that the parameters on the subset are the
same as the parameters on the full set constitutes a test of IIA. Hausman
and McFadden (1984) provide an appropriate statistic for this type of
test. Second, the model can be reestimated with new, cross-alternative
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variables, that is, with variables from one alternative entering the utility
of another alternative. If the ratio of probabilities for alternatives i and
k actually depends on the attributes and existence of a third alternative
j (in violation of IIA), then the attributes of alternative j will enter sig-
nificantly the utility of alternatives i or k within a logit specification.
A test of whether cross-alternative variables enter the model therefore
constitutes a test of IIA. McFadden (1987) developed a procedure for
performing this kind of test with regressions: with the dependent vari-
able being the residuals of the original logit model and the explanatory
variables being appropriately specified cross-alternative variables. Train
et al. (1989) show how this procedure can be performed conveniently
within the logit model itself.

The advent of models that do not exhibit IIA, and especially the de-
velopment of software for estimating these models, makes testing IIA
easier than before. For more flexible specifications, such as GEV and
mixed logit, the simple logit model with IIA is a special case that arises
under certain constraints on the parameters of the more flexible model. In
these cases, IIA can be tested by testing these constraints. For example, a
mixed logit model becomes a simple logit if the mixing distribution has
zero variance. IIA can be tested by estimating a mixed logit and testing
whether the variance of the mixing distribution is in fact zero.

A test of IIA as a constraint on a more general model necessarily
operates under the maintained assumption that the more general model
is itself an appropriate specification. The tests on subsets of alterna-
tives (Hausman and McFadden, 1984) and cross-alternative variables
(McFadden, 1987; Train et al., 1989), while more difficult to perform,
operate under less restrictive maintained hypotheses. The counterpoint
to this advantage, of course, is that, when IIA fails, these tests do not
provide as much guidance on the correct specification to use instead of
logit.

3.3.3. Panel Data

In many settings, the researcher can observe numerous choices
made by each decision maker. For example, in labor studies, sampled
people are observed to work or not work in each month over several years.
Data on the current and past vehicle purchases of sampled households
might be obtained by a researcher who is interested in the dynamics of car
choice. In market research surveys, respondents are often asked a series
of hypothetical choice questions, called “stated preference” experiments.
For each experiment, a set of alternative products with different attributes
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is described, and the respondent is asked to state which product he
would choose. A series of such questions is asked, with the attributes
of the products varying so as to determine how the respondent’s choice
changes when the attributes change. The researcher therefore observes
the sequence of choices by each respondent. Data that represent repeated
choices like these are called panel data.

If the unobserved factors that affect decision makers are independent
over the repeated choices, then logit can be used to examine panel data
in the same way as purely cross-sectional data. Any dynamics related to
observed factors that enter the decision process, such as state dependence
(by which the person’s past choices influence their current choices) or
lagged response to changes in attributes, can be accommodated. How-
ever, dynamics associated with unobserved factors cannot be handled,
since the unobserved factors are assumed to be unrelated over choices.

The utility that decision maker n obtains from alternative j in period
or choice situation t is

Unjt = Vnjt + εnjt ∀ j, t.

If εnjt is distributed extreme value, independent over n, j , and, impor-
tantly, t , then, using the same proof as for (3.6), the choice probabilities
are

(3.9) Pnit = eVnit∑
j eVnjt

.

Each choice situation by each decision maker becomes a separate ob-
servation. If representative utility for each period is specified to depend
only on variables for that period; for example, Vnjt = β ′xnjt , where xnjt

is a vector of variables describing alternative j as faced by n in period
t , then there is essentially no difference between the logit model with
panel data and with purely cross-sectional data.

Dynamic aspects of behavior can be captured by specifying represen-
tative utility in each period to depend on observed variables from other
periods. For example, a lagged price response is represented by entering
the price in period t − 1 as an explanatory variable in the utility for pe-
riod t . Prices in future periods can be entered, as by Adamowicz (1994),
to capture consumers’ anticipation of future price changes. Under the as-
sumptions of the logit model, the dependent variable in previous periods
can also be entered as an explanatory variable. Suppose for example
that there is inertia, or habit formation, in people’s choices such that
they tend to stay with the alternative that they have previously chosen
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unless another alternative provides sufficiently higher utility to warrant
a switch. This behavior is captured as Vnjt = αynj(t−1) + βxnjt , where
ynjt = 1 if n chose j in period t and 0 otherwise. Withα > 0, the utility of
alternative j in the current period is higher if alternative j was consumed
in the previous period. The same specification can also capture a type
of variety seeking. If α is negative, the consumer obtains higher utility
from not choosing the same alternative that he chose in the last period.
Numerous variations on these concepts are possible. Adamowicz (1994)
enters the number of times the alternative has been chosen previously,
rather than simply a dummy for the immediately previous choice.
Erdem (1996) enters the attributes of previously chosen alternatives,
with the utility of each alternative in the current period depending on
the similarity of its attributes to the previously experienced attributes.

The inclusion of the lagged dependent variable does not induce in-
consistency in estimation, since for a logit model the errors are assumed
to be independent over time. The lagged dependent variable ynj(t−1) is
uncorrelated with the current error εnjt due to this independence. The
situation is analogous to linear regression models, where a lagged de-
pendent variable can be added without inducing bias as long as the errors
are independent over time.

Of course, the assumption of independent errors over time is severe.
Usually, one would expect there to be some factors that are not observed
by the researcher that affect each of the decision makers’ choices. In par-
ticular, if there are dynamics in the observed factors, then the researcher
might expect there to be dynamics in the unobserved factors as well. In
these situations, the researcher can either use a model such as probit or
mixed logit that allows unobserved factors to be correlated over time,
or respecify representative utility to bring the sources of the unobserved
dynamics into the model explicitly such that the remaining errors are
independent over time.

3.4 Nonlinear Representative Utility

In some contexts, the researcher will find it useful to allow parameters to
enter representative utility nonlinearly. Estimation is then more difficult,
since the log-likelihood function may not be globally concave and
computer routines are not as widely available as for logit models with
linear-in-parameters utility. However, the aspects of behavior that the
researcher is investigating may include parameters that are interpretable
only when they enter utility nonlinearly. In these cases, the effort of
writing one’s own code can be warranted. Two examples illustrate this
point.
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Example 1: The Goods–Leisure Tradeoff

Consider a workers’ choice of mode (car or bus) for trips to work.
Suppose that workers also choose the number of hours to work based on
the standard trade-off between goods and leisure. Train and McFadden
(1978) developed a procedure for examining these interrelated choices.
As we see in the following, the parameters of the workers’ utility function
over goods and leisure enter nonlinearly in the utility for modes of travel.

Assume that workers’ preferences regarding goods G and leisure L
are represented by a Cobb–Douglas utility function of the form

U = (1 − β) ln G + β ln L .

The parameter β reflects the worker’s relative preference for goods and
leisure, with higher β implying greater preference for leisure relative to
goods. Each worker has a fixed amount of time (24 hours a day) and
faces a fixed wage rate, w. In the standard goods–leisure model, the
worker chooses the number of hours to work that maximizes U subject
to the constraints that (1) the number of hours worked plus the number of
leisure hours equals the number of hours available, and (2) the value of
goods consumed equals the wage rate times the number of hours worked.

When mode choice is added to the model, the constraints on time
and money change. Each mode takes a certain amount of time and costs
a certain amount of money. Conditional on choosing car, the worker
maximizes U subject to the constraint that (1) the number of hours
worked plus the number of leisure hours equals the number of hours
available after the time spent driving to work in the car is subtracted
and (2) the value of goods consumed equals the wage rate times the
number of hours worked minus the cost of driving to work. The utility
associated with choosing to travel by car is the highest value of U that
can be attained under these constraints. Similarly, the utility of taking the
bus to work is the maximum value of U that can be obtained given the
time and money that are left after the bus time and cost are subtracted.
Train and McFadden derived the maximizing values of U conditional
on each mode. For the U given above, these values are

U j = −α
(
c j/w

β + w1−β t j
)

for j = car and bus.

The cost of travel is divided by wβ , and the travel time is multiplied
by w1−β . The parameter β, which denotes workers’ relative prefer-
ence for goods and leisure, enters the mode choice utility nonlinearly.
Since this parameter has meaning, the researcher might want to estimate
it within this nonlinear utility rather than use a linear-in-parameters
approximation.
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Example 2: Geographic Aggregation

Models have been developed and widely used for travelers’ choice of
destination for various types of trips, such as shopping trips, within
a metropolitan area. Usually, the metropolitan area is partitioned into
zones, and the models give the probability that a person will choose to
travel to a particular zone. The representative utility for each zone de-
pends on the time and cost of travel to the zone plus a variety of variables,
such as residential population and retail employment, that reflect reasons
that people might want to visit the zone. These latter variables are called
attraction variables; label them by the vector a j for zone j . Since it
is these attraction variables that give rise to parameters entering nonli-
nearity, assume for simplicity that representative utility depends only
on these variables.

The difficulty in specifying representative utility comes in recognizing
that the researcher’s decision of how large an area to include in each
zone is fairly arbitrary. It would be useful to have a model that is not
sensitive to the level of aggregation in the zonal definitions. If two zones
are combined, it would be useful for the model to give a probability
of traveling to the combined zone that is the same as the sum of the
probabilities of traveling to the two original zones. This consideration
places restrictions on the form of representative utility.

Consider zones j and k, which, when combined, are labeled zone c.
The population and employment in the combined zone are necessarily
the sums of those in the two original zones: a j + ak = ac. In order
for the models to give the same probability for choosing these zones
before and after their merger, the model must satisfy

Pnj + Pnk = Pnc,

which for logit models takes the form

eVnj + eVnk

eVnj + eVnk + ∑
� �= j,k eVn�

= eVnc

eVnc + ∑
� �= j,k eVn�

.

This equality holds only when exp(Vnj ) + exp(Vnk) = exp(Vnc). If
representative utility is specified as Vn� = ln(β ′a�) for all zones
�, then the inequality holds: exp(ln(β ′a j )) + exp(ln(β ′ak)) = β ′a j +
β ′ak = β ′ac = exp(ln(β ′ac)). Therefore, to specify a destination choice
model that is not sensitive to the level of zonal aggregation, repre-
sentative utility needs to be specified with parameters inside a log
operation.
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3.5 Consumer Surplus

For policy analysis, the researcher is often interested in measuring the
change in consumer surplus that is associated with a particular policy.
For example, if a new alternative is being considered, such as building
a light rail system in a city, then it is important to measure the benefits
of the project to see if they warrant the costs. Similarly, a change in the
attributes of an alternative can have an impact on consumer surplus that
is important to assess. Degradation of the water quality of rivers harms
the anglers who can no longer fish as effectively at the damaged sites.
Measuring this harm in monetary terms is a central element of legal
action against the polluter. Often the distributional effects of a policy
are important to assess, such as how the burden of a tax is borne by
different population groups.

Under the logit assumptions, the consumer surplus associated with a
set of alternatives takes a closed form that is easy to calculate. By defi-
nition, a person’s consumer surplus is the utility, in dollar terms, that the
person receives in the choice situation. The decision maker chooses the
alternative that provides the greatest utility. Consumer surplus is there-
fore CSn = (1/αn) max j (Unj ∀ j ), where αn is the marginal utility of in-
come: dUn/dYn = αn , with Yn the income of person n. The division by
αn translates utility into dollars, since 1/αn = dYn/dUn . The researcher
does not observe Unj and therefore cannot use this expression to cal-
culate the decision maker’s consumer surplus. Instead, the researcher
observes Vnj and knows the distribution of the remaining portion of util-
ity. With this information, the researcher is able to calculate the expected
consumer surplus:

E(CSn) = 1

αn
E[max j (Vnj + εnj ∀ j )],

where the expectation is over all possible values of εnj . Williams (1977)
and Small and Rosen (1981) show that, if each εnj is iid extreme value
and utility is linear in income (so that αn is constant with respect to
income), then this expectation becomes

(3.10) E(CSn) = 1

αn
ln

(
J∑

j=1

eVnj

)
+ C,

where C is an unknown constant that represents the fact that the absolute
level of utility cannot be measured. As we see in the following, this
constant is irrelevant from a policy perspective and can be ignored.
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Note that the argument in parentheses in this expression is the de-
nominator of the logit choice probability (3.6). Aside from the division
and addition of constants, expected consumer surplus in a logit model
is simply the log of the denominator of the choice probability. It is often
called the log-sum term. This resemblance between the two formulas
has no economic meaning, in the sense that there is nothing about a
denominator in a choice probability that makes it necessarily related to
consumer surplus. It is simply the outcome of the mathematical form of
the extreme value distribution. However, the relation makes calculation
of expected consumer surplus very easy, which is another of the many
conveniences of logit.

Under the standard interpretation for the distribution of errors, as
described in the last paragraph of Section 2.3, E(CSn) is the average
consumer surplus in the subpopulation of people who have the same
representative utilities as person n. The total consumer surplus in the pop-
ulation is calculated as the weighted sum of E(CSn) over a sample of
decision makers, with the weights reflecting the numbers of people in
the population who face the same representative utilities as the sampled
person.

The change in consumer surplus that results from a change in the
alternatives and/or the choice set is calculated from (3.10). In particular,
E(CSn) is calculated twice: first under the conditions before the change,
and again under the conditions after the change. The difference between
the two results is the change in consumer surplus:

�E(CSn) = 1

αn

[
ln

(
J 1∑

j=1

eV 1
nj

)
− ln

(
J 0∑

j=1

eV 0
nj

)]
,

where the superscripts 0 and 1 refer to before and after the change. The
number of alternatives can change (e.g., a new alternative can be added)
as well as the attributes of the alternatives. Since the unknown constant
C enters expected consumer surplus both before and after the change, it
drops out of the difference and can therefore be ignored when calculating
changes in consumer surplus.

To calculate the change in consumer surplus, the researcher must
know or have estimated the marginal utility of income, αn . Usually a
price or cost variable enters the representative utility, in which case the
negative of its coefficient is αn by definition. (A price or cost coefficient
is negative; the negative of a negative coefficient gives a positive αn .)
For example, in the choice between car and bus, utility is Unj = β1tn j +
β2cnj , where t is time, c is cost, and bothβ1 andβ2 are negative, indicating
that utility decreases as the time or cost for a trip increases. The negative
of the cost coefficient, −β2, is the amount that utility rises due to a
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one-dollar decrease in costs. A one-dollar reduction in costs is equivalent
to a one-dollar increase in income, since the person gets to spend the
dollar that he saves in travel costs just the same as if he got the extra
dollar in income. The amount −β2 is therefore the increase in utility
from a one-dollar increase in income: the marginal utility of income. It
is the same amount in this case for all n. If cnj entered the representative
utility interacting with characteristics of the person other than income,
as in the product cnj Hn , where Hn is household size, then the marginal
utility of income would be −β2 Hn , which varies over n.

Throughout this discussion, αn has been assumed to be fixed for a
given person independent of his income. The formula (3.10) for ex-
pected consumer surplus depends critically on the assumption that the
marginal utility of income is independent from income. If the marginal
utility of income changes with income, then a more complicated for-
mula is needed, since αn itself becomes a function of the change in
attributes. McFadden (1999) and Karlstrom (2000) provide procedures
for calculating changes in consumer surplus under these conditions.

The conditions for using expression (3.10) are actually less severe than
stated. Since only changes in consumer surplus are relevant for policy
analysis, formula (3.10) can be used if the marginal utility of income is
constant over the range of implicit income changes that are considered
by the policy. Thus, for policy changes that change consumer surplus by
small amounts per person relative to income, the formula can be used
even though the marginal utility of income in reality varies with income.

The assumption that αn does not depend on income has implications
for the specification of representative utility. As already discussed, αn

is usually taken as the absolute value of the coefficient of price or cost.
Therefore, if the researcher plans to use her model to estimate changes
in consumer surplus and wants to apply formula (3.10), this coefficient
cannot be specified to depend on income. In the mode choice example,
cost can be multiplied by household size, so that the cost coefficient, and
hence the marginal utility of income, varies over households of different
size. However, if the cost is divided by the household’s income, then the
coefficient of cost depends on income, violating the assumption needed
for expression (3.10). This violation may not be important for small
changes in consumer surplus, but certainly becomes important for large
changes.

3.6 Derivatives and Elasticities

Since choice probabilities are a function of observed variables, it is
often useful to know the extent to which these probabilities change
in response to a change in some observed factor. For example, in a
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household’s choice of make and model of car to buy, a natural question is:
to what extent will the probability of choosing a given car increase if the
vehicle’s fuel efficiency is improved? From competing manufacturers’
points of view, a related question is: to what extent will the probability
of households’ choosing, say, a Toyota decrease if the fuel efficiency of
a Honda improves?

To address these questions, derivatives of the choice probabilities are
calculated. The change in the probability that decision maker n chooses
alternative i given a change in an observed factor, zni , entering the repre-
sentative utility of that alternative (and holding the representative utility
of other alternatives constant) is

∂ Pni

∂zni
= ∂

(
eVni /

∑
j eVnj

)
∂zni

= eVni∑
eVnj

∂Vni

∂zni
− eVni( ∑

eVnj
)2 eVni

∂Vni

∂zni

= ∂Vni

∂zni

(
Pni − P2

ni

)

= ∂Vni

∂zni
Pni (1 − Pni ).

If representative utility is linear in zni with coefficient βz , the derivative
becomes βz Pni (1 − Pni ). This derivative is largest when Pni = 1 − Pni ,
which occurs when Pni = .5. It becomes smaller as Pni approaches zero
or one. The sigmoid probability curve in Figure 3.1 is consistent with
these facts. Stated intuitively, the effect of a change in an observed
variable is largest when the choice probabilities indicate a high degree
of uncertainty regarding the choice. As the choice becomes more certain
(i.e., the probabilities approach zero or one), the effect of a change in an
observed variable lessens.

One can also determine the extent to which the probability of choosing
a particular alternative changes when an observed variable relating to
another alternative changes. Let znj denote an attribute of alternative
j . How does the probability of choosing alternative i change as znj

increases? We have

∂ Pni

∂znj
= ∂

(
eVni /

∑
k eVnk

)
∂znj

= − eVni( ∑
eVnk

)2 eVnj
∂Vnj

∂znj

= −∂Vnj

∂znj
Pni Pnj .
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When Vnj is linear in znj with coefficient βz , then this cross-derivative
becomes −βz Pni Pnj . If znj is a desirable attribute, so that βz is positive,
then raising znj decreases the probability of choosing each alternative
other than j . Furthermore, the decrease in probability is proportional to
the value of the probability before znj was changed.

A logically necessary aspect of derivatives of choice probabilities
is that, when an observed variable changes, the changes in the choice
probabilities sum to zero. This is a consequence of the fact that the prob-
abilities must sum to one before and after the change; it is demonstrated
for logit models as follows:

J∑
i=1

∂ Pni

∂znj
= ∂Vnj

∂znj
Pnj (1 − Pnj ) +

∑
i �= j

(
−∂Vnj

∂znj

)
Pnj Pni

= ∂Vnj

∂znj
Pnj

[
(1 − Pnj ) −

∑
i �= j

Pni

]

= ∂Vnj

∂znj
Pnj [(1 − Pnj ) − (1 − Pnj )]

= 0.

In practical terms, if one alternative is improved so that the probability
of its being chosen increases, the additional probability is necessarily
drawn from other alternatives. To increase the probability of one al-
ternative necessitates decreasing the probability of another alternative.
While obvious, this fact is often forgotten by planners who want to im-
prove demand for one alternative without reducing demand for other
alternatives.

Economists often measure response by elasticities rather than deriva-
tives, since elasticities are normalized for the variables’ units. An elas-
ticity is the percentage change in one variable that is associated with a
one-percent change in another variable. The elasticity of Pni with respect
to zni , a variable entering the utility of alternative i , is

Eizni = ∂ Pni

∂zni

zni

Pni

= ∂Vni

∂zni
Pni (1 − Pni )

zni

Pni

= ∂Vni

∂zni
zni (1 − Pni ).

If representative utility is linear in zni with coefficient βz , then Eizni =
βzzni (1 − Pni ).



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-03Drv CB495/Train KEY BOARDED August 20, 2002 12:14 Char Count= 0

64 Behavioral Models

The cross-elasticity of Pni with respect to a variable entering alterna-
tive j is

Eiznj = ∂ Pni

∂znj

znj

Pni

= −∂Vnj

∂znj
znj Pnj ,

which in the case of linear utility reduces to Eiznj = − βzznj Pnj . As
discussed in Section 3.3.2, this cross-elasticity is the same for all i : a
change in an attribute of alternative j changes the probabilities for all
other alternatives by the same percent. This property of the logit cross-
elasticities is a manifestation, or restatement, of the IIA property of the
logit choice probabilities.

3.7 Estimation

Manski and McFadden (1981) and Cosslett (1981) describe estimation
methods under a variety of sampling procedures. We discuss in this sec-
tion estimation under the most prominent of these sampling schemes.
We first describe estimation when the sample is exogenous and all alter-
natives are used in estimation. We then discuss estimation on a subset of
alternatives and with certain types of choice-based (i.e., nonexogenous)
samples.

3.7.1. Exogenous Sample

Consider first the situation in which the sample is exogenously
drawn, that is, is either random or stratified random with the strata de-
fined on factors that are exogenous to the choice being analyzed. If the
sampling procedure is related to the choice being analyzed (for example,
if mode choice is being examined and the sample is drawn by selecting
people on buses and pooling them with people selected at toll booths),
then more complex estimation procedures are generally required, as dis-
cussed in the next section. We also assume that the explanatory variables
are exogenous to the choice situation. That is, the variables entering
representative utility are independent of the unobserved component of
utility.

A sample of N decision makers is obtained for the purpose of esti-
mation. Since the logit probabilities take a closed form, the traditional
maximum-likelihood procedures can be applied. The probability of per-
son n choosing the alternative that he was actually observed to choose
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can be expressed as

∏
i

(Pni )
yni ,

where yni = 1 if person n chose i and zero otherwise. Note that since
yni = 0 for all nonchosen alternatives and Pni raised to the power of zero
is 1, this term is simply the probability of the chosen alternative.

Assuming that each decision maker’s choice is independent of that
of other decision makers, the probability of each person in the sample
choosing the alternative that he was observed actually to choose is

L(β) =
N∏

n=1

∏
i

(Pni )
yni ,

where β is a vector containing the parameters of the model. The log-
likelihood function is then

(3.11) LL(β) =
N∑

n=1

∑
i

yni ln Pni

and the estimator is the value of β that maximizes this function.
McFadden (1974) shows that LL(β) is globally concave for linear-in-
parameters utility, and many statistical packages are available for esti-
mation of these models. When parameters enter the representative utility
nonlinearly, the researcher may need to write her own estimation code
using the procedures described in Chapter 8.

Maximum likelihood estimation in this situation can be reexpressed
and reinterpreted in a way that assists in understanding the nature of
the estimates. At the maximum of the likelihood function, its derivative
with respect to each of the parameters is zero:

(3.12)
dLL(β)

dβ
= 0.

The maximum likelihood estimates are therefore the values of β that
satisfy this first-order condition. For convenience, let the representative
utility be linear in parameters: Vnj = β ′xnj . This specification is not
required, but makes the notation and discussion more succinct. Using
(3.11) and the formula for the logit probabilities, we show at the end of
this subsection that the first-order condition (3.12) becomes

(3.13)
∑

n

∑
i

(yni − Pni )xni = 0.
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Rearranging and dividing both sides by N , we have

(3.14)
1

N

∑
n

∑
i

yni xni = 1

N

∑
n

∑
i

Pni xni .

This expression is readily interpretable. Let x̄ denote the average
of x over the alternatives chosen by the sampled individuals: x̄ =
(1/N )

∑
n

∑
i yni xni . Let x̂ be the average of x over the predicted choices

of the sampled decision makers: x̂ = (1/N )
∑

n

∑
i Pni xni . The ob-

served average of x in the sample is x̄ , while x̂ is the predicted average.
By (3.14), these two averages are equal at the maximum likelihood es-
timates. That is, the maximum likelihood estimates of β are those that
make the predicted average of each explanatory variable equal to the
observed average in the sample. In this sense, the estimates induce the
model to reproduce the observed averages in the sample.

This property of the maximum likelihood estimator for logit models
takes on a special meaning for the alternative-specific constants. An
alternative-specific constant is the coefficient of a dummy variable that
identifies an alternative. A dummy for alternative j is a variable whose
value in the representative utility of alternative i is d j

i = 1 for i = j and
zero otherwise. By (3.14), the estimated constant is the one that gives

1

N

∑
n

∑
i

yni d
j

i = 1

N

∑
n

∑
i

Pni d
j

i ,

Sj = Ŝ j ,

where Sj is the share of people in the sample who chose alternative j ,
and Ŝ j is the predicted share for alternative j . With alternative-specific
constants, the predicted shares for the sample equal the observed shares.
The estimated model is therefore correct on average within the sample.
This feature is similar to the function of a constant in a linear regression
model, where the constant assures that the average of the predicted value
of the dependent variable equals its observed average in the sample.

The first-order condition (3.13) provides yet another important inter-
pretation. The difference between a person’s actual choice, yni , and the
probability of that choice, Pni , is a modeling error, or residual. The left-
hand side of (3.13) is the sample covariance of the residuals with the
explanatory variables. The maximum likelihood estimates are therefore
the values of the β’s that make this covariance zero, that is, make the
residuals uncorrelated with the explanatory variables. This condition
for logit estimates is the same as applies in linear regression models.
For a regression model yn = β ′xn + εn , the ordinary least squares esti-
mates are the values of β that set

∑
n(yn − β ′xn)xn = 0. This fact is veri-

fied by solving for β: β = (
∑

n xnx ′
n)−1(

∑
n xn yn), which is the formula
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for the ordinary least squares estimator. Since yn − β ′xn is the residual
in the regression model, the estimates make the residuals uncorrelated
with the explanatory variables.

Under this interpretation, the estimates can be motivated as providing
a sample analog to population characteristics. We have assumed that the
explanatory variables are exogenous, meaning that they are uncorrelated
in the population with the model errors. Since the variables and errors
are uncorrelated in the population, it makes sense to choose estimates
that make the variables and residuals uncorrelated in the sample. The
estimates do exactly that: they provide a model that reproduces in the
sample the zero covariances that occur in the population.

Estimators that solve equations of the form (3.13) are called method-
of-moments estimators, since they use moment conditions (correlations
in this case) between residuals and variables to define the estimator.
We will return to these estimators when discussing simulation-assisted
estimation in Chapter 10.

We asserted without proof that (3.13) is the first-order condition for
the maximum likelihood estimator of the logit model. We give that proof
now. The log-likelihood function (3.11) can be reexpressed as

LL(β) =
∑

n

∑
i

yni ln Pni

=
∑

n

∑
i

yni ln

(
eβ ′xni∑
j eβ ′xnj

)

=
∑

n

∑
i

yni (β
′xni ) −

∑
n

∑
i

yni ln
( ∑

j

eβ ′xnj

)
.

The derivative of the log-likelihood function then becomes

dLL(β)

dβ
=

∑
n

∑
i yni (β ′xni )

dβ
−

∑
n

∑
i yni ln

( ∑
j eβ ′xnj

)
dβ

=
∑

n

∑
i

yni xni −
∑

n

∑
i

yni

∑
j

Pnj xnj

=
∑

n

∑
i

yni xni −
∑

n

( ∑
j

Pnj xnj

) ∑
i

yni

=
∑

n

∑
i

yni xni −
∑

n

( ∑
j

Pnj xnj

)

=
∑

n

∑
i

(yni − Pni )xni .

Setting this derivative to zero gives the first-order condition (3.13).
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Estimation on a Subset of Alternatives

In some situations, the number of alternatives facing the decision
maker is so large that estimating model parameters is very expensive or
even impossible. With a logit model, estimation can be performed on
a subset of alternatives without inducing inconsistency. For example, a
researcher examining a choice situation that involves 100 alternatives can
estimate on a subset of 10 alternatives for each sampled decision maker,
with the person’s chosen alternative included as well as 9 alternatives
randomly selected from the remaining 99. If all alternatives have the
same chance of being selected into the subset, then estimation proceeds
on the subset of alternatives as if it were the full set. If alternatives
have unequal probability of being selected, more complicated estimation
procedures may be required. The procedure is described as follows.

Suppose that the researcher has used some specific method for ran-
domly selecting alternatives into the subset that is used in estimation for
each sampled decision maker. Denote the full set of alternatives as F
and a subset of alternatives as K . Let q(K | i) be the probability under
the researcher’s selection method that subset K is selected given that the
decision maker chose alternative i . Assuming that the subset necessarily
includes the chosen alternative, we have q(K | i) = 0 for any K that does
not include i . The probability that person n chooses alternative i from
the full set is Pni . Our goal is to derive a formula for the probability that
the person chooses alternative i conditional on the researcher selecting
subset K for him. This conditional probability is denoted Pn(i | K ).

This conditional probability is derived as follows. The joint prob-
ability that the researcher selects subset K and the decision maker
chooses alternative i is Prob(K , i) = q(K | i)Pni . The joint probability
can also be expressed with the opposite conditioning as Prob(K , i) =
Pn(i | K )Q(K ) where Q(K ) = ∑

j∈F Pnj q(K | j) is the probability of
the researcher selecting subset K marginal over all the alternatives that
the person could choose. Equating these two expressions and solving
for Pn(i | K ), we have

Pn(i | K ) = Pni q(K | i)∑
j∈F Pnj q(K | j)

= eVni q(K | i)∑
j∈F eVnj q(K | j)

= eVni q(K | i)∑
k∈K eVnk q(K | j)

,(3.15)

where the second line has canceled out the denominators of Pni and
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Pnj ∀ j , and the third equality uses the fact that q(K | j) = 0 for any j
not in K .

Suppose that the researcher has designed the selection procedure so
that q(K | j) is the same for all j ∈ K . This property occurs if, for exam-
ple, the researcher assigns an equal probability of selection to all noncho-
sen alternatives, so that the probability of selecting j into the subset when
i is chosen by the decision maker is the same as for selecting i into the
subset when j is chosen. McFadden (1978) calls this the “uniform con-
ditioning property,” since the subset of alternatives has a uniform (equal)
probability of being selected conditional on any of its members being
chosen by the decision maker. When this property is satisfied, q(K | j)
cancels out of the preceding expression, and the probability becomes

Pn(i | K ) = eVni∑
j∈K eVnj

,

which is simply the logit formula for a person who faces the alternatives
in subset K .

The conditional likelihood function under the uniform conditioning
property is

CLL(β) =
∑

n

∑
i∈Kn

yni ln
eVni∑

j∈Kn
eVnj

,

where Kn is the subset selected for person n. This function is the same
as the log-likelihood function given in (3.11) except that the subset of
alternatives Kn replaces, for each sampled person, the complete set.
Maximization of CLL provides a consistent estimator of β. However,
since information is excluded from CLL that LL incorporates (i.e., infor-
mation on alternatives not in each subset), the estimator based on CLL
is not efficient.

Suppose that the researcher designs a selection process that does not
exhibit the uniform conditioning property. In this case, the probability
q(K | i) can be incorporated into the model as a separate variable. The
expression in (3.15) can be rewritten as

Pn(i | K ) = eVni + ln q(K | i)∑
j∈K eVnj + ln q(K | j) .

A variable znj calculated as ln q(Kn | j) is added to the representative
utility of each alternative. The coefficient of this variable is constrained
to 1 in estimation.

The question arises: why would a researcher ever want to design
a selection procedure that does not satisfy the uniform conditioning
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property, since satisfying the property makes estimation so straightfor-
ward? An illustration of the potential benefit of nonuniform conditioning
is provided by Train et al. (1987a) in their study of telecommunications
demand. The choice situation in their application included an enormous
number of alternatives representing portfolios of calls by time of day,
distance, and duration. The vast majority of alternatives were hardly
ever chosen by anyone in the population. If alternatives had been se-
lected with equal probability for each alternative, it was quite likely
than the resulting subsets would consist nearly entirely of alternatives
that were hardly ever chosen, coupled with the person’s chosen alter-
native. Comparing a person’s chosen alternative with a group of highly
undesirable alternatives provides little information about the reasons for
a person’s choice. To avoid this problem, alternatives were selected in
proportion to the shares for the alternatives in the population (or, to be
precise, estimates of the population shares). This procedure increased
the chance that relatively desirable alternatives would be in each subset
of alternatives that was used in estimation.

3.7.2. Choice-Based Samples

In some situations, a sample drawn on the basis of exogenous
factors would include few people who have chosen particular alterna-
tives. For example, in the choice of water heaters, a random sample of
households in most areas would include only a small number who had
chosen solar water-heating systems. If the researcher is particularly in-
terested in factors that affect the penetration of solar devices, a random
sample would need to be very large to assure a reasonable number of
households with solar heat.

In situations such as these, the researcher might instead select the
sample, or part of the sample, on the basis of the choice being analyzed.
For example, the researcher examining water heaters might supplement
a random sample of households with households that are known (per-
haps through sales records at stores if the researcher has access to these
records) to have recently installed solar water heaters.

Samples selected on the basis of decision makers’ choices can be
purely choice-based or a hybrid of choice-based and exogenous. In a
purely choice-based sample, the population is divided into those that
choose each alternative, and decision makers are drawn randomly within
each group, though at different rates. For example, a researcher who is
examining the choice of home location and is interested in identifying
the factors that contribute to people choosing one particular community
might draw randomly from within that community at the rate of one out



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-03Drv CB495/Train KEY BOARDED August 20, 2002 12:14 Char Count= 0

Logit 71

of L households, and draw randomly from all other communities at a
rate of one out of M , where M is larger than L . This procedure assures
that the researcher has an adequate number of people in the sample from
the area of interest. A hybrid sample is like the one drawn by the re-
searcher interested in solar water heating, in which an exogenous sample
is supplemented with a sample drawn on the basis of the households’
choices.

Estimation of model parameters with samples drawn at least partially
on the basis of the decision maker’s choice is fairly complex in general,
and varies with the exact form of the sampling procedure. For inter-
ested readers, Ben-Akiva and Lerman (1985, pp. 234–244) provide a
useful discussion. One result is particularly significant, since it allows
researchers to estimate logit models on choice-based samples without
becoming involved in complex estimation procedures. This result, due to
Manski and Lerman (1977), can be stated as follows. If the researcher is
using a purely choice-based sample and includes an alternative-specific
constant in the representative utility for each alternative, then estimating
a logit model as if the sample were exogenous produces consistent esti-
mates for all the model parameters except the alternative-specific con-
stants. Furthermore, these constants are biased by a known factor and
can therefore be adjusted so that the adjusted constants are consistent.
In particular, the expectation of the estimated constant for alternative j ,
labeled α̂ j , is related to the true constant α∗

j by

E(α̂ j ) = α∗
j − ln(A j/Sj ),

where A j is the share of decision makers in the population who chose
alternative j , and Sj is the share in the choice-based sample who
chose alternative j . Consequently, if A j is known (that is, if population
shares are known for each alternative), then a consistent estimate of the
alternative-specific constant is the constant α̂ j that is estimated on the
choice-based sample plus the log of the ratio of the population share to
the sample share.

3.8 Goodness of Fit and Hypothesis Testing

We discuss goodness of fit and hypothesis testing in the context of logit
models, where the log-likelihood function is calculated exactly. The
concepts apply to other models, with appropriate adjustment for simula-
tion variance, when the log-likelihood function is simulated rather than
calculated exactly.
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3.8.1. Goodness of Fit

A statistic called the likelihood ratio index is often used with
discrete choice models to measure how well the models fit the data.
Stated more precisely, the statistic measures how well the model, with
its estimated parameters, performs compared with a model in which
all the parameters are zero (which is usually equivalent to having no
model at all). This comparison is made on the basis of the log-likelihood
function, evaluated at both the estimated parameters and at zero for all
parameters.

The likelihood ratio index is defined as

ρ = 1 − LL(β̂)

LL(0)
,

where LL(β̂) is the value of the log-likelihood function at the estimated
parameters and LL(0) is its value when all the parameters are set equal to
zero. If the estimated parameters do no better, in terms of the likelihood
function, than zero parameters (that is, if the estimated model is no better
than no model), then LL(β̂) = LL(0) and so ρ = 0. This is the lowest
value that ρ can take (since if LL(β̂) were less than LL(0), then β̂ would
not be the maximum likelihood estimate).

At the other extreme, suppose the estimated model was so good that
each sampled decision maker’s choice could be predicted perfectly. In
this case, the likelihood function at the estimated parameters would
be one, since the probability of observing the choices that were actually
made is one. And, since the log of one is zero, the log-likelihood function
would be zero at the estimated parameters. With LL(β̂) = 0, ρ = 1. This
is the highest value that ρ can take. In summary, the likelihood ratio index
ranges from zero, when the estimated parameters are no better than zero
parameters, to one, when the estimated parameters perfectly predict the
choices of the sampled decision makers.

It is important to note that the likelihood ratio index is not at all similar
in its interpretation to the R2 used in regression, despite both statistics
having the same range. R2 indicates the percentage of the variation
in the dependent variable that is “explained” by the estimated model.
The likelihood ratio has no intuitively interpretable meaning for values
between the extremes of zero and one. It is the percentage increase
in the log-likelihood function above the value taken at zero para-
meters (sinceρ = 1 − LL(β̂)/LL(0) = (LL(0) − LL(β̂))/LL(0)). How-
ever, the meaning of such a percentage increase is not clear. In com-
paring two models estimated on the same data and with the same set
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of alternatives (such that LL(0) is the same for both models), it is usu-
ally valid to say that the model with the higher ρ fits the data better.
But this is saying no more than that increasing the value of the log-
likelihood function is preferable. Two models estimated on samples that
are not identical or with a different set of alternatives for any sampled
decision maker cannot be compared via their likelihood ratio index
values.

Another goodness-of-fit statistic that is sometimes used, but should
actually be avoided, is the “percent correctly predicted.” This statistic
is calculated by identifying for each sampled decision maker the alter-
native with the highest probability, based on the estimated model, and
determining whether or not this was the alternative that the decision
maker actually chose. The percentage of sampled decision makers for
which the highest-probability alternative and the chosen alternative are
the same is called the percent correctly predicted.

This statistic incorporates a notion that is opposed to the meaning
of probabilities and the purpose of specifying choice probabilities. The
statistic is based on the idea that the decision maker is predicted by
the researcher to choose the alternative for which the model gives the
highest probability. However, as discussed in the derivation of choice
probabilities in Chapter 2, the researcher does not have enough infor-
mation to predict the decision maker’s choice. The researcher has only
enough information to state the probability that the decision maker will
choose each alternative. In stating choice probabilities, the researcher
is saying that if the choice situation were repeated numerous times (or
faced by numerous people with the same attributes), each alternative
would be chosen a certain proportion of the time. This is quite differ-
ent from saying that the alternative with the highest probability will be
chosen each time.

An example may be useful. Suppose an estimated model predicts
choice probabilities of .75 and .25 in a two-alternative situation. Those
probabilities mean that if 100 people faced the representative utilities that
gave these probabilities (or one person faced these representative utilities
100 times), the researcher’s best prediction of how many people would
choose each alternative are 75 and 25. However, the “percent correctly
predicted” statistic is based on the notion that the best prediction for
each person is the alternative with the highest probability. This notion
would predict that one alternative would be chosen by all 100 people
while the other alternative would never be chosen. The procedure misses
the point of probabilities, gives obviously inaccurate market shares, and
seems to imply that the researcher has perfect information.
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3.8.2. Hypothesis Testing

As with regressions, standard t-statistics are used to test hy-
potheses about individual parameters in discrete choice models, such as
whether the parameter is zero. For more complex hypotheses, a likeli-
hood ratio test can nearly always be used, as follows. Consider a null
hypothesis H that can be expressed as constraints on the values of the
parameters. Two of the most common hypotheses are (1) several pa-
rameters are zero, and (2) two or more parameters are equal. The con-
strained maximum likelihood estimate of the parameters (labeled β̂

H
)

is that value of β that gives the highest value of LL without violat-
ing the constraints of the null hypothesis H . Define the ratio of likeli-
hoods, R = L(β̂

H
)/L(β̂), where β̂

H
is the (constrained) maximum value

of the likelihood function (not logged) under the null hypothesis H , and
β̂ is the unconstrained maximum of the likelihood function. As in like-
lihood ratio tests for models other than those of discrete choice, the test
statistic defined as −2 log R is distributed chi-squared with degrees of
freedom equal to the number of restrictions implied by the null hypo-
thesis. Therefore, the test statistic is −2(LL(β̂

H
) − LL(β̂)). Since the log

likelihood is always negative, this is simply two times the (magnitude of
the) difference between the constrained and unconstrained maximums
of the log-likelihood function. If this value exceeds the critical value
of chi-squared with the appropriate degrees of freedom, then the null
hypothesis is rejected.

Null Hypothesis I: The Coefficients of Several
Explanatory Variables Are Zero

To test this hypothesis, estimate the model twice: once with these
explanatory variables included, and a second time without them (since
excluding the variables forces their coefficients to be zero). Observe the
maximum value of the log-likelihood function for each estimation; two
times the difference in these maximum values is the value of the test
statistic. Compare the test statistic with the critical value of chi-squared
with degrees of freedom equal to the number of explanatory variables
excluded from the second estimation.

Null Hypothesis II: The Coefficients of the First
Two Variables Are the Same

To test this hypothesis, estimate the model twice: once with each
of the explanatory variables entered separately, including the first two;
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then with the first two variables replaced by one variable that is the sum
of the two variables (since adding the variables forces their coefficients
to be equal). Observe the maximum value of the log-likelihood function
for each of the estimations. Multiply the difference in these maximum
values by two, and compare this figure with the critical value of chi-
squared with one degree of freedom.

3.9 Case Study: Forecasting for a New
Transit System

One of the earliest applications of logit models, and a prominent test of
their capabilities, arose in the mid-1970s in the San Francisco Bay area.
A new rail system, called the Bay Area Rapid Transit (BART), had been
built. Daniel McFadden obtained a grant from the National Science
Foundation to apply logit models to commuters’ mode choices in the Bay
area and to use the models to predict BART ridership. I was lucky enough
to serve as his research assistant on this project. A sample of commuters
was taken before BART was open for service. Mode choice models were
estimated on this sample. These estimates provided important infor-
mation on the factors that enter commuters’ decisions, including their
value of time savings. The models were then used to forecast the choices
that the sampled commuters would make once BART became available.
After BART had opened, the commuters were recontacted and their
mode choices were observed. The predicted share taking BART was
compared with the observed share. The models predicted quite well,
far more accurately than the procedures used by the BART consultants,
who had not used discrete choice models.

The project team collected data on 771 commuters before BART was
opened. Four modes were considered to be available for the trip to work:
(1) driving a car by oneself, (2) taking the bus and walking to the bus stop,
(3) taking the bus and driving to the bus stop, and (4) carpooling. The time
and cost of travel on each mode were determined for each commuter,
based on the location of the person’s home and work. Travel time was
differentiated as walk time (for the bus–walk mode), wait time (for both
bus modes), and on-vehicle time (for all the modes). Characteristics of
the commuter were also collected, including income, household size,
number of cars and drivers in the household, and whether the commuter
was the head of the household. A logit model with linear-in-parameters
utility was estimated on these data.

The estimated model is shown in Table 3.1, which is reproduced
from Train (1978). The cost of travel was divided by the commuter’s
wage to reflect the expectation that workers with lower wages are more
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Table 3.1. Logit model of work trip mode choice

Explanatory Variablea Coefficient t-Statistic

Cost divided by post-tax wage,
cents/minute (1−4) −0.0284 4.31

Auto on-vehicle time, minutes (1, 3, 4) −0.0644 5.65
Transit on-vehicle time, minutes (2, 3) −0.0259 2.94
Walk time, minutes (2, 3) −0.0689 5.28
Transfer wait time, minutes (2, 3) −0.0538 2.30
Number of transfers (2, 3) −0.1050 0.78
Headway of first bus, minutes (2, 3) −0.0318 3.18
Family income with ceiling $7500 (1) 0.00000454 0.05
Family income – $7500 with floor 0,

ceiling $3000 (1) −0.0000572 0.43
Family income – $10,500 with floor 0,

ceiling $5000 (1) −0.0000543 0.91
Number of drivers in household (1) 1.02 4.81
Number of drivers in household (3) 0.990 3.29
Number of drivers in household (4) 0.872 4.25
Dummy if worker is head of household (1) 0.627 3.37
Employment density at work location (1) −0.0016 2.27
Home location in or near central

business district (1) −0.502 4.18
Autos per driver with ceiling one (1) 5.00 9.65
Autos per driver with ceiling one (3) 2.33 2.74
Autos per driver with ceiling one (4) 2.38 5.28
Auto alone dummy (1) −5.26 5.93
Bus with auto access dummy (1) −5.49 5.33
Carpool dummy (1) −3.84 6.36

Likelihood ratio index 0.4426
Log likelihood at convergence −595.8
Number of observations 771

Value of time saved as a
percentage of wage:

Auto on-vehicle time 227 3.20
Transit on-vehicle time 91 2.43
Walk time 243 3.10
Transfer wait time 190 2.01

a Variable enters modes in parentheses and is zero in other modes. Modes: 1. Auto alone.
2. Bus with walk access. 3. Bus with auto access. 4. Carpool.

concerned about cost than higher-paid workers. On-vehicle time enters
separately for car and bus travel to indicate that commuters might find
time spent on the bus to be more, or less, bothersome than time spent
driving in a car. Bus travel often involves transfers, and these transfers
can be onerous for travelers. The model therefore includes the number
of transfers and the expected wait time at the transfers. The headway
(i.e., the time between scheduled buses) for the first bus line that the
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commuter would take is included as a measure of the maximum amount
of time that the person would need to wait for this bus.

The estimated coefficients of cost and the various time components
provide information on the value of time. By definition, the value of time
is the extra cost that a person would be willing to incur to save time.
The utility takes the form Unj = αcnj/wn + βtn j + . . . , where c is cost
and t is time. The total derivative with respect to changes in time and
cost is dUnj = (α/wn) dcnj + β dtnj , which we set equal to zero and
solve for dc/dt to find the change in cost that keeps utility unchanged
for a change in time: dc/dt = −(β/α)wn . The value of time is therefore
a proportion β/α of the person’s wage. The estimated values of time
are reported at the bottom of Table 3.1. The time saved from riding
on the bus is valued at 91 percent of wage ((−.0259/−.0284) × 100),
while the time saved from driving in a car is worth more than twice as
much: 227 percent of wage. This difference suggests that commuters
consider driving to be considerably more onerous than riding the bus,
when evaluated on a per-minute basis. Commuters apparently choose
cars not because they like driving per se but because driving is usually
quicker. Walking is considered more bothersome than waiting for a bus
(243 percent of wage versus 190 percent), and waiting for a bus is more
bothersome than riding the bus.

Income enters the representative utility of the auto-alone alternative.
It enters in a piecewise linear fashion to allow for the possibility that
additional income has a different impact depending on the overall level of
income. None of the income variables enters significantly. Apparently
dividing travel cost by wage picks up whatever effect income might
have on the mode choice of a commuter. That is, higher wages induce
the commuter to be less concerned about travel costs but do not induce
a predilection for driving beyond the impact through cost. The number
of people and the number of vehicles per driver in the household have
a significant effect on mode choice, as expected. Alternative-specific
constants are included, with the constant for the bus–walk alternative
normalized to zero.

The model in Table 3.1 was used to predict the mode choices of
the commuters after BART was open for service. The choice set was
considered to be the four modes listed previously plus two BART modes,
differentiated by whether the person takes the bus or drives to the BART
station. Table 3.2 presents the forecasted and actual shares for each
mode. BART demand was forecast to be 6.3 percent, compared with an
actual share of 6.2 percent. This close correspondence is remarkable.

The figures in Table 3.2 tend to mask several complications that
arose in the forecasting. For example, walking to the BART station was
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Table 3.2. Predictions for after BART opened

Actual Share Predicted Share

Auto alone 59.90 55.84
Bus with walk access 10.78 12.51
Bus with auto access 1.426 2.411
BART with bus access 0.951 1.053
BART with auto access 5.230 5.286
Carpool 21.71 22.89

originally included as a separate mode. The model forecasted this option
very poorly, overpredicting the number of people who would walk to
BART by a factor of twelve. The problem was investigated and found
to be primarily due to differences between the experience of walking to
BART stations and that of walking to the bus, given the neighborhoods
in which the BART stations are located. These issues are discussed at
greater length by McFadden et al. (1977).

3.10 Derivation of Logit Probabilities

It was stated without proof in Section 3.1 that if the unobserved compo-
nent of utility is distributed iid extreme value for each alternative, then
the choice probabilities take the form of equation (3.6). We now derive
this result. From (3.5) we have

Pni =
∫ ∞

s=−∞

( ∏
j �=i

e−e−(s+Vni −Vnj )
)

e−se−e−s
ds,

where s is εni . Our task is to evaluate this integral. Noting that Vni −
Vni = 0 and then collecting terms in the exponent of e, we have

Pni =
∫ ∞

s=−∞

( ∏
j

e−e−(s+Vni −Vnj )
)

e−sds

=
∫ ∞

s=−∞
exp

(
−

∑
j

e−(s+Vni −Vnj )

)
e−sds

=
∫ ∞

s=−∞
exp

(
−e−s

∑
j

e−(Vni −Vnj )

)
e−sds.

Define t = exp(−s) such that − exp(−s) ds = dt . Note that as s ap-
proaches infinity, t approaches zero, and as s approaches negative
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infinity, t becomes infinitely large. Using this new term,

Pni =
∫ 0

∞
exp

(
−t

∑
j

e−(Vni −Vnj )

)
(−dt)

=
∫ ∞

0
exp

(
−t

∑
j

e−(Vni −Vnj )

)
dt

= exp
(−t

∑
j e−(Vni −Vnj )

)
− ∑

j e−(Vni −Vnj )

∣∣∣∣∣
∞

0

= 1∑
j e−(Vni −Vnj )

= eVni∑
j eVnj

,

as required.
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4 GEV

4.1 Introduction

The standard logit model exhibits independence from irrelevant alterna-
tives (IIA), which implies proportional substitution across alternatives.
As we discussed in Chapter 3, this property can be seen either as a
restriction imposed by the model or as the natural outcome of a well-
specified model that captures all sources of correlation over alternatives
into representative utility, so that only white noise remains. Often the
researcher is unable to capture all sources of correlation explicitly, so
that the unobserved portions of utility are correlated and IIA does not
hold. In these cases, a more general model than standard logit is needed.

Generalized extreme value (GEV) models constitute a large class
of models that exhibit a variety of substitution patterns. The unifying
attribute of these models is that the unobserved portions of utility for all
alternatives are jointly distributed as a generalized extreme value. This
distribution allows for correlations over alternatives and, as its name
implies, is a generalization of the univariate extreme value distribution
that is used for standard logit models. When all correlations are zero,
the GEV distribution becomes the product of independent extreme value
distributions and the GEV model becomes standard logit. The class
therefore includes logit but also includes a variety of other models.
Hypothesis tests on the correlations within a GEV model can be used
to examine whether the correlations are zero, which is equivalent to
testing whether standard logit provides an accurate representation of the
substitution patterns.

The most widely used member of the GEV family is called nested
logit. This model has been applied by many researchers in a variety
of situations, including energy, transportation, housing, telecommuni-
cations, and a host of other fields; see, for example, Ben-Akiva (1973),
Train (1986, Chapter 8), Train et al. (1987a), Forinash and Koppelman
(1993), and Lee (1999). Its functional form is simple compared to other
types of GEV models, and it provides a rich set of possible substitution

80
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patterns. Sections 4.2 and 4.3 describe the specification and estimation
of nested logit models. This description is useful in itself, since nested
logit models are so prominent, and also as background for understand-
ing more complex GEV models. In Section 4.4, we turn to other GEV
models that researchers have implemented, with special emphasis on two
of the most promising of these, namely, the paired combinatorial logit
(PCL) and generalized nested logit (GNL). The chapter’s final section
describes the entire class of GEV models and how new specifications
within the class are generated.

Only a small portion of the possible models within the GEV class
have ever been implemented. This means that the full capabilities of
this class have not yet been fully exploited and that new research in
this area has the potential to find even more powerful models than those
already used. An example of this potential is evidenced by Karlstrom
(2001), who specified a GEV model of a different form than had ever
been used before and found that it fitted his data better than previously
implemented types of GEV models. GEV models have the advantage
that the choice probabilities usually take a closed form, so that they can
be estimated without resorting to simulation. For this reason alone, GEV
models will continue to be the source of new and powerful specifications
to meet researchers’ needs.

4.2 Nested Logit

4.2.1. Substitution Patterns

A nested logit model is appropriate when the set of alternatives
faced by a decision maker can be partitioned into subsets, called nests,
in such a way that the following properties hold:

1. For any two alternatives that are in the same nest, the ratio of
probabilities is independent of the attributes or existence of all
other alternatives. That is, IIA holds within each nest.

2. For any two alternatives in different nests, the ratio of probabil-
ities can depend on the attributes of other alternatives in the two
nests. IIA does not hold in general for alternatives in different
nests.

An example can best explain whether a set of alternatives can be so
partitioned. Suppose the set of alternatives available to a worker for his
commute to work consists of driving an auto alone, carpooling, taking the
bus, and taking rail. If any alternative were removed, the probabilities of
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Table 4.1. Example of IIA holding within nests of alternatives: Change
in probabilities when one alternative is removed

Probability

With Alternative Removed

Alternative Original Auto Alone Carpool Bus Rail

Auto alone .40 — .45 (+12.5%) .52 (+30%) .48 (+20%)
Carpool .10 .20 (+100%) — .13 (+30%) .12 (+20%)
Bus .30 .48 (+60%) .33 (+10%) — .40 (+33%)
Rail .20 .32 (+60%) .22 (+10%) .35 (+70%) —

the other alternatives would increase (e.g., if the worker’s car were being
repaired, so that he could not drive to work by himself, then the probabil-
ities of carpool, bus, and rail would increase). The relevant question in
partitioning these alternatives is: by what proportion would each prob-
ability increase when an alternative is removed? Suppose the changes
in probabilities occur as set forth in Table 4.1. Note that the probabili-
ties for bus and rail always rise by the same proportion whenever one
of the other alternatives is removed. IIA therefore holds between these
two alternatives. Let us put these alternatives in a nest and call the nest
“transit.” Similarly, the probability of auto alone and carpool rise by the
same proportion whenever one of the other alternatives is removed. IIA
holds between these two alternatives, and so we put them into a nest
called “auto.” IIA does not hold between either of the auto alternatives
and either of the transit alternatives. For example, when the auto-alone
alternative is removed, the probability of carpool rises proportionately
more than the probability of bus or rail. With our two nests, we can state
the patterns of substitution succinctly as: IIA holds within each nest but
not across nests. A nested logit model with the two auto alternatives in
one nest and the two transit alternatives in another nest is appropriate to
represent this situation.

A convenient way to picture the substitution patterns is with a tree
diagram. In such a tree, each branch denotes a subset of alternatives
within which IIA holds, and every leaf on each branch denotes an alter-
native. For example, the tree diagram for the worker’s choice of mode
just described is given in Figure 4.1. The (upside down) tree consists
of two branches, labeled “auto” and “transit,” for the two subsets of
alternatives, and each of the branches contains two twigs for the two
alternatives within the subset. There is proportional substitution across
twigs within a branch but not across branches.
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TransitAuto

Bus RailCarpoolAuto
alone

Figure 4.1. Tree diagram for mode choice.

4.2.2. Choice Probabilities

Daly and Zachary (1978), McFadden (1978), and Williams
(1977) showed, independently and using different proofs, that the nested
logit model is consistent with utility maximization. Let the set of al-
ternatives j be partitioned into K nonoverlapping subsets denoted B1,

B2, . . . , BK and called nests. The utility that person n obtains from alter-
native j in nest Bk is denoted, as usual, as Unj = Vnj + εnj , where Vnj

is observed by the researcher and εnj is a random variable whose value
is not observed by the researcher. The nested logit model is obtained
by assuming that the vector of unobserved utility, εn = 〈εn1, . . . , εn J 〉,
has cumulative distribution

(4.1) exp

(
−

K∑
k=1

( ∑
j∈Bk

e−εnj /λk

)λk
)

.

This distribution is a type of GEV distribution. It is a generalization
of the distribution that gives rise to the logit model. For logit, each
εnj is independent with a univariate extreme value distribution. For this
GEV, the marginal distribution of each εnj is univariate extreme value.
However, the εnj ’s are correlated within nests. For any two alternatives
j and m in nest Bk , εnj is correlated with εnm . For any two alternatives
in different nests, the unobserved portion of utility is still uncorrelated:
Cov(εnj , εnm) = 0 for any j ∈ Bk and m ∈ B� with � �= k.

The parameter λk is a measure of the degree of independence in un-
observed utility among the alternatives in nest k. A higher value of λk

means greater independence and less correlation. The statistic 1 − λk

is a measure of correlation, in the sense that as λk rises, indicating less
correlation, this statistic drops. As McFadden (1978) points out, the cor-
relation is actually more complex than 1 − λk , but 1 − λk can be used
as an indication of correlation. A value of λk = 1 indicates complete
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independence within nest k, that is, no correlation. When λk = 1 for all
k, representing independence among all the alternatives in all nests, the
GEV distribution becomes the product of independent extreme value
terms, whose distribution is given in (3.2). In this case, the nested logit
model reduces to the standard logit model.

As shown by the authors cited earlier, this distribution for the unob-
served components of utility gives rise to the following choice proba-
bility for alternative i ∈ Bk :

(4.2) Pni = eVni /λk
( ∑

j∈Bk
eVnj /λk

)λk−1

∑K
�=1

( ∑
j∈B�

eVnj /λ�

)λ�
.

We can use this formula to show that IIA holds within each subset
of alternatives but not across subsets. Consider alternatives i ∈ Bk and
m ∈ B�. Since the denominator of (4.2) is the same for all alternatives,
the ratio of probabilities is the ratio of numerators:

Pni

Pnm
= eVni /λk

( ∑
j∈Bk

eVnj /λk
)λk−1

eVnm/λ�

( ∑
j∈B�

eVnj /λ�

)λ�−1 .

If k = � (i.e., i and m are in the same nest) then the factors in parentheses
cancel out and we have

Pni

Pnm
= eVni /λk

eVnm/λ�

This ratio is independent of all other alternatives. For k �= � (i.e., i and m
are in different nests), the factors in parentheses do not cancel out. The
ratio of probabilities depends on the attributes of all alternatives in the
nests that contain i and m. Note, however, that the ratio does not depend
on the attributes of alternatives in nests other than those containing i
and m. A form of IIA holds, therefore, even for alternatives in different
nests. This form of IIA can be loosely described as “independence from
irrelevant nests” or IIN. With a nested logit model, IIA holds over al-
ternatives in each nest and IIN holds over alternatives in different nests.
This property of nested logit models is reinforced in the next section
when we decompose the nested logit probability into two standard logit
probabilities.

When λk = 1 for all k (and hence 1 − λk = 0), indicating no correla-
tion among the unobserved components of utility for alternatives within
a nest, the choice probabilities become simply logit. The nested logit
model is a generalization of logit that allows for a particular pattern of
correlation in unobserved utility.
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The parameter λk can differ over nests, reflecting different correlation
among unobserved factors within each nest. The researcher can con-
strain the λk’s to be the same for all (or some) nests, indicating that the
correlation is the same in each of these nests. Hypothesis testing can be
used to determine whether constraints on the λk’s are reasonable. Testing
the constraint λk = 1 ∀k is equivalent to testing whether the standard
logit model is a reasonable specification against the more general nested
logit. These tests are performed most readily with the likelihood ratio
statistic described in Section 3.8.2.

The value of λk must be within a particular range for the model to be
consistent with utility-maximizing behavior. If λk ∀k is between zero and
one, the model is consistent with utility maximization for all possible
values of the explanatory variables. For λk greater than one, the model
is consistent with utility-maximizing behavior for some range of the
explanatory variables but not for all values. Kling and Herriges (1995)
and Herriges and Kling (1996) provide tests of consistency of nested logit
with utility maximization when λk > 1; and Train et al. (1987a) and Lee
(1999) provide examples of models for which λk > 1. A negative value
ofλk is inconsistent with utility maximization and implies that improving
the attributes of an alternative (such as lowering its price) can decrease
the probability of the alternative being chosen. With positive λk , the
nested logit approaches the “elimination by aspects” model of Tversky
(1972) as λk → 0.

In the notation that we have been using, each λk is a fixed parame-
ter, which implies that all decision makers have the same correlations
among unobserved factors. In reality, correlations might differ over de-
cision makers based on their observed characteristics. To accommodate
this possibility, each λk can be specified to be a parametric function of
observed demographics or other variables, as long as the function main-
tains a positive value. For example, Bhat (1997) specifies λ = exp(αzn),
where zn is a vector of characteristics of decision maker n, and α is a
vector of parameters to be estimated along with the parameters that enter
representative utility. The exponential transformation assures that λ is
positive.

4.2.3. Decomposition into Two Logits

Expression (4.2) is not very illuminating as a formula. However,
the choice probabilities can be expressed in an alternative fashion that
is quite simple and readily interpretable. Without loss of generality, the
observed component of utility can be decomposed into two parts: (1) a
part labeled W that is constant for all alternatives within a nest, and
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(2) a part labeled Y that varies over alternatives within a nest. Utility is
written as

(4.3) Unj = Wnk + Ynj + εnj

for j ∈ Bk , where:

Wnk depends only on variables that describe nest k. These variables
differ over nests but not over alternatives within each nest.

Ynj depends on variables that describe alternative j . These variables
vary over alternatives within nest k.

Note that this decomposition is fully general, since for any Wnk , Ynj

is defined as Vnj − Wnk .
With this decomposition of utility, the nested logit probability can

be written as the product of two standard logit probabilities. Let the
probability of choosing alternative i ∈ Bk be expressed as the product
of two probabilities, namely, the probability that an alternative within
nest Bk is chosen and the probability that the alternative i is chosen given
that an alternative in Bk is chosen:

Pni = Pni | Bk PnBk ,

where Pni | Bk is the conditional probability of choosing alternative i
given that an alternative in nest Bk is chosen, and PnBk is the marginal
probability of choosing an alternative in nest Bk (with the marginality
being over all alternatives in Bk). This equality is exact, since any prob-
ability can be written as the product of a marginal and a conditional
probability.

The reason for decomposing Pni into a marginal and a conditional
probability is that, with the nested logit formula for Pni , the marginal
and conditional probabilities take the form of logits. In particular, the
marginal and conditional probabilities can be expressed as

(4.4) PnBk = eWnk+λk Ink∑K
�=1 eWn�+λ� In�

,

(4.5) Pni | Bk = eYni /λk∑
j∈Bk

eYnj /λk
,

where

Ink = ln
∑
j∈Bk

eYnj /λk .
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The derivation of these expressions from the choice probability (4.2)
simply involves algebraic rearrangement. For interested readers, it is
given in Section 4.2.5.

