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FOREWORD

The Institute for Mathematical Sciences at the National University of

Singapore was established on 1 July 2000. Its mission is to foster mathe-

matical research, both fundamental and multidisciplinary, particularly re-

search that links mathematics to other disciplines, to nurture the growth

of mathematical expertise among research scientists, to train talent for re-

search in the mathematical sciences, and to serve as a platform for research

interaction between the scientific community in Singapore and the wider

international community.

The Institute organizes thematic programs which last from one month

to six months. The theme or themes of a program will generally be of

a multidisciplinary nature, chosen from areas at the forefront of current

research in the mathematical sciences and their applications.

Generally, for each program there will be tutorial lectures followed by

workshops at research level. Notes on these lectures are usually made

available to the participants for their immediate benefit during the pro-

gram. The main objective of the Institute’s Lecture Notes Series is to

bring these lectures to a wider audience. Occasionally, the Series may also

include the proceedings of workshops and expository lectures organized by

the Institute.

The World Scientific Publishing Company has kindly agreed to pub-

lish the Lecture Notes Series. This Volume, “Econometric Forecasting and

High-Frequency Data Analysis”, is the thirteenth of this Series. We hope

that through the regular publication of these lecture notes the Institute will

achieve, in part, its objective of promoting research in the mathematical

sciences and their applications.

October 2007 Louis H.Y. Chen

Ka Hin Leung

Series Editors
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PREFACE

This volume contains papers and tutorial notes presented in the Econo-

metric Forecasting and High-Frequency Data Analysis Program jointly or-

ganized by the Institute for Mathematical Sciences, National University of

Singapore, and the School of Economics, Singapore Management Univer-

sity, in April–May 2004, for which, together with Tilak Abeysinghe, we

were Program Co-Chairs. The chapters collected in this volume summa-

rize some recent findings and new results in two key areas in econometrics:

econometric forecasting and the analysis of high-frequency financial data.

The paper by Klein and Ozmucur proposes new methods for forecast-

ing macroeconomic variables by combining data with different frequencies.

Wallis emphasizes the importance of communicating information about

forecast uncertainty, and considers various statistical techniques for assess-

ing the reliability of forecasts. Franses focuses on techniques for forecasting

seasonal time series data, including some advanced techniques on mod-

eling seasonal and periodic unit roots. Viewing daily data as aggregates

of compound sums of tick-by-tick data, Gourieroux discusses the class of

compound autoregressive (Car) processes. Deistler considers the important

problem of modeling multivariate time series, including the issues of esti-

mation and model selection.

We are indebted to our Program Committee members for their valuable

inputs into the Program, to Louis Chen, Director of IMS, for his unfailing

support, and to Lai Fun Kwong of World Scientific, for her endless patience.

This volume brings us some fond memory of the Program, the highlight of

which was a one-and-a-half day symposium. The symposium culminated in

a public forum on “Econometrics Today”, which was chaired by Roberto S.

Mariano and attended by over 120 participants. The panel, which consists

of Lawrence Klein, Robert Engle and Kenneth Wallis, freely shared its

candid views about the current state of econometric methodology and its

impact on economic research.

October 2007 Roberto S. Mariano

Singapore Management University, Singapore

& University of Pennsylvania, USA

Yiu-Kuen Tse

Singapore Management University, Singapore
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FORECAST UNCERTAINTY, ITS REPRESENTATION AND 
EVALUATION* 

Kenneth F. Wallis 

Department of Economics 
University of Warwick 

Coventry CV4 7AL, United Kingdom 
E-mail: k.f.wallis@warwick.ac.uk 

Contents 
 
1. Introduction 2 
 1.1 Motivation 3  
 1.2 Overview 4 
   A theoretical illustration  4 
   Example 6 
   Generalisations 6 
   Forecast evaluation 7 
 
2. Measuring and reporting forecast uncertainty 8 
 2.1 Model-based measures of forecast uncertainty 8 
   The linear regression model 8 

                                                 
*These lectures formed part of the program on Econometric Forecasting and High-
Frequency Data Analysis at the Institute for Mathematical Sciences, National University 
of Singapore, jointly organised by the School of Economics and Social Sciences, 
Singapore Management University, May 2004; the kind hospitality of both institutions is 
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1.  Introduction 

Forecasts of future economic outcomes are subject to uncertainty. It is 
increasingly accepted that forecasters who publish forecasts for the use 
of the general public should accompany their point forecasts with an 
indication of the associated uncertainty. These lectures first describe the 
various available methods of communicating information about forecast 
uncertainty. It is equally important that forecasters’ statements about the 
underlying uncertainty should be reliable. The lectures go on to consider 
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the various available statistical techniques for assessing the reliability of 
statements about forecast uncertainty. 

The lectures draw on and extend material covered in previous survey 
articles such as Wallis (1995) and, most notably, Tay and Wallis (2000) 
on density forecasting. While Tay and Wallis discussed applications in 
macroeconomics and finance, the present lectures are oriented towards 
macroeconomics, while other lecturers in this program deal with 
financial econometrics. Relevant research articles are referenced in full, 
but background material in statistics, econometrics, and associated 
mathematical methods is not; readers needing to refer to the general 
literature are asked to consult their favourite textbooks. 

This introduction first motivates the lectures by considering the 
“why” question – why say anything about forecast uncertainty? – and 
then presents an overview of the issues to be addressed in the two main 
sections, based on an introductory theoretical illustration. 

1.1  Motivation 

Why not just give a forecast as a single number, for example, inflation 
next year will be 2.8%? But what if someone else’s inflation forecast is 
3.1%, is this an important difference, or is it negligible in comparison to 
the underlying uncertainty? At the simplest level, to acknowledge the 
uncertainty that is always present in economic forecasting, and that “we 
all know” that inflation next year is unlikely to be exactly 2.8%, 
contributes to better-informed discussion about economic policy and 
prospects. The central banks of many countries now operate an inflation-
targeting monetary policy regime, in which forecasts of inflation play an 
important part, since monetary policy has a delayed effect on inflation. 
Uncertainty has a crucial role in policy decisions, and considerations of 
transparency and its impact on the credibility of policy have led many 
banks to discuss the “risks to the forecast” in their forecast publications. 
Some have gone further, as described in detail below, and publish a 
density forecast of inflation, that is, an estimate of the probability 
distribution of the possible future values of inflation. This represents a 
complete description of the uncertainty associated with a forecast. 
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The decision theory framework provides a more formal justification 
for the publication of density forecasts as well as point forecasts. The 
decision theory formulation begins with a loss function L(d,y) that 
describes the consequences of taking decision d today if the future state 
variable has the value y. If the future were known, then the optimal 
decision would be the one that makes L as small as possible. But if the 
future outcome is uncertain, then the loss is a random variable, and a 
common criterion is to choose the decision that minimises the expected 
loss. To calculate the expected value of L(d,y) for a range of values of d, 
in order to find the minimum, the complete probability distribution of y 
is needed in general. The special case that justifies restricting attention to 
a point forecast is the case in which L is a quadratic function of y. In this 
case the certainty equivalence theorem states that the value of d that 
minimises expected loss ( )( , )E L d y  is the same as the value that 
minimises ( ), ( )L d E y , whatever the distribution of y might be. So in 
this case only a point forecast, specifically the conditional expectation of 
the unknown future state variable, is required. In practice, however, 
macroeconomic forecasters have little knowledge of the identity of the 
users of forecasts, not to mention their loss functions, and the assumption 
that these are all quadratic is unrealistic. In many situations the 
possibility of an unlimited loss is also unrealistic, and bounded loss 
functions are more reasonable. These are informally referred to as “a 
miss is as good as a mile” or, quoting Bray and Goodhart (2002), “ you 
might as well be hung for a sheep as a lamb”. In more general 
frameworks such as these, decision-makers require the complete 
distribution of y. 

1.2  Overview 

A theoretical illustration 

We consider the simple univariate model with which statistical 
prediction theory usually begins, namely the Wold moving average 
representation of a stationary, non-deterministic series: 
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 1 1 2 2ε θ ε θ ε ⋯t t t ty − −= + + + ,    2

0
j

j

θ
∞

=

< ∞∑    ( )0 1θ =  

 ( ) 0,tE ε =    ( ) 2var ,t εε σ=    ( ) 0,t sE ε ε =    all , .t s t≠  

To construct a forecast h steps ahead, consider this representation at time 
t h+ : 
 1 1 1 1 1 1ε θ ε θ ε θ ε θ ε⋯ ⋯t h t h t h h t h t h ty + + + − − + + −= + + + + + +  . 

The optimal point forecast with respect to a squared error loss 
function, the “minimum mean squared error” (mmse) forecast, is the 
conditional expectation ( )|t h tE y + Ω , where tΩ  denotes the relevant 
information set. In the present case this simply comprises available data 
on the y-process at the forecast origin, t, hence the mmse h-step-ahead 
forecast is 
 1 1ˆ θ ε θ ε ⋯t h h t h ty + + −= + + , 

with forecast error ˆt h t h t he y y+ + += −  given as 

 1 1 1 1ε θ ε θ ε⋯t h t h t h h te + + + − − += + + +  . 

The forecast error has mean zero and variance 2
hσ , where 

 ( )
1

2 2 2 2

0

h

h t h j
j

E e εσ σ θ
−

+
=

= = ∑ . 

The forecast root mean squared error is defined as h hRMSE σ= . The 
forecast error is a moving average process and so in general exhibits 
autocorrelation at all lags up to 1h − : only the one-step-ahead forecast 
has a non-autocorrelated error. Finally note that the optimal forecast and 
its error are uncorrelated: 
 ( )ˆ 0t h t hE e y+ + = . 

An interval forecast is commonly constructed as the point forecast 
plus or minus one or two standard errors, ˆt h hy σ+ ± , for example. To 
attach a probability to this statement we need a distributional assumption, 
and a normal distribution for the random shocks is commonly assumed: 
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( )20,t N εε σ∼ . 

Then the future outcome also has a normal distribution, and the above 
interval has probability 0.68 of containing it. The density forecast of the 
future outcome is this same distribution, namely  

( )2ˆ ,t h t h hy N y σ+ +∼ . 

Example 

A familiar example in econometrics texts is the stationary first-order 
autoregression, abbreviated to AR(1): 

1 ,t t ty yφ ε−= +  1φ < . 

Then in the moving average representation we have j
jθ φ=  and the h-

step-ahead point forecast is 

ˆ h
t h ty yφ+ = . 

The forecast error variance is  

2
2 2

2

1

1

h

h ε

φ
σ σ

φ

−
=

−
. 

As h increases this approaches the unconditional variance of y, namely 

( )2 21εσ φ− . Interval and density forecasts are obtained by using these 
quantities in the preceding expressions. 

Generalisations 

This illustration uses the simplest univariate linear model and treats its 
parameters as if their values are known. To have practical relevance 
these constraints need to be relaxed. Thus in Section 2, where methods of 
measuring and reporting forecast uncertainty are discussed, multivariate 
models and non-linear models appear, along with conditioning variables 
and non-normal distributions, and the effects of parameter estimation 
error and uncertainty about the model are considered. 
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Forecast evaluation 

Given a time series of forecasts and the corresponding outcomes or 
realisations ,  1,..., ,ty t n=  we have a range of techniques available for 
the statistical assessment of the quality of the forecasts. For point 
forecasts these have a long history; for a review, see Wallis (1995, §3). 
The first question is whether there is any systematic bias in the forecasts, 
and this is usually answered by testing the null hypothesis that the 
forecast errors have zero mean, for which a t-test is appropriate. Whether 
the forecasts have minimum mean squared error cannot be tested, 
because we do not know what the minimum achievable mse is, but other 
properties of optimal forecasts can be tested. The absence of correlation 
between errors and forecasts, for example, is often tested in the context 
of a realisation-forecast regression, and the non-autocorrelation of 
forecast errors at lags greater than or equal to h is also testable. 
Information can often be gained by comparing different forecasts of the 
same variable, perhaps in the context of an extended realisation-forecast 
regression, which is related to the question of the construction of 
combined forecasts. 

Tests of interval and density forecasts, a more recent development, 
are discussed in Section 3. The first question is one of correct coverage: 
is the proportion of outcomes falling in the forecast intervals equal to the 
announced probability; are the quantiles of the forecast densities 
occupied in the correct proportions? There is also a question of 
independence, analogous to the non-autocorrelation of the errors of point 
forecasts. The discussion includes applications to two series of density 
forecasts of inflation, namely those of the US Survey of Professional 
Forecasters (managed by the Federal Reserve Bank of Philadelphia, see 
http://www.phil.frb.org/econ/spf/index.html) and the Bank of England 
Monetary Policy Committee (as published in the Bank’s quarterly 
Inflation Report). Finally some recent extensions to comparisons and 
combinations of density forecasts are considered, which again echo the 
point forecasting literature. 

Section 4 contains concluding comments. 
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2.  Measuring and Reporting Forecast Uncertainty 

We first consider methods of calculating measures of expected forecast 
dispersion, both model-based and empirical, and then turn to methods of 
reporting and communicating forecast uncertainty. The final section 
considers some related issues that arise in survey-based forecasts. For a 
fully-developed taxonomy of the sources of forecast uncertainty see 
Clements and Hendry (1998). 

2.1  Model-based measures of forecast uncertainty 

For some models formulae for the forecast error variance are available, 
and two examples are considered. In other models simulation methods 
are employed. 

The linear regression model 

The first setting in which parameter estimation error enters that one finds 
in econometrics textbooks is the classical linear regression model. The 
model is 

y X uβ= + ,   ( )20, u nu N Iσ∼ . 

The least squares estimate of the coefficient vector, and its covariance 
matrix, are 

( )
1

b X X X y
−

′ ′= ,   ( )
12var( ) ub X Xσ

−
′= . 

A point forecast conditional on regressor values 2 3[1   ... ]f f kfc x x x′ =  is 
ˆ fy c b′= , and the forecast error has two components 

ˆ ( )f f f fe y y u c b β′= − = − − . 

Similarly the forecast error variance has two components 

( )( )12var( ) 1σf ue c X X c
−

′ ′= + . 

The second component is the contribution of parameter estimation error, 
which goes to zero as the sample size, n, increases (under standard 
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regression assumptions that ensure the convergence of the second 
moment matrix X X n′ ). To make this expression operational the 
unknown error variance 2σu  is replaced by an estimate 2s  based on the 
sum of squared residuals, which results in a shift from the normal to 
Student’s t-distribution, and interval and density forecasts are based on 
the distributional result that 

( )
1

ˆ

1
∼

f f
n k

y y
t

s c X X c
−

−

−

′ ′+
. 

It should be emphasised that this result refers to a forecast that is 
conditional on given values of the explanatory variables. In practical 
forecasting situations the future values of deterministic variables such as 
trends and seasonal dummy variables are known, and perhaps some 
economic variables such as tax rates can be treated as fixed in short-term 
forecasting, but in general the future values of the economic variables on 
the right-hand side of the regression equation need forecasting too. The 
relevant setting is then one of a multiple-equation model rather than the 
above single-equation model. For a range of linear multiple-equation 
models generalisations of the above expressions can be found in the 
literature. However the essential ingredients of forecast error – future 
random shocks and parameter estimation error – remain the same. 

Estimation error in multi-step forecasts 

To consider the contribution of parameter estimation error in multi-step 
forecasting with a dynamic model we return to the AR(1) example 
discussed in Section 1.2. Now, however, the point forecast is based on an 
estimated parameter: 

ˆˆ h
t h ty yφ+ = . 

The forecast error again has two components 

( )ˆˆ h h
t h t h t h ty y e yφ φ+ + +− = + − , 
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where the first term is the cumulated random error defined above, 
namely 

1
1 1ε φε φ ε⋯

h
t h t h t h te −
+ + + − += + + + . 

To calculate the variance of the second component we first neglect any 
correlation between the forecast initial condition ty  and the estimation 
sample on which φ̂  is based, so that the variance of the product is the 
product of the variances of the factors. Using the result that the variance 
of the least squares estimate of φ  is ( )21 nφ− , and taking a first-order 
approximation to the non-linear function, we then obtain 

( )
( ) ( )

21 21
ˆvar

h
h h

h

n

φ φ
φ φ

− −
− ≈ . 

The variance of ty  is ( )2 21εσ φ− , hence the forecast error variance is 

( )
( )

212
2 2

2

1
ˆ

1

hh

t h t h

h
E y y

nε

φφ
σ

φ

−

+ +

 
− − ≈ +

 − 
 

. 

The second contribution causes possible non-monotonicity of the 
forecast error variance as h increases, but goes to zero as h becomes 
large. As above, this expression is made operational by replacing 
unknown parameters by their estimates, and the t-distribution provides a 
better approximation for inference than the normal distribution. And 
again, generalisations can be found in the literature for more complicated 
dynamic linear models. 

Stochastic simulation in non-linear models 

Practical econometric models are typically non-linear in variables. They 
combine log-linear regression equations with linear accounting identities. 
They include quantities measured in both real and nominal terms 
together with the corresponding price variables, hence products and 
ratios of variables appear. More complicated functions such as the 
constant elasticity of substitution (CES) production function can also be 
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found. In these circumstances an analytic expression for a forecast does 
not exist, and numerical methods are used to solve the model. 

A convenient formal representation of a general non-linear system of 
equations, in its structural form, is 

( ), ,t t tf y z uα = , 

where f is a vector of functions having as many elements as the vector of 
endogenous variables ty , and tz , α  and tu  are vectors of predetermined 
variables, parameters and random disturbances respectively. This is more 
general than is necessary, because models are mostly linear in 
parameters, but no convenient simplification is available. It is assumed 
that a unique solution for the endogenous variables exists. Whereas 
multiple solutions might exist from a mathematical point of view, 
typically only one of them makes sense in the economic context. The 
solution has no explicit analytic form, but it can be written implicitly as 

( ), ,t t ty g u z α= , 

which is analogous to the reduced form in the linear case. 
Taking period t to be the forecast period of interest, the 

“deterministic” forecast ˆty  is obtained, for given values of 
predetermined variables and parameters, as the numerical solution to the 
structural form, with the disturbance terms on the right-hand side set 
equal to their expected values of zero. The forecast can be written 
implicitly as 

( )ˆ 0, ,t ty g z α= , 

and is approximated numerically to a specified degree of accuracy. 
Forecast uncertainty likewise cannot be described analytically. 

Instead, stochastic simulation methods are used to estimate the forecast 
densities. First R vectors of pseudo-random numbers ,  1,..., ,tru r R=  are 
generated with the same properties as those assumed or estimated for the 
model disturbances: typically a normal distribution with covariance 
matrix estimated from the model residuals. Then for each replication the 
model is solved for the corresponding values of the endogenous variables 

try , say, where 
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( ), , ,  1,...,tr t trf y z u r Rα = =  

to the desired degree of accuracy, or again implicitly 

( ), ,tr tr ty g u z α= . 

In large models attention is usually focused on a small number of key 
macroeconomic indicators. For the relevant elements of the y-vector the 
empirical distributions of the try  values then represent their density 
forecasts. These are presented as histograms, possibly smoothed using 
techniques discussed by Silverman (1986), for example. 

The early applications of stochastic simulation methods focused on 
the mean of the empirical distribution in order to assess the possible bias 
in the deterministic forecast. The non-linearity of g is the source of the 
lack of equality in the following statement, 

( ) ( )( ) ( )( ) ˆ, , , , ,t t t t t t tE y z E g u z g E u z yα α α= ≠ = , 

and the bias is estimated as the difference between the deterministic 
forecast and the simulation sample mean 

1

1 R

t tr
r

y y
R =

= ∑ . 

Subsequently attention moved on to second moments and event 
probability estimates. With an economic event, such as a recession, 
defined in terms of a model outcome, such as two consecutive quarters of 
declining real GDP, then the relative frequency of this outcome in R 
replications of a multi-step forecast is an estimate of the probability of 
the event. Developments also include study of the effect of parameter 
estimation error, by pseudo-random sampling from the distribution of α̂  
as well as that of tu . For a fuller discussion, and references, see Wallis 
(1995, §4). 

Loss functions 

It is convenient to note the impact of different loss functions at this 
juncture, in the light of the foregoing discussion of competing point 
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forecasts. The conditional expectation is the optimal forecast with respect 
to a squared error loss function, as noted above, but in routine forecasting 
exercises with econometric models one very rarely finds the mean 
stochastic simulation estimate being used. Its computational burden 
becomes less of a concern with each new generation of computer, but an 
alternative loss function justifies the continued use of the deterministic 
forecast. 

In the symmetric linear or absolute error loss function, the optimal 
forecast is the median of the conditional distribution. (Note that this 
applies only to forecasts of a single variable, strictly speaking, since 
there is no standard definition of the median of a multivariate 
distribution. Commonly, however, this is interpreted as the set of 
medians of the marginal univariate distributions.) Random disturbances 
are usually assumed to have a symmetric distribution, so that the mean 
and median are both zero, hence the deterministic forecast ˆty  is equal to 
the median of the conditional distribution of ty  provided that the 
transformation ( )g ⋅  preserves the median. That is, provided that  

( )( ) ( )( )med , , med , ,t t t tg u z g u zα α= . 

This condition is satisfied if the transformation is bijective, which is the 
case for the most common example in practical models, namely the 
exponential function, whose use arises from the specification of log-
linear equations with additive disturbance terms. Under these conditions 
the deterministic forecast is the minimum absolute error forecast. There 
is simulation evidence that the median of the distribution of stochastic 
simulations in practical models either coincides with the deterministic 
forecast or is very close to it (Hall, 1986). 

The third measure of location familiar in statistics is the mode, and in 
the context of a density forecast the mode represents the most likely 
outcome. Some forecasters focus on the mode as their preferred point 
forecast believing that the concept of the most likely outcome is most 
easily understood by forecast users. It is the optimal forecast under a step 
or “all-or-nothing” loss function, hence in a decision context in which the 
loss is bounded or “a miss is as good as a mile”, the mode is the best 
choice of point forecast. Again this applies in a univariate, not 
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multivariate setting: in practice the mode is difficult to compute in the 
multivariate case (Calzolari and Panattoni, 1990), and it is not preserved 
under transformation. For random variables X and Y with asymmetric 
distributions, it is not in general true that the mode of X Y+  is equal to 
the mode of X plus the mode of Y, for example. 

Model uncertainty 

Model-based estimates of forecast uncertainty are clearly conditional on 
the chosen model. However the choice of an appropriate model is itself 
subject to uncertainty. Sometimes the model specification is chosen with 
reference to an a priori view of the way the world works, sometimes it is 
the result of a statistical model selection procedure. In both cases the 
possibility that an inappropriate model has been selected is yet another 
contribution to forecast uncertainty, but in neither case is a measure of 
this contribution available, since the true data generating process is 
unknown. 

A final contribution to forecast uncertainty comes from the subjective 
adjustments to model-based forecasts that many forecasters make in 
practice, to take account of off-model information of various kinds: their 
effects are again not known with certainty, and measures of this 
contribution are again not available. In these circumstances some 
forecasters provide subjective assessments of uncertainty, whereas others 
turn to ex post assessments. 

2.2  Empirical measures of forecast uncertainty 

The historical track record of forecast errors incorporates all sources of 
error, including model error and the contribution of erroneous subjective 
adjustments. Past forecast performance thus provides a suitable 
foundation for measures of forecast uncertainty. 

Let ,  1,...,ty t n=  be an observed time series and ˆ ,  1,...,ty t n=  be a 
series of forecasts of ty  made at times t h− , where h is the forecast 
horizon. The forecast errors are then ˆ ,  1,...,t t te y y t n= − = . The two 
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conventional summary measures of forecast performance are the sample 
root mean squared error, 

2

1

1 n

t
t

RMSE e
n =

= ∑ , 

and the sample mean absolute error, 

1

1 n

t
t

MAE e
n =

= ∑  . 

The choice between them should in principle be related to the relevant 
loss function – squared error loss or absolute error loss – although many 
forecasters report both. 

In basing a measure of the uncertainty of future forecasts on past 
forecast performance we are, of course, facing an additional forecasting 
problem. Now it is addressed to measures of the dispersion of forecasts, 
but it is subject to the same difficulties of forecast failure due to 
structural breaks as point forecasts. Projecting forward from past 
performance assumes a stable underlying environment, and difficulties 
arise when this structure changes. 

If changes can be anticipated, subjective adjustments might be made, 
just as is the case with point forecasts, but just as difficult. For example, 
the UK government publishes alongside its budget forecasts of key 
macroeconomic indicators the mean absolute error of the past ten years’ 
forecasts. The discussion of the margin of error of past forecasts in the 
statement that accompanied the June 1979 budget, immediately 
following the election of Mrs Thatcher’s first government, noted the 
“possibility that large changes in policy will affect the economy in ways 
which are not foreseen”.  

A more recent example is the introduction in several countries of a 
monetary policy regime of direct inflation targeting. It is claimed that 
this will reduce uncertainty, hence the “old regime” forecast track record 
may be an unreliable guide to the future uncertainty of inflation. 
Eventually a track record on the new regime will accumulate, but 
measures of uncertainty are needed in the meantime. One way to 
calibrate the variance of inflation in the new regime is to undertake a 
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stochastic simulation study of the performance of a macroeconometric 
model augmented with a policy rule for the interest rate that targets 
inflation. Blake (1996) provides a good example, using the model of the 
UK economy maintained by the National Institute of Economic and 
Social Research. He finds that inflation uncertainty is indeed reduced in 
the new regime, although his estimates are of course conditional on the 
specification of the model and the policy rule. In particular the latter 
implies the vigorous use of interest rates to achieve the inflation target in 
the face of shocks, and the price to pay for a stable inflation rate may be 
higher interest rate variability. 

2.3  Reporting forecast uncertainty 

Interval forecasts and density forecasts are discussed in turn, including 
some technical considerations. The Bank of England’s fan chart is a 
leading graphical representation, and other examples are discussed. 

Forecast intervals 

An interval forecast is commonly presented as a range centred on a point 
forecast, as noted in the Introduction, with associated probabilities 
calculated with reference to tables of the normal distribution. Then some 
typical interval forecasts and their coverage probabilities are 

ˆty MAE±                 57% 

ˆty RMSE±               68% 

ˆ 2ty RMSE±             95% 

ˆ 0.675ty RMSE±      50%   (the interquartile range). 

In more complicated models other distributions are needed, as noted 
above. If parameter estimation errors are taken into account then 
Student’s t-distribution is relevant, whereas in complex non-linear 
models the forecast distribution may have been estimated non-
parametrically by stochastic simulation. In the latter case the distribution 
may not be symmetric, and a symmetric interval centred on a point 
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forecast may not be the best choice. In any event it can be argued that to 
focus on uncertainty the point forecast should be suppressed, and only 
the interval reported. 

The requirement that an interval ( , )a b  be constructed so that it has a 
given probability π  of containing the outcome y, that is, 

( )Pr ( ) ( )a y b F b F a π≤ ≤ = − =  

where ( )F ⋅  is the cumulative distribution function, does not by itself pin 
down the location of the interval. Additional specification is required, 
and the question is what is the best choice. The forecasting literature 
assumes unimodal densities and considers two possible specifications, 
namely the shortest interval, with b a−  as small as possible, and the 
central interval, which contains the stated probability in the centre of  
the distribution, defined such that there is equal probability in each of  
the tails: 

( ) ( ) ( )Pr Pr 1 2y a y b π< = > = − . 

(This usage of “central” is in accordance with the literature on 
confidence intervals, see Stuart, Ord and Arnold, 1999, p. 121.) If the 
distribution of outcomes is symmetric then the two intervals are the 
same; if the distribution is asymmetric then the shortest and central 
intervals do not coincide. Each can be justified as the optimal interval 
forecast with respect to a particular loss function or cost function, as we 
now show. 

It is assumed that there is a cost proportional to the length of the 
interval, 0( )c b a− , which is incurred irrespective of the outcome. The 
distinction between the two cases arises from the assumption about  
the additional cost associated with the interval not containing the 
outcome. 
 
All-or-nothing loss function If the costs associated with the possible 
outcomes have an all-or-nothing form, being zero if the interval contains 
the outcome and a constant 1 0c >  otherwise, then the loss function is 
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The expected loss is 
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= − + + −

∫ ∫  

To minimise expected loss subject to the correct interval probability 
consider the Lagrangean 

ℒ ( ) ( )0 1 1( ) ( ) 1 ( ) ( ) ( )c b a c F a c F b F b F aλ π= − + + − + − − . 

The first-order conditions with respect to a and b give 

( )0 1( ) ( )f a f b c c λ= = − , 

thus for given coverage the limits of the optimal interval correspond to 
ordinates of the probability density function (pdf) of equal height on 
either side of the mode. As the coverage is reduced, the interval closes in 
on the mode of the distribution. 

The equal height property is also a property of the interval with 
shortest length b a−  for given coverage π . To see this consider the 
Lagrangean 

ℒ ( )( ) ( )b a F b F aλ π= − + − − . 

This is a special case of the expression considered above, and the first-
order conditions for a minimum again give ( ) ( )f a f b=  as required. The 
shortest interval has unequal tail probabilities in the asymmetric case, 
and these should be reported, in case a user might erroneously think that 
they are equal. 
 
Linear loss function Here it is assumed that the additional cost is 
proportional to the amount by which the outcome lies outside the 
interval. Thus the loss function is 
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The expected loss is 
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a
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and the first-order conditions for minimum expected loss give 

0 2 2( ) ( )
a

b
c c f y dy c f y dy

∞

− ∞
= =∫ ∫ . 

Hence the best forecast interval under a linear loss function is the central 
interval with equal tail probabilities Pr( ) Pr( )y a y b< = > , the limits 
being the corresponding quantiles 

1 11 1
,    

2 2
a F b F

π π− −− +   
= =   

   
. 

As the coverage, π , is reduced, the central interval converges on the 
median. 

In some applications a pre-specified interval may be a focus of 
attention. In a monetary policy regime of inflation targeting, for example, 
the objective of policy is sometimes expressed as a target range for 
inflation, whereupon it is of interest to report the forecast probability that 
the future outcome will fall in the target range. This is equivalent to an 
event probability forecasting problem, the forecast being stated as the 
probability of the future event “inflation on target” occurring. 

Density forecasts 

The preceding discussion includes cases where the density forecast has a 
known functional form and cases where it is estimated by non-parametric 
methods. In the former case features of the forecast may not be 
immediately apparent from an algebraic expression for the density, and 
in both cases numerical presentations are used, either as histograms, with 
intervals of equal length, or based on quantiles of the distribution. In the 
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present context the conventional discretisation of a distribution based on 
quantiles amounts to representing the density forecast as a set of central 
forecast intervals with different coverage probabilities. Graphical 
presentations are widespread, but before discussing them we present a 
further density function that is used to represent forecast uncertainty, 
particularly when the balance of risks to the forecast is asymmetric. 

The density forecasts of inflation published by the Bank of England 
and the Sveriges Riksbank assume the functional form of the two-piece 
normal distribution (Blix and Sellin, 1998; Britton, Fisher and Whitley, 
1998). A random variable X has a two-piece normal distribution with 
parameters 1 2,  and µ σ σ  if it has probability density function (pdf) 

( )( )
( )( )

2 2
1

2 2
2

exp 2         
( )

exp 2         

A x x
f x

A x x

µ σ µ

µ σ µ

 − − ≤


= 
− − ≥



  

where ( )( )
1

1 22 2A π σ σ
−

= +  (John, 1982; Johnson, Kotz and 
Balakrishnan, 1994; Wallis, 1999). The distribution is formed by taking 
the left half of a normal distribution with parameters 1( , )µ σ  and the 
right half of a normal distribution with parameters 2( , )µ σ , and scaling 
them to give the common value ( )f Aµ =  at the mode, as above. An 
illustration is presented in Figure 1. The scaling factor applied to the left 
half of the ( )1,N µ σ  pdf is ( )1 1 22σ σ σ+  while that applied to the right 
half of the ( )2,N µ σ  pdf is ( )2 1 22σ σ σ+ . If 2 1>σ σ  this reduces the 
probability mass to the left of the mode to below one-half and 
correspondingly increases the probability mass above the mode, hence  
in this case the two-piece normal distribution is positively skewed  
with mean>median>mode. Likewise, when 1 2>σ σ  the distribution is 
negatively skewed. The mean and variance of the distribution are 

 ( )2 1

2
( )E X µ σ σ

π
= + −  

 ( )
2

2 1 1 2

2
var( ) 1  .X σ σ σ σ

π

 
= − − + 
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    dashed line :  two halves of normal distributions with µ = 2.5,  
  σ1 = 0.902 (left) and σ2 = 1.592 (right) 
    solid line : the two-piece normal distribution 

Figure 1. The probability density function of the two-piece normal distribution 
 

The two-piece normal distribution is a convenient representation of 
departures from the symmetry of the normal distribution, since 
probabilities can be readily calculated by referring to standard normal 
tables and scaling by the above factors; however, the asymmetric 
distribution has no convenient multivariate generalisation. 

In the case of the Bank of England, the density forecast describes the 
subjective assessment of inflationary pressures by its Monetary Policy 
Committee, and the three parameters are calibrated to represent this 
judgement, expressed in terms of the location, scale and skewness of the 
distribution. A point forecast – mean and/or mode – fixes the location of 
the distribution. The level of uncertainty or scale of the distribution is 
initially assessed with reference to forecast errors over the preceding ten 
years, and is then adjusted with respect to known or anticipated future 
developments. The degree of skewness, expressed in terms of the 
difference between the mean and the mode, is determined by the 
Committee’s collective assessment of the balance of risks on the upside 
and downside of the forecast. 
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Graphical presentations 

In real-time forecasting, a sequence of forecasts for a number of future 
periods from a fixed initial condition (the “present”) is often presented as 
a time-series plot. The point forecast may be shown as a continuation of 
the plot of actual data recently observed, and limits may be attached, 
either as standard error bands or quantiles, becoming wider as the 
forecast horizon increases. Thompson and Miller (1986) note that 
“typically forecasts and limits are graphed as dark lines on a white 
background, which tends to make the point forecast the focal point of the 
display.” They argue for and illustrate the use of selective shading of 
quantiles, as “a deliberate attempt to draw attention away from point 
forecasts and toward the uncertainty in forecasting” (1986, p. 431, 
emphasis in original). 

