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Abstract

This review is a primer for those who wish to familiarize themselves
with nonparametric econometrics. Though the underlying theory for
many of these methods can be daunting for some practitioners, this
article will demonstrate how a range of nonparametric methods can in
fact be deployed in a fairly straightforward manner. Rather than aiming
for encyclopedic coverage of the field, we shall restrict attention to a set
of touchstone topics while making liberal use of examples for illustrative
purposes. We will emphasize settings in which the user may wish to
model a dataset comprised of continuous, discrete, or categorical data
(nominal or ordinal), or any combination thereof. We shall also consider
recent developments in which some of the variables involved may in fact
be irrelevant, which alters the behavior of the estimators and optimal
bandwidths in a manner that deviates substantially from conventional
approaches.
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1

Introduction

Nonparametric methods are statistical techniques that do not require
a researcher to specify functional forms for objects being estimated.
Instead, the data itself informs the resulting model in a particular
manner. In a regression framework this approach is known as “non-
parametric regression” or “nonparametric smoothing.” The methods
we survey are known as kernel1 methods. Such methods are becom-
ing increasingly popular for applied data analysis; they are best suited
to situations involving large data sets for which the number of vari-
ables involved is manageable. These methods are often deployed after
common parametric specifications are found to be unsuitable for the
problem at hand, particularly when formal rejection of a parametric
model based on specification tests yields no clues as to the direction in
which to search for an improved parametric model. The appeal of non-
parametric methods stems from the fact that they relax the parametric
assumptions imposed on the data generating process and let the data
determine an appropriate model.

1 A “kernel” is simply a weighting function.
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2 Introduction

Nonparametric and semiparametric methods have attracted a great
deal of attention from statisticians in the past few decades, as evidenced
by the vast array of texts written by statisticians including Prakasa Rao
(1983), Devroye and Györfi (1985), Silverman (1986), Scott (1992),
Bickel et al. (1993), Wand and Jones (1995), Fan and Gijbels (1996),
Simonoff (1996), Azzalini and Bowman (1997), Hart (1997), Efromovich
(1999), Eubank (1999), Ruppert et al. (2003), Härdle et al. (2004), and
Fan and Yao (2005). However, the number of texts tailored to the needs
of applied econometricians is relatively scarce including, Härdle (1990),
Horowitz (1998), Pagan and Ullah (1999), Yatchew (2003), and Li and
Racine (2007a) being those of which we are currently aware.

The first published paper in kernel estimation appeared in 1956
(Rosenblatt (1956)), and the idea was proposed in an USAF technical
report as a means of liberating discriminant analysis from rigid para-
metric specifications (Fix and Hodges (1951)). Since then, the field has
undergone exponential growth and has even become a fixture in under-
graduate textbooks (see, e.g., Johnston and DiNardo (1997, Chap. 11)),
which attests to the popularity of the methods among students and
researchers alike.

Though kernel methods are popular, they are but one of many
approaches toward the construction of flexible models. Approaches to
flexible modeling include spline, nearest neighbor, neural network, and
a variety of flexible series methods, to name but a few. In this article,
however, we shall restrict attention to the class of nonparametric kernel
methods, and will also touch on semiparametric kernel methods as well.
We shall also focus on more practical aspects of the methods and direct
the interested reader to Li and Racine (2007a) and the references listed
above for details on the theoretical underpinnings in order to keep this
review down to a manageable size.

It bears mentioning that there are two often heard complaints
regarding the state of nonparametric kernel methods, namely, (1) the
lack of software, and (2) the numerical burden associated with these
methods. We are of course sympathetic to both complaints. The lat-
ter may unavoidable and simply be “the nature of the beast” as
they say, though see Computational Considerations for a discussion
of the issues. However, the former is changing and recent developments
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hold the promise for computational breakthroughs. Many statistical
software packages now contain some elementary nonparametric meth-
ods (one-dimensional density estimation, one-dimensional regression)
though they often use rule-of-thumb methods for bandwidth selection
which, though computationally appealing, may not be robust choices
in all applications. Recently, an R (R Development Core Team (2007))
package “np” has been created that provides an easy to use and open
platform for kernel estimation, and we direct the interested reader to
Hayfield and Racine (2007) for details. All examples in this review were
generated using the np package, and code to replicate these results is
available upon request.





2

Density and Probability Function Estimation

The notation and the basic approaches developed in this section are
intended to provide the foundation for the remaining ones, and these
concepts will be reused throughout this review. More detail will there-
fore be presented here than elsewhere, so a solid grasp of key notions
such as “generalized product kernels,” kernels for categorical data,
data-driven bandwidth selection and so forth ought to be helpful when
digesting the material that follows.

Readers will no doubt be intimately familiar with two popular non-
parametric estimators, namely the histogram and frequency estimators.
The histogram is a non-smooth nonparametric method that can be used
to estimate the probability density function (PDF) of a continuous vari-
able. The frequency probability estimator is a non-smooth nonparamet-
ric method used to estimate probabilities of discrete events. Though
non-smooth methods can be powerful indeed, they have their draw-
backs. For an in-depth treatment of kernel density estimation we direct
the interested reader to the wonderful reviews by Silverman (1986)
and Scott (1992), while for mixed data density estimation we direct
the reader to Li and Racine (2007a) and the references therein. We
shall begin with an illustrative parametric example.

5



6 Density and Probability Function Estimation

2.1 Parametric Density Estimators

Consider any random variable X having probability density function
f(x), and let f(·) be the object of interest. Suppose one is presented
with a series of independent and identically distributed draws from the
unknown distribution and asked to model the density of the data, f(x).
This is a common situation facing the applied researcher.

For this example we shall simulate n = 500 draws but immediately
discard knowledge of the true data generating process (DGP) pretend-
ing that we are unaware that the data is drawn from a mixture of
normals (N(−2,0.25) and N(3,2.25) with equal probability). We then
(näıvely) presume the data is drawn from, say, the normal parametric
family, namely

f̂(x) =
1√

2πσ̂2
exp

{
−1

2

(
x − µ̂

σ̂

)2
}

.

We then estimate this model and obtain µ̂ = 0.56 and σ̂ = 2.71. Next, as
is always recommended, we test for correct specification using, say, the
Shapiro–Wilks test and obtain W = 0.88 with a p-value of < 2.2e − 16,
rejecting this parametric model out of hand. The estimated model and
true DGP are plotted in Figure 2.1.

Given that this popular parametric model is flatly rejected by this
dataset, we have two choices, namely (1) search for a more appropriate
parametric model or (2) use more flexible estimators.

For what follows, we shall presume that the reader has found them-
selves in just such a situation. That is, they have faithfully applied
a parametric method and conducted a series of tests of model ade-
quacy that indicate that the parametric model is not consistent with
the underlying DGP. They then turn to more flexible methods of den-
sity estimation. Note that though we are considering density estimation
at the moment, it could be virtually any parametric approach that we
have been discussing, for instance, regression analysis.

2.2 Histograms and Kernel Density Estimators

Constructing a histogram is straightforward. First, one constructs a
series of bins (choose an origin x0 and bin width h). The bins are
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Fig. 2.1 The N(0.56,2.712) density estimate (unimodal, solid line) and true data generating

process (bimodal, dashed line).

the intervals [x0 + mh,x0 + (m + 1)h) for positive and negative inte-
gers m. The histogram is defined as

f̂(x) =
1
n

(# of Xi in the same bin as x)
width of bin containing x

=
1

nh

n∑
i=1

1(Xi is in the same bin as x), (2.1)

where 1(A) is an indicator function taking on the value 1 if A is true,
zero otherwise. The user must select the origin and bin width, and the
resulting estimate is sensitive to both choices. Rules of thumb are typi-
cally used for both. Though extremely powerful, there is much room for
improvement. The histogram is not particularly efficient, statistically
speaking. It is discontinuous, hence any method based upon it requiring
derivatives will be hampered by this property. As well, it is not cen-
tered on the point at which the density estimate is desired. Though the
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histogram is a wonderful tool, kernel methods provide an alternative
which we shall explore.

The univariate kernel density estimator was constructed to over-
come many of the limitations associated with the histogram. It involves
nothing more than replacing the indicator function in (2.1) with a sym-
metric weight function K(z), a “kernel,” possessing a number of useful
properties. Replacing the indicator function in (2.1) with this kernel
function yields

f̂(x) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
. (2.2)

This estimator is often called the Rosenblatt–Parzen estimator
(Rosenblatt (1956), Parzen (1962)). Figure 2.2 presents the histogram
and Rosenblatt–Parzen estimates for the simulated data used in
Section 2.1, with bandwidth obtained via Sheather and Jones’s (1991)
plug-in method (see Section 2.3.2).

Fig. 2.2 Histogram and kernel estimates of a univariate density function.
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Figure 2.2 reveals that both the histogram and Rosenblatt–
Parzen estimates readily reveal the bimodal nature of the underlying
data, unlike the misspecified unimodal parametric model presented
in Figure 2.1. The reader who compares Figures 2.1 and 2.2 will
immediately notice that both the histogram and kernel estimator are
biased, that is, they appear to underestimate the left peak in finite-
samples, and indeed they will do so systematically as will be seen
below when we consider the properties of the Rosenblatt–Parzen esti-
mator. But, as n increases and h decreases in a particular manner
to be outlined shortly, the kernel estimator will converge to the true
DGP with probability one. The misspecified parametric model can
never converge to the true DGP. Which method provides a more
appropriate description of the DGP, the unimodal parametric model
or the bimodal nonparametric model?1 This issue is taken up in
Section 2.7.

The kernel estimation of an unconditional cumulative distribution
function (CDF) has received much less attention than that of the PDF.
We direct the interested reader to the seminal paper by Bowman et al.
(1998) and to Li and Racine (2007a, Chap. 1).

2.2.1 Properties of the Univariate Kernel Density
Estimator

Presume the kernel function K(z) is nonnegative and satisfies∫
K(z)dz = 1,

∫
zK(z)dz = 0,

∫
z2K(z)dz = κ2 <∞.

Unless otherwise indicated, the lower and upper limits of integration
shall be −∞ and ∞, respectively. This kernel is often called a “sec-
ond order kernel.” Parzen (1962) demonstrated that one can choose
kernels that can potentially reduce the pointwise bias of f̂(x), how-
ever one must forgo the nonnegativity of K(z) in order to do so.
One drawback of using such “higher order” kernels2 in a density

1 G.E.P. Box’s sentiment that “all models are wrong, but some are useful” is perhaps relevant

here (Draper, 1987, p. 424).
2 A general νth order kernel (ν ≥ 2 is an integer) must satisfy

R
K(z)dz = 1,

R
zlK(z)dz = 0,

(l = 1, . . . ,ν − 1), and
R

zνK(z)dz = κν 6= 0.
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context is that negative density estimates can be encountered which
is clearly an undesirable side effect. Higher order kernels are some-
times encountered in multivariate settings to ensure rates of conver-
gence necessary for establishing limit distributions. For what follows we
are presuming that one is using a second-order kernel unless otherwise
indicated.

The pointwise mean square error (MSE) criterion is used for assess-
ing the properties of many kernel methods. We proceed by deriving
both the bias and variance of f̂(x) to thereby have an expression for
the MSE. Recalling that

msef̂(x) = E{f̂(x) − f(x)}2 = varf̂(x) + {biasf̂(x)}2,

using a Taylor series expansion and a change of variables we can obtain
the approximate bias, which is

bias f̂(x) ≈ h2

2
f ′′(x)κ2, (2.3)

and the approximate variance, which is

varf̂(x) ≈ f(x)
nh

∫
K2(z)dz. (2.4)

See Pagan and Ullah (1999, pp. 23–24) or Li and Racine (2007a,
pp. 11–12) for a detailed derivation of these results.

Note that both the bias and variance depend on the bandwidth
(bias falls as h decreases, variance rises as h decreases). The bias
also increases with f ′′(x), hence is highest in the peaks of distribu-
tions. But, as long as the conditions for consistency are met, namely
h→ 0 as n→∞ (bias → 0) and nh→∞ as n→∞ (var → 0), then
the bias related to f ′′(x) will diminish as the available data increases
and will vanish in the limit. Note that nh is sometimes called the
“effective sample size,” and the requirement that nh→∞ as n→∞
simply requires that as we get more information (n→∞) we average
over a narrower region (h→ 0) but the amount of “local information”
(nh) must increase at the same time.

The above formulas for the bias, variance, and mean square error
are pointwise properties, i.e., they hold at any point x. The integrated
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mean square error (IMSE), on the other hand aggregates the MSE over
the entire domain of the density yielding a global error measure, and
using the approximate bias and variance expressions given above can
be defined as

imsef̂(x) =
∫

msef̂(x)dx

=
∫

varf̂(x)dx +
∫ {

biasf̂(x)
}2

dx

≈
∫ [

f(x)
nh

∫
K2(z)dz +

{
h2

2
f
′′
(x)κ2

}2
]

dx

=
1

nh

∫
K2(z)dz

∫
f(x)dx +

{
h2

2
κ2

}2∫ {
f
′′
(x)
}2

dx

=
Φ0

nh
+

h4

4
κ2

2Φ1, (2.5)

where Φ0 =
∫

K2(z)dz and Φ1 =
∫
{f ′′(x)}2dx. See Pagan and Ullah

(1999, p. 24) or Li and Racine (2007a, p. 13) for a detailed derivation
of this result.