Stated in words, the probability of choosing an alternative in Bk takes
the form of the logit formula, as if it resulted from a model for a choice
among nests. This probability includes variables Wnk that vary over
nests but not over alternatives within each nest. It also includes a quan-
tity called Ink , whose meaning we elucidate in subsequent text. The
conditional probability of choosing i given that an alternative in Bk is
chosen is also given by a logit formula, as if it resulted from a model
for the choice among the alternatives within the nest. This conditional
probability includes variables Ynj that vary over alternatives within the
nest. Note that these variables are divided by λk , so that, when Ynj is
linear in parameters, the coefficients that enter this conditional proba-
bility are the original coefficients divided by λk . It is customary to refer
to the marginal probability (choice of nest) as the upper model and to
the conditional probability (choice of alternative within the nest) as the
lower model, reflecting their relative positions in Figure 4.1.

The quantity Ink links the upper and lower models by bringing infor-
mation from the lower model into the upper model. Ben-Akiva (1973)
first identified the correct formula for this link. In particular, Ink is the
log of the denominator of the lower model. This formula has an import-
ant meaning. Recall from the discussion of consumer surplus for a logit
model (Section 3.5) that the log of the denominator of the logit model
is the expected utility that the decision maker obtains from the choice
situation, as shown by Williams (1977) and Small and Rosen (1981).
The same interpretation applies here: λk Ink is the expected utility that
decision maker n receives from the choice among the alternatives in nest
Bk . The formula for expected utility is the same here as for a logit model
because, conditional on the nest, the choice of alternatives within the nest
is indeed a logit, as given by equation (4.5). Ink is often called the inclu-
sive value or inclusive utility of nest Bk . It is also called the “log-sum
term” because it is the log of a sum (of exponentiated representative
utilities). The term “inclusive price” is sometimes used; however, the
negative of Ink more closely resembles a price.

The coefficient λk of Ink in the upper model is often called the log-sum
coefficient. As discussed, λk reflects the degree of independence among
the unobserved portions of utility for alternatives in nest Bk , with a lower
λk indicating less independence (more correlation).

It is appropriate that the inclusive value enters as an explanatory vari-
able in the upper model. Stated loosely, the probability of choosing nest
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Bk depends on the expected utility that the person receives from that
nest. This expected utility includes the utility that he receives no matter
which alternative he chooses in the nest, which is Wnk , plus the expected
extra utility that he receives by being able to choose the best alternative
in the nest, which is λk Ink .

Recall that the coefficients that enter the lower model are divided
by λk , as given in equation (4.5). Models have been specified and es-
timated without dividing by λk in the lower model. Daly (1987) and
Greene (2000) describe such a model, and the software package STATA
includes it as its nested logit model in the nlogit command. The pack-
age NLOGIT allows either specification. If the coefficients in the lower
model are not divided by λk , the choice probabilities are not the same
as those given in equation (4.2). As shown in the derivation in Sec-
tion 4.2.5, the division by λk is needed for the product of the conditional
and marginal probabilities to equal the nested logit probabilities given
by equation (4.2). However, the fact that the model does not give the
probabilities in equation (4.2) does not necessarily mean that the model
is inappropriate. Koppelman and Wen (1998) and Hensher and Greene
(2002) compare the two approaches (dividing by λk versus not) and show
that the latter model is not consistent with utility maximization when
any coefficients are common across nests (such as a cost coefficient that
is the same for bus and car modes). Heiss (2002) points out the con-
verse: if no coefficients are common over nests, then the latter model is
consistent with utility maximization, since the necessary division by λk

in each nest is accomplished implicitly (rather than explicitly) by allow-
ing separate coefficients in each nests such that the scale of coefficients
differs over nests. When coefficients are common over nests, she found
that not dividing by λk leads to counterintuitive implications.

4.2.4. Estimation

The parameters of a nested model can be estimated by standard
maximum likelihood techniques. Substituting the choice probabilities of
expression (4.2) into the log-likelihood function gives an explicit func-
tion of the parameters of this model. The values of the parameters that
maximize this function are, under fairly general conditions, consistent
and efficient (Brownstone and Small, 1989).

Computer routines are available in commercial software packages for
estimating nested models by maximum likelihood. Hensher and Greene
(2002) provide a guide for nested logits using available software. Num-
erical maximization is sometimes difficult, since the log-likelihood func-
tion is not globally concave and even in concave areas is not close to
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a quadratic. The researcher may need to help the routines by trying dif-
ferent algorithms and/or starting values, as discussed in Chapter 8.

Instead of performing maximum likelihood, nested logit models can
be estimated consistently (but not efficiently) in a sequential fashion,
exploiting the fact that the choice probabilities can be decomposed into
marginal and conditional probabilities that are logit. This sequential
estimation is performed “bottom up.” The lower models (for the choice
of alternative within a nest) are estimated first. Using the estimated
coefficients, the inclusive value is calculated for each lower model. Then
the upper model (for choice of nest) is estimated, with the inclusive value
entering as explanatory variables.

Sequential estimation creates two difficulties that argue against its use.
First, the standard errors of the upper-model parameters are biased down-
ward, as Amemiya (1978) first pointed out. This bias arises because the
variance of the inclusive value estimate that enters the upper model is not
incorporated into the calculation of standard errors. With downwardly
biased standard errors, smaller confidence bounds and larger t-statistics
are estimated for the parameters than are true, and the upper model will
appear to be better than it actually is. Ben-Akiva and Lerman (1985,
p. 298) give a procedure for adjusting the standard errors to eliminate
the bias.

Second, it is usually the case that some parameters appear in several
submodels. Estimating the various upper and lower models separately
provides separate estimates of whatever common parameters appear in
the model. Simultaneous estimation by maximum likelihood assures that
the common parameters are constrained to be the same wherever they
appear in the model.

These two complications are symptoms of a more general circum-
stance, namely, that sequential estimation of nested logit models, while
consistent, is not as efficient as simultaneous estimation by maximum
likelihood. With simultaneous estimation, all information is utilized in
the estimation of each parameter, and parameters that are common across
components are necessarily constrained to be equal. Since commercial
software is available for simultaneous estimation, there is little reason
to estimate a nested logit sequentially. If problems arise in simultaneous
estimation, then the researcher might find it useful to estimate the model
sequentially and then use the sequential estimates as starting values in
the simultaneous estimation. The main value of the decomposition of
the nested logit into its upper and lower components comes not in its use
as an estimation tool but rather as an heuristic device: the decomposition
helps greatly in understanding the meaning and structure of the nested
logit model.
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4.2.5. Equivalence of Nested Logit Formulas

We asserted in Section 4.2.3 that the product of the marginal and
conditional probabilities in (4.4) and (4.5) equals the joint probability
in (4.2). We now verify this assertion:

Pni = eVni /λk
(∑

j∈Bk
eVnj /λk

)λk−1

∑K
�=1

(∑
j∈B�

eVnj /λ�

)λ�
by (4.2)

= eVni /λk∑
j∈Bk

eVnj /λk

(∑
j∈Bk

eVnj /λk
)λk

∑K
�=1

(∑
j∈B�

eVnj /λ�

)λ�

= e(Wnk+Yni )/λk∑
j∈Bk

e(Wnk+Ynj )/λk

(∑
j∈Bk

e(Wnk+Ynj )/λk
)λk

∑K
�=1

(∑
j∈B�

e(Wn�+Ynj )/λ�

)λ�
by (4.3)

= eWnk/λk eYni /λk

eWnk/λk
∑

j∈Bk
eYnj /λk

eWnk
(∑

j∈Bk
eYnj /λk

)λk

∑K
�=1 eWn�

(∑
j∈B�

eYnj /λ�

)λ�

= eYni /λk∑
j∈Bk

eYnj /λk

eWnk+λk Ink∑K
�=1 eWn�+λ� In�

= Pni | Bk PnBk ,

where the next-to-last equality is because Ink = ln
∑

j∈Bk
eYnj /λk , recog-

nizing that ex bc = ex+c ln b.

4.3 Three-Level Nested Logit

The nested logit model that we have discussed up this this point is
called a two-level nested logit model, because there are two levels of
modeling: the marginal probabilities (upper model) and the conditional
probabilities (lower models). In the case of the mode choice, the two
levels are the marginal model of auto versus transit and the conditional
models of type of auto or transit (auto alone or carpool given auto, and
bus or rail given transit).

In some situations, three- or higher-level nested logit models are ap-
propriate. Three-level models are obtained by partitioning the set of
alternatives into nests and then partitioning each nest into subnests. The
probability formula is a generalization of (4.2) with extra sums for the
subnests within the sums for nests. See McFadden (1978) or Ben-Akiva
and Lerman (1985) for the formula.

As with a two-level nested logit, the choice probabilities for a three-
level model can be expressed as a series of logits. The top model
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Neighborhood

Number of
bedrooms 1      2     3+ 1      2      3+ 1      2     3+ 1      2     3+

Housing unit

Nob 
Hill

Haight 
Ashbury

Telegraph
Hill

Mission 
District

Figure 4.2. Three-level nested logit.

describes the choice of nest; the middle models describe the choice of
subnest within each nest; and the bottom models describe the choice
of alternative within each subnest. The top model includes an inclusive
value for each nest. This value represents the expected utility that the
decision maker can obtain from the subnests within the nest. It is cal-
culated as the log of the denominator of the middle model for that nest.
Similarly, the middle models include an inclusive value for each subnest,
which represents the expected utility that the decision maker can obtain
from the alternatives within the subnest. It is calculated as the log of the
denominator of the bottom model for the subnest.

As an example, consider a household’s choice of housing unit within
a metropolitan area. The household has a choice among all the available
housing units in the city. The housing units are available in different
neighborhoods in the city and with different numbers of bedrooms. It is
reasonable to assume that there are unobserved factors that are common
to all units in the same neighborhood, such as the proximity to shopping
and entertainment. The unobserved portion of utility is therefore ex-
pected to be correlated over all units in a given neighborhood. There
are also unobserved factors that are common to all units with the same
number of bedrooms, such as the convenience of working at home. We
therefore expect the unobserved utility to be even more highly correlated
among units of the same size in the same neighborhood than between
units of different size in the same neighborhood. This pattern of corre-
lation can be represented by nesting the units by neighborhood and then
subnesting them by number of bedrooms. A tree diagram depicting this
situation is given in Figure 4.2 for San Francisco. There are three levels
of submodels: the probability for choice of neighborhood, the probabil-
ity for choice of number of bedrooms given the neighborhood, and the
choice of unit given the neighborhood and number of bedrooms.
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A nested logit model with this nesting structure embodies IIA in the
following ways.

1. The ratio of probabilities of two housing units in the same neigh-
borhood and with the same number of bedrooms is independent
of the characteristics of all other units. For example, lowering
the price of a two-bedroom apartment in Pacific Heights draws
proportionately from all one-bedroom units on Russian Hill.

2. The ratio of probabilities of two housing units in the same neigh-
borhood but with different numbers of bedrooms is indepen-
dent of the characteristics of units in other neighborhoods but
depends on the characteristics of units in the same neighbor-
hood that have the same number of bedrooms as either of these
units. Lowering the price of a two-bedroom apartment in Paci-
fic Heights draws proportionately from one- and two-bedroom
units on Russian Hill, but draws disproportionately from two-
bedroom units in Pacific Heights relative to one-bedroom units
in Pacific Heights.

3. The ratio of probabilities of two housing units in different neigh-
borhoods depends on the characteristics of all the other hous-
ing units in those neighborhoods but not on the characteris-
tics of units in other neighborhoods. Lowering the price of a
two-bedroom apartment in Pacific Heights draws proportion-
ately from all units outside Pacific Heights but draws dispropor-
tionately from units in Pacific Heights relative to units outside
Pacific Heights.

Each layer of a nesting in a nested logit introduces parameters that
represent the degree of correlation among alternatives within the nests.
With the full set of alternatives partitioned into nests, the parameter λk

is introduced for nest k, as described for two-level models. If the nests
are further partitioned into subnests, then a parameter σmk is introduced
for subnest m of nest k. Using the decomposition of the probability into
a series of logit models, σmk is the coefficient of the inclusive value in
the middle model, and λkσmk is the coefficient of the inclusive value in
the top model. Just as for a two-level nested logit, the values of these
parameters must be in certain ranges to be consistent with utility maxi-
mization. If 0 < λk < 1 and 0 < σmk < 1, then the model is consistent
with utility maximization for all levels of the explanatory variables. A
negative value for either parameter is inconsistent with utility maximiza-
tion. And values greater than one are consistent for a range of explanatory
variables.
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4.4 Overlapping Nests

For the nested logit models that we have considered, each alternative
is a member of only one nest (and, for three-level models, only one
subnest). This aspect of nested logit models is a restriction that is some-
times inappropriate. For example, in our example of mode choice, we
put carpool and auto alone into a nest because they have some similar
unobserved attributes. However, carpooling also has some unobserved
attributes that are similar to bus and rail, such as a lack of flexibility in
scheduling (the worker cannot go to work whenever he wants each day
but rather has to go at the time that the carpool has decided, similarly to
taking a bus or rail line with fixed departure times). It would be useful to
have a model in which the unobserved utility for the carpool alternative
could be correlated with that of auto alone and also correlated, though to
a different degree, with that of bus and rail. Stated equivalently, it would
be useful for the carpool alternative to be in two nests: one with auto
alone and another with bus and rail.

Several kinds of GEV models have been specified with overlapping
nests, so that an alternative can be a member of more than one nest.
Vovsha (1997), Bierlaire (1998), and Ben-Akiva and Bierlaire (1999)
have proposed various models called cross-nested logits (CNLs) that
contain multiple overlapping nests. Small (1987) considered a situation
where the alternatives have a natural order, such as the number of cars
that a household owns (0, 1, 2, 3, . . . ) or the destination for shopping
trips, with the shopping areas ordered by distance from the household’s
home. He specified a model, called ordered generalized extreme value
(OGEV), in which the correlation in unobserved utility between any two
alternatives depends on their proximity in the ordering. This model has
overlapping nests like the CNLs, but each nest consists of two alterna-
tives, and a pattern is imposed on the correlations (higher correlation
for closer pairs). Small (1994) and Bhat (1998b) described a nested ver-
sion of the OGEV, which is similar to a nested logit except that the
lower models (for the alternatives given the nests) are OGEV rather than
standard logit. Chu (1981, 1989) proposed a model called the paired
combinatorial logit (PCL) in which each pair of alternatives constitutes
a nest with its own correlation. With J alternatives, each alternative is
a member of J − 1 nests, and the correlation of its unobserved utility
with each other alternative is estimated. Wen and Koppelman (2001)
have developed a generalized nested logit (GNL) model that includes
the PCL and other cross-nested models as special cases. I describe in
the following subsections the PCL and GNL, the former because of its
simplicity and the latter because of its generality.
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4.4.1. Paired Combinatorial Logit

Each pair of alternatives is considered to be a nest. Since each
alternative is paired with each of the other alternatives, each alternative
is member of J − 1 nests. A parameter labeled λi j indicates the degree
of independence between alternatives i and j . Stated equivalently: 1 −
λi j is a measure of the correlation between the unobserved utility of
alternative i and that of alternative j . This parameter is analogous to the
λk in a nested logit model, where λk indicates the degree of independence
of alternatives within the nest and 1 − λk is a measure of correlation
within the nest. And as with nested logit, the PCL model becomes a
standard logit when λi j = 1 for all pairs of alternatives.

The choice probabilities for the PCL model are

(4.6) Pni =
∑

j �=i eVni /λi j (eVni /λi j + eVnj /λi j )λi j −1

∑J−1
k=1

∑J
�=k+1(eVnk/λk� + eVn�/λk�)λk�

.

The sum in the numerator is over all J − 1 nests that alternative i is
in. For each of these nests, the term being added is the same as the
numerator of the nested logit probability (4.2). Thus, the PCL is like
the nested logit except that it allows i to be in more than one nest. The
denominator in the PCL also takes the same form as in a nested logit: it
is the sum over all nests of the sum of the exp(V/λ)’s within the nest,
raised to the appropriate power λ. If λi j is between zero and one for all
i j pairs, then the model is consistent with utility maximization for all
levels of the data. It is easy to verify that Pni becomes the standard logit
formula when λi j = 1 ∀i, j . In their application, Koppelman and Wen
(2000) found PCL to perform better than nested logit or standard logit.

The researcher can test the hypothesis that λi j = 1 for some or all of
the pairs, using the likelihood ratio test of Section 3.8.2. Acceptance of
the hypothesis for a pair of alternatives implies that there is no significant
correlation in the unobserved utility for that pair. The researcher can also
place structure on the pattern of correlation. For example, correlations
can be assumed to be the same among a group of alternatives; this
assumption is imposed by setting λi j = λk� for all i , j , k, and � in the
group. Small’s OGEV model is a PCL model in which λi j is specified
to be a function of the proximity between i and j . With a large number
of alternatives, the researcher will probably need to impose some form
of structure on the λi j ’s, simply to avoid the proliferation of parameters
that arises with large J . This proliferation of parameters, one for each
pair of alternatives, is what makes the PCL so flexible. The researcher’s
goal is to apply this flexibility meaningfully for his particular situation.

As discussed near the end of Section 2.5, since the scale and level
of utility are immaterial, at most J (J − 1)/2 − 1 covariance parameters
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can be estimated in a discrete choice model. A PCL model contains
J (J − 1)/2 λ’s: one for each alternative paired with each other alter-
native, recognizing that i paired with j is the same as j paired with i .
The number of λ’s exceeds the number of identifiable covariance pa-
rameters by exactly one. The researcher must therefore place at least
one constraint on the λ’s. This can be accomplished by normalizing one
of the λ’s to 1. If structure is imposed on the pattern of correlation,
as described in the previous paragraph, then this structure will usually
impose the normalization automatically.

4.4.2. Generalized Nested Logit

Nests of alternatives are labeled B1, B2, . . . , BK . Each alterna-
tive can be a member of more than one nest. Importantly, an alternative
can be in a nest to varying degrees. Stated differently, an alternative
is allocated among the nests, with the alternative being in some nests
more than other nests. An allocation parameter α jk reflects the extent
to which alternative j is a member of nest k. This parameter must be
nonnegative: α jk ≥ 0 ∀ j, k. A value of zero means that the alternative is
not in the nest at all. Interpretation is facilitated by having the allocation
parameters sum to one over nests for any alternative:

∑
k α jk = 1 ∀ j .

Under this condition, α jk reflects the portion of the alternative that is
allocated to each nest.

A parameter λk is defined for each nest and serves the same function
as in nested logit models, namely to indicate the degree of independence
among alternatives within the nest: higher λk translates into greater in-
dependence and less correlation.

The probability that person n chooses alternative i is

(4.7) Pni =
∑

k

(
αikeVni

)1/λk
(∑

j∈Bk

(
α jkeVnj

)1/λk
)λk−1

∑K
�=1

(∑
j∈B�

(
α j�eVnj

)1/λ�

)λ�
.

This formula is similar to the nested logit probability given in equa-
tion (4.2), except that the numerator is a sum over all the nests that
contains alternative i , with weights applied to these nests. If each alter-
native enters only one nest, with α jk = 1 for j ∈ Bk and zero otherwise,
the model becomes a nested logit model. And if, in addition, λk = 1 for
all nests, then the model becomes standard logit. Wen and Koppelman
(2001) derive various cross-nested models as special cases of the GNL.

To facilitate interpretation, the GNL probability can be decomposed as

Pni =
∑

k

Pni | Bk Pnk,
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where the probability of nest k is

Pnk =
∑

j∈Bk

(
α jkeVnj

)1/λk

∑K
�=1

(∑
j∈B�

(
α j�eVnj

)1/λ�

)λ�

and the probability of alternative i given nest k is

Pni | Bk =
(
αikeVni

)1/λk

∑
j∈Bk

(
α jkeVnj

)1/λk
.

4.5 Heteroskedastic Logit

Instead of capturing correlations among alternatives, the researcher may
simply want to allow the variance of unobserved factors to differ over
alternatives. Steckel and Vanhonacker (1988), Bhat (1995), and Recker
(1995) describe a type of GEV model, called heteroskedastic extreme
value (HEV), that is the same as logit except for having a different vari-
ance for each alternative. Utility is specified as Unj = Vnj + εnj , where
εnj is distributed independently extreme value with variance (θ jπ )2/6.
There is no correlation in unobserved factors over alternatives; however,
the variance of the unobserved factors is different for different alterna-
tives. To set the overall scale of utility, the variance for one alternative is
normalized to π2/6, which is the variance of the standardized extreme
value distribution. The variances for the other alternatives are then esti-
mated relative to the normalized variance.

The choice probabilities for this heteroskedastic logit are (Bhat, 1995)

Pni =
∫ [ ∏

j �=i

e−e−(Vni −Vnj +θi w)/θ j

]
e−e−w

e−wdw,

where w = εni/θi . The integral does not take a closed form; however, it
can be approximated by simulation. Note that exp(− exp(−w)) exp(−w)
is the extreme value density, given in Section 3.1. Pni is therefore the
integral of the factor in square brackets over the extreme value den-
sity. It can be simulated as follows: (1) Take a draw from the ex-
treme value distribution, using the procedure described in Section 9.2.3.
(2) For this draw of w, calculate the factor in brackets, namely,∏

j �=i exp(− exp(−(vni − Vnj + θiw)/θ j )). (3) Repeat steps 1 and 2
many times, and average the results. This average is an approximation to
Pni . Bhat (1995) shows that, since the integral is only one-dimensional,
the heteroskedastic logit probabilities can be calculated effectively with
quadrature rather than simulation.
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4.6 The GEV Family

We now describe the processs that McFadden (1978) developed to gen-
erate GEV models. Using this process, the researcher is able to develop
new GEV models that best fit the specific circumstances of his choice
situation. As illustration, we show how the procedure is used to generate
models that we have already discussed, namely logit, nested logit, and
paired combinatorial logit. The same procedure can be applied by a re-
searcher to generate new models with properties that meet his research
needs.

For notational simplicity, we will omit the subscript n denoting the
decision maker. Also, since we will be using exp(Vj ) repeatedly, let’s
denote it more compactly by Y j . That is, let Y j ≡ exp(Vj ). Note that Y j

is necessarily positive.
Consider a function G that depends on Y j for all j . We denote this

function G = G(Y1, . . . , YJ ). Let Gi be the derivative of G with respect
to Yi : Gi = ∂G/∂Yi . If this function meets certain conditions, then a
discrete choice model can be based upon it. In particular, if G satisfies
the conditions that are listed in the next paragraph, then

(4.8) Pi = Yi Gi

G

is the choice probability for a discrete choice model that is consistent
with utility maximization. Any model that can be derived in this way is a
GEV model. This formula therefore defines the family of GEV models.

The properties that the function must exhibit are the following:

1. G ≥ 0 for all positive values of Y j ∀ j .
2. G is homogeneous of degree one. That is, if each Y j is

raised by some proportion ρ, G rises by proportion ρ also:
G(ρY1, . . . , ρYJ ) = ρG(Y1, . . . , YJ ). Actually, Ben-Akiva and
Francois (1983) showed that this condition can be relaxed to
allow any degree of homogeneity. We retain the usage of degree
one, since doing so makes the condition easier to interpret and
is consistent with McFadden’s original description.

3. G → ∞ as Y j → ∞ for any j .
4. The cross partial derivatives of G change signs in a particular

way. That is, Gi ≥ 0 for all i , Gi j = ∂Gi/∂Y j ≤ 0 for all j �= i ,
Gi jk = ∂Gi j/∂Yk ≥ 0 for any distinct i , j , and k, and so on for
higher-order cross-partials.

There is little economic intuition to motivate these properties, particu-
larly the last one. However, it is easy to verify whether a function exhibits
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these properties. The lack of intuition behind the properties is a blessing
and a curse. The disadvantage is that the researcher has little guidance
on how to specify a G that provides a model that meets the needs of his
research. The advantage is that the purely mathematical approach allows
the researcher to generate models that he might not have developed while
relying only on his economic intuition. Karlstrom (2001) provides an
example: he arbitrarily specified a G (in the sense that it was not based
on behavioral concepts) and found that the resulting probability formula
fitted his data better than logit, nested logit, and PCL.

We can now show how logit, nested logit, and PCL models are ob-
tained under appropriate specifications of G.

Logit

Let G = ∑J
j=1 Y j . This G exhibits the four required properties:

(1) The sum of positive Y j ’s is positive. (2) If all Y j ’s are raised by a
factor ρ, G rises by that same factor. (3) If any Y j rises without bound,
then G does also. (4) The first partial derivative is Gi = ∂G/∂Yi = 1,
which meets the criterion that Gi ≥ 0. And the higher-order derivatives
are all zero, which clearly meets the criterion, since they are ≥ 0 or ≤ 0
as required.

Inserting this G and its first derivative Gi into (4.8), the resulting
choice probability is

Pi = Yi Gi

G

= Yi∑J
j=1 Y j

= eVi∑J
j=1 eVj

,

which is the logit formula.

Nested Logit

The J alternatives are partitioned into K nests labeled
B1, . . . , BK . Let

G =
K∑

�=1

( ∑
j∈B�

Y 1/λ�

j

)λ�

,

with each λk between zero and one. The first three properties are easy
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to verify. For the fourth property, we calculate the first partial derivative

Gi = λk

( ∑
j∈Bk

Y 1/λk

j

)λk−1 1

λk
Y (1/λk )−1

i

= Y (1/λk )−1
i

( ∑
j∈Bk

Y 1/λk

j

)λk−1

for i ∈ Bk . Since Y j ≥ 0 ∀ j , we have Gi ≥ 0, as required. The second
cross partial derivative is

Gim = ∂Gi

∂Ym

= (λk − 1)Y (1/λk )−1
i

( ∑
j∈Bk

Y 1/λk

j

)λk−2 1

λk
Y (1/λk )−1

m

= λk − 1

λk
(Yi Ym)(1/λk )−1

( ∑
j∈Bk

Y 1/λk

j

)λk−2

for m ∈ Bk and m �= i . With λk ≤ 1, Gi j ≤ 0, as required. For j in
a different nest than i , Gi j = 0, which also meets the criterion. Higher
cross-partials are calculated similarly; they exhibit the required property
if 0 < λk ≤ 1.

The choice probability becomes

Pi = Yi Gi

G

=
Yi Y

(1/λk )−1
i

( ∑
j∈Bk

Y 1/λ�

j

)λk−1

∑K
�=1

( ∑
j∈B�

Y 1/λ�

j

)λ�

=
Y 1/λk

i

( ∑
j∈Bk

Y 1/λ�

j

)λk−1

∑K
�=1

( ∑
j∈B�

Y 1/λ�

j

)λ�

=
(eVi )1/λk

( ∑
j∈Bk

(eVj )1/λ�

)λk−1

∑K
�=1

( ∑
j∈B�

(eVj )1/λ�

)λ�

=
eVi /λk

( ∑
j∈Bk

eVj /λ�

)λk−1

∑K
�=1

( ∑
j∈B�

eVj /λ�

)λ�
,

which is the nested logit formula (4.2).
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Paired Combinatorial Logit

Let

G =
J−1∑
k=1

J∑
�=k+1

(
Y 1/λk�

k + Y 1/λk�

�

)λk�

.

The required properties are verified in the same way as for the nested
logit. We have

Gi =
∑
j �=i

λ j i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1 1

λi j
Y

(1/λi j )−1
i

=
∑
j �=i

Y
(1/λi j )−1
i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1
.

And so the choice probability is

Pi = Yi Gi

G

=
Yi

∑
j �=i Y

(1/λi j )−1
i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1

∑J−1
k=1

∑J
�=k+1

(
Y 1/λk�

k + Y 1/λk�

�

)λk�

=
∑

j �=i Y
(1/λi j )
i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1

∑J−1
k=1

∑J
�=k+1

(
Y 1/λk�

k + Y 1/λk�

�

)λk�

=
∑

j �=i eVi /λi j (eVi /λi j + eVj /λi j )λi j −1

∑J−1
k=1

∑J
�=k+1(eVk/λk� + eV�/λk�)λk�

,

which is the PCL formula (4.6).

Generalized Nest Logit

The reader can verify that the GNL probabilities in equation
(4.7) are derived from

G =
K∑

k=1

( ∑
j∈Bk

(α jkY j )
1/λk

)λk

.

Using the same process, researchers can generate other GEV models.
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5.1 Choice Probabilities

The logit model is limited in three important ways. It cannot represent
random taste variation. It exhibits restrictive substitution patterns due to
the IIA property. And it cannot be used with panel data when unobserved
factors are correlated over time for each decision maker. GEV models
relax the second of these restrictions, but not the other two. Probit models
deal with all three. They can handle random taste variation, they allow
any pattern of substitution, and they are applicable to panel data with
temporally correlated errors.

The only limitation of probit models is that they require normal distri-
butions for all unobserved components of utility. In many, perhaps most
situations, normal distributions provide an adequate representation of
the random components. However, in some situations, normal distribu-
tions are inappropriate and can lead to perverse forecasts. A prominent
example relates to price coefficients. For a probit model with random
taste variation, the coefficient of price is assumed to be normally dis-
tributed in the population. Since the normal distribution has density on
both sides of zero, the model necessarily implies that some people have
a positive price coefficient. The use of a distribution that has density
only on one side of zero, such as the lognormal, is more appropriate and
yet cannot be accommodated within probit. Other than this restriction,
the probit model is quite general.

The probit model is derived under the assumption of jointly normal
unobserved utility components. The first derivation, by Thurstone (1927)
for a binary probit, used the terminology of psychological stimuli, which
Marschak (1960) translated into economic terms as utility. Hausman
and Wise (1978) and Daganzo (1979) elucidated the generality of the
specification for representing various aspects of choice behavior. Utility
is decomposed into observed and unobserved parts: Unj = Vnj + εnj ∀ j .
Consider the vector composed of each εnj , labeled ε′

n = 〈εn1, . . . , εn J 〉.

101
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We assume that εn is distributed normal with a mean vector of zero and
covariance matrix �. The density of εn is

φ(εn) = 1

(2π )J/2|�|1/2
e− 1

2 ε′
n�

−1εn .

The covariance � can depend on variables faced by decision maker n, so
that �n is the more appropriate notation; however, we omit the subscript
for the sake of simplicity.

The choice probability is

Pni = Prob(Vni + εni > Vnj + εnj ∀ j 
= i)

=
∫

I (Vni + εni > Vnj + εnj ∀ j 
= i)φ(εn) dεn,(5.1)

where I (·) is an indicator of whether the statement in parentheses holds,
and the integral is over all values of εn . This integral does not have a
closed form. It must be evaluated numerically through simulation.

The choice probabilities can be expressed in a couple of other ways
that are useful for simulating the integral. Let Bni be the set of error
terms εn that result in the decision maker choosing alternative i : Bni =
{εn s.t. Vni + εni > Vnj + εnj ∀ j 
= i}. Then

(5.2) Pni =
∫

εn∈Bni

φ(εn) dεn,

which is an integral over only some of the values of εn rather than all
possible values, namely, the εn’s in Bni .

Expressions (5.1) and (5.2) are J -dimensional integrals over the J
errors εnj , j = 1, . . . , J . Since only differences in utility matter,
the choice probabilities can be equivalently expressed as (J − 1)-
dimensional integrals over the differences between the errors. Let us dif-
ference against alternative i , the alternative for which we are calculating
the probability. Define Ũnji = Unj − Uni , Ṽnji = Vnj − Vni , and ε̃nji =
εnj − εni . Then Pni = Prob(Ũnji < 0 ∀ j 
= i). That is, the probabil-
ity of choosing alternative i is the probability that all the utility dif-
ferences, when differenced against i , are negative. Define the vector
ε̃ni = 〈ε̃n1i , . . . , ε̃n J1〉 where the “. . .” is over all alternatives except i ,
so that ε̃ni has dimension J − 1. Since the difference between two nor-
mals is normal, the density of the error differences is

φ(ε̃ni ) = 1

(2π )−
1
2 (J−1)|�̃i |1/2

e− 1
2 ε̃′

ni �̃i ε̃ni ,
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where �̃i is the covariance of ε̃ni , derived from �. Then the choice
probability expressed in utility differences is

(5.3) Pni =
∫

I (Ṽnji + ε̃nji < 0 ∀ j 
= i)φ(ε̃ni ) d ε̃ni ,

which is a (J − 1)-dimensional integral over all possible values of the
error differences. An equivalent expression is

(5.4) Pni =
∫

ε̃ni ∈B̃ni

φ(ε̃ni ) d ε̃ni ,

where B̃ni = {ε̃ni s.t. Ṽnji + ε̃nji < 0 ∀ j 
= i}, which is a (J − 1)-
dimensional integral over the error differences in B̃ni .

Expressions (5.3) and (5.4) utilize the covariance matrix �̃i of the
error differences. There is a straightforward way to derive �̃i from the
covariance of the errors themselves, �. Let Mi be the (J − 1) identity
matrix with an extra column of −1’s added as the i th column. The extra
column makes the matrix have size J − 1 by J . For example, with J = 4
alternatives and i = 3,

Mi =

1 0 −1 0

0 1 −1 0
0 0 −1 1


 .

This matrix can be used to transform the covariance matrix of errors
into the covariance matrix of error differences: �̃i = Mi�M ′

i . Note that
�̃i is (J − 1) × (J − 1) while � is J × J , since Mi is (J − 1) × J .
As an illustration, consider a three-alternative situation with errors
〈εn1, εn2, εn3〉 that have covariance

� =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 .

Suppose we takes differences against alternative 2. We know from first
principles that the error differences 〈ε̃n12, ε̃n32〉 have covariance

�̃2 = Cov

(
εn1 − εn2

εn3 − εn2

)

=
(

σ11 + σ22 − 2σ12 σ13 + σ22 − σ12 − σ23

σ13 + σ22 − σ12 − σ23 σ33 + σ22 − 2σ23

)
.
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This covariance matrix can also be derived by the transformation �̃2 =
M2�M ′

2:

�̃n =
(

1 −1 0
0 −1 1

) 
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33





 1 0

−1 −1
0 1




=
(

σ11 − σ12 σ12 − σ22 σ13 − σ23

−σ12 + σ13 −σ22 + σ23 −σ23 + σ33

) 
 1 0

−1 −1
0 1




=
(

σ11 − σ12 − σ12 + σ22 −σ12 + σ22 + σ13 − σ23

−σ12 + σ13 + σ22 − σ23 σ22 − σ23 − σ23 + σ33

)

=
(

σ11 + σ22 − 2σ12 σ13 + σ22 − σ12 − σ23

σ13 + σ22 − σ12 − σ23 σ33 + σ22 − 2σ23

)
.

As we will see, this transformation by Mi comes in handy when simu-
lating probit probabilities.

5.2 Identification

As described in Section 2.5, any discrete choice model must be normal-
ized to take account of the fact that the level and scale of utility are irrele-
vant. The level of utility is immaterial because a constant can be added to
the utility of all alternatives without changing which alternative has the
highest utility: the alternative with the highest utility before the constant
is added still has the highest utility afterward. Similarly, the scale of
utility doesn’t matter because the utility of each alternative can be mul-
tiplied by a (positive) constant without changing which alternative has
the highest utility. In logit and nested logit models, the normalization for
scale and level occurs automatically with the distributional assumptions
that are placed on the error terms. As a result, normalization does not
need to be considered explicitly for these models. With probit models,
however, normalization for scale and level does not occur automatically.
The researcher must normalize the model directly.

Normalization of the model is related to parameter identification. A
parameter is identified if it can be estimated, and is unidentified if it
cannot be estimated. An example of an unidentified parameter is k in
the utility specification Unj = Vnj + k + εnj . While the researcher might
write utility in this way, and might want to estimate k to obtain a measure
of the overall level of utility, doing so is impossible. The behavior of the
decision maker is unaffected by k, and so the researcher cannot infer its
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value from the choices that decision makers have made. Stated directly,
parameters that do not affect the behavior of decision makers cannot be
estimated. In an unnormalized model, parameters can appear that are not
identified; these parameters relate to the scale and level of utility, which
do not affect behavior. Once the model is normalized, these parameters
disappear. The difficulty arises because it is not always obvious which
parameters relate to scale and level. In the preceding example, the fact
that k is unidentified is fairly obvious. In many cases, it is not at all
obvious which parameters are identified. Bunch and Kitamura (1989)
have shown that the probit models in several published articles are not
normalized and contain unidentified parameters. The fact that neither
the authors nor the reviewers of these articles could tell that the models
were unnormalized is testimony to the complexity of the issue.

I provide in the following a procedure that can always be used to
normalize a probit model and assure that all parameters are identified. It is
not the only procedure that can be used; see, for example, Bunch (1991).
In some cases a researcher might find other normalization procedures
more convenient. However, the procedure I give can always be used,
either by itself or as a check on another procedure.

I describe the procedure in terms of a four-alternative model. Gen-
eralization to more alternatives is obvious. As usual, utility is ex-
pressed as Unj = Vnj + εnj , j = 1, . . . , 4. The vector of errors is ε′

n =
〈εn1, . . . , εn4〉. It is normally distributed with zero mean and a covariance
matrix that can be expressed explicitly as

(5.5) � =




σ11 σ12 σ13 σ14

· σ22 σ23 σ24

· · σ33 σ34

· · · σ44


 ,

where the dots refer to the corresponding elements on the upper part
of the matrix. Note that there are ten elements in this matrix, that is,
ten distinct σ ’s representing the variances and covariances among the
four errors. In general, a model with J alternatives has J (J + 1)/2
distinct elements in the covariance matrix of the errors.

To take account of the fact that the level of utility is irrelevant, we take
utility differences. In my procedure, I always take differences with re-
spect to the first alternative, since that simplifies the analysis in a way that
we will see. Define error differences as ε̃nj1 = εnj − εn1 for j = 2, 3, 4,
and define the vector of error differences as ε̃n1 = 〈ε̃n21, ε̃n31, ε̃n41〉. Note
that the subscript 1 in ε̃n1 means that the error differences are against
the first alternative, rather than that the errors are for the first alternative.
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The covariance matrix for the vector of error differences takes the form

�̃1 =

θ22 θ23 θ24

· θ33 θ34

· · θ44


 ,

where the θ ’s relate to the original σ ’s as follows:

θ22 = σ22 + σ11 − 2σ12,

θ33 = σ33 + σ11 − 2σ13,

θ44 = σ44 + σ11 − 2σ14,

θ23 = σ23 + σ11 − σ12 − σ13,

θ24 = σ24 + σ11 − σ12 − σ14,

θ34 = σ34 + σ11 − σ13 − σ14.

Computationally, this matrix can be obtained using the transformation
matrix Mi defined in Section 5.1 as �̃1 = M1�M ′

1.
To set the scale of utility, one of the diagonal elements is normalized.

I set the top-left element of �̃1, which is the variance of ε̃n21, to 1. This
normalization for scale gives us the following covariance matrix:

(5.6) �̃∗
1 =




1 θ∗
23 θ∗

24

· θ∗
33 θ∗

34

· · θ∗
44


 .

The θ∗’s relate to the original σ ’s as follows:

θ∗
33 = σ33 + σ11 − 2σ13

σ22 + σ11 − 2σ12
,

θ∗
44 = σ44 + σ11 − 2σ14

σ22 + σ11 − 2σ12
,

θ∗
23 = σ23 + σ11 − σ12 − σ13

σ22 + σ11 − 2σ12
,

θ∗
24 = σ24 + σ11 − σ12 − σ14

σ22 + σ11 − 2σ12
,

θ∗
34 = σ34 + σ11 − σ13 − σ14

σ22 + σ11 − 2σ12
.

There are five elements in �̃∗
1. These are the only identified parameters

in the model. This number is less than the ten elements that enter �. Each
θ∗ is a function of the σ ’s. Since there are five θ∗’s and ten σ ’s, it is not
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possible to solve for all the σ ’s from estimated values of the θ∗’s. It is
therefore not possible to obtain estimates of all the σ ’s.

In general, a model with J alternatives and an unrestricted covariance
matrix will have [(J − 1)J/2] − 1 covariance parameters when normal-
ized, compared to the J (J + 1)/2 parameters when unnormalized. Only
[(J − 1)J/2] − 1 parameters are identified. This reduction in the num-
ber of parameters is not a restriction. The reduction in the number of
parameters is a normalization that simply eliminates irrelevant aspects
of the original covariance matrix, namely the scale and level of utility.
The ten elements in � allow for variance and covariance that is due
simply to scale and level, which has no relevance for behavior. Only the
five elements in �̃∗

1 contain information about the variance and covari-
ance of errors independent of scale and level. In this sense, only the five
parameters have economic content, and only the five parameters can be
estimated.

Suppose now that the researcher imposes structure on the covariance
matrix. That is, instead of allowing a full covariance matrix for the
errors, the researcher believes that the errors follow a pattern that implies
particular values for, or relations among, the elements in the covariance
matrix. The researcher restricts the covariance matrix to incorporate this
pattern.

The structure can take various forms, depending on the application.
Yai et al. (1997) estimate a probit model of route choice where the covari-
ance between any two routes depends only on the length of shared route
segments; this structure reduces the number of covariance parameters to
only one, which captures the relation of the covariance to shared length.
Bolduc et al. (1996) estimate a model of physicians’ choice of location
where the covariance among locations is a function of their proximity
to one another, using what Bolduc (1992) has called a “generalized au-
toregressive” structure. Haaijer et al. (1998) impose a factor-analytic
structure that arises from random coefficients of explanatory variables;
this type of structure is described in detail in Section 5.3. Elrod and Keane
(1995) impose a factor-analytic structure, but one that arises from error
components rather than random coefficients per se.

Often the structure that is imposed will be sufficient to normalize
the model. That is, the restrictions that the researcher imposes on the
covariance matrix to fit her beliefs about the way the errors relate to
each other will also serve to normalize the model. However, this is not
always the case. The examples cited by Bunch and Kitamura (1989) are
cases where the restrictions that the researcher placed on the covariance
matrix seemed sufficient to normalize the model but actually were not.
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The procedure that I give in the preceding text can be used to deter-
mine whether the restrictions on the covariance matrix are sufficient to
normalize the model. The researcher specifies � with her restrictions
on its elements. Then the stated procedure is used to derive �̃∗

1, which
is normalized for scale and level. We know that each element of �̃∗

1
is identified. If each of the restricted elements of � can be calculated
from the elements of �̃∗

1, then the restrictions are sufficient to normalize
the model. In this case, each parameter in the restricted � is identified.
On the other hand, if the elements of � cannot be calculated from the
elements of �̃∗

1, then the restrictions are not sufficient to normalize the
model and the parameters in � are not identified.

To illustrate this approach, suppose the researcher is estimating a four-
alternative model and assumes that the covariance matrix for the errors
has the following form:

� =




1 + ρ ρ 0 0
· 1 + ρ 0 0
· · 1 + ρ ρ

· · · 1 + ρ


 .

This covariance matrix allows the first and second errors to be correlated,
the same as the third and fourth alternatives, but allows no other corre-
lation. The correlation between the appropriate pairs is ρ/(1 + ρ). Note
that by specifying the diagonal elements as 1 + ρ, the researcher assures
that the correlation is between −1 and 1 for any value of ρ, as required
for a correlation. Is this model, as specified, normalized for scale and
level? To answer the question, we apply the described procedure. First,
we take differences with respect to the first alternative. The covariance
matrix of error differences is

�̃1 =

θ22 θ23 θ24

· θ33 θ34

· · θ44


 ,

where the θ ’s relate to the original σ ’s as follows:

θ22 = 2,

θ33 = 2 + 2ρ,

θ44 = 2 + 2ρ,

θ23 = 1,

θ24 = 1,

θ34 = 1 + 2ρ.
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We then normalize for scale by setting the top-left element to 1. The
normalized covariance matrix is

�̃∗
1 =




1 θ∗
23 θ∗

24

· θ∗
33 θ∗

34

· · θ∗
44


 ,

where the θ∗’s relate to the original σ ’s as follows:

θ∗
33 = 1 + ρ,

θ∗
44 = 1 + ρ,

θ∗
23 = 1

2 ,

θ∗
24 = 1

2 ,

θ∗
34 = 1

2 + ρ.

Note that θ∗
33 = θ∗

44 = θ∗
34 − 1

2 and that the other θ∗’s have fixed values.
There is one parameter in �̃∗

1, as there is in �. Define θ = 1 + ρ. Then
�̃∗

1 is

�̃∗
1 =




1 1
2

1
2

· θ θ − 1
2

· · θ


 .

The original ρ can be calculated directly from θ . For example, if θ

is estimated to be 2.4, then the estimate of ρ is θ − 1 = 1.4 and the
correlation is 1.4/2.4 = .58. The fact that the parameters that enter � can
be calculated from the parameters that enter the normalized covariance
matrix �̃∗

1 means that the original model is normalized for scale and level.
That is, the restrictions that the researcher placed on � also provided
the needed normalization.

Sometimes restrictions on the original covariance matrix can appear to
be sufficient to normalize the model when in fact they do not. Applying
our procedure will determine whether this is the case. Consider the same
model, but now suppose that the researcher allows a different correlation
between the first and second errors than between the third and fourth
errors. The covariance matrix of errors is specified to be

� =




1 + ρ1 ρ1 0 0
· 1 + ρ1 0 0
· · 1 + ρ2 ρ2

· · · 1 + ρ2


 .
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The correlation between the first and second errors is ρ1/(1 + ρ1), and
the correlation between the third and fourth errors is ρ2/(1 + ρ2). We
can derive �̃1 for error differences and then derive �̃∗

1 by setting the
top-left element of �̃1 to 1. The resulting matrix is

�̃∗
1 =




1 1
2

1
2

· θ θ − 1
2

· · θ


 ,

where now θ = 1 + (ρ1 + ρ2)/2. The values of ρ1 and ρ2 cannot be cal-
culated from a value of θ . The original model is therefore not normalized
for scale and level, and the parameters ρ1 and ρ2 are not identified. This
fact is somewhat surprising, since only two parameters enter the origi-
nal covariance matrix �. It would seem, unless the researcher explicitly
tested in the manner we have just done, that restricting the covariance
matrix to consist of only two elements would be sufficient to normalize
the model. In this case, however, it is not.

In the normalized model, only the average of the ρ’s appears: (ρ1 +
ρ2)/2. It is possible to calculate the average ρ from θ , simply as θ − 1.
This means that the average ρ is identified, but not the individual values.
When ρ1 = ρ2, as in the previous example, the model is normalized
because each ρ is equal to the average ρ. However, as we now see, any
model with the same averageρ’s is equivalent, after normalizing for scale
and level. Hence, assuming that ρ1 = ρ2 is no different than assuming
that ρ1 = 3ρ2, or any other relation. All that matters for behavior is the
average of these parameters, not their values relative to each other. This
fact is fairly surprising and would be hard to realize without using our
procedure for normalization.

Now that we know how to assure that a probit model is normalized
for level and scale, and hence contains only economically meaningful
information, we can examine how the probit model is used to represent
various types of choice situations. We look at three situations in which
logit models are limited and show how the limitation is overcome with
probit. These situations are taste variation, substitution patterns, and
repeated choices over time.

5.3 Taste Variation

Probit is particularly well suited for incorporating random coefficients,
provided that the coefficients are normally distributed. Hausman and
Wise (1978) were the first, to my knowledge, to give this derivation.
Haaijer et al. (1998) provide a compelling application. Assume that
representative utility is linear in parameters and that the coefficients
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vary randomly over decision makers instead of being fixed as we have
assumed so far in this book. The utility is Unj = β ′

nxnj + εnj , where
βn is the vector of coefficients for decision maker n representing that
person’s tastes. Suppose the βn is normally distributed in the population
with mean b and covariance W : βn ∼ N (b, W ). The goal of the research
is to estimate the parameters b and W .

The utility can be rewritten with βn decomposed into its mean and de-
viations from its mean: Unj = b′xnj + β̃

′
nxnj + εnj , where β̃n = b − βn .

The last two terms in the utility are random; denote their sum as ηnj to
obtain Unj = b′xnj + ηnj . The covariance of the ηnj ’s depends on W as
well as the xnj ’s, so that the covariance differs over decision makers.

The covariance of the ηnj ’s can be described easily for a two-
alternative model with one explanatory variable. In this case, the utility
is

Un1 = βnxn1 + εn1,

Un2 = βnxn2 + εn2.

Assume that βn is normally distributed with mean b and variance σβ .
Assume that εn1 and εn2 are identically normally distributed with vari-
ance σε. The assumption of independence is for this example and is not
needed in general. The utility is then rewritten as

Un1 = bxn1 + ηn1,

Un2 = bxn2 + ηn2,

where ηn1 and ηn2 are jointly normally distributed. Each has zero mean:
E(ηnj ) = E(β̃nxnj + εnj ) = 0. The covariance is determined as follows.
The variance of each is V (ηnj ) = V (β̃nxnj + εnj ) = x2

njσβ + σε. Their
covariance is

Cov(ηn1, ηn2) = E[(β̃nxn1 + εn1)(β̃nxn2 + εn2)]

= E
(
β̃

2
nxn1xn2 + εn1εn2 + εn1β̃bxn2 + εn2β̃nxn1

)
= xn1xn2σβ.

The covariance matrix is

� =
(

x2
n1σβ + σε xn1xn2σβ

xn1xn2σβ x2
n2σβ + σε

)

= σβ

(
x2

n1 xn1xn2

xn1xn2 x2
n2

)
+ σε

(
1 0
0 1

)
.

One last step is required for estimation. Recall that behavior is not
affected by a multiplicative transformation of utility. We therefore need
to set the scale of utility. A convenient normalization for this case is
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σε = 1. Under this normalization,

� = σβ

(
x2

n1 xn1xn2

xn1xn2 x2
n2

)
+

(
1 0
0 1

)
.

The values of xn1 and xn2 are observed by the researcher, and the pa-
rameters b and σβ are estimated. Thus, the researcher learns both the
mean and the variance of the random coefficient in the population. Gen-
eralization to more than one explanatory variable and more than two
alternatives is straightforward.

5.4 Substitution Patterns and Failure of IIA

Probit can represent any substitution pattern. The probit probabilities do
not exhibit the IIA property that gives rise to the proportional substitution
of logit. Different covariance matrices � provide different substitution
patterns, and by estimating the covariance matrix, the researcher deter-
mines the substitution pattern that is most appropriate for the data.

A full covariance matrix can be estimated, or the researcher can im-
pose structure on the covariance matrix to represent particular sources
of nonindependence. This structure usually reduces the number of the
parameters and facilitates their interpretation. We consider first the situa-
tion where the researcher estimates a full covariance matrix, and then
turn to a situation where the researcher imposes structure on the covari-
ance matrix.

Full Covariance: Unrestricted Substitution Patterns

For notational simplicity, consider a probit model with four al-
ternatives. A full covariance matrix for the unobserved components of
utility takes the form of � in (5.5). When normalized for scale and level,
the covariance matrix becomes �̃∗

1 in (5.6). The elements of �̃∗
1 are

estimated. The estimated values can represent any substitution pattern;
importantly, the normalization for scale and level does not restrict the
substitution patterns. The normalization only eliminates aspects of �

that are irrelevant to behavior.
Note, however, that the estimated values of the θ∗’s provide essentially

no interpretable information in themselves (Horowitz, 1991). For exam-
ple, suppose θ∗

33 is estimated to be larger than θ∗
44. It might be tempting

to interpret this result as indicating that the variance in unobserved util-
ity of the third alternative is greater than that for the fourth alternative;
that is, that σ33 > σ44. However, this interpretation is incorrect. It is
quite possible that θ∗

33 > θ∗
44 and yet σ44 > σ33, if the covariance σ13 is
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sufficiently greater than σ14. Similarly, suppose that θ23 is estimated to
be negative. This does not mean that unobserved utility for the second
alternative is negatively correlated with unobserved utility for the third
alternative (that is, σ23 < 0). It is possible that σ23 is positive and yet
σ12 and σ13 are sufficiently large to make θ∗

23 negative. The point here
is that estimating a full covariance matrix allows the model to represent
any substitution pattern, but renders the estimated parameters essentially
uninterpretable.

Structured Covariance: Restricted
Substitution Patterns

By imposing structure on the covariance matrix, the estimated
parameters usually become more interpretable. The structure is a re-
striction on the covariance matrix and, as such, reduces the ability of the
model to represent various substitution patterns. However, if the struc-
ture is correct (that is, actually represents the behavior of the decision
makers), then the true substitution pattern will be able to be represented
by the restricted covariance matrix.

Structure is necessarily situation-dependent: an appropriate structure
for a covariance matrix depends on the specifics of the situation being
modeled. Several studies using different kinds of structure were de-
scribed in Section 5.2. As an example of how structure can be imposed
on the covariance matrix and hence substitution patterns, consider a
homebuyer’s choice among purchase-money mortgages. Suppose four
mortgages are available to the homebuyer from four different institu-
tions: one with a fixed rate, and three with variable rates. Suppose the
unobserved portion of utility consists of two parts: the homebuyer’s con-
cern about the risk of rising interest rates, labeled rn , which is common
to all the variable-rate loans; and all other unobserved factors, labeled
collectively ηnj . The unobserved component of utility is then

εnj = −rnd j + ηnj ,

where d j = 1 for the variable-rate loans and 0 for the fixed-rate loan,
and the negative sign indicates that utility decreases as concern about
risk rises. Assume that rn is normally distributed over homebuyers with
variance σ , and that ηnj ∀ j is iid normal with zero mean and variance
ω. Then the covariance matrix for εn = 〈εn1, . . . , εn4〉 is

� =




0 0 0 0
· σ σ σ

· · σ σ

· · · σ


 + ω




1 0 0 0
· 1 0 0
· · 1 0
· · · 1


 .
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The model needs to normalized for scale but, as we will see, is already
normalized for level. The covariance of error differences is

�̃1 =

σ σ σ

· σ σ

· · σ


 + ω


2 1 1

· 2 1
· · 2


 .

This matrix has no fewer parameters than �. That is to say, the model was
already normalized for level. To normalize for scale, set σ + 2ω = 1.
Then the covariance matrix becomes

�̃∗
1 =


1 θ θ

· 1 θ

· · 1


 ,

where θ = (σ + ω)/(σ + 2ω). The values of σ and ω cannot be cal-
culated from θ . However, the parameter θ provides information about
the variance in utility due to concern about risk relative to that due to
all other unobserved factors. For example, suppose θ is estimated to be
0.75. This estimate can be intrepreted as indicating that the variance in
utility attributable to concern about risk is twice as large as the variance
in utility attributable to all other factors:

θ = 0.75,
σ + ω

σ + 2ω
= 0.75,

σ + ω = 0.75σ + 1.5ω,

0.25σ = 0.5ω,

σ = 2ω.

Stated equivalently, θ̂ = 0.75 means that concern about risk accounts
for two-thirds of the variance in the unobserved component of utility.

Since the original model was already normalized for level, the model
could be estimated without reexpressing the covariance matrix in terms
of error differences. The normalization for scale could be accomplished
simply by setting ω = 1 in the original �. Under this procedure, the
parameter σ is estimated directly. Its value relative to 1 indicates the
variance due to concern about risk relative to the variance due to percep-
tions about ease of dealing with each institution. An estimate θ̂ = 0.75
corresponds to an estimate σ̂ = 2.

5.5 Panel Data

Probit with repeated choices is similar to probit on one choice per deci-
sion maker. The only difference is that the dimension of the covariance
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matrix of the errors is expanded. Consider a decision maker who faces
a choice among J alternatives in each of T time periods or choices
situations. The alternatives can change over time, and J and T can dif-
fer for different decision makers; however, we suppress the notation
for these possibilities. The utility that decision maker n obtains from
alternative j in period t is Unjt = Vnjt + εnjt . In general, one would
expect εnjt to be correlated over time as well as over alternatives, since
factors that are not observed by the researcher can persist over time.
Denote the vector of errors for all alternatives in all time periods as
εn = 〈εn11, . . . , εn J1, εn12, . . . , εn J2, . . . , εn1T , . . . , εn J T 〉. The covari-
ance matrix of this vector is denoted �, which has dimension JT × JT.

Consider a sequence of alternatives, one for each time period, i =
{i1, . . . , iT }. The probability that the decision maker makes this sequence
of choices is

Pni = Prob(Unit t > Unjt ∀ j 
= it , ∀t)

= Prob(Vnit t + εnit t > Vnjt + εnjt ∀ j 
= it , ∀t)

=
∫

εn∈Bn

φ(εn) dεn.

where Bn = {εn s.t. Vnit t + εnit t > Vnjt + εnjt ∀ j 
= it , ∀t} and φ(εn) is
the joint normal density with zero mean and covariance �. Compared
to the probit probability for one choice situation, the integral is simply
expanded to be over JT dimensions rather than J .

It is often more convenient to work in utility differences. The prob-
ability of sequence i is the probability that the utility differences are
negative for each alternative in each time period, when the differences
in each time period are taken against the alternative identified by i for
that time period:

Pni = Prob(Ũnjit t < 0 ∀ j 
= it , ∀t)

=
∫

ε̃n∈B̃n

φ(ε̃n) d ε̃n,

where Ũnjit t = Unjt − Unit t ; ε̃′
n = 〈(εn11 − εni11), . . . , (εn J1 − εni11), . . . ,

(εn1T − εniT T ), . . . , (εn J T − εniT T )〉 with each . . . being over all alter-
natives except it , and the matrix B̃n is the set of ε̃n’s for which
Ũnjit t < 0 ∀ j 
= it , ∀t . This is a (J − 1)T -dimensional integral. The
density φ(ε̃n) is joint normal with covariance matrix derived from �. The
simulation of the choice probability is the same as for situations with one
choice per decision maker, which we describe in Section 5.6, but with a
larger dimension for the covariance matrix and integral. Borsch-Supan
et al. (1991) provide an example of a multinomial probit on panel data
that allows covariance over time and over alternatives.
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For binary choices, such as whether a person buys a particular product
in each time period or works at a paid job each month, the probit model
simplifies considerably (Gourieroux and Monfort, 1993). The net utility
of taking the action (e.g., working) in period t is Unt = Vnt + εnt , and
the person takes the action if Unt > 0. This utility is called net utility
because it is the difference between the utility of taking the action and
that of not taking the action. As such, it is already expressed in difference
terms. The errors are correlated over time, and the covariance matrix for
εn1, . . . , εnT is �, which is T × T .

A sequence of binary choices is most easily represented by a set of
T dummy variables: dnt = 1 if person n took the action in period t ,
and dnt = −1 otherwise. The probability of the sequence of choices
dn = dn1, . . . , dnT is

Pndn = Prob(Unt dnt > 0 ∀t)

= Prob(Vnt dnt + εnt dnt > 0 ∀t)

=
∫

εn∈Bn

φ(εn) dεn,

where Bn is the set of εn’s for which Vnt dnt + εnt dnt > 0 ∀t , and φ(εn)
is the joint normal density with covariance �.

Structure can be placed on the covariance of the errors over time.
Suppose in the binary case, for example, that the error consists of a
portion that is specific to the decision maker, reflecting his proclivity
to take the action, and a part that varies over time for each decision
maker: εnt = ηn + µnt , where µnt is iid over time and people with a
standard normal density, and ηn is iid over people with a normal density
with zero mean and variance σ. The variance of the error in each period
is V (εnt ) = V (ηn + µnt ) = σ + 1. The covariance between the errors
in two different periods t and s is Cov(εnt , εns) = E(ηn + µnt )(ηn +
µns) = σ . The covariance matrix therefore takes the form

� =




σ + 1 σ · · · · · · σ

σ σ + 1 σ · · · σ

· · · · · · · · · · · · · · ·
σ · · · · · · σ σ + 1


 .

Only one parameter, σ , enters the covariance matrix. Its value indicates
the variance in unobserved utility across individuals (the variance of ηn)
relative to the variance across time for each individual (the variance of
µnt ). It is often called the cross-subject variance relative to the within-
subject variance.
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The choice probabilities under this structure on the errors can be eas-
ily simulated using the concepts of convenient error partitioning from
Section 1.2. Conditional on ηn , the probability of not taking the action
in period t is Prob(Vnt + ηn + µnt < 0) = Prob(µnt < − (Vnt + ηn)) =
�(−(Vnt + ηn)), where �(·) is the cumulative standard normal func-
tion. Most software packages include routines to calculate this func-
tion. The probability of taking the action, conditional on ηn , is then
1 − �(−(Vnt + ηn)) = �(Vnt + ηn). The probability of the sequence of
choices dn , conditional on ηn , is therefore

∏
t �((Vnt + ηn)dnt ), which

we can label Hndn (ηn).
So far we have conditioned on ηn , when in fact ηn is random. The

unconditional probability is the integral of the conditional probability
Hndn (ηn) over all possible values of ηn:

Pndn =
∫

Hndn (ηn)φ(ηn) dηn

where φ(ηn) is the normal density with zero mean and variance σ . This
probability can be simulated very simply as follows:

1. Take a draw from a standard normal density using a random
number generator. Multiply the draw by

√
σ , so that it becomes

a draw of ηn from a normal density with variance σ .
2. For this draw of ηn , calculate Hndn (ηn).
3. Repeat steps 1–2 many times, and average the results. This ave-

rage is a simulated approximation to Pndn .

This simulator is much easier to calculate than the general probit sim-
ulators described in the next section. The ability to use it arises from
the structure that we imposed on the model, namely, that the time
dependence of the unobserved factors is captured entirely by a ran-
dom component ηn that remains constant over time for each person.
Gourieroux and Monfort (1993) provide an example of the use of this
simulator with a probit model of this form.

The representative utility in one time period can include exogenous
variables for other time periods, the same as we discussed with respect
to logit models on panel data (Section 3.3.3). That is, Vnt can include
exogenous variables that relate to periods other than t . For example, a
lagged response to price changes can be represented by including prices
from previous periods in the current period’s V . Anticipatory behavior
(by which, for example, a person buys a product now because he correctly
anticipates that the price will rise in the future) can be represented by
including prices in future periods in the current period’s V .



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-05Drv CB495/Train KEY BOARDED August 20, 2002 12:28 Char Count= 0

118 Behavioral Models

Entering a lagged dependent variable is possible, but introduces two
difficulties that the researcher must address. First, since the errors are
correlated over time, the choice in one period is correlated with the
errors in subsequent periods. As a result, inclusion of a lagged dependent
variable without adjusting the estimation procedure appropriately results
in inconsistent estimates. This issue is analogous to regression analysis,
where the ordinary least squares estimator is inconsistent when a lagged
dependent variable is included and the errors are serially correlated.
To estimate a probit consistently in this situation, the researcher must
determine the distribution of each εnt conditional on the value of the
lagged dependent variables. The choice probability is then based on this
conditional distribution instead of the unconditional distribution φ(·)
that we used earlier. Second, often the researcher does not observe the
decision makers’ choices from the very first choice that was available
to them. For example, a researcher studying employment patterns will
perhaps observe a person’s employment status over a period of time (e.g.,
1998–2001), but usually will not observe the person’s employment status
starting with the very first time the person could have taken a job (which
might precede 1998 by many years). In this case, the probability for
the first period that the researcher observes depends on the choices of
the person in the earlier periods that the researcher does not observe. The
researcher must determine a way to represent the first choice probability
that allows for consistent estimation in the face of missing data on earlier
choices. This is called the initial conditions problem of dynamic choice
models. Both of these issues, as well as potential approaches to dealing
with them, are addressed by Heckman (1981b, 1981a) and Heckman and
Singer (1986). Due to their complexity, I do not describe the procedures
here and refer interested and brave readers to these articles.

