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Preface

Throughout their history, human beings have been fascinated by time. Indeed, what
is history but an interpretation of time? Each civilisation has had its own special
conception of time. Our present anti-civilisation only knows ‘time is money’! No
one can deny that the study of time is important. This text attempts to make more
widely available some of the tools useful in such studies.
Thus, my aim in writing this text is to introduce research workers and students

to ways of modelling a wide variety of phenomena that occur over time. My goal
is explicitly to show the broadness of the field and the many inter-relations within
it. The material covered should enable mathematically literate scientists to find
appropriate ways to handle the analysis of their own specific research problems. It
should also be suitable for an introductory course on the applications of stochastic
processes. It will allow the instructor to demonstrate the unity of a wide variety of
procedures in statistics, including connections to other courses. If time is limited,
it will be possible to select only certain chapters for presentation.
No previous knowledge of stochastic processes is required. However, an intro-

ductory course on statistical modelling, at the level of Lindsey (2004), is a neces-
sary prerequisite. Although not indispensable, it may be helpful to have more ex-
tensive knowledge of several areas of statistics, such as generalised linear and cat-
egorical response models. Familiarity with classical introductory statistics courses
based on point estimation, hypothesis testing, confidence intervals, least squares
methods, personal probabilities, . . . will be a definite handicap.
Many different types of stochastic processes have been proposed in the litera-

ture. Some involve very complex and intractable distributional assumptions. Here,
I shall restrict attention to a selection of the simpler processes, those for which
explicit probability models, and hence likelihood functions, can be specified and
which are most useful in statistical applications modelling empirical data. More
complex models, including those requiring special estimation techniques such as
Monte Carlo Markov Chain, are beyond the scope of this text. Only parametric
models are covered, although descriptive ‘nonparametric’ procedures, such as the
Kaplan–Meier estimates, are used for examining model fit.
The availability of explicit probability models is important for at least two rea-

sons:
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x Preface

(i) Probability statements can be made about observable data, including the
observed data:

(a) A likelihood is available for making inferences.
(b) Predictions can be made.

(ii) If the likelihood can be calculated, models can be compared to see which
best fit the data, instead of making empty claims about wonderful models
with no empirical basis, as is most often done in the statistical literature.

Isolated from a probability model basis, parameter estimates, with their standard
errors, are of little scientific value.
Many standard models, such as those for survival, point processes, Markov

chains, and time series, are presented. However, because of the book’s wide scope,
it naturally cannot cover them in as great a depth as a book dedicated to only one of
them. In addition, certain areas, such as survival analysis and time series, occupy
vast literatures to which complete justice cannot be made here. Thus, in order to
provide a reasonably equitable coverage, these two topics are explored especially
briefly; the reader can consult a good introductory text on either of these topics for
additional details.
Many basic theoretical results are presented without proof. The interested reader

can pursue these in further detail by following up the ‘Further reading’ list at the
end of each chapter. On the other hand, for the readers primarily interested in de-
veloping appropriate stochastic models to apply to their data, the sections labelled
‘Theory’ can generally be skimmed or skipped and simply used as a reference
source when required for deeper understanding of their applications.
Stochastic processes usually are classified by the type of recording made, that

is, whether they are discrete events or continuous measurements, and by the time
spacing of recording, that is, whether time is discrete or continuous. Applied
statisticians and research workers usually are particularly interested in the type
of response so that I have chosen the major division of the book in this way, distin-
guishing between categorical events and continuous measurements. Certain mod-
els, such as Markov chains using logistic or log linear models, are limited to dis-
crete time, but most of the models can be applied in either discrete or continuous
time.
Classically, statistics has distinguished between linear and nonlinear models,

primarily for practical reasons linked with numerical methods and with inference
procedures. With modern computing power, such a distinction is no longer nec-
essary and will be ignored here. The main remaining practical difference is that
nonlinear models generally require initial values of parameters to be supplied in
the estimation procedure, whereas linear models do not.
It is surprisingly difficult to find material on fitting stochastic models to data.

Most of the literature concentrates either on the behaviour of stochastic models
under specific restrictive conditions, with illustrative applications rarely involving
real data, or on the estimation of some asymptotic statistics, such as means or
variances. Unavoidably, most of the references for further reading given at the
ends of the chapters are of much more difficult level than the present text.
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My final year undergraduate social science students have helped greatly in de-
veloping this course over the past 25 years. The early versions of the course were
based on Bartholomew (1973), but, at that time, it was very difficult or impossi-
ble actually to analyse data in class using those methods. However, this rapidly
evolved, eventually to yield Lindsey (1992). The present text reflects primarily the
more powerful software now available. Here, I have supplemented the contents of
my current course with extra theoretical explanations of the stochastic processes
and with examples drawn from a wide variety of areas besides the social sciences.
Thus, I provide the analysis of examples from many areas, including botany

(leaf growth), criminology (recidivism), demography (migration, human mortal-
ity), economics and finance (capital formation, share returns), education (univer-
sity enrolment), engineering (degradation tests, road traffic), epidemiology (AIDS
cases, respiratory mortality, spermarche), industry (mining accidents), medicine
(blood pressure, leukæmia, bladder and breast cancer), meteorology (precipita-
tion), pharmacokinetics (drug efficacy, radioactive tracers), political science (vot-
ing behaviour), psychology (animal learning), sociology (divorces, social mobil-
ity), veterinary science (cow hormones, sheep infections), and zoology (locust
activity, nematode control). Still further areas of application are covered in the
exercises.
The data for the examples and exercises, as well as the R code for all of the

examples, can be found at popgen0146uns50.unimaas.nl/ jlindsey,
along with the required R libraries. With this material, the reader can see exactly
how I performed the analyses described in the text and adapt the code to his or her
particular problems.
This text is not addressed to probabilists and academic statisticians, who will

find the definitions unrigorous and the proofs missing. Rather, it is aimed at the
scientist, looking for realistic statistical models to help in understanding and ex-
plaining the specific conditions of his or her empirical data. As mentioned above,
the reader primarily interested in applying stochastic processes can omit reading
the theory sections and concentrate on the examples. When necessary, reference
can then be made to the appropriate parts of theory.
I thank Bruno Genicot, Patrick Lindsey, and Pablo Verde who provided useful

comments on earlier versions of certain chapters of this text.





Notation and symbols

Notation is generally explained when it is first introduced. However, for reference,
some of the more frequently used symbols are listed below.
Vectors are bold lower case and matrices bold upper case Greek or Roman let-

ters. denotes the transpose of a vector or matrix.

arbitrary indices
, random response variable and its observed value
, time

lag
sum of random variables

, explanatory variables
, number of events

∆ , ∆ change in number of events
∆ interval width

previous history
location parameter

2 variance
probability (usually binary)
change point parameter

, random parameters
, , , , , , , , , arbitrary parameters

(auto)correlation or other dependence parameter
order of a Markov process
length of a series

Pr probability of response
probability density function
cumulative distribution function
survival function
probability of a random parameter
arbitrary regression function
link function

Λ integrated intensity (function)
intensity (function)

xiii



xiv Notation and symbols

E expected value
(auto)covariance (function)
covariance matrix

I indicator function
beta function

Γ gamma function
L likelihood function

transition (probability) matrix
transition intensity matrix
marginal or conditional probability distribution
first passage distribution
diagonal matrix of probabilities
diagonal matrix of eigenvalues
matrix of eigenvectors
vector of deterministic input
vector of random input



Part I

Basic principles





1

What is a stochastic process?

Intuitively, a stochastic process describes some phenomenon that evolves over time
(a process) and that involves a random (a stochastic) component. Empirically, we
observe such a process by recording values of an appropriate response variable
at various points in time. In interesting cases, the phenomenon under study will
usually depend on covariates. Some of these may also vary over time, whereas
others will define the differing (static) conditions under which various ‘copies’ of
the process occur.

1.1 Definition

Thus, a stochastic process involves some response variable, say , that takes val-
ues varying randomly in some way over time (or space, although that will not be
considered here). may be a scalar or a vector, but I shall concentrate primarily
on scalar responses in this text (see, however, Section 8.3). Generally, in the study
of such processes, the term ‘random’ is replaced by ‘stochastic’; hence, the name.

An observed value or realisation of the response variable is called the state
of the process at time . We might call an observation of the state of a process an
event. However, I shall restrict the meaning of event to the occurrence of a change
of state. Thus, the number of possible different events will depend, among other
things, on the number of distinct states.

More generally, the probability of the process being in some given state at some
point in time may depend on some function of previous events and of covariates.
Usually, the probabilities of possible events will be conditional on the state of the
process. Such relationships will thus be determined by the type of model being
fitted.

The main properties distinguishing among observed stochastic processes are:

(i) The frequency or periodicity with which observations are made over time.
(ii) The set of all of its possible observable values, that is, of all possible re-

sponses or states of the series, called the state space.
(iii) The sources and forms of randomness present, including the nature of the

dependence among the values in a series of realisations of the random vari-
able .

3



4 What is a stochastic process?

(iv) The number of ‘copies’ of the process available (only one or several), which
will determine how adequate information can be obtained for modelling.

Let us look more closely at each of these aspects.

1.1.1 Time

Observations of a stochastic process (at least of the kinds that interest us here) are
made over time. If these observations are at equally spaced intervals, time is said
to be discrete. Otherwise, time is continuous. Notice, however, that a process can
never really be observed continuously because that would imply an infinite number
of observations, even in a small interval of time. Hence, the distinction is primarily
used to determine what kind of model will be applied. Continuous-time models
can be used for any data but may be more complex, and may not be appropriate
if changes can only occur at discrete time points. Discrete-time models require
equally-spaced observations, unless some simple mechanism for missingness can
be introduced.

Attention may centre on

(i) the states at given points in time,
(ii) the events, that is, on what change of state occurs at each particular time

point, or
(iii) the times of events.

Consider simple examples:

When an economist measures monthly unemployment, time is only an equally-
spaced indicator of when observations are made. The number of unemployed
may change at each monthly recording. Either the level of employment (the
state) or the amount of change (the event) may be of central interest. Time itself
is not of direct concern except for ordering the observations.
In contrast, when a doctor records the times of a patient’s repeated infections,
the state might be defined to be the total number of such infections so far suf-
fered by that patient. Each observation (event) is the same, an infection, and the
time between these events is essential. With substantial loss of information, this
could be reduced to discrete time by recording only the numbers of infections in
equally-spaced time intervals.

A response may only be recorded when some specific event of interest occurs.
However, in order to determine the timing of that event, fairly continual observa-
tion of the process usually is necessary, that is, a series of intermediate, implicit
recordings of no event. If observation begins at some natural time point, such as
birth, at which no response value occurs, the mechanism determining the time to
the first event will usually be different from that between subsequent events.
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1.1.2 State space

At any given point in time, a process will be in some state. This usually is observed
by recording the value of a response variable at that point . As always in
statistical modelling, the set of possible states is a scientific construct that should
be defined in a way appropriate to answer the questions at hand. Although, in
principle, the state is what is being observed, certain models also assume a second
process of unobservable hidden states (Chapters 7 and 11).

The set of all possible observable states is called the state space. This may be
finite, yielding a categorical response variable, or infinite, giving either a discrete
or a continuous response variable. Generally, a minimal state space is chosen, one
in which the probability (density) of every state is nonzero.

If an observed response variable were truly continuous, every recording would
be an event because no two would be the same. However, this is empirically im-
possible so that any observable process could possibly stay in the same state (given
the limit of precision of the recording instrument) over two or more consecutive
observation points.

A categorical response usually refers to a finite set of possible different states that
may be observed. However, when only one type of response is of particular interest
and it is fairly rare, the response might be recorded as binary, indicating presence
(coded 1) or absence (coded 0) of that response. This particular response, with
a binary state space, is often called a point event or a recurrent event (Chapter 4);
thus, here the term ‘event’ refers both to one of the states and to the change of state.
Above, I gave an example of repeated infections, where the cumulative number of
infections was important. If, instead, repeated epileptic fits were recorded, the
states might more appropriately be defined as having a fit or not on each particular
day instead of the total number of fits so far.

In certain situations, the state may be defined by more than one response value,
that is, may be a vector containing quite distinct types of values. Thus, there
may be a categorical value, such as a binary indicator that it rains or not, accompa-
nied by a (usually quantitative) value, the mark, for example, how much rain fell
(Section 8.3).

A vector also is usually necessary when there are endogenous time-varying
covariates. These are variables, other than the response of direct interest, that are
influenced by the previous states of that response. Suppose, for example, that
the condition of a patient, measured in some appropriate way, is the response of
direct interest. If the dose of a medication that a patient receives depends upon
his or her previous condition, then dose and condition will generally have to be
handled simultaneously. They must together define the state and be allowed to
vary stochastically interdependently, if a reasonable model is to be constructed.

A process may also involve time-varying exogenous covariates, that is, variables
not influenced by the previous states of the process. The stochastic variability of
such covariates is not usually of interest, so that the probability of the state can be
taken to be conditional on their observed values, as in classical regression models.

Practically, we see from this section and the preceding one that models for
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Table 1.1. Chapters in which different types of stochastic processes are covered.

State space

Time Categorical Continuous

Discrete 5, 8 9
Continuous 3, 4, 6, 7, 8 9, 10, 11, 12, 13, 14

stochastic processes can be classified by the type of variable observed, that is,
the state space, and by the frequency or regularity with which it is observed over
time. The structure of this text according to these criteria is summarised in Table
1.1. Recall, however, that most models in continuous time also can be applied to
observations in discrete time.

1.1.3 Randomness

In a deterministic process, one can predict the exact sequence of outcomes (states)
from the initial conditions, although some, especially chaotic, systems are ex-
tremely sensitive to these conditions. In contrast, a stochastic process has an in-
herent component of unpredictability or randomness. In empirical observation,
randomness is closely associated with unknownness or incomplete information.
To handle such situations, the theory of probability is used. Thus, predictions
involving stochastic processes will not indicate specific outcomes, but only the
probabilities of occurrence of the different possible outcomes.

A stochastic process may involve many forms of randomness. A number will
arise from the imperfections of the observation and modelling procedures. How-
ever, in scientific modelling, the most important should be inherent in the process
under study.

The types of randomness that need to be allowed for in modelling a stochastic
process can have several sources including the following:

(i) Unmeasurable variability is built into many scientific systems. This is true
of quantum mechanics, but also of most biological and social processes.

(ii) Almost invariably, all of the measurable factors determining the process
cannot be take into account. For example, unrecorded environmental con-
ditions may change over the period in which the process is acting.

(iii) The initial conditions may be very difficult to determine precisely.

Unfortunately, an inappropriate model can also generate additional spurious ran-
domness and dependencies.

Traditionally, essentially for mathematical simplicity, the Poisson, binomial, and
normal distributions have been used in modelling the randomness of stochastic pro-
cesses. However, we shall see as we proceed that a wide variety of other distribu-
tions may be more suitable in specific circumstances.
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1.1.4 Stationarity, equilibrium, and ergodicity

The series of responses of a stochastic process usually will not be independent.
Thus, procedures must be available to introduce appropriate dependencies. Be-
cause complex models should generally be avoided in science, relatively simple
methods for introducing such dependencies are desirable.

Multivariate distributions

Multivariate probability distributions provide the general framework in which to
specify the ways in which responses are interdependent. Unfortunately, in the
context of stochastic processes, these may be difficult to use, especially if long
series of observations are available. Thus, with a series of observations, a model
involving a multivariate normal distribution will require the manipulation of an

covariance matrix. When is large, this will often not be practical or
efficient, at least for technical reasons.

Fortunately, for an ordered series of responses, such as those that interest us,
the multivariate distribution always can be decomposed into an ordered sequence
of independent conditional univariate distributions:

0 1 0 0 1 1 0 0 1 (1.1)

where

0 1
0

0 1
(1.2)

Notice that each conditional distribution 0 1 may be completely dif-
ferent from all the others, even though the multivariate distributions for differ-
ent lengths of series will usually have the same form.

Generally, it will be easier to work with the conditional distributions than the
multivariate one. For the multivariate normal distribution, this will be a series of
univariate normal distributions, not involving directly the covariance matrix. I shall
elaborate on this approach in Section 1.2 below.

In contrast to the multivariate distribution, and its univariate conditional decom-
position, the series of univariate marginal distributions, although often of interest,
cannot by itself specify a unique stochastic process (unless all successive states are
independent). It is generally of limited direct use in constructing a realistic model
and will, most often, rather be a byproduct of the construction. On the other hand,
this sequence of univariate marginal distributions of a stochastic process does pro-
vide valuable information indicating how the process is evolving over time: its
‘underlying’ profile or trend.

In the decomposition in Equation (1.1), no restrictive assumptions have been
made (except ordering). However, in order for such a multivariate model to be
tractable, even fitted conditionally, rather strong assumptions often have to be
made. The problem with the general specification just given is that every response
has a different conditional distribution, and each new response will have yet an-
other one. The situation is changing faster than information can be accumulated
about it! Thus, we require some reasonable simplifying assumptions.
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Stationarity

A stochastic process is said to be strictly stationary if all sequences of consecutive
responses of equal length in time have identical multivariate distributions

1 1 1 1 (1.3)

for all and . In other words, shifting a fixed-width time observation window
along a strictly stationary series always yields the same multivariate distribution.
Such an assumption reduces enormously the amount of empirical information nec-
essary in order to model a stochastic process.

A less restrictive assumption, reducing even further the amount of information
required, is that a process is second-order stationary. This is defined only by the
mean, variance, and covariances:

E
E

(1.4)

for all and . Because a multivariate normal distribution is completely defined
by its first two moments, if the process is normal and second-order stationary, it
is strictly stationary. This is not generally true of other distributions. In this text,
stationarity will always be strict.

Stationarity is a characteristic of multivariate distributions. Thus, from Equation
(1.1), it cannot be determined solely by the conditional distributions, but requires
also that the initial marginal distribution 0 0 be specified. Of course, this, in
turn, implies that the univariate marginal distributions at all other time points will
also be known.

Stationarity can be an appropriate assumption if the stochastic process has no
inherent time origin. However, in experimental situations, for example, where
treatments are applied at a specific time point, this will not be true. The need
for greater information due to lack of stationarity can often be compensated by
studying replications of the process (Section 1.1.5).

Equilibrium

Although a process may not be stationary when it starts, it may reach an equilib-
rium after a sufficiently long time, independent of the initial conditions. In other
words, if an equilibrium has been reached, the probability that the process is in
each given state, or the proportion of time spent in each state, has converged to a
constant that does not depend on the initial conditions. This generally implies that
eventually the process approaches closely to a stationary situation in the sense that,
if it initially had the equilibrium distribution of states, it would be stationary. (See
Cox and Miller, 1965, pp. 9, 272.)

Ergodicity

The concept of ergodicity is closely related to that of equilibrium, although the for-
mer has various meanings in the literature on stochastic processes. Ergodic theo-
rems provide identities between probability averages, such as an expected value,
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and long-run averages over a single realisation of the process. Thus, if the equi-
librium probability of being in a given state equals the proportion of a long time
period spent in that state, this is called an ergodic property of the process. In a
similar way, the law of large numbers can be generalised to stochastic processes.
(See Cox and Miller, 1965, p. 292.)

Regeneration points

Another important concept for some stochastic processes is that of a regeneration
point. This is a time instant at which the process returns to a specific state such
that future evolution of the process does not depend on how that state was reached.
In other words, whenever such a process arrives at a regeneration point, all of its
previous history is forgotten.

A well known case is the renewal process (Section 4.1.4) describing times be-
tween recurrent events which, as its name suggests, starts over again at each such
event. (See Daley and Vere-Jones, 1988, p. 13.)

I shall look at further general procedures for simplifying models of stochastic
processes in Section 1.2 below.

1.1.5 Replications

When studying a stochastic process, two approaches to obtaining adequate infor-
mation can be envisaged. One can either observe

(i) one series for a long enough period, if it is reasonably stable, or
(ii) several short ‘replications’ of the process, if they are reasonably similar.

In certain situations, one has no choice but to use replications. Thus, for example,
with survival data (Chapter 3), one single event, say death, terminates the process
so that the only way to proceed is by collecting information on a large number of
individuals and by assuming that the process is identical for all of them.

Both approaches can create problems. The phenomenon under study may not be
stable enough to be observed over a very long time, say due to problems of lack
of stationarity as discussed above. It may only be possible to assume that shorter
segments of a series are from the same stochastic process. On the other hand, with
replications, one must be able to assume that the different series recorded do, in
fact, represent the same stochastic process. In certain situations, such as survival
data, it may not even be possible to check this strong assumption empirically.

When replications of a stochastic process are modelled, extreme care must be
taken with the time scale. If it is not chronological time, problems may arise. For
example, in experiments with biological organisms, time may be measured either
from birth or from start of a treatment. If all births do not occur simultaneously and
treatment is not started at the same time for all subjects, events that occur at similar
times after beginning treatment may occur neither closely together chronologically
nor at similar ages. This can create difficult problems of interpretation due to
confounding.
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In the examples that I shall analyse in this text, I shall use either one long series
or a set of several short ones, depending both on the type of problem and on the
kind of data available. Generally, in the second case, when replications are present,
I shall assume, for simplicity, that they come from the same process, perhaps with
any differences explainable by time-constant (interprocess) covariates. Only in
Section 7.3 and in Chapter 14 shall I look at some standard ways of modelling the
differences among a set of series not described by observed covariates.

1.2 Dependence among states

As we have seen, dependencies among successive responses of a stochastic process
can be modelled by multivariate distributions or equivalently by the corresponding
product of conditional distributions. Certain general procedures are available that
I shall review briefly here. Some of them arise from time series analysis (Chapter
9) but are of much wider applicability.

1.2.1 Constructing multivariate distributions

In a model for a stochastic process, some specific stochastic mechanism is assumed
to generate the states. We often can expect that states of a series observed more
closely together in time will be more similar, that is, more closely related. In other
words, the state at a given time point will generally be related to those recently
produced: the probability of a given state will be conditional, in some way, on the
values of the process previously generated.

In certain situations, an adequate model without such dependence may be con-
structed. It usually will require the availability of appropriate time-varying covari-
ates. If these have been recorded, and perhaps an appropriate time trend specified,
the present state, conditional on the covariates, should be independent of previous
states. However, in many cases, this will not be possible, because of lack of infor-
mation, or will not be desirable, perhaps because of the complexity of the model
required or its lack of generality.

In order to model time dependencies among the successive states of a stochastic
process of interest, we may choose a given form either for the conditional distribu-
tions, on the right-hand side of Equation (1.1), or for the multivariate distribution,
on the left-hand side. In general, the conditional distribution will be different from
the multivariate and marginal distributions, because the ratio of two multivariate
distributions does not yield a conditional distribution of the same form except in
very special circumstances such as the normal distribution. The one or the other
will most often be intractable.

Because a limited number of useful non-normal multivariate distributions is
available, suitable models often can only be obtained by direct construction of the
conditional distribution. Thus, usually, we shall need to set up some hierarchical
series of conditional distributions, as in Equation (1.1). In this way, by means of
the univariate conditional probabilities, we can construct an appropriate multivari-
ate distribution for the states of the series.
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The hierarchical relationship among the ordered states of a series implies, by
recursion, that the conditional probabilities are independent, as in Equation (1.1).
In this way, univariate analysis may be used and the model will be composed of a
product of terms. Thus, multivariate distributions with known conditional form are
usually much easier to handle than those with known marginal form.

However, as we have seen in Section 1.1.4, the general formulation of Equa-
tion (1.1) highlights some potential difficulties. Each state depends on a different
number of previous states so that the conditional distribution 0 1 is
different at each time point; this may or may not be reasonable. Usually, additional
assumptions must be introduced. As well, the unconditional distribution of the first
state is required. Its choice will depend upon the initial conditions for the process.

The ways in which the conditionality in the distributions is specified will depend
on the type of state space. I shall, first, look at general procedures for any kind of
state (Sections 1.2.2 and 1.2.3) and, then, at specific ones for continuous states (or
perhaps counts, although this is unusual for the true state of a stochastic process)
and for categorical states.

1.2.2 Markov processes

An important class of simple processes makes strong assumptions about depen-
dence over time, in this way reducing the amount of empirical information required
in order to model them.

A series of responses in discrete time such that

0 1 1 (1.5)

so that each state only depends on the immediately preceding one, is known as a
Markov process. In other words, the state at time , given that at 1, is inde-
pendent of all the preceding ones. Notice that, in contrast to Equation (1.1), in the
simplest situation here, the form of the conditional distribution 1 does not
change over time.

This definition can be extended both to dependence further back in time and to
continuous time (Section 6.1). Recall, however, that such a conditional specifi-
cation is not sufficient to imply stationarity. This will also depend on the initial
conditions and/or on the length of time that the process has been functioning.

Equation (1.5) specifies a Markov process of order one. More generally, if the
dependence extends only for a short, fixed distance back in time, so that the present
state only depends on the preceding states, it is said to be a Markov process of
order . The random variables and are conditionally independent for

, given the intermediate states.
It is often necessary to assume that a stochastic process has some finite order
(considerably less than the number of observations available over time), for

otherwise it is nonstationary and its multivariate distribution continues to change
with each additional observation, as we saw above.

If the response variable for a Markov process can only take discrete values or
states, it is known as a Markov chain (Chapter 5 and Section 6.1.3). Usually, there
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will be a finite number of possible states (categories), and observations will be
made at equally-spaced discrete intervals. Interest often centres on the conditional
transition probabilities of changes between states. When time is continuous, we
have to work with transition rates or intensities (Section 3.1.3) between states,
instead of probabilities. When the response variable for a Markov process is con-
tinuous, we have a diffusion process (Chapter 10).

1.2.3 State dependence

One simple way to introduce Markov dependence is to construct a regression func-
tion for some parameter of the conditional probability distribution such that it in-
corporates previously generated states directly, usually in addition to the other co-
variates. The states may be either continuous or categorical. Thus, the location
parameter (often the mean) of the conditional distribution of the series could be
dependent in the following way:

1 (1.6)

for a process of order one, where is a vector of possibly time-varying covariates
in some regression function , possibly nonlinear in the parameters . If there
are more than two categorical states, usually will have to be replaced by a vector
(often of conditional probabilities) and 1 will need to be modelled as a factor
variable.

Here, the present location parameter, that is, the prediction of the mean present
state, depends directly on the previous state of the process, as given by the previous
observed response. Thus, this can be called a state dependence model.

An easy way to introduce state dependence is by creating lagged variables from
the response and using them as covariates. For a first-order Markov process (
1), the values in the vector of successive observed states will be displaced by one
position to create the lagged covariate so that the current state in the response vector
corresponds to the previous state in the lagged vector. However, this means that we
cannot use the first observed state, without additional assumptions, because we
do not know its preceding state. If a higher-order model ( 1) is used, the
displacement will be greater and more than one observation will be involved in this
way.

One case of this type of model for categorical states is the Markov chain men-
tioned above (see Chapter 5 and and Section 6.1.3). A situation in which the state
space is continuous is the autoregression of time series, at least when there are no
time-varying covariates (Chapter 9).

1.2.4 Serial dependence

For a continuous state space, a quite different possibility also exists, used widely
in classical time series analysis (Chapter 9). This is to allow some parameter to
depend, not directly on the previous observed state, but on the difference between
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that previous state and its prediction at that time. For a location parameter, this
might be

1 1 (1.7)

Notice that this will be identical to the state dependence model of Equation (1.6)
if there are no covariates, and also that it generally will not work for a categorical
state space because the subtraction has no meaning.

Dependence among states is now restricted to a more purely stochastic compo-
nent, the difference between the previous observed state and its location regression
function, called the recursive residual or innovation. This may be seen more clearly
by rewriting Equation (1.7) in terms of these differences:

1 1 (1.8)

The new predicted difference is related to the previous observed difference by .
As in Equation (1.6), the previous observed value 1 is being used to predict the
new expected value , but here corrected by its previous prediction.

I shall call this a serial dependence model. The present location parameter de-
pends on how far the previous state was from its prediction given by the corre-
sponding location parameter, the previous residual or innovation.

Thus, both state and serial dependence yield conditional models: the response
has some specified conditional distribution given the covariates and the previous
state. In contrast, for some reason, most models constructed by probabilists, as
generalisations of normal distribution serial dependence time series to other distri-
butions, require the marginal distribution to have some required form (see, among
others, Lawrance and Lewis, 1980). These are complex to construct mathemati-
cally and difficult to interpret scientifically.

1.2.5 Birth processes

If the state space has a small finite number of states, that is, it is categorical, dif-
ferent methods may need to be used. One possibility may be to condition on the
number of previous recurrent events or, more generally, on the number of times
that the process was previously in one or more of the states.

The classical situation arises when the two possible states are present or absence
of a recurrent event. Then, a birth process counts the number of previous such
events:

1 (1.9)

where is the conditional probability of the event at time and 1 is the num-
ber of previous such events. Even without time-varying covariates, this process is
clearly nonstationary.

Generally, some function of , such as a logit transformation, will instead be
used to ensure that it cannot take impossible values. More often, the process will
be defined in terms of the (log) rate or intensity of events (Section 4.1) instead of
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the probability. I shall describe more general types of dependence for finite state
spaces in Section 4.1.1, once I have introduced this concept of intensity.

Only three basic types of dependency have been presented here. Other more
specific ones may often be necessary in special circumstances. Some of these will
be the subject of the chapters to follow.

1.3 Selecting models

As always in statistical work, the ideal situation occurs when the phenomenon un-
der study is well enough known so that scientific theory can tell us how to construct
an appropriate model of the stochastic process. However, theory never arises in a
vacuum, but must depend on empirical observations as well as on human power of
abstraction. Thus, we must begin somewhere! The answers to a series of questions
may help in constructing useful models.

1.3.1 Preliminary questions

When confronting the modelling of observations from some stochastic process, one
may ask various fundamental questions:

How was the point in time to begin observation chosen?

– Is there a clear time origin for the process?
– What role do the initial conditions play?

Are observations made systematically or irregularly over time?

– If observations are irregularly spaced, are these time points fixed in advance,
random, or dependent on the previous history of the process itself?

– Is the process changing continuously over time or only at specific time points?
– Are all changes in the process recorded or only those when an observation

happens to be made?
– Does a record at a given time point indicate a new value in the series then or

only that it changed some time since the previous observation?

Is the process stationary?

– Is the process increasing or decreasing systematically over time, such as a
growth curve?

– Is there periodic (daily, seasonal) variation?
– Does the process change abruptly at some time point(s)?
– Are there long-term changes?

Is more than one (type of) response recorded at each time point?

– Can several events occur simultaneously?
– Do some quantitative measurements accompany the occurrence of an event?

Does what is presently occurring depend on the previous history of the process?

– Is it sufficient to take into account what happened immediately previously (the
Markov assumption)?



1.3 Selecting models 15

– Is there a cumulative effect over the history of the process, such as a birth
effect?

Is the process influenced by external phenomena?

– Can these be described by time-varying covariates?
– Is some other unrecorded random process, such as the weather, affecting the

one of interest?

If there is more than one series, do the differences among them arise solely from
the randomness of the process?

– Are the differences simply the result of varying initial conditions?
– Do the series differ because of their dependence on their individual histories?
– Can part of the difference among the series be explained by time-constant

covariates with values specific to each series?
– Are there static random differences among the series?
– Does each series depend on a different realisation of one or more time-varying

covariates (different weather recorded in different locations)?
– Are there unrecorded random processes external to the series influencing each

of them in a different way (different weather in different locations, but never
recorded)?

Possible answers to some of these questions may be indicated by appropriate plots
of the series under study. However, most require close collaboration with the sci-
entists undertaking the study in order to develop a fruitful interaction between em-
pirical observation and theory.

1.3.2 Inference

Some objective empirical procedure must be available in order to be able to select
among models under consideration as possible descriptions of an observed stochas-
tic process. With the exception of preliminary descriptive examination of the data,
all analyses of such processes in this book will be based on the construction of
probabilistic models. This means that the probability of the actually observed pro-
cess(es) always can be calculated for any given values of the unknown parameters.
This is called the likelihood function, a function of the parameters for fixed ob-
served data. Here, all inferences will be based on this. Thus, the basic assumption
is the Fisherian one that a model is more plausible or likely if it makes the observed
data more probable.

A set of probability-based models that one is entertaining as having possibly
generated the observed data defines the likelihood function. If this function is so
complex as to be intractable, then there is a good chance that it cannot provide
useful and interpretable information about the stochastic process.

However, the probability of the data for fixed parameter values, a likelihood
value, does not, by itself, take into account the complexity of the model. More
complex models generally will make the observed data more probable, but simpler
models are more scientifically desirable. To allow for this, minus the logarithm
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of the maximised likelihood can be penalised by adding to it some function of the
number of parameters estimated. Here, I shall simply add the number of parameters
to this negative log likelihood, a form of the Akaike (1973) information criterion
(AIC). Smaller values will indicate models fitting relatively better to the data, given
the constraint on the degree of complexity.

Further reading

Jones and Smith (2001) give an elementary introduction to stochastic processes.
Grimmett and Stirzaker (1992), Karlin and Taylor (1975; 1981), Karr (1991), and
Ross (1989) provide more advanced standard general introductions. The reader
also may like to consult some of the classical works such as Bailey (1964), Bartlett
(1955), Chiang (1968), Cox and Miller (1965), Doob (1953), and Feller (1950).

Important recent theoretical works include Grandell (1997), Guttorp (1995),
Küchler and Sørensen (1997), and MacDonald and Zucchini (1997). More ap-
plied texts include Snyder and Miller (1991), Thompson (1988), and the excellent
introduction to the uses of stochastic processes in molecular biology, Ewens and
Grant (2001).

An important book on multivariate dependencies is Joe (1997).
For inferences using the likelihood function and the AIC, see Burnham and

Anderson (1998) and Lindsey (2004).

Exercises

1.1 Describe several stochastic processes that you can encounter while reading
a daily newspaper.

(a) What is the state space of each?
(b) What are the possible events?
(c) Is time discrete or continuous?
(d) What covariates are available?
(e) Will interest centre primarily on durations between events or on the

states themselves?
(f) What types of dependencies might be occurring over time?

1.2 Consider the following series, each over the past ten years:

(a) the monthly unemployment figures in your country,
(b) the daily precipitation in the region where you live, and
(c) the times between your visits to a doctor.

For each series:

(a) Is the state space categorical or continuous?
(b) Is time discrete or continuous?
(c) What types of errors might be introduced in recording the observa-

tions?
(d) Is there a clear time origin for the process?
(e) Is it plausible to assume stationarity?



Exercises 17

(f) Can you expect there to be dependence among the responses?
(g) Can you find appropriate covariates upon which the process might

depend?
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Basics of statistical modelling

In this chapter, I shall review some of the elementary principles of statistical mod-
elling, not necessarily specifically related to stochastic processes. In this way, read-
ers may perhaps more readily understand how models of stochastic processes relate
to other areas of statistics with which they are more familiar. At the same time, I
shall illustrate how many of these standard procedures are not generally applicable
to stochastic processes using, as an example, a study of the duration of marriages
before divorce. As in subsequent chapters, I shall entertain a wide variety of dis-
tributional assumptions for the response variable and use both linear and nonlinear
regression functions to incorporate covariates into the models.

2.1 Descriptive statistics

Let us first examine the data that we shall explore in this chapter.

Divorces Marriage may be conceptualised as some kind of stochastic process de-
scribing the relationships within a couple, varying over time, that may eventually
lead to rupture. In this light, the process ends at divorce and the duration of the
marriage is the centre of interest.

In order to elucidate these ideas, a study was conducted in 1984 of all people
divorcing in the city of Liège, Belgium, in that year, a total of 1727 couples. (For
the data, see Lindsey, 1992, pp. 268–280). Here, I shall examine how the length
of marriage before divorce may vary with certain covariates: the ex-spouses’ ages
and the person applying for the divorce (husband, wife, or mutual agreement).

Only divorced people were recorded, so that all durations are complete. How-
ever, this greatly restricts the conclusions that can be drawn. Thus, the design of
this study makes these data rather difficult to model.

The design was retrospective, looking back in time to see how long people were
married when they divorced in 1984. Thus, all divorces occurred within the
relatively short period of one year.
On the other hand, the couples married at quite different periods in time. This
could have an influence on the occurrence of divorce not captured by age.
The study included only those couples who did divorce so that it can tell us

18
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nothing about the probability of divorce. To be complete, such a study would
somehow have to include a ‘representative’ group of people who were still mar-
ried. These incompletely observed marriages would be censored (Section 3.1.3).

The reader should keep these problems in mind while reading the following analy-
ses.

2.1.1 Summary statistics

Before beginning modelling, it is always useful first to look at some simple de-
scriptive statistics.

Divorces In the divorce study, the mean length of marriage is 13.9 years, with
mean ages 38.5 and 36.1, respectively, for the husband and the wife. Because
length of marriage will be the response variable, we also should look at its vari-
ability; the variance is 75.9, or the standard deviation, 8.7. Thus, an interval of,
say, two standard deviations around the mean length of marriage contains negative
values; such an interval is meaningless. Symmetric intervals around the mean are
not appropriate indicators of variability when the distribution is asymmetric, the
typical case for many responses arising from stochastic processes.

A more useful measure would be intervals (contours) of equal probability about
the mode, which has highest probability. For this, graphical methods are often
appropriate.

2.1.2 Graphics

Visual methods often are especially appropriate for discovering simple relation-
ships among variables. Two of the most useful in the context of modelling are
histograms and scatterplots.

Divorces The histogram for duration of marriage is plotted in the upper left hand
graph of Figure 2.1; its shape is typical of duration data. We see indeed that it is
skewed, not having the form of a normal distribution. From this, intervals of equal
probability can be visualised.

However, this histogram indicates the form of the distribution for all of the cou-
ples together. Models based on covariates generally make assumptions about the
conditional distribution for each value of the covariates. Thus, a linear regression
model carries the assumption that the conditional distribution is normal with con-
stant variance for all sets of covariate values. This histogram does not provide
information about such conditional distributions. Consider, as an example then,
the explanatory variable, applicant. We can examine the histograms separately for
each of the three types of applicant. These are also given in Figure 2.1. We can see
that the form of the histogram differs quite substantially among these three groups.

The above procedure is especially suitable when an explanatory variable has
only a few categories. If a quantitative variable, like age, is involved, another
approach may be more appropriate. Let us, then, see how to examine graphically
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Fig. 2.1. Histograms showing the proportions of couples divorcing after various lengths of
marriage in Liège in 1984, grouped into intervals of five years: all couples and separately
by applicant.

the relationship between the response variable, duration of marriage, and husband’s
age. The scatterplot of length of marriage in relation to this age is given in Figure
2.2 (ignore, for the moment, the two diagonal lines). As might be expected, there
is a rather strict upper relationship between the two variables. Length of marriage
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Fig. 2.2. A scatterplot showing the relationship between length of marriage before divorce
in Liège in 1984 and the age of the husband, with the fitted normal distribution regression
lines.

is, with few exceptions, constrained to be no greater than about age 20 years. We
can also notice the interesting fact that a few very old men married late in life and
divorced rather quickly thereafter.

To relate this graph to histograms, consider the density of points along a vertical
line for some fixed age of the husband. If we move this line to the left or right,
we see that the mass of points along it shifts. This indicates that, if we produced
histograms for different age groups, they would have different shapes, as did those
for the three applicant groups. Thus, both of these graphical methods indicate that
the conditional distribution of length of marriage is changing with the covariates,
applicant and husband’s age.

As we see from these graphs, the assumptions of normality and constant variance
of the conditional distribution of length of marriage, given the applicant group or
husband’s age, do not appear to be fulfilled either. Nevertheless, I first shall attempt
to fit such models to these data.

2.2 Linear regression

One of the most widely (mis)used tools in all of statistics is linear regression. This
is often misnamed ‘least squares’ regression. However, least squares estimation
refers to the study of a deterministic process, whereby the ‘best’ straight line is
fitted through a series of points. In statistical modelling, the interpretation of linear
regression is quite different, although the technical calculations remain the same.
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2.2.1 Assumptions

Suppose that we have observations of some response variable , say the state
of a stochastic process, such as a time series or the time between recurrent events.
As well, we have some accompanying explanatory variables or covariates, ,
to which, we believe, the response is related. Then, applying normal distribution
linear regression carries the assumption that this response has a normal or Gaussian
distribution with probability density

; 2 1

2 2
e

1
2 2

2
(2.1)

conditional on the values of the covariates.
In addition, the mean of the responses is assumed to change in some deter-

ministic way with the values of these covariates, that is,

0 ∑ (2.2)

In this function, 0 is the intercept, and is the slope for the covariate, . Then,
this regression equation specifies how the mean of the distribution changes for
each value of the covariates. On the other hand, the variance 2 of is assumed
to remain constant.

The model is not just the deterministic description of Equation (2.2). As an
integral part of it, individual responses are dispersed randomly about the mean
in the specific form of the normal distribution in Equation (2.1) with the given
variance. This is illustrated in Figure 2.3. Such variability usually will be an
integral part of the scientific phenomenon under study, not just measurement error.

This regression function is called linear by statisticians for the wrong reason: it
is linear in the parameters . This is irrelevant for scientific modelling. On the
other hand, the shape of the curve may take certain restricted nonlinear forms, say
if 2 is included as a covariate, as we shall see below.

Once we understand that such a model is describing changes in a normal distri-
bution, we easily can imagine various extensions:

Other, more suitable, distributions can replace the normal distribution; these will
most often be asymmetric.
The dispersion (here, the variance) about the regression curve need not be held
constant.
The regression equation (2.2) may more appropriately be replaced by some
wider class of nonlinear relationships.

These generally will permit more realistic analysis of the data at hand. I shall
begin to examine them more closely in Section 2.4. However, first it will be useful
to review in some more detail the standard models based on the normal distribution.

2.2.2 Fitting regression lines

Linear regression models are well known and can be fitted using any standard sta-
tistical software.
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Fig. 2.3. A graphical representation of a simple linear normal regression showing the linear
form of the regression function and the constant shape of the normal distribution about it.

Divorces Here, the response variable is a duration so that the normal distribution
will, almost certainly, be inappropriate, as we already have seen from the graphical
methods above. I shall, nevertheless, proceed first with models based upon it. Let
us, then, attempt first to explore the relationship between the length of marriage
and the age of the husband using linear regression. The estimated equation is

14 4 0 73 1

where 1 is the husband’s age. The positive sign of the slope indicates, as might
be expected, that mean length of marriage increases with the husband’s age. Thus,
according to this model, the length of marriage is estimated to increase, on average,
by about three-quarters of a year for each additional year of husband’s age. This
relationship is plotted as the solid line on the scatterplot in Figure 2.2. It is not very
convincing.

Likelihood

We can ask whether the inclusion of a given covariate actually does help to predict
the response variable. As briefly outlined in Section 1.3, one intuitive way to do
this is to look at how probable each model makes the observed data, called its
likelihood. Often, this is easier to study if minus its logarithm is used. Then,
smaller values indicate models ‘closer’ to the data. A problem with this procedure
is that more complex models, those with more estimated parameters, even ones that
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are not really necessary, will generally make the data more probable. However, we
usually prefer the simplest adequate model possible.

One solution to this dilemma is to penalise more complex models by using an
information criterion to compare models. These are designed especially to help in
selecting among competing models. Thus, the most widely used, the Akaike infor-
mation criterion (AIC) involves minus the logarithm of the maximised likelihood,
penalised by adding to it the number of parameters in the model estimated from
the data. This penalty prevents the measure of suitability of the models from de-
creasing too quickly as they become more complex. Note that information criteria
have no absolute meaning; they only provide a guide for comparing different mod-
els applied to the same data. Beware also that most linear and generalised linear
software return twice the negative log likelihood, so that, if AICs are supplied, they
will be twice those given here.

Divorces We can now turn to the specific question as to whether or not husband’s
age improves the prediction of length of marriage. This implicitly involves the
comparison of two models: those with and without the covariate, husband’s age.
That with it has an AIC of 5076.5. The model without this covariate simply fits a
common mean (that calculated above) to all of the responses. Its AIC is 6090.6,
indicating that the first model was a great improvement on this. Of course, this is
obvious from Figure 2.2; even if the regression model involving husband’s age does
not represent the responses very well, it does much better than simply assuming a
common mean length of marriage for everyone.

Multiple regression

One possible way to proceed to more nonlinear forms of regression curves, remain-
ing in the context of normal linear regression, is to add the square of a quantitative
covariate to the regression equation. This is a simple case of multiple regression.
Here, it will produce a nonlinear model even though statisticians call it linear!

Divorces If we add the square of husband’s age, the estimated equation becomes

20 6 1 04 1 0 0035 2
1

This addition does not improve the fit nearly as much as did inclusion of the linear
term in husband’s age: the AIC is only reduced further to 5068.6. This relationship
is plotted as the dashed line on the scatterplot in Figure 2.2; it can be seen to be
only slightly curved.

The same analysis can be carried out for the age of the wife, say 2. In fact,
these models fit better, with AICs of 5017.7 for the linear curve and 5009.7 for the
quadratic. Perhaps surprisingly, if we combine the two models, with a quadratic
relationship for both husband’s and wife’s age, we obtain a further substantial im-
provement. The AIC is 4917.1. However, the quadratic term for the wife’s age is
not necessary in this equation; eliminating it reduces the AIC to 4916.4.
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Fig. 2.4. Contour and three-dimensional plots of the model for mean length of marriage as
it depends on the two ex-spouses’ ages.

Interactions

We also can consider interactions between quantitative covariates, obtained by
multiplying them together.

Divorces After some experimentation, we discover that the linear interaction is
necessary, as well as the quadratic term for wife’s age and the quadratic and cubic
for husband’s age. The final estimated equation, with a substantial reduction in
AIC to 4710.3, is

13 42 1 64 1 0 25 2 0 018 2
1 0 034 2

2

0 00039 3
1 0 0068 1 2

It is more difficult to plot a regression function when there are two covariates, but
it is still possible. Two ways, as contours and as a three-dimensional perspective
plot, are shown in Figure 2.4 for this model of length of marriage as it depends on
the ages of the husband and the wife.

Notice that this model is a completely arbitrary construction, obtained by em-
pirical search. If, say, we were wanting to approximate some unknown nonlinear
function by a Taylor’s series expansion, we would want to use all terms up to a cer-
tain order, usually second. Here, I have included one third order term ( 3

1) but not
three others (including two further interactions). However, none of them improves
the model significantly.
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2.3 Categorical covariates

Not all covariates are quantitative, as is age in the divorce example. Some, called
factor variables, may indicate qualitatively to what subgroup each individual be-
longs. As we saw in Figure 2.1, a categorical variable divides the population into
subgroups, each with a distinct conditional distribution. In the context of normal
models, this simply implies that the mean response will be different.

Traditionally, a model based on the normal distribution and containing such a
variable was called ‘analysis of variance’. However, it can, in fact, be handled as
a special case of multiple regression.

Divorces For the divorce data, we saw above when examining histograms that the
person applying for the divorce is such a variable. The means are, respectively,
16.7 when the husband applies, 13.9 when the wife does, and 11.6 when both do
(mutual consent).

2.3.1 Analysis of variance

With one categorical covariate, an analysis of variance model can be written

(2.3)

where indexes the categories of the covariate. However, as it stands, this model
has one too many parameters. We must add a constraint. There is no unique way to
do this. The choice generally will depend on interpretability. I shall consider two
useful ways.

Another way to look at this problem is to realise that a categorical variable can-
not, numerically, be summarised in one number. Instead, it requires a set of indi-
cator or dummy variables, indicating to which category each observation belongs.
Thus, as we shall see, Equation (2.3) can be written equivalently as the multiple
regression of Equation (2.2) using such variables.

Baseline constraint

One way to add a constraint is to set 0 for one value of . This is called the
baseline constraint because one category is chosen as a baseline of comparison for
all of the others.

Now let us define indicator variables such that each can take the values 0 or 1,
depending on whether or not the observation is in that particular category. How-
ever, this is slightly redundant: if we know that the value of the variable is not in
any of the categories but one, then it must be in that remaining category. Thus,
we only require one less indicator variable than the number of categories of the
original variable. The category without an indicator variable is that with 0.
This yields one possible constraint on the parameters mentioned above.

These indicator variables can be used as covariates in the multiple regression of
Equation (2.2). Fortunately, most software can handle factor variables automati-
cally so that we do not need to set up the indicators ourselves. Care, however, must
be taken in interpreting the results in terms of the constraint, or equivalently, the set
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of indicator variables, employed. Often, by default, the software chooses 1 0
or equivalently uses indicator variables for all but the first category.

Divorces For the divorce data, using the applicant as a factor variable with the
baseline constraint yields ˆ 16 7, the mean number of years of marriage for the
first category, husband applying. Then, 1 0, 2 2 8, the difference in mean
from the first category for wife applying, and 3 5 1, the difference from the
first category for mutual consent. Thus, the means given above are reproduced.
The AIC is 6044.0, showing that this categorical variable does not help nearly as
much in predicting the length of marriage as do the ages of the two ex-spouses.

Mean constraint

Instead of setting to 0 for one of the categories (above it was the first, 1),
another useful possibility for interpretation in many contexts is a constraint such
that is the mean and the are differences from it for each category. The ap-
propriate constraint is ∑ 0. This are called the mean constraint, or sometimes
the conventional constraint, because it was classically most often used in analysis
of variance.

Here, the corresponding indicator variables are more complex. Let us start by
specifying the values for all categories except the last. Then, an appropriate indi-
cator variable will take the value 1 if the observation is in the given category, 0 if
it is in another category except the last, and 1 if in the last. Again, there will be
one fewer indicator variable than the number of categories. The value of for the
last category will be minus the sum of those for the other categories, using the fact
that ∑ 0.

Again, these indicator variables can be used as covariates in the multiple regres-
sion of Equation (2.2), but many software packages can also do this automatically.
However, generally they will only calculate the values for all but one of the cate-
gories, in the way just outlined.

Divorces For the divorce data, the values obtained using these constraints are
ˆ 14 1, the mean number of years of marriage, 1 2 6, the difference from
this mean for husband applying, 2 0 1, the difference from the mean for wife
applying, and 3 2 5, the difference for mutual consent. Notice that this value,
ˆ 14 1, is not equal to the global mean calculated above. It is rather the un-
weighted mean of the means for each category.

With this parametrisation of the model, we see more easily that the length of
marriage is about average when the wife applies, being considerably longer when
the husband applies and about as much shorter when there is mutual consent. No-
tice that the differences in mean length of marriage are estimated to be the same
between categories in the two parametrisations. Thus, in the first, the difference
between husband and wife applying was 2 78; this is 0 14 2 64 2 78 in
the second. Of course, the AIC is again 6044.0 because this is just a different
parametrisation of the same model.
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2.3.2 Analysis of covariance

More complex models will contain both quantitative and qualitative variables. Tra-
ditionally, this was called ‘analysis of covariance’, but it is just still another case
of multiple regression. A categorical covariate can be used to introduce a different
curve for each of its category. Thus, for a straight line in a regression function like
Equation (2.2), it will allow a different intercept for each category of the qualitative
covariate:

0 ∑ (2.4)

where, again, indexes the categories of the qualitative covariate.

Divorces To continue the divorce example, we can model simultaneously the ages
of the two spouses and the applicant for the divorce (husband, wife, or mutual).
Thus, at this first stage, we are making the assumption that the mean length of
marriage depends on the ex-spouses’ ages in the same way for each type of ap-
plication. This improves the model only slightly; the AIC is 4911.8 as compared
to 4916.4 given above with the same intercept for all types of application (both
models without interactions between the ages).

In order to be able easily to plot the regression curves, I shall use the simpler
model with only the husband’s age. (The AIC is 5064.2, a much worse model, as
might be expected; again, it does not provide much improvement as compared to
the model with the same intercept for all types of application, given above, which
had 5068.6.) The three parallel curves, with different intercepts, are plotted in the
left graph of Figure 2.5. There is not much separation between these lines.

Interactions

A still more complex model allows not only the intercepts but also the slopes to
differ among the categories of the categorical variable. This model can be written

0 ∑ (2.5)

Here, the quantitative covariates are said to interact with the categorical covariate.

Divorces When both ages are included in the model for the divorce data, including
necessary interactions, the AIC is reduced to 4695.5. Again, in order to be able to
plot the regression curves easily, I shall use the model without the wife’s age. (This
has an AIC of 5049.0.) The curves are plotted in the right graph of Figure 2.5.
They are quite different, with that for mutual consent levelling off more rapidly
with age. (Here, the model could be simplified by eliminating the two parameters
for interactions between type of application and the square of the husband’s age.)
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Fig. 2.5. The fitted normal distribution regression lines for the divorce data, separately for
the three types of application. Left: parallel lines; right: different slopes.

2.4 Relaxing the assumptions

2.4.1 Generalised linear models

Two of the assumptions of normal models listed above (Section 2.2.1) easily can
be relaxed by turning to generalised linear models. These provide a slightly wider
choice of distribution and allow the mean to depend in a nonlinear way on the
linear regression function. The standard distributional choices are normal, gamma,
inverse Gauss, Poisson, and binomial. The modification to the regression equation
involves some transformation of the mean, called the link function, say :

0 ∑ (2.6)

This must be monotone so that its inverse exists.

Gamma distribution

Survival data (Chapter 3), and other responses involving durations, can often use-
fully be modelled by the gamma distribution

;
1e

Γ
(2.7)

Because we shall be using this distribution primarily to describe time, I have re-
placed by , as I also shall do in the following distributions.

An important special case, obtained by setting 1, is the exponential distri-
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bution, equivalently,

; e or
; e

(2.8)

where the mean duration is given by 1 . I shall not use this distribution here,
but frequently shall return to it later (see, especially, Section 4.1.2).

In the gamma distribution, is the mean and is the ratio of the mean squared
to the variance, the reciprocal of the square of the coefficient of variation. Thus,
an exponential distribution has unit coefficient of variation which can serve as a
standard of comparison.

Each distribution in the generalised linear model family has a default, canonical
link function. For the gamma distribution, it is the reciprocal or inverse,

1
(2.9)

so that a regression equation using it will have the form

1
0 ∑ (2.10)

Most often, this is inappropriate and a log link

log 0 ∑ (2.11)

is more useful.
Thus, it is possible to change the link function for a given distribution. That used

above, in Equation (2.2) with the normal distribution, is called the identity link:

(2.12)

its canonical link.

Divorces Length of marriage can be thought of as the survival of the marriage.
Then, for the divorce data, the gamma distribution may be appropriate. Here, I only
shall consider the regression equation with a quadratic dependence on husband’s
age. The resulting curve is plotted as the solid line in Figure 2.6. The surprising
form of this curve results, of course, from the inverse link function.

The AIC is 4890.1, very much better than any of the preceding models, even
with more covariates and interactions among them. For comparison, the corre-
sponding, previously obtained, curve from the normal distribution is plotted in the
same graph, as the dotted line.

The first part of the curve from the gamma distribution with reciprocal link is
similar to that from the normal distribution. But, in contrast to this latter curve,
it reaches a peak at about 60 years and then goes back down for the older people.
This may be as reasonable a representation of the data.

However, we do not yet know whether the improved fit results primarily from
the more nonlinear form of the regression equation (the link function) or from the
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Fig. 2.6. The scatterplot of Figure 2.2 with the fitted gamma and normal regression lines.

changed distributional assumption (the gamma distribution). We best can examine
this in steps.

When the identity link is used with the gamma distribution and the quadratic
relationship in husband’s age, the curve is shown as the dashed line in Figure 2.6;
it bends in the opposite direction to that from the normal distribution. The equation
from the normal distribution is

20 6 1 04 1 0 0035 2
1

whereas that from the gamma distribution is

9 82 0 49 1 0 0032 2
1

For the gamma distribution, the AIC is 4797.9, as compared to 5068.6 above for
the normal distribution with an identity link. This demonstrates that most of the
improvement comes from the changed distribution. This conclusion can be con-
firmed by using the reciprocal link with the normal distribution; this has an AIC of
5059.4.

Thus, we must conclude that the conditional distribution of this response variable
is decidedly non-normal, at least when a quadratic dependence on husband’s age is
used. Appropriate choice of the distribution is essential when studying stochastic
processes.
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Log normal and inverse Gauss distributions

Two other distributions in the generalised linear model family, the log normal and
the inverse Gauss, may also be appropriate for duration data. The first can be
derived from the normal distribution of Equation (2.1) by taking the logarithm of
the responses and introducing the Jacobian:

; 2 1

2 2
e

1
2 2 log 2

(2.13)

The second has the form

;
1

2 3
e

1
2 2

2

(2.14)

Divorces For these two models, the AICs are, respectively, 4942.4 and 5074.6 for
the same quadratic regression function with an identity link. Neither of these fits
as well as the gamma distribution (AIC 4797.9), although the first is better than the
normal distribution (5068.6).

2.4.2 Other distributions

Generalised linear models contain a very restricted set of distributional possibil-
ities. For continuous responses, these are essentially the normal, log normal,
gamma, and inverse Gauss distributions. For stochastic processes, many other dis-
tributions will also be important. Here, I shall look at a few of them.

Weibull distribution

For duration data, the Weibull distribution

;
1e

(2.15)

is especially important because of its simple properties (Section 3.2.1).

Divorces Here, this distribution, with the quadratic function of husband’s age, has
an AIC of 4643.0. This is a major improvement on the previous models. The
regression equation is

9 13 0 46 0 0041 2
1

similar to that for the gamma distribution. These two curves are plotted in Figure
2.7. We see that the Weibull curve is higher than the gamma.

This result is important because, for a model without covariates, the gamma
distribution fits better than the Weibull. The AICs are, respectively, 5816.3 and
5850.5. Thus, the marginal distribution (gamma) is different than the conditional
one (Weibull). The distributional assumptions can change as covariates are intro-
duced into a model.
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Fig. 2.7. The scatterplot of Figure 2.2 with the fitted gamma and Weibull regression lines.
The dashed gamma line is the same as that in Figure 2.6.

Other distributions

Another distribution, the log logistic, has a similar shape to the log normal but with
somewhat heavier tails:

;
e

log
3

3 1 e
log

3

2 (2.16)

Other possibilities include the log Cauchy

; 2 log 2 (2.17)

and log Laplace

;
1

2
e

log

(2.18)

with even heavier tails.

Divorces The log logistic distribution has an AIC of 4821.8, considerably better
than the log normal, but not as good as the gamma and Weibull distributions. The
log Cauchy has an AIC of 4853.0 and the log Laplace 4775.6, both also better than
the log normal. However, none of these can compete with the Weibull distribution,
although the second is better than the gamma. These results are summarised in
Table 2.1.
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Table 2.1. Fits of various distributions to the divorce data with a quadratic
regression in husband’s age and identity link.

Distribution AIC

Normal 5068.6
Gamma 4797.9
Log normal 4942.4
Inverse Gauss 5074.6
Weibull 4643.0
Log logistic 4821.8
Log Cauchy 4853.0
Log Laplace 4775.6

2.4.3 Nonlinear regression functions

Because of their link function, generalised linear models have a nonlinear compo-
nent arising from the transformation of the mean in the link function (unless the
identity link is used, as in most of the models above). However, they are linear in
that function of the mean. There is no reason that we should be restricted to such
regression functions. Indeed, in terms of husband’s age, our models above were
nonlinear. Scientifically, the statistical distinction, in terms of the parameters, be-
tween linear and nonlinear models is generally that the former are approximations
to the latter.

Logistic growth curve

Here, I shall look at one simple case of a regression function that is nonlinear both
in the covariate and in the parameters. Suppose that response variable depends on
a covariate in an S-shaped fashion, so that the mean follows the function

1 e 0 1 1
(2.19)

instead of a quadratic one. This is called a logistic growth curve (Section 12.3.1).

Divorces There appears to be little theoretical reason for using this function with
the divorce data; it implies that the mean length of marriage levels off to some con-
stant value as the husband’s age increases. With the Weibull distribution, the AIC
is 4647.4, somewhat poorer than the quadratic regression function. For compari-
son, the two curves are plotted in Figure 2.8. We can see that they are similar for
ages up to about 55, where most of the responses lie.

Because of the limitations in the design of this study outlined in Section 2.1, the
results above are not meant to be definitive in any sense. However, they do show
clearly how changing assumptions can alter the conclusions that may be drawn.
As in all scientific modelling, care must always be taken in formulating models for
stochastic processes.



Exercises 35

20 30 40 50 60 70 80

0
10

20
30

40
50

Husband’s age

Le
ng

th
 o

f m
ar

ria
ge

Quadratic
Logistic

Fig. 2.8. The scatterplot of Figure 2.2 with the fitted linear and nonlinear Weibull regres-
sion lines. The solid line is the same as that in Figure 2.7.

Further reading

Good books on linear normal models are rare.
Several books on generalised linear models are available; these include Aitkin et

al. (1989), Dobson (2002), Lindsey (1997), and McCullagh and Nelder (1989).
For nonlinear models, see Lindsey (2001).

Exercises

2.1 Perform a more complete analysis of the study of divorce in Liège.

(a) Develop an appropriate regression model using all necessary co-
variates, including the number of children, and any necessary in-
teractions.

(b) The study also recorded the length of the court procedure. Analyse
the dependence of this response variable on the covariates.

2.2 A medical three-period cross-over trial was performed to determine gastric
half-emptying time in minutes. It involved 12 subjects, as shown in Table
2.2. This is an analysis of variance type of design for duration data.

(a) Find an appropriate model to determine whether or not there are
treatment effects. Besides the covariates explicitly present in the
table (treatment and period), you may want to consider the ‘carry-
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Table 2.2. Gastric half-emptying time (min) for 12 subjects in a cross-over trial.
Each line corresponds to the period, treatment, and response of one subject.

(Keene, 1995)

Treatment

A B C

Period Response Period Response Period Response

1 84 2 62 3 58
3 87 2 108 1 38
3 85 1 85 2 96
1 82 3 46 2 61
2 83 1 70 3 46
2 110 3 110 1 66
3 215 2 86 1 42
1 50 3 46 2 34
2 92 3 50 1 80
1 70 2 61 3 55
3 97 1 40 2 78
2 95 1 147 3 57

over’ effect of the treatment given in the previous period and also
differences among the subjects participating in the trial.

(b) Try several members of the generalised linear model family with
various link functions.

(c) Can you find a distribution outside the generalised linear model
family that fits better?
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Survival processes

One of the simplest types of stochastic process involves the time until some termi-
nating event of interest occurs, such as death of a biological organism or breakdown
of a machine. Such an event signals the change into some usually irreversible state.
Because of the importance of such models in medicine for the study of the survival
of patients, their use is often known as survival analysis. In engineering applica-
tions, it is called reliability analysis.

3.1 Theory

As we have seen in Section 1.1.1, one possible centre of interest in studying a
stochastic process may be the durations between events indicating changes of state
of the process. We already have encountered, in Chapter 2, one special type of
such data, in a more conventional context, the survival of marriages until divorce.
There, the original state was ‘married’ and the event signalling a change was the
divorce. For such durations, certain specific techniques usually will be necessary,
many originally developed for the special case of survival data, but not covered in
that chapter. Thus, here I shall look in more detail at some ways to model this type
of process, turning to the more general case of series of several events in Chapters
4, 5, and 6.

3.1.1 Special characteristics of duration data

Durations between events differ from other types of responses in certain specific
ways and the special case of survival data has particular characteristics of its own.
It is important to look at them more closely before proceeding.

Interevent times

Duration times between events, whether involving irreversible or absorbing states
(Section 3.1.1) or not, have several special characteristics:

(i) They must be non-negative and are usually strictly positive (unless several
events can occur simultaneously).

(ii) Their distribution usually is positively skewed.

39
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(iii) The recording may be censored (Section 3.1.2): some durations may be
only partially recorded, although this still provides useful information.

As we shall see, response variables of this type can be studied in several closely
related and equivalent ways, by looking at

(i) the durations between events,
(ii) the counts of events in given fixed time intervals, or

(iii) the cumulative number of events over time.

For survival data, such approaches clearly are only applicable to the combined
results of a set of similar survival processes on different individuals.

Intensity of events

Let us first look a little more closely at the second approach listed above: the
counts of events in fixed time intervals. If these intervals are allowed to become
very small, we obtain, in the limit, the instantaneous rate of occurrence or the
intensity of the event, to be described in detail in Sections 3.1.3 and 4.1.1. We shall
see that the function chosen to define this intensity will be strictly equivalent to the
corresponding distribution of the durations; both will contain the same information
expressed in different ways.

Modelling the intensity directly, instead of the probability or density, as in most
other areas of statistics, is often the most flexible approach. Although the intensity
functions for certain common distributions are relatively complex, having non-
linear forms, this is only a minor inconvenience with powerful modern statistical
software and computers. Many different distributions, and their corresponding in-
tensity functions, exist to model the durations of times until events.

Absorbing states

In many series, no special state stops the process; then, it is always possible for
events to continue to occur, perhaps indicating passage among a number of differ-
ent states (Chapters 4, 5, and 6). However, in this chapter, I shall look at a simpler,
very special, situation; this arises when only two possible states exist. Then, the
event of interest is the first and only passage from the first to the second state.

If, when a process enters a certain state, it can never leave it, such as death
or irreparable breakdown, that state is said to be absorbing. In certain situations,
including that which interests us here, the process necessarily ends when it enters
this absorbing state and no further observations are made after this event occurs.
(In any case, the process is no longer stochastic, but becomes deterministic at that
time point.)

Thus, here we shall be interested in the time during which an individual ‘sur-
vives’ in some first state before passing into an absorbing state, from which there is
no return, the survival time. One example is the divorce data in Chapter 2, whereby
a marriage survives (at least legally) until a divorce occurs. (Other possibilities, not
considered there, include death and remarriage.)