We can now minimize this with respect to the bandwidth and kernel
function to obtain “optimal bandwidths” and “optimal kernels.” This
expression also provides a basis for data-driven bandwidth selection.
Note that by using IMSE rather than MSE we are selecting the band-
width to provide a good “overall” estimate rather than one that is good
for just one point.

We obtain a bandwidth which globally balances bias and variance
by minimizing IMSE with respect to h, i.e.,

hopt = Φ1/5
0 κ

−2/5
2 Φ−1/5

1 n−1/5

=

{ ∫
K2(z)dz(∫

z2K(z)dz
)2 ∫ {f ′′(x)}2

dx

}1/5

n−1/5 = cn−1/5. (2.6)

Note that the constant c depends on f ′′(x) and K(·), and that if
h ∝ n−1/5 then

o

(
1

nh

)
= o

(
1

n4/5

)
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that is, using the optimal window width yields an estimator f̂(x) which
has IMSE of order n−4/5, i.e.,

f̂(x) − f(x) = Op(n−2/5),

where Op(·) is defined in Background Material. Note that for a correctly
specified parametric estimator, say f̂(x,θ), we would have

f̂(x,θ) − f(x) = Op(n−1/2),

which is a faster rate of convergence than the nonparametric rate which
is why such models are called

√
n-consistent. Of course, if the paramet-

ric model is misspecified, the parametric model is no longer consis-
tent, which is why (Robinson, 1988, p. 933) refers to such models as
“
√

n-inconsistent.”
Having obtained the optimal bandwidth, we next consider obtaining

an optimal kernel function. The primary role of the kernel is to impart
smoothness and differentiability on the resulting estimator. In a dif-
ferent setting, Hodges and Lehmann (1956) first demonstrated that a
weighting function that is IMSE-optimal is given by

Ke(z) =

{
3

4
√

5

(
1 − 1

5z2
)
−
√

5 ≤ z ≤
√

5

0 otherwise.

This result is obtained using calculus of variations, and a derivation can
be found in Pagan and Ullah (1999, pp. 27–28). This was first suggested
in the density estimation context by Epanechnikov (1969) and is often
called the “Epanechnikov kernel.” It turns out that a range of kernel
functions result in estimators having similar relative efficiencies,3 so
one could choose the kernel based on computational considerations,
the Gaussian kernel being a popular choice.

Unlike choosing a kernel function, however, choosing an appropriate
bandwidth is a crucial aspect of sound nonparametric analysis.

2.3 Bandwidth Selection

The key to sound nonparametric estimation lies in selecting an appro-
priate bandwidth for the problem at hand. Though the kernel function

3 See Silverman (1986, p. 43, Table 3.1).
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remains important, its main role is to confer differentiability and
smoothness properties on the resulting estimate. The bandwidth, on
the other hand, drives the finite-sample behavior in a way that the
kernel function simply cannot. There are four general approaches to
bandwidth selection, (1) reference rules-of-thumb, (2) plug-in methods,
(3) cross-validation methods, and (4) bootstrap methods. We would
be negligent if we did not emphasize the fact that data-driven band-
width selection procedures are not guaranteed always to produce good
results. For simplicity of exposition, we consider the univariate density
estimator for continuous data for what follows. Modification to admit
multivariate settings and a mix of different datatypes follows with lit-
tle modification, and we direct the interested reader to Li and Racine
(2003) for further details on the mixed data density estimator.

2.3.1 Reference Rule-of-Thumb

Consider for the moment the estimation of the univariate density func-
tion defined in (2.2), whose optimal bandwidth is given in (2.6). A quick
peek at (2.6) reveals that the optimal bandwidth depends on the under-
lying density, which is unknown. The reference rule-of-thumb for choos-
ing the bandwidth uses a standard family of distributions to assign a
value to the unknown constant

∫
f ′′(z)2 dz. For instance, for the normal

family it can be shown that
∫

f ′′(z)2 dz = 3
8
√

πσ5 . If you also used the
Gaussian kernel, then∫

K2(z)dz =
1√
4π

,

∫
z2K(z)dz = 1,

so the optimal bandwidth would be

hopt = (4π)−1/10

(
3
8

)−1/5

π1/10σn−1/5 = 1.059σn−1/5,

hence the “1.06σn−1/5” rule-of-thumb. In practice we use σ̂, the sample
standard deviation.

2.3.2 Plug-in

Plug-in methods such as that of Sheather and Jones (1991) involve
plugging estimates of the unknown constant

∫
f ′′(z)2 dz into the opti-
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mal bandwidth formula based on an initial estimator of f ′′(z) that itself
is based on a “pilot” bandwidth such as the 1.06σn−1/5 reference rule-
of-thumb. All other constants in hopt are known as we provide the ker-
nel function (i.e.,

∫
K2(z)dz and

∫
z2K(z)dz are known). Though such

rules are popular, we direct the interested reader to Loader (1999) for
a discussion of the relative merits of plug-in bandwidth selectors versus
those discussed below.4

2.3.3 Least Squares Cross-Validation

Least squares cross-validation is a fully automatic and data-driven
method of selecting the smoothing parameter. This method is based
on the principle of selecting a bandwidth that minimizes the IMSE of
the resulting estimate. The integrated squared difference between f̂(x)
and f(x) is∫ {

f̂(x) − f(x)
}2

dx =
∫

f̂(x)2 dx − 2
∫

f̂(x)f(x)dx +
∫

f(x)2 dx.

We can replace these values with sample counterparts and adjust for
bias and obtain an objective function that can be numerically mini-
mized. This approach was proposed by Rudemo (1982) and Bowman
(1984).

To appreciate the substance of Loader’s (1999) comments, Fig-
ure 2.3 plots the bimodal density estimate, the kernel estimate using
the plug-in rule, and that using least squares cross-validation.

Figure 2.3 reveals that indeed the plug-in rule is oversmoothing lead-
ing to substantial bias for the left peak. Least squares cross-validation
rectifies this as Loader (1999) points out, but at the cost of additional
variability in the right peak.

One problem with this approach is that it is sensitive to the presence
of rounded or discretized data and to small-scale effects in the data.

This example suggests that perhaps the fixed h kernel estimator
could be improved on, and there exist “adaptive” kernel estimators

4 Loader writes “We find the evidence for superior performance of plug-in approaches is
far less compelling than previously claimed. In turn, we consider real data examples,
simulation studies and asymptotics. Among the findings are that plug-in approaches are

tuned by arbitrary specification of pilot estimators and are prone to over-smoothing when
presented with difficult smoothing problems.”
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Fig. 2.3 Plug-in versus least squares cross-validation density estimates. The true density

is the solid line, the dotted line the plug-in density, and the dashed line the least squares
cross-validation density.

that allow h to vary at either the point x or Xi (see Abramson (1982)
and Breiman et al. (1977)). These estimators, however, tend to intro-
duce spurious noise in the density estimate. As the fixed h method is
dominant in applied work, we proceed with this approach.

2.3.4 Likelihood Cross-Validation

Likelihood cross-validation yields a density estimate which has an
entropy interpretation, being that the estimate will be close to the
actual density in a Kullback–Leibler sense. Likelihood cross-validation
chooses h to maximize the (leave-one-out) log likelihood function
given by

L = log L =
n∑

i=1

log f̂−i(x),
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where f̂−i(x) is the leave-one-out kernel estimator of f(Xi) that uses
all points except Xi to construct the density estimate, that is,

f̂−i(x) =
1

(n − 1)h

n∑
j=1,j 6=i

K

(
Xj − x

h

)
.

This method is of general applicability, and was proposed by Stone
(1974) and Geisser (1975). One drawback of this method is that it can
oversmooth for fat-tailed distributions such as the Cauchy.

2.3.5 Bootstrap Methods

Faraway and Jhun (1990) proposed a bootstrap-based method of select-
ing the bandwidth h by estimating the IMSE defined in (2.5) for
any given bandwidth and then minimizing over all bandwidths. The
approach uses a smoothed bootstrap method based on an initial den-
sity estimate. One drawback with this approach is that the objective
function is stochastic which can give rise to numerical minimization
issues, while it can also be computationally demanding.

2.4 Frequency and Kernel Probability Estimators

So far we have considered estimating a univariate density function pre-
suming that the underlying data is continuous in nature. Suppose we
were interested instead in estimating a univariate probability function
where the data is discrete in nature. The nonparametric non-smooth
approach would construct a frequency estimate, while the nonpara-
metric smooth approach would construct a kernel estimate quite dif-
ferent from that defined in (2.2). For those unfamiliar with the term
“frequency” estimate, this is simply the estimator of a probability
computed via the sample frequency of occurrence. For example, if a
random variable is the result of a Bernoulli trial (i.e., zero or one with
fixed probability from trial to trial) then the frequency estimate of the
probability of a zero (one) is simply the number of zeros (ones) divided
by the number of trials.

First, consider the estimation of a probability function defined for
Xi ∈ S = {0,1, . . . , c − 1}. The non-smooth “frequency” (non-kernel)
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estimator of p(x) is given by

p̃(x) =
1
n

n∑
i=1

1(Xi,x),

where 1(·) is again the indicator function defined earlier. It is straight-
forward to show that

Ep̃(x) = p(x),

var p̃(x) =
p(x)(1 − p(x))

n
,

hence,

MSE(p̃(x)) = n−1p(x)(1 − p(x)) = O(n−1),

which implies that

p̃(x) − p(x) = Op(n−1/2)

Now, consider the kernel estimator of p(x),

p̂(x) =
1
n

n∑
i=1

l(Xi,x), (2.7)

where l(·) is a kernel function defined by, say,

l(Xi,x) =

{
1 − λ if Xi = x

λ/(c − 1) otherwise,

and where λ ∈ [0,(c − 1)/c] is a “smoothing parameter” or “band-
width.” The requirement that λ lie in [0,(c − 1)/c] ensures that p̃(x) is
a proper probability estimate lying in [0,1]. It is easy to show that

Ep̂(x) = p(x) + λ

{
1 − cp(x)

c − 1

}
,

var p̂(x) =
p(x)(1 − p(x))

n

(
1 − λ

c

(c − 1)

)2

.

This estimator was proposed by Aitchison and Aitken (1976) for dis-
criminant analysis with multivariate binary data. See also Simonoff
(1996).
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Note that when λ = 0 this estimator collapses to the frequency esti-
mator p̃(x), while when λ hits its upper bound, (c − 1)/c, this estimator
is the rectangular (i.e., discrete uniform) estimator which yields equal
probabilities across all outcomes.

Using a bandwidth which balances bias and variance, it can be
shown that

p̂(x) − p(x) = Op

(
n−1/2

)
.

Note that, unlike that for the Rosenblatt–Parzen estimator, here we
were able to use the exact expressions to obtain our results rather than
the approximate expressions used for the former.

2.5 Kernel Density Estimation with Discrete
and Continuous Data

Suppose that we were facing a mix of discrete and continuous data
and wanted to model the joint density5 function. When facing a mix
of discrete and continuous data, traditionally researchers using kernel
methods resorted to a “frequency” approach. This approach involves
breaking the continuous data into subsets according to the realizations
of the discrete data (“cells”). This of course will produce consistent
estimates. However, as the number of subsets increases, the amount of
data in each cell falls leading to a “sparse data” problem. In such cases,
there may be insufficient data in each subset to deliver sensible density
estimates (the estimates will be highly variable).

The approach we consider below uses the concept of “generalized
product kernels.” For the continuous variables we use standard continu-
ous kernels denoted now by W (·) (Epanechnikov etc.). For an unordered
discrete variable x̄d, we could use Aitchison and Aitken’s (1976) kernel
given by

l̄(X̄d
i , x̄d) =

{
1 − λ, if X̄d

i = x̄d,

λ
c−1 , otherwise.

5 The term “density” is appropriate for distribution functions defined over mixed discrete

and continuous variables. It is the measure defined on the discrete variables in the density
function that matters.
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For an ordered discrete variable x̃d, we could use Wang and van
Ryzin’s (1981) kernel given by

l̃(X̃d
i , x̃d) =

{
1 − λ, if X̃d

i = x̃d,

(1−λ)
2 λ|X̃

d
i −x̃d|, if X̃d

i 6= x̃d.

A generalized product kernel for one continuous, one unordered, and
one ordered variable would be defined as follows:

K(·) = W (·) × l̄(·) × l̃(·). (2.8)

Using such product kernels, we can modify any existing kernel-based
method to handle the presence of categorical variables, thereby extend-
ing the reach of kernel methods.

Estimating a joint probability/density function defined over mixed
data follows naturally using these generalized product kernels. For
example, for one unordered discrete variable x̄d and one continuous
variable xc, our kernel estimator of the PDF would be

f̂(x̄d,xc) =
1

nhxc

n∑
i=1

l̄(X̄d
i , x̄d)W

(
Xc

i − xc

hxc

)
.