Papatla and Krishnamurthi (1992) avoid these issues in their probit
model with lagged dependent variables by assuming that the unobserved
factors are independent over time. As we discussed in relation to logit on
panel data (Section 3.3.3), lagged dependent variables are not correlated
with the current errors when the errors are independent over time, and
they can therefore be entered without inducing inconsistency. Of course,
this procedure is only appropriate if the assumption of errors being
independent over time is true in reality, rather than just by assumption.

5.6 Simulation of the Choice Probabilities

The probit probabilities do not have a closed-form expression and must
be approximated numerically. Several nonsimulation procedures have
been used and can be effective in certain circumstances.
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Quadrature methods approximate the integral by a weighted func-
tion of specially chosen evaluation points. A good explanation for these
procedures is provided by Geweke (1996). Examples of their use for pro-
bit include Butler and Moffitt (1982) and Guilkey and Murphy (1993).
Quadrature operates effectively when the dimension of the integral is
small, but not with higher dimensions. It can be used for probit if the
number of alternatives (or, with panel data, the number of alternatives
times the number of time periods) is no more than four or five. It can also
be used if the researcher has specified an error-component structure with
no more than four or five terms. However, it is not effective for general
probit models. And even with low-dimensional integration, simulation
is often easier.

Another nonsimulation procedure that has been suggested is the Clark
algorithm, introduced by Daganzo et al. (1977). This algorithm utilizes
the fact, shown by Clark (1961), that the maximum of several normally
distributed variables is itself approximately normally distributed. Unfor-
tunately, the approximation can be highly inaccurate in some situations
(as shown by Horowitz et al., 1982), and the degree of accuracy is dif-
ficult to assess in any given setting.

Simulation has proven to be very general and useful for approximat-
ing probit probabilities. Numerous simulators have been proposed for
probit models; a summary is given by Hajivassiliou et al. (1996). In
the preceding section, I described a simulator that is appropriate for a
probit model that has a particularly convenient structure, namely a bi-
nary probit on panel data where the time dependence is captured by one
random factor. In the current section, I describe three simulators that
are applicable for probits of any form: accept–reject, smoothed accept–
reject, and GHK. The GHK simulator is by far the most widely used
probit simulator, for reasons that we discuss. The other two methods are
valuable pedagogically. They also have relevance beyond probit and can
be applied in practically any situation. They can be very useful when
the researcher is developing her own models rather than using probit or
any other model in this book.

5.6.1. Accept–Reject Simulator

The accept–reject (AR) is the most straightforward simulator.
Consider simulating Pni . Draws of the random terms are taken from
their distributions. For each draw, the researcher determines whether
those values of the errors, when combined with the observed variables
as faced by person n, would result in alternative i being chosen. If so,
the draw is called an accept. If the draw would result in some other
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alternative being chosen, the draw is a reject. The simulated probability
is the proportion of draws that are accepts. This procedure can be applied
to any choice model with any distribution for the random terms. It was
originally proposed for probits (Manski and Lerman, 1981), and we give
the details of the approach in terms of the probit model. Its use for other
models is obvious.

We use expression (5.1) for the probit probabilities:

Pni =
∫

I (Vni + εni > Vnj + εnj ∀ j 
= i)φ(εn) dεn,

where I (·) is an indicator of whether the statement in parentheses holds,
and φ(εn) is the joint normal density with zero mean and covariance �.
The AR simulator of this integral is calculated as follows:

1. Draw a value of the J -dimensional vector of errors, εn , from
a normal density with zero mean and covariance �. Label the
draw εr

n with r = 1, and the elements of the draw as εr
n1, . . . , ε

r
n J .

2. Using these values of the errors, calculate the utility that each
alternative obtains with these errors. That is, calculate Ur

nj =
Vnj + εr

n j ∀ j .
3. Determine whether the utility of alternative i is greater than that

for all other alternatives. That is, calculate I r = 1 if Ur
ni > Ur

nj ,
indicating an accept, and I r = 0 otherwise, indicating a reject.

4. Repeat steps 1–3 many times. Label the number of repetitions
(including the first) as R, so that r takes values of 1 through R.

5. The simulated probability is the proportion of draws that are
accepts: P̌ni = 1

R

∑R
r=1 I r .

The integral
∫

I (·)φ(εn) dε is approximated by the average 1
R

∑
I r (·)

for draws from φ(·). Obviously, P̌ni is unbiased for Pni : E(P̌ni ) =
1
R

∑
E[I r (·)] = 1

R

∑
Pni = Pni , where the expectation is over differ-

ent sets of R draws. The variance of P̌ni over different sets of draws
diminishes as the number of draws rises. The simulator is often called
the “crude frequency simulator,” since it is the frequency of times that
draws of the errors result in the specified alternative being chosen. The
word “crude” distinguishes it from the smoothed frequency simulator
that we describe in the next section.

The first step of the AR simulator for a probit model is to take a
draw from a joint normal density. The question arises: how are such
draws obtained? The most straightforward procedure is that described
in Section 9.2.5, which uses the Choleski factor. The covariance matrix
for the errors is �. A Choleski factor of � is a lower-triangular matrix L
such that L L ′ = �. It is sometimes called the generalized square root of
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�. Most statistical software packages contain routines to calculate the
Choleski factor of any symmetric matrix. Now suppose that η is a vector
of J iid standard normal deviates such that η ∼ N (0, I ), where I is the
identity matrix. This vector can be obtained by taking J draws from a
random number generator for the standard normal and stacking them
into a vector. We can construct a vector ε that is distributed N (O, �) by
using the Choleski factor to tranform η. In particular, calculate ε = Lη.
Since the sum of normals is normal, ε is normally distributed. Since η

has zero mean, so does ε. The covariance of ε is Cov(ε) = E(εε′) =
E(Lη(Lη)′) = E(Lηη′L ′) = L E(ηη′)L ′ = L I L ′ = L L ′ = �.

Using the Choleski factor L of �, the first step of the AR simulator
becomes two substeps:

1A. Draw J values from a standard normal density, using a random
number generator. Stack these values into a vector, and label the
vector ηr .

1B. Calculate εr
n = Lηr .

Then, using εr
n , calculate the utility of each alternative and see whether

alternative i has the highest utility.
The procedure that we have described operates on utilities and ex-

pression (5.1), which is a J -dimensional integral. The procedure can be
applied analogously to utility differences, which reduces the dimension
of the integral to J − 1. As given in (5.3), the choice probabilities can
be expressed in terms of utility differences:

Pni =
∫

I (Ṽnji + ε̃nji < 0 ∀ j 
= i)φ(ε̃ni ) d ε̃ni ,

where φ(ε̃ni ) is the joint normal density with zero mean and covariance
�̃i = Mi�M ′

i . This integral can be simulated with AR methods through
the following steps:

1. Draw ε̃r
ni = Liη

r as follows:
(a) Draw J − 1 values from a standard normal density using a

random number generator. Stack these values into a vector,
and label the vector ηr .

(b) Calculate ε̃r
ni = Liη

r , where Li is the Choleski factor of �̃i .
2. Using these values of the errors, calculate the utility difference

for each alternative, differenced against the utility of alternative
i . That is, calculate Ũ

r
nji = Vnj − Vni + ε̃r

n ji ∀ j 
= i .
3. Determine whether each utility difference is negative. That is,

calculate I r = 1 if Ur
nji < 0 ∀ j 
= i , indicating an accept, and

I r = 0 otherwise, indicating a reject.
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4. Repeat steps 1–3 R times.
5. The simulated probability is the number of accepts divided by

the number of repetitions: P̌ni = 1
R

∑R
r=1 I r .

Using utility differences is slightly faster computationally than using
the utilities themselves, since one dimension is eliminated. However, it
is often easier conceptually to remain with utilities.

As just stated, the AR simulator is very general. It can be applied to
any model for which draws can be obtained for the random terms and
the behavior that the decision maker would exhibit with these draws
can be determined. It is also very intuitive, which is an advantage from
a programming perspective, since debugging becomes comparatively
easy. However, the AR simulator has several disadvantages, particularly
when used in the context of maximum likelihood estimation.

Recall that the log-likelihood function is LL = ∑
n

∑
j dnj log Pnj ,

where dnj = 1 if n chose j and 0 otherwise. When the probabilities
cannot be calculated exactly, as in the case of probit, the simulated
log-likelihood function is used instead, with the true probabilities re-
placed with the simulated probabilities: SLL = ∑

n

∑
j dnj log P̌nj . The

value of the parameters that maximizes SLL is called the maximum
simulated likelihood estimator (MSLE). It is by far the most widely
used simulation-based estimation procedure. Its properties are described
in Chapter 8. Unfortunately, using the AR simulator in SLL can be
problematic.

There are two issues. First, P̌ni can be zero for any finite number of
draws R. That is, it is possible that each of the R draws of the error terms
result in a reject, so that the simulated probability is zero. Zero values
for P̌ni are problematic because the log of P̌ni is taken when it enters
the log-likelihood function and the log of zero is undefined. SLL cannot
be calculated if the simulated probability is zero for any decision maker
in the sample.

The occurrence of a zero simulated probability is particularly likely
when the true probability is low. Often at least one decision maker in a
sample will have made a choice that has a low probability. With numerous
alternatives (such as thousands of makes and models for the choice of
car), each alternative has a low probability. With repeated choices, the
probability for any sequence of choices can be extremely small; for
example, if the probability of choosing an alternative is 0.25 in each of
10 time periods, the probability of the sequence is (0.25)10, which is less
than 0.000001.

Furthermore, SLL needs to be calculated at each step in the search
for its maximum. Some of the parameter values at which SLL is
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Figure 5.1. The AR simulator is a step function in parameters.

calculated can be far from the true values. Low probabilities can occur at
these parameter values even when they do not occur at the maximizing
values.

Nonzero simulated probabilities can always be obtained by taking
enough draws. However, if the researcher continues taking draws until
at least one accept is obtained for each decision maker, then the number
of draws becomes a function of the probabilities. The simulation process
is then not independent of the choice process that is being modeled, and
the properties of the estimator become more complex.

There is a second difficulty with the AR simulator for MSLE. The
simulated probabilities are not smooth in the parameters; that is, they
are not twice differentiable. As explained in Chapter 8, the numerical
procedures that are used to locate the maximum of the log-likelihood
function rely on the first derivatives, and sometimes the second deriva-
tives, of the choice probabilities. If these derivatives do not exist, or do
not point toward the maximum, then the numerical procedure will not
perform effectively.

The AR simulated probability is a step function, as depicted in Fig-
ure 5.1. P̌ni is the proportion of draws for which alternative i has the
highest utility. An infinitesimally small change in a parameter will usu-
ally not change any draw from a reject to an accept or vice versa. If
Ur

ni is below Ur
nj for some j at a given level of the parameters, then it

will also be so for an infinitesimally small change in any parameter. So,
usually, P̌nj is constant with respect to small changes in the parameters.
Its derivatives with respect to the parameters are zero in this range. If the
parameters change in such a way that a reject becomes an accept, then
P̌nj rises by a discrete amount, from M/R to (M + 1)/R, where M is the
number of accepts at the original parameter values. P̌nj is constant (zero
slope) until an accept becomes a reject or vice versa, at which point P̌nj

jumps by 1/R. Its slope at this point is undefined. The first derivative of
P̌nj with respect to the parameters is either zero or undefined.
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This fact hinders the numerical procedures that are used to locate
the maximum of SLL. As discussed in Chapter 8, the maximization
procedures use the gradient at trial parameter values to determine the
direction to move to find parameters with higher SLL. With the slope
P̌nj for each n either zero or undefined, the gradient of SLL is either zero
or undefined. This gradient provides no help in finding the maximum.

This problem is not actually as drastic as it seems. The gradient of SLL
can be approximated as the change in SLL for a non-infinitesimally small
change in the parameters. The parameters are changed by an amount that
is large enough to switch accepts to rejects and vice versa for at least
some of the observations. The approximate gradient, which can be called
an arc gradient, is calculated as the amount that SLL changes divided
by the change in the parameters. To be precise: for parameter vector
β of length K , the derivate of SLL with respect to the kth parameter
is calculated as (SLL1 − SLL0)/(β1

k − β0
k ), where SLL0 is calculated at

the original β with kth element β0
k and SLL1 is calculated at β1

k with all
the other parameters remaining at their original values. The arc gradient
calculated in this way is not zero or undefined, and provides information
on the direction of rise. Nevertheless, experience indicates that the AR
simulated probability is still difficult to use.

5.6.2. Smoothed AR Simulators

One way to mitigate the difficulties with the AR simulator is to
replace the 0–1 AR indicator with a smooth, strictly positive function.
The simulation starts the same as with AR, by taking draws of the random
terms and calculating the utility of each alternative for each draw: Ur

nj .
Then, instead of determining whether alternative i has the highest utility
(that is, instead of calculating the indicator function I r ), the simulated
utilities Ur

nj ∀ j are entered into a function. Any function can be used
for simulating Pni as long as it rises when Ur

ni rises, declines when Ur
nj

rises, is strictly positive, and has defined first and second derivatives
with respect to Ur

nj ∀ j . A function that is particularly convenient is the
logit function, as suggested by McFadden (1989). Use of this function
gives the logit-smoothed AR simulator.

The simulator is implemented in the following steps, which are the
same as with the AR simulator except for step 3.

1. Draw a value of the J -dimensional vector of errors, εn , from
a normal density with zero mean and covariance �. Label the
draw εr

n with r = 1, and the elements of the draw as εr
n1, . . . , ε

r
n J .
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2. Using these values of the errors, calculate the utility that each
alternative obtains with these errors. That is, calculate Ur

nj =
Vnj + εr

n j ∀ j .
3. Put these utilities into the logit formula. That is, calculate

Sr = eUr
ni /λ∑

j eUr
nj /λ

,

where λ > 0 is a scale factor specified by the researcher and
discussed in following text.

4. Repeat steps 1–3 many times. Label the number of repetitions
(including the first) as R, so that r takes values of 1 through R.

5. The simulated probability is the number of accepts divided by
the number of repetitions: P̌ni = 1

R

∑R
r=1 Sr .

Since Sr > 0 for all finite values of Ur
nj , the simulated probability is

strictly positive for any draws of the errors. It rises with Ur
ni and declines

when Ur
nj , j 
= i , rises. It is smooth (twice differentiable), since the logit

formula itself is smooth.
The logit-smoothed AR simulator can be applied to any choice model,

simply by simulating the utilities under any distributional assumptions
about the errors and then inserting the utilities into the logit formula.
When applied to probit, Ben-Akiva and Bolduc (1996) have called it
“logit-kernel probit.”

The scale factor λ determines the degree of smoothing. As λ → 0, Sr

approaches the indicator function I r . Figure 5.2 illustrates the situation
for a two-alternative case. For a given draw of εr

n , the utility of the
two alternatives is calculated. Consider the simulated probability for
alternative 1. With AR, the 0–1 indicator function is zero if Ur

n1 is below
Ur

n2, and one if Ur
n1 exceeds Ur

n2. With logit smoothing, the step function
is replaced by a smooth sigmoid curve. The factor λ determines the
proximity of the sigmoid to the 0–1 indicator. Lowering λ increases the
scale of the utilities when they enter the logit function (since the utilities
are divided by λ). Increasing the scale of utility increases the absolute
difference between the two utilities. The logit formula gives probabilities
that are closer to zero or one when the difference in utilities is larger.
The logit-smoothed Sr therefore becomes closer to the step function as
λ becomes closer to zero.

The researcher needs to set the value of λ. A lower value of λ makes
the logit smoother a better approximation to the indicator function. How-
ever, this fact is a double-edged sword: if the logit smoother approxi-
mates the indicator function too well, the numerical difficulties of using
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Figure 5.2. AR smoother.

the unsmoothed AR simulator will simply be reproduced in the logit-
smoothed simulator. The researcher wants to set λ low enough to obtain
a good approximation but not so low as to reintroduce numerical diffi-
culties. There is little guidance on the appropriate level of λ. Perhaps the
best approach is for the researcher to experiment with different λ’s. The
same draws of εn should be used with every λ, so as to assure that differ-
ences in results are due to the change in the λ rather than to differences
in the draws.

McFadden (1989) describes other smoothing functions. For all of
them, the researcher must specify the degree of smoothing. An advantage
of the logit smoother is its simplicity. Also, we will see in Chapter 6 that
the logit smoother applied to a probit or any other model constitutes
a type of mixed logit specification. That is, instead of seeing the logit
smoother as providing an approximation that has no behavioral relation
to the model (simply serving a numerical purpose), we can see it as
arising from a particular type of error structure in the behavioral model
itself. Under this interpretation, the logit formula applied to simulated
utilities is not an approximation but actually represents the true model.

5.6.3. GHK Simulator

The most widely used probit simulator is called GHK, after
Geweke (1989, 1991), Hajivassiliou (as reported in Hajivassiliou and
McFadden, 1998), and Keane (1990, 1994), who developed the pro-
cedure. In a comparison of numerous probit simulators, Hajivassiliou
et al. (1996) found GHK to be the most accurate in the settings that
they examined. Geweke et al. (1994) found the GHK simulator works
better than smoothed AR. Experience has confirmed its usefulness and
relative accuracy (e.g., Borsch-Supan and Hajivassiliou, 1993).
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The GHK simulator operates on utility differences. The simulation of
probability Pni starts by subtracting the utility of alternative i from each
other alternative’s utility. Importantly, the utility of a different alternative
is subtracted depending on which probability is being simulated: for Pni ,
Uni is subtracted from the other utilities, while for Pnj , Unj is subtracted.
This fact is critical to the implementation of the procedure.

I will explain the GHK procedure first in terms of a three-alternative
case, since that situation can be depicted graphically in two dimensions
for utility differences. I will then describe the procedure in general for
any number of alternatives. Bolduc (1993, 1999) provides an excellent
alternative description of the procedure, along with methods to simulate
the analytic derivatives of the probit probabilities. Keane (1994) provides
a description of the use of GHK for transition probabilities.

Three Alternatives

We start with a specification of the behavioral model in util-
ities: Unj = Vnj + εnj , j = 1, 2, 3. The vector ε′

n = 〈εn1, εn2, εn3〉 ∼
N (0, �). We assume that the reseacher has normalized the model for
scale and level, so that the parameters that enter � are identified. Also,
� can be a parametric function of data, as with random taste variation,
though we do not show this dependence in our notation.

Suppose we want to simulate the probability of the first alternative,
Pn1. We reexpress the model in utility differences by subtracting the
utility of alternative 1:

Unj − Un1 = (Vnj − Vn1) + (εnj − εn1),

Ũnj1 = Ṽnj1 + ε̃nj1,

for j = 2, 3. The vector ε̃′
n1 = 〈ε̃n21, ε̃n31〉 is distributed N (0, �̃1), where

�̃1 is derived from �.
We take one more transformation to make the model more convenient

for simulation. Namely, let L1 be the Choleski factor of �̃1. Since �̃1

is 2 × 2 in our current illustration, L1 is a lower-triangular matrix that
takes the form

L1 =
(

caa 0
cab cbb

)
.

Using this Choleski factor, the original error differences, which are cor-
related, can be rewritten as linear functions of uncorrelated standard
normal deviates:

ε̃n21 = caaη1,

ε̃n31 = cabη1 + cbbη2,
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where η1 and η2 are iid N (0, 1). The error differences ε̃n21 and ε̃n31

are correlated because both of them depend on η1. With this way of
expressing the error differences, the utility differences can be written

Ũn21 = Ṽn21 + caaη1,

Ũn31 = Ṽn31 + cabη1 + cbbη2.

The probability of alternative 1 is Pn1 = Prob(Ũn21 < 0 and Ũn31 <

0) = Prob(Ṽn21 + ε̃n21 < 0 and Ṽn31 + ε̃n31 < 0). This probability is hard
to evaluate numerically in terms of the ε̃’s, because they are correlated.
However, using the transformation based on the Choleski factor, the
probability can be written in a way that involves independent random
terms. The probability becomes a function of the one-dimensional stan-
dard cumulative normal distribution:

Pn1 = Prob(Ṽn21 + caaη1 < 0 and Ṽn31 + cabη1 + cbbη2 < 0)

= Prob(Ṽn21 + caaη1 < 0)

× Prob(Ṽn31 + cabη1 + cbbη2 < 0 | Ṽn21 + caaη1 < 0)

= Prob(η1 < −Ṽn21/caa)

× Prob(η2 < −(Ṽn31 + cabη1)/cbb | η1 < −Ṽn21/caa)

= �

(−Ṽn21

caa

)
×

∫ −Ṽn21/caa

η1=−∞
�

(−Ṽn31 + cabη1

cbb

)
φ(η1) dη1,

where �(·) is the standard normal cumulative distribution evaluated at
the point in the parentheses, and φ(·) is the standard normal density. The
first factor, �(−Ṽn21/caa), is easy to calculate: it is simply the cumulative
standard normal evaluated at −Ṽn21/caa . Computer packages contain
fast routines for calculating the cumulative standard normal. The second
factor is an integral. As we know, computers cannot integrate, and we
use simulation to approximate integrals. This is the heart of the GHK
procedure: using simulation to approximate the integral in Pn1.

Let us examine this integral more closely. It is the integral over a
truncated normal, namely, over η1 up to −Ṽn21/caa . The simulation pro-
ceeds as follows. Draw a value of η1 from a standard normal density trun-
cated above at −Ṽn21/caa . For this draw, calculate the factor �(−(Ṽn31 +
cabη1)/cbb). Repeat this process for many draws, and average the results.
This average is a simulated approximation to

∫ −Ṽn21/caa

η1=−∞ �(−(Ṽn31 +
cabη1)/cbb)φ(η1) dη1. The simulated probability is then obtained by mul-
tiplying this average by the value of �(−Ṽn21/caa), which is calculated
exactly. Simple enough!

The question arises: how do we take a draw from a truncated normal?
We describe how to take draws from truncated univariate distributions
in Section 9.2.4. The reader may want to jump ahead and quickly view
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Figure 5.3. Probability of alternative 1.

that section. For truncated normals, the process is to take a draw from a
standard uniform, labeled µ. Then calculate η = �−1(µ�(−Ṽn21/caa)).
The resulting η is a draw from a normal density truncated from above
at −Ṽn21/caa .

We can now put this all together to give the explicit steps that are used
for the GHK simulator in our three-alternative case. The probability of
alternative 1 is

Pn1 = �

(−Ṽn21

caa

)
×

∫ −Ṽn21/caa

η1=−∞
�

(−Ṽn31 + cabη1

cbb

)
φ(η1) dη1.

This probability is simulated as follows:

1. Calculate k = �(−Ṽn21/caa).
2. Draw a value of η1, labeled ηr

1, from a truncated standard normal
truncated at −Ṽn21/caa . This is accomplished as follows:
(a) Draw a standard uniform µr .
(b) Calculate ηr

1 = �−1(µr�(−Ṽn21/caa)).
3. Calculate gr = �(−(Ṽn31 + cabη

r
1)/cbb).

4. The simulated probability for this draw is P̌r
n1 = k × gr .

5. Repeat steps 1–4 R times, and average the results. This average
is the simulated probability: P̌n1 = (1/R)

∑
P̌r

n1.

A graphical depiction is perhaps useful. Figure 5.3 shows the prob-
ability for alternative 1 in the space of independent errors η1 and η2.
The x-axis is the value of η1, and the y-axis is the value of η2. The line
labeled A is where η1 is equal to −Ṽn21/caa . The condition that η1 is
below −Ṽn21/caa is met in the striped area to the left of line A. The line
labeled B is where η2 = −(Ṽn31 + cbaη1)/cbb. Note that the y-intercept
is where η1 = 0, so that η2 = −Ṽn31/cbb at this point. The slope of the
line is −cba/cbb. The condition that η2 < −(Ṽn31 + cbaη1)/cbb is satis-
fied below line B. The shaded area is where η1 is to the left of line A and
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Figure 5.4. Probability that η2 is in the correct range, given ηr
1.

η2 is below line B. The mass of density in the shaded area is therefore
the probability that alternative 1 is chosen.

The probability (i.e., the shaded mass) is the mass of the striped area
times the proportion of this striped mass that is below line B. The striped
area has mass �(−Ṽn21/caa). This is easy to calculate. For any given
value of η1, the portion of the striped mass that is below line B is also
easy to calculate. For example, in Figure 5.4, when η1 takes the value ηr

1,
then the probability that η2 is below line B is the share of line C’s mass
that is below line B. This share is simply �(−(Ṽn31 + cabη

r
1)/cbb). The

portion of the striped mass that is below line B is therefore the average
of �(−(Ṽn31 + cabη

r
1)/cbb) over all values of η1 that are to the left of

line A. This average is simulated by taking draws of η1 to the left of line
A, calculating �(−(Ṽn31 + cabη

r
1)/cbb) for each draw, and averaging the

results. The probability is then this average times the mass of the striped
area, �(−Ṽn21/caa).

General Model

We can now describe the GHK simulator in general terms
quickly, since the basic logic has already been discussed. This succinct
expression serves to reinforce the concept that the GHK simulator is
actually easier than it might at first appear.

Utility is expressed as

Unj = Vnj + εnj , j = 1, . . . , J,

ε′
n = 〈εn1, . . . , εn J 〉, εn : J × 1,

εn ∼ N (0, �).
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Transform to utility differences against alternative i :

Ũnji = Ṽnji + ε̃nji , j 
= i,

ε̃′
ni = 〈ε̃n1, . . . , ε̃n J 〉, where . . . is over all except i,

ε̃ni : (J − 1) × 1,

ε̃ni ∼ N (0, �̃i ),

where �̃i is derived from �.
Reexpress the errors as a Choleski transformation of iid standard

normal deviates.

Li s.t. Li L ′
i = �i ,

Li =




c11 0 · · · · · · · · · 0
c21 c22 0 · · · · · · 0
c31 c32 c33 0 · · · 0
...

...
...

...
...

...


 .

Then, stacking utilities Ũ ′
ni = (Ũn1i , . . . , Ũn Ji ), we get the vector form

of the model,

Ũni = Ṽni + Liηn,

where η′
n = 〈η1n, . . . , ηJ−1,n〉 is a vector of iid standard normal deviates:

ηnj ∼ N (0, 1) ∀ j . Written explicitly, the model is

Ũn1i = Ṽn1i + c11η1,

Ũn2i = Ṽn2i + c21η1 + c22η2,

Ũn3i = Ṽn3i + c31η1 + c32η2 + c33η3,

and so on. The choice probabilities are

Pni = Prob(Ũnji < 0 ∀ j 
= i)

= Prob

(
η1 <

−Ṽn1i

c11

)

× Prob

(
η2 <

−(Ṽn2i + c21η1)

c22

∣∣∣∣η1 <
−Ṽn1i

c11

)

× Prob

(
η3 <

−(Ṽn3i + c31η1 + c32η2)

c33

∣∣∣∣
η1 <

−Ṽn1i

c11
and η2 <

−(Ṽn2i + c21η1)

c22

)
.

× · · · .
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The GHK simulator is calculated as follows:

1. Calculate

Prob

(
η1 <

−Ṽn1i

c11

)
= �

(−Ṽn1i

c11

)
.

2. Draw a value of η1, labeled ηr
1, from a truncated standard normal

truncated at −Ṽ1in/c11. This draw is obtained as follows:
(a) Draw a standard uniform µr

1.
(b) Calculate ηr

1 = �−1(µr
1�(−Ṽn1i/c11)).

3. Calculate

Prob

(
η2 <

−(Ṽn2i + c21η1)

c22

∣∣∣∣η1 = ηr
1

)

= �

(
−(

Ṽn2i + c21η
r
1

)
c22

)
.

4. Draw a value of η2, labeled ηr
2, from a truncated standard nor-

mal truncated at −(Ṽn2i + c21η
r
1)/c22. This draw is obtained as

follows:
(a) Draw a standard uniform µr

2.
(b) Calculate ηr

2 = �−1(µr
2�(−(Ṽn2i + c21η

r
1)/c22)).

5. Calculate

Prob

(
η3 <

−(Ṽn3i + c31η1 + c32η2)

c33

∣∣∣∣η1 = ηr
1 , η2 = ηr

2

)

= �

(
−(

Ṽn3i + c31η
r
1 + c32η

r
2

)
c33

)
.

6. And so on for all alternatives but i .
7. The simulated probability for this r th draw of η1, η2, . . . is

calculated as

P̌
r
ni = �

(−Ṽn1i

c11

)

× �

(
−(

Ṽn2i + c21η
r
1

)
c22

)

× �

(
−(

Ṽn3i + c31η
r
1 + c32η

r
2

)
c33

)

× · · · .
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8. Repeat steps 1–7 many times, for r = 1, . . . , R.
9. The simulated probability is

P̌in = 1

R

∑
r

P̌r
in.

GHK Simulator with Maximum
Likelihood Estimation

There are several issues that need to be addressed when us-
ing the GHK simulator in maximum likelihood estimation. First, in the
log-likelihood function, we use the probability of the decision maker’s
chosen alternative. Since different decision makers choose different al-
ternatives, Pni must be calculated for different i’s. The GHK simulator
takes utility differences against the alternative for which the probability
is being calculated, and so different utility differences must be taken for
decision makers who chose different alternatives. Second, for a person
who chose alternative i , the GHK simulator uses the covariance matrix
�̃i , while for a person who chose alternative j , the matrix �̃ j is used.
Both of these matrices are derived from the same covariance matrix �

of the original errors. We must assure that the parameters in �̃i are con-
sistent with those in �̃ j , in the sense that they both are derived from a
common �. Third, we need to assure that the parameters that are esti-
mated by maximum likelihood imply covariance matrices � j ∀ j that
are positive definite, as a covariance matrix must be. Fourth, as always,
we must make sure that the model is normalized for scale and level of
utility, so that the parameters are identified.

Researchers use various procedures to address these issues. I will
describe the procedure that I use.

To assure that the model is identified, I start with the covariance matrix
of scaled utility differences with the differences taken against the first
alternative. This is the matrix �̃1, which is (J − 1) × (J − 1). To assure
that the covariance matrix is positive definite, I parameterize the model
in terms of the Choleski factor of �̃1. That is, I start with a lower-
triangular matrix that is (J − 1) × (J − 1) and whose top-left element
is 1:

L1 =




1 0 · · · · · · · · · 0
c21 c22 0 · · · · · · 0
c31 c32 c33 0 · · · 0
...

...
...

...
...


 .
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The elements ck� of this Choleski factor are the parameters that are esti-
mated in the model. Any matrix that is the product of a lower-triangular
full-rank matrix multiplied by itself is positive definite. So by using the
elements of L1 as the parameters, I am assured that �̃1 is positive definite
for any estimated values of these parameters.

The matrix � for the J nondifferenced errors is created from L1. I
create a J × J Choleski factor for � by adding a row of zeros at the top
of L1 and a column of zeros at the left. The resulting matrix is

L =




0 0 · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · 0
0 c21 c22 0 · · · · · · 0
0 c31 c32 c33 0 · · · 0
...

...
...

...
...

...




.

Then � is calculated as L L ′. With this �, I can derive �̃ j for any j .
Note that � constructed in this way is fully general (i.e., allows any
substitution pattern), since it utilizes all the parameters in the normal-
ized �̃1.

Utility is expressed in vector form stacked by alternatives: Un = Vn +
εn , εn ∼ N (0, �). Consider a person who has chosen alternative i . For
the log-likelihood function, we want to calculate Pni . Recall the matrix
Mi that we introduced in Section 5.1. Utility differences are taken using
this matrix: Ũni = MiUn, Ṽni = Mi Vn , and ε̃ni = Miεn . The covariance
of the error differences ε̃ni is calculated as �̃i = Mi�M ′

i . The Choleski
factor of �̃i is taken and labeled Li . (Note that L1 obtained here will
necessarily be the same as the L1 that we used at the beginning to
parameterize the model.) The person’s utility is expressed as: Ũni =
Ṽni + Liηn , where ηn is a (J − 1)-vector of iid standard normal deviates.
The GHK simulator is applied to this expression.

This procedure satisfies all of our requirements. The model is neces-
sarily normalized for scale and level, since we parameterize it in terms
of the Choleski factor L1 of the covariance of scaled error differences,
�̃1. Each �̃i is consistent with each other �̃ j for j 
= i , because they
are both derived from the same � (which is constructed from L1). Each
�̃i is positive definite for any values of the parameters, because the pa-
rameters are the elements of L1. As stated earlier, any matrix that is the
product of a lower-triangular matrix multiplied by itself is positive def-
inite, and so �̃1 = L L ′ is positive definite. And each of the other �̃ j ’s,
for j = 2, . . . , J , is also positive definite, since they are constructed to
be consistent with �1, which is positive definite.
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GHK as Importance Sampling

As I described in the three-alternative case, the GHK simulator
provides a simulated approximation of the integral

∫ −Ṽn21/caa

η1=−∞
�

(−Ṽn31 + cabη1

cbb

)
φ(η1) dη1.

The GHK simulator can be interpreted in another way that is often useful.
Importance sampling is a way of transforming an integral to be more

convenient to simulate. The procedure is described in Section 9.2.7, and
readers may find it useful to jump ahead to view that section. Impor-
tance sampling can be summarized as follows. Consider any integral
t̄ = ∫

t(ε)g(ε) dε over a density g. Suppose that another density exists
from which it is easy to draw. Label this other density f (ε). The den-
sity g is called the target density, and f is the generating density. The
integral can be rewritten as t̄ = ∫

[t(ε)g(ε)/ f (ε)] f (ε) dε. This integral
is simulated by taking draws from f , calculating t(ε)g(ε)/ f (ε) for each
draw, and averaging the results. This procedure is called importance
sampling because each draw from f is weighted by g/ f when taking
the average of t ; the weight g/ f is the “importance” of the draw from
f . This procedure is advantageous if (1) it is easier to draw from f than
g, and/or (2) the simulator based on t(ε)g(ε)/ f (ε) has better properties
(e.g., smoothness) than the simulator based on t(ε).

The GHK simulator can be seen as making this type of transformation,
and hence as being a type of importance sampling. Let η be a vector
of J − 1 iid standard normal deviates. The choice probability can be
expressed as

(5.7) Pni =
∫

I (η ∈ B)g(η) dη,

where B = {η s.t. Ũnji < 0 ∀ j 
= i} is the set of η’s that result in i
being chosen; g(η) = φ(η1) · · · φ(ηJ−1) is the density, where φ denotes
the standard normal density; and the utilities are

Ũn1i = Ṽn1i + c11η1,

Ũn2i = Ṽn2i + c21η1 + c22η2,

Ũn3i = Ṽn3i + c31η1 + c32η2 + c33η3,

and so on.
The direct way to simulate this probability is to take draws of η,

calculate I (η ∈ B) for each draw, and average the results. This is the
AR simulator. This simulator has the unfortunate properties that it can
be zero and is not smooth.
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For GHK we draw η from a different density, not from g(η). Recall
that for GHK, we draw η1 from a standard normal density truncated at
−Ṽn1i/c11. The density of this truncated normal is φ(η1)/�(−Ṽn1i/c11),
that is, the standard normal density normalized by the total probability
below the truncation point. Draws of η2, η3, and so on are also taken
from truncated densities, but with different truncation points. Each of
these truncated densities takes the form φ(η j )/�(·) for some truncation
point in the denominator. The density from which we draw for the GHK
simulator is therefore

(5.8) f (η) =
{

φ(η1)
�(−Ṽn1i /c11)

× φ(η2)
�(−(Ṽn2i +c21η1)/c22)

× · · · for η ∈ B,

0 for η /∈ B.

Note that we only take draws that are consistent with the person choosing
alternative i (since we draw from the correctly truncated distributions).
So f (η) = 0 for η /∈ B.

Recall that for a draw of η within the GHK simulator, we calculate:

P̌in(η) = �

(−Ṽn1i

c11

)

× �

(−(Ṽn2i + c21η1)

c22

)

× · · · .(5.9)

Note that this expression is the denominator of f (η) for η ∈ B, given in
equation (5.8). Using this fact, we can rewrite the density f (η) as

f (η) =
{

g(η)/P̌ni (η) for η ∈ B,

0 for η /∈ B.

With this expression for f (η), we can prove that the GHK simulator,
P̌in(η), is unbiased for Pni (η):

E(P̌in(η)) =
∫

P̌in(η) f (η) dη

=
∫

η∈B
P̌in(η)

g(η)

P̌in(η)
dη by (5.6.3)

=
∫

η∈B
g(η) dη

=
∫

I (η ∈ B)g(η) dη

= Pin.
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The interpretation of GHK as an importance sampler is also obtained
from this expression:

Pin =
∫

I (η ∈ B)g(η) dη

=
∫

I (η ∈ B)g(η)
f (η)

f (η)
d η

=
∫

I (η ∈ B)
g(η)

g(η)/P̌in(η)
f (η) dη by (5.6.3)

=
∫

I (η ∈ B)P̌in(η) f (η) dη

=
∫

P̌in(η) f (η) dη,

where the last equality is because f (η) > 0 only when η ∈ B. The GHK
procedure takes draws from f (η), calculates P̌in(η) for each draw, and
averages the results. Essentially, GHK replaces the 0–1 I (η ∈ B) with
smooth P̌in(η) and makes the corresponding change in the density from
g(η) to f (η).



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-06Drv CB495/Train KEY BOARDED August 20, 2002 12:37 Char Count= 0

6 Mixed Logit

6.1 Choice Probabilities

Mixed logit is a highly flexible model that can approximate any random
utility model (McFadden and Train, 2000). It obviates the three limita-
tions of standard logit by allowing for random taste variation, unre-
stricted substitution patterns, and correlation in unobserved factors over
time. Unlike probit, it is not restricted to normal distributions. Its deriva-
tion is straightforward, and simulation of its choice probabilities is com-
putationally simple.

Like probit, the mixed logit model has been known for many years
but has only become fully applicable since the advent of simulation.
The first application of mixed logit was apparently the automobile de-
mand models created jointly by Boyd and Mellman (1980) and Cardell
and Dunbar (1980). In these studies, the explanatory variables did not
vary over decision makers, and the observed dependent variable was
market shares rather than individual customers’ choices. As a result, the
computationally intensive integration that is inherent in mixed logit (as
explained later) needed to be performed only once for the market as a
whole, rather than for each decision maker in a sample. Early applica-
tions on customer-level data, such as Train et al. (1987a) and Ben-Akiva
et al. (1993), included only one or two dimensions of integration, which
could be calculated by quadrature. Improvements in computer speed
and in our understanding of simulation methods have allowed the full
power of mixed logits to be utilized. Among the studies to evidence this
power are those by Bhat (1998a) and Brownstone and Train (1999) on
cross-sectional data, and Erdem (1996), Revelt and Train (1998), and
Bhat (2000) on panel data. The description in the current chapter draws
heavily from Train (1999).

Mixed logit models can be derived under a variety of different behav-
ioral specifications, and each derivation provides a particular interpre-
tation. The mixed logit model is defined on the basis of the functional
form for its choice probabilities. Any behavioral specification whose

138
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derived choice probabilities take this particular form is called a mixed
logit model.

Mixed logit probabilities are the integrals of standard logit probabil-
ities over a density of parameters. Stated more explicitly, a mixed logit
model is any model whose choice probabilities can be expressed in the
form

Pni =
∫

Lni (β) f (β) dβ,

where Lni (β) is the logit probability evaluated at parameters β:

Lni (β) = eVni (β)∑J
j=1 eVnj (β)

and f (β) is a density function. Vni (β) is the observed portion of the
utility, which depends on the parameters β. If utility is linear in β, then
Vni (β) = β ′xni . In this case, the mixed logit probability takes its usual
form:

(6.1) Pni =
∫ (

eβ ′xni∑
j eβ ′xnj

)
f (β) dβ.

The mixed logit probability is a weighted average of the logit formula
evaluated at different values of β, with the weights given by the density
f (β). In the statistics literature, the weighted average of several functions
is called a mixed function, and the density that provides the weights is
called the mixing distribution. Mixed logit is a mixture of the logit
function evaluated at different β’s with f (β) as the mixing distribution.

Standard logit is a special case where the mixing distribution f (β) is
degenerate at fixed parameters b: f (β) = 1 for β = b and 0 for β �= b.
The choice probability (6.1) then becomes the simple logit formula

Pni = eb′xni∑
j eb′xnj

.

The mixing distribution f (β) can be discrete, with β taking a fi-
nite set of distinct values. Suppose β takes M possible values labeled
b1, . . . , bM , with probability sm that β = bm . In this case, the mixed logit
becomes the latent class model that has long been popular in psychol-
ogy and marketing; examples include Kamakura and Russell (1989) and
Chintagunta et al. (1991). The choice probability is

Pni =
M∑

m=1

sm

(
eb′

m xni∑
j eb′

m xnj

)
.
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This specification is useful if there are M segments in the population,
each of which has its own choice behavior or preferences. The share of
the population in segment m is sm , which the researcher can estimate
within the model along with the b’s for each segment.

In most applications that have actually been called mixed logit (such
as those cited in the introductory paragraphs in this chapter), f (β) is
specified to be continuous. For example, the density of β can be specified
to be normal with mean b and covariance W . The choice probability
under this density becomes

Pni =
∫ (

eβ ′xni∑
j eβ ′xnj

)
φ(β | b, W ) dβ,

where φ(β | b, W ) is the normal density with mean b and covariance
W . The researcher estimates b and W . The lognormal, uniform, triangu-
lar, gamma, or any other distribution can be used. As will be shown in
Section 6.5, by specifying the explanatory variables and density appro-
priately, the researcher can represent any utility-maximizing behavior by
a mixed logit model, as well as many forms of non-utility-maximizing
behavior.

Tests for the need for a nondegenerate mixing distribution, as well
as the adequacy of any given distribution, have been developed by
McFadden and Train (2000) and Chesher and Santos-Silva (2002). Sev-
eral studies have compared discrete and continuous mixing distributions
within the context of mixed logit; see, for example, Wedel and Kamakura
(2000) and Ainslie et al. (2001).

An issue of terminology arises with mixed logit models. There are two
sets of parameters in a mixed logit model. First, we have the parameters
β, which enter the logit formula. These parameters have density f (β).
The second set are parameters that describe this density. For example,
if β is normally distributed with mean b and covariance W , then b and
W are parameters that describe the density f (β). Usually (though not
always, as noted in the following text), the researcher is interested in
estimating the parameters of f .

Denote the parameters that describe the density of β as θ . The more
appropriate way to denote this density is f (β | θ ). The mixed logit
choice probabilities do not depend on the values of β. These proba-
bilities are Pni = ∫

Lni (β) f (β | θ ) dβ, which are functions of θ . The
parameters β are integrated out. Thus, the β’s are similar to the εnj ’s, in
that both are random terms that are integrated out to obtain the choice
probability.
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Under some derivations of the mixed logit model, the values of β have
interpretable meaning as representing the tastes of individual decision
makers. In these cases, the researcher might want to obtain information
about the β’s for each sampled decision maker, as well as the θ that
describes the distribution of β’s across decision makers. In Chapter 11,
we describe how the researcher can obtain this information from es-
timates of θ and the observed choices of each decision maker. In the
current chapter, we describe the estimation and interpretation of θ , us-
ing classical estimation procedures. In Chapter 12, we describe Bayesian
procedures that provide information about θ and each decision maker’s
β simultaneously.

6.2 Random Coefficients

The mixed logit probability can be derived from utility-maximizing be-
havior in several ways that are formally equivalent but provide different
interpretations. The most straightforward derivation, and most widely
used in recent applications, is based on random coefficients. The deci-
sion maker faces a choice among J alternatives. The utility of person n
from alternative j is specified as

Unj = β ′
nxnj + εnj ,

where xnj are observed variables that relate to the alternative and deci-
sion maker, βn is a vector of coefficients of these variables for person
n representing that person’s tastes, and εnj is a random term that is iid
extreme value. The coefficients vary over decision makers in the pop-
ulation with density f (β). This density is a function of parameters θ

that represent, for example, the mean and covariance of the β’s in the
population. This specification is the same as for standard logit except
that β varies over decision makers rather than being fixed.

The decision maker knows the value of his own βn and εnj ’s for all j
and chooses alternative i if and only if Uni > Unj ∀ j �= i . The researcher
observes the xnj ’s but not βn or the εnj ’s. If the researcher observed βn ,
then the choice probability would be standard logit, since the εnj ’s are
iid extreme value. That is, the probability conditional on βn is

Lni (βn) = eβ ′
n xni∑

j eβ ′
n xnj

.

However, the researcher does not knowβn and therefore cannot condition
on β. The unconditional choice probability is therefore the integral of
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Lni (βn) over all possible variables of βn:

Pni =
∫ (

eβ ′xni∑
j eβ ′xnj

)
f (β) dβ,

which is the mixed logit probability (6.1).
The researcher specifies a distribution for the coefficients and esti-

mates the parameters of that distribution. In most applications, such as
Revelt and Train (1998), Mehndiratta (1996), and Ben-Akiva and Bolduc
(1996), f (β) has been specified to be normal or lognormal:β ∼ N (b, W )
or ln β ∼ N (b, W ) with parameters b and W that are estimated. The log-
normal distribution is useful when the coefficient is known to have the
same sign for every decision maker, such as a price coefficient that is
known to be negative for everyone. Revelt and Train (2000), Hensher
and Greene (2001), and Train (2001) have used triangular and uniform
distributions. With the uniform density, β is distributed uniformly be-
tween b − s and b + s, where the mean b and spread s are estimated.
The triangular distribution has positive density that starts at b − s, rises
linearly to b, and then drops linearly to b + s, taking the form of a tent
or triangle. The mean b and spread s are estimated, as with the uniform,
but the density is peaked instead of flat. These densities have the ad-
vantage of being bounded on both sides, thereby avoiding the problem
that can arise with normals and lognormals having unreasonably large
coefficients for some share of decision makers. By constraining s = b,
the researcher can assure that the coefficients have the same sign for all
decision makers. Siikamaki (2001) and Siikamaki and Layton (2001)
use the Rayleigh distribution (Johnson et al., 1994), which is on one
side of zero like the lognormal but, as these researchers found, can be
easier for estimation than the lognormal. Revelt (1999) used truncated
normals. As these examples indicate, the researcher is free to specify
a distribution that satisfies his expectations about behavior in his own
application.

Variations in tastes that are related to observed attributes of the deci-
sion maker are captured through specification of the explanatory vari-
ables and/or the mixing distribution. For example, cost might be divided
by the decision maker’s income to allow the value or relative importance
of cost to decline as income rises. The random coefficient of this vari-
able then represents the variation over people with the same income in
the value that they place on cost. The mean valuation of cost declines
with increasing income while the variance around the mean is fixed.
Observed attributes of the decision maker can also enter f (β), so that
higher-order moments of taste variation can also depend on attributes
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of the decision maker. For example, Bhat (1998a, 2000) specify f (β)
to be lognormal with mean and variance depending on decision maker
characteristics.

6.3 Error Components

A mixed logit model can be used without a random-coefficients interpre-
tation, as simply representing error components that create correlations
among the utilities for different alternatives. Utility is specified as

Unj = α′xnj + µ′
nznj + εnj ,

where xnj and znj are vectors of observed variables relating to alterna-
tive j , α is a vector of fixed coefficients, µ is a vector of random terms
with zero mean, and εnj is iid extreme value. The terms in znj are error
components that, along with εnj , define the stochastic portion of utility.
That is, the unobserved (random) portion of utility is ηnj = µ′

nznj + εnj ,
which can be correlated over alternatives depending on the specifica-
tion of znj . For the standard logit model, znj is identically zero, so that
there is no correlation in utility over alternatives. This lack of correla-
tion gives rise to the IIA property and its restrictive substitution patterns.
With nonzero error components, utility is correlated over alternatives:
Cov(ηni , ηnj ) = E(µ′

nzni + εni )(µ′
nznj + εnj ) = z′

ni W znj , where W is
the covariance of µn . Utility is correlated over alternatives even when,
as in most specifications, the error components are independent, such
that W is diagonal.

Various correlation patterns, and hence substitution patterns, can be
obtained by appropriate choice of variables to enter as error components.
For example, an analog to nested logit is obtained by specifying a dummy
variable for each nest that equals 1 for each alternative in the nest and
zero for alternatives outside the nest. With K non-overlapping nests, the
error components are µ′

nznj = ∑K
k=1 µnkd jk , where d jk = 1 if j is in

nest k and zero otherwise. It is convenient in this situation to specify
the error components to be independently normally distributed: µnk iid
N (0, σk). The random quantity µnk enters the utility of each alternative
in nest k, inducing correlation among these alternatives. It does not enter
any of the alternatives in other nests, thereby not inducing correlation
between alternatives in the nest with those outside the nest. The variance
σk captures the magnitude of the correlation. It plays an analogous role
to the inclusive value coefficient of nested logit models.

To be more precise, the covariance between two alternatives in nest k is
Cov(ηni , ηnj ) = E(µk + εni )(µk + εnj ) = σk . The variance for each of
the alternatives in nest k is Var(ηni ) = E(µk + εni )2 = σk + π2/6, since
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the variance of the extreme value term, εni , is π2/6 (see Section 3.1).
The correlation between any two alternatives within nest k is therefore
σk/(σk + π2/6). Constraining the variance of each nest’s error compo-
nent to be the same for all nests (i.e., constrainingσk = σ, k = 1, . . . , K )
is analogous to constraining the log-sum coefficient to be the same for
all nests in a nested logit. This constraint also assures that the mixed
logit model is normalized for scale and level.

Allowing different variances for the random quantities for different
nests is analogous to allowing the inclusive value coefficient to differ
across nests in a nested logit. An analog to overlapping nests is captured
with dummies that identify overlapping sets of alternatives, as in Bhat
(1998a). An analog to heteroskedastic logit (discussed in Section 4.5)
is obtained by entering an error component for each alternative. Ben-
Akiva et al. (2001) provide guidance on how to specify these variables
appropriately.

Error-component and random-coefficient specifications are formally
equivalent. Under the random-coefficient motivation, utility is specified
as Unj = β ′

nxnj + εnj with random βn . The coefficients βn can be de-
composed into their mean α and deviations µn , so that Unj = α′xnj +
µ′

nxnj + εnj , which has error components defined by znj = xnj . Con-
versely, under an error-component motivation, utility is Unj = α′xnj +
µ′

nznj + εnj , which is equivalent to a random-parameter model with fixed
coefficients for variables xnj and random coefficients with zero means
for variables znj . If xnj and znj overlap (in the sense that some of the
same variables enter xnj and znj ), the coefficients of these variables can
be considered to vary randomly with mean α and the same distribution
as µn around their means.

Though random coefficients and error components are formally equiv-
alent, the way a researcher thinks about the model affects the specifica-
tion of the mixed logit. For example, when thinking in terms of random
parameters, it is natural to allow each variable’s coefficient to vary and
perhaps even to allow correlations among the coefficients. This is the
approach pursued by Revelt and Train (1998). However, when the pri-
mary goal is to represent substitution patterns appropriately through the
use of error components, the emphasis is placed on specifying variables
that can induce correlations over alternatives in a parsimonious fashion
so as to provide sufficiently realistic substitution patterns. This is the
approach taken by Brownstone and Train (1999). The goals differed in
these studies, Revelt and Train being interested in the pattern of tastes,
while Brownstone and Train were more concerned with prediction. The
number of explanatory variables also differed, Revelt and Train exam-
ining 6 variables, so that estimating the joint distribution of their co-
efficients was a reasonable goal, while Brownstone and Train included
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26 variables. Expecting to estimate the distribution of 26 coefficients is
unreasonable, and yet thinking in terms of random parameters instead
of error components can lead the researcher to such expectations. It is
important to remember that the mixing distribution, whether motivated
by random parameters or by error components, captures variance and
correlations in unobserved factors. There is a natural limit on how much
one can learn about things that are not seen.

6.4 Substitution Patterns

Mixed logit does not exhibit independence from irrelevant alternatives
(IIA) or the restrictive substitution patterns of logit. The ratio of mixed
logit probabilities, Pni/Pnj , depends on all the data, including attributes
of alternatives other than i or j . The denominators of the logit formula are
inside the integrals and therefore do not cancel. The percentage change
in the probability for one alternative given a change in the mth attribute
of another alternative is

Enixm
nj

= − 1

Pni

∫
βm Lni (β)Lnj (β) f (β) dβ

= −
∫

βm Lnj (β)

[
Lni (β)

Pni

]
f (β) dβ,

where βm is the mth element of β. This elasticity is different for each
alternative i . A ten-percent reduction for one alternative need not imply
(as with logit) a ten-percent reduction in each other alternative. Rather,
the substitution pattern depends on the specification of the variables and
mixing distribution, which can be determined empirically.

Note that the percentage change in probability depends on the cor-
relation between Lni (β) and Lnj (β) over different values of β, which
is determined by the researcher’s specification of variables and mixing
distribution. For example, to represent a situation where an improvement
in alternative j draws proportionally more from alternative i than from
alternative k, the researcher can specify an element of x that is positively
correlated between i and j but uncorrelated or negatively correlated be-
tween k and j , with a mixing distribution that allows the coefficient of
this variable to vary.

6.5 Approximation to Any Random Utility Model

McFadden and Train (2000) show that any random utility model (RUM)
can be approximated to any degree of accuracy by a mixed logit with
appropriate choice of variables and mixing distribution. This proof is
analogous to the RUM-consistent approximations provided by Dagsvik
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(1994). An intuitive explanation can easily be provided. Suppose the
true model is Unj = α′

nznj , where znj are variables related to alternative
j , and α follows any distribution f (α). Any RUM can be expressed in
this form. (The more traditional notation Unj = β ′

nxnj + εnj is obtained
by letting z′

nj = 〈x ′
nj , d j 〉, α′ = 〈β ′

n, εnj 〉, and f (α) be the joint density
of βn and εnj ∀ j .) Conditional on α, the person’s choice is fully deter-
mined, since Unj is then known for each j . The conditional probability is
therefore

qni (α) = I (α′
nzni > α′

nznj ∀ j �= i),

where I (·) is the 1–0 indicator of whether the event in parentheses oc-
curs. This conditional probability is deterministic in the sense that the
probability is either zero or one: conditional on all the unknown ran-
dom terms, the decision maker’s choice is completely determined. The
unconditional choice probability is the integral of qni (α) over α:

Qni =
∫

I (α′
nzni > α′

nzni ∀ j �= i) f (α) dα.

We can approximate this probability with a mixed logit. Scale utility
by λ, so that U ∗

nj = (α/λ)znj . This scaling does not change the model,
since behavior is unaffected by the scale of utility. Then add an iid
extreme value term: εnj . The addition of the extreme value term does
change the model, since it changes the utility of each alternative. We add
it because doing so gives us a mixed logit. And, as we will show (this is
the purpose of the proof), adding the extreme value term is innocuous.
The mixed logit probability based on this utility is

Pni =
∫ (

e(α/λ)′zni∑
j e(α/λ)′znj

)
f (α) dα.

As λ approaches zero, the coefficients α/λ in the logit formula grow
large, and Pni approaches a 1–0 indicator for the alternative with the
highest utility. That is, the mixed logit probability Pni approaches the
true probability Qni as λ approaches zero. By scaling the coefficients
upward sufficiently, the mixed logit based on these scaled coefficients is
arbitrarily close to the true model. Srinivasan and Mahmassani (2000)
use this concept of raising the scale of coefficients to show that a mixed
logit can approximate a probit model; the concept applies generally to
approximate any RUM.

Recall that we added an iid extreme value term to the true utility of each
alternative. These terms change the model, because the alternative with
highest utility before the terms are added may not have highest utility
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afterward (since a different amount is added to each utility). However,
by raising the scale of utility sufficiently, we can be essentially sure
that the addition of the extreme value terms has no effect. Consider a
two-alternative example. Suppose, using the true model with its original
scaling, that the utility of alternative 1 is 0.5 units higher than the utility
of alternative 2, so that alternative 1 is chosen. Suppose we add an
extreme value term to each alternative. There’s a good chance, given the
variance of these random terms, that the value obtained for alternative 2
will exceed that for alternative 1 by at least half a unit, so that alternative
2 now obtains the higher utility instead of 1. The addition of the extreme
value terms thus changes the model, since it changes which alternative
has the higher utility. Suppose, however, that we scale up the original
utility by a factor of 10 (i.e., λ = 0.10). The utility for alternative 1 now
exceeds the utility for alternative 2 by 5 units. It is highly unlikely that
adding extreme value terms to these utilities will reverse this difference.
That is, it is highly unlikely, in fact next to impossible, that the value
of εn2 that is added to the utility of alternative 2 is larger by 5 than the
εn1 that is added to the utility of alternative 1. If scaling up by 10 is not
sufficient to assure that adding the extreme value term has no effect, then
the original utilities can be scaled up by 100 or 1000. At some point, a
scale will be found for which the addition of the extreme value terms has
no effect. Stated succinctly, adding an extreme value term to true utility,
which makes the model into a mixed logit, does not change utility in
any meaningful way when the scale of the utility is sufficiently large.
A mixed logit can approximate any RUM simply by scaling up utility
sufficiently.

This demonstration is not intended to suggest that raising the scale
of utility is actually how the researcher would proceed in specifying a
mixed logit as an approximation to the true model. Rather, the demon-
stration simply indicates that if no other means for specifying a mixed
logit to approximate the true model can be found, then this rescaling
procedure can be used to attain the approximation. Usually, a mixed
logit can be specified that adequately reflects the true model without
needing to resort to an upward scaling of utility. For example, the true
model will usually contain some iid term that is added to the utility of
each alternative. Assuming an extreme value distribution for this term is
perhaps close enough to reality to be empirically indistinguishable from
other distributional assumptions for the iid term. In this case, the scale
of utility is determined naturally by the variance of this iid term. The re-
searcher’s task is simply to find variables and a mixing distribution that
capture the other parts of utility, namely, the parts that are correlated
over alternatives or heteroskedastic.
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6.6 Simulation

Mixed logit is well suited to simulation methods for estimation. Utility
is Unj = β ′

nxnj + εnj , where the the coefficients βn are distributed with
density f (β | θ ), where θ refers collectively to the parameters of this
distribution (such as the mean and covariance of β). The researcher
specifies the functional form f (·) and wants to estimate the parameters
θ . The choice probabilities are

Pni =
∫

Lni (β) f (β | θ ) dβ,

where

Lni (β) = eβ ′xni∑J
j=1 eβ ′xnj

.

The probabilities are approximated through simulation for any given
value of θ : (1) Draw a value of β from f (β | θ ), and label it βr with
the superscript r = 1 referring to the first draw. (2) Calculate the logit
formula Lni (βr ) with this draw. (3) Repeat steps 1 and 2 many times,
and average the results. This average is the simulated probability:

P̌ni = 1

R

R∑
r=1

Lni (β
r ),

where R is the number of draws. P̌ni is an unbiased estimator of Pni by
construction. Its variance decreases as R increases. It is strictly positive,
so that ln P̌ni is defined, which is useful for approximating the log-
likelihood function below. P̌ni is smooth (twice differentiable) in the
parameters θ and the variables x , which facilitates the numerical search
for the maximum likelihood function and the calculation of elasticities.
And P̌ni sums to one over alternatives, which is useful in forecasting.

The simulated probabilities are inserted into the log-likelihood func-
tion to give a simulated log likelihood:

SLL =
N∑

n=1

J∑
j=1

dnj ln P̌nj ,

where dnj = 1 if n chose j and zero otherwise. The maximum simulated
likelihood estimator (MSLE) is the value of θ that maximizes SLL.
The properties of this estimator are discussed in Chapter 10. Usually,
different draws are taken for each observation. This procedure maintains
independence over decision makers of the simulated probabilities that
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enter SLL. Lee (1992) describes the properties of MSLE when the same
draws are used for all observations.

The simulated mixed logit probability can be related to accept–reject
(AR) methods of simulation. AR simulation is described in Section 5.6
for probit models, but it is applicable more generally. For any random
utility model, the AR simulator is constructed as follows: (1) A draw of
the random terms is taken. (2) The utility of each alternative is calculated
from this draw, and the alternative with the highest utility is identified.
(3) Steps 1 and 2 are repeated many times. (4) The simulated probability
for an alternative is calculated as the proportion of draws for which
that alternative has the highest utility. The AR simulator is unbiased by
construction. However, it is not strictly positive for any finite number of
draws. It is also not smooth, but rather a step function: constant within
ranges of parameters for which the identity of the alternative with the
highest utility does not change for any draws, and with jumps where
changes in the parameters change the identity of the alternative with
the highest utility. Numerical methods for maximization based on the
AR simulator are hampered by these characteristics. To address these
numerical problems, the AR simulator can be smoothed by replacing
the 0–1 indicator with the logit formula. As discussed in Section 5.6.2,
the logit-smoothed AR simulator can approximate the AR simulator
arbitrarily closely by scaling utility appropriately.

The mixed logit simulator can be seen as a logit-smoothed AR simu-
lator of any RUM: draws of the random terms are taken, utility is cal-
culated for these draws, the calculated utilities are inserted into the
logit formula, and the results are averaged. The theorem that a mixed
logit can approximate any random utility model (Section 6.5) can be
viewed from this perspective. We know from Section 5.6.2 that the logit-
smoothed AR simulator can be arbitrarily close to the AR simulator for
any model, with sufficient scaling of utility. Since the mixed logit sim-
ulator is equivalent to a logit-smoothed AR simulator, the simulated
mixed logit model can be arbitrarily close to the AR simulator of any
model.

6.7 Panel Data

The specification is easily generalized to allow for repeated choices by
each sampled decision maker. The simplest specification treats the coef-
ficients that enter utility as varying over people but being constant over
choice situations for each person. Utility from alternative j in choice
situation t by person n is Unjt = βnxnjt + εnjt , with εnjt being iid ex-
treme value over time, people, and alternatives. Consider a sequence of
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alternatives, one for each time period, i = {i1, . . . , iT }. Conditional on
β the probability that the person makes this sequence of choices is the
product of logit formulas:

(6.2) Lni(β) =
T∏

t=1

[
eβ ′

n xnit t∑
j eβ ′

n xnjt

]

since the εnjt ’s are independent over time. The unconditional probability
is the integral of this product over all values of β:

(6.3) Pni =
∫

Lni(β) f (β) dβ.

The only difference between a mixed logit with repeated choices and one
with only one choice per decision maker is that the integrand involves a
product of logit formulas, one for each time period, rather than just one
logit formula. The probability is simulated similarly to the probability
with one choice period. A draw of β is taken from its distribution. The
logit formula is calculated for each period, and the product of these logits
is taken. This process is repeated for many draws, and the results are
averaged.