With such data, we shall only have, at most, one ‘observation’ per individual,
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because the process ends when the event of entering the absorbing state occurs.
This contrasts with the situation that we shall study in subsequent chapters where
a sequence of events in one or more series usually is observed. Nevertheless, even
with survival data, individuals must be followed over time to determine when the
event occurs.

When we observe a single stochastic process, without absorbing states, over
time we must do so for long enough to record several events; otherwise, we shall
not have enough information to model them. For a survival process, this is not
possible because each event means entry to the absorbing state. Thus, in contrast
to most other stochastic processes, we absolutely require observations on a number
of individual series in order to obtain enough information to be able to proceed.
We always must study a reasonably large collection of distinct survival processes
and make strong uncheckable assumptions about the similarity among them with
regard to occurrence of the event of interest (Section 1.1.5).

Time origin

The fact that a stochastic process leaves a given state after a certain length of time,
of course, implies that a clear time origin must also be specified for the process.
This is a critical point that must be considered carefully in any such study. For
the divorces, the time origin was the date of marriage. In that example, there was
implicitly one further state, unmarried, with the marriage event marking the change
of state initiating the duration or survival time of interest. A similar situation occurs
in many other contexts, such as in studies of the time to healing or to death after
the start of a medical treatment.

However, this is not true in all situations. A special ‘event’, such as birth, may
initiate a process without there being a preceding state. In either case, the initial
event, important as it is, is not modelled explicitly, except as the indication of
the start of the process of interest. (See Chapter 6 for models of a progressive
series of states, where the previous state, in situations like the marriage and medical
treatment examples, can be used.)

3.1.2 Incomplete data

By definition, responses that are measured as a duration occur over time. However,
any research study must occupy a limited period. This has important implications
for the collection of data, implying that it may not be possible to obtain all of the
desired information.

Two major problems when observing any stochastic process are:

(i) The time and money of the observer are limited.
(ii) Individuals may, for various reasons, be susceptible to disappear from ob-

servation.

These obstacles are particularly acute when recording durations, so that special
measures must be taken. In some special cases, there may be other possible reasons
for not observing the event ending a duration:



42 Survival processes

(iii) The event may be impossible for certain individuals.
(iv) A competing event may occur before the event of interest.

Censoring

If the period in which the study is conducted is not reasonably long as compared
to the lengths of the durations to be observed, then some of these durations will,
almost invariably, be incomplete or censored. Thus, some individuals usually will
survive longer than the period available for observation or may drop out for some
reason before the decisive event occurs. Hence, complete survival information will
be available for some individuals, but, for others, only the length of time under
observation, and not the time of the event of interest, will be recorded.

Such censoring may happen in various planned ways; the specific criterion by
which recording is to stop for all series will be (or should be!) under the control of
the research worker. I shall examine various possibilities shortly.

The situation can be more difficult if individuals drop out for reasons suppos-
edly not linked with the study or beyond the control of the research workers. If
observation must stop because the subject drops out of the study, this may pro-
duce differential censoring in the population that can bias the results. Appropriate
measures should be taken either to minimise or to model (Section 6.2) this type of
censorship. Thus, an important question involves the reasons that observation of a
given process had to stop, called the stopping rule.

An additional problem arises if certain individuals will never have the event for
some reason. Thus, in many longitudinal studies, certain individuals tend to drop
out (in similar ways to those described above for survival data). One may want
to model the time until dropout as a survival process. However, most individuals
will (hopefully) never drop out of a study. Thus, there will be a mixture of two
subpopulations: those with a potential to drop out (who may or may not) and those
who will always stay in the study until the end. In such cases, further special
procedures will be required (Section 3.4).

Stopping rules

In the collection of duration data, two basic types of planned censoring have usually
been distinguished:

(i) All recording may be stopped after a fixed interval of time, called Type I or
time censoring, used most often in medical studies.

(ii) Recording may be continued until complete information is available on a
fixed number of subjects, that is, until a prespecified number of events has
occurred, called Type II or failure censoring, used more often in engineer-
ing studies and oncology trials.

As cases of censoring in stochastic processes, Aalen and Husebye (1991) suggest
several other possibilities:

(iii) Censoring times are random variables, independent of the stochastic pro-
cess.
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(iv) Recording in a study stops either when a fixed number of complete dura-
tions is available or after a fixed time, whichever comes first.

(v) The study stops at the first event after a fixed period.

The second and the last two differ from the first and the third in that they depend
on the stochastic processes themselves. However, because these three depend only
on what already has been observed, and not on any as yet incompletely observed
data, all five can be treated in the same way. They are all legitimate stopping times
(see Section 4.1.1 for further details).

Suppose now that the last, incomplete, duration in Type I censoring is ignored,
and not recorded. However, to know that the last duration recorded is the last
complete one, one must look beyond it up to the fixed endpoint to ensure that there
are no further events. This differs from the above cases, in that the cutting point
depends on information after that point. It is not an appropriate stopping time. One
also can see that this will bias downward the average duration time, because long
intervals have a higher probability of being incomplete at the end.

The start of observation also must be at a legitimate stopping time. Interestingly,
this implies that incomplete durations at the beginning can be ignored. This will
involve some loss of information, but no bias. Ideally, the start is also the time
origin of the process, but this is not always possible.

Time alignment

When studying a set of survival processes, such as the divorces in Chapter 2, the
durations may not all start at the same time. Indeed, in that case, a retrospective
study, they all ended at the same time. (In most cases, in a retrospective study,
the terminating event may occur before or after the time of the study, as we shall
see shortly.) The lengths of marriage for ten individual couples are represented
in chronological time, in the top graph of Figure 3.1 (ignoring the crosses for the
moment). In order to perform the analyses in Chapter 2, I implicitly aligned the
durations as if they had all started at the same time. This is shown in the bottom
graph (ignoring the triangles for the moment). In opposition to chronological time,
this might be called process or aligned time.

However, these data contain no censored durations. Suppose that, instead of the
length of marriage before divorce, we were interested in the time between marriage
and birth of the first child, represented by the crosses in Figure 3.1; this is more
typical of a retrospective study. (The short vertical lines now indicate the time of
the study, not necessarily divorce.) Here, couples 5 and 7 did not have a child
before the study occurred so that their durations are censored.

Still another situation may arise in a prospective study. There, it may not be
possible to begin observation on all individual processes at the same time. For
example, in a clinical trial, patients only enter when people with the condition of
interest are found and agree to participate. This is called staggered entry; it is
represented in the middle graph of Figure 3.1, again in chronological time. To
perform an analysis, the same type of alignment as above must be performed so
that here the result is the same, given in the bottom graph.
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Fig. 3.1. Top: the durations of ten survival processes observed retrospectively. Middle: the
durations of ten survival processes observed prospectively, with staggered entry. Bottom:
the aligned processes for both situations. Circles indicate the start of the duration, short
vertical lines the end (not necessarily observed), crosses some other event of interest, and
triangles the end of the study.

As we have seen, in a prospective study, the stopping time is important. Suppose
that Type I censoring was used in the clinical trial so that it occurs at time 20, as
shown by the triangles in the middle graph of Figure 3.1. This results in individuals
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6, 8, 9, and 10 being censored for the final event. In addition, with the fixed
stopping time of Type I censoring in a study, individuals entering later will have a
shorter potential observation period and a higher potential of being censored.

3.1.3 Survivor and intensity functions

As we have now seen, standard survival data have several specific characteristics.
Two of importance here are that durations are non-negative and that some values
may be censored. The first implies that only certain distributions will be suitable for
the study of survivor curves. We already have encountered this problem in Section
2.4. The second, censoring, means that special methods may often be required in
order to apply a model and to analyse the data.

In most areas of statistical modelling, the probability or density function is used
directly, as in Chapter 2. Here, for analysis of durations, three other important
functions will also be useful:

(i) The probability of a duration lasting at least a given time is called the sur-
vivor function

Pr
1

d
(3.1)

where is the cumulative distribution function and the correspond-
ing density function (when it exists).

(ii) The instantaneous probability that the event will occur at a given time, so
that the duration terminates, conditional on it having continued until then,
or the intensity with which the event occurs,

d Pr d (3.2)

This is also called the risk, the hazard, the failure rate, or the mortality rate.
This probability is conditional on the previous state, so that models based
on the intensity will involve a form of state dependence (Section 1.2.3).

If the density function exists,

(3.3)

For still another definition, see Equation (4.1).
(iii) The integrated intensity is

Λ 0 d
log

(3.4)

the latter relationship only holding if the density function exists (Daley and
Vere-Jones, 1988, p. 106).

In most cases, any one of the four functions, , , , and Λ , defines the
(univariate) distributional part of a model completely. However, in certain situa-
tions, the density function will not be defined so that Equation (3.3) cannot be used
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and the intensity function must be defined directly. Perhaps the most important
case is when there are endogenous time-varying covariates, that is, covariates that
depend on the previous history of the process.

From Equation (3.4), if the density exists,

e Λ (3.5)

which is a unit exponential distribution in terms of Λ . (This is the survivor
function corresponding to the density in Equation (2.8) with 1 and replaced
by Λ .) Thus, time in such survival processes can be transformed by means of
the integrated intensity so that the (transformed) duration until the event has a unit
exponential distribution.

3.1.4 Likelihood function

When it exists, the density function of a duration is the product of the intensity
and the survivor function, as can be seen from rearranging Equation (3.3). This
term will be included in the model for all complete durations: , where

is the time that the th process is under observation, is the time to the event,
and is the censoring time. For a censored duration , we only know
that no event occurred up until that point; this is given by the survivor function
alone. Thus, censored responses will only contribute to the model a term that is the
survivor function.

Then, for independent observations of durations , the probability (density) of
the sample, upon which the likelihood function can be based, will be

; ∏ ; I ; I

∏ ; I ;
(3.6)

where I is the indicator function, taking the value 1 when its argument is true
and 0 otherwise.

When the density does not exist, such as when endogenous time-varying co-
variates are present, this procedure will not work. Then, the model, upon which
the likelihood function is based, must be constructed directly from the intensity
function. I shall describe this procedure in Sections 3.5 and 4.1.

In Section 2.4, I gave an example of fairly standard analysis of survival data, that
for divorces. Although those data contained no censored values, with modern soft-
ware their presence introduces no new problems as long as the likelihood based on
Equation (3.6) is used. Thus, I only shall look at one simple classical example of
right-censored responses (Section 3.2), before proceeding to some more complex
challenges of survival data in this chapter: interval censoring (Section 3.3), a sub-
population that does not have the event (Section 3.4), and time-varying covariates
(Section 3.5).
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3.1.5 Kaplan–Meier curves

In Section 3.1.3, we saw that one tool for describing the times between events is
the survivor function. Just as a histogram can be used to obtain an idea of the
form of a probability (density) function (Section 2.1.2 and Lindsey, 2004), it is
often useful to have an empirical representation of the survivor function to compare
with those given by parametric models, such as those used in Chapter 2. This
is relatively simple if there is no censoring, but not so obvious if there is. The
Kaplan–Meier product limit estimate (Kaplan and Meier, 1958) can provide us
with this information whether or not there is censoring.

Let be the probability of having an event at time , conditional on not having
had it until then, that is, the hazard or intensity. Then, the probability of a sample
will be a product of binomial distributions,

; ∏
1

1 (3.7)

where is the number not yet having had the event and still under observation,
and hence still known to be at risk just prior to , called the risk set, and is
the number having the event at time . The likelihood function based on Equation
(3.7) will yield the usual binomial maximum likelihood estimates, .

Then, the product limit estimate of the survivor function will be the product of
the estimated probabilities of not having the event at all time points up to the one
of interest:

∏ (3.8)

The trick is that the risk set decreases in size, not only at an event, but also each
time censoring occurs. This will provide a saturated model to which others can be
compared.

The resulting values yield a step function, not a smooth curve. It may be plotted
in various ways to explore what form of parametric model might fit the data. (I
shall examine such possibilities in more detail in Section 4.2.3.)

As a preliminary step in any analysis of survival data, it always is useful to
apply these procedures based on the Kaplan–Meier estimates. Care must, however,
be taken: the distribution that appears suitable when no covariates are present will
not necessarily remain so with the introduction of these variables into the model,
making it conditional on them. We saw this occur in Section 2.4.2 with the gamma
and Weibull distributions for the divorce data. Special care must be taken when the
covariates are time-varying within the observed survival period.

3.2 Right censoring

Models for survival processes may be based on any distribution for positive-valued
random variables. Symmetric distributions can be made skewed by applying a
transformation to the durations, say by taking logarithms. In principle, the choice
of distribution should be such that the model provides an appropriate mechanism
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to describe the process under study. Unfortunately, such theoretical information is
not always available. This situation has been aggravated by the wide spread use of
semi- and nonparametric methods; this has not helped to increase our knowledge
about suitable forms of distribution in the contexts studied. Thus, often some con-
venient models must be selected. In such cases, it is especially important to be able
to compare the fits of the models tried (Sections 1.3.2 and 2.2.2).

3.2.1 Families of models

Two special forms of intensity function have attracted particular interest because of
their simplicity. They impose strong constraints on the stochastic process, implying
that they are more often convenient than realistic.

Proportional hazards

If the intensity function can be written as a product of two functions such that the
duration time only appears in the first factor and the covariates only in the second
factor, then we have a proportional hazards or multiplicative intensities model:

; 0 ; (3.9)

Usually, is some non-negative regression function, often taking the value 1
when , so that then 0 is a baseline intensity function. Generally, the
two factors do not have any parameters in common and most often
exp to ensure the non-negativity ( indicates transpose).

Intensities for all individuals keep the same proportional relationship over all
time, the proportionality constant depending on the explanatory variables. Thus, all
individuals have the same shape of intensity function over time; only the magnitude
differs.

The exponential and Weibull distributions, given, respectively, in Equations (2.8)
and (2.15), are members of this family. On the other hand, if the base function,

0 , is left unspecified, this formulation is called the semiparametric proportional
hazards model (Cox, 1972).

In its semiparametric form, this model has gained great popularity in medical
research, especially for its supposed lack of strong assumptions. This has had at
least two unfortunate effects:

(i) Proportionality of intensities is, in fact, a strong assumption that is not of-
ten justified, especially in clinical research. In a clinical trial, the survival
duration usually is calculated taking its time origin at randomisation: the
time point at which the treatments are first administered. It is difficult to
believe that most treatments will have immediate and constant effects such
that the intensities will remain in the same proportion to each other over the
duration of a study. On the other hand, in the study of natural populations
in epidemiology, it may be quite plausible, in certain situations, that risks
are proportional in various natural subgroups.
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(ii) Vast amounts of data on survival for a wide variety of illnesses under vari-
ous treatments have been collected and analysed using such models. If the
models provided a reasonable approximation to reality, which is far from
certain given the first point, then useful information on the effectiveness of
some treatment may have been provided. However, very little or nothing
has been learned about functional forms of the variations in the risk of death
over time for these diseases.

A more scientific approach would be to select possible models based on the shape
that the intensity (risk) function for the given illness might be expected to have over
time and to check which are empirically most appropriate in each given situation.

Accelerated failure times

Now suppose that the duration for an individual with covariates 0 can be
represented by the random variable 0 and that, for those with nonzero covariate
values, it is modified in the following way:

0 (3.10)

The effect of explanatory variables is to accelerate or decelerate the time to com-
pletion of the duration. This is called an accelerated life or failure time model.

This relationship implies that the intensity function can be written

; 0 ; (3.11)

Again, usually exp , in which case 0 is the baseline intensity
function when . Then, from Equation (3.10),

log log 0 (3.12)

so that this family often can be modelled by a linear regression function for the
mean log duration. Because the distribution of log for different covariate val-
ues varies only by a translation, its variance (if it exists) is constant (Cox and Oakes,
1984, p. 65). Of course, the variance of the actual durations will not be constant.

These models have been used most widely in engineering, for example in the
study of failure rates of machinery. The most common distributions in this context
are the Weibull, log normal, and log logistic. Notice that the first of these is also a
member of the proportional hazards family. Many of the commonly used intensity
functions in this family have a mode of high risk. Then, the covariates determine
whether this mode occurs early or late. Thus, the shape of the intensity function is
modified by covariates.

This family has at least one drawback: in many situations, an intensity function
with a mode is not a reasonable assumption. Most phenomena do not have low risk
early and late in life with a higher risk in between. The Weibull distribution avoids
this criticism, and also has proportional hazards, helping to explain its popularity.
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3.2.2 Intensity and survivor functions

The intensity functions for the common parametric distributions can be derived
from Equation (3.3). Several important distributions have survivor and intensity
functions that can be obtained explicitly: the exponential distribution, with constant
intensity,

; e (3.13)

;
1

(3.14)

the log logistic distribution

;
1

1 e
log

3

(3.15)

;
e

log
3

3 1 e
log

3

(3.16)

showing that it is an accelerated failure time model, and the Weibull distribution

; e (3.17)

;
1

(3.18)

Taking the latter as the baseline intensity function, we can write

;
1

1

(3.19)

showing that the Weibull distribution is a member of both the accelerated failure
times and the proportional hazards families.

In contrast to these three cases, usually, the survivor function in the denomina-
tor of Equation (3.3) involves an integral that only can be evaluated numerically.
However, most statistical software supply functions for calculating cumulative dis-
tribution functions from which these integrals can be obtained.

As we have just seen, the exponential intensity function is constant over time.
The gamma and Weibull intensity functions both either increase or decrease mono-
tonically. The gamma intensity, with the parametrisation of Equation (2.7), tends
from below or above to depending on whether 1 or 1, whereas the
Weibull intensity function increases without limit or decreases toward zero, de-
pending on the value of (Cox and Lewis, 1966, p. 136). In contrast, inten-
sity functions with a mode include the log normal, log logistic, log Cauchy, log
Laplace, and inverse Gauss.

One useful generalisation of several of these distributions is the generalised
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Table 3.1. Remission times (weeks; asterisks indicate censoring) from acute
leukæmia under two treatments. (Gehan, 1965, from Freireich et al.)

6-mercaptopurine

6 6 6 6* 7 9* 10 10* 11* 13 16
17* 19* 20* 22 23 25* 32* 32* 34* 35*

Placebo

1 1 2 2 3 4 4 5 5 8 8
8 8 11 11 12 12 15 17 22 23

gamma distribution,

;
1e
Γ

(3.20)

When the parameter 1, this yields a gamma distribution, when 1, a Weibull
distribution, when both are 1 an exponential distribution, and when , a log
normal distribution.

Where possible, a model should be chosen with an intensity function of an ap-
propriate shape for the phenomenon under study. Thus, in some situations, the
intensity may be high for early and late times and lower in between, called a ‘bath-
tub’ function. Such forms easily can be obtained by directly modelling the intensity
function.

In the following example, I again shall compare the distributions already used in
Chapter 2, but now classified according to their family.

Leukæmia clinical trial Some classical data, involving the times that cases of
acute leukæmia were maintained in remission under two treatments, are given in
Table 3.1. In this clinical trial, conducted sequentially so that patients were entering
the study staggered over time, treatment with 6-mercaptopurine was compared to
a placebo. The results in the table are from one year after the start of the study,
with an upper limit of the observation time of about 35 weeks. Right censoring
only occurred in the treatment group. The Kaplan–Meier estimates of the survivor
functions for these two groups are plotted in the left graph of Figure 3.2. We can
see that there is a considerable difference between the two treatment groups.

As in Section 2.4.2, I have fitted various distributions to these data. Here, there
is little difference in fit among them, as can be seen in Table 3.2. The Weibull,
log normal, and gamma fit best, representatives from all types of models! Clearly,
there is not enough information in these data to ascertain precisely the form of the
intensity function.

Reassuringly, all distributions show the presence of a treatment effect. With a log
link for the gamma distribution, the treatment effect is estimated to be 1.28, almost
identical to that with the Weibull distribution. The generalised gamma distribution
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Fig. 3.2. The Kaplan–Meier curves with the gamma and Weibull survivor functions (left)
and gamma and Weibull intensity functions (right) for the data of Table 3.1.

Table 3.2. AICs for various models classified by family and fitted to the leukæmia
data of Table 3.1.

Null Treatment effect

Proportional hazards
Exponential 117.8 110.5
Weibull 118.4 109.6

Accelerated failure times
Weibull 118.4 109.6
Log normal 117.4 109.7
Log logistic 117.4 110.7
Log Cauchy 120.1 116.6
Log Laplace 117.7 111.8

Other
Inverse Gauss 118.6 112.0
Gamma 118.2 109.4
Generalised gamma 118.4 110.4

has 3 29 and 0 66, not indicating any simpler distribution, but it does not
fit as well as the simpler models.

For the gamma distribution, ˆ 1 65 and, for the Weibull distribution, ˆ 1 37,
both some distance from the constant intensity of an exponential distribution (
1). These values both indicate an increasing risk of remission over time. As can
be seen in the right graph of Figure 3.2 for the gamma and Weibull distributions,
the intensity curves are very similar for the treatment but differ greatly after about
12 weeks for the placebo. This is because there are only three events in this group
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after this time, providing little information about the form of the intensity curve.
On the other hand, the left graph shows that the fitted survivor curves all follow
closely the nonparametric ones.

3.3 Interval censoring

In many situations, the times of events are not observed very precisely; in any case,
they can never be observed ‘exactly’ in continuous time. This is called interval
censoring. Often, ignoring such censoring does not make much difference for
conclusions, if the size of the censoring intervals is small compared to the rate of
events (Lindsey, 1998). However, it is relatively simple to handle the possibility of
interval censoring when necessary.

3.3.1 Probability models

In order to allow for interval censoring, the probability of a sample given in Equa-
tion (3.6) must be modified. We must integrate over the time intervals within which
the events occur instead of using the density, say for the centre point of the interval.
This easily can be done by replacing the density by the difference of cumulative
distribution functions, yielding

; ∏ ; ; I ; I (3.21)

where and are respectively the left and right limits of the th interval. I shall use
this formula with a number of the distributions that we already have encountered
in Chapter 2 and above.

Breast cancer A set of heavily interval-censored data, shown in Table 3.3, arose
from a study of the replacement of mastectomy by excisional biopsy followed by
irradiation in the treatment of breast cancer, the primary reason being an enhanced
cosmetic outcome. Adjuvant chemotherapy can improve relapse-free and overall
survival, so that the study was designed to determine whether it affects the rate of
deterioration of cosmetic state. Thus, the goal of the study was to determine what
differences exist in cosmetic deterioration between the groups without and with
chemotherapy in addition to radiotherapy.

Here, with the same probability distributions as in Chapter 2, it is necessary to
allow both the location and the dispersion parameters to vary between the two treat-
ments. The results are displayed in Table 3.4. They clearly indicate that both the
location and the dispersion are different in the two treatment groups. This implies
that a regression model with the intensity functions in the two treatment groups
proportional to each other, the proportional hazards model, is not supported by
these data. For all models (except the exponential), the total change in log likeli-
hood, when difference in treatment is taken into account, is about nine, with two
parameters added. The Weibull, gamma, log logistic, and log Laplace distributions
all give similar results, slightly better than the others.
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Table 3.3. Intervals, in months, within which early breast cancer patients under
two treatments were subject to cosmetic deterioration. (Finkelstein and Wolfe,

1985)

Radiotherapy Radiotherapy–chemotherapy

45 25 37 37 8 12 0 5 30 34
6 10 46 0 5 0 22 5 8 13
0 7 26 40 18 24 31 12 20 10 17

46 46 24 17 27 11 8 21
46 27 34 36 17 23 33 40 4 9
7 16 36 44 5 11 24 30 31 11

17 46 19 35 16 24 13 39 14 19
7 14 36 48 17 25 13 19 32 4 8

37 44 37 24 11 13 34 34
0 8 40 32 16 20 13 30 36
4 11 17 25 33 18 25 16 24 18 24

15 46 19 26 17 26 35 16 60
11 15 11 18 37 32 15 22 35 39
22 38 34 23 11 17 21
46 5 12 36 44 48 22 32 11 20
46 14 17 10 35 48

Table 3.4. AICs for various models fitted to the cosmetic deterioration data of
Table 3.3.

Location and
No difference Location Dispersion dispersion

Exponential 155.0 152.3 — —
Weibull 151.2 146.7 150.5 144.9
Gamma 151.0 147.5 151.0 144.8
Inverse Gauss 152.1 148.4 152.9 146.8
Log normal 151.1 150.0 148.5 145.8
Log logistic 150.8 148.8 147.8 145.0
Log Cauchy 154.4 148.9 151.1 147.8
Log Laplace 151.8 147.3 148.9 144.8

The Kaplan–Meier estimates of the survivor curves for the two treatment groups
are plotted in Figure 3.3, along with those for the log Laplace distribution which is
typical of the four (and, in fact, of all seven). The parametric curves, with a total
of four parameters, follow the nonparametric ones of Equation (3.7), with the 56
estimated parameters, very closely.

An important conclusion from this graph is that the intensities are not propor-
tional: the survivor curves cross each other. Those for the log Laplace and gamma
distributions are plotted in Figure 3.4. The survivor curves cross at about one year
whereas, more importantly, the intensities cross at about six months. At the begin-
ning, the risk of deterioration is less under the double therapy, but later increases
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Fig. 3.3. The Kaplan–Meier and log Laplace survivor curves for the cosmetic deterioration
data of Table 3.3.
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Fig. 3.5. The normed profile likelihoods for the difference in location parameters ( ) and
the ratio of dispersion parameters ( ) between treatments for the cosmetic deterioration
data using the log Laplace distribution.

to much higher levels than under radiotherapy alone, although this is not estimated
too well because of the paucity of data.

Although all seven distributions provide fairly reasonable fits and all, except
the inverse Gauss, have similar estimated intensity curves for radiotherapy alone,
the models display great variation in the shape of the second half of the double
therapy curve. Thus, the difference between the estimated intensity curves for the
log Laplace and gamma distributions for the double therapy is not exceptional.
Indeed, the log Cauchy intensity is similar to the log Laplace; all distributions that
allow nonmonotone intensities having decreasing intensity near the end of the time
period. As in the previous example, this great variability in the estimated curves
arises because of the decreasing information available as time passes and, hence,
the difficulty of estimating the intensity over the later part of the time period.

For the log Laplace distribution, the estimates for radiotherapy alone are ˆ
3 73 and ˆ 1 03, whereas, for the combined therapy, they are ˆ 3 10 and
ˆ 0 49, all referring to the logarithm of the time to deterioration. The normed
profile likelihoods for the difference in location ( ) and for the ratio of dispersions
( ) between treatments are plotted in Figure 3.5. Both graphs are asymmetric. With
a maximum likelihood estimate of 0 63 for the difference in location, plausible
values range from about 1 1 to 0 3, thus not including zero. An approximate in-
terval based on two standard errors gives ( 1 0, 0 3). The maximum likelihood
estimate of the ratio of dispersions is 0.48, with a reasonable likelihood interval
from about 0.25 to 0.9, hence not including one. The (transformed) interval based
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on two standard errors gives (0.3, 0.85). Neither approximate interval is very ac-
curate.

The location parameter of the log Laplace distribution models the median (log)
survival time. Thus, the estimated median times to deterioration are, respectively,
41.7 and 22.2 months (or a ratio of 0.53) for radiation therapy alone versus the
combination. From the above results on precision, plausible values of the ratio of
medians vary from about 0.33 to 0.74. On the other hand, the variability of times
among patients is also much larger under the first treatment. Although it provides
a longer median time, it is less reliable. Finkelstein and Wolfe (1985) also find a
significant difference in the rate of deterioration but their logistic model does not
allow the survivor curves to cross, as seen in their Figure 4. Thus, they were not
able to detect the difference in variability between the two groups.

3.4 Finite mixtures

In Section 3.1.1, I suggested that sometimes not all individuals under study may
be susceptible to having the event of interest. In such a situation, the group that is
censored ( ) is composed of a mixture from two populations: those who did
not yet have the event when observation stopped and those who would never have
it.

3.4.1 Probability models

Again, we need to modify Equation (3.6). Suppose that the probability of being
able to have the event is . Then, under these conditions, the sample probability
becomes

; ∏ ; I ; 1 I (3.22)

The mixture probability may possibly depend on covariates.

Recidivism One situation in which not all individuals under study may have the
event of interest involves people released from prison. If the event is recidivism
(return to prison), this model is (hopefully) especially true. Schmidt and Witte
(1988, pp. 26–28) provide data on the months before recidivism of all people re-
leased from prison in North Carolina, USA, from 1 July 1977 to 30 June 1978 (to
be called the 1978 group) and from 1 July 1979 to 30 June 1980 (to be called the
1980 group). The published times were rounded to the nearest month.

Censoring occurs in these data because the study stopped after 81 months, count-
ing from 1 July 1977. People released in the 1978 group were censored after be-
tween 70 and 81 months, depending on their month of release, if recidivism had not
already occurred. In a similar way, those released in the 1980 group were censored
after between 46 and 57 months.

Many covariates were recorded but these were not published. There were 9327
releases in the 1978 group and 9540 in 1980. However, many had information
missing, especially on alcohol or drug abuse. These were removed in the published
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Fig. 3.6. The Kaplan–Meier and empirical intensity functions for the recidivism data.

data, leaving respectively 4618 and 5739 people. One person in 1978 and seven
in 1980 who returned almost immediately to prison will also be ignored in the
following analyses.

The Kaplan–Meier curves for the two years are plotted in the left graph of Figure
3.6. We see that the probability levels off above 0.6. Thus, there may be about this
proportion of people who will not recidive. There is also some difference between
the two years with events occurring more rapidly at the beginning in the 1980
group.

These are grouped (interval censored) data with a fair number of events in each
time category and right censoring occurs only near the end of the observation pe-
riod, so that calculation of an empirical estimate of the intensity function is straight-
forward. For each month, it is the proportion of those who have not yet had the
event (the risk set) who have it that month. This is plotted in the right graph of Fig-
ure 3.6. Although the curves are rather irregular, the generally tendency is clear:
the risk of recidivism is low shortly after release but rises rapidly in the first ten
months, higher for 1980 than 1978, dropping off afterwards.

Notice, however, that this is an intensity function for the whole population, not
just those potentially at risk, that is, those in the subpopulation with recidivist ten-
dencies. If we could exclude the latter from the risk set, the intensities would be
higher.

Thus, we shall require a model with an intensity function that is not monotone
(increasing or decreasing), but that has a mode. Many of the common distribu-
tions, such as the exponential, given in Equation (2.8), gamma, given in Equation
(2.7), and Weibull, given in Equation (2.15), do not have this characteristic. As
mentioned in Section 3.2.1, some distributions that do have this form are the in-
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Table 3.5. Fits of some models for the recidivism data.

Standard Mixture

Distribution Without years With years

Exponential 22482.3 22052.2 22038.6
Gamma 22386.7 21948.2 21918.8
Weibull 22351.7 21977.1 21945.7
Inverse Gauss 22792.6 21955.9 21948.5
Log normal 22086.1 21876.2 21862.4
Log logistic 22239.1 21907.9 21890.2
Log Cauchy 23249.6 22370.4 22346.8
Log Laplace 22482.8 22050.2 22026.9
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Fig. 3.7. Some parametric intensity functions for the recidivism data without year (left)
and differences for the two years using the log normal distribution (right).

verse Gauss given in Equation (2.14), the log normal in Equation (2.13), the log
logistic in Equation (2.16), the log Cauchy in Equation (2.17), and the log Laplace
in Equation (2.18).

Let us first fit a set of standard survival distributions to these data, ignoring the
difference between years and the possibility of a subpopulation without recidivism.
The AICs for these models are given in the left column of Table 3.5. Only two of
the five distributions having an intensity function with a mode fit better than the
others, with the log normal best.

When we add the possibility of a subpopulation of nonrecidivists by using the
finite mixture model, the fit improves greatly, as seen in the middle column of
Table 3.5. The log normal distribution is still the best. The intensity functions
from a selection of these models are plotted in the left graph of Figure 3.7. These
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are quite different, at least after the first ten months. Those for the log normal and
log logistic, the best fitting ones, most resemble the empirical intensity function
plotted in the right graph of Figure 3.6. This shows the importance of choosing an
appropriate model.

Finally, we can examine differences between the two years. The risk might be
different, shown by a difference in , or the proportion of possible recidivists,
through , or both. Here, only the risk shows a difference, with AICs given in
the right column of Table 3.5. The two intensity functions for the log normal
distribution are plotted in the right graph of Figure 3.7. Notice, however, that,
compared to the empirical intensity functions in Figure 3.6, these are much higher
because they refer only to the risk in the recidivist subpopulation rather than to that
in the whole population.

Thus, the probability of being a recidivist is the same for the two years, estimated
to be ˆ 0 45. On the other hand, for the recidivist subpopulation, the risk is
higher over the period of observation in the 1980 group than in 1978.

For another application of finite mixture models, to point processes with marks,
see Section 8.3.

3.5 Models based directly on intensities

In many situations, it is easier to model the intensity function directly instead of
using Equation (3.6) or modifications of it. I shall now turn to that approach.

One important case occurs in the analysis of survival data when time-varying co-
variates are present. The models used above involve the density for each complete
observation period; thus, they assume that conditions remain constant within that
period for each given individual. With time-varying covariates, this assumption no
longer holds. The most direct approach to solving this problem is to use a counting
process (Section 4.1.1), based directly on the intensity function.

3.5.1 Durations and counts of events

From Equations (3.3) and (3.4), the density for a duration can be expressed in terms
of the intensity function:

e Λ (3.23)

Empirically, the time during which an individual is observed is always divided
up, by interval censoring, into small intervals, say ∆ . Let ∆ , taking values
1 or 0, indicate whether or not an event was observed in each of these small periods.
For survival data, these will all be 0 except perhaps the last, which will only be 1
if the event of entering the absorbing state occurs and 0 if the duration is censored.

For such small intervals, the integrated intensity Λ over an interval ∆ is ap-



3.5 Models based directly on intensities 61

proximately equal to the intensity times the interval width:

∆ 2
∆ 2 d Λ ∆ 2 Λ ∆ 2

∆
(3.24)

where is the centre of the interval ∆ . Substituting this equation into Equation
(3.23) gives

d e ∑ Λ ∆ 2 Λ ∆ 2 d
e ∑ ∆ ∆

∏ 1 ∆ ∆ e ∆
(3.25)

recalling that ∆ has, at most, one nonzero (unit) value.
The result has exactly the form of a Poisson distribution

;
∆ e ∆

!
(3.26)

so that ∆ has, to close approximation, this distribution with mean given by Equa-
tion (3.24). (Because ∆ can only be 0 or 1, the factorial is unnecessary.) Notice
that the last line in Equation (3.25) holds even for censored data; in that case, all
∆ are zero and the first factor disappears completely, leaving the survivor func-
tion, as required.

Equation (3.26) carries the assumption that the intensity is constant within the
interval ∆ , but in general the mean number of events in an interval equals the
integrated intensity over that interval (Section 4.1). Because the intensity is condi-
tional on not yet having changed state, these Poisson probabilities are independent
and can be multiplied together in Equation (3.25) to obtain the probability of the
duration, As mentioned above, this is a form of state dependence model (Section
1.2.3).

The logarithm of the intensity then can be modelled as some regression
function, perhaps using Equation (3.3) to define the distribution. This will be de-
scribed in more detail in Section 4.1; see particularly Equations (4.13) and (4.20).

Myeloid leukæmia Consider a study of chronic myeloid leukæmia. This disease
accounts for 20–30 per cent of all leukæmia patients in Western countries, with an
incidence of about one in 100 000 persons per year. It has a chronic or stable phase
followed by transition to an accelerated or blast phase that resembles a refractory
acute leukæmia. The second phase usually is quickly followed by death. Thus, the
patients may be in one of three ordered phases: stable, blast, or dead.

Interest in this study centred on finding a marker to predict a future transition
so that aggressive therapy, such as a bone marrow transplant, could be initiated
beforehand in order to prolong the chronic phase. One possible marker is adenosine
deaminase (ADA), an enzyme important in purine catabolism, that has been found
in high concentrations in leukæmia cells. This study tried to determine whether
patients had high levels of ADA just before entering the accelerated phase. Klein
et al. (1984) provide the data.

Here instead, I shall look at the total survival time, using ADA and the transition
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Fig. 3.8. The Kaplan–Meier curve for the time to death, ignoring ADA level and the tran-
sition from the chronic to accelerated phase for the study of chronic myeloid leukæmia.

from the chronic to the accelerated phase as time-varying covariates. The level
of ADA (10 8 mol of inosine/h per million blood cells), in leukæmia cells was
measured periodically. I arbitrarily shall assume that the value at the beginning of
a period holds over the whole period until the next measurement. There is a total
of 18 259 days of observation, but only 30 events. The Kaplan–Meier curves for
the time to death is plotted in Figure 3.8.

As previously, I shall base the models on several distributions: the exponential,
Weibull, gamma, log normal, log logistic, and log Cauchy models, but here I shall
model their (log) intensity functions directly. In the exponential model, only the
constant intensity can change with the time-varying covariates. However, in the
other models, the shape parameter may also depend on them. As mentioned above,
the log intensity can be calculated from the density and cumulative distribution
functions using Equation (3.3).

The AICs for various models, with and without the effects of ADA and phase, are
given in Table 3.6. The log logistic and log normal distributions fit best. There is an
effect of adenosine deaminase, with no difference in effect between the two phases,
that is, no interaction between ADA and phase. From both the log logistic and log
normal models, the location coefficient (for duration, not intensity) for ADA is
estimated to be 0 23: the risk of dying increases with higher levels of adenosine
deaminase. The corresponding coefficients for ADA for the shape parameter, on
the log scale, are 0.0054 and 0.0046, both referring to the standard deviation.

The estimated intensity curves are plotted in Figure 3.9 at mean levels of ADA.



3.5 Models based directly on intensities 63

Table 3.6. AICs for various models fitted to the myeloid leukæmia data.

Log Log Log
Exponential Weibull Gamma normal logistic Cauchy

Null 223.3 220.9 220.9 220.4 220.6 221.6

Location depends on
Phase 221.1 216.6 217.0 216.5 219.3 222.5
ADA 216.1 213.4 216.9 205.7 204.7 212.7
Phase+ADA 215.3 209.4 215.1 203.6 205.1 213.6
Phase*ADA 216.2 210.4 216.0 202.9 206.5 214.1

Location and shape depend on
ADA — 214.4 213.4 206.0 205.2 213.0
Phase+ADA — 214.8 207.3 201.0 201.2 207.3
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Fig. 3.9. The log logistic intensity function for the chronic and accelerated phases of
chronic myeloid leukæmia, plotted at the mean level of ADA (11.1 10 8 mol of inosine/h
per million blood cells).

Recall, however, that these levels are changing over time for each subject; the
Kaplan–Meier curve in Figure 3.8 ignores the ADA level, whereas the plotted in-
tensity curves from the model are for the mean level. We see that the risk of death
decreases over time as long as one stays in the chronic phase, but increases quickly
in the blast phase.

In Section 6.1.4, I shall approach the modelling of these data from another point
of view, more appropriate to answering the original question. There, I shall use
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three states and two types of events: the transitions from the chronic to the accel-
erated phase and to death, rather than just one absorbing event, death.

3.6 Changing factors over a lifetime

Over the complete life history of an organism, various factors will enter into play
to influence the risk of mortality. It usually is preferable to model relatively short
periods so that such changes need not be included in the models. However, attempts
have been made to model the mortality rate over a complete human life span. This
can be complex because of the various factors that enter into play at different ages.

3.6.1 Complex regression function

One model that has been suggested (Dellaportas et al., 2001) to model a complete
human lifetime is

1
2 3

1 4 exp 5 log
6

2

7 8 (3.27)

where is the probability of dying between ages and 1 and 0 1 2 3 4

7 1, 0 5 8 , 15 6 110.
The first term models mortality of the young, the second models the accident

hump of adolescents and young adults, and the third models adult mortality. Here,

1 refers to the infant mortality rate, 2 to the mortality rate for one-year olds, 3

measures the adaptation of a child to the environment, 4 determines the severity
of the accident hump, 5 determines the spread of the hump, with large values
indicating that it is narrower, 6 determines the location of the hump, 7 gives the
baseline level of adult mortality, and 8 gives the rate of increase of adult mortality.

3.6.2 Overdispersion

We might assume that is the probability from a binomial distribution, as in
Equation (3.7). However, with the large numbers often involved, there may be
heterogeneity in the population so that a model accounting for overdispersion may
be necessary. This is a phenomenon that can arise when inadequate covariates
are available in a model based on the binomial or Poisson distribution, so that the
responses are hence more variable than might be expected otherwise.

One possible model for overdispersion uses the beta-binomial distribution:

;
1

1
(3.28)

where is the beta function. For further details on overdispersion, see Section
4.3.2.
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Table 3.7. English and Welsh female mortality, 1988–1992 (population in 100s).
(Dellaportas et al., 2001)

Age Population Deaths Age Population Deaths

0 16820 11543 38 16846 1516
1 16664 940 39 17076 1693
2 16447 538 40 17559 1905
3 16344 420 41 18445 2207
4 16100 332 42 18375 2517
5 15818 250 43 18122 2565
6 15645 254 44 17771 2918
7 15547 228 45 16998 3077
8 15498 208 46 15632 3119
9 15446 215 47 14992 3369

10 15143 182 48 14532 3677
11 14825 200 49 14084 3740
12 14539 215 50 13755 4130
13 14367 204 51 13654 4564
14 14430 294 52 13735 5017
15 14964 339 53 13613 5417
16 15768 412 54 13359 5786
17 16705 535 55 13139 6567
18 17445 561 56 13062 7173
19 18228 592 57 13062 8068
20 18332 591 58 13146 8809
21 19304 640 59 13254 10148
22 19644 623 60 13306 11390
23 20156 653 61 13321 12789
24 20517 668 62 13282 13999
25 20784 689 63 13223 15528
26 20843 698 64 13230 17368
27 20670 712 65 13290 19277
28 20214 799 66 13442 20991
29 19630 795 67 13701 23665
30 19038 787 68 14082 26365
31 18446 935 69 13374 27664
32 17880 978 70 12495 28397
33 17455 977 71 11742 29178
34 17148 1131 72 10988 30437
35 16903 1219 73 10295 32146
36 16714 1270 74 10524 35728
37 16680 1435

Lifetime human mortality Appropriate data for such a model will be the number
of deaths at a given age and the population of that age that is at risk. Thus, the
mortality for English and Welsh females from 1988 to 1992 is given in Table 3.7.
The population is calculated as the average of that resident on 30 June of each of
the five years. The number of deaths is the total for the five years. The mortality
rate is plotted in Figure 3.10.

The saturated binomial model, with a different rate for each age group, has an
AIC of 429.7. That with the mortality following Equation (3.27) has 485.6, indicat-
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Fig. 3.10. The observed and fitted mortality rates for the females in England and Wales,
from Table 3.7.

ing considerable lack of fit, although this is not surprising given the large numbers
involved. The beta-binomial model using Equation (3.27) has an AIC of 448.8.
The fitted curves for these two models appear very similar. The curve is plotted in
Figure 3.10. It follows the observed mortality rate rather closely, although clearly
it does not fit as well as the highly parametrised (nonparametric) saturated model.

Further reading

Many good texts are available on survival data. The reader may like to consult
the classical works by Kalbfleisch and Prentice (1980) and Lawless (1982), as
well as Collett (1994), Cox and Oakes (1984), Klein and Moeschberger (1997), or
Marubini and Valsecchi (1994).

Exercises

3.1 Survival times (weeks) were recorded for patients with acute myelogenous
leukæmia, along with white blood cell counts (wbc) in 1000s and AG fac-
tors, as shown in Table 3.8. Patients were classified into the two groups
according to morphological characteristics of their white blood cells: AG
positive had Auer rods and/or granulature of the leukaemia cells in the
bone marrow at diagnosis, whereas AG negative did not. No patients had
palpable enlargement of the liver or spleen at diagnosis. The largest white
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Table 3.8. Survival times (weeks) and white blood cell counts (wbc, in 1000s) for
patients with acute myelogenous leukæmia. (Feigl and Zelen, 1965)

Time wbc Time wbc Time wbc Time wbc

Positive AG-factor

65 2.3 156 0.8 100 4.3 134 2.6
108 10.5 121 10.0 4 17.0 39 5.4

56 9.4 26 32.0 22 35.0 1 100.0
5 52.0 65 100.0 56 4.4 16 6.0

143 7.0 1 100.0

Negative AG-factor

65 3.0 17 4.0 7 1.5 16 9.0
3 10.0 4 19.0 2 27.0 3 28.0
4 26.0 3 21.0 30 79.0 4 100.0

22 5.3 8 31.0 43 100.0

Table 3.9. Survival times (days; asterisks indicate censoring) of 90 patients
suffering from gastric cancer under two treatments. (Gamerman, 1991, from

Stablein et al.)

Chemotherapy Chemotherapy
+ radiation

17 167 315 1174* 1 356 524 977
42 170 401 1214 63 358 535 1245
44 183 445 1232* 105 380 562 1271
48 185 464 1366 125 383 569 1420
60 193 484 1455* 182 383 675 1460*
72 195 528 1585* 216 388 676 1516*
74 197 542 1622* 250 394 748 1551
95 208 567 1626* 262 408 778 1690*

103 234 577 1736* 301 460 786 1694
108 235 580 301 489 797
122 254 795 342 499 955
144 307 855 354 523 968

blood cell counts were actually greater than 100 000. Notice that none of
the survival times are censored.

(a) Do either of these variables help to predict survival time?
(b) Try transformations of the white blood cell counts.

3.2 A total of 90 patients suffering from gastric cancer was assigned randomly
to two groups. One group was treated with chemotherapy and radiation,
whereas the other only received chemotherapy. The resulting survival
times in days are shown in Table 3.9.

(a) Is there any evidence that radiation lengthens survival times?
(b) Can the intensity functions be assumed to be proportional?
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Table 3.10. Survival from nonHodgkin’s lymphoma (weeks; asterisks indicate
censoring) for patients with two types of symptoms. (Dinse, 1982)

Asymptomatic Symptomatic

50 257 349* 49
58 262 354* 58
96 292 359 75

139 294 360* 110
152 300* 365* 112
159 301 378* 132
189 306* 381* 151
225 329* 388* 276
239 342* 281
242 346* 362*

3.3 The Eastern Cooperative Oncology Group in the USA conducted a study
of lymphocytic nonHodgkin’s lymphoma. Patients were judged either
asymptomatic or symptomatic at the start of treatment, where symptoms
included weight loss, fever, and night sweats. Survival times (weeks)
of patients were classified by these symptoms, as shown in Table 3.10.
Patients with missing symptoms are not included.

(a) Do the symptoms provide us with a means of predicting differences
in the survival time?

(b) How robust are your conclusions to change of model?

3.4 Fifty female black ducks Anas rubripes from two locations in New Jersey,
USA, were captured by the Fish and Wildlife Service of the USA over a
four-week period from 8 November to 14 December 1983. The ducks were
then fitted with radio emitters and released at the end of the year. Of these,
31 were born in the year (age zero) and 19 the previous year (age one).
Body weight (g) and wing length (mm) were recorded. Usually, these are
used to calculate a condition index: the ratio of weight to wing length.
The status of each bird was recorded every day until 15 February 1984
by means of roof-mounted antennæ on trucks, strut-mounted antennæ on
fixed-wing aeroplanes, and hand-held antennæ on foot and by boat. The
recorded survival times are given in Table 3.11.

(a) What variables influence survival?
(b) Try constructing appropriate new variables from those provided in

order to improve your model.

3.5 Danish homosexuals were diagnosed for HIV antibody positivity at six
widely-spaced time points between December 1981 and May 1989. Many
of the 297 people were not present for all visits. An additional compli-
cating problem is that the time origin, when all individuals were unin-
fected, is unknown; the data are doubly censored. Following Carstensen
(1996), assume that the time origin is the same for all individuals and pro-
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Table 3.11. Survival times (days; asterisks indicate censoring) of 50 female black
ducks, Anas rubripes. (Pollock et al., 1989)

Age Weight Wing Time Age Weight Wing Time

1 1160 277 2 0 1040 255 44
0 1140 266 6* 0 1130 268 49*
1 1260 280 6* 1 1320 285 54*
0 1160 264 7 0 1180 259 56*
1 1080 267 13 0 1070 267 56*
0 1120 262 14* 1 1260 269 57*
1 1140 277 16* 0 1270 276 57*
1 1200 283 16 0 1080 260 58*
1 1100 264 17* 1 1110 270 63*
1 1420 270 17 0 1150 271 63*
1 1120 272 20* 0 1030 265 63*
1 1110 271 21 0 1160 275 63*
0 1070 268 22 0 1180 263 63*
0 940 252 26 0 1050 271 63*
0 1240 271 26 1 1280 281 63*
0 1120 265 27 0 1050 275 63*
1 1340 275 28* 0 1160 266 63*
0 1010 272 29 0 1150 263 63*
0 1040 270 32 1 1270 270 63*
1 1250 276 32* 1 1370 275 63*
0 1200 276 34 1 1220 265 63*
0 1280 270 34 0 1220 268 63*
0 1250 272 37 0 1140 262 63*
0 1090 275 40 0 1140 270 63*
1 1050 275 41 0 1120 274 63*

visionally take it to be December 1979. The data are presented in this form
in Table 3.12.

(a) Develop a suitable model to describe these data.
(b) Is the assumption that the time origin is December 1979 reason-

able?

3.6 Consider data from an experiment on the toxicity of zinc for fish (species
not given). Six groups of 50 fish each were subjected to three levels of zinc
at concentration ratios, 67:100:128, with either one or two weeks acclima-
tion in the test aquaria before introduction of the zinc. Observations were
made over a period of 10 days, beginning when the zinc was introduced,
yielding a 3 2 11 contingency table, as shown in Table 3.13. Pierce
et al. (1979) used log zinc concentration 4, with values, 0.2047, 0.6052,
and 0.8520.

(a) Develop a suitable model to describe these data.
(b) Compare the relative importance of acclimation time and zinc con-

centration.
(c) Is there any evidence that some fish are resistant to zinc poisoning?
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Table 3.12. Left and right bounds of intervals (mon) between visits within which
subjects changed from HIV-negative to positive and the corresponding frequencies

, with time measured starting in December, 1979. (Carstensen, 1996)

0 24 24 28 8
0 39 2 39 57 3

24 28 4 39 113 2
24 39 1 39 15
24 57 10 57 88 5
24 88 3 57 113 1
24 113 4 57 22
24 61 88 113 1
28 39 4 88 34
28 88 1 113 92

Table 3.13. Survival times of fish subjected to three levels of zinc and two
acclimation times. (Pierce et al., 1979)

Acclimation time

One week Two weeks

Zinc concentration

Day Low Med High Low Med High

1 0 0 0 0 0 0
2 3 3 2 0 1 3
3 12 17 22 13 21 24
4 11 16 15 8 8 10
5 3 5 7 0 5 4
6 0 1 1 0 0 1
7 0 0 2 0 0 0
8 0 1 0 0 0 0
9 0 0 0 0 0 0

10 0 0 0 0 0 0
11 21 7 1 29 15 8

3.7 Find a good series of mortality data for your country and try fitting Equa-
tion (3.27) to it. Are the parameter estimates similar to those found above
for England and Wales?



4

Recurrent events

We now are ready to examine processes in which more than one event can occur.
For the moment, only a small number of possible outcomes or states will be al-
lowed. Indeed, in this chapter, I shall concentrate on the simplest case, with only
two states. One of the states will dominate, with the other occurring only occasion-
ally. The latter will be a point event, occurring from time to time and yielding a
recurrent event process (Section 1.1.2). After survival processes, this is one of the
simplest types of stochastic process. I shall leave the more complex case of several
types of events to the following chapters.

In contrast to survival processes, here the event will not involve entry to an
absorbing state. Indeed, the second state will be so transitory (at a point in time)
that the event does not really signal a change of state at all. Thus, a binary indicator
can be used, such that, at any time point, it will be 1 if the event occurs and 0
otherwise. Hence, this can also be called a binary point process. Generally, only
the times of events, called the arrival times, or the times between events, called the
interarrival times, are recorded, the latter being similar to survival data.

In the simplest cases, the varying interarrival times between recurrent events
can be assumed to be independent and identically distributed. In such a situation,
we shall have a renewal process (Section 4.1.4). This term comes from industry
where certain machines or parts must be replaced or renewed at varying intervals of
time. However, models for renewal processes have much wider application. Never-
theless, generally there will be some sort of dependencies in the process, either
systematically over time or among successive periods, so that renewal models will
often be too simple.

As for survival data, with recurrent events it is usually especially important to
establish a time origin. If this is birth, then the time to the first event generally
will be quite distinct from subsequent repetitions of the event. Often, it is conve-
nient to start the process from the time of the first occurrence of the event. If this
is unknown, the possible models that can be fitted may be limited; thus, a birth
process (Section 1.2.5), conditioning on the number of previous events, is usually
unreasonable because the actual number from the start of the process is unknown.

71
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4.1 Theory

In Section 3.1.1, we saw how durations between events can be studied in several
equivalent ways, by considering

(i) the durations themselves,
(ii) the count of events in given fixed time intervals, or

(iii) the cumulative number of events over time.

In the second approach, we group the data into fixed time periods of sufficient
length and look at the counts of occurrence of the events. However, by applying
such a procedure, we lose information if we also have available the actual times
between successive events.

I developed the basic relationship between the first two approaches in Section
3.5.1. Here, I shall begin by looking at the third approach in some detail.

4.1.1 Counting processes

Let us look first at a general theory for events occurring over time, more widely
applicable than just to recurrent events. Less mathematically inclined readers who
feel familiar with the results in Section 3.5.1, can skip to Section 4.1.2.

Basic concepts

Suppose that various events can recur randomly over time. The cumulated number
of events from some specified time origin up to any time is known as a count-

ing process. Let be the intensity of transition from state to state (for
recurrent events, the state might perhaps be specified simply by the total number
of events so far) defined by

d Pr the event in d
Pr d 1

(4.1)

where is the complete history up to, but not including, (technically, it is
called the filtration). Notice that, as usual, this is a conditional intensity.

The above formulation should not be confused with the unconditional ‘rate’
function, occasionally defined by some authors to be the first derivative of E .
This will only be identical to the intensity function of Equation (4.1) in very special
cases. The conditional intensity specifies the process uniquely, whereas such a rate
function, in general, does not. (In renewal processes, E is called the renewal
function and its first derivative, the renewal intensity; see Section 4.1.4.)

In the formulation of Equation (4.1), I am implicitly assuming that more than
one event cannot occur in the time interval d , at least if it is very small. In other
words, the process is orderly: Pr d 1 becomes extremely small as d
approaches zero. Technically, we say that

Pr d 1 d (4.2)
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as d 0 for all . (One simple and often reasonable approach to modelling pro-
cesses where simultaneous events are possible is to use a marked point process; see
Section 8.3).

If is the arrival time of the th event, then these times can be related directly
to the counting process:

Pr Pr (4.3)

Thus, both the processes and contain the same information. Of course, the
interarrival times also can be obtained directly from and the counts of events in
various fixed time intervals can be obtained from .

A stopping time is a time that depends only on , and not on events after
: if , then so that the occurrence of can be determined by

observing the process only up until time .
If the numbers of events that occur in disjoint time intervals are independent,

the process has independent increments. If the distribution of the number of events
in any interval of time only depends on the length of that interval, the process has
stationary increments.

Let us now consider a special stochastic process such that

E
E 0

(4.4)

If these conditions hold, is called a martingale. For a counting process,

E

0 d
(4.5)

fulfils these conditions. The integrated intensity Λ 0 d in
the second line is called the compensator of the counting process; it is the local
conditional mean of . is the innovation, containing all information about

not available in ; it is the analogue of a residual for classical independent
responses.

Some simple special cases

Important simplifications occur when the intensity depends only on the complete
history through time or : . Several special cases follow.

The ordinary homogeneous Poisson process (Section 4.1.2) has constant inten-
sity

(4.6)

already given in Equation (3.14). The intensity does not depend on , but is
always the same. This is the only counting process with stationary, independent
increments.
A nonhomogeneous Poisson process has an intensity which is some function
only of time, the arrival time,

(4.7)
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For a given distribution, such a model can be constructed using Equation (3.3).
Cases given above include the Weibull distribution in Equation (3.18) and the log
logistic in Equation (3.16). Such processes can always be made homogeneous
by a suitable transformation of time, sometimes called operational time; see
Equation (3.5) above and Equation (4.19) below. However, this definition can
be broadened to allow changes over time due to covariates.
The pure birth process (Section 1.2.5) or Yule process has an intensity propor-
tional to the number of previously observed events

(4.8)

This process obviously cannot start with initial condition 0 0.
A nonhomogeneous birth process has an intensity proportional to the number of
previous events and also some function of time

(4.9)

In contrast to a nonhomogeneous Poisson process, with intensity depending on
the arrival time, a renewal process has an intensity depending only on the inter-
arrival time, some function of the time since the last recurrent event,

(4.10)

It starts afresh after each event (Section 4.1.4).
A semi-Markov or Markov renewal process has the form of the intensity function
depending on some function of the time since the last event

(4.11)

However, in contrast to a renewal process, this function differs according to the
states (here denoted as from to ) between which it moves at the event (Section
6.1.4).

Those processes with an intensity depending on time are nonstationary. As we
see, this dependence may be on the elapsed time, either total (the arrival time)
or since the previous event (the interarrival time), or on the number of previous
events, or both. In more complex cases, any of the above processes easily may be
extended to depend also on time-varying covariates external to the process. The
extension to endogenous covariates, influenced by the history of the process, is
more difficult, usually requiring the covariate(s) and the process of interest to be
modelled simultaneously as a multivariate process.

Modelling intensities

Construction of a model directly by means of the duration density and survivor
functions, as in Equation (3.6), is only straightforward when the conditions for a
series remain constant over each interarrival time between events. As we saw in
Section 3.5, if there are time-varying covariates that change within the period, then
these cannot easily be incorporated into the probability distribution. If the covari-
ates are endogenous, then the density is not even defined. Instead, the intensity of
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the process should be modelled; of course, this can also be done in other simpler
contexts as well.

Models for intensities easily can be constructed in terms of a counting process
(Lindsey, 1995b). As we have seen, is a random variable over time that counts
the number of events that have occurred up to time . From Equation (4.1), the
corresponding intensity of the process is . Then, the kernel of the log
likelihood function for observation over the interval 0 is given by the stochastic
integrals

log L
0

log ; d
0

; I d (4.12)

where I is an indicator function, with value 1 if the process is under observation
at time and 0 otherwise. Because the second term on the right is the integrated
intensity and because d is zero except when there is an event, this is essentially
the logarithm of the likelihood function in Equation (3.6).

Now, in any empirical situation, even a continuous-time process will be observed
only at discrete time intervals: once an hour, once a day, once a week. Suppose
that these are sufficiently small in relation to the rate at which events are occurring
so that, at most, one event is observed to occur in any interval. Of course, there
will be a finite nonzero theoretical probability of more than one, unless the event is
absorbing or a transition to another state. With intervals of observation, not all
necessarily the same length, Equation (4.12) becomes, by numerical approximation
of the integrals,

log L ∑
1

log ; ∆ ∑
1

; I ∆ (4.13)

where ∆ is the width of the th observation interval and ∆ is the observed change
in the count during that interval, with possible values 0 and 1 if ∆ is sufficiently
small. We already have met another form of this in Equation (3.25).

In this approach to modelling durations, the stochastic process is viewed as a
form of discrete-valued time series with the probability of the present state being
conditional on the previous sequence of states. Thus, it is a form of state depen-
dence model (Section 1.2.3). These conditional probabilities are assumed to be
independent and hence can be multiplied together to yield the distribution for each
duration.

As we saw in Section 3.5.1, Equation (4.13) is the kernel of the log likelihood for
the Poisson distribution of ∆ , with mean ; ∆ . Conditional on the
previous state, it is the likelihood for a Poisson process (Section 4.1.2). Any ob-
servable counting process is locally a Poisson process, conditional on its previous
history, if events cannot occur simultaneously.

The structure that one places on the function ; will determine what
stochastic process is being modelled. One particularly simple case occurs if it is
multiplicative. Then, we have a proportional hazards model (Section 3.2.1) and the
regression function will be log linear. Thus, if the logarithm of the elapsed time
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since the previous event is included in a Poisson log linear regression,

log ; 0 1 log (4.14)

we obtain a Weibull (renewal) process where 0 log log and 1 1
in Equation (3.18). If the intensity is allowed to jump at each event time, we have
the semiparametric proportional hazards model (Section 3.2.1). However, there is
no reason why the function should be log linear, so that the intensity function for
any distribution can be so modelled, say based on Equation (3.3).

4.1.2 Poisson process

After this general introduction to models for series of events, let us now return
specifically to recurrent events and look at the simplest model for them.

Poisson distribution

In a Poisson process, point events occur completely randomly over time. Thus, the
numbers of events ∆ observed in disjoint intervals of time of fixed length ∆ have
independent Poisson distributions as given in Equation (3.26). Because ∆ may not
necessarily be very small, ∆ may be greater than 1. Here, is the constant rate
or intensity of occurrence of the events over all time and, hence, ∆ is the average
number of events in any time period of length ∆ .

This model carries the assumptions:

(i) The conditional probability of an event in ∆ , given the previous
history, is ∆ ∆ .

(ii) Thus, the occurrence of events in ∆ is independent of what hap-
pened before .

(iii) The process is orderly: the conditional probability of more than one event
in ∆ is ∆ , so that the corresponding probability of no event is
1 ∆ ∆ .

See Equation (4.2) for the meaning of ∆ .
Thus, in terms of a counting process, 0 0, the process has stationary, inde-

pendent increments, and the number of events in any interval of length ∆ has a
Poisson distribution with mean ∆ . When is fixed for all time points and the
above relationships are true for any size of ∆ , the Poisson process is homogeneous
as outlined above in Section 4.1.1.

Exponential distribution

In a homogeneous Poisson process, the durations between recurrent events, the
interarrival times, are independent, each having the same exponential distribution,
as in Equation (2.8),

; e (4.15)

where is the same constant-intensity parameter as in the Poisson distribution of
Equation (3.26). Thus, the mean duration between events is given by 1 , the
reciprocal of the intensity.
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This relationship between the Poisson and exponential distributions can be de-
rived by noting that ∆ only occurs if there is no event in ∆ , that is,
between and . Thus, ∆ 0 and the observed number of events is still . In
a Poisson process, this is given by

Pr Pr ∆ 0
e

(4.16)

the survivor function of the exponential distribution, given already in another form
in Equation (3.13).

Such a process is memoryless:

Pr e
e

Pr for all 0
(4.17)

the only one possessing this property. The risk of an event is constant, so that
the distribution of the remaining duration does not change over time. Thus, every
instant of such a process is a regeneration point (Section 1.1.4).

We also may note that the waiting time to the th event in a Poisson process has
a gamma distribution,

; e
1

1 !
(4.18)

This is a reparametrisation of Equation (2.7) with and , written to
show its relationship to the exponential distribution.

Modifications of Poisson processes

The superposition of several Poisson processes is still a Poisson process. Indeed,
the sum of independent random variables can be Poisson distributed only if every
component is Poisson distributed. If a Poisson process is thinned by removing
points randomly or if the events of the process are randomly shifted in time, the
process is still Poisson. (See Daley and Vere-Jones, 1988, pp. 76, 241.)

On the other hand, the conditions for a given process to be Poisson should be ex-
amined carefully. Processes exist having marginal distributions for the interarrival
times between recurrent events that are exponential, but also having dependencies
among these times. Similarly, a process may have numbers of recurrent events in
fixed time intervals that are Poisson distributed, but where the counts in disjoint in-
tervals are not independent. These are not Poisson processes. (See Cox and Isham,
1980, p. 45.)

Care also must be taken in simultaneous modelling of several replications of
a Poisson process. If one assumes that the intensities of the different series are
identical when they are not, one will find a trend of decreasing intensity over time
(Proschan, 1963). If one is not prepared to introduce a distinct parameter for each
series, one possibility is to use a frailty model (Section 7.3).

Nonhomogeneous Poisson processes

In a nonhomogeneous Poisson process, the intensity function changes over time,
as we saw in Equation (4.7). In the simplest cases, it is a function of time alone
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, but it may also change due to outside influences (measured by covariates).
Although the homogeneous Poisson process is a special case of a renewal process
(Section 4.1.4), in general a nonhomogeneous Poisson process will not be a re-
newal process. The intensity usually depends on the arrival time, not just on the
interarrival time.

As we saw in Section 3.1.3, the distribution of times between events can be
transformed to a unit exponential distribution. The time transformation to con-
struct a homogeneous Poisson process with unit intensity from a nonhomogeneous
one (without covariates) with intensity function is the integrated intensity of
Equation (3.5)

∆
∆

d (4.19)

where ∆ is the operational time. For a homogeneous Poisson process, this is
simply ∆ ∆ .

When the intensity is a function of time, the distribution of the number of recur-
rent events ∆ in a given time interval ∆ is

∆ ∆
e Λ ∆ Λ ∆ ∆

∆ !
(4.20)

where the integrated intensity is

Λ ∆
∆

d (4.21)

We saw one special case of this in Section 3.5.1.
If the intensity is constant ( ), then Λ ∆ ∆ . However, if, say, the

intensity is a log linear function of time, such that

e (4.22)

then

∆ ∆
e

1 e ∆ e 1 e ∆ e
∆

∆ !
(4.23)

If the intensity is oscillating, perhaps seasonally, such as

0 1 1 sin (4.24)

then

Λ ∆ 0 ∆
2 1 sin

2 ∆
2

sin
∆
2

(4.25)

and so on. As might be expected, the number of events will depend on the time
point when the interval starts as well as on the width of the interval.

The situation is more complex when the intensity depends on the previous his-
tory of the process. Consider, say, a linear birth or contagion process (Section 8.1)
given by

0 1 (4.26)
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a generalisation of Equation (4.8) where 0 could be the rate of immigration. This
results in a negative binomial distribution for the counts of events in fixed intervals
of time (Bartlett, 1955, pp. 54–56). Other ways in which a negative binomial
distribution can arise will be described in Sections 4.3.2, 7.4, and 8.1.3.