This extends naturally to handle a mix of ordered, unordered, and con-
tinuous data (i.e., both quantitative and qualitative data). This esti-
mator is particularly well suited to “sparse data” settings. Rather than
clutter the page with notation by formally defining the estimator for
p continuous, q unordered, and r ordered variables, we presume that
the underlying idea of using product kernels is clear, and direct the
interested reader to Li and Racine (2003) for details.

2.5.1 Discrete and Continuous Example

We consider Wooldridge’s (2002) “wage1” dataset having n = 526
observations, and model the joint density of two variables, one contin-
uous (“lwage”) and one discrete (“numdep”). “lwage” is the logarithm
of average hourly earnings for an individual. “numdep” the num-
ber of dependents (0,1, . . .). We use likelihood cross-validation (see
Section 2.3.4) to obtain the bandwidths, and the resulting estimate
is presented in Figure 2.4.
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Fig. 2.4 Nonparametric kernel estimate of a joint density defined over one continuous and

one discrete variable.

Note that this is indeed a case of “sparse” data for some cells (see
Table 2.1), and the traditional approach would require estimation of a
nonparametric univariate density function based upon only two obser-
vations for the last cell (c = 6).

2.6 Constructing Error Bounds

It is possible to construct pointwise and simultaneous confidence inter-
vals for the density estimate, and this is typically done using either the

Table 2.1 Summary of the number of dependents in the Wooldridge (2002) ‘wage1’ dataset
(“numdep”) (c = 0,1, . . . ,6).

c nc

0 252
1 105
2 99

3 45
4 16

5 7
6 2
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asymptotic formula such as that given in (2.4) in which the unknown
components are replaced with their estimates, or using resampling
methods such as the bootstrap. Note that the kernel estimator can
be shown to be asymptotically normal via application of Liapunov’s
double array central limit theorem.

Pointwise confidence intervals yield intervals at a given point x and
are of the form:

P (f̂l(x) < f(x) < f̂u(x)) = 1 − α,

where α is the probability of a Type I error. Simultaneous confidence
intervals, on the other hand, yield intervals of the form:

P (∩n
i=1{f̂l(Xi) < f(Xi) < f̂u(Xi)}) = 1 − α.

As construction of the above two types of intervals requires the interval
to be centered on f(x), bias correction methods must be used, either
via estimation of asymptotic formula such as that given in (2.3) or via
resampling methods such as the jackknife or bootstrap.

Alternatively, if interest lies solely in assessing variability of the
estimate, error bars can be centered on f̂(x) rather than an unbiased
estimate of f(x). Figure 2.5 plots the density estimate in Figure 2.2
along with pointwise 95% variability bounds (i.e., not bias-corrected).
One might wonder why bias-corrected intervals are not the norm. One
reason is because estimating bias is a notoriously difficult thing to do,
and the resulting bias-corrected estimates can be highly variable; see
Efron (1982) for further details surrounding bias-corrected estimates.

2.7 Curse-of-Dimensionality

As the dimension of the continuous variable space increases, the rates
of convergence of kernel methods deteriorate, which is the well known
“curse of dimensionality” problem. Letting p denote the number of con-
tinuous variables over which the density is defined, it can be shown that

f̂(x) − f(x) = Op

(
n−2/(p+4)

)
;

see Li and Racine (2003) for a derivation of this results for the mixed
data case with least squares cross-validation.



22 Density and Probability Function Estimation

Fig. 2.5 Kernel density estimate f̂(x) ± 1.96 × s using the asymptotic standard error,

s given in (2.4).

Silverman (1986, p. 94) presents an often cited table that shows
the sample size required to ensure that the relative MSE of a correctly
specified parametric estimator (multivariate normal) versus a multi-
variate kernel density estimator (with continuous datatypes only) is
less than 0.1 when evaluated at the multivariate mean, where rela-
tive MSE is defined by E{f̂(µ) − f(µ)}2/f(µ)2, a Gaussian kernel is
used, and the optimal point-wise bandwidth is computed. This table
is frequently cited by people who have thereby inferred that ker-
nel methods are useless when then dimension exceeds two or three
variables.

Though of course Silverman’s (1986, p. 94) table is correct, con-
cluding that kernel methods are not going to be of value when the
dimension exceeds just a few variables does not follow, for two simple
reasons. First, popular parametric models are rarely, if ever, correctly
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specified.6 The “horse race” is therefore between misspecified and
therefore inconsistent parametric models and relatively inefficient but
consistent nonparametric models.7 Second, the curse-of-dimensionality
applies only to the number of continuous variables involved. In applied
settings it is not uncommon to encounter situations involving only a
small number of continuous variables or, often, the data is comprised
exclusively of categorical variables.

6 “Normality is a myth; there never was, and never will be, a normal distribution” Geary

(1947).
7 As mentioned earlier, Robinson (1988) refers to parametric models as

√
n-inconsistent

(they are typically referred to as
√

n-consistent) to highlight this phenomena.
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Conditional Density Estimation

Conditional density functions underlie many popular statistical objects
of interest, though they are rarely modeled directly in parametric set-
tings and have perhaps received even less attention in kernel settings.
Nevertheless, as will be seen, they are extremely useful for a range
of tasks, whether directly estimating the conditional density function,
modeling count data (see Cameron and Trivedi (1998) for a thor-
ough treatment of count data models), or perhaps modeling conditional
quantiles via estimation of a conditional CDF. And, of course, regres-
sion analysis (i.e., modeling conditional means) depends directly on the
conditional density function, so this statistical object in fact implicitly
forms the backbone of many popular statistical methods.

3.1 Kernel Estimation of a Conditional PDF

Let f(·) and µ(·) denote the joint and marginal densities of (X,Y )
and X, respectively, where we allow Y and X to consist of continuous,
unordered, and ordered variables. For what follows we shall refer to Y

as a dependent variable (i.e., Y is explained), and to X as covariates
(i.e., X is the explanatory variable). We use f̂ and µ̂ to denote kernel

25
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estimators thereof, and we estimate the conditional density g(y|x) =
f(x,y)/f(x) by

ĝ(y|x) = f̂(x,y)/f̂(x). (3.1)

The kernel estimators of the joint and marginal densities f(x,y) and
f(x) are described in the previous section and are not repeated here;
see Hall et al. (2004) for details on the theoretical underpinnings of a
data-driven method of bandwidth selection for this method.

3.1.1 The Presence of Irrelevant Covariates

Hall et al. (2004) proposed the estimator defined in (3.1), but choos-
ing appropriate smoothing parameters in this setting can be tricky,
not least because plug-in rules take a particularly complex form in the
case of mixed data. One difficulty is that there exists no general for-
mula for the optimal smoothing parameters. A much bigger issue is
that it can be difficult to determine which components of X are rele-
vant to the problem of conditional inference. For example, if the jth
component of X is independent of Y then that component is irrele-
vant to estimating the density of Y given X, and ideally should be
dropped before conducting inference. Hall et al. (2004) show that a
version of least-squares cross-validation overcomes these difficulties. It
automatically determines which components are relevant and which
are not, through assigning large smoothing parameters to the latter
and consequently shrinking them toward the uniform distribution on
the respective marginals. This effectively removes irrelevant compo-
nents from contention, by suppressing their contribution to estimator
variance; they already have very small bias, a consequence of their
independence of Y . Cross-validation also gives us important informa-
tion about which components are relevant: the relevant components
are precisely those which cross-validation has chosen to smooth in a
traditional way, by assigning them smoothing parameters of conven-
tional size. Cross-validation produces asymptotically optimal smooth-
ing for relevant components, while eliminating irrelevant components
by oversmoothing.
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The importance of this result is best appreciated by comparison of
the conditions for consistency outlined in Section 2.2.1, where we men-
tioned standard results for density estimation whereby h→ 0 as n→∞
(bias → 0) and nh→∞ as n→∞ (var→ 0). Hall et al. (2004) demon-
strate that, for irrelevant conditioning variables in X, their bandwidths
in fact ought to behave exactly the opposite, namely, h→∞ as n→∞
for optimal smoothing. The same has been demonstrated for regression
as well; see Hall et al. (forthcoming) for further details.

3.1.2 Modeling an Italian GDP Panel

We consider Giovanni Baiocchi’s Italian GDP growth panel for
21 regions covering the period 1951–1998 (millions of Lire, 1990 =base).
There are 1,008 observations in total, and two variables, “gdp”
and “year.” Given their nature, we treat gdp as continuous and
year (1951,1952, . . .) as an ordered discrete variable. We then esti-
mate the density of gdp conditional on year. Figure 3.1 plots the
estimated conditional density, f̂(gdp|year) based upon likelihood

Fig. 3.1 Nonparametric conditional PDF estimate for the Italian gdp panel.
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cross-validated bandwidth selection which yielded bandwidths ĥgdp =
0.715 and λ̂year = 0.671.

Figure 3.1 reveals that the distribution of income has evolved from
a unimodal one in the early 1950s to a markedly bimodal one in
the 1990s. This result is robust to bandwidth choice, and is observed
whether using simple rules-of-thumb or data-driven methods such as
least-squares cross-validation or likelihood cross-validation. The kernel
method readily reveals this evolution which might easily be missed were
one to use parametric models of the income distribution. For instance,
the (unimodal) log-normal distribution is a popular parametric model
for income distributions, but is incapable of revealing the multi-modal
structure present in this dataset.

3.2 Kernel Estimation of a Conditional CDF

Li and Racine (forthcoming) propose a nonparametric conditional CDF
kernel estimator that admits a mix of discrete and categorical data
along with an associated nonparametric conditional quantile estimator.
Bandwidth selection for kernel quantile regression remains an open
topic of research, and they employ a modification of the conditional
PDF based bandwidth selector proposed by Hall et al. (2004).

We use F (y|x) to denote the conditional CDF of Y given X = x,
while f(x) is the marginal density of X. We can estimate F (y|x) by

F̂ (y|x) =
n−1

∑n
i=1 G

(
y−Yi

h0

)
Kh(Xi,x)

f̂(x)
, (3.2)

where G(·) is a kernel CDF chosen by the researcher, say, the stan-
dard normal CDF, h0 is the smoothing parameter associated with Y ,
and Kh(Xi,x) is a product kernel such as that defined in (2.8) where
each univariate continuous kernel has been divided by its respective
bandwidth for notational simplicity.

Figure 3.2 presents this estimator for the Italian GDP panel
described in Section 3.1.2.

The conditional CDF presented in Figure 3.2 conveys information
presented in Figure 3.1 in a manner better suited to estimating, say, a
conditional quantile to which we now turn.
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Fig. 3.2 Nonparametric conditional CDF estimate for the Italian GDP panel.

3.3 Kernel Estimation of a Conditional Quantile

Estimating regression functions is a popular activity for practitioners.
Sometimes, however, the regression function is not representative of the
impact of the covariates on the dependent variable. For example, when
the dependent variable is left (or right) censored, the relationship given
by the regression function is distorted. In such cases, conditional quan-
tiles above (or below) the censoring point are robust to the presence
of censoring. Furthermore, the conditional quantile function provides a
more comprehensive picture of the conditional distribution of a depen-
dent variable than the conditional mean function.

Once we can estimate conditional CDFs such as that presented in
Figure 3.2, estimating conditional quantiles follows naturally. That is,
having estimated the conditional CDF we simply invert it at the desired
quantile as described below. A conditional αth quantile of a conditional
distribution function F (·|x) is defined by (α ∈ (0,1))

qα(x) = inf{y : F (y|x) ≥ α} = F−1(α|x).
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Or equivalently, F (qα(x)|x) = α. We can directly estimate the condi-
tional quantile function qα(x) by inverting the estimated conditional
CDF function, i.e.,

q̂α(x) = inf{y : F̂ (y|x) ≥ α} ≡ F̂−1(α|x).

Theoretical details of this method can be found in Li and Racine
(forthcoming).

Figure 3.3 presents the 0.25, 0.50 (median), and 0.75 conditional
quantiles for the Italian GDP panel described in Section 3.1.2, along
with box plots1 of the raw data. One nice feature of this application is

Fig. 3.3 Nonparametric conditional quantile estimates for the Italian GDP panel, α =
(0.25,0.50,0.75).

1 A box-and-whisker plot (sometimes called simply a “box plot”) is a histogram-like method

of displaying data, invented by J. Tukey. To create a box-and-whisker plot, draw a box
with ends at the quartiles Q1 and Q3. Draw the statistical median M as a horizontal line

in the box. Now extend the “whiskers” to the farthest points that are not outliers (i.e.,
that are within 3/2 times the interquartile range of Q1 and Q3). Then, for every point
more than 3/2 times the interquartile range from the end of a box, draw a dot.
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that the explanatory variable is ordered and there exist multiple obser-
vations per year. The non-smooth quantile estimates generated by the
box plot can be directly compared to those obtained via direct estima-
tion of the smooth CDF, and it is clear that they are in agreement.

3.4 Binary Choice and Count Data Models

Another application of kernel estimates of PDFs with mixed data
involves the estimation of conditional mode models. By way of example,
consider some discrete outcome, say Y ∈ S = {0,1, . . . , c − 1}, which
might denote by way of example the number of successful patent appli-
cations by firms. We define a conditional mode of y|x by

m(x) = max
y

g(y|x). (3.3)

In order to estimate a conditional mode m(x), we need to model the
conditional density. Let us call m̂(x) the estimated conditional mode,
which is given by

m̂(x) = max
y

ĝ(y|x), (3.4)

where ĝ(y|x) is the kernel estimator of g(y|x) defined in (3.1). By way
of example, we consider modeling low birthweights (a binary indicator)
using this method.