Past and future exogenous variables can be added to the utility in
a given period to represent lagged response and anticipatory behavior,
as described in Section 5.5 in relation to probit with panel data. How-
ever, unlike probit, lagged dependent variables can be added in a mixed
logit model without changing the estimation procedure. Conditional on
βn , the only remaining random terms in the mixed logit are the εnj ’s,
which are independent over time. A lagged dependent variable enter-
ing Unjt is uncorrelated with these remaining error terms for period t ,
since these terms are independent over time. The conditional probabil-
ities (conditional on β) are therefore the same as in equation (6.2), but
with the x’s including lagged dependent variables. The unconditional
probability is then the integral of this conditional probability over all
values of β, which is just equation (6.3). In this regard, mixed logit is
more convenient than probit for representing state dependence, since
lagged dependent variables can be added to mixed logit without adjust-
ing the probability formula or simulation method. Erdem (1996) and
Johannesson and Lundin (2000) exploit this advantage to examine habit
formation and variety seeking within a mixed logit that also captures
random taste variation.

If choices and data are not observed from the start of the process (i.e.,
from the first choice situation that the person faces), the issue of initial
conditions must be confronted, just as with probit. The researcher must
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somehow represent the probability of the first observed choice, which de-
pends on the previous, unobserved choices. Heckman and Singer (1986)
provide ways to handle this issue. However, when the researcher ob-
serves the choice process from the beginning, the initial conditions is-
sue does not arise. In this case, the use of lagged dependent variables
to capture inertia or other types of state dependence is straightforward
with mixed logit. Stated-preference data (that is, answers to a series of
choice situations posed to respondents in a survey) provide a prominent
example of the researcher observing the entire sequence of choices.

In the specification so far and in nearly all applications, the coefficients
βn are assumed to be constant over choice situations for a given decision
maker. This assumption is appropriate if the decision maker’s tastes are
stable over the time period that spans the repeated choices. However, the
coefficients associated with each person can be specified to vary over
time in a variety of ways. For example, each person’s tastes might be
serially correlated over choice situations, so that utility is

Unjt = βnt xnjt + εnjt ,

βnt = b + β̃nt ,

β̃
nt

= ρβ̃
nt−1

+ µnt ,

where b is fixed and µnt is iid over n and t . Simulation of the probability
for the sequence of choices proceeds as follows:

1. Draw µr
n1 for the initial period, and calculate the logit formula

for this period using βr
n1 = b + µr

n0.
2. Draw µr

n2 for the second period, calculate βn2 = b + ρµr
n1 +

µr
n2, and then calculate the logit formula based on this βr

n2.
3. Continue for all T time periods.
4. Take the product of the T logits.
5. Repeat steps 1–4 for numerous sequences of draws.
6. Average the results.

The burden placed on simulation is greater than with coefficients being
constant over time for each person, requiring T times as many draws.

6.8 Case Study

As illustration, consider a mixed logit of anglers’ choices of fishing
sites (Train, 1999). The specification takes a random-coefficients form.
Utility is Unjt = βnxnjt + εnjt , with coefficients βn varying over anglers
but not over trips for each angler. The probability of the sequence of
sites chosen by each angler is given by equation (6.3).
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The sample consists of 962 river trips taken in Montana by 258 an-
glers during the period of July 1992 through August 1993. A total of
59 possible river sites were defined, based on geographical and other
relevant factors. Each site contains one or more of the stream segments
used in the Montana River Information System. The following variables
enter as elements of x for each site:

1. Fish stock, measured in units of 100 fish per 1000 feet of river.
2. Aesthetics rating, measured on a scale of 0 to 3, with 3 being

the highest.
3. Trip cost: cost of traveling from the angler’s home to the site,

including the variable cost of driving (gas, maintenance, tires,
oil) and the value of time spent driving (with time valued at
one-third the angler’s wage.)

4. Indicator that the Angler’s Guide to Montana lists the site as a
major fishing site.

5. Number of campgrounds per U.S. Geological Survey (USGS)
block in the site.

6. Number of state recreation access areas per USGS block in the
site.

7. Number of restricted species at the site.
8. Log of the size of the site, in USGS blocks.

The coefficients of variables 4–7 can logically take either sign; for
example, some anglers might like having campgrounds and others pre-
fer the privacy that comes from not having nearby campgrounds. Each
of these coefficients is given an independent normal distribution with
mean and standard deviation that are estimated. The coefficients for trip
cost, fish stock, and aesthetics rating of the site are expected to have
the same sign for all anglers, with only their magnitudes differing over
anglers. These coefficients are given independent lognormal distribu-
tions. The mean and standard deviation of the log of the coefficient are
estimated, and the mean and standard deviation of the coefficient itself
are calculated from these estimates. Since the lognormal distribution
is defined over the positive range and trip cost is expected to have a
negative coefficient for all anglers, the negative of trip cost enters the
model. The coefficient for the log of size is assumed to be fixed. This
variable allows for the fact that the probability of visiting a larger site is
higher than that for a smaller site, all else equal. Having the coefficient of
this variable vary over people, while possible, would not be particularly
meaningful. A version of the model with correlated coefficients is given
by Train (1998). The site choice model is part of an overall model, given
by Desvousges et al. (1996), of the joint choice of trip frequency and
site choice.
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Table 6.1. Mixed logit model of river fishing site choice

Variable Parameter Value Std. Error

Fish stock Mean of ln(coefficient) −2.876 0.6066
Std. dev. of ln(coefficient) 1.016 0.2469

Aesthetics Mean of ln(coefficient) −0.794 0.2287
Std. dev. of ln(coefficient) 0.849 0.1382

Total cost (neg.) Mean of ln(coefficient) −2.402 0.0631
Std. dev. of ln(coefficient) 0.801 0.0781

Guide lists as major Mean coefficient 1.018 0.2887
Std. dev. of coefficient 2.195 0.3518

Campgrounds Mean coefficient 0.116 0.3233
Std. dev. of coefficient 1.655 0.4350

Access areas Mean coefficient −0.950 0.3610
Std. dev. of coefficient 1.888 0.3511

Restricted species Mean coefficient −0.499 0.1310
Std. dev. of coefficient 0.899 0.1640

Log(size) Mean coefficient 0.984 0.1077

Likelihood ratio index 0.5018
SLL at convergence −1932.33

Simulation was performed using one thousand random draws for each
sampled angler. The results are given in Table 6.1. The standard deviation
of each random coefficient is highly significant, indicating that these
coefficients do indeed vary in the population.

Consider first the normally distributed coefficients. The estimated
means and standard deviations of these coefficients provide information
on the share of the population that places a positive value on the site
attribute and the share that places a negative value. The distribution of
the coefficient of the indicator that the Angler’s Guide to Montana lists
the site as a major site obtains an estimated mean of 1.018 and estimated
standard deviation of 2.195, such that 68 percent of the distribution is
above zero and 32 percent below. This implies that being listed as a
major site in the Angler’s Guide to Montana is a positive inducement
for about two-thirds of anglers and a negative factor for the other third,
who apparently prefer more solitude. Campgrounds are preferred by
about half (53 percent) of anglers and avoided by the other half. And
about one-third of anglers (31 percent) are estimated to prefer having
numerous access areas, while the other two-thirds prefer there being
fewer access areas.

Consider now the lognormal coefficients. Coefficient βk follows a
lognormal if the log of βk is normally distributed. We parameterize the
lognormal distribution is terms of the underlying normal. That is, we
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estimate parameters m and s that represent the mean and variance of the
log of the coefficient: ln βk ∼ N (m, s). The mean and variance of βk

are then derived from the estimates of m and s. The median is exp(m),
the mean is exp(m + s/2), and the variance is exp(2m + s) [exp(s) − 1].
The point estimates imply that the coefficients of fish stock, aesthetics,
and trip cost have the following median, mean, and standard deviations:

Variable Median Mean Std. Dev.

Fish stock 0.0563 0.0944 0.1270
Aesthetics 0.4519 0.6482 0.6665
Trip cost 0.0906 0.1249 0.1185

The ratio of an angler’s fish stock coefficients to the trip cost co-
efficient is a measure of the amount that the angler is willing to pay
to have additional fish in the river. Since the ratio of two independent
lognormally distributed terms is also lognormally distributed, we can
calculate moments for the distribution of willingness to pay. The log
of the ratio of the fish stock coefficient to the trip cost coefficient has
estimated mean −0.474 and standard deviation of 1.29. The ratio itself
therefore has median 0.62, mean 1.44, and standard deviation 2.96. That
is, the average willingness to pay to have the fish stock raised by 100
fish per 1000 feet of river is estimated to be $1.44, and there is very
wide variation in anglers’ willingness to pay for additional fish stock.
Similarly, $9.87 is the estimated average willingness to pay for a site
that has an aesthetics rating that is higher by 1, and again the variation
is fairly large.

As this application illustrates, the mixed logit provides more informa-
tion than a standard logit, in that the mixed logit estimates the extent to
which anglers differ in their preferences for site attributes. The standard
deviations of the coefficients enter significantly, indicating that a mixed
logit provides a significantly better representation of the choice situa-
tion than standard logit, which assumes that coefficients are the same
for all anglers. The mixed logit also allows for the fact that several trips
are observed for each sampled angler and that each angler’s preferences
apply to each of the angler’s trips.
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7 Variations on a Theme

7.1 Introduction

Simulation gives the researcher the freedom to specify models that ap-
propriately represent the choice situations under consideration, without
being unduly hampered by purely mathematical concerns. This perspec-
tive has been the overarching theme of our book. The discrete choice
models that we have discussed – namely, logit, nested logit, probit, and
mixed logit – are used in the vast majority of applied work. However,
readers should not feel themselves constrained to use these models. In
the current chapter, we describe several models that are derived under
somewhat different behavioral concepts. These models are variations on
the ones already discussed, directed toward specific issues and data. The
point is not simply to describe additional models. Rather, the discussion
illustrates how the researcher might examine a choice situation and de-
velop a model and estimation procedure that seem appropriate for that
particular situation, drawing from, and yet adapting, the standard set of
models and tools.

Each section of this chapter is motivated by a type of data, representing
the outcome of a particular choice process. The arena in which such data
might arise is described, and the limitations of the primary models for
these data are identified. In each case, a new model is described that better
represents the choice situation. Often this new model is only a slight
change from one of the primary models. However, the slight change will
often make the standard software unusable, so that the researcher will
need to develop her own software, perhaps by modifying the codes that
are available for standard models. The ability to revise code to represent
new specifications enables the researcher to utilize the freedom that the
field offers.

155
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7.2 Stated-Preference and
Revealed-Preference Data

Revealed-preference data relate to people’s actual choices in real-world
situations. These data are so called because people reveal their tastes,
or preferences, though the choices they make in the world. Stated-
preference data are data collected in experimental or survey situations
where respondents are presented with hypothetical choice situations. The
term refers to the fact that the respondents state what their choices would
be in the hypothetical situations. For example, in a survey, a person might
be presented with three cars with different prices and other attributes.
The person is asked which of the three cars he would buy if offered only
these three cars in the real world. The answer the person gives is the
person’s stated choice. A revealed-preference datum for the respondent
is obtained by asking which car he bought when he last bought a car.

There are advantages and limitations to each type of data. Revealed-
preference data have the advantage that they reflect actual choices. This,
of course, is a very big advantage. However, such data are limited to
the choice situations and attributes of alternatives that currently exist
or have existed historically. Often a researcher will want to examine
people’s responses in situations that do not currently exist, such as the
demand for a new product. Revealed-preference data are simply not
available for these new situations. Even for choice situations that cur-
rently exist, there may be insufficient variation in relevant factors to
allow estimation with revealed-preference data. For example, suppose
the researcher wants to examine the factors that affect California house-
holds’ choice of energy supplier. While residential customers have been
able to choose among suppliers for many years, there has been prac-
tically no difference in price among the suppliers’ offers. Customers’
response to price cannot be estimated on data that contain little or no
price variation. An interesting paradox arises in this regard. If customers
were highly price-responsive, then suppliers, knowing this, would offer
prices that met their competitors’ prices; the well-known equilibrium in
this situation is that all firms offer (essentially) the same price. If the
data from this market were used in a choice model, the price coefficient
would be found to be insignificant, since there is little price variation in
the data. The researcher could erroneously conclude from this insigni-
ficance that price is unimportant to consumers. This paradox is inherent
in revealed-preference data. Factors that are the most important to con-
sumers will often exhibit the least variation due to the natural forces
of market equilibrium. Their importance might therefore be difficult to
detect with revealed-preference data.
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Stated-preference data complement revealed-preference data. A ques-
tionnaire is designed in which the respondent is presented with one or
more choice experiments. In each experiment, two or more options are
described, and the respondent is asked which option he would choose
if facing the choice in the real world. For example, in the data that
we examine in Chapter 11, each surveyed respondent is presented with
12 experiments. In each experiment, four hypothetical energy suppliers
were described, with the price, contract terms, and other attributes given
for each supplier. The respondent is asked to state which of the four
suppliers he would choose.

The advantage of stated-preference data is that the experiments can be
designed to contain as much variation in each attribute as the researcher
thinks is appropriate. While there may be little price variation over sup-
pliers in the real world, the suppliers that are described in the experiments
can be given sufficiently different prices to allow precise estimation. At-
tributes can be varied over respondents and over experiments for each
respondent. This degree of variation contrasts with market data, where
often the same products are available to all customers, such that there is
no variation over customers in the attributes of products. Importantly, for
products that have never been offered before, or for new attributes of old
products, stated-preference data allow estimation of choice models when
revealed-preference data do not exist. Louviere et al. (2000) describe the
appropriate collection and analysis of stated-preference data.

The limitations of stated-preference data are obvious: what people say
they will do is often not the same as what they actually do. People may
not know what they would do if a hypothetical situation were real. Or
they may not be willing to say what they would do. In fact, respondents’
idea of what they would do might be influenced by factors that wouldn’t
arise in the real choice situations, such as their perception of what the
interviewer expects or wants as answers.

By combining stated- and revealed-preference data, the advantages
of each can be obtained while mitigating the limitations. The stated-
preference data provide the needed variation in attributes, while the
revealed-preference data ground the predicted shares in reality. To utilize
these relative strengths, an estimation procedure is needed that (1) allows
the ratios of coefficients (which represent the relative importance of the
various attributes) to be estimated primarily from the stated-preference
data (or more generally, from whatever variation in the attributes exists,
which is usually from the stated-preference data), while (2) allowing
the alternative-specific constants and overall scale of the parameters to
be determined by the revealed preference data (since the constants and
scale determine average shares in base conditions).
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Procedures for estimating discrete choice models on a combination
of stated- and revealed-preference data are described by Ben-Akiva
and Morikawa (1990), Hensher and Bradley (1993), and Hensher et al.
(1999) in the context of logit models, and by Bhat and Castelar (2002)
and Brownstone et al. (2000) with mixed logit. These procedures con-
stitute variations on the methods we have already examined. The most
prevalent issue when combining stated- and revealed-preference data is
that the unobserved factors are generally different for the two types of
data. We describe in the following paragraphs how this issue can readily
be addressed.

Let the utility that person n obtains from alternative j in situation t be
specified as Unjt = β ′xnjt + enjt , where xnjt does not include alternative-
specific constants and enjt represents the effect of factors that are not
observed by the researcher. These factors have a mean for each alterna-
tive (representing the average effect of all excluded factors on the utility
of that alternative) and a distribution around this mean. The mean is
captured by an alternative-specific constant, labeled c j , and for a stan-
dard logit model the distribution around this mean is extreme value with
variance λ2π2/6. As described in Chapters 2 and 3, the scale of utility
is set by normalizing the variance of the unobserved portion of utility.
The utility function becomes Unjt = (β/λ)′xnjt + c j/λ + εnjt , where
the normalized error εnjt = (enjt − c j )/λ is now iid extreme value with
variance π2/6. The choice probability is given by the logit formula based
on (β/λ)′xnjt + c j/λ. The parameters that are estimated are the original
parameters divided by the scale factor λ.

This specification is reasonable for many kinds of data and choice
situations. However, there is no reason to expect the alternative-specific
constants and the scale factor to be the same for stated-preference data
as for revealed-preference data. These parameters reflect the effects of
unobserved factors, which are necessarily different in real choice situ-
ations than hypothetical survey situations. In real choices, a multitude
of issues that affect a person but are not observed by the researcher
come into play. In a stated-preference experiment, the respondent is
(usually) asked to assume all alternatives to be the same on factors
that are not explicitly mentioned in the experiment. If the respondent
followed this instruction exactly, there would, by definition, be no un-
observed factors in the stated-preference choices. Of course, respon-
dents inevitably bring some outside concepts into the experiments, such
that unobserved factors do enter. However, there is no reason to expect
that these factors are the same, in mean or variance, as in real-world
choices.
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To account for these differences, separate constants and scale pa-
rameters are specified for stated-preference choice situations and for
revealed-preference situations. Let c s

j and c r
j represent the mean effect

of unobserved factors for alternative j in stated-preference experiments
and revealed-preference choices, respectively. Similarly, let λs and λr

represent the scales (proportional to the standard deviations) of the
distributions of unobserved factors around these means in stated- and
revealed-preference situations, respectively. To set the overall scale of
utility, we normalize either of the scale parameters to 1, which makes the
other scale parameter equal the ratio of the two original scale parameters.
Let’s normalize λr , so that λs reflects the variance of unobserved fac-
tors in stated-preference situations relative to that in revealed-preference
situations. Utility then becomes

Unjt = (β/λs)′xnjt + cs
j/λ

s + εnjt

for each t that is a stated-preference situation, and

Unjt = β ′xnjt + cr
j + εnjt

for each t that is a revealed-preference situation.
The model is estimated on the data from both the revealed- and stated-

preference choices. Both groups of observations are “stacked” together
as input to a logit estimation routine. A separate set of alternative-specific
constants is estimated for the stated-preference and revealed-preference
data. Importantly, the coefficients in the model are divided by a param-
eter 1/λs for the stated-preference observations. This separate scaling
is not feasible in most standard logit estimation packages. However, the
researcher can easily modify available codes (or her own code) to al-
low for this extra parameter. Hensher and Bradley (1993) show how to
estimate this model on software for nested logits.

Note that, with this setup, the elements of β are estimated on both
types of data. The estimates will necessarily reflect the amount of varia-
tion that each type of data contains for the attributes (that is, the elements
of x ). If there is little variance in the revealed-preference data, reflecting
conditions in real-world markets, then the β’s will be determined pri-
marily by the stated-preference data, which contain whatever variation
was built into the experiments. Insofar as the revealed-preference data
contain usable variation, this information will be incorporated into the
estimates.

The alternative-specific constants are estimated separately for the two
types of data. This distinction allows the researcher to avoid many
of the biases that stated-preference data might exhibit. For example,
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respondents often say that they will buy a product far more than they
actually end up doing. The average probability of buying the product is
captured in the alternative-specific constant for the product. If this bias is
occurring, then the estimated constant for the stated-preference data will
be greater than that for the revealed-preference data. When forecasting,
the researcher can use the constant from the revealed-preference data,
thereby grounding the forecast in a market-based reality. Similarly, the
scale for the revealed-preference data (which is normalized to 1) can be
used in forecasting instead of the scale from the stated-preference data,
thereby incorporating correctly the real-world variance in unobserved
factors.

7.3 Ranked Data

In stated-preference experiments, respondents may be asked to rank the
alternatives instead of just identifying the one alternative that they would
choose. This ranking can be requested in a variety of ways. The respon-
dents can be asked to state which alternative they would choose, and then,
after they have made this choice, can be asked which of the remaining
alternatives they would choose, continuing through all the alternatives.
Instead, respondents can simply be asked to rank the alternatives from
best to worst. In any case, the data that the researcher obtains constitute
a ranking of the alternatives that presumably reflects the utility that the
respondent obtains from each alternative.

Ranked data can be handled in a standard logit or mixed logit model
using currently available software without modification. All that is re-
quired is that the input data be constructed in a particular way, which we
describe in the following text. For a probit model, the available software
would need to be modified slightly to handle ranked data. However, the
modification is straightforward. We consider standard and mixed logit
first.

7.3.1. Standard and Mixed Logit

Under the assumptions for standard logit, the probability of any
ranking of the alternatives from best to worst can be expressed as the
product of logit formulas. Consider, for example, a respondent who was
presented with four alternatives labeled A, B, C , and D. Suppose the
person ranked the alternatives as follows: C , B, D, A, where C is the first
choice. If the utility of each alternative is distributed iid extreme value (as
for a logit model), then the probability of this ranking can be expressed
as the logit probability of choosing alternative C from the set A, B, C , D,
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times the logit probability of choosing alternative B from the remaining
alternatives A, B, D, times the probability of choosing alternative D
from the remaining alternatives A and D.

Stated more explicity, let Unj = β ′xnj + εnj for j = A, . . . , D with
εnj iid extreme value. Then

Prob(ranking C, B, D, A)

= eβ ′xnC∑
j=A,B,C,D eβ ′xnj

eβ ′xnB∑
j=A,B,D eβ ′xnj

eβ ′xnD∑
j=A,D eβ ′xnj

.(7.1)

This simple expression for the ranking probability is an outcome of the
particular form of the extreme value distribution, first shown by Luce
and Suppes (1965). It does not apply in general; for example, it does not
apply with probit models.

Equation (7.1) implies that the ranking of the four alternatives can be
represented as being the same as three independent choices by the re-
spondent. These three choices are called pseudo-observations, because
each respondent’s complete ranking, which constitutes an observation,
is written as if it were multiple observations. In general, a ranking of J al-
ternatives provides J − 1 pseudo-observations in a standard logit model.
For the first pseudo-observation, all alternatives are considered available,
and the dependent variable identifies the first-ranked alternative. For the
second pseudo-observation, the first-ranked alternative is discarded. The
remaining alternatives constitute the choice set, and the dependent vari-
able identifies the second-ranked alternative, and so on. In creating the
input file for logit estimation, the explanatory variables for each alterna-
tive are repeated J − 1 times, making that many pseudo-observations.
The dependent variable for these pseudo-observations identifies, respe-
ctively, the first-ranked, second-ranked, and so on, alternatives. For each
pseudo-observation, the alternatives that are ranked above the dependent
variable for that pseudo-observation are omitted (i.e., censored out).
Once the data are constructed in this way, the logit estimation proceeds
as usual.

A logit model on ranked alternatives is often called an exploded logit,
since each observation is exploded into several pseudo-observations for
the purposes of estimation. Prominent applications include Beggs et al.
(1981), Chapman and Staelin (1982), and Hausman and Ruud (1987).

A mixed logit model can be estimated on ranked data with the same
explosion. Assume now that β is random with density g(β | θ ), where
θ are parameters of this distribution. Conditional on β, the probability
of the person’s ranking is a product of logits, as given in equation (7.1).
The unconditional probability is then the integral of this product over



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-07Drv CB495/Train KEY BOARDED August 20, 2002 14:11 Char Count= 0

162 Behavioral Models

the density of β:

Prob(ranking C, B, A, D)

=
∫ (

eβ ′xnC∑
j=A,B,C,D eβ ′xnj

eβ ′xnB∑
j=A,B,D eβ ′xnj

eβ ′xnD∑
j=A,D eβ ′xnj

)

× g(β | θ ) dθ.

The mixed logit model on ranked alternatives is estimated with regular
mixed logit routines for panel data, using the input data setup as de-
scribed previously for logit, where the J − 1 pseudo-observations for
each ranking are treated as J − 1 choices in a panel. The mixed logit
incorporates the fact that each respondent has his own coefficients and,
importantly, that the respondent’s coefficients affect his entire ranking,
so that the pseudo-observations are correlated. A logit model on mixed
data does not allow for this correlation.

7.3.2. Probit

Ranked data can also be utilized effectively in a probit model.
Let the utility of the four alternatives be as just stated for a logit
except that the error terms are jointly normal: Unj = β ′xnj + εnj for
j = A, B, C, D, where εn = 〈εn A, . . . , εnD〉′ is distributed N (0, 
).
As before, the probability of the person’s ranking is Prob(ranking
C, B, D, A) = Prob(UnC > UnB > UnD > Un A). Decomposing this
joint probability into conditionals and a marginal does not help with
a probit in the way that it does with logit, since the conditional proba-
bilities do not collapse to unconditional probabilities as they do under
independent errors. Another tack is taken instead. Recall that for probit
models, we found that it is very convenient to work in utility differences
rather than the utilities themselves. Denote Ũnjk = Unj − Unk, x̃n jk =
xnj − xnk , and ε̃njk = εnj − εnk . The probability of the ranking can
then be expressed as Prob(ranking C, B, D, A) = Prob(UnC > UnB >

UnD > Un A) = Prob(ŨnBC < 0, ŨnDB < 0, ŨnD A < 0).
To express this probability, we define a transformation matrix M that

takes appropriate differences. The reader might want to review Section
5.6.3 on simulation of probit probabilities for one chosen alternative,
which uses a similar transformation matrix. The same procedure is used
for ranked data, but with a different transformation matrix.

Stack the alternatives A to D, so that utility is expressed in vector
form as Un = Vn + εn , where εn ∼ N (0, 
). Define the 3 × 4 matrix

M =

 0 1 −1 0

0 −1 0 1
−1 0 0 1


 .
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This matrix has a row for each inequality in the argument of the probabil-
ity Prob(ŨnBC < 0, ŨnDB < 0, ŨnD A < 0). Each row contains a 1 and
a −1, along with zeros, where the 1 and −1 identify the alternatives that
are being differenced for the inequality. With this matrix, the probability
of the ranked alternatives becomes

Prob(ranking C, B, D, A) = Prob(ŨnBC < 0, ŨnDB < 0, ŨnD A < 0)
= Prob(MUn < 0)
= Prob(MVn + Mεn < 0)
= Prob(Mεn < −MVn).

The error differences defined by Mεn are distributed jointly normal
with zero mean and covariance M
M ′. The probability that these cor-
related error differences fall below −MVn is simulated by GHK in the
manner given in Section 5.6.3. The procedure has been implemented by
Hajivassiliou and Ruud (1994) and Schechter (2001).

7.4 Ordered Responses

In surveys, respondents are often asked to provide ratings of various
kinds. Examples include:

How good a job do you think the president is doing? Check one:

1. very good job
2. good job
3. neither good nor bad
4. poor job
5. very poor job

How well do you like this book? Rate the book from 1 to 7, where
1 is the worst you have ever read (aside from The Bridges of Madison
County, of course) and 7 is the best

1 2 3 4 5 6 7

How likely are you to buy a new computer this year?

1. Not likely at all
2. Somewhat likely
3. Very likely

The main characteristic of these questions, from a modeling perspec-
tive, is that the potential responses are ordered. A book rating of 6 is
higher than 5, which is higher than 4; and a presidential rating of “very
poor” is worse than “poor,” which is worse than “neither good nor bad.”
A standard logit model could be specified with each potential response
as an alternative. However, the logit model’s assumption of independent
errors for each alternative is inconsistent with the fact that the alternatives
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are ordered: with ordered alternatives, one alternative is similar to those
close to it and less similar to those further away. The ordered nature
could be handled by specifying a nested logit, mixed logit, or probit
model that accounts for the pattern of similarity and dissimilarily among
the alternatives. For example, a probit model could be estimated with
correlation among the alternatives, with the correlation between 2 and
3 being greater than that between 1 and 3, and the correlation between
1 and 2 also being greater than that between 1 and 3. However, such
a specification, while it might provide fine results, does not actually fit
the structure of the data. Recall that the traditional derivation for these
models starts with a specification of the utility associated with each alter-
native. For the ratings question about the president’s job, the derivation
would assume that there are five utilities, one for each potential response,
and that the person chooses the number 1 to 5 that has the greatest utility.
While it is perhaps possible to think of the decision process in this way
(and the resulting model will probably provide useful results), it is not
a very natural way to think about the respondent’s decision.

A more natural representation of the decision process is to think of
the respondent as having some level of utility or opinion associated with
the object of the question and answering the question on the basis of
how great this utility is. For example, on the presidential question, the
following derivation seems to better represent the decision process. As-
sume that the respondent has an opinion on how well the president is
doing. This opinion is represented in a (unobservable) variable that we
label U , where higher levels of U mean that the person thinks the pres-
ident is doing a better job and lower levels mean he thinks the president
is doing a poorer job. In answering the question, the person is asked to
express this opinion in one of five categories: “very good job,” “good
job,” and so on. That is, even though the person’s opinion, U , can take
many different levels representing various levels of liking or disliking
the job the president is doing, the question allows only five possible
responses. The person chooses a response on the basis of the level of his
U . If U is above some cutoff, which we label k1, the respondent chooses
the answer “very good job.” If U is below k1 but above another cutoff, k2,
then he answers “good job.” And so on. The decision is represented as

� “very good job” if U > k1
� “good job” if k1 > U > k2
� “neither good or bad” if k2 > U > k3
� “poor job” if k3 > U > k4
� “very poor job” if k4 > U .

The researcher observes some factors that relate to the respondent’s
opinion, such as the person’s political affiliation, income, and so on.
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f (U )

k4 k3 k2 k1

U

Prob (very poor)

Prob (poor)

Prob (neither good nor poor)

Prob (good)

Prob (very good)

Figure 7.1. Distribution of opinion about president’s job.

However, other factors that affect the person’s opinion cannot be ob-
served. Decompose U into observed and unobserved components:
U = β ′x + ε. As usual, the unobserved factors ε are considered ran-
dom. Their distribution determines the probability for the five possible
responses.

Figure 7.1 illustrates the situation. U is distributed around β ′x with
the shape of the distribution following the distribution of ε. There are
cutoff points for the possible responses: k1, . . . , k4. The probability that
the person answers with “very poor job” is the probability that U is
less than k4, which is the area in the left tail of the distribution. The
probability that the person says “poor job” is the probability that U is
above k4, indicating that he doesn’t think that the job is very poor, but
is below k3. This probability is the area between k4 and k3.

Once a distribution for ε is specified, the probabilities can be cal-
culated exactly. For simplicity, assume that ε is distributed logistic,
which means that the cumulative distribution of ε is F(ε) = exp(ε)/(1 +
exp(ε)). The probability of the answer “very poor job” is then

Prob(“very poor job”) = Prob(U < k4)
= Prob(β ′x + ε < k4)
= Prob(ε < k4 − β ′x)

= ek4−β ′x

1 + ek4−β ′x .

The probability of “poor job” is

Prob(“poor job”) = Prob(k4 < U < k3)
= Prob(k4 < β ′x + ε < k3)
= Prob(k4 − β ′x < ε < k3 − β ′x)
= Prob(ε < k3 − β ′x) − Prob(ε < k4 − β ′x)

= ek3−β ′x

1 + ek3−β ′x − ek4−β ′x

1 + ek4−β ′x .
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Probabilities for the other answers are obtained analogously. The
probabilities enter the log-likelihood function as usual, and maximiza-
tion of the likelihood function provides estimates of the parameters. Note
that the parameters consist of β, which gives the impact of the explana-
tory variables on people’s opinion of the president, as well as the cutoff
points k1, . . . , k4.

The model is called ordered logit, since it uses the logistic distribution
on ordered alternatives. Unfortunately, nested logit models have occa-
sionally been called ordered logits; this nomenclature causes confusion
and will hopefully be avoided in the future.

Note that the probabilities in the ordered logit model incorporate the
binary logit formula. This similarity to binary logit is only incidental: the
traditional derivation of a binary logit specifies two alternatives with util-
ity for each, while the ordered logit model has one utility with multiple
alternatives to represent the level of that utility. The similarity in formula
arises from the fact that, if two random variables are iid extreme value,
then their difference follows a logistic distribution. Therefore, assuming
that both utilities in a binary logit are iid extreme value is equivalent
to assuming that the difference in the utilities is distributed logistic, the
same as the utility in the ordered logit model.

A similar model is obtained under the assumption that ε is distributed
standard normal instead of logistic (Zavoina and McElvey, 1975). The
only difference arises in that the binary logit formula is replaced with
the cumulative standard normal distribution. That is,

Prob(“very poor job”) = Prob(ε < k4 − β ′x)
= 
(ek4−β ′x )

and

Prob(“poor job”) = Prob(ε < k3 − β ′x) − Prob(ε < k4 − β ′x)
= 
(ek3−β ′x ) − 
(ek4−β ′x ),

where 
 is the standard cumulative normal function. This model is called
ordered probit. Software for ordered logit and probit is available in many
commercial packages.

The researcher might believe that the parameters vary randomly in the
population. In that case, a mixed version of the model can be specified, as
in Bhat (1999). Let the density of β be g(β | θ ). Then the mixed ordered
logit probabilities are simply the ordered logit probabilities integrated
over the density g(·). For example,

Prob(“very poor job”) =
∫ (

ek4−β ′x

1 + ek4−β ′x

)
g(β | θ ) dβ
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and

Prob(“poor job”) =
∫ (

ek3−β ′x

1 + ek3−β ′x − ek4−β ′x

1 + ek4−β ′x

)
g(β | θ ) dβ,

and so on. These probabilities are simulated in the same way as mixed
logits, by drawing values of β from g(·), calculating the ordered logit
probability for each draw, and averaging the results. Mixed ordered
probit is derived similarly.

7.4.1. Multiple Ordered Responses

Respondents’ answers to different questions are often related.
For example, a person’s rating of how well the president is doing is
probably related to the person’s rating of how well the economy is do-
ing. The researcher might want to incorporate into the analysis the fact
that the answers are related. To be concrete, suppose that respondents
are asked to rate both the president and the economy on a five-point
scale, like the rating given for the president. Let U be the respondent’s
opinion of the job the president is doing, and let W be the respon-
dent’s assessment of the economy. Each of these assessments can be
decomposed into observed and unobserved factors: U = β ′x + ε and
W = α′z + µ. Insofar as the assessments are related due to observed
factors, the same variables can be included in x and z. To allow for the
possibility that the assessments are related due to unobserved factors,
we specify ε and µ to be jointly normal with correlation ρ (and unit
variances by normalization). Let the cutoffs for U be denoted k1, . . . , k4

as before, and the cutoffs for W be denoted c1, . . . , c4. We want to de-
rive the probability of each possible combination of responses to the two
questions.

The probability that the person says the president is doing a “very
poor job” and also that the economy is doing “very poorly” is derived
as follows:

Prob(President “very poor” and economy “very poor”)
= Prob(U < k4 and W < c4)
= Prob(ε < k4 − β ′x and µ < c4 − α′z)
= Prob(ε < k4 − β ′x)

× Prob(µ < c4 − α′z | ε < k4 − β ′x).

Similarly, the probability of a rating of “very poor” for the president and
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“good” for the economy is

Prob(President “very poor” and economy “good”)
= Prob(U < k4 and c2 < W < c1)
= Prob(ε < k4 − β ′x and c2 − α′z < µ < c1 − α′z)
= Prob((ε < k4 − β ′x)

× Prob(c2 − α′z < µ < c1 − α′z | ε < k4 − β ′x).

The probabilities for other combinations are derived similarly, and gen-
eralization to more than two related questions is straightforward. The
model is called multivariate (or multiresponse) ordered probit. The prob-
abilities can be simulated by GHK in a manner similar to that described
in Chapter 5. The explanation in Chapter 5 assumes that truncation of the
joint normal is only on one side (since for a standard probit the proba-
bility that is being calculated is the probability that all utility differences
are below zero, which is truncation from above), while the probabili-
ties for multivariate ordered probit are truncated on two sides (as for
the second probability listed earlier). However, the logic is the same,
and interested readers can refer to Hajivassiliou and Ruud (1994) for an
explicit treatment of GHK with two-sided truncation.

7.5 Contingent Valuation

In some surveys, respondents are asked to express their opinions or
actions relative to a specific number that the interviewer states. For
example, the interviewer might ask: “Consider a project that protected
the fish in specific rivers in Montana. Would you be willing to spend $50
to know that the fish in these rivers are safe?” This question is sometimes
followed by another question that depends on the respondent’s answer
to the first question. For example, if the person said “yes” to the above
question, the interviewer might follow up by asking, “How about $75?
Would you be willing to pay $75?” If the person answered “no” to the first
question, indicating that he was not willing to pay $50, the interviewer
would follow up with “Would you be willing to pay $25?”

These kinds of questions are used in environmental studies where the
lack of markets for environmental quality prevent valuation of resources
by revelation procedures; the papers edited by Hausman (1993) provide
a review and critique of the procedure, which is often called “contingent
valuation.” When only one question is asked, such as whether the person
is willing to pay $50, the method is called single-bounded, since the
person’s answer gives one bound on his true willingness to pay. If the
person answers “yes,” the researcher knows that his true willingness to
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pay is at least $50, but she does not know how much more. If the person
answers “no,” the researcher knows that the person’s willingness to pay
is less than $50. Examples of studies using single-bounded methods are
Cameron and James (1987) and Cameron (1988).

When a follow-up question is asked, the method is called double-
bounded. If the person says that he is willing to pay $50 but not $75, the
researcher knows his true willingness to pay is between $50 and $75,
that is, is bounded on both sides. If the person says he is not willing to
pay $50 but is willing to pay $25, his willingness to pay is known to be
between $25 and $50. Of course, even with a double-bounded method,
some respondents’ willingness to pay is only singly bounded, such as
that of a person who says he is willing to pay $50 and also willing to
pay $75. Examples of this approach include Hanemann et al. (1991),
Cameron and Quiggin (1994), and Cai et al. (1998).

The figure that is used as the prompt (i.e., the $50 in our example) is
varied over respondents. The answers from a sample of people are then
used to estimate the distribution of willingness to pay. The estimation
procedure is closely related to that just described for ordered logits
and probits, except that the cutoff points are given by the questionnaire
design rather than estimated as parameters. We describe the procedure
as follows.

Let Wn represent the true willingness to pay of person n. Wn varies
over people with distribution f (W | θ ), where θ are the parameters of the
distribution, such as the mean and variance. The researcher’s goal is to
estimate these population parameters. Suppose the researcher designs a
questionnaire with a single-bounded approach, giving a different prompt
(or reference value) for different respondents. Denote the prompt that
is given to person n as kn . The person answers the question with a
“yes” if Wn > kn and “no” otherwise. The researcher assumes that Wn

is distributed normally in the population with mean W̄ and variance σ 2.
The probability of “yes” is Prob(Wn > kn) = 1 − Prob(Wn < kn) =

1 − 
((kn − W̄ )/σ ), and the probability of “no” is 
((kn − W̄ )/σ ),
where 
(·) is the standard cumulative normal function. The log-
likelihood function is then

∑
n yn ln(1 − 
((kn − W̄ )/σ )) + (1 − yn) ln

(
((kn − W̄ )/σ )), where yn = 1 if person n said “yes” and 0 otherwise.
Maximizing this function provides estimates of W̄ and σ .

A similar procedure is used if the researcher designs a double-bounded
questionnaire. Let the prompt for the second question be knu if the person
answered “yes” to the first question, where knu > kn , and let knl be the
second prompt if the person initially answered “no,” where knl < kn .
There are four possible sequences of answers to the two questions. The
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f (W )

knuknknl

W

Prob (no, no)

Prob (no, yes)

Prob (yes, no)

Prob (yes, yes)

Figure 7.2. Distribution of willingness to pay.

probabilities for these sequences are illustrated in Figure 7.2 and given
below:

� “no” then “no”: P = Prob(Wn < knl) = 
((knl − W̄ )/σ )
� “no” then “yes”: P = Prob(knl < Wn < kn) = 
((kn − W̄ )/
σ ) − 
((knl − W̄ )/σ )

� “yes” then “no”: P = Prob(kn < Wn < knu) = 
((knu − W̄ )/
σ ) − 
((kn − W̄ )/σ )

� “yes” then “yes”: P = Prob(Wn > knu) = 1 − 
((knu − W̄ )/σ ).

These probabilities enter the log-likelihood function, which is maxi-
mized to obtain estimates of W̄ and σ . Other distributions can of course
be used instead of normal. Lognormal is attractive if the researcher as-
sumes that all people have a positive willingness to pay. Or the researcher
might specify a distribution that has a mass at zero to represent the share
of people who are not willing to pay anything, and a lognormal for the
remaining share. Generalization to multiple dimensions is straightfor-
ward, to reflect, for example, that people’s willingness to pay for one
environmental package might also be related to their willingness to pay
for another. As with multiresponse ordered probit, the GHK simulator
comes in handy when the multiple values are assumed to be distributed
jointly normal.

7.6 Mixed Models

We have discussed mixed logit and mixed ordered logit. Of course,
mixed models of all kinds can be developed using the same logic. Any
model whose probabilities can be written as a function of parameters can
also be mixed by allowing the parameters to be random and integrating
the function over the distribution of parameters (Greene, 2001). The
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probability is simulated by drawing from the distribution, calculating the
function for each draw, and averaging the results. We give two examples
in the following section, but researchers will inevitably develop others
that meet the needs of their particular projects, such as Bhat’s (1999)
use of mixed ordered logit.

7.6.1. Mixed Nested Logit

The mixed logit model does not exhibit the independence from
irrelevant alteratives property as logit does, and can approximate any
substitution pattern by appropriate specification of variables and mixing
distribution. This fact has led some people to feel that there is no fur-
ther need for nested logit models. A mixed logit can be estimated that
provides correlation–substitution patterns analogous to those of a nested
logit. For example, consider a nested logit with two nests of alternatives
labeled A and B. Provided the log-sum coefficients are between 0 and
1, substitution within each nest is greater than substitution across nests.
This substitution pattern can be represented in a mixed logit model by
specifying a dummy variable for each nest and allowing the coefficients
on the dummies to be random (constraining, for identification purposes,
the means to be zero if a full set of alternative-specific constants are
included, and the two variances to be the same).

While a mixed logit can be specified in this way, doing so misses the
point of simulation. As discussed in Chapter 1, simulation is used as a
way to approximate integrals when a closed form does not exist. Analytic
integration is always more accurate than simulation and should be used
whenever feasible, unless there is a compelling reason to the contrary.
Using a mixed logit to represent the substitution patterns of a nested logit,
while feasible, replaces the closed-form integral of the nested logit with
an integral that needs to be simulated. From a numerical perspective, this
replacement can only reduce accuracy. The only possible advantages of
mixed logit in this context are that (1) it might be easier for the researcher
to test numerous nesting structures, including overlapping nests, within
a mixed logit than a nested logit, and (2) the researcher might have
specified other coefficients to be random, so that a mixed logit is already
being used.

The second reason suggests a mixed nested logit. Suppose the re-
searcher believes that some of the coefficients in the model are random
and also that, conditional on these coefficients, the unobserved factors
are correlated over alternatives in a way that can be represented by a
nested logit. A mixed nested logit model can be specified to represent
this situation. Conditional on the coefficients that enter utility, the choice
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probabilities are nested logit, which is a closed form and can be calcu-
lated exactly. The unconditional probability is the nested logit formula
integrated over the distribution of the the random coefficients. Software
for mixed logit can be modified by simply locating the logit formula
within the code and changing it to the appropriate nested logit formula.
Experience indicates that maximizing the likelihood function for un-
mixed nested logits is often difficult numerically, and mixing the model
will compound this difficulty. Hierarchical Bayes estimation (Chap-
ter 12) could prove particularly useful in this situation, since it does
not involve maximizing the likelihood function.

7.6.2. Mixed Probit

A constraint of probit models, and in fact their defining charac-
teristic, is that all random terms enter utility linearly and are randomly
distributed in such a way that utility itself is normally distributed. This
constraint can be removed by specifying a mixed probit. Suppose that
some random terms enter nonlinearly or are not randomly distributed,
but that conditional on these, utility is normally distributed. For example,
a price coefficient might be lognormal to assure that it is negative for
all people, and yet all other coefficients be either fixed or normal, and
the final error terms jointly normal. A mixed probit model is appropri-
ate for this specification. Conditional on the price coefficient, the choice
probabilities follow the standard probit formula. The unconditional prob-
abilities are the integral of this probit formula over the distribution of
the price coefficient. Two layers of simulation are used to approximate
the probabilities: (1) a draw of the price coefficient is taken, and (2) for
this draw, the GHK or other probit simulator is used to approximate the
conditional choice probability. This process is repeated many times, and
the results are averaged.

Long run times can be expected for the mixed probit model, since
the GHK simulator is calculated for each draw of the price coefficient.
However, the number of draws in the GHK simulator can be reduced,
since the averaging over draws of the price coefficient reduces the vari-
ance generated by the GHK simulator. In principle, the GHK simulator
can be based on only one draw for each draw of the price coefficient. In
practice, it may be advisable to use more than one draw, but far fewer
than would be used in an unmixed probit.

The mixed probit model provides a way for the researcher to avoid
some of the practical difficulties that can arise with a mixed logit model.
For example, to represent pure heteroskedasticity (i.e., a different vari-
ance for each alternative’s utility) or a fixed correlation pattern among
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alternatives (i.e., a covariance matrix that does not depend on the vari-
ables), it can often be easier to estimate a probit instead of specifying
numerous error components within a mixed logit. As emphasized by
Ben-Akiva et al. (2001), specification of covariance and heteroskedas-
ticity can be more complex in a mixed logit model than in a probit,
because iid extreme value terms are necessarily added to whatever other
random elements the researcher specifies. Probit is a more natural spec-
ification in these situations. However, if the researcher wants to include
some nonnormal random terms, an unmixed probit cannot be used. Mix-
ing the probit allows the researcher to include nonnormal terms while
still maintaining the simplicity of probit’s representation of fixed covari-
ance for additive errors. Conceptually, the specification and estimation
procedure are straightforward. The cost comes only in extra computation
time, which becomes less relevant as computers get faster.

7.7 Dynamic Optimization

In previous chapters we examined certain types of dynamics, by which
choices in one period affect choices in another period. For example, we
described how a lagged dependent variable can be included to capture
inertia or variety-seeking behavior. These discussions suggest a much
wider realm of dynamics than we had actually considered. In particular:
if past choices affect current choices, then current choices affect future
choices, and a decision maker who is aware of this fact will take these
future effects into consideration. A link from the past to the present
necessarily implies a link from the present to the future.

In many situations, the choices that a person makes at one point in his
life have a profound influence on the options that are available to him in
the future. Going to college, while expensive and sometimes irritating,
enhances future job possibilities. Saving money now allows a person to
buy things later that he otherwise would not be able to afford. Going
to the gym today means that we can skip going tomorrow. Most of us
take future effects like these into consideration when choosing among
current alternatives.

The question is: how can behavior such as this be represented in dis-
crete choice models? In general the situation can be described as follows.
A person makes a series of choices over time. The alternative that is
chosen in one period affects the attributes and availability of alternatives
in the future. Sometimes the future effects are not fully known, or depend
on factors that have not yet transpired (such as the future state of the
economy). However, the person knows that he will, in the future, maxi-
mize utility among the alternatives that are available at that time under
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the conditions that prevail at that time. This knowledge enables him to
choose the alternative in the current period that maximizes his expected
utility over the current and future periods. The researcher recognizes
that the decision maker acts in this way, but does not observe everything
that the decision maker considers in the current and future periods. As
usual, the choice probability is an integral of the decision maker’s be-
havior over all possible values of the factors that the researcher does not
observe.

In this section we specify models in which the future consequences
of current decisions are incorporated. For these models, we will assume
that the decision maker is fully rational in the sense that he optimizes
perfectly in each time period given the information that is available to
him at that point in time and given that he knows he will act optimally in
the future when future information is revealed. The procedures for mod-
eling these decisions were first developed for various applications by,
for example, Wolpin (1984) on women’s fertility, Pakes (1986) on patent
options, Wolpin (1987) on job search, Rust (1987) on engine replace-
ment, Berkovec and Stern (1991) on retirement, and others. Eckstein
and Wolpin (1989) provide an excellent survey of these early contribu-
tions. The thrust of more recent work has primarily been toward solving
some of the computational difficulties that can arise in these models, as
discussed below.

Before embarking on this endeavor, it is important to keep the concept
of rationality in perspective. A model of rational decision making over
time does not necessarily represent behavior more accurately than a
model of myopic behavior, where the decision maker ignores future
consequences. In fact, the truth in a given situation might lie between
these two extremes: decision makers might be acting in ways that are
neither completely myopic nor completely rational. As we will see,
the truly optimizing behavior is very complex. People might engage in
behavior that is only approximately optimal simply because they (we)
can’t figure out the truly optimal way to proceed. Viewed in another
light, one could argue that people always optimize when the realm of
optimization is broadened sufficiently. For example, rules of thumb or
other behavior that seem only to approximate optimality may actually
turn out to be optimal when the costs of optimization are considered.

The concepts and procedures that are developed to examine optimiz-
ing behavior carry over, in modified form, to other types of behavior that
recognize future effects of current choices. Furthermore, the researcher
can often test alternative behavioral representations. Myopic behavior
nearly always appears as a testable restriction on a fully rational model,
namely, a zero coefficient for the variable that captures future effects.
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Sometimes, the standard rational model is a restriction on a supposedly
nonrational one. For example, O’Donoghue and Rabin (1999), among
others, argue that people are time-inconsistent: when it is Monday, we
weigh the benefits and costs that will come on, say, Wednesday only
marginally more than those that will arrive on Thursday, and yet when
Wednesday actually arrives, we weigh Wednesday’s (today’s) benefits
and costs far more than Thursday’s. Essentially, we have a bias for the
present. The standard rational model, where the same discount rate is
used between any two periods independent of whether the person is
in one of the periods, constitutes a restriction on the time-inconsistent
model.

The concepts in this area of analysis are more straightforward than the
notation. To develop the concepts with a minimum of notation, we will
start with a two-period model in which the decision maker knows the
exact effect of first-period choices on the second-period alternatives and
utilities. We will then expand the model to more periods and to situations
where the decision maker faces uncertainty about future effects.

7.7.1. Two Periods, No Uncertainty
about Future Effects

To make the explication concrete, consider a high school stu-
dent’s choice of whether or not to go to college. The choice can be
examined in the context of two periods: the college years and the post-
college years. In the first period, the student either goes to college or
not. Even though these are called the college years, the student need not
go to college but can take a job instead. In the second period the student
chooses among the jobs that are available to him at that time. Going to
college during the college years means less income during that period
but better job options in the post-college years. U1C is the utility that the
student obtains in period 1 from going to college, and U1W is the utility
he obtains in the first period if he works in the first period instead of
going to college. If the student were myopic, he would choose college
only if U1C > U1W . However, we assume that he is not myopic. For the
second period, let J denote the set of all possible jobs. The utility of job
j in period 2 is U C

2 j if the student went to college and U W
2 j if he worked

in the first period. The utility from a job depends on the wage that the
person is paid as well as other factors. For many jobs, people with a
college degree are paid higher wages and granted greater autonomy and
responsibility. For these jobs, U C

2 j > U W
2 j . However, working in the first

period provides on-the-job experience that commands higher wages and
responsibility than a college degree for some jobs; for these, U W

2 j > U C
2 j .
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A job not being available is represented as having a utility of negative
infinity. For example, if job j is available only to college graduates, then
U W

2 j = −∞.
How will the high school student decide whether to go to college? We

assume for now that the student knows U C
2 j and U W

2 j for all j ∈ J when
deciding whether to go to college in the first period. That is, the student
has perfect knowledge of his future options under whatever choice he
makes in the first period. We will later consider how the decision process
changes when the student is uncertain about these future utilities. The
student knows that when the second period arrives he will choose the job
that provides the greatest utility. That is, he knows in the first period that
the utility that he will obtain in the second period if he chooses college
in the first period is the maximum of U C

2 j over all possible jobs. We label
this utility as U C

2 = max j (U C
2 j ). The student therefore realizes that, if

he chooses college in the first period, his total utility over both periods
will be

TUC = U1C + λU C
2

= U1C + λ max j
(
U C

2 j

)
,

where λ reflects the relative weighting of the two periods’ utilities in
the student’s decision process. Given the way we have defined time
periods, λ incorporates the relative time spans of each period as well
as the traditional discounting of future utility relative to current utility.
Thus, λ can exceed one, even with discounting, if the second period
represents say forty years while the first period is four years. Myopic
behavior is represented as λ = 0.

The same logic is applied to the option of working in the first period
instead of going to school. The student knows that he will choose the
job that offers the greatest utility, so that U W

2 = max j (U W
2 j ) and the total

utility over both period from choosing to work in the first period is

TUW = U1W + λU W
2

= U1W + λ max j
(
U W

2 j

)
.

The student chooses college if TUC > TUW and otherwise chooses to
work in the first period.

This completes the description of the decision maker’s behavior. We
now turn to the researcher. As always, the researcher observes only some
of the factors that affect the student’s utility. Each utility in each period
is decomposed into an observed and unobserved component:

U1C = V1C + ε1C ,

U1W = V1W + ε1W
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and

U C
2 j = V C

2 j + εC
2 j ,

U W
2 j = V W

2 j + εW
2 j

for all j ∈ J . Collect the unobserved components into vector ε =
〈ε1C , ε1W , εC

2 j , ε
W
2 j , ∀ j〉, and denote the density of these terms as f (ε).

The probability of the student choosing college is

PC = Prob(TUC > TUW )

= Prob
[
U1C + max j

(
U C

2 j

)
> U1W + max j

(
U W

2 j

)]
= Prob

[
V1C + ε1C + max j

(
V C

2 j + εC
2 j

)
> V1W + ε1W + max j

(
V W

2 j + εW
2 j

)]

=
∫

I
[
V1C + ε1C + max j

(
V C

2 j + εC
2 j

)
> V1W + ε1W + max j

(
V W

2 j + εW
2 j

)]
f (ε) dε

where I [·] is an indicator of whether the statement in brackets is true.
The integral can be approximated through simulation. For an accept–

reject simulator:

1. Take a draw from f (ε), with its components labeled εr
1C ,

εCr
2 j , . . . .

2. Calculate U C
2 j = V C

2 j + εCr
2 j for all j , determine the highest one,

and label it U Cr
2 . Similarly, calculate U Wr

2 .
3. Calculate the total utilities as TUr

C = V r
1C + εr

1C + λU Cr
2 , and

similarly for TUr
W .

4. Determine whether TUr
C > TUr

W . If so, set I r = 1. Otherwise,
let I r= 0.

5. Repeat steps 1–4 R times. The simulated probability of choosing
college is P̃C = ∑

r I r/R.

Convenient error partitioning (as explained in Section 1.2) can be uti-
lized to obtain a smooth and more accurate simulator than accept–reject,
provided that the integral over the first-period errors has a closed form
conditional on the second-period errors. Suppose for example that ε1C

and ε1W are iid extreme value. Label the second-period errors collec-
tively as ε2 with any density g(ε2). Conditional on the second-period
errors, the probability of the student going to college is given by a stan-
dard logit model with an extra explanatory variable that captures the
future effect of the current choice. That is,

PC (ε2) = eV1C+λU C
2 (ε2)

eV1C+λU C
2 (ε2) + eV1W +λU C

2 (ε2)
,
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where U C
2 (ε2) is calculated from the second-period errors as U C

2 (ε2) =
max j (V C

2 j + εC
2 j ), and similarly for U W

2 (ε2). The unconditional proba-
bility is then the integral of this logit formula over all possible values of
the second-period errors:

PC =
∫

PC (ε2)g(ε2) dε2.

The probability is simulated as follows: (1) Take a draw from density
g(·) and label it εr

2 . (2) Using this draw of the second-period errors,
calculate the utility that would be obtained from each possible job if the
person went to college. That is, calculate U Cr

2 j = V C
2 j + εCr

2 j for all j .
(3) Determine the maximum of these utilities, and label it U Cr

2 . This is
the utility that the person would obtain in the second period if he went to
college in the first period, based on this draw of the second-period errors.
(4)–(5) Similarly, calculate U Wr

2 j ∀ j , and then determine the maximum
U Wr

2 . (6) Calculate the conditional choice probability for this draw as

Pr
C = eV1C+λU Cr

2

eV1C+λU Cr
2 + eV1W +λU Wr

2

.

(7) Repeat steps 1–6 many times, labeled r = 1, . . . , R. (8) The simu-
lated probability is P̃C = ∑

r Pr
C/R.

If the second-period errors are also iid extreme value, then the prob-
ability of taking a particular job in the second period is standard logit.
The probability of going to college and taking job j is

PC j =
(∫ [

eV1C + λU C
2 (ε2)

eV1C+λU C
2 (ε2) + eV1W +λU C

2 (ε2)

]
g(ε2)dε2

)(
eV C

2 j∑
keV C

2k

)
.

The choice probabilities for the first period are simulated by taking
draws of the second-period errors, as just described, with g(·) being the
extreme value distribution. However, the probabilities for the second
period are calculated exactly. The draws of the second-period errors
are used only in calculating the first-period probabilities where they
do not integrate out in closed form. The second-period errors integrate
out of the second-period probabilities in closed form, which is used to
calculate the second-period probabilities exactly. Application to other
distributions that allow correlation over alternatives, such as GEV or
normal, is straightforward. Allowing the errors to be correlated over time
can be accomplished with a joint normal distribution and simulation of
both periods’ probabilities.
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7.7.2. Multiple Periods

We first expand to three periods and then generalize to any
number of periods. The model of college choice can be extended by
considering retirement options. When a person reaches retirement age,
there are usually several options available. He can continue working
full time, or work part time and spend part of his retirement funds,
or retire fully and collect social security and perhaps a pension. The
person’s income under these alternatives depends largely on the job that
the person has held and the retirement plan that the job provided. Three
periods are sufficient to capture the decision process. The person goes to
college or not in the first period, chooses a job in the second period, and
chooses among the available retirement-age options in the third period.
The high school student knows, when deciding whether to go to college,
that this decision will affect his job opportunities, which in turn will
affect his retirement options. (This foreknowledge is starting to seem
like a mighty big burden for a high school student.)

The set of retirement-age alternatives is labeled S, and its elements
indexed by s. In the third period, the utility that the person obtains from
alternative s if he went to college in the first period and had job j in
the second period is U C j

3s . Conditional on these previous choices, the
person chooses option s if U C j

3s > U C j
3t for all s �= t and s, t ∈ S. Similar

notation and behavior apply conditional on other choices in the first and
second periods.

In the second period, the person recognizes that his job choice will
affect his retirement-age options. He knows he will maximize among the
available options when retirement age arrives. Suppose he chose college
in the first period. In the second period, he knows that the utility he will
obtain in the third period if he chooses job j is maxsU

C j
3s . The total utility

of choosing job j in the second period, given that he chose college in
the first period, is therefore TUC

j = U C
2 j + θ maxsU

C j
3s , where θ weights

period three relative to period two. He chooses job j if TUC
j > TUC

k for
all k �= j and j, k ∈ J . Similar notation and behavior occur if he chose
to work in the first period.

Consider now the first period. He knows that, if he chooses college,
he will choose the job that maximizes his utility from jobs conditional
on going to college, and then will choose the retirement-age option that
maximizes his utility conditional on that chosen job. The total utility
from college is

TUC = U1c + λ max j TUC
j

= U1c + λ max j
(
U C

2 j + θ maxs U C j
3s

)
.
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This expression is similar to that in the two-period model except that it
includes an additional layer of maximization: the maximization for the
third period is contained in each maximization for the second period. A
similar expression gives the total utility of working in the first period,
TUW . The person chooses college if TUC > TUW .

This completes the description of the person’s behavior. The re-
searcher observes a portion of each utility function: U1C , U1W , U C

2 j , and
U W

2 j ∀ j ∈ J , and U C j
3s and U W j

3s ∀s ∈ S, j ∈ J . The unobserved portions
are collectively labeled by the vector ε with density f (ε). The probability
that the person chooses college is

PC =
∫

I (ε) f (ε) dε,

where

I (ε) = 1

if

V1C + ε1C + λ max j
(
V C

2 j + εC
2 j + θ maxs

(
V C j

3s + ε
C j
32

))
> V1W + ε1W + λ max j

(
V W

2 j + εW
2 j + θ maxs

(
V W j

3s + ε
W j
32

))
.

This expression is the same as in the two-period model except that
now the term inside the indicator function has an extra level of maxi-
mization. An accept–reject simulator is obtained: (1) draw from f (ε);
(2) calculate the third-period utility U C j

3s for each s; (3) identify the
maximum over s; (4) calculate TUC

2 j with this maximum; (5) repeat
steps (2)–(5) for each j , and identify the maximum of TUC

2 j over j ;
(6) calculate TUC using this maximum; (7) repeat steps (2)–(6) for TUW ;
(8) determine whether TUC > TUW , and set I = 1 if it is; (9) repeat steps
(1)–(8) many times, and average the results. Convenient error partition-
ing can also be used. For example if all errors are iid extreme value,
then the first-period choice probabilities, conditional on draws of the
second- and third-period errors, are logit; the second-period probabili-
ties, conditional on the third-period errors, are logit; and the third-period
probabilities are logit.

We can now generalize these concepts and introduce some widely
used terminology. Note that the analysis of the person’s behavior and
the simulation of the choice probabilities by the researcher start with
the last period and work backward in time to the first period. This pro-
cess is called backwards recursion. Suppose there are J alternatives in
each of T equal-length time periods. Let a sequence of choices up to
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period t be denoted {i1, i2, . . . , it}. The utility that the person obtains in
period t from alternative j is Ut j (i1, i2, . . . , it−1), which depends on all
previous choices. If the person chooses alternative j in period t , he will
obtain this utility plus the future utility of choices conditioned on this
choice. The total utility (current and future) that the person obtains from
choosing alternative j in period t is TUt j (i1, i2, . . . , it−1). He chooses
the alternative in the current period that provides the greatest total utility.
Therefore the total utility he receives from his optimal choice in period
t is TUt (i1, i2, . . . , it−1) = max j TUt j (i1, i2, . . . , it−1). This total utility
from the optimal choice at time t , TUt , is called the valuation function
at time t .

The person chooses optimally in the current period with knowledge
that he will choose optimally in the future. This fact establishes a con-
venient relation between the valuation function in successive periods. In
particular,

TUt (i1, . . . , it−1) = max j [Ujt (i1, . . . , it−1) + δTUt+1(i1, . . . , it = j)],

where δ is a parameter that discounts the future. TUt+1 on the right-
hand side is the total utility that the person will obtain from period
t + 1 onward if he chooses alternative j in period t (i.e., if it = j).
The equation states that the total utility that the person obtains from
optimizing behavior from period t onward, given previous choices, is the
maximum over j of the utility from j in period t plus the discounted total
utility from optimizing behavior from period t + 1 onward conditional
on choosing j in period t . This relation is Bellman’s equation (1957)
applied to discrete choice with perfect information.

TUt j (i1, . . . , it−1) is sometimes called the conditional valuation func-
tion, conditional on choosing alternative j in period t . A Bellman equa-
tion also operates for this term:

TUt j (i1, . . . , it−1) = Ujt (i1, . . . , it−1)
+ δ maxk[TUt+1,k(i1, . . . , it = j)].