4.1.3 Departures from randomness

A homogeneous Poisson process describes a completely random series of recur-
rent events. All of the other processes presented so far in this chapter describe
some ways in which nonrandomness may occur. However, departures from this
assumption can occur in quite a number of different ways. It may be useful here to
summarise some of the most important ones (adapted from Cox, 1955).

(i) The intensity function may show a trend over time (Section 4.2.1), a non-
homogeneous Poisson process.

(ii) The intensity function may be a function of some exogenous time-varying
covariates (Sections 3.5 and 6.3).

(iii) The intensity may depend on the time elapsed since the previous event.

(a) This dependence may or may not be the same in all interarrival in-
tervals.

(b) There may or may not be independence among intervals.

If both of these conditions hold, we have a renewal process (Sections 4.1.4
and 4.4).

(iv) The current intensity may depend on previous events in some way, such as
on

(a) the number of previous events, a birth process (Sections 1.2.5 and
8.1) or

(b) the immediately preceding interarrival time(s) (Section 8.2).

(v) An event may signal a change of state, with the intensity function depend-
ing on the state, such as in a Markov chain (Chapter 5) or a Markov renewal
process (Chapter 6).

(vi) Events may tend to occur together.

(a) There may be clustering of events. Thus, a primary event may
stimulate a series of secondary events to occur. In simpler cases,
there may be positive dependence among successive events, as in a
Markov chain (Section 5.1.2) or changes in the intensity of events
as in a hidden Markov model (Section 7.2).

(b) The process may not be orderly, so that it may be possible for more
than one event to occur at each point in time. One approach is
through marked point processes (Section 8.3).

(vii) The intensity may be varying randomly over time in some way, a doubly
stochastic process (Chapter 7 and Section 8.4).

(viii) The series may be a superposition of several empirically indistinguishable
processes.
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(ix) Only some of the events may be recorded, so that the series may be thinned
in some systematic or random way.

(x) The determination of the times of occurrence of events may be subject to
random measurement error.

Naturally, several of these cases may need to be combined in constructing models
in certain situations.

4.1.4 Renewal processes

A Poisson process can be generalised in many ways. Several possibilities were
listed in Section 4.1.1. In terms of intervals between recurrent events, an immediate
generalisation is to allow the durations between events to have some distribution
other than the exponential. If the distributions are identical and independent for
all intervals between recurrent events, this is a renewal process. Each event is a
regeneration point (Section 1.1.4). These assumptions imply that the distribution
of numbers of events in fixed intervals of time will no longer be constant over time
and, indeed, generally will have a complex form.

Asymptotics

Much of renewal theory concerns asymptotics (Smith, 1958) and is of little use to
us here. Thus, the elementary renewal theorem states that, in the limit for infinite
observation time, the intensity of events equals the reciprocal of the mean duration
between events. As we have seen, for a Poisson process this holds for all times and
not just in the limit.

The expected value of the number of events until time ,

Λ E (4.27)

is called the renewal function and its first derivative is the renewal intensity. For a
renewal process, these define uniquely the distribution of interarrival times by the
integral equation of renewal theory (Smith, 1958),

Λ
0

Λ d (4.28)

Notice that, in contrast to Section 4.1.1, this is not a conditional integrated intensity.

Stationarity

For renewal processes, we encounter an interesting problem with the concept of
stationarity. The random intervals between recurrent events are independent and
identically distributed, hence ‘stationary’. However, here the word is not being
used in the same sense as the definition of strict stationarity in Section 1.1.4. There,
it was defined in terms of displacing a fixed interval width in time along the series.
Here, it is in terms of shifting across fixed numbers of events, not fixed time inter-
vals. For these processes, a sequence of intervals of fixed width, starting from an
arbitrary time origin, generally is not stationary. (See Cox and Isham, 1980, p. 25.)

Notice that the renewal intensity function derived from Equation (4.27) will only
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be stationary over time if the renewal function is linear in time: a Poisson process.
The mean number of counts of events in a small time interval of fixed width will
not be constant (except for the Poisson process), depending on its position in the
series, so that a renewal process is not stationary in terms of counts of events. (See
Cox and Lewis, 1966, p. 61.)

Recurrence times

If observation does not start at an event, the distribution of the time to the first event
will be different from that between subsequent events (Section 1.1.1), except for
the Poisson process. If observation starts at a random time point, the time to the
first observed event is called the forward recurrence time or the residual or excess
lifetime. In such situations, the mean waiting time to the first event will depend
both on the mean time between events and on the variance of the time between
events, increasing with the latter. This is because, as the variance increases, the
random observation point becomes more likely to fall within a very long interval.

If the process is in equilibrium, the density for this forward recurrence time will
be

1 (4.29)

where is the survivor function for the time between events and is the
mean time between events. As might be expected, for the Poisson process, this is
just

1
e

1
(4.30)

the exponential distribution, the same distribution as for all interarrival times. If
the equilibrium assumption can be made, Equation (4.29) often can be useful for
constructing models when observation does not start at an event.

The backward recurrence time is defined in a similar way as the time since the
last event before observation at a random time point. The intensity function for a
renewal process only depends on this time.

Now consider the sum of the forward and backward recurrence times when a
random observation time point is chosen, that is, the length of the duration in which
that point falls. The expected value of this sum is given by

E E
var
E

(4.31)

where and are the forward and backward recurrence times, and the time
between any random pair of successive events. Thus, this sum has a larger mean
than E , the mean of all interarrival times, because there is more chance of
the start of observation falling in a longer period between events. This is called the
inspection paradox. (See Thompson, 1988, p. 27, and Wolff, 1989, p. 66.)



82 Recurrent events

Variability

The Poisson process can serve as a valuable point of comparison for other pro-
cesses. Thus, its exponential distribution of interarrival times has a coefficient of
variation (ratio of the standard deviation to the mean duration) equal to one. Equiv-
alently, counts of recurrent events in fixed time intervals in a Poisson process have
a coefficient of dispersion (ratio of the variance to the mean count) equal to one.
Then, for this process, because the variance of the durations equals the square of
their mean,

E 2E (4.32)

from Equation (4.31).
More generally, for a renewal process, if these coefficients are greater than one,

it is overdispersed and events are more irregular and clustered than the Poisson
process. If they are less than one, the process is underdispersed, being more regular
and equally spaced than a Poisson process.

Types of failure

In contrast to a Poisson process, the intensity function of other renewal processes
will be changing over time between recurrent events. If it is increasing, this can
be interpreted as a process of wearing out. However, the process starts again, as
if new, at each event, so that wearing out only applies within the independent time
intervals, not to the process as a whole.

Several types of failures can be distinguished in a wearing out process with re-
placement of units (Marshall and Proschan, 1972).

The failure rate is increasing if is decreasing in for
all 0.
The failure rate is increasing on average if the average integrated intensity, given
by log , is increasing in .
New is better than used if

2
1 2

1
(4.33)

The chance that a new unit will survive to age 2 is greater than that an old unit,
having survived to 1, will continue an additional time 2.
New is better than used on average if

E
1

0
d (4.34)

The expected life of a new unit is greater than the expected remaining life of an
old unfailed one.

The earlier conditions in this list imply the later ones. If units improve after a
wearing in period, the inequalities can be reversed.

As for survival analysis (Chapters 2 and 3), a wide variety of distributions is
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available to model the durations between recurrent events. Indeed, all of the tech-
niques used there are suitable here. However, the situation sometimes may be
simpler because there will be few or no censored times. On the other hand, it will
often be necessary to model dependencies among the recurrent events.

In addition, weaker assumptions may be required. Repeated events are avail-
able from the same process so that we do not need to assume that a collection of
different processes (individual subjects) are identical in order to obtain sufficient
information to proceed. Of course, we must assume that the process is not funda-
mentally changing over time, at least in ways for which no information is available
to incorporate into a model.

4.2 Descriptive graphical techniques

We have now met some of the theory of recurrent events forming a point process.
As we have seen, at least when a process is orderly so that events do not occur
simultaneously, it can be defined equivalently in terms of

(i) a counting process of the cumulative number of recurrent events occurring
over time,

(ii) the intensity function giving the rate of occurrence of recurrent events, or
(iii) the probability density of intervals between recurrent events, the interarrival

times, replaced by the survivor function for censored intervals.

The simplest assumption is that a process is Poisson. In such a process, the risk
of an event remains constant both between two events and over the longer period
covering several events. Observed processes can diverge from this in many ways.
Some of the simplest to examine first are:

Although the intensity function may remain constant between any two events,
this constant intensity may differ among pairs of consecutive events: one kind
of nonhomogeneous Poisson process. We may want to model such changes as
some appropriate trend over time.
There may be no trend over time in the long term, but the intensity function may
evolve between pairs of consecutive events, always in the same way: a renewal
process.
The way in which the intensity function evolves between two consecutive events
may change over the long term: a nonhomogeneous renewal process.

Thus, we need to know how to detect such deviations from a Poisson process and
how to model them.

4.2.1 Detecting trends

Let us first see how we might detect whether or not a process is nonhomogeneous.
If the time intervals between successive recurrent events are independent and iden-
tically distributed, the counts of occurrence of events in relatively long time periods
of constant length should not be changing systematically over time. If they were
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Table 4.1. Times (seconds) between vehicles passing a point on the road.
(Bartlett, 1963; read across rows)

2.8 3.4 1.4 14.5 1.9 2.8 2.3 15.3 1.8 9.5
2.5 9.4 1.1 88.6 1.6 1.9 1.5 33.7 2.6 12.9

16.2 1.9 20.3 36.8 40.1 70.5 2.0 8.0 2.1 3.2
1.7 56.5 23.7 2.4 21.4 5.1 7.9 20.1 14.9 5.6

51.7 87.1 1.2 2.7 1.0 1.5 1.3 24.7 72.6 119.8
1.2 6.9 3.9 1.6 3.0 1.8 44.8 5.0 3.9 125.3

22.8 1.9 15.9 6.0 20.6 12.9 3.9 13.0 6.9 2.5
12.3 5.7 11.3 2.5 1.6 7.6 2.3 6.1 2.1 34.7
15.4 4.6 55.7 2.2 6.0 1.8 1.9 1.8 42.0 9.3
91.7 2.4 30.6 1.2 8.8 6.6 49.8 58.1 1.9 2.9

0.5 1.2 31.0 11.9 0.8 1.2 0.8 4.7 8.3 7.3
8.8 1.8 3.1 0.8 34.1 3.0 2.6 3.7 41.3 29.7

17.6 1.9 13.8 40.2 10.1 11.9 11.0 0.2

changing, the distribution of time intervals would depend on the (total) time since
the process began. In the simplest case, the mean time interval would be changing
over time as a nonhomogeneous Poisson process. Thus, one of the first things that
can be verified is that no time trend exists in the data.

Cumulative events and counts of events

One convenient way to look for changes in trend is to plot the counting process
(Section 4.1.1) of the cumulated number of recurrent events against time. Another
way is to group the data into larger time intervals and to study the counts of events
in each interval.

Road traffic In a study of road traffic in Sweden in the 1960s, the times of vehicles
passing a specific point on a two-lane rural road were recorded. The intervals
between these times are given in Table 4.1. In the 2023.5 s of observation, 129
vehicles passed by. This means that vehicles were passing at a rate of 0.063/s or
3.80/min. This is an estimate of the average intensity (Section 3.1) of recurrent
events over that period.

In such a relatively short observation period, we might expect that there will be
no ‘long term’ time trends. On the other hand, it is quite possible that the intensity
function varies over time between two consecutive events because of the minimum
distance possible between cars and because of clumping due to occasional slower
moving vehicles.

The plot of the cumulative number of events is shown in Figure 4.1 for these
data. Notice that, like a Kaplan–Meier curve (Section 3.1.5), this is a step function,
here going up by one each time an event occurs. For these data, the plotted line is
reasonably straight, showing little indication of a change in rate of events over the
period of observation.

To examine the counts of events for these data, measured in seconds, we can use
intervals of, say, one minute. One simple way to do this is to plot a histogram for
the numbers of events using the successive time intervals as breaks. This is shown
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Fig. 4.1. The observed counting process of vehicles on a Swedish road, from Table 4.1.

in Figure 4.2. The number of vehicles passing in one minute varies from 0 to 11.
Thus, there is considerable variability in the counts of events.

4.2.2 Detecting time dependence

The probability of an event occurring may depend on the previous history of the
process in many different ways. One simple situation occurs when it depends on
the time since the previous event. Thus, a second simple departure from a homo-
geneous Poisson process arises if some (nonPoisson) renewal process is required.
It also will be useful to be able to examine this graphically.

The autointensity function is defined to be the conditional probability density
of an event occurring at time given that one occurred at time , for various
values of (Guttorp, 1995, pp. 229, 238–240). This can be estimated by grouping
the times into small intervals, the window or bandwidth, say ∆, and counting the
number of pairs of events separated by ∆ 2. One way in which this estimate
can be calculated is by applying a histogram routine to the times between all pairs
of events (not just consecutive ones).

Road traffic For the vehicle data, the autointensity function is plotted in Figure
4.3 for a window of eight seconds. We see that there is a high probability of two
vehicles passing closely together, that is, at intervals of less than 20 s. If a second
vehicle has not passed in that time, the intensity remains fairly constant for the
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Fig. 4.2. The numbers of vehicles in successive minutes, from Table 4.1.
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Fig. 4.3. The autointensity function, with an interval of two standard errors, for the vehicle
data of Table 4.1, with the constant average rate of 0.063/s (horizontal line).
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Fig. 4.4. The Kaplan–Meier survivor curve for times between vehicles passing, from Table
4.1.

longer times, following reasonably closely the average rate of 0.063/s calculated
above. Thus, there appears to be time dependence in these data.

4.2.3 Kaplan–Meier curves

If we believe that a renewal process might be an appropriate model for the durations
between events, one visual way of determining which parametric distribution might
be suitable is to plot transformations of the empirical survivor curve, obtained from
the Kaplan–Meier estimates (Section 3.1.5), against transformations of time.

Road traffic The Kaplan–Meier curve for the road traffic data is plotted in Figure
4.4. Notice that, in order to calculate this curve, I have aligned all interarrival times
to start at zero when an event occurs, as described in Section 3.1.2 for survival
data. Thus, I am implicitly assuming a renewal process whereby all interarrival
times have independent and identical distributions. The resulting curve drops very
quickly, a consequence of there being a large number of short intervals between ve-
hicles during congestion. However, there are also some very long times, resulting
in the relatively flat part of the curve for longer intervals.

A collection of transformations of the Kaplan–Meier survivor curve is presented
in Figure 4.5. From these, we see that the exponential, log normal, and log logistic
distributions appear to be most suitable.
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Fig. 4.5. Plots of transformations of the Kaplan–Meier survivor curve against transforma-
tions of time for the times between vehicles passing, from Table 4.1.

4.3 Counts of recurrent events

As we saw above, a Poisson process is characterised both by the counts of events
in fixed time intervals and by the times between events. In an analogous way, for
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any series of recurrent events, even though we do not assume that it is a Poisson
process, we can study either the counts of events in fixed intervals or the times
between events. The former approach was not possible with survival data, at least
not for a single individual. Let us consider it first.

Road traffic For the vehicle data in Section 4.2.1 above, we estimated the intensity
of passing to be ˆ 3 80 vehicles/min; however, we saw in Figure 4.3 that the
intensity function may not be constant.

4.3.1 Poisson regression

If we assume a Poisson process, we can use Poisson regression (log linear models).
This provides one way to look at changes in trend over time (nonhomogeneity)
through a model rather than simply descriptively, as in Section 4.2.1 above.

Road traffic We have seen in Section 4.2.2 that the time at which a vehicle passes
appears to depend on the timing of the previous vehicle. Let us nevertheless fit a
Poisson process. The Poisson regression with constant mean applied to the counts
of the histogram for the vehicle data in Figure 4.2 has an AIC of 86.1 compared to
87.0 when the mean is allowed to change (log) linearly with time. (A model with
a quadratic term in time included fits slightly better, but this is probably because
the two minutes with the most vehicles happen to be near the two ends of this short
series.) Thus, this form of trend does not appear to be present. Notice that this is
a global type of trend, as in a nonhomogeneous Poisson process, not one involving
interarrival times, as in a renewal process.

Now let us see whether or not the counts in Figure 4.2 could have a Poisson
distribution, as they should if they arise from a Poisson process. To do this, we
can create a histogram from the histogram: we need to look at the numbers of one
minute intervals in which each number of vehicles (from 0 to 11) passed. These are
plotted as relative frequencies in Figure 4.6. We see that there is a large number
of minutes with only one vehicle and more than might be expected with a large
number (10 or 11) vehicles. The first is a characteristic of uniformly spaced traffic
whereas the second indicates bunching, perhaps due to congestion. The latter was
what we detected in Figure 4.3. These are all indications that the distribution may
not be Poisson.

We can check the Poisson assumption by fitting a Poisson distribution to the
frequencies in this latter histogram. The mean number of vehicles per minute is es-
timated to be 3.76. This is slightly different than the estimate of 3.80/min obtained
above from the raw data; the difference is due to the information lost in grouping
into one minute intervals.

The fitted curve for the Poisson distribution is also shown in Figure 4.6. It has an
AIC of 86.1 (as above) as compared to 87.4 for the multinomial (saturated) model,
showing that it fits reasonably well. However, this does not necessarily imply that
the fit is acceptable. Another fairly simple model may fit even better.
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Fig. 4.6. The numbers of minutes with given counts of vehicles, from Table 4.1 and Figure
4.2, with the fitted Poisson and negative binomial distributions.

4.3.2 Over- and underdispersion

One way to attempt to improve on the Poisson assumption is to look at the vari-
ability of the counts. As we saw in Section 4.1.4, the Poisson distribution carries
the strong assumption that the mean equals the variance, or that the coefficient of
dispersion equals one. If there is too much variability in the numbers of recurrent
events per unit time, the distribution is said to be overdispersed as compared to the
Poisson distribution. We already have seen an example of overdispersion, but with
respect to the binomial distribution, in Section 3.6.2.

One way in which the responses may be overdispersed is if the mean number
of counts per fixed time interval is not constant over the observation period, but
we do not know when it is changing. Then, we might assume that this intensity
parameter, which I shall now call instead of , has a random distribution. For
convenience (see Section 14.1.2), this often is chosen to be a gamma distribution,
as in Equation (2.7), but with a slightly different parametrisation:

;
1e
Γ

(4.35)

The marginal distribution of the counts can then be obtained from the Poisson
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distribution ∆ ; by integrating out the varying unobservable quantity :

∆ ; 0 ∆ ; ; d
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Γ
Γ ∆ !

1
1 1

∆

(4.36)

The result is called the negative binomial distribution.

Road traffic For the data on vehicles passing on the road, grouped into counts
as above, the mean count is 2.6 and the variance is 5.3, giving a coefficient of
dispersion of 2.0. In a similar way, the mean time between vehicles is 15.8 s, with
a standard deviation of 23.7, so that the coefficient of variation is 1.5. Both indicate
some overdispersion.

In Figure 4.6, overdispersion is indicated by the occasional larger counts due to
the clumping of congestion. On the other hand, if the vehicles are too uniformly
distributed over time, the distribution will be underdispersed. This corresponds to
the large number of minutes with one vehicle. Thus, these responses seem to show
both characteristics!

When the negative binomial distribution is fitted to these data, the AIC is 81.3,
a considerable improvement over 86.1 for the Poisson process. The curve is plot-
ted in Figure 4.6; this model does not satisfactorily account for the large number
of minutes with one vehicle passing, because it cannot handle underdispersion.
(However, models allowing underdispersion do not fit better.) Thus, we can con-
clude that this is a more satisfactory fit and that the process is not homogeneous.

4.4 Times between recurrent events

As we saw above, when the intervals of times between recurrent events are inde-
pendent and identically distributed, we have a renewal process. In this section,
I shall look at how to check the assumption of a Poisson process from the point
of view of the durations between events and at how to fit other renewal processes
when the Poisson process is not an acceptable model.

4.4.1 Renewal processes

We have already seen in previous chapters that a wide choice of parametric distri-
butions is available for duration data. Here, I shall examine a few of them. I shall
first look at the exponential (the Poisson process) and gamma distributions, given
respectively in Equations (2.8) and (2.7), and then at a number of other possible
distributions.

Road traffic In Section 4.2.3 above, I used Kaplan–Meier curves to obtain some
indication as to what models might be suitable for a renewal process applied to
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Fig. 4.7. Several intensity functions for the vehicles passing on the road, from Table 4.1.

the vehicle data. Let us see whether or not fitting them provides support for the
graphical conclusions.

The exponential distribution, corresponding to a Poisson process, has an AIC
of 482.4, with ˆ 15 81 or ˆ 0 063, as above. The gamma distribution has
475.6, much better. (This was not obvious from the graphs in Figure 4.5.) The
estimated mean duration has the same value and the dispersion parameter is ˆ

0 67 so that the intensity is decreasing over time. Recall that, if 1 in the gamma
distribution, we have an exponential distribution, so that it is some distance from
that distribution.

The intensity functions for these two distributions are plotted in Figure 4.7. As
we know, the Poisson process, represented here by the exponential distribution, has
a constant intensity function. In contrast, the gamma intensity is estimated to be
decreasing sharply over time ( ˆ 1).

As we have seen in Section 2.4.1, the log normal distribution of Equation (2.13)
can be derived from the normal distribution by taking the logarithm of the re-
sponses. For these data, the AIC is 460.9, much better than the previous two. The
intensity curve also is plotted in Figure 4.7. Although it has a mode, this occurs
very early and is not really visible in the plot.

The log logistic distribution of Equation (2.16) has a similar shape to the log
normal but with somewhat heavier tails. Here, this model does not fit as well as the
log normal: 465.0. The intensity is plotted in Figure 4.7.

Finally, I shall look at another distribution commonly used for durations: the
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Weibull, given in Equation (2.15). Like the gamma distribution, this reduces to
an exponential when 1. For these data, the AIC is 471.7, slightly better than
the gamma, but considerably worse than the log normal. Here, ˆ 0 75, again
showing deviation from the exponential distribution, with a decreasing intensity
function.

It is interesting to notice that two distributions with an intensity function having
a mode fit best among those tried. This mode occurs early in the interarrival period,
so that the low very early intensity, before the mode, may allow for the physical
difficulty of vehicles being very close together.

We clearly can conclude that the intensity of recurrent events is not constant over
the time between events, as it would be in a Poisson process, but is diminishing.
Thus, we have different forms of evidence from the count and the duration analyses
that these responses do not follow a Poisson process.

4.4.2 Nonhomogeneous renewal processes

If a renewal process does not fit well to a series, one reason may be that there is a
trend over time, similar to that which may occur in a nonhomogeneous Poisson pro-
cess. Thus, a parameter of the distribution, usually the location parameter, might
depend, say, on the (arrival) time at which the interval starts or on the number of
previous events (a form of birth process). If time-varying covariates are available,
these also may be useful.

Road traffic For the vehicle data, the interarrival times are plotted against the
event numbers and the arrival times in Figure 4.8. There does not appear to be any
trend over this short time period. On the other hand, clustering does appear to be
present.

This is confirmed by fitting models as above, but with the parameters of the
distributions allowed to vary with either of these covariates (event number or arrival
time). In all cases, the AIC increases.

Further reading

Feller (1950, Ch. 13) provides a good introduction to recurrent events; see also
Cox and Lewis (1966), although they concentrate on a variety of ad hoc frequentist
procedures. A fundamental book on counting processes, at an advanced level, is
Andersen et al. (1992); see also Karr (1991). For Poisson processes, see Kingman
(1992). Cox and Isham (1980) and Karr (1991) give rather theoretical presentations
of point processes. A standard text on renewal theory is still Cox (1962); see also
Grimmett and Stirzaker (1992, Ch. 10) and Karlin and Taylor (1975, Ch. 5).

Snyder and Miller (1991) provide a practical discussion of many types of point
processes and Guttorp (1995) of a wide variety of stochastic processes. Berg (1993,
pp. 75–94) shows how the motility of the bacterium Escherichia coli can be mod-
elled by a Poisson process.
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Fig. 4.8. The relationships of interarrival times to event number (left) and to arrival time
(right) for the vehicles passing on the road, from Table 4.1.

Table 4.2. Deaths by horse kicks in the Prussian army, 1875–1894, for 14 corps.
(Andrews and Herzberg, 1985, p. 18)

Corps Year

G 0 2 2 1 0 0 1 1 0 3 0 2 1 0 0 1 0 1 0 1
I 0 0 0 2 0 3 0 2 0 0 0 1 1 1 0 2 0 3 1 0
II 0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 2 0 0
III 0 0 0 1 1 1 2 0 2 0 0 0 1 0 1 2 1 0 0 0
IV 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0
V 0 0 0 0 2 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0
VI 0 0 1 0 2 0 0 1 2 0 1 1 3 1 1 1 0 3 0 0
VII 1 0 1 0 0 0 1 0 1 1 0 0 2 0 0 2 1 0 2 0
VIII 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1
IX 0 0 0 0 0 2 1 1 1 0 2 1 1 0 1 2 0 1 0 0
X 0 0 1 1 0 1 0 2 0 2 0 0 0 0 2 1 3 0 1 1
XI 0 0 0 0 2 4 0 1 3 0 1 1 1 1 2 1 3 1 3 1
XIV 1 1 2 1 1 3 0 4 0 1 0 3 2 1 0 2 1 1 0 0
XV 0 1 0 0 0 0 0 1 0 1 1 0 0 0 2 2 0 0 0 0

Exercises

4.1 The numbers of deaths by horse kicks in the Prussian army from 1875 to
1894 for 14 corps are given in Table 4.2. G indicates the guard corps. This
and corps I, VI, and XI have different organisations than the others.

(a) Can you detect any trends with time?
(b) Are there systematic differences among the corps?
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Table 4.3. Numbers of compensable accidents per day for one shift in a section of
a mine in the UK over 223 days. (Maguire et al., 1952)

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 2 0 1 2 5 2 1 0
0 1 0 1 1 0 3 0 1 0 0 6 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 3 0 1 0 0 0 1 0 0 0 0
2 0 0 0 3 0 1 1 1 1 1 0 0 0 0 0 0 0 3 0 2 0 1 0 2 0 3 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 2 1 1 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 1 0 0 2 0 2 1 1 0 0 1 0 2
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 0 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

Table 4.4. Monthly numbers of cases of poliomyelitis in the USA, 1970–1983.
(Zeger, 1988)

Month

Year J F M A M J J A S O N D

1970 0 1 0 0 1 3 0 2 3 5 3 5
1971 2 2 0 1 0 1 3 3 2 1 1 5
1972 0 3 1 0 1 4 0 0 1 6 14 1
1973 1 0 0 1 1 1 1 0 1 0 1 0
1974 1 0 1 0 1 0 1 0 1 0 0 2
1975 0 1 0 1 0 0 1 2 0 0 1 2
1976 0 3 1 1 0 2 0 4 0 2 1 1
1977 1 1 0 1 1 0 2 1 3 1 2 4
1978 0 0 0 1 0 1 0 2 2 4 2 3
1979 3 0 0 2 7 8 2 4 1 1 2 4
1980 0 1 1 1 3 0 0 0 0 1 0 1
1981 1 0 0 0 0 0 1 2 0 2 0 0
1982 0 1 0 1 0 1 0 2 0 0 1 2
1983 0 1 0 0 0 1 2 1 0 1 3 6

(c) These data have often been aggregated over corps and years and
used as a good example of a Poisson distribution. Is this reason-
able?

4.2 The data in Table 4.3 provide the numbers of accidents in a section of a
mine in the UK, recorded over a number of days.

(a) Fit a Poisson process to these data.
(b) Check the assumptions of this model to see whether or not they are

reasonable.

4.3 Table 4.4 shows the monthly numbers of cases of poliomyelitis in the USA
over a 14 year period.

(a) What is the simplest model that can describe these data?
(b) Does the number of cases vary with month?
(c) Has the number of cases per month changed over the years?

4.4 In a study to determine whether or not air traffic density varied over time,
aircraft entrance times (s) were recorded for a low altitude transitional con-
trol sector (called 454LT) northwest of the Newark, USA, airport. Those
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Table 4.5. Aircraft entrance times (s) at Newark airport on 30 April 1969 from
12:00 to 20:00. (Hsu, 1979; read across rows)

467 761 792 812 926 1 100 1 147
1 163 1 398 1 462 1 487 1 749 1 865 2 004
2 177 2 208 2 279 2 609 2 682 2 733 2 818
2 837 2 855 2 868 3 089 3 209 3 223 3 233
3 272 3 399 3 595 3 634 3 650 3 851 4 176
4 304 4 391 4 453 4 539 4 748 4 839 5 049
5 202 5 355 5 551 5 598 5 640 5 702 5 935
6 000 6 192 6 435 6 474 6 600 6 810 6 824
7 168 7 181 7 202 7 218 7 408 7 428 7 720
7 755 7 835 7 958 8 307 8 427 8 754 8 819
8 904 8 938 8 980 9 048 9 237 9 268 9 513
9 635 9 750 9 910 9 929 10 167 10 254 10 340

10 624 10 639 10 669 10 889 11 386 11 515 11 651
11 727 11 737 11 844 11 928 12 168 12 657 12 675
12 696 12 732 13 092 13 281 13 536 13 556 13 681
13 710 14 008 14 151 14 601 14 877 14 927 15 032
15 134 15 213 15 491 15 589 15 600 15 631 15 674
15 797 15 953 16 089 16 118 16 215 16 394 16 503
16 515 16 537 16 570 16 597 16 619 16 693 17 314
17 516 17 646 17 770 17 897 17 913 17 922 18 174
18 189 18 328 18 345 18 499 18 521 18 588 19 117
19 150 19 432 19 662 19 758 19 789 19 831 19 978
20 119 20 312 20 346 20 449 20 455 20 604 20 675
20 817 20 898 21 245 21 386 21 562 22 022 22 056
22 095 22 182 22 554 22 764 22 955 22 993 23 025
23 117 23 321 23 341 23 650 23 766 23 879 23 888
24 458 24 889 24 930 24 967 25 224 25 312 25 477
25 498 25 712 25 721 25 884 25 919 25 985 26 196
26 459 26 468 26 494 26 505 26 554 26 906 27 003
27 437 27 661 27 675 27 697 27 721 27 734 27 802
27 971 28 116 28 746

for one afternoon are shown in Table 4.5. There were airways passing
through the sector in many directions and at different altitudes, which
might contribute to apparent randomness. However, at the same time, loca-
tions of aircraft were controlled by the air traffic controllers, which might
produce systematic separation.

(a) Do these data follow a Poisson process? (Assume that there was an
aircraft at 12:00.)

(b) Is there any evidence of a change in air traffic density over this
period?

(c) Is there clustering of aircraft at any time?

4.5 Table 4.6 gives the results of an experiment recording the successive times
(s) of initiation of mating between flies for two different species.

(a) Do these durations follow a Poisson process?



Exercises 97

Table 4.6. Times (seconds) of initiations of mating between flies of two different
species. (Aalen, 1978)

Ebony flies

143 180 184 303 380 431 455 475
500 514 521 552 558 606 650 667
683 782 799 849 901 995 1131 1216

1591 1702 2212

Oregon flies

555 742 746 795 934 967 982 1043
1055 1067 1081 1296 1353 1361 1462 1731
1985 2051 2292 2335 2514 2570 2970

Table 4.7. Times (days of service) at which valve seats were replaced on 41 diesel
engines in a service fleet. (Nelson, 1995; Lawless and Nadeau 1995)

761 593
759 573 589

98 667 165 408 604 606
326 653 653 667 249 594

665 344 497 613
84 667 265 586 595
87 663 166 206 348 389

646 653 601
92 653 410 581 601

651 611
258 328 377 621 650 608

61 539 648 587
254 276 298 640 644 367 603

76 538 642 202 563 570 585
635 641 587

349 404 561 649 578
631 578
596 586

120 479 614 585
323 449 582 582
139 139 589

(b) Is there a difference over time in the intensity of mating between
the two species?

4.6 The times at which valve seats were replaced on 41 diesel engines in a
service fleet are shown in Table 4.7. The engines had 16 valves, but we
do not know which ones were replaced. The last time for each engine is
censored.

(a) Is a renewal process an appropriate model for these data?
(b) How does the average number of valves replaced change with age?
(c) Does the replacement rate increase with time?
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Table 4.8. Lengths of migrating motor complex periods in 19 fasting individuals.
The last interval is always censored. (Aalen and Husebye, 1991; read across

rows)

112 145 39 52 21 34 33 51 54
206 147 30
284 59 186 4

94 98 84 87
67 131

124 34 87 75 43 38 58 142 75 23
116 71 83 68 125 111
111 59 47 95 110

98 161 154 55 44
166 56 122

63 90 63 103 51 85
47 86 68 144 72

120 106 176 6
112 25 57 166 85
132 267 89 86
120 47 165 64 113 12
162 141 107 69 39
106 56 158 41 41 168 13
147 134 78 66 100 4

4.7 The mixture and transport of the intraluminal content of the small bowel is
performed by muscular activity called motility. During fasting, a cyclical
pattern occurs. Bowel pressure can be measured by manometry. Modern
digital ambulatory techniques allow such measurements easily to be made.
These involve two transducers mounted on a thin catheter in the proximal
small bowel.

In one study, 19 healthy adults (15 men and four women) were given
a standardised mixed meal of 405 kcal at 18:00. Following a fed state of
from four to seven hours, they reach a fasting period during which motility
(muscular activity) of the small bowel could occur. Periodically, a fasting
cycle occurs, with a migrating motor complex (MMC) phase. The data in
Table 4.8 record the lengths of times between occurrences of this phase,
called MMC periods, starting at the first occurrence of such a phase. Mea-
surement started at 17:45 and stopped at 7:25 the next day so that all final
periods are censored.

(a) Is there any evidence of differences among individuals?
(b) Does a given interval depend in some way on the previous history

of the individual?

4.8 Times between successive failures of air-conditioning equipment in 13
Boeing 720 aircraft are presented in Table 4.9. The planes were in a
fleet for which records were kept. After roughly 2000 h of service, four
of the planes received major overhauls. Because this may have affected
the length of the corresponding failure intervals, these particular durations
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Table 4.9. Numbers of operating hours between successive failures of
air-conditioning equipment in 13 aircraft. Dashes indicate major overhauls.

(Proschan, 1963)

Aircraft number
1 2 3 4 5 6 7 8 9 10 11 12 13

194 413 90 74 55 23 97 50 359 50 130 487 102
15 14 10 57 320 261 51 44 9 254 493 18 209
41 58 60 48 65 87 11 102 12 5 100 14
29 37 186 29 104 7 4 72 270 283 7 57
33 100 61 502 220 120 141 22 603 35 98 54

181 65 49 12 239 14 18 39 3 12 5 32
9 14 70 47 62 142 3 104 85 67

169 24 21 246 47 68 15 2 91 59
447 56 29 176 225 77 197 438 43 134
184 20 386 182 71 80 188 230 152
36 79 59 33 246 1 79 3 27

201 84 27 — 21 16 88 130 14
118 44 — 15 42 106 46 230
— 59 153 104 20 206 5 66
34 29 26 35 5 82 5 61
31 118 326 12 54 36 34
18 25 120 31 22
18 156 11 216 139
67 310 3 46 210
57 76 14 111 97
62 26 71 39 30

7 44 11 63 23
22 23 14 18 13
34 62 11 191 14

— 16 18
130 90 163
208 1 24

70 16
101 52
208 95

were omitted from each series. Such data provide information on the distri-
bution of failure intervals for air conditioning systems that may be used for
predicting reliability, scheduling maintenance, and providing spare parts.

(a) Are there differences in failure rate among the aircraft?
(b) Does the failure rate evolve over time?

4.9 Kidney patients using a portable dialysis machine may have recurrent in-
fections. These occur at the point of insertion of the catheter. When this
happens, the catheter must be removed and the infection cured, after which
the catheter can be reinserted. There can be right censoring if the catheter
must be removed for other reasons. Patients were followed for two recur-
rence times, one or both of which might be censored. Age, sex, and type
of disease (GN, AN, PKD) are available as risk factors, as shown in Table
4.10.
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Table 4.10. Times (units not specified; asterisks indicate censoring) to recurrence
of infections in kidney patients. (McGilchrist and Aisbett, 1991)

Times Sex Disease Age

8 16 M Other 28
23 13* F GN 48
22 28 M Other 32

447 318 F Other 31–32
30 12 M Other 10
24 245 F Other 16–17
7 9 M GN 51

511 30 F GN 55–56
53 196 F AN 69
15 154 M GN 51–52
7 333 F AN 44

141 8* F Other 34
96 38 F AN 35

149* 70* F AN 42
536 25* F Other 17
17 4* M AN 60

185 177 F Other 60
292 114 F Other 43–44
22* 159* F GN 53
15 108* F Other 44

152 562 M PKD 46–47
402 24* F Other 30
13 66 F AN 62–63
39 46* F AN 42–43
12 40 M AN 43

113* 201 F AN 57–58
132 156 F GN 10
34 30 F AN 52
2 25 M GN 53

130 26 F GN 54
27 58 F AN 56
5 43* F AN 50–51

152 30 F PKD 57
190 5* F GN 44–45
119 8 F Other 22
54* 16* F Other 42
6* 78 F PKD 52
63 8* M PKD 60

(a) Which factors are related most closely to risk of infection?
(b) Is the risk of a second infection higher than that of the first one?
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Discrete-time Markov chains

Up until now, I only have considered processes in which one type of event can
occur. In Chapter 3, the event signalled an irreversible change of state; in Chap-
ter 4, it could recur. Except in the general theory of Section 4.1.1, I have made no
assumptions about any dependencies among these events over time; the only condi-
tion was in the definition of the intensity as the probability of the event happening,
given that it had not yet occurred.

In this chapter, I shall begin the study of stochastic processes involving several
kinds of events. I shall consider one way in which to introduce dependence as-
sumptions, by conditioning on what happened before, here simply on the previous
state(s). Thus, the probabilities of the various possible outcomes that can be ob-
served at a given time will depend on the previous history of the process in one
specific way. I shall model explicitly the probability of transition between states.
In the simplest case, the present state will depend only on that immediately preced-
ing it (Section 1.2.2), a first-order Markov chain. This procedure will yield state
dependence models (Section 1.2.3).

I shall assume that each event occurs in a given constant interval of time and that
these intervals are small enough so that only one event, however defined, can occur
in each. In addition, in contrast to previous chapters, I shall assume that the small
intervals are all of equal size, so that I am working in discrete time. (I shall leave
the presentation of the equivalent Markov chains in continuous time until Section
6.1.3.)

Because of the Markov and discrete time assumptions, suitable data can easily
be modelled as Markov chains after summary in multidimensional contingency
tables. If there are only two states, logistic regression can be used. Otherwise, log
linear models will be required.

For the special case of only two states, so that the outcome is binary, other ap-
proaches include studying either the numbers of events occurring in fixed time
intervals or the times between successive events. I already have looked at some of
these possibilities in the previous chapter, when recurrent events are independent,
and shall return to them in the following chapters to examine dependencies.

Markov chains have many applications. Below, I shall examine examples in in-
dustry (accidents), political science (voting behaviour), sociology (social mobility),
medicine (changing blood pressure), and demography (geographical migration).
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5.1 Theory

A great deal is known about the theoretical properties of Markov chains. They are
relatively easy to study because generally only linear algebra is required. Here, I
shall outline some of the more important results.

Throughout this chapter, I shall be assuming that the stochastic process has a
finite number of possible discrete states and that observations are made at equally-
spaced, discrete, time intervals. Thus, a finite number of different types of events
is possible, defined by the transitions between pairs of states of the process.

5.1.1 Transition matrices

Let us now examine the properties of Markov chains with a fixed, finite number of
possible states: the state space.

Marginal and conditional probabilities

The marginal distribution at time gives the probabilities of being in each
possible state at that time. The initial distribution 0 is the marginal distribution
when the process starts. As we have seen (Section 1.1.4), these distributions do
not uniquely define the stochastic process (unless the successive states are inde-
pendent). However, they do describe the underlying marginal trend of the process;
this may often be independent of the specificities of any particular observed case
of the process.

On the other hand, the conditional probability of being in any state at time
will depend on the state at the previous time point (or more than one previous

state if 1). For 1, these probabilities may be assembled into a square
transition matrix, say , with columns indicating the present state and rows the
previous state so that the rows each sum to unity. Because of this constraint on the
row sums, this is called a stochastic matrix. (The adjective ‘stochastic’ here does
not imply that the matrix is changing randomly over time!)

is called a transition matrix because premultiplying it by the vector of
marginal probabilities of the different states at a given time point will give the
marginal vector for the next time period 1:

1 (5.1)

Thus, the transition matrix represents the pattern of change and the marginal
probabilities the underlying trend of the process.

The transition matrix of conditional probabilities of each state, given the previ-
ous one, may be varying over time: . It is, then, said to be nonhomogeneous.
However, a matrix that changes arbitrarily at each time point will result in too
complex a model. Thus, nonhomogeneity usually is the result of the conditional
probabilities depending on time-varying covariates through some regression func-
tions in the model. Almost all theoretical results, unfortunately, hold only for the
simpler case of a homogeneous transition matrix.
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Stationarity

Thus, the transition matrix is homogeneous if it is the same at all time points.
However, because this matrix defines the conditional probabilities, this assumption
is not sufficient to ensure that the process itself is stationary in the sense of Section
1.1.4. The initial conditions, given by 0, also must be known and take a specific
form.

The stationary marginal distribution , if it exists, is given by the steady-state
equation

(5.2)

This is the stationarity (Section 1.1.4) of a Markov chain process. It generally will
arise after the process has run for a sufficiently long time. Note that the stationary
distribution may not be unique. Thus, if is the identity matrix, then can be
any distribution.

If the process starts with the stationary initial distribution corresponding to the
given transition matrix, so that 0 , then for all and the complete
series is stationary. On the other hand, if 0 is independent of the initial
distribution 0, the Markov chain is ergodic (Bartlett, 1955, p. 33; see Section
1.1.4 and further details below).

The existence of a unique stationary distribution implies several approaches to
estimating parameters in a Markov chain.

(i) The initial conditions may be known a priori. Thus, the process(es) might
necessarily start in some given state. Then, 0 will contain all zeros except
for a 1 for that state.

(ii) If the series is stationary, the marginal distribution at the first time point
will be , which can be obtained from using Equation (5.2) with no
additional parameters other than those in . This marginal distribution
can, then, be included in the likelihood.

(iii) If the series is nonstationary, the parameters of the initial marginal distri-
bution cannot be obtained from . For only one series, there really is no
information available to estimate 0 and one must condition on the first
response. However, if there are enough replicate series, the marginal distri-
bution of the first event can be estimated.

Reversibility

If the sequence of states of a Markov chain is reversed, this is still a Markov chain,
but with transition probabilities given as a combination of the stationary probabili-
ties and the forward transition probabilities: . In addition, if and
in the original matrix are related by

(5.3)

then the process is time reversible (see Section 5.4.1).
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-step probabilities

Let us now see how a multistate process can pass from one state to another indi-
rectly, after first transiting by some other arbitrary states. Represent the probability
of change between two given states and , in say exactly steps, by .

If there exists an such that 0, then state can be reached or is accessible

from state . If, in addition, state is accessible from , then 0 and the two
states communicate. A communicating set or class of states is one in which all
pairs of states communicate with each other and none communicate with states
outside the class. If all states in a Markov chain communicate, that is, there is only
one class, the chain is irreducible.

The value of is given by the Chapman–Kolmogorov equation:

∑ 1 1

or

1 1 (5.4)

where is the -step transition matrix. But 1 , so that this implies that
. Thus,

0 (5.5)

which also is implied directly by Equation (5.1).
Under suitable conditions, a Markov chain will have a limiting distribution so

that, for large , approaches a matrix with all rows equal to . This means
that, for such a chain, if the process runs long enough, it reaches an equilibrium
situation independent of the initial distribution.

Multiplying a matrix by itself times can be time consuming and can also in-
volve substantial round-off error. An efficient way to calculate the power of such
a matrix, especially if is reasonably large, is by spectral decomposition. If is
a matrix containing the eigenvectors of as columns and is a diagonal matrix
containing the corresponding eigenvalues, then

1 (5.6)

and

1 (5.7)

Because is diagonal, the power can be calculated element-wise, a much simpler
and more precise operation than multiplying the matrix by itself many times. Note
that this works only if the eigenvalues are distinct, but generally this is the case for
the numerical matrices arising from the data encountered in statistical modelling.

Aggregation

It is important to note that, if some states of a Markov chain (with more than two
states) are combined, the result generally is not a Markov chain (at least, not of the
same order). Thus, in any given situation, the states must be defined very carefully.
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The reverse of this fact can be useful. It is often possible to obtain the Markov
property by extending the number of states. Thus, suppose that a process is of
higher order than first ( 1). By defining, as new states, all possible ordered
combinations of observed states and looking at overlapping sets of adjacent
states, we can create a first-order Markov chain. Thus, if a second-order Markov
chain has two possible states, 1 and 2, the four new states will be (1 1), (1 2),
(2 1), and (2 2) and the new series of responses, ( 1 2), ( 2 3), ( 3 4), and so
on, will form a first-order Markov chain.

The unit of time is much less important, as long as the time points are equally
spaced. Thus, if the daily transition matrix of a first-order Markov chain is ,
weekly observations will still form a Markov chain, but with transition matrix 7.

More generally, great care must be taken in checking the properties of a Markov
chain. If and are estimated from any reasonably long series, they will closely
satisfy Equation (5.2) so that this is not an indication that the series follows a
Markov chain (Cohen, 1968). Finch (1982) describes some of the difficulties in
checking for a Markov chain when a number of replications is available.

5.1.2 Time spent in a state

In previous chapters, we concentrated on the time spent in a given state. Now let
us see what the assumptions of a Markov chain imply about such durations.

Duration in a state

Three possible cases of durations in a state can occur, two of which are extreme:

(i) If 0, the process never stays more than one time period in the state .
(ii) If 1 (implying that 0 for all ), then the state is absorbing.

If the process reaches such a state, it stays there forever after (compare
with Section 3.1.1). A process with one or more absorbing states cannot
be irreducible. A whole class of states also may be absorbing or closed;
then, once the process enters the class, it moves among those states, never
leaving the class. This occurs if 0 for all outside the class and in
the class. (This implies that ∑ 1 where the sum is over states in the
class.) A closed class of states can be studied independently of any other
states in the system.

(iii) If 0 1, the time spent in a state, once it is entered, has a geometric
distribution

; 1 1 (5.8)

with mean duration time, 1 1 . This is the discrete-time analogue of
the exponential distribution so that there is some similarity with a Poisson
process.

As well, if the stationary marginal distribution exists, it gives the long-run pro-
portion of time spent in each state.
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Although a Markov chain may appear to be similar to a discrete-time Poisson
process, care must be taken. Consider, say, a binary point process in discrete-
time following a Markov chain with states 0 and 1 where the latter might indicate
a recurrent event. The time without the event, that is, the duration in the first
state between recurrent events, is a series of 0s. The distribution of this duration is
geometric, with parameter 1 1, as if it were the discrete-time analogue of a Poisson
process. However, this distribution, but with parameter 2 2, also applies to second
state, that is, to the duration of a sequence of 1s. Thus, there can be clustering
of the recurrent events, as compared to the randomness of a Poisson process. The
mean number of recurrent events occurring consecutively (the time spent in state
1), is 1 1 1 1 , which can be considerably greater than unity if 1 1 is large. On
the other hand, if 1 1 0, two recurrent events can never occur consecutively.

Recurrence of a state

Now let us look at when a process can be expected to visit a given state.
Suppose that the process starts in state . The time taken to return for the first

time to this state is called the return time. In contrast, the time to reach state
starting from any arbitrary state is called the hitting time; it is zero if the process
starts in state . The first passage or recurrence time is the hitting time 1. These
are all stopping times (Section 4.1.1).

Periodicity A state has period if 0 for all not divisible by , with
the greatest such integer. Such a Markov chain can be in state only at intervals of
time . All states in a communicating class will have the same period. A Markov
chain with 2 cannot be reversible (Wolff, 1989, p. 183). If 1, the state
is aperiodic. An irreducible, periodic Markov chain will not reach an equilibrium
limiting distribution, whereas an irreducible, aperiodic one will. The transition
matrix of the latter has one unit eigenvalue and all others less than one in absolute
value. Thus, as increases, in Equation (5.7) approaches a matrix of zeros
except for a one corresponding to the unit eigenvalue.

Each time that a Markov chain returns to its initial state, the future of the process
has the same distribution as the first time it was there. This is a regeneration point
(Section 1.1.4). Thus, the times taken successively to return to the same state are
independent, identically distributed random variables. (See Grimmett and Stirza-
ker, 1992, p. 198.)

Recurrent and transient states The first passage distribution gives the probability
of arriving in the state for the first time after various intervals of time 0
starting from state :

Pr 1 1 0 (5.9)

Note that because the latter can include second or later returns to state
.
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The values are of particular interest because they give the recurrence prob-

abilities of returning to the same state for the first time. If ∑ 1, state is
persistent or recurrent; otherwise, it is transient. A process always will return to
a recurrent state sometime in the future (if we wait long enough), in fact infinitely
often, whereas it has a positive probability of never returning to a transient state.
Thus, for the former,

∑
1

(5.10)

whereas it is finite for the latter.
The states of a communicating class are either all recurrent or all transient. If

the class is closed, they are all recurrent. Thus, in an irreducible Markov chain, all
states are recurrent.

For a recurrent state, is a probability distribution for which, among other
things, the mean recurrence time can be calculated. This is equal to the recipro-
cal of the stationary marginal probability of that state: 1 , a special case of the
elementary renewal theorem (Section 4.1.4). On the other hand, if we count recur-
rence from when the process leaves state , the mean time is 1 1 .

A state that is aperiodic and recurrent with finite mean recurrence time is said
to be ergodic (Section 1.1.4). If all states are ergodic, the chain is ergodic. An
irreducible, aperiodic Markov chain with a finite number of states is always ergodic
with a unique stationary distribution (Cox and Miller, 1965, p. 107). For a recurrent
state, approaches the ratio of the period to the mean recurrence time (hence,
the reciprocal of this time for aperiodic states) for large .

Probability of absorption Suppose that a process has both recurrent and transient
states. For simplicity, assume that the former are absorbing. By an appropriate
ordering of the states, the transition matrix for such a process can be written as

(5.11)

Then, 1 is called the fundamental matrix, where I is the appropriate iden-
tity matrix in each case. The probabilities of ending up in each absorbing state start-
ing from each transient state are given by 1 . The extension to absorbing
classes of recurrent states is straightforward (Bremaud, 1999, pp. 154–161).

5.1.3 Random walks

One rather famous type of stochastic process is called a random walk, applied to
how a drunk tries to find his way home.

General case

The most general form of a random walk is generated by the successive sums of
a series of independent, identically-distributed random variables occurring over
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time:

∑
1

(5.12)

Obviously, if 0, the process can only increase, but if can also take
negative values, the sum moves in both directions.

There may be boundary conditions such that, if reaches the edge of or goes
outside an interval, say , the process either stops or returns in the oppo-
site direction. The first is called an absorbing barrier and the second a reflecting
barrier.

The renewal processes of Section 4.1.4 can be thought of as random walks where
is the total time elapsed and each 0 is an interarrival time.

Application to Markov chains

Another special case of a random walk is important in the context of Markov
chains. Suppose that, on a line, successive moves are allowed to the left or right
with (unconditional) probabilities and , respectively. Thus, can only take
the values 1 and 1 and gives the position on the line at time . (The famous
application is to a drunk moving along a narrow pavement, one step at a time, with

.) If , there is drift so that the process will tend to move in the direc-
tion of higher probability. If the possibility of no move is allowed so that 0 is
also possible, then 1 and this is a form of birth and death process.

These special random walks may be reformulated as Markov chains where dif-
ferent points on the line are different states of the process. The transition prob-
abilities will be zero except for movement between adjacent states. If the line is
unbounded, the Markov chain will have an infinite number of states.

If 1, the probability of exactly steps to the right in a total of steps
will be given by the binomial distribution,

; (5.13)

The position (state) after steps equals the number of moves to the right minus the
number to the left: 2 . Thus, the mean position is 2 1
steps from the starting position. The corresponding variance is 4 , so that the
variability increases with time, the number of steps (Berg, 1993, p. 13).

All of the above results require a homogeneous transition matrix. In most re-
alistic modelling situations, they primarily will be of academic interest because
models will involve transition probabilities depending on covariates. If some of
the covariates are time-varying, the matrix will be nonhomogeneous. Such models
with covariates can be fitted using logistic or log linear regression.

5.2 Binary point processes

Let us examine first what contributions Markov chains can make to the study of
recurrent events (Chapter 4) in discrete time. As we know, when one of only two
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Table 5.1. June days with measurable precipitation (1) at Madison, Wisconsin,
USA, 1961–1971. (Klotz, 1973)

Year

1961 10000 01101 01100 00010 01010 00000
1962 00110 00101 10000 01100 01000 00000
1963 00001 01110 00100 00010 00000 11000
1964 01000 00000 11011 01000 11000 00000
1965 10001 10000 00000 00001 01100 01000
1966 01100 11010 11001 00001 00000 11100
1967 00000 11011 11101 11010 00010 00110
1968 10000 00011 10011 00100 10111 11011
1969 11010 11000 11000 01100 00001 11010
1970 11000 00000 01000 11001 00000 10000
1971 10000 01000 10000 00111 01010 00000

possible states is recorded in each successive equal time interval, this may often
indicate the presence or absence of some event. As we have seen, in contrast to
the recurrent event models of Chapter 4, Markov chains allow clustering of such
events.

Here, time is discrete so that dependencies among such binary responses can
be modelled either by logistic regression or by creating a contingency table and
applying standard log linear models. (In contrast, when there are more than two
states, log linear models most often will be required.) Here, I shall illustrate the
equivalence of the two approaches for a two-state series.

5.2.1 Transition matrices

In Chapter 4, I looked at binary point processes in continuous time, but with no de-
pendencies on previous events. The important special case of a Markov chain with
only two states will allow us to study one form of dependencies in such processes
in discrete time. If there are no covariates, the data may be summarised as a 2 2
contingency table and the transition matrix calculated from it.

Rainfall Measurable amounts of precipitation have been recorded in Madison,
Wisconsin, USA, for a long time. The results for June days between 1961 and
1971 are shown in Table 5.1. There are 221 days without the rain and 109 with it.
Thus, if we assume stationarity, the (constant) marginal probabilities can be esti-
mated to be, respectively, 0.67 and 0.33: it rained on about one-third of the days.
The cumulative numbers of rainy days in June each year are plotted in Figure 5.1.
We see that there is some divergence over the years in the amounts of rain during
this month.

Next, we can examine the dependence among days by calculating the estimates
of the parameters of a Markov chain. If we assume that the transition matrix is
homogeneous, the same each year, we can aggregate the data to form a contingency
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Fig. 5.1. The counting processes of rainy days in Madison each June from 1961 to 1971,
from Table 5.1.

table (left), and obtain the corresponding estimated matrix of conditional transition
probabilities (right), dependent on the state on the previous day:

Day 1 Day 1
Day 0 0 1 0 1

0 152 59 0.72 0.28
1 64 44 0.59 0.41

The two rows of the transition matrix are quite different, indicating that there may
be dependence on the state occurring the previous day. If this matrix is a valid
representation for all pairs of days in the series, the mean length of a run of days
with rain would be 1 1 0 41 1 67 days, whereas without rain it would be
1 1 0 72 3 58 days. This indicates some clustering of rainy days.

We also can look at how the present state depends on that two days before:

Day 2 Day 2
Day 0 0 1 0 1

0 136 67 0.67 0.33
1 73 32 0.70 0.30

Here, the conditional probabilities are similar to the marginal ones. If there is rain
one day, the probability is estimated to be 0.30 that there will be rain two days later,
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Fig. 5.2. The observed marginal probability of rain on each day of June over the 11 years
and the corresponding probabilities predicted from the Markov chain for the data in Table
5.1.

similar to the probability of rain when there was none two days before. Notice that

0 72 0 28
0 59 0 41

2 0 68 0 32
0 67 0 33

0 67 0 33
0 70 0 30

The observed two-step transition matrix is similar to that obtained by squaring the
observed one-step transition matrix. Both are close to the stationary matrix.

Because the square of the observed one-step transition matrix is close to the sta-
tionary matrix, the model quickly predicts a constant marginal probability of rain
equal to 0.33. If we start with the observed marginal probability of rain for the first
day of June over all years (0.55) and update for each successive day by multiplying
by the estimated transition matrix, we soon find this constant probability, as can be
seen in Figure 5.2.

5.2.2 Logistic regression

Although we have estimated the parameters of this simple Markov chain by a direct
approach above, it useful to be able to fit the model in a more general context. This
will allow us more easily to compare different models. Thus, these simple Markov
chain models can be fitted by applying logistic regression. This can be done in two
distinct ways:
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(i) The binary series can be used directly.
(ii) The aggregated series in the contingency table given above can be used.

One major advantage of the first approach, logistic regression applied directly to
the binary series, is the ease of adding covariates. An advantage of the second,
without covariates, is that the transition matrix is available directly.

Binary time series

Let us first see how to apply logistic regression to the raw data of a binary series. In
what follows, I primarily shall be interested in first-order Markov chains, so that,
in the models, I shall not use the first response of each series. In this way, the AICs
will be comparable.

In order to fit the model, a new covariate must be created as a lagged vector
of the response values, that is, of the observed states (Section 1.2.3). Then, the
logistic regression is simply

log
1

2
0 1 1 (5.14)

where, as above, is the conditional probability of state given state the time
before. (Note that the first state, 1, has value 0 and the second, 2, has value
1, so that 1 is used in the regression equation.)

Rainfall For the rainfall data, the model with no dependence (corresponding to
relying on the constant marginal probability for prediction) has an AIC of 201.7,
compared to 200.0 for a first-order Markov chain (the conditional probabilities for
dependence one day back, above). The logistic regression model is estimated to be

log
1

2
0 95 0 57 1

The positive sign of 1 indicates that there is a higher probability of rain if there
was some the day before.

For these data, few interesting covariates are available. We can, however, look
at differences among the years and trends over the month (as in Sections 4.2.1 and
4.3 above for recurrent events). First, assume that the transition matrix is arbitrarily
different each year. To fit this model, we add a factor variable for the year. The AIC
rises to 204.1 without interaction and to 213.2 with an interaction between year and
rain on the previous day. If instead, we look for a linear trend in the change in the
transition matrix over the years, the AIC is 200.9. These results indicate that, over
the 11 years, there are neither different amounts of rain nor varying effects of the
previous day. A model with a linear trend over the 30 days of the month also has
an AIC of 200.9, again a poorer fit than the homogeneous Markov chain. Thus,
there is no indication that the transition matrix is not homogeneous over the years
and over the month.
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Higher order dependence It is also possible to check for dependence further back
in time. For a second-order model, another lagged variable must be created, by
displacing the response vector two time points. This also means losing two obser-
vations.

Rainfall Refitting the above models, plus the new one, each with two days re-
moved per year, shows that present rainfall does not depend on that two days be-
fore. This is not surprising, given the results of our inspection of the transition
matrices above. Note that these AICs are not comparable with those just given,
because two days are lost each year.

Contingency table

As we have seen, if no covariates are present, the contingency is square, containing
only four elements. If covariates are used, larger contingency tables will have to
be created. Unfortunately, with this approach, it is generally not feasible to check
in detail for nonhomogeneity, as we did above.

When logistic regression is applied to such a contingency table for a Markov
chain, the table is split into two response vectors in the usual way. Here, these cor-
respond to the two possible states at the present time point. Appropriate covariate
vectors must then be constructed to describe the elements of these response vectors.
In the simplest case, with a first-order chain and no covariates (except the previous
state), each of the two response vectors contains only two elements, corresponding
to the possible states at the previous time point so that the only necessary covariate
vector will be that giving these states. Thus, in Equation (5.14), now is this vector
of previous states instead of a lagged variable.

Rainfall When logistic regression is used with the contingency table, the fitted re-
gression equation is identical to that given above. Here, the AICs for independence
and first-order dependence are respectively 9.0 and 7.3; the change in AIC is the
same as above.

5.2.3 Log linear models

In contrast to logistic regression, log linear models for Markov chains usually are
applied to contingency tables, not to the raw data of the time series. To fit a log
linear model in most software, the Poisson distribution is used with the frequencies
in the contingency table as the ‘response’ variable.

The independence model contains the two states:

log 0 1 1 2 1 (5.15)

For first-order dependence, the interaction between the states on two consecutive
days is added to the independence model:

log 0 1 1 2 1 3 1 1 (5.16)
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To look at second-order dependence, a three-way table must be created. The inde-
pendence model now contains the three states:

log 0 1 1 2 1 3 1 (5.17)

whereas, for first-order dependence, the interactions between the states on consec-
utive days is added:

log 0 1 1 2 1 3 1

4 1 1 5 1 1 (5.18)

Finally, the second-order chain is the saturated model, with dependence on both
previous days plus the interaction between them, thus introducing all possible in-
teractions in the contingency table.

With a two-state process, the results will be the same as those obtained by logis-
tic regression. On the other hand, when there are more than two states, , , and
in the above equations must be replaced by factor variables.

Rainfall For the independence model in Equation (5.15), the AIC is 17.8. Again,
this and the following AIC are not comparable to the ones for the logistic models
because the data are presented in a different way. For first-order dependence, the
AIC is 16.2. As expected, the difference in AIC is the same as above (within
roundoff error). In the estimated log linear model,

log 5 02 0 87 1 0 95 1 0 57 1 1

the estimates of 2 and 3 are identical to the coefficients in the logistic regression
given above.

5.3 Checking the assumptions

In order to use Markov chains, we often have to make rather strong assumptions,
such as homogeneity and order one. However, when possible, it is important to
check them. We already have done this to a certain extent above. Let us formalise
these procedures and, at the same time, extend the methods outlined above to the
analysis of series with more than two states.

The approach using logistic regression only is applicable if there are two states.
As we have seen, this approach is simpler to apply for such binary responses;
in addition, if the raw time series is used, it allows the direct inclusion of both
continuous and categorical covariates in addition to the previous state(s).

If there are more than two states, usually it will be easiest to create contingency
tables and apply log linear models, especially if no covariates are present or if all
covariates are categorical. However, log linear models can also be applied to the
raw data of a time series with more than two states using the technique described
by Lindsey (1995a, pp. 76–82). Here I only shall apply log linear models to con-
tingency tables, in the same way as I did for binary series above.
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5.3.1 Homogeneous transitions

One simplifying assumption for a Markov chain is that the same pattern of change
is occurring in each period. The transition matrix , as calculated above, repre-
sents this pattern. As we have seen (Section 5.1.1), if it is the same over each
period, the matrix is homogeneous. In this section, I shall look more closely at this
aspect of a Markov chain, assuming the first-order assumption to hold. In the next
section I shall look at the latter assumption. Recall that stationarity occurs when
the marginal distribution of states remains constant over time. I shall look at that
in Section 5.4.1.

Global homogeneity

In order to study homogeneity, it is useful to create a set of two-way contingency
tables showing the changes of state between successive consecutive pairs of time
periods. This only can be done if a sufficient number of replicate series is avail-
able. Then, the transition matrix for all periods combined, assuming homogeneity,
can be obtained by aggregating all of these tables and calculating the conditional
probabilities from the resulting table. The question, then, will be whether or not
this global transition matrix is applicable to all of the tables in the series.

In order to model this set of two-way tables, we shall have three variables avail-
able: the state at the beginning of any period, the state at the end of any period,
and the time periods themselves. If the transition matrix is homogeneous, the state
at the end of a period will depend on that at the beginning of the period, but this
dependence will not change with the time period. With this latter relationship omit-
ted, we can write the model as

log (5.19)

where indexes the state at the beginning of a period, that at the end, and the
period. (As in Section 2.3, appropriate constraints must be applied.) Thus,
represents the constant first-order Markov dependence over the time periods.

Voting One possible application of Markov chains is to voting behaviour. Here,
I shall look at successive monthly expressions of intention to vote in the 1940
presidential elections in the USA, obtained from a panel of people in Erie County
between May and October of that year, as given in Table 5.2. These data come from
a survey of potential voters; only information on those (445) who responded to all
six interviews is available. Unfortunately, the individual series of voting intentions
for each person over the complete six months were not published.

In Section 5.2.1, the example involved a few reasonably long (30 observations)
series of rain indicators for the months of June in a number of years. By assuming
that all series had the same properties, I could aggregate them into contingency
tables. Here, a large number of individuals is followed to provide short series (six
observations), but with many replicates. Because of the large number of individual
series involved, it is possible to aggregate to create a separate contingency table
at each consecutive pair of time points, as can be seen in Table 5.2. Thus, the
data used here consist of a set of five two-way tables corresponding to transition
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Table 5.2. Frequencies of one-step transitions for voting intentions in the 1940
USA presidential elections for Erie County, USA. (Goodman, 1962)

Party

Party Democrat Republican Undecided

June

May Democrat 106 7 15
Republican 5 125 16
Undecided 18 11 142

July

June Democrat 109 6 14
Republican 3 124 16
Undecided 9 22 142

August

July Democrat 111 6 4
Republican 2 146 4
Undecided 36 40 96

September

August Democrat 140 4 5
Republican 1 184 7
Undecided 12 10 82

October

September Democrat 146 2 5
Republican 1 192 5
Undecided 12 11 71

matrices for the five periods between successive interviews, yielding a three-way
table over the five time periods.