In presenting its density forecasts of inflation the Bank of England 
takes this argument a stage further, by suppressing the point forecast. 
The density forecast is presented graphically as a set of forecast intervals 
covering 10, 20, 30,…, 90% of the probability distribution, of lighter 
shades for the outer bands. This is done for quarterly forecasts up to two 
years ahead, and since the dispersion increases and the intervals “fan 
out” as the forecast horizon increases, the result has become known as 
the “fan chart”. Rather more informally, and noting its red colour, it also 
became known as the “rivers of blood”. (In their recent textbook, Stock 
and Watson (2003) refer to the fan chart using only the “river of blood” 
title; since their reproduction is coloured green, readers are invited to use 
their imagination.) 

An example of the Bank of England’s presentation of the density 
forecasts is shown in Figure 2. This uses the shortest intervals for the 
assigned probabilities, which converge on the mode. (The calibrated 
parameter values for the final quarter’s forecast are also used in the 
illustration of the two-piece normal distribution in Figure 1.) As the 
distribution is asymmetric the probabilities in the upper and lower same-
shade segments are not equal. The Bank does not report the 
consequences of this, which are potentially misleading. For the final 
quarter Wallis (1999, Table 1) calculates the probability of inflation 
lying below the darkest 10% interval as 32½%, and correspondingly a  
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Figure 2. The August 1997 Inflation Report fan chart 
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Figure 3. Alternative fan chart based on central prediction intervals 

 
probability of 57½% that inflation will lie above the middle 10% 
interval. Visual inspection of the fan chart does not by itself reveal the 
extent of this asymmetry. Similarly the lower and upper tail probabilities 
in the final quarter are 3.6% and 6.4% respectively. 

An alternative presentation of the same density forecasts by Wallis 
(1999) is shown in Figure 3: this uses central intervals defined by 



Kenneth F. Wallis 24

percentiles, with equal tail probabilities, as discussed above. There is no 
ambiguity about the probability content of the upper and lower bands of 
a given shade: they are all 5%, as are the tail probabilities. It is argued 
that a preference for this alternative fan chart is implicit in the practice of 
the overwhelming majority of statisticians of summarising densities by 
presenting selected percentiles. 

Additional examples 

We conclude this section by describing three further examples of the 
reporting of forecast uncertainty by the use of density forecasts. First is 
the National Institute of Economic and Social Research in London, 
England, which began to publish density forecasts of inflation and GDP 
growth in its quarterly National Institute Economic Review in February  
1996, the same month in which the Bank of England’s fan chart first 
appeared. The forecast density is assumed to be a normal distribution 
centred on the point forecast, since the hypothesis of unbiased forecasts 
with normally distributed errors could not be rejected in testing the track 
record of earlier forecasts. The standard deviation of the normal 
distribution is set equal to the standard deviation of realised forecast 
errors at the same horizon over a previous period. The distribution is 
presented as a histogram, in the form of a table reporting the probabilities 
of outcomes falling in various intervals. For inflation, those used in 2004, 
for example, were: less than 1.5%, 1.5 to 2.0%, 2.0 to 2.5%, and  
so on. 

A second example is the budget projections prepared by the 
Congressional Budget Office (CBO) of the US Congress. Since January 
2003 the uncertainty of the CBO’s projections of the budget deficit or 
surplus under current policies has been represented as a fan chart. The 
method of construction of the density forecast is described in CBO 
(2003); in outline it follows the preceding paragraph, with a normal 
distribution calibrated to the historical record. On the CBO website 
(www.cbo.gov) the fan chart appears in various shades of blue. 

Our final example is the work of Garratt, Lee, Pesaran and Shin 
(2003). They have previously constructed an eight-equation conditional 
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vector error-correction model of the UK economy. In the present article 
they develop density and event probability forecasts for inflation and 
growth, singly and jointly, based on this model. These are computed by 
stochastic simulation allowing for parameter uncertainty. The density 
forecasts are presented by plotting the estimated cumulative distribution 
function at three forecast horizons. 

2.4  Forecast scenarios 

Variant forecasts that highlight the sensitivity of the central forecast to 
key assumptions are commonly published by forecasting agencies. The 
US Congressional Budget Office (2004), for example, presents in 
addition to its baseline budget projections variants that assume lower real 
growth, higher interest rates or higher inflation. The Bank of England has 
on occasion shown the sensitivity of its central projection for inflation 
to various alternative assumptions preferred by individual members of 
the Monetary Policy Committee: with respect to the behaviour of the 
exchange rate, the scale of the slowdown in the global economy, and  
the degree of spare capacity in the domestic economy, for example. The 
most highly developed and documented use of forecast scenarios is that 
of the CPB Netherlands Bureau for Economic Policy Analysis, which is 
a good example for fuller discussion. 

Don (2001), who was CPB Director 1994-2006, describes the CPB’s 
practice of publishing a small number of scenarios rather than a single 
forecast, arguing that this communicates forecast uncertainty more 
properly than statistical criteria for forecast quality, since “ex post 
forecast errors can at best provide a rough guide to ex ante forecast 
errors”. Periodically the CPB publishes a medium-term macroeconomic 
outlook for the Dutch economy over the next Cabinet period, looking 
four or five years ahead. The outlook is the basis for the CPB’s analysis 
of the platforms of the competing parties at each national election, and 
for the programme of the new Cabinet. It comprises two scenarios, which 
in the early outlooks were termed “favourable” and “unfavourable” in 
relation to the exogenous assumptions supplied to the model of the 
domestic economy. “The idea is that these scenarios show between 
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which margins economic growth in the Netherlands for the projection 
period is likely to lie, barring extreme conditions. There is no numerical 
probability statement; rather the flavour is informal and subjective, but 
coming from independent experts” (Don, 2001, p.172). The first sentence 
of this quotation almost describes an interval forecast, but the word 
“likely” is not translated into a probability statement, as noted in the 
second sentence. 

The practical difficulty facing the user of these scenarios is not 
knowing where they lie in the complete distribution of possible 
outcomes. What meaning should be attached to the words “favourable” 
and “unfavourable”? And how likely is “likely”? Indeed, in 2001, 
following a review, the terminology was changed to “optimistic” and 
“cautious”. The change was intended to indicate that the range of the 
scenarios had been reduced, so that “optimistic” is less optimistic than  
“favourable” and “cautious” is less pessimistic than “unfavourable”. It 
was acknowledged that this made the probability of the actual outcome 
falling outside the bands much larger, but no quantification was given. 
(A probability range for potential GDP growth, a key element of the 
scenarios, can be found in Huizinga (2001), but no comparable estimate 
of actual outcomes.) All the above terminology lacks precision and is 
open to subjective interpretation, and ambiguity persists in the absence of 
a probability statement. Its absence also implies that ex post evaluation of 
the forecasts can only be undertaken descriptively, and that no systematic 
statistical evaluation is possible. 

The objections in the preceding two sentences apply to all examples 
of the use of scenarios in an attempt to convey uncertainty about future 
outcomes. How to assess the reliability of statements about forecast 
uncertainty, assuming that these are quantitative, not qualitative, is the 
subject of Section 3 below. 

2.5  Uncertainty and disagreement in survey forecasts 

In the absence of direct measures of future uncertainty, early researchers 
turned to the surveys of forecasters that collected their point forecasts, 
and suggested that the disagreement among forecasters invariably 
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observed in such surveys might serve as a useful proxy measure of 
uncertainty. In 1968 the survey now known as the Survey of Professional 
Forecasters (SPF) was inaugurated, and since this collects density 
forecasts as well as point forecasts in due course it allowed study of the 
relationship between direct measures of uncertainty and such proxies, in 
a line of research initiated by Zarnowitz and Lambros (1987) that 
remains active to the present time. 

The SPF represents the longest-running series of density forecasts in 
macroeconomics, thanks to the agreement of the Business and Economic 
Statistics Section of the American Statistical Association and the 
National Bureau of Economic Research jointly to establish a quarterly 
survey of macroeconomic forecasters in the United States, originally 
known as the ASA-NBER survey. Zarnowitz (1969) describes its 
objectives, and discusses the first results. In 1990 the Federal Reserve 
Bank of Philadelphia assumed responsibility for the survey, and changed 
its name to the Survey of Professional Forecasters. Survey respondents 
are asked not only to report their point forecasts of several variables, but 
also to attach a probability to each of a number of preassigned intervals, 
or bins, into which future GNP growth and inflation might fall. In this 
way, respondents provide their density forecasts of these two variables, 
in the form of histograms. The probabilities are then averaged over 
respondents to obtain the mean or aggregate density forecasts, again in 
the form of histograms, and these are published on the Bank’s website. A 
recent example is shown in Table 1. 

Zarnowitz and Lambros (1987) define “consensus” as the degree of 
agreement among point forecasts of the same variable by different 
forecasters, and “uncertainty” as the dispersion of the corresponding 
probability distributions. Their emphasis on the distinction between them 
was motivated by several previous studies in which high dispersion of 
point forecasts had been interpreted as indicating high uncertainty, as 
noted above. Access to a direct measure of uncertainty now provided the 
opportunity for Zarnowitz and Lambros to check this presumption, 
among other things. Their definitions are made operational by calculating 
time series of: (a) the mean of the standard deviations calculated from the 
individual density forecasts, and (b) the standard deviations of the 
corresponding sets of point forecasts, for two variables and four forecast  
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Table 1. SPF mean probability of possible percent changes in GDP and prices, quarter 4, 
2006 

  2005–2006 2006–2007  
 Real GDP    
 ≥ 6.0  0.11  0.39  
 5.0 to 5.9  0.30  0.72  
 4.0 to 4.9  2.41  3.30  
 3.0 to 3.9  73.02  19.43  
 2.0 to 2.9  19.49  48.30  
 1.0 to 1.9  3.30  19.59  
 0.0 to 0.9  0.92  5.43  
 −1.0 to −0.1  0.21  1.88  
 −2.0 to −1.1  0.16  0.62  
 < −2.0  0.07  0.33  
     
 GDP price index   
 ≥ 8.0  0.17  0.20  
 7.0 to 7.9  0.28  0.28  
 6.0 to 6.9  0.37  0.93  
 5.0 to 5.9  1.17  1.59  
 4.0 to 4.9  5.65  5.04  
 3.0 to 3.9  40.48  23.96  
 2.0 to 2.9  48.20  49.93  
 1.0 to 1.9  3.13  15.63  
 0.0 to 0.9  0.52  2.24  
 < 0  0.02  0.20  

Notes. Number of forecasters reporting is 46. Released 13 November 2006.  
Source: http://www.phil.frb.org/files/spf/spfq406.pdf (Table 4). 

 
horizons. As the strict sense of “consensus” is unanimous agreement, we 
prefer to call the second series a measure of disagreement. They find that 
the uncertainty (a) series are typically larger and more stable than the 
disagreement (b) series, thus measures of uncertainty based on the 
forecast distributions “should be more dependable”. The two series are 
positively correlated, however, hence in the absence of direct measures 
of uncertainty a measure of disagreement among point forecasts may be 
a useful proxy. 

A formal relationship among measures of uncertainty and 
disagreement can be obtained as follows. Denote n individual density 
forecasts of a variable y at some future time as ( ),  1,...,if y i n= . In the 
SPF these are expressed numerically, as histograms, but the statistical 
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framework also accommodates density forecasts that are expressed  
analytically, for example, via the normal or two-piece normal 
distributions. For economy of notation time subscripts and references to 
the information sets on which the forecasts are conditioned are 
suppressed. The published mean or aggregate density forecast is then 
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( ) ( )

n

A i
i

f y f y
n =

= ∑ , 

which is an example of a finite mixture distribution. The finite mixture 
distribution is well known in the statistical literature, though not hitherto 
in the forecasting literature; it provides an appropriate statistical model 
for a combined density forecast. (Note that in this section n denotes the 
size of a cross-section sample, whereas elsewhere it denotes the size of a 
time-series sample. We do not explicitly consider panel data at any point, 
so the potential ambiguity should not be a problem.) 

The moments about the origin of ( )Af y  are given as the same 
equally-weighted sum of the moments about the origin of the individual 
densities. We assume that the individual point forecasts are the means of 
the individual forecast densities and so denote these means as ˆ iy ; the 
individual variances are 2

iσ . Then the mean of the aggregate density is 
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namely the average point forecast, and the second moment about the 
origin is 
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Hence the variance of Af  is 
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This expression decomposes the variance of the aggregate density, 2
Aσ , a 

possible measure of collective uncertainty, into the average individual 
uncertainty or variance, plus a measure of the dispersion of, or 
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disagreement between, the individual point forecasts. The two 
components are analogous to the measures of uncertainty and 
disagreement calculated by Zarnowitz and Lambros, although their use 
of standard deviations rather than variances breaks the above equation; in 
any event Zarnowitz and Lambros seem unaware of their role in 
decomposing the variance of the aggregate distribution. The 
decomposition lies behind more recent analyses of the SPF data, by 
Giordani and Soderlind (2003), for example, although their statistical 
framework seems less appropriate. The choice of measure of collective 
uncertainty – the variance of the aggregate density forecast or the 
average individual variance − is still under discussion in the recent 
literature. 
(Note. This use of the finite mixture distribution was first presented in 
the May 2004 lectures, then extended in an article in a special issue of 
the Oxford Bulletin of Economics and Statistics; see Wallis, 2005.) 

3.  Evaluating Interval and Density Forecasts 

Decision theory considerations suggest that forecasts of all kinds should 
be evaluated in a specific decision context, in terms of the gains and 
losses that resulted from using the forecasts to solve a sequence of 
decision problems. As noted above, however, macroeconomic forecasts 
are typically published for general use, with little knowledge of users’ 
specific decision contexts, and their evaluation is in practice based on 
their statistical performance. How this is done is the subject of this 
section, which considers interval and density forecasts in turn, and 
includes two applications. 

3.1  Likelihood ratio tests of interval forecasts 

Given a time series of interval forecasts with announced probability π 
that the outcome will fall within the stated interval, ex ante, and the 
corresponding series of observed outcomes, the first question is whether 
this coverage probability is correct ex post. Or, on the other hand, is the 
relative frequency with which outcomes were observed to fall inside the 
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interval significantly different from π ? If in n observations there are n1 
outcomes falling in their respective forecast intervals and n0 outcomes 
falling outside, then the ex post coverage is 1p n n= . From the binomial 
distribution the likelihood under the null hypothesis is 

( ) 0 1( ) 1
n nL π π π∝ − , 

and the likelihood under the alternative hypothesis, evaluated at the 
maximum likelihood estimate p, is 

( ) 0 1( ) 1
n nL p p p∝ − . 

The likelihood ratio test statistic ( )2 log ( ) ( )L L pπ−  is denoted LRuc by 
Christoffersen (1998), and is then 

( )uc 0 1LR 2  log(1 ) (1 )  log( )n p n pπ π= − − + . 

It is asymptotically distributed as chi-squared with one degree of 
freedom, denoted 2

1χ , under the null hypothesis. 
The LRuc notation follows Christoffersen’s argument that this is a test 

of unconditional coverage, and that this is inadequate in a time-series 
context. He defines an efficient sequence of interval forecasts as one 
which has correct conditional coverage and develops a likelihood ratio 
test of this hypothesis, which combines the test of unconditional 
coverage with a test of independence. This supplementary hypothesis is 
directly analogous to the requirement of lack of autocorrelation of orders 
greater than or equal to the forecast lead time in the errors of a sequence 
of efficient point forecasts. It is implemented in a two-state (the outcome 
lies in the interval or not) Markov chain, as a likelihood ratio test of the 
null hypothesis that successive observations are statistically independent, 
against the alternative hypothesis that the observations are from a first-
order Markov chain. 

A test of independence against a first-order Markov chain alternative 
is based on the matrix of transition counts [nij], where nij is the number of 
observations in state i at time t −1 and j at time t. The maximum 
likelihood estimates of the transition probabilities are the cell frequencies 
divided by the corresponding row totals. For an interval forecast there  
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are two states – the outcome lies inside or outside the interval – and these 
are denoted 1 and 0 respectively. The estimated transition probability 
matrix is 

00 0 01 001 01

10 1 11 111 11

1

1

n n n np p
P

n n n np p
⋅ ⋅

⋅ ⋅

−   
= =   −   

, 

where replacing a subscript with a dot denotes that summation has been 
taken over that index. The likelihood evaluated at P is 

( ) ( )00 1001 11
01 01 11 11( ) 1 1

n nn nL P p p p p∝ − − . 

The null hypothesis of independence is that the state at t is independent 
of the state at t −1, that is, 01 11π π= , and the maximum likelihood 
estimate of the common probability is 1p n n⋅= . The likelihood under 
the null, evaluated at p, is 

( ) 0 1( ) 1
n nL p p p⋅ ⋅∝ − . 

This is identical to L(p) defined above if the first observation is ignored. 
The likelihood ratio test statistic is then 

( )indLR 2 log ( ) ( )L p L P= −  

which is asymptotically distributed as 2
1χ  under the independence 

hypothesis. 
Christoffersen proposes a likelihood ratio test of conditional coverage 

as a joint test of unconditional coverage and independence. It is a test of 
the original null hypothesis against the alternative hypothesis of the 
immediately preceding paragraph, and the test statistic is 

( )ccLR 2 log ( ) ( )L L Pπ= − . 

Again ignoring the first observation the test statistics obey the relation 

cc uc indLR LR LR= + . 

Asymptotically LRcc has a 2
2χ  distribution under the null hypothesis. 

The alternative hypothesis for LRind and LRcc is the same, and these tests 
form an ordered nested sequence. 
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3.2  Chi-squared tests of interval forecasts 

It is well known that the likelihood ratio tests for such problems are 
asymptotically equivalent to Pearson’s chi-squared goodness-of-fit tests. 
For general discussion and proofs, and references to earlier literature, see 
Stuart, Ord and Arnold (1999, ch 25). In discussing this equivalence for 
the Markov chain tests they develop, Anderson and Goodman (1957) 
note that the chi-squared tests, which are of the form used in contingency 
tables, have the advantage that “for many users of these methods, their 
motivation and their application seem to be simpler”. This point of view 
leads Wallis (2003) to explore the equivalent chi-squared tests for 
interval forecasts, and their extension to density forecasts. 

To test the unconditional coverage of interval forecasts, the chi-
squared statistic that is asymptotically equivalent to LRuc is the square of 
the standard normal test statistic of a sample proportion, namely 

( ) ( )
22 1X n p π π π= − − . 

The asymptotic result rests on the asymptotic normality of the binomial 
distribution of the observed frequencies, and in finite samples an exact 
test can be based on the binomial distribution. 

For testing independence, the chi-squared test of independence in a 
2×2 contingency table is asymptotically equivalent to LRind. Denoting the 
matrix [nij] of observed frequencies alternatively as 

a b

c d

 
 
 

, 

the statistic has the familiar expression 

( )
2

2

( )( )( )( )

n ad bc
X

a b c d a c b d

−
=

+ + + +
. 

Equivalently, it is the square of the standard normal test statistic for the 
equality of two binomial proportions. In finite samples computer 
packages such as StatXact are available to compute exact P-values, by 
enumerating all possible tables that give rise to a value of the test statistic 
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greater than or equal to that observed, and cumulating their null 
probabilities. 

Finally for the conditional coverage joint test, the asymptotically 
equivalent chi-squared test compares the observed contingency table 
with the expected frequencies under the joint null hypothesis of row 
independence and correct coverage probability π . In the simple formula 
for Pearson’s statistic memorised by multitudes of students, Σ(O−E)2/E, 
the observed (O) and expected (E) frequencies are, respectively, 

(1 )( ) ( )
   and   

(1 )( ) ( )

a b a b a b

c d c d c d

π π

π π

− + +   
   − + +   

. 

The test has two degrees of freedom since the column proportions are 
specified by the hypothesis under test and not estimated. The statistic is 
equal to the sum of the squares of two standard normal test statistics of 
sample proportions, one for each row of the table. Although the chi-
squared statistics for the separate and joint hypotheses are asymptotically 
equivalent to the corresponding likelihood ratio statistics, in finite 
samples they obey the additive relation satisfied by the LR statistics only 
approximately, and not exactly. 

To illustrate the two approaches to testing we consider the data on the 
SPF mean density forecasts of inflation, 1969-1996, analysed by 
Diebold, Tay and Wallis (1999) and used by Wallis (2003) to illustrate 
the chi-squared tests. The series of forecasts and outcomes are shown in 
Figure 4. The density forecasts are represented by box-and-whisker plots, 
the box giving the interquartile range and the whiskers the 10th and 90th 
percentiles; these are obtained by linear interpolation of the published 
histograms. For the present purpose we treat the interquartile range as the 
relevant interval forecast. Taking the first observation as the initial 
condition for the transition counts leaves 27 further observations, of 
which 19 lie inside the box and 8 outside. Christoffersen’s LRuc statistic 
is equal to 4.61, and Pearson’s chi-squared statistic is equal  
to 4.48. The asymptotic critical value at the 5% level is 3.84, hence the 
null hypothesis of correct coverage, unconditionally, with 0.5π = , is 
rejected. 

 



Forecast Uncertainty, its Representation and Evaluation 35

Note: outcomes are denoted by diamonds; forecast inter-quartile ranges by boxes.  
Source: Diebold, Tay and Wallis (1999). 

Figure 4. US inflation: SPF mean density forecasts and outcomes, 1969-1996 
 

The matrix of transition counts is 

5 4

3 15
 
 
 

 

which yields values of the LRind and X2 statistics of 4.23 and 4.35 
respectively. Thus the null hypothesis of independence is rejected. 
Finally, summing the two likelihood ratio statistics gives the value 8.84 
for LRcc, whereas the direct chi-squared statistic of the preceding 
paragraph is 8.11, which illustrates the lack of additivity among the chi-
squared statistics. Its exact P-value in the two binomial proportions 
model is 0.018, indicating rejection of the conditional coverage joint 
hypothesis. Overall the two asymptotically equivalent approaches give 
different values of the test statistics in finite samples, but in this example 
they are not sufficiently different to result in different conclusions. 

3.3  Extension to density forecasts 

For interval forecasts the calibration of each tail may be of interest, to 
check the estimation of the balance of risks to the forecast. If the forecast 
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is presented as a central interval, with equal tail probabilities, then the 
expected frequencies under the null hypothesis of correct coverage are 

(1 ) / 2n π− , nπ , (1 ) / 2n π−  respectively, and the chi-squared statistic 
comparing these with the observed frequencies has two degrees of 
freedom.   

This is a step towards goodness-of-fit tests for complete density 
forecasts, where the choice of the number of classes, k, into which to 
divide the observed outcomes is typically related to the size of the 
sample. The conventional answer to the question of how class boundaries 
should be determined is to use equiprobable classes, so that the expected 
class frequencies under the null hypothesis are equal, at n/k. With 
observed class frequencies ni, i = 1,..., k, Σni = n, the chi-squared statistic 
for testing goodness-of-fit is 

2
2

1

( / )
( / )

k
i

i

n n k
X

n k=

−
=∑  . 

It has a limiting 2
1kχ −  distribution under the null hypothesis. 

The asymptotic distribution of the test statistic rests on the asymptotic 
k-variate normality of the multinomial distribution of the observed 
frequencies. Placing these in the 1k ×  vector x, under the null hypothesis 
this has mean vector ( / ,..., / )n k n kµ =  and covariance matrix 

[ ]( / ) /V n k I ee k′= − , 

where e is a 1k ×  vector of ones. The covariance matrix is singular, with 
rank 1k − . Defining its generalised inverse V − , the limiting distribution 
of the quadratic form ( ) ( )x V xµ µ−′− −  is then 2

1kχ −  (Pringle and 
Rayner, 1971, p.78). Since the above matrix in square brackets is 
symmetric and idempotent it coincides with its generalised inverse, and 
the chi-squared statistic given in the preceding paragraph is equivalently 
written as 

[ ]2 ( ) / ( ) ( / )X x I ee k x n kµ µ′ ′= − − −  

(note that ( ) 0e x µ′ − = ). There exists a ( 1)k k− ×  transformation matrix 
A such that (Rao and Rao, 1998, p.252) 
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[ ],    /AA I A A I ee k′ ′ ′= = − . 

Hence defining ( )y A x µ= −  the statistic can be written as an alternative 
sum of squares 

2 ( / )X y y n k′=  

where the 1k −  components 2 ( / )iy n k  are independently distributed as 
2
1χ  under the null hypothesis. 

Anderson (1994) introduces this decomposition in order to focus on 
particular characteristics of the distribution of interest. For example, with 
k = 4 and 

1 1 1 1
1

1 1 1 1
2

1 1 1 1

A

− − 
 = − −
 
 − −  

 

the three components focus in turn on departures from the null 
distribution with respect to location, scale and skewness. Such 
decompositions are potentially more informative about the nature of 
departures from the null distribution than the single “portmanteau” 
goodness-of-fit statistic. Anderson (1994) claims that the decomposition 
also applies in the case of non-equiprobable classes, but Boero, Smith 
and Wallis (2004) show that this is not correct. They also show how to 
construct the matrix A from Hadamard matrices. 

The test of independence of interval forecasts in the Markov chain 
framework generalises immediately to density forecasts grouped into k 
classes. However the matrix of transition counts is now k k× , and with 
sample sizes that are typical in macroeconomic forecasting this matrix is 
likely to be sparse once k gets much beyond 2 or 3, the values relevant to 
interval forecasts. The investigation of possible higher-order dependence 
becomes even less practical in the Markov chain approach, since the 
dimension of the transition matrix increases with the square of the order 
of the chain. In these circumstances other approaches based on 
transformation rather than grouping of the data are more useful, as 
discussed next. 
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3.4  The probability integral transformation 

The chi-squared goodness-of-fit tests suffer from the loss of information 
caused by grouping of the data. The leading alternative tests of fit all 
make use, directly or indirectly, of the probability integral transform. In 
the present context, if a forecast density ( )f y  with corresponding 
distribution function ( )F y  is correct, then the transformed variable 

( ) ( )
y

u f x dx F y
−∞

= =∫  

is uniformly distributed on (0,1). For a sequence of one-step-ahead 
forecasts 1( )tf y−  and corresponding outcomes ty , a test of fit can then 
be based on testing the departure of the sequence 1( )t t tu F y−=  from 
uniformity. Intuitively, the u-values tell us in which percentiles of the 
forecast densities the outcomes fell, and we should expect to see all the 
percentiles occupied equally in a long run of correct probability 
forecasts. The advantage of the transformation is that, in order to test 
goodness-of-fit, the “true” density does not have to be specified. 

Diebold, Gunther and Tay (1998), extending the perspective of 
Christoffersen (1998) from interval forecasts to density forecasts, show 
that if a sequence of density forecasts is correctly conditionally 
calibrated, then the corresponding u-sequence is iid U(0,1). They present 
histograms of u for visual assessment of unconditional uniformity, and 
various autocorrelation tests. 

A test of goodness-of-fit that does not suffer the disadvantage of 
grouping can be based on the sample cumulative distribution function of 
the u-values. The distribution function of the U(0,1) distribution is a 45-
degree line, and the Kolmogorov-Smirnov test is based on the maximum 
absolute difference between this null distribution function and the sample 
distribution function. Miller (1956) provides tables of critical values for 
this test. It is used by Diebold, Tay and Wallis (1999) in their evaluation 
of the SPF mean density forecasts of inflation. As in most classical 
statistics, the test is based on an assumption of random sampling, and 
although this corresponds to the joint null hypothesis of independence 
and uniformity in the density forecast context, little is known about the 
properties of the test in respect of departures from independence. Hence 
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to obtain direct information about possible directions of departure from 
the joint null hypothesis, separate tests have been employed, as noted 
above. However standard tests for autocorrelation face difficulties when 
the variable is bounded, and a further transformation has been proposed 
to overcome these. 

3.5  The inverse normal transformation 

Given probability integral transforms ut, we consider the inverse normal 
transformation 

1( )t tz u−= Φ  

where ( )Φ ⋅  is the standard normal distribution function. Then if ut is iid 
U(0,1), it follows that zt is iid N(0,1). The advantages of this second 
transformation are that there are more tests available for normality, it is 
easier to test autocorrelation under normality than uniformity, and the 
normal likelihood can be used to construct likelihood ratio tests. 

We note that in cases where the density forecast is explicitly based on 
the normal distribution, centred on a point forecast ˆ ty  with standard 
deviation tσ , as in some examples discussed above, then the double 
transformation returns the standardised value of the outcome 
( )ˆt t ty y σ− , which could be calculated directly. 

Berkowitz (2001) proposes likelihood ratio tests for testing 
hypotheses about the transformed series tz . In the AR(1) model 

( ) ( )2
1 ,    0,t t t tz z N εµ φ µ ε ε σ−− = − + ∼  

the hypotheses of interest are 20,  1 and 0εµ σ φ= = = . The exact 
likelihood function of the normal AR(1) model is well known; denote it 

2( , , )L εµ σ φ . Then a test of independence can be based on the statistic 

( )2 2
ind

ˆˆ ˆ ˆ ˆLR 2 log ( , ,0) log ( , , )L Lε εµ σ µ σ φ= − −  

and a joint test of the above three hypotheses on 

( )2 ˆˆ ˆLR 2 log (0,1,0) log ( , , )L L εµ σ φ= − −  
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where the hats denote estimated values. However this approach does not  
provide tests for more general departures from iid N(0,1), in particular 
non-normality. 

Moment-based tests of normality are an obvious extension, with a 
long history. Defining the central moments 

( ) j
j E zµ µ= −  

the conventional moment-based measures of skewness and kurtosis are 

2
3 4

1 23 2
2 2

  and  
µ µ

β β
µ µ

= =  

respectively. Sometimes 1β  and 2( 3)β −  are more convenient 
measures; both are equal to zero if z is normally distributed. Given the 
equivalent sample statistics, 

( ) 3 4
1 23/ 2 2

1 2 2

ˆ ˆ1
ˆ ,    ,    ,

ˆ ˆ

n
j

j t
t

z z b b
n

µ µ
µ

µ µ=

= − = =∑  

Bowman and Shenton (1975) showed that the test statistic 

( ) ( )
2

2
1 2 3

6 24

b b
B n

 
− = +

  
 

 

is asymptotically distributed as 2
2χ  under the null hypothesis of 

normality. This test is often attributed to Jarque and Bera (1980) rather 
than Bowman and Shenton. Jarque and Bera’s contributions were to 
show that B is a score or Lagrange multiplier test statistic and hence 
asymptotically efficient, and to derive a correction for the case of 
hypotheses about regression disturbances, when the statistic is based on 
regression residuals. However the correction drops out if the residual 
sample mean is zero, as is the case in many popular regression models, 
such as least squares regression with a constant term. 

A second possible extension, due to Bao, Lee and Saltoglu (2007), is 
to specify a flexible alternative distribution for tε  that nests the normal 
distribution, for example a semi-nonparametric density function, and 
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include the additional restrictions that reduce it to normality among the 
hypotheses under test. 

Bao, Lee and Saltoglu also show that the likelihood ratio tests are 
equivalent to tests based on the Kullback-Leibler information criterion 
(KLIC) or distance measure between the forecast and “true” densities. 
For a density forecast 1( )f y  and a “true” density 0 ( )f y  the KLIC 
distance is defined as 

( ) ( )0 1 0 0 1, log ( ) log ( )I f f E f y f y= − . 

With E replaced by a sample average, and using transformed data z, a 
KLIC-based test is equivalent to a test based on 

1log ( ) log ( )g z zφ− , 

the likelihood ratio, where 1g  is the forecast density of z and φ  is the 
standard normal density. Equivalently, the likelihood ratio statistic 
measures the distance of the forecast density from the “true” density. 
Again the transformation from { }y  to { }z  obviates the need to specify 
the “true” density of y, but some assumption about the density of z is still 
needed for this kind of test, such as their example in the previous 
paragraph. Berkowitz specifies 1g  as autoregressive ( )2,N µ σ , as 
discussed above. 

3.6  The Bank of England’s inflation forecasts 

To illustrate some of these procedures we present an evaluation of the 
Bank of England’s density forecasts of inflation, drawn from Wallis 
(2004). The density forecast first published in the Bank of England’s 
quarterly Inflation Report in February 1996 became the responsibility of 
the Monetary Policy Committee (MPC) on its establishment in 1997, 
when the Bank was given operational independence. Our evaluation 
follows the practice of the analyses of the MPC’s forecasting record 
published in the August issue of the Inflation Report each year since 
1999, by starting from the MPC’s first inflation projection published in 
August 1997, and by focusing on the one-year-ahead forecasts. Strictly 
speaking, the forecasts are conditional projections, based on the 
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assumption that interest rates remain at the level just agreed by the MPC. 
They begin with a current-quarter forecast, and extend up to eight 
quarters ahead. Nevertheless it is argued that the one-year-ahead 
projections can be evaluated as unconditional forecasts, using standard 
forecast evaluation procedures, since inflation does not react quickly to 
changes in the interest rate. On the other hand the inflation outcome two 
years ahead is likely to be influenced by intervening policy shifts, whose 
impact is difficult to estimate when comparing the outcome to a forecast 
with a strong judgemental component, as here. The two-year projection 
has played an important part in establishing policy credibility, with the 
central projection seldom deviating far from the inflation target. 

The forecast parameters, inflation outcomes and associated u-values 
for 22 one-year-ahead forecasts are shown in Table 2. Forecasts are dated 
by the publication date of the Inflation Report in which they appear, and 
the inflation outcome refers to the corresponding quarter one year later. 
The inflation measure is the annual percentage change in the quarterly 
Retail Prices Index excluding mortgage interest payments (RPIX, Office 
for National Statistics code CHMK). Over the sample period 1997q3-
2003q4 its mean is 2.40 and its standard deviation is 0.34. 

With respect to the asymmetry of the forecast densities, it is seen that 
13 of them exhibit positive skewness, with the mean exceeding the 
mode, whereas five are symmetric and four are negatively skewed. The 
balance of risks was thought to be on the upside of the forecast more 
often than not, although the average of the Bank’s preferred skew 
measure (mean minus mode), at 0.075, is small. 