Since by definition TUt (i1, . . . , it−1) = max j [TUt j (i1, . . . , it−1)], the
Bellman equation in terms of the conditional valuation function is equiv-
alent to that in terms of the unconditional valuation function.

If T is finite, the Bellman equation can be applied with backward
recursion to calculate TUt j for each time period. At t = T , there is
no future time period, and so TUT j (i1, . . . , iT −1) = UT j (i1, . . . , iT −1).
Then TUT −1, j (i1, . . . , iT −2) is calculated from TUT j (i1, . . . , iT −1) using
Bellman’s equation, and so on forward to t = 1. Note that
Ut j (i1, . . . , it−1) must be calculated for each t , each j , and, importantly,
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each possible sequence of past choices, i1, . . . , it−1. With J alternatives
in T time periods, the recursion requires calculation of (J T )T utilities
(that is, J T possible sequences of choices, with each sequence contain-
ing T one-period utilities). To simulate the probabilities, the researcher
must calculate these utilities for each draw of unobserved factors. And
these probabilities must be simulated for each value of the parameters in
the numerical search for the estimates. This huge computational burden
is called the curse of dimensionality and is the main stumbling block to
application of the procedures with more than a few time periods and/or
alternatives. We discuss in the next subsection procedures that have been
suggested to avoid or mitigate this curse, after showing that the curse is
even greater when uncertainty is considered.

7.7.3. Uncertainty about Future Effects

In the analysis so far we have assumed that the decision maker
knows the utility for each alternative in each future time period and how
this utility is affected by prior choices. Usually, the decision maker does
not possess such foreknowledge. A degree of uncertainty shrouds the
future effects of current choices.

The behavioral model can be adapted to incorporate uncertainty. For
simplicity, return to the two-period model for our high school student.
In the first period, the student does not know for sure the second-period
utilities, U C

2 j and U W
2 j ∀ j . For example, the student does not know, before

going to college, how strong the economy, and hence his job possibilities,
will be when he graduates. These utilities can be expressed as functions
of unknown factors U C

2 j (e), where e refers collectively to all factors in
period two that are unknown in period one. These unknown factors will
become known (that is, will be revealed) when the student reaches the
second period, but are unknown to the person in the first period. The
student has a subjective distribution on e that reflects the likelihood that
he ascribes to the unknown factors taking a particular realization in the
second period. This density is labeled g(e). He knows that, whatever
realization of e actually occurs, he will, in the second period, choose
the job that gives him the maximum utility. That is, he will receive
utility max jU C

2 j (e) in the second period if he chooses college in the
first period and the unknown factors end up being e. In the first period,
when evaluating whether to go to college, he takes the expectation of
this future utility over all possible realizations of the unknown factors,
using his subjective distribution over these realizations. The expected
utility that he will obtain in the second period if he chooses college in
the first period is therefore

∫
[max j U C

2 j (e)]g(e) de. The total expected
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utility from choosing college in the first period is then

TEUC = U1C + λ

∫ [
max j U C

2 j (e)
]
g(e) de.

TEUW is defined similarly. The person chooses college if TEUC >

TEUW . In the second period, the unknown factors become known, and
the person chooses job j if he had chosen college if U C

2 j (e
∗) > U C

2k(e∗)
for all k �= j , where e∗ is the realization that actually occurred.

Turning to the researcher, we have an extra complication introduced
by g(e), the decision maker’s subjective distribution for unknown fac-
tors. In addition to not knowing utilities in their entirety, the researcher
has only partial knowledge of the decision maker’s subjective probability
g(e). This lack of information is usually represented through parameter-
ization. The researcher specifies a density, labeled h(e | θ ), that depends
on unknown parameters θ . The researcher then assumes that the person’s
subjective density is the specified density evaluated at the true param-
eters θ∗. That is, the researcher assumes h(e | θ∗) = g(e). Stated more
persuasively and accurately: the true parameters are, by definition, the
parameters for which the researcher’s specified density h(e | θ ) becomes
the density g(e) that the person actually used. With a sufficiently flexible
h, any g can be represented as h evaluated at some parameters, which
are called the true parameters. These parameters are estimated along
with the parameters that enter utility. (Other ways of representing the
researcher’s lack of knowledge about g(e) can be specified; however,
they are generally more complex.)

Utilities are decomposed into their observed and unobserved portions,
with the unobserved portions collectively called ε with density f (ε). The
probability that the person goes to college is

PC = Prob(TEUC > TEUW )

=
∫ [

I

(
V1c + ε1C + λ

∫ {
max j

(
V C

2 j (e) + εC
2 j (e)

)}
h(e | θ ) de

)]

× f (ε) dε.

The probability can be approximated by simulating the inside integral
within the simulation of the outside integral: (1) Take a draw of ε.
(2a) Take a draw of e from h(e | θ ). (2b) Using this draw, calculate
the term in braces. (2c) Repeat steps (2a–b) many times, and average the
results. (3) Using the value from (2c), calculate the quantity in square
brackets. (4) Repeat steps (1)–(3) many times, and average the results.
As the reader can see, the curse of dimensionality grows worse.

Several authors have suggested ways to reduce the computational
burden. Keane and Wolpin (1994) calculate the valuation function at
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selected realizations of the unknown factors and past choices; they then
approximate the valuation function at other realizations and past choices
through interpolating from the calculated valuations. Rust (1997) sug-
gests simulating future paths and using the average over these simulated
paths as an approximation in the valuation function. Hotz and Miller
(1993) and Hotz et al. (1993) show that there is a correspondence be-
tween the valuation function in each time period and the choice prob-
abilities in future periods. This correspondence allows the valuation
functions to be calculated with these probabilities instead of backward
recursion.

Each of these procedures has limitations and is applicable only in cer-
tain situations, which the authors themselves describe. As Rust (1994)
has observed, it is unlikely that a general-purpose breakthrough will arise
that makes estimation simple for all forms of dynamic optimization mod-
els. Inevitably the researcher will need to make trade-offs in specifying
the model to assure feasibility, and the most appropriate specification
and estimation method will depend on the particulars of the choice pro-
cess and the goals of the research. In this regard, I have found that two
simplifications are very powerful in that they often provide a large gain
in computational feasibility for a relatively small loss (and sometimes a
gain) in content.

The first suggestion is for the researcher to consider ways to capture
the nature of the choice situation with as few time periods as possible.
Sometimes, in fact usually, time periods will need to be defined not by
the standard markers, such as the year or month, but rather in a way that is
more structural with respect to the decision process. For example, for the
high school student deciding whether to go to college, it might seem na-
tural to say that he makes a choice each year among the jobs and school-
ing options that are available in that year, given his past choices. Indeed,
this statement is true: the student does indeed make annual (or even
monthly, weekly, daily) choices. However, such a model would clearly
face the curse of dimensionality. In contrast, the specification that we
discussed earlier involves only two time periods, or three if retirement is
considered. Estimation is quite feasible for this specification. In fact, the
two-period model might be more accurate than an annual model: students
deciding on college probably think in terms of the college years and their
post-college options, rather than trying to anticipate their future choices
in each future year. McFadden and Train (1996) provide an example
of how a dynamic optimization model with only a few well-considered
periods can accurately capture the nature of the choice situation.

A second powerful simplification was first noted by Rust (1987). Sup-
pose that the factors that the decision maker does not observe beforehand
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are also the factors that the researcher does not observe (either before or
after), and that these factors are thought by the decision maker to be iid
extreme value. Under this admittedly restrictive assumption, the choice
probabilities take a closed form that is easy to calculate. The result can
be readily derived for our model of college choice. Assume that the stu-
dent, when in the first period, decomposes second-period utility into a
known and unknown part, e.g., U C

2 j (e) = V C
2 j + eC

2 j , and assumes that
eC

2 j follows an extreme value distribution independent of all else. This
unknown factor becomes known to the student in the second period,
so that second-period choice entails maximization over known U C

2 j ∀ j .
However, in the first period it is unknown. Recall from Section 3.5 that
the expected maximum of utilities that are iid extreme value takes the
familiar log-sum formula. In our context, this result means that

E
(
max j

(
V C

2 j + εC
2 j

)) = α ln

( ∑
j

eV C
2 j

)
,

which we can label LSC
2 . LSW

2 is derived similarly. The person chooses
college if then

TEUC > TEUW ,

U1C + λ LSC
2 > U1W + λ LSW

2 .

Note that this decision rule is in closed form: the integral over un-
known future factors becomes the log-sum formula. Consider now the
researcher. Each first-period utility is decomposed into an observed and
an unobserved part (U1C = V1C + ε1C , U1W = V1W + ε1W ), and we as-
sume that the unobserved parts are iid extreme value. For the second-
period utilities, we make a fairly restrictive assumption. We assume
that the part of utility that the researcher does not observe is the same
as the part that the student does not know beforehand. That is, we as-
sume U C

2 j = V C
2 j + εC

2 j ∀ j , where the researcher’s εC
2 j is the same as

the student’s eC
2 j . Under this assumption, the researcher can calculate

the log-sum terms for future utility, LCC
2 and LSW

2 , exactly, since these
terms depend only on the observed portion of utility in the second period,
V C

2 j ∀ j , which is observed by the researcher and known beforehand by the
decision maker. The probability of the student choosing college is then

PC = Prob(TEUC > TEUW )

= Prob
(
U1C + λ LSC

2 > U1W + λ LSW
2

)
= Prob

(
V1C + ε1C + λ LSC

2 > V1W + ε1W + λ LSW
2

)

= eV1C+λ LSC
2

eV1C+LSC
2 + eV1W +λ LSW

2

.
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The model takes the same form as the upper part of a nested logit model:
the first-period choice probability is the logit formula with a log-sum
term included as an extra explanatory variable. Multiple periods are
handled the same way as multilevel nested logits.

It is doubtful that the researcher, in reality, observes everything that
the decision maker knows beforehand. However, the simplification that
arises from this assumption is so great, and the curse of dimensionality
that would arise otherwise is so severe, that proceeding as if it were true
is perhaps worthwhile in many situations.
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8 Numerical Maximization

8.1 Motivation

Most estimation involves maximization of some function, such as the
likelihood function, the simulated likelihood function, or squared mo-
ment conditions. This chapter describes numerical procedures that are
used to maximize a likelihood function. Analogous procedures apply
when maximizing other functions.

Knowing and being able to apply these procedures is critical in our new
age of discrete choice modeling. In the past, researchers adapted their
specifications to the few convenient models that were available. These
models were included in commercially available estimation packages,
so that the researcher could estimate the models without knowing the
details of how the estimation was actually performed from a numerical
perspective. The thrust of the wave of discrete choice methods is to free
the researcher to specify models that are tailor-made to her situation
and issues. Exercising this freedom means that the researcher will often
find herself specifying a model that is not exactly the same as any in
commercial software. The researcher will need to write special code for
her special model.

The purpose of this chapter is to assist in this exercise. Though not
usually taught in econometrics courses, the procedures for maximiza-
tion are fairly straightforward and easy to implement. Once learned, the
freedom they allow is invaluable.

8.2 Notation

The log-likelihood function takes the form LL(β) = ∑N
n=1 ln Pn(β)/N ,

where Pn(β) is the probability of the observed outcome for decision
maker n, N is the sample size, and β is a K × 1 vector of parameters.
In this chapter, we divide the log-likelihood function by N , so that LL
is the average log-likelihood in the sample. Doing so does not affect the
location of the maximum (since N is fixed for a given sample) and yet

189
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LL(β)

β

βt β
^

Figure 8.1. Maximum likelihood estimate.

facilitates interpretation of some of the procedures. All the procedures
operate the same whether or not the log-likelihood is divided by N . The
reader can verify this fact as we go along by observing that N cancels
out of the relevant formulas.

The goal is to find the value of β that maximizes LL(β). In terms of
Figure 8.1, the goal is to locate β̂. Note in this figure that LL is always
negative, since the likelihood is a probability between 0 and 1 and the log
of any number between 0 and 1 is negative. Numerically, the maximum
can be found by “walking up” the likelihood function until no further
increase can be found. The researcher specifies starting values β0. Each
iteration, or step, moves to a new value of the parameters at which LL(β)
is higher than at the previous value. Denote the current value of β as βt ,
which is attained after t steps from the starting values. The question is:
what is the best step we can take next, that is, what is the best value for
βt+1?

The gradient at βt is the vector of first derivatives of LL(β) evaluated
at βt :

gt =
(

∂LL(β)

∂β

)
βt

.

This vector tells us which way to step in order to go up the likelihood
function. The Hessian is the matrix of second derivatives:

Ht =
(

∂gt

∂β ′

)
βt

=
(

∂2LL(β)

∂β ∂β ′

)
βt

.

The gradient has dimension K × 1, and the Hessian is K × K . As we
will see, the Hessian can help us to know how far to step, given that the
gradient tells us in which direction to step.



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-08Drv CB495/Train KEY BOARDED August 20, 2002 12:39 Char Count= 0

Numerical Maximization 191

8.3 Algorithms

Of the numerous maximization algorithms that have been developed over
the years, I next describe only the most prominent, with an emphasis on
the pedagogical value of the procedures as well as their practical use.
Readers who are induced to explore further will find the treatments by
Judge et al. (1985, Appendix B) and Ruud (2000) rewarding.

8.3.1. Newton–Raphson

To determine the best value of βt+1, take a second-order Taylor’s
approximation of LL(βt+1) around LL(βt ):

(8.1)

LL(βt+1) = LL(βt ) + (βt+1 − βt )
′gt + 1

2 (βt+1 − βt )′ Ht (βt+1 − βt ).

Now find the value of βt+1 that maximizes this approximation to
LL(βt+1):

∂LL(βt+1)

∂βt+1
= gt + Ht (βt+1 − βt ) = 0,

Ht (βt+1 − βt ) = −gt ,

βt+1 − βt = −H−1
t gt ,

βt+1 = βt + (−H−1
t )gt .

The Newton–Raphson (NR) procedure uses this formula. The step
from the current value of β to the new value is (−H−1

t )gt , that is,
the gradient vector premultiplied by the negative of the inverse of the
Hessian.

This formula is intuitively meaningful. Consider K = 1, as illustrated
in Figure 8.2. The slope of the log-likelihood function is gt . The second
derivative is the Hessian Ht , which is negative for this graph, since the
curve is drawn to be concave. The negative of this negative Hessian is
positive and represents the degree of curvature. That is, −Ht is the posi-
tive curvature. Each step of β is the slope of the log-likelihood function
divided by its curvature. If the slope is positive, β is raised as in the first
panel, and if the slope if negative, β is lowered as in the second panel. The
curvature determines how large a step is made. If the curvature is great,
meaning that the slope changes quickly as in the first panel of Figure 8.3,
then the maximum is likely to be close, and so a small step is taken.
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LL(β)

β

βt

β

βt

Positive slope        move forward

LL(β)

Negative slope        move backward

Figure 8.2. Direction of step follows the slope.

LL(β)

β

βt

β

Greater curvature        
smaller step

LL(β)

β
^

βt

Less curvature        
larger step

β
^

Figure 8.3. Step size is inversely related to curvature.

(Dividing the gradient by a large number gives a small number.) Con-
versely, if the curvature is small, meaning that the slope is not changing
much, then the maximum seems to be further away and so a larger step is
taken.

Three issues are relevant to the NR procedure.

Quadratics

If LL(β) were exactly quadratic in β, then the NR procedure
would reach the maximum in one step from any starting value. This fact
can easily be verified with K = 1. If LL(β) is quadratic, then it can be
written as

LL(β) = a + bβ + cβ2.

The maximum is

∂LL(β)

∂β
= b + 2cβ = 0,

β̂ = − b

2c
.
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β

LL(β)

βt

LL(βt)
LL(βt+1)

βt+1

Actual LL

Quadratic

Figure 8.4. Step may go beyond maximum to lower LL.

The gradient and Hessian are gt = b + 2cβt and Ht = 2c, and so NR
gives us

βt+1 = βt − H−1
t gt

= βt − 1

2c
(b + 2cβt )

= βt − b

2c
− βt

= − b

2c
= β̂.

Most log-likelihood functions are not quadratic, and so the NR proce-
dure takes more than one step to reach the maximum. However, knowing
how NR behaves in the quadratic case helps in understanding its behavior
with nonquadratic LL, as we will see in the following discussion.

Step Size

It is possible for the NR procedure, as for other procedures
discussed later, to step past the maximum and move to a lower LL(β).
Figure 8.4 depicts the situation. The actual LL is given by the solid line.
The dashed line is a quadratic function that has the slope and curvature
that LL has at the point βt . The NR procedure moves to the top of the
quadratic, to βt+1. However, LL(βt+1) is lower than LL(βt ) in this case.

To allow for this possibility, the step is multiplied by a scalar λ in the
NR formula:

βt+1 = βt + λ(−Ht )
−1gt .

The vector (−Ht )−1gt is called the direction, and λ is called the step size.
(This terminology is standard even though (−Ht )−1gt contains step-size
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β

LL(β)

βt βt+1 

for λ=1

Actual LL

Quadratic

βt+1 

for λ=2

βt+1 

for λ=4

Figure 8.5. Double λ as long as LL rises.

information through Ht , as already explained in relation to Figure 8.3.)
The step size λ is reduced to assure that each step of the NR procedure
provides an increase in LL(β). The adjustment is performed separately
in each iteration, as follows.

Start with λ = 1. If LL(βt+1) > LL(βt ), move to βt+1 and start a new
iteration. If LL(βt+1) < LL(βt ), then set λ = 1

2 and try again. If, with
λ = 1

2 , LL(βt+1) is still below LL(βt ), then set λ = 1
4 and try again.

Continue this process until a λ is found for which LL(βt+1) > LL(βt ). If
this process results in a tiny λ, then little progress is made in finding the
maximum. This can be taken as a signal to the researcher that a different
iteration procedure may be needed.

An analogous step-size adjustment can be made in the other direc-
tion, that is, by increasing λ when appropriate. A case is shown in
Figure 8.5. The top of the quadratic is obtained with a step size of λ = 1.
However, the LL(β) is not quadratic, and its maximum is further away.
The step size can be adjusted upward as long as LL(β) continues to rise.
That is, calculate βt+1 with λ = 1 at βt+1. If LL(βt+1) > LL(βt ), then
try λ = 2. If the βt+1 based on λ = 2 gives a higher value of the log-
likelihood function than with λ = 1, then try λ = 4, and so on, doubling
λ as long as doing so further raises the likelihood function. Each time,
LL(βt+1) with a doubled λ is compared with its value at the previously
tried λ, rather than with λ = 1, in order to assure that each doubling
raises the likelihood function further than it had previously been raised
with smaller λ’s. In Figure 8.5, a final step size of 2 is used, since the
likelihood function with λ = 4 is lower than when λ = 2, even though
it is higher than with λ = 1.

The advantage of this approach of raising λ is that it usually reduces
the number of iterations that are needed to reach the maximum. New
values of λ can be tried without recalculating gt and Ht , while each new
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iteration requires calculation of these terms. Adjusting λ can therefore
quicken the search for the maximum.

Concavity

If the log-likelihood function is globally concave, then the NR
procedure is guaranteed to provide an increase in the likelihood function
at each iteration. This fact is demonstrated as follows. LL(β) being con-
cave means that its Hessian is negative definite at all values of β. (In one
dimension, the slope of LL(β) is declining, so that the second derivative
is negative.) If H is negative definite, then H−1 is also negative definite,
and −H−1 is positive definite. By definition, a symmetric matrix M
is positive definite if x ′Mx > 0 for any x �= 0. Consider a first-order
Taylor’s approximation of LL(βt+1) around LL(βt ):

LL(βt+1) = LL(βt ) + (βt+1 − βt )
′gt .

Under the NR procedure, βt+1 − βt = λ(−H−1
t )gt . Substituting gives

LL(βt+1) = LL(βt ) + (
λ
( − H−1

t

)
gt

)′
gt

= LL(βt ) + λg′
t

( − H−1
t

)
gt .

Since −H−1 is positive definite, we have g′
t (−H−1

t )gt > 0 and
LL(βt+1) > LL(βt ). Note that since this comparison is based on a first-
order approximation, an increase in LL(β) may only be obtained in a
small neighborhood of βt . That is, the value of λ that provides an in-
crease might be small. However, an increase is indeed guaranteed at each
iteration if LL(β) is globally concave.

Suppose the log-likelihood function has regions that are not concave.
In these areas, the NR procedure can fail to find an increase. If the
function is convex at βt , then the NR procedure moves in the opposite
direction to the slope of the log-likelihood function. The situation is
illustrated in Figure 8.6 for K = 1. The NR step with one parameter
is LL′(β)/(−LL′′(β)), where the prime denotes derivatives. The second
derivative is positive at βt , since the slope is rising. Therefore, −LL′′(β)
is negative, and the step is in the opposite direction to the slope. With
K > 1, if the Hessian is positive definite at βt , then −H−1

t is negative
definite, and NR steps in the opposite direction to gt .

The sign of the Hessian can be reversed in these situations. However,
there is no reason for using the Hessian where the function is not concave,
since the Hessian in convex regions does not provide any useful infor-
mation on where the maximum might be. There are easier ways to find
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β

LL(β)

βt

Figure 8.6. NR in the convex portion of LL.

an increase in these situations than calculating the Hessian and reversing
its sign. This issue is part of the motivation for other procedures.

The NR procedure has two drawbacks. First, calculation of the Hessian
is usually computation-intensive. Procedures that avoid calculating the
Hessian at every iteration can be much faster. Second, as we have just
shown, the NR procedure does not guarantee an increase in each step if
the log-likelihood function is not globally concave. When −H−1

t is not
positive definite, an increase is not guaranteed.

Other approaches use approximations to the Hessian that address these
two issues. The methods differ in the form of the approximation. Each
procedure defines a step as

βt+1 = βt + λMt gt ,

where Mt is a K × K matrix. For NR, Mt = −H−1. Other procedures
use Mt ’s that are easier to calculate than the Hessian and are necessarily
positive definite, so as to guarantee an increase at each iteration even in
convex regions of the log-likelihood function.

8.3.2. BHHH

The NR procedure does not utilize the fact that the function be-
ing maximized is actually the sum of log likelihoods over a sample of
observations. The gradient and Hessian are calculated just as one would
do in maximizing any function. This characteristic of NR provides gen-
erality, in that the NR procedure can be used to maximize any function,
not just a log likelihood. However, as we will see, maximization can be
faster if we utilize the fact that the function being maximized is a sum
of terms in a sample.

We need some additional notation to reflect the fact that the log-
likelihood function is a sum over observations. The score of an
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observation is the derivative of that observation’s log likelihood with
respect to the parameters: sn(βt ) = ∂ ln Pn(β)/∂β evaluated at βt . The
gradient, which we defined earlier and used for the NR procedure, is the
average score: gt = ∑

n sn(βt )/N . The outer product of observation n’s
score is the K × K matrix

sn(βt )sn(βt )
′ =




s1
ns1

n s1
ns2

n · · · s1
nsK

n

s1
ns2

n s2
ns2

n · · · s2
nsK

n...
...

...
s1

nsK
n s2

nsK
n · · · sK

n sK
n


 ,

where sk
n is the kth element of sn(βt ) with the dependence on βt

omitted for convenience. The average outer product in the sample is
Bt = ∑

n sn(βt )sn(βt )′/N . This average is related to the covariance ma-
trix: if the average score were zero, then B would be the covariance
matrix of scores in the sample. Often Bt is called the “outer prod-
uct of the gradient.” This term can be confusing, since Bt is not the
outer product of gt . However, it does reflect the fact that the score is
an observation-specific gradient and Bt is the average outer product of
these observation-specific gradients.

At the parameters that maximize the likelihood function, the average
score is indeed zero. The maximum occurs where the slope is zero,
which means that the gradient, that is, the average score, is zero. Since
the average score is zero, the outer product of the scores, Bt , becomes
the variance of the scores. That is, at the maximizing values of the
parameters, Bt is the variance of scores in the sample.

The variance of the scores provides important information for locat-
ing the maximum of the likelihood function. In particular, this vari-
ance provides a measure of the curvature of the log-likelihood function,
similar to the Hessian. Suppose that all the people in the sample have
similar scores. Then the sample contains very little information. The log-
likelihood function is fairly flat in this situation, reflecting the fact that
different values of the parameters fit the data about the same. The first
panel of Figure 8.7 depicts this situation: with a fairly flat log likelihood,
different values of β give similar values of LL(β). The curvature is small
when the variance of the scores is small. Conversely, scores differing
greatly over observations mean that the observations are quite different
and the sample provides a considerable amount of information. The log-
likelihood function is highly peaked, reflecting the fact that the sample
provides good information on the values of β. Moving away from the
maximizing values of β causes a large loss of fit. The second panel
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LL(β)

ββ

LL(β)

LL nearly flat near
maximum

LL highly curved 
near maximum

Figure 8.7. Shape of log-likelihood function near maximum.

of Figure 8.7 illustrates this situation. The curvature is great when the
variance of the scores is high.

These ideas about the variance of the scores and their relation to the
curvature of the log-likelihood function are formalized in the famous
information identity. This identity states that the covariance of the scores
at the true parameters is equal to the negative of the expected Hessian. We
demonstrate this identity in the last section of this chapter; Theil (1971)
and Ruud (2000) also provide useful and heuristic proofs. However, even
without proof, it makes intuitive sense that the variance of the scores
provides information on the curvature of the log-likelihood function.

Berndt, Hall, Hall, and Hausman (1974), hereafter referred to as
BHHH (and commonly pronounced B-triple H), proposed using this re-
lationship in the numerical search for the maximum of the log-likelihood
function. In particular, the BHHH procedure uses Bt in the optimization
routine in place of −Ht . Each iteration is defined by

βt+1 = βt + λB−1
t gt .

This step is the same as for NR except that Bt is used in place of −Ht .
Given the preceding discussion about the variance of the scores indicat-
ing the curvature of the log-likelihood function, replacing −Ht with Bt

makes sense.
There are two advantages to the BHHH procedure over NR:

1. Bt is far faster to calculate that Ht . The scores must be calcu-
lated to obtain the gradient for the NR procedure anyway, and
so calculating Bt as the average outer product of the scores takes
hardly any extra computer time. In contrast, calculating Ht re-
quires calculating the second derivatives of the log-likelihood
function.

2. Bt is necessarily positive definite. The BHHH procedure is
therefore guaranteed to provide an increase in LL(β) in each
iteration, even in convex portions of the function. Using the
proof given previously for NR when −Ht is positive definite,
the BHHH step λB−1

t gt raises LL(β) for a small enough λ.
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Our discussion about the relation of the variance of the scores to the
curvature of the log-likelihood function can be stated a bit more precisely.
For a correctly specified model at the true parameters, B → −H as
N → ∞. This relation between the two matrices is an implication of
the information identity, discussed at greater length in the last section.
This convergence suggests that Bt can be considered an approximation
to −Ht . The approximation is expected to be better as the sample size
rises. And the approximation can be expected to be better close to the
true parameters, where the expected score is zero and the information
identity holds, than for values of β that are farther from the true values.
That is, Bt can be expected to be a better approximation close to the
maximum of the LL(β) than farther from the maximum.

There are some drawbacks of BHHH. The procedure can give small
steps that raise LL(β) very little, especially when the iterative process is
far from the maximum. This behavior can arise because Bt is not a good
approximation to −Ht far from the true value, or because LL(β) is highly
nonquadratic in the area where the problem is occurring. If the function
is highly nonquadratic, NR does not perform well, as explained earlier;
since BHHH is an approximation to NR, BHHH would not perform well
even if Bt were a good approximation to −Ht .

8.3.3. BHHH-2

The BHHH procedure relies on the matrix Bt , which, as we have
described, captures the covariance of the scores when the average score
is zero (i.e., at the maximizing value of β). When the iterative process
is not at the maximum, the average score is not zero and Bt does not
represent the covariance of the scores.

A variant on the BHHH procedure is obtained by subtracting out the
mean score before taking the outer product. For any level of the average
score, the covariance of the scores over the sampled decision makers is

Wt =
∑

n

(sn(βt ) − gt )(sn(βt ) − gt )′

N
,

where the gradient gt is the average score. Wt is the covariance of the
scores around their mean, and Bt is the average outer product of the
scores. Wt and Bt are the same when the mean gradient is zero (i.e., at
the maximizing value of β), but differ otherwise.

The maximization procedure can use Wt instead of Bt :

βt+1 = βt + λW −1
t gt .
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This procedure, which I call BHHH-2, has the same advantages as
BHHH. Wt is necessarily positive definite, since it is a covariance matrix,
and so the procedure is guaranteed to provide an increase in LL(β) at
every iteration. Also, for a correctly specified model at the true para-
meters, W → −H as N → ∞, so that Wt can be considered an approx-
imation to −Ht . The information identity establishes this equivalence,
as it does for B.

For β’s that are close to the maximizing value, BHHH and BHHH-2
give nearly the same results. They can differ greatly at values far from
the maximum. Experience indicates, however, that the two methods are
fairly similar in that either both of them work effectively for a given
likelihood function, or neither of them does. The main value of BHHH-2
is pedagogical, to elucidate the relation between the covariance of the
scores and the average outer product of the scores. This relation is critical
in the analysis of the information identity in Section 8.7.

8.3.4. Steepest Ascent

This procedure is defined by the iteration formula

βt+1 = βt + λgt .

The defining matrix for this procedure is the identity matrix I . Since I is
positive definite, the method guarantees an increase in each iteration. It is
called “steepest ascent” because it provides the greatest possible increase
in LL(β) for the distance between βt and βt+1, at least for small enough
distance. Any other step of the same distance provides less increase. This
fact is demonstrated as follows. Take a first-order Taylor’s expansion of
LL(βt+1) around LL(βt ): LL(βt+1) = LL(βt ) + (βt+1 − βt )gt . Maximize
this expression for LL(βt+1) subject to the Euclidian distance from βt to
βt+1 being

√
k. That is, maximize subject to (βt+1 − βt )′(βt+1 − βt ) = k.

The Lagrangian is

L = LL(βt ) + (βt+1 − βt )gt − 1

2λ
[(βt+1 − βt )

′(βt+1 − βt ) − k],

and we have

∂L

∂βt+1
= gt − 1

λ
(βt+1 − βt ) = 0,

βt+1 − βt = λgt ,

βt+1 = βt + λgt ,

which is the formula for steepest ascent.
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At first encounter, one might think that the method of steepest ascent is
the best possible procedure, since it gives the greatest possible increase
in the log-likelihood function at each step. However, the method’s prop-
erty is actually less grand than this statement implies. Note that the
derivation relies on a first-order approximation that is only accurate in
a neighborhood of βt . The correct statement of the result is that there is
some sufficiently small distance for which the method of steepest ascent
gives the greatest increase for that distance. This distinction is critical.
Experience indicates that the step sizes are often very small with this
method. The fact that the ascent is greater than for any other step of the
same distance is not particularly comforting when the steps are so small.
Usually, BHHH and BHHH-2 converge more quickly than the method
of steepest ascent.

8.3.5. DFP and BFGS

The Davidon–Fletcher–Powell (DFP) and Broyden–Fletcher–
Goldfarb–Shanno (BFGS) methods calculate the approximate Hessian
in a way that uses information at more than one point on the likelihood
function. Recall that NR uses the actual Hessian at βt to determine the
step to βt+1, and BHHH and BHHH-2 use the scores at βt to approximate
the Hessian. Only information at βt is being used to determine the step
in these procedures. If the function is quadratic, then information at one
point on the function provides all the information that is needed about
the shape of the function. These methods work well, therefore, when the
log-likelihood function is close to quadratic. In contrast, the DFP and
BFGS procedures use information at several points to obtain a sense of
the curvature of the log-likelihood function.

The Hessian is the matrix of second derivatives. As such, it gives the
amount by which the slope of the curve changes as one moves along
the curve. The Hessian is defined for infinitesimally small movements.
Since we are interested in making large steps, understanding how the
slope changes for noninfinitesimal movements is useful. An arc Hessian
can be defined on the basis of how the gradient changes from one point
to another. For example, for function f (x), suppose the slope at x = 3
is 25 and at x = 4 the slope is 19. The change in slope for a one unit
change in x is −6. In this case, the arc Hessian is −6, representing the
change in the slope as a step is taken from x = 3 to x = 4.

The DFP and BFGS procedures use these concepts to approximate
the Hessian. The gradient is calculated at each step in the iteration pro-
cess. The difference in the gradient between the various points that have
been reached is used to calculate an arc Hessian over these points. This
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arc Hessian reflects the change in gradient that occurs for actual move-
ment on the curve, as opposed to the Hessian, which simply reflects the
change in slope for infinitesimally small steps around that point. When
the log-likelihood function is nonquadratic, the Hessian at any point pro-
vides little information about the shape of the function. The arc Hessian
provides better information.

At each iteration, the DFP and BFGS procedures update the arc
Hessian using information that is obtained at the new point, that is,
using the new gradient. The two procedures differ in how the updating
is performed; see Greene (2000) for details. Both methods are extremely
effective – usually far more efficient that NR, BHHH, BHHH-2, or steep-
est ascent. BFGS refines DFP, and my experience indicates that it nearly
always works better. BFGS is the default algorithm in the optimization
routines of many commercial software packages.

8.4 Convergence Criterion

In theory the maximum of LL(β) occurs when the gradient vector is
zero. In practice, the calculated gradient vector is never exactly zero:
it can be very close, but a series of calculations on a computer cannot
produce a result of exactly zero (unless, of course, the result is set to
zero through a Boolean operator or by multiplication by zero, neither of
which arises in calculation of the gradient). The question arises: when
are we sufficiently close to the maximum to justify stopping the iterative
process?

The statistic mt = g′
t (−H−1

t )gt is often used to evaluate convergence.
The researcher specifies a small value for m, such as m̆ = 0.0001, and
determines in each iteration whether g′

t (−H−1
t )gt < m̆. If this inequality

is satisfied, the iterative process stops and the parameters at that iteration
are considered the converged values, that is, the estimates. For proce-
dures other than NR that use an approximate Hessian in the iterative
process, the approximation is used in the convergence statistic to avoid
calculating the actual Hessian. Close to the maximum, where the crite-
rion becomes relevant, each form of approximate Hessian that we have
discussed is expected to be similar to the actual Hessian.

The statistic mt is the test statistic for the hypothesis that all elements
of the gradient vector are zero. The statistic is distributed chi-squared
with K degrees of freedom. However, the convergence criterion m̆ is
usually set far more stringently (that is, lower) than the critical value of
a chi-squared at standard levels of significance, so as to assure that the
estimated parameters are very close to the maximizing values. Usually,
the hypothesis that the gradient elements are zero cannot be rejected for a



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-08Drv CB495/Train KEY BOARDED August 20, 2002 12:39 Char Count= 0

Numerical Maximization 203

fairly wide area around the maximum. The distinction can be illustrated
for an estimated coefficient that has a t-statistic of 1.96. The hypothesis
cannot be rejected if this coefficient has any value between zero and
twice its estimated value. However, we would not want convergence to
be defined as having reached any parameter value within this range.

It is tempting to view small changes in βt from one iteration to the
next, and correspondingly small increases in LL(βt ), as evidence that
convergence has been achieved. However, as stated earlier, the iterative
procedures may produce small steps because the likelihood function is
not close to a quadratic rather than because of nearing the maximum.
Small changes in βt and LL(βt ) accompanied by a gradient vector that
is not close to zero indicate that the numerical routine is not effective at
finding the maximum.

Convergence is sometimes assessed on the basis of the gradient vector
itself rather than through the test statistic mt . There are two procedures:
(1) determine whether each element of the gradient vector is smaller in
magnitude than some value that the researcher specifies, and (2) divide
each element of the gradient vector by the corresponding element of β,
and determine whether each of these quotients is smaller in magnitude
than some value specified by the researcher. The second approach nor-
malizes for the units of the parameters, which are determined by the
units of the variables that enter the model.

8.5 Local versus Global Maximum

All of the methods that we have discussed are susceptible to converg-
ing at a local maximum that is not the global maximum, as shown in
Figure 8.8. When the log-likelihood function is globally concave, as for
logit with linear-in-parameters utility, then there is only one maximum
and the issue doesn’t arise. However, most discrete choice models are
not globally concave.

A way to investigate the issue is to use a variety of starting values
and observe whether convergence occurs at the same parameter values.
For example, in Figure 8.8, starting at β0 will lead to convergence
at β1. Unless other starting values were tried, the researcher would
mistakenly believe that the maximum of LL(β) had been achieved.
Starting at β2, convergence is achieved at β̂. By comparing LL(β̂)
with LL(β1), the researcher finds that β1 is not the maximizing value.
Liu and Mahmassani (2000) propose a way to select starting values that
involves the researcher setting upper and lower bounds on each para-
meter and randomly choosing values within those bounds.
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Figure 8.8. Local versus global maximum.

8.6 Variance of the Estimates

In standard econometric courses, it is shown that, for a correctly specified
model,

√
N (β̂ − β∗)

d→ N (0, (−H)−1)

as N → ∞, where β∗ is the true parameter vector, β̂ is the maximum
likelihood estimator, and H is the expected Hessian in the population.
The negative of the expected Hessian, −H, is often called the informa-
tion matrix. Stated in words, the sampling distribution of the difference
between the estimator and the true value, normalized for sample size,
converges asymptotically to a normal distribution centered on zero and
with covariance equal to the inverse of the information matrix, −H−1.
Since the asymptotic covariance of

√
N (β̂ − β∗) is −H−1, the asymp-

totic covariance of β̂ itself is −H−1/N .
The boldface type in these expressions indicates that H is the average

in the population, as opposed to H , which is the average Hessian in the
sample. The researcher calculates the asymptotic covariance by using H
as an estimate of H. That is, the asymptotic covariance of β̂ is calculated
as −H−1/N , where H is evaluated at β̂.

Recall that W is the covariance of the scores in the sample. At the
maximizing values of β, B is also the covariance of the scores. By the
information identity just discussed and explained in the last section, −H,
which is the (negative of the) average Hessian in the sample, converges
to the covariance of the scores for a correctly specified model at the true
parameters. In calculating the asymptotic covariance of the estimates β̂,
any of these three matrices can be used as an estimate of −H. The
asymptotic variance of β̂ is calculated as W −1/N , B−1/N , or −H−1/N ,
where each of these matrices is evaluated at β̂.



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-08Drv CB495/Train KEY BOARDED August 20, 2002 12:39 Char Count= 0

Numerical Maximization 205

If the model is not correctly specified, then the asymptotic covariance
of β̂ is more complicated. In particular, for any model for which the
expected score is zero at the true parameters,

√
N (β̂ − β∗)

d→ N (0, H−1VH−1),

where V is the variance of the scores in the population. When the
model is correctly specified, the matrix −H = V by the information
identity, such that H−1VH−1 = −H−1 and we get the formula for a cor-
rectly specified model. However, if the model is not correctly specified,
this simplification does not occur. The asymptotic distribution of β̂ is
H−1VH−1/N . This matrix is called the robust covariance matrix, since
it is valid whether or not the model is correctly specified.

To estimate the robust covariance matrix, the researcher must cal-
culate the Hessian H . If a procedure other than NR is being used to
reach convergence, the Hessian need not be calculated at each iteration;
however, it must be calculated at the final iteration. Then the asymptotic
covariance is calculated as H−1WH−1, or with B instead of W . This
formula is sometimes called the “sandwich” estimator of the covariance,
since the Hessian inverse appears on both sides.

8.7 Information Identity

The information identity states that, for a correctly specified model at
the true parameters, V = −H, where V is the covariance matrix of the
scores in the population and H is the average Hessian in the population.
The score for a person is the vector of first derivatives of that person’s
ln P(β) with respect to the parameters, and the Hessian is the matrix
of second derivatives. The information identity states that, in the popu-
lation, the covariance matrix of the first derivatives equals the average
matrix of second derivatives (actually, the negative of that matrix). This
is a startling fact, not something that would be expected or even believed
if there were not proof. It has implications throughout econometrics. The
implications that we have used in the previous sections of this chapter
are easily derivable from the identity. In particular:

(1) At the maximizing value of β, W → −H as N → ∞, where W
is the sample covariance of the scores and H is the sample average of
each observation’s Hessian. As sample size rises, the sample covariance
approaches the population covariance: W → V. Similarly, the sample
average of the Hessian approaches the population average: H → H.
Since V= −H by the information identity, W approaches the same ma-
trix that −H approaches, and so they approach each other.
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(2) At the maximizing value of β, B → −H as N → ∞, where B is
the sample average of the outer product of the scores. At β̂, the average
score in the sample is zero, so that B is the same as W . The result for W
applies for B.

We now demonstrate the information identity. We need to expand our
notation to encompass the population instead of simply the sample. Let
Pi (x, β) be the probability that a person who faces explanatory variables
x chooses alternative i given the parameters β. Of the people in the
population who face variables x , the share who choose alternative i is this
probability calculated at the true parameters: Si (x) = Pi (x, β∗) where
β∗ are the true parameters. Consider now the gradient of ln Pi (x, β) with
respect to β. The average gradient in the population is

(8.2) g =
∫ ∑

i

∂ ln Pi (x, β)

∂β
Si (x) f (x) dx,

where f (x) is the density of explanatory variables in the population.
This expression can be explained as follows. The gradient for people
who face x and choose i is ∂ ln Pni (β)/∂β. The average gradient is the
average of this term over all values of x and all alternatives i . The share
of people who face a given value of x is given by f (x), and the share of
people who face this x that choose i is Si (x). So Si (x) f (x) is the share
of the population who face x and choose i and therefore have gradient
∂ ln Pi (x, β)/∂β. Summing this term over all values of i and integrating
over all values of x (assuming the x’s are continuous) gives the average
gradient, as expressed in (8.2).

The average gradient in the population is equal to zero at the true
parameters. This fact can be considered either the definition of the true
parameters or the result of a correctly specified model. Also, we know
that Si (x) = Pi (x, β∗). Substituting these facts into (8.2), we have

0 =
∫ ∑

i

∂ ln Pi (x, β)

∂β
Pi (x, β) f (x) dx,

where all functions are evaluated at β∗. We now take the derivative of
this equation with respect to the parameters:

0 =
∫ ∑

i

(
∂2 ln Pi (x, β)

∂β ∂β ′ Pi (x, β) + ∂ ln Pi (x, β)

∂β

∂ Pi (x, β)

∂β ′

)
f (x) dx .

Since ∂ ln P/∂β = (1/P) ∂ P/∂β by the rules of derivatives, we can
substitute [∂ ln Pi (x, β)/∂β ′]Pi (x, β) for ∂ Pi (x, β)/∂β ′ in the last term
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in parentheses:

0 =
∫ ∑

i

(
∂2 ln Pi (x, β)

∂β ∂β ′ Pi (x, β)

+ ∂ ln Pi (x, β)

∂β

∂lnPi (x, β)

∂β ′ Pi (x, β)

)
f (x) dx .

Rearranging,

−
∫ ∑

i

∂2 ln Pi (x, β)

∂β ∂β ′ Pi (x, β) f (x) dx

=
∫ ∑

i

∂ ln Pi (x, β)

∂β

∂ ln Pi (x, β)

∂β ′ Pi (x, β) f (x) dx .

Since all terms are evaluated at the true parameters, we can replace
Pi (x, β) with Si (x) to obtain

−
∫ ∑

i

∂2 ln Pi (x, β)

∂β ∂β ′ Si (x) f (x) dx

=
∫ ∑

i

∂ ln Pi (x, β)

∂β

∂ ln Pi (x, β)

∂β ′ Si (x) f (x) dx .

The left-hand side is the negative of the average Hessian in the popula-
tion, −H. The right-hand side is the average outer product of the gradient,
which is the covariance of the gradient, V, since the average gradient
is zero. Therefore, −H = V, the information identity. As stated, the
matrix −H is often called the information matrix.



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-09Drv CB495/Train KEY BOARDED August 20, 2002 14:1 Char Count= 0

9 Drawing from Densities

9.1 Introduction

Simulation consists of drawing from a density, calculating a statistic for
each draw, and averaging the results. In all cases, the researcher wants to
calculate an average of the form t̄ = ∫

t(ε) f (ε) dε, where t(·) is a statis-
tic of interest and f (·) is a density. To approximate this average through
simulation, the researcher must be able to take draws from the density
f (·). For some densities, this task is simple. However, in many situa-
tions, it is not immediately clear how to draw from the relevant density.
Furthermore, even with simple densities, there may be ways of taking
draws that provide a better approximation to the integral than a sequence
of purely random draws.

We explore these issues in this chapter. In the first sections, we de-
scribe the most prominent methods that have been developed for taking
purely random draws from various kinds of densities. These methods
are presented in a progressive sequence, starting with simple procedures
that work with a few convenient densities and moving to ever more com-
plex methods that work with less convenient densities. The discussion
culminates with the Metropolis–Hastings algorithm, which can be used
with (practically) any density. The chapter then turns to the question of
whether and how a sequence of draws can be taken that provides a better
approximation to the relevant integral than a purely random sequence.
We discuss antithetics, systematic sampling, and Halton sequences and
show the value that these types of draws provide in estimation of model
parameters.

9.2 Random Draws

9.2.1. Standard Normal and Uniform

If the researcher wants to take a draw from a standard normal
density (that is, a normal with zero mean and unit variance) or a standard

208
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uniform density (uniform between 0 and 1), the process from a program-
ming perspective is very easy. Most statistical packages contain random
number generators for these densities. The researcher simply calls these
routines to obtain a sequence of random draws. In the sections below,
we refer to a draw of a standard normal as η and a draw of a standard
uniform as µ.

The draws from these routines are actually pseudo-random numbers,
because nothing that a computer does is truly random. There are many
issues involved in the design of these routines. The intent in their design
is to produce numbers that exhibit the properties of random draws. The
extent to which this intent is realized depends, of course, on how one
defines the properties of “random” draws. These properties are difficult
to define precisely, since randomness is a theoretical concept that has no
operational counterpart in the real world. From a practical perspective,
my advice is the following: unless one is willing to spend considerable
time investigating and resolving (literally, re-solving) these issues, it is
probably better to use the available routines rather than write a new one.

9.2.2. Transformations of Standard Normal

Some random variables are transformations of a standard nor-
mal. For example, a draw from a normal density with mean b and vari-
ance s2 is obtained as ε = b + sη. A draw from a lognormal density is
obtained by exponentiating a draw from a normal density: ε = eb+sη.
The moments of the lognormal are functions of the mean and vari-
ance of the normal that is exponentiated. In particular, the mean of ε is
exp(b + (s2/2)), and its variance is exp(2b + s2) · (exp(s2) − 1). Given
values for the mean and variance of the lognormal, the appropriate val-
ues of b and s to use in the transformation can be calculated. It is more
common, however, to treat b and s as the parameters of the lognormal
and calculate its mean and variance from these parameters.

9.2.3. Inverse Cumulative for Univariate Densities

Consider a random variable with density f (ε) and correspond-
ing cumulative distribution F(ε). If F is invertible (that is, if F−1 can be
calculated), then draws of ε can be obtained from draws of a standard
uniform. By definition, F(ε) = k means that the probability of obtaining
a draw equal to or below ε is k, where k is between zero and one. A draw
µ from the standard uniform provides a number between zero and one.
We can set F(ε) = µ and solve for the corresponding ε: ε = F−1(µ).
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f (ε)

ε

1

ε

µ1

ε1

Area =µ1 

F (ε)

Figure 9.1. Draw of µ1 from uniform and create ε1 = F−1(µ).

When ε is drawn in this way, the cumulative distribution of the draws
is equal to F , such that the draws are equivalent to draws directly from
F . An illustration is provided in Figure 9.1. A draw µ1 from a standard
uniform translates into the value of ε labeled ε1, at which F(ε1) = µ1.

The extreme value distribution, which is the basis for multinomial
logit models, provides an example. The density is f (ε) = exp(−ε) ·
exp(−exp(−ε)) with cumulative distribution F(ε) = exp(−exp(−ε)).
A draw from this density is obtained as ε = − ln(− ln µ).

Note that this procedure works only for univariate distributions. If
there are two or more elements of ε, then F−1(µ) is not unique, since
various combinations of the elements of ε have the same cumulative
probability.

9.2.4. Truncated Univariate Densities

Consider a random variable that ranges from a to b with den-
sity proportional to f (ε) within this range. That is, the density is
(1/k) f (ε) for a ≤ ε ≤ b, and 0 otherwise, where k is the normalizing
constant that insures that the density integrates to 1: k = ∫ b

a f (ε) dε =
F(b) − F(a). A draw from this density can be obtained by applying
the procedure in Section 9.2.3 while assuring that the draw is within the
appropriate range.

Draw µ from a standard uniform density. Calculate the weighted
average of F(a) and F(b) as µ̄ = (1 − µ)F(a) + µF(b). Then calculate
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f (ε)

ε

ε

µ1

F (ε)

F (b)

F (a)

a bε1

Figure 9.2. Draw of µ̄1 between F(a) and F(b) gives draw ε1 from f (ε)
between a and b.

ε = F−1(µ̄). Since µ̄ is between F(a) and F(b), ε is necessarily between
a and b. Essentially, the draw of µ determines how far to go between a
and b. Note that the normalizing constant k is not used in the calculations
and therefore need not be calculated. Figure 9.2 illustrates the process.

9.2.5. Choleski Transformation
for Multivariate Normals

As described in Section 9.2.2, a univariate normal with mean b
and variance s2 is obtained as ε = b + sµ, where µ is standard normal.
An analogous procedure can be used to draw from a multivariate normal.
Let ε be a vector with K elements distributed N (b, �). A Choleski factor
of � is defined as a lower-triangular matrix L such that LL′ = �. It is
often called the generalized square root of � or generalized standard
deviation of ε. With K = 1 and variance s2, the Choleski factor is s,
which is just the standard deviation of ε. Most statistical and matrix
manipulation packages have routines to calculate a Choleski factor for
any positive definite, symmetric matrix.

A draw of ε from N (b, �) is obtained as follows. Take K draws
from a standard normal, and label the vector of these draws η =
〈η1, . . . , ηK 〉′. Calculate ε = b + Lη. We can verify the properties of
ε. It is normally distributed, since the sum of normals is normal. Its
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mean is b: E(ε) = b + L E(η) = b. And its covariance is �: Var(ε) =
E(Lη(ηL)′) = L E(ηη′)L ′ = LVar(η)L ′ = L I L ′ = L L ′ = �.

To be concrete, consider a three-dimensional ε with zero mean. A
draw of ε is calculated as

ε1

ε2

ε3


 =


s11 0 0

s21 s22 0
s31 s32 s33





η1

η2

η3


 ,

or

ε1 = s11η1,

ε2 = s21η1 + s22η2,

ε3 = s31η1 + s32η2 + s33η3 .

From this we see that Var(ε1) = s2
11 , Var(ε2) = s2

21 + s2
22, and Var(ε3) =

s2
31 + s2

32 + s2
33. Also, Cov(ε1, ε2) = s11s21, and so on. The elements ε1

and ε2 are correlated because of the common influence of η1 on both
of them. They are not perfectly correlated because η2 enters ε2 with-
out affecting ε1. Similar analysis applies to ε1 and ε3, and ε2 and ε3.
Essentially, the Choleski factor expresses K correlated terms as arising
from K independent components, with each component loading differ-
ently onto each term. For any pattern of covariance, there is some set of
loadings from independent components that reproduces that covariance.

9.2.6. Accept–Reject for Truncated
Multivariate Densities

The procedure in Section 9.2.4 for drawing from truncated den-
sities applies only to univariate distributions. With multivariate densi-
ties, drawing from a truncated support is more difficult. We describe
an accept–reject procedure that can always be applied. However, as we
will see, there are disadvantages of the approach that might cause a
researcher to choose another approach when possible.

Suppose we want to draw from multivariate density g(ε) within the
range a ≤ ε ≤ b where a and b are vectors with the same length as ε.
That is, we want to draw from f (ε) = 1

k g(ε) if a ≤ ε ≤ b, and equal
zero otherwise, where k is the normalizing constant. We can obtain
draws from f by simply drawing from g and retaining (“accepting”)
the draws that are within the relevant range and discarding (“rejecting”)
the draws that are outside the range. The advantage of this procedure
is that it can be applied whenever it is possible to draw from the untrun-
cated density. Importantly, the normalizing constant, k, does not need
to be known for the truncated density. This fact is useful because the
normalizing constant is usually difficult to calculate.
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The disadvantage of the procedure is that the number of draws that
are accepted (that is, the number of draws from f that are obtained)
is not fixed but rather is itself random. If R draws are taken from g,
then the expected number of accepts is k R. This expected number is
not known without knowing k, which, as stated, is usually difficult to
calculate. It is therefore hard to determine an appropriate number of
draws to take from g. More importantly, the actual number of accepted
draws will generally differ from the expected number. In fact, there is
a positive probability of obtaining no accepts from a fixed number of
draws. When the truncation space is small (or, more precisely, when k
is small), obtaining no accepts, and hence no draws from the truncated
density, is a likely event.

This difficulty can be circumvented by drawing from g until a certain
number of accepted draws is obtained. That is, instead of setting in ad-
vance the number of draws from g that will be taken, the researcher can
set the number of draws from f that are obtained. Of course, the re-
searcher will not know how long it will take to attain the set number.

In most situations, other procedures can be applied more easily to
draw from a multivariate truncated density. Nevertheless, it is important
to remember that, when nothing else seems possible with a truncated
distribution, the accept–reject procedure can be applied.

9.2.7. Importance Sampling

Suppose ε has a density f (ε) that cannot be easily drawn from
by the other procedures. Suppose further that there is another density,
g(ε), that can easily be drawn from. Draws from f (ε) can be obtained
as follows. Take a draw from g(ε) and label it ε1. Weight the draw by
f (ε1)/g(ε1). Repeat this process many times. The set of weighted draws
is equivalent to a set of draws from f .

To verify this fact, we show that the cumulative distribution of the
weighted draws from g is the same as the cumulative distribution of
draws from f . Consider the share of draws from g that are below some
value m, with each draw weighted by f/g. This share is

∫
f (ε)

g(ε)
I (ε < m)g(ε) dε =

∫ m

−∞

f (ε)

g(ε)
g(ε) dε

=
∫ m

−∞
f (ε) dε = F(m) .

In simulation, draws from a density are used to calculate the average
of a statistic over that density. Importance sampling can be seen as a
change in the statistic and a corresponding change in the density that
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makes the density easy to draw from. Suppose we want to calculate∫
t(ε) f (ε) dε, but find it hard to draw from f . We can multiply the

integrand by g ÷ g without changing its value, so that the integral is∫
t(ε)[ f (ε)/g(ε)]g(ε) dε. To simulate the integral, we take draws from

g, calculate t(ε)[ f (ε)/g(ε)] for each draw, and average the results. We
have simply transformed the integral so that it is easier to simulate.

The density f is called the target density, and g is called the proposal
density. The requirements for importance sampling are that (1) the sup-
port of g(ε) needs to cover the support of f , so that any ε that could
arise with f can also arise with g, and (2) the ratio f (ε)/g(ε) must be
finite for all values of ε, so that this ratio can always be calculated.

A useful illustration of importance sampling arises with multivariate
truncated normals. Suppose we want to draw from N (0, �) but with
each element being positive (i.e., truncated below at zero). The density
is

f (ε) = 1

k(2π )
1
2 K |�|1/2

e− 1
2 ε′�−1ε

for ε ≥ 0, and 0 otherwise, where K is the dimension of ε and k is the
normalizing constant. (We assume for the purposes of this example that
k is known. In reality, calculating k might itself take simulation.) Draw-
ing from this density is difficult, because the elements of ε are correlated
as well as truncated. However, we can use the procedure in Section 9.2.4
to draw independent truncated normals and then apply importance sam-
pling to create the correlation. Draw K univariate normals truncated
below at zero, using the procedure in Section 9.2.4. These draws collec-
tively constitute a draw of a K -dimensional vector ε from the positive
quadrant support with density

g(ε) = 1

m(2π )
1
2 K

e− 1
2 ε′ε,

where m = 1/2K . For each draw, assign the weight

f (ε)

g(ε)
= m

k
|�|−1/2eε′(�−1−I )ε.

The weighted draws are equivalent to draws from N (0, �) truncated
below at zero.

As a sidelight, note that the accept–reject procedure in Section 9.2.6
is a type of importance sampling. The truncated distribution is the tar-
get, and the untruncated distribution is the proposal density. Each draw
from the untruncated density is weighted by a constant if the draw is
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within the truncation space and weighted by zero if the draw is outside
the truncation space. Weighting by a constant or zero is equivalent to
weighting by one (accept) or zero (reject).

9.2.8. Gibbs Sampling

For multinomial distributions, it is sometimes difficult to draw
directly from the joint density and yet easy to draw from the conditional
density of each element given the values of the other elements. Gibbs
sampling (the term was apparently introduced by Geman and Geman,
1984) can be used in these situations. A general explanation is provided
by Casella and George, (1992), which the reader can use to supplement
the more concise description that I give in the following.

Consider two random variables ε1 and ε2. Generalization to higher
dimension is obvious. The joint density is f (ε1, ε2), and the conditional
densities are f (ε1|ε2) and f (ε2|ε1). Gibbs sampling proceeds by drawing
iteratively from the conditional densities: drawing ε1 conditional on a
value of ε2, drawing ε2 conditional on this draw of ε1, drawing a new ε1

conditional on the new value of ε2, and so on. This process converges to
draws from the joint density.

To be more precise: (1) Choose an initial value for ε1, called ε0
1.

Any value with nonzero density can be chosen. (2) Draw a value of
ε2, called ε0

2, from f (ε2|ε0
1). (3) Draw a value of ε1, called ε1

1, from
f (ε1|ε0

2). (4) Draw ε1
2 from f (ε2|ε1

1), and so on. The values of εt
1 from

f (ε1|εt−1
2 ) and the values of εt

2 from f (ε2|εt−1
1 ) constitute a sequence in

t . For sufficiently large t (that is, for sufficiently many iterations), the
sequence converges to draws from the joint density f (ε1, ε2).

As an example, consider two standard normal deviates that are inde-
pendent except that they are truncated on the basis of their sum: ε1 + ε2 ≤
m. Figure 9.3 depicts the truncated density. The circles are contours of the
untruncated density, and the shaded area represents the truncated density.
To derive the conditional densities, consider first the untruncated nor-
mals. Since the two deviates are independent, the conditional density of
each is the same as its unconditional density. That is, ignoring truncation,
ε1|ε2 ∼ N (0, 1). The truncation rule is ε1 + ε2 ≤ m which can be re-
expressed as ε1 ≤ m − ε2. Therefore, ε1|ε2 is distributed as a univariate
standard normal truncated from above at m − ε2. Given ε2, a draw of ε1

is obtained with the procedure in Section 9.2.4: ε1 = �−1(µ�(m − ε2)),
where µ is a standard uniform draw and �(·) is the cumulative standard
normal distribution. Draws from ε2 conditional on ε1 are obtained analo-
gously. Drawing sequentially from these conditional densities eventually
provides draws from the joint truncated density.
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m

m ε1

2

Figure 9.3. Truncated normal density.

9.2.9. Metropolis–Hastings Algorithm

If all else fails, the Metropolis–Hastings (MH) algorithm can be
used to obtain draws from a density. Initially developed by Metropolis
et al. (1953) and generalized by Hastings (1970), the MH algorithm
operates as follows. The goal is to obtain draws from f (ε).

1. Start with a value of the vector ε, labeled ε0.
2. Choose a trial value of ε1 as ε̃1 = ε0 + η, where η is drawn

from a distribution g(η) that has zero mean. Usually a normal
distribution is specified for g(η).

3. Calculate the density at the trial value ε̃1, and compare it with
the density at the original value ε0. That is, compare f (ε̃1)
with f (ε0). If f (ε̃1) > f (ε0), then accept ε̃1, label it ε1, and
move to step 4. If f (ε̃1) ≤ f (ε0), then accept ε̃1 with probabil-
ity f (ε̃1)/ f (ε0), and reject it with probability 1 − f (ε̃1)/ f (ε0).
To determine whether to accept or reject ε̃1 in this case, draw a
standard uniform µ. If µ ≤ f (ε̃1)/ f (ε0), then keep ε̃1. Other-
wise, reject ε̃1. If ε̃1 is accepted, then label it ε1. If ε̃1 is rejected,
then use ε0 as ε1.

4. Choose a trial value of ε2 as ε̃2 = ε1 + η, where η is a new draw
from g(η).

5. Apply the rule in step 3 to either accept ε̃2 as ε2 or reject ε̃2 and
use ε1 as ε2.

6. Continue this process for many iterations. The sequence εt be-
comes equivalent to draws from f (ε) for sufficiently large t .

The draws are serially correlated, since each draw depends on the pre-
vious draw. In fact, when a trial value is rejected, the current draw is the
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same as the previous draw. This serial correlation needs to be considered
when using these draws.

The MH algorithm can be applied with any density that can be cal-
culated. The algorithm is particularly useful when the normalizing con-
stant for a density is not known or cannot be easily calculated. Suppose
that we know that ε is distributed proportional to f ∗(ε). This means
that the density of ε is f (ε) = 1

k f ∗(ε), where the normalizing constant
k = ∫

f ∗(ε) dε assures that f integrates to 1. Usually k cannot be calcu-
lated analytically, for the same reason that we need to simulate integrals
in other settings. Luckily, the MH algorithm does not utilize k. A trial
value of εt is tested by first determining whether f (ε̃t ) > f (εt−1). This
comparison is unaffected by the normalizing constant, since the con-
stant enters the denominator on both sides. Then, if f (ε̃t ) ≤ f (εt−1),
we accept the trial value with probability f (ε̃t )/ f (εt−1). The normaliz-
ing constant drops out of this ratio.

The MH algorithm is actually more general than I describe here,
though in practice it is usually applied as I describe. Chib and Greenberg,
(1995) provide an excellent description of the more general algorithm
as well as an explanation of why it works. Under the more general
definition, Gibbs sampling is a special case of the MH algorithm, as
Gelman, (1992) pointed out. The MH algorithm and Gibbs sampling
are often called Markov chain Monte Carlo (MCMC, or MC-squared)
methods; a description of their use in econometrics is provided by Chib
and Greenberg (1996). The draws are Markov chains because each value
depends only on the immediately preceding one, and the methods are
Monte Carlo because random draws are taken. We explore further issues
about the MH algorithm, such as how to choose g(ε), in the context of
its use with hierarchical Bayes procedures (in Chapter 12).

9.3 Variance Reduction

The use of independent random draws in simulation is appealing be-
cause it is conceptually straightforward and the statistical properties
of the resulting simulator are easy to derive. However, there are other
ways to take draws that can provide greater accuracy for a given num-
ber of draws. We examine these alternative methods in the following
sections.

Recall that the objective is to approximate an integral of the form∫
t(ε) f (ε) dε. In taking a sequence of draws from the density f (·), two

issues are at stake: coverage and covariance. Consider coverage first.
The integral is over the entire density f . It seems reasonable that a more
accurate approximation would be obtained by evaluating t(ε) at values of
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ε that are spread throughout the domain of f . With independent random
draws, it is possible that the draws will be clumped together, with no
draws from large areas of the domain. Procedures that guarantee better
coverage can be expected to provide a better approximation.