3.4.1 Modeling Low Birthweight (0/1)

For this example, we use data on birthweights taken from the R MASS
library (Venables and Ripley (2002)), and compute a parametric Logit
model and a nonparametric conditional mode model using (3.4) in
which the conditional density was estimated using (3.1) based upon
Hall et al.’s (2004) method. We then compare their confusion matri-
ces2 and assess their classification ability. The outcome y is a binary
indicator of low infant birthweight (“low”) defined below. The method

2 A “confusion matrix” is simply a tabulation of the actual outcomes versus those predicted

by a model. The diagonal elements contain correctly predicted outcomes while the off-
diagonal ones contain incorrectly predicted (confused) outcomes.
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Table 3.1 Confusion matrices for the low birthweight data. The table on the left summarizes

the parametric logit model, that on the right the kernel model.

Predicted

Actual 0 1

0 119 11

1 34 25

Predicted

Actual 0 1

0 127 1

1 27 32

can handle unordered and ordered multinomial outcomes without mod-
ification. This application has n = 189 and 7 explanatory variables in
x, “smoke,” “race,” “ht,” “ui,” “ftv,” “age,” and “lwt” defined below.

Variables are defined as follows:

(1) “low” indicator of birth weight less than 2.5 kg
(2) “smoke” smoking status during pregnancy
(3) “race” mother’s race (“1” = white, “2” = black, “3” = other)
(4) “ht” history of hypertension
(5) “ui” presence of uterine irritability
(6) “ftv” number of physician visits during the first trimester
(7) “age” mother’s age in years
(8) “lwt” mother’s weight in pounds at last menstrual period

Note that all variables other than age and lwt are categorical in nature
in this example.

We compute the “confusion” matrices for each model using likeli-
hood cross-validation to obtain the bandwidths for the nonparametric
conditional mode model. As can be seen, the nonparametric model cor-
rectly classifies (127 + 32)/189 = 84.1% of low/high birthweights while
the Logit model correctly classifies only (119 + 25)/189 = 76.1%.
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Regression

One of the most popular methods for nonparametric kernel regression
was proposed by Nadaraya (1965) and Watson (1964) and is known
as the “Nadaraya–Watson” estimator though it is also known as the
“local constant” estimator for reasons best described when we intro-
duce the “local polynomial” estimator (Fan (1992)). We begin with a
brief introduction to the local constant method of estimating regression
functions and their derivatives then proceed to the local polynomial
method. We remind the reader that we shall rely on many objects
outlined in Density and Probability Function Estimation and Con-
ditional Density Estimation such as generalized product kernels and
so forth.

4.1 Local Constant Kernel Regression

We begin by considering the bivariate regression case for notational
simplicity.1

1 As will be seen, the multivariate mixed data versions follow naturally, and we will point
out the modifications required where appropriate.

33
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4.1.1 The Local Constant Conditional Mean (ĝ(x))

By definition, the conditional mean of a continuous random variable Y

is given by

g(x) =
∫

y g(y|x)dy =
∫

y
f(y,x)
f(x)

dy =
m(x)
f(x)

,

where g(y|x) is the conditional PDF defined in Conditional Density
Estimation and where m(x) =

∫
yf(y,x)dy.

The local constant estimator of the conditional mean is obtained by
replacing the unknown joint and marginal densities, f(y,x) and f(x),
by their kernel estimators defined in Density and Probability Function
Estimation, which yields

ĝ(x) =
∫

y
f̂(y,x)

f̂(x)
dy.

With a little algebra the local constant estimator ĝ(x) simplifies to

ĝ(x) =
∫

y
f̂(y,x)

f̂(x)
dy =

∑n
i=1 YiK

(
Xi−x

hx

)
∑n

i=1 K
(

Xi−x
hx

) . (4.1)

Note that the integral drops out due to the use of the product kernel
function and a change of variables argument.

Note that, under the conditions given in the following section, ĝ(x)
is a consistent estimate of a conditional mean. In essence, we are locally
averaging those values of the dependent variable which are “close”
in terms of the values taken on by the regressors. By controlling the
amount of local information used to construct the estimate (the “local
sample size”) and allowing the amount of local averaging to become
more informative as the sample size increases, while also decreasing
the neighborhood in which the averaging occurs, we can ensure that
our estimates are consistent under standard regularity conditions.

4.1.2 Approximate Bias and Variance

Though the local constant estimator is widely used, it suffers from “edge
bias” which can be seen by considering its approximate bias which in
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the bivariate case is given by

h2

(
1
2
g′′(x) +

g′(x)f ′(x)
f(x)

)
κ2

(see Pagan and Ullah (1999, p. 101) for a derivation). Other things
equal, as we approach the boundary of the support of the data, f(x)
approaches zero and the bias increases. The class of “local polynomial”
estimators described in Section 4.2 do not suffer from edge bias though
they are prone to numerical instability issues described shortly. The
approximate bias for the local linear estimator introduced shortly is
given by

h2

2
g′′(x)κ2,

and it can be seen that the term giving rise to the edge bias in the
local constant estimator, namely g′(x)f ′(x)/f(x), does not appear in
that for the local linear estimator.

In Section 4.2, we describe the local linear estimator for the bivariate
case, and at this time point out that the local constant and local linear
estimators have identical approximate variance which, for the bivariate
case is given by

σ2(x)
f(x)nh

∫
K2(z)dz,

where σ2(x) is the conditional variance of y.

4.1.3 Optimal and Data-Driven Bandwidths

The IMSE-optimal bandwidth for the local constant estimator,

hopt =

[
σ2(x)

∫
f−1(x)dx

∫
K2(z)dz∫

{2g′(x)f ′(x)f−1(x) + g′′(x)}2 dxκ2
2

]1/5

n−1/5,

is obtained in exactly the same manner as was that in Section 2.2.1,
and like its density counterpart depends on unknown quantities that
depend on the underlying DGP.

Though plug-in methods could be applied, in multivariate settings
they are infeasible due to the need to estimate higher order derivatives
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along with cross-partial derivatives, among others, while in mixed-data
settings no general formula exists. Alternative data-driven approaches
are used in practice.

Two popular data-driven methods of bandwidth selection that have
desirable properties are least-squares cross-validation and the AIC-
based method of Hurvich et al. (1998), which is based on minimizing a
modified Akaike Information Criterion.

Least-squares cross-validation for regression is based on minimizing

CV(h) = n−1
n∑

i=1

(Yi − ĝ−i(Xi))2,

where ĝ−i(Xi) is the estimator of g(Xi) formed by leaving out the ith
observation when generating the prediction for observation i.

Hurvich et al.’s (1998) approach is based on the minimization of

AICc = ln(σ̂2) +
1 + tr(H)/n

1 − {tr(H) + 2}/n
,

where

σ̂2 =
1
n

n∑
i=1

{Yi − ĝ(Xi)}2 = Y ′(I − H)′(I − H)Y/n

with ĝ(Xi) being a nonparametric estimator and H being an n × n

weighting function (i.e., the matrix of kernel weights) with its (i, j)th
element given by Hij = Kh(Xi,Xj)/

∑n
l=1 Kh(Xi,Xl), where Kh(·) is a

generalized product kernel.
Both the CV method and the AICc method have been shown to be

asymptotically equivalent; see Li and Racine (2004) for details.

4.1.4 Relevant and Irrelevant Regressors

For relevant x, conditions for consistency are the same as those out-
lined for density estimation, namely h→ 0 as n→∞ and nh→∞
as n→∞. However, when x is in fact irrelevant, then it can be shown
that h→∞ as n→∞ will produce optimal smoothing rather than
h→ 0. It has been shown that the least-squares cross-validation method
of bandwidth selection will lead to optimal smoothing for both relevant
and irrelevant x; see Hall et al. (forthcoming) for details.
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For the local constant estimator of the conditional mean of y, when
h→∞ we observe that

ĝ(x) =
∑n

i=1 YiK (0)∑n
i=1 K (0)

= n−1
n∑

i=1

Yi = ȳ,

which is the unconditional mean of y. In this instance we say that x

has been “smoothed out” of the regression function, which is appro-
priate when there is no information contained in x that is useful for
predicting y.

The intuition underlying the desirability of smoothing out irrelevant
regressors is quite simple. The presence of irrelevant x means that the
bias of ĝ(x) is zero for any h. One could therefore use relatively small
values of h, however estimators with relatively small h will necessarily
be more variable than those with relatively large h. As cross-validation
delivers an approximation to the MSE of the estimator, then MSE is
clearly minimized in this case when the variance of ĝ(x) is minimized,
which occurs when h is such that ĝ(x) = ȳ, i.e., when h→∞. Again,
cross-validation can deliver the appropriate value of h in both relevant
and irrelevant settings. Finally, observe that the rate of convergence of
the bivariate (i.e., one regressor) local constant kernel estimator using
optimal smoothing is (inversely) proportional to

√
n in the presence of

irrelevant regressors, which is the parametric rate, while in the presence
of relevant regressors the rate of convergence is proportional to

√
n4/5

using second order kernels, which is slower than the parametric rate. This
fact is perhaps not as widely appreciated as it could be and has important
implications for automatic dimension reduction in multivariate settings
which can mitigate the curse-of-dimensionality in some settings.

The extension to multiple regressors follows naturally, and a mixed-
data multivariate version is obtained by simply replacing the kernel
with a generalized product kernel defined in Density and Probability
Function Estimation; see Racine and Li (2004) for theoretical under-
pinnings of this method.

4.1.5 The Local Constant Response (β̂(x))

In addition to estimating the conditional mean, we frequently wish to
estimate marginal effects (“derivatives” or “response”).
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The unknown response β(x) for the bivariate case considered above
is defined as follows:

β(x) ≡ dg(x)
dx

= g′(x) =
f(x)m′(x) − m(x)f ′(x)

f2(x)

=
m′(x)
f(x)

− m(x)
f(x)

f ′(x)
f(x)

=
m′(x)
f(x)

− g(x)
f ′(x)
f(x)

.

The local constant estimator is obtained by replacing the unknown
f(x), m′(x), g(x), and f ′(x) with their kernel-based counterparts and
is given by

β̂(x) ≡ dĝ(x)
dx

=
f̂(x)m̂′(x) − m̂(x)f̂ ′(x)

f̂2(x)

=
m̂′(x)

f̂(x)
− m̂(x)

f̂(x)

f̂ ′(x)

f̂(x)
=

m̂′(x)

f̂(x)
− ĝ(x)

f̂ ′(x)

f̂(x)
,

where

m̂(x) =
1

nh

∑
i

YiK

(
Xi − x

h

)

f̂(x) =
1

nh

∑
i

K

(
Xi − x

h

)

m̂′(x) = − 1
nh2

∑
i

YiK
′
(

Xi − x

h

)

f̂ ′(x) = − 1
nh2

∑
i

K ′
(

Xi − x

h

)
.

Again, a multivariate version follows naturally, and mixed-data versions
follow using the generalized product kernels introduced earlier where
of course this estimator is only defined for the continuous regressors.

4.2 Local Polynomial Kernel Regression

The estimator given in (4.1) is called the local constant estimator
because it can be seen to be the minimizer of the following:

ĝ(x) ≡min
a

n∑
i=1

(Yi − a)K
(

Xi − x

h

)
.
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We now introduce a popular extension that does not suffer from edge
bias, though it does introduce other issues such as potential singularity
that often arises in sparse data settings. The most popular local poly-
nomial method is the local linear approach, which we describe below
and again consider the bivariate case for notational simplicity.

Assuming that the second derivative of g(x) exists, then in a small
neighborhood of a point x, g(x0) ≈ g(x) + (∂g(x)/∂x)(x0 − x) = a +
b(x0 − x). The problem of estimating g(x) is equivalent to the local
linear regression problem of estimating the intercept a. The problem
of estimating the response ∂g(x)/∂x is equivalent to the local linear
regression problem of estimating the slope b.

We proceed by choosing a and b so as to minimize

S =
n∑

i=1

(Yi − a − b(Xi − x))2K
(

Xi − x

h

)

=
n∑

i=1

(Yi − a − b(Xi − x))2K(Zi).

The solutions â and b̂ will be the local linear estimators of g(x) and
β(x), respectively. Solving we obtain(

ĝ(x)
β̂(x)

)
=

[
n∑

i=1

(
1 Xi − x

Xi − x (Xi − x)2

)
K(Zi)

]−1 n∑
i=1

(
1

Xi − x

)
K(Zi)yi.

One feature of this approach is that it directly delivers estimators
of the mean and response, which was not the case for the local constant
estimator. The approximate bias and variance are given in Section 4.1.2.
For the estimation of marginal effects (i.e., β(x)), it is common to use a
higher-order polynomial (i.e., to use a local quadratic regression if you
want to estimate first derivatives) as a bias-reduction device (see Fan
and Gijbels (1996)).