Here, the very strong uncheckable assumption is that all series, that is, all people
involved, had the same properties. This is probably less realistic than that the 11
months of June had the same properties.

The aggregated table, combining the subtables for all periods, and the condi-
tional probabilities calculated from it are

After After
Before D R U D R U

D 612 25 43 0.90 0.04 0.06
R 12 771 48 0.01 0.93 0.06
U 87 94 533 0.12 0.13 0.75

I now shall examine whether or not this is a suitable representation of change in all
five periods.

Here, the three variables are: the voting intention at the beginning of any period
( ), the voting intention at the end of any period ( ), and the time periods themselves
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( ), with respectively three, three, and five categories. In contrast to the binary case
above, these will be factor variables.

If the transition matrix is homogeneous, the intention to vote at the end of a pe-
riod will depend on that at the beginning of the period, but will be independent of
the time period. The AIC is 179.3 for a homogeneous transition matrix, as com-
pared to 1554.4 for independence and 152.5 for a nonhomogeneous matrix, that
is, the saturated model with five distinct matrices. The assumption of homogene-
ity must be rejected decisively (as must independence!). The process of changing
intentions to vote varies over the months of observation.

Local homogeneity

Checking homogeneity can be difficult if we only have a series for one individual.
It is not possible to create a contingency table for each consecutive pair of time
points. Instead, one will have to cut up the observations into several periods and
assume homogeneity within each. For a collection of series, if global homogeneity
is not reasonable, the same thing may be done to determine whether or not there is
homogeneity within shorter periods of time.

Voting One important supplementary piece of information in the voting study is
that the Democratic convention was held during the third period. Thus, it will be
of interest to model separately the first two time periods and the last two, applying
the above procedure successively to each. The AICs are 549.8, 60.8, and 63.1
before the convention and 703.9, 53.4, and 58.7 after it, for independence, first-
order homogeneity, and nonhomogeneity, respectively. Thus, homogeneity of the
transition matrix is now acceptable in both separate tables. The complete model
for the data, then, has three different transition matrices: for the first two periods,
for the third, and for the last two. The combined AIC is 145.0, better than that for
the saturated model above, with five different transition matrices.

The transition matrices for the first and last periods are estimated, respectively,
to be

After After
Before D R U D R U

D 0.84 0.05 0.11 0.95 0.02 0.03
R 0.03 0.86 0.11 0.01 0.96 0.03
U 0.08 0.10 0.83 0.12 0.11 0.77

We may note, as might be expected, that the diagonal transition probabilities for
the two major parties are considerably smaller before the convention than after, and
the reverse for the undecided. In the first table (May–July), 86 per cent of those
intending to vote for the Republicans and 84 per cent of those for the Democrats are
estimated as not having changed their minds over a period of one month, whereas,
after the convention (August–October), the percentages are 96 and 95, respectively.

Remember, however, that this analysis assumes that intentions at one point in
time only depend on intentions one month before. This is the assumption of a
first-order Markov chain that will be checked in the next section.
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Table 5.3. Two-step transitions for voting intentions in the 1940 USA presidential
elections, Erie County, USA. (Goodman, 1962)

Time 2

Time 1 Time Democrat Republican Undecided

Democrat 435 9 22
Democrat Republican 8 3 0

Undecided 63 6 6

Democrat 0 18 5
Republican Republican 6 557 16

Undecided 1 71 11

Democrat 10 4 24
Undecided Republican 5 17 21

Undecided 54 62 346

5.3.2 Order

In order to examine whether a series of responses follows a first-order Markov
chain or one of higher order, we require the details of changes for each series
over successive periods, and not only over one period at a time, as in the previous
section. We can, then, check whether or not the categories at the present time point
are independent of those two time periods before, given the immediately preceding
state. If so, the process is of first-order (or, more precisely, the second order is not
required, although higher orders may be). If not, it is at least of second order. I
applied such checks in Section 5.2.2 for two states; here, I shall look at a multistate
process.

The states at the three times (indexed by ), 1 (indexed by ), and 2
(indexed by ) will form a three-way table. To check whether or not the state at
time is independent of that at time 2, the appropriate log linear model is the
extension of Equation (5.18) to series with more than two states:

log (5.20)

Voting Let us analyse further results from the same voting study as in the previous
example. As mentioned above, individual sequences of states are not available.
Ideally, we should at least have a table for three consecutive time periods. Un-
fortunately, only a collapsed table combining all sets of two-step transitions was
published. These are aggregated over the four three-month periods (May–July,
June–August, July–September, August–October), as given in Table 5.3. This ta-
ble cannot be obtained from the one in the previous section which only covered
two-month periods.

Because of the form of the data available, here I shall have to assume second-
order homogeneity (most likely wrongly: we have seen that the data are not first-
order homogeneous). If the raw data were available, I also would examine this
assumption in a way similar to that of the preceding section. However, only the
tables used in these two sections were published by Goodman (1962).
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In summary, I here shall assume that the sequence of changes in voting inten-
tions is identical over any consecutive three-month period (homogeneity) during
the study. I shall, then, check whether current intentions in any month depend only
on intentions in the previous month (first-order) or also on intentions two months
before (second-order). Thus, here, I am obliged to ignore possible effects of the
Democratic convention.

With an AIC of 212.6 as compared to 86.6 for the saturated model, this first-
order assumption is rejected. Note, however, that part of the problem may arise
from aggregating periods with nonhomogeneous transition matrices. Given homo-
geneity, present voting intentions depend on more than just those of the preceding
time point. They depend, at least, on the two previous points. With sufficient
data, the assumptions of higher order Markov chains could be checked in the same
manner.

5.4 Structured transition matrices

If the state space of a Markov chain contains several states, estimation of the tran-
sition matrix can involve a fair number of parameters. In certain situations, the
model can be simplified by imposing some informative structure on the probabili-
ties in the matrix.

5.4.1 Reversibility and equilibrium

Let us look first at two possible symmetry characteristics of transition matrices:

(i) As we saw in Section 5.1.1, if a Markov chain is reversible, the probability
of moving between a pair of states is the same in both directions in time.
Rearranging Equation (5.3), we have

(5.21)

(ii) If, as in Equation (5.2), the Markov chain is in the equilibrium state, the
marginal distribution is stationary, not changing over time. (Recall that
this is not the same as the homogeneity of the transition matrix, also studied
in Section 5.3.1.)

In the analysis of contingency tables, reversibility is known as quasi-symmetry and
equilibrium is known as marginal homogeneity. The combination of the two yields
a symmetry model for the table. However, either is possible alone, as a weaker
assumption:

Quasi-symmetry implies that the table would be symmetric if it were not for the
distorting effect of the changing marginal totals.
Marginal homogeneity implies that the marginal totals are the same but the body
of the table is not symmetric.

The latter is not a log linear model; a special algorithm must be used to fit it.
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Table 5.4. Results from Glass’s study of British social mobility. PA: professional
and high administrative; MS: managerial, executive, and high supervisory; IS:
low inspectional and supervisory; SM: routine nonmanual and skilled manual;

UM: semi- and unskilled manual. (Bishop et al., 1975, p. 100, from Glass)

Son

Father PA MS IS SM UM

PA 50 45 8 18 8
MS 28 174 84 154 55
IS 11 78 110 223 96
SM 14 150 185 714 447
UM 3 42 72 320 411

The log linear model for reversibility (quasi-symmetry) is

log with (5.22)

Suppose, say, that the Markov chain has five states; then, the appropriate symmetric
factor variable for fitting this model will be

K A B C D
A L E F G
B E M H I
C F H N J
D G I J O

This variable has as many levels as there are possible paired combinations of states,
plus one for each position on the diagonal. Each symmetric pair has the same level.

For complete symmetry, that is reversibility plus equilibrium, the joint probabil-
ities in opposing cells across the diagonal are equal:

(5.23)

which is Equation (5.21) written in a different way. The parameters for the margins
in Equation (5.22) are not fitted, so that the model becomes

log with (5.24)

Social mobility In the 1950s, Glass carried out a now classical study of British
social mobility. One summary of his results is provided in Table 5.4. From this,
the transition matrix is estimated to be

0 39 0 35 0 06 0 14 0 06
0 06 0 35 0 17 0 31 0 11
0 02 0 15 0 21 0 43 0 19
0 01 0 10 0 12 0 47 0 30
0 00 0 05 0 08 0 38 0 48

and the marginal probabilities, (0.04, 0.14, 0.15, 0.43, 0.24) for the father and
(0.03, 0.14, 0.13, 0.41, 0.29) for the son.
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For this table, the model for independence has an AIC of 480.5 and the saturated
model for a full Markov chain has 100.4, providing strong indication of depen-
dence. This is not surprising because sons often tend to have the same class as
their fathers. However, this model has 20 parameters. In contrast, the reversibility
model, with six fewer parameters, fits somewhat better, having an AIC of 96.7. On
the other hand, equilibrium fits more poorly: 112.8, as does the model with both:
109.1.

These results indicate that the (marginal) social structure of the categories has
changed between father and son, but that, given this change, there may be equal
movement in both directions between pairs of social categories. The estimates
of the symmetry parameters in the reversibility model, with the first being base-
line, are (0, 1 37, 0 81, 1 76, 0.93, 1.62, 0.61, 1.88, 1.12, 2.70), so that the
movement between the first and last categories has the smallest probability and that
between the last two categories has the highest.

5.4.2 Random walks

Let us now consider a random walk (Section 5.1.3) on a finite line segment with
reflecting barriers and without drift. With five states (positions on the line), the
appropriate factor variable for a log linear model will be

— A — — —
A — A — —
— A — A —
— — A — A
— — — A —

However, observed processes often have nonzero values elsewhere in the contin-
gency table besides these two minor diagonals. Thus, it is useful to generalise the
random walk to allow no move and moves greater than one step. Such a process
corresponds to a model for diagonal symmetry in a contingency table, with factor
variable

E A B C D
A E A B C
B A E A B
C B A E A
D C B A E

If drift is allowed, this becomes

I A B C D
E I A B C
F E I A B
G F E I A
H G F E I
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Table 5.5. Initial and follow-up blood pressure, classified according to
hypertension status. (Lawal and Upton, 1990, from Freeman)

Follow-up

Initial Normal Borderline Elevated

Normal 105 9 3
Borderline 10 12 1
Elevated 3 2 7

Blood pressure The blood pressures of 152 people were recorded at an initial
baseline time and subsequently at a follow-up visit. The results were classified as
normal, borderline, or elevated, as shown in Table 5.5. Let us examine whether or
not the probability of moving among states is the same in either direction on this
ordered scale.

The (conditional) transition matrix is estimated to be

0 90 0 08 0 03
0 43 0 52 0 04
0 25 0 17 0 58

and the marginal probabilities, (0.77, 0.15, 0.08) at the initial time and (0.78, 0.15,
0.07) at the follow-up. The latter are very similar. The matrix of joint probabilities
is

0 69 0 06 0 02
0 07 0 08 0 01
0 02 0 01 0 05

This may have the form of a random walk.
For these data, the model for independence has an AIC of 47.7 and the saturated

model for a full Markov chain has 25.7, a strong indication of dependence. This
is not surprising because many people have the same classification at the two time
points. The random walk without drift is a small improvement, with 24.2, bet-
ter than that with drift, with 25.1. Thus, we can conclude that the probability of
moving in opposite directions on the scale may be the same.

5.4.3 Mover–stayer model

Another special type of Markov chain model frequently has been applied in mo-
bility studies. As we have seen in some of the preceding examples, dependence
over time often results primarily from the large number of individuals staying in
the same state between two successive observation points. In order to construct an
appropriate model, let us assume that the population contains two subpopulations,
called movers and stayers. The result, then, can be called a mover–stayer model.

In such a model, the off-diagonal individuals must belong to the mover subpop-
ulation. However, those on the diagonal have the same state at the two observation
points. These may be stayers, but they could also be individuals who move at some
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Table 5.6. Migrant behaviour in Great Britain between 1966 and 1971.
(Fingleton, 1984, p. 142)

1971

Central Urban Lancs. West Greater
1966 Clydes. and Yorks. Midlands London

Central Clydesdale 118 12 7 23
Urban Lancs. and Yorks. 14 2127 86 130
West Midlands 8 69 2548 107
Greater London 12 110 88 7712

other time, before or after the observations were made. Thus, the diagonal con-
tains a mixture of the two subpopulations; without further information, we cannot
separate them. Thus, there is a problem for estimation of the parameters in such
a model. (This model is similar to the survival models of Section 3.4, for which
the assumption was made that the people with censored duration times arose from
a mixture of two unobservable subpopulations: those who would and would not
have an event.)

If only observations at two points in time are available, a Markov chain cannot
be fitted in these circumstances. Instead, let us make the further assumption that
the two successive states of the movers are independent. We can check this on the
individuals who actually moved, that is, ignoring the diagonal values. In terms of
a log linear model for contingency tables, this is called quasi-independence.

Migration Data on migrant behaviour are available between 1966 and 1971 for
moves among the four most important centres of population in the UK, given in
Table 5.6. These data originated as a 10 per cent sample from the published mi-
gration reports of the 1971 British census; they describe the place of residence in
1966 and 1971 of a subgroup of migrants born in the New Commonwealth. The
geographical locations are ordered from the north to the south of Great Britain.

The transition matrix is estimated to be

0 74 0 08 0 04 0 14
0 01 0 90 0 04 0 06
0 00 0 03 0 93 0 04
0 00 0 01 0 01 0 97

and the marginal probabilities, (0.01, 0.18, 0.21, 0.60) in 1966 and (0.01, 0.18,
0.21, 0.61) in 1971, that is, virtually identical.

For these data, the model for independence has an AIC of 9999.5 and the satu-
rated model for a full Markov chain has 66.5, indicating strong dependence. Let us
see whether or not this dependence arises primarily from the stayers. The mover–
stayer model, obtained by weighting out the diagonal of the table and refitting the
model for independence, has an AIC of 62.6, an improvement. For the movers,
those individuals who are susceptible to migrate (or at least those who did in the
observation period), the new place of residence does not depend on the original
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residence, a rather surprising conclusion, given the varying distance among the
regions.

We can use the quasi-independence model for the observed movers to predict
the numbers of movers on the diagonal, those not happening to move in the ob-
servation period (by multiplying together the appropriate marginal probabilities).
The estimates are, respectively, (1.6, 95.2, 60.3, 154.6) for the four regions, so that,
by subtraction, the numbers of stayers are estimated to be (116.4, 2031.8, 2487.7,
7557.4). 92.6 per cent of the population is estimated as not being susceptible to
migration.

Further reading

Derman et al. (1973, pp. 550–662) provide a useful elementary introduction to
Markov chains. For more advanced treatments, see Bailey (1964, Ch. 5), Bremaud
(1999), Doob (1953, Ch. 5), Feller (1950, Ch. 15), Grimmett and Stirzaker (1992,
Ch. 6), Iosifescu (1980), or Karlin and Taylor (1975, Chs. 2–3). Berg (1993) pro-
vides many interesting applications of random walks in biology.

For a general introduction to categorical data analysis, the reader may like to
consult Agresti (1990), Fingleton (1984), or Lindsey (1995a). The latter two have
major sections devoted to applications in stochastic processes.

Exercises

5.1 The Six Cities study looked at the longitudinal effects of air pollution on
health. Part of the data involved children in Steubenville, Ohio, USA, who
were followed once a year from ages seven through ten. Each year, the
wheezing status of the child was recorded, as shown in Table 5.7. Whether
the mother smoked or not when the child was seven is also available, al-
though this could have evolved over time.

(a) How does the child’s wheezing evolve over time?
(b) Does it depend on the smoking status of the mother?
(c) Are the transitions between the two states homogeneous over time?
(d) What order of model is required?
(e) Are the respondents a uniform group after the smoking status of

the mother is taken into account?

5.2 A panel study was conducted to follow the interurban moves of people in
the USA, classified by age and ownership of their home, as shown in Table
5.8.

(a) Develop an appropriate model for these data.
(b) Are the transitions between the two states homogeneous over time?
(c) What order of model is required?
(d) How does moving depend on age and ownership status?
(e) Does the probability of moving depend on the number of previous

moves?
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Table 5.7. Wheezing status of children in Steubenville, Ohio, USA, from ages
seven through ten, with the mother’s smoking status when the child was age seven.

(Fitzmaurice and Laird, 1993)

Age Smoking

7 8 9 10 No Yes

No No No No 237 118
No No No Yes 10 6
No No Yes No 15 8
No No Yes Yes 4 2
No Yes No No 16 11
No Yes No Yes 2 1
No Yes Yes No 7 6
No Yes Yes Yes 3 4
Yes No No No 24 7
Yes No No Yes 3 3
Yes No Yes No 3 3
Yes No Yes Yes 2 1
Yes Yes No No 6 4
Yes Yes No Yes 2 2
Yes Yes Yes No 5 4
Yes Yes Yes Yes 11 7

5.3 A number of women in the USA were followed over five years, from 1967
to 1971, in the University of Michigan Panel Study of Income Dynamics.
The sample consisted of white women who were married continuously to
the same husband over the five-year period. Having worked in the year is
defined as having earned any money during the year. The sample paths of
labour force participation are given in Table 5.9. Here, there are two types
of stable behaviour that might be called stayers.

(a) Study how the most recent employment record of each woman de-
pends on her previous history.

(b) Are the transitions between the two states homogeneous over time?
(c) What order of model is required?
(d) Is there indication of heterogeneity among the women?

5.4 After the accident at the Three Mile Island nuclear power plant in the
spring of 1979, mothers of young children living within ten miles of the
plant were interviewed four times, in winter 1979, spring 1980, autumn
1980, and autumn 1982, to determine stress levels. The mothers were
classified by distance from the plant, as shown in Table 5.10.

(a) Study how the level of stress changes over time.
(b) Is there any evidence that stress differs with distance from the

plant?
(c) Notice that the interviews were not equally spaced in time. What

difference does this make to the interpretation of your results?
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Table 5.8. Interurban moves over five two-year periods for a sample of people in
Milwaukee, Wisconsin, USA, classified by age and ownership. M: person moved
in the two-year period, S: he or she stayed in the same place. (Crouchley et al.,

1982, from Clark et al.)

Renters Owners

Age 25–44 46–64 25–44 46–64

S S S S S 511 573 739 2385
S S S S M 222 125 308 222
S S S M S 146 103 294 232
S S S M M 89 30 87 17
S S M S S 90 77 317 343
S S M S M 43 24 51 22
S S M M S 27 16 62 19
S S M M M 28 6 38 5
S M S S S 52 65 250 250
S M S S M 17 20 48 14
S M S M S 26 19 60 25
S M S M M 8 4 10 3
S M M S S 8 9 54 21
S M M S M 11 3 18 1
S M M M S 10 3 21 1
S M M M M 4 1 8 2
M S S S S 41 29 134 229
M S S S M 16 15 23 10
M S S M S 19 13 36 25
M S S M M 2 4 1 0
M S M S S 11 10 69 24
M S M S M 11 2 15 3
M S M M S 1 9 13 2
M S M M M 2 2 2 0
M M S S S 7 5 40 18
M M S S M 4 2 9 2
M M S M S 8 1 15 3
M M S M M 1 0 5 0
M M M S S 8 1 22 7
M M M S M 3 2 7 2
M M M M S 5 0 9 2
M M M M M 6 3 5 0

5.5 The original British social mobility table, from which Table 5.4 was ob-
tained, is given in Table 5.11.

(a) Does this table show the same dependence structure as the more
condensed one in Table 5.4?

(b) Was it reasonable to combine the categories in the reduced table?

5.6 Table 5.12 shows the results of a Danish social mobility study.

(a) How are the transition probabilities structured?
(b) Compare your results to those for British social mobility.
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Table 5.9. Labour force participation of a panel of women in the USA,
1967–1971. (Heckman and Willis, 1977)

1971

1970 1969 1968 1967 Yes No

Yes Yes Yes Yes 426 38
No Yes Yes Yes 16 47
Yes No Yes Yes 11 2
No No Yes Yes 12 28
Yes Yes No Yes 21 7
No Yes No Yes 0 9
Yes No No Yes 8 3
No No No Yes 5 43
Yes Yes Yes No 73 11
No Yes Yes No 7 17
Yes No Yes No 9 3
No No Yes No 5 24
Yes Yes No No 54 16
No Yes No No 6 28
Yes No No No 36 24
No No No No 35 559

5.7 Results from a study of voting during the Swedish elections of 1964 and
1970 are shown in Table 5.13.

(a) Find an appropriate model to describe these data.
(b) Interpret the structure that you have found.

5.8 Frequency of company moves between British regions was recorded be-
tween 1972 and 1978, as shown in Table 5.14.

(a) Does the probability of a move depend on the geographical dis-
tance?

(b) How important is the role of stayers for these data?

5.9 Changes in votes were recorded for a sample of people in the 1964, 1968,
and 1970 Swedish elections as shown in Table 5.15. These provide a dif-
ferent classification of the parties than that given in Table 5.13.

(a) Construct an appropriate Markov chain model for these data.
(b) Check for order and homogeneity.
(c) Can you take into account the unequal periods between elections?
(d) How do the results compare to those for Table 5.13?

5.10 Table 4.3 gave a series involving the numbers of accidents in a section of
a mine in the UK.

(a) Analyse these data as a Markov chain applied to a binary point
process where the states are presence or absence of accidents on
each day.

(b) What order of model is required?
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Table 5.10. The stress levels, classed as low (L), medium (M), and high (H), of
mothers of young children living within ten miles of the Three Mile Island nuclear

power plant at four time points after the nuclear accident of 1979. (Conaway,
1989, from Fienberg et al.)

5 miles 5 miles

Wave Wave 4

1 2 3 L M H L M H

L L L 2 0 0 1 2 0
L L M 2 3 0 2 0 0
L L H 0 0 0 0 0 0
L M L 0 1 0 1 0 0
L M M 2 4 0 0 3 0
L M H 0 0 0 0 0 0
L H L 0 0 0 0 0 0
L H M 0 0 0 0 0 0
L H H 0 0 0 0 0 0
M L L 5 1 0 4 4 0
M L M 1 4 0 5 15 1
M L H 0 0 0 0 0 0
M M L 3 2 0 2 2 0
M M M 2 38 4 6 53 6
M M H 0 2 3 0 5 1
M H L 0 0 0 0 0 0
M H M 0 2 0 0 1 1
M H H 0 1 1 0 2 1
H L L 0 0 0 0 0 1
H L M 0 0 0 0 0 0
H L H 0 0 0 0 0 0
H M L 0 0 0 0 0 0
H M M 0 4 4 1 13 0
H M H 0 1 4 0 0 0
H H L 0 0 0 0 0 0
H H M 1 2 0 1 7 2
H H H 0 5 12 0 2 7

(c) Reanalyse the data as a three-state model where the states are no
accidents, one accident, and more than one accident.

(d) Does this change the conclusions?

5.11 The numbers of patients arriving at an intensive care unit per day in a
hospital within the Oxford, UK, Regional Hospital Board were recorded
from February 1963 to March 1964, as shown in Table 5.16.

(a) Perform an analysis similar to that for the mine accidents in Ex-
ercise 5.10, where the two states are whether or not any patients
arrive. Compare the results from logistic and log linear regression.

(b) Fit models where the states are the actual numbers of patients arr-
iving and compare your results to those with a binary state.

5.12 Patients with acute spinal cord injury and bacteriuria (bacteria in their
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Table 5.11. The complete table for Glass’s study of British social mobility. I:
professional and high administration, II: managerial and executive, III:

inspection, supervisory, etc. (high), IV: inspection, supervisory, etc. (low), Va:
routine nonmanual, Vb: skilled manual, VI: semiskilled manual, VII: unskilled

manual (Duncan, 1979, from Glass)

Son

Father I II III IV Va Vb VI VII

I 50 19 26 8 7 11 6 2
II 16 40 34 18 11 20 8 3
III 12 35 65 66 35 88 23 21
IV 11 20 58 110 40 183 64 32
Va 2 8 12 23 25 46 28 12
Vb 12 28 102 162 90 554 230 177
VI 0 6 19 40 21 158 143 71
VII 0 3 14 32 15 126 91 106

Table 5.12. The results of a Danish social mobility study. 1: professional and
high administrative, 2: managerial, executive and high supervisory, 3: low

inspectional and supervisory, 4: routine nonmanual and skilled manual, 5: semi-
and unskilled manual. (Bishop et al., 1975, p. 100, from Svalastoga)

Son

Father 1 2 3 4 5

1 18 17 16 4 2
2 24 105 109 59 21
3 23 84 289 217 95
4 8 49 175 348 198
5 6 8 69 201 246

urine) were assigned randomly to one of two treatment groups and fol-
lowed for up to 16 weeks. The first group (A) was treated for all episodes
of urinary tract infection that occurred, whereas the second group (B) was
only treated if two specific symptoms appeared. All patients entered the
study with bacteriuria so that the first response is always positive. Having
bacteriuria for a longer period did not mean necessarily that a patient was
sicker.

The resulting binary series for the 36 patients in each group having at
least four weeks of observation are shown in Table 5.17. (Joe, 1997, im-
puted 11 missing values.)

(a) Can these responses be described by a first-order Markov chain?
(b) Is there any evidence of difference between the two groups?
(c) Apparently, subjects in the first group systematically had bacteria

removed, whereas those in the second group would retain the in-
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Table 5.13. The voting changes between the Swedish elections of 1964 and 1970.
SD: Social Democrat, Con: Conservative. (Fingleton, 1984, p.138)

1970

1964 Comm. SD Centre People’s Con.

Communist 22 27 4 1 0
Social Dem. 16 861 57 30 8
Centre 4 26 248 14 7
People’s 8 20 61 201 11
Conservative 0 4 31 32 140

Table 5.14. Company moves between British regions, 1972–1978. SE: South
East, EA: East Anglia, SW: South West, WM: West Midlands, EM: East Midlands,

Y: Yorkshire, NW: North West, N: North, W: Wales, S: Scotland. (Upton and
Fingleton, 1989, p. 6)

1978

1972 SE EA SW WM EM Y NW N W S

SE 958 119 70 16 95 48 39 46 89 41
EA 10 121 44 0 7 2 8 8 3 6
SW 9 11 162 5 2 2 9 6 25 6
WM 7 0 1 288 13 4 10 7 33 6
EM 10 9 5 6 332 16 4 6 6 4
Y 6 1 2 1 20 356 3 9 1 9
NW 8 1 10 6 10 15 331 12 21 8
N 0 2 4 1 5 4 5 119 1 3
W 5 0 3 1 0 0 0 2 154 1
S 1 1 2 0 1 2 4 5 4 269

fection for some time after acquiring it. What evidence do the data
provide for this?
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Table 5.15. Voting in the 1964, 1968, and 1970 Swedish elections. SD: Social
Democrat, C: Centre, P: People’s, Con: Conservative. (Fingleton, 1984, p. 151)

1970

1964 1968 SD C P Con

SD SD 812 27 16 5
C 5 20 6 0
P 2 3 4 0
Con 3 3 4 2

C SD 21 6 1 0
C 3 216 6 2
P 0 3 7 0
Con 0 9 0 4

P SD 15 2 8 0
C 1 37 8 0
P 1 17 157 4
Con 0 2 12 6

Con SD 2 0 0 1
C 0 13 1 4
P 0 3 17 1
Con 0 12 11 126

Table 5.16. Numbers of patients arriving at an intensive care unit per day from
February 1963 to March 1964. (from Cox and Lewis, 1966, pp. 254–255; read

across rows)

0 0 0 2 0 0 0 1 0 0 1 0 0 0 0 1 0 2 0 2 1 0 0 0 2 0 0 1 1 0 1 0 0 0 2 0 1 0 0
0 0 0 1 1 1 0 0 1 0 1 0 3 0 0 0 2 0 1 0 0 2 0 0 0 1 0 0 2 1 1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 2 0 1 0 1 1 1 0 1 2 1 1 0 0 1
0 1 0 2 0 1 0 1 0 0 0 0 2 0 1 2 0 0 1 0 2 0 0 2 1 0 2 2 1 1 0 1 1 0 2 0 0 0 0
0 1 1 1 0 1 3 0 0 0 0 0 0 1 1 0 1 1 0 0 2 0 1 0 0 1 1 2 0 0 0 3 0 0 0 1 0 3 0
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 2 1 0 1 0 1 1 0 1 0 0 1 0
1 2 0 0 1 1 0 0 1 1 2 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 3 0 1 1 0 0 1 0 0 0 1 1
2 0 0 2 1 1 1 1 2 0 1 1 0 0 3 1 1 1 1 0 0 1 2 1 0 1 1 0 1 2 1 1 4 0 2 0 2 1 1
0 1 1 1 2 1 1 1 0 0 2 1 1 2 2 2 0 0 1 0 0 1 0 1 1 0 1 1 3 0 0 2 1 1 0 2 1 0 1
0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 2 1 1 0 0 0 2 1 0 0 0 0 1 3 1 1 0 0 1 1 1
1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 2
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Table 5.17. Time series of infections (1) with bacteriuria for patients randomised
to two treatment groups. (Joe, 1997, p. 353)

Group A Group B

1001010100101 111100011
10001 1111111111111111
1010010010101010 111111111111001
101000101 100011111110111
100011010111111 1111111111010000
1100100010101001 1111100111111111
100010101 1000011110111001
1000 111000111011
1001000000100010 1110111111111111
1010011 1110
1010110101 1011111111
1001010101 1011111111111111
100110 1111111100000110
10100011010100 100010
10010 1001111011011111
1000101100100100 10011
1010100110110100 111111100000
1000100010000000 1000111111111000
1010001010011001 1111001100011111
101000011011 1001111111111111
101000111011101 1000000000000000
1001000100 1100111111100111
1000101001110001 100100
1010001010010011 11111100000
1010101001001 100111110100
1000101010100010 1111111111
1010001001 1111111110111111
100010110101 1111101110111111
111000 110011
1001000010100010 1100000110010000
10000101001 100001111111111
110011011 100011110101001
100101100010001 1111110011111111
11010011001010 1111000101111111
10010010 1100000111
100100 1111000
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Event histories

The stochastic processes that we have studied so far all involve data on the times
between events. These can be called event histories. The simplest case occurred
when there was one type of event and it was absorbing (Chapter 3). The classical
examples are human mortality and machine breakdown. The situation is slightly
more complex when the event is recurrent (Chapter 4). Examples include unem-
ployment, sickness, and moving house. It is still more complex when individuals
may change between distinct states (Chapter 5). Here, an example would be catch-
ing a disease, being hospitalised, recovering, or dying. However, up until now,
I only have looked at this latter possibility in discrete time, through the use of
Markov chains. We shall now see how to generalise those procedures to changes
among several states in continuous time.

6.1 Theory

When an individual can change state at any point in time in an event history pro-
cess, each event indicates a transition between states. However, by appropriate def-
inition, it is possible to model almost any series of events, even recurrent events, as
a set of transitions among states. I already have covered much of the basic theory
in Section 4.1.

6.1.1 Diagrams

With several states and, perhaps, transitions only being possible among some of
them, event history processes can be relatively complex. Generally, it is useful to
clarify ideas by constructing a diagram for the states and permissible transitions
between them. In this light, let us examine several special cases of particular im-
portance:

Mortality: two states of which the second is absorbing, the classical survival
analysis covered in Chapter 3.
Progression through a fixed series of irreversible states, such as disability: the
example of moves through distinct states mentioned above, if death must be the
final result.

133
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– Recurrent events (covered in Chapter 4), if appropriate, can be taken as a
special case where the successive states are defined by the numbers of events
already experienced.

Alternance between two states, such as an alternating Poisson process having
two different intensities.
Competing risks: transition from one state to any one of several others.

Examples of diagrams for several of these common models are shown in Figure
6.1. Of course, several of these possibilities may need to be combined in order
adequately to model an event history.

When a set of irreversible states forms a progressive series, such as in the ad-
vance of incurable diseases with a final, absorbing, death state, then there will be
one less transition intensity than the number of states. However, when at least some
of the state transitions are reversible, many more different intensity functions may
need to be estimated and the problem becomes more complex. Further complica-
tions arise when any one of several states may be entered at a given time point,
similar to those with competing risks in the simpler context of survival analysis.

6.1.2 Defining the states

Model construction depends heavily on how the series of states is defined. Gen-
erally, there will be no unique correct structure; as always, the model used will
depend on the questions to be answered! However, where certain simplifying as-
sumptions are possible, they will facilitate model building.

As we have seen, a model is progressive if all states, except the first, have only
one transition into them. Then, the current state defines what states were previ-
ously occupied and in what order, but not when the changes occurred.
The transition probability to the next state is Markovian if it only depends on the
present state and not on the previous history of the individual.

However, transition probabilities often may depend on the time in the state; thus,
an extension is to allow them to depend on the time since the last event, a special
case being the semi-Markov model (Section 6.1.4).

A multistate model should not have several direct transition routes from one state
to another; instead several different states may be defined. For example, if subjects
in the state of having a given disease may recover either by natural body defences or
by medical treatment, either these can be defined as two different recovery states, as
in the alternative outcomes model of Figure 6.1, or they should not be distinguished
at all.

6.1.3 Continuous-time Markov chains

Markov chain models in discrete time (Chapter 5) describe processes that move
from state to state, staying in each state a discrete length of time. In most cases,
this duration follows a geometric distribution (Section 5.1.2). The continuous-
time analogue will be the exponential distribution. Thus, the generalisation of
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Progressive events

A B C

Recurrent events

0 1 2 3

Alternating events

A B

Alternative outcomes

A B

C1

C2

Fig. 6.1. Examples of diagrams for simple event histories.

Markov chains to continuous time will involve stays in each state following this
latter distribution. Many results analogous to those for discrete time still hold,
such as the existence of communicating classes, irreducibility, recurrence, and so
on.
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Differences with respect to discrete time

Let us assume that the process of interest must remain in each state a strictly
positive length of time (sometimes called a pure jump process). If the sojourn
times in each state have independent exponential distributions, we shall have a
continuous-time Markov chain. The mean times in the states, or the intensities

1 of leaving them, will, in general, be different. If a state is absorbing, the
mean duration will be infinite and 0.

One of the simplest cases is the Poisson counting process (Section 4.1.1). This
is the only renewal process that is a Markov chain (Grimmett and Stirzaker, 1992,
pp. 229, 339).

In the case of discrete time (Chapter 5), we worked with a matrix of condi-
tional transition probabilities . Here, it will be necessary to work with a matrix

of conditional transition intensities of moving from state to state . In
this matrix, the diagonal elements would correspond to staying in the same state,
which does not make sense in continuous time. However, it is convenient to set
them equal to where

∑ (6.1)

Then, the sum of each row will be zero, instead of unity for the matrix of condi-
tional transition probabilities in the discrete case.

Transition probabilities now will refer to transitions occurring within some spec-
ified, arbitrarily fixed, interval of time, say ∆ . With one intensity , from an ex-
ponential distribution, the probability is given by the survivor function in Equation
(3.13):

∆ e ∆

In a similar way, we must here exponentiate the matrix of intensities (notice that
appears on the diagonal) to obtain the corresponding matrix of probabilities

of transition within the chosen time interval:

∆ e ∆ (6.2)

where the superscript ∆ is not a power but indicates the time interval.
In analogy to the scalar case, this matrix operation is defined by

e ∆ ∆
1!

∆ 2

2!
(6.3)

However, this is the definition, not necessarily the best procedure to calculate the
exponential. A preferable way is by spectral decomposition, as for the power of a
matrix in Equation (5.7). Again, the decomposition is given by Equation (5.6) and
the exponential is then

e ∆ e ∆ 1 (6.4)

where is a matrix with the eigenvectors of as columns and is a diagonal
matrix containing the corresponding eigenvalues.
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With the initial condition 0, the marginal probabilities now will be available,
updated in the same way as in discrete time. The stationary marginal distribution
of the chain, when it exists, also can be obtained from

∆ (6.5)

analogous to Equation (5.2), but here also from

(6.6)

(Grimmett and Stirzaker, 1992, p. 244).

Embedded Markov chain

A second way to understand the functioning of a continuous-time Markov chain
involves a corresponding discrete-time embedded Markov chain. This chain only
will specify the moves from state to state, but not their times of occurrence. Let its
probability transition matrix be (the superscript is not a power; rather, it distin-
guishes this matrix from the probability transition matrix ∆ , obtained by matrix
exponentiation above). This matrix will have 0 for all , except absorbing

states for which 1.
Then, the time spent in each state will follow an exponential distribution with

intensity , independently of what was the previous state and how long it spent
there. In other words, the next state visited is independent of the amount of time
spent in the previous state. The transition intensities between states are given
by

(6.7)

Notice that the transition intensities uniquely determine both the , from
Equation (6.1), and the transition probabilities , from Equation (6.7)

(unless 0 in which case 1; see Tijms, 1994, p. 132).

The mean recurrence time from entering state to returning to it will be
and from exiting the state to returning to it will be 1 , where is
the stationary marginal probability distribution of the embedded chain (generally
different from ). (See Iosifescu, 1980. p. 256 and compare these results with
those in Section 5.1.2.)

6.1.4 Semi-Markov processes

The major constraining assumption of continuous-time Markov chains is that the
intensity is constant while the process is in a given state. On the other hand, in the
present context, the limitation of a renewal process (Section 4.1.4), with noncon-
stant intensity, is that only one type of event can recur. It would be useful to have
models that combine this two approaches. We can imagine doing this in two ways:

(i) A continuous-time Markov chain can be generalised to a semi-Markov pro-
cess by removing the assumption of constant intensity. Thus, the intensity
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will be allowed to vary over the time during which the process is in a given
state.

(ii) An ordinary renewal process can be generalised to a Markov renewal pro-
cess by removing the restriction that the same event is recurring all the
time. In addition, the distributions of the durations between events (now
transitions between states) need not be the same between all possible pairs
of events. In the same way that a continuous-time Markov chain is a gen-
eralisation of a Poisson point process, this is a generalisation of a renewal
process.

In fact, the final result is the same in both cases. Equation (4.11) already gave a
general definition of this type of process.

In such a process, the intensity function depends on the time since the last event
as well as on the two states between which the transition occurs. Thus, in contrast
to a renewal process (Chapter 4) and to a Markov chain in continuous time (Section
6.1.3), here the intensity is a time-changing function in two ways: over time in a
given state and between states.

An additional way to remove the constant intensity assumption is by letting the
intensity be a function of time-varying covariates, another form of nonhomoge-
neous Poisson process within each state. A further extension is to introduce such
covariates into a semi-Markov model.

6.2 Models for missing observations

In any study requiring observation over an extended period of time, major prob-
lems can arise if individuals disappear permanently before completion: nonrandom
dropouts. An second problem may be that the series of some individuals cannot be
observed at all required time points so that (some of) the exact times of change of
state may be missing. This erratically missing information may also be nonrandom.
If these phenomena are not modelled explicitly, the results may be misleading, as
is always the case when inappropriate models are used.

6.2.1 Erratic and permanent missingness

In the context of multistate processes for event histories, one approach to modelling
missingness is by including, in addition to the states of interest, one specific state
for each type of missing observation. The two main possibilities are:

(i) a transient state for erratically missing observations or
(ii) an absorbing state for dropouts.

If it is not possible to determine whether or not missing observations are erratic or
dropouts, one combined state may be appropriate. If there is no state exclusively
for dropouts, the system may be closed because it will be possible to leave either
the erratic or the combined erratic/dropout state.
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As a simple case, consider a closed, three-state system with intensity transition
matrix

Λ
2 1 3 1 2 1 3 1

1 2 1 2 3 2 3 2

1 3 2 3 1 3 2 3

(6.8)

where the third state is for missing observations. Then, the corresponding proba-
bility transition matrix for the embedded discrete-time Markov chain will be

0 2 1 3 1

1 2 0 3 2

1 3 2 3 0

(6.9)

Thus, all states form one irreducible communicating class.
If the third state is for dropouts, the intensity transition matrix will be

Λ
2 1 3 1 2 1 3 1

1 2 1 2 3 2 3 2

0 0 0
(6.10)

and the corresponding embedded probability transition matrix

0 2 1 3 1

1 2 0 3 2
0 0 1

(6.11)

Of course, this approach to handling missing observations is not restricted to
continuous-time Markov chains. It can also be used with semi-Markov processes.

Addiction In a clinical trial to evaluate the efficacy of buprenorphine for treating
addiction, 162 patients were randomised to one of three groups: 8 mg of buprenor-
phine administered sublingually daily, 20 or 60 mg of methadone, each adminis-
tered orally daily. Urine samples were collected three times a week, on Monday,
Wednesday, and Friday, so that the observation times were unequally spaced. The
samples were assayed for presence of opiates, with a positive assay indicating treat-
ment failure; the first state will be for a negative assay and the second a positive
one.

However, a third possibility at each given observation point was a missed visit
for the sample. These missing observations clearly were nonrandom; hence, it is
essential to model them. They could be sporadic or a permanent loss to follow-up.
In fact, by the end of the study, the groups on buprenorphine and on the 60 mg dose
of methadone had about the same amount of dropout, around 60 per cent, whereas
the 20 mg dose group of methadone had about 80 per cent. However, at any given
time, it was impossible to know whether a missing sample would be transient or
permanent. Thus, only one missingness state will be used to model both cases.

The study ran for 17 weeks but only the data for the first three (methadone) or
four (buprenorphine) weeks were published, as shown in Table 6.1. In the form pre-
sented, only transition frequencies between successive samples are available. The
individual trajectories of the patients cannot be followed from these data. (The data
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Table 6.1. Transition frequencies among three states (1: negative; 2: positive; 3:
missing) under three treatments in a clinical trial of buprenorphine. (Weng, 1994)

Transition

Treatment Days 11 12 13 21 22 23 31 32 33

Buprenorphine 0–2 5 2 0 7 24 5 5 4 1
8 mg 2–4 14 2 1 11 14 5 2 2 2

4–7 20 5 2 3 11 4 0 3 5
7–9 17 3 3 3 14 2 2 1 8
9–11 21 0 1 4 10 4 3 3 7

11–14 24 4 0 2 9 2 0 3 9
14–16 20 4 2 1 10 5 0 2 9
16–18 18 2 1 5 7 4 0 4 12
18–21 20 2 1 6 7 0 2 3 12
21–23 23 3 2 2 8 2 0 1 12
23–25 22 2 1 2 7 3 2 1 13
25–28 20 2 4 4 6 0 1 2 14

Methadone 0–2 2 0 0 15 23 8 1 6 0
20 mg 2–4 10 5 3 5 23 1 1 3 4

4–7 14 1 1 2 24 5 1 3 4
7–9 12 3 2 1 21 6 2 1 7
9–11 8 5 2 5 16 4 2 0 13

11–14 9 5 1 6 13 2 4 2 13
14–16 3 7 9 2 13 5 1 5 10
16–18 3 3 0 4 18 3 3 4 17
18–21 7 3 0 5 15 5 2 1 17

Methadone 0–2 5 1 0 10 28 5 1 3 1
60 mg 2–4 11 2 3 9 19 4 2 2 2

4–7 15 4 3 1 16 6 1 3 5
7–9 9 6 2 5 14 4 2 3 9
9–11 10 3 3 7 13 3 1 4 10

11–14 11 5 2 2 13 5 1 4 11
14–16 10 2 2 7 14 1 1 4 13
16–18 13 5 0 2 16 2 1 0 15
18–21 11 3 2 4 14 3 2 2 13

are in a similar form to those for voting in Table 5.2.) Hence, only a continuous-
time Markov chain, and not semi-Markov models, can be fitted. According to
Weng (1994), the periods presented in the table correspond to time segments when
the intensities were constant.

To model these data, we shall require the probability transition matrices for two
and for three day intervals. We can obtain them by exponentiation of the matrix of
intensity parameters being estimated. Then, because the data are aggregated, we
can assume each row of the observed frequency matrix (for two or three days) to
have a multinomial distribution with these probabilities, conditional on the previ-
ous state.

The main question is whether or not there are differences in transition rates
among the states for the three treatment groups. A model with different transi-
tion matrices for the three groups has an AIC of 1375.7 compared to 1380.1 for
the null model with the same matrix in all groups. The intensity transition matrices
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and one-day probability transition matrices are

Λ̂
0 096 0 067 0 029
0 145 0 262 0 117
0 047 0 130 0 177

ˆ 1
0 913 0 058 0 029
0 124 0 780 0 096
0 049 0 106 0 845

for buprenorphine,

Λ̂
0 277 0 186 0 091
0 128 0 222 0 094
0 077 0 119 0 196

ˆ 1
0 770 0 151 0 079
0 104 0 815 0 081
0 068 0 103 0 830

for the 20 mg dose of methadone, and

Λ̂
0 205 0 141 0 064
0 143 0 232 0 089
0 045 0 136 0 181

ˆ 1
0 824 0 118 0 058
0 117 0 807 0 076
0 045 0 114 0 841

for the 60 mg dose of methadone. These estimated values are quite different from
those given by Weng (1994), probably because he used least squares estimation.

These probability transition matrices are not those for the embedded discrete-
time Markov chain; they are obtained by matrix exponentiation of the intensity
transition matrix. The embedded matrices ˆ are, respectively,

0 0 70 0 30
0 55 0 0 45
0 27 0 73 0

0 0 67 0 33
0 58 0 0 42
0 39 0 61 0

0 0 69 0 31
0 62 0 0 38
0 25 0 75 0

all fairly similar.
From the intensity matrices, we see that the exponential intensity 1 of moving

out of the negative assay state is quite different for the three treatments, 0.096,
0.277, and 0.205, respectively. These correspond to mean sojourn times of 10.4,
3.6, and 4.9 days in the negative assay state. This indicates superiority of buprenor-
phine. The rates of movement out of the other two states are much more similar
among the three treatments. Buprenorphine is also superior in inducing higher in-
tensity of movement from the positive assay state to the negative than in the reverse
direction. This does not occur with the two doses of methadone. (Notice, however,
that this is not true of the embedded probability matrices.)

Closer inspection reveals no evidence of a difference between the transition ma-
trices for the two doses of methadone. The model with the same transition matrix
for the two, but different for buprenorphine, has an AIC of 1371.4. However, the
saturated model has 1343.6, strong evidence that the transition matrices are not
constant over time.

6.2.2 Trends in missingness

An approach similar to that used in Section 5.3.1 can be applied to check for ho-
mogeneity of intensity matrices. Here, I only shall consider log linear changes over
time in the intensity of moves out of the missingness state. Thus, in the three-state
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matrix above, this can be modelled by

log 3 0 1 (6.12)

where is the elapsed time.

Addiction For the buprenorphine data, let us make an additional assumption: that
the change over time in the intensity of the moves from missingness back to the
two other states is the same (that is, only one additional parameter per matrix,

1 11 12). With a different intensity matrix for each treatment, the AIC
is reduced from 1375.7 to 1356.9. Combining the two methadone groups lowers
it further, to 1351.7. The (log linear) slope parameters over time for change in
the intensity of leaving the missingness state are estimated to be 1 0 0877
for buprenorphine and 1 0 0963 for the two doses of methadone: those on
methadone stop returning to the study more quickly. Thus, most of the above lack
of fit arises from this source, modelled by only two additional parameters. Of
course, no firm conclusions can be drawn without the complete data for the 17
weeks.

6.3 Progressive states

One of the simplest cases of an event history has progressive states. This reduces
very considerably the number of transition intensities that must be modelled, as
compared to a complete transition matrix, like those in the previous section.

6.3.1 Constant intensities within states

When the states are progressive, a Markov chain is very similar to a Poisson point
process. The difference is that the events are not recurrent, so that the process
changes state at each event. Then, the intensity, constant between events, differs
among states. The intensity matrix will have the form

Λ

2 1 2 1 0 0 0
0 3 2 3 2 0 0
0 0 4 3 4 3 0
0 0 0 5 4 0
...

...
...

...
. . .

...
0 0 0 0 0

(6.13)

where, with a finite number of states, the last necessarily is absorbing. Here, from
Equation (6.1), the transition intensity out of the state is 1 because only
one type of transition is possible. The corresponding probability transition matrix
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for the embedded discrete-time Markov chain is

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
...

...
...

...
. . .

...
0 0 0 0 1

(6.14)

In this model, the transition probabilities can be obtained explicitly. Thus, for three
states, the matrix is

e 2 1
2 1 e 3 2 e 2 1

2 1 3 2
1 3 2e 2 1

2 1e 3 2

2 1 3 2

0 e 3 2 1 e 3 2

0 0 1

(6.15)

Thus, numerical matrix exponentiation is not necessary here.
If is a constant for all states, we have an ordinary Poisson process (stop-

ping after a fixed number of recurrent events). On the other hand, if the states in
a progressive model simply indicate the number of previous recurrent events, we
have a pure birth process. The special case given by Equation (4.8) was a linear
birth process. There, , being the number of recurrent events so far. This
is a special case of Equation (4.26).

Myeloid leukæmia In Section 3.5.1, I applied survival models with time-varying
covariates to data, from Klein et al. (1984), on the treatment of chronic myeloid
leukæmia. Here, I shall take a different approach. Instead of concentrating on the
absorbing death state, let us assume the state space to be ordered with three states:
stable, blast, and death. Thus, two types of transition are possible instead of only
one. This means that, as compared to that section, there are a few more events:
38 transition events instead of 30. The Kaplan–Meier curves for the times in the
stable and blast states are plotted in the left graph of Figure 6.2.

The null model has the same constant intensity in both states (a Poisson process),
with an AIC of 273.6. In a Markov chain model, with an exponential distribution of
times between events, the constant intensity can change between states. Here, this
improves the model only slightly, with an AIC of 272.3 for a different intensity
of leaving each state. The transition intensity matrix among the three states is
estimated to be

Λ
0 0019 0 0019 0

0 0 0062 0 0062
0 0 0

We see that the transition intensity from the blast state to death is estimated to
be more than three times as high as that from stable to blast, according to this
model. However, because the AICs are similar, there is not strong evidence that
the intensities actually are different.
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Fig. 6.2. The Kaplan–Meier curves (left) for the chronic and blast phases, ignoring ADA
level, for the study of chronic myeloid leukæmia. The survivor curves (left) and intensity
curves (right) for the log logistic and log Cauchy models are also plotted. These are for
the mean levels of ADA (8.52 and 21.22 10 8 mol of inosine/h per million blood cells,
respectively, for the chronic and blast phases).

6.3.2 Intensities depending on time

More realistic models will involve semi-Markov processes. Nonconstant inten-
sity functions for the two transitions will replace the exponential intensity: special
cases are the Weibull, gamma, log normal, log logistic, and log Cauchy. In all of
these models, in contrast to the exponential model, the shape parameter may differ
among states as well as the location parameter.

Myeloid leukæmia When these models are applied to the leukæmia data, the re-
sulting AICs are given in the first line of each of the second and third panels in
Table 6.2. None of the models provides an improvement over the simpler Markov
chain model above. The risk of moving to the next state does not appear to depend
on the time spent in the present state. However, we have not yet accounted for the
level of ADA in the model, the centre of interest in this study.

6.3.3 Intensities depending on covariates

An extension to semi-Markov processes is to allow the intensity of transition be-
tween pairs of states to be a function of some time-varying covariates as well as of
time itself.

Myeloid leukæmia For the chronic myeloid leukæmia data, the level of the en-
zyme, adenosine deaminase (ADA), in leukæmia cells, is such a covariate. I shall
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Table 6.2. AICs for various models fitted to the myeloid leukæmia data.

Log Log Log
Exponential Weibull Gamma normal logistic Cauchy

Null 273.6 273.3 273.3 272.7 273.4 275.5

Location
depends on

State 272.3 272.6 272.6 272.4 272.8 274.3
ADA 266.3 266.8 266.9 263.4 264.7 268.0
State ADA 265.4 266.2 266.3 263.5 264.7 260.5
State ADA 266.4 267.2 267.3 264.4 265.6 261.5

Location and shape
depend on

State — 273.3 273.2 273.0 273.5 275.2
ADA — 267.8 253.9 261.6 253.1 253.3
State ADA — 268.1 254.1 254.0 252.4 253.9

handle this covariate in the same way as in Section 3.5.1. The results also are given
in Table 6.2.

Here, we find improvements over the Markov chain model. The log logistic and
log Cauchy distributions fit best, closely followed by the gamma. When both of the
parameters of these distributions are allowed to vary with ADA, the difference be-
tween states is not necessary, except for the log normal and log logistic intensities.
Thus, there is an effect of ADA, with no difference in that effect between the two
states (no interaction). From the log logistic and log Cauchy models, respectively,
the location coefficients (for duration, not intensity) are estimated to be 0 097
and 0 152: the risk of changing state increases with higher levels of ADA. The
corresponding coefficients for the shape parameters are 0.039 and 0.080.

The estimated survivor and intensity curves are plotted in Figure 6.2 at mean lev-
els of ADA. Recall, however, that these levels are actually changing over time for
each subject; the Kaplan–Meier curves ignore the ADA level, whereas the model
curves are for the mean level. Both models give similar results, with the risk of
changing from the chronic to the blast phase staying fairly constant over time, if
the adenosine deaminase level were to remain constant, which it does not. On the
other hand, the risk of dying is estimated to be highest just after the transition to
the blast phase and decreases sharply thereafter.

Further reading

Iosifescu (1980), Karlin and Taylor (1975), Ross (1989), Tijms (1994), and Wolff
(1989) provide material both on continuous-time Markov chains and on semi-
Markov processes. Anderson (1991) and Bremaud (1999) each give advanced
coverage of continuous-time Markov chains.
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Table 6.3. Frequencies of transitions among three states of smoking behaviour
(N: never smoked; C: current smoker; Q: quit) for sixth-grade children in Oxford
county, Ontario, Canada, given educational material on smoking during the first

two months, distinguished by risk status. (Kalbfleisch and Lawless, 1985)

Risk Years NN NC NQ CN CC CQ QN QC QQ

Low 0.15 32 2 0 0 0 2 0 0 1
Low 0.75 30 1 1 0 0 2 0 2 1
Low 1.10 27 1 2 0 1 2 0 0 4
Low 1.90 25 1 1 0 0 2 0 0 8
High 0.15 61 1 2 0 8 8 0 1 7
High 0.75 59 1 1 0 7 3 0 3 14
High 1.10 56 2 1 0 8 3 0 2 16
High 1.90 51 2 3 0 6 6 0 0 20

Exercises

6.1 Two exercises in Chapter 5 involved unequally spaced times. Hence, your
analyses there may have been incorrect. Redo your modelling for

(a) the study of stress after the accident at the Three Mile Island nu-
clear power plant in Table 5.10 (Exercise 5.4) and

(b) the changes in Swedish voting in Table 5.15 (Exercise 5.9).

Does the use of continuous-time Markov chains alter your conclusions in
either case?

6.2 A panel of children entering grade six in the counties of Waterloo and Ox-
ford, Ontario, Canada, was followed over almost two years during which
time they were interviewed five times. At the start of the study, the children
were divided into two groups: one acted as control and the other was given
educational material on smoking during the first two months. The resulting
transitions occurring between each of the five interviews, only for those re-
ceiving the educational material in Oxford county, are shown in Table 6.3.
These are classified by the children’s risk situations, as determined by their
exposure to friends and relatives smoking.

(a) Which transitions among the three states are impossible?
(b) Develop an appropriate stochastic model.
(c) Is there any evidence of a difference between the two risk groups?
(d) Is homogeneity a reasonable assumption?

6.3 Leukæmia patients who had attained remission were followed to subse-
quent relapse and possible death. Entry to the study was staggered so that
termination of the study resulted in censoring after various lengths of ob-
servation. The data for 15 patients are shown in Table 6.4.

(a) Does the same distribution adequately describe both times to re-
lapse and to death?

(b) Do any of the parameters of the distribution of times to death de-
pend on the time to relapse?
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Table 6.4. The times (days; asterisks indicate censoring) from remission to
relapse and to death for 15 leukæmia patients. (Clayton, 1988, with corrections)

Relapse 238 72 99 140 294 937 517 126
Death 571 179 100 204 67 21 159 123

Relapse 783 56 889* 246 951* 931* 146
Death 63* 11 — 151 — — 40

6.4 A clinical trial was conducted to study intensification therapy combined
with a high-dose combination chemotherapy in the treatment of acute non-
lymphoblastic leukæmia in adults. Patients were assigned to one of three
groups. All subjects received the same treatment for the first 186 days.
Then, because the first group had been treated prior to the development of
the intensification program, it could not be given this therapy. The second
group was eligible to receive the therapy but did not, whereas the third
group received it. Times, in days, from remission to relapse and from re-
lapse to death were recorded, as shown in Table 6.5. Notice that treatment
is time-varying because it only starts after six months.

(a) What influence does therapy have on remission and survival?
(b) Thirteen additional subjects were lost before the end of the 186

days. Their survival times were 24, 68*, 76, 85, 90, 95, 119*, 124,
151, 158*, 172, 182, and 182*, the four indicated by asterisks being
censored. Can you incorporate this information into your model?

6.5 In the National Cooperative Gallstone Study carried out in the USA, an
important point of interest was the safety of the drug chenodiol. A ma-
jor concern was that, as the gallstones dissolve, they might pass into the
biliary tree and lead to increased gallbladder symptoms. Progression of
the disease is indicated by the occurrence of biliary tract pain, perhaps ac-
companied by other symptoms that might require surgical removal of the
gallbladder, called cholecystectomy. Thus, in this study of the disease pro-
gression of floating gallstones, biliary pain might be experienced, and, if
so, might be followed by cholecystectomy. If the former did not occur, the
latter would also be censored.

A series of observations on 113 patients under two treatments, placebo
and the drug chenodiol, are presented in Table 6.6. Although patients were
assigned randomly to high dose (305), low dose (306), or placebo (305),
the table only contains the results for high dose and placebo. Patients could
be followed for as long as 28 months.

(a) Find an intensity model for these two events.
(b) Does treatment have an effect on the risk of having either of them?

6.6 Breast cancer patients in a London, England, hospital were being treated
for spinal metastases. They were followed over a five-year period, with
their ambulatory state being recorded before treatment began, and at zero,
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Table 6.5. The times (days; asterisks indicate censoring) from remission to
relapse and from relapse to death for leukæmia patients in three treatment groups.

(Matthews, 1988, from Glucksberg et al.)

Prior treatment No treatment Therapy after
randomisation

186 197 57 201 380 380
82 201 191 261 277 436

128 226 152 266 501 529
166 247 197 283 571 604
111 272 264 343 396 626
230 304 223 349* 635* 635*
304 333 254 437 688 767
273 334 249 490 358 812
294 342 258 552 506 971
284 347 269 576 1028 1151
304 355 583* 583* 1229* 1229*
117 359 534 687 1145 1237
247 365 510 743 1323* 1323*
341 378 171 1115 1349* 1349*
209 442 642 1447* 1482* 1482*
395 506 1584* 1584* 1492* 1492*
332 517 1812* 1812* 1076 1501
393 546 697 1865* 1553* 1553*
518 620 1908* 1908* 1352 1597*
487 670 1604* 1604*
608 702 736 1648
518 806 1820* 1820*
516 871 1989* 1989*
270 946

1160 1355
955 1392

2182* 2182*
2270* 2270*
2331* 2331*

three, and six months, one, two, and five years. Their ambulatory status,
defined by whether or not they could walk unaided, is shown in Table 6.7.

(a) What are the probabilities of transition between the two ambulatory
states?

(b) Do they evolve over time?
(c) What is the risk of death?
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Table 6.6. The times (days; asterisks indicate censoring) to biliary pain (first
column) followed by cholecystectomy (second column) for 113 patients under two

treatments, placebo and chenodiol, for gallstones. (Wei and Lachin, 1984)

Placebo Chenodiol

741* 741* 35 118 735* 735* 742* 742*
234 234 175 493 29 29 360* 360*
374 733* 481 733* 748* 748* 750 750*
184 491 738* 738* 671 671 360* 360*

735* 735* 744* 744* 147 147 360* 360*
740* 740* 380 761* 749 749 726* 726*
183 740* 106 735* 310* 310* 727* 727*

721* 721* 107 107 735* 735* 725* 725*
69 743* 49 49 757* 757* 725* 725*
61 62 727 727* 63 260 288 810*

742* 742* 733* 733* 101 744* 728* 728*
742* 742* 237 237 612 763* 730* 730*
700* 700* 237 730* 272 726* 360* 360*

27 59 363 727* 714* 714* 758* 758*
34 729* 35 733* 282 734* 600* 600*
28 497 615 615* 743* 743*
43 93 35 749* 743* 743*
92 357 728* 728* 733* 755*
98 742* 600* 600* 188 762*

163 163 612 730* 600* 600*
609 713* 735* 735* 613* 613*

736* 736* 32 32 341 341
736* 736* 600* 600* 96 770*
817* 817* 750* 750* 360* 360*
178 727 617 793* 743* 743*

806* 806* 829* 829* 721* 721*
790* 790* 360* 360* 726* 726*
280 737* 96 720* 363 582

728* 728* 355 355 324 324
908* 908* 733* 733* 518 518
728* 728* 189 360* 628 628
730* 730* 735* 735* 717* 717*
721* 721* 360* 360*
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Table 6.7. The successive states (0: dead; 1: unable to walk; 2: able to walk) of
37 breast cancer patients over a five-year period. (de Stavola, 1988)

Months

Initial 0 3 6 12 24 60

2 2 2 2 2 2 0
2 2 2 2 0
1 1 0
1 2 1 2 2 2 0
2 2 2 2 2 1 0
2 2 2 2 0
2 2 1 2 2 0
1 2 1 0
2 2 2 2 2
1 1 0
1 1 0
2 2 2 2 0
1 1 0
1 2 2 2 0
1 1
1 1 0
2 2 2 2 0
1 1 1 0
2 2 0
2 2 1 1 1 0
1 1 0
1 2 2 2 2 2
1 2 0
2 2 1 — 0
2 2 2 2 2 0
1 1 1 1 1 0
1 2 1 1 1 0
1 2 2 2 2 0
1 2 1 1 0
1 2 2 1 0
1 2 1 1 1
2 2 2 1 1 0
1 2 1 1 0
2 2 2 2 0
2 2 2 0
1 1 0
1 1 0
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Dynamic models

Markov chains (Chapter 5), and extensions of them (Chapter 6), use previous in-
formation from a multistate stochastic process to improve prediction of the present
state. These state dependence models condition directly on the previous state(s) in
the regression function, so that the other regression parameters only can be inter-
preted as conditional on those specific previous states of each given process.

In contrast, the underlying or marginal trend of any process is independent of
the conditional dependence on the past of a specific observed process. This trend
always can be obtained by summing or integrating at each time point, but it may
not always be easy or practical to do so. In a Markov chain, the underlying trend
is represented by the sequence of marginal distributions (see Figure5.2). This
is obtained by matrix multiplication, a summation, at each time point. However, in
other models, such a representation may not be as easy to obtain.

Dynamic models provide one alternative to the above approaches. They use pre-
vious information in various different ways such that they are not directly state
dependent. One simple case was serial dependence, described in Section 1.2 and
developed further below in Section 7.1. There, dependence is on the previous
residual, an unobservable (hidden) quantity, instead of on the previous state. Dy-
namic models generally will allow a theoretical underlying profile of the process to
be plotted more easily, although it may not necessarily be a marginal distribution.
However, a prediction of the actual observed process, based conditionally on its
previous history, also will be available.

In dynamic models, certain parameters in the distribution of responses are al-
lowed to vary randomly over time. Here, we may distinguish two cases:

(i) These parameters may be able to take a different value at each time point,
yielding an infinite number of possible hidden states, the simplest cases
often being called dynamic linear models.

(ii) The parameters of the distribution only may be allowed to vary among a
finite set of possibilities, called hidden Markov models.

Classical dynamic linear models, involving a continuous observed state space, will
be presented in Section 11.1.

For some reason, both of these types of models are sometimes called state-space
models. However, as we know, any stochastic process has a state space, and not

151
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just these specific ones. They might more appropriately be called hidden state-
space models, because they have hidden states, as well as the observed ones.

Although some of the examples in this chapter will involve discrete time, all of
the models apply also to observations in continuous time.

7.1 Serial dependence

In Section 1.2.4, I introduced a general serial dependence model. Let us examine
more closely the interpretation of such models.

Suppose that a process has an underlying trend that can be described by changes
over time in the location parameter, often the mean of a distribution, that is, by
some appropriate regression function . However, any given observed process
may wander about this function. For each realisation of the process, this allows
better predictions to be made, by taking into account the previous history, here
by using some specific to that realisation, instead of . Now, assume that
this depends on the distance of the previous observed response 1 from the
underlying trend 1 at that time point. This is the previous residual 1 1,
an unobservable random quantity. Here, it will be useful to write this dependence
as

∆
1 1 (7.1)

with ∆ the time between observations, to allow for cases in which they are un-
equally spaced, and 0 0 the initial condition. Here, the hidden state is the
unobservable previous residual 1 1.

Notice that, if is a constant for a given series, not varying over time, this
equation reduces to

1 ∆ ∆
1 (7.2)

a simple state dependence model (Section 1.2.3).
In contrast to state dependence models, the serial dependence of Equation (7.1)

usually is not applicable to strictly categorical responses, because the operation
is meaningless. It can, however, be useful when only a series of aggregate

counts is available over time. For some types of counts, this equation can be used
directly whereas, for others, adaptation may need to be made.

7.1.1 Single count responses

Application of serial dependence models to series of responses involving aggregate
counts of one kind of event is usually straightforward. Equation (7.1) often can
be used directly, although care must be taken that negative values of are not
produced.