Covariance is another issue. With independent draws, the covariance
over draws is zero. The variance of a simulator based on R independent
draws is therefore the variance based on one draw divided by R. If
the draws are negatively correlated instead of independent, then the
variance of the simulator is lower. Consider R = 2. The variance of
ť = [t(ε1) + t(ε2)]/2 is [V (t(ε1) + V (t(ε2) + 2 Cov(t(ε1), t(ε2))]/4. If
the draws are independent, then the variance is V (t(εr ))/2. If the two
draws are negatively correlated with each other, the covariance term
is negative and the variance becomes less than V (t(εr ))/2. Essentially,
when the draws are negatively correlated within an unbiased simulator,
a value above t̄ = Er (t(ε)) for one draw will tend to be associated with
a value for the next draw that is below Er (t(ε)), such that their average
is closer to the true value t̄ .

The same concept arises when simulators are summed over obser-
vations. For example, the simulated log-likelihood function is a sum
over observations of the log of simulated probabilities. If the draws for
each observation’s simulation are independent of the draws for the other
observations, then the variance of the sum is simply the sum of the vari-
ances. If the draws are taken in a way that creates negative correlation
over observations, then the variance of the sum is lower.

For a given observation, the issue of covariance is related to coverage.
By inducing a negative correlation between draws, better coverage is
usually assured. With R = 2, if the two draws are taken independently,
then both could end up being at the low side of the distribution. If negative
correlation is induced, then the second draw will tend to be high if the
first draw is low, which provides better coverage.

We describe below methods to attain better coverage for each obser-
vation’s integral and to induce negative correlation over the draws for
each observation as well as over observations. We assume for the sake
of discussion that the integral is a choice probability and that the sum
over observations is the simulated log-likelihood function. However, the
concepts apply to other integrals, such as scores, and to other sums, such
as moment conditions and market shares. Also, unless otherwise noted,
we illustrate the methods with only two random terms so that the draws
can be depicted graphically. The random terms are labeled εa and εb,
and collectively as ε = 〈εa, εb〉′. A draw of ε from its density f (ε) is
denoted εr = 〈εa

r , εb
r 〉′ for r = 1, . . . , R. Thus, εa

3 , for example, is the
third draw of the first random term.
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εa

εb
ε1

ε2

Figure 9.4. Reverse sign of both elements.

9.3.1. Antithetics

Antithetic draws, suggested by Hammersley and Morton (1956),
are obtained by creating various types of mirror images of a random
draw. For a symmetric density that is centered on zero, the simplest
antithetic variate is created by reversing the sign of all elements of a
draw. Figure 9.4 illustrates. Suppose a random draw is taken from f (ε)
and the value ε1 = 〈εa

1 , ε
b
1〉′ is obtained. The second “draw,” which is

called the antithetic of the first draw, is created as ε2 = 〈−εa
1 , −εb

1〉′.
Each draw from f creates a pair of “draws,” the original draw and its
mirror image (mirrored through the origin). To obtain a total of R draws,
R/2 draws are taken independently from f and the other R/2 are created
as the negative of the original draws.

When the density is not centered on zero, the same concept is applied
but through a different process. For example, the standard uniform den-
sity is between 0 and 1, centered on 0.5. A draw is taken, labeled µ1,
and its antithetic variate is created as µ2 = 1 − µ1. The variate is the
same distance from 0.5 as the original draw, but on the other side of 0.5.
In general, for any univariate density with cumulative function F(ε),
the antithetic of a draw ε is created as F−1(1 − F(ε)). In the case of a
symmetric density centered on zero, this general formula is equivalent
to simply reversing the sign. In the remaining discussion we assume
that the density is symmetric and centered on zero, which makes the
concepts easier to express and visualize.

The correlation between a draw and its antithetic variate is exactly −1,
so that the variance of their sum is zero: V (ε1 + ε2) = V (ε1) + V (ε2) +
2 Cov(ε1, ε2) = 0. This fact does not mean that there is no variance in the
simulated probability that is based on these draws. The simulated proba-
bility is a nonlinear function of the random terms, and so the correlation
between P(ε1) and P(ε2) is less than one. The variance of the simulated
probability P̌ = 1

2 [P(ε1) + P(ε2)] is greater than zero. However, the
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εa

εb
ε1

ε4

ε2

ε3

Figure 9.5. Reverse sign of each element, then of both.

variance of the simulated probabilities is less than 1
2 Vr (P(εr )), which is

the variance with two independent draws.
As shown in Figure 9.4, reversing the sign of a draw gives evaluation

points in opposite quadrants. The concept can be extended to obtain
draws in each quadrant. A draw is taken, and then antithetic draws are
created by reversing the sign of each element alone (leaving the sign
of the other elements unchanged), reversing the sign of each pair of
elements, each triplet of elements, and so on. For ε with two elements,
this process creates three antithetic draws for each independent draw.
For ε1 = 〈εa

1 , ε
b
1〉′, the antithetic draws are

ε2 = 〈−εa
1 , ε

b
1

〉′
,

ε3 = 〈
εa

1 , −εb
1

〉′
,

ε4 = 〈−εa
1 , −εb

1

〉′
.

These draws are shown in Figure 9.5. Each quadrant contains a draw.
Better coverage and higher negative correlation can be obtained by

shifting the position of each element as well as reversing their signs. In
Figure 9.5, ε1 and ε2 are fairly close together, as are ε3 and ε4. This place-
ment leaves large uncovered areas between ε1 and ε3 and between ε2 and
ε4. Orthogonal draws with even placement can be obtained by switching
element εa

1 with εb
1 while also reversing the signs. The antithetic draws

are

ε2 = 〈−εb
1, ε

a
1

〉′
,

ε3 = 〈
εb

1, −εa
1

〉′
,

ε4 = 〈−εa
1 , −εb

1

〉′
,

which are illustrated in Figure 9.6. These concepts can, of course, be
extended to any number of dimensions. For M-dimensional ε, each
random draw creates 2M antithetic draws (including the original one),
with one in each quadrant.
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εa

ε1

ε2

ε3

b

4ε

Figure 9.6. Switch positions and reverse signs.

0

1

1/4 1/2 3/4 1

0
Random draws

Systematic draws

Figure 9.7. Draws from standard uniform.

Comparisons performed by Vijverberg (1997) and Sándor and András
(2001) show that antithetics substantially improve the estimation of pro-
bit models. Similarly, Geweke (1988) has shown their value when cal-
culating statistics based on Bayesian posteriors.

9.3.2. Systematic Sampling

Coverage can also be improved through systematic sampling
(McGrath, 1970), which creates a grid of points over the support of the
density and randomly shifts the entire grid. Consider draws from a uni-
form distribution between 0 and 1. If four draws are taken independently,
the points may look like those in the top part of Figure 9.7, which provide
fairly poor coverage. Instead, the unit interval is divided into four seg-
ments and draws taken in a way that assures one draw in each segment
with equal distance between the draws. Take a draw from a uniform
between 0 and 0.25 (by drawing from a standard uniform and dividing
the result by 4). Label the draw ε1. Three other draws are created as

ε2 = 0.25 + ε1,

ε3 = 0.50 + ε1,

ε4 = 0.75 + ε1.
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1/4 1/2 3/4

1/4

1/2

3/4

ε1 ε2 ε3 ε4

ε5 ε6 ε7 ε8

ε9 ε10 ε11 ε12

ε13 ε14 ε15 ε16

Figure 9.8. Systematic draws in two dimensions.

These draws look like those in the bottom part of Figure 9.7, which
provide better coverage than independent draws.

The issue arises of how finely to segment the interval. For example, to
obtain a total of 100 draws, the unit interval can be divided into 100 seg-
ments. A draw between 0 and 0.01 is taken, and then the other 99 draws
are created from this one draw. Instead, the unit interval can be divided
into fewer than 100 draws and more independent draws taken. If the in-
terval is divided into four segments, then 25 independent draws are taken
between 0 and 0.25, and three draws in the other segments are created
for each of the independent draws. There is a tradeoff that the researcher
must consider in deciding how fine a grid to use in systematic sampling.
More segments provide more even coverage for a given total number
of draws. However, fewer segments provide more randomness to the
process. In our example with R = 100, there is only one random draw
when 100 segments are used, whereas there are 25 random draws when
four segments are used.

The randomness of simulation draws is a necessary component in
the derivation of the asymptotic properties of the simulation-based esti-
mators, as described in Chapter 10. Many of the asymptotic properties
rely on the concept that the number of random draws increases without
bound with sample size. The asymptotic distributions become relatively
accurate only when enough random draws have been taken. Therefore,
for a given total number of draws, the goal of better coverage, which
is attained with a more finely defined segmentation, needs to be traded
off against the goal of having enough randomness for the asymptotic
formulas to apply, which is attained with a more coarsely defined seg-
mentation. The same issue applies to the antithetics discussed earlier.

Systematic sampling can be performed in multiple dimensions. Con-
sider a two-dimensional uniform on the unit square. A grid is created
by dividing each dimension into segments. As shown in Figure 9.8,
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0 0.67_ 0.67
ε1 ε2 ε3 ε4

Figure 9.9. Systematic draws for univariate normal.

when each dimension is divided into four segments, the unit square is
partitioned into 16 areas. A draw between 0 and 0.25 is taken for each el-
ement, giving ε1 = 〈εa

1 , ε
b
1〉′, where 0 < εa

1 < 0.25 and 0 < εb
1 < 0.25.

This draw falls somewhere in the bottom-left area in Figure 9.8. Fif-
teen other draws are then created as the “origin” of each area, plus
〈εa

1 , ε
b
1〉′. For example, the point that is created for the bottom-right area

is ε4 = 〈(0.75 + εa
1 ), (0 + εb

1)〉′.
These draws are defined for a uniform distribution. When f represents

another density, the points are transformed using the method described
in Section 9.2.3. In particular, let F be the cumulative distribution associ-
ated with univariate density f . Systematic draws from f are created by
transforming each systematic draw from a uniform by F−1. For example,
for a standard normal, four equal-sized segments of the density
are created with breakpoints: �−1(0.25) = −0.67, �−1(0.5) = 0, and
�−1(0.75) = 0.67. As shown in Figure 9.9, these segments are equal-
sized in the sense that each contains the same mass. The draws for the
standard normal are created by taking a draw from a uniform between
0 and 0.25, labeled µ1. The corresponding point on the normal is ε1 =
�−1(µ1), which falls in the first segment. The points for the other three
segments are created as ε2 = �−1(0.25 + µ1), ε3 = �−1(0.5 + µ1), and
ε4 = �−1(0.75 + µ1).

Draws of multidimensional random terms are obtained similarly, pro-
vided that the elements are independent. For example, if ε consists of
two elements each of which is standard normal, then draws analogous
to those in Figure 9.8 are obtained as follows: Draw µa

1 and µb
1 from

a uniform between 0 and 0.25. Calculate ε1 as 〈�−1(µa
1), �−1(µb

1)〉′.
Calculate the other 15 points as εr as 〈�−1(xr + µa

1), �−1(yr + µb
1)〉′,

where 〈xr , yr 〉′ is the origin of area r in the unit square.
The requirement that the elements of ε be independent is not restric-

tive. Correlated random elements are created through transformations of
independent elements, such as the Choleski transformation. The inde-
pendent elements are drawn from their density, and then the correlation
is created inside the model.
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0 0.67_ 0.67
ε1 ε2 ε3 ε4

Figure 9.10. Symmetric systematic draws.

Obviously, numerous sets of systemtically sampled draws can be ob-
tained to gain more randomization. In two dimensions with four seg-
ments in each dimension, 64 draws are obtained by taking 4 independent
draws in the 0-to- 1

4 square and creating 15 other draws from each. This
procedure provides greater randomization but less fine coverage than
defining the draws in terms of eight segments in each dimension such
that each random draw in the 0 to 1

8 square translates into 64 systematic
draws.

The draws for the normal distribution that are created as just described
are not symmetric around zero. An alternative approach can be used
to assure such symmetry. For a unidimensional normal, 4 draws that
are symmetric around zero are obtained as follows. Draw a uniform
between 0 and 0.25, labeled µ1. Create the draw from the normal as ε1 =
�−1(µ1). Create the draw for the second segment as ε2 = �−1(0.25 +
µ1). Then create the draws for the third and fourth segments as the
negative of these draws: ε3 = −ε2 and ε4 = −ε1. Figure 9.10 illustrates
the draws using the same µ1 as for Figure 9.9. This procedure combines
systematic sampling with antithetics. It can be extended to multiple
dimensions by creating systematic draws for the positive quadrant and
then creating antithetic variates for the other quadrants.

9.3.3. Halton Sequences

Halton sequences (Halton, 1960) provide coverage and, unlike
the other methods we have discussed, induce a negative correlation over
observations. A Halton sequence is defined in terms of a given number,
usually a prime. The sequence is most easily understood though an ex-
ample. Consider the prime 3. The Halton sequence for 3 is created by
dividing the unit interval into three parts with breaks at 1

3 and 2
3 , as shown

in the top panel of Figure 9.11. The first terms in the sequence are these
breakpoints: 1

3 ,
2
3 . Then each of the three segments is divided into thirds,

and the breakpoints for these segments are added to the sequences in a
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1/3

1/9

2/3

4/9 7/9

2/9 5/9 8/9

a

a

b

eb

a b

c d

ec d hf g

Figure 9.11. Halton sequence for prime 3.

particular way. The sequence becomes 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 . Note that

the lower breakpoints in all three segments ( 1
9 ,

4
9 ,

7
9 ) are entered in the

sequence before the higher breakpoints ( 2
9 ,

5
9 ,

8
9 .) Then each of the nine

segments is divided into thirds, with the breakpoints added to the se-
quences. The sequence becomes 1

3 ,
2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 ,

1
27 ,

10
27 ,

19
27 ,

4
27 ,

13
27 ,

and so on. This process is continued for as many points as the researcher
wants to obtain.

From a programming perspective, it is easy to create a Halton se-
quence. The sequence is created iteratively. At each iteration t , the
sequence is denoted st , which is a series of numbers. The sequence
is extended in each iteration with the new sequence being st+1 =
{st , st + 1/3t , st + 2/3t}. Start with 0 as the initial sequence: s0 = {0}.
The number zero is not actually part of a Halton sequence, but consid-
ering it to be the first element facilitates creation of the sequence, as we
will see. It can be dropped after the entire sequence is created. In the
first iteration, add 1/31 (= 1

3 ) and then 2/31 (= 2
3 ) to this element and

append the results, to get {0, 1
3 ,

2
3}. The sequence has three elements. In

the second iteration, add 1/32 (= 1
9 ) and then 2/32 (= 2

9 ) to each element
of the sequence and append the results:

0 = 0,

1/3 = 1/3,

2/3 = 2/3,

0 + 1/9 = 1/9,

1/3 + 1/9 = 4/9,

2/3 + 1/9 = 7/9,

0 + 2/9 = 2/9,

1/3 + 2/9 = 5/9,

2/3 + 2/9 = 8/9.

The new sequence consists of nine elements.
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In the third iteration, add 1/33 (= 1
27 ) and then 2/33 (= 1

27 ) to each
element of this sequence and append the results:

0 = 0,

1/3 = 1/3,

2/3 = 2/3,

1/9 = 1/9,

4/9 = 4/9,

7/9 = 7/9,

2/9 = 2/9,

5/9 = 5/9,

8/9 = 8/9,

0 + 1/27 = 1/27,

1/3 + 1/27 = 10/27,

2/3 + 1/27 = 19/27,

1/9 + 1/27 = 4/27,

4/9 + 1/27 = 13/27,

7/9 + 1/27 = 22/27,

2/9 + 1/27 = 7/27,

5/9 + 1/27 = 16/27,

8/9 + 1/27 = 25/27,

0 + 2/27 = 2/27,

1/3 + 2/27 = 11/27,

2/3 + 2/27 = 20/27,

1/9 + 2/27 = 5/27,

4/9 + 2/27 = 14/27,

7/9 + 2/27 = 23/27,

2/9 + 2/27 = 8/27,

5/9 + 2/27 = 17/27,

8/9 + 2/27 = 26/27.

The sequence now consists of 27 elements. In the fourth iteration, add
1/34 (= 1

81 ) and then 2/34 (= 2
81 ) to each element of the sequence and

append the results, and so on.
Note that the sequence cycles over the unit interval every three

numbers:

0 1/3 2/3
1/9 4/9 7/9
2/9 5/9 8/9

1/27 10/27 19/27
4/27 13/27 22/27
7/27 16/27 25/27
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2/27 11/27 20/27
5/27 14/27 23/27
8/27 17/27 26/27

Within each cycle the numbers are ascending.
Halton sequences for other prime numbers are created similarly. The

sequence for 2 is { 1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

1
16 ,

9
16 , . . .}. In general, the se-

quence for prime k is created iteratively, with the sequence at iteration
t + 1 being st+1 = {st , st + 1/kt , st + 2/kt , . . . , st + (k − 1)/kt}. The
sequence contains cycles of length k, where each cycle consists of k
ascending points on the unit interval equidistant from each other.

Since a Halton sequence is defined on the unit interval, its elements
can be considered as well-placed “draws” from a standard uniform den-
sity. The Halton draws provide better coverage than random draws, on
average, because they are created to progressively fill in the unit interval
evenly and ever more densely. The elements in each cycle are equidistant
apart, and each cycle covers the unit interval in the areas not covered by
previous cycles.

When using Halton draws for a sample of observations, one long
Halton sequence is usually created and then part of the sequence is used
for each observation. The initial elements of the sequence are discarded
for reasons we will discuss. The remaining elements are then used in
groups, with each group of elements constituting the “draws” for one
observation. For example, suppose there are two observations, and the
researcher wants R = 5 draws for each. If the prime 3 is used, and the
researcher decides to discard the first 10 elements, then a sequence of
length 20 is created. This sequence is

0 1/3 2/3
1/9 4/9 7/9
2/9 5/9 8/9
1/27 10/27 19/27
4/27 13/27 22/27
7/27 16/27 25/27
2/27 11/27.

After eliminating the first 10 elements, the Halton draws for the first
observation are { 10

27 ,
19
27 ,

4
27 ,

13
27 ,

22
27} and the Halton draws for the second

observation are { 7
27 ,

16
27 ,

25
27 ,

2
27 ,

11
27}. These draws are illustrated in Fig-

ure 9.12. Note that the gaps in coverage for the first observation are filled
by the draws for the second observation. For example, the large gap be-
tween 4

27 and 10
27 for the first observation is filled in by the midpoint of

this gap, 7
27 , for the second observation. The gap between 13

27 and 19
27 is
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10/27
13/27

19/27
22/27

4/27

2/27
7/27

11/27
16/27

25/27

1st observation

2nd observation

Figure 9.12. Halton draws for two observations.

filled in by its midpoint, 16
27 , for the second observation, and so on. The

pattern by which Halton sequences are created makes them such that
each subsequence fills in the gaps of the previous subsequences.

Because of this filling-in property, simulated probabilities based on
Halton draws tend to be self-correcting over observations. The draws
for one observation tend to be negatively correlated with those for the
previous observation. In our example, the average of the first observa-
tion’s draws is above 0.5, while the average of the draws for the second
observation is below 0.5. This negative correlation reduces error in the
simulated log-likelihood function.

When the number of draws used for each observation rises, the cover-
age for each observation improves. The negative covariance across ob-
servations diminishes, since there are fewer gaps in each observation’s
coverage to be filled in by the next observation. The self-correcting as-
pect of Halton draws over observations is greatest when few draws are
used for each observation so that the correction is most needed. However,
accuracy improves with more Halton draws, since coverage is better for
each observation.

As described so far, the Halton draws are for a uniform density. To
obtain a sequence of points for other univariate densities, the inverse
cumulative distribution is evaluated at each element of the Halton se-
quence. For example, suppose the researcher wants draws from a stan-
dard normal density. A Halton sequence is created for, say, prime 3, and
the inverse cumulative normal is taken for each element. The resulting
sequence is

�−1 1
3 = −0.43,

�−1 2
3 = 0.43,

�−1 1
9 = −1.2,

�−1 4
9 = −0.14,

�−1 7
9 = 0.76,

...
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_
1.2

_
0.76

_
0.43

_
0.14

0.14
0.43

0.76
1.2

Figure 9.13. Halton draws for a standard normal.

1/2

1/3

2/3

ε1

ε2

ε3

ε4

ε5

ε6

Figure 9.14. Halton sequence in two dimensions for primes 2 and 3.

This sequence is depicted in Figure 9.13. It can be considered the same
as for the unit interval, as dividing the density into three segments of
equal mass, with breakpoints at −0.43 and +0.43, and then dividing
each segment into three subsegments of equal mass, and so on.

Halton sequences in multiple dimensions are obtained by creating
a Halton sequence for each dimension with a different prime for each
dimension. For example, a sequence in two dimensions is obtained by
creating pairs from the Halton sequence for primes 2 and 3. The points are

ε1 = 〈
1
2 ,

1
3

〉
,

ε2 = 〈
1
4 ,

2
3

〉
,

ε3 = 〈
3
4 ,

1
9

〉
,

ε4 = 〈
1
8 ,

4
9

〉
,

ε5 = 〈
5
8 ,

7
9

〉
,

ε6 = 〈
3
8 ,

2
9

〉
,

...

This sequence is depicted in Figure 9.14. To obtain draws for a
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ε1

ε2

ε3

ε4

ε5

ε6

εa

b

Figure 9.15. Halton sequence for two-dimensional standard normal.

two-dimensional independent standard normal, the inverse cumulative
normal is taken of each element of these pairs. The draws are

ε1 = 〈0, −0.43〉,
ε2 = 〈−0.67, 0.43〉,
ε3 = 〈0.67, −1.2〉,
ε4 = 〈−1.15, −0.14〉,
ε5 = 〈0.32, 0.76〉,
ε6 = 〈−.32, −0.76〉,

...

which are shown in Figure 9.15.
When creating sequences in several dimensions, it is customary to

eliminate the initial part of the series. The initial terms of two Halton
sequences are highly correlated, through at least the first cycle of
each sequence. For example, the sequences for 7 and 11 begin with
{ 1

7 ,
2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7} and { 1

11 ,
2
11 ,

3
11 ,

4
11 ,

5
11 ,

6
11}. These first elements fall on

a line in two dimensions, as shown in Figure 9.16. The correlation dis-
sipates after each sequence has cycled through the unit interval, since
sequences with different primes cycle at different rates. Discarding the
initial part of the sequence eliminates the correlation. The number of
initial elements to discard needs to be at least as large as the largest
prime that is used in creating the sequences.

The potential for correlation is the reason that prime numbers are used
to create the Halton sequences instead of nonprimes. If a nonprime is
used, then there is a possibility that the cycles will coincide throughout
the entire sequence, rather than for just the initial elements. For example,
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10
0

1

Figure 9.16. First six elements of Halton sequence for primes 7 and 11.

if Halton sequences are created for 3 and 6, the sequence for 3 cycles
twice for every one cycle of the sequence for 6. Since the elements within
a cycle are ascending, the elements in each cycle of the sequence for 3
are correlated with the elements in the cycle of the sequence for 6. Using
only prime numbers avoids this overlapping of cycles.

The superior coverage and the negative correlation over observations
that are obtained with Halton draws combine to make Halton draws far
more effective than random draws for simulation. Spanier and Maize
(1991) have shown that a small number of Halton draws provide rela-
tively good integration. In the context of discrete choice models, Bhat
(2001) found that 100 Halton draws provided more precise results for his
mixed logit than 1000 random draws. In fact, the simulation error with
125 Halton draws was half as large as with 1000 random draws and some-
what smaller than with 2000 random draws. Train (2000), Munizaga and
Alvarez-Daziano (2001), and Hensher (2001) confirm these results on
other datasets.

As illustration, consider the mixed logit model that is described ex-
tensively in Chapter 11. Briefly, the model is for households’ choice
of electricity supplier. In a stated-preference survey, respondents were
presented with a series of hypothetical choice situations. In each situa-
tion, four energy suppliers were described and the respondent was asked
which company he would choose. The suppliers were differentiated on
the basis of their price, whether the company required the customer to
sign a long-term contract, whether the supplier was the local energy
utility, whether the supplier was a well-known company, and whether
the supplier offered time-of-day (TOD) or seasonal rates. A mixed
logit model was estimated with these six characteristics as explanatory
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Table 9.1. Means of parameter estimates

1000 Random Draws 100 Halton Draws

Price −0.8607 −0.8588

Contract length:
Mean −0.1955 −0.1965
Std. dev. 0.3092 0.3158

Local utility:
Mean 2.0967 2.1142
Std. dev. 1.0535 1.0236

Known company:
Mean 1.4310 1.4419
Std. dev. 0.8208 0.6894

TOD rates:
Mean −8.3760 −8.4149
Std. dev. 2.4647 2.5466

Seasonal rates:
Mean −8.6286 −8.6381
Std. dev. 1.8492 1.8977

variables. The coefficient of each variable was assumed to be normally
distributed, except for the price coefficient, which was assumed to be
fixed. The model therefore contained five random terms for simulation.
A complete description of the data, the estimated model, and its implica-
tions are given in Chapter 11, where the content of the model is relevant
to the topic of the chapter. For now, we are concerned only with the issue
of Halton draws compared to random draws.

To investigate this issue, the model was estimated with 1000 random
draws and then with 100 Halton draws. More specifically, the model
was estimated five times using five different sets of 1000 random draws.
The mean and standard deviation of the estimated parameters from these
five runs were calculated. The model was then estimated five times with
Halton sequences. The first model used the primes 2, 3, 5, 7, 11 for the
five dimensions of simulation. The order of the primes was switched for
the other models, so that the dimension for which each prime was used
changed in the five runs. The average and standard deviation of the five
sets of estimates were then calculated.

The means of the parameter estimates over the five runs are given in
Table 9.1. The mean for the runs based on random draws are given in
the first column, and the means for the runs based on Halton draws are
given in the second column. The two sets of means are very similar.
This result indicates that the Halton draws provide the same estimates,
on average, as random draws.
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Table 9.2. Standard deviations of parameter
estimates

1000 Random Draws 100 Halton Draws

Price 0.0310 0.0169

Contract length:
Mean 0.0093 0.0045
Std. dev. 0.0222 0.0108

Local utility:
Mean 0.0844 0.0361
Std. dev. 0.1584 0.1180

Known company:
Mean 0.0580 0.0242
Std. dev. 0.0738 0.1753

TOD rates:
Mean 0.3372 0.1650
Std. dev. 0.1578 0.0696

Seasonal rates:
Mean 0.4134 0.1789
Std. dev. 0.2418 0.0679

The standard deviations of the parameter estimates are given in Ta-
ble 9.2. For all but one of the 11 parameters, the standard deviations are
lower with 100 Halton draws than with 1000 random draws. For eight
of the parameters, the standard deviations are half as large. Given that
both sets of draws give essentially the same means, the lower standard
deviations with the Halton draws indicate that a researcher can expect to
be closer to the expected values of the estimates using 100 Halton draws
than 1000 random draws.

These results show the value of Halton draws. Computer time can be
reduced by a factor of ten by using Halton draws instead of random
draws, without reducing, and in fact increasing, accuracy.

These results need to be viewed with caution, however. The use of
Halton draws and other quasi-random numbers in simulation-based es-
timation is fairly new and not completely understood. For example, an
anomaly arose in the analysis that serves as a warning. The model was
reestimated with 125 Halton draws instead of 100. It was estimated five
times under each of the five orderings of the prime numbers as described
earlier. Four of the five runs provided very similar estimates. However,
the fifth run gave estimates that were noticeably different from the others.
For example, the estimated price coefficient for the first four runs was
−0.862, −0.865, −0.863, and −0.864, respectively, while the fifth gave
−0.911. The standard deviations over the five sets of estimates were
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lower than with 1000 random draws, confirming the value of the Halton
draws. However, the standard deviations were greater with 125 Halton
draws than with 100 Halton draws, due to the last run with 125 draws
providing such different results. The reason for this anomaly has not been
determined. Its occurrence indicates the need for further investigation
of the properties of Halton sequences in simulation-based estimation.

9.3.4. Randomized Halton Draws

Halton sequences are systematic rather than random. However,
the asymptotic properties of simulation-based estimators are derived
under the assumption that the draws are random. There are two ways
that this issue can be addressed. First, one can realize that draws from
a random number generator are not actually random either. They are
systematic, like anything done by a computer. A random number gener-
ator creates draws that have many of the characteristics of truly random
draws, but in fact they are only pseudorandom. In this regard, therefore,
Halton draws can be seen as a systematic way of approximating integra-
tion that is more precise than using pseudorandom draws, which are also
systematic. Neither matches the theoretical concept of randomness, and,
in fact, it is not clear that the theoretical concept actually has a real-world
counterpart. Both meet the basic underlying goal of approximating an
integral over a density.

Second, Halton sequences can be transformed in a way that makes
them random, at least in the same way that pseudorandom numbers are
random. Bhat (forthcoming) describes the process, based on procedures
introduced by Tuffin (1996):

1. Take a draw from a standard uniform density. Label this random
draw µ.

2. Add µ to each element of the Halton sequence. If the resulting
element exceeds 1, subtract 1 from it. Otherwise, keep the result-
ing element as is (without subtracting 1).

The formula for this transformation is sn = mod(so + µ), where so is the
original element of the Halton sequence, sn is the transformed element,
and mod takes the fractional part of the argument in parentheses.

The transformation is depicted in Figure 9.17. Suppose the draw of µ

from the uniform density is 0.40. The number 0.33 is the first element of
the Halton sequence for prime 3. This element is transformed, as shown
in the top panel, to 0.33 + 0.40 = 0.73, which is just a 0.40 move up
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0.33
0.73

0.07
0.67

0.330.07

0.40

Figure 9.17. Random transformation of Halton draws with µ = 0.40.
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sequence 0.33

0.44
0.67

0.78
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0.18

0.51
0.73

0.84

Transformed 
sequence

Figure 9.18. Randomization of Halton sequence in one dimension.

the line. The number 0.67 is the second element of the sequence. It
is transformed by adding 0.4 and then, since the result exceeds 1, by
subtracting 1 to get 0.07 (0.67 + 0.40 − 1 = 0.07). As shown in the
bottom panel, this transformation is visualized as moving the original
point up by a distance 0.40, but wrapping around when the end of the
unit interval is reached. The point moves up 0.33 to where the line ends,
and then wraps to the start of the line and continues to move up another
0.07, for a total movement of 0.40.

Figure 9.18 depicts the transformation for the first five elements of the
sequence. The relation between the points and the degree of coverage
are the same before and after the transformation. However, since the
transformation is based on the random draw of µ, the numerical values
of the transformed sequence are random. The resulting sequence is called
a randomized Halton sequence. It has the same properties of coverage
and negative correlation over observations as the original Halton draws,
since the relative placement of the elements is the same; however, it is
now random.

With multiple dimensions, the sequence used for each dimension is
transformed separately based on its own draw from the standard uniform
density. Figure 9.19 represents a transformation of a two-dimensional
sequence of length 3 defined for primes 2 and 3. The sequence for
prime 3 is given by the x-axis and obtains a random draw of 0.40. The
sequence for prime 2 obtains a draw of 0.35. Each point in the original
two-dimensional sequence is moved to the right by 0.40 and up by 0.35,
wrapping as needed. The relation between the points in each dimension
is maintained, and yet the sequence is now random.
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Figure 9.19. Randomization of Halton sequence in two dimensions.

9.3.5. Scrambled Halton Draws

Another issue with Halton draws arises when they are used in
high dimensions. For simulation of high-dimensional integrals, Halton
sequences based on large primes are necessary. For example, with 15 di-
mensions, the primes up to 47 are needed. However, Halton draws de-
fined by large primes can be highly correlated with each other over large
portions of the sequence. The correlation is not confined to the initial
elements as described earlier, and so cannot be eliminated by discard-
ing these elements. Two sequences defined by large and similar primes
periodically become synchronized with each other and stay that way for
many cycles.

Bhat (forthcoming) describes the problem and an effective solution.
Figure 9.20 reproduces a graph from his paper that depicts the Halton
sequence for primes 43 and 47. Clearly, these sequences are highly
correlated.

This correlation can be removed while retaining the desirable coverage
of Halton sequences by scrambling the digits of each element of the



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-09Drv CB495/Train KEY BOARDED August 20, 2002 14:1 Char Count= 0

Drawing from Densities 237

Dimension 14
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0
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Figure 9.20. Standard Halton sequence.

A B C

CCBCACCBBBABCABAAA

Figure 9.21. Segments for scrambling the Halton sequence.

sequences. The scrambling can be done in various ways. Braatan and
Weller (1979) describe a procedure that is most easily explained through
an example. Consider the Halton sequence for prime 3:

1

3
,

2

3
,

1

9
,

4

9
,

7

9
,

2

9
,

5

9
,

8

9
, . . . .

Recall that the sequence is created by dividing the unit interval into three
segments, which we label A, B, and C in Figure 9.21. Each segment is
divided into three subsegments, labeled AA (for subsegment A of segment
A), BA (subsegment B of segment A), CA, AB, BB, CB, AC, BC, and CC.
The Halton sequence is the starting point of each segment arranged
alphabetically and ignoring A (i.e., ignore A, 1

3 for B, 2
3 for C), followed

by the starting point of each subsegment arranged alphabetically and
ignoring A (i.e., ignore AA, AB, and AC, 1

9 for BA, 4
9 for BB, 7

9 for BC, 2
9

for CA, 5
9 for CB, and 8

9 for CC.) Note that the segments and subsegments
starting with A are ignored because their starting points either are 0 (for
segment A) or are already included in the sequence (e.g., the starting
point of subsegment AB is the same as the starting point of segment B).
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Figure 9.22. Scrambled Halton sequence.

The scrambled sequence is obtained by reversing B and C, that is, by
considering C to be before B in the alphabet. The alphabetical listing is
now: segments A C B, subsegments AA AC AB CA CC CB BA BC BB.
The sequence is then created the same way as before but with this new
alphabetical ordering: ignore A, 2

3 for C, 1
3 for B; ignore AA, AC, and

AB, 2
9 for CA, 8

9 for CC, 5
9 for CB, 1

9 for BA, 7
9 for BC, 4

9 for BB. The
orginal and scrambled sequences are:

Original Scrambled
1/3 2/3
2/3 1/3
1/9 2/9
4/9 8/9
7/9 5/9
2/9 1/9
5/9 7/9
8/9 4/9

Different permutations of the letters are used for different primes.
Figure 9.22, from Bhat (forthcoming), shows the scrambled sequence
for primes 43 and 47. The points are not correlated as they are in the
original sequence. Bhat demonstrates that scrambled sequences perform
well for high-dimensional integrals in the same way that unscrambled
ones do for low-dimensional integrals.
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9.3.6. Other Procedures

We have described only a few of the most prominent and
straightforward antithetic and quasi-random procedures. More com-
plex procedures, with desirable theoretical properties, are described by
Niederreiter (1978, 1988), Morokoff and Caflisch (1995), Joe and Sloan
(1993), and Sloan and Wozniakowski (1998), to name only a few in this
burgeoning area of research. As we have seen with Halton sequences,
fairly simple procedures can provide large improvements over random
draws. Comparisons performed by Sándor and András (2001) on probit
and Sándor and Train (2002) on mixed logit indicate that the accuracy of
simulation-based estimation of discrete choice models can be improved
even further with the more complex procedures. It is important to re-
member, however, in the excitement of these methods, that accuracy can
always be improved by simply using more draws. The researcher needs
to decide whether learning and coding new methods of taking draws
is more expedient, given her time constraints, than simply running her
model with more draws.
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10.1 Motivation

So far we have examined how to simulate choice probabilities but have
not investigated the properties of the parameter estimators that are based
on these simulated probabilities. In the applications we have presented,
we simply inserted the simulated probabilities into the log-likelihood
function and maximized this function, the same as if the probabilities
were exact. This procedure seems intuitively reasonable. However, we
have not actually shown, at least so far, that the resulting estimator has
any desirable properties, such as consistency, asymptotic normality, or
efficiency. We have also not explored the possibility that other forms of
estimation might perhaps be preferable when simulation is used rather
than exact probabilities.

The purpose of this chapter is to examine various methods of esti-
mation in the context of simulation. We derive the properties of these
estimators and show the conditions under which each estimator is con-
sistent and asymptotically equivalent to the estimator that would arise
with exact values rather than simulation. These conditions provide guid-
ance to the researcher on how the simulation needs to be performed to
obtain desirable properties of the resultant estimator. The analysis also
illuminates the advantages and limitations of each form of estimation,
thereby facilitating the researcher’s choice among methods.

We consider three methods of estimation:

1. Maximum Simulated Likelihood: MSL. This procedure is the
same as maximum likelihood (ML) except that simulated prob-
abilities are used in lieu of the exact probabilities. The proper-
ties of MSL have been derived by, for example, Gourieroux and
Monfort,(1993), Lee(1995), and Hajivassiliou and Ruud (1994).

2. Method of Simulated Moments: MSM. This procedure, sug-
gested by McFadden (1989), is a simulated analog to the tradi-
tional method of moments (MOM). Under traditional MOM for
discrete choice, residuals are defined as the difference between

240
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the 0–1 dependent variable that identifies the chosen alterna-
tive and the probability of the alternative. Exogenous variables
are identified that are uncorrelated with the model residuals in
the population. The estimates are the parameter values that make
the variables and residuals uncorrelated in the sample. The sim-
ulated version of this procedure calculates residuals with the
simulated probabilities rather than the exact probabilities.

3. Method of Simulated Scores: MSS. As discussed in Chapter 8,
the gradient of the log likelihood of an observation is called the
score of the observation. The method of scores finds the para-
meter values that set the average score to zero. When exact prob-
abilities are used, the method of scores is the same as maximum
likelihood, since the log-likelihood function is maximized when
the average score is zero. Hajivassiliou and McFadden (1998)
suggested using simulated scores instead of the exact ones. They
showed that, depending on how the scores are simulated, MSS
can differ from MSL and, importantly, can attain consistency
and efficiency under more relaxed conditions.

In the next section we define these estimators more formally and re-
late them to their nonsimulated counterparts. We then describe the prop-
erties of each estimator in two stages. First, we derive the properties of
the traditional estimator based on exact values. Second, we show how
the derivation changes when simulated values are used rather than exact
values. We show that the simulation adds extra elements to the sampling
distribution of the estimator. The analysis allows us to identify the condi-
tions under which these extra elements disappear asymptotically so that
the estimator is asymptotically equivalent to its nonsimulated analog.
We also identify more relaxed conditions under which the estimator,
though not asymptotically equivalent to its nonsimulated counterpart,
is nevertheless consistent.

10.2 Definition of Estimators

10.2.1. Maximum Simulated Likelihood

The log-likelihood function is

LL(θ ) =
∑

n

ln Pn(θ ),

where θ is a vector of parameters, Pn(θ ) is the (exact) probability of the
observed choice of observation n, and the summation is over a sample
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of N independent observations. The ML estimator is the value of θ that
maximizes LL(θ ). Since the gradient of LL(θ ) is zero at the maximum,
the ML estimator can also be defined as the value of θ at which∑

n

sn(θ ) = 0,

where sn(θ ) = ∂ ln Pn(θ )/∂θ is the score for observation n.
Let P̌n(θ ) be a simulated approximation to Pn(θ ). The simulated

log-likelihood function is SLL(θ ) = ∑
n ln P̌n(θ ), and the MSL esti-

mator is the value of θ that maximizes SLL(θ ). Stated equivalently,
the estimator is the value of θ at which

∑
n šn(θ ) = 0, where šn(θ ) =

∂ ln P̌n(θ )/∂θ.

A preview of the properties of MSL can be given now, with a full
explanation reserved for the next section. The main issue with MSL
arises because of the log transformation. Suppose P̌n(θ ) is an unbiased
simulator of Pn(θ ), so that Er P̌n(θ ) = Pn(θ ), where the expectation is
over draws used in the simulation. All of the simulators that we have
considered are unbiased for the true probability. However, since the
log operation is a nonlinear transformation, ln P̌n(θ ) is not unbiased
for ln Pn(θ ) even though P̌n(θ ) is unbiased for Pn(θ ). The bias in the
simulator of ln Pn(θ ) translates into bias in the MSL estimator. This bias
diminishes as more draws are used in the simulation.

To determine the asymptotic properties of the MSL estimator, the
question arises of how the simulation bias behaves when the sample
size rises. The answer depends critically on the relationship between
the number of draws that are used in the simulation, labeled R, and the
sample size, N . If R is considered fixed, then the MSL estimator does
not converge to the true parameters, because of the simulation bias in
ln P̌n(θ ). Suppose instead that R rises with N ; that is, the number of
draws rises with sample size. In this case, the simulation bias disappears
as N (and hence R) rises without bound. MSL is consistent in this case.
As we will see, if R rises faster than

√
N , MSL is not only consistent

but also efficient, asymptotically equivalent to maximum likelihood on
the exact probabilities.

In summary, if R is fixed, then MSL is inconsistent. If R rises at any
rate with N , then MSL is consistent. If R rises faster than

√
N , then

MSL is asymptotically equivalent to ML.
The primary limitation of MSL is that it is inconsistent for fixed R.

The other estimators that we consider are motivated by the desire for
a simulation-based estimator that is consistent for fixed R. Both MSM
and MSS, if structured appropriately, attain this goal. This benefit comes
at a price, however, as we see in the following discussion.
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10.2.2. Method of Simulated Moments

The traditional MOM is motivated by the recognition that the
residuals of a model are necessarily uncorrelated in the population
with factors that are exogenous to the behavior being modeled. The
MOM estimator is the value of the parameters that make the residu-
als in the sample uncorrelated with the exogenous variables. For dis-
crete choice models, MOM is defined as the parameters that solve the
equation

(10.1)
∑

n

∑
j

[dnj − Pnj (θ )]znj = 0,

where

dnj is the dependent variable that identifies the chosen alternative:
dnj = 1 if n chose j , and = 0 otherwise, and

znj is a vector of exogenous variables called instruments.

The residuals are dnj − Pnj (θ ), and the MOM estimator is the parameter
values at which the residuals are uncorrelated with the instruments in
the sample.

This MOM estimator is analogous to MOM estimators for standard
regression models. A regression model takes the form yn = x ′

nβ + εn .
The MOM estimator for this regression is the β at which

∑
n

(yn − x ′
nβ)zn = 0

for a vector of exogenous instruments zn . When the explanatory vari-
ables in the model are exogenous, then they serve as the instruments.
The MOM estimator in this case becomes the ordinary least squares
estimator:

∑
n

(yn − x ′
nβ)xn = 0,

∑
n

xn yn =
∑

n

xnx ′
nβ,

β̂ =
( ∑

n

xnx ′
n

)−1( ∑
n

xn yn

)
,

which is the formula for the least squares estimator. When instruments
are specified to be something other than the explanatory variables, the
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MOM estimator becomes the standard instrumental variables estimator:∑
n

(yn − x ′
nβ)zn = 0,

∑
n

zn yn =
∑

n

znx ′
nβ,

β̂ =
( ∑

n

znx ′
n

)−1( ∑
n

zn yn

)
,

which is the formula for the instrumental variables estimator. This esti-
mator is consistent if the instruments are independent of ε in the pop-
ulation. The estimator is more efficient the more highly correlated the
instruments are with the explanatory variables in the model. When the
explanatory variables, xn , are themselves exogenous, then the ideal in-
struments (i.e., those that give the highest efficiency) are the explanatory
variables themselves, zn = xn .

For discrete choice models, MOM is defined analogously and has
a similar relation to other estimators, especially ML. The researcher
identifies instruments znj that are exogenous and hence independent in
the population of the residuals [dnj − Pnj (θ )]. The MOM estimator is
the value of θ at which the sample correlation between instruments and
residuals is zero. Unlike the linear case, equation (10.1) cannot be solved
explicitly for θ̂ . Instead, numerical procedures are used to find the value
of θ that solves this equation.

As with regression, ML for a discrete choice model is a special case
of MOM. Let the instruments be the scores: znj = ∂ ln Pnj (θ )/∂θ . With
these instruments, MOM is the same as ML:∑

n

∑
j

[dnj − Pnj (θ )]znj = 0,

∑
n

( ∑
j

dnj
∂ ln Pnj (θ )

∂β

)
−

( ∑
j

Pnj (θ )
∂ ln Pnj (θ )

∂β

)
= 0,

∑
n

∂ lnPni (θ )

∂β
−

∑
n

∑
j

Pnj (θ )
1

Pnj (θ )

∂Pnj (θ )

∂θ
= 0,

∑
n

sn(θ ) −
∑

n

∑
j

∂Pnj (θ )

∂θ
= 0,

∑
n

sn(θ ) = 0,

which is the defining condition for ML. In the third line, i is the
chosen alternative, recognizing that dnj = 0 for all j �= i . The fourth
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line uses the fact that the sum of ∂Pnj/∂θ over alternatives is zero,
since the probabilities must sum to 1 before and after the change
in θ .

Since MOM becomes ML and hence is fully efficient when the in-
struments are the scores, the scores are called the ideal instruments.
MOM is consistent whenever the instruments are independent of the
model residuals. It is more efficient the higher the correlation between
the instruments and the ideal instruments.

An interesting simplification arises with standard logit. For the stan-
dard logit model, the ideal instruments are the explanatory variables
themselves. As shown in Section 3.7.1, the ML estimator for standard
logit is the value of θ that solves

∑
n

∑
j [dnj − Pnj (θ )]xnj = 0, where

xnj are the explanatory variables. This is a MOM estimator with the
explanatory variables as instruments.

A simulated version of MOM, called the method of simulated mo-
ments (MSM), is obtained by replacing the exact probabilities Pnj (θ )
with simulated probabilities P̌nj (θ ). The MSM estimator is the value of
θ that solves

∑
n

∑
j

[dnj − P̌nj (θ )]znj = 0

for instruments znj . As with its nonsimulated analog, MSM is consistent
if znj is independent of dnj − P̌nj (θ).

The important feature of this estimator is that P̌nj (θ ) enters the
equation linearly. As a result, if P̌nj (θ) is unbiased for Pnj (θ ), then
[dnj − P̌nj (θ )]znj is unbiased for [dnj − Pnj (θ )]znj . Since there is no
simulation bias in the estimation condition, the MSM estimator is con-
sistent, even when the number of draws R is fixed. In contrast, MSL
contains simulation bias due to the log transformation of the simulated
probabilities. By not taking a nonlinear transformation of the simulated
probabilities, MSM avoids simulation bias.

MSM still contains simulation noise (variance due to simulation). This
noise becomes smaller as R rises and disappears when R rises without
bound. As a result, MSM is asymptotically equivalent to MOM if R
rises with N .

Just like its unsimulated analog, MSM is less efficient than MSL un-
less the ideal instruments are used. However, the ideal instruments are
functions of ln Pnj . They cannot be calculated exactly for any but the sim-
plest models, and, if they are simulated using the simulated probability,
simulation bias is introduced by the log operation. MSM is usually
applied with nonideal weights, which means that there is a loss of
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efficiency. MSM with ideal weights that are simulated without bias be-
comes MSS, which we discuss in the next section.

In summary, MSM has the advantage over MSL of being consistent
with a fixed number of draws. However, there is no free lunch, and the
cost of this advantage is a loss of efficiency when nonideal weights are
used.

10.2.3. Method of Simulated Scores

MSS provides a possibility of attaining consistency without a
loss of efficiency. The cost of this double advantage is numerical: the
versions of MSS that provide efficiency have fairly poor numerical prop-
erties such that calculation of the estimator can be difficult.

The method of scores is defined by the condition∑
n

sn(θ ) = 0,

where sn(θ ) = ∂ ln Pn(θ )/∂θ is the score for observation n. This is the
same defining condition as ML: when exact probabilities are used, the
method of scores is simply ML.

The method of simulated scores replaces the exact score with a sim-
ulated counterpart. The MSS estimator is the value of θ that solves∑

n

šn(θ ) = 0,

where šn(θ ) is a simulator of the score. If šn(θ ) is calculated as the deriva-
tive of the log of the simulated probability; that is, šn(θ ) = ∂ ln P̌n(θ )/∂θ ,
then MSS is the same as MSL. However, the score can be simulated in
other ways. When the score is simulated in other ways, MSS differs from
MSL and has different properties.

Suppose that an unbiased simulator of the score can be constructed.
With this simulator, the defining equation

∑
n šn(θ ) = 0 does not in-

corporate any simulation bias, since the simulator enters the equation
linearly. MSS is therefore consistent with a fixed R. The simulation noise
decreases as R rises, such that MSS is asymptotically efficient, equiv-
alent to MSL, when R rises with N . In contrast, MSL uses the biased
score simulator šn(θ ) = ∂ ln P̌n(θ )/∂θ , which is biased due to the log
operator. MSS with an unbiased score simulator is therefore better than
MSL with its biased score simulator in two regards: it is consistent under
less stringent conditions (with fixed R rather than R rising with N ) and
is efficient under less stringent conditions (R rising at any rate with N
rather than R rising faster than

√
N ).
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The difficulty with MSS comes in finding an unbiased score simulator.
The score can be rewritten as

sn(θ ) = ∂ ln Pnj (θ )

∂θ
= 1

Pnj (θ )

∂Pnj

∂θ
.

An unbiased simulator for the second term ∂Pnj/∂θ is easily obtained
by taking the derivative of the simulated probability. Since differenti-
ation is a linear operation, ∂P̌nj/∂θ is unbiased for ∂Pnj/∂θ if P̌nj (θ)
is unbiased for Pnj (θ ). Since the second term in the score can be sim-
ulated without bias, the difficulty arises in finding an unbiased simula-
tor for the first term 1/Pnj (θ ). Of course, simply taking the inverse of
the simulated probability does not provide an unbiased simulator, since
Er (1/P̌nj (θ )) �= 1/Pnj (θ). Like the log operation, an inverse introduces
bias.

One proposal is based on the recognition that 1/Pnj (θ ) is the expected
number of draws of the random terms that are needed before an “accept”
is obtained. Consider drawing balls from an urn that contains many balls
of different colors. Suppose the probability of obtaining a red ball is 0.20.
That is, one-fifth of the balls are red. How many draws would it take,
on average, to obtain a red ball? The answer is 1/0.2 = 5. The same
idea can be applied to choice probabilities. Pnj (θ ) is the probability
that a draw of the random terms of the model will result in alternative
j having the highest utility. The inverse 1/Pnj (θ ) can be simulated as
follows:

1. Take a draw of the random terms from their density.
2. Calculate the utility of each alternative with this draw.
3. Determine whether alternative j has the highest utility.
4. If so, call the draw an accept. If not, then call the draw a reject

and repeat steps 1 to 3 with a new draw. Define Br as the number
of draws that are taken until the first accept is obtained.

5. Perform steps 1 to 4 R times, obtaining Br for r = 1, . . . , R.
The simulator of 1/Pnj (θ ) is (1/R)

∑R
r=1 Br .

This simulator is unbiased for 1/Pnj (θ ). The product of this simulator
with the simulator ∂P̌nj/∂θ provides an unbiased simulator of the score.
MSS based on this unbiased score simulator is consistent for fixed R
and asymptotically efficient when R rises with N .

Unfortunately, the simulator of 1/Pnj (θ ) has the same difficulties as
the accept–reject simulators that we discussed in Section 5.6. There is
no guarantee than an accept will be obtained within any given num-
ber of draws. Also, the simulator is not continuous in parameters. The
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discontinuity hinders the numerical procedures that are used to locate
the parameters that solve the MSS equation.

In summary, there are advantages and disadvantages of MSS relative
to MSL, just as there are of MSM. Understanding the capabilities of
each estimator allows the researcher to make an informed choice among
them.

10.3 The Central Limit Theorem

Prior to deriving the properties of our estimators, it is useful to review
the central limit theorem. This theorem provides the basis for the distri-
butions of the estimators.

One of the most basic results in statistics is that, if we take draws from
a distribution with mean µ and variance σ , the mean of these draws will
be normally distributed with mean µ and variance σ/N , where N is a
large number of draws. This result is the central limit theorem, stated
intuitively rather than precisely. We will provide a more complete and
precise expression of these ideas.

Let t = (1/N )
∑

n tn , where each tn is a draw a from a distribution
with mean µ and variance σ . The realization of the draws are called
the sample, and t is the sample mean. If we take a different sample
(i.e., obtain different values for the draws of each tn), then we will get
a different value for the statistic t . Our goal is to derive the sampling
distribution of t .

For most statistics, we cannot determine the sampling distribution
exactly for a given sample size. Instead, we examine how the sampling
distribution behaves as sample size rises without bound. A distinction is
made between the limiting distribution and the asymptotic distribution
of a statistic. Suppose that, as sample size rises, the sampling distribution
of statistic t converges to a fixed distribution. For example, the sampling
distribution of t might become arbitrarily close to a normal with mean
t∗ and variance σ . In this case, we say that N (t∗, σ ) is the limiting
distribution of t and that t converges in distribution to N (t∗, σ ). We
denote this situation as t

d→ N (t∗, σ ).
In many cases, a statistic will not have a limiting distribution. As N

rises, the sampling distribution keeps changing. The mean of a sample
of draws is an example of a statistic without a limiting distribution. As
stated, if t is the mean of a sample of draws from a distribution with
mean µ and variance σ , then t is normally distributed with mean µ

and variance σ/N . The variance decreases as N rises. The distribution
changes as N rises, becoming more and more tightly dispersed around
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the mean. If a limiting distribution were to be defined in this case, it would
have to be the degenerate distribution at µ: as N rises without bound,
the distribution of t collapses on µ. This limiting distribution is useless
in understanding the variance of the statistic, since the variance of this
limiting distribution is zero. What do we do in this case to understand
the properties of the statistic?

If our original statistic does not have a limiting distribution, then
we often can transform the statistic in such a way that the transformed
statistic has a limiting distribution. Suppose, as in in our example of
a sample mean, that the statistic we are interested in does not have a
limiting distribution because its variance decreases as N rises. In that
case, we can consider a transformation of the statistic that normalizes
for sample size. In particular, we can consider

√
N (t − µ). Suppose

that this statistic does indeed have a limiting distribution, for example√
N (t − µ)

d→ N (0, σ ). In this case, we can derive the properties of
our original statistic from the limiting distribution of the transformed
statistic. Recall from basic principles of probabilities that, for fixed a
and b, if a(t − b) is distributed normal with zero mean and variance σ ,
then t itself is distributed normal with mean b and variance σ/a2. This
statement can be applied to our limiting distribution. For large enough N ,√

N (t − µ) is distributed approximately N (0, σ ). Therefore, for large
enough N , t is distributed approximately N (µ, σ/N ). We denote this
as t

a∼ N (µ, σ/N ). Note that this is not the limiting distribution of t ,
since t has no nondegenerate limiting distribution. Rather, it is called
the asymptotic distribution of t , derived from the limiting distribution
of

√
N (t − µ).

We can now restate precisely our concepts about the sampling distri-
bution of a sample mean. The central limit theorem states the following.
Suppose t is the mean of a sample of N draws from a distribution with
mean µ and variance σ . Then

√
N (t − µ)

d→ N (0, σ ). With this limiting
distribution, we can say that t

a∼ N (µ, σ/N ).
There is another, more general version of the central limit theorem.

In the version just stated, each tn is a draw from the same distribution.
Suppose tn is a draw from a distribution with mean µ and variance σn ,
for n = 1, . . . , N . That is, each tn is from a different distribution; the
distributions have the same mean but different variances. The genera-
lized version of the central limit theorem states that

√
N (t − µ)

d→
N (0, σ ), where σ is now the average variance: σ = (1/N )

∑
n σn . Given

this limiting distribution, we can say that t
a∼ N (µ, σ/N ). We will use

both versions of the central limit theorem when deriving the distributions
of our estimators.
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10.4 Properties of Traditional Estimators

In this section, we review the procedure for deriving the properties of
estimators and apply that procedure to the traditional, non-simulation-
based estimators. This discussion provides the basis for analyzing the
properties of the simulation-based estimators in the next section.

The true value of the parameters is denoted θ∗. The ML and MOM
estimators are roots of an equation that takes the form

(10.2)
∑

n

gn(θ̂ )/N = 0.

That is, the estimator θ̂ is the value of the parameters that solve this
equation. We divide by N , even though this division does not af-
fect the root of the equation, because doing so facilitates our deriva-
tion of the properties of the estimators. The condition states that the
average value of gn(θ ) in the sample is zero at the parameter esti-
mates. For ML, gn(θ ) is the score ∂ ln Pn(θ )/∂θ . For MOM, gn(θ)
is the set of first moments of residuals with a vector of instruments,∑

j (dnj − Pnj )znj . Equation (10.2) is often called the moment condition.
In its nonsimulated form, the method of scores is the same as ML and
therefore need not be considered separately in this section. Note that
we call (10.2) an equation even though it is actually a set of equations,
since gn(θ ) is a vector. The parameters that solve these equations are the
estimators.

At any particular value of θ , the mean and variance of gn(θ ) can be
calculated for the sample. Label the mean as g(θ ) and the variance as
W (θ ). We are particularly interested in the sample mean and variance
of gn(θ ) at the true parameters, θ∗, since our goal is to estimate these
parameters.

The key to understanding the properties of an estimator comes in
realizing that each gn(θ∗) is a draw from a distribution of gn(θ∗)’s in
the population. We do not know the true parameters, but we know that
each observation has a value of gn(θ∗) at the true parameters. The value
of gn(θ∗) varies over people in the population. So, by drawing a person
into our sample, we are essentially drawing a value of gn(θ∗) from its
distribution in the population.

The distribution of gn(θ∗) in the population has a mean and variance.
Label the mean of gn(θ∗) in the population as g and its variance in the
population as W. The sample mean and variance at the true parameters,
g(θ∗) and W (θ∗), are the sample counterparts to the population mean
and variance, g and W.
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We assume that g = 0. That is, we assume that the average of gn(θ∗) in
the population is zero at the true parameters. Under this assumption, the
estimator provides a sample analog to this population expectation: θ̂ is
the value of the parameters at which the sample average of gn(θ ) equals
zero, as given in the defining condition (10.2). For ML, the assumption
that g = 0 simply states that the average score in the population is zero,
when evaluated at the true parameters. In a sense, this can be considered
the definition of the true parameters, namely, θ∗ are the parameters at
which the log-likelihood function for the entire population obtains its
maximum and hence has zero slope. The estimated parameters are the
values that make the slope of the likelihood function in the sample zero.
For MOM, the assumption is satisfied if the instruments are independent
of the residuals. In a sense, the assumption with MOM is simply a
reiteration that the instruments are exogenous. The estimated parameters
are the values that make the instruments and residuals uncorrelated in
the sample.

We now consider the population variance of gn(θ∗), which we have
denoted W. When gn(θ ) is the score, as in ML, this variance takes a
special meaning. As shown in Section 8.7, the information identity states
that V = −H, where

−H = −E

(
∂2 ln Pn(θ∗)

∂θ ∂θ ′

)

is the information matrix and V is the variance of the scores evaluated at
the true parameters: V = Var(∂ ln Pn(θ∗)/∂θ ). When gn(θ ) is the score,
we have W = V by definition and hence W = −H by the information
identity. That is, when gn(θ ) is the score, W is the information matrix.
For MOM with nonideal instruments, W �= −H, so that W does not
equal the information matrix.

Why does this distinction matter? We will see that knowing whether
W equals the information matrix allows us to determine whether the
estimator is efficient. The lowest variance that any estimator can achieve
is −H−1/N . For a proof, see, for example, Greene (2000) or Ruud
(2000). An estimator is efficient if its variance attains this lower bound.
As we will see, this lower bound is achieved when W = −H but not
when W �= −H.

Our goal is to determine the properties of θ̂ . We derive these properties
in a two-step process. First, we examine the distribution of g(θ∗), which,
as stated earlier, is the sample mean of gn(θ∗). Second, the distribution
of θ̂ is derived from the distribution of g(θ∗). This two-step process is
not necessarily the most direct way of examining traditional estimators.
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However, as we will see in the next section, it provides a very convenient
way for generalizing to simulation-based estimators.

Step 1: The Distribution of g(θ∗)
Recall that the value of gn(θ∗) varies over decision makers in the pop-
ulation. When taking a sample, the researcher is drawing values of
gn(θ∗) from its distribution in the population. This distribution has zero
mean by assumption and variance denoted W. The researcher calculates
the sample mean of these draws, g(θ∗). By the central limit theorem,√

N (g(θ∗) − 0)
d→ N (0, W) such that the sample mean has distribution

g(θ∗)
a∼ N (0, W/N ).

Step 2: Derive the Distribution of θ̂ from the Distribution of g(θ∗)
We can relate the estimator θ̂ to its defining term g(θ ) as follows. Take
a first-order Taylor’s expansion of g(θ̂ ) around g(θ∗):

(10.3) g(θ̂ ) = g(θ∗) + D[θ̂ − θ∗],

where D = ∂g(θ∗)/∂θ ′. By definition of θ̂ (that is, by defining condition
(10.2)), g(θ̂ ) = 0 so that the right-hand side of this expansion is 0. Then

0 = g(θ∗) + D[θ̂ − θ∗],

θ̂ − θ∗ = −D−1g(θ∗),√
N (θ̂ − θ∗) =

√
N (−D−1)g(θ∗).(10.4)

Denote the mean of ∂gn(θ∗)/∂θ ′ in the population as D. The sample
mean of ∂gn(θ∗)/∂θ ′ is D, as defined for equation (10.3). The sample
mean D converges to the population mean D as the sample size rises. We
know from step 1 that

√
N g(θ∗)

d→ N (0, W). Using this fact in (10.4),
we have

(10.5)
√

N (θ̂ − θ∗)
d→ N (0, D−1WD−1).

This limiting distribution tells us that θ̂
a∼ N (θ∗, D−1WD−1/N ).

We can now observe the properties of the estimator. The asymptotic
distribution of θ̂ is centered on the true value, and its variance decreases
as the sample size rises. As a result, θ̂ converges in probability to θ∗ as
the sample sise rises without bound: θ̂

p→ θ . The estimator is therefore
consistent. The estimator is asymptotically normal. And its variance is
D−1WD−1/N , which can be compared with the lowest possible variance,
−H−1/N , to determine whether it is efficient.

For ML, gn(·) is the score, so that the variance of gn(θ∗) is the
variance of the scores: W = V. Also, the mean derivative of gn(θ∗)
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is the mean derivative of the scores: D = H = E(∂2 ln Pn(θ∗)/∂θ ∂θ ′),
where the expectation is over the population. By the information iden-
tity, V = −H. The asymptotic variance of θ̂ becomes D−1WD−1/N =
H−1VH−1/N = H−1(−H)H−1/N = −H−1/N , which is the lowest
possible variance of any estimator. ML is therefore efficient. Since
V = −H, the variance of the ML estimator can also be expressed as
V−1/N , which has a readily interpretable meaning: the variance of the
estimator is equal to the variance of the scores evaluated at the true
parameters, divided by sample size.