Evaluations of point forecasts typically focus on the conditional 
expectation, the mean of the forecast density, and the Inflation Report 
forecast analyses follow suit, despite the focus on the mode, the most 
likely outcome, in the MPC’s forecast commentary and press releases. 
The mean forecasts in Table 2 have an average error of zero (0.01, to be 
precise), thus these forecasts are unbiased. The tendency to overestimate 
inflation in the early part of the sample is offset by the more recent 
underestimation. Important contributions to this experience were the 
unanticipated persistence of the strength of sterling in the early years, 
followed more recently by surprisingly high house price inflation, which 
contributes to the housing depreciation component of RPIX inflation. 
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Table 2. Bank of England Monetary Policy Committee inflation forecasts: One-year-
ahead forecasts and outcomes (n = 22) 

Inflation 
Report 

(1) 
Mode 

(2) 
Mean 

(3) 
Std. Dev. 

(4) 
Outcome 

(5) 
u 

      
Aug 97  1.99 2.20 0.79 2.55 0.68 
Nov 97 2.19 2.72 0.75 2.53 0.45 
Feb 98 2.44 2.53 0.50 2.53 0.51 
May 98 2.37 2.15 0.66 2.30 0.56 
Aug 98 2.86 3.00 0.62 2.17 0.08 
Nov 98 2.59 2.72 0.64 2.16 0.19 
Feb 99 2.52 2.58 0.62 2.09 0.22 
May 99 2.23 2.34 0.60 2.07 0.34 
Aug 99 1.88 2.03 0.59 2.13 0.58 
Nov 99 1.84 1.79 0.55 2.11 0.72 
Feb 00 2.32 2.42 0.57 1.87 0.17 
May 00 2.47 2.52 0.55 2.26 0.32 
Aug 00 2.48 2.48 0.54 2.38 0.43 
Nov 00 2.19 2.24 0.56 1.95 0.31 
Feb 01 2.09 2.04 0.55 2.37 0.72 
May 01 1.94 1.89 0.55 1.86 0.47 
Aug 01 1.96 1.96 0.55 2.00 0.52 
Nov 01 2.06 2.26 0.60 2.61 0.73 
Feb 02 2.13 2.33 0.59 2.89 0.83 
May 02 2.05 2.05 0.52 2.90 0.95 
Aug 02 2.31 2.31 0.51 2.87 0.87 
Nov 02 2.41 2.41 0.48 2.58 0.64 

Notes on sources: (1), (2): Bank of England spreadsheets, see 
http://www.bankofengland.co.uk/inflationreport/irprobab.htm; 
(3), (5): calculated using code written in the Gauss Programming Language by Michael 
Clements. The standard deviation is the square root of the variance given on p. 20; u is 
the probability integral transform of the inflation outcome in the forecast distribution; 
(4): annual percentage growth in quarterly RPIX, ONS code CHMK 

 
The standard deviation of the forecast errors is 0.42, indicating that 

the standard deviation of the fan chart distributions is an overestimate. A 
90% confidence interval is (0.34, 0.56), and the recent entries in column 
(3) of Table 2 cluster around its upper limit. The dispersion of the fan 
charts has tended to decrease over the period, perhaps in recognition of a 
decline in the volatility of inflation, although the realised uncertainty is 
less than that assumed by the MPC at any time. This finding can be 
expected to dominate assessments of the goodness-of-fit of the complete 
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distributions. A simple approach is to assess the coverage of the 
interquartile range, as in the SPF illustration in Section 3.2. We find that, 
rather than containing the nominal 50% of the outcomes, they actually 
contain some two-thirds of the outcomes, with 15 of the 22 u-values 
falling between 0.25 and 0.75. The forecast interquartile ranges were too 
wide. More generally the class frequencies in the four classes defined by 
the quartiles, which are equiprobable under the hypothesis of correct 
distributions, are 4, 6, 9, 3. The chi-squared goodness-of-fit statistic is 
3.82, compared to the asymptotic critical value at the 5% level of 7.81. 
The data show little evidence of asymmetry, although it is only the first 
three outcomes in 2003 that have delivered this finding by falling in the 
uppermost quarter of the fan charts. 

A more complete picture of the correspondence or otherwise of the 
fan chart forecasts to the correct distribution is given in Figure 5. This 
compares the sample distribution function of the observed u-values with 
the uniform distribution function, the 45° line representing the hypothesis 
that the densities are correct. It is again seen that there are fewer 

Figure 5. Bank of England Monetary Policy Committee inflation forecasts: cumulative 
distribution functions of sample u-values (n=22) and uniform distribution 
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observations than there “should” be in the outer ranges of the forecasts, 
with the sample distribution function being correspondingly steeper than 
the 45° line in the central region. The fan charts fanned out too much. 
Whether exaggerated views of uncertainty led to undue caution in the 
setting of interest rates is an open research question. 

3.7  Comparing density forecasts 

A recent development in density forecasting is the comparative 
evaluation of forecasts, given the existence in some circumstances of 
competing density forecasts of the same outcome. This is a reflection, to 
date a small one, of the extensive literature on the comparison of point 
forecasts. In both cases such forecasts are sometimes genuinely 
competitive, having been constructed by different groups using different 
models or methods, and sometimes artificially competitive, a competing 
“benchmark” or “naïve” forecast having been constructed by forecasters 
wishing to undertake a comparative evaluation of their own forecasts. 
Either way, two activities are usually distinguished, namely hypothesis 
testing – is there a significant difference in forecast performance? – and 
model selection – which forecast is best? And in each activity, how 
sensitive are the results to the choice of measure of performance? We 
consider three groups of possible measures of performance, namely 
scoring rules, test statistics and distance measures, and an equivalence 
between them. 

Scoring rules have been principally developed in probability 
forecasting, which has a long history in meteorology and medicine. The 
two leading measures are the quadratic probability or “Brier” score and 
the logarithmic score, which can be readily adapted to density forecasts. 
Given a series of density forecasts presented as k-bin histograms with bin 
probabilities ,  1,...,jtp j k= , and defining an indicator variable 1jtI =  if 
the outcome ,  1,...,ty t n= , falls in bin j, otherwise 0jtI = , the quadratic 
probability score is 

( )
2

1 1

1 n k

jt jt
t j

QPS p I
n = =

= −∑∑ ,     0 2QPS≤ ≤ . 
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The logarithmic score, abbreviated to Slog, is 

( )
1 1

1
log

n k

jt jt
t j

Slog= I p
n = =
∑∑    or   ( )( )1

1

1
log

n

t t
t

f y
n −

=
∑  

if 1( )tf y−  is a continuous (one-step-ahead) forecast density. It is entirely 
possible that different rankings of competing forecasts are given by the 
different scoring rules. 

For two density forecasts 1( )f y  and 2 ( )f y , Bao, Lee and Saltoglu 
(2007) consider the KLIC difference 

( ) ( )0 1 0 2, ,I f f I f f− . 

Again replacing E by a sample average, but without transforming the 
data, a likelihood ratio test of equal forecast performance can be based 
on the sample average of 

( ) ( )2 1log logt tf y f y− . 

Amisano and Giacomini (2007) develop the same test by starting from 
the logarithmic score as a comparative measure of forecast performance. 
Using outcomes { }y  rather than transformed data { }z (or {u}) is 
preferred, because the need to specify and/or estimate the density of z (or 
u) is avoided. This is not an issue in comparing goodness-of-fit statistics 
of competing forecasts based on transforms, such as statistics assessing 
departures from uniformity of {u}. While these can be readily applied to 
model selection problems, few hypothesis testing procedures are as yet 
available. 

Comparisons of the goodness-of-fit of competing forecasts may also 
be undertaken as a preliminary to determining the weights that might be 
employed in the construction of a combined forecast. Mitchell and Hall 
(2005) consider combinations of two competing density forecasts of UK 
inflation, using weights based on their relative Berkowitz LR test 
statistics, which they interpret as “KLIC weights”. They find that the 
combined forecast performs worse than the better of the two individual 
forecasts. That combining with an inferior forecast could improve 
matters seems counter intuitive, but for point forecasts this is what the 
original result of Bates and Granger (1969) shows, if the “optimal” 
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weights are used. Their result is that a linear combination of two 
competing point forecasts using the optimal (variance minimising) 
weight in general has a smaller forecast mse than either of the two 
competing forecasts. The only case in which no improvement is possible 
is that in which one forecast is already the minimum mse forecast; its 
optimal weight is then 1, and there is no gain in combining with an 
inferior forecast. Bates and Granger work analytically in the widely 
accepted least squares framework, but there is as yet no comparable 
setting in which to consider density forecast combination (Wallis, 2005). 

4.  Conclusion 

It is now widely recognised that a point forecast is seldom sufficient for 
well-informed decision-making in the face of an uncertain future, and 
that it needs to be supplemented with some indication of the degree of 
uncertainty. The first main section of these lecture notes surveys the 
different ways in which economic forecasters measure and report 
uncertainty, and discusses some of the technical issues that arise. It is 
seen that much progress has been made in recent years in measuring and 
reporting forecast uncertainty. However there is still reluctance in some 
quarters to adopt the international language of uncertainty, namely 
probability. 

The second main section surveys recent research on statistical 
methods for the evaluation of interval and density forecasts. The 
discussion aims to convey the principles and key ideas that underlie these 
methods, and some technical issues of interest to specialists are left on 
one side. These include the distinction between in-sample and out-of-
sample analysis, the effects of parameter estimation error, finite-sample 
issues and the use of the bootstrap to estimate exact p-values, and the 
possibility of direct estimation of the “true” 0 ( )f y . Their importance and 
possible resolution is often related to the size of the available sample of 
data, and there is a major contrast in this respect between 
macroeconomic forecasting, which is our main concern, and financial 
analysis based on high-frequency data, discussed elsewhere in this 
program. In both fields many outstanding research problems remain, and 
this is an active and fruitful area in which to work. 
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1.  Introduction 

Forecasting of economic activity requires the use of all available 
information. However, data are collected at different frequencies. For 
example, stock prices are available instantaneously (real time), but 
industrial production data are available monthly, at best. This 
necessitates building models which utilize data at different frequencies. 
This was the starting point for high-frequency macro-econometric 
models initiated by Klein & Sojo (1989). The approach of combining 
data at different frequencies is not restricted to macro-econometric 
models (Abeysinghe, 1998, 2000; Shen, 1996). Recently, Mariano & 
Murasawa (2002) construct an index of coincident indicators utilizing 
quarterly GDP figures and monthly indicators such as personal income, 
industrial production, employment, and manufacturing & trade sales. 

Since GDP, the most comprehensive economic indicator, is available 
quarterly in many countries, initially it may only be feasible to provide 
forecasts for quarterly GDP and the GDP deflator. It may also be  
feasible to provide forecasts for components of GDP whenever high-
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frequency data are made available for likely indicators related to 
individual components.      

Our long-standing conviction stands intact that detailed structural 
model building is the best kind of system for understanding the macro 
economy through its causal dynamic relationships, specified by received 
economic analysis. There are, however, some related approaches, based 
on indicator analysis that are complementary for use in high frequency 
analysis. For most economies, the necessary data base for structural 
model building, guided by consistent social accounting systems (national 
income and product accounts, input-output accounts, national balance 
sheets) are, at best, available only at annual frequencies. Many advanced 
industrial countries can provide the accounts at quarterly frequencies, but 
few, if any, can provide them at monthly frequencies. 

A more complete understanding of cyclical and other turbulent 
dynamic movements might need even higher frequency observation, i.e. 
weekly, daily, or real time. It would not be impossible to construct a 
structural model from monthly data, but a great deal of interpolation and 
use of short cut procedures would have to be used; so we have turned to 
a specific kind of indicator method to construct econometric models at 
this high frequency. No doubt, systems of monthly accounts of national 
income and product will become available, in due course, for 
construction of complete structural models, and indicator analysis will 
probably then be used for even higher frequency, say, for a weekly 
model. 

In a festschrift volume, honoring the business cycle indicator research 
of Geoffrey H. Moore, there is already a chapter that shows how leading 
indicators, that he found to be useful, already appear in some form or 
other in quarterly structural models.1 This represents an ex-post treatment, 
in the sense that many forward-looking variables were quite naturally 
and understandably used in quarterly model construction and some 
turned out to be among the leading indicators that Geoffrey Moore 
developed, quite independently. A current quarter model may be used to 
estimate initial conditions (Klein & Sojo, 1989). 

                                                           
1 See Klein (1990). 
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In step with new technological developments in the information 
sector of modern economies, attention has been paid to the use of newly 
available computer power, data resources, telecommunication facilities 
and other technical changes that made higher frequency analysis of 
economic statistics possible. 

In a few countries, new methods of high frequency analysis (monthly 
or higher) have already been applied and are entirely plausible for 
countries such as Singapore and India, where data collection and thriving 
“new economy” activities have been firmly established. 2  There are 
excellent structural models available for India, and these have been 
applied on an annual basis for economic analysis (forecasting, policy 
implementation and quantitative historical analysis).3  There have also 
been studies that use indicators. It remains to examine how these two 
approaches may be used in a complementary way. 

The paper is in four sections. The second section deals with the 
methodology of the current quarter model (CQM) and performance of 
alternative models. The methodology used in “survey corner” is 
presented in the third section. Results are also compared with the help of 
various model selection criteria. Major conclusions are stated in the final 
section. 

2.  The Methodology of the Current Quarter Model (CQM) 

There are at least three well-known accounting approaches to GDP 
measurement, and it is equally well-known (for several decades) that 
they rarely provide the same results. 
 
Method 1. GDP is the sum of final purchases. This is known as demand-
side estimation and happens to be the officially favored method for the 
USA, but not for all nations. It finds textbook expression in the 
accounting definition. 

 GDP = C(consumption) + I(investment) + G (government purchases)  
             + X (exports) – M(imports). 

                                                           
2 See, Klein (2000)  
3 See Mammen (1999), and Palanivel & Klein (2002). 
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In input-output accounting, it is usually displayed in the form of 
column sums of a rectangular matrix at the right-hand-side of the square 
inter-industry delivery matrix.   
 
Method 2. GDP is the sum of income payments to the original factors of 
production. 

It also is expressed in textbooks as 

 GDP = W(wages) + IN(interest) + P(profits) + R(rent/royalty) 
             + IT(indirect tax) – S(subsidies). 

In input-output accounting it is usually displayed as row sums of a 
rectangular matrix across the bottom of the square inter-industry matrix. 
 
Method 3. GDP is the sum of value-added across all sectors of 
production. Value-added is written as  

GDP = GP(gross production) – IP(intermediate production) = VA(value added). 

If all statistical reports were accurate and if all economic agents were 
cooperative respondents or reporters, these three methods should give 
identical estimates. A very recent discrepancy between Method 1 and 
Method 2 for the USA, 2001, fourth quarter is estimated at $186 billion 
(seasonally adjusted annual rate). While this is a small percentage of the 
(unknown) total GDP of the USA, it is a very, very significant amount. It 
is as large as many important national policy initiatives that are meant to 
stabilize the economy. Revisions since 2001 change discrepancy from a 
large negative to a small plus, but cyclical swings are still strong. It does 
not go away, and it is not a random series. It has a well-established serial 
pattern and is closely correlated with important economic variables 
(Klein & Makino, 2000). The nonrandom serial correlation found in data 
of the discrepancy between different measures of GDP for the USA has 
been found in other national data, but not always between Methods 1 and 
2, but sometimes between 1 and 3. Some countries do not have full 
statistics for Method 2. 

It should be noted that there are similarities between Methods 2 and 
3; they both aim for estimates of value-added, but Method 2 does this on 
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an individual sector or industry basis, and Method 2 uses direct estimates 
of factor payments, while Method 3 derives factor payments (total or by 
sector) as a residual. It gets to value-added indirectly. 

The methodology used in CQM is essentially based on Klein & Sojo 
(1989), and Klein & Park (1993, 1995). Real GDP and the GDP deflator 
are estimated using the expenditure side model (Method 1), and the 
income side model (Method 2).  

In the expenditure side and the income side models, bridge equations 
are used to relate quarterly components to monthly indicators4. Bridge 
equations are statistical relationships between quarterly figures and 
averages of monthly indicators. For example, private fixed investment in 
information processing and related equipment (INV) in National Income 
and Products Accounts (NIPA)-which is available quarterly, is related to 
the quarterly average of manufacturers’ shipments (SHIPMENT) of 
information technology-which is available monthly. These monthly 
indicators are the ones used by the US Department of Commerce, Bureau 
of Economic Analysis which is responsible for publishing the National 
Income and Products Accounts for the US (US Department of Commerce, 
2002a, 2002b, 2002c). There are about 200 bridge equations in the US 
model. The detail is partly dictated by the composition of basic tables of 
the Commerce Department (US Department of Commerce, 2002a, 2002b, 
2002c). 

DLOG(INV) = 0.019 + 0.919 DLOG(SHIPMENT) + 0.315 AR(1) + 0.294 AR(2) − 0.244 AR(3) 

     (7.43)   (9.38)      (3.77)    (3.51)             (−2.95) 

R2 = 0.531, SEE = .019, F = 38.14, D.W. = 2.01, n = 140 (1969 Q1 − 2003 Q4).  

                                                           
4 Augmented Dickey-Fuller (1979), Phillips-Perron (1991), and Kwiatkowski, Phillips, 
Schmidt, and Shin (KPSS) (1992) unit root tests were implemented to study time series 
properties of the series used in the model. Almost all variables are non-stationary, 
integrated of order one, i.e. I(1). The monthly changes or percentage changes of these 
variables are integrated of order zero, I (0).  Eviews by Quantitative Micro Software is 
used in all the calculations. Critical values used in testing are based on MacKinnon 
(1991). For modeling non-stationary processes see, Clements & Hendry (1998, 2002), 
and Engle & Granger (1987, 1991).   
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Forecasts of monthly indicators are obtained by standard Box-Jenkins 
(1976) ARIMA equations. For example, month-to-month change in non-
farm payroll employment is expressed as auto-regressive process of 
orders 1, 2, and a moving average of order 2, i.e. (ARIMA (2, 1, 2)). 
These monthly forecasts are averaged for the quarter and then related to 
quarterly variables in the model. There are over a hundred monthly 
indicators in the most recent version of the Current Quarter Model 
(CQM). It is possible to include some structural variables in this equation, 
such as real interest rate and real credits. However, that will increase the 
data requirement significantly. One has to get forecasts of those variables 
for the coming six months. It is not difficult to imagine the added 
difficulty, if one has to repeat this for about 100 such equations. This is 
the trade-off that one has to face and make a decision.   

D(EMPLOYMENT) = 0.137 + 0.241 AR(1) + 0.678* AR(2) − 0.346* MA(2)  

           (2.33) (3.75)     (9.36)     (−3.27) 

R2 = 0.589, SEE = .109, F = 114.2, D.W. = 2.08, n = 243 (January1984 – March 2004).  

Since figures based on the production method (Method 3) are 
released with a lag, it is not used in the US model. Instead the principal 
components methodology is used. The following monthly indicators are 
used to form the principal components which are to be used in the 
estimation of real GDP (Klein & Park, 1993, 1995): Real manufacturing 
shipments, real manufacturing orders, real manufacturing unfilled orders, 
real retail sales, real money supply, index of industrial production, non-
farm payroll employment, average number of hours worked, housing 
starts, real effective exchange rate, federal funds rate, interest rate spread 
(prime rate – treasury bill rate), interest rate spread (10 year bond yield – 
1 year bond yield). The following monthly indicators are used to form 
the principal components which are to be used in the estimation of the 
GDP deflator: consumer price index, producer price index (finished 
goods), producer price index (intermediate goods), import price index, 
farm price index, average number of hours worked, average hourly 
wages. Three principal components were significant in explaining 
growth in real GDP. 
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DLOG(GDPR)*100 = 0.719 + 0.981 Z1 − 0.144* Z2 + 0.045* Z5  

     (14.46) (8.81)     (−2.92)     (2.41) 

R2 = 0.612, SEE = .351, F = 29.48, D.W. = 1.81, n = 60 (1984 Q1− 2003 Q4).  

The arithmetic average of the expenditure side model, the income 
side model and the principal components model is given as the final 
forecast presented in weekly reports. The weights of alternative methods 
may be adjusted based on forecast errors (Diebold, 2004; Granger & 
Newbold, 1973, 1986; Klein &Young, 1980). 

 The University of Pennsylvania Current Quarter Model has 
generated a great deal of interest in high-frequency models. Models for 
various countries have been built: Japan by Inada; Mexico by Coutino 
(2002); Hong Kong by Chan (2000); and France by Courbis. Recently 
models were built for members of the European Union (Grassman  
and Keereman, 2001; Baffigi, Golinelli and Parigi, 2002), for USA 
(Payne, 2000), and Russia (Klein, Eskin and Roudoi, 2003). In Asian 
countries, production or value added method (Method 3) is the most 
common method used in calculation of the GDP 5 . The expenditure 
method (Method 1) is the next most common method used. The income 
method (Method 2) is not as common as in the United States.  

Releases may contain some information on basic data and evaluation 
of weekly events and official releases. Reports by Chan (2003), Coutino 
(2003), Inada (2003), and Klein & Ozmucur (2004a) are examples of 
such releases. The principal point is, to be ready as soon as any partial 
data are made available during a week, to re-calculate projections.  

Performances of alternative models are based on ex-ante forecasting 
accuracy of these models 6 . At the time of forecasting, no quarterly 
 
                                                           
5 What indicators may be useful in explaining real economic activity? These indicators 
may depend on availability of data and the structural characteristics of the economy. As 
an example, Klein & Ozmucur (2003) use twenty monthly indicators in calculating 
principal components to get estimates of China’s GDP, although the focus of that paper 
was different than the present one. It interpreted history rather than estimated the future. 
6 See Klein (1991), Wallis (1995), Wallis & Whitley (1991). Diebold & Mariano (1995) 
propose a formal test for model comparisons. A survey on model comparison criteria is 
done by Mariano (2002). See, also Theil (1961) for criteria for measuring model 
performance.    
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information was available for the quarter of interest. For example, the 
2003Q4 forecast of GDP growth is based only on monthly indicators 
which are forecasted econometrically. Although, forecasts are provided 
every week, only forecasts following the release dates are compared in 
this paper. For example, advance estimate of real GDP growth for 
2003Q4 was given on our weekly report of February 2, 2004. 
Preliminary estimate was used in the March 1, 2004 report, while the 
final estimate was used in the weekly report of March 29, 2004. These 
are denoted by ADVANCE, PRELIMINARY, and FINAL. Estimates are 
obtained from the expenditure side model (EXPENDITURE), the income 
side model (INCOME), the principal components model (PRINCOM), 
and the average of three methods (AVERAGE). Periods prior to advance 
estimate are shown after the underscore. For example, AVERAGE_1 
refers to forecasts of December 29, 2003 (the date of the report where the 
final estimate of 2003Q3 was available). Similarly, AVERAGE_2 refers 
to the forecast obtained two-months ahead of the advance estimate for 
Q4. This was dated December 1, 2003 (preliminary estimate of 2003Q3 
was made available). On the other hand, AVERAGE_3 refers to the 
forecast obtained three-months ahead of the advance estimate for Q4. 
The date of that forecast was November 3, 2003 (advance estimate of 
2003Q3 was made available). Since forecasts for the current quarter and 
the following quarter are estimated in the model, it is possible to make 
comparisons for up to six-month-ahead forecasts. Forecasts given in 
reports of September 29, 2003 (AVERAGE_4), September 1, 2003 
(AVERAGE_5), and August 4, 2003 (AVERAGE_6) may be used to 
make comparisons with the 2003Q4 actual figure. It should be noted that 
in comparisons with the preliminary and the final estimate of the real 
GDP growth, involve additional one and two periods, respectively. For 
example, AVERAGE_1 is a one-month ahead forecast if compared with 
the advance estimate. It is a two-month ahead forecast if compared with 
the preliminary and a three-month ahead forecast if compared with the 
final estimate of real GDP growth.  
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There are 28 forecasts (1997:Q1-2003Q4) where actual figures are 
also available (Figure 1)7. A mechanical (naïve) model which has last 
quarter’s growth rate is used as the benchmark model. Average absolute 
error for real GDP growth is 1.36 for the expenditure side model, 1.59 
for the income side model, 1.30 for the principal components model, and 
1.01 for the average of the three (Table 1). The average absolute error for 
the mechanical model (no-change model) is 1.88. Similar results are 
obtained in the ordering for the two-period and three-period-ahead 
forecasts. All in all, the average forecast gives the lowest mean absolute 
error, while the naïve model gives the highest mean absolute error. These 
results are supported by the correlation coefficients between forecasts 
and actual values (Table 2), and prediction-realization diagrams (Figures 
2, and 3). It is clear from these results that there is an advantage of 
combining forecasts. Forecast errors also decrease with added information, 
as one gets close to the release date. It is also important to see that the 
expenditure side model performs relatively better when real GDP growth 
rate is increasing, and the principal components model performs 
relatively better when the growth rate is decreasing (Table 3).  

When compared with the mechanical (naïve or no-change) model, 
Diebold & Mariano statistics are significant at the five percent level for 
all models except the expenditure side model. This may be due to large 
errors in the expenditure side model during the early years of our 
analysis. Diebold & Mariano (DM) statistics are 0.87 for the expenditure 
side model, 2.95 for the income side model, 1.92 for the principal 
components model, and 2.48 for the average. In summary, models 
perform significantly better than the mechanical model. 

 3.  The Methodology of the Survey Corner8 

Many indicators are helpful in improving statistical performance for 
forecasting and policy analysis. We do believe, however, that no single  
 
                                                           
7 Model performance results for the 1990Q2-1994Q2 period are provided in Klein & Park 
(1995).  Periods before 1997, as well as variables such as the deflator for personal 
consumption expenditures, may be included in the future. 
8 See, Klein & Ozmucur (2002b). 
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indicator (or type of indicator) can do the necessary work by itself. The 
principal components, which are estimated linear functions of the whole 
set of indicators that we choose to represent the movement of the 
economy as a whole, the methodology is used as a short-cut and quick 
method to a full scale structural econometric model.  
 

Table 1. Absolute values of forecasts of alternative models. 

 Absolute Errors (1997:1–2003:4)   

 EXPEND._1 INCOME_1 PRINCOM_1 AVERAGE_1 NAIVE_1 

 Mean 1.36 1.59 1.30 1.01 1.88 

 Median 1.34 1.49 0.93 0.77 1.37 

 Maximum 3.94 5.69 3.82 3.07 5.62 

 Minimum 0.00 0.16 0.07 0.01 0.06 

 Std. Dev. 1.19 1.28 1.11 0.92 1.44 

 Skewness 0.82 1.51 0.95 1.09 1.05 

 Kurtosis 2.77 5.76 2.79 3.07 3.40 

      

 EXPEND._2 INCOME_2 PRINCOM_2 AVERAGE_2 NAIVE_2 

 Mean 1.71 1.58 1.54 1.39 2.13 

 Median 1.49 1.43 1.32 1.01 1.87 

 Maximum 4.52 7.29 4.85 3.92 6.19 

 Minimum 0.00 0.02 0.03 0.03 0.31 

 Std. Dev. 1.44 1.47 1.21 1.02 1.57 

 Skewness 0.63 2.27 1.21 0.80 0.88 

 Kurtosis 2.18 9.42 4.08 2.70 3.17 

      

 EXPEND._3 INCOME_3 PRINCOM_3 AVERAGE_3 NAIVE_3 

 Mean 1.86 1.97 1.80 1.67 2.15 

 Median 1.56 1.78 1.63 1.33 1.74 

 Maximum 4.78 6.36 5.29 4.39 6.40 

 Minimum 0.19 0.14 0.03 0.20 0.07 

 Std. Dev. 1.33 1.67 1.43 1.25 1.55 

 Skewness 0.67 1.12 0.65 0.63 1.08 

 Kurtosis 2.30 3.95 2.58 2.36 3.60 
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Figure 1. Real GDP Growth Forecasts by Alternative Models. 
 

Table 2. Correlation Coefficients Between real GDP growth rates and Model Estimates 
(numbers following the model name refer to number of months before the advanced 
estimate). 

 Correlation Coefficients  

 ADVANCE PRELIMINARY FINAL 

EXPENDITURE_1 0.67 0.62 0.63 

INCOME_1 0.54 0.48 0.47 

PRINCOM_1 0.58 0.58 0.57 

AVERAGE_1 0.76 0.71 0.70 

EXPENDITURE_2 0.48 0.45 0.47 

INCOME_2 0.44 0.38 0.37 

PRINCOM_2 0.43 0.40 0.40 

AVERAGE_2 0.65 0.59 0.60 

EXPENDITURE_3 0.40 0.30 0.29 

INCOME_3 0.27 0.21 0.19 

PRINCOM_3 0.26 0.18 0.15 

AVERAGE_3 0.41 0.31 0.28 

    

ADVANCED 1.00 0.96 0.96 

PRELIMINARY 0.96 1.00 0.99 

FINAL 0.96 0.99 1.00 

Note: Comparisons with the preliminary and the final estimate of the real GDP growth, 
involve additional one and two periods, respectively. For example, AVERAGE_1 is a 
one-month ahead forecast if compared with the advance estimate. It is a two-month ahead 
forecast if compared with the preliminary and a three-month ahead forecast if compared 
with the final estimate of real GDP growth. 

-4

-2

0

2

4

6

8

10

1997 1998 1999 2000 2001 2002 2003

ADVANCED
EXPENDITURE_1
INCOME_1

PRINCOM_1
AVERAGE_1



Lawrence R. Klein and Suleyman Ozmucur 64 

Figure 2a. Real GDP Growth Forecasts by Alternative Models. 
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Figure 2b. Prediction-Realization Diagrams for One-Month-Ahead Forecasts. 
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Figure 2c. Prediction-Realization Diagrams for One-Month-Ahead Forecasts. 
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Figure 2d. Prediction-Realization Diagrams for One-Month-Ahead Forecasts. 
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Figure 3. Prediction-Realization Diagrams for One, Two and Three-Month-Ahead Forecasts. 
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Table 3. Absolute values of errors of alternative models. 

Sample: 1997:1 2003:4 IF ADVANCE<ADVANCE(−1) 
 EXPEND._1 INCOME_1 PRINCOM_1 AVERAGE_1 

 Mean 1.256  1.402 0.947 0.787 
 Median 1.225  1.555 0.585 0.705 
 Maximum 3.680  2.500 2.740 2.780 
 Minimum 0.000  0.160 0.070 0.070 
 Std. Dev. 1.123  0.738 0.881 0.707 
 Skewness 0.761  −0.673 0.912 1.586 
 Kurtosis 2.709  2.371 2.555 5.545 

     
 Observations  14  14  14  14 

 
Sample: 1997:1 2003:4 IF ADVANCE>ADVANCE(−1) 

 EXPEND._1 INCOME_1 PRINCOM_1 AVERAGE_1 
 Mean 1.456 1.780 1.655 1.234 
 Median 1.520 1.360 1.150 0.915 
 Maximum 3.940 5.690 3.820 3.070 
 Minimum 0.050 0.190 0.410 0.010 
 Std. Dev. 1.293 1.666 1.228 1.072 
 Skewness 0.803 1.218 0.702 0.638 
 Kurtosis 2.623 3.520 2.058 1.973 

     
 Observations  14  14  14  14 

 
Timeliness, flexibility, and foresight are important properties of 

indicators, and we are especially interested in information that reflects 
subjective feelings of participants in the economy. Results of surveys 
covering consumers, producers or managers are useful in forecasting 
major macroeconomic variables, like personal consumption expenditures, 
personal income flows, industrial production, employment, and financial 
market averages. Our results indicate that models including survey 
results perform better than those that do not include survey results.  

In the USA, there was extreme uncertainty following the terrorist 
attack of September 11, 2001. Many conflicting judgments were 
expressed in the financial media concerning consumption, the largest 
single expenditure component in GDP. Our use of the model presented 
here enabled sensible, objective forecasts to be made in advance of each 
month since then. 

The surveys of investors provide fresh insight on the functioning of 
the US economy. Surveys are very informative, not only for the present 
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critical situation but for analysis of the economy in a more normal 
environment.  

The economic information system is vast and developing in many 
dimensions. The information is more and more frequent – decennial, 
annual, quarterly, monthly, weekly, daily, hourly, ... real time. The scope 
is both macro and microeconomic. The history dates from colonial times 
and grows intensively, mainly as a result of advances in the use of 
information technology. Our ability to process this enormous information 
flow is made possible by the advances in computer science, both in terms 
of hardware and software supply. 

Vast as this information flow has become, it is focused on objective, 
quantitative information such as prices, transaction volumes, production, 
sales, costs, exports, imports, interest rates, exchange rates, and so on. 
These pieces of information are all readily available in quantitative form, 
but they often lack a qualitative dimension. They are objective but 
economic decision making has a large subjective component. It is this 
subjective and qualitative property that finds expression in responses to 
surveys of human populations. There are some well-known surveys of 
households, firms, and bureaucrats but few, if any, of investors9. This is 
the dimension in economic behavior that has been missing, but is now 
filled by the results of the surveys of investor optimism. 

The population that is being sampled every month has well-
considered thoughts about the economy, their personal economic 
circumstances and other relevant issues. The qualitative responses in 
coded quantitative index form provide both microeconomic and 
macroeconomic information that enables one to determine their influence 
on performance of markets, consumption patterns, and production 
patterns. 

Subjective feelings are always important for the economy, but the 
present situation highlights their extreme significance because personal  
attitudes have quickly and radically been changed as a result of 
                                                           
9  See Adams (1964), Adams & Green (1965), Bram & Ludvigson (1998), Carroll, 
Fuhrer,& Wilcox (1994), Cashell (2003), Eppright, Arguea, & Huth (1998), 
Garner(2002), Howrey(2001), Klein & Ozmucur (2001), Lee, Elango & Schnaars (1997), 
Lovell & Tien (2000), Matsusaka & Sbordone (1995), Pain & Weale (2001) for 
predictive power of surveys. 
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calculated terrorism within US boundaries. Consumers and producers are 
no longer being guided mainly by objective market signals, and surveys 
of the investor population can quickly fill the void in our analyses of the 
economy. 

The emphasis on leading, coincident, and lagging indicators for 
spotting or interpreting cyclical phases is very interesting, but this 
methodology seems to extract less from the data than is plausible, 
certainly less than can be sought with the new technologies. It is not 
purely a matter of the contributions of each individual series, examined 
one at a time, in trying to unfold the cyclical story, but more a matter of 
trying to interpret the collective message (or signal) of the group as a 
whole. Much of macro-econometric model building focuses attention on 
the final adding-up to obtain total GDP or some related aggregates from 
the system as a whole, at the same time that the parts are examined. 