University enrolment Yale University, USA, was founded in 1701, but the enrol-
ment record is not complete before 1796. Counts of students enrolled are available
each year from 1796 to 1975, as shown in Table 7.1 and plotted in the top graph of
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Table 7.1. Student enrolment at Yale University, USA, 1796–1975. (Anscombe,
1981, p. 130; read across rows)

115 123 168 195 217 217 242 233 200 222
204 196 183 228 255 305 313 328 350 352
298 333 349 376 412 407 481 473 459 470
454 501 474 496 502 469 485 536 514 572
570 564 561 608 574 550 537 559 542 588
584 522 517 531 555 558 604 594 605 619
598 565 578 641 649 599 617 632 644 682
709 699 724 736 755 809 904 955 1031 1051

1021 1039 1022 1003 1037 1042 1096 1092 1086 1075
1134 1245 1365 1477 1645 1784 1969 2202 2350 2415
2615 2645 2674 2684 2542 2712 2816 3142 3138 3806
3605 3433 3450 3312 3282 3229 3288 3272 3310 3267
3262 2006 2554 3306 3820 3930 4534 4461 5155 5316
5626 5457 5788 6184 5914 5815 5631 5475 5362 5493
5483 5637 5747 5744 5694 5454 5036 5080 4056 3363
8733 8991 9017 8519 7745 7688 7567 7555 7369 7353
7664 7488 7665 7793 8129 8221 8404 8333 8614 8539
8654 8666 8665 9385 9214 9231 9219 9427 9661 9721

Figure 7.1. We see that the available series is fairly flat at first, up to about 1885,
then rises sharply in the twentieth century, with drops during the two world wars.
The change in slope may indicate a modification in the process producing the re-
sponses. The enrolment mechanism may have changed at the end of the nineteenth
century. In addition, there are important perturbations due to war.

For comparison, the changes in enrolment between years and the ratios of suc-
cessive enrolments are also plotted in Figure 7.1. We see that the levels of both of
these are more stable than the absolute numbers, although their variability changes
during some periods.

Because enrolment in a given year occurs virtually simultaneously for all stu-
dents, not over a meaningful period of time, this is one example of a state space
involving counts that cannot be disaggregated into a sequence of single events.

For single counts, the simplest model with which to start is the Poisson distri-
bution. To see clearly the major effects that serial dependence can produce, let us
attempt to model this series using a constant mean (except for serial dependence),
that is, with no regression function to describe the increase in numbers over time.
(This implies that it will also be a state dependence model.) Here, Equation (7.1)
can be used for the serial dependence.

This model has an AIC of 4939.2 compared with 264 079.2 for independence.
The parameter estimates are 109 3 and ˆ 1 02. Clearly, there is strong
dependence among these responses. Because is constant and is estimated to
be approximately one, Equation (7.1) reduces to 1 1. (This implies that the
constant mean is redundant, and can be set to zero.)
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Fig. 7.1. Enrolment (top), changes in enrolment between years (middle), and ratio of en-
rolments in successive years (bottom) at Yale University from 1796 to 1975, from Table
7.1.

7.1.2 Binary count responses

When more than one type of event is counted, the standard serial dependence model
given above usually will need to be modified. For two kinds of events, the re-
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Table 7.2. Numbers of successes out of 20 by 16 animals in a learning experiment
under four different combinations of conditions. (Aickin, 1983, pp. 238–240)

Not trained Trained

Light Bell Light Bell

6 1 2 1 1 0 2 1 2 0 0 3 0 0 2 0
8 6 7 6 0 0 2 1 0 0 0 4 0 0 0 3
3 16 5 15 2 0 9 0 0 10 0 4 4 7 3 2
6 17 13 19 3 0 4 0 7 17 10 6 4 5 0 0
6 17 19 17 16 0 1 4 18 17 15 8 15 3 0 0
5 8 19 19 12 0 9 4 19 19 18 15 10 4 7 0

18 18 18 17 17 0 15 5 19 19 19 17 11 6 14 3
18 17 19 19 18 0 16 7 18 19 15 15 13 2 11 2
17 18 17 19 15 14 17 13 18 19 19 14 19 11 15 8
19 18 20 20 16 15 17 17 20 19 19 16 20 12 18 12
19 19 17 18 19 15 20 18 19 6 18 15
18 20 20 16 19 15 19 18 13 17 18
20 18 20 19 20 19 14 20 17

18 18 20 19 18
17 20 18 18
17 17 20
19 18
19 20
19
20

sponses will be binary. Then, the model might be adapted in the following way:

∆
1 1 1 (7.3)

with the total number of events in series at time and the corresponding
number of events of the first kind. (Even more care must be taken here that does
not take invalid values than for single counts above.) Here, the initial condition is

0 0 0 or 1 1, that is, the first residual is zero. As previously, repre-
sents the common underlying profile for all individuals under the same conditions
at time point and is the corresponding predicted individual value.

Animal learning In a learning experiment, 16 laboratory animals (of unstated
species) were tested for their ability to learn using a 2 2 factorial experiment,
the two factors being with or without training and with light or bell stimulus. Each
animal was given a series of trials. At each trial, the animal was allowed 20 at-
tempts to complete a task, as shown in Table 7.2. Trials for an animal stopped
when a perfect score was reached. (No further information was provided.) The
observed profiles are plotted in Figure 7.2. We see that many animals follow rather
irregular trajectories, although a vaguely sigmoidal-shaped path is discernible.

These data have two levels of clustering: the 20 attempts within a trial and the
series of trials of an animal. Here, in contrast to the Yale data, the individual
events (the ordered results of the 20 attempts) making up the aggregated counts do
have meaning. Knowing the order of successes and failures within a trial could
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Fig. 7.2. The observed profiles for animals learning under the four conditions, from Table
7.2.

be very useful, but unfortunately we have no information about this. On the other
hand, more elaborate modelling will be possible for the succession of counts of
successes and failures for the set of trials of each animal.

At each time point (trial), there are 21 possible states, the number of successful
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Table 7.3. AICs for various binary models fitted to the animal learning
experiment of Table 7.2. Cloglog: complementary log log link.

Independence Serial dependence

Link Logit Loglog Cloglog Logit Loglog Cloglog

Binomial 669.3 656.6 748.7 554.5 551.3 581.9
Beta-binomial 498.8 494.2 516.3 462.7 461.1 481.7
Multiplicative binomial 471.5 471.0 466.9 457.2 456.2 458.1
Double binomial 480.6 478.5 497.0 455.5 455.2 460.8

attempts. A Markov chain would require too large a number of parameters in
the transition matrix to be practical. In addition, we shall be interested in the
underlying profile of the learning curves under the four experimental conditions,
independently of the short-term variability in the performance of a given animal.

Here, for binary count responses, the simplest models will be based on the bino-
mial distribution. Various link functions are possible, such as the logit, log 1

, the log log, log log , and the complementary log log, log log 1 .
From the graphs, we know that the probability of success is increasing over time.
Each link function will yield a different form, and different interpretation, of the
increasing curve over time (see Section 12.3 for more details).

In contrast to time and stimulus, the training never shows a significant influence
on the responses. Thus, I shall only consider models for difference between the two
stimuli and its interaction with time (the trial number). The AICs for these three
link functions with the binomial distribution are given in the first line of Table 7.3.
The log log link proves to be best. As with the Yale data, there is a clear need for
serial correlation.

Unfortunately, for aggregate counts of events, the simple Poisson and binomial
models rarely prove adequate. More complex models may prove to be necessary.

7.1.3 Overdispersion

When only aggregate counts of events are available, and not their timing, the stan-
dard Poisson or binomial models often do not fit well. This will arise when the
aggregated events within each count are dependent. Then, overdispersion models
(Sections 3.6.2 and 4.3.2) may be used to allow for this dependence.

For counts of one type of event, the overdispersed negative binomial distribution
of Equation (4.36) can be used. For two types of events, the beta-binomial distri-
bution was given in Equation (3.28). Two other possibilities for this latter type of
response are the ‘multiplicative’ binomial distribution (Altham, 1978)

; 1 e (7.4)
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and the double binomial distribution (Efron, 1986)

;
1 1 1

(7.5)

where is the total number of events, is the number of the first kind of event,
is a dispersion parameter, and and are intractable normalising

constants.

University enrolment The negative binomial distribution without serial depen-
dence has an AIC of 1618.9, whereas the corresponding Poisson model above had
264 079.2, showing that overdispersion plays an important role. When serial de-
pendence is added, the AIC of the former reduces to 1190.0. The dependence
parameter is estimated to be ˆ 1 03. With constant mean 112 2, this again
implies, from Equation (7.1), that 1 1.

The recursive predicted values 1 for the negative binomial serial dependence
model are plotted in the top graph of Figure 7.3. They follow the responses reason-
ably well although there is no explicit component in the model to account for the
structural growth in numbers. However, adding an exponential regression on time
reduces the AIC to 1181.6.

Animal learning Now, let us apply overdispersion models to the animal learning
data. This will be similar to what I did in Section 3.6.2 for human mortality data.
However, in contrast to those data and the Yale enrolment, here there is more than
one series. Then, without serial dependence, these models should allow for the
irregular aspects of the responses but will make no distinction between variability
within and between animals. They will only account for the dependence among
attempts within each trial.

Here, 20 and is the number of successes in a trial in the overdispersed
distributions given above. The AICs of various models are shown in the left half
of Table 7.3. The multiplicative binomial model with a complementary log log
link fits better than the others, although all the links are reasonably close for this
distribution.

However, I have not yet made any allowance for dependence over time or for
heterogeneity among the animals. For the serial dependence model of Equation
(7.3), the double binomial distribution with a log log link is best. However, the
model with logit link can be simplified by removing the trial–stimulus interaction,
making it a slightly better model. The autoregression parameter is estimated to be
ˆ 0 028, and the intercepts to be 4 47 for the bell and 2 37 for the light, with
common slope 0.57.

The underlying profile curve ( , with the group) and the predicted curves
( ) for the first two animals in each group are shown in Figure 7.4. The in-
dividual predicted profiles attempt to follow the observed responses, but always
overshoot when an extreme value previously has been recorded.
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Fig. 7.3. The predicted enrolment from the serial dependence model without a regression
on time (top), the serial dependence with mean and dispersion both depending exponen-
tially on time (middle), and the gamma mixture dependence model (bottom). The origin in
the bottom plot is 1795.

7.1.4 Changing variability over time

Overdispersion models introduce an extra parameter into the standard Poisson and
binomial distributions in order to account for the large variability. In many circum-
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Fig. 7.4. The underlying profile (solid lines) from the double binomial serial dependence
model with a logit link, along with the observed and predicted responses for the first (circles
and dots) and second (squares and dashes) animals in each group, from Table 7.2.

stances, the variability may change over time so that it is necessary to model this
parameter using a second regression function. In the context of normal distribution
models, this is known as heteroscedasticity (Section 9.2.4).
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University enrolment For the Yale enrolment data, the middle and bottom graphs
of Figure 7.1 indicate that the variability may be changing over time. If I let the dis-
persion parameter of the negative binomial distribution also depend exponentially
on time in the previous model above, the AIC is further reduced to 1158.4. On
the other hand, if I now remove the exponential regression on time for the mean,
it only rises to 1163.3, showing that, when the changing variability is accounted
for, the exponential growth plays a relatively small role. The dispersion parameter
is decreasing over time and the variance, which depends on the reciprocal of this
parameter and on the mean, is increasing more quickly than the mean.

The model with both the mean and the dispersion depending exponentially on
time is plotted in the middle graph of Figure 7.3. We see that, near the end of
the series, the exponential regression for the mean pulls the recursive predictions
above the observed values.

Models with a change in slope around 1900 do not fit as well as those with expo-
nential regression on time just presented. Thus, there seems to be no indication of
an abrupt change at that time. On the other hand, the exponential regression func-
tion climbs too steeply, so that other nonlinear functions should be investigated.

Changes in dispersion here were modelled as a deterministic function over time.
They also can be handled dynamically, as another form of serial dependence; I shall
reserve the main description of such models (called ARCH) for Section 10.4. How-
ever, I shall present one such dynamic model, specifically for changing dispersion
in series of counts, in Section 7.4 below.

7.2 Hidden Markov models

In certain stochastic processes, an individual producing a series of responses may
be subject to spells, that is, to having periods with somewhat different reactions.
This may be modelled by assuming a sequence of changing unobserved states cor-
responding to these periods in time. Thus, in a binary point process, some of the
recurrent events may be clustered, corresponding to periods of higher activity. The
dynamic models to be described here provide one way to handle such data.

7.2.1 Theory

In a hidden Markov model, an individual is assumed to occupy an underlying, un-
observable sequence of states that follow a Markov chain (Chapter 5). The hidden
state at a given time point determines the probabilities of the various possible ob-
served states. In contrast to serial dependence models, with their infinite number
of possible hidden states, here the number is finite (and usually rather small).

In the original presentation of the model, Baum and Petrie (1966) only consid-
ered responses consisting of a finite number of observable states. They called their
models probabilistic functions of Markov chains. However, the applications have
proved to be much wider than this. As a simple case of such a stochastic process,
each observed state might be generated by one of two Poisson processes, each hav-
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ing a different intensity. The process switches from the one to the other following
a two-state hidden Markov chain, in this way generating dependence over time.

In the analysis of such series, three problems generally are distinguished. Given
an observed sequence:

(i) How can the likelihood be calculated efficiently (the evaluation problem)?
(ii) How can the maximum likelihood estimates be obtained (‘training’ the

model)?
(iii) How can the optimal hidden state sequence be chosen for a given model?

I shall look briefly at each of these in turn.

Hidden state space

Suppose that we assume the existence an unobservable, irreducible, homogeneous
Markov chain with states. This will give the conditional probabilities of chang-
ing among the hidden states. Often, we can assume that the marginal distribution
is stationary. (If so, the latter can be calculated from the transition matrix using
Equation (5.2) and, hence, does not introduce any new parameters.) The probabil-
ity of the observed state at time will depend on the unobserved state at that
time. Thus, we are assuming that the sets of observed states in a given series are
independent, given the hidden states.

Let us formulate this more rigorously. Suppose that the process under study is
currently in some unobservable hidden state . Assume that, under these condi-
tions, the distribution of the response is 1; . Then, the un-
known parameters generally will depend on covariates through some linear or
nonlinear regression function, different for each hidden state . This is called the
observation or measurement equation. On the other hand, will be a random
parameter indicating the hidden state at time and the history of the process up
until time , as in Chapter 4. If were known at each time point, this would be a
standard regression model.

We now need to model how changes over time, even though it is unobserv-
able. Let us assume that it obeys a first-order Markov chain with transition matrix

. This defines the state transition equation

Pr 1 1 (7.6)

with corresponding marginal probabilities

Pr (7.7)

(Often, the hidden Markov chain can be assumed to be stationary so that ;
see Equation (5.2).)

We can now set the process in motion to make predictions. The probability of
each hidden state at the next time point will be given by or

Pr 1 ∑
1

(7.8)

called the one-step-ahead prediction or time update. Next, we need to introduce
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the new information available from the observed response 1 at time 1. To
do this, we apply Bayes’ formula, combining the time update with the observation
equation. This yields the filtering or observation update

Pr 1 1
1 1 ; Pr 1

∑ 1 1 ; Pr 1
(7.9)

Finally, we require the probability of the observed response, given that we do not
know in what hidden state the process actually is. We can obtain this by summing,
over all possible hidden states, the product of the observation equation for each
hidden state times the probability of being in that state (the time update)

1 ; 1 ∑
1

1 1 ; Pr 1

∑
1

1 1 ; ∑
1

(7.10)

This is used to construct the likelihood function. (See Churchill, 1989, for a more
complete description of these steps.)

This model will have 1 unknown parameters in the transition matrix
(plus the parameters of the initial marginal distribution if the hidden chain is non-
stationary), as well as times the length of in the probability distributions.
(More generally, ; might be a completely different probability distribu-
tion in each state, with each a different length.)

Fitting a model

The probability of the observed response in Equation (7.10) is a form of mixture
distribution. However, in contrast to the simple (static) mixture distributions often
used, such as the finite mixtures in Section 3.4 or that yielding the negative bi-
nomial distribution in Section 4.3.2, this one becomes ever more complex at each
time step, as the number of possible paths increases.

Evaluating the likelihood A direct evaluation of the probability of the responses in
Equation (7.10) would involve about 2 calculations for one series of length

. Fortunately, this probability can be rewritten in a recursive form over time
involving about 2 calculations:

; 0 ∏
1

(7.11)

where is an diagonal matrix containing, on the diagonal, the probabili-
ties 1; of the observed responses, given the various possible
states, and is a column vector of 1s.

To calculate the likelihood function from this, the finite mixture distribution
given by the hidden marginal probability times the observation probability for each
state at time 1, say 0 1 ; , is first calculated. At the second time
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point, the first step is to calculate the observation probability for each state multi-
plied by this quantity and by the hidden transition probabilities in the correspond-
ing column of . These are summed yielding, say, ∑ 2 ; .
This is the new vector of forward recurrence probabilities. However, it should be
divided by its average (to prevent underflow), yielding a new vector . This av-
erage is also cumulated as a correction to the likelihood function. These steps are
repeated at each successive time point. Finally, the sum of these at the last time
point is the likelihood defined by Equation (7.11) except that it must be multiplied
by the cumulative correction.

Maximising the likelihood Because the likelihood surface is complex, often with
many local maxima, great care must be taken in exploring it. Thus, to obtain
maximum likelihood estimates, various sets of initial values always should be tried.
Unfortunately, no way has been found of guaranteeing that the global optimum has
been attained.

A form of estimation-maximisation procedure, called the Baum–Welch algo-
rithm (which preceded introduction of the EM algorithm), is often used to find the
maximum likelihood estimates. Here, as for other models in this book, I shall used
a numerical optimiser.

Optimal hidden state sequence At each step, the vector , normalised by dividing
by its sum, gives the (filtered) conditional probabilities of being in the various poss-
ible hidden states, given the previous responses. The sequence of hidden states with
maximum probability provides one solution to the problem of finding the optimal
hidden state sequence. However, this does not take into account the dependence
among the responses and may yield an impossible result. Thus, if certain transition
probabilities are set to zero, some of the adjacent pairs of states in this sequence of
highest probability may be impossible.

More sophisticated procedures use dynamic programming methods, generally
the Viterbi algorithm (for details, see the references at the end of the chapter).

Continuous time

This model can be applied in continuous time by using a matrix of hidden transition
intensities (Section 6.1.3), so that has rows summing to zero (instead of one).
Again, the matrix exponentiation of Equation (6.2) is used to obtain the transition
probabilities ∆ e∆ , where ∆ is the time interval between observations.

Discretized hidden Poisson process

In Section 4.1.2, we saw that a homogeneous Poisson process can be discretized
in time, in which case the numbers of recurrent events in each fixed time inter-
val have a Poisson distribution. Let us now consider a further coarsening of the
recorded responses, whereby we only have a binary indicator of whether or not
one or more recurrent events occurred in each interval. Now, as above, assume that
there is a different homogeneous Poisson process corresponding to each hidden
state (Davison and Ramesh, 1996).
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Again, we have a matrix of transition intensities among the hidden states.
Then, will be the unobserved (hidden) counting process (Section 4.1.1) which is
discretized, with intensity depending on the hidden state . Thus, we have two
sets of intensities: those between hidden states, and those for observable recurrent
events, given the state. However, we only observe the binary time series, say ,
indicating whether or not any recurrent events occurred in the interval from 1 to

, where the are fixed time points.
Let now be a diagonal matrix containing, not the probability distributions in

given states as above, but the intensities corresponding to each hidden state.
These may be a function of time and/or covariates, but are constant within each
fixed time interval of observation. The probability transition matrix of moving
between hidden states in time is then

e (7.12)

with that for no recurrent events ( 0) occurring being

0 e (7.13)

using the Chapman–Kolmogorov equations (Section 5.1.1). Thus, the probability
transition matrix for more than one recurrent event ( 1) is

1 e e (7.14)

Finally,

; 0 ∏
1

(7.15)

gives the probability of the complete binary time series.

7.2.2 Clustered point process

One of the simplest applications of hidden Markov chains is to Bernoulli responses.

Locust activity Let us look at sequences of animal behaviour, that of locusts (Lo-
custa migratoria), to determine whether or not they have spells of activity. Here,
the investigation involves the effect of hunger on locomotory behaviour. To this
end, 24 locusts, three days into the fifth larval stage, were placed individually
in glass observation chambers. Even-numbered subjects were not fed for 5.5 h,
whereas odd-numbered subjects received as much food as they could eat during this
period. Within each group, individuals alternately were of the two sexes. During
subsequent observation, neither food nor water was available. 161 observations,
at 30 s intervals, were made on each animal. The data are given in MacDonald
and Zucchini (1997, pp. 209–210). At each time point, every locust was classified
either as locomoting (1) or not (0), the latter including quiescence and grooming.

I shall be interested in the evolution of locomotory behaviour over time, and
whether it differs between the two treatment groups. There are 144 locomoting
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Table 7.4. AICs for models fitted to the locust data. The top panel contains
models with the same intercept for all locusts and the middle panel has a different

intercept for each treatment, whereas the bottom one has 24 different intercepts
(for the hidden Markov models, these numbers are doubled, being different for

each hidden state). ‘Different trend’ refers to treatment in the independence and
Markov models and to hidden state in the hidden Markov models.

Independence Markov Hidden Markov

Common intercept

Null 2324.5 1869.0 1599.1
Trend 2263.2 1849.2 1591.6

Treatment intercepts

Null 2322.9 1869.2 1596.6
Same trend 2261.4 1849.1 1582.7
Different trend 2248.2 1844.4 1583.2

Individual intercepts

Null 1667.6 1577.6 1494.0
Same trend 1575.6 1521.6 1492.1
Different trend 1566.5 1513.5 1486.1

events in the fed group, but 973 in the unfed group, each in 1932 observation inter-
vals. However, there is so much individual variability among the locusts that study
of the differences between the two sexes will not be possible. I shall compare in-
dependence and ordinary Markov chain models (Chapter 5) with two-state hidden
Markov models.

The results are summarised in Table 7.4. We see that a different intercept for
each locust is required in all of the models. The ordinary Markov chain model
is considerably worse than the hidden Markov model, although we shall see be-
low that this must be nuanced. Allowing completely different parameters, that is,
different transition matrices, in the hidden Markov model for the two treatment
groups does not improve the model (AIC 1487.7). Thus, there is a clear time trend,
different in the two treatment groups, but also state dependence.

Let us look more closely at the model with different hidden transition matrices.
The slopes of the time trends, common to the two states, are estimated to be 0.0140
in the fed group and 0.0053 in the unfed group. Thus, locomotory behaviour in-
creases faster in the former group, perhaps because it stays rather stable throughout
the observation period for the unfed group. For the fed group, the probability of
locomotion is small in both states, whereas, for the unfed group, there is a clear
distinction between the two states, one of them indicating higher locomotory be-
haviour.

The two hidden transition matrices are estimated to be

0 978 0 022
0 073 0 927
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and

0 980 0 020
0 028 0 972

in the fed and unfed groups, respectively, with corresponding stationary distribu-
tions 0 77 0 23 and 0 59 0 41 . The large diagonal values indicate that the lo-
custs tend to remain a relatively long time in the same state, a spell, inducing a
dependence among consecutive observations. According to this model, the fed
group stays about three-quarters of the time in the first state, whereas the unfed
group spends about 60 per cent there.

The (filtered) conditional probabilities of being in the state with high probability
of locomotion are plotted in Figure 7.5 for four selected locusts from each treat-
ment group. We see the much higher probability of being in this state for unfed
locusts. As with locust 1 in the fed group, many in this group did not move at all.
On the other hand, locust 5 in the unfed group alternated frequently between loco-
moting and not. Although there is large variability among individual locusts, we
have been able to detect substantial differences between the two treatment groups.

However, it turns out that the above model can be simplified further. For the
fed group, a simple Markov chain fits better than the hidden one: the AIC for this
group alone is 386.7 with 14 parameters as compared to 389.4 with 27 parameters
for the hidden Markov model. Thus, with a Markov chain for the fed group and a
hidden Markov chain for the unfed group, the AIC is 1485.0.

These data also can be interpreted as recording whether or not a locust made
one or more movements in each observation interval so that a discretized Poisson
process would be applicable. The null model with no covariates has a fit identical
to the Bernoulli process. The other models give similar results to those above but
fit slightly less well. The differences arise mainly from the Bernoulli processes
using a logit link and the Poisson processes a log link.

A different type of application of hidden Markov models to point processes will
be given in Section 8.5.2.

7.3 Overdispersed durations between recurrent events

We have studied recurrent events in some detail in Chapter 4. Here, I shall intro-
duce some more complex models for such processes, using the dynamic approach.

7.3.1 Theory

Let us start with some arbitrary intensity function of interest for modelling a
recurrent event process. From Equation (3.4), the corresponding integrated inten-
sity will be

Λ
0

d
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Fig. 7.5. The filtered probabilities of being in state 2, the state with generally higher prob-
ability of locomotion, for locusts 1, 2, 5, and 7 in each treatment group.

and the density and survivor functions

e Λ

e Λ (7.16)
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If is a second, suitably chosen, density function, our goal will be to allow
the unknown parameters in this latter density, somehow combined with , to
vary randomly over time in a dynamic model. In other words, the parameters
in will generate dependence structures over time, as a generalisation of the
distribution .

We can interpret Λ as a transformation of , with its Jacobian. Let us
apply this transformation to the responses in , in the same way that we could
apply a logarithmic transformation to obtain a new distribution. Then,

Λ
Λ eΛ (7.17)

will also be a probability density, the modification of the original density function
that we are looking for. We see that Λ eΛ modifies this function.

The parameters in will vary dynamically over time, so that the changes in the
distribution will primarily involve its shape.

Before proceeding to see how the parameters in can vary dynamically over
time, let us look in more detail at one especially simple choice for this distribution.

Gamma mixture

One particularly simple family of distributions results when, for arbitrary
, we choose

1 (7.18)

a special case of a Pareto distribution. Here, and will be the parameters that
we shall (eventually) allow to change dynamically over time.

For any choice of , this distribution yields

Λ 1 (7.19)

The survivor function is

Λ
(7.20)

so that it always will be explicitly available for any choice of Λ . The corre-
sponding intensity function is

Λ
(7.21)

As well, if we take a suitable limit of Equation (7.19),

lim e Λ (7.22)

we have back the original probability density , corresponding to the intensity
function .

Consider now a different justification for this particular choice of . Suppose
that, instead of starting with a fixed intensity function , we assume that the
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intensity is varying randomly (perhaps over time or over a set of different series).
One way to do this is by introducing a random parameter, say , which multiplies

, or equivalently Λ . Now, let this parameter have a gamma distribution, as
in Equation (2.7), but parametrised here as

1e
Γ

(7.23)

Now, the new survivor function will be given by e Λ , appropriately modified
from Equation (7.16), multiplied by .

Because is unobservable, it must be integrated out. Fortunately, this can be
done explicitly:

0
e Λ

1e
Γ

d
Λ

(7.24)

which is just the survivor function in Equation (7.20). As we have already seen
in Section 4.3.2, an integral like this, modifying a density or survivor function, is
called a mixture distribution. Then, Equation (7.22) can be interpreted as letting
the variance of the gamma distribution go to zero while holding the mean equal
to unity, so that the value 1 is known exactly and all responses have the same
intensity .

We saw in Equation (3.5) that an integrated intensity has a unit exponential dis-
tribution, so that its survivor function is e Λ , the modification of that in Equation
(7.16) used above. The exponential distribution has, as its conjugate, the gamma
distribution, which makes it possible to obtain this integral explicitly (see Section
14.1.2). Another explanation for this simple result is that Equation (7.24) is the
Laplace transform E e Λ of a gamma distribution.

As we shall see, this choice of in Equation (7.18) can yield useful results
for any intensity function, interpretable in terms of a gamma mixing distribution.

Burr distribution As one possible choice for , let us look at the Weibull distri-
bution of Equation (2.15), with two parameters, and having the intensity function
given in Equation (3.18),

1

Then,

Λ (7.25)

The resulting probability density function will be

1

1 (7.26)
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This is sometimes called a Burr distribution (Burr and Cislak, 1968). As might be
expected, it is a form of Weibull mixture distribution, where the mixing distribution
is a gamma distribution. The corresponding survivor function is

(7.27)

and the intensity function is

1

(7.28)

In contrast to the Weibull distribution with its monotone intensity (Section 4.4.1),
for 1 this intensity function has a mode at 1 1 . The mode of this
density moves to the right and the tail becomes heavier as increases relative to .
From Equation (7.22), as and increase together, approaches a Weibull
distribution.

Updating the parameters

A mixture distribution, such as that in Equation (7.24), yields a static model. To
transform this into a dynamic model, we need to allow the parameters of to
vary randomly over time.

Thus, we must now explore how the intensities for successive durations in a
stochastic process can be related through the parameters of . I shall continue
with the Pareto distribution given in Equation (7.18), arising from a gamma mix-
ing distribution. Thus, the parameters and will vary randomly over time in the
sense that their present values will depend in some specific way on some (unob-
servable) function of the responses.

In this way, and will define the hidden states of the model. In a hidden
Markov model, the distribution of responses differs in each hidden state; here, only
certain parameters depend on the state. These parameters arise from the gamma
mixing distribution, so that the shape of the mixture distribution is changing dy-
namically over time. This will be a form of volatility model (Chapter 10).

Frailty For and in Equation (7.19), particularly simple models can be con-
structed using the relationships

1 1

1 Λ 1
(7.29)

where indexes the recurrent events and the initial values are set to 0 0 0.
Here, counts the number of events whereas cumulates the values of Λ , the
latter being larger for larger values of .

By substitution of Equation (7.29), Equation (7.19) now becomes

0 1
1

1
1 (7.30)
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The complete multivariate distribution for a series of responses on an individual
is built up in the usual way as an ordered product of the conditional distributions,
at each point conditioning on the previous history. In this special case, successive
ratios cancel, yielding a rather simple result:

1 0 ∏ 1 0 1
0

0 ∏ 1
(7.31)

with the values at 0 suitably defined, as above.
Two special cases must be considered when analysing recurrent events. The dis-

creteness of time in any empirical observation process implies that two or more
events may occur in the same time interval. These ties can be handled by augment-
ing the counter accordingly:

1 1

1 Λ 1
(7.32)

where is the number of ties in the interval .
The second problem is right censoring. Generally, this will only occur for the

last response in the series. Then, the event counter is not increased ( 1)
and, as usual for duration distributions, the survivor function is used instead of the
density:

1 1
1 (7.33)

Because of the recursion in the updating equations, the above procedure allows
all previous responses to influence the probability of the current one to the same
extent. This is analogous to the classical normal distribution random effect model
(see Chapter 14). However, here it is a random effect model with a gamma mixing
distribution (for its application in the more classical context, see Section 14.4).
Such models can be used to allow for unexplained (by covariates), time-constant
heterogeneity among different series of recurrent events. In this context, in the
medical literature, they are called frailty models; hence, here I shall call Equations
(7.29) and (7.32) the frailty update.

Some of the same frailty models have been developed directly as random effect
models, not as dynamic models. The Burr distribution is fairly well known because
it has a tractable form. Other special cases include the repeated failure time model
of Crowder (1985) and the frailty model of Aalen and Husebye (1991). Clayton
(1988) uses a nonparametric intensity function to develop a proportional hazards
frailty model.

Hidden Markov process Smith and Miller (1986) provide an interpretation of this
model that is related more closely to that given for hidden Markov models above.
They follow the same steps as in Section 7.2, taking to be the random parameter
and introducing two extra fixed parameters. For the moment, let us assume these
to be set to unity: 1 2 1. Recall that here the random parameters, defining
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the hidden states, can take any positive value, in contrast to the finite set of hidden
states of hidden Markov models.

Smith and Miller assume, as above, that the model of interest has intensity func-
tion multiplied by a random parameter . In other words, the observation or
measurement equation is here

1 e Λ (7.34)

where is a random parameter having the gamma distribution of Equation (7.23):

1e
Γ

(7.35)

Then, they assume that this parameter changes over time such that the ratio
of successive values has a beta distribution with parameters 1 and 1 1 ,
where is the parameter of the above gamma distribution. This yields the state
transition equation

1
2Γ 2 1 1 1

2 1
1 1 1

Γ 1 Γ 1 1
1 (7.36)

The joint distribution 1 can be obtained as the product of this equation
and Equation (7.35). Integrating out gives a gamma distribution for the one-step-
ahead prediction or time update

1
2 1 1 1

1 e 2 1

Γ 1
(7.37)

Combining this with Equation (7.34) for 1 and applying Bayes’ formula yields
the filtering or observation update

1 1
2 Λ 1 1 1 1

1 e 2 Λ 1 1

Γ 1 1
(7.38)

Comparing this with Equation (7.35), we see that the updating equations are

1 1 1

1 2 Λ 1
(7.39)

the same as Equations (7.29) when 1 2 1.
The marginal distribution of , given the previous history, 1 , is ob-

tained by combining Equations (7.34) and (7.37) (at observation ) and integrating
out . This yields Equation (7.19) from which the likelihood is constructed.

A more easily generalisable interpretation takes and , instead of , as the
random parameters. To show the Markov nature of the updating process for the
hidden states, we can write Equation (7.29) in matrix form as

1 1 1 (7.40)

where is the hidden state of the system at time , is an identity
matrix, 1 0 the deterministic input, and 0 Λ the random in-
put. However, here is not a vector of probabilities and, in general, is not a
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stochastic matrix, so that this is not a Markov chain. (For further details about this
representation, see Chapter 11 on classical dynamic linear models.)

Longitudinal dependence To model dependence in a stochastic process, we would
prefer to have some way to allow the influence of previous states to diminish with
their distance in time. This is the role that 1 and 2 above will play when they
are no longer fixed at unity, but have 0 1 2 1. Thus, and will now be
updated as in Equation (7.39), which can also be written in the form of Equation
(7.40), but with

1 0
0 2

Often, the number of unknown parameters can be reduced by setting 1 2.
This parameter has been called the discount because it reduces the influence of
previous responses on the present probabilities. As above, I shall also set 0

0 . The influence of previous values now reduces as (recall that is the
number of events, not the time past). I shall call this the Kalman update because of
its similarity to the classical dynamic linear models in Chapter 11. With this and
the following updates, the product of conditional distributions no longer collapses
to a simple form, as in Equation (7.31).

Further possibilities One modification to the previous relationships is not to dis-
count the first update equation, that counting the recurrent events, so that 1 1
and

1 0
0

or

1 1

1 Λ 1
(7.41)

I shall call this the cumulated update.
The following possibilities do not fall within the framework of the Smith and

Miller (1986) interpretation described above, The first is to discount the event
counting and not to update from its previous value, with 2 0:

1 1

1 Λ 1
(7.42)

Here,

0
0 0

and 1 , where is the initial value. I shall call this the count update. Here,
the probability of the current response does not depend on the previous values,
but only on the number of previous recurrent events. Hence, as the number of
observations on a individual accumulates, increases relative to so that the
probability of large values tends to diminish.
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One major handicap of all of the previous updating procedures is that 0 does
not imply independence. One possible alternative is to discount only the counter
and Λ , respectively, in the two update equations, and not the initial value, :

1 1 1

1 1 Λ 1
(7.43)

so that

0
0

and 1 1 1 . I shall call this the event update because
decreases with the number of previous events. With this method of updating, 0
indicates independence between successive responses.

An extension is to allow the discount in the previous update to decrease as a
function of the time elapsed since the previous event:

1 1 1 1 1

1 1 1 1 Λ 1
(7.44)

I shall call this the serial update because acts in a way more similar to serial
dependence models (Sections 1.2.4 and 7.1). Again, 0 indicates independence.

One undesirable characteristic of these update procedures is that they produce
nonstationary models. However, the last two update procedures easily can be mod-
ified to produce a model closer to first-order Markov. Thus, the serial update could
become

1 1 1 1 1

1 1Λ Λ 1
(7.45)

with
1 0

0 0

1 1 , and 0 Λ Λ 1 . I shall call this the
Markov update.

None of the proposed update procedures is ideal. The dependence (discount)
parameter in the Kalman and cumulated updates is difficult to interpret because

0 does not yield independence. With the count update, the present risk of an
event is not modified by the lengths of times between previous events, but only by
the number of previous events. This is similar to a birth process (Section 4.1.1).
As well, most of the models are nonstationary.

7.3.2 Frailty

Clinical trials may involve series of observations on subjects who are rather het-
erogeneous, with inadequate covariates to account for these differences. Then, a
frailty model may be appropriate.
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Fig. 7.6. The Kaplan–Meier curves for the first (left) and subsequent (right) recurrences
of bladder cancer tumours.

Bladder cancer In a clinical trial conducted by the Veterans Administration Co-
operative Urological Research Group in the USA, 116 patients with bladder cancer
were randomised to one of three treatment groups: placebo, pyridoxine (vitamin
B6) pills, or periodic instillation of a chemotherapeutic agent, thiotepa, into the
bladder (Andrews and Herzberg, 1985, pp. 254–259). When they entered the trial,
all patients had superficial bladder tumours that were removed transurethrally. At
each discovery of one or more new tumours at a visit, these were also removed.
These times, in months, between recurrences of tumours were recorded for each
patient. Thus, times are between visits when one or several tumours were detected,
not between individual tumours. One might expect that the risk of further tumours
might change depending on the specific history of each patient.

The Kaplan–Meier curves are shown in Figure 7.6, separately for the first and for
subsequent recurrence times. Let us start with some simple models from Section
4.1.4. A Weibull renewal process has an AIC of 747.0 without treatment differ-
ences and 746.6 with them. The corresponding values for a renewal process based
on the overdispersed gamma mixture, a Burr renewal process, are 698.5 and 698.9,
respectively. However, neither the Kaplan–Meier curves nor these models take into
account the individuality of the patients.

The frailty model of Equation (7.31) is meant to allow for individual differences
among the patients. However, the AICs are 707.4 and 708.4, respectively, with the
same number of parameters as the Burr renewal process. Thus, according to these
models, the improvement comes from the overdispersion, not the heterogeneity
among patients.

If I replace the Weibull distribution by the log normal as my choice for ,
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Table 7.5. AICs for various models fitted to the bladder tumour data of Andrews
and Herzberg (1985, pp. 254–259).

Independent Gamma–Weibull mixture

Weibull Independence Frailty Markov Count

Null 747.0 698.5 707.4 697.5 685.8
Treatment 746.6 698.9 708.6 699.2 685.9
Treatment Birth 725.3 699.5 708.4 700.1 685.1

Independent Gamma–log normal mixture

log normal Independence Frailty Markov Count

Null 719.5 697.9 689.5 685.7 684.5
Treatment 720.4 698.0 691.2 686.5 684.6
Treatment Birth 710.5 698.7 690.4 685.5 682.5

the fit improves. Thus, for the log normal renewal process, the respective AICs are
719.5 and 720.4. For the gamma–log normal mixture, they are 697.9 and 698.0;
whereas, here, for the frailty model, they are 689.5 and 691.2. This now indicates
that a model with heterogeneity among patients fits better. On the hand, there is no
indication of difference due to treatment. These results are summarised in the first
three columns of Table 7.5.

I shall continue with this example in the next section, and return to the applica-
tion of frailty models briefly in Section 14.4.

7.3.3 Longitudinal dependence

When longitudinal measurements are made in a clinical trial, frailty models may
be necessary, but only rarely do they prove to be adequate. The longitudinal de-
pendencies among responses must (also) be taken into account.

Bladder cancer Let us now compare some models for longitudinal dependence
with those for frailty above; the best fitting ones are presented in the last two
columns of Table 7.5. Again, we see that the log normal intensities fit consid-
erably better than the Weibull. In no case is there evidence of a treatment effect.
On the other hand, these models clearly fit better than the frailty ones. For these
responses, the dependence is best modelled by the nonstationary count update of
Equations (7.42) rather than, say, by a Markov update from Equations (7.45).

One further possibility to allow for time dependence among the responses is a
birth process (Section 4.1.1). This will have , a location parameter, depending
directly on the number of previous recurrent events, in contrast to the updates in
which the value of the parameter , a dispersion parameter, depends on the number
of previous events. Here, such birth models may be reasonable because there is a
clear time origin when no tumours were present.

The results also are included in the table. The best model has the count update
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Fig. 7.7. The underlying marginal and individual profiles from the log normal mixture
model with count and Markov updates and a birth process for selected individuals with
recurrences of bladder cancer tumours.

with birth effect in a log normal intensity and gamma mixing distribution. How-
ever, the treatment effect is not required: when it is removed, the AIC is 682.6. It is
interesting that the number of previous events appears in the model in two distinct
ways: both as a birth model, changing the location parameter, and in the count
update equation, changing the dispersion.

Profile plots for four selected subjects with high numbers of events are shown
in Figure 7.7. We can see how the Markov update tries to adjust for the longer
periods between recurrent events and often fails because the following period is
much shorter.

7.4 Overdispersed series of counts

We saw in Equation (7.32) that several recurrent events might occur between ob-
servation points. Suppose now that the study is, in fact, designed in this way:
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observations only are made at fixed time points, the numbers of recurrent events in
these fixed time intervals being recorded. I analysed point processes in this way in
Section 4.3. The dynamic models of the previous section also can be modified to
accommodate this type of study.

7.4.1 Theory

As we saw in Section 4.3.2, if the intensity parameter of the Poisson distribution
of Equation (3.26) is allowed to vary stochastically following the gamma distribu-
tion as parametrised in Equation (7.23), then the resulting mixture distribution is
negative binomial with probability

Pr ;
Γ
Γ !

∆
∆ ∆

(7.46)

a slightly different parametrisation than that in Equation (4.36). Then, if a sequence
of overdispersed counts follows a negative binomial process, the probability of no
events in an observation interval ∆ is given by

Pr 0; ∆

Pr ∆ ;
(7.47)

This survivor function is identical to that arising from the special case of the Pareto
distribution given above in Equation (7.20). The average intensity over the interval
∆ is .

The same type of reasoning as in Section 7.3.1, but with ∆ fixed, here gives,
from Equation (7.46),

Pr 1 1
Γ

Γ 1 !

Λ ∆ 1
1 (7.48)

the equivalent of the frailty update model of Equation (7.30) with multivariate dis-
tribution corresponding to Equation (7.31):

Pr 1
Γ 0

0

Γ ∏
1

Λ ∆
!

(7.49)

a form of negative multinomial distribution. As in Section 7.3.1, other updating
equations also can be used. As for those models, the hidden states are defined by
the random parameters and .

These models have certain limitations. When any longitudinal dependence up-
date is used, a time origin must be specified. In addition, the dispersion parameter
is used to construct the dependence in these models, so that it cannot depend di-
rectly on covariates, such as time, as was done in Section 7.1.4 above.

University enrolment As we saw in Section 7.1.4, the counts of student enrolment
at Yale University from 1796 to 1975 have dispersion changing over time. Let us
attempt to apply these models with dynamically changing dispersion. In them, the
time origin is important; here, I shall set it to 1795.
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Again, the count update of Equation (7.42) provides the best fit, with an AIC
of 1244.6, slightly better than the negative binomial serial dependence model of
Section 7.1. The recursive predictions are plotted in the bottom graph of Figure 7.3,
very similar to the corresponding graph for serial dependence (but note that the time
origin is set to zero). If the location parameter is allowed to depend exponentially
on time, the AIC is only reduced to 1243.0.

However, the model fitted above in Section 7.1.4, with dispersion changing sys-
tematically over time, had an AIC of 1158.4. Thus, we may conclude that, for these
data, this is a better model than one with dynamic changes.

As mentioned above, the dispersion parameter cannot be made to depend di-
rectly on time as it can in serial dependence models. Thus, these models are com-
petitive with the latter models only if the dispersion is changing randomly, and not
systematically.

Further reading

Durbin and Koopman (2001), Harvey (1989), and West and Harrison (1989) pro-
vide general presentations of dynamic models. The serial dependence and dynamic
gamma mixture models are developed in Lindsey (1999a). Karr (1991) provides
information, scattered throughout the text, about dynamic models for point pro-
cesses.

For an introduction to hidden Markov models, see Guttorp (1995) or MacDonald
and Zucchini (1997). Elliott et al. (1995) provide a more advanced presentation
from an engineering point of view. These models are being used widely, for ex-
ample in speech processing (Rabiner, 1989; Juang and Rabiner, 1991), molecular
biological sequence analysis of nucleic acids in DNA and of amino acids in pro-
teins (Churchill, 1989; Durbin et al., 1998), ion channel kinetics in physiology
(Kein et al., 1997), econometrics (Hamilton, 1990), and panel studies in the social
sciences (Bye and Schechter, 1986).

Exercises

7.1 Can you find some better nonlinear regression function to replace the ex-
ponential curve for the Yale enrolment data?

7.2 Obtain the enrolment history of your university, if possible since it was
founded.

(a) Develop an appropriate model for your data.
(b) Are there any special historical events that influenced it, like the

two world wars for Yale?
(c) Explain the differences between your model and those used for

Yale above.

7.3 An endangered bird that has received much attention in North America is
the whooping crane (Grus americana). These are large birds about 1.5 m
tall with a 2.1 m wingspan and a relatively long life. They only reproduce
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Table 7.6. The whooping crane (Grus americana) population in Aransas, Texas,
USA, from 1938 to 1989. Seshradi (1999, pp. 296–297; read across rows)

18 22 26 16 19 21 18 22 25 31 30 34 31 25
21 24 21 28 24 26 32 33 36 39 32 33 42 44
43 48 50 56 57 59 51 49 49 57 69 72 75 76
78 73 73 75 86 97 110 134 138 146

Table 7.7. Monthly numbers of male deaths from bronchitis, emphysema, and
asthma in the UK, 1974–1979. (Diggle, 1990, p. 238, from Appleton)

Month 1974 1975 1976 1977 1978 1979

J 2134 2103 2020 2240 2019 2263
F 1863 2137 2750 1634 2284 1820
M 1877 2153 2283 1722 1942 1846
A 1877 1833 1479 1801 1423 1531
M 1492 1403 1189 1246 1340 1215
J 1249 1288 1160 1162 1187 1075
J 1280 1186 1113 1087 1098 1056
A 1131 1133 970 1013 1004 975
S 1209 1053 999 959 970 940
O 1492 1347 1208 1179 1140 1081
N 1621 1545 1467 1229 1110 1294
D 1846 2066 2059 1655 1812 1341

from age five, usually laying two eggs a year, of which only one often
survives. They are a migratory species that winters in the southern USA.
The winter population in Aransas National Wildlife Refuge in Texas, USA,
has been followed closely since 1938. The numbers until 1989 are shown
in Table 7.6.

(a) Develop a model to describe these data.
(b) What is your prediction for the population size in 2000? Find the

observed size to check your result.

7.4 The reported total numbers of male deaths from bronchitis, emphysema,
and asthma in the UK each month from 1974 to 1979 are presented in
Table 7.7. Notice the particularly high values in the winter of 1975–1976.

(a) Fit a serial dependence model to these data. Clearly, you will re-
quire a seasonal effect.

(b) Is there any evidence of an increasing or decreasing trend over
time?

(c) Give reasons why the dynamic overdispersed count models of Sec-
tion 7.4 cannot be applied to these data.

7.5 In a study of fœtal lamb activity during the last two-thirds of gestation,
body movements were recorded using ultrasound. The amount of activity
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Table 7.8. Numbers of movements of a fœtal lamb in 240 five-second periods.
(Leroux and Puterman, 1992; read across rows)

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 2 2 0 0 0 0 1 0 0 1 1 0 0 1
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 7 3 2 3 2 4 0 0 0 0 1 0 0 0 0 0 0 0 1 0 2
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 1 0 0 1
0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 2 0 0 0 1 0 1 1 0 1 0 0 2 0 1 2 1
1 2 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

may change because of physical factors, such as reduction in the volume of
amniotic fluid and space in the uterus, or through development of the cen-
tral nervous system. The record for a series of 240 consecutive five-second
intervals is shown in Table 7.8. For long-term development of the lamb,
several such series spread over a longer time period would be required.

(a) Plot the data in appropriate ways.
(b) Is there evidence of clustering of recurrent events?

7.6 Apply the dynamic overdispersed duration models of Section 7.3 to the
times between vehicles passing in Table 4.1.

(a) Do the models indicate dependence in the data?
(b) If so, which update performs best?
(c) There appears to be clustering in the graphs of Figure 4.8. Hidden

Markov models can be applied either to the interarrival times or
to the counts of events. Do either of these provide any additional
information about these data?

7.7 Repeat the preceding exercise for the mine accident data in Table 4.3.
7.8 Check for heterogeneity (‘frailty’) among series for the following data:

(a) The replacement of valve seats in diesel engines in Table 4.7;
(b) The migrating motor complex phase in fasting individuals in Table

4.8;
(c) The failures of air-conditioning equipment in aircraft in Table 4.9;
(d) The recurrence of infections in kidney patients in Table 4.10.
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More complex dependencies

In previous chapters, we have studied series of events occurring to one or more
individuals observed over time. In Chapters 2 and 3, I looked at simple durations
(survival times) where only one transition event to an absorbing state occurs. In
Chapter 4, I extended this to series of duration times between recurrent events. In
Chapters 5 and 6, each event resulted in a switch from one of a relatively limited
number of states to another, with possible dependence on the previous state(s).
We also have seen that dependence may be induced indirectly by postulating the
existence of hidden states influencing the process, as in Chapter 7. It is now time
to consider a few other, more complex, possibilities.

8.1 Birth processes

In Chapter 5 and Section 6.1.3, I looked at state dependence for categorical state
spaces. This gives rise to Markov chain models. Another simple way to intro-
duce dependence for such state spaces is by means of some form of birth process
(Section 1.2.5; see also the example in Section 7.3.3). Instead of conditioning on
the previous state(s), one conditions on the number(s) of previous times the series
was in some given state(s). For binary point processes, this is just the number of
previous occurrences of the recurrent event. In contrast to Markov chains, this will
necessarily result in a nonstationary process.

8.1.1 Birth or contagion

Because birth or contagion processes are nonstationary, special care must be taken
in choosing the time origin. It is important to begin observation before the first
event occurs or at the point in time when it happens, or at least to know how many
recurrent events previously had occurred in the process before recording of new
events begins. Otherwise, the number of previous events usually is not well defined
and the model may be meaningless. When modelling intensities in continuous time
using Equation (4.8), it generally is most sensible to begin at the first event, because
before that time 0 implying that is also zero. On the other hand, this
is not necessary if Equation (4.26) is used.

183
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Spermarche in boys A seven-year longitudinal study of spermarche in boys was
begun in the spring of 1975 in Edinburgh, Scotland. Two classes of a municipal
primary school participated; 40 of 42 boys and their parents gave informed consent.
Approximately every three months, a 24 h urine sample was collected by each boy.
These were analysed for the presence of sperm cells with results as shown in Table
8.1.

The ages of entry to and exit from the study varied. Entry age always was well
before the first recurrent event so that no problem arises in counting the number
of events. There is also no reason to suspect that the decision to withdraw was
influenced by the sperm content of the urine so that it should be independent of the
process under study. The analyses often were performed quite some time after the
sample was taken and, in any case, the results were not revealed to the boys.

Age of entry might be used as a covariate in the models. Other possible co-
variates are time and the age of first sperm. We would expect to use the latter as
an interaction with other covariates because the stochastic process should change
once sperm start to appear.

Sperm samples were taken approximately every three to four months, but the
exact times were not published. Hence, I have divided up the time between age
of entry and of exit into equal periods. (This could have been made slightly more
precise by also using the ages of first sperm, which were published.) The cumu-
lated numbers of positive sperm samples are plotted as counting processes in
Figure 8.1. We see from Table 8.1 and this figure that sperm first appear between
ages of about 12 and almost 16 years. Using a birth model, we can study how
the probability of a positive sample increases with the number of previous such
samples.

Here, I shall modify Equation (1.9) in order to use logistic regression:

log
1

(8.1)

where is the probability of a positive sample for boy (being counted) at time
. In this formulation, may be zero.

The null model, with no covariates, has an AIC of 439.7. Introduction of the
birth process reduces it to 382.0. However, a simple time trend, by itself, gives
362.0 and the birth process is no longer necessary. Nevertheless, if we add an
interaction between the two, the AIC is 336.5. We have not yet directly taken
into account the age of first sperm. When this is used as an interaction with time
(without the birth process), we discover that time is necessary only before first
sperm. The AIC is 324.5. Reintroducing the birth process, we obtain a final AIC
of 322.1. The estimated regression function is

log
1

17 2 0 093 16 7 0 1 14 0

where is the indicator function. Thus, the third term acts only after the sperm
first appear and the fourth (time) only before. The probability increases with age,
given by the coefficient of 0 , until the first positive sample. It, then,
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Table 8.1. Presence of sperm cells in the urine samples of boys. (Jørgensen et al.,
1991)

Age

Entry First sperm Exit

10.3 13.4 16.7 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0
10.0 12.1 17.0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1

9.8 12.1 16.4 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1
10.6 13.5 17.7 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0

9.3 12.5 16.3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
9.2 13.9 16.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9.6 15.1 16.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
9.2 — 12.2 0 0 0 0 0 0 0 0 0 0 0 0
9.7 — 12.1 0 0 0 0 0 0 0 0 0
9.6 12.7 16.4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1
9.6 12.5 16.7 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1
9.3 15.7 16.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
9.6 — 12.0 0 0 0 0 0 0 0 0 0
9.4 12.6 13.1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

10.5 12.6 17.5 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1
10.5 13.5 14.1 0 0 0 0 0 0 0 0 0 0 1 0 0

9.9 14.3 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
9.3 15.3 16.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

10.4 13.5 17.3 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1
9.8 12.9 16.7 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0

10.8 14.2 17.3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
10.9 13.3 17.8 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0
10.6 — 13.8 0 0 0 0 0 0 0 0 0 0 0
10.6 14.3 16.3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
10.5 12.9 17.4 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1
11.0 — 12.4 0 0 0 0 0 0

8.7 — 12.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10.9 — 14.5 0 0 0 0 0 0 0 0 0 0 0 0 0
11.0 14.6 17.5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1
10.8 14.1 17.6 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
11.3 14.4 18.2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0
11.4 13.8 18.3 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1
11.3 13.7 17.8 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1
11.2 13.5 15.7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
11.3 14.5 16.3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
11.2 14.3 17.2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0
11.6 13.9 14.7 0 0 0 0 0 1 0 0 0
11.8 14.1 17.9 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0
11.4 13.3 18.2 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0
11.5 14.0 17.9 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0

jumps to a much higher probability, given by the coefficient of 0 and
continues to increase with the number of previous positive samples, the coefficient
of the birth process , but no longer directly with time .

This model makes biological sense. However, it was derived empirically from
these data, so that it will require checking with other data.
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Fig. 8.1. The cumulated numbers of positive sperm samples in young boys, from Table
8.1.

8.1.2 Learning models

Birth models are most appropriate for recurrent series of events. However, in some
circumstances, they also make sense when more than one type of event is possible.
A generalisation uses the cumulative counts of each of several types of previous
events. Conditioning on these may provide an indication of how well an individual
learns. Thus, studying such a process may indicate which types of event expe-
riences most influence present behaviour. The birth or contagion process of the
previous section is the special case where only one type of event is being recorded
and its probability depends on cumulative number of previous such events. In con-
trast, here the models will count separately the numbers of several different kinds
of recurring events.

Dogs learning In the Solomon–Wynne experiment, dogs learned to avoid a shock.
Each dog was kept in a compartment with a floor through which an intense shock
could be applied. The lights were turned out and a barrier raised; ten seconds later,
the shock occurred. Thus, the dog had ten seconds, after the lights went out, to
jump the barrier and avoid the shock. Each of 30 dogs was subjected to 25 such
trials. The results, in Table 8.2, were recorded as a shock trial ( 0), when the
dog remained in the compartment, or an avoidance trial ( 1), when it jumped
out before the shock. The cumulated numbers of avoidances are plotted as counting
processes in Figure 8.2.

I shall assume that a dog learns to avoid shocks by its experience from previ-
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Table 8.2. The Solomon–Wynne dog experiment with 25 trials for each dog on a
line. Avoidance of shock is indicated by 1. (Kalbfleisch, 1985, pp. 83–88)

00101 01111 11111 11111 11111
00000 00100 00001 11111 11111
00000 11011 00110 10111 11111
01100 11110 10101 11111 11111
00000 00011 11111 11111 11111
00000 01111 00101 11111 11111
00000 10000 00111 11111 11111
00000 00110 01111 11111 11111
00000 10101 10100 01111 10110
00001 00110 10111 11111 11111
00000 00000 11111 10111 11111
00000 11111 00111 11111 11111
00011 01001 11111 11111 11111
00001 01101 11111 11111 11111
00010 11011 11111 11111 11111
00000 00111 11111 11111 11111
01010 00101 11101 11111 11111
00001 01011 11101 11111 11111
01000 01000 11111 11111 11111
00001 10101 10101 11111 11111
00011 11101 11111 11111 11111
00101 01111 11111 10011 11111
00000 00111 11111 11111 11111
00000 00011 10100 01101 11111
00000 01011 11010 11111 11111
00101 11011 01111 11111 11111
00001 01111 11111 11111 11111
00010 10111 01011 11111 11111
00001 10011 10101 01011 11111
00001 11111 01011 11111 11111

ous trials. The question is: from what aspects of the trials? The probability of
avoidance may depend both on the number of previous shocks and on the number
of previous successful avoidances, perhaps in different ways. Let be the con-
ditional probability of a shock at trial 0 24 , for any dog , given each
particular dog’s reactions on previous trials. If is the number of avoidances by
dog before its trial , then will be the number of previous shocks.

The standard approach of a statistician would be to use a logistic regression
function to relate the binary probabilities to the numbers of previous events, as I
did in the previous example. Here, instead, let us construct a mechanistic model by
postulating that the probabilities have the following relationship. Assume that the
ratio of successive probabilities over time are given by

1

if 1 1
if 1 0

(8.2)

Thus, the probability of shock will change by a factor of if there was an avoidance
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Fig. 8.2. The cumulated numbers of avoidances of shock by 30 dogs each on 25 trials,
from Table 8.2.

at the previous trial or if there was a shock. This model can be rewritten as

(8.3)

or

log (8.4)

where log and log . Formulated in this way, the parameters in the
model have an immediate physical interpretation.

The parameter estimates are ˆ 0 236 and ˆ 0 0793, so that ˆ 0 790
and ˆ 0 924. This indicates that an avoidance is more effective than a shock in
reducing the probability of future shock. Because ˆ 3 ˆ or ˆ ˆ3, a dog learns
about as much by one avoidance as by three shocks.

It is reassuring to note that this mechanistic model for binary responses, with a
nonstandard log link function, but a clear theoretical interpretation, fits better than
the corresponding ad hoc traditional models with a canonical logit link. The above
model has an AIC of 278.1; that with the logit link replacing the log in Equation
(8.4) has 304.9. Adding an intercept parameter to the latter model gives 283.2.

8.1.3 Overdispersion

In certain circumstances, it is not possible to record the times between events, but
only the total numbers of events. As we know (Sections 4.1.4 and 4.3.2), this will
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lead to over- or underdispersed counts, because the process will not generally be
Poisson. In certain situations, it may be possible, nevertheless, to develop models
based on intensity functions for the associated stochastic processes suspected of
producing the events.

Let us assume, here, that the system producing the events can be modelled as a
birth process (Section 1.2.5), whereby the probability of an event depends, in some
way, on the number of previous events:

Pr ∆ 1 ∆ ∆ (8.5)

where is some function of the previous number of events.
The resulting overdispersion model will depend on how this function of is

specified. For general count data, it can be modelled directly. As we already know,
setting to a constant, independent of , yields a Poisson process. A negative
binomial distribution will be generated from

0 1

log 1
(8.6)

using the parametrisation of Equation (4.36). Other possibilities include exponen-
tial or logistic changes with the previous number of events,

e 0 1 (8.7)

2

1 e 0 1
(8.8)

Indeed, any discrete distribution can be represented in some such way.
For a general counting process, can take any non-negative integral value. How-

ever, for binomial-type processes, there will be some maximum, say , such that
0. This can be accommodated by including a factor of in the above

models for . Thus, the constant of the Poisson process above becomes

(8.9)

yielding a binomial distribution. In certain circumstances, the total possible num-
ber might influence the intensity in other ways, such as

e 2 3

1 e 0 1
(8.10)

Once a model for has been selected, the marginal probabilities
Pr can be obtained from the Kolmogorov forward differential equations

d 0
d 0 0

d
d 1 1

(8.11)

The process must start in state 1, so that the initial conditions are given by the
marginal distribution 0 1 0 0 . The matrix of transition intensities
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(Section 6.1.3) corresponding to these equations is

0 0 0 0
0 1 1 0
...

...
...

...
0 0 0

(8.12)

which must be matrix exponentiated numerically. Multiplying the result by the
initial marginal distribution shows that the first row of the probability transition
matrix provides the required marginal probabilities 1 (see Faddy, 1997;
Faddy and Fenlon, 1999).

Nematodes Biological methods are increasingly being used to replace chemical
pesticides in the control of insect pests. Parasite–host systems include nematodes
such as those studied here in the control of the mushroom sciarid fly Lycoriella
solani. Once a nematode finds and penetrates the larva of a fly, it kills it by re-
leasing toxin-producing bacteria. It appears, however, that the first such invading
nematode on a larva encounters more resistance than subsequent ones. Thus, the
probability of a given nematode succeeding may depend on the number already
present, a situation that might appropriately be described by a birth model.

Experiments were carried out with three strains of the nematode Steinernema
feltiæ. The first of the strains used (Nemasys) has been marketed as a biological
control agent for a number of years; the other two (Sus11 and Sus94) come from
laboratory populations and may also potentially be useful. In this study, individual
larvæ of the fly were challenged by varying numbers of the nematode. However,
only the total numbers successfully penetrating the larvæ were recorded, not the
successes and failures of individual nematodes, with results as shown in Table 8.3.

The results for the various models described above, separately for each strain,
are summarised in Table 8.4. The binomial distribution fits relatively poorly in all
cases. For Nemasys, the exponential form is sufficient, but for Sus94, the logistic
form is somewhat better, and for Sus11, the results are influenced by the total
number of challengers.

For Nemasys, the estimates are 0 1 17 and 1 0 25 using Equation (8.7)
(multiplied by ); for Sus94, they are 0 0 60, 1 0 61, and 2 0 72
using Equation (8.8) (again multiplied by ); for Sus11, they are 0 2 07,

1 0 87, 2 0 66, and 3 0 062 using Equation (8.10).
The changing intensities and the values from the original equations, that is

the series of , are both plotted in Figure 8.3. We see that the maximum
intensity occurs early for Sus94 and late for Nemasys, with Sus11 in between.
Fitting a common model (logistic with total) to all three strains yields an AIC
of 1674.9 as compared to 1641.6 for the combination of three different models
indicated by Table 8.4. Thus, there is strong evidence of different reactions of the
various strains of attacking nematodes to those already present in a larva.
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Table 8.3. Numbers of nematodes (Steinernema feltiæ) of three different strains
found in larvæ of the mushroom sciarid fly (Lycoriella solani) with various initial

numbers ( ) of challengers. (Faddy and Fenlon, 1999)

Challengers Number of nematodes

( ) 0 1 2 3 4 5 6 7 8 9 10

Nemasys

10 1 8 12 11 11 6 9 6 6 2 0
7 9 14 27 15 6 3 1 0
4 28 18 17 7 3
2 44 26 6
1 158 60

Sus94

10 4 11 15 10 10 11 8 3 0 0 0
7 12 21 17 12 7 5 0 0
4 32 22 15 6 0
2 35 17 2
1 165 59

Sus11

10 21 13 11 11 9 4 2 2 1 0 0
7 34 15 13 1 2 3 1 1
4 35 19 12 3 2
2 45 26 3
1 186 40

Table 8.4. AICs for various birth models fitted to the nematode data of Table 8.3.

Nemasys Sus94 Sus11

Binomial distribution 627.8 560.3 555.8
Exponential form 590.9 544.1 514.4
Logistic form 591.5 543.0 512.6
Logistic total form 592.2 544.0 507.7

8.2 Autoregression

In Section 7.1, I looked at one way of constructing models incorporating serial
dependence for responses involving counts of recurrent events. Special features
of the exponential family can be used to construct another, rather special, type of
autoregressive dependence, here for the durations between events. Such models
have sometimes been called continuous-state Markov chains.

8.2.1 Theory

The simpler models in this class are very restrictive. It is not clear whether they
actually can represent any real phenomenon. However, more flexible models are
also available.
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Fig. 8.3. The series of intensities and 10 from the best model for each strain
of nematode for the data with 10 from Table 8.3.

Conditional exponential family

The conditional exponential family of Markov processes (Feigin, 1981; Küchler
and Sørensen 1997, p. 60) involves density functions having the general form

; exp 1 1 1 (8.13)

From the characteristics of the exponential family, this implies that

E 1
d 1

d
(8.14)

As a specific example, let us consider the gamma distribution in Equation (2.7).
In the context of recurrent events, the response will be the time between suc-
cessive events. Let us define new parameters and 1, implying
that 1. The parameter is called the autocorrelation (see Section 9.1.2).
Because and 1 must both be greater than zero, in this model it is always
positive.

This set-up yields

1;
1 1e
1Γ 1

(8.15)

Here, 1 and

1 1 log

1 log 1 (8.16)
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Then, we can check that indeed

E 1
1

1

(8.17)

The autoregression relationship given by Equation (8.17) may be modelled in
several ways. With a log link,

log log 1 log (8.18)

Here, the log lagged response is an offset, because it is not multiplied by an un-
known parameter, and the linear model will be in terms of . This essentially
implies that only changes in the autoregression coefficient, depending on covari-
ates, can influence the mean. In most situations, this will be of little use.

A more promising alternative is to use the identity link in an additive location
model, such as

1 (8.19)

The first response in a series, corresponding to the initial conditions, might be
modelled by fitting a separate gamma distribution, with two distinct parameters,
different from those for the rest of the series.