For MOM, gn(·) is a set of moments. If the ideal instruments are used,
then MOM becomes ML and is efficient. If any other instruments are
used, then MOM is not ML. In this case, W is the population variance
of the moments and D is the mean derivatives of the moments, rather
than the variance and mean derivatives of the scores. The asymptotic
variance of θ̂ does not equal −H−1/N . MOM without ideal weights is
therefore not efficient.

10.5 Properties of Simulation-Based Estimators

Suppose that the terms that enter the defining equation for an estima-
tor are simulated rather than calculated exactly. Let ǧn(θ ) denote the
simulated value of gn(θ ), and ǧ(θ ) the sample mean of these simulated
values, so that ǧ(θ ) is the simulated version of g(θ). Denote the number
of draws used in simulation for each n as R, and assume that independent
draws are used for each n (e.g., separate draws are taken for each n).
Assume further that the same draws are used for each value of θ when
calculating ǧn(θ ). This procedure prevents chatter in the simulation: the
difference between ǧ(θ1) and ǧ(θ2) for two different values of θ is not
due to different draws.

These assumptions on the simulation draws are easy for the researcher
to implement and simplify our analysis considerably. For interested read-
ers, Lee (1992) examines the situation when the same draws are used for
all observations. Pakes and Pollard (1989) provide a way to characterize
an equicontinuity condition that, when satisfied, facilitates analysis of
simulation-based estimators. McFadden (1989) characterizes this con-
dition in a different way and shows that it can be met by using the
same draws for each value of θ , which is the assumption that we make.
McFadden (1996) provides a helpful synthesis that includes a discussion
of the need to prevent chatter.

The estimator is defined by the condition ǧ(θ̂ ) = 0. We derive the
properties of θ̂ in the same two steps as for the traditional estimators.
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Step 1: The Distribution of ǧ(θ∗)
To identify the various components of this distribution, let us reexpress
ǧ(θ∗) by adding and subtracting some terms and rearranging:

ǧ(θ∗) = ǧ(θ∗) + g(θ∗) − g(θ∗) + Er ǧ(θ∗) − Er ǧ(θ∗)

= g(θ∗) + [Er ǧ(θ∗) − g(θ∗)] + [ǧ(θ∗) − Er ǧ(θ∗)],

where g(θ∗) is the nonsimulated value and Er ǧ(θ∗) is the expectation of
the simulated value over the draws used in the simulation. Adding and
subtracting terms obviously does not change ǧ(θ∗). Yet, the subsequent
rearrangement of the terms allows us to identify components that have
intuitive meaning.

The first term g(θ∗) is the same as arises for the traditional estima-
tor. The other two terms are extra elements that arise because of the
simulation. The term Er ǧ(θ∗) − g(θ∗) captures the bias, if any, in the
simulator of g(θ∗). It is the difference between the true value of g(θ∗)
and the expectation of the simulated value. If the simulator is unbiased
for g(θ∗), then Er ǧ(θ∗) = g(θ∗) and this term drops out. Often, however,
the simulator will not be unbiased for g(θ∗). For example, with MSL,
ǧn(θ ) = ∂ ln P̌n(θ )/∂θ , where P̌n(θ ) is an unbiased simulator of Pn(θ ).
Since P̌n(θ ) enters nonlinearly via the log operator, ǧn(θ ) is not unbi-
ased. The third term, ǧ(θ∗) − Er ǧ(θ∗), captures simulation noise, that
is, the deviation of the simulator for given draws from its expectation
over all possible draws.

Combining these concepts, we have

(10.6) ǧ(θ ) = A + B + C,

where

A is the same as in the traditional estimator,
B is simulation bias,
C is simulation noise.

To see how the simulation-based estimators differ from their traditional
counterparts, we examine the simulation bias B and noise C .

Consider first the noise. This term can be reexpressed as

C = ǧ(θ∗) − Er ǧ(θ∗)

= 1

N

∑
n

ǧn(θ∗) − Er ǧn(θ∗)

=
∑

n

dn/N ,
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where dn is the deviation of the simulated value for observation n from
its expectation. The key to understanding the behavior of the simulation
noise comes in noting that dn is simply a statistic for observation n. The
sample constitutes N draws of this statistic, one for each observation:
dn, n = 1, . . . , N . The simulation noise C is the average of these N
draws. Thus, the central limit theorem gives us the distribution of C .

In particular, for a given observation, the draws that are used in sim-
ulation provide a particular value of dn . If different draws had been
obtained, then a different value of dn would have been obtained. There
is a distribution of values of dn over the possible realizations of the draws
used in simulation. The distribution has zero mean, since the expectation
over draws is subtracted out when creating dn . Label the variance of the
distribution as Sn/R, where Sn is the variance when one draw is used in
simulation. There are two things to note about this variance. First, Sn/R
is inversely related to R, the number of draws that are used in simulation.
Second, the variance is different for different n. Since gn(θ∗) is different
for different n, the variance of the simulation deviation also differs.

We take a draw of dn for each of N observations; the overall simu-
lation noise, C , is the average of these N draws of observation-specific
simulation noise. As just stated, each dn is a draw from a distribution
with zero mean and variance Sn/R. The generalized version of the cen-
tral limit theorem tells us the distribution of a sample average of draws
from distributions that have the same mean but different variances. In
our case,

√
NC

d→ N (0, S/R),

where S is the population mean of Sn . Then C
a∼ N (0, S/N R).

The most relevant characteristic of the asymptotic distribution of C is
that it decreases as N increases, even when R is fixed. Simulation noise
disappears as sample size increases, even without increasing the number
of draws used in simulation. This is a very important and powerful fact.
It means that increasing the sample size is a way to decrease the ef-
fects of simulation on the estimator. The result is intuitively meaningful.
Essentially, simulation noise cancels out over observations. The simula-
tion for one observation might, by chance, make that observation’s ǧn(θ )
too large. However, the simulation for another observation is likely, by
chance, to be too small. By averaging the simulations over observations,
the errors tend to cancel each other. As sample size rises, this canceling
out property becomes more powerful until, with large enough samples,
simulation noise is negligible.
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Consider now the bias. If the simulator ǧ(θ ) is unbiased for g(θ ), then
the bias term B in (10.6) is zero. However, if the simulator is biased, as
with MSL, then the effect of this bias on the distribution of ǧ(θ∗) must
be considered.

Usually, the defining term gn(θ ) is a function of a statistic, �n , that can
be simulated without bias. For example, with MSL, gn(θ) is a function
of the choice probability, which can be simulated without bias; in this
case �n is the probability. More generally, �n can be any statistic that
is simulated without bias and serves to define gn(θ ). We can write the
dependence in general as gn(θ ) = g(�n(θ )) and the unbiased simulator
of �n(θ ) as �̌n(θ ) where Er �̌n(θ ) = �n(θ ).

We can now reexpress ǧn(θ ) by taking a Taylor’s expansion around
the unsimulated value gn(θ ):

ǧn(θ ) = gn(θ ) + ∂g(�n(θ ))

∂�n
[�̌n(θ ) − �n(θ )]

+ 1
2

∂2g(�n(θ ))

∂�2
n

[�̌n(θ ) − �n(θ ]2,

ǧn(θ ) − gn(θ ) = g′
n[�̌n(θ ) − �n(θ )] + 1

2 g′′
n [�̌n(θ ) − �n(θ )]2,

where g′
n and g′′

n are simply shorthand ways to denote the first and second
derivatives of gn(�(·)) with respect to �. Since �̌n(θ ) is unbiased for �n(θ ),
we know Er g′

n[�̌n(θ ) − �n(θ )] = g′
n[Er �̌n(θ ) − �n(θ )] = 0. As a result,

only the variance term remains in the expectation:

Er ǧn(θ ) − gn(θ ) = 1
2 g′′

n Er [�̌n(θ ) − �n(θ )]2

= 1
2 g′′

n Varr �̌n(θ ).

Denote Varr �̌n(θ ) = Qn/R to reflect the fact that the variance is in-
versely proportional to the number of draws used in the simulation. The
simulation bias is then

Er ǧ(θ ) − g(θ ) = 1

N

∑
n

Er ǧn(θ ) − gn(θ )

= 1

N

∑
n

g′′
n

Qn

2R

= Z
R

,

where Z is the sample average of g′′
nQn/2.
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Since B = Z/R, the value of this statistic normalized for sample size
is

(10.7)
√

N B =
√

N

R
Z.

If R is fixed, then B is nonzero. Even worse,
√

N B rises with N , in
such a way that it has no limiting value. Suppose that R is consid-
ered to rise with N . The bias term then disappears asymptotically: B =
Z/R

p→ 0. However, the normalized bias term does not necessar-
ily disappear. Since

√
N enters the numerator of this term,

√
N B =

(
√

N/R)Z p→ 0 only if R rises faster than
√

N , so that the ratio
√

N/R
approaches zero as N increases. If R rises slower than

√
N , the ratio√

N/R rises, such that the normalized bias term does not disappear but
in fact gets larger and larger as sample size increases.

We can now collect our results for the distribution of the defining term
normalized by sample size:

(10.8)
√

N ǧ(θ∗) =
√

N (A + B + C),

where

√
N A

d→ N (0, W), the same as in the traditional estimator,
√

N B =
√

N

R
Z , capturing simulation bias,

√
NC

d→ N (0, S/R), capturing simulation noise.

Step 2: Derive Distribution of θ̂ from Distribution of ǧ(θ∗)
As with the traditional estimators, the distribution of θ̂ is directly related
to the distribution of ǧ(θ∗). Using the same Taylor’s expansion as in
(10.3), we have

√
N (θ̂ − θ∗) = −Ď

−1√
N ǧ(θ∗) = −Ď

−1√
N (A + B + C),(10.9)

where Ď is the derivative of ǧ(θ∗) with respect to the parameters, which
converges to its expectation Ď as sample size rises. The estimator itself
is expressed as

(10.10) θ̂ = θ∗ − Ď
−1

(A + B + C).

We can now examine the properties of our estimators.
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10.5.1. Maximum Simulated Likelihood

For MSL, ǧn(θ ) is not unbiased for gn(θ ). The bias term in (10.9)
is

√
N B = (

√
N/R)Z . Suppose R rises with N . If R rises faster than√

N , then
√

N B = (
√

N/R)Z p→ 0,

since the ratio
√

N/R falls to zero. Consider now the third term in
(10.9), which captures simulation noise:

√
NC

d→ N (0, S/R). Since
S/R decreases as R rises, we have S/R

p→ 0 as N → ∞ when R rises
with N . The second and third terms disappear, leaving only the first term.
This first term is the same as appears for the nonsimulated estimator. We
have

√
N (θ̂ − θ∗) = −D−1

√
N A

d→ N (0, D−1WD−1)

= N (0, H−1VH−1)

= N (0, −H−1),

where the next-to-last equality occurs because gn(θ) is the score, and
the last equality is due to the information identity. The estimator is
distributed

θ̂
a∼ N (θ∗, −H−1/N ).

This is the same asymptotic distribution as ML. When R rises faster
than

√
N , MSL is consistent, asymptotically normal and efficient, and

asymptotically equivalent to ML.
Suppose that R rises with N but at a rate that is slower than

√
N . In

this case, the ratio
√

N/R grows larger as N rises. There is no limiting
distribution for

√
N (θ̂ − θ∗), because the bias term, (

√
N/R)Z , rises

with N . However, the estimator itself converges on the true value. θ̂

depends on (1/R)Z , not multiplied by
√

N . This bias term disappears
when R rises at any rate. Therefore, the estimator converges on the
true value, just like its nonsimulated counterpart, which means that θ̂ is
consistent. However, the estimator is not asymptotically normal, since√

N (θ̂ − θ∗) has no limiting distribution. Standard errors cannot be cal-
culated, and confidence intervals cannot be constructed.

When R is fixed, the bias rises as N rises.
√

N (θ̂ − θ∗) does not have
a limiting distribution. Moreover, the estimator itself, θ̂ , contains a bias
B = (1/R)Z that does not disappear as sample size rises with fixed
R. The MSL estimator is neither consistent nor asymptotically normal
when R is fixed.
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The properties of MSL can be summarized as follows:

1. If R is fixed, MSL is inconsistent.
2. If R rises slower than

√
N , MSL is consistent but not asymp-

totically normal.
3. If R rises faster than

√
N , MSL is consistent, asymptotically

normal and efficient, and equivalent to ML.

10.5.2. Method of Simulated Moments

For MSM with fixed instruments, ǧn(θ ) = ∑
j [dnj − P̌nj (θ )]znj ,

which is unbiased for gn(θ ), since the simulated probability enters lin-
early. The bias term is zero. The distribution of the estimator is deter-
mined only by term A, which is the same as in the traditional MOM
without simulation, and term C , which reflects simulation noise:

√
N (θ̂ − θ∗) = −Ď

−1√
N (A + C).

Suppose that R is fixed. Since Ď converges to its expectation D, we

have −√
N Ď

−1
A

d→ N (0, D−1WD−1) and −√
N Ď

−1
C

d→ N (0, D−1

(S/R)D−1), so that

√
N (θ̂ − θ∗)

d→ N (0, D−1[W + S/R]D−1).

The asymptotic distribution of the estimator is then

θ̂
a∼ N (θ∗, D−1[W + S/R]D−1/N ).

The estimator is consistent and asymptotically normal. Its variance is
greater than its nonsimulated counterpart by D−1SD−1/RN , reflecting
simulation noise.

Suppose now that R rises with N at any rate. The extra variance due
to simulation noise disappears, so that θ̂

a∼ N (θ∗, D−1WD−1/N ), the
same as its nonsimulated counterpart. When nonideal instruments are
used, D−1WD−1 �= −H−1 and so the estimator (in either its simulated
or nonsimulated form) is less efficient than ML.

If simulated instruments are used in MSM, then the properties of the
estimator depend on how the instruments are simulated. If the instru-
ments are simulated without bias and independently of the probability
that enters the residual, then this MSM has the same properties as MSM
with fixed weights. If the instruments are simulated with bias and the
instruments are not ideal, then the estimator has the same properties as
MSL except that it is not asymptotically efficient, since the information



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-10DRV CB495/Train KEY BOARDED August 20, 2002 13:43 Char Count= 0

260 Estimation

identity does not apply. MSM with simulated ideal instruments is MSS,
which we discuss next.

10.5.3. Method of Simulated Scores

With MSS using unbiased score simulators, ǧn(θ ) is unbiased
for gn(θ ), and, moreover, gn(θ ) is the score such that the information
identity applies. The analysis is the same as for MSM except that the
information identity makes the estimator efficient when R rises with N .
As with MSM, we have

θ̂
a∼ N (θ∗, D−1[W + S/R]D−1/N ),

which, since gn(θ ) is the score, becomes

θ̂
a∼ N

(
θ∗,

H−1[V + S/R]H−1

N

)
= N

(
θ∗, −H−1

N
+ H−1SH−1

RN

)
.

When R is fixed, the estimator is consistent and asymptotically normal,
but its covariance is larger than with ML because of simulation noise. If
R rises at any rate with N , then we have

θ̂
a∼ N (0, −H−1/N ).

MSS with unbiased score simulators is asymptotically equivalent to ML
when R rises at any rate with N .

This analysis shows that MSS with unbiased score simulators has
better properties than MSL in two regards. First, for fixed R, MSS is
consistent and asymptotically normal, while MSL is neither. Second,
for R rising with N , MSS is equivalent to ML no matter how fast
R is rising, while MSL is equivalent to ML only if the rate is faster
than

√
N .

As we discussed in Section 10.2.3, finding unbiased score simulators
with good numerical properties is difficult. MSS is sometimes applied
with biased score simulators. In this case, the properties of the estimator
are the same as with MSL: the bias in the simulated scores translates
into bias in the estimator, which disappears from the limiting distribution
only if R rises faster than

√
N .

10.6 Numerical Solution

The estimators are defined as the value of θ that solves ǧ(θ ) = 0, where
ǧ(θ ) = ∑

n ǧn(θ )/N is the sample average of a simulated statistic ǧn(θ ).
Since ǧn(θ ) is a vector, we need to solve the set of equations for the
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parameters. The question arises: how are these equations solved numer-
ically to obtain the estimates?

Chapter 8 describes numerical methods for maximizing a function.
These procedures can also be used for solving a set of equations. Let T
be the negative of the inner product of the defining term for an estimator:
T = −ǧ(θ )′ǧ(θ ) = −(

∑
n ǧn(θ ))′(

∑
n ǧn(θ ))/N 2. T is necessarily less

than or equal to zero, since it is the negative of a sum of squares. T
has a highest value of 0, which is attained only when the squared terms
that compose it are all 0. That is, the maximum of T is attained when
ǧ(θ ) = 0. Maximizing T is equivalent to solving the equation ǧ(θ ) = 0.
The approaches described in Chapter 8, with the exception of BHHH,
can be used for this maximization. BHHH cannot be used, because
that method assumes that the function being maximized is a sum of
observation-specific terms, whereas T takes the square of each sum of
observation-specific terms. The other approaches, especially BFGS and
DFP, have proven very effective at locating the parameters at which
ǧ(θ ) = 0.

With MSL, it is usually easier to maximize the simulated likelihood
function rather than T . BHHH can be used in this case, as well as the
other methods.
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11.1 Introduction

Mixed logit and probit models allow random coefficients whose distri-
bution in the population is estimated. Consider, for example, the model
in Chapter 6, of anglers’ choice among fishing sites. The sites are differ-
entiated on the basis of whether campgrounds are available at the site.
Some anglers like having campgrounds at the fishing sites, since they
can use the grounds for overnight stays. Other anglers dislike the crowds
and noise that are associated with campgrounds and prefer fishing at
more isolated spots. To capture these differences in tastes, a mixed logit
model was specified that included random coefficients for the camp-
ground variable and other site attributes. The distribution of coefficients
in the population was estimated. Figure 11.1 gives the estimated distri-
bution of the campground coefficient. The distribution was specified to
be normal. The mean was estimated as 0.116, and the standard deviation
was estimated as 1.655. This distribution provides useful information
about the population. For example, the estimates imply that 47 percent
of the population dislike having campgrounds at their fishing sites, while
the other 53 percent like having them.

The question arises: where in the distribution of tastes does a particular
angler lie? Is there a way to determine whether a given person tends to
like or dislike having campgrounds at fishing sites?

A person’s choices reveal something about his tastes, which the re-
searcher can, in principle, discover. If the researcher observes that a
particular angler consistently chooses sites without campgrounds, even
when the cost of driving to these sites is higher, then the researcher
can reasonably infer that this angler dislikes campgrounds. There is a
precise way for performing this type of inference, given by Revelt and
Train (2000).

We explain the procedure in the context of a mixed logit model; how-
ever, any behavioral model that incorporates random coefficients can

262
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Mean 
= 0.116

0

St. dev.
 = 1.655

Figure 11.1. Distribution of coefficient of campgrounds in population of all
anglers.

be used, including probit. The central concept is a distinction between
two distributions: the distribution of tastes in the population, and the
distribution of tastes in the subpopulation of people who make particu-
lar choices. Denote the random coefficients as vector β. The distribution
of β in the population of all people is denoted g(β | θ ), where θ are the
parameters of this distribution, such as the mean and variance.

A choice situation consists of several alternatives described collec-
tively by variables x . Consider the following thought experiment. Sup-
pose everyone in the population faces the same choice situation described
by the same variables x . Some portion of the population will choose each
alternative. Consider the people who choose alternative i . The tastes of
these people are not all the same: there is a distribution of coefficients
among these people. Let h(β | i, x, θ ) denote the distribution of β in the
subpopulation of people who, when faced with the choice situation de-
scribed by variables x , would choose alternative i . Now g(β | θ ) is the
distribution of β in the entire population. h(β | i, x, θ ) is the distribution
of β in the subpopulation of people who would choose alternative i when
facing a choice situation described by x .

We can generalize the notation to allow for repeated choices. Let y de-
note a sequence of choices in a series of situations described collectively
by variables x . The distribution of coefficients in the subpopulation of
people who would make the sequences of choices y when facing situa-
tions described by x is denoted h(β | y, x, θ ).

Note that h(·) conditions on y, while g(·) does not. It is sometimes
useful to call h the conditional distribution and g the unconditional
distribution. Two such distributions are depicted in Figure 11.2. If we
knew nothing about a person’s past choices, then the best we can do
in describing his tastes is to say that his coefficients lie somewhere in
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0

h

g

Figure 11.2. Unconditional (population) distribution g and conditional (sub-
population) distribution h for subpopulation of anglers who chose sites without
campgrounds.

g(β | θ ). However, if we have observed that the person made choices y
when facing situations described by x , then we know that that person’s
coefficients are in the distribution h(β | y, x, θ ). Since h is tighter than g,
we have better information about the person’s tastes by conditioning on
his past choices.

Inference of this form has long been conducted with linear regression
models, where the dependent variable and the distribution of coeffi-
cients are both continuous (Griffiths, 1972; Judge et al., 1988). Regime-
switching models, particularly in macroeconomics, have used an anal-
ogous procedure to assess the probability that an observation is within
a given regime (Hamilton and Susmel, 1994; Hamilton, 1996). In these
models, the dependent variable is continuous and the distribution of coef-
ficients is discrete (representing one set of coefficients for each regime.)
In contrast to both of these traditions, our models have discrete dependent
variables. DeSarbo et al. (1995) developed an approach in the context of
a discrete choice model with a discrete distribution of coefficients (that
is, a latent class model). They used maximum likelihood procedures to
estimate the coefficients for each segment, and then calculated the prob-
ability that an observation is within each segment based on the observed
choices of the observation. The approach that we describe here applies
to discrete choice models with continuous or discrete distributions of
coefficients and uses maximum likelihood (or other classical methods)
for estimation. The model of DeSarbo et al. (1995) is a special case
of this more general method. Bayesian procedures have been also de-
veloped to perform this inference within discrete choice models (Rossi
et al. 1996; Allenby and Rossi 1999). We describe the Bayesian methods
in Chapter 12.
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11.2 Derivation of Conditional Distribution

The relation between h and g can be established precisely. Consider
a choice among alternatives j = 1, . . . , J in choice situations t =
1, . . . , T . The utility that person n obtains from alternative j in situ-
ation t is

Unjt = β ′
nxnjt + εnjt ,

where εnjt ∼ iid extreme value, and βn ∼ g(β | θ) in the population. The
variables xnjt can be denoted collectively for all alternatives and choice
situations as xn . Let yn = 〈yn1, . . . , ynT 〉 denote the person’s sequence
of chosen alternatives. If we knew βn , then the probability of the person’s
sequence of choices would be a product of logits:

P(yn | xn, β) =
T∏

t=1

Lnt (ynt | β),

where

Lnt (ynt | β) = eβ ′xnynt t∑
j eβ ′xnjt

.

Since we do not know βn , the probability of the person’s sequence of
choices is the integral of P(yn | xn, β) over the distribution of β:

(11.1) P(yn | xn, θ ) =
∫

P(yn | xn, β)g(β | θ ) dβ.

This is the mixed logit probability that we discussed in Chapter 6.
We can now derive h(β | yn, xn, θ ). By Bayes’ rule,

h(β | yn, xn, θ ) × P(yn | xn, θ ) = P(yn | xn, β) × g(β | θ ).

This equation simply states that the joint density of β and yn can be
expressed as the probability of yn times the probability of β conditional
on yn (which is the left-hand side), or with the other direction of condi-
tioning, as the probability of β times the probability of yn conditional
on β (which is the right-hand side.) Rearranging,

(11.2) h(β | yn, xn, θ ) = P(yn | xn, β)g(β | θ )

P(yn | xn, θ )
.

We know all the quantities on the right-hand side. From these, we can
calculate h.

Equation (11.2) also provides a way to interpret h intuitively. Note that
the denominator P(yn | xn, θ ) is the integral of the numerator, as given by
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the definition in (11.1). As such, the denominator is a constant that makes
h integrate to 1, as required for any density. Since the denominator is a
constant, h is proportional to the numerator, P(yn | xn, β)g(β | yn, xn, θ ).
This relation makes interpretation of h relatively easy. Stated in words,
the density of β in the subpopulation of people who would choose
sequence yn when facing xn is proportional to the density of β in the
entire population times the probability that yn would be chosen if the
person’s coefficients were β.

Using (11.2), various statistics can be derived conditional on yn . The
mean β in the subpopulation of people who would choose yn when
facing xn is

β̄n =
∫

β · h(β | yn, xn, θ ) dβ.

This mean generally differs from the mean β in the entire population.
Substituting the formula for h,

β̄n =
∫
β · P(yn | xn, β)g(β | θ ) dβ

P(yn | xn, θ )

=
∫
β · P(yn | xn, β)g(β | θ ) dβ∫

P(yn | xn, β)g(β | θ ) dβ
.(11.3)

The integrals in this equation do not have a closed form; however, they
can be readily simulated. Take draws of β from the population den-
sity g(β | θ ). Calculate the weighted average of these draws, with the
weight for draw βr being proportional to P(yn | xn, β

r ). The simulated
subpopulation mean is

β̌n =
∑

r

wrβr ,

where the weights are

(11.4) wr = P(yn | xn, β
r )∑

r P(yn | xn, βr )
.

Other statistics can also be calculated. Suppose the person faces a
new choice situation described by variables xn j T +1 ∀ j . If we had no
information on the person’s past choices, then we would assign the
following probability to his choosing alternative i :

(11.5) P(i | xn T +1, θ ) =
∫

Ln T +1(i | β)g(β | θ ) dβ
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where

Ln T +1(i | β) = eβ ′xni T +1∑
j eβ ′xnj T +1

.

This is just the mixed logit probability using the population distribution
of β. If we observed the past choices of the person, then the probability
can be conditioned on these choices. The probability becomes

(11.6) P(i | xn T +1, yn, xn, θ ) =
∫

Ln T +1(i | β)h(β | yn, xn, θ ) dβ.

This is also a mixed logit probability, but using the conditional distribu-
tion h instead of the unconditional distribution g. When we do not know
the person’s previous choices, we mix the logit formula over density of β

in the entire population. However, when we know the person’s previous
choices, we can improve our prediction by mixing over the density of
β in the subpopulation who would have made the same choices as this
person.

To calculate this probability, we substitute the formula for h from
(11.2):

P(i | xn T +1, yn, xn, θ ) =
∫

Ln T +1(i | β)P(yn | xn, β)g(β | θ ) dβ∫
P(yn | xn, β)g(β | θ ) dβ

.

The probability is simulated by taking draws of β from the population
distribution g, calculating the logit formula for each draw, and taking a
weighted average of the results:

P̌n i T +1(yn, xn, θ ) =
∑

r

wr Ln T +1(i | βr ),

where the weights are given by (11.4).

11.3 Implications of Estimation of θ

The population parameters θ are estimated in any of the ways described
in Chapter 10. The most common approach is maximum simulated
likelihood, with the simulated value of P(yn | xn, θ ) entering the log-
likelihood function. An estimate of θ , labeled θ̂ , is obtained. We know
that there is sampling variance in the estimator. The asymptotic co-
variance of the estimator is also estimated, which we label Ŵ . The
asymptotic distribution is therefore estimated to be N (θ̂ , Ŵ ).

The parameter θ describes the distribution of β in the population,
giving, for example, the mean and variance of β over all decision makers.
For any value of θ , equation (11.2) gives the conditional distribution of β
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in the subpopulation of people who would make choices yn when faced
with situations described by xn . This relation is exact in the sense that
there is no sampling or other variance associated with it. Similarly, any
statistic based on h is exact given a value of θ . For example, the mean
of the conditional distribution, β̄n , is exactly equation (11.3) for a given
value of θ .

Given this correspondence between θ and h, the fact that θ is estimated
can be handled in two different ways. The first approach is to use the
point estimate of θ to calculate statistics associated with the conditional
distribution h. Under this approach, the mean of the condition distribu-
tion, β̄n , is calculated by inserting θ̂ into (11.3). The probability in a new
choice situation is calculated by inserting θ̂ into (11.6). If the estimator of
θ is consistent, then this approach is consistent for statistics based on θ .

The second approach is to take the sampling distribution of θ̂ into
consideration. Each possible value of θ implies a value of h, and hence a
value of any statistic associated with h, such as β̄n . The sampling variance
in the estimator of θ induces sampling variance in the statistics that are
calculated on the basis of θ . This sampling variance can be calculated
through simulation, by taking draws of θ from its estimated sampling
distribution and calculating the corresponding statistic for each of these
draws.

For example, to represent the sampling distribution of θ̂ in the calcu-
lation of β̄n , the following steps are taken:

1. Take a draw from N (θ̂ , Ŵ ), which is the estimated sampling
distribution of θ̂ . This step is accomplished as follows. Take
K draws from a standard normal density, and label the vector
of these draws ηr , where K is the length of θ . Then create
θ r = θ̂ + Lηr , where L is the Choleski factor of Ŵ .

2. Calculate β̄
r
n based on this θ r . Since the formula for β̄n involves

integration, we simulate it using formula (11.3).
3. Repeat steps 1 and 2 many times, with the number of times

labeled R.

The resulting values are draws from the sampling distribution of β̄n
induced by the sampling distribution of θ̂ . The average of β̄

r
n over the R

draws of θ r is the mean of the sampling distribution of β̄n . The standard
deviation of the draws gives the asymptotic standard error of β̄n that is
induced by the sampling variance of θ̂ .

Note that this process involves simulation within simulation. For each
draw of θ r , the statistic β̄

r
n is simulated with multiple draws of β from

the population density g(β | θ r ).
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Suppose either of these approaches is used to estimate β̄n . The question
arises: can the estimate of β̄n be considered an estimate of βn? That is:
is the estimated mean of the conditional distribution h(β | yn, xn, θ ),
which is conditioned on person n’s past choices, an estimate of person
n’s coefficients?

There are two possible answers, depending on how the researcher
views the data-generation process. If the number of choice situations
that the researcher can observe for each decision maker is fixed, then
the estimate of β̄n is not a consistent estimate of βn . When T is fixed,
consistency requires that the estimate converge to the true value when
sample size rises without bound. If sample size rises, but the choice sit-
uations faced by person n are fixed, then the conditional distribution and
its mean do not change. Insofar as person n’s coefficients do not happen
to coincide with the mean of the conditional distribution (an essentially
impossible event), the mean of the conditional distribution will never
equal the person’s coefficients no matter how large the sample is. Raising
the sample size improves the estimate of θ and hence provides a better
estimate of the mean of the conditional distribution, since this mean
depends only on θ . However, raising the sample size does not make the
conditional mean equal to the person’s coefficients.

When the number of choice situations is fixed, then the conditional
mean has the same interpretation as the population mean, but for a dif-
ferent, and less diverse, group of people. When predicting the future
behavior of the person, one can expect to obtain better predictions using
the conditional distribution, as in (11.6), than the population distribu-
tion. In the case study presented in the next section, we show that the
improvement can be large.

If the number of choice situations that a person faces can be considered
to rise, then the estimate of β̄n can be considered to be an estimate of βn .
Let T be the number of choice situations that person n faces. If we ob-
serve more choices by the person (i.e., T rises), then we are better able to
identify the person’s coefficients. Figure 11.3 gives the conditional dis-
tribution h(β | yn, xn, θ ) for three different values of T . The conditional
distribution tends to move toward the person’s own βn as T rises, and to
become more concentrated. As T rises without bound, the conditional
distribution collapses onto βn . The mean of the conditional distribution
converges to the true value of βn as the number of choice situations rises
without bound. The estimate of β̄n is therefore consistent for βn .

In Chapter 12, we describe the Bernstein–von Mises theorem. This
theorem states that, under fairly mild conditions, the mean of a posterior
distribution for a parameter is asymptotically equivalent to the maximum
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g=h with no
observed choices

g with one
observed choice

g with ten
observed choices

Figure 11.3. Conditional distribution with T = 0, 1, and 10.

of the likelihood function. The conditional distribution h is a posterior
distribution: by (11.2) h is proportional to a density g, which can be in-
terpreted as a prior distribution on βn , times the likelihood of person n’s
T choices given βn , which is P(yn | xn, βn). By the Bernstein–von Mises
theorem, the mean of h is therefore an estimator of βn that is asymptot-
ically equivalent to the maximum likelihood estimator of βn , where the
asymptotics are defined as T rising. These concepts are described more
fully in Chapter 12; we mention them now simply to provide another
interpretation of the mean of the conditional distribution.

11.4 Monte Carlo Illustration

To illustrate the concepts, I constructed a hypothetical data set where
the true population parameters θ are known as well as the true βn for
each decision maker. These data allow us to compare the mean of the
conditional distribution for each decision maker’s choices, β̄n , with the
βn for that decision maker. It also allows us to investigate the impact
of increasing the number of choice situations on the conditional distri-
bution. For this experiment, I constructed data sets consisting of 300
“customers” each facing T = 1, 10, 20, and 50 choice situations. There
are three alternatives and four variables in each data set. The coefficients
for the first two variables are held fixed for the entire population at 1.0,
and the coefficients for the last two variables are distributed normal with
a mean and variance of 1.0. Utility is specified to include these variables
plus a final iid term that is distributed extreme value, so that the model
is a mixed logit. The dependent variable for each customer was created
by taking a draw from the density of the random terms, calculating the
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Table 11.1. Monte Carlo illustration

1st Coef. 2nd Coef.

1 choice situation:
Standard deviation of β̄n 0.413 0.416
Absolute difference between β̄n and βn 0.726 0.718

10 choice situations:
Standard deviation of β̄n 0.826 0.826
Absolute difference between β̄n and βn 0.422 0.448

20 choice situations:
Standard deviation of β̄n 0.894 0.886
Absolute difference between β̄n and βn 0.354 0.350

50 choice situations:
Standard deviation of β̄n 0.951 0.953
Absolute difference between β̄n and βn 0.243 0.243

utility of each alternative with this draw, and determining which alter-
native had the highest utility. To minimize the effect of simulation noise
in the creation of the data, I constructed 50 datasets for each level of T .
The results that are reported are the average over these 50 datasets.

The mean of the conditional distribution for each customer, β̄n , was
calculated. The standard deviation of β̄n over the 300 customers was
calculated, as well as the average absolute deviation of β̄n from the
customer’s βn (i.e., the average over n of | β̄n − βn |). Table 11.1 presents
these statistics. Consider first the standard deviation. If there were no
observed choice situations on which to condition (T = 0), then the con-
ditional distribution for each customer would be the unconditional (pop-
ulation) distribution. Each customer would have the same β̄n equal to the
population mean of β. In this case, the standard deviation of β̄n would be
zero, since all customers have the same β̄n . At the other extreme, if we
observed an unboundedly large number of choice situations (T → ∞),
then the conditional distribution for each customer would collapse to
their own βn . In this case, the standard deviation of β̄n would equal the
standard deviation of the population distribution of βn , which is 1 in
this experiment. For T between 0 and ∞, the standard deviation of β̄n
is between 0 and the standard deviation of βn in the population.

In Table 11.1, we see that conditioning on only a few choice situations
captures a large share of the variation in β’s over customers. With only
one choice situation, the standard deviation of β̄n is over 0.4. Since the
standard deviation of βn in the population is 1 in this experiment, which
means that conditioning on one choice situation captures over 40 per-
cent of the variation in βn . With 10 choice situations, over 80 percent
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of the variation is captured. There are strongly decreasing returns to ob-
serving more choice situations. Doubling from T = 10 to T = 20 only
increases the proportion of variation captured from about .83 to about
.89. Increasing T to 50 increases it to about .95.

Consider now the absolute difference between the mean of the cus-
tomer’s conditional distribution, β̄n , and the customer’s actual βn . With
no conditioning (T = 0), the average absolute difference would be 0.8,
which is the expected absolute difference for deviates that follow a stan-
dard normal as we have in our experiment. With perfect conditioning
(T → ∞), β̄n = βn for each customer, and so the absolute difference
is 0. With only one choice situation, the average absolute deviation drops
from 0.8 (without conditioning) to about 0.72, for a 10 percent improve-
ment. The absolute deviation drops further as the number of choice
situations rises.

Notice that the drop in the absolute deviation is smaller than the in-
crease in the standard deviation. For example, with one choice situation
the absolute deviation moves 10 percent of the way from no conditioning
to perfect knowledge (from .80 with T = 0 to .72 with T = 1, which
is 10 percent of the way to 0 with T → ∞). Yet the standard devia-
tion moves about 40 percent of the way from no conditioning to perfect
knowledge (.4 with T = 1 is 40 percent of the distance from 0 with
T = 0 to 1 with T → ∞). This difference is due to the fact that the
standard deviation incorporates movement of β̄n away from βn as well
as movement toward βn . This fact is important to recognize when eval-
uating the standard deviation of β̄n in empirical applications, where the
absolute difference cannot be calculated since βn is not known. That is,
the standard deviation of β̄n expressed as a percentage of the estimated
standard deviation in the population is an overestimate of the amount
of information that is contained in the β̄n’s. With ten choice situations,
the average standard deviation in β̄n is over 80 percent of the value that
it would have with perfect knowledge, and yet the absolute deviation is
less than half as high as would be attained without conditioning.

11.5 Average Conditional Distribution

For a correctly specified model at the true population parameters, the
conditional distribution of tastes, aggregated over all customers, equals
the population distribution of tastes. Given a series of choice situa-
tions described by xn , there is a set of possible sequences of choices.
Label these possible sequences as ys for s = 1, . . . , S. Denote the true
frequency of ys as m(ys | xn, θ

∗), expressing its dependence on the
true parameters θ∗. If the model is correctly specified and consistently
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estimated, then P(ys | xn, θ̂ ) approaches m(ys | xn, θ
∗) asymptotically.

Conditional on the explanatory variables, the expected value of
h(β | ys, xn, θ̂ ) is then

Eyh(β | y, xn, θ̂ ) =
∑

s

P(ys | xn, β)g(β | xn, θ̂ )

P(ys | xn, θ̂ )
m(yn | xn, θ

∗)

→
∑

s

P(ys | xn, β)g(β | xn, θ̂ )

= g(β | xn, θ̂ ).

This relation provides a diagnostic tool (Allenby and Rossi 1999). If
the average of the sampled customers’ conditional taste distributions is
similar to the estimated population distribution, the model is correctly
specified and accurately estimated. If they are not similar, the differ-
ence could be due to (1) specification error, (2) an insufficient number
of draws in simulation, (3) an inadequate sample size, and/or (4) the
maximum likelihood routine converging at a local rather than global
maximum.

11.6 Case Study: Choice of Energy Supplier

11.6.1. Population Distribution

We obtained stated-preference data on residential customers’
choice of electricity supplier. Surveyed customers were presented with
8–12 hypothetical choice situations called experiments. In each exper-
iment, the customer was presented with four alternative suppliers with
different prices and other characteristics. The suppliers differed in price
(fixed price given in cents per kilowatthour (c/kWh), TOD prices with
stated prices in each time period, or seasonal prices with stated prices in
each time period), the length of the contract (during which the supplier
is required to provide service at the stated price and the customer would
need to pay a penalty for leaving the supplier), and whether the sup-
plier was their local utility, a well-known company other than their local
utility, or an unfamiliar company. The data were collected by Research
Triangle Institute (1997) for the Electric Power Research Institute and
have been used by Goett (1998) to estimate mixed logits. We utilize a
specification similar to Goett’s, but we eliminate or combine variables
that he found to be insignificant.

Two mixed logit models were estimated on these data, based on dif-
ferent specifications for the distribution of the random coefficients. All
choices except the last situation for each customer are used to estimate
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Table 11.2. Mixed logit model of energy supplier choice

Model 1 Model 2

Price, kWh −0.8574 −0.8827
(0.0488) (0.0497)

Contract length, years
m −0.1833 −0.2125

(0.0289) (0.0261)
s 0.3786 0.3865

(0.0291) (0.0278)

Local utility
m 2.0977 2.2297

(0.1370) (0.1266)
s 1.5585 1.7514

(0.1264) (0.1371)

Known company
m 1.5247 1.5906

(0.1018) (0.0999)
s 0.9520 0.9621

(0.0998) (0.0977)

TOD ratea

m −8.2857 2.1328
(0.4577) (0.0543)

s 2.5742 0.4113
(0.1676) (0.0397)

Seasonal rateb

m −8.5303 2.1577
(0.4468) (0.0509)

s 2.1259 0.2812
(0.1604) (0.0217)

Log likelihood at convergence −3646.51 −3618.92

Standard errors in parentheses.
a TOD rates: 11c/kWh, 8 a.m.–8 p.m., 5c/kWh, 8 p.m.–8 a.m.
b Seasonal rates: 10c/kWh, summer; 8c/kWh, winter, 6c/kWh, spring
and fall.

the parameters of the population distribution, and the customer’s last
choice situation was retained for use in comparing the predictive ability
of different models and methods.

Table 11.2 gives the estimated population parameters. The price co-
efficient in both models is fixed across the population in such a way
that the distribution of willingness to pay for each nonprice attribute
(which is the ratio of the attribute’s coefficient to the price coefficient)
has the same distribution as the attribute’s coefficient. For model 1, all of
the nonprice coefficients are specified to be normally distributed in the
population. The mean m and standard deviation s of each coefficient are
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estimated. For model 2, the first three nonprice coefficients are spec-
ified to be normal, and the fourth and fifth are log-normal. The fourth
and fifth variables are indicators of TOD and seasonal rates, and their
coefficients must logically be negative for all customers. The lognormal
distribution (with the signs of the variables reversed) provides for this
necessity. The log of these coefficients is distributed normal with mean
m and standard deviation s, which are the parameters that are estimated.
The coefficients themselves have mean exp(m + (s2/2)) and standard
deviation equal to the mean times

√
exp(s2) − 1.

The estimates provide the following qualitative results:

� The average customer is willing to pay about 1
5 to 1

4 c/kWh in
higher price, depending on the model, in order to have a contract
that is shorter by one year. Stated conversely, a supplier that
requires customers to sign a four- to five-year contract must
discount its price by 1 c/kWh to attract the average customer.

� There is considerable variation in customers’ attitudes toward
contract length, with a sizable share of customers preferring a
longer to a shorter contract. A long-term contract constitutes
insurance for the customer against price increases, the supplier
being locked into the stated price for the length of the con-
tract. Such contracts, however, prevent the customer from tak-
ing advantage of lower prices that might arise during the term of
the contract. Apparently, many customers value the insurance
against higher prices more than they mind losing the option to
take advantage of lower prices. The degree of customer hetero-
geneity implies that the market can sustain contracts of different
lengths with suppliers making profits by writing contracts that
appeal to different segments of the population.

� The average customer is willing to pay a whopping 2.5 c/kWh
more for its local supplier than for an unknown supplier. Only
a small share of customers prefer an unknown supplier to their
local utility. This finding has important implications for compe-
tition. It implies that entry in the residential market by previously
unknown suppliers will be very difficult, particularly since the
price discounts that entrants can offer in most markets are fairly
small. The experience in California, where only 1 percent of res-
idential customers have switched away from their local utility
after several years of open access, is consistent with this finding.

� The average customer is willing to pay 1.8 c/kWh more for a
known supplier than for an unknown one. The estimated values
of s imply that a sizable share of customers would be willing
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to pay more for a known supplier than for their local utility,
presumably because of a bad experience or a negative attitude
toward the local utility. These results imply that companies
that are known to customers, such as their long-distance car-
riers, local telecommunications carriers, local cable companies,
and even retailers like Sears and Home Depot, may be more
successful in attracting customers for electricity supply than
companies that were unknown prior to their entry as an energy
supplier.

� The average customer evaluates the TOD rates in a way that is
fairly consistent with TOD usage patterns. In model 1, the mean
coefficient of the dummy variable for the TOD rates implies that
the average customer considers these rates to be equivalent to a
fixed price of 9.7 c/kWh. In model 2, the estimated mean and
standard deviation of the log of the coefficient imply a median
willingness to pay of 8.4 and a mean of 10.4 c/kWh, which span
the mean from model 1. Here 9.5 c/kWh is the average price
that a customer would pay under the TOD rates if 75 percent of
its consumption occurred during the day (between 8 a.m. and
8 p.m.) and the other 25 percent occurred at night. These shares,
while perhaps slightly high for the day, are not unreasonable.
The estimated values of s are highly significant, reflecting het-
erogeneity in usage patterns and perhaps in customers’ ability
to shift consumption in response to TOD prices. These values
are larger than reasonable, implying that a nonnegligible share
of customers treat the TOD prices as being equivalent to a fixed
price that is higher than the highest TOD price or lower than the
lowest TOD price.

� The average customer seems to avoid seasonal rates for reasons
beyond the prices themselves. The average customer treats the
seasonal rates as being equivalent to a fixed 10 c/kWh, which is
the highest seasonal price. A possible explanation for this result
relates to the seasonal variation in customers’ bills. In many ar-
eas, electricity consumption is highest in the summer, when air
conditioners are being run, and energy bills are therefore higher
in the summer than in other seasons, even under fixed rates. The
variation in bills over months without commensurate variation
in income makes it more difficult for customers to pay their sum-
mer bills. In fact, nonpayment for most energy utilities is most
frequent in the summer. Seasonal rates, which apply the high-
est price in the summer, increase the seasonal variation in bills.
Customers would rationally avoid a rate plan that exacerbates
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an already existing difficulty. If this interpretation is correct,
then seasonal rates combined with bill smoothing (by which
the supplier carries a portion of the summer bills over to the
winter) could provide an attractive arrangement for customers
and suppliers alike.

Model 2 attains a higher log-likelihood value than model 1, presum-
ably because the lognormal distribution assures negative coefficients for
the TOD and seasonal variables.

11.6.2. Conditional Distributions

We now use the estimated models to calculate customers’ con-
ditional distributions and the means of these distributions. We calculate
β̄n for each customer in two ways. First, we calculate β̄n using equation
(11.3) with the point estimates of the population parameters, θ̂ . Sec-
ond, we use the procedure in Section 11.3 to integrate over the sampling
distribution of the estimated population parameters.

The means and standard deviations of β̄n over the sampled customers
calculated by these two methods are given in Tables 11.3 and 11.4,
respectively. The price coefficient is not listed in Table 11.3, since it
is fixed across the population. Table 11.4 incorporates the sampling
distribution of the population parameters, which includes variance in
the price coefficient.

Consider the results in Table 11.3 first. The mean of β̄n is very close
to the estimated population mean given in Table 11.2. This similarity
is expected for a correctly specified and consistently estimated model.
The standard deviation of β̄n would be zero if there were no conditioning
and would equal the population standard deviation if each customer’s
coefficient were known exactly. The standard deviations in Table 11.3
are considerably above zero and are fairly close to the estimated popu-
lation standard deviations in Table 11.2. For example, in model 1, the
conditional mean of the coefficient of contract length has a standard
deviation of 0.318 over customers, and the point estimate of the stan-
dard deviation in the population is 0.379. Thus, variation in β̄n captures
more than 70 percent of the total estimated variation in this coefficient.
Similar results are obtained for other coefficients. This result implies
that the mean of a customer’s conditional distribution captures a fairly
large share of the variation in coefficients across customers and has the
potential to be useful in distinguishing customers.

As discussed in Section 11.5, a diagnostic check on the specification
and estimation of the model is obtained by comparing the sample average



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-11Drv CB495/Train KEY BOARDED August 20, 2002 14:13 Char Count= 0

278 Estimation

Table 11.3. Average β̄n using point estimate θ̂

Model 1 Model 2

Contract length
Mean −0.2028 −0.2149
Std. dev. 0.3175 0.3262

Local utility
Mean 2.1205 2.2146
Std. dev. 1.2472 1.3836

Known company
Mean 1.5360 1.5997
Std. dev. 0.6676 0.6818

TOD rate
Mean −8.3194 −9.2584
Std. dev. 2.2725 3.1051

Seasonal rate
Mean −8.6394 −9.1344
Std. dev. 1.7072 2.0560

Table 11.4. Average β̄n with sampling
distribution of θ̂

Model 1 Model 2

Price
Mean −0.8753 −0.8836
Std. dev. 0.5461 0.0922

Contract length
Mean −0.2004 −0.2111
Std. dev. 0.3655 0.3720

Local utility
Mean 2.1121 2.1921
Std. dev. 1.5312 1.6815

Known company
Mean 1.5413 1.5832
Std. dev. 0.9364 0.9527

TOD rate
Mean −9.1615 −9.0216
Std. dev. 2.4309 3.8785

Seasonal rate
Mean −9.4528 −8.9408
Std. dev. 1.9222 2.5615
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of the conditional distributions with the estimated population distribu-
tion. The means in Table 11.3 represent the means of the sample average
of the conditional distributions. The standard deviation of the sample-
average conditional distribution depends on the standard deviation of
β̄n , which is given in Table 11.3, plus the standard deviation of βn − β̄n .
When this latter portion is added, the standard deviation of each coeffi-
cient matches very closely the estimated population standard deviation.
This equivalence suggests that there is no significant specification error
and that the estimated population parameters are fairly accurate. This
suggestion is somewhat tempered, however, by the results in Table 11.4.

Table 11.4 gives the sample mean and standard deviation of the
mean of the sampling distribution of β̄n that is induced by the sampling
distribution of θ̂ . The means in Table 11.4 are the means of the sample
average of h(β | yn, xn, θ̂ ) integrated over the sampling distribution of θ̂ .
For model 1, a discrepancy occurs that indicates possible misspecifica-
tion. In particular, the means of the TOD and seasonal rates coefficients
in Table 11.4 exceed their estimated population means in Table 11.2. In-
terestingly, the means for these coefficients in Table 11.4 for model 1 are
closer to the analogous means for model 2 than to the estimated popula-
tion means for model 1 in Table 11.2. Model 2 has the more reasonably
shaped lognormal distribution for these coefficients and obtains a con-
siderably better fit than model 1. The conditioning in model 1 appears
to be moving the coefficients closer to the values in the better-specified
model 2 and away from its own misspecified population distributions.
This is an example of how a comparison of the estimated population
distribution with the sample average of the conditional distribution can
reveal information about specification and estimation.

The standard deviations in Table 11.4 are larger than those in Ta-
ble 11.3. This difference is due to the fact that the sampling variance in the
estimated population parameters is included in the calculations for Table
11.4 but not for Table 11.3. The larger standard deviations do not mean
that the portion of total variance in βn that is captured by variation in β̄n
is larger when the sampling distribution is considered than when not.

Useful marketing information can be obtained by examining the β̄n of
each customer. The value of this information for targeted marketing has
been emphasized by Rossi et al. (1996). Table 11.5 gives the calculated
β̄n for the first three customers in the data set, along with the population
mean of βn .

The first customer wants to enter a long-term contract, in contrast with
the vast majority of customers who dislike long-term contracts. He is
willing to pay a higher energy price if the price is guaranteed through a
long term. He evaluates TOD and seasonal rates very generously, as if all
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Table 11.5. Condition means for three customers

Population Customer 1 Customer 2 Customer 3

Contract length −0.213 0.198 −0.208 −0.401
Local utility 2.23 2.91 2.17 0.677
Known company 1.59 1.79 2.15 1.24
TOD rates −9.19 −5.59 −8.92 −12.8
Seasonal rates −9.02 −5.86 −11.1 −10.9

of his consumption were in the lowest-priced period (note that the lowest
price under TOD rates is 5 c/kWh and the lowest price under seasonal
rates is 6 c/kWh). That is, the first customer is willing to pay, to be on
TOD or seasonal rates, probably more than the rates are actually worth
in terms of reduced energy bills. Finally, this customer is willing to pay
more than the average customer to stay with the local utility. From a
marketing perspective, the local utility can easily retain and make extra
profits from this customer by offering a long-term contract under TOD
or seasonal rates.

The third customer dislikes seasonal and TOD rates, evaluating them
as if all of his consumption were in the highest-priced periods. He dislikes
long-term contracts far more than the average customer, and yet, unlike
most customers, prefers to receive service from a known company that
is not his local utility. This customer is a prime target for capture by a
well-known company if the company offers him a fixed price without
requiring a commitment.

The second customer is less clearly a marketing opportunity. A well-
known company is on about an equal footing with the local utility in
competing for this customer. This in itself might make the customer a
target of well-known suppliers, since he is less tied to the local utility
than most customers. However, beyond this information, there is little
beyond low prices (which all customers value) that would seem to attract
the customer. His evaluation of TOD and seasonal rates is sufficiently
negative that it is unlikely that a supplier could attract and make a profit
from the customer by offering these rates. The customer is willing to
pay to avoid a long-term contract, and so a supplier could attract this
customer by not requiring a contract if other suppliers were requiring
contracts. However, if other suppliers were not requiring contracts either,
there seems to be little leverage that any supplier would have over its
competitors. This customer will apparently be won by the supplier that
offers the lowest fixed price.

The discussion of these three customers illustrates the type of infor-
mation that can be obtained by conditioning on customer’s choices, and
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how the information translates readily into characterizing each customer
and identifying profitable marketing opportunities.

11.6.3. Conditional Probability for the Last Choice

Recall that the last choice situation faced by each customer was
not included in the estimation. It can therefore be considered a new
choice situation and used to assess the effect of conditioning on past
choices. We identified which alternative each customer chose in the
new choice situation and calculated the probability of this alternative.
The probability was first calculated without conditioning on previous
choices. This calculation uses the mixed logit formula (11.5) with the
population distribution of βn and the point estimates of the popula-
tion parameters. The average of this unconditional probability over cus-
tomers is 0.353. The probability was then calculated conditioned on pre-
vious choices. Four different ways of calculating this probability were
used:

1. Based on formula (11.6) using the point estimates of the popu-
lation parameters.

2. Based on formula (11.6) along with the procedure in Section 11.3
that takes account of the sampling variance of the estimates of
the population parameters.

3–4. With the logit formula

eβ ′
n xn i T +1∑

j eβ ′
n xn j T +1

,

with the conditional mean β̄n being used for βn . This method is
equivalent to using the customer’s β̄n as if it were an estimate
of the customer’s true coefficients, βn . The two versions differ
in whether β̄n is calculated on the basis of the point estimate
of the population parameters (method 3) or takes the sampling
distribution into account (method 4).

Results are given in Table 11.6 for model 2. The most prominent result
is that conditioning on each customer’s previous choices improves the
forecasts for the last choice situation considerably. The average proba-
bility of the chosen alternative increases from 0.35 without conditioning
to over 0.50 with conditioning. For nearly three-quarters of the 361 sam-
pled customers, the prediction of their last choice situation is better with
conditioning than without, with the average probability rising by more
than 0.25. For the other customers, the conditioning makes the prediction
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Table 11.6. Probability of chosen alternative in last choice situation

Method 1 Method 2 Method 3 Method 4

Average probability 0.5213 0.5041 0.5565 0.5487
Number of customers

whose probability
rises with conditioning 266 260 268 264

Average rise in
probability for
customers with a rise 0.2725 0.2576 0.3240 0.3204

Number of customers
whose probability
drops with conditioning 95 101 93 97

Average fall in
probability for
customers with a drop 0.1235 0.1182 0.1436 0.1391

in the last choice situations less accurate, with the average probability
for these customers dropping.

There are several reasons why the predicted probability after condi-
tioning is not always greater. First, the choice experiments were con-
structed so that each situation would be fairly different from the other
situations, so as to obtain as much variation as possible. If the last sit-
uation involves new trade-offs, the previous choices will not be useful
and may in fact be detrimental to predicting the last choice. A more
appropriate test might be to design a series of choice situations that
elicited information on the relevant trade-offs and then design an extra
“holdout” situation that is within the range of trade-offs of the previous
ones.

Second, we did not include in our model all of the attributes of the
alternatives that were presented to customers. In particular, we omit-
ted attributes that did not enter significantly in the estimation of the
population parameters. Some customers might respond to these omit-
ted attributes, even though they are insignificant for the population as
a whole. Insofar as the last choice situation involves trade-offs of these
attributes, the conditional distributions of tastes would be misleading,
since the relevant tastes are excluded. This explanation suggests that,
if a mixed logit is going to be used for obtaining conditional densities
for each customer, the researcher might include attributes that could be
important for some individuals even though they are insignificant for the
population as a whole.

Third, regardless of how the survey and model are designed, some
customers might respond to choice situations in a quixotic manner, such
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that the tastes that are evidenced in previous choices are not applied by
the customer in the last choice situation.

Last, random factors can cause the probability for some customers to
drop with conditioning even when the first three reasons do not.

While at least one of these reasons may be contributing to the lower
choice probabilities for some of the customers in our sample, the gain
in predictive accuracy for the customers with an increase in probability
after conditioning is over twice as great as the loss in accuracy for those
with a decrease, and the number of customers with a gain is almost three
times as great as the number with a loss.

The third and easiest method, which simply calculates the standard
logit formula using the customers’ β̄n based on the point estimate of
the population parameters, gives the highest probability. This procedure
does not allow for the distribution of βn around β̄n or for the sampling
distribution of θ̂ . Allowing for either variance reduces the average prob-
ability: using the conditional distribution of βn rather than just the mean
β̄n (methods 1 and 2 compared with methods 3 and 4, respectively)
reduces the average probability, and allowing for the sampling distribu-
tion of θ̂ rather than the point estimate (methods 2 and 4 compared with
methods 1 and 3, respectively) also reduces the average probability. This
result does not mean that method 3, which incorporates the least vari-
ance, is superior to the others. Methods 3 and 4 are consistent only if the
number of choice situations is able to rise without bound, so that β̄n can
be considered to be an estimate of βn . With fixed T , methods 1 and 2 are
more appropriate, since they incorporate the entire conditional density.

11.7 Discussion

This chapter demonstrates how the distribution of coefficients condi-
tioned on the customer’s observed choices are obtained from the distri-
bution of coefficients in the population. While these conditional distri-
butions can be useful in several ways, it is important to recognize the
limitations of the concept. First, the use of conditional distributions in
forecasting is limited to those customers whose previous choices are
observed. Second, while the conditional distribution of each customer
can be used in cluster analysis and for other identification purposes,
the researcher will often want to relate preferences to observable demo-
graphics of the customers. Yet, these observable demographics of the
customers could be entered directly into the model itself, so that the
population parameters vary with the observed characteristics of the cus-
tomers in the population. In fact, entering demographics into the model
is more direct and more accessible to hypothesis testing than estimating
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a model without these characteristics, calculating the conditional distri-
bution for each customer, and then doing cluster and other analyses on
the moments of the conditional distributions.

Given these issues, there are three main reasons that a researcher might
benefit from calculating customers’ conditional distributions. First, in-
formation on the past choices of customers is becoming more and more
widely available. Examples include scanner data for customers with
club cards at grocery stores, frequent flier programs for airlines, and
purchases from internet retailers. In these situations, conditioning on
previous choices allows for effective targeted marketing and the devel-
opment of new products and services that match the revealed preferences
of subgroups of customers.

Second, the demographic characteristics that differentiate customers
with different preferences might be more evident through cluster analysis
on the conditional distributions than through specification testing in the
model itself. Cluster analysis has its own unique way of identifying
patterns, which might in some cases be more effective than specification
testing within a discrete choice model.

Third, examination of customers’ conditional distributions can often
identify patterns that cannot be related to observed characteristics of
customers but are nevertheless useful to know. For instance, knowing
that a product or marketing campaign will appeal to a share of the popu-
lation because of their particular preferences is often sufficient, without
needing to identify the people on the basis of their demographics. The
conditional densities can greatly facilitate analyses that have these goals.
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12 Bayesian Procedures

12.1 Introduction

A powerful set of procedures for estimating discrete choice models
has been developed within the Bayesian tradition. The breakthough
concepts were introduced by Albert and Chib (1993) and McCulloch
and Rossi (1994) in the context of probit, and by Allenby and Lenk
(1994) and Allenby (1997) for mixed logits with normally distributed
coefficients. These authors showed how the parameters of the model can
be estimated without needing to calculate the choice probabilities. Their
procedures provide an alternative to the classical estimation methods
described in Chapter 10. Rossi et al. (1996), Allenby (1997), and
Allenby and Rossi (1999) showed how the procedures can also be used to
obtain information on individual-level parameters within a model with
random taste variation. By this means, they provide a Bayesian analog
to the classical procedures that we describe in Chapter 11. Variations of
these procedures to accommodate other aspects of behavior have been
numerous. For example, Arora et al. (1998) generalized the mixed logit
procedure to take account of the quantity of purchases as well as brand
choice in each purchase occasion. Bradlow and Fader (2001) showed
how similar methods can be used to examine rankings data at an ag-
gregate level rather than choice data at the individual level. Chib and
Greenberg (1998) and Wang et al. (2001) developed methods for in-
terrelated discrete responses. Chiang et al. (1999) examined situations
where the choice set that the decision maker considers is unknown to
the researcher. Train (2001) extended the Bayesian procedure for mixed
logit to nonnormal distributions of coefficients, including lognormal,
uniform, and triangular distributions.

The Bayesian procedures avoid two of the most prominent difficulties
associated with classical procedures. First, the Bayesian procedures do
not require maximization of any function. With probit and some mixed
logit models (especially those with lognormal distributions), maximiza-
tion of the simulated likelihood function can be difficult numerically.

285
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Often the algorithm fails to converge for various reasons. The choice
of starting values is often critical, with the algorithm converging from
starting values that are close to the maximum but not from other start-
ing values. The issue of local versus global maxima complicates the
maximization further, since convergence does not guarantee that the
global maximum has been attained. Second, desirable estimation prop-
erties, such as consistency and efficiency, can be attained under more
relaxed conditions with Bayesian procedures than classical ones. As
shown in Chapter 10, maximum simulated likelihood is consistent only
if the number of draws used in simulation is considered to rise with
sample size; and efficiency is attained only if the number of draws rises
faster than the square root of sample size. In contrast, the Bayesian esti-
mators that we describe are consistent for a fixed number of draws used
in simulation and are efficient if the number of draws rises at any rate
with sample size.

These advantages come at a price, of course. For researchers who are
trained in a classical perspective, the learning curve can be steep. Numer-
ous interrelated techniques and concepts must be assimilated before the
power of them becomes clear. I can assure the reader, however, that the
effort is worthwhile. Another cost of the Bayesian procedures is more
fundamental. To simulate relevant statistics that are defined over a distri-
bution, the Bayesian procedures use an iterative process that converges,
with a sufficient number of iterations, to draws from that distribution.
This convergence is different from the convergence to a maximum that
is needed for classical procedures and involves its own set of difficulties.
The researcher cannot easily determine whether convergence has actu-
ally been achieved. Thus, the Bayesian procedures trade the difficulties
of convergence to a maximum for the difficulties associated with this
different kind of convergence. The researcher will need to decide, in a
particular setting, which type of convergence is less burdensome.

For some behavioral models and distributional specifications,
Bayesian procedures are far faster and, after the initial learning that a
classicist needs, are more straightforward from a programming perspec-
tive than classical procedures. For other models, the classical procedures
are easier. We will explore the relative speed of Bayesian and classical
procedures in the sections to follow. The differences can be readily cat-
egorized, through an understanding of how the two sets of procedures
operate. The researcher can use this understanding in deciding which
procedure to use in a particular setting.