One problem that often surfaces when using this estimator is that
it suffers from singularity problems arising from the presence of sparse
data, particularly for small bandwidths, hence various forms of “ridg-
ing” have been suggested to overcome these problems. Ridging methods
are techniques for solving badly conditioned linear regression problems.
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The approach was first proposed by Hoerl and Kennard (1970). For
details on the use of ridging methods in a local linear context see Cheng
et al. (1997) and Seifert and Gasser (2000).

The behavior of the local linear estimator with regard to h is markedly
different from that for the local constant estimator. As h→∞ the local
linear estimator ĝ(x) can be shown to approach β̂0 + β̂1x where β̂0 and
β̂1 are the linear least squares estimators from the regression of y on x.
That is, as h→∞ the locally linear fit approaches the globally linear
fit in exactly the same manner as the local constant fit approached
the globally constant fit, namely ȳ. However, while the local constant
estimator had the property that irrelevant variables could be totally
smoothed out, the same does not hold for the local linear estimator which
can lead to excessive variability in the presence of irrelevant regressors.

The bias and variance of this estimator were presented in
Section 4.1. A multivariate version of the local linear estimator for
mixed data settings follow naturally using generalized product kernels;
see Li and Racine (2004) for details.

4.2.1 A Simulated Bivariate Example

We consider an example where we simulate a sample of size n = 50
where x is uniformly distributed and y = sin(2πx) + ε where ε is nor-
mally distributed with σ = 0.25. We first consider the case where least-
squares cross-validation is used to select the bandwidths. Figure 4.1
presents the data, the true DGP, and the local constant and local lin-
ear estimators of g(x) = sin(2πx).

It can be seen in Figure 4.1 that the local constant estimator dis-
plays some apparent edge bias as the estimator flares slightly down-
wards on the rightmost edge and slightly upwards on the leftmost
edge as would be expected when one examines its approximate bias.
However, both estimators provide faithful descriptions of the underly-
ing DGP.

Next, we consider the differing behaviors of the local constant and
local linear estimators as h→∞. We set the respective bandwidths at
h = 100,000, and Figure 4.2 presents the data, the true DGP, and the
local constant and local linear estimators.



4.2 Local Polynomial Kernel Regression 41

Fig. 4.1 The local constant and local linear estimators using least-squares cross-validation,

n = 50.

Figure 4.2 clearly illustrates the markedly different properties of
each estimator for large h, and underscores the fact that the local linear
estimator cannot completely remove a variable by oversmoothing.

Suppose one was interested in marginal effects. In this case you
might consider the local constant and local linear estimators of β(x).
Figure 4.3 plots the resulting estimates of response based upon the
cross-validated bandwidths.

Readers may think that these estimators are not all that smooth,
and they would of course be correct. Remember that we have a small
sample (n = 50), are using a stochastic bandwidth, and as n increases
the estimates will become progressively smoother. However, this is per-
haps a good place to point out that common parametric specifications
found in much applied econometric work would completely fail to cap-
ture even the simple mean and response considered here. Recall that
this is the horse race referred to previously, and though the estimates
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Fig. 4.2 The oversmoothed local constant and local linear estimators using h = 100,000,

n = 50.

might not be all that pleasing to some readers, they are indeed highly
informative.

4.2.2 An Illustrative Comparison of Bandwidth
Selection Methods

To assess how various bandwidth selection methods perform on actual
data, we consider the following example using data from Fox’s (2002)
car library in R (R Development Core Team (2007)). The dataset con-
sists of 102 observations, each corresponding to a particular occupation.
The dependent variable is the prestige of Canadian occupations, mea-
sured by the Pineo–Porter prestige score for occupation taken from a
social survey conducted in the mid-1960s. The explanatory variable
is average income for each occupation measured in 1971 Canadian
dollars. Figure 4.4 plots the data and five local linear regression esti-
mates, each differing in their window widths, the window widths being
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Fig. 4.3 The local constant and local linear estimators of response β(x) using least-squares

cross-validation, n = 50, dy/dx = 2π cos(2πx).

undersmoothed, oversmoothed, Ruppert et al.’s (1995) direct plug-in,
Hurvich et al.’s (1998) corrected AIC (“AICc”), and cross-validation.
A second order Gaussian kernel was used throughout.

It can be seen that the oversmoothed local linear estimate is globally
linear and in fact is exactly a simple linear regression of y on x as
expected, while the AICc and CV criterion appears to provide the most
reasonable fit to this data. As noted, in mixed data settings there do
not exist plug-in rules. We have experienced reasonable performance
using cross-validation and the AICc criterion in a variety of settings.

4.2.3 A Multivariate Mixed-Data Application

For what follows, we consider an application that involves multiple
regression analysis with qualitative information. This example is taken
from Wooldridge (2003, p. 226).
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Fig. 4.4 Local linear kernel estimates with varying window widths. Bandwidths are

undersmoothed (0.1σn−1/5), oversmoothed (103σn−1/5), AICC and CV (3.54σn−1/5,
3.45σn−1/5), and plug-in (1.08σn−1/5).

We consider modeling an hourly wage equation for which the depen-
dent variable is log(wage) (lwage) while the explanatory variables
include three continuous variables, namely educ (years of education),
exper (the number of years of potential experience), and tenure (the
number of years with their current employer) along with two quali-
tative variables, female (“Female”/“Male”) and married (“Married”/
“Notmarried”). For this example there are n = 526 observations. We
use Hurvich et al.’s (1998) AICc approach for bandwidth selection,
which is summarized in Table 4.1.
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Table 4.1 Bandwidth summary for the hourly wage equation.

Regression Data (526 observations, 5 variable(s)):

Regression Type: Local Linear
Bandwidth Selection Method: Expected Kullback-Leibler Cross-Validation
Formula: lwage ~ factor(female)+factor(married)+educ+exper+tenure
Bandwidth Type: Fixed
Objective Function Value: -0.8570284 (achieved on multistart 5)

factor(female) Bandwidth: 0.01978275 Lambda Max: 0.500000
factor(married) Bandwidth: 0.15228887 Lambda Max: 0.500000
educ Bandwidth: 7.84663015 Scale Factor: 6.937558
exper Bandwidth: 8.43548175 Scale Factor: 1.521636
tenure Bandwidth: 41.60546059 Scale Factor: 14.099208

Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 3

Unordered Categorical Kernel Type: Aitchison and Aitken
No. Unordered Categorical Explanatory Vars.: 2

We display partial regression plots in Figure 4.5. A “partial regres-
sion plot” is simply a 2D plot of the outcome y versus one covari-
ate xj when all other covariates are held constant at their respective
medians/modes. We also plot bootstrapped variability bounds
which are often preferable to those obtained via the asymptotic
approximations.2

Figure 4.6 presents the partial response plots along with their boot-
strapped error bounds.

Note that, for the two categorical variables, the gradient is com-
puted as the difference in wages, other variables held constant at their
respective medians/modes, when one is, say, married versus not mar-
ried. Note that for the leftmost value of each attribute (“Female” and
“Married”) the difference is zero as we take the difference between
each value assumed by the variable and the first level of each; see
Racine et al. (2006) for the construction of response for categorical
variables.

2 The asymptotic formula is based on small-h approximations. As noted, sometimes optimal

smoothing can appropriately deliver h→∞. As this cannot be known in advance, the
asymptotic approximations will naturally perform poorly when this is the case.
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Fig. 4.5 Partial local linear nonparametric regression plots with bootstrapped pointwise

error bounds for the Wooldridge (2002) ‘wage1’ dataset.

4.3 Assessing Goodness-of-Fit

We will require a unit-free measure of goodness-of-fit for nonparamet-
ric regression models which is comparable to that used for parametric
regression models, namely R2. Note that this will clearly be a within-
sample measure of goodness-of-fit. Given the drawbacks of computing
R2 based on the decomposition of the sum of squares (such as possible
negative values), there is an alternative definition and method for com-
puting R2 that can be used that is directly applicable to any model,
linear or nonlinear. Letting Yi denote the outcome and Ŷi the fitted
value for observation i, we may define R2 as follows:

R2 =

[∑n
i=1(Yi − ȳ)(Ŷi − ȳ)

]2∑n
i=1(Yi − ȳ)2

∑n
i=1(Ŷi − ȳ)2

,
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Fig. 4.6 Partial local linear nonparametric response plots with bootstrapped pointwise error
bounds for the Wooldridge (2002) ‘wage1’ dataset.

and this measure will always lie in the range [0,1] with the value 1
denoting a perfect fit to the sample data and 0 denoting no predictive
power above that given by the unconditional mean of the target. It
can be demonstrated that this method of computing R2 is identical
to the standard measure computed as

∑n
i=1(Ŷi − ȳ)2/

∑n
i=1(Yi − ȳ)2

when the model is linear and includes an intercept term and OLS is used
to fit it. This useful measure will permit direct comparison of within-
sample goodness-of-fit subject to the obvious qualification that this is
by no means a model selection criterion, rather, simply a summary
measure that some may wish to report. This measure could, of course,
also be computed using out-of-sample predictions and out-of-sample
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realizations. If we consider models estimated on a randomly selected
subset of data and evaluated on an independent sample of hold-out
data, this measure computed for the hold-out observations might serve
to help assess various models, particularly when averaged over a number
of independent hold-out datasets.3

By way of example, for the application taken from Wooldridge
(2003, p. 226) above, the local linear model had an R2 of 51.5% using
this measure, which is directly comparable to the unadjusted R2 from
a parametric model.

4.4 A Resistant Local Constant Method

Nonparametric kernel methods are often (correctly) criticized due to
their lack of robustness in the more traditional sense, namely, robust to
the presence of contaminated data that can arise due to measurement
errors, data entry errors, and the like. Methods that are robust in the
more traditional sense are often referred to as “resistant” since they
“resist” the presence of a small number of bad data values. Leung
(2005) has recently proposed a novel method for resistant robust kernel
regression. This is an exciting new development that is deserving of
attention.

4.4.1 Leung’s (2005) Resistant Kernel Regression Approach

We let {Xi,Yi}n
i=1 denote a set of data and consider the regression of

Y on X at the n design points {Xi}n
i=1,

Yi = g(Xi) + εi, i = 1, . . . ,n, (4.2)

where g(·) is an unknown functional of X and {εi}n
i=1 are i.i.d. random

errors having distribution F (·).
The local constant kernel smoother of g(x), denoted here as ĝh(x)

is given by

ĝh(x) ≡ argmin
a

n∑
i=1

(Yi − a)2K
(

Xi − x

h

)
, (4.3)

3 There exist a number of alternate measures of goodness of fit that are generated by the
package. See the help file (i.e., type ?npreg) for details.
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where h is a bandwidth that determines the amount of local smoothing
and K(·) is a kernel function such that

∫
K(z)dz = 1,

∫
zK(z)dz = 0,

and
∫

z2K(z)dz = k2 <∞, for instance. The main problem in applied
settings is how to best choose h.

A resistant local constant kernel smoother, on the other hand, can
be obtained via

g̃h|c(x) ≡ argmin
a

n∑
i=1

ρc(Yi − a)K
(

Xi − x

h

)
. (4.4)

where ρc is, for instance, Huber’s (1964) ρc function underlying M

estimators which is given by (Maronna et al. (2006, p. 26))

ρc(u) =

{
u2 if |u| ≤ c

2c|u| − c2 if |u| > c
. (4.5)

In order to compute g̃h|c(x), the resistance parameter c must be
specified by the user. One popular rule-of-thumb is c = 1.345 × s

where s is a robust measure of scale such as the median absolute
deviation about the median (MAD). This popular rule ensures 95%
efficiency relative to the homoskedastic normal model in a location
problem. Clearly this approach is more computationally demanding
than the methods outlined in Regression. However, convincing sim-
ulations and applications provided by Leung (2005) indicate that this
methods is deserving of attention by those worried about the presence of
outliers.

Related work includes Stone (1977) and Cleveland (1979) who con-
sider resistant local polynomial fitting using weighted least squares,4

Cantoni and Ronchetti (2001) who consider smoothing splines with
robust choice of the smoothing parameter along the lines of Leung
(2005), Fan and Jiang (2000) who consider robust one-step local
polynomial estimators but who did not address the issue of band-
width selection, and Wang and Scott (1994) who consider locally

4 Their method “lowess” stands for “locally weighted regression.” The robustness follows

from iterative fitting where the assigned weights are inversely proportional to the residuals
from the previous fit, hence outliers tend to be downweighted.
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weighted polynomials fitted via linear programming. See also C̆́ız̆ek and
Härdle (2006) who consider robust estimation of dimension-reduction
regression models.

The literature on resistant kernel methods is a development that has
the potential to refine kernel smoothing along an important dimension
leading to a set of truly robust methods.
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Semiparametric Regression

Semiparametric methods constitute some of the more popular methods
for flexible estimation. Semiparametric models are formed by combin-
ing parametric and nonparametric models in a particular manner. Such
models are useful in settings where fully nonparametric models may
not perform well, for instance, when the curse of dimensionality has
led to highly variable estimates or when one wishes to use a parametric
regression model but the functional form with respect to a subset of
regressors or perhaps the density of the errors is not known. We might
also envision situations in which some regressors may appear as a linear
function (i.e., linear in variables) but the functional form of the param-
eters with respect to the other variables is not known, or perhaps where
the regression function is nonparametric but the structure of the error
process is of a parametric form.