Recurrent tumours Let us return to the data on recurrences of tumours due to
bladder cancer that I analysed in Sections 7.3.2 and 7.3.3. Models based on the
gamma distribution and log link, without any dependence over time, have AICs of
750.9 and 750.2, respectively, without and with treatment effect.

For the usual state dependence model (Section 1.2.3), involving direct depen-
dence on the previous time interval (a gamma distribution with constant dispersion
parameter), the AICs are 727.7 and 728.7, showing an improvement on the in-
dependence model. A standard autoregression model (Section 1.2.4) with log link
and log lagged recurrence time has AICs of 728.5 and 728.7. None of these models
indicate a treatment effect.

In contrast, the conditional exponential model for the gamma distribution has
AICs 1012.3 and 1001.2, respectively! Thus, this model fits very badly. This
arises because of the strong constraint that the dispersion parameter must equal the
previous time interval between recurrent events.

Exponential dispersion family

The conditional exponential family can be generalised by taking a member of the
exponential dispersion family (Jørgensen, 1986; 1987; 1992), although the latter
models originally were not presented in this way. Let us denote this family

; exp

by ED ED 2 , where E and 2 1 . This family has the
convolution property for ∑ 1 :

ED 1 ED ED 1
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where ED when ED 2 . This can be used to model a process
with stationary independent increments (Section 4.1.1).

Thus, the gamma process defined by Equation (2.7) will be denoted here by
Ga 1 . Then, Ga 1 so that

∆ Ga ∆
1
∆

(8.20)

or

Ga
1

(8.21)

With , , and 1, this is just the conditional gamma model of Equa-
tions (8.15) and (8.17), but derived in a different way. Thus, whereas that model
had the dispersion parameter equal to the time interval between events, the present
model is more flexible, having the dispersion parameter proportional to the inter-
val.

Other members of this family include the Poisson process (Section 4.1.2) and
Brownian motion, a Wiener diffusion process, based on the normal distribution
(Section 10.1).

Recurrent tumours When this exponential dispersion model is fitted to the tu-
mour data, the AIC is 723.4 both with and without treatment effect, an improve-
ment on all of the autoregression models above, with constant dispersion para-
meter. The placebo and thiotepa groups have similar average recurrence times so
that the model can be simplified, with an AIC of 722.8. If the number of pre-
vious recurrences is taken into account, a type of birth model, this is reduced to
721.2. The model can be simplified further by removing the direct dependence of
the mean on the previous time so that only the dispersion parameter depends on it,
with an AIC of 720.5. Finally, the model can be improved if the placebo is allowed
to affect the first recurrence time differently than the two treatments, whereas pyri-
doxine affects subsequent times differently than the other two: the AIC becomes
718.9.

In summary, this model has the location regression function with a log link, a
different intercept for the first and for subsequent time intervals, a placebo effect
before the first event, an effect of pyridoxine after the first event, and a dependence
on the number of previous events. The log dispersion parameter is constant until the
first recurrent event and then becomes proportional to the previous time interval.

The mean time to first recurrence under placebo is estimated to be 30.4 mon,
whereas it is 55.0 mon under pyridoxine and thiotepa. For subsequent recurrences,
the mean time under pyridoxine is 11.1 mon, whereas it is 16.1 mon with placebo
and thiotepa. The recurrence time reduces about 0.1 mon for each additional tu-
mour. It is difficult to plot the theoretical survivor or intensity curves because of
the dependence of the dispersion parameter on the previous time.

Note, however, that this gamma exponential dispersion model cannot compete
with the dynamic models fitted in Section 7.3.3.
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8.3 Marked point processes

Models for point processes of recurrent events were covered in Chapter 4. Of-
ten, however, each recurrent event is associated with some other response variable,
called a mark. This should also be included in the model, resulting in a marked
point process.

8.3.1 Theory

The mark recorded at each event usually will be either a count or some continuous
measurement. Many types of processes usefully can be treated as marked point
processes with almost any kind of mark. Thus, continuous-time Markov chains
(Section 6.1.3) and semi-Markov processes (Section 6.1.4) could be analysed as
point processes for which the mark is the type of transition.

Often, the presence of the mark is the only indication that an event has occurred.
In these cases, a zero recorded value of the mark is impossible because the occur-
rence of the event is only indicated by the presence of a nonzero value.

As mentioned in Section 4.1.1, one important application of marked point pro-
cesses arises when events can occur simultaneously. Thus, if the mark is the num-
ber of events occurring at each point, it often will be useful to distinguish an oc-
currence function from the intensity function. The former describes the rate for the
points whereas the latter includes the multiplicity, referring to the recurrent events
at these points. For such processes, the simplest preliminary approach may some-
times be first to concentrate on modelling the points, ignoring multiplicity, and then
to handle the latter.

In analogy to a counting process (Section 4.1.1), we may wish to consider the
mark–accumulator process. This will give the cumulative sum of the marks up
until each point in time. It will be a piece-wise constant function of time, as is
a counting process. However, instead of the jumps being unity, they will depend
on the size of the mark. As long as zero is not allowed as a mark, the mark–
accumulator process will contain all of the information in a marked point process.

In the most general marked point processes, the successive marks may not be
independent of each other nor of the point process that determines their occurrence
times.

Compound Poisson processes

One important simple case occurs when the point process is a Poisson process (Sec-
tion 4.1.2), possibly nonhomogeneous, and the marks are independent, all having
the same distribution. This is called a compound Poisson process.

Let us assume that the marks are independent and identically distributed vari-
ables and that forms a Poisson process independent of these values. Then, the
mark–accumulator process

∑
1

(8.22)
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is a compound Poisson process. This process retains the characteristic of an ordi-
nary Poisson process of having stationary, independent increments. If the values of

are discrete, the process can be modelled as a Markov chain in continuous time.
(See Section 6.1.3 and Karlin and Taylor, 1981, pp. 427–428.)

Finite mixture models

One possible approach to modelling marked point processes, at least in discrete
time, is to use a finite mixture distribution whereby the nonevent points are a mix-
ture of the probability of no event and the probability of an event times the proba-
bility of recording zero for the mark:

0; 1 0 1; (8.23)

where is the event indicator, Pr 1 is the probability of an event, and
is the mark observed when the event occurs. This is another application of the type
of finite mixture model discussed in Section 3.4.

The Markov property can, then, be introduced by making depend on whether
or not an event occurred at the previous time point by means of a logistic regres-
sion, yielding a first-order, two-state Markov chain (Section 5.2.1). In addition, the
conditional probability of the mark, 1; , may depend on the previous
occurrence of an event in a similar way.

8.3.2 Markov chains with marks

Marked point processes often are used to model weather phenomena. Thus, a point
process can indicate whether or not precipitation occurs, with the mark being the
amount.

Weather The Weather Service in the USA maintains a large number of precipi-
tation monitors. For measuring the precipitation, a day is defined as being from
8:00 to the same time the next day. The recording instruments only can detect a
minimum of 0.01 in of precipitation so that the raw data are left censored and

Pr 0 1; 0 01 1; (8.24)

for some cumulative distribution function . However, the published data avail-
able, as described below, only are recorded to the nearest inch, so that I shall have
to assume censoring at 0.5 in.

Guttorp (1995, p. 17) provides data for the month of January in the years 1948
to 1983 for the precipitation monitor located at Snoqualmie Falls in the foothills
of the Cascade Mountains in western Washington state, USA. The observation for
31 December 1947, needed for conditioning in the Markov chain, is unavailable;
I shall assume, arbitrarily, that precipitation occurred on that day, as it did on the
following 12 days. The cumulative numbers of days with precipitation and the
cumulative total precipitation, the mark–accumulator process, for January for each
year are plotted in Figure 8.4. We can see that there is more variability in the
amount of rainfall than in the number of wet days.
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Fig. 8.4. The cumulative numbers of days with precipitation and the cumulative amount
of precipitation (in) for the data from Snoqualmie Falls.

Table 8.5. AICs for models fitted to the Snoqualmie Falls precipitation data.

Independence Markov dependence

Mixture Event Event and mark

Gamma 4941.3 4893.0 4790.0 4777.3
Weibull 5012.3 4896.3 4793.3 4780.6
Inverse Gauss 5411.3 5009.7 4906.7 4902.9
Pareto 5349.4 4912.8 4809.8 4795.2
Log normal 5126.7 4939.6 4836.6 4826.9
Log logistic 5150.3 4953.5 4850.5 4839.8
Log Laplace 5192.1 4985.7 4882.7 4872.3
Log Cauchy 5186.1 5045.5 4942.4 4930.9

First, I shall consider the amounts of precipitation alone, as an independent and
identically distributed series (with the zeros handled as left-censored). The results
for various models are shown in the first column of Table 8.5. Next, I can add
the assumption that some of the days have true zeros, the finite mixture, with the
results in the second column of the table. All distributions show considerable im-
provement in fit. In both of these approaches, the gamma distribution fits best.

The next step is to introduce dependence among the successive responses into
the finite mixture model. Suppose first that the probability of a wet or dry day
depends on the state the previous day, a first-order Markov chain. The results
are given in column three of Table 8.5. This is the discrete-time analogue of the
compound Poisson process, with a geometric distribution describing the times be-
tween the recurrent events (Section 5.1.2). The models all improve further. Finally,
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assume that the mean amount of precipitation, not just its presence or absence, de-
pends on the state (wet or dry) the previous day, with the results in the last column
of the table.

The gamma model for the amount of precipitation (not the time between events!)
fits best. It is interesting to note that the heavy-tailed distributions fit poorly: there
is no indication of extreme values occurring. In the gamma model, both occurrence
of an event and the amount of precipitation depend on whether or not an event
occurred the previous day. The gamma location parameter is estimated to be ˆ
21 2 following a dry day and 41.5 following a day with precipitation; the dispersion
parameter is estimated to be ˆ 0 67. Precipitation per day is higher if the previous
day was already wet.

The transition matrix for events is estimated to be

0 58 0 42
0 12 0 88

where the first row and column are for no precipitation. This is slightly different
from that when the mark is ignored and an ordinary Markov chain fitted:

0 61 0 39
0 16 0 84

Thus, like days have a high probability of following each other, especially when
precipitation is occurring. The mean length of a dry period is estimated to be
1 1 0 58 2 4 days and that of a wet period 1 1 0 88 8 0 days.

The Markov chain fitted here for recurrent precipitation events is rather crude. It
is the discrete-time equivalent of an exponential distribution, with constant prob-
ability of an event over time. Thus, a more sophisticated model would allow for
dependence on time since the previous event, both within wet and dry periods, such
as an alternating semi-Markov process (Section 6.1.4).

8.4 Doubly stochastic processes

In modelling a point process, one may need to assume that the intensity function
varies stochastically over time in some way. If this function only depends on the
history of the process itself, it is said to be a self-exciting process. Simple cases
include renewal processes (Section 4.1.4), where the intensity depends on when
the previous recurrent event occurred, and alternating events (Section 6.1.1) with
two different constant intensities, depending on the current state of the process.

A different situation occurs when the intensity function varies stochastically for
reasons not depending on the previous history of the process under study. This is
called a doubly stochastic process (Cox, 1955). We already have seen cases of such
a processes in Chapter 7, such as the hidden Markov model for a binary series in
Section 7.2.2.
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8.4.1 Theory

The simplest case of a doubly stochastic process is the doubly stochastic Poisson
process. This is conditionally a Poisson process, given the intensity process. Two
especially simple possibilities can arise (Cox and Isham, 1980, p. 71):

(i) If the intensity is constant for each given series, only varying randomly
among them, we have a mixed Poisson process in analogy with other mix-
ture models.

(ii) The intensity may be constant during given intervals of time but vary ran-
domly among the intervals.

(a) In the simplest situation, the intervals are fixed, perhaps of equal
length, and are known.

(b) If the timing of the intervals is unknown, an important special case
occurs when only two intensities alternate randomly in time: the
alternating Poisson process (we just saw above that this is also a
self-exciting process).

In Section 7.2.1, I presented a more elaborate example whereby two or more
Poisson processes stochastically alternated according to a hidden Markov model,
but where only the presence or absence of recurrent events was recorded in fixed
time intervals.

However, more complex doubly stochastic processes are also possible, such as a
doubly stochastic renewal process. I shall consider one here.

Gamma mixture of Weibull distributions

Suppose that we have a renewal process whereby the distribution of interarrival
times is Weibull, as in Equation (2.15). Assume, however, that the location param-
eter of this distribution has a gamma distribution, as in Equation (4.35). We know,
from Section 7.1.3, that the result is a Burr distribution, as in Equation (7.26). In
that section, I allowed the parameters from the gamma distribution to change dy-
namically over time. Then, because the intensity of a Weibull process depends on
its location parameter, it will be varying stochastically over time. Thus, the result
was one form of doubly stochastic model.

Here, we can, more simply, allow one of these parameters to vary deterministi-
cally with time and still obtain a doubly stochastic model. Let us rewrite the Burr
distributions as

;

1

1
1 (8.25)

The parameter comes from the gamma mixing distribution; if it is allowed to de-
pend on time, the distribution of the Weibull intensity will be varying stochastically
over time because the gamma distribution is changing. Thus, I need only introduce
a regression function on time for into the Burr distribution in order to obtain
a doubly stochastic process. This will be a doubly stochastic renewal process; if

1, it is still another type of doubly stochastic Poisson process.
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Table 8.6. Intervals between accidents causing fatalities in the mines in the seven
divisions of the National Coal Board of Great Britain in 1950 (first column) and
corresponding number of accidents (second column). The first and last values of

each series are censored. (Maguire et al., 1952)

Division
1 2 3 4 5 6 7

16 1 4 1 3 1 12 1 16 1 21 1 7 1 17 1 1 1
3 1 9 2 2 1 1 1 8 1 2 1 9 1 2 1 15 1
1 2 11 1 3 1 7 1 24 1 15 1 10 1 4 1 2 1
7 1 1 1 4 1 1 1 6 1 1 1 4 1 1 1 5 1
7 1 12 3 3 2 4 1 5 1 5 1 2 1 2 2 3 1

20 1 1 1 5 2 5 1 14 1 1 1 6 1 6 1 14 1
6 1 2 1 2 1 9 1 2 1 9 1 9 1 1 1 2 1
1 1 26 1 13 1 6 1 11 1 1 2 14 2 4 1 5 1

20 1 2 1 2 1 5 1 8 1 17 2 7 2 2 3 24 2
5 1 4 1 3 2 8 1 16 1 1 1 5 1 14 1 1 2

10 1 4 1 3 2 2 1 8 1 24 1 1 1 2 1 8 0
4 1 6 2 9 2 13 1 98 1 14 1 14 1 10 1
6 1 5 3 7 0 8 1 1 1 4 1 2 1 2 1

19 1 2 1 1 1 3 1 9 1 9 1 5 1
1 1 5 1 1 1 16 1 20 1 8 1 9 1
9 1 13 1 4 1 9 0 14 1 2 1 6 1

16 2 4 2 3 1 1 1 5 1 13 1
2 1 3 1 6 1 1 1 10 1 8 1
2 1 4 1 11 1 44 1 12 1 2 1
2 1 4 1 11 1 4 1 3 1 1 1
2 1 15 2 6 2 5 1 20 1 7 1
6 1 5 1 13 1 1 1 7 1 4 1

14 1 8 1 2 1 13 1 12 2 1 2
10 1 3 1 13 1 6 1 23 1 5 1
2 1 3 1 7 1 9 1 13 1 3 1
2 1 1 2 5 1 3 0 19 1 6 1
2 1 1 2 11 3 12 0 6 2
7 1 5 1 3 1 1 1
3 1 3 1 8 1 7 1

15 1 1 1 5 1 3 1
13 1 4 1 1 1 5 1
4 1 2 1 13 1 2 4
8 0 8 1 18 1 2 1

4 1 17 1 1 2
1 1 5 0 1 1

Mine accidents Consider the intervals, in days, between accidents causing fatal-
ities recorded for the mines in the seven divisions of the National Coal Board of
Great Britain over a 245 day period in 1950, shown in Table 8.6. In each division,
the first value begins at the start of the period, not at an accident, and the last value
stops at the end of observation, not at an accident, so that both are censored. On a
number of days, more than one accident occurred.

The question is whether or not there are differences among the divisions in the
accident rate. The cumulative numbers of days with accidents and the cumulative
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Fig. 8.5. The cumulative numbers of days with accidents (left) and the cumulative numbers
of accidents (right) for the mine data of Table 8.6.

Table 8.7. AICs for various models fitted to the mine accident data of Table 8.6.

Birth

Weibull 770.3 769.1
Fixed effect 756.8 757.7
Frailty 760.1 761.1

Burr 762.8 761.8
Fixed effect 753.1 754.1
Doubly stochastic 763.2 739.9

numbers of accidents are shown in Figure 8.5. We can see a very considerable
divergence in the rate at which accidents accumulate in the seven divisions.

A Weibull renewal process (Section 4.1.4), ignoring any dependence among re-
current events in the same division, has an AIC of 770.3. This model can be modi-
fied in various ways in order to attempt to describe the differences among the divi-
sions. A fixed effect difference among divisions improves the model considerably,
as can be seen in the first column of Table 8.7. On the other hand, a gamma frailty
model (Section 7.3), although an improvement over independence, does not fit as
well as the fixed effect model. The Burr distribution, an overdispersed Weibull
distribution, fits almost as well as the Weibull frailty model, although it does not
take directly into account differences among divisions. Again, introducing a fixed
effect improves the model.

None of the models so far take into account possible changes over time. How-
ever, allowing of the gamma mixing distribution to depend log linearly on time,
a doubly stochastic process, does not improve the model (the last value in the first
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column of Table 8.7). The power parameter is estimated to be ˆ 1 42, so that this
is a considerable distance from a doubly stochastic Poisson process.

A birth process does not make too much sense in this context because observa-
tion began at an arbitrary time point. Indeed, if the Weibull location parameter,
in Equation (8.25), is allowed to depend on the number of previous event points
(the occasions, not the number of accidents), most of the models fit no better (last
column of Table 8.7). The only exception is the doubly stochastic process. Adding
the fixed effect to this last model does not improve the fit (AIC 744.5). Thus,
the accident process can be described better by a doubly stochastic Weibull birth
process evolving over time for all seven divisions without differences among the
divisions described either by a fixed effect or by a frailty.

In this doubly stochastic model, the dispersion parameter of the gamma mixing
distribution is decreasing over time:

log 4 45 0 017 (8.26)

where is the time elapsed since beginning observation. In a similar way, the
location parameter is also decreasing:

log 5 12 0 082 (8.27)

where is the number of previous accidents that occurred in the division during
the period of observation. Letting the Weibull power parameter depend either on
time or on the number of events does not improve the model. Nor does letting

depend on the number of events or depend directly on time. The constant
power parameter still has the same estimate given above, quite far from a doubly
stochastic Poisson process.

It is not clear why such dependencies on time and on the number of previous
events should be detected because these accidents are continuing processes with
no fixed time origin. The observations were taken over 245 days so that the model
may be detecting a seasonal effect involving a simultaneous decrease in the location
and dispersion parameters.

8.5 Change points

As we already have seen several times, a common problem in the study of stochas-
tic processes is to determine whether or not the functioning of a process is being
modified over time. If such a change is relatively abrupt, occurring at some point
in time, determination of that time point is called the change-point problem.

8.5.1 Theory

One important class of stochastic processes involves modelling the occurrence of
abrupt modifications at one or more points in time. Thus, when individuals are
followed over time, they may change state at some unknown point in time. This
means that the distribution of the response is altered at this time point. The response
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variable at time may, then, be modelled as

; 1

; 2
(8.28)

where is some given distribution and an unknown parameter giving the
change-point time. Some or all of the elements of the vector of parameters in
the distribution may change. In a more complex situation, the distribution function
itself may be different before and after the change point. Notice that the derivative
of does not exist at so that care must be taken in the technical procedure
for estimating the parameters.

Consider the simple case of a Poisson process; this will be nonhomogeneous
because of the change point. However, the process on each side of the change point
can be homogeneous: the rate of occurrence of events can stay the same up to the
change point and then change to some other constant. Equivalently, in each period,
the interarrival times will have an exponential distribution with constant intensity or
the counts within fixed intervals of time will follow a Poisson distribution (Section
4.1.2). Thus, at the change point, the intensity and the mean change. Thus, we
shall have a special case of Equation (8.28):

; 1 1
; 2 1

(8.29)

where is either an exponential or a Poisson distribution, depending on the
approach taken, and is again the unknown parameter giving the change-point
time. Hence, for a single series, there will be three parameters to estimate: the two
intensities or means, before and after, and the change point.

Unfortunately, for such models, the form of the likelihood function can be very
irregular, with local maxima; standard optimisation algorithms, especially those
using derivatives, will have trouble finding the maximum. A simple approach is to
fix a grid of values of the change-point parameter and, for each fixed value, to
optimise over the other parameters. The resulting set of likelihood values then can
be plotted.

Mine disasters The numbers of days between successive coal-mining disasters
(explosions), each with at least ten deaths in Great Britain between 15 March 1851
and 22 March 1962 are given in Table 8.8. In the middle of this period, near the
end of the nineteenth century, the legislation for mine safety was changed. I shall
see whether or not I can detect any effects of this change.

The cumulative number of recurrent events is plotted in the left graph of Figure
8.6. The rate of occurrence of disasters seems to slow down after about 15 000
days or 40 years, that is, about 1890. The counts of disasters per year are plotted
in the right graph of Figure 8.6. Again, we see that there are fewer disasters after
about 40 years.

Let us look, first, at the intervals between disasters using the exponential distri-
bution. The normed likelihood function for the change point, based on Equation
(8.29) with exponential distributions, is plotted in the left graph of Figure 8.7,
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Table 8.8. Days between successive coal-mining disasters, each with at least 10
deaths, in Great Britain, from 15 March 1851 to 22 March 1962. (Jarrett, 1979;

read across rows)

157 123 2 124 12 4 10 216 80 12
33 66 232 826 40 12 29 190 97 65

186 23 92 197 431 16 154 95 25 19
78 202 36 110 276 16 88 225 53 17

538 187 34 101 41 139 42 1 250 80
3 324 56 31 96 70 41 93 24 91

143 16 27 144 45 6 208 29 112 43
193 134 420 95 125 34 127 218 2 0
378 36 15 31 215 11 137 4 15 72

96 124 50 120 203 176 55 93 59 315
59 61 1 13 189 345 20 81 286 114

108 188 233 28 22 61 78 99 326 275
54 217 113 32 388 151 361 312 354 307

275 78 17 1205 644 467 871 48 123 456
498 49 131 182 255 194 224 566 462 228
806 517 1643 54 326 1312 348 745 217 120
275 20 66 292 4 368 307 336 19 329
330 312 536 145 75 364 37 19 156 47
129 1630 29 217 7 18 1358 2366 952 632
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Fig. 8.6. The cumulative numbers of accidents and the numbers of accidents/yr for the
mine disaster data of Table 8.8.

clearly pointing to interval 124. This means that the change occurred after 14 240
days or about 39 years, that is, 1890. The intensities are estimated to be 0.0087
disasters per day before the change and 0.0025 after, or 3.18/yr before and 0.92
after. The AIC for this model is 1176.4.
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Fig. 8.7. The normed likelihood functions of the change point for the exponential (left)
and Poisson (right) models for the mine disaster data of Table 8.8.

Now, let us, instead, look at the counts of disasters per year using the Poisson
distribution. The normed likelihood function for the change point, again based on
Equation (8.29), but now with Poisson distributions, is plotted in the right graph
of Figure 8.7, again clearly pointing to 39 years. The mean numbers of recurrent
events per year are estimated to be 3.18 before the change and 0.90 after. The
AIC is 168.8; because the data are used differently, this is not comparable to the
previous one.

8.5.2 Hidden Markov model

The hidden Markov models of Section 7.2 also can be used, with minor modifi-
cations, to detect a change point. Here, we need assume only two hidden states,
with the process necessarily starting in the first. Thus, the initial distribution is

0 1 0 instead of the stationary distribution of the hidden transition matrix.
Only one change point is assumed, so that the second hidden state is absorbing:
this matrix will have zero probability of return to the first state:

1 1 2 1

0 1
(8.30)

This means that it contains only one parameter to estimate: 1 1 1 2 1.

Mine disasters For this model applied to the mine disaster data, the probability
of being in the first hidden state is plotted in the left graph of Figure 8.8 for the
exponential distribution of intervals between disasters and in the right graph for
the Poisson distribution of counts of disasters.
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Fig. 8.8. The probability of being in the first hidden state of the hidden Markov model for
the exponential (left) and Poisson (right) models for the mine disaster data of Table 8.8.

The first model points to a change after 133 intervals or about 45 years; the
second indicates 46 years. These are both later than those found by the method in
the previous section. The AICs are 1180.9 and 172.9, respectively, both worse than
those for the corresponding change-point models above, although all have the same
number of parameters. Here, the intensities are estimated to be 3.16 disasters per
year before by both models and 0.93 and 0.92 by the two models after the change.
The matrices of hidden transition probabilities are estimated, respectively, to be

0 992 0 008
0 000 1 000

and
0 974 0 026
0 000 1 000

showing a very high probability of staying in the first state.
A disadvantage of this approach is that hidden Markov models do not have an

explicit parameter providing an estimate of when the change took place. Thus,
it would be difficult to obtain a measure of precision of the estimate such as that
given by the likelihood functions in Figure 8.7.

Further reading

For more details on marked point processes and doubly stochastic processes, see
Cox and Isham (1980), Karr (1991), Kingman (1992), and Snyder and Miller
(1991).

Exercises

8.1 In Section 7.1.2, I modelled animal learning data using autoregression.
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Table 8.9. Effect of treatment on disease course of ten EAE-induced mice over 40
days, with disease graded on an ordinal scale. 0: no abnormality; 1: floppy tail
and mild hind leg weakness; 2: floppy tail with moderate hind leg weakness; 3:

hind leg paresis without complete paralysis; 4: total paralysis of hind legs.
(Albert, 1994)

Placebo

0 2 3 4 4 4 4 4 3 3 3 2 2 2 1 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 2 2 3
0 0 1 2 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 2 4 4 3 4 3 3 3 2 2 2 3 4
0 0 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 3 2 2 2 1 0 0 2 2 3 3 3 3 3 3 3 3 3 3 3 3
0 1 2 3 4 4 3 3 3 2 2 2 2 2 1 1 2 2 2 3 2 2 2 2 2 1 0 0 0 0 0 1 1 1 1 1 2 3 1 3
0 0 1 2 3 3 3 3 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 3 3 3 2 2 2 2 3 3 2 2

Treated

0 1 1 2 2 2 2 2 1 1 0 0 0 0 0 1 3 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 2 3
0 0 0 0 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 3
0 0 0 0 0 0 0 1 1 2 2 1 1 0 0 0 1 1 1 1 2 1 1 0 0 0 0 1 1 1 2 2 2 2 1 1 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 0 0 0 0

(a) Can you fit an appropriate birth (learning) model to these data?
(b) Compare the results and the interpretation for the two approaches.

8.2 Let us look more closely at the data on precipitation at Snoqualmie Falls.
Records are available for all days of the year between 1948 and 1983.

(a) First, extend the model in the text above for the January precipita-
tion to a semi-Markov process.

(b) Now, fit appropriate models for the month of July and compare
them to those for January.

(c) Finally, develop a model of the entire series over the 36 years. It is
likely that you will have to incorporate a seasonality effect.

8.3 Experimental allergic encephalomyelitis (EAE) can be induced in mice;
this is of interest because it closely mimics multiple sclerosis in human
beings. Both are relapsing–remitting diseases characterised by inflamma-
tion and demyelination of the central nervous system. The diseases exhibit
clinically nondeterministic fluctuations between worsening and improving
symptoms.

EAE was induced in ten mice that were, then, randomly assigned either
to placebo or to a therapeutic agent. Each was followed for 40 days for
signs of disease, with possible states: no abnormality (0), floppy tail and
mild hind leg weakness (1), floppy tail with moderate hind leg weakness
(2), hind leg paresis without complete paralysis (3), and total paralysis of
hind legs (4). The results are shown in Table 8.9.

(a) The goal of the study was to understand better the stochastic nature
of the disease progression. Develop an appropriate model.
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Table 8.10. Times between four types of events in a baboon troop (Andersen et al.,
1992, p. 41, from Altmann and Altmann)

Days Troop size Number Event

41 40 1 Birth
5 41 1 Birth

22 42 1 Birth
2 43 1 Death

17 42 1 Death
26 41 2 Immigration
55 43 1 Birth
35 44 1 Immigration
20 45 1 Emigration
5 44 1 Death
6 43 1 Emigration

32 42 1 Death
4 41 2 Death

22 39 1 Death
10 38 2 Birth
7 40 1 Death
4 39 1 Birth

17 40 1 Death
11 39 1 Emigration
3 38 1 Birth
4 39 1 Death
8 38 1 Death
2 37 1 Death
5 36 1 Birth

10 37 1 Birth

(b) What differences are there between the placebo and the therapeutic
agent?

8.4 A baboon troop was studied in the Amboseli reserve in Kenya for a period
of a year. In the dynamics of social behaviour, birth–immigration and
death–emigration are of interest. Thus, times of births, deaths, emigration,
and immigration were recorded, as in Table 8.10. Here, we have four
different events that may depend on the size of the troop and on the time
since a previous event of the same type or since any previous event. There
are ten births, 12 deaths, three immigrations, and three emigrations, for a
total of 28 events in 373 days of observation.

(a) Is some type of birth process appropriate?
(b) Do the same factors influence all four types of events?

8.5 Baskerville et al. (1984) present a novel form of clinical trial for evalua-
ting therapeutic differences. The general principle is that the best available
treatment should be provided to each patient so that, when there are alter-
natives, the appropriate treatment must be determined for each patient.

Any given trial will have a fixed length, determined by the regularly
scheduled visits to a clinic, but will have variable treatment lengths. Thus,



Exercises 209

Table 8.11. Data for preferences from a cross-over trial involving the treatment of
chronic asthma. (Baskerville et al., 1984)

Sequence Sequence

1 AABBBBBBB 4 BBBBBBBCA
AAAAAAAAA BBBBBBBCC
AAAAABBBC BCCCCCCCC
ABBBBCCCC BBBBBBCCA
AAAAAABBC BBCCCCCCA
AAAAAAAAA BCCCAAA

2 AAACBBBBB 5 CCABBBBBB
AACCCCCCC CAB
ACCBBBBBB CCAAAAABB
AAAAAACCC CAABB
AAAAAAACC CCCCCCABB
ACB CCAABBBBB

3 BBBBBBBBB 6 CBBBBBBBB
BACCCCCCC CBBBBBBBB
BBBBBBAAA CCCBBBBBB
BBBBAC CCCCBBBAA
BACCCCCCC CCCCBBBAA
BBAAAAACC CBBBA

each patient is assigned the series of treatments under study in a sequence
determined randomly in the standard way for cross-over trials. However,
as the trial proceeds, double blinded, each patient remains on the assigned
first treatment in the sequence between all visits until either clinical de-
terioration or adverse effects of the treatment indicate that a change is
necessary. Then, at the following visit, the patient is switched to the next
treatment in the assigned sequence, and so on. Thus, certain patients may
remain on the first treatment for all visits in the trial if that treatment proves
effective or may run out of new treatments before the visits and stop the
trial if no treatment proves effective.

Baskerville et al. (1984) provide data on clinical decisions in a trial of
three bronchodilators (A, B, C) in the treatment of chronic asthma involv-
ing 36 patients, as shown in Table 8.11. Nine weekly visits were pro-
grammed. Only three patients remained on the same treatment throughout
the trial, two on A and one on B; six others completed the treatment se-
quence (that is, ran out of new treatments) and stopped early.

(a) Develop a model to describe the processes occurring in this study.
(b) Which treatment appears to be preferable?

8.6 Hæmolytic uræmic syndrome is a severe illness, primarily of infants and
young children, and can be life threatening. It is associated with diarrhœa
but its ætiology is unknown. Various bacterial and viral agents have been
suspected, particularly an association with the level of Escherichia coli in
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Table 8.12. Annual numbers of cases of hæmolytic uræmic syndrome in
Birmingham and Newcastle-upon-Tyne, UK, from 1970 to 1989. (Henderson and

Matthews, 1993; read across rows)

Birmingham
1 5 3 2 2 1 0 0 2 1
1 7 11 4 7 10 16 16 9 15

Newcastle-upon-Tyne
6 1 0 0 2 0 1 8 4 1
4 0 4 3 3 13 14 8 9 19

the environment. Health authorities in the UK were concerned that this
illness may have increased in the 1980s. Annual numbers of cases were
available from two specialist centres, in Birmingham and Newcastle-upon-
Tyne, from 1970 to 1989, as shown in Table 8.12.

(a) Can you detect a change point in these data?
(b) If so, did it occur at the same time in the two centres?
(c) What peculiarities have you noticed with these data?

8.7 For the data in Table 4.3 on the numbers of accidents in a section of a mine:

(a) Fit a marked point process with the number of accidents as the
mark.

(b) Compare your results with those for a standard Poisson process in
Exercise 4.2 and for Markov chains in Exercise 5.10.

8.8 Above, I fitted a doubly stochastic process to the data on mine accidents in
Table 8.6.

(a) These responses might also be thought to follow a marked process.
Compare the fits of the two models.

(b) Still another possibility is a hidden Markov model. Does this pro-
vide any further insights?

(c) Which approach is more informative about what is occurring?
(d) Is this the best fitting model?



Part III

Continuous state space





9

Time series

In this chapter, I shall begin the exploration of models for stochastic processes
having a continuous state space rather than a small set of states. The best known
case involves the classical time series models, used so widely in econometrics.

Traditionally, any series of numbers over time would be considered to be a time
series and standard methods based on the normal distribution applied, perhaps af-
ter taking logarithms. As we have already seen in Sections 1.2 and 7.1, such an
approach certainly is not generally recommended; modern methods are available
based on more reasonable distributional assumptions. Exceptionally, I shall follow
this classical approach in this chapter in order to illustrate how time series models
are still often applied.

Much of time series analysis, especially in econometrics, involves tests of vari-
ous hypotheses. Well known cases include the Durbin–Watson, Chow, and reset
tests. Here instead, I shall concentrate on developing appropriate models for a
series. Equivalent information to that from such tests can be obtained by comparing
models, but much more can be learnt from modelling than from testing.

9.1 Descriptive graphical techniques

A variety of graphical methods is available for preliminary analysis of time series
data.

9.1.1 Graphics

As with any stochastic process, the first thing to do with a time series is to produce
appropriate informative plots. With a continuous response, a fundamental plot will
show the series against time. Often, series are first standardised to have zero mean
and unit variance, primarily to obtain better numerical stability. I shall not follow
that practice here.

Respiratory diseases Let us begin by looking at the data on deaths from bron-
chitis, emphysema, and asthma in the United Kingdom over a period of six years,
given in Table 7.7 and plotted in Figure 9.1. As can be seen from this graph, a
seasonal component is present, with the number of deaths varying regularly over

213
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Fig. 9.1. Monthly male cases of bronchitis, emphysema, and asthma in the UK from 1974
to 1979, from Table 7.7.

each year. This is important short-term medical information. However, a more
crucial question is to determine whether or not the number of deaths has changed
systematically over the years, a time trend. The graph seems to indicate a slow
but steady decrease with time. Thus, any model for this series should incorporate
seasonality and a long term trend.

9.1.2 Correlograms

One important characteristic of time series data is that adjacent responses often
may be related more closely than those more distantly separated in time. Several
descriptive graphical methods are available for detecting such relationships.

Autocorrelation function

One useful tool for discovering dependencies in time series data is the empiri-
cal autocorrelation function (ACF). This function gives the correlation among re-
sponses in the series at various distances in time, called lags. It is analogous
to the autointensity function of Section 4.2.2, but will be used here to detect a
quite different type of dependence. Thus, if the autocovariance between pairs of
responses is

cov (9.1)

estimated by

ˆ ∑
1

ˆ ˆ (9.2)
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Fig. 9.2. The empirical autocorrelation and partial autocorrelation functions for the cases
of bronchitis, emphysema, and asthma in Table 7.7.

then the autocorrelation is

0
(9.3)

In practice, a reasonable value for the maximum of to use in the calculations is
usually about one-quarter of the length of the series.

A plot of the ACF is called a correlogram. Thus, a correlogram is a graph
showing the correlations among responses in the series at a set of different distances
apart in time.

Respiratory diseases For the respiratory data, the ACF correlogram is plotted in
the left graph of Figure 9.2. We clearly can see the cyclical dependence induced
by the seasonal changes in the series, with a period of about 12 months.

Partial autocorrelation function

The partial autocorrelation function (PACF) is the correlation between
and , with the latter conditional (autoregressed) on 1 1 (Sections 1.2
and 9.2). Such a procedure is computationally expensive, but a simple recursion
can be used instead, based on the autocorrelation:

1 1 1

1
ˆ 1 ∑ 1 ˆ 1

1 ∑ 1 ˆ

(9.4)

where 1 are the (auto)regression coefficients of on 1

, with (Diggle, 1990, p. 168).
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This function can be plotted in the same way as the autocorrelation function. As
we shall see, it is often more useful than the ACF for obtaining the information in
which one is most interested from such plots: the order of a model.

Respiratory diseases The PACF correlogram for the respiratory data is plotted in
the right graph of Figure 9.2.

9.2 Autoregression

The most widely used way in which to take into account dependencies in time
series data is to use autoregression-moving average (ARMA) models. In the more
complex cases, the series may first need to be differenced, called integration, that
is, the ARMA is applied to differences among the responses, yielding an ARIMA
model. Although such models have proved useful for short-term predictions, they
are strictly empirical (similar to fitting an arbitrary polynomial to some nonlinear
curve) and rarely have any informative interpretation.

Here, I shall only look at simple autoregression models of order , called
AR( ) (or equivalently, ARMA( 0) or ARIMA( 0 0)), primarily with
1, and at first differencing, ARIMA( 1 0) models. In contrast to the more com-
plex models, these can have an interpretation. I shall not cover models involving
moving averages.

9.2.1 AR(1)

The simplest, and most easily interpretable, model is an autoregression of order
one ( 1). In its simplest form, without covariates, this is the state dependence
model of Section 1.2.3; with covariates, it is the serial dependence model of Section
1.2.4. It has an ACF decreasing as a power of the autocorrelation parameter: .

If one is not sure that a first order ( 1) model is appropriate, a plot of the
partial autocorrelation function (PACF) can be useful in attempting to determine
the order. It should be zero for lags greater than . In contrast, the ACF for such
models will decrease slowly, not clearly indicating the order.

An AR(1) can be specified in a number of closely related ways.

(i) The most straightforward is conditionally, as a special case of Equation
(1.7):

1 1 (9.5)

where is the conditional or recursive mean of a normal distribution. As
we have seen (Sections 1.1.4 and 1.2.1), the advantage of this approach is
that it involves a product of univariate conditional distributions.

(ii) A second possibility is to work directly with the multivariate normal dis-
tribution having an appropriately structured covariance matrix, as will be
described shortly.
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(iii) A third is to construct the model dynamically, as in Chapter 7, but here
using the Kalman filter and smoother. I shall delay introduction of this
approach until Section 11.1.

If there are no other covariates besides time, the marginal mean, ,
may just be a regression function describing a time trend and/or seasonal effects.
Classically (and in this chapter), has been taken to be a linear function of
the parameters (which does not necessarily make Equation (9.5) linear); in Chap-
ters 12 and 13, I shall concentrate on nonlinear models.

Conditional approach

Throughout previous chapters, I primarily have used a conditional approach to con-
structing models. This is the first specification of an AR(1) above. Thus, as we can
see from Equation (9.5), a first-order autoregression model conditions on the pre-
vious residual 1 1 , called an innovation in this context. Except in
simple cases, the regression function will be nonlinear in the unknown parame-
ters, even if is linear in them. This is because the model contains both

1 and .
Unfortunately, for the first response, the previous innovation will not be avail-

able; this observation is often ignored if the series is reasonably long. If this is
unacceptable, the first response can be modelled by a separate normal distribu-
tion with a different variance (if several replications of the series are available, a
different mean might also be estimated).

A third possibility is to assume that the time series is stationary. Then, the
marginal distribution at the first time point, given the marginal mean, will be the
stationary distribution. This is a normal distribution with variance 2 1 2 ,
where 2 is the conditional variance and the autocorrelation. This clearly implies
that 1 for stationarity to hold. In contrast to the previous solution, here no
new parameters are introduced.

Covariance matrix

When stationarity can be assumed, the second specification of an AR(1) above can
also be used: direct construction of a multivariate normal distribution. Combin-
ing the univariate normal distributions, with means given by Equation (9.5), using
Equation (1.1) yields

;
1

2
e

1 2 (9.6)

where is the vector of marginal means and

2

1 2

1 2 1

1 3 2

...
...

. . .
...

2 3 1
1 2 1

(9.7)

for a series of length .
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The inverse of this covariance matrix, called the concentration matrix, has a
special form, with zeros everywhere except on the main and first minor diagonals:

1 1
2

1 0 0
1 2 0 0

...
...

. . .
...

...
0 0 1 2

0 0 1

(9.8)

In addition, it has a simple Cholesky decomposition 1 , where

1

1 2 0 0 0
1 0 0

...
...

. . .
...

...
0 0 1 0
0 0 1

(9.9)

More generally, for an AR( ), the number of non-zero minor diagonals in
corresponds to the order of the autoregression.

Continuous time

Let us now consider the modifications required to work in continuous time. As we
have seen, the autocorrelation function in Equation (9.7) can be rewritten as

(9.10)

with 1, so that it decreases as the distance in time increases. In discrete time,
only takes integer values, so that can have negative values. However, negative

values are not possible in continuous time because responses can be arbitrarily
close together and, hence, must be positively correlated. Thus, in this latter case, a
better formulation is obtained by setting

e 0 (9.11)

where e . This is called an exponential autocorrelation function.
Such a continuous AR(1), or a CAR(1), process can be defined by the linear

differential equation

E d d (9.12)

the mean of a normal distribution with variance 2d .

Autocorrelation functions

Other, more nonstandard, autocorrelation functions are also possible. One gener-
alisation of the exponential ACF is

e 0 (9.13)

so that Equation (9.11) is a special case with 1.
Several other functions are also less common but may be useful in certain con-

texts.
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Table 9.1. Fits of various models to the monthly numbers of male deaths from
bronchitis, emphysema, and asthma in Table 7.7.

Normal Log normal

Independence AR(1) Independence AR(1)

Null model 541.8 510.9 535.4 500.4
Linear trend 539.8 511.2 532.9 500.6
One harmonic 486.2 482.7 473.3 468.0
Two harmonics 481.5 479.3 471.6 467.1
Three harmonics 481.9 479.2 471.5 465.4
Trend + two harmonics 480.4 479.0 458.9 459.5

The Gaussian autocorrelation function has
2

e
2 (9.14)

another special case of Equation (9.13) with 2.
The Cauchy autocorrelation function has

1
1 2 (9.15)

The spherical autocorrelation function has

0 5 3 3 2 1

0 1 (9.16)

Still another function, which tends asymptotically to the exponential function of
the standard CAR(1), will be introduced in Section 10.2.1: that for an integrated
Ornstein–Uhlenbeck process.

Respiratory diseases Let us now attempt to model the series of male deaths from
bronchitis, emphysema, and asthma in Table 7.7. These are count responses, un-
likely to follow a normal distribution. Nevertheless, as is typical of time series
applications, I shall apply such models here. I shall first determine the type of re-
gression function required before adding the autoregression component. I shall use
seasonal harmonics for variations of a 12-month period, fitting the models using
the multivariate normal distribution of Equation (9.6). Thus, I shall be assuming
stationarity, after accounting for seasonal and trend effects.

From the first column of Table 9.1, we see that a model with linear trend and
two harmonics is required. This may be written

0 1 cos 2 6 3 cos 4 3 5 (9.17)

In the cosine function, 2 is multiplied by 12 and 6 for the first two harmonics.
The slope of the time trend is given by 5.

When the AR(1) dependence is added, this greatly improves the simpler, poorly
fitting, models, but makes only a small difference for the better models, as can be
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Fig. 9.3. The fitted normal AR(1) model for the cases of bronchitis, emphysema, and
asthma in Table 7.7.

seen in the second column of Table 9.1. The autocorrelation for the best model
is estimated to be ˆ 0 27. The curve estimated for Equation (9.17) is plotted
in Figure 9.3 as the underlying marginal profile. The recursive predictions in the
same graph are ˆ in Equation (9.5), that is, the marginal profile corrected by the
previous marginal residual.

To check the model further, the empirical (P)ACF can be calculated and plotted
for the recursive residuals obtained from it. These are the differences between
the observed series and the recursive predictions. As might be expected, they are
generally smaller than the marginal residuals. The results are shown in Figure
9.4. The fit appears to be reasonable: only two correlations out of 18 are outside
the limits in the ACF and one in the PACF. Finally, the linear trend is estimated
to be 5 0 0025 indicating that the number of cases was decreasing over the
observation period, as expected.

9.2.2 Transformations

Often in time series modelling, a log transformation is used, whether to ‘stabilise’
the variance or because the distribution is skewed. This yields a log normal distri-
bution. Care must be taken to include the Jacobian of the transformation (1 ) in
the likelihood for the AICs to be comparable.

When the regression function of a log normal distribution is transformed back to
the scale of the responses,

e (9.18)

it refers to the geometric mean of the responses. For this distribution, the arithmetic
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Fig. 9.4. The empirical autocorrelation and partial autocorrelation functions for the residu-
als from the fitted normal distribution AR(1) model for the cases of bronchitis, emphysema,
and asthma in Table 7.7.

mean is obtained as

E

e
2 2 (9.19)

so that it depends on the variance. For other distributions, it will be more complex.

Respiratory diseases Let us repeat the analysis of male deaths from bronchitis,
emphysema, and asthma in Table 7.7 applying a log transformation to the re-
sponses. The results are shown in the last two columns of Table 9.1. We see
that the fit is considerably improved. Moreover, here, when a suitable regression
function in time is used, the AR(1) is no longer necessary. The marginal regression
curve, transformed back to the original scale, is plotted in Figure 9.5. (Because
there is no autocorrelation, there are no recursive predictions.) Inspection of the
autocorrelation functions of the marginal residuals (there are no recursive ones) in
Figure 9.6 reveal no anomalies. Here, the slope is 5 0 0030, somewhat steeper
than for the normal model, but the scale is not the same.

Because of the relationships between the arithmetic and geometric means given
above, the graphs in Figures 9.3 and 9.5 are not strictly comparable. However, for
these responses, the variance is estimated to be so small ( ˆ 2 0 0080) that the
difference between the two is slight.

I shall look at another way to approach the periodicity of this series in Section
9.3.1 below.

In the above example, it was possible to eliminate the serial dependence after
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Fig. 9.5. The fitted independent log normal model for the cases of bronchitis, emphysema,
and asthma in Table 7.7.
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Fig. 9.6. The empirical autocorrelation and partial autocorrelation functions for the resid-
uals from the fitted independent log normal model for the cases of bronchitis, emphysema,
and asthma in Table 7.7.

finding an appropriate distribution (log normal) and regression function (season-
ality and time trend). In principle, this often should be possible, but generally
regression functions of time will not be sufficient. Usually, introduction of appro-



9.2 Autoregression 223

priate time-varying covariates will be necessary in order to eliminate serial depen-
dencies.

9.2.3 Random walks

When a series is nonstationary, one possibility is to difference it to determine if the
changes in response are stationary. If first differences are taken, this is equivalent
to an AR(1) with 1, as can be seen from Equation (1.8)

1 1

If there are no time-varying covariates so that 1 , this simplifies
to

1
(9.20)

Such models provide another case of a random walk (Section 5.1.3). In this case,
in Equation (5.12), which is here in fact the first difference 1, can take

any value on the real line.
If 1 is not equal to zero, the random walk has drift. If this

difference is not a constant, the drift is changing over time. If an autoregression of
order is still required for the differences, this is an ARIMA( ,1,0) model. If
not, the process has independent increments (Section 4.1.1).

Yale enrolment In Section 7.1, I looked at data on student enrolment at Yale Uni-
versity from 1796 to 1975. The series was given in Table 7.1 and plotted in Figure
7.1. As with the respiratory data previously modelled in this chapter, these are
count responses for which normal distribution models really are not appropriate.

As it stands, this series is nonstationary in the mean. The empirical autocorre-
lation functions are plotted in Figure 9.7, showing very high correlations, a result
of the nonstationarity. The series might well be modelled by some form of growth
curve, to be presented in Chapter 12. However, here I shall look at another aspect
of these data.

For the respiratory data above, I used the multivariate normal distribution of
Equation (9.6), hence assuming that the series was stationary. Here instead, I shall
use the conditional approach. Thus, I shall fit a standard univariate normal re-
gression (Section 2.2) to the Yale series (except the first value), conditional on the
lagged (previous) value, a state dependence model as in Equation (1.6). The esti-
mate of the intercept is 52.9 and of the slope one (AIC 1353.3). Notice that this is
a nonstationary model because ˆ 1; it could not be fitted using the multivariate
normal distribution directly. It is a random walk with drift, whereby enrolment
is increasing on average by about 53 students per year. However, the drift is not
necessary; eliminating it gives an AIC of 1352.9 with ˆ 1 01, so that 1 1.

This is essentially the same model as I fitted in Sections 7.1.1 and 7.1.3, except
that the Poisson and negative binomial distributions there are here replaced by the
normal distribution and the first value is not used. The estimated value of the slope
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Fig. 9.7. The empirical autocorrelation and partial autocorrelation functions for enrolment
at Yale University in Table 7.1.

is very close to that for the dependence parameter in Chapter 7. However, the
negative binomial serial dependence model fitted considerably better (AIC 1190.0,
but using the first observation) than this normal model.

The changes (first differences) in enrolment were plotted in the middle graph
of Figure 7.1. The curve is flat and the variability is low until about 1900, after
which it increases greatly. The empirical autocorrelation functions for the first
differences are plotted in Figure 9.8, showing that there is no longer an indication
of autocorrelation (unless one is prepared to fit a very high order autoregression
model): only a couple of values, of the 44 plotted, are outside the limits. If a first-
order autocorrelation is added, the AIC increases. Thus, we have an ARIMA(0,1,0)
model for the original series.

This random walk in discrete time is a special case of a Wiener diffusion process
to be treated in more detail in Section 10.1.

9.2.4 Heteroscedasticity

One of the strong assumptions of standard normal distribution models is that the
variance remains constant. If it does not, this is called heteroscedasticity. Much
work has been done on this problem in time series analysis. Recall, first, that
if a log transformation is applied, although the log responses will have constant
variance, the original responses will not.

If a transformation is not sufficient, in simple cases, the variance may be allowed
to depend deterministically in some way on time. Because the variance must be
positive, it is usually most appropriate to construct regression functions in terms of
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Fig. 9.8. The empirical autocorrelation and partial autocorrelation functions for the first
differences of the enrolment at Yale University in Table 7.1.

the log variance. More complex methods allow the variance to depend on previ-
ous observed values or on the previous innovations (see Section 10.4). However,
often heteroscedasticity indicates that the normal distribution assumption itself is
inappropriate.

Yale enrolment For the Yale enrolment data, we saw in Figure 7.1 that the vari-
ability increases over time. For the negative binomial distribution, I already mod-
elled this in Section 7.1.4. Here, let us look at two simple possibilities: allowing the
log variance to depend linearly on time or to change abruptly at about 1900. The
two estimated variance functions are plotted in Figure 9.9. For the random walk
model (first differences), the first has an AIC of 1151.8 and the second 1164.1, both
great improvements as compared to 1353.3 for the model with constant variance
above. Thus, there does not appear to be a clear break, but rather a gradual change
in variance.

A further possibility is that the variance (of the differences) depends on the pre-
vious level of enrolment. However, here this does not fit nearly as well: the AIC is
1307.4. A more sophisticated model might take the role of the two wars explicitly
into account.

Notice that these models fit about as well as the corresponding negative binomial
serial dependence models with nonconstant dispersion in Section 7.1 (the AICs
here would be larger if the first response was included, as it was there). However,
the negative binomial distribution is more acceptable for such data because it is
designed for counts.
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Fig. 9.9. Two variance functions for the changes in Yale University enrolment in Table
7.1.

9.3 Spectral analysis

Up until now, in this chapter, I have studied how a series of states evolves over
time. This is called analysis in the time domain. Sometimes, the frequency with
which the series varies is of special interest. One approach to examining this is
by using harmonics in the regression function, as I did for the respiratory data in
Section 9.2.1. Another way is to use Fourier or spectral analysis, called analysis
in the frequency domain. This involves decomposing a function into a sum of
sines and cosines. This is related to the examination of correlograms. Naturally, to
model and to compare the periods of cyclic phenomena, fairly long series may be
necessary, depending on the frequency of the cycles.

9.3.1 Periodograms

A complementary function to that expressed in a correlogram is the spectral density
function. This can be written as

∑ e i

0 2 ∑
1

cos (9.21)

where i 1. The values are known as the fundamental or Fourier frequen-
cies.
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Estimation

The above definition involves an infinite series. However, in any empirical study,
we only shall have a finite set of observations of length . Thus, we shall require
a representation of the spectral density in Equation (9.21) that is valid for a finite
observed series. Let us, then, assume that the variation in the mean over time can
be described by a sum of trigonometric functions

E 0

2

2

∑
1

1 cos 2 sin

0

2

2

∑
1

cos (9.22)

where 2
1

2
2 is the amplitude of the th harmonic of the series,

tan 1
2 1 is the phase, and 2 is the frequency of the th cycle

with period .
Using (least squares) estimates of , we can obtain

4 1
2

2
2 1 ∑

1

cos

2

∑
1

sin

2

ˆ 0 2
1

∑
1

ˆ cos (9.23)

This is called the periodogram. It can be rewritten as

I
2

4
(9.24)

where an additional factor of 1 has been included.
From these results, we see that the periodogram is the required representation.

Thus, estimates of the autocovariances can be substituted into Equation (9.24) to
give an estimate of the periodogram. If it is plotted against the frequency , the
total area under the curve will equal the variance of the series. (This is why Equa-
tion (9.24) contains the extra factor.) Thus, the periodogram is a decomposition of
the variance of the series.

The periodogram, as it stands, however, is often not a good estimate of the spec-
tral density function. It can tend to fluctuate wildly. To be of use, it must, then, be
smoothed, say with some filter or weighted average.

Respiratory diseases For the series of male deaths from bronchitis, emphysema,
and asthma in Table 7.7, the raw and smoothed periodograms are plotted in Figure
9.10. The raw periodogram has a maximum at a frequency of about 0.52, corre-
sponding to a period of 2 0 52 12 1 months, or one year, as would be expected.
Smoothing was performed by taking a three-point moving average. In this case, it
does not appear to help interpretability.
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Fig. 9.10. The raw and smoothed periodograms for the cases of bronchitis, emphysema,
and asthma in Table 7.7.

Cumulative periodogram

The cumulative periodogram may be used to check for departures from white noise,
that is, from random sampling fluctuations. Under this assumption, it should in-
crease approximately linearly. If it lies between a pair of parallel lines defining a
likelihood interval, no such departures are indicated.

Respiratory diseases For the male deaths, the cumulative periodogram is plotted
in Figure 9.11. Clearly, these data are not white noise.

9.3.2 Models for spectra

Because the periodogram involves variances, it has a 2 or gamma (in fact, expo-
nential) distribution. Models can be fitted using this. Thus, periodograms from
different series can be compared.

Autoregression

It is relatively simple to fit an autoregression of any order to a spectrum by using
a nonlinear regression function with an exponential distribution (Cameron and
Turner, 1987). For an AR( ), the theoretical spectral density function is

2

2 ∑ 0 e i 2

2

2 ∑ 0 sin 2 ∑ 0 cos 2
(9.25)
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Fig. 9.11. The cumulative periodogram for the cases of bronchitis, emphysema, and
asthma in Table 7.7, with likelihood intervals.

where the are the negative of the coefficients of the autoregression with 0 1.
We can take 2 to be an additional unknown parameter.

Yale enrolment Consider the Yale enrolment data for which we found an AR(1)
with 1 (here, this will be 1). The null (constant mean) model has an AIC
of 2238.3. The above regression equation with 1 has 2007.3 whereas, with

2, it is 2008.3. The estimate of the autocorrelation is 1 1 02, confirming
the previous results.

Applying the same method to the changes in enrolment yields AICs of 1878.8
for the null model, 1879.7 for 1, and 1879.4 for 2 (the data are different
so that the AICs are not comparable with those above). Thus, as expected, there is
no longer any indication of the need for an autoregression.

Exponential model

Bloomfield (1973) introduced an alternative to ARMA models that uses an expo-
nential regression function for the spectral density:

2

2
exp 2 ∑

1

cos (9.26)

This can more easily be fitted than the previous model because it is a generalised
linear model with a gamma distribution having scale set to unity and a log link
function.
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Table 9.2. Monthly numbers of female deaths from bronchitis, emphysema, and
asthma in the UK, 1974–1979. (Diggle, 1990, p. 238, from Appleton)

Month 1974 1975 1976 1977 1978 1979

J 901 830 767 862 796 821
F 689 752 1141 660 853 785
M 827 785 896 663 737 727
A 677 664 532 643 546 612
M 522 467 447 502 530 478
J 406 438 420 392 446 429
J 441 421 376 411 431 405
A 393 412 330 348 362 379
S 387 343 357 387 387 393
O 582 440 445 385 430 411
N 578 531 546 411 425 487
D 666 771 764 638 679 574

Yale enrolment For the Yale enrolment data, this model does not fit as well as
the AR(1). The first-order model has an AIC of 2069.6 and a sixth order model is
required, with an AIC of 2026.2. For the changes in enrolment, the results are the
same as above: the model is not necessary. The AICs are 1879.7 for 1 and
1879.1 for 2 compared to 1878.8 for the null model.

Further reading

Chatfield (1989), Diggle (1990), and Janacek and Swift (1993) provide elementary
introductions to time series. There are many texts containing more advanced mat-
erial; see, among others, the standard texts by Brockwell and Davis (1996), Harvey
(1989; 1993), and Kendall and Ord (1990).

For spectral analysis, see Bloomfield (1976) and Priestley (1981).
For a more general approach to continuous state spaces in discrete time than the

classical time series literature, see Meyn and Tweedie (1993); their use of the term,
Markov chain, is nonstandard.

Exercises

9.1 The data on monthly deaths from bronchitis, emphysema, and asthma are
also available for women, as shown in Table 9.2.

(a) Does a similar model to that for the males provide an acceptable fit
to these data?

(b) Is there a similar trend over time?
(c) Can you fit a model simultaneously to the data for the two sexes?
(d) Compare the periodograms of the two series using an exponential

distribution model.

9.2 The counts of lynx trapped in the MacKenzie River District of Northwest
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Table 9.3. Canadian lynx trapped from 1821 to 1934. (Andrews and Herzberg,
1985, p. 14, from Elston and Nicholson; read across rows)

269 321 585 871 1475 2821 3928 5943 4950 2577
523 98 184 279 409 2285 2685 3409 1824 409
151 45 68 213 546 1033 2129 2536 957 361
377 225 360 731 1638 2725 2871 2119 684 299
236 245 552 1623 3311 6721 4254 687 255 473
358 784 1594 1676 2251 1426 756 299 201 229
469 736 2042 2811 4431 2511 389 73 39 49
59 188 377 1292 4031 3495 587 105 153 387

758 1307 3465 6991 6313 3794 1836 345 382 808
1388 2713 3800 3091 2985 3790 374 81 80 108

229 399 1132 2432 3574 2935 1537 529 485 662
1000 1590 2657 3396

Table 9.4. Annual Wölfer sunspot numbers between 1770 and 1869. (Hand et al.
1994, pp. 85–86; read across rows)

101 82 66 35 31 7 20 92 154 125
85 68 38 23 10 24 83 132 131 118
90 67 60 47 41 21 16 6 4 7
14 34 45 43 48 42 28 10 8 2

0 1 5 12 14 35 46 41 30 24
16 7 4 2 8 17 36 50 62 67
71 48 28 8 13 57 122 138 103 86
63 37 24 11 15 40 62 98 124 96
66 64 54 39 21 7 4 23 55 94
96 77 59 44 47 30 16 7 37 74

Canada over 114 years, given in Table 9.3, are a classical time series that
has been analysed many times. These data have traditionally been mod-
elled by a log normal distribution.

(a) Is this an appropriate distribution for these data?
(b) What order of autoregression is necessary?
(c) Is the series stationary?
(d) Can you find any cycles in the data?

9.3 Some other classical data usually modelled by autoregression techniques
involve the annual Wölfer sunspot numbers between 1770 and 1869 in
Table 9.4. They measure the average number of sunspots on the sun each
year.

(a) Can you find a Markov model to describe these data adequately? A
number of different suggestions have been made in the literature.

(b) What order of model is required?

9.4 The yearly unemployment rates in the USA from 1890 to 1979 are given
in Table 9.5. These are typical of time series modelled in econometrics.
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Table 9.5. Unemployment rates in the USA, 1890–1979. (Kramer and
Sonnberger, 1986, pp. 166–167; read across rows)

3.970 5.419 3.045 11.684 18.415
13.703 14.445 14.543 12.354 6.536
5.004 4.133 3.668 3.922 5.378
4.276 1.728 2.765 7.962 5.106
5.587 6.719 4.637 4.321 7.919
8.528 5.100 4.617 1.372 1.375
5.157 11.715 6.728 2.415 4.951
3.217 1.756 3.276 4.208 3.246
8.903 15.653 22.981 20.901 16.197

14.389 9.970 9.182 12.468 11.273
9.508 5.994 3.095 1.773 1.226
1.931 3.945 3.894 3.756 5.934
5.286 3.314 3.032 2.910 5.551
4.386 4.132 4.270 6.805 5.469
5.529 6.689 5.540 5.667 5.180
4.522 3.794 3.846 3.578 3.508
4.942 5.936 5.593 4.853 5.577
8.455 7.690 7.038 6.022 5.794

Table 9.6. Annual snowfall (in) in Buffalo, New York, USA, 1910–1972 (Parzen,
1979; read across rows)

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5
25.0 69.3 53.5 39.8 63.6 46.7 72.9 79.7 83.6
80.7 60.3 79.0 74.4 49.6 54.7 71.8 49.1 103.9
51.6 82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7

110.5 65.4 39.9 40.1 88.7 71.4 83.0 55.9 89.9
84.8 105.2 113.7 124.7 114.5 115.6 102.4 101.4 89.8
71.5 70.9 98.3 55.5 66.1 78.4 120.5 97.0 110.0

(a) Develop a suitable model to describe these data.
(b) Can you detect any systematic periodicity?
(c) What predictions can you make for 1980?

9.5 Annual snowfall (in) in Buffalo, New York, USA, was recorded from 1910
to 1972 as shown in Table 9.6.

(a) Find an appropriate model to describe these data.
(b) Is there evidence of a trend or of a cyclical phenomenon?



10

Diffusion and volatility

Many observed stochastic processes may produce occasional very extreme values
or periods with exceptional amounts of variability. Both of these phenomena are
known as volatility. (In econometrics and finance, this term often has the more
restricted meaning of models with changing variance over time.)

Two common approaches to modelling volatile phenomena are

(i) to use distributions with heavy tails and
(ii) to allow the dispersion to depend on some measure of the previous variabil-

ity about the location regression function.

We already have met some volatility models related to the second approach in
Sections 7.3 and 7.4. Here, I shall consider both approaches. However, I shall
first look at an important class of processes in which the dispersion increases in a
deterministic way with time: diffusion processes.

Because, in most non-normal models, the variance is a function of the mean, a
location parameter changing over time implies that the variability, or volatility, is
also changing. Thus, the distinctiveness of specifically modelling the volatility is
most relevant for members of the location-scale family, such as the normal, Cauchy,
Laplace, and Student distributions, where the location and dispersion can vary
independently of each other.

10.1 Wiener diffusion process

If the variance of a stochastic process increases systematically over time, a diffu-
sion process may provide an appropriate model. One question will be whether the
variance can increase without limit or slowly approaches some constant maximum.
I shall consider the first possibility in this section.

10.1.1 Theory

Brownian motion may be one of the most famous stochastic processes, perhaps
because of its connection with the movement of small particles floating on water.
One model that commonly has been used to describe it is the Wiener diffusion

233
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process, defined by the Chapman–Kolmogorov differential equation

2

2

2 (10.1)

The solution results in a multivariate normal distribution for with mean, vari-
ance, and covariance

2

min
(10.2)

where gives the initial condition (location) of the process, assumed to be a fixed
value without error, and is the drift. We see that, in this model, the variance can
increase without limit.

Thus, this process is nonstationary. However, it has stationary, independent in-
crements (Section 4.1.1) in time intervals ∆ , each having an independent normal
distribution with mean and variance

∆ ∆
2
∆ ∆ (10.3)

(and, of course, zero covariance). Thus, is independent of for .
Hence, is a special case of a random walk (Section 5.1.3), one that can both
increase and decrease. I mentioned, in Section 8.2, that this process is a member
of the exponential dispersion family. As well, in Section 9.2.3, I fitted this type of
model to the Yale enrolment data, as a random walk in discrete time with 0.

An example of a Wiener process is plotted in Figure 10.1; we see that, even
without drift, a Wiener process can stray far from its initial value. The path that
such a process traces out has the particularity that it will be continuous but nowhere
differentiable. This results because the correlations between nearby points are too
small. Thus, if this process is used to describe the location of a particle, its vel-
ocity will not be defined. Although Wiener diffusion is sometimes called Brownian
motion, it is, in fact, not a very good model for such movement because of this
(Guttorp, 1995, p. 286).

When a Wiener diffusion process stops at a fixed boundary value , the du-
ration of the process will have an inverse Gauss distribution, as given in Equation
(2.14).