Two important notes are required before proceeding. First, the
Bayesian procedures, and the term “hierarchical Bayes” that is often
used in the context of discrete choice models, refer to an estimation
method, not a behavioral model. Probit, mixed logit, or any other model
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that the researcher specifies can, in principle, be estimated by either
classical or Bayesian procedures. Second, the Bayesian perspective from
which these procedures arise provides a rich and intellectually satisfying
paradigm for inference and decision making. Nevertheless, a researcher
who is uninterested in the Bayesian perspective can still benefit from
Bayesian procedures: the use of Bayesian procedures does not necessi-
tate that the researcher adopt a Bayesian perspective on statistics. As we
will show, the Bayesian procedures provide an estimator whose proper-
ties can be examined and interpreted in purely classical ways. Under cer-
tain conditions, the estimator that results from the Bayesian procedures
is asymptotically equivalent to the maximum likelihood estimator. The
researcher can therefore use Bayesian procedures to obtain parameter es-
timates and then interpret them the same as if they were maximum likeli-
hood estimates. A highlight of the Bayesian procedures is that the results
can be interpreted from both perspectives simultaneously, drawing on
the insights afforded by each tradition. This dual interpretation parallels
that of the classical procedures, whose results can be transformed for
Bayesian interpretation as described by Geweke (1989). In short, the re-
searcher’s statistical perspective need not dictate her choice of procedure.

In the sections that follow, we provide an overview of Bayesian con-
cepts in general, introducing the prior and posterior distributions. We
then show how the mean of the posterior distribution can be interpreted
from a classical perspective as being asymptotically equivalent to the
maximum of the likelihood function. Next we address the numerical
issue of how to calculate the mean of the posterior distribution. Gibbs
sampling and, more generally, the Metropolis–Hastings algorithm can
be used to obtain draws from practically any posterior distribution, no
matter how complex. The mean of these draws simulates the mean of
the posterior and thereby constitutes the parameter estimates. The stan-
dard deviation of the draws provides the classical standard errors of the
estimates. We apply the method to a mixed logit model and compare the
numerical difficulty and speed of the Bayesian and classical procedures
under various specifications.

12.2 Overview of Bayesian Concepts

Consider a model with parameters θ . The researcher has some initial
ideas about the value of these parameters and collects data to improve this
understanding. Under Bayesian analysis, the researcher’s ideas about the
parameters are represented by a probability distribution over all possible
values that the parameters can take, where the probability represents how
likely the researcher thinks it is for the parameters to take a particular
value. Prior to collecting data, the researcher’s ideas are based on logic,
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intuition, or past analyses. These ideas are represented by a density on θ ,
called the prior distribution and denoted k(θ ). The researcher collects
data in order to improve her ideas about the value of θ . Suppose the
researcher observes a sample of N independent decision makers. Let
yn denote the observed choice (or choices) of decision maker n, and let
the set of observed choices for the entire sample be labeled collectively
as Y = {y1, . . . , yN }. Based on this sample information, the researcher
changes, or updates, her ideas about θ . The updated ideas are represented
by a new density on θ , labeled K (θ | Y ) and called the posterior distri-
bution. This posterior distribution depends on Y , since it incorporates
the information that is contained in the observed sample.

The question arises: how exactly do the researcher’s ideas about θ

change from observing Y ? That is, how does the posterior distribution
K (θ | Y ) differ from the prior distribution k(θ )? There is a precise re-
lationship between the prior and posterior distribution, established by
Bayes’ rule. Let P(yn | θ) be the probability of outcome yn for decision
maker n. This probability is the behavioral model that relates the ex-
planatory variables and parameters to the outcome, though the notation
for the explanatory variables is omitted for simplicity. The probability
of observing the sample outcomes Y is

L(Y | θ ) =
N∏

n=1

P(yn | θ ).

This is the likelihood function (not logged) of the observed choices.
Note that it is a function of the parameters θ .

Bayes’ rule provides the mechanism by which the researcher improves
her ideas about θ . By the rules of conditioning,

(12.1) K (θ | Y )L(Y ) = L(Y | θ ) k(θ ),

where L(Y ) is the marginal probability of Y , marginal over θ :

L(Y ) =
∫

L(Y | θ )k(θ ) dθ.

Both sides of equation (12.1) represent the joint probability of Y and θ ,
with the conditioning in opposite directions. The left-hand side is the
probability of Y times the probability of θ given Y , while the right-hand
side is the probability of θ times the probability of Y given θ . Rearrang-
ing, we have

(12.2) K (θ | Y ) = L(Y | θ )k(θ )

L(Y )
.
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This equation is Bayes’ rule applied to prior and posterior distributions.
In general, Bayes rule links conditional and unconditional probabilities
in any setting and does not imply a Bayesian perspective on statistics.
Bayesian statistics arises when the unconditional probability is the prior
distribution (which reflects the researcher’s ideas about θ not conditioned
on the sample information) and the conditional probability is the poste-
rior distribution (which gives the researcher’s ideas about θ conditioned
on the sample information).

We can express equation (12.2) in a more compact and convenient
form. The marginal probability of Y , L(Y ), is constant with respect to θ

and, more specifically, is the integral of the numerator of (12.2). As such,
L(Y ) is simply the normalizing constant that assures that the posterior
distribution integrates to 1, as required for any proper density. Using this
fact, equation (12.2) can be stated more succinctly by saying simply that
the posterior distribution is proportional to the prior distribution times
the likelihood function:

K (θ | Y ) ∝ L(Y | θ )k(θ ).

Intuitively, the probability that the researcher ascribes to a given value
for the parameters after seeing the sample is the probability that she
ascribes before seeing the sample times the probability (i.e., likelihood)
that those parameter values would result in the observed choices.

The mean of the posterior distribution is

(12.3) θ̄ =
∫

θ K (θ | Y ) dθ.

This mean has importance from both a Bayesian and a classical perspec-
tive. From a Bayesian perspective, θ̄ is the value of θ that minimizes
the expected cost of the researcher being wrong about θ , if the cost of
error is quadratic in the size of the error. From a classical perspective,
θ̄ is an estimator that has the same asymptotic sampling distribution as
the maximum likelihood estimator. We explain both of these concepts
in the following sections.

12.2.1. Bayesian Properties of θ̄

The researcher’s views about θ are represented by the posterior
K (θ | Y ) after observing the sample. Suppose that the researcher were
required to guess the true value of θ and would be levied a penalty for the
extent to which her guess differed from the true value. More realistically,
suppose that some action must be taken that depends on the value of θ ,
such as a manufacturer setting the price of a good when the revenues at
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any price depend on the price elasticity of demand. There is a cost to
taking the wrong action, such as setting price based on the belief that
the price elasticity is −0.2 when the true elasticity is actually −0.3. The
question becomes: what value of θ should the researcher use in these
decisions in order to minimize her expected cost of being wrong, given
her beliefs about θ as represented in the posterior distribution?

If the cost of being wrong is quadratic in the distance between the θ

that is used in the decision and the true θ , then the optimal value of θ to
use in the decision is θ̄ . This fact can be demonstrated as follows. If the
researcher uses θ0 in her decisions when the true value is θ∗, the cost of
being wrong is

C(θ0, θ
∗) = (θ0 − θ∗)′ B(θ0 − θ∗),

where B is a matrix of constants. The researcher doesn’t know the true
value of θ , but has beliefs about its value as represented in K (θ | Y ).
The researcher can therefore calculate the expected cost of being wrong
when using the value θ0. This expected cost is

EC(θ0) =
∫

C(θ0, θ )K (θ | Y ) dθ

=
∫

(θ0 − θ )′ B(θ0 − θ )K (θ | Y ) dθ.

The value of θ0 that minimizes this expected cost is determined by
differentiating EC(θ0), setting the derivative equal to zero, and solving
for θ0. The derivative is

∂EC(θ0)

∂θ0
=

∫
(θ0 − θ )′ B(θ0 − θ )

∂θ0
K (θ | Y ) dθ

=
∫

2(θ0 − θ )′ BK (θ | Y ) dθ

= 2θ ′
0 B

∫
K (θ | Y ) dθ − 2

(∫
θ K (θ | Y ) dθ

)′
B

= 2θ ′
0 B − 2θ̄

′ B.

Setting this expression to equal zero and solving for θ0, we have

2θ ′
0 B − 2θ̄

′ B = 0,

θ ′
0 B = θ̄

′ B,

θ0 = θ̄ .

The mean of the posterior, θ̄ , is the value of θ that a Bayesian researcher
would optimally act upon if the cost of being wrong about θ rises quadrat-
ically with the distance to the true θ .
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Zellner (1971) describes the optimal Bayesian estimator under other
loss functions. While the loss function is usually assumed to be sym-
metric and unbounded like the quadratic, it need not be either; see, for
example, Wen and Levy (2001). Importantly, Bickel and Doksum (2000)
show that the correspondence that we describe in the next section be-
tween the mean of the posterior and the maximum likelihood estimator
also applies to Bayesian estimators that are optimal under many other
loss functions.

12.2.2. Classical Properties of θ̄ :
The Bernstein–von Mises Theorem

Classical statistics is not concerned with the researcher’s be-
liefs and contains no notion of prior and posterior distributions. The
concern of classical statistics is to determine the sampling distribution
of an estimator. This distribution reflects the fact that a different sam-
ple would produce a different point estimate. The sampling distribution
is the distribution of point estimates that would be obtained if many
different samples were taken. Usually, the sampling distribution for an
estimator cannot be derived for small samples. However, the asymptotic
sampling distribution can usually be derived, which approximates the
actual sampling distribution when the sample size is large enough. In
classical statistics, the asymptotic sampling distribution determines the
properties of the estimator, such as whether the estimator is consistent,
asymptotically normal, and efficient. The variance of the asymptotic
distribution provides the standard errors of the estimates and allows for
hypothesis testing, the accuracy of which rises with sample size.

From a classical perspective, θ̄ is simply a statistic like any other
statistic. Its formula, given in (12.3), exists and can be applied even if
the researcher does not interpret the formula as representing the mean
of a posterior distribution. The researcher can consider K (θ | Y ) to be
a function defined by equation (12.2) for any arbitrarily defined k(θ)
that meets the requirements of a density. The relevant question for the
classical researcher is the same as with any statistic: what is the sampling
distribution of θ̄?

The answer to this question is given by the Bernstein–von Mises the-
orem. This theorem has a long provenance and takes many forms. In
the nineteenth century, Laplace (1820) observed that posterior distribu-
tions start to look more and more like normal distributions as the sample
size increases. Over the years, numerous versions of the observation
have been demonstrated under various conditions, and its implications
have been more fully explicated. See Rao (1987), Cam and Yang (1990),
Lehmann and Casella (1998), and Bickel and Doksum (2000) for modern
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treatments with historical notes. The theorem is named after Bernstein
(1917) and von Mises (1931) because they seem to have been the first to
provide a formal proof of Laplace’s observation, though under restrictive
assumptions that others later relaxed.

I describe the theorem as three related statements. In these state-
ments, the information matrix, which we used extensively in Chapters 8
and 10, is important. Recall that the score of an observation is the gradi-
ent of that observation’s log likelihood with respect to the parameters:
sn = ∂ ln P(yn | θ )/∂θ , where P(yn | θ ) is the probability of decision
maker n’s observed choices. The information matrix, −H, is the nega-
tive expected derivative of the score, evaluated at the true parameters:

−H = −E

(
∂2 ln P(yn | θ∗)

∂θ ∂θ ′

)
,

where the expectation is over the population. (The negative is taken
so that the information matrix can be positive definite, like a covari-
ance matrix.) Recall also that the maximum likelihood estimator has
an asymptotic variance equal to (−H)−1/N . That is,

√
N (θ∗ − θ̂ )

d→
N (0, (−H)−1), so that θ̂

a∼ N (θ∗, (−H)−1/N ), where θ̂ is the maximum
likelihood estimator.

We can now give the three statements that collectively constitute the
Bernstein–von Mises theorem:

1.
√

N (θ − θ̄ )
d→ N (0, (−H)−1).

Stated intuitively, the posterior distribution of θ converges to a
normal distribution with variance (−H)−1/N as the sample size
rises. In using the expression

d→ in this context, it is important
to note that the distribution that is converging is the posterior
distribution of

√
N (θ − θ̄ ) rather than the sampling distribu-

tion. In classical analysis of estimators, as in Chapter 10, the
notation

d→ is used to indicate that the sampling distribution
is converging. Bayesian analysis examines the posterior rather
than the sampling distribution, and the notation indicates that
the posterior distribution is converging.

The important points to recognize in this first statement are
that, as sample size rises, (i) the posterior becomes normal and
(ii) the variance of the posterior becomes the same as the sam-
pling variance of the maximum likelihood estimator. These two
points are relevant for the next two statements.

2.
√

N (θ̄ − θ̂ )
p→ 0.

The mean of the posterior converges to the maximum of the
likelihood function. An even stronger statement is being made.
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The difference between the mean of the posterior and the maxi-
mum of the likelihood function disappears asymptotically, even
when the difference is scaled up by

√
N .

This result makes intuitive sense, given the first result. Since
the posterior eventually becomes normal, and the mean and
maximum are the same for a normal distribution, the mean of
the posterior eventually becomes the same as the maximum
of the posterior. Also, the effect of the prior distribution on
the posterior disappears as the sample size rises (provided of
course that the prior is not zero in the neighborhood of the true
value). The posterior is therefore proportional to the likelihood
function for large enough sample sizes. The maximum of the
likelihood function becomes the same as the maximum of the
posterior, which, as stated, is also the mean. Stated succinctly:
since the posterior is asymptotically normal so that its mean
equals its maximum, and the posterior is proportional to the
likelihood function asymptotically, the difference between θ̄ and
θ̂ eventually disappears.

3.
√

N (θ̄ − θ∗)
d→ N (0, (−H)−1).

The mean of the posterior, considered as a classical estimator, is
asymptotically equivalent to the maximum likelihood estimator.
That is, θ̄

a∼ N (θ∗, (−H)−1/N ), just like the maximum likeli-
hood estimator. Note that since we are now talking in classical
terms, the notation refers to the sampling distribution of θ̄ , the
same as it would for any estimator.

This third statement is an implication of the first two. The
statistic

√
N (θ̄ − θ∗) can be rewritten as

√
N (θ̄ − θ∗) =

√
N (θ̂ − θ∗) +

√
N (θ̄ − θ̂ ).

From statement 2, we know that
√

N (θ̄ − θ̂ )
p→ 0, so that the

second term disappears asymptotically. Only the first term af-
fects the asymptotic distribution. This first term is the defining
statistic for the maximum likelihood estimator θ̂ . We showed
in Chapter 10 that

√
N (θ̂ − θ∗)

d→ N (0, (−H)−1). The statistic√
N (θ̄ − θ∗) therefore follows the same distribution asymptoti-

cally. Essentially, since θ̄ and θ̂ converge, their asymptotic sam-
pling distributions are the same.

The Bernstein–von Mises theorem establishes that θ̄ is on the same
footing, in classical terms, as θ̂ . Instead of maximizing the like-
lihood function, the researcher can calculate the mean of the posterior
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distribution and know that the resulting estimator is as good in classical
terms as maximum likelihood.

The theorem also provides a procedure for obtaining the standard
errors of the estimates. Statement 1 says that asymptotically the variance
of the posterior distribution is (−H)−1/N , which, by statement 3, is the
asymptotic sampling variance of the estimator θ̄ . The variance of the
posterior is the asymptotic variance of the estimates. The researcher can
perform estimation entirely by using moments of the posterior: the mean
of the posterior provides the point estimates, and the standard deviation
of the posterior provides the standard errors.

In applications, the posterior mean and the maximum of the likelihood
function can differ when sample size is insufficient for the asymptotic
convergence. Huber and Train (2001) found the two to be remarkably
similar in their application, while Ainslie et al. (2001) found them to be
sufficiently different to warrant consideration. When the two estimates
are not similar, other grounds must be used to choose between them (if
indeed a choice is necessary), since their asymptotic properties are the
same.

12.3 Simulation of the Posterior Mean

To calculate the mean of the posterior distribution, simulation procedures
are generally required. As stated previously, the mean is

θ̄ =
∫

θ K (θ | Y ) dθ.

A simulated approximation of this integral is obtained by taking draws of
θ from the posterior distribution and averaging the results. The simulated
mean is

θ̌ = 1

R

R∑
r=1

θ r ,

where θ r is the r th draw from K (θ | Y ). The standard deviation of the
posterior, which serves as the standard error of the estimates, is simulated
by taking the standard deviation of the R draws.

As stated, θ̄ has the same asymptotic properties as the maximum
likelihood estimator θ̂ . How does the use of simulation to approximate θ̄

affect its properties as an estimator? For maximum simulated likelihood
(MSL), we found that the number of draws used in simulation must rise
faster than the square root of the sample size in order for the estimator
to be asymptotically equivalent to maximum likelihood. With a fixed
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number of draws, the MSL estimator is inconsistent. If the number of
draws rises with sample size but at a slower rate than the square root of
the sample size, then MSL is consistent but not asymptotically normal
or efficient. As we will see, desirable properties of the simulated mean
of the posterior (SMP) are attained with more relaxed conditions on
the number of draws. In particular, the SMP estimator is consistent and
asymptotically normal for a fixed number of draws and becomes efficient
and equivalent to maximum likelihood if the number of draws rises at
any rate with sample size.

To demonstrate these properties, we examine the normalized statistic√
N (θ̌ − θ∗). This statistic can be rewritten as

√
N (θ̌ − θ∗) =

√
N (θ̄ − θ∗) +

√
N (θ̌ − θ̄ ).

From statement 3 of the Bernstein–von Mises theorem, we know the
limiting distribution of the first term:

√
N (θ̄ − θ∗)

d→ N (0, (−H)−1).
The central limit theorem gives us the limiting distribution of the second
term. θ̌ is the average of R draws from a distribution with mean θ̄ and
variance (−H−1)/N . Assuming the draws are independent, the central
limit theorem states that the average of these R draws is distributed with
mean θ̄ and variance (−H)−1/RN . Plugging this information into the
second term, we have

√
N (θ̌ − θ̄ )

d→ N (0, (−H)−1/R). The two terms
are independent by construction, and so

√
N (θ̌ − θ∗)

d→ N

(
0,

(
1 + 1

R

)
(−H)−1

)
.

The simulated mean of the posterior is consistent and asymptotically
normal for fixed R. The covariance is inflated by a factor of 1/R due to
the simulation; however, the covariance matrix can be calculated, and
so standard errors and hypothesis testing can be conducted that take into
account the simulation noise.

If R rises at any rate with N, then the second term disappears asymp-
totically. We have

√
N (θ̌ − θ∗)

d→ N (0, (−H)−1),

which is the same as for the actual (unsimulated) mean θ̄ and the maxi-
mum likelihood estimator θ̂ . When R rises with N, θ̌ is asymptotically
efficient and equivalent to maximum likelihood.

Two notes are required regarding this derivation. First, we have as-
sumed that the draws from the posterior distribution are independent. In
the sections to follow, we describe methods for drawing from the pos-
terior that result in draws that exhibit a type of serial correlation. When
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draws of this type are used, the variance of the simulated mean is in-
flated by more than a factor of 1/R. The estimator is still consistent and
asymptotically normal with a fixed number of nonindependent draws; its
covariance is simply greater. And, if R rises with N, the extra covariance
due to simulation disappears asymptotically even with nonindependent
draws, such that the simulated mean is asymptotically equivalent to
maximum likelihood.

Second, we have assumed that draws from the posterior distribution
can be taken without needing to simulate the choice probabilities. For
some models, taking a draw from the posterior requires simulating the
choice probabilities on which the posterior is based. In this case, the sim-
ulated mean of the posterior involves simulation within simulation, and
the formula for its asymptotic distribution is more complex. As we will
see, however, for most models, including all the models that we consider
in this book, draws from the posterior can be taken without simulating the
choice probabilities. One of the advantages of the Bayesian procedures
is that they usually avoid the need to simulate choice probabilities.

12.4 Drawing from the Posterior

Usually, the posterior distribution does not have a convenient form from
which to take draws. For example, we know how to take draws easily
from a joint untruncated normal distribution; however, it is rare that
the posterior takes this form for the entire parameter vector. Importance
sampling, which we describe in Section 9.2.7 in relation to any density,
can be useful for simulating statistics over the posterior. Geweke (1992,
1997) describes the approach with respect to posteriors and provides
practical guidance on appropriate selection of a proposal density. Two
other methods that we described in Chapter 9 are particularly useful
for taking draws from a posterior distribution: Gibbs sampling and the
Metropolis–Hasting algorithm. These methods are often called Monte
Carlo Markov chain, or MCMC, methods. Formally, Gibbs sampling is a
special type of Metropolis–Hasting algorithm (Gelman, 1992). However,
the case is so special, and so conceptually straightforward, that the term
Metropolis–Hasting (MH) is usually reserved for versions that are more
complex than Gibbs sampling. That is, when the MH algorithm is Gibbs
sampling, it is referred to as Gibbs sampling, and when it is more complex
than Gibbs sampling, it is referred to as the MH algorithm. I maintain
this convention hereafter.

It will be useful for the reader to review Sections 9.2.8 and 9.2.9,
which describe Gibbs sampling and the MH algorithm, since we will be
using these procedures extensively in the remainder of this chapter. As
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stated, the mean of the posterior is simulated by taking draws from
the posterior and averaging the draws. Instead of taking draws from the
multidimensional posterior for all the parameters, Gibbs sampling allows
the researcher to take draws of one parameter at a time (or a subset of
parameters), conditional on values of the other parameters (Casella and
George, 1992). Drawing from the posterior for one parameter conditional
on the others is usually much easier than drawing from the posterior for
all parameters simultaneously.

In some cases, the MH algorithm is needed in conjunction with Gibbs
sampling. Suppose, for example, that the posterior for one parameter
conditional on the other parameters does not take a simple form. In
this case, the MH algorithm can be utilized, since it is applicable to
(practically) any distribution (Chib and Greenberg, 1995).

The MH algorithm is particularly useful in the context of posterior
distributions because the normalizing constant for the posterior need not
be calculated. Recall that the posterior is the prior times the likelihood
function, divided by a normalizing constant that assures that the posterior
integrates to one:

K (θ | Y ) = L(Y | θ )k(θ )

L(Y )
,

where L(Y ) is the normalizing constant

L(Y ) =
∫

L(Y | θ )k(θ ) dθ.

This constant can be difficult to calculate, since it involves integration.
As described in Section 9.2.9, the MH algorithm can be applied without
knowing or calculating the normalizing constant of the posterior.

In summary, Gibbs sampling, combined if necessary with the MH
algorithm, allows draws to be taken from the posterior of a parameter
vector for essentially any model. These procedures are applied to a mixed
logit model in Section 12.6. First, however, we will derive the posterior
distribution for some very simple models. As we will see, these results
often apply in complex models for a subset of the parameters. This fact
facilitates the Gibbs sampling of these parameters.

12.5 Posteriors for the Mean and Variance
of a Normal Distribution

The posterior distribution takes a very convenient form for some simple
inference processes. We describe two of these situations, which, as we
will see, often arise within more complex models for a subset of the
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parameters. Both results relate to the normal distribution. We first con-
sider the situation where the variance of a normal distribution is known,
but the mean is not. We then turn the tables and consider the mean to
be known but not the variance. Finally, combining these two situations
with Gibbs sampling, we consider the situation where both the mean
and variance are unknown.

12.5.1. Result A: Unknown Mean, Known Variance

We discuss the one-dimensional case first, and then generalize
to multiple dimensions. Consider a random variable β that is distributed
normal with unknown mean b and known variance σ . The researcher
observes a sample of N realizations of the random variable, labeled
βn, n = 1, . . . , N . The sample mean is β̄ = (1/N )

∑
n βn . Suppose the

researcher’s prior on b is N (β0, s0); that is, the researcher’s prior beliefs
are represented by a normal distribution with mean b0 and variance s0.
Note that we now have two normal distributions: the distribution of β,
which has mean b, and the prior distribution on this unknown mean,
which has mean β0. The prior indicates that the researcher thinks it is
most likely that b = β0 and also thinks there is a 95 percent chance that
b is somewhere between β0 − 1.96

√
s0 and β0 + 1.96

√
s0. Under this

prior, the posterior on b is N (b1, s1) where

b1 =
1
s0

b0 + N
σ
β̄

1
s0

+ N
σ

and

s1 = 1
1
s0

+ N
σ

.

The posterior mean b1 is the weighted average of the sample mean and
the prior mean.

Proof: The prior is

k(b) = 1√
2πs0

e−(b−b0)2/2s0 .

The probability of drawing βn from N (b, σ ) is

1√
2πσ

e−(b−βn)2/2σ ,
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and so the likelihood of the N draws is

L(βn ∀n | b) =
∏

n

1√
2πσ

e−(b−βn)2/2σ

= 1

(2πσ )N/2
e− ∑

(b−βn)2/2σ

= 1

(2πσ )N/2
e(−Ns̄−N (b−β̄)2)/2σ

= 1

(2πσ )N/2
e−Ns̄/2σ · e−N (b−β̄)2/2σ ,

where s̄ = (1/N )
∑

(βn − β̄)2 is the sample variance of the βn’s. The
posterior is therefore

K (b | βn ∀n) ∝ L(βn ∀n | b)k(b)

= 1

(2πσ )N/2
e−Ns̄/2σ · e−N (b−β̄)2/2σ × 1√

2πs0
e−(b−b0)2/2s0

= m1e−[N (b−β̄)2/2σ ]−[(b−b0)2/2s0],

where m1 is a constant that contains all the multiplicative terms that do
not depend on b. With some algebraic manipulation, we have

K (b | βn ∀n) ∝ e−[N (b−β̄)2/2σ ]−[(b−b0)2/2s0)]

∝ e(b2−2b1b)/2s1

∝ e(b−b1)2/2s1 .

The second ∝ removes β̄
2 and b2

0 from the exponential, since they do not
depend on b and thereby only affect the normalizing constant. (Recall
that exp(a + b) = exp(a) exp(b), so that adding and removing terms
from the exponential has a multiplicative effect on K (b | βn ∀n).) The
third ∝ adds b1β̄ to the exponential, which also does not depend on b.
The posterior is therefore

K (b | βn ∀n) = me(b−b1)2/2s1,

where m is the normalizing constant. This formula is the normal density
with mean b1 and variance s1.

As stated, the mean of the posterior is a weighted average of the
sample mean and the prior mean. The weight on the sample mean rises
as sample size rises, so that for large enough N , the prior mean becomes
irrelevant.

Often a researcher will want to specify a prior that represents very little
knowledge about the parameters before taking the sample. In general,



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-12Drv CB495/Train KEY BOARDED August 20, 2002 13:44 Char Count= 0

300 Estimation

the researcher’s uncertainty is reflected in the variance of the prior. A
large variance means that the researcher has little idea about the value
of the parameter. Stated equivalently, a prior that is nearly flat means
that the researcher considers all possible values of the parameters to be
equally likely. A prior that represents little information is called diffuse.

We can examine the effect of a diffuse prior on the posterior of b.
By raising the variance of the prior, s0, the normal prior becomes more
spread out and flat. As s0 → ∞, representing an increasingly diffuse
prior, the posterior approaches N (β̄, σ/N ).

The multivariate versions of this result are similar. Consider a K -
dimensional random vector β ∼ N (b, W ) with known W and unknown
b. The researcher observes a sample βn, n = 1, . . . , N , whose sample
mean is β̄. If the researcher’s prior on b is diffuse (normal with an
unboundedly large variance), then the posterior is N (β̄, W/N ).

Taking draws from this posterior is easy. Let L be the Choleski factor
of W/N . Draw K iid standard normal deviates, ηi , i = 1, . . . , K , and
stack them into a vector η = 〈η1, . . . , ηK 〉′. Calculate b̃ = β̄ + Lη. The
resulting vector b̃ is a draw from N (β̄, W/N ).

12.5.2. Result B: Unknown Variance, Known Mean

Consider a (one-dimensional) random variable that is distributed
normal with known mean b and unknown variance σ . The researcher
observes a sample of N realizations, labeled βn, n = 1, . . . , N . The
sample variance around the known mean is s̄ = (1/N )

∑
n(βn − b)2.

Suppose the researcher’s prior on σ is inverted gamma with degrees of
freedom v0 and scale s0. This prior is denoted IG(v0, s0). The density is
zero for any negative value for σ , reflecting the fact that a variance must
be positive. The mode of the inverted gamma prior is s0v0/(1 + v0).
Under the inverted gamma prior, the posterior on σ is also inverted
gamma IG(v1, s1), where

v1 = v0 + N ,

s1 = v0s0 + Ns̄

v0 + N
.

Proof: An inverted gamma with v0 degrees of freedom and scale s0

has density

k(σ ) = 1

m0σ (v0+1)/2
e−v0s0/2σ ,

where m0 is the normalizing constant. The likelihood of the sample,
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treated as a function of σ , is

L(βn ∀n | σ ) = 1

(2πσ )N/2
e− ∑

(b−βn)2/2σ = 1

(2πσ )N/2
e−Ns̄/2σ .

The posterior is then

K (σ | βn ∀n) ∝ L(βn ∀n | σ )k(σ )

∝ 1

σ N/2
e−Ns̄/2σ × 1

σ (v0+1)/2
e−v0s0/2σ

= 1

σ (N+v0+1)/2
e−(Ns̄+v0s0)/2σ

= 1

σ (v1+1)/2
e−v1s1/2σ ,

which is the inverted gamma density with v1 degrees of freedom and
scale s1.

The inverted gamma prior becomes more diffuse with lower v0. For
the density to integrate to one and have a mean, v0 must exceed 1. It
is customary to set s0 = 1 when specifying v0 → 1. Under this diffuse
prior, the posterior becomes IG(1 + N , (1 + Ns̄)/(1 + N )). The mode
of this posterior is (1 + Ns̄)/(2 + N ), which is approximately the sample
variance s̄ for large N .

The multivariate case is similar. The multivariate generalization of
an inverted gamma distribution is the inverted Wishart distribution. The
result in the multivariate case is the same as with one random variable
except that the inverted gamma is replaced by the inverted Wishart.

A K -dimensional random vector β ∼ N (b, W ) has known b but un-
known W . A sample of size N from this distribution has variance around
the known mean of S̄ = (1/N )

∑
n(βn − b)(βn − b)′. If the researcher’s

prior on W is inverted Wishart with v0 degrees of freedom and scale ma-
trix S0, labeled IW(v0, S0), then the posterior on W is IW(v1, S1) where

v1 = v0 + N ,

S1 = v0S0 + N S̄

v0 + N
.

The prior becomes more diffuse with lower v0, though v0 must exceed
K in order for the prior to integrate to one and have means. With S0 = I ,
where I is the K -dimensional identity matrix, the posterior under a dif-
fuse prior becomes IW(K + N , (K I + N S̄)/(K + N )). Conceptually,
the prior is equivalent to the researcher having a previous sample of K
observations whose sample variance was I . As N rises without bound,
the influence of the prior on the posterior eventually disappears.
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It is easy to take draws from inverted gamma and inverted Wishart
distributions. Consider first an inverted gamma IG(v1, s1). Draws are
taken as follows:

1. Take v1 draws from a standard normal, and label the draws
ηi , i = 1, . . . , v1.

2. Divide each draw by
√

s1, square the result, and take the average.
That is, calculate r = (1/v1)

∑
i (
√

1/s1ηi )2, which is the sample
variance of v1 draws from a normal distribution whose variance
is 1/s1.

3. Take the inverse of r : s̃ = 1/r is a draw from the inverted
gamma.

Draws from a K -dimensional inverted Wishart IW(v1, S1) are
obtained as follows:

1. Take v1 draws of K -dimensional vectors whose elements are
independent standard normal deviates. Label these draws ηi ,

i = 1, . . . , v1.
2. Calculate the Choleski factor of the inverse of S1, labeled L ,

where LL′ = S−1
1 .

3. Create R = (1/v1)
∑

i (Lηi )(Lηi )′. Note that R is the variance
of draws from a distribution with variance S−1

1 .
4. Take the inverse of R. The matrix S̃ = R−1 is a draw from

IW(v1, S1).

12.5.3. Unknown Mean and Variance

Suppose that both the mean b and variance W are unknown.
For neither of these parameters does the posterior take a convenient
form. However, draws can easily be obtained using Gibbs sampling and
results A and B. A draw of b is taken conditional on W , and then a
draw of W is taken conditional on b. Result A says that the posterior
for b conditional on W is normal, which is easy to draw from. Result
B says that the posterior for W conditional on b is inverted Wishart,
which is also easy to draw from. Iterating through numerous cycles of
draws from the conditional posteriors provides, eventually, draws from
the joint posterior.

12.6 Hierarchical Bayes for Mixed Logit

In this section we show how the Bayesian procedures can be used to
estimate the parameters of a mixed logit model. We utilize the approach
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developed by Allenby (1997), implemented by SawtoothSoftware
(1999), and generalized by Train (2001). Let the utility that person n
obtains from alternative j in time period t be

Unjt = β ′
nxnjt + εnjt ,

where εnjt is iid extreme value and βn ∼ N (b, W ). Giving βn a normal
distribution allows us to use results A and B, which speeds estimation
considerably. In the following section, we discuss the use of nonnormal
distributions.

The researcher has priors on b and W . Suppose the prior on b is
normal with an unboundedly large variance. Suppose that the prior on
W is inverted Wishart with K degrees of freedom and scale matrix I ,
the K -dimensional identity matrix. Note that these are the priors used
for results A and B. More flexible priors can be specified for W , using
the procedures of, for example, McCulloch and Rossi (2000), though
doing so makes the Gibbs sampling more complex.

A sample of N people is observed. The chosen alternatives in all time
periods for person n are denoted y′

n = 〈yn1, . . . , ynT 〉, and the choices
of the entire sample are labeled Y = 〈y1, . . . , yN 〉. The probability of
person n’s observed choices, conditional on β, is

L(yn | β) =
∏

t

(
eβ ′xnynt t∑

j eβ ′xnjt

)
.

The probability not conditional on β is the integral of L(yn | β) over all
β:

L(yn | b, W ) =
∫

L(yn | β)φ(β | b, W ) dβ,

where φ(β | b, W ) is the normal density with mean b and variance W .
This L(yn | b, W ) is the mixed logit probability.

The posterior distribution of b and W is, by definition,

(12.4) K (b, W | Y ) ∝
∏

n

L(yn | b, W )k(b, W ),

where k(b, W ) is the prior on b and W described earlier (i.e., normal for
b times inverted Wishart for W ).

It would be possible to draw directly from K (b, W | Y ) with the
MH algorithm. However, doing so would be computationally very slow.
For each iteration of the MH algorithm, it would be necessary to cal-
culate the right-hand side of (12.4). However, the choice probability
L(yn | b, W ) is an integral without a closed form and must be approx-
imated through simulation. Each iteration of the MH algorithm would
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therefore require simulation of L(yn | b, W ) for each n. That would be
very time-consuming, and the properties of the resulting estimator would
be affected by it. Recall that the properties of the simulated mean of the
posterior were derived under the assumption that draws can be taken
from the posterior without needing to simulate the choice probabilities.
MH applied to (12.3) violates this assumption.

Drawing from K (b, W | Y ) becomes fast and simple if each βn is
considered to be a parameter along with b and W , and Gibbs sampling
is used for the three sets of parameters b, W , and βn ∀n. The posterior
for b, W, and βn ∀n is

K (b, W, βn ∀n | Y ) ∝
∏

n

L(yn | βn)φ(βn | b, W )k(b, W ).

Draws from this posterior are obtained through Gibbs sampling. A draw
of each parameter is taken, conditional on the other parameters: (1) Take
a draw of b conditional on values of W and βn ∀n. (2) Take a draw of W
conditional on values of b and βn ∀n. (3) Take a draw of βn∀n conditional
on values of b and W . Each of these steps is easy, as we will see. Step 1
uses result A, which gives the posterior of the mean given the variance.
Step 2 uses result B, which gives the posterior of the variance given the
mean. Step 3 uses an MH algorithm, but in a way that does not involve
simulation within the algorithm. Each step is described in the following.

1. b | W, βn ∀n. We condition on W and each person’s βn in this
step, which means that we treat these parameters as if they were
known. Result A gives us the posterior distribution of b under
these conditions. The βn’s constitute a sample of N realizations
from a normal distribution with unknown mean b and known
variance W . Given our diffuse prior on b, the posterior on b is
N (β̄, W/N ), where β̄ is the sample mean of the βn’s. A draw
from this posterior is obtained as described in Section 12.5.1.

2. W | b, βn ∀n. Result B gives us the posterior for W conditional
on b and the βn’s. The βn’s constitute a sample from a nor-
mal distribution with known mean b and unknown variance W .
Under our prior on W , the posterior on W is inverted Wishart
with K + N degrees of freedom and scale matrix (K I + N S1)/
(K + N ), where S1 = (1/N )

∑
n(βn − b)(βn − b)′ is the sam-

ple variance of the βn’s around the known mean b. A draw from
the inverted Wishart is obtained as described in Section 12.5.2.

3. βn | b, W. The posterior for each person’s βn , conditional on
their choices and the population mean and variance of βn , is

(12.5) K (βb | b, W, yn) ∝ L(yn | βn)φ(βn | b, W ).
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There is no simple way to draw from this posterior, and so
the MH algorithm is used. Note that the right-hand side of
(12.5) is easy to calculate: L(yn | βn) is a product of logits, and
φ(βn | b, W ) is the normal density. The MH algorithm operates
as follows:
(a) Start with a value β0

n .
(b) Draw K independent values from a standard normal density,

and stack the draws into a vector labeled η1.
(c) Create a trial value of β1

n as β̃
1
n = β0

n + ρLη1, where ρ is
a scalar specified by the researcher and L is the Choleski
factor of W . Note that the proposal distribution (which is
labeled g(·) in Section 9.2.9) is specified to be normal with
zero mean and variance ρ2W .

(d) Draw a standard uniform variable µ1.
(e) Calculate the ratio

F = L(yn | β̃
1
n)φ(β̃

1
n | b, W )

L(yn | β0
n )φ(β0

n | b, W )
.

(f) If µ1 ≤ F , accept β̃
1
n and let β1

n = β̃
1
n . If µ1 > F , reject β̃

1
n

and let β1
n = β0

n .
(g) Repeat the process many times. For high enough t , β t

n is a
draw from the posterior.

We now know how to draw from the posterior for each parameter
conditional on the other parameters. We combine the procedures into
a Gibbs sampler for the three sets of parameters. Start with any initial
values b0, W 0, and β0

n ∀n. The t th iteration of the Gibbs sampler consists
of these steps:

1. Draw bt from N (β̄t−1
, W t−1/N ), where β̄

t−1 is the mean of the
β t−1

n ’s.
2. Draw Wt from IW(K + N , (K I + N St−1)/(K + N )), where

St−1 = ∑
n(β t−1

n − bt )(β t−1
n − bt )′/N .

3. For each n, draw β t
n using one iteration of the MH algorithm

previously described, starting from β t−1
n and using the normal

density φ(βn | bt , W t ).

These three steps are repeated for many iterations. The resulting values
converge to draws from the joint posterior of b, W, and βn∀n. Once the
converged draws from the posterior are obtained, the mean and standard
deviation of the draws can be calculated to obtain estimates and standard
errors of the parameters. Note that this procedure provides information
about βn for each n, similar to the procedure described in Chapter 11
using classical estimation.
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As stated, the Gibbs sampler converges, with enough iterations, to
draws from the joint posterior of all the parameters. The iterations prior
to convergence are often called burn-in. Unfortunately, it is not always
easy to determine when convergence has been achieved, as emphasized
by Kass et al. (1998). Cowles and Carlin (1996) provide a description of
the various tests and diagnostics that have been proposed. For example,
Gelman and Rubin (1992) suggest starting the Gibbs sampler from sev-
eral different points and testing the hypothesis that the statistic of interest
(in our case, the posterior mean) is the same when calculated from each of
the presumably converged sequences. Sometimes convergence is fairly
obvious, so that formal testing is unnecessary. During burn-in, the re-
searcher will usually be able to see the draws trending, that is, moving
toward the mass of the posterior. After convergence has been achieved,
the draws tend to move around (“traverse”) the posterior.

The draws from Gibbs sampling are correlated over iterations even
after convergence has been achieved, since each iteration builds on the
previous one. This correlation does not prevent the draws from being
used for calculating the posterior mean and standard deviation, or other
statistics. However, the researcher can reduce the amount of correlation
among the draws by using only a portion of the draws that are obtained
after convergence. For example, the researcher might retain every tenth
draw and discard the others, thereby reducing the correlation among the
retained draws by an order of 10. A researcher might therefore specify
a total of 20,000 iterations in order to obtain 1000 draws: 10,000 for
burn-in and 10,000 after convergence, of which every tenth is retained.

One issue remains. In the MH algorithm, the scalar ρ is specified by
the researcher. This scalar determines the size of each jump. Usually,
smaller jumps translate into more accepts, and larger jumps result in
fewer accepts. However, smaller jumps mean that the MH algorithm
takes more iterations to converge and embodies more serial correlation in
the draws after convergence. Gelman et al. (1995, p. 335) have examined
the optimal acceptance rate in the MH algorithm. They found that the
optimal rate is about 0.44 when K = 1 and drops toward 0.23 as K rises.
The value of ρ can be set by the researcher to achieve an acceptance rate
in this neighborhood, lowering ρ to obtain a higher acceptance rate and
raising it to get a lower acceptance rate.

In fact, ρ can be adjusted within the iterative process. The researcher
sets the initial value of ρ. In each iteration, a trial βn is accepted or
rejected for each sampled n. If in an iteration, the acceptance rate among
the N observations is above a given value (say, 0.33), then ρ is raised.
If the acceptance rate is below this value, ρ is lowered. The value of ρ

then moves during the iteration process to attain the specified acceptance
level.
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12.6.1. Succinct Restatement

Now that the Bayesian procedures have been fully described,
the model and the Gibbs sampling can be stated succinctly, in the form
that is used in most publications. The model is as follows.
Utility:

Unjt = β ′
nxnjt + εnjt ,

εnjt iid extreme value,

βn ∼ N (b, W ).

Observed choice:

ynt = i if and only if Unit > Unjt ∀ j �= i.

Priors:

k(b, W ) = k(b)k(W ),

where

k(b) is N (b0, S0) with extremely large variance,
k(W ) is IW (K , I ).

Conditional posteriors:

K (βn | b, W, yn) ∝ ∏
t

eβ ′
n xnynt t∑

j eβ ′
n xnjt

φ(βn | b, W ) ∀n,

K (b | W, βn ∀n) is N (β̄, W/N )), where β̄ = ∑
n

βn/N ,

K (W | b, βn ∀n) is IW

(
K + N ,

K I + N S̄

K + N

)
,

where S̄ = ∑
n(βn − b)(βn − b)′/N .

The three conditional posteriors are called layers of the Gibbs sam-
pling. The first layer for each n depends only on data for that person,
rather than for the entire sample. The second and third layers do not
depend on the data directly, only on the draws of βn , which themselves
depend on the data.

The Gibbs sampling for this model is fast for two reasons. First, none
of the layers requires integration. In particular, the first layer utilizes a
product of logit formulas for a given value of βn . The Bayesian procedure
avoids the need to calculate the mixed logit probability, utilizing instead
the simple logits conditional βn . Second, layers 2 and 3 do not utilize
the data at all, since they depend only on the draws of βn ∀n. Only the
mean and variance of the βn’s need be calculated in these layers.
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The procedure is often called hierarchical Bayes (HB), because there
is a hierarchy of parameters. βn are the individual-level parameters for
person n, which describe the tastes of that person. Theβn’s are distributed
in the population with mean b and variance W . The parameters b and W
are often called the population-level parameters or hyper-parameters.
There is also a hierarchy of priors. The prior on each person’s βn is
the density of βn in the population. This prior has parameters (hyper-
parameters), namely its mean b and variance W, which themselves have
priors.

12.7 Case Study: Choice of Energy Supplier

We apply the Bayesian procedures to the data that were described in
Chapter 11 regarding customers’ choice among energy suppliers. The
Bayesian estimates are compared with estimates obtained through max-
imum simulated likelihood (MSL).

Each of 361 customers was presented with up to 12 hypothetical
choice situations. In each choice situation, four energy suppliers were
described, and the respondent was asked which one he would choose if
facing the choice in the real world. The suppliers were differentiated on
the basis of six factors: (1) whether the supplier charged fixed prices,
and if so the rate in cents per kilowatthour, (2) the length of contract in
years, during which the rates were guaranteed and the customer would be
required a penalty to switch to another supplier, (3) whether the supplier
was the local utility, (4) whether the supplier was a well-known company
other than the local utility, (5) whether the supplier charged time-of-
day (TOD) rates (specified prices in each period), and (6) whether the
supplier charged seasonal rates (specified prices in each season). In the
experimental design, the fixed rates varied over situations, but the same
prices were specified in all experiments whenever a supplier was said
to charge TOD or seasonal rates. The coefficient of the dummies for
TOD and seasonal rates therefore reflect the value of these rates at the
specified prices. The coefficient of the fixed price indicates the value of
each cent per kilowatthour.

12.7.1. Independent Normal Coefficients

A mixed logit model was estimated under the initial assump-
tion that the coefficients are independently normally distributed in the
population. That is, βn ∼ N (b, W ) with diagonal W . The population
parameters are the mean and standard deviation of each coefficient. Ta-
ble 12.1 gives the simulated mean of the posterior (SMP) for these param-
eters, along with the MSL estimates. For the Bayesian procedure, 20,000
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Table 12.1. Mixed logit model of choice among energy suppliers

Estimatesa MSL SMP Scaled MSL

Price coeff.: Mean −0.976 −1.04 −1.04
(.0370) (.0374) (.0396)

St. dev. 0.230 0.253 0.246
(.0195) (.0169) (.0209)

Contract coeff.: Mean −0.194 −0.240 −0.208
(.0224) (.0269) (.0240)

St. dev. 0.405 0.426 0.434
(.0238) (.0245) (.0255)

Local coeff.: Mean 2.24 2.41 2.40
(.118) (.140) (.127)

St. dev. 1.72 1.93 1.85
(.122) (.123) (.131)

Well-known coeff.: Mean 1.62 1.71 1.74
(.0865) (.100) (.0927)

St. dev. 1.05 1.28 1.12
(.0849) (.0940) (.0910)

TOD coeff.: Mean −9.28 −10.0 −9.94
(.314) (.315) (.337)

St. dev. 2.00 2.51 2.14
(.147) (.193) (.157)

Seasonal coeff.: Mean −9.50 −10.2 −10.2
(.312) (.310) (.333)

St. dev. 1.24 1.66 1.33
(.188) (.182) (.201)

aStandard errors in parentheses.

iterations of the Gibbs sampling were performed. The first 10,000 iter-
ations were considered burn-in, and every tenth draw was retained after
convergence, for a total of 1000 draws from the posterior. The mean
and standard deviation of these draws constitutes the estimates and stan-
dard errors. For MSL, the mixed logit probability was simulated with
200 Halton draws for each observation.

The two procedures provide similar results in this application. The
scale of the estimates from the Bayesian procedure is somewhat larger
than that for MSL. This difference indicates that the posterior is skewed,
with the mean exceeding the mode. When the MSL estimates are scaled
to have the same estimated mean for the price coefficient, the two sets
of estimates are remarkably close, in standard errors as well as point
estimates. The run time was essentially the same for each approach.

In other applications, e.g., Ainslie et al. (2001), the MSL and SMP es-
timates have differed. In general, the magnitude of differences depends
on the number of observations relative to the number of parameters, as
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well as the amount of variation that is contained in the observations.
When the two sets of estimates differ, it means that the asymptotics are
not yet operating completely (i.e., the sample size is insufficient for the
asymptotic properties to be fully exhibited). The researcher might want
to apply a Bayesian perspective in this case (if she is not already doing
so) in order to utilize the Bayesian approach to small-sample inference.
The posterior distribution contains the relevant information for Bayesian
analysis with any sample size, whereas the classical perspective requires
the researcher to rely on asymptotic formulas for the sampling distri-
bution that need not be meaningful with small samples. Allenby and
Rossi (1999) provide examples of the differences and the value of the
Bayesian approaches and perspective.

We reestimated the model under a variety of other distributional
assumptions. In the following sections, we describe how each method is
implemented under these alternative assumptions. For reasons that are
inherent in the methodologies, the Bayesian procedures are easier and
faster for some specifications, while the classical procedures are easier
and faster for others. Understanding these realms of relative convenience
can assist the researcher in deciding which method to use for a particular
model.

12.7.2. Multivariate Normal Coefficients

We now allow the coefficients to be correlated. That is, W is
full rather than diagonal. The classical procedure is the same except
that drawing from φ(βn | b, W ) for the simulation of the mixed logit
probability requires creating correlation among independent draws from
a random number generator. The model is parameterized in terms of the
Choleski factor of W , labeled L . The draws are calculated as β̃n =
b + Lη, where η is a draw of a K -dimensional vector of independent
standard normal deviates. In terms of computation time for MSL, the
main difference is that the model has far more parameters with full W
than when W is diagonal: K + K (K + 1)/2 rather than the 2K para-
meters for independent coefficients. In our case with K = 6, the number
of parameters rises from 12 to 27. The gradient with respect to each
of the new parameters takes time to calculate, and the model requires
more iterations to locate the maximum over the larger-dimensioned log-
likelihood function. As shown in the second line of Table 12.2, the run
time nearly triples for the model with correlated coefficients, relative to
independent coefficients.

With the Bayesian procedure, correlated coefficients are no harder
to handle than uncorrelated ones. For full W , the inverted gamma
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Table 12.2. Run times

Run time (min)

Specification MSL SMP

All normal, no correlations 48 53
All normal, full covariance 139 55
1 fixed, others normal, no corr. 42 112
3 lognormal, 3 normal, no corr. 69 54
All triangular, no corr. 56 206

distribution is replaced with its multivariate generalization, the inverted
Wishart. Draws are obtained by the procedure in Section 12.5.2. The
only extra computer time relative to independent coefficients arises in
the calculation of the covariance matrix of the βn’s and its Choleski
factor, rather than the standard deviations of the βn’s. This difference is
trivial for typical numbers of parameters. As shown in Table 12.2, the run
time for the model with full covariance among the random coefficients
was essentially the same as with independent coefficients.

12.7.3. Fixed Coefficients for Some Variables

There are various reasons that the researcher might choose to
specify some of the coefficients as fixed.

1. Ruud (1996) argues that a mixed logit with all random co-
efficients is nearly unidentified empirically, since only ratios
of coefficients are economically meaningful. He recommends
holding at least one coefficient fixed, particularly when the data
contain only one choice situation for each decision maker.

2. In a model with alternative-specific constants, the final iid ex-
treme value terms constitute the random portion of these con-
stants. Allowing the coefficients of the alternative-specific dum-
mies to be random in addition to having the final iid extreme
value terms is equivalent to assuming that the constants follow
a distribution that is a mixture of extreme value and whatever
distribution is assumed for these coefficients. If the two distribu-
tions are similar, such as a normal and extreme value, the mix-
ture can be unidentifiable empirically. In this case, the analyst
might choose to keep the coefficients of the alternative-specific
constants fixed.

3. The goal of the analysis might be to forecast substitution pat-
terns correctly rather than to understand the distribution of
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coefficients. In this case, error components can be specified
that capture the correct substitution patterns while holding the
coefficients of the original explanatory variables fixed (as in
Brownstone and Train, 1999).

4. The willingness to pay (wtp) for an attribute is the ratio of the
attribute’s coefficient to the price coefficient. If the price coef-
ficient is held fixed, the distribution of wtp is simply the scaled
distribution of the attribute’s coefficient. The distribution of wtp
is more complex when the price coefficient varies also. Further-
more, if the usual distributions are used for the price coefficient,
such as normal or lognormal, the issue arises of how to handle
positive price coefficients, price coefficients that are close to zero
so that the implied wtp is extremely high, and price coefficients
that are extremely negative. The first of these issues is avoided
with lognormals, but not the other two. The analyst might choose
to hold the price coefficient fixed to avoid these problems.

In the classical approach, holding one or more coefficients fixed is very
easy. The corresponding elements of W and L are simply set to zero,
rather than treated as parameters. The run time is reduced, since there
are fewer parameters. As indicated in the third line of Table 12.2, the
run time decreased by about 12 percent with one fixed coefficient and
the rest independent normal, relative to all independent normals. With
correlated normals, a larger percentage reduction would occur, since the
number of parameters drops more than proportionately.

In the Bayesian procedure, allowing for fixed coefficients requires the
addition of a new layer of Gibbs sampling. The fixed coefficient cannot
be drawn as part of the MH algorithm for the random coefficients for
each person. Recall that under MH, trial draws are accepted or rejected
in each iteration. If a trial draw which contains a new value of a fixed
coefficient along with new values of the random coefficients is accepted
for one person, but the trial draw for another person is not accepted, then
the two people will have different values of the fixed coefficient, which
contradicts the fact that it is fixed. Instead, the random coefficients, and
the population parameters of these coefficients, must be drawn condi-
tional on a value of the fixed coefficients; and then the fixed coefficients
are drawn conditional on the values of the random coefficients. Draw-
ing from the conditional posterior for the fixed coefficients requires an
MH algorithm, in addition to the one that is used to draw the random
coefficients.

To be explicit, rewrite the utility function as

(12.6) Unjt = α′znjt + β ′
nxnjt + εnjt ,
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where α is a vector of fixed coefficients and βn is random as before with
mean b and variance W . The probability of the person’s choice sequence
given α and βn is

(12.7) L(yn | α, βn) =
∏

t

eα′znynt t +β ′
n xnynt t∑

j eα′znjt +β ′
n xnjt

.

The conditional posteriors for Gibbs sampling are:

1. K (βn | α, b, W ) ∝ L(yn | α, βn)φ(βn | b, W ). MH is used for
these draws in the same way as with all normals, except that
now α′znjt is included in the logit formulas.

2. K (b | W, βn ∀n) is N (�nβn/N , W/N ). Note that α does not
enter this posterior; its effect is incorporated into the draws of
βn from layer 1.

3. K (W | b, βn ∀n) is IW(K + N , (K I + N S̄)/(K + N )), where
S̄ = �n(βn − b)(βn − b)′/N . Again, α does not enter directly.

4. K (α | βn) ∝ �n L(yn | α, βn), if the prior on α is essentially
flat (e.g., normal with sufficiently large variance). Draws are
obtained with MH on the pooled data.

Layer 4 takes as much time as layer 1, since each involves calculation
of a logit formula for each observation. The Bayesian procedure with
fixed and normal coefficients can therefore be expected to take about
twice as much time as with all normal coefficients. As indicated in the
third line of Table 12.2, this expectation is confirmed in our application.

12.7.4. Lognormals

Lognormal distributions are often specified when the analyst
wants to assure that the coefficient takes the same sign for all people.
There is little change in either procedure when some or all of the coeffi-
cients are distributed lognormal instead of normal. Normally distributed
coefficients are drawn, and then the ones that are lognormally distributed
are exponentiated when they enter utility. With all lognormals, utility is
specified as

(12.8) Unjt = (eβn )′xnjt + εnjt ,

with βn distributed normal as before with mean b and variance W . The
probability of the person’s choice sequence given βn is

(12.9) L(yn | α, βn) =
∏

t

e(eβn )′xnynt t∑
j e(eβn )′xnjt

.
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With this one change, the rest of the steps are the same with both pro-
cedures. In the classical approach, however, locating the maximum of
the likelihood function is considerably more difficult with lognormal
coefficients than with normal ones. Often the numerical maximization
procedures fail to find an increase after a number of iterations. Or a
“maximum” is found and yet the Hessian is singular at that point. It is
often necessary to specify starting values that are close to the maximum.
And the fact that the iterations can fail at most starting values makes
it difficult to determine whether a maximum is local or global. The
Bayesian procedure does not encounter these difficulties, since it does
not search for the maximum. The Gibbs sampling seems to converge a
bit more slowly, but not appreciably so. As indicated in Table 12.2, the
run time for the classical approach rose nearly 50 percent with lognor-
mal relative to normals (due to more iterations being needed), while the
Bayesian procedure took about the same amount of time with each. This
comparison is generous to the classical approach, since convergence at
a maximum was achieved in this application, while in many other appli-
cations we have not been able to obtain convergence with lognormals or
have done so only after considerable time was spent finding successful
starting values.

12.7.5. Triangulars

Normal and lognormal distributions allow coefficients of un-
limited magnitude. In some situations, the analyst might want to assure
that the coefficients for all people remain within a reasonable range.
This goal is accomplished by specifying distributions that have bounded
support, such as uniform, truncated normal, and triangular distributions.
In the classical approach, these distributions are easy to handle. The only
change occurs in the line of code that creates the random draws from
the distributions. For example, the density of a triangular distribution
with mean b and spread s is zero beyond the range (b − s, b + s), rises
linearly from b − s to b, and drops linearly to b + s. A draw is created as
βn = b + s(

√
2µ − 1) if µ < 0.5 and = b + s(1 − √

2(1 − µ)) other-
wise, where µ is a draw from a standard uniform. Given draws of βn , the
calculation of the simulated probability and the maximization of the like-
lihood function are the same as with draws from a normal. Experience
indicates that estimation of the parameters of uniform, truncated normal,
and triangular distributions takes about the same number of iterations as
for normals. The last line of Table 12.2 reflects this experience.

With the Bayesian approach, the change to nonnormal distributions
is far more complicated. With normally distributed coefficients, the
conditional posteriors for the population moments are very convenient:



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-12Drv CB495/Train KEY BOARDED August 20, 2002 13:44 Char Count= 0

Bayesian Procedures 315

normal for the mean and inverted Wishart for the variance. Most other
distributions do not give such convenient posteriors. Usually, an MH
algorithm is needed for the population parameters, in addition to the
MH algorithm for the customer-level βn’s. This addition adds consid-
erably to computation time. The issue is exacerbated for distributions
with bounded support, since, as we see in the following, the MH algo-
rithm can be expected to converge slowly for these distributions.

With independent triangular distributions for all coefficients with
mean and spread vectors b and s, and flat priors on each, the condi-
tional posteriors are:

1. K (βn | b, s) ∝ L(yn | βn)h(βn | b, s), where h is the triangular
density. Draws are obtained through MH, separately for each
person. This step is the same as with independent normals except
that the density for βn is changed.

2. K (b, s | βn) ∝ ∏
n h(βn | b, s) when the priors on b and s are

essentially flat. Draws are obtained through MH on the βn’s for
all people.

Because of the bounded support of the distribution, the algorithm is
exceedingly slow to converge. Consider, for example, the spread of the
distribution. In the first layer, draws of βn that are outside the range
(b − s, b + s) from the second layer are necessarily rejected. And in the
second layer, draws of b and s that create a range (b − s, b + s) that
does not cover all the βn’s from the first layer are necessarily rejected.
It is therefore difficult for the range to grow narrower from one iteration
to the next. For example, if the range is 2 to 4 in one iteration of the first
layer, then the next iteration will result in values of βn between 2 and 4
and will usually cover most of the range if the sample size is sufficiently
large. In the next draw of b and s, any draw that does not cover the range
of the βn’s (which is nearly 2 to 4) will be rejected. There is indeed
some room for play, since the βn’s will not cover the entire range from
2 to 4. The algorithm converges, but in our application we found that
far more iterations were needed to achieve a semblance of convergence,
compared with normal distributions. The run time rose by a factor of
four as a result.

12.7.6. Summary of Results

For normal distributions with full covariance matrices, and for
transformations of normals that can be expressed in the utility func-
tion, such as exponentiating to represent lognormal distributions, the
Bayesian approach seems to be very attractive computationally. Fixed
coefficients add a layer of conditioning to the Bayesian approach that
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doubles its run time. In contrast, the classical approach becomes faster
for each coefficient that is fixed instead of random, because there are
fewer parameters to estimate. For distributions with bounded support,
like triangulars, the Bayesian approach is very slow, while the classical
approach handles these distributions as quickly as normals.

These comparisons relate to mixed logits only. Other behavioral mod-
els can be expected to have different relative run times for the two ap-
proaches. The comparison with mixed logit elucidates the issues that
arise in implementing each method. Understanding these issues assists
the researcher in specifying the model and method that are most appro-
priate and convenient for the choice situation.

12.8 Bayesian Procedures for Probit Models

Bayesian procedures can be applied to probit models. In fact, the meth-
ods are even faster for probit models than for mixed logits. The procedure
is described by Albert and Chib (1993), McCulloch and Rossi (1994),
Allenby and Rossi (1999), and McCulloch and Rossi (2000). The method
differs in a critical way from the procedure for mixed logits. In particular,
for a probit model, the probability of each person’s choices conditional
on the coefficients of the variables, which is the analog to L(yn | βn) for
logit, is not a closed form. Procedures that utilize this probability, as in
the first layer of Gibbs sampling for mixed logit, cannot be readily ap-
plied to probit. Instead, Gibbs sampling for probits is accomplished by
considering the utilities of the alternatives, Unjt , to be parameters them-
selves. The conditional posterior for each Unjt is truncated normal, which
is easy to draw from. The layers for the Gibbs sampling are as follows:

1. Draw b conditional on W and βn ∀n.
2. Draw W conditional on b and βn ∀n. These two layers are the

same as for mixed logit.
3. For each n, draw βn conditional on Unjt ∀ j, t. These draws

are obtained by recognizing that, given the value of utility, the
function Unjt = βnxnjt + εnjt is a regression of xnjt on Unjt .
Bayesian posteriors for regression coefficients and normally dis-
tributed errors have been derived (similar to our results A and
B) and are easy to draw from.

4. For each n, i, t , draw Unit conditional on βn and the value of
Unjt for each j �= i . As stated earlier, the conditional posterior
for each Unit is a univariate truncated normal, which is easy to
draw from with the procedure given in Section 9.2.4.

Details are provided in the cited articles.
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Bolduc et al. (1997) compared the Bayesian method with MSL and
found the Bayesian procedure to require about half as much computer
time as MSL with random draws. If Halton draws had been used, it seems
that MSL would have been faster for the same level of accuracy, since
fewer than half as many draws would be needed. The Bayesian proce-
dure for probit relies on all random terms being normally distributed.
However, the concept of treating the utilities as parameters can be gen-
eralized for other distributions, giving a Bayesian procedure for mixed
probits.

Bayesian procedures can be developed in some form or another for
essentially any behavioral model. In many cases, they provide large
computational advantages over classical procedures. Examples include
the dynamic discrete choice models of Imai et al. (2001), the joint models
of the timing and quantity of purchases due to Boatwright et al. (2001),
and Brownstone’s (2001) mixtures of distinct discrete choice models.
The power of these procedures, and especially the potential for cross-
fertilization with classical methods, create a bright outlook for the field.
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Département d’Economique, Université Laval, Quebec.
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