Semiparametric models can best be thought of as a compromise
between fully nonparametric and fully parametric specifications. They
rely on parametric assumptions and can therefore be misspecified and
inconsistent, just like their parametric counterparts.

A variety of semiparametric methods have been proposed. For what
follows we shall restrict attention to regression-type models, and we

51
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consider three popular methods, namely the partially linear, single
index, and varying coefficient specifications.

5.1 Partially Linear Models

The partially linear model is one of the simplest semiparametric models
used in practice, and was proposed by Robinson (1988) while Racine
and Liu (2007) extended the approach to handle the presence of cate-
gorical covariates. Many believe that, as the model is apparently simple,
its computation ought to also be simple. However, the apparent simplic-
ity hides the perhaps under-appreciated fact that bandwidth selection
for partially linear models can be orders of magnitude more computa-
tionally burdensome than that for fully nonparametric models, for one
simple reason. As will be seen, data-driven bandwidth selection meth-
ods such as cross-validation are being used, and the partially linear
model involves cross-validation to regress y on Z (Z is multivariate)
then each column of X on Z, whereas fully nonparametric regression
involves cross-validation of y on X only. The computational burden
associated with partially linear models is therefore much more demand-
ing than for nonparametric models, so be forewarned.

A semiparametric partially linear model is given by

Yi = X ′
iβ + g(Zi) + ui, i = 1, . . . ,n, (5.1)

where Xi is a p × 1 vector, β is a p × 1 vector of unknown param-
eters, and Zi ∈ Rq. The functional form of g(·) is not specified. The
finite dimensional parameter β constitutes the parametric part of
the model and the unknown function g(·) the nonparametric part.
The data is assumed to be i.i.d. with E(ui|Xi,Zi) = 0, and we allow
for a conditionally heteroskedastic error process E(u2

i |x,z) = σ2(x,z)
of unknown form. We focus our discussion on how to obtain a√

n-consistent estimator of β, as once this is done an estimator
of g(·) can be easily obtained via the nonparametric regression of
Yi − Xiβ̂ on z.

Taking the expectation of (5.1) conditional on Zi, we get

E(Yi|Zi) = E(Xi|Zi)′β + g(Zi). (5.2)
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Subtracting (5.2) from (5.1) yields

Yi − E(Yi|Zi) = (Xi − E(Xi|Zi))
′β + ui. (5.3)

Defining the shorthand notation Ỹi = Yi − E(Yi|Zi) and X̃i = Xi −
E(Xi|Zi), and applying the least squares method to (5.3), we obtain
an estimator of β given by

β̂inf =

[
n∑

i=1

X̃iX̃
′
i

]−1 n∑
i=1

X̃iỸi. (5.4)

The above estimator β̂inf is not feasible because E(Yi|Zi) and E(Xi|Zi)
are unknown. However, we know that these conditional expectations
can be consistently estimated using the kernel methods described in
Regression, so we can replace the unknown conditional expectations
that appear in β̂inf with their kernel estimators thereby obtaining a
feasible estimator of β. Some identification conditions will be required
in order to identify the parameter vector β, and we refer the interested
reader to Robinson (1988).

5.1.1 A Partially Linear Example

Suppose that we again consider Wooldridge’s (2002) “wage1” dataset,
but now assume that the researcher is unwilling to specify the nature
of the relationship between exper and lwage, hence relegates exper
to the nonparametric part of a semiparametric partially linear model.
Table 5.1 presents a summary from the partially linear specification.

It is of interest to compare these results with that for a linear model
that is quadratic in experience, which is summarized in Table 5.2
and with the local linear specification outlined in Regression. First,
we note that the parameter estimates and their respective standard
errors are comparable in magnitude with those from the fully para-
metric specification listed in Table 5.2. Second, in terms of in-sample
fit, the semiparametric partially linear specification (R2 = 44.9%) per-
forms slightly better than the parametric specification (R2 = 43.6%)
while the fully nonparametric specification (R2 = 51.5%) outperforms
both the fully parametric and partially linear specifications.



54 Semiparametric Regression

Table 5.1 Model summary for the partially linear hourly wage equation.

Partially Linear Model
Regression data: 526 training points, in 5 variable(s)
With 4 linear parametric regressor(s), 1 nonparametric regressor(s)

y (z )
Bandwidth(s): 2.050966

x (z )
Bandwidth(s): 4.1943673

1.3531783
3.1605552
0.7646561

factor (female) factor (married) educ tenure
Coefficient(s): 0.2902499 -0.03722828 0.07879512 0.01662935
Standard error(s): 0.0359527 0.04230253 0.00676465 0.00308927

Kernel Regression Estimator: Local Constant
Bandwidth Type: Fixed

Residual standard error: 0.1553021
R-squared: 0.4493789

Table 5.2 Model summary for the fully linear hourly wage equation.

Coefficients: Estimate Std. Error

(Intercept) 0.1811615 0.1070747
factor(female)Male 0.2911303 0.0362832
factor(married)Notmarried -0.0564494 0.0409259
educ 0.0798322 0.0068273
tenure 0.0160739 0.0028801
exper 0.0300995 0.0051931
I(exper^2) -0.0006012 0.0001099

Multiple R-Squared: 0.4361, Adjusted R-squared: 0.4296

5.2 Index Models

A semiparametric single index model is of the form:

Y = g(X ′β0) + u, (5.5)

where Y is the dependent variable, X ∈ Rq is the vector of explanatory
variables, β0 is the q × 1 vector of unknown parameters, and u is the
error satisfying E(u|X) = 0. The term x′β0 is called a “single index”
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because it is a scalar (a single index) even though x is a vector. The
functional form of g(·) is unknown to the researcher. This model is
semiparametric in nature since the functional form of the linear index
is specified, while g(·) is left unspecified.

Ichimura (1993), Manski (1988), and Horowitz (1998, pp. 14–20)
provide excellent intuitive explanations of the identifiability conditions
underlying semiparametric single index models (i.e., the set of condi-
tions under which the unknown parameter vector β0 and the unknown
function g(·) can be sensibly estimated), and we direct the reader to
these articles for details.

5.2.1 Ichimura’s Method

Consider the case where y is continuous. If the functional form of g(·)
were known, we would have a standard nonlinear regression model,
and we could use the nonlinear least squares method to estimate β0 by
minimizing ∑

i=1

(Yi − g(X ′
iβ))2 (5.6)

with respect to β.
In the case of an unknown function g(·), we first need to esti-

mate g(·). However, the kernel method does not estimate g(X ′
iβ0)

directly because not only is g(·) unknown, but so too is β0. Never-
theless, for a given value of β we can estimate

G(X ′
iβ) def= E(Yi|X ′

iβ) = E[g(X ′
iβ0)|X ′

iβ] (5.7)

by the kernel method, where the last equality follows from the fact that
E(ui|X ′

iβ) = 0 for all β since E(ui|Xi) = 0.
Note that when β = β0, G(X ′

iβ0) = g(X ′
iβ0), while in general,

G(X ′
iβ) 6= g(X ′

iβ0) if β 6= β0. Ichimura (1993) suggests estimating
g(X ′

iβ0) by Ĝ−i(X ′
iβ) and choosing β by (semiparametric) nonlinear

least squares, where Ĝ−i(X ′
iβ) is a leave-one-out nonparametric kernel

estimator of G(X ′
iβ).

A Single Index Example for Continuous Y Next, we consider applying
Ichimura (1993)’s single index method which is appropriate for contin-
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Table 5.3 Model summary for the semiparametric index model of the hourly wage equation.

Single Index Model
Regression Data: 526 training points, in 6 variable(s)

factor (female) factor (married) educ exper expersq tenure
Beta: 1 -2.783907 9.947963 3.332755 -0.0750266 2.310801
Bandwidth: 2.457583
Kernel Regression Estimator: Local Constant

Residual standard error: 0.1552531
R-squared: 0.4501873

uous outcomes, unlike that of Klein and Spady (1993) outlined below.
We again make use of Wooldridge’s (2002) “wage1” dataset. Table 5.3
presents a summary of the analysis.

It is interesting to compare this model with the parametric and
nonparametric models outlined above as it provides an in-sample fit
(45.1%) that lies in between the parametric model (43.6%) and the
fully nonparametric local linear model (51.5%).

5.2.2 Klein and Spady’s Estimator

We now consider the case where y is binary. Under the assumption that
εi and Xi are independent, Klein and Spady (1993) suggested estimat-
ing β by maximum likelihood methods. The estimated log-likelihood
function is

L(β,h) =
∑

i

(1 − Yi) ln(1 − ĝ−i(X ′
iβ)) +

∑
i

Yi ln(ĝ−i(X ′
iβ)), (5.8)

where ĝ−i(X ′
iβ) is the leave-one-out estimator. Maximizing (5.8) with

respect to β and h leads to the semiparametric maximum likelihood
estimator of β proposed by Klein and Spady. Like Ichimura’s (1993)
estimator, maximization must be performed numerically.

A Single Index Example for Binary Y We again consider data on
birthweights taken from the R MASS library (Venables and Ripley
(2002)), and compute a single index model (the parametric Logit model
and a nonparametric conditional mode model results are reported in
Conditional Density Estimation). The outcome is an indicator of low
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Table 5.4 Confusion matrix for the low birthweight data using the single index model.

Predicted

Actual 0 1

0 125 5
1 37 22

infant birthweight (0/1) and so Klein and Spady’s (1993) approach is
appropriate. The confusion matrix is presented in Table 5.4.

It can be seen that, based on in-sample classification, this model
does somewhat better than the parametric logit model when modeling
this dataset. The single index model correctly classifies (125 + 22)/
189 = 77.8% of low/high birthweights while the Logit model correctly
classifies (119 + 25)/189 = 76.1%.

5.3 Smooth Coefficient (Varying Coefficient) Models

The smooth coefficient model was proposed by Hastie and Tibshirani
(1993) and is given by

Yi = α(Zi) + X ′
iβ(Zi) + ui = (1 + X ′

i)
(

α(Zi)
β(Zi)

)
+ ui

= W ′
iγ(Zi) + ui, (5.9)

where Xi is a k × 1 vector and where β(z) is a vector of unspecified
smooth functions of z. Premultiplying by Wi and taking expectations
with respect to Zi yields

E[WiYi|Zi] = E[WiW
′
i |Zi]γ(Zi) + E[Wiui|Zi]. (5.10)

We can express γ(·) as

γ(Zi) = (E[WiW
′
i |Zi])−1E[WiYi|Zi]. (5.11)

Li and Racine (2007b) consider a kernel-based approach that admits
both discrete and continuous regressors. They propose using a local
constant estimator of the form:

γ̂(z) =

 n∑
j=1

WjW
′
jK

(
Zj − z

h

)−1
n∑

j=1

WjYjK

(
Zj − z

h

)
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Table 5.5 Model summary for the smooth coefficient hourly wage equation.

Smooth Coefficient Model
Regression data: 526 training points, in 2 variable(s)

factor (female) factor (married)
Bandwidth(s): 0.001813091 0.1342957

Bandwidth Type: Fixed

Residual standard error: 0.1470017
R-squared: 0.4787102

Average derivative(s):
Intercept educ tenure exper expersq

0.3402224978 0.0786499683 0.0142981775 0.0300505722 -0.0005950969

and propose a variant of cross-validation for bandwidth selection; see
Li and Racine (2007b) for details. The fitted model is given by

Yi = Ŷi + ûi = W ′
i γ̂(Zi) + ûi.

5.3.1 A Smooth Coefficient Example

Suppose that we once again consider Wooldridge’s (2002) “wage1”
dataset, but now assume that the researcher is unwilling to presume
that the coefficients associated with the continuous variables do not
vary with respect to the categorical variables female and married.
Table 5.5 presents a summary from the smooth coefficient specification.

Comparing these results with that for a linear model that is
quadratic in experience summarized in Table 5.2, we observe that
the average parameter values are comparable in magnitude with those
from the fully parametric specification listed in Table 5.2. However,
the semiparametric smooth coefficient model performs better than the
parametric specification in terms of in-sample fit (R2 = 47.8% versus
R2 = 43.6%). This suggests that the additional flexibility offered by
allowing all parameters to vary with respect to the continuous vari-
ables has resulted in an improved fit.



6

Panel Data Models

The nonparametric and semiparametric estimation of panel data mod-
els has received less attention than the estimation of standard regression
models. Data panels are samples formed by drawing observations on N

cross-sectional units for T consecutive periods yielding a dataset of the
form {Yit,Zit}N,T

i=1,t=1. A panel is therefore simply a collection of N indi-
vidual time series that may be short (“small T”) or long (“large T”).

The nonparametric estimation of time series models is itself an
evolving field. However, when T is large and N is small then there
exists a lengthy time series for each individual unit and in such cases
one can avoid estimating a panel data model by simply estimating sep-
arate nonparametric models for each individual unit using the T indi-
vidual time series available for each. If this situation applies, we direct
the interested reader to Li and Racine (2007a, Chap. 18) for pointers
to the literature on nonparametric methods for time series data.