The phases of the cycle that are generated by a combination of 
specific shocks, together with aggregate signals, may be due to shifting 
forces, sometimes on the demand side, sometimes on the supply side, 
sometimes from pressures in market-clearing, sometimes from natural 
causes; sometimes from geopolitical causes, sometimes from cumulative 
effects of small random errors, and so on. It seems to be too narrow to 
base ultimate decision making on 10-15 sensitive leaders, particularly for 
their timing. 

Short of building the ultimate high-frequency model with many 
potential inlets of disturbance to the economy, our approach is to 
measure the collective impact of several high frequency indicators at 
many closely spaced time intervals – weekly or even daily in this high, 
interconnected global environment, and let their aggregate measured 
impact show where the economy is going10. Both timing and magnitude 
will matter, and the specific indicators that account for observed change  
need not always be the same. We are looking for a generalization of the 
traditional indicator approach. To be specific, we collect and combine the 
                                                           
10 See Liu & Hwa (1974) for a monthly econometric model for the US. Liu & Hall (2001) 
estimate monthly GDP for the US using Kalman filter methodology. See, Hamilton 
(1994a, 1994b), Harvey (1987, 1989), Kalman (1960, 1961), Kalman & Bucy (1961), 
Kim &Nelson (1999), Stock &Watson (1991, 2002) for the application of Kalman filters.  
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joint effects of 20 to 30 (or even more) high frequency indicators. Each is 
separately measured, but the signal evolves from an aggregative measure. 

We propose to form principal components of the monthly indicators 
whose periodic values appear at either different or similar time points of 
each month. An indicator will be denoted as 

 Iit  = the i-th indicator value at month t. 
   i  = 1,2,…, 30 

The actual number of indicators will depend on the status of the data files 
of the economy being studied, and 30 need not be the limit of what can 
be used. 

Another kind of variable will be an anticipatory or expectational 
variable, giving some subjective impression in advance, based on 
sampling human populations. Surveys of ordinary households, investing 
households, business executives, or possibly public officials may be used. 
These will be written as 

Sit = sample survey response of the i-th economic agent at month t. 
The agents are asked to respond to future intentions or judgments, to 
contemporary or recent feelings or intentions. 

The outcome of the economic decision will be Xit = i-th economic 
measurement or outcome such as consumer spending by households, 
business production or capital formation by firms, or financial market 
price averages by investors. 

Having formed principal components of relevant indicators, we plan 
to regress important substantive variables jointly on sample survey 
indexes, allowing lagged (carry-over) effects from earlier sample results, 
generally of the most recent past months, as well as the current month, 
and also upon those principal components that show significant 
relationships to the chosen substantive variables (consumer spending, 
industrial production, capital formation, or financial market averages). 

It is noteworthy that these substantive variables constitute some of the 
important coincident indicators of the US economy, while consumer 
surveys are one of the leading indicators of the US economy, as are the 
financial market (i.e. stock market) averages. 

The method of principal component analysis is a well-known 
technique often used in social and psychological measurement (Anderson, 
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1984)11 . In econometrics, it has been used for reduction of large data 
collections into more manageable form, especially to deal with problems 
of multicollinearity and shortage of degrees of freedom. 

If we write for the i-th principal component 

it
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=
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our procedure can be stated as one that estimates regression relationships 
between the specific economic variables that we want to project and the 
principal components, which, in turn, are based on the primary indicators. 
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ni < 24, is the subset of principal components that are found to be 
significantly related to Xit, a magnitude that we are trying to project. 

St−q = coefficient of a relevant Survey index referring to the q-th 
period (lag). In many cases we distribute the lag in St over a few recent 
months. 

eit = random error. 

Simultaneously, in estimating the coefficients in the above relationship 
we also represent eit as an ARIMA process 
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where both eit and uit are independent random variables. The “noise” in 
this process comes from eit. 

There is much data processing and analysis in these various steps, but 
the structure of the system pays much attention to the underlying 
structure of the social accounts. It is not a purely empirical approach. In 
particular, it depends very much on the structure of a social accounting 
system, involving national income and product accounts (NIPA), the 

                                                           
11 See Nagar & Basu (1999), and Nagar & Rahman (2002). 
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input-output accounts (IO), and the flow-of-funds accounts (F/F). It 
should be noticed that appropriate accounting balance among these three 
accounts seems to track the GDP, which is close to, but not directly 
identified as the end result of aggregate economic activity, but is a very 
important summary statistic, which is the objective of much economic 
analysis. It is well known that GDP can be expressed as the sum of all 
final expenditures, as shown in the NIPA system. This represents the 
demand side of the economy. But, as we indicated above, GDP can also 
be expressed as the sum of all payments to the primary factors of 
production that are responsible for aggregate output. The primary factors 
are labor, capital, land, and public services. This represents the supply 
side of the economy. The sum of all primary factor payments can also be 
evaluated for each sector of the economy as the sum, sector-by-sector, of 
gross sector output less intermediate sector output, to obtain sectoral 
value-added. These totals can be computed from a full IO table. By 
double entry accounting principles, the independent computation of these 
three estimates of GDP should be identical, but errors and emissions of 
observation infiltrate each method in practice, so the three sums do not 
necessarily agree. They may differ from each other by at least as much as 
one or two percent, and this can be important, especially since it does not 
turn out to be a random variable; therefore in choosing indicator 
variables, there must be strong representation from the demand side of 
the accounts, from the supply side, and from sectoral production flows. 
Also there should be consistency with the F/F accounts, dealing with 
saving and investment balances, from which specific indicators can be 
extracted. 

The accounting balances arise from double-entry bookkeeping and 
even from quadruple-entry bookkeeping in the F/F accounts, which are 
important for financial market clearing. Hence, the indicator list should 
contain interest rates, inflation rates, exchange rates, and prices of factor 
inputs. In the applications, described below, the diversification of 
indicators follows those principles very carefully. 

Also, since the objectives are forecasting, there should be indicators 
for the future, in the form of forward and futures market variables in 
addition to the anticipatory components of sample surveys. In this sense, 
a great deal of economic analysis goes into the selection of indicators. 
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We form principal components of indicators by extracting the 
characteristic root of correlation matrices among indicator values. The 
normalized variables in correlation analysis avoid sensitivity to units of 
measurement. Since the terrorist attacks of September 11, 2001 in the US, 
it has been widely noted that these variables have all had key roles in 
supporting the US economy in an entirely new environmental situation, 
and we have been following their patterns, month-by-month, in regularly 
updated studies of their movement on the basis of equations that affect 
the general economy, people’s attitudes, and stochastic dynamic 
(ARIMA) error terms. 

An important early economic use of principal components, though 
not expressly for indicator analysis, was introduced by Richard Stone, 
more than 50 years ago. He regressed objective measured variables on 
components, for his purposes of analysis.12 Each of the four variables 
(consumer spending, industrial production, employment, and financial 
market averages) noted in the previous section have been estimated using 
principal components of economy-wide indicators, and a corresponding 
sample survey. Following the regression of the designated series to be 
explained, we present diagnostic test statistics for serial correlation and 
normality of distribution of residuals. These are followed by 
extrapolation of the dependent variable from equations that are re-
estimated every month, up to the last month prior to extrapolation. Each 
re-estimated equation is extrapolated one-month ahead. The regression 
that is presented is only the last case in the sequence of re-estimates. The 
specification remains unchanged in this sequence.  

Twenty-four indicators are used to calculate principal components to 
be used in the prediction of monthly employment. These indicators are: 
new orders (%chg) , housing starts (%chg), number of building permits 
(%chg), average hourly earnings (%chg), average hours worked (%chg), 
consumer price index (%chg), producer price index (%chg), real retail 
sales (%chg), trade-weighted real exchange rate (%chg), real money 
supply (%chg), real consumer credit (%chg), inventory/sales ratio (chg), 
ratio of budget revenues to budget expenditures (chg), federal funds rate 

                                                           
12 See Richard Stone, “On the Interdependence of Blocks of Transactions”, Supplement 
to the Journal of the Royal Statistical Society IX(1, 1947), 1-45. 
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(chg), prime rate (chg), corporate bond rate (chg), 3-month treasury bill 
rate (chg), 1-year bond yield (chg), 10-year bond yield (chg), S & P 500 
index (%chg), Dow-Jones index (%chg), real personal income (%chg), 
manufacturing & trade sales (%chg), new claims for unemployment 
insurance (chg).  

The final equation estimated using 243 observations (January 1984 – 
March 2004) includes two principal components, the employment index 
of the Institute for Supply Management (ISM)13, and autoregressive and 
moving average processes of residuals. The determination coefficient 
(R2) for the equation is 0.638, and all parameters associated with 
principal components and the Index are significant at the five percent 
level, most of them at the one percent level. There is no serial correlation 
in residuals based on Durbin-Watson, Breusch-Godfrey Lagrange 
Multiplier test and Lyung-Box-Pierce Q test, but the Jarque-Bera test 
indicates that they are not normally distributed, and Engle’s test indicates 
that there is no autoregressive-conditional heteroscedasticity. Ramsey’s 
RESET test indicates that there is no misspecification, and Chow 
breakpoint test indicates stability in the relationship. 

D(EMPLOYMENT) = −615.804 + 11.361*PC2 − 10.293*PC4 + 6.368*ISM_EMP  

  (−4.96)      (2.46)              (−2.11)            (7.73) 

 + 4.776*ISM_EMP(−1) + 3.184*ISM_EMP(−2) + 1.592*ISM_EMP(−3) 

    (7.73)                           (7.73)                             (7.73) 

 + [AR(1) = 0.97, MA(1) = −0.77] 

    (63.0)                           (−12.7) 

R2 = 0.638, SEE = 102.37, F = 83.50, D.W. = 2.10, Jarque-Bera = 8.1, 
Lyung-Box Q(2) = 1.54, Q(12) = 11.18, Breusch-Godfrey LM(2) = 1.64, 
LM(12) = 12.72, Engle ARCH(1) = 1.83, Ramsey RESET(2) = 1.13, 
Chow breakpoint (1994:01) = 4.49, n = 243, (January 1984–March 2004).  

                                                           
13 See Bretz (1990), Dasgupta & Lahiri (1992), Klein & Moore (1991), Pelaez (2003), 
Torda (1985) for the use of ISM (formerly NAPM) surveys. Palaez (2003) proposes the 
use of different weights to improve the predictive power of the composite index. See, 
Garcia-Ferrer & Bujosa-Brun (2000) for the use of business surveys in OECD countries.   
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The real consumer expenditures (CONS) is related to selected 
principal components (selected on the basis of statistical significance), to 
polynomial distributed lag (Almon lag) of the UBS index of investor 
optimism and an ARIMA of the error term.  

DLOG(CONS)*100 = 0.244 + 0.0187*PC1 + 0.1018*PC2 + 0.0467*PC10 + 0.0945*PC14  

 (16.54)  (2.58)              (7.35)              (2.72)                 (3.18) 

 + 0.000386*UBS + 0.000289*UBS(−1) + 0.000193*UBS(−2) 

    (6.32)                  (6.32)                         (6.32) 

 + 0.0000965*UBS(−3) + [AR(1) = 0.341, MA(1) = −0.981] 

    (6.32)                                         (3.49)               (−130.18) 

R2 = 0.636, SEE = 0.256, F = 19.21, D.W. = 2.01, n = 85, (February 1997–
February 2004).  

The Maximum likelihood estimation of the GARCH(1,1) model 
(Engle, 1982; Bollershov, 1986) for the S&P 500 with price/earnings 
ratio (PE) and two principal components (PC1, and PC4) yields the 
following results14: 

DLOG(S&P500) = 0.0078 + 0.1479*DLOG(PE(−1)) − 0.00497*PC1 − 0.00509*PC4 

  (5.40)     (4.64)                               (−5.84)              (−4.13) 

 s2 = 0.000083 + 0.1664 u(t − 1) 2 + 0.7732 s(t − 1) 2 

  (1.826)       (3.82)                    (11.54) 

R2 = 0.104, SEE = 0.034, F = 7.05, D.W. = 1.71, n = 372, (February 1973–
January 2004).  

Principal component analysis is based on our general point of view 
that a country’s (any country’s) economic growth is highly multivariate. 
No single measured economic activity can account for anything as 
complex as a modern economy. We examine many time series, select 

                                                           
14 See Chauvet & Potter (2000), and  Niemera (1991) for leading indicators of the stock 
market index. Boughton & Branson (1991), Dasgupta & Lahiri (1991), Gibson & 
Lazaretou (2001), Roth (1991) propose leading indicators for inflation. 
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those that seemed to have a priori importance. In order to conserve 
degrees of freedom we narrowed the list of right hand side variables in 
the regression as much as possible. This has been an important 
motivation in adopting the principal component methodology. What is 
more, these components account for a high degree of variation of the 
total set. Also, by construction, the components are mutually 
uncorrelated; therefore we can handle the multicollinearity problem from 
a statistical point of view. Each component depends, in some way or 
another, on the whole set of indicators, yet their inter-correlation, which 
is naturally high, does not confound the interpretation of the regression 
estimates, and we have plausible associations between GDP growth and 
individual indicator growth.  

It should be noted that results of consumer sentiment or business 
expectation surveys are useful in improving forecasts. In general, such 
survey results improve forecast accuracy. Klein & Ozmucur (2001, 
2002b) show that the index of investor optimism and the index of 
consumer confidence improve forecasts of real personal consumption 
expenditures, while the index of purchasing managers improves forecasts 
of industrial production and employment. Klein, Mariano & Ozmucur 
(2001) show that results of business expectation surveys in Singapore 
improves employment forecasts. Results of surveys covering subjective 
evaluations of managers or households should be used whenever 
available.    

Forecasts are useful not only for studying the short term 
developments of the economy, but also for adjusting lower frequency 
macro-econometric models so that they are solved from up-to-date initial 
conditions (Klein & Sojo, 1989, Klein & Park, 1995). Comparisons are 
based on ex-ante forecasting accuracy of these models. These forecasts 
are based on no available information for the month of interest, except 
survey results. For example, the April 2004 forecast of employment is 
based on indicator variables which are forecasted econometrically. Since 
“Survey Corner” forecasts have been available since March 2003, 
forecasts are compared for the period beginning in March 2003. There 
are 13 forecasts (March 2003–March 2004) for employment and 12 
forecasts for industrial production (March 2003–February 2004) where 
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actual figures are also available. A mechanical (naïve) model which has 
last month’s change or percentage change is used as the benchmark 
model. Results are presented in Tables 4 and 5. Since general interest is 
in the month-to-month change in non-farm payroll employment and 
month-to-month growth in industrial production index, forecasts and 
error statistics are presented as changes or percent changes. Survey 
corner performs better than the current quarter model (monthly ARIMA 
equation) and the naive model. Average absolute error for month-to-
month changes in employment are 74 thousand for the “survey corner”, 
80 thousand for the “current quarter model”, and 92 thousand for the  
  
Table 4. Forecasts Based on Alternative Models at the beginning of the month (Changes 
in Non-farm Payroll Employment). 

 actual forecast forecast forecast 

 actual 
survey 
corner CQM Naive 

2003.01  143   −6  −101 

2003.02  −308   4  143 

2003.03  −108  −41  −4  −308 

2003.04  −48  −83  −72  −108 

2003.05  −17  −94  −86  −48 

2003.06  −30  −51  0  −17 

2003.07  −44  −22  −4  −30 

2003.08  −93  −8  −19  −44 

2003.09  57  −2  −24  −93 

2003.10  126  −25  20  57 

2003.11  57  20  113  126 

2003.12  1  120  112  57 

2004.01  112  151  65  1 

2004.02  21  144  79  112 

2004.03  308  187  72  21 

2004.04   201  167  308 

average 
absolute 
error   74  80  92 
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Table 5. Forecasts Based on Alternative Models at the beginning of the month 
(Percentage Changes in Industrial Production). 

 actual forecast forecast forecast 

 actual 
survey 
corner CQM Naive 

2003.01  0.73   −0.01  

2003.02  0.09   0.20  

2003.03  −0.54  −0.37  0.15  0.09 

2003.04  −0.45  −0.67  −0.06  −0.54 

2003.05  0.18  0.09  −0.14  −0.45 

2003.06  0.09  0.18  −0.02  0.18 

2003.07  0.46  0.16  0.04  0.09 

2003.08  0.09  0.09  0.16  0.46 

2003.09  0.36  0.09  0.16  0.09 

2003.10  0.27  0.45  0.21  0.36 

2003.11  0.89  0.45  0.21  0.27 

2003.12  0.08  0.44  0.41  0.89 

2004.01  0.79  0.44  0.28  0.08 

2004.02  0.73  0.44  0.36  0.79 

2004.03   0.44  0.56  

2004.04   0.43  0.53  

average 
absolute 
error   0.23  0.35  0.40 

 
 

“naïve model”. Correlation coefficients between actual and forecasted 
month-to-month changes in employment are 0.64 for the survey corner, 
0.46 for the current quarter model and 0.47 for the naïve model (Figure 
4). Average absolute error for month-to-month percent changes in 
industrial production index are 0.23% for the “survey corner”, 0.35% for 
the “current quarter model”, and 0.40% for the “naïve model”. 
Correlation coefficients between actual and forecasted month-to-month 
percent changes in industrial production index are 0.82 for the survey 
corner, 0.42 for the current quarter model, and 0.35 for the naïve model 
(Figure 5). 
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Figure 4. Actual and Extrapolation of Monthly Changes in Non-Farm Payroll 
Employment. 
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Figure 5. Actual and Extrapolation of Monthly Percentage Changes in Industrial 
Production. 
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4.  Conclusion  

Forecasts are useful not only for studying the short term developments of 
the economy, but also for adjusting lower frequency macro-econometric 
models so that they are solved from up-to-date initial conditions. The 
advantage of combining forecasts is clear from results provided by the 
Current Quarter Model. It is also clear that forecast errors decrease with 
added information, as one gets close to the release date. It is also 
important to see that the expenditure side model performs relatively 
better when real GDP growth rate is increasing, and the principal 
components model performs relatively better when the growth rate is 
decreasing. This indicates a possibility of improving forecasts by using 
different weights at different stages of the economy.  

Results of consumer sentiment or business expectation surveys are 
useful in improving forecasts. Surveys are very informative, not only for 
the present critical situation but for analysis of the economy in a more 
normal environment.  
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This chapter deals with seasonal time series in economics and it re-
views models that can be used to forecast out-of-sample data. Some
of the key properties of seasonal time series are reviewed, and vari-
ous empirical examples are given for illustration. The potential lim-
itations to seasonal adjustment are reviewed. The chapter further
addresses a few basic models like the deterministic seasonality model
and the airline model, and it shows what features of the data these
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1. Introduction

This chapter deals with seasonal time series in economics and it reviews

models that can be used to forecast out-of-sample data. A seasonal time

series is assumed to be a series measured at a frequency t where this series

shows certain recurrent patterns within a frequency T , with t = ST . For

example, quarterly data (t) can show different means and variances within a

year (4T ). Similar phenomena can appear for hourly data within days, daily

data within weeks, monthly data within years, and so on. Examples of data

with pronounced recurrent patterns are quarterly nondurable consumption,

∗
Work on this chapter started when the author was enjoying the hospitality of the Insti-

tute of Mathematical Statistics, National University of Singapore (April 2004). Thanks

are due to Dick van Dijk and Marnik Dekimpe for their help with the data. All com-

putations have been made using Eviews (version 4.1). Details of estimation results not

reported in this chapter can be obtained from the author. A full list of relevant references

is also available.
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monthly industrial production, daily retail sales (within a week), hourly

referrals after broadcasting a TV commercial (within a day), and stock

price changes measured per minute within a day.

A trend is important to extrapolate accurately when forecasting longer

horizons ahead. Seasonality is important to properly take care of when

forecasting the next S or kS out-of-sample data, with k not very large,

hence the medium term. This chapter reviews models that can be usefully

implemented for that purpose. The technical detail is kept at a moderate

level, and extensive reference will be made to the studies which contain all

the details. Important books in this context are Hylleberg (1992), Ghysels

and Osborn (2001), and Franses and Paap (2004). The recent survey of

Brendstrup et al. (2004) is excellent, also as it contains a useful and rather

exhaustive list of references.

The outline of this chapter is a follows. In Section 2, I discuss some of

the key properties of seasonal time series. I use a few empirical examples

for illustration. Next, I discuss the potential limitations to seasonal adjust-

ment. In Section 3, I review basic models like the deterministic seasonality

model and the airline model, and show features of the data these models

assume they have. In Section 4, I continue with more advanced models,

like those concerning seasonal and periodic unit roots. Section 5 deals with

some recent advances, which mainly concern models which allow for links

between seasonal variation and heteroskedasticity and non-linearity. Sec-

tion 6 concludes with a summary of important future research areas.

2. Seasonal Time Series

This section deals with various features of seasonally observed time series

that one might want to capture in an econometric time series model. Next,

the discussion focuses on what it is that one intends to forecast. Finally, I

address the issue why seasonal adjustment often is problematic.

How do seasonal time series look like?

In this chapter I use a few series for illustration. The typical tools to

see how seasonal variation in a series might look like, and hence which

time series models might be considered to start with, are (i) graphs (over

time, or per season), (ii) autocorrelations (usually after somehow removing

the trend, where it is not uncommon to use the first differencing filter

∆1yt = yt−yt−1), (iii) the R2 of a regression of ∆1yt on S seasonal dummies
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Figure 1: Quarterly consumption and income per quarter in Japan

or on S (or less) sines and cosines, (iv) a regression of squared residuals

from a time series model for ∆1yt on an intercept and S − 1 seasonal

dummies (to check for seasonal variation in error variance), and finally (v)

autocorrelations per season (to see if there is periodicity). With periodicity

one typically means that correlations within or across variables can change

with the season, see Franses and Paap (2004) for an up to date survey.

It should be noted that these are all just first-stage tools, to see in which

direction one could proceed. They should not be interpreted as final models

or methods, as they usually do not fully capture all relevant aspects of the

time series.

The first set of series concerns private consumption and GDP for

Japan, quarterly observed, for the period 1980.1-2001.2 (Data source is

www.economagic.com). The graphs of these two series appear in Figure 1.

The graphs display an upward moving trend for both series, pronounced

intra-year variation, and it seems that this variation is common across the

two series.

Figure 2 zooms in on the Japanese consumption series (now in natural

logarithms, hence the notation LC) by plotting the quarterly observations

against the year (Q1, Q2, Q3 and Q4). This way one can get a better
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Figure 2: Annual consumption in Japan, observed per quarter

picture of whether seasonal patterns change over time, as then these lines

would intersect. These graphs were introduced in Franses (1991, 1994) and

now appear in Eviews (version 4.1) as “split seasonals”. For the Japanese

consumption series one can observe that there is a slight change in season-

ality towards the end of the sample, but mostly the seasonal pattern seems

rather stable over time.

For these two series, after taking natural logs, the R2 of the “seasonal

dummy regression” for ∆1yt, that is,

∆1yt =

4
∑

s=1

δsDs,t + εt, (1)

is 0.927 for log(consumption) and for log(income) it is 0.943. The Ds,t

variables obtain a value 1 in seasons s and a 0 elsewhere. Note that it is

unlikely that ε̂t matches with a white noise time series, but then still, the

values of these R2 measures are high. Franses, Hylleberg and Lee (1995)

show that the size of this R2 can be misinterpreted in case of neglected unit

roots, but for the moment this regression is informative.

A suitable first-attempt model for both Japanese log(consumption) and

log(income) is

∆1yt =

4
∑

s=1

δsDs,t + ρ1∆1yt−1 + εt + θ4εt−4 (2)
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where ρ1 is estimated to be −0.559 (0.094) and −0.525 (0.098), respectively

(with standard errors in parentheses), and where θ4 is estimated to be

0.441 (0.100) and 0.593 (0.906), respectively. Relative to (1), the R2 of

these models have increased to 0.963 and 0.975, respectively, suggesting

that constant deterministic seasonality seems to account for the majority

of trend-free variation in the data.

The next series is quarterly observed M1 for Australia for 1975.2 to

and including 2004.1 (Data source: www.economagic.com), see Figure 3.

Again, one can observe a marked upward trend, and there are also signs of

seasonality, but this time the type of seasonality is a bit unclear. This might

be caused by the dominance of the trend, and hence one might want to have

a look at the time series without a trend. There are many ways to de-trend

a time series, but for the current purpose it is again convenient to take the

natural logarithm and then first differences, approximately amounting to

quarterly growth rates. The graph of quarterly growth in M1 appears in

Figure 4.

Figure 4 clearly shows there is seasonality in M1 growth1. A regression

of the growth rates (differences in logs) for this variable on four seasonal

1
Interestingly, this seasonality seems to concern intervals of 2 years instead of the usual

1 year, but for the moment this is not pursued any further.



98 Philip Hans Franses

-.06

-.04

-.02

.00

.02

.04

.06

.08

.10

1980 1985 1990 1995 2000

LOG(M1)-LOG(M1(-1))

Figure 4: Quarterly growth in M1 in Australia

dummies gives an R2 of 0.203. Fitting autoregressive models of order 8, 7,

6 and so on, while checking for the absence of residual correlation, reveals

that an AR(5) model fits the data for ∆1yt reasonably well, although the

residuals are not entirely “white”. The R2 increases to 0.519, with strong

significant parameters for lags 3, 4, and 5, and hence, seasonality for this

series cannot fully be captured by deterministic seasonality.

Next, a regression of the squares of the residuals from the AR(5) model

on an intercept and 3 seasonal dummies gives an F -value of 5.167, with a

p-value of 0.002. Hence, this series seems to display seasonal variation in

the variance. One cause for this finding is that a better model for this series

could be a periodic time series model, which implies seasonal heteroskedas-

ticity if a non-periodic model is fitted, see Franses and Paap (2004). When

I fit an AR(2) model for each of the seasons, that is, I regress ∆1yt on

∆1yt−1 and ∆1yt−2 but allow for different parameters for the seasons, then

the estimation results for quarters 1 to 4 are (0.929, 0.235), (0.226, 0.769),

(0.070, −0.478), and (0.533, −0.203). This suggests that different models

for different seasons might be useful, hence a periodic model.
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Figure 5: Monthly index of total industrial production in the USA

The next series to consider is the index of monthly total indus-

trial production for the USA, covering 1919.01-2004.02 (Data source:

www.economagic.com), and its graph is given in Figure 5. Again a trend is

clearly visible, and also at times one can observe dips, which are typically

assumed to correspond with recessions. There is ample literature on the

supposed non-linearity of this time series, see for example Franses and van

Dijk (2004) and the references therein, but this is neglected here for the

moment, see Section 5. Additionally, as Figure 6 indicates, there seems to

be a change in the variance in this series.

A regression of ∆1 of log(industrial production) on S = 12 seasonal

dummies gives an R2 of 0.374. Adding lags at 1, 12 and 13 to this auxil-

iary regression model improves the fit to 0.524 (for 1008 data points), with

parameters 0.398, 0.280 and −0.290. There is no obvious residual autocor-

relation. The sum of these autoregressive parameters is 0.388. This implies

that certainly for forecasts beyond the 12 month horizon, constant season-

ality dominates. Testing for seasonal heteroskedasticity in the way outlined

above for Australian M1 does not suggest any such variation.
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Figure 6: Monthly growth in industrial production in the USA

The next series are the monthly returns of 10 decile portfolios (ranked

according to market capitalization), for the New York Stock Exchange,

ranging from 1926.08 to 2002.122. These returns might be best described

by the simple regression model

yt =

12
∑

s=1

δsDs,t + εt (3)

εt = ρ1εt−1 + ut. (4)

One might expect a “January effect”, in particular for the smaller stocks,

see Haugen and Lakonishok (1987).

Comparing the estimated parameters for the decile models and their

associated standard errors suggests that only a few parameters are signifi-

cant. Figure 7 depicts the estimates of δ̂s for the first two and for the last

two deciles, where the first decile usually gets a significant positive param-

eter. Also the R2 values are higher for lower deciles. Clearly, the graphs in

Figure 7 suggest the presence of a January effect for the smaller stocks.

2
Data source is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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The parameters for the seasonal dummies in the regression model in (4)

are often not significant. In practice, this is a phenomenon that is quite

common for disaggregated data. For example, for weekly sales of instant

decaf coffee (observed in the stores of a retail chain in the Netherlands, for

1994 week 29 to 1998 week 28), one might consider

yt =

52
∑

s=1

δsDs,t + εt, (5)

but this involves a large amount of parameters, and most likely, many of

these will not be statistically relevant. One can then reduce this number by

deleting certainDs,t variables, but this might complicate the interpretation.

In that case, a more sensible model is

yt = µ+

26
∑

k=1

[αk cos(
2πkt

52
) + βk sin(

2πkt

52
)] + εt, (6)

where t = 1, 2, ..... A cycle within 52 weeks (an annual cycle) corresponds

with k = 1, and a cycle within 4 weeks corresponds with k = 13. Other
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interpretable cycles would correspond with 2 weeks, 13 weeks and 26 weeks

(k = 26, 4 and 2, respectively). Note that sin( 2πkt
52 ) is equal to 0 for k = 26,

hence the intercept µ in (6). One may now decide to include only those

cycles that make sense from an interpretation point of view.

Figure 8 shows the fit of the model in (6), where εt is assumed an

AR(1) process, and where only cycles within 2, 4, 13, 26 and 52 weeks are

considered. Hence, there are only 9 variables to characterize seasonality.

The R2 measure is 0.139, suggesting that there is moderate deterministic

seasonality in this weekly series.

What do we want to forecast?

For seasonal data with seasonal frequency S, one usually considers fore-

casting 1-step ahead, S
2 -steps ahead or S-steps ahead. One may also want

to forecast the sum of 1 to S steps ahead, that is, say, a year.

There is no general rule that says that forecasting data at the T fre-

quency is better done using data for that particular frequency than by using

data at a higher frequency, and then sum the forecasts. For example, when
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the purpose is to forecast two years ahead, and one has monthly data, one

can choose to use a model for the annual data or for the monthly data.

There are less annual data than monthly data, so one has less information

to specify a model. On the other hand, monthly data show seasonality that

one has to capture and such data also might have more outlying observa-

tions which may affect model construction.

Also, if the aim is to forecast a full year ahead, one might perhaps, at

least in principle, consider modelling seasonally adjusted data. Of course,

these adjusted data should not show any seasonality, and the adjustment

method should not have introduced data features that were not there to

begin with. As I will discuss next, there are however some problematic

aspects of seasonally adjusted data.

Why is seasonal adjustment often problematic?

It is common practice to seasonally adjust quarterly or monthly observed

macroeconomic time series, like GDP and unemployment. A key motivation

is that practitioners seem to want to compare the current observation with

that in the previous month or quarter, without considering seasonality. As

many series display seasonal fluctuations which are not constant over time,

at least not for the typical time span considered in practice, there is a debate

in the statistics and econometrics literature about which method is most

useful for seasonal adjustment. Roughly speaking, there are two important

methods. The first is the Census X-11 method, initiated by Shiskin and

Eisenpress (1957), and the second one uses model-based methods, see for

example Maravall (1995). Interestingly, it seems that with the new Census

X-12 method, the two approaches have come closer together, see Findley et

al. (1998). In Franses (2001) I address the question why one would want

to seasonally adjust in the first place, and what follows in this subsection

draws upon that discussion.

Except for macroeconomics, there is no economic discipline in which the

data are seasonally adjusted prior to analysis. It is hard to imagine, for

example, that there would be a stock market index, with returns corrected

for day-of-the-week effects. Also, seasonality in sales or market shares is

of particular interest to a manager, and seasonal adjustment of marketing

data would simply result in an uninteresting time series.

Generally, the interest in analyzing macroeconomic data concerns the

trend and the business cycle. In case the data have stochastic trends, one

usually resorts to well-known techniques for common trends analysis and
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cointegration, see for example Engle and Granger (1991). To understand

business cycle fluctuations, for example in the sense of examining which

variables seem to be able to predict recessions, one can use nonlinear models

like the (smooth transition) threshold model and the Markov-switching

model, see Granger and Teräsvirta (1993) and Franses and van Dijk (2000)

for surveys.

Consider a seasonally observed time series yt, where t runs from 1 to n.

In practice one might be interested in the seasonally adjusted observation

at time n or n−1. The main purpose of seasonal adjustment is to separate

the observed data into two components, a nonseasonal component and a

seasonal component. These components are not observed, and have to be

estimated from the data. It is assumed that

yt = ŷNS
t + ŷS

t , (7)

where ŷNS
t is the estimated nonseasonal component, and ŷS

t is the esti-

mated seasonal component. This decomposition assumes an additive re-

lation. When this is not the case, one can transform yt until it holds for

the transformed data. For example, if the seasonal fluctuations seem mul-

tiplicative with the trend, one typically considers the natural logarithmic

transformation.

As said, there are two commonly used approaches to estimate the com-

ponents in (7). The first is coined Census X-12. This approach applies a

sequence of two-sided moving average filters like

w0 +

m
∑

i=1

wi(L
i + L−i), (8)

where L is the familiar backward shift operator, and where the value of

m and the weights wi for i = 0, 1, . . . ,m are set by the practitioner. It

additionally contains a range of outlier removal methods, and corrections

for trading-day and holiday effects. An important consequence of two-sided

filters is that to adjust observation yn, one needs the observations at time

n + 1, n + 2 to n + m. As these are not yet observed at n, one has to

rely on forecasted values, which are then treated as genuine observations.

Of course, this automatically implies that seasonally adjusted data should

be revised after a while, especially if the newly observed realizations differ

from those forecasts. Interesting surveys of this method are given in Bell

and Hillmer (1984), Hylleberg (1986), and more recently in Findley et al.

(1998).
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The second approach involves model-based methods. These assume that

the seasonal component can be described by a model like for example

(1 + L+ L2 + L3)yS
t = εt. (9)

With an estimate of the variance of εt, and with suitable starting-values,

one can estimate the seasonal component using Kalman-filtering techniques,

see Harvey (1989). Given ŷS
t , one can simply use (7) to get the estimated

adjusted series.