Measurement error

Suppose now that recording a Wiener process involves measurement error, also
having a normal distribution, but with mean zero and constant variance 2. Then,
the recorded responses will have a multivariate normal distribution with the same
mean and covariance as in Equation (10.2) but with variance now given by

2 2 (10.4)

Notice that the first response, at 0, also is recorded with measurement error, so
that it is now normal with mean and variance 2.

Let us next examine what will happen to the first differences. These will no
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Fig. 10.1. A Wiener diffusion process with 0, and 0 5 (left) and its increments
(right).

longer be independent because the successive differences 1 and 1

both involve and thus contain the same value of measurement error. One will
be made larger and the other smaller. Instead of being independent, the first diffe-
rences will have a multivariate normal distribution with same mean as in Equation
(10.3), but with variance and covariance

2
∆ ∆ 2 2

∆ ∆
2 1 1

0 1 or 1
(10.5)

In order to be able to estimate in a fitted model, the normal distribution of the
undifferenced response at 0 must be included as the initial condition.

Likelihood function

As in many cases in which the normal distribution is involved, estimation of the
parameters can be simplified by solving the score equations (first derivatives of the
log likelihood function set to equal to zero) for certain parameters. Thus, if we set

2,

ˆ ∆ 1∆
∆ 1∆

(10.6)

and

ˆ 2 1
∆ ˆ ∆ 1 ∆ ˆ ∆ (10.7)
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Table 10.1. The gain of a transistor measured periodically over 10 000 h.
(Whitmore, 1995, from Denton)

Hours 0 50 115 180 250 320 420 540
Gain 90.9 90.3 90.1 89.9 89.6 89.6 89.3 89.1

Hours 630 720 810 875 941 1010 1100 1200
Gain 89.0 89.1 88.5 88.4 88.5 88.3 87.7 87.5

Hours 1350 1500 1735 1896 2130 2460 2800 3200
Gain 87.0 87.1 86.9 86.5 86.9 85.9 85.4 85.2

Hours 3900 4600 5650 6600 7800 8688 10000
Gain 84.6 83.8 83.9 83.9 82.3 82.5 82.3

where is the matrix of covariances defined by Equation (10.5) but with 2

factored out so that it is only a function of . Then, the profile likelihood function
for is

e 2

2 ˆ 2 2

(10.8)

from which it is easier to find the maximum likelihood estimate of than for all
three parameters simultaneously (Whitmore, 1995).

10.1.2 Time transformations

In many situations, a process does not follow a linear drift. One way that has
been suggested (Whitmore, 1995) to handle this is by transforming the times. A
common type of nonlinear drift corresponds to the transform

1 e 0 (10.9)

This describes a slowing down of the process over real time.
The profile likelihood of Equation (10.8) will now contain the parameters and
in addition to , complicating slightly the estimation. The equations for and 2

remain unchanged.

Transistor gains Engineers often are concerned with the degradation of materials
or components. These may involve physical or chemical changes. Degradation
tests attempt to measure such processes in the laboratory. The recordings made
will incorporate the degradation process itself but also measurement errors due to
the instruments, procedures, and environment.

The gain of a transistor is influenced by temperature and other stresses. It gen-
erally declines over time. Table 10.1 provides the results of one degradation test of
a transistor. The plot of the responses given in Figure 10.2 shows that they roughly
follow a curve such as that given in Equation (10.9). Whitmore (1995) suggests
that 1, obtained from a batch of similar transistors, where time is measured in
thousands of hours.
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Fig. 10.2. The transistor gains from Table 10.1, with the curves for two Wiener diffusion
models and the AR(1).

Table 10.2. AICs for the models fitted to the transistor gains in Table 10.1.

Ornstein–
Model Wiener AR(1) Uhlenbeck

1 e 11.4 8.3 8.2
1 e 10.7 6.4 6.6

Fitting this model yields an AIC of 11.4. The parameter estimates are ˆ 90 9,
ˆ 8 31, and ˆ 0 319. The resulting regression curve is plotted as the solid
line in Figure 10.2. The measurement error variance is estimated to be ˆ 2 0 0816
and the diffusion variance to be ˆ 0. Estimating , instead of fixing it at unity,
reduces the AIC slightly, to 10.7 with ˆ 0 855. The measurement error variance
is reduced to ˆ 2 0 0734, whereas the estimates of the other parameters change
very little. This curve also is plotted, as the dashed line, in Figure 10.2.

Because the diffusion variance is estimated to be zero, it will be informative
to fit a standard nonlinear AR(1) model (Section 9.2.1) to these data. In order to
have a model that varies over time in a way similar to the above time-transformed
diffusion model, we can take the mean to change as

1 e (10.10)

The results are summarised in the first two columns of Table 10.2. The autoregres-
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sion models fit considerably better than the Wiener diffusion models with measure-
ment error. In fact, even an independence model with 1 fits better, with an
AIC of 8.6. In the best model, the parameter estimates are ˆ 90 1, ˆ 10 5,
ˆ 0 338, and ˆ 0 731. The variance is estimated to be ˆ 2 0 0865. The
curve plotted as the dotted line in Figure 10.2 is somewhat lower than those for the
Wiener diffusion model.

Whitmore (1995) also finds that his diffusion model fits rather poorly, but tries
to improve the fit by removing ‘outliers’. However, the problem is that the time
transform in Equation (10.9) determines the shape of the regression curve for the
mean and plays the most important role in goodness of fit. Estimation of the pa-
rameters in it involves rather rigidly not only the mean in Equation (10.3) but also
the variance in Equation (10.5). Apparently, the variance of these responses does
not change appropriately over time for this regression function.

10.2 Ornstein–Uhlenbeck diffusion process

One way to overcome the drawback of the Wiener diffusion process, that its path
is not differentiable, is to model directly the velocity. A model for the position
can then be obtained by integration. This approach, then, should provide a more
appropriate model of Brownian motion. In addition, it will yield a model with
increasing variance over time that reaches a limiting constant value, instead of
approaching infinity.

10.2.1 Theory

In order to describe a velocity, say d d , the Chapman–Kolmogorov Equa-
tion (10.1) for the Wiener diffusion process must be modified. The drift will need
to be linear in and toward the origin (by changing the sign), rather than constant:

2

2

2 (10.11)

In this way, the process is drawn back to the origin with a force proportional to its
distance away. Then, the solution is a normal distribution for the velocity with
mean and variance

e
2

2 1 e 2 (10.12)

As , the model has an asymptotic stationary distribution which is normal
with mean zero and variance 2 . Thus, in contrast to the Wiener diffusion
process, here the variance increases to a limiting maximum value (Gardiner, 1985,
pp. 74–77).

The above model has the initial value fixed, so that the variance is zero at 0.
If instead the initial value is assumed to have a normal distribution with mean
and variance 2

0, the variance of the process becomes

2

2
2
0 2

e 2 (10.13)
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and the covariance function is

cov
2

e 2
0 2

e (10.14)

Under these conditions, of course, the process also reaches the same stationary
distribution (Gardiner, 1985, pp. 106–107).

In both cases, the stationary mean is zero and the covariance is

cov
2

e (10.15)

This is an AR(1) in continuous time, with e in Equation (9.7). The Ornstein–
Uhlenbeck process is the only stationary, normally-distributed, Markov process in
continuous time.

Integrated Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process is a model to describe velocity. The integrated
Ornstein–Uhlenbeck process (Taylor et al., 1994; Taylor and Law, 1998) will then
describe the position . It has mean and variance

0
2

3 e 1
(10.16)

with covariance given by

cov
2 3 2 min e e e 1 (10.17)

This process is nonstationary.
Several special cases are noteworthy. With the ratio 2 held constant, when

Brownian motion is obtained whereas, when 0, a special case of a
random effect model (Section 14.1) results.

10.2.2 Modelling velocity

Transistor gains The gain of a transistor might be considered to be a velocity.
Hence, I shall now try fitting the Ornstein–Uhlenbeck process. (Note that the pa-
rameters will not have the same meaning as for the Wiener process.) For these
responses, the asymptotic mean is not zero, so that the mean function has to be
modified:

0 e (10.18)

Notice that this is just a reparametrisation of Equation (10.10) with 1 so that
this process has the same mean as that for the Wiener diffusion process with the
time transform in Equation (10.9).

For these data, the AIC is 8.2, much better than the Wiener diffusion process
and about the same as the AR(1) with 1. If the power transformation of time
is introduced into the mean function (but not the variance), the AIC is reduced to
6.6. These results are summarised in Table 10.2.

The parameter estimates are 0 81 0, ˆ 9 7, ˆ 0 319, ˆ 2
0 0 0158, ˆ 2
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Fig. 10.3. The transistor gains from Table 10.1 with the Wiener diffusion model, the
AR(1), and the two Ornstein–Uhlenbeck models.

0 0720, and ˆ 0 815. The two models are plotted in Figure 10.3, with the curves
for the Wiener diffusion process and the AR(1) from Figure 10.2, the latter two
both with estimated. The Ornstein–Uhlenbeck process and the AR(1), both with

estimated, give very similar curves.
Thus, we can conclude that these data are closer to following an Ornstein–

Uhlenbeck process than a Wiener process.

10.3 Heavy-tailed distributions

A distribution is called ‘heavy-tailed’ if the tails of its density are thicker than those
of the normal distribution. Thus, there will be a higher probability of extreme
values than with that distribution. A second approach to modelling volatility is to
use such distributions, perhaps with changing dispersion or skewness to allow for
the occasional or clustered occurrence of high variability or extreme values.

Processes in economics and finance often include considerable ‘noise’ as they
evolve. For example, share prices in stock markets, even if they tend to show a
global trend, are often quite variable. Such behaviour, resulting from a large num-
ber of external (usually uncontrollable) independent influences, might be modelled
using distributions such as the normal or log normal, if it were not for rather com-
mon extreme responses. These ‘outliers’, although they may be of no direct interest
in studying the overall evolution of such phenomena, cannot be ignored. They do
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not result from recording errors; they were actually produced by the stochastic
process under study.

10.3.1 Stable distributions

The stable family forms one wide class of flexible distributions that can be useful
for modelling stochastic processes when volatility is present.

Definition

A random variable is said to have a stable distribution if and only if it has a do-
main of attraction, that is, if a sequence of independent and identically distributed
random variables 1 , with accompanying constants , , exists, such that

1 2 (10.19)

converges in distribution to . In the special case where the s have a finite
variance, will be normally distributed.

This family provides the only possible limiting distributions for the sum of inde-
pendent, identically distributed random variables. This property, which was origi-
nally used to derive the form of their characteristic function, generalises the central
limit theorem to the case of infinite variance. Therefore, when an observed pro-
cess results from a large number of external (usually uncontrollable), independent
influences, as is often the case in economics and elsewhere, the family of stable
distributions will provide the basis for one useful set of models.

The common way to specify a stable distribution is by its characteristic function
, because its density function is not available in an explicit form, except

in three special cases discussed below. Until recently, this has been a major jus-
tification for not using stable distributions in practice, although their interesting
theoretical properties indicate their potential importance in stochastic processes.

The characteristic function of the four-parameter family of stable distributions
can be written

ei d

ei 1 i sign t t (10.20)

where

tan 2 1
2 log 1

Here, is a location parameter, 0 is a scale parameter,
1 2 is an index of skewness, and 0 2 is the characteristic exponent

determining the type of stable distribution, especially the thickness of the tails.
The distribution is respectively left- or right-skewed when 0 or 0, and
symmetric when 0. Note that this has the opposite sign to the traditional
coefficient of skewness based on third moments.

The distribution of can be standardised using 1 . The properties
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of any stable distribution with given values of and can, then, be deduced from
such a standardised distribution.

Special cases

In certain circumstances, the characteristic function in Equation (10.20) corre-
sponds to a density function that can be written in an explicit form:

(i) for 2, the normal distribution 2 ;
(ii) for 1 and 0, the (symmetric about ) Cauchy distribution with

density

;
1

1
2

2

(10.21)

(iii) for 1
2 and 1, the (skewed) Lévy distribution with density

;
2 3

exp
2

2
(10.22)

In all other situations, the density has to be generated numerically. However, as
Hoffmann-Jørgensen (1994, I, pp. 406–411) points out, the characteristic function
can be inverted and expressed in terms of incomplete hypergeometric functions.
The latter generally are only defined as the sum of infinite series, but these can be
approximated numerically.

Properties

Most stable random variables have . Exceptions are the Lévy dis-
tribution and distributions with 1 and 1, these having . By
definition, stable distributions are invariant under addition; that is, sums of inde-
pendent variables with the same characteristic exponent are stable with the same
exponent.

Moments of order greater than or equal to do not exist, except for 2,
in which case all moments are finite. Thus, all stable distributions, except the
normal, have an infinite variance. Moreover, their mean is defined if and only if
1 2. Therefore, stable distributions are potential candidates to model heavy-
tailed processes.

Estimation

The characteristic function can be written in a more convenient, alternative, but
equivalent, form

log i exp i
2

sign (10.23)

where min 2 1 1 . Here, the parameters play the same role
as in Equation (10.20); they are related by

2
cos 1 cos 2

∆
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Table 10.3. Prices (pence) and relative returns of Abbey National shares between
31 July and 8 October, 1991. (Buckle, 1995)

Day Price Return Day Price Return

31/07 296 — 04/09 309 0.0000
01/08 296 0.0000 05/09 307 0.0065
02/08 300 0.0135 06/09 306 0.0033
05/08 302 0.0067 09/09 304 0.0065
06/08 300 0.0066 10/09 300 0.0132
07/08 304 0.0133 11/09 296 0.0133
08/08 303 0.0033 12/09 301 0.0169
09/08 299 0.0132 13/09 298 0.0100
12/08 293 0.0201 16/09 295 0.0101
13/08 294 0.0034 17/09 295 0.0000
14/08 294 0.0000 18/09 293 0.0068
15/08 293 0.0034 19/09 292 0.0034
16/08 295 0.0068 20/09 297 0.0171
19/08 287 0.0271 23/09 294 0.0101
20/08 288 0.0035 24/09 293 0.0034
21/08 297 0.0312 25/09 306 0.0424
22/08 305 0.0269 26/09 303 0.0098
23/08 307 0.0066 27/09 301 0.0066
26/08 — — 30/09 303 0.0066
27/08 304 0.0098 01/10 308 0.0165
28/08 303 0.0033 02/10 305 0.0097
29/08 304 0.0033 03/10 302 0.0098
30/08 304 0.0000 04/10 301 0.0033
02/09 309 0.0164 07/10 297 0.0133
03/09 309 0.0000 08/10 299 0.0067

∆
cos 2

1

where ∆2 cos2 2 2 sin2 2 , sign ∆ sign 1 , and sign
sign . The location and tail parameters, and , are unchanged.

The density corresponding to this characteristic function can be computed from
it by using Fourier inversion,

;
1

0
cos sin e cos d

(10.24)

where 2. This integral can be evaluated numerically for fixed val-
ues of the parameters, thus approximating the density (and hence the likelihood) to
any desired precision.

Abbey National returns The daily closing price (pence) of the shares of the
British-based bank, Abbey National, between 31 July and 8 October 1991, are
reproduced in Table 10.3. The relative share returns, defined as 1 1,
are also given in the table. At first sight, these appear to display quite variable
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Fig. 10.4. The Abbey National returns, 31 July to 8 October, 1991, from Table 10.3, with
an interval of two standard deviations (dotted).

behaviour, as can be seen in Figure 10.4 showing the relative share returns against
time. However, the limits of two standard deviations only exclude three values out
of 48, not exceptional for normally-distributed responses.

Various problems might be studied involving the evolution of such share returns:

(i) How can the occurrence of extreme values be understood and forecast in
order to develop short-term investment strategies?

(ii) How does the shape of the region where most returns are observed change,
occasional extreme responses being of no direct interest?

(iii) How is the most probable relative return changing with time, providing
information about trends in likely future returns?

Here, I shall look at the last two questions.
Econometricians often analyse log returns, defined as log 1 , instead of

relative share returns, with the argument that these constitute a stationary process.
Using a Taylor’s series approximation

log
1

log 1 1

1

1

1

we can see that these reasonably approximate relative returns.
Consider first a model making the assumptions that the distribution of relative



10.3 Heavy-tailed distributions 245

0 10 20 30 40

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Day

R
et

ur
n

Normal
Stable

Fig. 10.5. The Abbey National returns from Table 10.3, with the normal and stable regres-
sions of time on the location parameter.

returns is independent and not evolving with time. The AIC for the normal distri-
bution is 135.7, whereas that for the general stable family is 134.3, although the
latter has two more parameters. The maximum likelihood estimates for the stable
distribution are ˆ 0 0017, 0 0079, 0 82 and ˆ 1 53. The latter
indicates some distance from the normal distribution with 2. There is also
indication of skewness, with 0.

Next, I shall introduce time dependence for the location parameter. The AICs
are respectively 136.7 and 134.4. Thus, there is no indication of a change in the lo-
cation parameter over time. However, it is informative to plot the two curves; these
are shown in Figure 10.5. In comparison to the stable regression curve, the normal
curve is pulled down at the beginning by the more extreme negative responses.

An AR(1), with dependence of the location parameter on the previous return,
is not necessary; the AIC is 135.2 for the stable model with linear dependence on
time. This also is true of the other models to follow. Such a conclusion may not be
surprising: relative returns are a form of first differences of the share values. This
conclusion is confirmed by the empirical correlogram plotted in the left graph of
Figure 10.6. (As well, the empirical correlogram of the squared returns, in the right
graph of Figure 10.6, does not indicate autocorrelation, so that the ARCH models
of Section 10.4 below are not indicated.)

Let us now investigate how the other parameters of the stable distribution may
depend on time. The results are summarised in Table 10.4. We see that the



246 Diffusion and volatility

0 2 4 6 8 10 12

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

ρ

0 2 4 6 8 10 12
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

Fig. 10.6. The empirical correlograms of Abbey National returns (left) and of their squares
(right), from Table 10.3.

Table 10.4. AICs for dependence of various parameters of the stable distribution
on time for the Abbey National returns of Table 10.3.

Parameter Time

Null 134.3
Location 134.4
Dispersion 135.0
Skew 131.3
Tail 132.4

strongest indication is for the skewness to change over time. This model is plotted
in Figure 10.7. We see that, although the location parameter is constant, the mode
is decreasing over this period, with skewness toward negative returns at the begin-
ning and toward positive returns at the end. Because the location parameter is
constant over time, the mode must be moving to allow the skewness to change. The
estimate ˆ 1 37 indicates that the distribution has heavier tails than the previous
models.

10.3.2 Other heavy-tailed distributions

Well known heavy-tailed distributions include the Cauchy, Laplace, and logistic,
each with two parameters. The first of these is a member of the stable family.

As well, a number of three-parameter distributions also have relatively heavy
tails. The Burr distribution, already given in Equation (8.25), is one of them; it is
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Fig. 10.7. The Abbey National returns from Table 10.3, with the stable regression of time
on the skew parameter and the limits of 10 per cent of the height of the mode.

skewed, but has no explicit parameter for the skewness. The Student distribution
has density

;
Γ 1

2

Γ 2

1
1 2

1
2

(10.25)

and the power exponential

;
1

Γ 1 1
2 21 1

2

exp
1
2

2

(10.26)

Both of these are symmetric but, for skewed responses, a log transformation can
be used.

On the other hand, the skew Laplace distribution (Kotz et al., 2001)

;
e
1 2

e
1 2 (10.27)

does have a skew parameter ( ) that can be modelled. This is an ordinary Laplace
distribution for 1.

Here, I shall apply this latter model, leaving the others until the next section.
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Fig. 10.8. The Abbey National returns from Table 10.3, with the skew Laplace regression
of time on the location, shape, and skew parameters and limits of 10 per cent of the height
of the mode.

Abbey National returns A similar analysis to that for stable distributions above
can also be performed using the skew Laplace distribution of Equation (10.27).
Here, we discover that all three parameters depend on time, with an AIC of 130.4,
slightly better than the stable distribution with skew regression. The estimated
regression equations are

0 000945 0 000309

e 4 43 0 0241

e0 0968 0 0275

This model is plotted in Figure 10.8, showing some differences from Figure 10.7.
As with the stable model, the skew switches from negative to positive returns over
time.

These data are a very short time series. No substantive conclusions about rel-
ative share returns should be drawn from this analysis. With a longer series, it is
quite likely that the skewness might, say, be oscillating back and forth. But, a clear
conclusion is that, during the observed time period, the major mass of probability
stayed in the same location, although fundamentally changing shape. In studying
such data, among other things, we were interested in how the region in which most
relative returns would lie was changing over time, and in how the most probable
relative return varied over time. The stable and skew Laplace models have permit-
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ted us to answer both of these questions, as can be seen in Figures 10.7 and 10.8.
On the other hand, a mean, with its standard deviation, could not have correctly
answered either of them.

10.4 ARCH models

The diffusion and heavy-tailed models of the previous sections have allowed the
variability to change in systematic ways over time. Now, I shall look at a family of
models that allows it to vary stochastically.

10.4.1 Theory

Most classical regression models in statistics involve studying how a location pa-
rameter, usually the mean, changes with covariates. Much less attention has been
paid to changes in shape of the distribution, except in restricted situations such as
generalised linear models. In a similar way, autoregression models (Section 1.2
and Chapter 9) also concentrate on the location parameter, allowing it to depend
on previous values of the response variable.

In Sections 7.1.4 and 9.2.4 and the previous sections of this chapter, I looked
at some models that allow the dispersion to change in systematic ways over time,
but this may not be sufficient to account for high volatility. Thus, parameters,
other than the location, may display stochastic dependence on previous values of
the response variable. Indeed, in Sections 7.3 and 7.4, I introduced some models
where the distributional shape could change dynamically over time; in Section
11.3, I shall extend that particular family to continuous state spaces. However,
here I shall look at still another possibility.

The basic idea underlying the models to be considered here is that extreme values
may be clustered. This fact may, then, be used to predict their occurrence. Thus,
such models cannot be expected to work well if extreme values are isolated rather
than clustered.

Normal distribution

In a serial dependence model (Section 1.2.4), the location regression function is
corrected by the previous residual or innovation. In a similar way, it often makes
sense to correct the dispersion by the square of that value. The original autore-
gressive conditional heteroscedasticity (ARCH) model in discrete time, introduced
by Engle (1982), allowed the variance of a normal distribution to depend on the
squares of previous responses (assumed to have zero mean):

2
0 ∑

1

2 (10.28)

Since then, many variations have been proposed.
In the ARCH(1), with 1, the variance is 0 1 1 if 0 1 1. If

3 2
1 1, 2 has autocorrelation function (Section 9.1.2)

1 (10.29)
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This may be checked by plotting the empirical correlogram of 2 (as I did above
in Figure 10.6 for the Abbey National returns). In these models, the marginal dis-
tribution of has heavier tails than a normal distribution, although its conditional
distribution is normal. As well, although 2 is second-order stationary (Section
1.1.4), is not, except under even more strict conditions (Shephard, 1996).

Extensions

It is possible to apply this approach to the dispersion parameter of a variety of
distributions, not just the normal distribution. Here, I only shall consider first-order
dependence ( 1). Useful possibilities include

0
∆
1 1 1

2 (10.30)

0
∆
1 1 1 (10.31)

and, because the dispersion parameter must be positive,

0e
∆
1 1 1

2
(10.32)

where is the dispersion parameter and is the location regression function for
some distribution. In all cases, 0 and 1 must be positive (except 1 in Equation
(10.32) if time is discrete). Of course, these functions can be used in combination
with the more usual autoregression for the location parameter.

Consider again the simplest case of a conditional normal distribution in discrete
time. A model based on Equation (10.30) only has finite variance if 1 1. In con-
trast, for Equation (10.31), the variance is always finite and, for Equation (10.32),
it never is. Similar results are not generally available for other distributions.

ARCH models can also be used with heavy-tailed distributions, as well as the
normal distribution. This will permit us to have two means of accounting for ex-
treme variability.

10.4.2 Biological variability

Although volatility models have primarily been applied in economics and finance,
they have much wider applicability. For example, important applications can be
found in human and veterinary medicine.

Cow hormones The level of luteinising hormone (ng/ml 1000) in cows varies
over time. Concentrations of this hormone are influenced by semi-periodic pulsing
of the glands that produce it.

A study was performed to compare two groups of sixteen cows each, suckled and
nonsuckled, by following them for ten days post-partum. The cows were ovariec-
tomised on the fifth day post-partum. Over the observation period, their hormone
levels were measured 15 times at unequally-spaced intervals. However, at the time
when a sample was taken, a cow might, rather erratically, be in either the high or
the low phase of the luteinising hormone cycle. The results were given by Raz
(1989).
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Fig. 10.9. The individual observed profiles for the luteinising hormone concentrations in
cows.

Table 10.5. AICs for several models fitted to the luteinising hormone data with an
interaction between suckled and time.

ARCH(1)

None None Square Absolute Exponential
value

Dependence

Distribution None AR(1) AR(1) AR(1) AR(1)

Log normal 3239.4 3201.0 3184.9 3184.0 3188.0
Log Burr 3220.2 3172.4 3173.4 3174.5 3173.4
Log Student 3228.1 3180.8 3166.0 3165.5 3168.4
Log skew

Laplace 3229.8 3178.6 3164.1 3163.7 3166.5
Log power

exponential 3229.2 3179.0 3165.2 3163.9 3169.0

To provide an overall idea of the variability, the individual observed profiles are
plotted in Figure 10.9. We can see that variability increases as time goes by and that
the nonsuckled cows show more variation than the suckled ones. Unfortunately, the
series on individual cows are too short to be able to plot empirical correlograms of
the squared residuals to check graphically for an ARCH model.

The fits of several models, mainly with heavy tails, are presented in Table 10.5.
In all cases, the two additive ARCH models of Equations (10.30) and (10.31) fit
better than the multiplicative one of Equation (10.32). The log skew Laplace dis-
tribution, with skew ˆ 0 91, fits best, better than the skew Laplace distribution
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Fig. 10.10. The underlying profiles for the log skew Laplace ARCH model with AR(1) for
the two groups of luteinising hormone concentrations in cows, with the individual recursive
predictions for the first two cows in each group.

of Equation (10.27). The log power exponential of Equation (10.26) with ˆ 0 56
is a close second, followed by the log Student distribution of Equation (10.25),
with ˆ 4 0 degrees of freedom. The log Burr distribution, derived from Equation
(8.25), fits better than the Burr distribution and is the only one that does not require
the ARCH. All of the distributions have very heavy tails.

For the best model, the log skew Laplace with absolute value ARCH, the regres-
sion functions are estimated to be

1 5 91 0 057

2 5 93 0 025

respectively for nonsuckled and suckled cows, where refers to the log level of
luteinising hormone. The slope over time is much smaller for the suckled cows
than for the nonsuckled ones. The recursive predictions for four cows are given in
Figure 10.10. These individual profiles show a clear attempt to follow the individ-
ual responses.

The dependence parameters are estimated to be ˆ 0 49 for the AR(1) and

1 0 078 for the ARCH parameter in Equation (10.31). The volatility, defined
as the square root of the dispersion parameter, is plotted for the same four cows in
Figure 10.11.

I shall provide further analysis of these data in Chapters 11 and 14.
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Fig. 10.11. The changing volatility for the first two cows in each group for the log skew
Laplace ARCH model with AR(1).

Further reading

Bailey (1964, Ch. 14), Grimmett and Stirzaker (1992, Ch. 13), Guttorp (1995, Ch.
6), and Karlin and Taylor (1981, Ch. 15) provide introductions to diffusion pro-
cesses. For an advanced coverage, see Rogers and Williams (1987, 1994). Berg
(1993) gives applications in biology, Gardiner (1985) in chemistry, and Hoppen-
steadt and Peskin (2002) in medicine and biology.

For a systematic review of the use of stable distributions in stochastic processes,
see Samorodnitsky and Taqqu (1994). Adler et al. (1998) provide a useful survey
of applications of heavy-tailed distributions.

Shephard (1996) gives a good introduction to ARCH models and their many
extensions.

Exercises

10.1 The data on student enrolment at Yale University from 1796 to 1975 in
Table 7.1 show high variability during the two world wars.

(a) Can this be modelled by a heavier-tailed distribution than the nor-
mal?

(b) Can it be modelled by ARCH?

10.2 Do any of the following time series require an ARCH model:

(a) the Canadian lynx data of Table 9.3,
(b) the sunspot data of Table 9.4,
(c) the yearly unemployment in the USA of Table 9.5, or
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Table 10.6. Weekly closing values of the Dow-Jones Industrial Average, 1 July
1971 to 2 August 1974. (Hsu, 1979; read across rows)

890.19 901.80 888.51 887.78 858.43 850.61
856.02 880.91 908.15 912.75 911.00 908.22
889.31 893.98 893.91 874.85 852.37 839.00
840.39 812.94 810.67 816.55 859.59 856.75
873.80 881.17 890.20 910.37 906.68 907.44
906.38 906.68 917.59 917.52 922.79 942.43
939.87 942.88 942.28 940.70 962.60 967.72
963.80 954.17 941.23 941.83 961.54 971.25
961.39 934.45 945.06 944.69 929.03 938.06
922.26 920.45 926.70 951.76 964.18 965.83
959.36 970.05 961.24 947.23 943.03 953.27
945.36 930.46 942.81 946.42 984.12 995.26

1005.57 1025.21 1023.43 1033.19 1027.24 1004.21
1020.02 1047.49 1039.36 1026.19 1003.54 980.81

979.46 979.23 959.89 961.32 972.23 963.05
922.71 951.01 931.07 959.36 963.20 922.19
953.87 927.89 895.17 930.84 893.96 920.00
888.55 879.82 891.71 870.11 885.99 910.90
936.71 908.87 852.38 871.84 863.49 887.57
898.63 886.36 927.90 947.10 971.25 978.63
963.73 987.06 935.28 908.42 891.33 854.00
822.25 838.05 815.65 818.73 848.02 880.23
841.48 855.47 859.39 843.94 820.40 820.32
855.99 851.92 878.05 887.83 878.13 846.68
847.54 844.81 858.90 834.64 845.90 850.44
818.84 816.65 802.17 853.72 843.09 815.39
802.41 791.77 787.23 787.94 784.57 752.58

(d) the annual snowfall data in Table 9.6?

10.3 Only the precipitation records at Snoqualmie Falls for the months of Jan-
uary were used in the example in Section 8.3.2. However, data are avail-
able for all days between 1948 and 1983 (see Exercise 8.2). The complete
series shows high variability.

(a) Does an ARCH approach yield a reasonable model for the com-
plete data?

(b) Compare this to a model using a marked point process similar to
that used in Section 8.3.2 for the months of January.

(c) Which model provides a better explanation of the complete series?

10.4 The weekly Dow-Jones closing values for the period between July 1971
and August 1974 are given in Table 10.6. Various events involving the
USA occurred in this period. These included Watergate, the Arab oil em-
bargo, and climbing interest rates.

(a) Does a plot of the data reflect the timing of these events?
(b) Is a model of changing volatility required?
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Dynamic models

As we saw in Chapter 7 for categorical state spaces, a useful approach to con-
structing models for stochastic processes is to have a distribution, or some of its
parameters, change over time according to some (hidden) Markov process. I now
shall look at the application of such models when the observed state space is con-
tinuous. If the assumption of normality can be made, development of dynamic
models is especially simple.

11.1 Kalman filtering and smoothing

Suppose that we have a process (a time series, as in Chapter 9) for which the ob-
served state space is continuous and that we can assume that the responses have
a normal distribution, conditionally on some linear regression function. In a dy-
namic linear model, some of the parameters of this function are assumed to evolve
randomly over time according to a stochastic process.

As often is the case, the assumptions of a normal distribution and a linear regres-
sion function can simplify greatly the models, allowing integration to be performed
analytically instead of numerically. As usual, the accompanying cost is lack of re-
alism. Models with these assumptions can be fitted by a procedure involving the
Kalman filter and smoother. In this context, filtering refers to estimation of the cur-
rent hidden state of a process, smoothing to estimation of previous hidden states,
and prediction to estimation of future hidden states.

11.1.1 Theory

As for the dynamic models in Chapter 7, the standard linear regression function for
the location parameter, here the mean of a normal distribution,

E (11.1)

will be called the observation or measurement equation because it is related di-
rectly to what actually can be observed. The two sets of observable covariates,
and , may vary over time and may contain elements in common. There are also
two types of coefficients, and , the former constant and the latter changing
over time.

255
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Recall that, in the hidden Markov models of Section 7.2 (see also Section 11.2
below), the entire distribution of responses differed in each of a (small) finite num-
ber of hidden states. On the other hand, in the overdispersed dynamic models of
Sections 7.3 and 7.4, only parameters defining the shape of the distribution changed
randomly over time. In contrast, here only parameters in the location regression
function will be allowed to vary randomly over time.

Thus, in Equation (11.1), will be a vector of random parameters defining the
hidden state at time , with a distribution conditional on the previous hidden state
and on . This hidden state will be defined by the minimum past and present
information necessary to predict a future state.

In an analogous way to the overdispersed dynamic models of Sections 7.3 and
7.4, the hidden states of the system will be assumed to evolve over time according
to the state transition equation, already given in Equation (7.40):

1

where the residual or innovation N 0 2 is the random input at time ,
is the vector of deterministic input at that time, and is a first-order Markovian
state transition matrix. Here, this equation can also be written as

E 1 (11.2)

As in Sections 7.3 and 7.4, and in contrast to the hidden Markov chains in Section
7.2, here the state vector does not contain probabilities and is not a stochastic
matrix. On the other hand, may contain values before time as well as present
values. The distribution of is assumed to be independent of the conditional
distribution of .

Autoregression models

Often, specific models can be defined in several distinct, but equivalent, ways.
As one simple case, in order to gain some familiarity with this type of model-
building, let us look at one way to set up a discrete-time, dynamic linear model for
an autoregression of order . For simplicity, assume that there are no covariates

. Then, one possible specification of the measurement and state equations for an
AR( ) is

E 1 0

E
1

...

1

1

2
...

1 1 0
...

...
. . .

...

1 0 1
0 0

(11.3)

so that there is no deterministic input.
Consider next an AR(1) with covariates . Here, the corresponding measure-

ment equation will be

E (11.4)
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the mean of a normal distribution with conditional variance 2 and fixed initial
conditions, and the state equation

E 1 (11.5)

also the mean of a normal distribution but with variance .
For a continuous time AR(1), that is, a CAR(1), the measurement equation re-

mains the same, whereas the state equation for becomes

E d d (11.6)

This will be the mean of a normal distribution with variance d , where e
(Jones and Boadi-Boateng, 1991).

Model specification

Let us now look more closely at the general distributional assumptions for this type
of model and how to fit it. As we have seen, filtering refers to estimating the current
state given states up to the present. The Kalman filter is a sequential or recursive
procedure, yielding new distributions at each time point. The procedure is similar
to that described in Section 7.3.1.

From Bayes’ formula,

1 1

1
(11.7)

where, as in Chapters 4 and 7, denotes the history of the states up to and in-
cluding time , that is, the vector of observed states 1 , with all pertinent
relationships among them. Here, 1 is the usual distribution defined
by the observation equation, whereas is called the filtering or observation
update. The normalising constant

1 1 1 d (11.8)

is a mixture distribution. This conditional distribution will be used to calculate the
likelihood function. The one-step-ahead prediction or time update,

1 1 1 1 d 1 (11.9)

is defined by the transition equation.
With the assumption of a normal distribution, these equations can be written

in a simple closed form, only the mean and variance being required. Then, the
procedure is relatively straightforward and efficient. On the other hand, both of
these integrals usually are complicated when the distributions are not normal and/or
the regression function is nonlinear.

The idea now is to move forward in time from the first response, estimating
the expected value of each successive state before going on to the next. In this
way, the total multivariate probability can be built up as a product of conditional
probabilities using Equation (1.1), in this way creating the likelihood function.
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For a discrete time series, the one-step-ahead prediction or time update for
E has mean

ˆ
1

ˆ
1 (11.10)

and covariance matrix

1 1 ˆ (11.11)

where is a diagonal covariance matrix. In the AR(1) above, this would contain
the covariance element . 1 is the prior covariance of the estimation error

E (11.12)

The filtering or observation update, using the next observed state , has posterior
mean

1
1

1 1 (11.13)

and posterior covariance matrix

1
1

1 1 (11.14)

where

1
2 (11.15)

As is usual for time series, the initial conditions must be chosen for 0 and for 0.
To obtain the likelihood function, we can rewrite the observation equation (11.1)

as

E 1 1 (11.16)

from which the conditional distribution 1 has mean

E 1 1 (11.17)

with variance given by Equation (11.15). Then, the log likelihood function is

log L
1
2 ∑

1

log 2
1

E 1
2 (11.18)

For a discrete-time AR(1) with the first response stationary, E 1 0 1 and

1 1 2 , whereas E 1 1 and for 1. These
results are readily generalised to continuous time.

11.1.2 Continuous-time autoregression

For many time series, continuous-time models must be used because the responses
are not recorded at equally-spaced time intervals. Then, dynamic linear models
generally have an advantage, especially if the series is fairly long. For standard
ARMA models, dynamic linear models will provide the same results as with the
methods in Chapter 9. Thus, it is not necessary to present detailed examples.
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Table 11.1. AICs for several models fitted to the luteinising hormone data.

Normal Log normal

Independence AR(1) Independence AR(1)

Null 3568.8 3527.9 3300.3 3235.6
Suckled 3550.5 3519.5 3270.5 3225.3
Time trend 3553.7 3518.7 3277.1 3223.3
Both 3534.0 3508.9 3243.9 3210.0
Interaction 3529.1 3505.7 3239.4 3207.4

Luteinising hormone The data on luteinising hormone in cows analysed in Sec-
tion 10.4.2 are highly variable. We have seen that, for these responses, with mainly
relatively small positive values, but a few very large ones, a skewed distribution
is necessary. When dynamic linear models are applied, the log normal distribu-
tion fits much better than the normal distribution, as can be seen in Table 11.1.
However, as might be expected, these models fit more poorly than the ARCH mod-
els of Section 10.4.2. (The AR(1) log normal model fits more poorly than that
in Table 10.5 because here the first response in the series is assumed to have a
stationary distribution, whereas there it did not.)

A linear time trend is present and this is different for the two groups. The esti-
mated regression functions are

1 6 40 0 073

2 6 09 0 028

respectively for nonsuckled and suckled cows, where is the marginal mean for
the log level of luteinising hormone. Again, the slope over time is much smaller for
the suckled cows than for the nonsuckled ones. Thus, the profile for the nonsuckled
cows rises more steeply, as shown in Figure 11.1 for the same cows as in Figure
10.10.

The autocorrelation coefficient is estimated to be 0.16. The change at post-
partum plays a minor role, lowering the AIC from 3207.4 to 3205.4. Hormone
levels are lower after post-partum.

11.2 Hidden Markov models

As we saw in Section 7.2, a series may display spells at various periods in time. The
dynamic hidden Markov models introduced there provide one way to handle such
data. Their application to continuous state spaces is direct. The theory for such
models was described in Section 7.2.1. The only difference here is that

1; will be a density instead of a discrete probability distribution.
As noted in that section, these models are closely related to the classical dynamic

models presented above in Section 11.1. Two important differences are:

(i) Here, the number of possible hidden states is finite, whereas there it was
infinite.
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Fig. 11.1. The underlying marginal profiles from the AR(1) model for the two groups of
luteinising hormone concentrations in cows, with the individual recursive predictions for
the first two cows in each group.

(ii) Here, the transition matrix is stochastic, whereas there it was not.

A third, practical, difference is that calculations are not simplified for the normal
distribution so that there is no advantage to choosing models based on such an often
unrealistic distribution.

Luteinising hormone Let us look once again at the data on luteinising hormone
in cows that I analysed above and in Section 10.4.2. Hidden Markov models with
two hidden states may allow us to detect different phases in luteinising hormone,
as well as differences between the two groups. From inspection of the data and our
previous results, we know that a skewed distribution will be necessary. Here, I shall
fit the heavy-tailed, three-parameter distributions introduced in Section 10.3.2.

The results for these distributions, and several others, are given in Table 11.2,
without and with the hidden Markov chain. As in Section 10.4.2, the heavier tailed
distributions fit better than the log normal, with the Burr distribution of Equation
(8.25) best here. As well, the hidden Markov models fit better than the AR(1) used
above and the ARCH models of Table 10.5. As we have seen (Section 7.3.1), the
Burr distribution may be interpreted as a gamma mixture of Weibull distributions.

A different transition matrix clearly is necessary for suckled and for nonsuckled
cows. A time trend (with the Burr distribution) is only necessary for the nonsuckled
cows, lowering the AIC to 3130.8. For this group of cows, the regression equations
in the two hidden states are estimated to be

1 314 0 23 97
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Table 11.2. AICs for several models fitted to the luteinising hormone data with a
difference between suckled or not but no time trend. The hidden Markov models

have the same and different transition matrices for the two groups.

Hidden Markov

Distribution Independence Same Different

Log normal 3270.5 3198.3 3161.3
Gamma 3314.6 3225.9 3195.0
Weibull 3387.1 3262.3 3261.9
Inverse Gauss 3264.8 3187.0 3176.7
Burr 3250.6 3160.4 3150.3
Log Student 3258.4 3176.7 3166.8
Log skew Laplace 3266.0 3177.1 3159.5
Log power exponential 3262.3 3184.6 3182.1
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Fig. 11.2. The underlying profiles for the hidden Markov model for the two groups of
luteinising hormone concentrations in cows, with the individual recursive predictions for
the first two cows in each group.

2 225 7 13 04

Here, refers to the level of luteinising hormone, not to its logarithm. The other
parameters are ˆ 10 7 and ˆ 0 24 for both states. For the suckled cows (without
time trend), the values in the two hidden states are ˆ 475 1 and 285.0, with ˆ
10 4 and ˆ 0 50. Thus, according to this model, the hormone level is increasing
over time for the nonsuckled cows but not for the suckled. The underlying profiles
for the same cows as in Figures 10.10 and 11.1 are shown in Figure 11.2.

The intensity transition matrices, and the corresponding (one-day) probability
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transition matrices, the latter obtained by matrix exponentiation, are respectively

0 00021 0 00021
0 00084 0 00084

1 0 99979 0 00021
0 00084 0 99916

for the nonsuckled cows and

0 039 0 039
0 056 0 056

1 0 963 0 037
0 053 0 947

for the suckled ones. The stationary distributions are, respectively, (0.80, 0.20) and
(0.59, 0.41). Thus, the nonsuckled cows have a somewhat higher probability of
staying in the same state than the suckled ones. Both groups are considerably more
often in the first state, with a higher level of hormone.

The (filtered) conditional probabilities of being in the first hidden state, with
the larger location parameter, are plotted in Figure 11.3 for the first eight cows
of each group. We see that some of the cows, such as numbers 6, 8 (and 10,
not shown), have such low levels of hormone that they probably stay primarily
in the lower state most of the time, at least as compared to the other cows. The
rest of the nonsuckled cows, as well as cows 20 and 22, seem to stay in the high
state. However, most of the suckled cows switch between the two states during the
period of observation, with increasing probability of being in the high state as time
passes. Recall, however, that the two states have somewhat different levels in the
two groups. Thus, as anticipated, no clear cyclic phenomenon appears, the changes
of state being rather erratic.

As with the autoregressive models, introducing the post-partum covariate im-
proves the model somewhat. The AIC is reduced from 3130.8 to 3124.8. A form
of AR(1), the serial dependence as defined in Section 1.2.4, also can be introduced
into the hidden Markov model. This only slightly improves the fit for these data,
with a further reduction in AIC to 3121.4.

11.3 Overdispersed responses

The overdispersed duration models of Section 7.3.1 can be adapted to apply to or-
dinary time series with little modification (see Lindsey, 2000). In Equation (7.19),
we need to replace the time between recurrent events by the response variable:

Λ 1 (11.19)

Time only enters in the updating equations. This is another volatility model where
the shape of the distribution is changing randomly over time.

As in Sections 7.3 and 7.4, the hidden states are defined by the random parame-
ters and . Thus, the Markov update of Equation (7.45) becomes

1 1 1 1 1
1Λ 1 Λ (11.20)

where 1 is the time between the responses 1 and .
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Fig. 11.3. The estimated probabilities of being in the hidden state with the higher level of
luteinising hormone for the blood samples from the first eight cows of each group.

Luteinising hormone When this model is fitted to the luteinising hormone data
with Λ being from the log normal distribution and with the regression function
containing the interaction between suckled and time, the AIC is 3204.4. This is
better than the standard AR(1) model fitted above in Section 11.1.2, but not as
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Fig. 11.4. The underlying profiles for the overdispersed Markov dependence model for the
two groups of luteinising hormone concentrations in cows, with the individual recursive
predictions for the first two cows in each group.

good as the ARCH models of Section 10.4.2 or the hidden Markov models using
the Burr distribution in Section 11.2 above.

The estimated regression functions are

1 6 30 0 062

2 6 04 0 027

respectively for nonsuckled and suckled cows, where again refers to the log
level. The dependence parameter is estimated to be ˆ 0 24. These values are
similar to those estimated for the AR(1) in Section 11.1.2. Adding the post-partum
effect reduces the AIC to 3197.9.

The underlying profiles for the same cows as in Figures 10.10, 11.1, and 11.2
are shown in Figure 11.4. As might be expected, these are more similar to those
for the standard AR(1) than to those for the hidden Markov model.

Further reading

Harvey (1989), Jones (1993), and Durbin and Koopman (2001) provide good in-
troductions to dynamic linear models. Although proposed originally for normally-
distributed data, the dynamic linear model has been extended to other distributions,
especially in the generalised linear model family, notably by West et al. (1985),
Kitagawa (1987), Harvey (1989), and Fahrmeir and Tutz (1994).

For hidden Markov models, see the references in Chapter 7.
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Table 11.3. Reaction times (s) of rats at several times (min) after administration
of four levels of an analgesic drug. Times are censored at ten seconds. (Crowder,

1998)

Time after administration
0 15 30 60 0 15 30 60

Level 1 Level 3

1.58 1.78 2.02 2.19 2.74 5.10 7.00 3.54
1.55 1.40 2.20 1.73 1.89 8.00 9.80 6.63
1.47 2.66 3.05 3.76 1.47 9.77 9.98 10.00
2.16 2.28 2.04 2.12 3.13 9.04 9.92 6.25
2.19 2.24 1.99 1.58 1.53 4.72 5.56 3.25
2.07 1.97 1.50 1.24 2.12 4.73 7.90 6.42
1.28 1.67 2.25 1.54 1.28 4.32 6.24 4.73
1.53 2.68 1.79 2.03 1.50 8.91 9.22 4.30
2.62 2.15 1.60 2.91 2.05 4.21 10.00 3.03
1.67 2.52 1.53 1.98 1.53 7.10 9.88 3.72

Level 2 Level 4

2.02 3.86 2.73 2.88 1.68 5.33 10.00 10.00
1.75 3.38 3.74 2.57 2.80 5.93 8.77 4.62
1.93 3.62 6.05 2.91 2.19 8.73 10.00 8.20
2.04 4.70 3.70 3.05 1.52 10.00 10.00 10.00
2.00 3.34 4.14 2.78 1.85 7.71 8.35 7.57
1.63 3.37 4.84 2.36 2.78 7.41 10.00 10.00
1.97 3.72 7.83 3.14 1.81 7.56 10.00 10.00
2.42 4.81 4.90 1.69 1.80 10.00 9.41 10.00
1.38 3.88 4.20 2.05 1.16 9.95 10.00 10.00
2.32 3.75 3.06 3.81 1.67 7.82 10.00 7.97

Exercises

11.1 Let us reconsider the monthly deaths from bronchitis, emphysema, and
asthma in Tables 7.7 and 9.2.

(a) Which of the various dynamic models presented in this chapter fits
best?

(b) Give reasons why the one you have chosen may be appropriate for
these data.

11.2 Do any of the dynamic models fit well to the Yale enrolment data of Table
7.1?

11.3 In the context of studies of the effect of body lead concentration on re-
sponse times to sensory stimuli, four groups of ten rats each were sub-
jected to different dose levels of an analgesic drug. All rats had the same
age and the same level of lead concentration. The experiment consisted in
immersing the tail of the rat in hot water at times zero, 15, 30, and 60 min
after drug administration. Then, the reaction time in seconds for the rat to
flick its tail out again was recorded, as shown in Table 11.3. All reaction
times are right-censored at ten seconds.
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Table 11.4. Recordings of DNA binding (DB) and serum complement (SC) over
nine years on a patient with systemic lupus erythematosis. (Jones, 1984)

Day DB SC Day DB SC Day DB SC

0 8.40 16.0 541 7.20 21.0 1717 4.66 10.5
8 8.50 NA 576 7.30 13.3 1738 5.41 10.5

23 8.70 9.0 611 8.00 13.2 1808 5.60 9.2
35 6.60 13.9 674 6.00 11.7 1850 5.26 13.4
44 4.40 13.8 709 7.60 13.4 1878 5.55 10.1
58 4.20 13.7 730 7.10 12.5 1906 5.61 12.0

100 7.90 17.2 807 6.20 12.5 1990 4.30 13.5
121 7.10 13.5 842 7.50 11.7 2025 3.79 11.8
149 9.10 8.6 884 5.30 12.9 2081 4.93 11.0
156 9.00 8.1 921 5.90 14.0 2102 5.23 10.8
184 10.00 7.9 1011 5.50 12.0 2144 4.52 11.4
198 10.00 6.9 1038 4.20 10.0 2186 3.55 11.0
254 9.84 12.3 1046 4.90 9.0 2218 2.87 2.9
280 10.00 10.0 1100 2.50 9.6 2263 3.20 12.8
281 9.30 10.4 1121 3.20 12.5 2284 3.09 12.8
288 8.80 8.2 1133 3.30 15.0 2333 3.33 10.0
295 7.60 8.6 1137 3.60 11.8 2361 2.80 12.7
302 4.80 9.6 1157 2.50 13.2 2424 3.06 12.7
309 5.50 8.2 1213 2.70 20.0 2452 2.03 11.2
316 5.70 10.7 1255 4.60 10.8 2458 2.35 10.6
323 4.30 9.6 1297 3.60 12.0 2501 1.88 12.2
330 6.00 10.7 1325 3.40 13.0 2564 1.76 10.4
337 5.90 10.7 1353 5.80 14.5 2599 1.17 12.8
343 6.90 11.7 1381 4.40 11.5 2641 2.01 13.6
351 6.90 10.2 1437 3.82 13.0 2676 1.16 13.8
358 7.90 9.1 1507 5.17 10.0 2711 0.39 11.6
364 8.40 9.1 1535 5.57 12.9 2739 1.25 10.7
370 6.00 10.7 1556 5.49 7.1 2767 0.90 12.7
380 9.20 11.0 1584 6.96 16.0 2823 1.49 11.7
401 7.20 10.6 1604 6.09 14.5 2886 2.05 10.3
440 7.30 14.4 1618 5.69 10.0 2928 1.97 5.4
478 7.90 16.3 1653 5.61 13.0 2991 1.11 15.0
506 6.10 16.8 1689 6.64 15.0 3061 0.84 10.0

(a) How do reaction times vary with drug concentration?
(b) The experimenters believed that 15 min between trials was suffi-

cient so that responses on a rat would be independent. Check this
assumption.

11.4 Levels of DNA binding and serum complement were observed at unequally
spaced time intervals over nine years on a patient with systemic lupus ery-
thematosis, as shown in Table 11.4.

(a) Fit an appropriate model to each series separately.
(b) Does either series show evidence of a trend or of a cyclical phe-

nomenon?
(c) Is there any evidence of volatility?
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(d) If so, is it the result of individual extreme values or clustering?
(e) Can you find any dependence relationship between the two series?
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Growth curves

In certain stochastic systems, we cannot observe changes for individual elements
but only in aggregation. For example, in a chemical reaction, we cannot observe
the changes of state of the participating atoms but only the concentration of each
reactant and product; in the growth of a biological organism, we cannot observe
the addition of individual proteins, or even of cells, but only the increase in weight,
length, or volume. In other words, records of change in such a system are averages
of the stochastic changes of all the components involved.

Such systems can, nevertheless, generally be modelled mechanistically by rates
of change of the individual elements, in ways similar to the intensity functions in
Part 2. This procedure will yield some form of mean function for the aggregate
change. However, a second level of stochastic variability usually also is present,
resulting from random external influences on the system: changes in pressure or
temperature of a chemical reaction, changes in food supply, stress, and so on, to a
biological organism. Thus, modifications at the level of the individual components
only can be modelled as a mean function, with variation about it arising from the
second level of stochastic variability.

Here, and in Chapter 13, I shall look at some ways to model two of the most
important types of such phenomena:

(i) in this chapter, processes where material is accumulating in a system;
(ii) in the next, when the material is entering, passing through, and leaving a

system.

In both cases, model construction will involve solving differential equations.

12.1 Characteristics

One special type of series recorded over time involves measurements related to
growth of some kind. Observations may be made repeatedly in one or more series.
One goal of such studies is often to predict future growth. A series of responses on
a given individual usually will not be independent so that some of the procedures
of the previous chapters, such as autoregression, will have to be used in the model
construction.

268
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Because, in a growth curve process, material is accumulating, any chosen re-
gression function generally will need to increase at first. However, growth usually
has an upper limit, so that the curve eventually should flatten off. Thus, appropriate
regression functions generally will have some S shape, similar in form to a cumu-
lative distribution function. Such a function may be interpreted in terms of the
individual elements accumulating in the growth process: the process of addition of
material over time follows, on average, the density function corresponding to that
cumulative distribution function.

Naturally, the shape of the curve, and the type of model, will depend heavily
on the way in which growth is expressed. For example, in biology, one cannot
expect growth of an organism, measured as the weight, or volume, to take the same
form as its growth in length. The study of the relationships among these various
possibilities is known as allometry. Most allometric relationships are expressed in
terms of powers: thus, volume is roughly related to the cube of length.

As compared to other types of stochastic processes, growth curves have several
special characteristics, only some of which are shared with other series of responses
over time:

By definition, growth is not stationary; occasionally, the increments, or innova-
tions, may be.
Random variability generally will increase with size, so that the dispersion is not
constant.
The growth profile generally will be a nonlinear function of time, most often
eventually reaching an asymptote.
If several series are observed, they may have different growth rates, maximum
levels, or even overall profiles, either inherently or due to environmental effects.

A wide class of different functions is available for modelling such phenomena. I
only shall look at a few of the most common ones here.

12.2 Exponential forms

The exponential growth curve is well known, for example in attempts over the
last several centuries to describe increases in the world’s population. However, as
explained above, such a curve will be of limited use because growth phenomena
have upper limits.

12.2.1 Exponential growth

Let us first make the simple, reasonable assumption that the rate of addition of new
material, that is of growth, is proportional to the size already attained :

d
d

(12.1)

with the initial condition that growth starts with size 0 at time 0. This assump-
tion implies that external factors are not influencing or limiting the process.
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Solving this equation yields one of the simplest functions for describing growth,
the exponential curve:

0e (12.2)

where is called the intrinsic growth coefficient. With 0, such a function,
usually, will be realistic only in the early stages of growth; nothing can continue
growing exponentially forever. On the other hand, with 0, it may be a reason-
able model of exponential decline from some reasonably large initial value 0.

Distributional assumptions

As it stands, Equation (12.2) describes a deterministic relationship between the
state of the process (size) and time. It can be used to describe average growth.
However, a stochastic element, to allow for external influences (the second level),
usually will be required. This can be introduced in at least two ways.

(i) The size at each given time may have some specific distribution, say a nor-
mal or gamma, with mean given by Equation (12.1). Then, by using a log
link, we can obtain the linear regression function

log log 0 (12.3)

or

0e (12.4)

where the superscript on indicates that the mean refers to the observed
measurements .

(ii) The logarithm of the size may be assumed to have some distribution, such
as the normal or logistic, yielding a log normal or log logistic distribution
for the sizes themselves. With the identity link and a linear regression func-
tion, this yields

log log 0 (12.5)

where here refers to the logarithms of the responses, as indicated by the
superscript. Back transformation

e
log

0e (12.6)

now yields a function describing the geometric mean of size.

The resulting curves from these two approaches can differ rather significantly, both
in their fit to observed responses and in the predictions they yield. This will depend
primarily on the skew of the distribution of the responses, but also on what we mean
by a prediction: the mean, the mode, the median, and so on? Thus, if is the mean,
in the first model, the curve goes through the arithmetic mean of the responses (and
the mode, if the chosen distribution is symmetric), whereas, in the second, it goes
through the geometric mean.

The stochastic variability modelled by the two equations also is quite different.
Thus, for the first model, with a normal distribution, the variance of the size is
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Table 12.1. Gross domestic fixed capital formation in the UK, 1948–1967, in
millions of pounds. (Oliver, 1970)

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
1422 1577 1700 1889 2106 2359 2552 2829 3103 3381

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
3492 3736 4120 4619 4731 4906 5860 6331 6686 7145

Table 12.2. Comparison of models fitted to the gross domestic fixed capital
formation data in Table 12.1.

Log normal Normal

Independence AR(1) Independence AR(1)

AIC 127.2 125.0 128.4 129.0
0 3327.39 3311.89 3349.76 3348.55

ˆ 0.0841 0.0844 0.0814 0.00813
ˆ — 0.55 — 0.21
1968 Prediction

Marginal 8052.6 8036.6 7877.6 7866.7
Recursive — 7894.5 — 7844.3

constant. In the second, again with a normal distribution, the variance of the log
size is constant, implying that the variance of the size is increasing with size. If
Equation (12.3) is used with a gamma distribution, the coefficient of variation,
not the variance, is assumed constant. Other distributions will carry still other
assumptions about how the variability is changing with mean size, that is, over
time.

Capital accumulation Let us look at the gross domestic fixed capital formation in
the UK from 1948 to 1967, as shown in Table 12.1. I shall study the performance of
these models in the prediction of the value for 1968 using the exponential growth
function

0e 1957 5 (12.7)

with a normal distribution and the corresponding one for the geometric mean with
a log normal distribution. Here, 0 will be assumed to be an unknown parameter.
Note that, in this formulation, it is not the initial condition, but rather the value at

1957 5.
The results are given in Table 12.2. We see that the log normal distribution

with an AR(1) fits best to the data. The autocorrelation is estimated to be ˆ 0 55
whereas it is only 0.21 for the normal distribution. The curves from the two models
are plotted in Figure 12.1. As would be expected from the smaller autocorrelation,
the recursive predictions vary less around the marginal curve for the normal than
for the log normal model.
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Fig. 12.1. The log normal and normal AR(1) models for the capital formation data of Table
12.1.

Recall from Equation (9.19) that the (arithmetic) mean response for the log nor-
mal distribution is given by exp 2 2 . I used this in Table 12.2 to make
the predictions from the normal and log normal distributions comparable. In both
models, the marginal prediction, that is the projected regression curve, is larger
than the recursive prediction, that is the marginal prediction corrected by the prod-
uct, ˆ times the previous residual, because the 1967 residual is negative. The actual
observed value for 1968 was 7734 so that, as can be seen from Table 12.2, all mod-
els overpredict, but the recursive predictions do better than the regression curve
alone. Interestingly, the normal models predict this particular value better, even
though they fit more poorly to the previously observed values.

12.2.2 Monomolecular growth

With the exponential growth curve, the size continues to increase indefinitely. For
many phenomena, this is not reasonable, except perhaps over short periods of time.
A second, alternative, simple and reasonable assumption is, then, that there is
some physical maximum size limiting the system. Then, the growth rate can be
made proportional to the remaining size. By definition, this necessarily leads to an
asymptote, say , with

d
d

0 (12.8)

so that

0 e

e (12.9)
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Table 12.3. Area (unspecified units) of a bean plant leaf grown at constant
temperature for 36 consecutive days with measurements starting at day 17.

(Scallon, 1985; read across rows)

0.745 1.047 1.695 2.428 3.664 4.022 5.447 6.993
8.221 8.829 10.080 12.971 14.808 17.341 19.705 22.597

24.537 25.869 27.816 29.595 30.451 30.817 32.472 32.999
33.555 34.682 34.682 35.041 35.356 35.919 36.058 36.454
36.849 37.200 37.200 37.200

where 0 is the mean initial size. Growth occurs if 0 0.
In this model, growth is not influenced by the present size. Thus, this curve

shows rapid initial increase, only levelling off as the constraint of maximum size
begins to take effect. Such a process is not too common.

In kinetics, this function is called the monomolecular growth; it has also been
called the confined exponential and the Mitscherlich growth curve. When
so that initial size is zero, it is called the von Bertalanffy growth curve, used in ecol-
ogy to describe animal growth. In population ecology, for this and the following
growth curves, is called the carrying capacity.

Notice that, when the initial condition and asymptote are standardised so that

0 0 and 1, this regression function has the form of an exponential cumu-
lative distribution function.

Plant growth Let us look at the growth in area of a bean plant leaf, with values as
recorded in Table 12.3. It is clear from these values that the growth has levelled off
by the end of the study so that this growth function might be appropriate. However,
the plots in Figure 12.2 indicate a slightly S-shaped curve, so that the initial rapid
growth is not present.

The normal model with independence has an AIC of 85.7, whereas that with an
AR(1) has 47.2, a great improvement. The underlying profile curve for the latter is
estimated to be

67 7 99 9e 0 023

implying negative size at time zero. This function is plotted in the left graph of
Figure 12.2 as the solid curve, along with the recursive predictions which follow
the responses fairly well. The autocorrelation is estimated to be ˆ 0 95.

We also can try a log normal model. With the log area following Equation (12.9),
this implies that the geometric mean of the area follows the curve

exp e (12.10)

which is no longer monomolecular growth. Thus, the parameters do not have the
same physical interpretation. This log normal model has an AIC of 52.8 with inde-
pendence and 45.3 with an AR(1). The latter is only a small improvement on the
normal distribution monomolecular growth with AR(1). The large improvement
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Fig. 12.2. The log normal and normal AR(1) models for the bean growth data of Table
12.3. The former is the same exponentiated monomolecular function in both graphs. For
the normal distribution, the left function is monomolecular and the right one is exponenti-
ated monomolecular.

in the independence model indicates that Equation (12.10) may be preferable to
Equation (12.9). I shall investigate this further below.

Here, the underlying marginal curve for the log normal AR(1) model is estimated
to be

exp 3 7 28 9e 0 116

This is also plotted in the left graph of Figure 12.2 with the recursive predictions.
(The variance is very small, so that the arithmetic and geometric mean curves are
virtually identical.) The autocorrelation is estimated to be ˆ 0 62. The marginal
curve has a sigmoidal shape, more appropriate for these responses. The recursive
predictions are very similar to those from the previous model, as might be expected
from the similarity of the AICs.

The next step is, then, to try Equation (12.10) with the normal distribution. In-
deed, the AIC for the AR(1) model with this regression function is 28.0. The
underlying marginal curve is estimated to be

exp 3 7 66 8e 0 149

This curve and the recursive predictions are plotted in the right graph of Figure
12.2 along with those for the log normal distribution. The autocorrelation is esti-
mated to be ˆ 0 79. Thus, we can conclude that Equation (12.10) is preferable
to monomolecular growth for these responses and that the normal distribution fits
better than the log normal.

As can be seen in the graphs, exponentiating the monomolecular function results
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in a sigmoidal-shaped growth curve. Let us now investigate some other possible
functions yielding such a shape.

12.3 Sigmoidal curves

We may expect that combining the assumptions of the two previous models, given
in Equations (12.1) and (12.8), could yield a more flexible and appropriate model.
Thus, let us now assume that the growth rate depends both on the current size
and on the remaining size. In other words, the growth rate should increase to a
maximum before steadily declining to zero. To allow this model to be as general
as possible, let us first only assume that the rate is proportional to some arbitrary
functions of the current and maximum or remaining sizes:

d
d 1 2 (12.11)

The resulting growth curves will have sigmoidal behaviour. Several specific func-
tions of size most often have been used. These produce different sigmoidal forms.
(I have already used some growth curves falling into this large family in Sections
2.4.3 and 7.1.2, the latter for binary counts.)

12.3.1 Logistic growth

The simplest possibility is that the rate is directly proportional to the two sizes:

d
d

(12.12)

yielding the well known symmetric S-shaped logistic function

1 e
(12.13)

where again is the asymptotic maximum value of the size. We already have
met this in another form in Equation (2.19).

We can transform this function to a linear form by using a logit link:

log log (12.14)

If were known, this could be fitted as a generalised linear model. Here, when
the asymptote is standardised so that 1, this regression function has the form
of a logistic cumulative distribution function.

One handicap of this function, as a growth curve, is that it is symmetric, reflect-
ing the symmetry of the logistic distribution. Addition of material is assumed to be
symmetric over time, with the maximum, corresponding to the most rapid increase
in size, occurring exactly at the middle of the growth period. This is reflected in
the shape of the curve, with the form of increasing early growth being identical
to that of decreasing late growth. Often, there is no biological reason for these
assumptions to hold.
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Table 12.4. Numbers of diagnosed AIDS cases reported in the UK from January
1982 to April 1987. (Healy and Tillett, 1988)

Month

Year J F M A M J J A S O N D

1982 1 0 2 1 0 0 1 1 1 1 1 2
1983 1 0 2 0 1 1 5 4 3 0 5 7
1984 6 5 8 4 5 6 10 14 7 14 8 16
1985 16 15 18 16 14 12 17 24 23 25 22 21
1986 25 30 26 35 38 27 24 29 39 34 38 47
1987 33 44 35 35

Table 12.5. Comparison of the Poisson growth models fitted to the data on AIDS
cases in Table 12.4.