When contemplating the nonparametric estimation of panel data
models, one issue that immediately arises is that the standard (para-
metric) approaches that are often used for panel data models (such as
first-differencing to remove the presence of so-called “fixed effects”) are
no longer valid unless one is willing to presume additively separable
effects, which for many defeats the purpose of using nonparametric
methods in the first place.
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Avarietyof approacheshavebeenproposed in the literature, including
Wang (2003),whoproposedanovelmethod for estimatingnonparametric
paneldatamodelsthatutilizestheinformationcontainedinthecovariance
structure of the model’s disturbances, Wang et al. (2005) who proposed
a partially linear model with random effects, and Henderson et al. (2006)
who consider profile likelihood methods for nonparametric estimation
of additive fixed effect models which are removed via first differencing.
In what follows, we consider direct nonparametric estimation of fixed
effects models using the methods outlined in Regression.

6.1 Nonparametric Estimation of Fixed Effects
Panel Data Models

Consider the following nonparametric panel data regression model,

Yit = g(Xit) + uit, i = 1,2, . . . ,N, t = 1,2, . . . ,T,

where g(·) is an unknown smooth function, Xit = (Xit,1, . . . ,Xit,q) is of
dimension q, all other variables are scalars, and E(uit|Xi1, . . . ,XiT ) = 0.

We say that panel data is “poolable” if one can “pool” the data, by
in effect, ignoring the time series dimension, that is, by summing over
both i and t without regard to the time dimension thereby effectively
putting all data into the same pool then directly applying the methods
in, say, Regression. Of course, if the data is not poolable this would
obviously not be a wise choice.

However, to allow for the possibility that the data is in fact poten-
tially poolable, one can introduce an unordered discrete variable, say
δi = i for i = 1,2, . . . ,N , and estimate E(Yit|Zit, δi) = g(Zit, δi) nonpara-
metrically using the mixed discrete and continuous kernel approach
introduced in Density and Probability Function Estimation. The δi

variable is akin to including cross-sectional dummies (as is done, for
instance, in the least-squares dummy variable approach for linear panel
data regression models). Letting λ̂ denote the cross-validated smooth-
ing parameter associated with δi, then if λ̂ is at its upper bound, one
gets g(Zit, δi) = g(Zit) and the data is thereby pooled in the resulting
estimate of g(·). If, on the other hand, λ̂ = 0 (or is close to 0), then
this effectively estimates each gi(·) using only the time series for the
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ith individual unit. Finally, if 0 < λ̂ < 1, one might interpret this as a
case in which the data is partially poolable.

It bears mentioning that, in addition to the issue of poolability, there
is also the issue of correcting inference for potential serial correlation
in the uit residuals. That is, even if the data is poolable, you cannot
blindly apply the asymptotic approach; an appropriate bootstrapping
approach is likely best in practice.

6.1.1 Application to a US Airline Cost Panel

We consider a panel of annual observations for six US airlines for the 15
year period 1970 to 1984 taken from the Ecdat R package (Croissant
(2006)) as detailed in Greene (2003, Table F7.1, p. 949). The variables in
the panel are airline (“airline”), year (“year”), the logarithm of total cost
in $1,000 (“lcost”), the logarithm of an output index in revenue passenger
miles (“loutput”), the logarithm of the price of fuel (“lpf”), and load
factor, i.e., the average capacity utilization of the fleet (“lf”). We treat
“airline” as an unordered factor and “year” as an ordered factor and use
a local linear estimator with Hurvich et al.’s (1998) AICc approach.

Table 6.1 presents a summary of the bandwidths, while Figure 6.1
presents the partial regression plots.

An examination of Table 6.1 reveals that the bandwidth for the
unordered variable “airline” is 0.0025 which suggests that the model is
not poolable across airlines (i.e., a separate time-series model for each
airline is likely appropriate). Figure 6.1 indicates that costs are rising
with output and the price of fuel, while they fall with the load factor.

By way of comparison, in Table 6.2 we present results for a linear
fixed effects panel data model using the R plm package (Croissant and
Millo (2007)).

Table 6.1 Bandwidth summary for the local linear US Airline panel data model.

Var.: loutput Bandwidth: 1020484 Scale Factor: 1.696225e+06
Var.: lpf Bandwidth: 1417256 Scale Factor: 3.336533e+06
Var.: lf Bandwidth: 0.0130355 Scale Factor: 0.472229
Var.: ordered(year) Bandwidth: 0.1107695 Lambda Max: 1.000000
Var.: factor(airline) Bandwidth: 0.0024963 Lambda Max: 1.000000
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Fig. 6.1 Partial regression plot and bootstrapped error bounds for the US Airline panel.

Table 6.2 Model summary for the parametric fixed effects US Airline panel.

Model Description

Oneway (individual) effect
Within model
Model formula : log(cost) ~ log(output) + log(pf) + lf

Coefficients

Estimate Std. Error z -value Pr(>|z |)
log(output) 0.919285 0.028841 31.8743 < 2.2e-16 ***
log(pf) 0.417492 0.014666 28.4673 < 2.2e-16 ***
lf -1.070396 0.194611 -5.5002 3.794e-08 ***

Signif. codes: 0 ‘‘***’’ 0.001 ‘‘**’’ 0.01 ‘‘*’’ 0.05 ‘‘.’’ 0.1 ‘‘ ’’ 1

A comparison of Figure 6.1 and Table 6.2 reveals that both the
parametric and nonparametric models are in agreement in that costs
increase with output and the price of fuel and fall with the load factor,
other things equal.
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Consistent Hypothesis Testing

The literature on the use of nonparametric kernel methods for hypothe-
sis testing has experienced tremendous growth and has spawned a vari-
ety of novel approaches for testing a range of hypotheses. There exist
nonparametric methods for testing for correct specification of paramet-
ric models, tests for equality of distributions and equality of regression
functions, among others.

Parametric tests typically require the analyst to specify the set of
parametric alternatives for which the null hypothesis will be rejected.
If, however, the null is false and yet there exist alternative models
that the test cannot detect, then the test is said to be a “inconsis-
tent” since it lacks power in certain directions. Nonparametric meth-
ods can be used to construct consistent tests, unlike their parametric
counterparts.

To be precise, we define what we mean by a “consistent test.” Let
H0 denote a null hypothesis whose validity we wish to test. A test is
said to be a consistent test if

P (Reject H0 | H0 is false)→ 1 as n→∞.
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The power of a test is defined as P (Reject H0 | H0 is false). Therefore,
a consistent test has asymptotic power equal to one.

For what follows, we consider a handful of tests that might be of
use to practitioners.

7.1 Testing Parametric Model Specification

A variety of methods exist for testing for correctly specified paramet-
ric regression models including Härdle and Mammen (1993), Horowitz
and Härdle (1994), Horowitz and Spokoiny (2001), Hristache et al.
(2001) and Hsiao et al. (2007), among others. We briefly describe Hsiao
et al.’s (2007) test as it admits the mix of continuous and categorical
datatypes often encountered in applied settings.

Suppose one wished to test the correctness of a parametric regres-
sion model. We could state the null hypothesis as follows:

H0 : E(Y |x) = m(x,γ0), for almost all x and for some γ0 ∈ B ⊂ Rp,
(7.1)

where m(x,γ) is a known function with γ being a p × 1 vector of
unknown parameters (which clearly includes a linear regression model
as a special case) and where B is a compact subset of Rp. The alter-
native hypothesis is the negation of H0, i.e., H1: E(Y |x) ≡ g(x) 6=
m(x,γ) for all γ ∈ B on a set (of x) with positive measure. If we
define ui = Yi − m(Xi,γ0), then the null hypothesis can be equivalently
written as

E(ui|Xi = x) = 0 for almost all x. (7.2)

A consistent model specification test can be constructed based
on nonparametrically estimating (7.2) and averaging over the ui

in a particular manner, which we briefly describe. First, note that
E(ui|Xi = x) = 0 is equivalent to [E(ui|Xi = x)]2 = 0. Also, since we
wish to test the null that E(ui|Xi = x) = 0 for almost all x, we
need to consider the expectation E{E(ui|Xi = x)} or equivalently
E{[E(ui|Xi = x)]2}. By the law of iterated expectations it can be seen
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that E{[E(ui|Xi = x)]2} = E{uiE(ui|Xi = x)}. One can therefore con-
struct a consistent test statistic based on a density weighted version
of E{uiE(ui|Xi = x)}, namely E{uiE(ui|Xi)f(Xi)}, where f(x) is
the joint PDF of X. Density weighting is used here simply to avoid
a random denominator that would otherwise appear in the kernel
estimator.

The sample analogue of E{uiE(ui|Xi)f(Xi)} is given by the for-
mula n−1

∑n
i=1 uiE(ui|Xi)f(Xi). To obtain a feasible test statistic, we

replace ui by ûi, where ûi = Yi − m(Xi, γ̂) is the residual obtained from
the parametric null model, and γ̂ is a

√
n-consistent estimator of γ

based on the null model (say, the nonlinear least squares estimator
of γ). We estimate E(ui|Xi)f(Xi) by the leave-one-out kernel estima-
tor (n − 1)−1

∑n
j 6=i ûjKij . Letting Xi be a vector of mixed discrete and

continuous variables and using generalized product kernels, the test
statistic is based upon

In
def=

1
n

n∑
i=1

ûi

 1
n − 1

n∑
j=1,j 6=i

ûjKij


=

1
n(n − 1)

n∑
i=1

n∑
j=1,j 6=i

ûiûjKij . (7.3)

The studentized version of this test is denoted by Jn. Bootstrap meth-
ods can be used to obtain the distribution of In (Jn) under the null
which can be used to form a bootstrap p-value; see Hsiao et al. (2007)
for details.

7.1.1 Application — Testing Correct Specification
of a Näıve Linear Model

Having estimated, say, a simple parametric wage model that is linear in
variables, one might next test the null hypothesis that the parametric
model is correctly specified using the approach of Hsiao et al. (2007)
described above. Cross-validation is used to select the bandwidths, and
a simple bootstrap method is used to compute the distribution of Jn

under the null.
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Table 7.1 Summary of the model specification test for the parametric hourly wage equation.

Consistent Model Specification Test
Parametric null model: lm(formula = lwage ~

factor(female) +
factor(married) +
educ +
exper +
tenure,
data = wage1,
x = TRUE,
y = TRUE)

Number of regressors: 5
IID Bootstrap (399 replications)

Test Statistic ‘Jn’: 5.542416 P Value: < 2.22e-16

Table 7.1 reveals that, not surprisingly, we reject this näıve spec-
ification that is linear in all variables, includes no interaction terms,
and only allows the intercept to shift with respect to the categorical
variables. Note that we are not putting this parametric forward as an
ideal candidate, rather, we are simply demonstrating that the test is
capable of detecting misspecified parametric models in finite-sample
settings.

7.2 A Significance Test for Nonparametric
Regression Models

Having estimated a parametric regression model, researchers often then
proceed directly to the “test of significance.” The significance test is
often used to confirm or refute economic theories. However, in a para-
metric regression framework, sound parametric inference hinges on the
correct functional specification of the underlying data generating pro-
cess, and significance tests for misspecified parametric models will have
misleading size and power thereby leading to faulty inference. A variety
of approaches have been proposed in the literature including Lavergne
and Vuong (1996), who considered the problem of selecting nonpara-
metric regressors in a non-nested regression model framework, Donald
(1997), who proposed a nonparametric test for selecting the factors in
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a multivariate nonparametric relationship, Racine (1997) who consid-
ered a consistent significance test for continuous regressors and Racine
et al. (2006) who considered a consistent significance test for categori-
cal regressors. See also Delgado and Manteiga (2001) for an alternative
nonparametric test of significance of continuous variables in nonpara-
metric regression models.

7.2.1 Categorical Regressors

Suppose we had estimated a nonparametric regression model where
some regressors were categorical and some were continuous, and we
wished to test whether some of the categorical regressors are irrelevant,
i.e., redundant. One might apply the test of Racine et al. (2006), which
we briefly describe. Let z denote the categorical explanatory variables
that might be redundant, let X denote the remaining explanatory vari-
ables in the regression model, and let Y denote the dependent variable.
Then the null hypothesis can be written as

H0 : E(Y |x,z) = E(Y |x) almost everywhere

The alternative hypothesis is the negation of the null hypothesis H0,
i.e., H1: E(Y |x,z) 6= E(Y |x) on a set with positive measure.

If we let g(x) = E(Y |x) and let m(x,z) = E(Y |x,z), then the null
hypothesis is m(x,z) = g(x) almost everywhere. Suppose that the uni-
variate Z assumes c different values, {0,1,2, . . . , c − 1}. If c = 2, then
Z is a 0–1 dummy variable, which in practice is probably the most
frequently encountered situation.

Note that the null hypothesis H0 is equivalent to m(x,z = l) =
m(x,z = 0) for all X and for l = 1, . . . , c − 1. The test statistic is an
estimator of

I =
c−1∑
l=1

E
{
[m(x,z = l) − m(x,z = 0)]2

}
.

Obviously I ≥ 0 and I = 0 if and only if H0 is true. Therefore, I serves
as a proper measure for testing H0. A feasible test statistic is given by

In =
1
n

n∑
i=1

c−1∑
l=1

[m̂(Xi,Zi = l) − m̂(Xi,Zi = 0)]2 , (7.4)
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where m̂(Xi,Zi = l) is the local constant or local linear regression esti-
mator described in Regression.