A few remarks can be made. The first amounts to recognizing that sea-

sonally adjusted data are estimated data. In practice this might be forgot-

ten, which is mainly due to the fact that those who provide the seasonally

adjusted data tend not to provide the associated standard errors. This is

misleading. Indeed, a correct statement would read “this month’s unem-

ployment rate is 7.8, and after seasonal adjustment it is 7.5 plus or minus

0.3”. The Census X-12 method cannot generate standard errors, but for

the model-based methods it is not difficult to do so. Koopman and Franses

(2003) propose a method which also allows for business cylce-dependent

confidence intervals around seasonally adjusted data.

Obviously, when ŷNS
t is saved and ŷS

t is thrown away, one cannot re-

construct the original series yt. Moreover, if the original series yt can be

described by an econometric time series model with innovations εt, it is

unclear to what extent these innovations are assigned to either ŷNS
t , ŷS

t or

to both. Hence, when one constructs an econometric time series model for

the adjusted series ŷNS
t , the estimated innovations in this model are not

the “true” innovations. This feature makes impulse-response analysis less

interesting.

The key assumption is the relation in (7). For some economic time series

this relation does not hold. For example, if the data can best be described

by a so-called periodic time series model, where the parameters vary with

the seasons, see Section 4 below, one cannot separate out a seasonal com-

ponent and reliably focus on the estimated nonseasonal component. There

are a few theoretical results about what exactly happens if one adjusts a

periodic series, and some simulation and empirical results are available,

see Franses (1996), Ooms and Franses (1997) and Del Barrio Castro and

Osborn (2004). Generally, seasonally adjusted periodic data still display

seasonality.

Given the aim of seasonal adjustment, that is, to create time series which

are more easy to analyze for trends and business cycles, it is preferable
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that seasonally adjusted data (1) show no signs of seasonality, (2) do not

have trend properties that differ from those of the original data, and (3)

that they do not have other non-linear properties than the original data.

Unfortunately, it turns out that most publicly available adjusted data do

not have all of these properties. Indeed, it frequently occurs that ŷNS
t

can be modeled using a seasonal ARMA model, with highly significant

parameters at seasonal lags in both the AR and MA parts of the model.

The intuition for this empirical finding may be that two-sided filters as in (8)

can be shown to assume quite a number of so-called seasonal unit roots, see

Section 3 below. Empirical tests for seasonal unit roots in the original series

however usually suggest a smaller number of such roots, and by assuming

too many such roots, seasonal adjustment introduces seasonality in the

MA part of the model. Furthermore, and as mentioned before, if the data

correspond with a periodic time series process, one can still fit a periodic

time series model to the adjusted data. The intuition here is that linear

moving average filters treat all observations as equal.

Would seasonal adjustment leave the trend property of the original data

intact? Unfortunately not, as many studies indicate. The general finding is

that the persistence of shocks is higher, which in formal test settings usually

corresponds with more evidence in favor of a unit root. In a multivariate

framework this amounts to finding less evidence in favor of cointegration,

that is, of the presence of stable long-run relationships, and thus more ev-

idence of random walk type trends. The possible intuition of this result is

that two-sided filters make the effects of innovations to appear in 2m + 1

adjusted observations, thereby spuriously creating a higher degree of persis-

tence of shocks. Hence, seasonal adjustment incurs less evidence of long-run

stability.

Non-linear data do not become linear after seasonal adjustment, but

there is some evidence that otherwise linear data can display non-linearity

after seasonal adjustment, see Ghysels, Granger and Siklos (1996). Addi-

tionally, non-linear models for the original data seem to differ from similar

models for the adjusted data. The structure of the non-linear model does

not necessarily change, it merely concerns the parameters in these models.

Hence, one tends to find other dates for recessions for adjusted data than for

unadjusted data. A general finding is that the recessions for adjusted data

last longer. The intuition for this result is that expansion data are used to

adjust recession data and the other way round. Hence, regime switches get

smoothed away or become less pronounced.
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In sum, seasonally adjusted data may still display some seasonality, can

have different trend properties than the original data have, and also can

have different non-linear properties. It is my opinion that this suggests that

these data may not be useful for their very purpose.

3. Basic Models

This section deals with a few basic models that are often used in practice.

They also often serve as a benchmark, in case one decides to construct

more complicated models. These models are the constant deterministic

seasonality model, the seasonal random walk, the so-called airline model

and the basic structural time series model.

The deterministic seasonality model

This first model is useful in case the seasonal pattern is constant over time.

This constancy can be associated with various aspects. First, for some of the

data we tend to analyze in practice, the weather conditions do not change,

that is, there is an intra-year climatological cycle involving precipitation

and hours of sunshine that is rather constant over the years. For exam-

ple, the harvesting season is reasonably fixed, it is known when lakes and

harbors are ice-free, and our mental status also seems to experience some

fixed seasonality. In fact, consumer survey data (concerning consumer con-

fidence) show seasonality, where such confidence is higher in January and

lower in October, as compared with other months. Some would say that

such seasonality in mood has an impact on stock market fluctuations, and

indeed, major stock market crashes tend to occur more often in the month

of October. Other regular phenomena concern calender-based festivals and

holidays. Finally, institutional factors as tax years, end-of-years bonuses,

and school holidays, can make some economic phenomena to obey a regular

seasonal cycle.

A general model for constant seasonality in case there are S seasons is

yt = µ+

S

2
∑

k=1

[αk cos(
2πkt

S
) + βk sin(

2πkt

S
)] + ut, (10)

where t = 1, 2, .... and ut is some ARMA type process. This expression

makes explicit that constant deterministic seasonality can also be viewed

as a sum of cycles, defined by sines and cosines. For example, for S = 4,



108 Philip Hans Franses

one has

yt = µ+ α1 cos(
1

2
πt) + β1 sin(

1

2
πt) + α2 cos(πt) + ut, (11)

where cos( 1
2πt) equals (0, −1, 0, 1, 0, −1,...) and sin( 1

2πt) is (1, 0, −1, 0,

1, 0,...) and cos(πt) is (−1, 1, −1, 1,...). The µ is included as sin(πt) is

zero everywhere.

The expression in terms of sines and cosines is also relevant as it matches

more naturally with the discussion below on filters. For example, if one

considers yt + yt−2 for quarterly data, which can be written as (1 + L2)yt,

then (1 + L2) cos( 1
2πt) = 0 and (1 + L2) sin( 1

2πt) = 0. This means that

this filter effectively cancels part of the deterministic seasonal variation.

Additionally, it holds that (1 +L) cos(πt) = 0, and of course, (1−L)µ = 0.

This shows that deterministic seasonality can be removed by applying the

transformation (1 − L)(1 + L)(1 + L2) = 1 − L4. In words it means that

comparing the current quarter with the same quarter last year effectively

removes the influence of deterministic seasonality, if there would be any,

or that of a trends, again if there would be any. I will return to this

transformation later on.

Naturally, there is a one-to-one link between the model in (10) and the

model which has the familiar S seasonal dummy variables. For S = 4, one

has

yt =

4
∑

s=1

δsDs,t + ut, (12)

and it holds that µ =
∑4

s=1 δs, and that α1 = δ4 − δ2, β1 = δ1 − δ3 and

α2 = δ4 − δ3 + δ2 − δ1. There is no particular reason to favor one of the

two models, except for the case where S is large, as I mentioned before.

For example, when S is 52, a model like in (12) contains many parameters,

of which many might turn out to be insignificant in practice. Additionally,

the interpretation of these parameters is also not easy. In contrast, for the

model in (10) one can choose to assume that some α and β parameters are

equal to zero, simply as they are associated with deterministic cycles which

are not of interest for the analysis at hand.

The constant seasonality model is applied widely in marketing and

tourism. In finance, one might expect seasonality not to be too constant

over time, basically as that would imply that traders could make use of

it. Further, many macroeconomic data seem to display seasonality that

changes over time, as is illustrated by for example Canova and Ghysels
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(1994) and Canova and Hansen (1995). Seasonal patterns can change due

to changing consumption patterns. For example, one nowadays needs to

pay for next year’s holiday well in advance. Also, one can eat ice in the win-

ter, and nowadays have all kinds of vegetables in any season. It might also

be that institutions change. The tax year may shift, the end-of-year bonus

might be divided over three periods, and the timing of children’s holidays

can change. It may also be that behavior changes. For example, one can

imagine different responses to exogenous shocks in different seasons. Also,

it may be that certain shocks occur more often in some seasons. All these

reasons suggest that seasonal patterns can change over time. In the rest of

this section, I will discuss three basic models that can describe time series

with changing seasonal patterns.

Seasonal random walk

A simple model that allows the seasonal pattern to change over time is the

seasonal random walk, given by

yt = yt−S + εt. (13)

It might not immediately be clear from this expression that seasonality

changes, and therefore it is useful to consider the S annual time series Ys,T .

The seasonal random walk implies that for these annual series it holds that

Ys,T = Ys,T−1 + εs,T . (14)

Hence, each seasonal series follows a random walk, and due to the innova-

tions, the annual series may switch position, such that “summer becomes

winter”.

From graphs it is not easy to discern whether a series is a seasonal

random walk or not. The observable pattern depends on the starting values

of the time series, relative to the variance of the error term, see the graphs

in Figure 9. When the starting values are very close to each other, seasonal

patterns seem to change quite rapidly (the series y) and when the starting

values are far apart, the graph of the x series suggests that seasonality is

close to constant, at least at first sight.

This demonstrates that simply looking at graphs might not be reliable.

Here, a look at the autocorrelations of the series (1−LS)yt could be help-

ful. In the case of a seasonal random walk, the estimated autocorrelation

function should look like a white noise series, while such a function for a
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Figure 9: The two quarterly variables are seasonal random walks, with

different starting values.

(1 − LS) transformed deterministic seasonality series, would result in an

error process like ut −ut−4, with a theoretical fourth order autocorrelation

of value −0.5, see Franses (1998).

Remarkably, even though the realizations of a seasonal random walk

can show substantial within-sample variation, the out-of-sample forecasts

are deterministic. Indeed, at time n, these forecasts are

ŷn+1 = yn+1−S

ŷn+2 = yn+2−S

:

ŷn+S = yn

ŷn+S+1 = ŷn+1

ŷn+S+2 = ŷn+2.

Another way of allowing for seasonal random walk type changing pat-

tern, is to introduce changing parameters. For example, a subtle form

of changing seasonality is described by a time-varying seasonal dummy
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Figure 10: Time series with constant seasonality (x) and with one seasonal

dummy parameter as a seasonal random walk (y)

parameter model. For example, for S = 4 this model could look like

yt =

4
∑

s=1

δs,tDs,t + ut, (15)

where

δs,t = δs,t−S + εs,t. (16)

When the variance of εs,t = 0, the constant parameter model appears. The

amount of variation depends on the variance of εs,t. A illustration is given

in Figure 10. Such a model is used as a test vehicle in Canova and Hansen

(1995) to diagnose if there is changing seasonality in time series.

Airline model

It can be felt that the seasonal random walk model allows for too much

variation in the seasonal pattern. Indeed, allowing each season to be a ran-

dom walk might introduce too much variation. One way to accommodate

this is to introduce a correction, for example by having an error term at
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the lag that corresponds with the filter with a parameter that comes close

to unity. An example is

yt = yt−S + εt + θSεt−S , (17)

where θS can approximate −1. Bell (1987) demonstrates that when θS =

−1, the model reduces to

yt =

S
∑

s=1

δsDs,t + εt. (18)

Clearly, this also gives an opportunity to test if there is constant or changing

seasonality.

An often applied model, popularized by Box and Jenkins (1970) and

named after its application to monthly airline passenger data, is the airline

model. It builds on the above model by considering

(1 − L)(1 − LS)yt = (1 + θ1L)(1 + θSL
S)εt, (19)

where it should be noted that

(1 − L)(1 − LS)yt = yt − yt−1 − yt−S + yt−S−1. (20)

This model is assumed to effectively handle a trend in the data using the

filter (1−L) and any changing seasonality using (1−LS). Strictly speaking,

the airline model assumes S+ 1 unit roots. This is due to the fact that the

characteristic equation of the AR part, which is,

(1 − z)(1 − zS) = 0, (21)

has S + 1 solutions on the unit circle. For example, if S = 4 the solutions

are (1, 1, −1, i, −i). This implies a substantial amount of random walk like

behavior, even though it is corrected to some extent by the (1 + θ1L)(1 +

θSL
S)εt part of the model. In terms of forecasting, it assumes very wide

confidence intervals around the point forecasts. On the other hand, the

advantages of this model are that it contains only two parameters and that

it can describe a wide range of variables, which can be observed from the

Eviews output in Figures 11, 12 and 13. The estimated residuals of these

models do not obviously indicate mis-specification. On the other hand, it is

clear that the roots of the MA polynomial (indicated at the bottom panel

of these graphs) are close to the unit circle.
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Dependent Variable: LC-LC(-1)-LC(-4)+LC(-5)

Method: Least Squares

Date: 04/07/04   Time: 09:48

Sample(adjusted): 1981:2 2001:2

Included observations: 81 after adjusting endpoints

Convergence achieved after 10 iterations

Backcast: 1980:1 1981:1

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.000329 0.000264 -1.246930 0.2162

MA(1) -0.583998 0.088580 -6.592921 0.0000

SMA(4) -0.591919 0.090172 -6.564320 0.0000

R-squared 0.444787    Mean dependent var -5.01E-05

Adjusted R-squared 0.430550    S.D. dependent var 0.016590

S.E. of regression 0.012519    Akaike info criterion -5.886745

Sum squared resid 0.012225    Schwarz criterion -5.798061

Log likelihood 241.4132    F-statistic 31.24325

Durbin-Watson stat 2.073346    Prob(F-statistic) 0.000000

Inverted MA Roots        .88        .58    .00+.88i   -.00 -.88i

      -.88

Figure 11: Airline model estimation results: Quarterly log(consumption)

in Japan

Dependent Variable: LM-LM(-1)-LM(-4)+LM(-5)

Method: Least Squares

Date: 04/07/04   Time: 09:50

Sample(adjusted): 1976:3 2004:1

Included observations: 111 after adjusting endpoints

Convergence achieved after 16 iterations

Backcast: 1975:2 1976:2

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.000192 0.000320 -0.599251 0.5503

MA(1) 0.353851 0.088144 4.014489 0.0001

SMA(4) -0.951464 0.016463 -57.79489 0.0000

R-squared 0.647536    Mean dependent var -3.88E-06

Adjusted R-squared 0.641009    S.D. dependent var 0.032112

S.E. of regression 0.019240    Akaike info criterion -5.036961

Sum squared resid 0.039981    Schwarz criterion -4.963730

Log likelihood 282.5513    F-statistic 99.20713

Durbin-Watson stat 2.121428    Prob(F-statistic) 0.000000

Inverted MA Roots        .99    .00+.99i   -.00 -.99i       -.35

      -.99

Figure 12: Airline model estimation results: Quarterly log(M1) in Australia
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Dependent Variable: LI-LI(-1)-LI(-12)+LI(-13)

Method: Least Squares

Date: 04/07/04   Time: 09:52

Sample(adjusted): 1920:02 2004:02

Included observations: 1009 after adjusting endpoints

Convergence achieved after 11 iterations

Backcast: 1919:01 1920:01

Variable Coefficient Std. Error t-Statistic Prob.  

C 2.38E-05 0.000196 0.121473 0.9033

MA(1) 0.378388 0.029006 13.04509 0.0000

SMA(12) -0.805799 0.016884 -47.72483 0.0000

R-squared 0.522387    Mean dependent var -0.000108

Adjusted R-squared 0.521437    S.D. dependent var 0.031842

S.E. of regression 0.022028    Akaike info criterion -4.790041

Sum squared resid 0.488142    Schwarz criterion -4.775422

Log likelihood 2419.576    F-statistic 550.1535

Durbin-Watson stat 1.839223    Prob(F-statistic) 0.000000

Inverted MA Roots        .98    .85+.49i    .85 -.49i    .49+.85i

   .49 -.85i    .00 -.98i   -.00+.98i       -.38

  -.49 -.85i   -.49+.85i   -.85 -.49i   -.85+.49i

      -.98

Figure 13: Airline model estimation results: Monthly log(industrial pro-

duction) in the USA

Basic structural model

Finally, a model that takes a position in between seasonal adjustment and

the airline model is the Structural Time Series Model, see Harvey (1989).

The basic idea is that a time series can be decomposed in various compo-

nents, which reflect seasonality, trend, cycles and so on. This representa-

tion facilitates the explicit consideration of a trend component or a seasonal

component, which, if one intends to do so, can be subtracted from the data

to get a trend-free or seasonality-free series. Often, a Structural Time Se-

ries Model can be written as a seasonal ARIMA type model, and hence, its

descriptive quality is close to that of a seasonal ARIMA model.

To illustrate, an example of a structural time series model for a quarterly

time series is

yt = µt + st + wt, wt ∼ N(0, σ2
w) (22)

(1 − L)2µt = ut, ut ∼ N(0, σ2
u) (23)

(1 + L+ L2 + L3)st = vt, vt ∼ N(0, σ2
v) (24)
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where the error processes wt, ut and vt are mutually independent, and

where the errors are normally and independently distributed. This model

contains three unknown parameters, that is, the variances, and of course,

also the variables µt, st and the error term wt are unobserved. The interest

is in estimating the trend and the seasonal component, which are associated

with these features due to the lag polynomials (1−L)2 and (1 +L+L2 +

L3), respectively. For parameter estimation one relies on Kalman filter

techniques.

Combining the three equations gives that yt can also be described by

(1 − L)(1 − L4)yt = ζt (25)

where ζt is a moving average process of order 5. Notice that this description

comes close to that of the airline model above. This can be substantiated

by deriving the autocovariances γk, k = 0, 1, 2, . . ., of ζt, which are

γ0 = 4σ2
u + 6σ2

v + 4σ2
w (26)

γ1 = 3σ2
u − 4σ2

v − 2σ2
w (27)

γ2 = 2σ2
u + σ2

v (28)

γ3 = σ2
u + σ2

w (29)

γ4 = −2σ2
w (30)

γ5 = σ2
w (31)

γj = 0 for j = 6, 7, . . . . (32)

The only formal differences between this model and the airline model is

that the latter implies a zero-valued third order autocovariance, and that

γ3 = γ5.

Conclusion

There are various ways to describe a time series (and use that description

for forecasting) with constant or changing seasonal variation. In the next

section, more models will be proposed for describing changing seasonality.

In practice, of course, one needs to make a choice. To make such a

choice, one usually zooms in on the key differences between the various

models, and these mainly concern the number of unit roots assumed in

the autoregressive or moving average polynomials. When these roots are

associated with seasonal fluctuations, like for example (1+L) and (1+L2),
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these roots are called seasonal unit roots. The next section will say more

about this selection of models.

To conclude, an important message of this section is that model choice

can not just be guided by an informal look at graphs or at autocorrelation

functions. Various models can generate data that look very similar, and

hence more formal tests are needed.

4. Advanced Models

The previous section reviewed various basic models without checking

whether these filters match with the properties of the data. These filters

assume a certain amount of unit roots, and it seems sensible to test whether

these roots are present or not. In this section I discuss models that allow

for a more sophisticated description of seasonal patterns, while allowing for

the possible presence of zero frequency trends. Next, I will discuss models

that allow the trend and season variation to be intertwined.

Seasonal unit roots

A time series variable has a non-seasonal unit root if the autoregressive

polynomial (of the model that best describes this variable), contains the

component 1−L, and the moving-average part does not. For example, the

model yt = yt−1 + εt has a first-order autoregressive polynomial 1 − L, as

it can be written as (1 − L)yt = εt. Hence, data that can be described by

the random walk model are said to have a unit root. The same holds of

course for the model yt = µ+ yt−1 + εt, which is a random walk with drift.

Solving this last model to the first observation, that is,

yt = y0 + µt+ εt + εt−1 + . . .+ ε1 (33)

shows that such data also have a deterministic trend. Due to the summation

of the error terms, it is possible that data diverge from the overall trend µt

for a long time, and hence one could conclude from a graph that there are

all kinds of trends with directions that vary from time to time. Therefore,

such data are sometimes said to have a stochastic trend.

The unit roots in seasonal data, which can be associated with changing

seasonality, are seasonal unit roots, see Hylleberg et al. (1990) [HEGY].

For quarterly data, these roots are −1, i, and −i. For example, data gen-

erated from the model yt = −yt−1 + εt would display seasonality, but if

one were to make graphs with the split seasonals, then one could observe
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that the quarterly data within a year shift places quite frequently. Similar

observations hold for the model yt = −yt−2 + εt, which can be written as

(1 + L2)yt = εt, where the autoregressive polynomial 1 + L2 corresponds

to the seasonal unit roots i and −i, as these two values solve the equation

1 + z2 = 0.

Testing for seasonal unit roots

In contrast to simply imposing (seasonal) unit roots, one can also test

whether they are present or not. The most commonly used method for this

purpose is the HEGY method. For quarterly data it amounts to a regression

of ∆4yt on deterministic terms like an intercept, seasonal dummies, a trend

and seasonal trends and on (1 +L+L2 +L3)yt−1, (−1 +L−L2 +L3)yt−1,

−(1+L2)yt−1, −(1+L2)yt−2, and on lags of ∆4yt. A t-test is used to exam-

ine the significance of the parameter for (1+L+L2+L3)yt−1, and similarly,

a t-test for (−1 + L − L2 + L3)yt−1 and a joint F -test for −(1 + L2)yt−1

and −(1 + L2)yt−2. An insignificant test value indicates the presence of

the associated root(s), which are 1, −1, and the pair i, −i, respectively.

Asymptotic theory for the tests is developed in Hylleberg et al. (1990), and

useful extensions are put forward in Smith and Taylor (1998).

When including deterministic terms, it is important to recall the dis-

cussion in Section 2, concerning the seasonal dummies. Indeed, when the

seasonal dummies are included unrestrictedly, it is possible that the time

series (under the null hypothesis of seasonal unit roots) can display sea-

sonally varying deterministic trends. Hence, when checking for example

whether the (1 + L) filter can be imposed, one also needs to impose that

the α2 parameter for cos(πt) in (11) equals zero. The preferable way to in-

clude deterministics therefore is to include the alternating dummy variables

D1,t −D2,t +D3,t −D4,t, D1,t −D3,t, and D2,t −D4,t. And, for example,

under the null hypothesis that there is a unit root −1, the parameter for the

first alternating dummy should also be zero. These joint tests extend the

work of Dickey and Fuller (1981), and are discussed in Smith and Taylor

(1999). When models are created for panels of time series or for multivari-

ate series, as I will discuss below, these restrictions on the deterministics

(based on the sine-cosine notation) are important too.

Kawasaki and Franses (2003) propose to detect seasonal unit roots

within the context of a structural time series model. They rely on model se-

lection criteria. Using Monte Carlo simulations, they show that the method

works well. They illustrate their approach for several quarterly macro-

economic time series variables.



118 Philip Hans Franses

Seasonal cointegration

In case two or more seasonally observed time series have seasonal unit roots,

one may be interested in testing for common seasonal unit roots, that is, in

testing for seasonal cointegration. If these series have such roots in common,

they will have common changing seasonal patterns.

Engle et al. (1993) [EGHL] propose a two-step method to see if there

is seasonal cointegration. When two series y1,t and y2,t have a common

non-seasonal unit root, then the series ut defined by

ut = (1 + L+ L2 + L3)y1,t − α1(1 + L+ L2 + L3)y2,t (34)

does not need the (1−L) filter to become stationary. Seasonal cointegration

at the annual frequency π, corresponding to unit root −1, implies that

vt = (1 − L+ L2 − L3)y1,t − α2(1 − L+ L2 − L3)y2,t (35)

does not need the (1 + L) differencing filter. And, seasonal cointegra-

tion at the annual frequency π/2, corresponding to the unit roots ±i,

means that

wt = (1−L2)y1,t−α3(1−L
2)y2,t−α4(1−L

2)y1,t−1−α5(1−L
2)y2,t−1 (36)

does not have the unit roots ±i. In case all three ut, vt and wt do not have

the relevant unit roots, the first equation of a simple version of a seasonal

cointegration model is

∆4y1,t = γ1ut−1 + γ2vt−1 + γ3wt−2 + γ4wt−3 + ε1,t, (37)

where γ1 to γ4 are error correction parameters. The test method proposed

in EGHL is a two-step method, similar to the Engle-Granger (1987) ap-

proach to non-seasonal time series.

Seasonal cointegration in a multivariate time series Yt can also be an-

alyzed using an extension of the Johansen approach, see Johansen and

Schaumburg (1999), Franses and Kunst (1999a). It amounts to testing

the ranks of matrices that correspond to variables which are transformed

using the filters to remove the roots 1, −1 or ±i. More precise, consider

the (m× 1) vector process Yt, and assume that it can be described by the

VAR(p) process

Yt = ΘDt + Φ1Yt−1 + · · · + ΦpYt−p + et, (38)
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where Dt is the (4×1) vector process Dt = (D1,t, D2,t, D3,t, D4,t)
′ contain-

ing the seasonal dummies, and where Θ is an (m × 4) parameter matrix.

Similar to the Johansen (1995) approach and conditional on the assumption

that p > 4, the model can be rewritten as

∆4Yt = ΘDt + Π1Y1,t−1 (39)

+ Π2Y2,t−1 + Π3Y3,t−2 + Π4Y3,t−1 (40)

+ Γ1∆4Yt−1 + · · · + Γp−4∆4Yt−(p−4) + et,

where

Y1,t = (1 + L+ L2 + L3)Yt

Y2,t = (1 − L+ L2 − L3)Yt

Y3,t = (1 − L2)Yt.

This is a multivariate extension of the univariate HEGY model. The ranks

of the matrices Π1, Π2, Π3 and Π4 determine the number of cointegration

relations at each of the frequencies. Again, it is important to properly

account for the deterministics, in order not to have seasonally diverging

trends, see Franses and Kunst (1999a) for a solution.

Periodic models

An alternative class of models is the periodic autoregression. Consider

a univariate time series yt, which is observed quarterly for N years. It is

assumed that n = 4N . A periodic autoregressive model of order p [PAR(p)]

can be written as

yt = µs + φ1syt−1 + · · · + φpsyt−p + εt, (41)

or

φp,s(L)yt = µs + εt, (42)

with

φp,s(L) = 1 − φ1sL− · · · − φpsL
p, (43)

where µs is a seasonally-varying intercept term. The φ1s, . . . , φps are au-

toregressive parameters up to order ps which may vary with the season s,

where s = 1, 2, 3, 4. For εt it can be assumed it is a standard white noise

process with constant variance σ2, but that may be relaxed by allowing εt

to have seasonal variance σ2
s . As some φis, i = 1, 2, . . . , p, can take zero

values, the order p is the maximum of all ps.
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Multivariate representation

In general, the PAR(p) process can be rewritten as an AR(P ) model for the

(4 × 1) vector process YT = (Y1,T , Y2,T , Y3,T , Y4,T )′, T = 1, 2, . . . , N , where

Ys,T is the observation of yt in season s of year T . The model is then

Φ0YT = µ+ Φ1YT−1 + · · · + ΦPYT−P + εT , (44)

or

Φ(L)YT = µ+ εT , (45)

with

Φ(L) = Φ0 − Φ1L− · · · − ΦPL
P , (46)

µ = (µ1, µ2, µ3, µ4)
′, εT = (ε1,T , ε2,T , ε3,T , ε4,T )′, and εs,T is the observa-

tion on the error process εt in season s of year T . The lag operator L applies

to data at frequencies t and to T , that is, Lyt = yt−1 and LYT = YT−1.

The Φ0,Φ1, . . . ,ΦP are 4 × 4 parameter matrices with elements

Φ0[i, j] =







1 i = j,

0 j > i,

−φi−j,i i < j,

(47)

Φk[i, j] = φi+4k−j,i, (48)

for i = 1, 2, 3, 4, j = 1, 2, 3, 4, and k = 1, 2, . . . , P . For P it holds that

P = 1 + [(p− 1)/4], where [ · ] is the integer function. Hence, when p is less

than or equal to 4, the value of P is 1.

As Φ0 is a lower triangular matrix, model (44) is a recursive model.

This means that Y4,T depends on Y3,T , Y2,T , and Y1,T , and on all variables

in earlier years. Similarly, Y3,T depends on Y2,T and Y1,T , and Y2,T on Y1,T

and on all observations in past years. As an example, consider the PAR(2)

process

yt = φ1syt−1 + φ2syt−2 + εt, (49)

which can be written as

Φ0YT = Φ1YT−1 + εT , (50)

with

Φ0 =









1 0 0 0

−φ12 1 0 0

−φ23 −φ13 1 0

0 −φ24 −φ14 1









and Φ1 =









0 0 φ21 φ11

0 0 0 φ22

0 0 0 0

0 0 0 0









.

(51)
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A useful representation is based on the possibility of decomposing a

non-periodic AR(p) polynomial as (1 − α1L)(1 − α2L) · · · (1 − αpL), see

Boswijk, Franses and Haldrup (1997) where this representation is used to

test for (seasonal) unit roots in periodic models. Note that this can only

be done when the solutions to the characteristic equation for this AR(p)

polynomial are all real-valued. Similar results hold for the multivariate

representation of a PAR(p) process, and it can be useful to rewrite (44) as

P
∏

i=1

Ξi(L)YT = µ+ εT , (52)

where the Ξi(L) are 4× 4 matrices with elements which are polynomials in

L.

A simple example is the PAR(2) process

Ξ1(L)Ξ2(L)YT = εT , (53)

with

Ξ1(L) =









1 0 0 −β1L

−β2 1 0 0

0 −β3 1 0

0 0 −β4 1









,

Ξ2(L) =









1 0 0 −α1L

−α2 1 0 0

0 −α3 1 0

0 0 −α4 1









.

(54)

This PAR(2) model can be written as

(1 − βsL)(1 − αsL)yt = µs + εt, (55)

or

yt − αsyt−1 = µs + βs(yt−1 − αs−1yt−2) + εt, (56)

as, and this is quite important, the lag operator L also operates on αs, that

is, Lαs = αs−1 for all s = 1, 2, 3, 4 and with α0 = α4. The characteristic

equation is

|Ξ1(z)Ξ2(z)| = 0, (57)

and this is equivalent to

(1 − β1β2β3β4z)(1− α1α2α3α4z) = 0. (58)
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So, the PAR(2) model has one unit root when either β1β2β3β4 = 1 or

α1α2α3α4 = 1, and has at most two unit roots when both products equal

unity. The case where α1α2α3α4 = 1 while not all αs are equal to 1 is

called periodic integration, see Osborn (1988) and Franses (1996). Tests

for periodic integration are developed in Boswijk and Franses (1996) for

the case without allowing for seasonal unit roots, and in Boswijk, Franses

and Haldrup (1997) for the case where seasonal unit roots can also occur.

Obviously, the maximum number of unity solutions to the characteristic

equation of a PAR(p) process is equal to p.

The analogy of a univariate PAR process with a multivariate time series

process can be used to derive explicit formulae for one- and multi-step ahead

forecasting, see Franses (1996). It should be noted that then the one-step

ahead forecasts concern one-year ahead forecasts for all four Ys,T series.

For example, for the model YT = Φ−1
0 Φ1YT−1 + ωT , where ωT = Φ−1

0 εT ,

the forecast for N + 1 is ŶN+1 = Φ−1
0 Φ1YN .

Finally, one may wonder what the consequences are of fitting non-

periodic models to periodic data. One consequence is that such a non-

periodic model requires many lags, see Franses and Paap (2004) and Del

Barrio Castro and Osborn (2004). For example, a PAR(1) model can be

written as

yt = αs+3αs+2αs+1αsyt−4 + εt + αs+3εt−1

+ αs+3αs+2εt−2 + αs+3αs+2αs+1εt−3. (59)

As αs+3αs+2αs+1αs is equal for all seasons, the AR parameter at lag 4 in a

non-periodic model is truly non-periodic, but of course, the MA part is not.

The MA part of this model is of order 3. If one estimates a non-periodic MA

model for these data, the MA parameter estimates will attain an average

value of the αs+3, αs+3αs+2, and αs+3αs+2αs+1 across the seasons. In other

words, one might end up considering an ARMA(4,3) model for PAR(1)

data. And, if one decides not to include an MA part in the model, one

usually needs to increase the order of the autoregression to whiten the

errors. This suggests that higher-order AR models might fit to low-order

periodic data. When αs+3αs+2αs+1αs = 1, one has a high-order AR model

for the ∆4 transformed time series. In sum, there seems to be a trade-off

between seasonality in parameters and short lags against no seasonality in

parameters and longer lags.
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Conclusion

There is a voluminous literature on formally testing for seasonal unit roots

in non-periodic data and on testing for unit roots in periodic autoregres-

sions. There are many simulation studies to see which method is best.

Also, there are many studies which examine whether imposing seasonal

unit roots or not, or assuming unit roots in periodic models or not, lead to

better forecasts. This also extends to the case of multivariate series, where

these models allow for seasonal cointegration or for periodic cointegration.

An example of a periodic cointegration model is

∆4yt = γs(yt−4 − βsxt−4) + εt, (60)

where γs and βs can take seasonally varying values, see Boswijk and Franses

(1995).

For example, Löf and Franses (2001) analyze periodic and seasonal coin-

tegration models for bivariate quarterly observed time series in an empir-

ical forecasting study, as well as a VAR model in first differences, with

and without cointegration restrictions, and a VAR model in annual differ-

ences. The VAR model in first differences without cointegration is best if

one-step ahead forecasts are considered. For longer forecast horizons, the

VAR model in annual differences is better. When comparing periodic ver-

sus seasonal cointegration models, the seasonal cointegration models tend

to yield better forecasts. Finally, there is no clear indication that multiple

equations methods improve on single equation methods.

To summarize, tests for periodic variation in the parameters and for

unit roots allow one to make a choice between the various models for sea-

sonality. There are many tests around, and they are all easy to use. Not

unexpectedly, models and methods for data with frequencies higher than

12 can become difficult to use in practice, see Darne (2004) for a discussion

of seasonal cointegration in monthly series. Hence, there is a need for more

future research.

5. Recent Advances

This section deals with a few recent developments in the area of forecasting

seasonal time series. These are (i) seasonality in panels of time series,

(ii) periodic models for financial time series, and (iii) nonlinear models for

seasonal time series.
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Seasonality in panels of time series

The search for common seasonal patterns can lead to a dramatic reduction

in the number of parameters, see Engle and Hylleberg (1996). One way to

look for common patterns across the series yi,t, where i = 1, 2, ..., I, and

I can be large, is to see if the series have common dynamics or common

trends. Alternatively, one can examine if series have common seasonal

deterministics.

As can be understood from the discussion on seasonal unit roots, be-

fore one can say something about (common) deterministic seasonality, one

first has to decide on the number of seasonal unit roots. The HEGY test

regression for seasonal unit roots is

Φpi
(L)∆4yi,t = µi,t + ρi,1S(L)yi,t−1 + ρi,2A(L)yi,t−1

+ ρi,3∆2yi,t−1 + ρi,4∆2yi,t−2 + εt, (61)

and now it is convenient to take

µi,t = µi + α1,i cos(πt) + α2,i cos(
πt

2
) + α3,i cos(

π(t− 1)

2
) + δit, (62)

and where ∆k is the k-th order differencing filter, S(L)yi,t = (1 +L+L2 +

L3)yi,t and A(L)yi,t = −(1−L+L2−L3)yi,t. The model assumes that each

series yi,t can be described by a (pi +4)-th order autoregression. Smith and

Taylor (1999) and Franses and Kunst (1999a,b) argue that an appropriate

test for a seasonal unit root at the bi-annual frequency is now given by

a joint F -test for ρi,2 and α1,i. An appropriate test for the two seasonal

unit roots at the annual frequency is then given by a joint F -test for ρ3,i,

ρ4,i, α2,i and α3,i. Franses and Kunst (1999b) consider these F -tests in a

model where the autoregressive parameters are pooled over the equations,

hence a panel HEGY test. The power of this panel test procedure is rather

large. Additionally, once one has taken care of seasonal unit roots, these

authors examine if two or more series have the same seasonal deterministic

fluctuations. This can be done by testing for cross-equation restrictions.

Periodic GARCH

Periodic models might also be useful for financial time series. They can be

used not only to describe the so-called day-of-the-week effects, but also to

describe the apparent differences in volatility across the days of the week.

Bollerslev and Ghysels (1996) propose a periodic generalized autoregressive
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conditional heteroskedasticity (PGARCH) model. Adding a periodic au-

toregression for the returns to it, one has a PAR(p)-PGARCH(1,1) model,

which for a daily observed financial time series yt, t = 1, . . . , n = 5N , can

be represented by

xt = yt −

5
∑

s=1

(

µs +

p
∑

i=1

φisyt−i

)

Ds,t

=
√

htηt (63)

with ηt ∼ N(0, 1) for example, and

ht =

5
∑

s=1

(ωs + ψsx
2
t−1)Ds,t + γht−1, (64)

where the xt denotes the residual of the PAR model for yt, and where Ds,t

denotes a seasonal dummy for the day of the week, that is, s = 1, 2, 3, 4, 5.

In order to investigate the properties of the conditional variance model,

it is useful to define zt = x2
t − ht, and to write it as

x2
t =

5
∑

s=1

(ωs + (ψs + γ)x2
t−1)Ds,t + zt − γzt−1. (65)

This ARMA process for x2
t contains time-varying parameters ψs + γ and

hence strictly speaking, it is not a stationary process. To investigate the

stationarity properties of x2
t , (65) can be written in a time-invariant rep-

resentation. Franses and Paap (2000) successfully fit such a model to the

daily S&P 500 index, and even find that

Π5
s=1(ψs + γ) = 1. (66)

In other words, they fit a periodically integrated GARCH model.

Models of seasonality and nonlinearity

It is well known that a change in the deterministic trend properties of a time

series yt is easily mistaken for the presence of a unit root. In a similar vein,

if a change in the deterministic seasonal pattern is not detected, one might

well end up imposing seasonal unit roots, see Ghysels (1994), Smith and

Otero (1997), Franses, Hoek and Paap (1997) and Franses and Vogelsang

(1998).
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Changes in deterministic seasonal patterns usually are modelled by

means of one-time abrupt and discrete changes. However, when seasonal

patterns shift due to changes in technology, institutions and tastes, for ex-

ample, these changes may materialize only gradually. This suggests that a

plausible description of time-varying seasonal patterns is

φ(L)∆1yt =

4
∑

s=1

δ1,sDs,t(1 −G(t; γ, c)) +

4
∑

s=1

δ2,sDs,tG(t; γ, c) + εt, (67)

where G(t; γ, c) is the logistic function

G(st; γ, c) =
1

1 + exp{−γ(st − c)}
, γ > 0. (68)

As st increases, the logistic function changes monotonically from 0 to 1,

with the change being symmetric around the location parameter c, as

G(c − z; γ, c) = 1 − G(c + z; γ, c) for all z. The slope parameter γ de-

termines the smoothness of the change. As γ → ∞, the logistic function

G(st; γ, c) approaches the indicator function I [st > c], whereas if γ → 0,

G(st; γ, c) → 0.5 for all values of st. Hence, by taking st = t, the model

takes an “intermediate” position in between deterministic seasonality and

stochastic trend seasonality.

Nonlinear models with smoothly changing deterministic seasonality are

proposed in Franses and van Dijk (2004). These authors examine the fore-

casting performance of various models for seasonality and nonlinearity for

quarterly industrial production series of 18 OECD countries. They find

that the accuracy of point forecasts varies widely across series, across fore-

cast horizons and across seasons. However, in general, linear models with

fairly simple descriptions of seasonality outperform at short forecast hori-

zons, whereas nonlinear models with more elaborate seasonal components

dominate at longer horizons. Simpler models are also preferable for interval

and density forecasts at short horizons. Finally, none of the models is found

to be the best and hence, forecast combination is worthwhile.

To summarize, recent advances in modeling and forecasting seasonal

time series focus at (i) models for panels of time series and at (ii) models

which not only capture seasonality, but also conditional volatility and non-

linearity, for example. To fully capture all these features is not easy, also as

various features may be related. More research is needed in this area too.
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6. Conclusion

Forecasting studies show that model specification efforts pay off in terms

of performance. Simple models for seasonally differenced data forecast well

for one or a few steps ahead. For longer horizons, more involved models

are much better. These involved models address seasonality in conjunction

with trends, non-linearity and conditional volatility. Much more research

is needed to see which models are to be preferred in which situations.

There are at least two well articulated further research issues. The

first concerns methods to achieve parsimony. Indeed, seasonal time series

models for monthly or weekly data contain a wealth of parameters, and

this can reduce efficiency dramatically. The second concerns the analysis

of unadjusted data for the situation where people would want to rely on

adjusted data, that is, for decisions on turning points. How would one draw

inference in case trends, cycles and seasonality are related? Finally, in case

one persists in considering seasonally adjusted data, how can we design

methods that allow for the best possible interpretation of these data, when

the underlying process has all kinds of features?
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1. Introduction

Electronic trading systems on financial markets have been initially intro-

duced to diminish the trading cost, to increase the traded volumes and to

improve market transparency. They give also the opportunity to produce

new data bases, in which every contract is registered, the so-called high

frequency data, and to question standard econometric models used earlier

for financial analysis. Contrary to earlier approaches, which focus on asset

prices, the tick-by-tick data include a lot of other variables. More precisely,

let us consider a given stock and a given trading day. The data are :

• the index n of the trading within the day;

• the trading time τn measured in seconds since the beginning of the

day;

• the intertrade duration dn = τn − τn−1, between consecutive trades

numbered n− 1 and n, respectively;

• the price of the stock pn, or the intertrade price change pn − pn−1;

• the traded volume vn in number of shares;

• the bid [resp. ask] curve, which provides the proposed sell price bn(v)

[resp. buy price an(v)] posted in the order book corresponding to the

given traded volume v;
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• the sign of the trade : +1, if the trade is initiated by a buy order,

−1, if the trade is initiated by a sell order.

The tick-by-tick data can be aggregated into new summary statistics to

study the market at different calendar time frequencies, that is at 5 mn,

20 mn,... or daily. Associated daily data are :

• the index of the day t;

• the closing price pt (resp. opening price pt,0);

• the realized (historical) volatility at 5mn for day t, Σt;

• the number of trades Nt;

• the daily traded volume Vt.

The daily aggregated variables are generated from the tick-by-tick data

as compound sums, that are sums over a stochastic number of terms . For

instance the change of price during the day is :

pt − pt,0 =

Nt
∑

n=1

(pt,n − pt,n−1),

where pt,n denotes the stock price for trade n of day t; the daily traded

volume is :

Vt =

Nt
∑

n=1

vt,n;

the daily realized volatility-covolatility matrix at horizon one trade is :

∑

t

=
1

Nt

Nt
∑

n=1

(pt,n − pt,n−1)(pt,n − pt,n−1)
′,

(assuming that the intertrade price changes are zero-mean).

These data are generally domain restricted. For instance the time series

of intertrade durations dn correspond to positive variables, the sequence of

signs of trades “buy-sell” to a series of dichotomous qualitative variables.

The sequence of realized volatility matrices defines a time series of symmet-

ric positive definite matrices, whereas the number of trades is an integer

valued process.
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The standard dynamic models considered in financial applications are

not really appropriate to account for the nonlinear features of the data, es-

pecially for the domain restrictions discussed above. For instance the linear

dynamic models, that are the autoregressive moving average processes, are

closely related to Gaussian processes, and thus to variables which can admit

any negative or positive real value, which can be predicted linearly with-

out loss of information, or have a conditional distribution with thin tails

and no skewness. Similarly the Autoregressive Conditionally Heteroscedas-

tic (ARCH) type of models have been initially introduced for series of

one-dimensional volatility, which explains the importance of the quadratic

transformation in this specification, but seem less appropriate for more

complicated domain restrictions such as the set of symmetric positive defi-

nite matrices encountered in volatility analysis in a multiasset framework.

Even for one dimensional positive variables the quadratic transformation,

which underlies the ARCH type model, does not necessarily correspond to

the structural interpretation of the variable of interest. This is especially

the case for the ACD-GARCH models introduced for intertrade duration

variables.

The aim of the lecture is to describe and study an alternative class of

dynamic models which :

i) takes care of the nonlinear domain restriction;

ii) provides simple (nonlinear) prediction formulas at any horizon;

iii) allows for large dimension, increased number of lags and mixing of differ-

ent types of variables such as qualitative, integer valued and real variables;

iv) includes as special case Gaussian ARMA models and well-chosen (mul-

tivariate) stochastic volatility models;

v) admits continuous time counterparts.

Such dynamic models are the so-called Affine Processes initially con-

sidered by Duffie, Kan (1996), Duffie, Filipovic, Schachermayer (2003) for

deriving affine term structure models (ATSM) in continuous time, and their

discrete time analogues, called Compound Autoregressive (Car) models [see

Darolles, Gourieroux, Jasiak (2006)]. Last, but not least, Car (or affine)

dynamics are compatible with the recent literature on theoretical finance.

Indeed they underly :

i) the affine and quadratic term structure models;

ii) the derivative pricing with stochastic volatility in a multiasset frame-

work;
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iii) the coherent specification of dynamics for stock prices, exchange rates,

interest rates, corporate rates (including default risk);

iv) the analysis of the term structure of extreme risks.

The plan of the chapter is the following. In Section 2 we give a general

presentation of Car (affine) processes. We especially describe the nonlin-

ear prediction formulas and the interpretation of the processes in terms of

compounding. In Section 3, we consider the autoregressive gamma (ARG)

process, which is the time discretized Cox-Ingersoll-Ross (CIR) process.

The ARG process is extended in Section 4 to a multidimensional frame-

work. The Wishart Autoregressive (WAR) process is a natural dynamic

specification for series of volatility-covolatility matrices and appears as a

serious competitor to the various types of multivariate ARCH, or stochastic

variance models. A WAR specification can typically be used to analyze the

dynamics of daily realized volatility matrices. Section 5 discusses the im-

portance of Car (affine) processes in financial theory. We first explain why

Car processes are related with the so-called affine term structure models.

Then we discuss how this approach can be used to analyze corporate risk

and to get “quadratic” term structure models. Finally we show that WAR

stochastic volatility models are appropriate to derive closed form derivative

pricing formula in a multiasset framework. Section 6 concludes.

2. Compound Autoregressive Processes and Affine Processes

The compound autoregressive (Car) process shares the nice prediction prop-

erties of the Gaussian autoregressive process, but can feature nonlinear dy-

namics and apply to variates with restricted domain. In the first subsection

we review the prediction properties of the Gaussian autoregressive process

and highlight the importance of the conditional Laplace transform. The

Car process is defined in subsection 2.2. Then we derive its marginal distri-

bution (subsection 2.3) and its nonlinear prediction properties (subsection

2.4). The Car processes admits compounding interpretations which are

useful for constructing flexible nonlinear dynamics (subsection 2.5).

2.1. The Gaussian Autoregressive Process

A one-dimensional Gaussian AR(1) model is defined by :

yt = ρyt−1 + εt, (2.1)
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where (εt) is a sequence of iid errors with Gaussian distribution N(0, σ2).

The transition distribution of process y can be characterized in different

ways :

i) either by regression equation (2.1),

ii) or by the conditional density function given by :

f(yt|yt−1) =
1

σ(2π)1/2
exp

[

−
1

2σ2
(yt − ρyt−1)

2

]

,

iii) or by the conditional Laplace transform, which explains how to

compute the short term predictions of exponential transformations of yt

possibly complex. The conditional Laplace transform (LT) is defined by :

ψt(z) = E[exp(−zyt)|yt−1]

= exp[−zρyt−1 +
z2σ2

2
], z ∈ C.

The transition above concerns short term horizon h = 1, but is easily ex-

tended to any horizon h. Let us first consider the regression interpretation.

By recursive substitution we get :

yt+h = ρhyt + εt+h + ρεt+h−1 + · · · + ρh−1εt+1 (2.2)

= ρhyt + εt,h, say,

where : V (εt,h) = σ2(h) = σ2+ρ2σ2+· · ·+ρ2(h−1)σ2 = σ2(1−ρ2h)/(1−ρ2).

This defines the regression equation at horizon h. Similarly the conditional

pdf at horizon h is :

fh(yt+h|yt) =
1

σ(h)(2π)1/2
exp

[

−
1

2σ2(h)
(yt+h − ρhyt)

2

]

,

whereas the conditional LT at horizon h becomes :

ψt,h(z) = E[exp(−zyt+h)|yt] = exp[−zρhyt +
z2

2
σ2(h)].

Thus the predictive distributions at any horizon h are easily derived;

they take the same Gaussian form with updated parameters : ρ→ ρh, σ2 →

σ2(h). This nice property concerning the predictions is a consequence of
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a linear dynamic satisfied by the Gaussian autoregressive process. This

linearity can be seen in two different ways.

i) First the regression function E(yt|yt−1) is a (linear) affine function of

the lagged value yt−1.

ii) Second the log-Laplace transform : logψt(z) = −zρyt−1 +
z2

2
σ2, is

also a (linear) affine function of the lagged value yt−1.

The standard time series literature extends either the first linearity

property by considering processes satisfying yt = αyt−1 + β + ut, where

the sequence (ut) corresponds to iid variables not necessarily Gaussian [see

e.g. Grunwald et al. (2001) for the analysis of conditional linear AR(1) pro-

cesses], or the pdf interpretation to include the generalized linear models

and get the so-called GARMA processes [Benjamin et al. (2003)]. However

these extensions do not allow to recover all nice nonlinear prediction prop-

erties of the Gaussian autoregressive process. We see in the next subsection

that the linearity of the log-Laplace transform is the convenient tool to get

the extension to nonlinear dynamic framework.

2.2. Definition of a Car Process

Let us consider a n-dimensional process Yt = (y1,t, . . . , yn,t)
′. The condi-

tional Laplace transform defines the short term predictions of exponential

linear combinations of the components. The function is given by :

ψt(z) = E[exp(−z′Yt)|Yt−1]

= E[exp(−
n
∑

i=1

ziyi,t)|Yt−1], (2.3)

where z = (z1, . . . , zn)′ belongs to D ⊂ C
n where D is the domain of

existence of the LT , and Yt−1 denotes the information including all lagged

values of the process, that are Yt−1, . . . , Yt−p, . . . .

Definition 1 : The n-dimensional process (Yt) is a compound autoregres-

sive process of order p, called Car(p), if and only if the conditional Laplace

transform is :

ψt(z) = exp[−a′1(z)Yt−1 − · · · − a′p(z)Yt−p + b(z)],

where a1, . . . , ap (resp. b) are n-dimensional (resp. one dimensional) func-

tions of z.
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Thus the conditional log-Laplace transform is an affine function of

lagged values Yt−1, . . . , Yt−p. In particular, since the conditional Laplace

transform characterizes the transition pdf, the Car(p) process is a Markov

process of order p.

The affine condition on the log-Laplace transform implies restrictions

on appropriate conditional moments (when the moments exist). These

conditions are derived by considering the series expansion of the log-Laplace

transform in a neighbourhood of z = 0. For instance both conditional mean

and conditional variance-covariance matrix of Yt (when they exist) are affine

functions1 of the lagged values Yt−1, . . . , Yt−p.

As, for Gaussian autoregressive processes, there is a trade-off between

the autoregressive order and the dimension of the process. More pre-

cisely it is easily checked that if (Yt) is a Car(p) process, the process

Ỹt = (Y ′

t , Y
′

t−1, . . . , Y
′

t−p+1)
′, obtained by stacking current and lagged val-

ues of the initial process, is a Car process of order 1. Therefore it is always

possible to replace a Car(p) model by a Car(1) model after an appropriate

increase of the process dimension. Without loss of generality we focus on

Car(1) model in the rest of the chapter. Then the conditional LT reduces

to :

ψt(z) = E[exp(−z′Yt)|Yt−1] = exp[−a(z)′Yt−1 + b(z)]. (2.4)

2.3. Marginal Distribution

If the process (Yt) is stationary, its marginal distribution is easily related

to its transition distribution. Let us denote by E[exp(−z′Yt)] = exp c(z),

its marginal LT. By iterated expectation theorem, we get :

E[exp(−z′Yt)] = E[E(−z′Yt)|Yt−1],

or : exp c(z) = E exp[−a(z)′Yt−1 + b(z)] = exp{c[a(z)] + b(z)}.

By identifying both sides of the equality, we get the relationship :

c(z) = c[a(z)] + b(z). (2.5)

Thus the conditional LT can be equivalently parameterized by either func-

tions a and b, or by functions a and c. We get :

1
For a long time the affine condition on drift and volatility has been considered as the

definition of affine processes in continuous time. Now it has been recognized that the

condition has also to be written on cumulant conditional moments of higher order.
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E[exp(−z′Yt)|Yt−1]

= exp[−a(z)′Yt−1 + b(z)]

= exp(−a(z)′Yt−1 + c(z) − c[a(z)]). (2.6)

In the second representation the functional parameters have simple in-

terpretations. Function c characterizes the marginal distribution whereas

function a summarizes the whole nonlinear serial dependence.

2.4. Nonlinear Prediction Formulas

For a stationary process the marginal distribution considered in Section 2.3

coincides with the predictive distribution at very long horizon (h = +∞).

The iterated expectation theorem can also be applied recursively to derive

the predictive distribution at any intermediate horizon h. More precisely

we get the following property proved in Appendix 1.

Proposition 1 : The conditional Laplace transform at horizon h is given

by :

ψt,h(z) = E[exp(−z′Yt+h)|Yt]

= exp{−aoh(z)′Yt +

h−1
∑

k=0

b(aok(z))}

= exp{−aoh(z)′Yt + c(z) − c[aoh(z)]},

where aoh(z) denotes function a(z) compounded h times with itself and

c(z) is the same as in (2.5).

The result above is the direct generalization of the prediction formula

for Gaussian VAR (1) process. Let us consider such a process defined by :

Yt = MYt−1 + εt,

where εt is IIN (0,Σ). Its conditional Laplace transform is :

Ψt(z) = exp[−z′MYt−1 +
1

2
z′Σz].

This is a Car(1) process with : a(z) = Mz and b(z) =
1

2
z′Σz. The a

function is linear and we get aoh(z) = Mhz. As expected for a Gaussian

VAR process, the prediction at horizon h is performed by replacing the
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autoregressive matrix M by its power Mh (and keeping the same marginal

Gaussian distribution).

The nonlinear prediction formula allows to derive a stationarity condi-

tion for the Car(1) process. Loosely speaking the process is stationary if

the predictive distribution at long horizon (h → +∞) no longer depends

on the initial condition. This implies :

lim
h→∞

aoh(z) = 0, ∀z. (2.7)

Moreover, when this condition is satisfied, we get :

lim
h→∞

ψt,h(z) = exp c(z),

since the log-Laplace transform c is such that : c(0) = logE(exp 0|Yt) = 0.

Thus at long horizon the predictive distribution is close to the marginal

distribution and condition (2.7) appears as a necessary and sufficient con-

dition for stationarity2. In the special case of Gaussian VAR model, the

stationarity condition (2.7) reduces to limh→∞Mh = 0. The condition is

satisfied if the eigenvalues of autoregressive matrix M have modulus strictly

smaller than one, which is the standard result.

Similarly it is possible to get a closed form expression of the LT of a

future path [see Darolles, Gourieroux, Jasiak (2006)].

Proposition 2 : We get :

E
[

exp(z′t+1Yt+1 + · · · + z′t+hYt+h)|Yt

]

= exp [A(t, t+ h)′Yt +B(t, t+ h)] ,

where coefficients A and B satisfy the backward recursion :

A(t+ j, t+ h) = a[zt+j+1 +A(t+ j + 1, t+ h)],

B(t+ j, t+ h) = b[zt+j+1 +A(t+ j + 1, t+ h)] +B[t+ j + 1, t+ h],

for j < h, with terminal conditions : A(t+h, t+h) = 0, B(t+h, t+h) = 0.

By considering zt+1 = · · · = zt+h = z, we get in particular the condi-

tional LT of the integrated process Y ∗

t,t+h =

t+h
∑

τ=t+1

Yτ .

2
In fact this condition is necessary and sufficient for a weak definition of stationarity. A

stronger condition is needed to get the convergence towards the stationary distribution at

a geometric rate [see Darolles, Gourieroux, Jasiak (2006) for the discussion of geometric

ergodicity of Car processes].
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2.5. Compounding Interpretation

The Car processes admit an interpretation in terms of stochastic autore-

gression. This interpretation is useful to understand the properties of the

Car processes, simulate their trajectories, but also to construct various Car

dynamics.

2.5.1. Integer Autoregressive Process

It is easily seen why the standard linear autoregressive representation is not

appropriate for an integer valued process and how to modify the model to

be compatible with the integer state space. Let us consider a conditional

linear AR(1) model with iid errors :

yt = ρyt−1 + εt, (2.8)

say, where yt can take values 0, 1, . . . and |ρ| < 1. The right hand side takes

integer values only, for any integer yt−1, if and only if the error also admits

integer values and ρ is integer. The latter condition with the stationarity

restriction |ρ| < 1 imply that ρ = 0. Therefore the single linear autoregres-

sive representation compatible with the integer state space corresponds to

a strong white noise.

However integer values can be recovered by replacing the determinis-

tic autoregression by a stochastic compound autoregression. More pre-

cisely let us consider a sequence of iid integer valued variables Xi,t, i =

1, 2 . . . , t = 1, 2, . . . , say, independent of the iid integer valued error terms

εt, t = 1, . . . , T . Let us define :

yt =

yt−1
∑

i=1

Xi,t + εt. (2.9)

By definition we get an integer value for the right hand side and any admis-

sible drawing of yt−1, Xi,t, εt. The deterministic autoregression has been

replaced by the stochastic (also called compound) sum :

yt−1
∑

i=1

Xi,t. The

conditional expectation of this term is : Et−1

(

yt−1
∑

i=1

Xi,t

)

= yt−1E(Xi,t);

thus on average the linear autoregressive specification is recovered when-

ever |ρ| = |EXi,t| < 1, but an additional randomness has been introduced

to satisfy the state space constraint.
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It is easily checked that the process defined by (2.9) is a compound

autoregressive process. Indeed let us represent the distributions of X and

ε by their Laplace transforms :

E[exp(−zX)] = exp[−a(z)], E[exp(−zε)] = exp b(z), say. (2.10)

We have :
Et−1[exp(−zyt)]

= E[exp(−z

yt−1
∑

i=1

Xi,t − zεt)|yt−1]

= [E(exp−zXit)]
yt−1E[exp(−zεt)]

= exp[−a(z)yt−1 + b(z)].

This provides a new interpretation of the functional parameters. b charac-

terizes the distribution of the error term ε, whereas a defines the law of the

X variables involved in the stochastic autoregression.

Example : The Poisson INAR(1) process

When the error term follows a Poisson distribution P(λ), and the X

variables are Bernoulli variables B(1, ρ), the marginal distribution of the

process is still a Poisson distribution with parameter λ(1 − ρ). This Car

process is the natural extension of the sequence of iid Poisson variables, and

is used for marketing or insurance applications [see e.g. Brannas, Helstrom

(2001), Gourieroux, Jasiak (2004)].

2.5.2. Nonnegative Continuous Variables

A similar approach can be followed to define Car processes for nonnegative

one-dimensional processes. Loosely speaking the idea is to write a stochastic

autoregression of the type :

yt =

∫ yt−1

0

Xi,td(i) + εt,

where εt and Xi,t are nonnegative continuous variables. More rigorously,

we introduce two types of distribution.

i) The distribution of the error term admit the Laplace transform :

E[exp(−zεt)] = exp[b(z)].
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ii) A second Laplace transform :

E[exp(−zX)] = exp[−a(z)],

is considered, such that the associated distribution is infinitely divisible.

This means that for any nonnegative real value γ : z → exp[−γa(z)] is also

a well-defined Laplace transform.

Then the function :

z → exp[−yt−1a(z) + b(z)],

defines a conditional Laplace transform associated with a Car process.

Loosely speaking a is the log-Laplace transform of the (stochastic) inte-

gral

∫ 1

0

Xi,td(i).

The discussion above shows that there exists a large class of Car pro-

cesses with nonnegative values, since the distribution b and the infinitely

divisible distribution a can be chosen arbitrarily.

2.6. Continuous Time Affine Processes

Since a large part of financial theory uses continuous time models, it is

natural to consider what is the continuous time dynamics, which implies

discrete time Car dynamics. We have already noted that the first and sec-

ond order conditional moments of the Car process are affine functions of the

conditioning value. Since diffusion models are characterized by their first

and second order conditional infinitesimal moments, we get immediately

the definitions below [Duffie, Filipovic, Schachermayer (2003)].

Definition 2 : i) An affine diffusion process is the solution of a stochastic

differential system with affine drift and volatility :

dYt =(µ0 +µ1 Yt) dt+ [Σ0 +

n
∑

j=1

yj,t Σj ]
1/2 dWt,

where (Wt) is a n-dimensional standard Brownian motion, µo a n-

dimensional vector and µ1,Σo,Σj are (n, n) matrices.

ii) A continuous time process is affine if and only if it admits an affine

log-Laplace transform at any real horizon :

Et[exp(−z′yt+h)] = exp[−a(z, h)yt + b(z, h)], ∀h ∈ IR+.
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It is easily checked that any affine diffusion process satisfies the more gen-

eral definition in terms of conditional Laplace transform. Moreover, the

condition on the Laplace transform valid for any real h implies the same

condition for integer h. Therefore a time discretized continuous time affine

process is necessarily a Car process.

However the time coherency required at any small horizon for contin-

uous time affine processes reduces considerably the set of affine processes.

Let us for instance consider affine diffusion processes. The drift and volatil-

ity parameters have to satisfy some constraints. For instance the volatility

parameters Σ0,Σ1, . . . ,Σn have to be chosen to ensure a symmetric posi-

tive definite matrix Σ0 +

n
∑

j=1

yj,tΣj for any admissible values y1,t, . . . , yn,t.

Therefore the one-dimensional continuous time affine processes are

essentially :

• The geometric Brownian motion :

dyt = µ1ytdt+ σ1ytdWt, σ1 > 0;

• The Ornstein-Uhlenbeck process :

dyt = (µ0 + µ1yt)dt+ σ0dWt, σ1 > 0;

• The Cox-Ingersoll-Ross process :

dyt = (µ0 + µ1yt)dt+ σ1y
1/2
t dWt, σ1 > 0, µ1 < 0.

If the diffusion condition is not imposed, the one-dimensional continuous

time processes includes also jump processes with bifurcations. Nevertheless

the set of one dimensional continuous time affine processes is much smaller

than the set of one-dimensional Car processes.

3. Autoregressive Gamma Process

The autoregressive gamma (ARG) process is a convenient dynamic specifi-

cation for one-dimensional nonnegative time series. It can be used for the

analysis of stochastic volatility [see Heston (1993), Ball, Roma (1994)], of

inverse volatility [see Clark (1973)], of intertrade durations [see Gourier-

oux, Jasiak (2006)], of interest rates [see Cox, Ingersoll, Ross (1985)], or of

time deformation [see Madan, Seneta (1990)]. In the first subsection some

well-known results on gamma distributions are reviewed and we emphasize
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the compound interpretation of the noncentered gamma distribution. The

ARG process is defined in subsection 3.2 and its prediction properties are

described in subsection 3.3. Its relationship with the continuous time Cox,

Ingersoll, Ross process is given in subsection 3.4. Finally we consider in

subsection 3.5 the extension to any autoregressive order and the limiting

unit root case.

3.1. Gamma Distribution

3.1.1. Centered Gamma Distribution

The gamma distribution with parameter ν is the continuous distribution

on (0,∞) with pdf :

f(y) =
1

Γ(ν)
exp(−y)yν−11ly>0, (3.1)

where 1ly>0 denotes the indicator function of (0,∞), and Γ(ν) =
∫

∞

0

exp(−y)yν−1dy. This distribution is denoted γ(ν). Its Laplace trans-

form is given by :

ψ(z) = E[exp(−zy)] =
1

(1 + z)ν
. (3.2)

It is defined for |z| < 1.

3.1.2. Noncentered Gamma Distribution

The noncentered gamma distribution is a gamma distribution with a

stochastic degree of freedom ν.

Definition 3 : The positive variable Y follows a gamma distribution with

degree of freedom δ, δ > 0, and noncentrality parameter β, β ≥ 0, denoted

γ(δ, β), if and only if there exists a latent variable Z such that :

i) X has a Poisson distribution P(β) with parameter β;

ii) the conditional distribution of Y given X is the gamma distribution

γ(δ +X).

Since the family of gamma distributions is invariant by convolution, the

noncentered gamma variable admits a compounding interpretation. More

precisely we have :

Y =

X
∑

i=1

Wi + ε, (3.3)
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where ε,W1, . . . ,Wn are mutually independent, with distributions

γ(δ), γ(1), . . . , γ(1), respectively, and are independent of X . The com-

pounding interpretation explains the expression of the Laplace transform.

We get :

ψ(z) = E[exp(−zy)]

= E[exp−z(
X
∑

i=1

Wi + ε)]

= E

[

1

(1 + z)X+δ

]

=

∞
∑

x=0

(

1

(1 + z)x+δ

exp(−β)βx

x!

)

=
1

(1 + z)δ
exp

(

−
βz

1 + z

)

, (3.4)

that is : ψ(z) = exp

[

−δ log(1 + z) − β
z

1 + z

]

.

Thus the Laplace transform is exponential affine with respect to both

parameters β and δ.

3.1.3. Change of scale

Finally a three parameter family is deduced from the gamma distribution

by introducing a change of scale. We have :

Y ∼ γ̃(δ, β, c) ⇐⇒ Y/c ∼ γ(δ, β).

The associated Laplace transform is :

ψ(z) = E[exp(−zy)] = exp

[

−δ log(1 + cz) − β
cz

1 + cz

]

. (3.5)

3.2. The Autoregressive Gamma Process

The autoregressive gamma (ARG) process is the dynamic extension of a

sequence of iid variables with noncentered gamma distribution.

Definition 4 : The process (yt) is an autoregressive process of order 1,

denoted ARG (1), if the conditional distribution of yt given yt−1 is the

generalized gamma distribution γ̃(δ, βyt−1, c).
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Thus the ARG(1) process admits the compound interpretation :

Yt =

Zt
∑

i=1

Wi,t + εt,

where conditional on yt−1 :

i) εt ∼ γ̃(δ, 0, c), ii) Zt ∼ P [βyt−1], iii) Wi,t ∼ γ̃(1, 0, c).

This is a special case of Car process with a conditional Laplace transform

given by :

ψt(z) = E [exp(−zyt)|yt−1] = exp

[

−yt−1
βcz

1 + cz
− δ log(1 + cz)

]

. (3.6)

This conditional LT is :

ψt(z) = exp[−a(z)yt−1 + b(z)],

where : a(z) =
βcz

1 + cz
, b(z) = −δ log(1 + cz).

(3.7)

It is easily checked that the stationary distribution is such that :

ψ(z) = E[exp(−zyt)] = exp c(z),

where : c(z) = −δ log[1 +
cz

1 − βc
].

(3.8)

The stationary distribution is a centered gamma distribution up to a change

of scale. Thus the ARG(1) process admits both marginal and conditional

distributions in the generalized gamma family.

3.3. Nonlinear Prediction Formula

The nonlinear prediction formula is directly derived by considering function

a compounded h times. We get :

aoh(z) =
βhchz

1 + c
1 − (βc)h

1 − βc
z

.

This expression is similar to the expression of a, up to a change of param-

eters. We deduce the result below.

Proposition 3 : The conditional distribution of yt given yt−h is :

γ̃[δ,
ρh(1 − ρ)

c(1 − ρh)
yt−h, c

1 − ρh

1 − ρ
],

where ρ = βc.
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Thus the change of parameters is :

1 → h, ρ→ ρh, c→ c
(1 − ρh)

1 − ρ
.

We also note that the stationarity condition is : |ρ| = |βc| < 1. Under

this condition the transition at horizon h tends to the stationarity distri-

bution γ̃(δ, 0,
c

1 − ρ
), when h tends to infinity.

In particular the conditional first and second order moments at any

horizon h are immediately derived. We get :

E(yt+h|yt) = c
1 − ρh

1 − ρ
δ + ρhyt,

V (yt+h|yt) = c2
(1 − ρh)2

(1 − ρ)2
δ + 2ρh c(1 − ρh)

1 − ρ
yt.