It is easy to show that In is a consistent estimator of I. Therefore,
In → 0 in probability under H0 and In → I > 0 in probability under H1.
To obtain the null distribution of this statistic or of a studentized ver-
sion, Racine et al. (2006) proposed two bootstrap procedures, both of
which have sound finite-sample properties; see Racine et al. (2006) for
details.

7.2.2 Continuous Regressors

Similar to that described above, the null hypothesis when testing for
the significance of a continuous regressor can be written

H0 : E(y|x,z) = E(Y |z) almost everywhere

which is equivalent to

H0 :
∂E(y|x,z)

∂x
= β(x) = 0 almost everywhere

The test statistic is an estimator of

I = E
{
β(x)2

}
. (7.5)

A test statistic can be obtained by forming a sample average of I,
replacing the unknown derivatives with their nonparametric estimates
β̂(xi) as described in Racine (1997), i.e.,

In =
1
n

n∑
i=1

β̂(Xi)2, (7.6)

where β̂(Xi) is the local constant or local linear partial derivative esti-
mator described in Regression.

It is easy to show that In is a consistent estimator of I. Therefore,
In → 0 in probability under H0 and In → I > 0 in probability under H1.
To obtain the null distribution of this statistic or of a studentized ver-
sion, bootstrap procedures can be used; see Racine (1997) for details.

An Illustration We consider Wooldridge’s (2002) “wage1” dataset
(n = 526) that contains a mix of continuous and categorical regressors
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Table 7.2 Significance test summaries for the nonparametric local linear hourly wage

equation.

Kernel Regression Significance Test
Type I Test with IID Bootstrap (399 replications)
Explanatory variables tested for significance:
factor(female) (1), factor(married) (2), educ (3), exper (4), tenure (5)

factor(female) factor(married) educ exper tenure
Bandwidth(s): 0.01978275 0.1522889 7.84663 8.435482 41.60546

Significance Tests
P Value:
factor(female) < 2.22e-16 ***
factor(married) 0.0150376 *
educ < 2.22e-16 ***
exper < 2.22e-16 ***
tenure 0.0075188 **
---
Signif. codes: 0 ‘‘***’’ 0.001 ‘‘**’’ 0.01 ‘‘*’’ 0.05 ‘‘.’’ 0.1 ‘‘ ’’ 1

and apply the tests of significance described above. Results are sum-
marized in Table 7.2, and the p-values indicate that all variables are
significant at the conventional 5% level.
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Computational Considerations

One of the great ironies in this field is that kernel methods, by their
nature, are often so computationally burdensome that most researchers
hesitate to apply them to those problems for which they are ide-
ally suited, namely, situations involving an embarrassing abundance
of data such as large microdata panels, high frequency financial data,
and the like.

For small datasets, the computational burden associated with kernel
methods is rarely an issue. However, for moderate to large datasets, the
computations required to perform data-driven methods of bandwidth
selection can easily get out of hand. Interest naturally lies with a general
kernel framework, namely, one including unconditional and conditional
density estimation, regression, and derivative estimation for both cat-
egorical and continuous data, and one that facilitates a range of kernel
functions and bandwidth selection methods.

There exist a number of approaches for reducing the computational
burden associated with kernel methods. At present we are not aware
of methods that provide for a general kernel framework in real-time
or close to real-time. We briefly discuss some of the approaches that
currently exist and others that hold promise for a breakthrough that
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will allow real-time kernel estimation on a typical desktop computer or
laptop.

8.1 Use Binning Methods

The use of “binning” has produced a number of very computation-
ally attractive estimators. “Binning” refers to an approximate method
whereby one first “pre-bins” data on an equally spaced mesh and then
applies a suitably modified estimator to the binned data. For instance,
binning methods have been proposed by Scott (1985) in which averaged
shifted histograms (ASH) are used for smooth nonparametric density
estimation, while Scott and Sheather (1985) investigate the accuracy
of binning methods for kernel density estimation.

8.2 Use Transforms

Silverman (1986, pp. 61–66) outlines the use of fast Fourier transforms
(FFT) for the efficient computation of (univariate) density estimates.
This approach restricts estimation to a grid of points (e.g., 512) to
further improve computational speed. Elgammal et al. (2003) discuss
the use of the fast Gauss transform (FGT) for the efficient computation
of kernel density estimates for which the kernel function is Gaussian.

8.3 Exploit Parallelism

Racine (2002) exploits both the parallel nature of most nonparametric
methods and the availability of multiple processor computing environ-
ments to achieve a substantial reduction in run-time.

8.4 Use Multipole and Tree-Based Methods

Two recent developments in the areas of fast multipole methods and
ball-trees hold promise for allowing real-time computation of ker-
nel methods in general. In order to extend these recent develop-
ments to a general kernel framework, however, a significant amount of
work remains to be done. Multipole and ball-tree methods have been
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developed only for unconditional density estimation, and for continuous
datatypes only.

“Multipole” methods represent a group of approximate methods
common in potential field settings where a set of n points interact
according to a particular potential function, with the objective being
to compute the field at arbitrary points (Greengard (1988), Greengard
and Strain (1991)). To speed up calculations, these algorithms exploit
the fact that all computations are required to be made only to a certain
degree of accuracy.

Trees can be thought of as more powerful generalizations of a grid,
being a set of linked grids built at different resolutions. This technique
permits application of “divide-and-conquer” approaches that can inte-
grate local information to obtain a global solution having precisely
defined point-wise precision (Gray and Moore (2003)). While “kd-trees”
share the property of grid representations having complexity that grows
exponentially with the dimension q, this is not so for “ball-trees,”
which have been applied in settings involving literally thousands of
dimensions.

Future Challenge The holy grail of applied kernel estimation is the
development and implementation of a library that would serve as the
basis for a package having, say, the capabilities of the np package
(Hayfield and Racine (2007)) but which provides the computational
benefits of the best of the methods listed above. This is, however, a
rather formidable project but one which would be warmly received by
the community.





9

Software

There exist a range of options for those who wish to undertake non-
parametric modeling. No one package we are aware of will suit all
users, and all are lacking in functionality. Many implement one and
two dimensional density and regression methods but do not allow for
higher dimensions, while others allow for higher dimensions but are
otherwise narrow in scope. The list below is not in any way meant to
be an endorsement nor is it meant in any way to be exhaustive. Rather,
it is included merely to provide a starting point for the interested
reader.

• EasyReg (econ.la.psu.edu/∼hbierens/EASYREG.HTM) is a
Microsoft Windows program for regression which contains a
module for nonparametric kernel regression with one or two
explanatory variables.

• Limdep (www.limdep.com) has modules for kernel density
estimation, among others.

• R (www.r-project.org) has a range of libraries offering a range
of kernel methods including the base “stats” library, the
“KernSmooth” library (orginal by Matt Wand. R port by
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Ripley, B. (2007)), and the “np” library (Hayfield and Racine
(2007)).

• SAS (www.sas.com) has modules for kernel regression, locally
weighted smoothing, and kernel density estimation.

• Stata (www.stata.com) contains some modules for univariate
and bivariate kernel density estimation and some modules for
local constant kernel regression.

• TSP (www.tspintl.com) has some routines for univariate ker-
nel density estimation and simple kernel regression.



Conclusions

Nonparametric kernel smoothing methods have experienced tremen-
dous growth in recent years, and are being adopted by applied
researchers across a range of disciplines. Nonparametric kernel
approaches offer a set of potentially useful methods to those who must
confront the vexing issue of parametric model misspecification. The
appeal of nonparametric approaches stems mainly from their robust-
ness to functional misspecification, in contrast to their parametric coun-
terparts. Though the underlying theory for many of these methods can
be daunting for some practitioners, we have attempted to demonstrate
how a range of nonparametric methods can in fact be applied in a
fairly straightforward manner. We have explicitly avoided any attempt
at encyclopedic coverage of the field, rather we have tried to direct
the interested reader to the textbooks mentioned in the introduction
and, of course, the original journal articles themselves. By presenting
a range of semiparametric and nonparametric models spanning a vari-
ety of application areas we hope that we have encouraged interested
readers to attempt some of these methods in their particular problem
domains.
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We have tried to emphasize the fact that nonparametric kernel
methods can be computationally burdensome, particularly when deal-
ing with large datasets. This arises from the fact that data-driven meth-
ods of bandwidth selection must be deployed in applied settings, and
these algorithms have run-times that tend to increase exponentially
with the amount of data available. However, as noted in Computational
Considerations, there exist approximate methods having the potential
to dramatically reduce the amount of computation required, and those
who are willing to contribute in this area are warmly encouraged to do
so as their efforts would be particularly helpful to practitioners.
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Background Material

Though we have attempted to avoid unnecessary theoretical detail, ker-
nel methods often require dealing with approximations and you will
encounter statements such as “f̂(x) − f(x) = Op(n−2/5)” in various
places in this review. Perhaps the best approach is to first consider the
notation for nonstochastic sequences (O(·) and o(·)) and then consider
a similar notation for stochastic sequences (Op(·) and op(·)). In essence,
we will need to determine the “order of magnitude” of a “sequence,”
and the “magnitude” is determined by considering the behavior of the
sequence as the sample size n increases.

Order: Big O(·) and Small o(·)

For a positive integer n, we write an = O(1) if, as n→∞, an remains
bounded, i.e., |an| ≤ C for some constant C and for all large values of
n (an is a bounded sequence). We write an = o(1) if an → 0 as n→∞.
Similarly, we write an = O(bn) if an/bn = O(1), or equivalently an ≤
Cbn for some constant C and for all n sufficiently large. We write
an = o(bn) if (an/bn)→ 0 as n→∞.
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By way of example, if an = n/(n + 1), then an = O(1) since an ≤ 1
for all n. Again, by way of example, if an = 10/(n + 1), then an = o(1)
because an → 0 as n→∞.

Order in Probability: Big Op(·) and Small op(·)

A sequence of real (possibly vector-valued) random variables {Xn}∞n=1

is said to be bounded in probability if, for every ε > 0, there exists a
constant M and a positive integer N (usually M = Mε and N = Nε),
such that

P [||Xn|| > M ] ≤ ε (9.1)

for all n ≥ N . Note that for scalar a the notation ||a|| is taken to mean
the absolute value of a, while for vector a it is taken to mean

√
a′a, i.e.,

the square root of the sum of squares of the elements in a.
We say that Xn is bounded in probability if, for any arbitrarily

small positive number ε, we can always find a positive constant M

such that the probability of the absolute value (or “norm”) of Xn being
larger than M is less than ε. Obviously, if Xn = O(1) (bounded), then
Xn = Op(1); however the converse is not true. Letting {Xn}∞n=1 denote
i.i.d. random draws from an N(0,1) distribution, then Xn 6= O(1), how-
ever, Xn = Op(1). We write Xn = Op(1) to indicate that Xn is bounded
in probability. We write Xn = op(1) if Xn

p→ 0. Similarly, we write
Xn = Op(Yn) if (Xn/Yn) = Op(1), and Xn = op(Yn) if (Xn/Yn) = op(1).
Note that if Xn = op(1), then it must be true that Xn = Op(1). However,
when Xn = Op(1), Xn may not be op(1).



Notations and Acronyms

Here are some notation and associated definitions used in this review.

• f(x) — The (unconditional) probability density function
(PDF) of the random vector X.

• g(y|x) — The PDF of the random variable Y conditional
upon the realization of the random vector X.

• F (x) — The (unconditional) cumulative distribution func-
tion (CDF) of the random vector X.

• F (y|x) — The cumulative distribution function (CDF) of
the random vector Y conditional upon the realization of the
random vector X.

• g(x) = E[Y |x] ≡
∫

yf(y|x)dy — The expectation of the ran-
dom variable Y conditional upon the realization of the ran-
dom vector X.

• qα(x) — The conditional αth quantile of a conditional CDF
F (y|x).

• h — A vector of smoothing parameters known as “band-
widths” for continuous variables.

83



84 Notations and Acronyms

• λ — A vector of smoothing parameters known as “band-
widths” for categorical variables.

• K(·) — A kernel (“weight”) function.
• n — The number of observations.

Here are some terms used in this review along with a brief
description.

• Cross-validation — A computationally demanding data
driven method for bandwidth selection.

• Generalized Product Kernel — A kernel function obtained
from the product of different kernels, each different kernel
being appropriate for a particular datatype.

• Multistarting — A numerical technique used to minimize/
maximize an objective function which is less likely to become
trapped in local minima but is more computationally burden-
some and therefore more time-intensive.

Multistarting simply involves restarting the search algo-
rithm a number of times from different random initial values
for the parameters of interest and automatically saving those
which are found to minimize/maximize the function of inter-
est over all restarts of the search algorithm.

Multistarting is highly recommended for serious data
analysis.

• Partial Regression Plot — A 2D plot of the outcome y versus
one covariate xj when all other covariates are held constant
at their respective medians/modes.

• Resampling — A method which can be used for obtaining
the empirical distribution of an object of interest (e.g., boot-
strapping).
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