The ARG(1) model is conditionally heteroscedastic with conditional first

and second order moments, which are affine functions of the conditioning

positive value yt.

3.4. Link with the Cox, Ingersoll, Ross Process

In the subsection above, the (nonlinear) prediction formulas have been de-

rived for any integer horizon h. Similar prediction formulas could be valid

for fractional horizon h = 1/2, 1/3, 1/4, . . . This allows for the analysis of

the process, when the observation frequency increases, that is when h tends

to zero. It is expected that the ARG(1) process will tend to a continuous

time diffusion process. The purpose of this subsection is to derive the form

of the limiting diffusion process and the link between discrete and contin-

uous time parameters.

Let us compute the infinitesimal drift and volatility per time unit, when

ρ > 0. The infinitesimal drift is :

limh→0
1

h
(E[yt+h|yt = y] − y)

= limh→0
1

h

[

c

(

1 − ρh

1 − ρ

)

δ + (ρh − 1)y

]

= limh→0
1 − ρh

h

(

cδ

1 − ρ
− y

)

= −(log ρ)

(

cδ

1 − ρ
− y

)

.
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The infinitesimal volatility is :

lim
h→0

1

h
V (yt+h|yt = y) = −

2c log ρ

1 − ρ
y.

More precisely we have the proposition below.

Proposition 4 : When ρ > 0, the stationary ARG(1) process is a time

discretized Cox-Ingersoll-Ross process :

dyt = a(b− yt)dt+ σy
1/2
t dWt,

where : a = − log ρ > 0, b =
cδ

1 − ρ
, σ2 = −

2 log ρ

1 − ρ
c.

3.5. Extensions

3.5.1. Autoregressive gamma process of order p

The ARG dynamics can be extended to any autoregressive order by intro-

ducing a stochastic degree of freedom function of several lagged values.

Definition 5 : The process (yt) is an ARG(p) process, if the condi-

tional distribution of yt given yt−1 is the generalized gamma distribution

γ̃(δ1, β1yt−1 + · · · + βpyt−p, c), where β1 ≥ 0, . . . , βp ≥ 0.

The nonnegativity conditions on the sensitivity coefficients ensure a

nonnegative parameter for the latent Poisson distribution. It can be shown

that the process is stationary if and only if :

c(β1 + · · · + βp) < 1.

It is interesting to note that the ARG(p) model has no continuous time

counterpart when p ≥ 2.

4. Wishart Autoregressive Process

The Wishart Autoregressive (WAR) process is the extension of the Au-

toregressive Gamma (ARG) process introduced in Section 3 to the multi-

dimensional framework. This extension is based on the following standard

result concerning Gaussian variables : the square of any one-dimensional

Gaussian variable follows a noncentral chi-square distribution, which is a

special case of generalized gamma distribution. The Wishart process is de-

fined in subsections 4.1 and 4.2 from outer products of vector autoregressive

Gaussian processes.
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4.1. The Outer Product of a Gaussian VAR(1) Process

Let us consider a (zero-mean) Gaussian VAR(1) process (xt) of dimension

n. This process satisfies :

xt+1 = Mxt + εt+1,

where (εt) is a sequence of iid random vectors with multivariate Gaussian

distribution N(0,Σ), where Σ is assumed positive definite. M is the (n, n)

matrix of autoregressive coefficient. Thus the conditional distribution of xt

given xt−1 is Gaussian with conditional mean Mxt−1 and volatility matrix

Σ.

Let us now consider the process defined by :

Yt = xtx
′

t. (4.1)

This process defines a time series of symmetric stochastic matrices, which

are positive semidefinite with rank 1. They include squared component

x2
it, i = 1, . . . , n on the diagonal and cross products xitxjt, i 6= j, out of the

diagonal. For instance for n = 2, we get :

Yt =

(

x2
1t x1tx2t

x1tx2t x2
2t

)

.

The main results of the literature [see Gourieroux, Jasiak, Sufana (2004)]

are the following ones.

Proposition 5 : The conditional distribution of yt given xt−1, xt−2, . . .

depends on the past by means of the elements of yt−1 only, that is (Yt) is

a Markov process.

Moreover the transition of process (Yt) is easily derived by means of

its Laplace transform. At this stage it is important to define the LT in a

way which is appropriate for matrix processes. Let us note that for two

symmetric matrices Γ and Y of the same dimension, we have :

Tr(ΓY ) =

n
∑

i=1

(ΓY )ii =

n
∑

i=1

n
∑

l=1

γilYli

=

n
∑

i=1

γiiYii + 2

n
∑

i<j

γijYij ,
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where Tr denotes the trace of a matrix, that is the sum of its diagonal

elements. Thus any linear combination of the different elements of matrix

Y can be written as Tr(ΓY ). After a change of arguments zii = −γii, zij =

−2γij , we can define the conditional Laplace transform as :

ψt(Γ) = E[expTr(ΓYt+1)|Yt].

Proposition 6 : The conditional Laplace transform of process (Yt) is :

ψt(Γ) =
expTr[M ′Γ(Id− 2ΣΓ)−1MYt]

[det(Id− 2ΣΓ)]1/2
,

where Id is the identity matrix, and is defined whenever ||2ΣΓ|| < 1.

This log-Laplace transform is an affine function of the elements of Yt, that

is process (Yt) is a Car process.

4.2. Extension to Stochastic Positive Definite Matrices

A drawback of the process introduced above is the rank restriction. Indeed

we expect for applications to multivariate stochastic volatility matrices a

process such that Yt is of full rank almost surely.

A first idea to get such processes consist in summing a sufficient number

of outer products of independent Gaussian VAR processes. More precisely

let us consider the process defined by :

Yt =

K
∑

k=1

xktx
′

kt,

where the processes xkt, k = 1, . . . ,K are independent Gaussian VAR(1)

processes with the same dimension n, autoregressive parameter M and

innovation variance Σ :

xk,t = Mxk,t−1 + εk,t, εk,t ∼ N(0,Σ).

Analogues of Propositions 4.1, 4.2 can be derived. Process (Yt) is a Markov

process with conditional Laplace transform :

ψt(Γ) =
expTr[M ′Γ(Id− 2ΣΓ)−1MYt]

[det(Id− 2ΣΓ)]K/2
. (4.2)

The affine character of the log-Laplace transform is not lost, and its ex-

pression is just modified by a change of power in the denominator. The
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stochastic matrix Yt has full rank almost surely whenever the number K of

terms in the sum is larger than dimension n.

More generally the Laplace transform (4.2) can be extended to fractional

degree of freedom, but the interpretation in terms of sum of outer products

of Gaussian VAR is lost.

Definition 6 : A Wishart autoregressive process of order 1, denoted

WAR (1), is a matrix Markov process with conditional Laplace transform :

ψt(Γ) =
expTr[M ′Γ(Id− 2ΣΓ)−1MYt]

[det(Id− 2ΣΓ)]K/2
.

The conditional Laplace transform depends on parametersK,M,Σ. Pa-

rameter K,K > 0, is the degree of freedom, M the latent autoregressive

coefficient, Σ the latent innovation variance. The stochastic matrix Yt has

full column rank whenever K > n− 1.

In the one-dimensional case n = 1, the Laplace transform becomes :

ψt(z) = exp[−m2yt

z

1 + σ2z
−
K

2
log(1 + 2σ2z)],

with z = −γ. This is exactly the expression of the Laplace transform of an

ARG(1) process with parameters : c = 2σ2, β = m2/(2σ2), δ = K/2.

4.3. Conditional Moments

The expressions of the first and second order conditional moments are di-

rectly deduced from the conditional Laplace transform. We get :

Et(Yt+1) = MYtM
′ +KΣ,

Covt(γ
′Yt+1α, δ

′Yt+1β) = γ′MYtM
′δ α′Σβ + γ′MYtM

′β α′Σδ

+ α′MYtM
′δ γ′Σβ + α′MYtM

′β γ′Σδ

+ γ′Σβ α′Σδ + α′Σβ γ′Σδ;

for any n-dimensional vectors α, γ, δ, β. In particular the conditional mo-

ments above are affine functions of the lagged volatility matrix. For instance

in the bidimensional framework, we get :

Yt =

(

Y1,1,t Y1,2,t

Y1,2,t Y2,2,t

)

.
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The conditional means are :

Et(Y1,1,t+1) = (m1,1,m1,2)Yt

(

m1,1

m1,2

)

+Kσ1,1,

Et(Y2,2,t+1) = (m2,1,m2,2)Yt

(

m2,1

m2,2

)

+Kσ2,2,

Et(Y1,2,t+1) = (m1,1,m1,2)Yt

(

m2,1

m2,2

)

+Kσ1,2.

There are 3 conditional variances and 3 conditional covariances :

Vt(Y1,1,t+1) = 4σ1,1(m1,1,m1,2)Yt

(

m1,1

m1,2

)

+ 2Kσ2
1,1,

Vt(Y2,2,t+1) = 4σ2,2(m2,1,m2,2)Yt

(

m2,1

m2,2

)

+ 2Kσ2
2,2,

Covt(Y1,1,t+1, Y2,2,t+1) = 4σ1,2(m1,1,m1,2)Yt

(

m2,1

m2,2

)

+ 2Kσ2
1,2,

Vt(Y1,2,t+1) = (m1,1,m1,2)Yt

(

m1,1

m1,2

)

σ2,2

+ (m2,1,m2,2)Yt

(

m2,1

m2,2

)

σ1,1

+ 2(m1,1,m1,2)Yt

(

m2,1

m2,2

)

σ1,2

+ K(σ2
1,2 + σ1,1σ2,2), . . .

4.4. Continuous Time Analogue

Under restrictions on the dynamics parameters3, a WAR(1) process is

a time discretized continuous time affine process. The continuous time

Wishart process satisfies a diffusion system :

dYt =
(

KQQ′ + ÃYt + YtÃ
′

)

dt+ Y
1/2
t dW̃tQ+Q′dW̃ ′

tY
1/2
t ,

where Wt is a (n, n) stochastic matrix, whose components are independent

Brownian motions, and A,Q are (n, n) matrices. The state space of this

3
The autoregressive matrix M has to be of an exponential form M = exp A, where A is a

(n, n) matrix. This excludes negative eigenvalues, recursive systems... often encountered

in practice.
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continuous time matrix process is the set of symmetric positive definite

matrices. Indeed it is easily checked that dYt = dY ′

t , which explains the

symmetry of the process. Moreover let us assume that, at time t, the

matrix Yt is positive semi-definite, such that β′Ytβ = 0. Thus we are on the

boundary of the state space. In this situation the process becomes locally

deterministic with a positive drift in the degeneracy direction, since :

β′dYtβ =
(

Kβ′QQ′β + β′ÃYtβ + β′YtÃ
′β
)

dt

+ β′Y
1/2
t dW̃tQβ + β′Q′dW̃ ′

tY
1/2
t β

= Kβ′QQ′βdt > 0.

5. Structural Applications

We have seen in the introduction that compound autoregressive models are

naturally introduced in the analysis of high frequency data to account for

the difference between calendar time and deformed time. They are also im-

portant in derivative pricing concerning either bonds, [Duffie, Kan (1996),

Gourieroux, Sufana (2003), Gourieroux, Monfort, Polimenis (2006)], or

stocks [Gourieroux, Sufana (2004)], to account for the evolution of latent

risk. The aim of this Section is to show that these structural problems share

a common structure, which involves the nonlinear prediction of the cumu-

lated (or integrated) factor process : Y ∗

t,t+h =

t+h
∑

τ=t+1

Yτ at time t. Since

the conditional Laplace transform of Y ∗

t,t+h is easily computed for any Car

(affine) process, this family is the appropriate family to derive closed form

solutions to all problems mentioned above.

5.1. Derivative Pricing

The analysis of derivative prices can be performed either with respect to

the historical dynamics by introducing a stochastic discount factor, or with

respect to the risk adjusted dynamics, called risk-neutral dynamics. The ad-

vantage of risk neutral dynamics is to facilitate the computations of deriva-

tive prices, but its main drawback is to correspond to a virtual world, which

is not usual for econometricians [see e.g. the discussion in Dai, Singleton

(2000) ]. In the sequel we use the historical approach for analysing both

term structures of interest rates and stock derivative pricing.
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5.1.1. Affine Term Structures

In this section we are interested in bond pricing. The purpose is to find

closed form formulas for the prices of zero-coupon bonds (and more gener-

ally bond derivatives), which are coherent with respect to both time and

residual maturity. Let us denote by B(t, t + h) the price at date t of a

zero-coupon bond with residual maturity h. This is the price in $ at date

t of 1$ paid with certainty at date t + h. This price summarizes both the

discounting due to time and future uncertainty. It is known that, under

the assumption of no arbitrage opportunity, the price of zero-coupon bond

can be written as :

B(t, t+ h) = Et(Mt,t+1 . . .Mt+h−1,t+h), (5.1)

where Et denotes the expectation conditional on the information available

at time t and Mt,t+1 the stochastic discount factor (sdf) function of the

information of date t+ 1. We assume that the information set includes the

current and lagged values of some underlying factors Yt, say, and that the

sdf is an exponential affine function of the factor values at date t+ 1 :

Mt,t+1 = exp[α′

0Yt+1 + α1]. (5.2)

Then we get :

B(t, t+ h) = Et[exp(α′

0Yt+1 + α1) . . . exp(α′

0Yt+h + α1)]

= exp(hα1)Et exp(α′

0Y
∗

t,t+h),

where : Y ∗

t,t+h =

t+h
∑

τ=t+1

Yτ is the integrated factor value.

Thus it is equivalent to looking for closed form expressions of the zero-

coupon bonds, or for closed form expressions of the conditional Laplace

transform of the integrated factor value (see Proposition 2).

5.1.2. Corporate Bonds

The approach above can be extended to the pricing of corporate bonds,

which take account the possibility of default. If we assume a zero recovery

rate when defaut occurs, the prices of corporate bonds can be written as :

Bc(t, t+ h) = Et[Mt,t+1 . . .Mt+h−1,t+hΠt,t+1 . . .Πt+h−1,t+h], (5.3)
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where Mt,t+1 is the sdf and Πt,t+1 the survivor intensity, which measures

the probability of no default at date t+1, when the firm is still alive at date

t. If we assume exponential affine functions of the factor for both Mt,t+1

and Πt,t+1,

Mt,t+1 = exp[α′

0Yt+1 + α1],Πt,t+1 = exp(β′

0Yt+1 + β1), (5.4)

we get :

Bc(t, t+ h) = exp[h(α1 + β1)]Et exp[(α0 + β0)
′Y ∗

t,t+h]. (5.5)

This is still a conditional Laplace transform of the integrated factor process.

Similarly the approach can be extended to include nonzero recovery

rates (see Gourieroux, Monfort, Polimenis (2006)).

5.1.3. Stock Derivatives

The sdf based approach can also be used to price derivatives written on

stocks. Let us for illustration consider a risky stock with price St and a

riskfree asset with zero riskfree rate. Under the assumption of no arbitrage

opportunity the price at t of a European call paying g(St+h) at date t+ h

is :

C(g; t, t+ h) = Et[Mt,t+1 . . .Mt+h−1,t+hg(St+h)]. (5.6)

It is known that all derivative prices can be easily computed if we know the

prices of derivatives corresponding to exponential transform of the log-asset

price :

g(St+h) = exp(z logSt+h), (5.7)

where z = z0i is a pure imaginary number.

For expository purpose let us now consider a one factor model. Let us

assume that the sdf is an exponential affine function of this underlying risk

factor :

Mt,t+1 = exp(α0yt+1 + α1),

whereas the evolution of the stock price is given by :

logSt+1 = logSt + µ0yt+1 + µ1 + (σ2
0yt+1 + σ2

1)1/2εt+1, (5.8)

where (εt) is a sequence of iid standard normal variables. The price equation

(5.9) corresponds to a standard Black-Scholes specification with a stochastic
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volatility and a risk premium [volatility-in-mean effect] introduced in the

drift.

We deduce from equation (5.9) that :

logSt+h = logSt + µ0y
∗

t,t+h + µ1h+ (σ2
0y

∗

t,t+h + hσ2
1)1/2ε, (5.9)

where ε is a standard Gaussian variable. Therefore the price of the deriva-

tive with payoff g(St+h) = exp(z logSt+h) is :

C(z; t, t+ h) = Et{exp[α0y
∗

t,t+h + α1h+ z logSt + zµ0y
∗

t,t+h + zµ1h

+ z(σ2
0y

∗

t,t+h + hσ2
1)1/2ε}

By integrating out the random term ε, we get :

C(z; t, t+ h) = exp[α1h+ z logSt + z(µ1 +
1

2
σ2

1)h]

Et exp[(α0 + zµ0 +
1

2
z2σ

2
0

2
)y∗t,t+h].

These derivative prices have closed form expressions whenever the condi-

tional Laplace transform of the integrated factor y∗t,t+h has a closed form

expression.

6. Concluding Remarks

The compounding interpretations of daily data obtained by aggregating

high frequency data and the role of the conditional Laplace transform in

pricing derivatives on bonds and stocks explain the importance of Com-

pound Autoregressive (Car) processes. The aim of this chapter was to

define these processes, to describe their prediction properties and to high-

light their use for derivative pricing. In practice the Car dynamics are of-

ten parameterized and the dynamic parameters have to be estimated from

available data. The transition density of a Car process admits in general

a rather complicated form. However the specification of the conditional

Laplace transform :

E[exp(−z′Yt|Yt−1] = exp[−a(z; θ)′Yt−1 + b(z; θ)], ∀z ∈ D,

can be rewritten as :

E
{

[exp(−z′Yt) − exp(−a(z; θ)′Yt−1 + b(z; θ))]|Yt−1

}

= 0, ∀z ∈ D.

This specification provides an infinite set of conditional moment restric-

tions when z varies. This set can be used to derive asymptotically efficient

estimators of parameter θ by applying GMM in an appropriate way.
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Appendix 1

Prediction Formula

The prediction formula of Proposition 1 is derived by recursion.

i) First note that, for h = 1, we get :

ψt,1(z) = exp[−a(z)′Yt + b(z)],

which is the definition of the Car process.

ii) Moreover, if the prediction formula is valid for h− 1, we get :

ψt,h(z) = E [exp(−z′Yt−h)|Yt]

= {E [exp(−z′Yt−h)|Yt+1] |Yt}

= E [ψt+1,h−1(z)|Yt]

= E

(

exp

{

−ao(h−1)(z)′Yt+1 +

h−2
∑

k=0

b[aok(z)]

}

|Yt

)

= exp

{

−ao(h)(z)′Yt +

h−1
∑

k=0

b[aok(z)]

}

,

which is the expected formula.
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A condensed presentation of linear multivariate time series models, their
identification and their use for forecasting is given. General stationary
processes, ARMA and state space systems and linear dynamic factor
models are described.

1. Introduction

In general terms, time series analysis is concerned with extraction of infor-

mation from observations ordered in time. The ordering in time contains

important information and the results obtained are, contrary to the clas-

sical case of i.i.d. observations, in general not invariant with respect to

a permutation in the ordering of the observations. Here we only consider

discrete-time, equally spaced data yt, t = 1, . . . , T ; yt ∈ Rn.

The main aims in time series analysis are data driven modelling (also called

system identification) on the one side and signal and feature extraction on

the other side. In this contribution we mainly consider data driven mod-

elling; the main issues here are:

• Model classes and structure theory

• Estimation of real-valued parameters

• Model selection

Here we only consider linear models in a stationary framework. When com-

paring with the univariate (i.e. n = 1) case, additional theoretical and

practical problems arise in the multivariate (n > 1) case. In particular:

159
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• certain theoretical features, such as the structure theory for linear

systems are much more demanding

• typically, the dimension of parameter spaces increases at the rate

n2, whereas, clearly, the number of data points, for fixed sample

size T , is linear in n

The contribution is organized as follows:

In section 2 we summarize main results from the theory of (wide sense) sta-

tionary processes. Such processes are the most important stochastic models

for time series and the understanding of the structure of stationary pro-

cesses is essential for a deeper understanding of time series analysis. In this

section we are concerned with the structure of such processes, with fore-

casting and filtering and not with estimation.

In this contribution we do not discuss nonparametric estimation, such as

smoothed periodogram estimators, also because this is not of primary in-

terest in econometrics. In section 3 we consider identification for stationary

processes with rational spectral densities, or, in other words for ARMA or

state space systems. The approach is semi nonparametric in the sense that

model selection is performed in order to obtain finite dimensional parame-

ter spaces after model selection.

For multivariate time series, the dimension of the parameter spaces for

(unstructured) AR, ARMA or state space systems may cause severe prob-

lems. In such cases cross-sectional dimension reduction by factor models

may be very important. This is discussed in section 4. Clearly, linear models

for nonstationary observations are very important in economic time series

analysis. We do not deal with these models here, we only want to point

out that cointegration models and factor models for panel data constitute

important classes of factor models, not treated in section 4.

The contribution is intended to provide a condensed presentation, by de-

scribing main ideas and results and the basic structure of the problems.

No proofs are given; for the sake of brevity in some cases compromises on

the precision are made. In order to reduce the amount of referencing, the

main references are given at the beginning of every section. In general, no

original references are given.
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2. Stationary Processes

Stationary processes are important models for time series. The central parts

of the theory of wide-sense stationary processes, in particular spectral rep-

resentation, Wold representation, spectral factorization, linear least squares

forecasting, filtering and smoothing have been developed in the thirties and

fourties of the last century by Khinchin, Kolmogorov, Wold, Wiener and

others for the univariate case. In addition at the same time, the theory of

strictly stationary processes and ergodic theory were studied. One of the

first complete accounts on the multivariate theory was the book by Rozanov

[20]. This book is the main reference for this section, see also Hannan [14]

and Hannan and Deistler [15]. This theory is, in a certain sense, probabil-

ity theory. Based on this theory the statistical analysis of stationary time

series was developed, starting in the late fourties and early fifties of the last

century with the work of Tukey and others.

Stationary processes with rational spectral densities correspond to finite

dimensional linear systems (as treated in section 3) and are of particular

practical importance for the statistical analysis. Also for important classes

of nonstationary processes, such as for integrated processes, the theory of

stationary processes in an important building stone. In this section we sum-

marize important facts from the theory of wide sense stationary processes.

2.1. Basic Definitions and Examples

We commence with the following definition:

A stochastic process (xt|t ∈ Z), where Z are the integers and xt : Ω → Rn

are random variables, is called (wide sense) stationary if

• Ex′txt <∞ for all t

• Ext = m (constant) for all t

• γ(s) = E(xt+s −m)(xt −m)′ does not depend on t.

In other words, wide sense stationarity means existence and shift-invariance

(in time) of first and second moments. Here a
′

denotes the transpose of a

vector or a matrix a.

The covariance function γ : Z → Rn×n is the “address book” of linear

dependence relations between all pairs of (one-dimensional) process vari-

ables x
(i)
t+s and x

(j)
t . A function γ : Z → R

n×n is a covariance function if



November 30, 2007 17:59 WSPC/Lecture Notes Series: 9in x 6in 05˙Deistler

162 Manfred Deistler

and only if it is a non-negative definite function, i.e. ΓT ≥ 0 holds for all

T , where

ΓT =







γ(0) . . . γ(−T + 1)
...

. . .
...

γ(T − 1) · · · γ(0)







Examples for stationary processes are:

• White noise, defined by Eεt = 0, Eεsε
′

t = δstΣ, where δst is the

Kronecker delta.

• Moving average (MA) processes, defined by

xt =

q
∑

j=0

bjεt−j , bj ∈ R
n×m

where εt is white noise

• Infinite moving average processes, which are of the form

xt =

∞
∑

j=−∞

bjεt−j ,
∑

||bj ||
2 <∞

where here and throughout infinite sums are understood in the

mean squares sense. Here || || denotes a norm of a matrix. The

class of infinite moving average processes is already a large class

within the class of stationary processes.

• (Stationary) Autoregressive (AR) processes are the steady state

solutions of stable vector difference equations (VDE’s) of the form

a(z)yt = εt (1)

where (εt) is white noise, z is the backward-shift operator (i.e

z((yt|tεZ)) = (yt−1|tεZ)) as well as a complex variable,

a(z) =

p
∑

j=0

ajz
j , aj ∈ R

n×n

and where the stability condition

det a(z) 6= 0, |z| ≤ 1 (2)

holds. Here det denotes the determinant.
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• (Stationary) ARMA processes are the steady state solutions of

VDE’s of the form

a(z)yt = b(z)εt

where

b(z) =

q
∑

j=0

bjz
j , bj ∈ R

n×n

and the stability condition (2) holds. In most cases, in addition,

the so called miniphase condition

det b(z) 6= 0, |z| < 1 (3)

is also imposed. This condition does not restrict the class of ARMA

processes.

• Harmonic processes are of the form

xt =

h
∑

j=1

eiλj tzj (4)

where λj ∈ (−π, π] are (angular) frequencies and zj : Ω → Cn are

complex valued random variables. W.l.o.g. we assume λ1 < · · · <

λh; also the restriction of the angular frequencies to (−π, π] does

not restrict generality, since t varies over the integers. The highest

observable frequency π is called the Nyquist frequency. By formula

(4), (xt) is a sum of harmonic oscillations with random amplitudes

and phases. In general, (xt) will not be stationary; in order to

guarantee stationarity, we impose the following conditions:

Ez∗j zj <∞

where ∗ denotes the conjugate-transpose

Ezj =

{

0 for all j such that λj 6= 0

(Ext for j with λj = 0)

Ezjz
∗

l = 0 for all j 6= l (5)

Condition (5) means, that there is no linear dependence between

the weights at different frequencies. In addition, since (xt) is real-

valued, we have: λ1+i = −λh−i and z1+i = z̄h−i, i = 0, . . . , h− 1.
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The spectral distribution function F : [−π, π] −→ Cn×n of a har-

monic process is defined by

F (λ) =
∑

j:λj≤λ

Fj ,

Fj =

{

Ezjz
∗

j for all j such that λj 6= 0

E(zj −Ext)(zj −Ext)
∗ for j with λj = 0

(6)

The equation

γ(t) =

h
∑

j=1

eiλjtFj (7)

defines a one-to-one relation between covariance functions and

spectral distribution functions, thus F contains the same informa-

tion about the process as γ. For many applications however spec-

tral distribution functions are preferred due to the way how this

information is displayed: The diagonal elements F
(l,l)
j of Fj are

a measure of the expected amplitude at frequency λj in the l–th

component of the process (xt) and the off-diagonal elements F
(i,l)
j ,

i 6= l, which are complex in general, measure with their absolute

values the strength of the linear relation between the i–th and the

l–th component of (xt) at frequency λj and the phase of F
(i,l)
j is a

measure of the expected phase shift between these components.

2.2. The Spectral Representation of Stationary Processes

The theorem below constitutes one of the central parts of the theory of sta-

tionary processes. It states that every stationary process can be obtained

as the (pointwise in t) limit (in the mean squares sense) of a sequence of

(stationary) harmonic processes. Let Hx denote the Hilbert space spanned

by the one dimensional components x
(j)
t , j = 1, . . . , n, t ∈ Z of (xt) in the

Hilbert space L2 over the underlying probability space (Ω,A,P).

Theorem 2.1: For every stationary process (xt) there is a (in Hx unique)

process (z(λ)|λ ∈ [−π, π]), z(λ) : Ω → Cn satisfying

z(−π) = 0, z(π) = x0

Ez∗(λ)z(λ) <∞

limε↓0 z(λ+ ε) = z(λ)
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E(z(λ4) − z(λ3))(z(λ2) − z(λ1))
∗ = 0 for λ1 < λ2 ≤ λ3 < λ4

such that

xt =

∫

[−π,π]

eiλtdz(λ) (8)

holds.

The process (z(λ)|λ ∈ [−π, π]) is called a process of orthogonal increments.

The importance of the spectral representation (8) is twofold. First it al-

lows for an interpretation of a stationary process in terms of frequency

components. Second, as will be seen in the next subsection, certain opera-

tions are easier to interprete and to perform in frequency domain.

For a general stationary process (xt) its spectral distribution function

F : [−π, π] → C
n×n is defined by F (λ) = Ez̃(λ)z̃∗(λ) where

z̃(λ) =

{

z(λ) for λ < 0

z(λ) −Ext for λ ≥ 0

In this contribution from now on we will assume, that Ext = 0 holds.

If there exists a function f : [−π, π] → Cn×n such that

F (ω) =

∫ ω

−π

f(λ)dλ

where λ denotes the Lebesgue measure, then f is called the spectral density.

If we assume Σ||γ(t)||2 <∞ then the spectral density exists and there is a

one-to-one relation between γ and f (or to be more precise the correspond-

ing λ-a.e. equivalence class) given by

γ(t) =

∫ π

−π

eiλtf(λ)dλ (9)

and

f(λ) = (2π)−1
∞
∑

t=−∞

γ(t)e−iλt

A function f : [−π, π] → Cn×n is a spectral density if and only if

f ≥ 0, λ a.e.

||

∫

f(λ)dλ|| <∞
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and

f(λ) = f(−λ)′

hold. In particular we have

γ(0) =

∫ π

−π

f(λ)dλ

which may be interpreted as the decomposition of the variance-covariance

matrix of xt into the variance-covariance matrices f(λ)dλ of the frequency

components eiλtdz(λ). The interpretation of F and f can be directly ob-

tained from the interpretation of F in the harmonic case. In particular,

the diagonal elements of f show the contributions of the frequency bands

to the variance of the respective component process and the off-diagonal

elements show the frequency band specific covariances and expected phase

shifts between the component processes.

2.3. Linear Transformations of Stationary Processes

Linear transformations are the most important class of transformations of

stationary processes. For (xt) stationary let

yt =

∞
∑

j=−∞

ajxt−j ; aj ∈ R
n×m (10)

hold. Then we say that (yt) is obtained by a linear, time-invariant trans-

formation from (xt). If Σ||aj || <∞ then the infinite sum in (10) exists for

every stationary (xt); if the condition Σ||aj ||
2 < ∞ holds, then this sum

exists e.g. for white noise. The weighting function of the linear transforma-

tion is given as (aj |j ∈ Z). The transformation is called causal if aj = 0,

j < 0 and static if aj = 0, j 6= 0 holds. As easily can be seen, (x
′

t, y
′

t)
′

is

stationary and, using an evident notation,

yt =

∫

[−π,π]

eiλtdzy(λ) =

∫

[−π,π]

eiλt(

∞
∑

j=−∞

aje
−iλj)dzx(λ) (11)

holds for all t ∈ Z. The transfer-function

k(z) =

∞
∑

j=−∞

ajz
j
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is in one-to-one relation with the weighting function (aj |j ∈ Z).

From (11) we see that

dzy(λ) = k(e−iλ)dzx(λ)

and thus the discrete convolution (10) corresponds to multiplication by

k(e−iλ) in frequency domain.

If a spectral density fx for (xt) exists, then the corresponding transfor-

mation of the second moments is given by

fyx(λ) = k(e−iλ)fx(λ) (12)

fy(λ) = k(e−iλ)fx(λ)k∗(e−iλ) (13)

where fy is the spectral density of (yt) and fyx is the cross-spectrum be-

tween (yt) and (xt).

2.4. The Solution of Linear Vector Difference Equations

Consider the VDE

a(z)yt = b(z)xt (14)

where

a(z) =

p
∑

j=0

ajz
j , aj ∈ R

n×n

b(z) =

q
∑

j=0

bjz
j , bj ∈ R

n×m

The steady state solution is then obtained by inverting the matrix-

polynomial a(z) in the lag operator z. This is done by inverting the matrix-

polynomial a(z), z ∈ C:

Theorem 2.2: Let the stability condition

det a(z) 6= 0, |z| ≤ 1

hold. Then there exists a causal and stable solution of (14) of the form

yt =

∞
∑

j=0

kjxt−j = k(z)xt (15)
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where
∞
∑

j=0

kjz
j = k(z) = a−1(z)b(z) = (det a(z))−1adj(a(z))b(z); |z| ≤ 1 (16)

Here adj denotes the adjoint.

2.5. Forecasting Stationary Processes

The forecasting problem is to approximate a future value xt+h, h > 0,

from the past xs, s ≤ t. More specifically, in linear least squares forecasting

the problem is to minimize E(xt+h −
∑

j≥0 ajxt−j)
′

(xt+h −
∑

j≥0 ajxt−h)

over the aj ∈ Rnxn, j = 0, 1, 2, . . . (This is a slight restriction of generality,

because there are processes (xt), where the predictor x̂t,h, i.e. the approxi-

mation, cannot be represented as an infinite sum Σj≥0ajxt−j but as a limit

of such linear transformations).

As is well known this forecasting problem has an interpretation as pro-

jection. Let Hx(t) denote the Hilbert space spanned by {x
(j)
s |s ≤ t, j =

1, . . . , n} in the Hilbert space L2. Then the predictor x̂t,h for xt+h is ob-

tained by projecting the x
(j)
t+h, j = 1, . . . , n onto Hx(t).

A stationary process (xt) is called (linearly) singular if x̂t,h = xt+h for

some and hence for all t, h > 0 holds. (xt) is called (linearly) regular if

l.i.m.h→∞x̂t,h = 0

for one and hence for all t holds. Here l.i.m. denotes the limit in the mean

squares sense.

The next theorem is of central importance:

Theorem 2.3: (Wold decomposition)

• Every stationary process (xt) can be represented in a unique way

as xt = yt + zt, where (yt) is regular, (zt) is singular, Eytz
′

s = 0 for

all s, t and (yt) and (zt) are causal linear transformations of (xt)

(which may have a slightly more general form than (10) and can

be expressed, as y
(j)
t , z

(j)
t ∈ Hx(t), j = 1, . . . , n).

• Every regular process (yt) can be represented as (Wold represen-

tation)

yt =

∞
∑

j=0

kjεt−j ,

∞
∑

j=0

||kj ||
2 <∞ (17)
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where (εt) is white noise and where (εt) is a causal linear transfor-

mation of (yt) (which may have a slightly more general form than

(10) ).

The Wold decomposition provides a deep insight in the structure of sta-

tionary processes. Its consequences for forecasting are:

• (yt) and (zt) can be forecasted separately

• for the regular process (yt) we have:

yt+h =

∞
∑

j=0

kjεt+h−j =

∞
∑

j=h

kjεt+h−j +

h−1
∑

j=0

kjεt+h−j

and thus, by the projection theorem, the best linear least squares

predictor is given by

ŷt,h =

∞
∑

j=h

kjεt+h−j (18)

and the forecast error by

h−1
∑

j=0

kjεt+h−j . (19)

Substituting εt in (18) by the causal linear transformation of the

ys, s ≤ t gives the forecast-formula, expressing ŷt,h in terms of ys,

s ≤ t.

From (17) we see that every regular process can be approximated with

arbitrary accuracy by an (AR)MA process. Long memory processes, where

in (17)

∑

‖ kj ‖= ∞

holds, are examples of regular processes which are not of ARMA type.

By Theorem 2.3, every regular process can be considered as the output

of a causal linear transformation (or in other words of a causal linear sys-

tem) with white noise inputs. Thus, from (13) we see that the spectral

density of (yt) is given as:

fy(λ) = (2π)−1k(e−iλ)Σk∗(e−iλ) (20)
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where

k(z) =

∞
∑

j=0

kjz
j , Σ = Eεtε

′

t

For actual forecasting, in general, the population second moments and thus

the kj will not be known and have to be estimated from the data, by esti-

mating a forecasting model. Thus in addition to the “theoretical” forecast

error (19), an estimation error occurs. Despite the fact, that for consistent

estimators, the estimation error converges to zero and thus asymptotically

only (19) remains, for actual sample sizes the estimation error, in a cer-

tain sense, depends on the dimension of the parameter space. Forecasting

models with (relatively) low-dimensional parameter spaces are discussed in

section 4.

2.6. Filtering

Another important approximation problem is the filtering problem. We

commence from a, say, m + n dimensional stationary process (x′t, y
′

t)
′ and

we are interested in the best linear least squares approximation of yt by

(xt), i.e. in the projection of y
(j)
t , j = 1, . . . , n on the Hilbert space Hx, the

space spanned by x
(j)
t ; t ∈ Z, j = 1, . . . ,m. Then, if fx(λ) > 0 holds for all

λ, the transferfunction of the best linear least squares filter

ŷt =

∞
∑

j=−∞

ajxt−j

(this again may be too restrictive for certain processes (xt)) is given by the

Wiener-filter formula

k(e−iλ) = fyx(λ)fx(λ)−1 (21)

This is easily seen from (12) and the fact that the cross-spectrum between

(ŷt) and (xt) is equal to fyx.

3. Identification of Linear Systems

System identification is concerned with finding a good model from noisy

data, i.e. with data driven modelling. An identification procedure is a

rule (in the automatic case a function) attaching to each data string yt,

t = 1, . . . , T , a system from the so called model class, that is the class of all

a-priori feasible candidate systems. We are interested in both, construction
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of such rules and in their evaluation. Here only linear systems are consid-

ered, the emphasis in this section is on ARMA and state space systems. It

should be noted that identification of linear systems is a nonlinear problem,

since the mapping attaching parameters to the (sample second moments of

the) data is nonlinear in general.

The main references for this section are Hannan and Deistler [15], Reinsel

[19], Deistler [5] and Deistler [6]. As has been stated before, every regular

stationary process has a Wold representation and thus may be approxi-

mated with arbitrary accuracy by an ARMA process. On the other hand,

ARMA systems are described by a finite number of parameters and are

thus statistically convenient. To be more precise, in the semi nonparametric

approach described here, every regular stationary process can be approxi-

mately modeled by an ARMA system, obtained in a two step procedure,

consisting of model selection and estimation of real-valued parameters, as

described below. Analogously, every causal Wiener filter can be approxi-

mately described by an ARMAX system.

3.1. The Three Modules in System Identification

From a theoretical point of view, (in the semi nonparametric approach),

we may distiguish three modules in system identification. Although these

modules are dovetailed with each other, the problems can be solved in every

module separately. The modules are as follows:

• Structure theory: Here an idealized identification problem is

treated: We commence from the stochastic process generating the

data (or, in the ergodic case, from an infinite trajectory) or from its

(in particular second) population moments, rather than from data.

The problem is to obtain from this information the parameters

of interest. In more general terms, structure theory is concerned

with the relation between “external behavior” (as described e.g.

by population moments of the observed processes) and “internal

parameters” (describing system and noise properties). Despite this

idealized setting, structure theory turns out to be important for ac-

tual identification. Perhaps the best known part of structure theory

is the theory of identifiability.

• Estimation of real-valued parameters: Here we commence from data

and we assume that a finite-dimensional parameter space is given;

the idealizing assumption here is, that we have no model selection
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problem. By real-valued parameters we mean parameters that may

vary e.g. in an open subset of an Euclidean space. A typical estima-

tion procedure in this context is maximum likelihood estimation.

• Model selection: This concerns in particular input selection and dy-

namic specification. Here typically integer-valued parameters, such

as e.g. maximum lag lenghts in the ARMA case, are estimated from

data using information criteria or are obtained from test sequences.

As has been said already, here we only consider linear systems. For simplic-

ity of notation, we restrict ourselves to systems with unobserved white noise

inputs only, i.e. to systems with no observed inputs. For the case where also

observed inputs are present we refer to [15].

3.2. ARMA Systems and Rational Spectral Densities

Consider an ARMA system

a(z)yt = b(z)εt (22)

satisfying the stability assumption (2) and the miniphase assumption (3).

Then the steady state solution is given by

yt =

∞
∑

j=0

kjεt−j , k(z) =

∞
∑

j=0

kjz
j = a−1(z)b(z) (23)

Note that, due to (3), (23) is the Wold representation. From (20) then we

have

fy(λ) = (2π)−1a−1(e−iλ)b(e−iλ)Σ b(e−iλ)∗a−1(e−iλ)∗ (24)

Note that for an ARMA system k as well as fy are rational matrices. We

also have:

Theorem 3.1: Every rational and nonsingular spectral density matrix may

be uniquely factorized as in (24), where k(z) is rational, analytic within a

circle containing the closed unit disk, det k(z) 6= 0, |z| < 1 and k(0) = I

and where Σ > 0.

Thus, under the assumptions of the theorem above, k and Σ can be uniquely

determined from given fy and thus from the population second moments

of the observations. This is the justification for describing the external be-

havior of an ARMA system by its transfer function. In addition, it can be

shown that every rational transfer function k with the properties given in
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the theorem above can be written as k = a−1b where the polynomial ma-

trices a and b satisfy (2), (3) and a(0) = b(0), and thus correspond to a

stable and miniphase ARMA system.

In order to obtain finite dimensional parameter spaces, subclasses have to

be considered. There are several ways to break the class of all ARMA sys-

tems into such subclasses. One is to fix the maximum degrees p and q of a(z)

and b(z) respectively; in addition, it is assumed that a(0) = b(0) = I holds.

Then τ = vec(a1 . . . ap, b1 . . . bq) ∈ Rn2(p+q), where vec denotes columnwise

vectorization, is a parameter vector. In the scalar (i.e. n = 1) case, com-

mon factors have to be excluded in order to avoid “redundant” ARMA

representations. The generalization of this idea to the multivariable case

is as follows: We assume that a and b are relatively left prime, meaning

that every left (polynomial matrix-) common factor u must be unimodular,

i.e. detu(z) = const 6= 0. It can be shown that under this assumption two

ARMA systems (ā, b̄) and (a, b) correspond to the same transfer-function

(i.e. ā−1b̄ = a−1b) and thus are observationally equivalent if and only if

there exists a unimodular matrix u such that

(ā, b̄) = u(a, b)

holds. Using this result, it is easy to show that the parameter space

Tp,q = { vec(a1 . . . ap, b1 . . . bq) ∈ R
n2(p+q)|

det a(z) 6= 0, |z| ≤ 1, det b(z) 6= 0, |z| < 1;

a, b are relatively left prime, a(0) = b(0) = I,

rk(ap, bq) = n }

is identifiable, i.e. does not contain two different observationally equivalent

systems. Here we identify (a, b) with vec(a1 . . . bq) and rk denotes the rank

of a matrix. If we define the mapping π by π(a, b) = a−1b, then identifi-

ability means that π restricted to Tp,q is injective. In addition, it can be

shown that Tp,q contains a nontrivial open subset of Rn2(p+q) and that the

inverse of the restriction of π to Tp,q is continuous, where we endow sets of

transfer functions with the topology of pointwise convergence of its power

series coefficients. Tp,q and Tp,p are frequently used as parameter spaces;

however for n > 1 they have the disadvantage that not every rational trans-

fer function (satisfying our assumptions) can be described in this way.

Clearly AR systems are special ARMA systems with b(0) = I . As can
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be seen immediately a and I are always relatively left prime and the rank

of (ap, I) is always n. This shows that, after having imposed stability and

a(0) = I , we do not have to take out additional points in order to obtain

identifiability. As a consequence structure theory for AR systems is much

simpler compared to the general ARMA case. This is one reason why AR

systems are often prefered in applications, despite the fact that they are less

flexible in the sense that more parameters may be needed to approximate

a rational transfer function.

3.3. State Space Systems

A linear state space system is of the form

xt+1 = Axt +Bεt (25)

yt = Cxt + εt (26)

where yt are the n-dimensional outputs, (εt) is n-dimensional white noise,

xt is the, say, s-dimensional state, and A ∈ Rs×s , B ∈ Rs×n, C ∈ Rn×s are

parameter matrices. The state dimension s is an integer-valued parameter.

The stability assumption is of the form

|λmax(A)| < 1 (27)

where λmax(A) denotes an eigenvalue of A of maximal modulus. Then the

steady state solution is given by the transfer function

k(z) = C(z−1I −A)−1B + I = I +

∞
∑

j=1

(CAj−1B)zj (28)

In addition the miniphase assumption

|λmax(A−BC)| ≤ 1 (29)

will be imposed. Then k(z) in (28) corresponds to Wold representation.

In many cases state space systems are written with different white noise

processes for (25) and for (26), respectively, however such systems can be

always transformed to the so called innovations representation given in (25),

(26).

As easily can be seen, every ARMA system (22) can be transformed to

a state space system (25), (26) with the same transfer function by defining

the state xt as the vector formed by yt−1 . . . yt−p, εt−1 . . . εt−q . Clearly the
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transfer function in (28) is rational. Thus every rational transfer function

k(z) satisfying the assumptions of Theorem 3.1 can be realized by (i.e. cor-

responds to the steady state solution of) an ARMA or by a state space

system. In other words, every stationary process with a rational spectral

density can be described either by an ARMA or by a state space system and

both model classes describe the same class of stationary processes (namely

those with rational spectral densities). Thus, in this sense, ARMA and

state space systems are equivalent.

The state xt is unobserved in general. A state space system (A,B,C) is

called minimal, if there is no state space system with the same transfer-

function and with smaller state dimension.

The state has the following interpretation: Remember that Hy(t − 1) de-

notes the Hilbert space spanned by y
(j)
s ; s < t, j = 1, . . . , n, and project the

variables y
(j)
r , r ≥ t, j = 1, . . . , n, onto Hy(t− 1). Then the space spanned

by these projections, the so called state space, is finite dimensional if and

only if the spectral density of (yt) is rational and its dimension is equal to

the state dimension s of a minimal system. Then s is called the order of

the system. Every basis for this space may serve as a minimal state xt. In

this sense, the state space is the interface between the future and the past

of (yt).

Two minimal state space systems (A,B,C) and (Ā, B̄, C̄) are observation-

ally equivalent if and only if there is a nonsingular matrix T such that

Ā = TAT−1

B̄ = TB (30)

C̄ = CT−1

hold.

Now, for fixed n and s, we can embed (A,B,C) in Rs2+2sn; by S(s) we

denote the set of all such (A,B,C) satisfying (27) and (29). S(s) is of di-

mension s2 +2sn and the subset Sm(s) of all minimal (A,B,C) is open and

dense in S(s). As can be seen from (30), the equivalence classes in Sm(s)

are s2-dimensional manifolds. Thus, in a certain sense, the dimension of the

parameter space can be reduced to 2sn.

We use ρ to denote the mapping attaching the transfer functions k(z) to
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(A,B,C) as described by (28). By M(s) we denote the set ρ(Sm(s)). For

the scalar case (n = 1), M(s) is equal to π(Ts,s) and in general π(Tp,p) is

open and dense in M(np). M(s) can be shown to be a manifold of dimen-

sion 2sn; for the case s > 1, however, M(s) cannot be described by one

coordinate system. For the description of M(s) we refer to [15].

Note that Tp,q is not the only parameter space used for ARMA systems.

In particular M(n) may also be described in terms of ARMA coordinate

systems, see again [15].

3.4. Estimation for a Given Subclass

Up to now, we have been concerned with structure theory for ARMA and

state space systems. Now estimation can be treated in a rather general

way: Let Tα ⊂ Rdα be a “suitable”, in particular identifiable parameter

space, such as Tp,q for the ARMA or a coordinate set for M(n) in the state

space case. Let Uα denote the corresponding set of transfer functions. By

ψα : Uα → Tα we denote the inverse of π or ρ, respectively, restricted to

Tα. This mapping is called a parametrization of Uα. We in addition require

that ψα is continuous. This is important for the “well-posedness” of the

estimation problem, because then convergence of transfer functions implies

convergence of parameters. By τ ∈ Tα we denote the (free) parameters

for the transfer function. In addition by σ ∈ Σ ⊂ R
s(s+1)

2 we denote the

stacked vector of all on and above diagonal elements of the positive definite

symmetric matrix Σ and Σ is the set of all such vectors corresponding to

such matrices. The overall parameter space for θ = (τ
′

, σ
′

)
′

then is assumed

to be of the form

Θ = Tα × Σ

Thus, in particular, we assume that there are no cross-restrictions between

system and noise parameters.

An important observation is that many identification procedures, at least

asymptotically, depend on the data only via their sample second moments

γ̂(s) = T−1
∑T−s

t=1 yt+sy
′

t, s ≥ 0

γ̂(s) = γ̂′(−s), s < 0

Now γ̂ can be directly realized as an MA system, where “typically” the

maximum lag q is equal to T − 1 and then, in general, its transfer function,
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ˆ̂
kT say, will be not be contained in Uα. From this point of view, in our case,

estimation may be considered as consisting of two steps, namely:

• a model reduction step, where e.g.
ˆ̂
kT is approximated by a transfer

function k̂T in Uα. This is an information concentration step and

is important for the statistical properties of the estimators. Note

that k̂T is a coordinate free estimator, since it does depend on the

particular parametrization of Uα.

• a realization step, where the system parameters are estimated by

ψα(k̂T ) = τ̂T

The classical estimation methods are based on (−2T−1 times the ln of) the

Gaussian likelihood which, up to a constant, is given by

L̂T (θ) = T−1 ln det ΓT (θ) + T−1y′(T )ΓT (θ)−1y(T ) (31)

where y(T ) = (y′1, . . . , y
′

T )′ and ΓT (θ) is the variance covariance matrix of a

vector y(T, θ) whose parameters are θ. The maximum likelihood estimator

(MLE) θ̂T then is obtained by minimizing L̂T (θ) over Θ. As is seen from

(31), L̂T depends on τ only via k, thus we have a coordinate-free MLE k̂T

of k and an MLE Σ̂T of Σ.

For consistency and asymptotic normality we refer to [15] or in a more

general, even nonlinear setting to [18].

There is no explicit formula for the MLE ′s τ̂T = ψα(k̂T ) and Σ̂T in general;

then the MLE′s are approximated by numerical optimization procedures of

Gauß-Newton type, commencing from a suitable initial estimator see [15],

chapter 6. One important exception are AR systems, where the MLE ′s are

of least squares type and thus can be calculated explicitly, are asymptoti-

cally efficient and numerically fast and reliable; this is a main advantage of

AR compared to more general ARMA or state space systems.

Recently powerful methods for state space system estimation, such as sub-

space procedures or data driven local coordinates have been developed,

see e.g. [7], in order to avoid or mitagate numerical problems occurring in

numerically optimizing the likelihood. A modern approach to state space

system identification is to use MLE for driven local coordinates and to use

subspace procedures for initial estimation. Of course, estimators for ARMA

systems may also be obtained by estimating a state space system first and

then to transform it to an ARMA system.
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3.5. Model Selection

In many applications the original model class (which corresponds to the

a-priori knowledge available) is not finite dimensional; here the case, where

this model class is UA, the set of all n× n rational transfer functions k(z),

satisfying the conditions listed in Theorem 3.1, is considered. The set UA has

to be broken into bits Uα in order to allow for a convenient parametriza-

tion, see subsection 3.4. The development and evaluation of data driven

procedures for the selection of such bits is one of the most important con-

tribution to the system identification during the last thirty years.

Here we restrict ourselves to a special, but important case, namely to the es-

timation of M(s) or in other words the estimation of the order s. In many

cases, the estimators are obtained by minimizing a so called information

criterion of the form

A(s) = ln det Σ̂T (s) + 2ns c(T )T−1; 0 ≤ s ≤ S (32)

where Σ̂T (s) in the MLE of Σ obtained by minimizing the likelihood over

Θ = M(s) × Σ, c(T ) is a prescribed positive function and S is an upper

bound for the order. The first term on the r.h.s of (32) is a measure for

the goodness of fit to the data achieved by the MLE over M(s) × Σ. It

can be shown, that M̄(s), the closure of M(s) in UA, is equal to ∪s
i=1M(i).

Thus M̄(s1) ⊂ M̄(s2) holds for s1 < s2 and, as is easily seen, ln det Σ̂T (s)

is (not strictly) decreasing with increasing s. The idea behind criteria of

the form (32) is to avoid overfitting by counterbalancing the first term on

the r.h.s, which is a measure of fit, by the second term, which contains

the dimension 2sn of M(s) as a measure of complexity. In other words, an

“optimal” tradeoff between fit and complexity necessary in order to achieve

this fit is intended by minimizing A(s). Note that such a procedure may

be interpreted as a sequence of likelihood ratio tests, where the significance

levels are implicitely prescribed by (32).

Now, c(T ) determines the tradeoff between fit and complexity; by far the

most common choices for c(T ) are c(T ) = 2, which gives the so called AIC

criterion and c(T ) = ln(T ) which gives the BIC criterion. These criteria

are derived from different reasonings, such as entropy minimization, opti-

mal coding or Bayesian considerations.

As can be shown, the estimators of s, ŝT say, obtained by minimizing A(s)
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are consistent (under suitable assumptions) if c(T ) satisfies

lim
T→∞

c(T )T−1 = 0

and

lim
T→∞

inf c(T )(ln lnT )−1 > 0 (33)

Thus BIC gives consistent estimates; as can be shown AIC does not

give consistent estimators. It should be kept in mind, that, in most cases,

model selection is an intermediate goal, e.g. estimation of the order s is

rarely a final aim, but it is rather used to estimate a system e.g. in order

to obtain forecasts.

An important and partly still unsolved question concerns the additional

uncertainty in estimation of real-valued parameters coming from model se-

lection (see [17]).

Information criteria such as AIC or BIC are also used in case of

other parametrizations. Also note that, as has been stated in subsection

3.3, in the multivariate case, when considering M(s), additional integer-

valued parameters have to be estimated in order to obtain an identifiable

parameter space.

4. Linear Dynamic Factor Models

As has been said already, a major problem in modelling multivariate time

series with “unstructured” AR, ARMA or state space models is the ”curse

of dimensionality” i.e. that the dimension of the parameter space is propor-

tional to the square of the cross-sectional dimension n of the multivariate

time series. There are several approaches to overcome this difficulty, one

example is traditional structural modeling, where overidentifying restric-

tions, coming from theoretical a priori knowledge, are used to reduce the

dimension of the parameter space. Factor models provide an alternative,

more data-driven approach. The basic idea is to achieve cross-sectional di-

mension reduction by explaining the comovements between the components

of a multivariate time series by a relatively small number of factors. Among

the many possible references, we refer to Brillinger [3], Forni et al. [10] and

Stock and Watson [22], see also [4], [1], [21], [11] and [13].
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4.1. The Basic Setting

There are different classes of factor models, they all have the equation

yt = Λ(z)ξt + ut (34)

in common; here (yt) is the n-dimensional stationary process of the obser-

vations, (ξt) is the r < n dimensional stationary factor process and (ut) is

the stationary noise process. The transfer function Λ(z) =
∑

∞

j=−∞
Λjz

j ;

Λj ∈ Rn×r is called factor loading matrix. In addition we assume

Eξt = 0, Eut = 0

and, unless the contrary has been stated explicitly,

Eξtu
′

s = 0 for all t, s ∈ Z (35)

A factor model (34) is called static, if Λ(z) is constant and if (ξt) and (ut)

are white noise. Static models are the classical factor models, see e.g. [1].

A factor model is called quasi static, if Λ is constant but (ξt) and (ut) are

not necessarily white noise.

The so called latent variables are defined as ŷt = Λ(z)ξt. One possible

interpretation of (34) is that ŷt are the true unobserved variables corre-

sponding to the measured variables yt. We assume throughout that the

respective spectral densities exist and that moreover the covariances satisfy

suitable summability conditions. (see [3]). Then, using an obvious notation,

we obtain from (34) and (35)

fy(λ) = Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ + fu(λ) (36)

Clearly the spectral density fŷ(λ) = Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ is singular. We

assume throughout that fξ(λ) has rank r for all λ and that the same holds

for Λ(e−iλ). Then fŷ(λ) has rank r for all λ and every (n− r) × n transfer

function w(z) satisfying

w(e−iλ)fŷ(λ) = 0

describes an exact linear dynamic relation

w(z)ŷt = 0 (37)

for the latent variables. Throughout we assume that w(e−iλ) has rank n−r

for all λ. Note that the relation (37) is symmetric in the sense that we do

not have to distinguish a priori between inputs and outputs in (ŷt) and we
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do not even have to know the number of equations n − r (i.e. the number

of outputs) a priori. Analogously

yt = ŷt + ut (38)

gives a symmetric error model, where noise is allowed for observed in-

puts and outputs. Equations (37) and (38) give a linear dynamic errors-

in-variables model. As is directly seen, in the static case, where Λ and w

are constant, the factor models and the errors-in-variables models are equiv-

alent, since the linear restrictions on the image of ŷt are described by the

image of the matrix Λ in the first case and by the kernel of w in the second

case. For the dynamic case, we refer to [16].

In identification of factor models, the primary interest may be in the factor

loading matrix Λ, in fξ and fu, or in the unobserved processes (ξt) and

(ŷt). In general, for given fy, these quantities of interest are not unique and

we thus have an identifiability problem. If fy is non-singular for all λ, as

we will assume throughout, then, without further assumptions, every factor

loading matrix Λ is compatible with this given fy, i.e. the knowledge of fy

implies no restriction for Λ. Therefore additional structure has to be im-

posed in order to make identification meaningful. Additional assumptions

imposed lead to the model classes discussed below.

Quasi static factor models are used for forecasting, in particular for high

dimensional time series. The most common setting is to fit AR(X) models

to the estimated factors (either multivariate or r univariate models) and

to forecast the latent variables using the factor forecasts and an estimate

of Λ. The forecasts for the observed variables then are obtained form the

forecasts of the latent variables, possibly combined with the forecasts of the

univariate noise components (see e.g. [8] ). In this way forecasting models

with lower dimensional parameter spaces are achieved.

4.2. Dynamic Principal Component Analysis

For dynamic principal component analysis (PCA) [3] we commence from

the eigenvalue decomposition of the spectral density fy, written as

fy(λ) = O1(e
−iλ)Ω1(λ)O1(e

−iλ)∗ +O2(e
−iλ)Ω2(λ)O2(e

−iλ)∗ (39)
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where Ω1(λ) is the r × r diagonal matrix having the r largest eigenvalues

of fy(λ) on its diagonal, ordered according to decreasing size, O1 is the

n × r matrix whose columns are the corresponding eigenvectors and the

second term on the r.h.s. of (39) is defined analogously, where Ω2(λ) is the

(n − r) × (n − r) diagonal matrix consisting of the (n − r) smallest eigen-

values of fy(λ), again ordered according to decreasing size.

By defining

fŷ(λ) = O1(e
−iλ)Ω1(λ)O1(e

−iλ)
∗

and

fu(λ) = O2(e
−iλ)Ω2(λ)O2(e

−iλ)
∗

we attribute the first part on the r.h.s. of (39) to the latent variables and

the second part to the noise. This gives a model of the form

yt = O1(z)ξt + ut (40)

with

ξt = O∗

1(z)yt

ŷt = O1(z)O
∗

1(z)yt

and

ut = (I −O1(z)O1(z)
∗)yt = O2(z)O

∗

2(z)yt

Throughout we assume that all eigenvalues of fy are distinct; then the de-

composition on the r.h.s of (39) is unique. It can be shown, that, for fixed

r, this decomposition gives the smallest noise, in the sense that Eu′

tut is

minimal among all decompositions (34) where the rank of Λ(z) is equal to

r, for all λ. As also can be shown, for rational fy, the spectral densities fŷ

and fu are not necessarely rational. For decompositions with smallest noise

under additional rationality assumptions (with bounded complexity), see

[16].

If we commence from the eigenvalue decomposition of Σy = Eyty
′

t rather

than of fy, written as

Σy = O1Ω1O
′

1 +O2Ω2O
′

2 (41)
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where the quantities on the r.h.s of (41) are defined analogously to those

on the r.h.s. of (39), we obtain a quasi-static PCA given by the model

yt = O1ξt + ut (42)

with ξt = O′

1yt, ut = O2O
′

2yt. Of course, if the true model is not quasi

static, then, in general, (ξt) and (ut) in (40) and (42) respectively are

different. They coincide in the static case, where fy = (2π)−1Σy holds

and in the quasi-static case, where the kernel of fŷ(λ) does not depend

on λ, since Λ is constant. Note that in the quasi static case Eξtu
′

s = 0

holds, whereas (35) is not true in general for (42), if the true model is not

quasi static.

If forecasting of (yt) is based on forecasting of the latent variables (ŷt),

then a problem arises, since O1(z)O
∗

1(z) is in general a non causal transfer

function and thus the “present” latent variable ŷt may also be influenced

by “future” observations ys, s > t. For this reason, for forecasting, the

quasi-static model, together with an (e.g. AR(X)) forecasting model for

the factor process (ξt) is frequently used.

In a certain sense, the dimension r of the factor process (ξt) is not an

intrinsic parameter, since for every 0 < r < n the decompositions (39)

and (41) respectively may be performed. Usually r is fixed by heuristic

considerations, e.g. relating to the fit achieved with the first term on the

r.h.s. of (39) to the number of factors which have to be used to obtain

this fit.

Once r has been fixed, for estimaton, fy in (39) is replaced by a suit-

able spectral estimate, or Σy in (41) is replaced by the sample variance

covariance matrix

Σ̂y = T−1ΣT
t=1yty

′

t

and then the eigenvalue decompositions (39) or (41) are performed for the

sample rather than for the population second moments in order to obtain

the estimates for the quantities of interest.
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4.3. The Dynamic Factor Model with Idiosyncratic Noise

(Dynamic Frisch Model)

Here the additional assumption

fu is diagonal (43)

is imposed in (34). By this assumption, the noise ut represents the individ-

ual influence on yt and the factors represent the influences common to the

components of (yt). By (43), the component processes of (yt) are condition-

ally uncorrelated for given (ŷt).

The structure theory for this case is rather involved, see [21] and there

still exist a number of unsolved problems.

The identifiabilty problem may be decomposed into two parts:

• In the first part the concern is the uniqueness, if we restrict our-

selves to the minimal r as we do throughout, of the decomposition

of

fy = fŷ + fu (44)

into fŷ and fu, where fŷ is singular and fu is diagonal (and both

are spectral densities)

• The second part is concerned with obtaining Λ(z) and fξ from fŷ

The main complication is connected with the first part. In general the de-

composition (44) is not unique and even the dimension of the factor space

(i.e. the rank of fŷ) is not unique for given fy. In many cases only decompo-

sitions corresponding to the minimum possible number of factors, rM say,

are considered. If rM ≤
√
n holds, then, at least generically, for rM factors,

the decomposition (44) is unique. A number of estimation procedures have

been proposed for this case, however neither a complete theory nor general

methods are available.

4.4. The Quasi-Static Frisch Model

A simpler model class are quasi-static Frisch models where Λ in (34) is

constant. Then we commence from

Σy = ΛΣξΛ
′ + Σu (45)

where Σu is diagonal and where an obvious notation has been used. Con-

sidering all decompositions on the r.h.s. of (45), where ΛΣξΛ
′ is singular
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and Σu is diagonal, analogously as above, in general we have no uniqueness,

however, if we restrict ourselves to the minimal r as we do throughout, for

((n− r)2 − n− r) ≥ 0 uniqueness can be achieved generically.

Once Σŷ is unique, we may assume Σξ = I and then Λ is unique up to

postmultiplication by r × r orthogonal matrices, corresponding to factor

rotation. If no assumption on Σξ is imposed, then Λ is unique up to post

multiplication by nonsingular matrices.

Note that, contrary to the PCA case, (and as in the dynamic idiosyncratic

case), the factors ξt, in general, cannot be obtained as a function Lyt of the

observations yt. Thus in estimating the factors, they are approximated by

a linear function of the observations. Two methods for doing so are used:

• Thomson’s method: Here ξt is approximated by the linear function

ξ̂t = Lyt which minimizes the variance covariance matrix of ξt − ξ̂t.

This approximation is given by

ξ̂TH
t = Λ′Σ−1

y yt (46)

• Bartlett’s method: Here the expression

(yt − ΛLyt)
′Σ−1

u (yt − ΛLyt)

is minimized, which gives

ξ̂B
t = (Λ′Σ−1

u )′Λ′Σ−1
u yt (47)

In the case where (ξt) and (ut) and thus (yt) are white noise, the negative

logarithm of the Gaussian likelihood, up to a constant, has the form

LT (Λ,Σu) =
1

2
T ln(det(ΛΛ′ + Σu)) +

1

2
T tr(ΛΛ′ + Σu)−1Σ̂y (48)

Here we assume Σξ = I ; in addition assumptions guaranteeing uniqueness

of Λ for given ΛΛ′ are imposed. Even if (ξt) and (ut) are not white, min-

imization of LT gives consistent estimators of Λ and Σu as long as Σ̂y is

consistent for Σy. A likelihood ratio test for the number of the factors has

been suggested in [2]. Estimates for the factors are obtained by inserting

estimates for Λ,Σy and Σu in (46) and (47) respectively.

For forecasting, again the (estimated) factors may be forecasted by an AR

or ARX model. In addition, also the individual u
(i)
t may be forecasted by
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AR or ARX models in order to obtain a combined forecast for the obser-

vations [8].

4.5. The Generalized Linear Dynamic Factor Model

Generalized linear factor models are an important generalization of the

Frisch model; they have been introduced for the static case in [4]. The

dynamic case is treated e.g. in [10] and [11].

Generalized factor models have been developed for the case of a large cross-

sectional dimension n; this situation is quite common now, e.g. for financial

time series or for macroeconomic time series, for instance, in cross country

studies, see e.g. [22]. The cross sectional dimension n may be even larger

than sample size T . One of the basic challenges therefore is to extract

information from such high dimensional time series and in particular to

gain additional information not only from adding observations in time but

also from adding in the cross sectional dimension, i.e. from adding time

series; thus the task is compression of information in the time and in the

cross sectional dimension.

The second main issue is that the assumption of the Frisch model, that fu

is diagonal, turns out to be too restrictive for many applications; the idea

here is to allow for “weak” dependence of the noise components.

For the analysis of the generalized linear factor model, the cross-sectional

dimension is not kept fixed. We consider a double sequence (y
(i)
t |i ∈ N, t ∈

Z) of observations. Let yn
t = (y

(i)
t )i=1...n. We assume that the stochastic

processes (yn
t |t ∈ Z) have mean zero, are regular and stationary and that

their covariances satisfy suitable summability conditions for every n ∈ N.

We also assume that the factors ξt are independent of n and in particular

that r is constant. Then, using an obvious notation, we can write (34) as

yn
t = Λn(z)ξt + un

t , n ∈ N (49)

Here Λn, yn
t , un

t are assumed to be “nested” in the sense that e.g. un+1
t =

(un
t
′, u

(n+1)
t )

′

The main assumptions for the model sequence (49) are:

• the spectral densities fn
ŷ of the latent variables ŷn

t = Λn(z)ξt have

rank r (for n ≥ r) and the associated nonzero eigenvalues diverge

for n→ ∞, for all λ.
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• all eigenvalues for the spectral densities fn
u of the noise remain

bounded for all n and λ.

White the first assumption formalizes strong dependence between the latent

variables, the second assumption formalizes the notion of weak dependence

of the noise components.

Identifiability in the sense of separation of fn
ŷ and fn

u from fn
y is achieved

only asymptotically i.e. for n→ ∞.

As can be shown PCA and generalized factor model are asymptotically,

i.e. for n → ∞, equivalent in the sense that e.g. the PCA latent variables

converge to the corresponding variables of the generalized factor models,

see [10]. Based on this, estimation of quasi static and dynamic, respectively,

generalized factor models may be performed by quasi static or dynamic, re-

spectively, PCA. For an asymptotic analysis, for T → ∞, n→ ∞, we refer

to [11]. However, PCA is not the only procedure used for estimation of

generalized factor models, see e.g. [12].

Again, forecasting in the context of generalized factor models may be done

by forecasting the factors e.g. by AR(X) models and by eventually combin-

ing these forecasts with the univariate forecasts for the noise components.

However, for forecasting, dynamic PCA in general is not directly applicable,

since in general

ŷt = O1(z)O1(z)
∗yt

is a noncausal filtering operation and thus ŷt may depend on ys, s > t.

One way to overcome this difficulty is to assume a rational fŷ, by e.g.

assuming [12] that Λn(z) is polynomial of degree q to assume that the fac-

tors are AR processes of order smaller than or equal to q + 1 and to write

(49) as a quasi static model

yn
t = (Λs

0, . . . ,Λ
s
q)(ξ

′

t , . . . , ξ
′

t−q)
′

+ un
t

with a higher dimensional factor.

Clearly, also in the context of generalized factor models, besides estima-

tion of real valued variables, a number of model specification issues arises;

for instance the question of determining the number of (“static” or “dy-

namic”) factors from data.
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