Complementary
Exponential Logistic Gompertz Gompertz

AIC 167.5 148.2 149.8 148.9
Asymptote — 44.1 105.6 37.5

AIDS cases The acquired immune deficiency syndrome (AIDS) has had a sub-
stantial impact on the costs of health care for some time now. Thus, early in the
epidemic, it was very important to be able to project its growing size accurately
into the future. The early numbers of cases for the UK are given in Table 12.4. At
the time, people wanted to determine whether or not there was any indication that
the epidemic was levelling off and, if so, at what level.

Because the numbers of cases diagnosed are counts, it may be reasonable to start
with a nonhomogeneous Poisson process (Section 4.3). The exponential growth
curve does not have an asymptote, but I shall fit it as a point of comparison. The
logistic curve fits considerably better, as can be seen in Table 12.5. It predicts
that the asymptotic mean number of cases will be about 44. However, this and all
the following predictions are based primarily on the shape of the lower part of the
curve which certainly is not reasonable. The exponential and logistic curves are
plotted in Figure 12.3. Although the fit appears reasonable for the series observed
at that time, it is clear that prediction will not be reliable.

There is no evidence that these responses are either overdispersed (Section 3.6.2)
or dependent over time (Section 7.1): adding a negative binomial or AR(1) assump-
tion does not improve the fit.
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Fig. 12.3. Various Poisson-based models for the AIDS cases in the UK each month from
January 1982 to April 1987, from Table 12.4.

12.3.2 Gompertz growth

Another commonly used S-shaped growth curve with an asymptote has growth rate
defined by

d
d log log

log
(12.15)

The solution to this is called the Gompertz growth curve,

e e (12.16)

In contrast to the logistic curve, this one is not symmetric about its point of inflec-
tion. As with the logistic curve, we can obtain a linear form, this time by means of
a log log link:

log log log (12.17)

This curve rises quickly and then levels off more slowly.
If we invert the asymmetry, we have

1 e e (12.18)
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obtained from
d
d log log

log 1
(12.19)

The linear form is, here, given by a complementary log log link:

log log 1 log (12.20)

This may be called the complementary Gompertz growth curve. This curve rises
slowly and then levels off more quickly.

When these regression functions are standardised, with asymptotes 1, they
have the form of an extreme value cumulative distribution function. As we have
seen, they are not symmetric about their points of inflection.

AIDS cases To check the predictions that I made above for the UK AIDS data
in Table 12.4, we can try these two models. The results also are given in Table
12.5 and the curves plotted in Figure 12.3. All three sigmoidal models fit about
equally well, but provide quite different predictions of the asymptotic mean level of
monthly UK AIDS cases. These differences result from the different assumptions
about when the most rapid growth in the numbers of AIDS cases has occurred or
will occur.

12.4 Richards growth curve

Let us now attempt to construct a simple, but more realistic, biological model for
growth. In terms of weight or volume, the growth rate of a living organism is the
difference between the metabolic forces of anabolism and catabolism, the synthesis
of new body matter and its loss. Catabolism can be taken proportional to weight
whereas anabolism can be assumed to have an allometric relationship to weight.
This can be written

d
d

1 0 (12.21)

with solution

1 1
0

e

1

(12.22)

called the Richards curve. The parameters and both control the rate of growth.
This curve describes initial exponential growth that is increasingly damped as the
size increases until eventually it stops.

When 1, this is the monomolecular function, when 1, the logistic
function, and, when 0, the Gompertz function. If 0 and 0 or 0
and 0, there will be negative growth or decay.
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Fig. 12.4. The Richards growth curve with a normal AR(1) model for the bean growth data
of Table 12.3.

Plant growth When applied to the bean growth data of Table 12.3, the Richards
model shows a large improvement over those fitted above. For a normal distri-
bution with AR(1), the AIC is reduced to 22.1 (26.6 without the autoregression).
The autocorrelation is estimated to be ˆ 0 51. The underlying profile curve is
estimated to be

37 2 1 1
37 2

0 0077

0 73

e 0 22

1
0 73

This curve and the recursive predictions are plotted in Figure 12.4.
Although the Richards curve is meant to describe growth in weight, it does quite

well here with area. For these data, with ˆ 0 73, the curve is closer to that from a
logistic function than from a monomolecular, but is still some distance from either.

Further reading

Banks (1994) presents a wider variety of growth curves and their applications,
but with no discussion of appropriate statistical methods for fitting them. Lind-
sey (2001) provides detailed discussion of fitting growth curves, with a number of
complex examples of applications to medical data. For other examples in biology
and epidemiology, see Brauer and Castillo-Chavez (2001).

Brown and West (2000) give a good introduction to recent issues in allometry.



280 Growth curves

Table 12.6. The heights (cm) of two sunflowers measured weekly. (Sandland and
McGilchrist, 1979, from Doyle)

4 4.5 7 10 16 23 32 47 77 130 148 153 154 154

2 3 5 9 13 19 31 51 78 91 93 96 91 93

Table 12.7. The weights (g) of two pregnant Afghan pikas over 14 equally spaced
periods. (Sandland and McGilchrist, 1979, from Puget and Gouarderes)

251 254 267 267 274 286 298 295 307 318 341 342
367 370

258 263 269 266 282 289 295 308 338 350 359 382
390 400

Exercises

12.1 The Yale enrolment data of Table 7.1 have the form of a growth curve.

(a) Find an appropriate growth function for these data.
(b) Is an autoregression model still required?
(c) Do you still have to allow for a changing variance?
(d) Can you now interpret in a different way the models fitted in Sec-

tions 7.1.1 and 7.1.3?
(e) How does the fit of your model compare to that of the random walk

model in Section 9.2.3?

12.2 Table 12.6 gives the heights (cm) of two sunflower plants measured at
weekly intervals.

(a) Find a growth curve to describe these data.
(b) Is the difference between the two plants due to the smaller initial

size of the second or to the rate of growth?

12.3 Weights (g) of two pregnant Afghan pikas were recorded over 14 equally
spaced periods from conception to parturition, as shown in Table 12.7.

(a) Find a growth curve to describe these data.
(b) Can you detect any difference between the two animals?

12.4 In the study of glucose turnover in human beings, 26 volunteers were
injected with deuterium-labelled glucose and the deuterium enrichment
(atom%̇ excess) measured at various time points. The results for subject
15 are given in Table 12.8. It is expected that the resulting curve will be
asymptotically zero after infinite time.

(a) Try to find an appropriate model.
(b) After how much time do you predict a zero measurement?
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Table 12.8. Measurements (atom% excess) of deuterium-labelled glucose over
time in one individual. (Royston and Thompson, 1995, from Edwards)

Minutes 2 3 4 5 6 8 10 12.5 15 20
Glucose 1.49 1.39 1.35 1.22 1.22 1.14 1.05 0.98 0.92 0.88

Minutes 30 40 50 60 75 90 120 150 180
Glucose 0.79 0.65 0.65 0.59 0.48 0.38 0.40 0.32 0.31

Table 12.9. Dissolved oxygen concentration (mg/l) in a tank of water. (Banks,
1994, p. 66)

Minutes 0 1 2 3 4 5 6 7
Concentration 0.36 1.54 2.55 3.37 3.98 4.56 5.03 5.32

Minutes 8 9 10 11 12 13 14 15
Concentration 5.67 5.88 6.13 6.22 6.42 6.49 6.59 6.68

12.5 In the study of water quality in lakes and rivers, the oxygen balance of
the body of water is important. This involves the rate of transfer of oxy-
gen from the atmosphere to the water and may depend on the velocity of
the water and/or wind, on wave action, and on rainfall. Laboratory ex-
periments to determine oxygen transfer rates start with a tank of water in
which initial oxygen concentration is reduced to a very low value by addi-
tion of some chemical such as sodium sulphite. Then, the tank is submitted
to the test variable, such as wind, and the dissolved oxygen measured at
various time intervals. In this way, the oxygen transfer coefficient, called
the reæration coefficient, can be determined. The results for one such ex-
periment are shown in Table 12.9.

(a) What form of growth curve should be suitable for these data?
(b) What is the interpretation of ?
(c) Which parameter might be called the reæration coefficient?
(d) What is its estimated value?

12.6 A second important factor in measuring the quality of water is the bio-
chemical oxygen demand (BOD). This is the amount of oxygen used by
micro-organisms to stabilise organic matter in waste water. This can be de-
termined by incubating a sample of water from the lake or river for several
days at a constant temperature, usually 20 C, and taking samples to mea-
sure oxygen content. The results from one such study are given in Table
12.10.

(a) Is the same form of curve applicable here as in Exercise 12.5?
(b) What is the estimated maximum BOD for this water?
(c) Which parameter might be called the deoxygenation coefficient?
(d) What is its estimated value?
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Table 12.10. Biochemical oxygen demand (BOD, mg/l) of water from samples.
(Banks, 1994, p. 68)

Day 0.5 1 2 3 4 5 6 8 10 12
BOD 14 30 48 71 82 102 109 131 139 152

Table 12.11. Reported AIDS cases, by quarter, as diagnosed in the UK,
1982–1992. (Healy and Tillett, 1988; de Angelis and Gilks, 1994)

Year Quarter

1982 3 1 3 4
1983 3 2 12 12
1984 14 15 30 39
1985 47 40 63 65
1986 82 120 109 120
1987 134 141 153 173
1988 174 211 224 205
1989 224 219 253 233
1990 281 245 260 285
1991 271 263 306 258
1992 310 318 273 133

12.7 One major problem with reported cases of AIDS is the underreporting in
the most recently available quarter years, because all cases will not yet
have reached the central recording office. Any projections into the future
must take this problem into account.

(a) Consider first the AIDS cases reported, by quarter, as diagnosed in
the UK, 1982–1992; these are given in Table 12.11. Try various
growth curves for these data.

(b) For each curve, state explicitly your assumptions about how growth
is occurring.

(c) Now look at the numbers of AIDS cases diagnosed in the USA
between 1982 and 1990; these are shown in Table 12.12. Does the
growth curve that you choose resemble that for the UK?

(d) What projections can you make for each country?
(e) Find more recent data to check your predictions.

12.8 One application of growth curves is to the spread of innovations. In one
such study, the number of ranchers in Uruguay having adopted the new
technique of fertilised grass–legume pastures between 1961 and 1976 was
recorded, as shown in Table 12.13.

(a) Find an appropriate growth curve for these data.
(b) In what year was the new procedure being adopted at the maximum

rate?
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Table 12.12. Reported AIDS cases, by quarter, as diagnosed in the USA,
1982–1990. (Hay and Wolak, 1994)

Year Quarter

1982 185 201 293 381
1983 536 705 769 851
1984 1148 1372 1573 1746
1985 2157 2578 2997 3107
1986 3775 4263 4692 4935
1987 5947 6409 6756 6920
1988 7560 7677 7674 7625
1989 8109 8224 7818 6935
1990 5922 329

Table 12.13. The numbers of ranchers in Uruguay having adopted improved
pasture techniques. (Banks, 1994, p. 38, from Jarvis)

Year 1961 1962 1963 1964 1965 1966 1967 1968
Number 141 261 397 697 944 1445 2060 3247

Year 1969 1970 1971 1972 1973 1974 1975 1976
Number 5284 7099 9554 11465 13767 14678 14998 15473

(c) How many ranchers do you predict will eventually adopt this ap-
proach?

12.9 Three closed colonies of Paramecium aurelium were raised in a nutritive
medium consisting of a suspension of the bacterium Bacillus pyocyaneous
in salt solution. At the beginning of each experiment, 20 Paramecia were
placed in a tube containing 5 ml of the medium at a constant 26 C. Each
day, starting on the second, the tube was stirred, a sample of 0.5 ml taken,
and the number of individuals counted. The remaining suspension was
centrifuged, the medium drawn off, and the residue washed with bacteria-
free salt solution to remove waste products. After a second centrifuging
to remove this solution, fresh medium was added to make up the original
volume. The results are shown in Table 12.14.

(a) Are there any differences in the growth curves among the three
colonies?

(b) What is the estimated carrying capacity?
(c) Is there any evidence of serial dependence in these data?
(d) Can you explain this?
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Table 12.14. The sizes of three closed colonies of Paramecium aurelium (Diggle,
1990, p. 239, from Gause).

Day 0 2 3 4 5 6 7 8 9 10

2 17 29 39 63 185 258 267 392 510
2 15 36 62 84 156 234 348 370 480
2 11 37 67 134 226 306 376 485 530

Day 11 12 13 14 15 16 17 18 19

570 650 560 575 650 550 480 520 500
520 575 400 545 560 480 510 650 500
650 605 580 660 460 650 575 525 550
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Compartment models

In Chapter 6, we studied how the event histories of individuals can be modelled
as stochastic processes passing through a number of different states. A similar
phenomenon occurs when a quantity of some material moves through the differ-
ent parts (the states) of some system. If the system can be divided into a number
of compartments (corresponding to the states in event histories), elements of the
material can be assumed to move stochastically among them, possibly in both di-
rections

In such a context, similar models to those in Chapter 6 should be applicable.
However, in that chapter, we were able to observe the individual movements among
compartments. Here, in contrast to event histories, I shall assume that we can only
observe aggregate movement. Thus, the situation will be the same as for the growth
curve models in Chapter 12: we have here a second set of phenomena where we
cannot observe individual changes. However, in contrast to growth curves, the
models will allow material, not to accumulate in the system, but rather to enter,
flow through, and leave it.

Thus, once again, records of change in such a system will be averages of the
unobservable stochastic changes of the elements involved. Generally, we shall
either be interested in how the total amount of material in the system changes over
time or in changes in the amount in one particular compartment of special interest.
As in the case of growth curves, a second level of external stochastic disturbances
will also be present.

13.1 Theory

Following this line of thought, we find that one simple way to begin construction of
mechanistic models for a process of material moving through a system is to divide
that system into compartments and to assume that the rate of flow of the substance
between these obeys first-order kinetics. In other words, the rate of transfer to a
receiving or sink compartment is proportional to the concentration in the supply
or source compartment. Then, the differential equations will be linear. These are
called the mass balance equations. There may be inputs into and outputs from one
or more compartments.

For example, in a study of the body, a three-compartment model might corre-

285
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spond to blood, soft tissue, and muscle, plus the outside environment from which
the substance comes and to which it is eliminated. Two important assumptions in
such models are that the substance under study

(i) is well mixed in all compartments and
(ii) has identical kinetic behaviour within each one.

The idea is that the material is made up of a very large number of small parti-
cles moving independently through the compartments and that their individual be-
haviour cannot be observed. Thus, only their average behaviour is available, in
contrast to the records of individuals moving through the states of a system in
Chapter 6.

The growth curves of Chapter 12 modelled net accumulation of material in a
system; here, instead, material entering the system generally will be eliminated
later. If input to the system eventually stops, whereas elimination from the system
continues, the resulting regression function for each compartment, after standardi-
sation of the initial conditions, generally will have the form of a probability density
function over time. Such functions will describe the mean of the stochastic process
of movement of material into and out of each compartment.

13.1.1 First-order kinetics

As in Section 6.1, we shall need to set up an intensity matrix describing the rate
of passage of the elements of material through the system. Let us first consider
the simple case of first-order kinetics with no inputs to the system after the process
begins at 0.

In such a situation, the system of linear differential equations will have the form

d
d

(13.1)

where is a column vector of length giving the mean content of each com-
partment in the system at time and is a transfer matrix containing rate
constants of movement between the compartments.

In direct analogy to the solution of one such equation, the general solution to
Equation (13.1) is

0 e (13.2)

where matrix exponentiation is defined as in Section 6.1.3. By comparison with
the results in that section, we see that , giving the mean amount of material in
each compartment at time , corresponds to , the marginal probability of being
in each state at time . The transfer matrix corresponds to the intensity matrix

. Thus, elements of material are following a continuous-time Markov chain and
the times that they spend in compartments will have exponential distributions.

If there are inputs to the system over time, the function describing these, say
, must be added to Equation (13.1). The solution, then, involves an integral
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Fig. 13.1. A graphical presentation of an open, first-order, one-compartment model.

added to Equation (13.2):

0 e
0

e d (13.3)

In simple cases, Equation (13.2) or (13.3) can be solved analytically, but often only
a numerical solution may be available.

In this construction, we have used a stochastic process to describe the passage of
material through a system. However, the difficulties in measuring concentrations
in most situations implies that considerable measurement error will be present. In
addition, especially in biological systems, further variation, including serial de-
pendence, can arise through the changes over time in metabolic processes, envi-
ronmental influences, and so on. Thus, the solution of these equations provides
a mean over time about which random variation will be occurring. Because con-
centrations are positive-valued, usually varying from close to zero to fairly large
values, a skewed distribution with nonconstant variance will usually be found to be
most appropriate to model this.

13.1.2 Open, first-order, one-compartment model

As an example, let us look at a model often used in the pharmacokinetic study of
the flow of a medication through the body. Suppose that a substance is ingested
at one point in time (not continuously over the study period). The process to be
modelled is illustrated in Figure 13.1. It corresponds to the differential equations

d 1
d 1

d 2
d 1 2

(13.4)

where 1 is the average amount at the absorption site (in Figure 13.1, the stomach)
and 2 is the concentration that interests us, that of the substance in the body,
usually measured in the blood. Two important parameters are the absorption rate

and the elimination rate , both at this site. Generally, direct information is
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Fig. 13.2. Plots of total concentration in the system and concentration in the second com-
partment for the model of Figure 13.1 with 0 4, 0 05, and a dose of 1.

available only about 2 . Indirect information about 1 comes from the dose
administered.

Then, in Equation (13.1),

0
(13.5)

If a dose of size is the input to the first compartment, the initial condition for
Equation (13.2) will be 0 0 . Then, at any time , we shall be in-
terested in the amount in the second compartment; this is the second element of

, which can be obtained from Equation (13.2). For given, fixed values of the
parameters, this can be calculated numerically using matrix exponentiation, as in
Equation (6.4).

Suppose, say, that 0 4, 0 05, and 1. Then, the curves of total
concentration in the system and of concentration in the second compartment are
plotted in Figure 13.2. We see that the concentration in the second compartment
rises quickly and then drops off slowly. The absorption rate controls the steep-
ness of the increasing curve and the elimination rate , usually smaller than ,
controls the descent. After about time 12, almost all of the material in the system
is in the second compartment, so that the two curves coincide, and after about time
50, almost all has left the system.

In fact, in this case, the differential equations can be solved analytically so that
numerical exponentiation of the transfer matrix is not necessary; see Equation
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(6.15). The resulting nonlinear function for the compartment of interest is

2 e e (13.6)

Because not all of the total dose administered may reach the site of measurement,
generally a proportionality constant , called the ‘apparent volume of distribution’,
is included:

2 e e (13.7)

This commonly used nonlinear regression function is called the open, first-order,
one-compartment model. (Only the second compartment appears in the final re-
gression function.) The parameters to be estimated are , , and . This function
describes the average movement through the compartment if no outside influences
are operating. In order to fit the model to data, appropriate assumptions also must
be made about these external influences.

13.2 Modelling delays in elimination

The procedures described above provide the basis for constructing more elabo-
rate and more realistic models. However, the compartments included in a model
do not necessarily all need to correspond directly to physical parts of the system
under study. Extra compartments may need to be added to modify the stochastic
properties of the system. For example, in the passage of some substance through
a biological organism, absorption often is relatively straightforward. Modelling
elimination can be more difficult because the material can transit through several
organs before leaving. Let us look at two ways to handle this.

In contrast to the open, first-order, one-compartment model of Section 13.1.2,
for simplicity let us here assume that input and elimination occur in the same com-
partment (for example, a substance is injected directly into the blood, where it is
measured over time). This means that the concentration curve will not rise at the
beginning, as it did for the compartment of interest in Figure 13.2.

13.2.1 Random walk

Consider Figure 13.3, ignoring for the moment compartment four. Assume that
concentration measurements are made in compartment three, where both input and
elimination occur. However, there are two fictitious compartments, one and two,
to the left of this. Thus, in this model, some of the material can move through
the compartments to the left of the input, one compartment at a time, with rate

, and back with rate . Elimination will not occur until it comes back through
compartment three. What is the effect of adding these extra compartments?

In fact, this construction yields a random walk (Sections 5.1.3 and 9.2.3) with a
reflecting barrier at compartment one and rates to the left and to the right. This
random walk allows retention of the material longer in the system; for example, for
a drug in the body, this might be by movement through sites neighbouring the organ
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Fig. 13.3. A graphical presentation of a four-compartment, gamma distribution random
walk model. Compartments one and two yield the random walk and three and four the
gamma distribution.

Table 13.1. Renal gentamicin concentrations ( g/g) in four sheep after
administration of a bolus of 3 mg/kg body weight. (Faddy, 1993)

Day 2 5 11 18 25 32 46 60
Concentration 71.9 38.6 10.1 10.7 7.1 6.7 4.1 3.3

Day 2 5 11 18 25 32 60 74
Concentration 102.2 49.8 24.8 14.1 10.0 7.1 3.1 4.8

Day 1 4 10 17 24 45 59 73
Concentration 183.0 90.6 25.0 7.9 8.4 5.8 7.1 7.1

Day 4 10 17 24 31 45 59 73
Concentration 108.7 69.2 20.4 16.4 13.0 9.1 7.5 7.4

in which measurements are made. A larger number of compartments to the left of
input will indicate a longer delay in elimination (depending also on the two rates).
With a sufficiently large number, this will approximate a diffusion process (Chapter
10).

Antibiotic residues Gentamicin, an antibiotic, is administered to animals to con-
trol infection. There is concern about residues staying in the kidneys. To study the
process of elimination of this drug, four sheep were given gentamicin at 3 mg/kg
body weight. Renal gentamicin concentrations were measured over a period of
about ten weeks after this, as shown in Table 13.1. For all sheep except the last, the
measured concentration increases at certain time points, indicating the presence of
considerable measurement error.

Because the sheep were of different sizes, it is necessary to include a different
proportionality constant, the apparent volume of distribution in Equation (13.7),
for each sheep; for simplicity, I shall set 1 so that the actual dose is included
in . I shall be interested in the total amount remaining in the system at a given
time: the sum of the elements of .



13.2 Modelling delays in elimination 291

Table 13.2. Random walk models, with differing numbers of compartments, fitted
to the renal gentamicin concentration data of Table 13.1.

Compartments Log normal Gamma

1 122.0 122.7
2 92.8 92.6
3 92.4 92.1
4 92.2 92.0
5 92.2 92.0

Let us fit random walk models with input to the last compartment, as above, so
that the final elimination rate is exponential. The results for a variety of lengths
of random walk are shown in Table 13.2 when variability is handled by the log
normal and gamma distributions. Notice that all models, except that with one com-
partment, have the same number of parameters. The fit is only little improved by
increasing the number of random walk compartments. All are an improvement on
direct exponential elimination (one compartment). The log normal distribution fits
about as well as the gamma, whereas a normal distribution fits much more poorly.
As well, serial correlation is not necessary.

The gamma-variability, four-compartment, random walk model (with no com-
partments to the right of input) is plotted in Figure 13.4, showing the separate curve
for each sheep. The rate parameters are estimated to be 0 017, 0 026,
and 0 22. The (reciprocal) volumes are 1 118 4 163 8 189 1 290 2 ;
these are quite different from those for the log normal model (given by Faddy,
1993), in part because the latter refer to the geometric mean.

13.2.2 Gamma distribution

As we have seen, the assumption of first-order kinetics in standard compartment
models implies that they are equivalent to the continuous-time Markov chains of
Section 6.1.3. Thus, the time spent by a particle of the material in a compartment
has an exponential distribution. This is why the duration time for material in the
last compartment of the random walk model above has an exponential distribution.

If this is not reasonable, one simple correction, without dropping the first-order
assumption, is to divide up the (physical) compartment having the nonexponential
distribution into a series of subcompartments through which the material must pass
before leaving the system, all with the same rate . Here, in contrast to the random
walk system, movement will be in one direction only. The amount of delay in
elimination will depend on the number of extra compartments (as well as on the
elimination rate ).

Thus, such a system will consist of a series of compartments whereby a given
quantity of material enters through the first compartment in the series. Output only
occurs by passing through all of the compartments to the right and out of the last
compartment, all with the same rate . With two compartments, this model would
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Fig. 13.4. The random walk compartment model fitted to the renal gentamicin concentra-
tion in sheep in Table 13.1.

be illustrated by compartments three and four in Figure 13.3, ignoring the random
walk produced by compartments one and two. Input occurs to compartment three
and the material must pass through compartment four before leaving the system.

Elimination through the compartments to the right of input corresponds to a
gamma-distributed clearance time, instead of being exponentially distributed. The
shape parameter in the gamma distribution of Equation (2.7) will equal the inte-
ger number of elimination compartments, including the input compartment (Matis,
1972). In Figure 13.3, these are compartments three and four, so that 2.

Thus, the complete model in Figure 13.3 has two components: diffusion within
the site of input and gamma-distributed clearance from that site (Faddy, 1993). For
this model, the transfer matrix will be

0 0
0

0
0 0 0

(13.8)

and 0 0 0 0 for an input dose of . One important characteristic of
this model is that the number of parameters to estimate does not change with the
number of compartments, either of the random walk or of the gamma elimination.

Two special cases often are used in pharmacokinetics. If there is no random
walk component and clearance has an exponential distribution, a zero-order, one-
compartment model results. This is applicable when a bolus dose is injected di-
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rectly into the compartment (usually the bloodstream) where concentrations will
be measured directly. If this is too simple, a zero-order, two-compartment model
can be produced by using a two-step random walk with exponential clearance.

Antibiotic residues For the sheep data above, if we add a compartment to the
random walk model after (to the right of) input, elimination time will have a gamma
distribution with 2. Although the number of parameters does not change, this
yields a poorer fit. Thus, the four-compartment gamma-variability model (three
of which involve the random walk) has an AIC of 93.5. Because compartments
to the right of input are not required, clearance follows an exponential distribution
( ˆ 1).

13.3 Measurements in two compartments

In most pharmacokinetic studies, only concentration of the material of interest in
the blood plasma is measured. However, it is possible to obtain valuable comple-
mentary information about the system by also recording concentration eliminated,
for example in the urine. This can make it possible to follow the process in more
than one compartment.

13.3.1 Models for proportions

Certain types of studies, such as those using radioactive tracers, do not measure
concentrations, but only the proportion of the material introduced into the system
that is remaining at each point in time. In such a situation, standard distributions
may not be suitable. Two distributions specifically for proportions are the beta

;
Γ

Γ Γ 1
1 1 1 1 (13.9)

and the simplex

;
exp

2

2 2 1 2 1

2 3 1 3
(13.10)

distributions.
In studies that use radioactive tracers, it may be possible to measure the (relative)

concentrations in two compartments. Thus, we need to look more closely at a
general two-compartment model. Assume that input is to the first compartment,
but that both may eliminate material. In addition, once in the system, material may
pass in both directions between the two compartments before elimination.

For the case where a one-time injection of material originally enters the first
compartment, this is illustrated in Figure 13.5. The corresponding transfer matrix
is

12 1 12 1

21 21 2 2

0 0 1 2

(13.11)



294 Compartment models

Injection

1

k12

k21

2

k1e k2e

Fig. 13.5. A two-compartment model with injection to the first compartment and elimina-
tion from both.

Table 13.3. Sulphate metabolism in a patient with initial injection of a dose of
radioactive sulphate into compartment one. (Kodell and Matis, 1976, from

Galambos and Cornell)

Time Compartment one Compartment two

2 0.84 0.06
3 0.79 0.07
5 0.64 0.15
8 0.55 0.15
12 0.44 0.16
24 0.27 0.19
48 0.12 0.22
72 0.06 0.23

and the initial condition is 0 0 for an input dose of . Here, input and
elimination both occur in compartment one, but only elimination in compartment
two. This means that the concentration curve for the first compartment will not rise
at the beginning, whereas it will for the second.

Radioactive tracers A radioactive tracer was used in a study of the metabolism
of sulphate in patients. The radioactivity was measured both in the serum and
in the urine, the latter being exterior to the system. Serum corresponds to the
first compartment, extracellular fluid, whereas the second is the metabolic pool.
Biologically, sulphate should only be eliminated from compartment one so that we
would expect to have 2 0 in Figure 13.5.

In this study, measurements were made as fractions of the injected dose. The
results for one patient are shown in Table 13.3. Investigation showed no indication
of a serial correlation, so that only independence models will be considered here.

The fits of several models, both more traditional ones and those specifically for
proportions, are shown in Table 13.4. As expected, in no case is there any indi-
cation that 2 0. The two distributions for proportions are superior, with the
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Table 13.4. AICs for several models fitted to the radioactive sulphate data of
Table 13.3.

Distribution With 2 Without 2

Normal 46.7 45.7
Log normal 47.0 46.0
Gamma 47.0 46.0
Beta 45.7 44.7
Simplex 44.4 43.4
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Fig. 13.6. The two-compartment model fitted to the radioactive sulphate data in Table 13.3.

simplex distribution best. The rate parameters are estimated to be 12 0 030,

21 0 022, and 1 0 043. The curves are plotted in Figure 13.6. The pro-
portions in compartment one appear to be followed more closely than those in
compartment two. This may be because the former are measured directly whereas
the latter are not.

Further reading

Gutfreund (1995) gives a useful introduction to the basic principles of kinetics.
Standard texts on pharmacokinetics include Gibaldi and Perrier (1982) and Notari
(1987). Lindsey (2001) provides detailed discussion of statistical fitting of com-
partment models to medical data.
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Matis and Kiffe (2000) present applications of compartment models to stochastic
processes of birth, death, and migration; they also discuss stochastic models that
do not carry the assumption of uniform mixing (exponential passage times) in each
compartment. Anderson and May (1991) show how compartment models are used
in modelling the spread of infections among biological organisms, such as people,
and Nowak and May (2000) how they can be used to model virus infections within
biological organisms.

Exercises

13.1 Let us look more closely at the sulphate metabolism data of Table 13.3.

(a) Can you develop a compartment model that follows the proportions
in compartment two better than that given above?

(b) What interpretation can you give for the best model?
(c) I assumed that the dispersion was constant over time. Is this a

reasonable assumption? Correct the model if necessary.

13.2 The steroid prednisolone was suspected of showing high-risk potential for
therapeutic nonequivalence due to differences in bioavailability in its com-
mercially available 5 mg tablet form. A study was conducted to verify this
in vitro and in vivo. The results for the latter study, comparing two types
of tablets, with 12 subjects taking each, are reproduced in Table 13.5.

(a) What kind of compartment model might be suitable?
(b) What evidence is there for differences between the two types of

tablets?

13.3 A bolus intravenous injection of the same dose of indomethicin was given
to each of six human volunteers to study the kinetics of its absorption,
elimination, and enterohepatic circulation. Plasma concentration of in-
domethicin was subsequently measured at 11 time points, as in Table 13.6.

(a) Find a suitable compartment model for these data.
(b) Develop appropriate stochastic elements for the model by consid-

ering different possible distributional assumptions as well as de-
pendence among responses on each subject.

13.4 In a Phase I clinical trial, an oral dose of Sho-seiryu-to was administered to
each of eight healthy male volunteers. Blood concentrations of ephedrine
were measured over the following 24 h, with the results as shown in Table
13.7.

(a) Fit a suitable compartment model to these data.
(b) Develop appropriate stochastic elements for the model by consid-

ering different possible distributional assumptions as well as de-
pendence among responses on each subject.

13.5 The rate of gastrointestinal absorption of Declomycin was studied under a
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Table 13.5. Plasma concentrations (ng/ml) in 24 subjects following ingestion of a
5 mg tablet of prednisolone in two different formulations. (Sullivan et al., 1974)

Hours
0.25 0.5 1 2 3 4 6 8 12 24

Tablet A

103.0 194.0 254.0 170.0 149.0 127.0 64.8 41.6 8.6 11.8
228.0 345.0 290.0 225.0 203.0 158.0 67.2 40.4 8.0 0.0

5.4 57.8 181.0 204.0 142.0 149.0 106.0 34.6 21.9 0.0
10.3 70.8 214.0 179.0 170.0 173.0 68.9 32.3 23.9 9.8

209.0 288.0 266.0 210.0 218.0 121.0 48.8 53.1 25.3 0.0
81.0 202.0 263.0 209.0 200.0 220.0 130.0 62.1 25.4 0.0

3.0 138.0 390.0 310.0 305.0 222.0 142.0 73.0 31.6 11.3
0.0 73.0 194.0 189.0 152.0 148.0 63.0 34.2 19.4 0.0

14.5 125.0 201.0 209.0 228.0 129.0 82.5 47.0 3.9 1.3
81.1 217.0 222.0 206.0 169.0 123.0 76.2 25.0 22.8 0.0
19.0 96.1 114.0 165.0 148.0 146.0 94.6 46.6 23.4 0.0

6.2 30.0 173.0 202.0 168.0 135.0 95.6 69.9 20.4 9.4

Tablet B

62.3 268.0 249.0 192.0 190.0 129.0 53.2 23.5 11.4 11.2
116.0 178.0 205.0 219.0 161.0 116.0 32.2 17.2 7.3 0.0
29.8 138.0 224.0 196.0 192.0 158.0 105.0 70.2 22.5 0.9
28.5 79.2 173.0 286.0 305.0 229.0 126.0 79.5 25.2 15.7
21.6 154.0 244.0 246.0 357.0 222.0 119.0 58.5 26.8 1.7
76.6 253.0 267.0 242.0 211.0 164.0 98.4 57.2 22.5 2.3

0.0 50.8 168.0 289.0 255.0 170.0 109.0 67.1 26.2 8.3
6.7 160.0 184.0 197.0 246.0 165.0 103.0 69.0 2.0 0.0

22.4 125.0 222.0 166.0 134.0 148.0 52.9 19.0 26.3 12.2
0.0 77.5 163.0 174.0 199.0 170.0 102.0 84.4 27.4 2.3
8.3 56.0 149.0 174.0 130.0 153.0 83.1 39.1 22.0 0.0

25.0 63.4 145.0 148.0 143.0 140.0 95.6 45.9 11.2 24.0

Table 13.6. Plasma concentrations ( g/ml) following intravenous injection of
indomethicin for six human subjects. (Davidian and Giltinan, 1995, p. 18, from

Kwan et al.)

Hours
0.25 0.5 0.75 1 1.25 2 3 4 5 6 8

1.50 0.94 0.78 0.48 0.37 0.19 0.12 0.11 0.08 0.07 0.05
2.03 1.63 0.71 0.70 0.64 0.36 0.32 0.20 0.25 0.12 0.08
2.72 1.49 1.16 0.80 0.80 0.39 0.22 0.12 0.11 0.08 0.08
1.85 1.39 1.02 0.89 0.59 0.40 0.16 0.11 0.10 0.07 0.07
2.05 1.04 0.81 0.39 0.30 0.23 0.13 0.11 0.08 0.10 0.06
2.31 1.44 1.03 0.84 0.64 0.42 0.24 0.17 0.13 0.10 0.09

number of experimental conditions to determine the decrease due to heavy-
metal complexation. The four conditions were: A, after eight hours fast-
ing; B, after a meal without dairy products; C, after a meal with 8 oz of
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Table 13.7. Blood concentrations of ephedrine (ng/ml) in eight healthy male
volunteers after an oral dose of Sho-seiryu-to. (Yafune, 1999)

Hours
0.25 0.5 0.75 1 2 3 4 6 8 10 24

2.5 5.1 14.3 17.1 20.5 21.6 23.3 16.2 14.6 12.0 4.7
1.9 10.8 21.1 28.5 30.9 30.9 30.2 20.0 17.3 13.5 3.5
2.4 11.5 18.1 31.2 35.7 36.4 30.6 24.2 20.0 12.2 2.4
4.9 9.8 18.2 20.1 31.2 27.5 26.0 22.6 15.5 13.4 2.7
3.3 14.7 25.6 38.0 35.6 29.8 29.7 24.6 20.5 16.0 2.5
3.9 13.5 17.8 21.0 22.8 23.0 19.1 14.4 11.8 9.8 1.1
0.5 9.0 15.5 20.9 24.7 24.3 22.8 18.0 14.4 8.9 3.2
2.0 5.3 16.2 21.7 25.4 28.0 23.0 21.0 13.6 10.0 1.2

Table 13.8. Average serum concentrations of Declomycin over time under four
experimental conditions. (Notari, 1987, p. 186)

Hours Fasting No dairy products Whole milk Aluminium hydroxide

0 0.0 0.0 0.0 0.0
1 0.7 1.0 0.1 0.2
2 1.1 1.2 0.3 0.3
3 1.4 1.7 0.4 0.4
4 2.1 2.0 0.4 0.5
5 2.0 — 0.4 0.5
6 1.8 2.1 0.4 0.5

12 1.4 1.8 0.3 0.4
18 — — 0.2 0.3
24 0.8 1.1 0.1 0.2
48 0.4 0.7 0.0 0.1
72 0.2 0.3 — 0.0
96 0.1 0.2 — —

whole milk; and D, coadministration with 20 ml of aluminium hydroxide
gel. In each group, 300 mg of Declomycin were administered orally, with
the results shown in Table 13.8.

(a) Fit appropriate models to determine which parameters vary under
the various treatment conditions.

(b) What is the proportional reduction in total absorption when milk is
taken with a meal as compared to fasting?

(c) What is the reduction with aluminium hydroxide gel?
(d) Compare these to the situation of a meal without dairy products.
(e) As stated in Table 13.8, these are averages. There were six vol-

unteers in the fasting group and four in each of the other groups.
What would be the advantages of having the individual data for all
participants instead of just mean values?

13.6 The adult yellow lace birch bug is a flying insect that, as a nymph, goes
through a number of instars. Data were collected in the summer of 1980,
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Table 13.9. Counts of yellow lace birch bugs at six stages in a small tree in
northern Ontario. (Kalbfleisch et al., 1983)

Day Instar Adult

1 2 3 4 5

0 31 0 0 0 0 0
4 200 0 0 0 0 0
8 411 58 0 0 0 0

13 435 320 97 1 0 0
16 496 294 250 48 0 0
19 514 316 299 214 6 0
22 492 339 328 332 79 0
28 509 390 353 325 326 4
31 478 374 356 369 476 83
34 359 382 344 404 549 202
38 270 261 339 446 617 460
44 142 186 209 400 666 745
47 103 159 198 329 669 900
50 63 73 183 237 616 1095
54 28 40 66 196 451 1394
58 11 26 41 105 340 1581
68 0 1 6 26 97 1826

starting on July 2, on the numbers of this insect on one small tree in north-
ern Ontario, Canada, as shown in Table 13.9. Mortality occurred at various
stages; all adults left the tree on emergence. This is a case in which the ac-
tual number of ‘particles’ involved in the process can be counted, although
not followed over time.

(a) Develop and fit a compartment model for these data.
(b) According to this model, what is the mean sojourn time in each

stage?
(c) Does the mortality rate change over the various stages?

13.7 In studies of digesta flow through the gastrointestinal tract of ruminants, at-
tributes of variation in this flow are collected along with variation in intake
and digestive use of forages. Such data are different from many experi-
ments in which compartment models are applicable in that initial mixing
of a new meal with existing gastrointestinal contents is not instantaneous.
As well, the digesta typically are heterogeneous.

In a first study, grazing Brahman–Jersey-cross cows were pulsed with
Yb169-marked coastal Bermuda grass. The proportion of marked material
excreted over time was recorded, as shown in Table 13.10.

(a) How many compartments do you expect to require for these data?
(b) What stochastic assumptions do you require in order to obtain a

reasonable fit?
(c) How does your model allow for the lack of perfect mixing?
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Table 13.10. Passage data of marked coastal Bermuda grass through grazing
Brahman–Jersey-cross cows. (Hughes and Matis, 1984, from Lascano)

Hours 0 4 8 16 20 24 28
Proportion 0.0000 0.0000 0.0201 0.0421 0.0649 0.0929 0.2011

Hours 40 48 64 72 88 96 112
Proportion 0.3563 0.5165 0.6559 0.7538 0.8261 0.8734 0.9034

Hours 120 136 144
Proportion 0.9382 0.9711 1.0000

13.8 A second digestion experiment was undertaken to examine the difference
in effect of two diets, chopped straw and finely ground, pelleted straw,
both alkali-treated. Each of four cows received both treatments in a paired
design. Part of each kind of straw was stained with magenta. The fæces
were supposed to be collected, mixed, and weighed every four hours dur-
ing 360 h. Samples were taken from which stained particles were counted
and recorded per gram for many, but not all, four-hour periods. The data
for one of the cows are given in Table 13.11.

(a) What assumptions do you need to make in order to model these
data?

(b) How many compartments do you require for a satisfactory model?
(c) Is there a difference between the two treatments?

13.9 In Section 13.3, we looked at data for which measurements were available
in two compartments. Occasionally, information may be available on even
more compartments. For example, concentration in the kidney may be
measured indirectly, yielding a renogram. In one study, ortho-iodo hippu-
ran tagged with I131 was injected intravenously into a dog. Radioactivity
was measured over the kidney as well as in the blood and urine, as shown
in Table 13.12.

(a) Develop and fit a compartment model for these data.
(b) According to this model, what is the mean sojourn time in each

compartment?
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Table 13.11. Concentrations of stained particles in fæces of a cow for chopped
and ground straw. (Matis et al., 1989, from Ferreiro et al.)

Hours Chopped Ground

2 0 0
6 0 0

10 0 6
14 0 0
18 60 0
22 57 303
26 211 316
30 374 444
34 321 491
38 603 636
42 531 651
46 659 746
50 791 729
54 763 638
58 902 494
65 778 456
77 879 —
89 746 248

101 856 —
113 520 141
125 376 —
137 267 115
149 149 —
161 194 50
173 94 —
185 116 20
197 82 —
209 16 —
221 14 —
233 12 8
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Table 13.12. Concentration of injected ortho-iodo hippuran tagged with
iodine-131 in a dog. (Turner et al., 1963)

Minutes Blood Renogram Urine

0.50 24.3 — —
0.75 22.9 — —
1.00 14.3 — —
1.25 13.2 — —
1.50 12.9 — —
1.75 11.2 — —
2.00 11.4 — 20.80
2.25 10.6 — 16.80
2.50 9.5 32.5 21.50
2.75 7.1 — 19.10
3.00 6.5 27.5 18.00
3.50 5.2 23.8 14.00
4.00 5.0 22.3 11.82
4.50 5.1 19.2 9.68
5.00 4.7 17.0 7.87
5.50 4.2 14.9 7.05
6.00 3.9 13.4 6.36
6.50 3.9 12.4 5.24
7.00 4.3 11.4 5.07
7.50 2.8 10.6 3.51
8.00 3.1 10.2 3.72
8.50 2.8 9.7 3.63
9.00 2.9 9.0 3.33
9.50 2.3 8.4 3.24

10.00 2.5 7.3 2.86
10.50 2.5 6.9 2.79
11.00 2.2 6.6 2.46
11.50 2.2 6.3 2.35
12.00 2.0 6.2 2.34
12.50 2.0 6.0 2.14
13.00 2.0 5.8 2.03
13.50 1.8 4.9 2.03
14.00 1.8 4.7 1.98
14.50 1.7 4.3 1.87
15.00 1.9 4.5 1.69
15.50 — 4.4 —
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Repeated measurements

Up until this point, when several series were available, I have assumed that they
arose from the same stochastic process (unless some covariates were available to
distinguish among them). The one exception was Section 7.3 in which I introduced
frailty models for recurrent events. It is now time to look at some standard meth-
ods for handling differences among series when adequate covariate information to
describe those differences is not available.

14.1 Random effects

Suppose that we observe a number of series having the same basic characteristics.
If we examine several responses from one of these series, we can expect them to
be related more closely, independently of their distance apart in time, than if we
take one response from each of the series. Indeed, generally we assume the re-
sponses from separate series to be independent, whereas those on the same series
usually are not. If inadequate information is available from covariates in order to
be able to model the differences among the series, then other methods must be
used. The usual approach is to assume that one or more parameters of the distri-
bution describing the stochastic process differ randomly (because we do not have
appropriate covariates to describe systematic change) among the series. This type
of construction yields a mixture distribution. However, in contrast to the dynamic
models of Chapters 7 and 11, here the random parameters will be static, only vary-
ing among series and not over time.

14.1.1 Mixture models

A regression function serves to describe how characteristics of a stochastic process
vary systematically, in observable ways, both in subsets of the population (Chapter
2) and as conditions change over time. If adequate covariates are available, dis-
tinguishing among the series and describing how conditions change over time, the
set of states within a series should be independent, conditional on these covariates.
However, all such conditions may not be observable and, indeed, may not be rele-
vant for a given problem at hand. Here, I particularly shall be concerned about (the
lack of) time-constant covariates that describe differences among the series.

303
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Suppose, then, that some parameter in the distribution of states of the process
is suspected to vary in unknown ways among the series. The ideal situation is to
be able to model changes in this parameter as a regression function, conditioning
on available series-specific covariates. However, if such covariates are unavailable,
let us assume, instead, that this parameter varies randomly across the series, with a
distribution independent of the distribution of the states. (In more complex cases,
there may be more than one such parameter.) The hope is that allowing this param-
eter to vary randomly may help to account for the heterogeneity among the series.
In recurrent event studies, this unobserved variable has come to be known as the
subject’s frailty (Section 7.3).

Construction of a mixture distribution

For the moment, let us simplify by ignoring dependencies over time within a series.
Then, let be the conditional probability density of the states in series at
time , given the value of the random parameter that we assume to vary across
series but to be fixed (and unknown) for each given series. Next, let be the
mixing distribution describing the variation of this parameter across series. Then,
the (marginal) distribution of the observed states can be obtained by integration
to remove the unobservable . As we have seen (Sections 4.3.2 and 7.3.1), the
resulting construction is called a mixture distribution. Thus, the joint distribution
of the observed responses in a series is obtained from

1 ∏
1

d (14.1)

In this way, we obtain a joint multivariate distribution of all observed states of a
series. Except in special cases, this distribution cannot be written in closed form,
so that numerical integration must be used.

Choice of random parameters

Let us now look a little more closely at ways in which to choose an appropriate
random parameter. Random variation may be introduced in at least two ways:

(i) We may start with some appropriate probability distribution and, before
introducing any regression function(s), choose a parameter to make ran-
dom. Then, once the resulting mixture distribution is obtained, the regres-
sion function(s) may be introduced into it. This is a population-averaged
model (Zeger et al., 1988), because time-varying covariates, describing dif-
ferences among the states within a series, cannot be used.

(ii) Appropriate regression function(s) may first be introduced into the prob-
ability distribution, including covariates describing differences among the
states of a series. Then, some parameter in that function can be given a
distribution. This is a series-specific model.

In either case, the result is a joint distribution of the observed states and the unob-
served random parameter from which the latter is eliminated by integration.
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Often, the most useful approach is to allow an intercept parameter to have the
random distribution, so that the height of the regression curves varies among series.
More occasionally, one may suspect that a slope parameter varies among series.
For mechanistic models, such as those in Chapters 12 and 13, most parameters
have physical meaning and any one of them might be interpretable when allowed
to vary randomly among series.

14.1.2 Choice of mixing distribution

The next question is the choice of the mixing distribution for the parameter. Hope-
fully, this might be selected on theoretical grounds, in the context of a specific
scientific study. Often, this is not possible. When the parameter can take on only a
restricted range of values, this is another factor that must be taken into account.

Conjugate distributions

Let us, first, look at cases in which we can obtain a closed form for the multivariate
distribution. A mixing distribution that yields such a result is said to be conjugate
to the conditional probability density of the states. For members of the exponential
(dispersion) family (Section 8.2.1), such a mixing distribution can be written down
in general (see Diaconis and Ylvisaker, 1979; Morris, 1983).

In this family, giving a distribution to the mean , when it is constant for all
responses on a series (a population-averaged model), is equivalent to giving the
distribution to the canonical parameter . From Equation (8.20), members of the
exponential dispersion family have the form

; exp (14.2)

where is related to the mean by the canonical link function and , or
equivalently , is now a random parameter.

Then, the conjugate distribution will have the form

; exp (14.3)

where is a term not involving . The resulting closed-form marginal distri-
bution, for one state, is

; exp
1

(14.4)

The expected value of can be found from the conjugate distribution, as a function
of and . Then, a function of this, most often the same link function as would
be used for the original exponential family distribution, can be used to set up a
regression function in the usual way.

Other mixtures

If we first construct a regression function for the states and then give a distribution
to one of its parameters, we can incorporate changing conditions for the states of
a series within the regression function. Thus, we can add some parameter to the
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regression function that indexes the series explicitly. As mentioned above, a useful
case is when the intercept varies randomly:

0 (14.5)

The parameter will be constant for a given series, but will vary randomly across
the different series, with mean zero. Thus, here the height of the response curve

will vary randomly among the series around the value of 0. Some of the
variables in the vector may describe changing conditions of the series, whereas
others refer to conditions common to groups of series. In more complex models,
one or more parameters in may be random.

When we integrate to obtain the marginal distribution of the observed states, we
shall again obtain a multivariate distribution for all of the observed states of each
given series. Unfortunately, here no simple closed form generally will be available,
no matter what distribution is chosen for the random parameter, so that estimation
must rely on numerical methods.

The common models based on mixture distributions, as just described, often
yield equal interdependence among all states of a series, although this will not
generally be the case if a nonlinear parameter is made random. An important
characteristic of all of these models is that they are static: the chosen difference
(say a slope or intercept) among series remains constant over time. In other words,
they may be thought to allow for missing interseries/time-constant covariates that
describe inherent constant characteristics of each series. This contrasts with the
dynamic random parameters in Chapters 7 and 11. The latter allow for missing
time-varying covariates.

14.2 Normal random intercepts

In the simplest, and most easily interpretable, models, only one parameter, the
intercept, is taken to vary randomly among time series. This means that the re-
gression function is shifted randomly by different amounts for each series, as in
Equation (14.5).

14.2.1 Collections of time series

A random intercept may provide a useful supplement to many stochastic models
when there is unexplained variability among the series. Let us first consider one
simple case that we have already modelled in a wide variety of ways in previous
chapters, before going on to more complex cases.

Luteinising hormone For the luteinising hormone data in Chapter 11, I looked
at a dynamic model involving continuous-time AR(1) dependence (Section 11.1.2)
which did not fit as well as hidden Markov models (Section 11.2). From the profile
plots in Figure 10.9, we know that there was a great deal of variability among the
cows. Let us now see whether or not the problem with the poorer fit of the AR(1)
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Fig. 14.1. The underlying profiles for the random intercept model with serial dependence
for the two groups of luteinising hormone concentrations in cows, with the individual re-
cursive predictions for the first two cows in each group.

model can be remedied by allowing for this heterogeneity among cows using a
random intercept.

Recall from Table 11.1 that the AR(1) model with a log normal distribution and
an interaction between time and suckling had an AIC of 3207.4 compared with
3239.4 for the independence model. The corresponding model only with the ran-
dom intercept (without an AR(1)) has 3201.2, showing that much of the depen-
dence is due to the static, systematic differences among cows. However, when the
AR(1) is included, as well as the random intercept, the AIC is reduced further to
3193.6, so that both types of dependence are necessary.

The serial correlation is estimated to be ˆ 0 05 and the intracow correlation to
be 0.22. The regression functions are estimated to be

1 6 40 0 074

2 6 09 0 029

respectively for nonsuckled and suckled cows, where refers to the log level
of luteinising hormone. The underlying profiles for the same cows as in Figures
10.10, 11.1, 11.2, and 11.4 are given in Figure 14.1.

Although this is an improvement on the AR(1) model, the fit is not nearly as
good as the hidden Markov model (AIC 3161.3) or the ARCH model (3186.9),
both also with a log normal distribution (of course, the Burr hidden Markov model
fits even better: 3150.3).
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14.2.2 Cross-over trials

Cross-over studies involve applying two or more treatments in different time pe-
riods in different randomised orders to each of a number of individuals. In this
way, a corresponding series of states is observed. A state can depend on the time
or period at which the treatment is applied, on the order in which treatments are
given (the sequence effect), and on the treatments that already have been applied
(the carry-over effect), as well as on the present treatment.

In even more complex designs, a series of states is recorded over time within
each period, during or after each different treatment on each individual, instead of
just one state in each period. In such a design, there may be random differences
among series, not explained by covariates, both among individuals and among pe-
riods for a given individual. Thus, two levels of random effects may possibly be
necessary.

Insulin trial Ciminera and Wolfe (1953) give data on the comparison of neutral
protamine Hagedorn (NPH) insulin mixtures. A precipitate of protamine zinc in-
sulin, obtained by combining solutions of protamine and of zinc insulin, has been
used in treating diabetes. It has the advantage over regular insulin of controlling
the patient’s blood sugar level over a relatively long period of time. The isophane
ratio of insulin to protamine results in equivalent amounts of insulin and protamine
staying in the supernatant as tested by nephelometric methods. NPH insulin is a
suspension of protamine zinc insulin whereby the protamine is never less than in
this ratio and never exceeds it by more than 10 per cent. The goal of the experi-
ment was to determine whether a preparation 5 per cent less than the isophane ratio
produced a biological difference.

Two mixtures of insulin, the standard (A) and one containing 5 per cent less pro-
tamine (B), each with insulin equivalent to 40 units/ml, were tested on rabbits. Two
groups of 11 female rabbits weighing between 2.5 and 3.5 kg were injected sub-
cutaneously with 0.051 ml of the suspension at weekly intervals in the randomly
assigned orders ABAB (sequence one) and BABA (sequence two). For each treat-
ment, blood sugar level was measured at injection and at four post-injection times
over six hours. The resulting response profiles are plotted in Figure 14.2, sep-
arately for each treatment, distinguishing among periods. Blood sugar level goes
down and then climbs back close to the pretreatment level. The state of rabbit three
in period one at three hours seems to be an outlier.

Many different analyses could be applied to these data. Here, I shall concentrate
on the differences in profile of the states under the two treatments, because this
should be the main point of interest in the experiment. Note that, if the blood sugar
level at time zero is included in the analysis as a state, the average differences
in treatment will be attenuated, because the treatment will not yet have had an
effect. If overall differences between treatments were of prime interest, it might be
preferable instead to use it as a baseline covariate. However, here, for profiles, I
include it as a state.

I shall allow for two levels of random intercepts, among rabbits and among pe-
riods within rabbits, as well as for autocorrelation over the six hours. The ex-
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Fig. 14.2. Blood sugar level plotted against time (h) for the two treatments of rabbits.

planatory variables are the period, the treatment, and the group. There are only
two treatments that alternate, so that the only sequence effect comes from which
treatment is administered in the first period; this is covered by the group effect.

I shall begin by assuming a normal distribution with independence among re-
sponses, while I develop an appropriate regression function for the mean. The
saturated regression function in time, with a different value at each time point, is
equivalent to a quartic polynomial. However, here a quadratic proves to be suffi-
cient. The other covariates will be differences in level for each treatment, period,
and group, but without interactions among them (in any case, they are not all iden-
tifiable).

This model, with eight location parameters, has an AIC of 1899.0 under indepen-
dence. Adding second-order interactions between time and these variables reduces
the AIC to 1894.8. This can be simplified further by taking only the contrast of
the fourth period with the other three, and using only the linear interaction of time
with this new period effect and with treatment, yielding an AIC of 1891.7.

The next step is to introduce dependencies, producing a multivariate normal
distribution of the states over time. Adding two levels of random effects and a
first-order autoregression to the above model lowers the AIC to 1853.8 without
changing the variables required in the model. However, not surprisingly, only the
series-level random effect (among rabbits), and not the period level one, is required,
with an AIC of 1852.8; the fourth period is also in the model as a fixed effect.

Another problem is that the variance, in Figure 14.2, does not appear to remain
constant over time. Letting the log variance depend linearly on time reduces the
AIC to 1838.2.

After including these improved distributional assumptions, we now can check if
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Table 14.1. AICs for various models for the rabbit blood sugar data. AR,
first-order autoregression; RE, random effect; CVT, changing variance with time.
All models have a quadratic polynomial in time, and its interaction with group,

and a difference for the fourth period.

AR + 2 RE 1853.9
AR + 1 RE 1852.9
AR + 1 RE + CVT 1837.8
AR + CVT 1843.9
1 RE + CVT 1844.4

the original regression function can be simplified. Elimination of treatment differ-
ence, and its interaction with time, gives a further small reduction to 1837.8, yield-
ing the final model and the conclusion, from this model, that the two treatments
appear to have no difference in effect. On the other hand, complete elimination of
the period effect raises the AIC to 1880.4 and of group to 1846.6. Thus, the period
effect is by far the most significant. These results are summarised in Table 14.1.

The log variance regression function is estimated to be log 5 45 0 24 ,
the autocorrelation as ˆ 0 37, and the random effect as ˆ 32 5, so that the
intrarabbit correlation varies from 0.12 at time zero to 0.033 at six hours.

The profile equations for the two groups and four periods, with time centred at
three minutes, are

1 37 90 1 33 3 5 10 3 2

2 30 58 0 50 3 6 32 3 2 1 2 3

14 51 59 1 33 3 5 10 3 2

24 44 27 0 50 3 6 32 3 2

for both treatments. The profiles are plotted in Figure 14.3. In the second group,
the blood insulin level increases more quickly at the end of the six-hour period.

Lindsey (1999b) performs a more sophisticated analysis of these data, showing
that, with more appropriate distributional assumptions, a treatment effect may be
detected.

14.3 Normal random coefficients

A more complex extension of the previous models is obtained by allowing regres-
sion coefficients to be random, and not just the intercept. When the regression
function is nonlinear, with parameters that have a physical interpretation, such a
model can make sense. Some parameter, such as the absorption rate of a medica-
tion by patients (Chapter 13), may vary among subjects in some way that cannot
adequately be predicted by the available covariates. However, in many cases, those
that concern us here, the procedure is applied in a much more ad hoc way, usually
with no reasonable scientific interpretation.
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Fig. 14.3. The response profiles of blood sugar for the two groups of rabbits in the four
periods for the cross-over study.

14.3.1 Random coefficients in time

Random time coefficient models originally were proposed by Elston and Grizzle
(1962); they are now sometimes, rather unjustly, called the Laird and Ware (1982)
model. In a simple case with only a linear trend in time, suppose that the states
follow a regression function of the form

0 1 0 1 (14.6)

where, in the same way that 0 is the average intercept and 0 is the difference
from this for series , 1 is the average slope of the time trend and 1 is the corre-
sponding difference. More complex cases will include a higher order polynomial
in time. Recall, however, that such polynomials rarely provide an interpretable
description of time trends (Chapter 12).

The innovation of this model, with respect to the random intercept model, is that
the parameter(s) describing the change in state over time for each series now can
have random distributions. However, the results may depend on where zero time
is located, because the slopes will be varying randomly around it. Thus, a random
coefficient polynomial model can be quite different when times are centred at their
mean rather than at the true time origin. As Elston (1964) argues, this makes this
kind of model generally unrealistic.

Recall also that random coefficient models carry an assumption that is often not
appropriate for stochastic processes: series differ randomly only by their value of
the random coefficients, but these differences remain constant over time. Once a



312 Repeated measurements

Table 14.2. AICs for several types of dependency using a log normal distribution,
fitted to the luteinising hormone data.

Independence 3239.4
AR(1) 3207.4
Random intercept 3201.2
AR(1) + random intercept 3193.6
Random coefficients 3194.3
AR(1) + random coefficients 3191.5

series is on its time trajectory, subsequent history throughout the study cannot alter
it. This contrasts with the dynamic models of Chapter 11.

Random coefficient models for polynomials in time, including the special case of
random intercepts, also can be fitted as dynamic linear models using the techniques
described in Section 11.1.

Luteinising hormone For the luteinising hormone data, introducing a random
slope for time provides a further small improvement to the model, as can be seen
in Table 14.2 which also summarises the random intercept results above. However,
this model is much harder to interpret than the better fitting hidden Markov models
of Section 11.2.

14.4 Gamma random effects

In Section 11.3, I extended the dynamic models for recurrent events of Section
7.3.1 to ordinary time series. A gamma random effect for repeated measurements,
instead of the normal random effects above, can be obtained by a similar modifica-
tion to the frailty update in Equation (7.29):

1 1

1 Λ (14.7)

As we saw in Section 7.3, in the analysis of recurrent events, this is called a frailty
model. In the present context, this update also can be combined with serial depen-
dence as defined in Section 1.2.4 to allow simultaneously for longitudinal depen-
dence and heterogeneity among series.

Luteinising hormone For the luteinising hormone data, with a log normal distri-
bution, a regression function containing the interaction between time and suckled,
a gamma frailty distribution, and serial dependence, the AIC is 3189.5. This is a
better fit than any of the models with normal random effects and AR(1) in Table
14.2, although still not as good as the hidden Markov models of Section 11.2.

The estimated regression functions are

1 6 21 0 062

2 6 11 0 027
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Fig. 14.4. The underlying profiles for the frailty model with serial dependence for the
two groups of luteinising hormone concentrations in cows, with the individual recursive
predictions for the first two cows in each group.

respectively for nonsuckled and suckled cows, where is the marginal mean for
the log level of luteinising hormone. The dependence parameter is estimated to
be 0.09 and the frailty 0.27, the latter indicating an intracow correlation of about
0.16. Thus, the serial dependence is smaller than in the model of Section 11.3,
compensated by the constant frailty dependence on each cow. On the other hand,
the regression function is similar.

The profiles for the same cows as in Figures 10.10, 11.1, 11.2, 11.4, and 14.1
are given in Figure 14.4. These show a more pronounced attempt to follow the
individual responses than any of the previous models except perhaps the ARCH
model of Figure 10.10.

The results from this study should not be used to draw general conclusions.
Hidden Markov models describe one particular type of dependence, spells, and
other types often are necessary, as we have seen throughout this text. On the other
hand, random coefficients of a polynomial in time are an ad hoc remedy that should
be avoided if possible.

Further reading

For an introduction to repeated measurements, see Hand and Crowder (1996).
Lindsey (1999a) provides a more advanced development of these types of models.
Jones (1993) shows how to fit the random coefficient models as dynamic linear
models.

Cross-over trials are a rather controversial area of statistics. Jones and Kenward
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Table 14.3. The weights (units unspecified) of rats over five weeks under three
different treatments. (Box, 1950)

Control Thyroxin Thiouracil

Week
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

57 86 114 139 172 59 85 121 146 181 61 86 109 120 129
60 93 123 146 177 54 71 90 110 138 59 80 101 111 122
52 77 111 144 185 56 75 108 151 189 53 79 100 106 133
49 67 100 129 164 59 85 116 148 177 59 88 100 111 122
56 81 104 121 151 57 72 97 120 144 51 75 101 123 140
46 70 102 131 153 52 73 97 116 140 51 75 92 100 119
51 71 94 110 141 52 70 105 138 171 56 78 95 103 108
63 91 112 130 154 58 69 93 116 140
49 67 90 112 140 46 61 78 90 107
57 82 110 139 169 53 72 89 104 122

(1989) and Senn (1993) provide more extensive treatments than in Lindsey (1999a),
although not from the point of view of stochastic process.

Exercises

14.1 Box (1950) was the first to develop methods for repeated measurements
over time. His example involved thirty rats which were assigned randomly
to one of three groups and kept in individual cages. The first group was
a control, whereas the second received thyroxin and the third thiouracil in
their drinking water. Due to an accident at the beginning of the experiment,
three rats in the second group were lost. The initial weights, and those over
the first four weeks, were recorded, as shown in Table 14.3.

(a) In what ways do the treatments affect the growth of the rats?
(b) How homogeneous a group were the rats used in this experiment?

14.2 In their classical paper introducing random time coefficient models, Elston
and Grizzle (1962) analysed data from a dental study, reproduced in Table
14.4. These data come from a study of the ramus height measured in a
cohort of 20 boys four times at half-year intervals.

(a) The purpose of the study was to try to determine what would be
the shape of the growth curve under normal conditions, for use by
orthodontists. Can you develop such a curve?

(b) Are there differences among the children?

14.3 In another one of the classical papers on repeated measurements, Potthoff
and Roy (1964) provided data on the distance (mm) from the centre of the
pituitary to the pterygomaxillary fissure for 16 boys and 11 girls at four
different ages, as shown in Table 14.5. These measurements can occasion-
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Table 14.4. Ramus heights (mm) for 20 boys measured at four time points.
(Elston and Grizzle, 1962)

Age
8 8.5 9 9.5

47.8 48.8 49.0 49.7
46.4 47.3 47.7 48.4
46.3 46.8 47.8 48.5
45.1 45.3 46.1 47.2
47.6 48.5 48.9 49.3
52.5 53.2 53.3 53.7
51.2 53.0 54.3 54.5
49.8 50.0 50.3 52.7
48.1 50.8 52.3 54.4
45.0 47.0 47.3 48.3
51.2 51.4 51.6 51.9
48.5 49.2 53.0 55.5
52.1 52.8 53.7 55.0
48.2 48.9 49.3 49.8
49.6 50.4 51.2 51.8
50.7 51.7 52.7 53.3
47.2 47.7 48.4 49.5
53.3 54.6 55.1 55.3
46.2 47.5 48.1 48.4
46.3 47.6 51.3 51.8

Table 14.5. Distances (mm) from the centre of the pituitary to the
pterygomaxillary fissure in girls and boys aged 8, 10, 12, and 14. (Potthoff and

Roy, 1964)

Girls Boys

Age

8 10 12 14 8 10 12 14

21 20 21.5 23 26 25 29 31
21 21.5 24 25.5 21.5 22.5 23 26.5
20.5 24 24.5 26 23 22.5 24 27.5
23.5 24.5 25 26.5 25.5 27.5 26.5 27
21.5 23 22.5 23.5 20 23.5 22.5 26
20 21 21 22.5 24.5 25.5 27 28.5
21.5 22.5 23 25 22 22 24.5 26.5
23 23 23.5 24 24 21.5 24.5 25.5
20 21 22 21.5 23 20.5 31 26
16.5 19 19 19.5 27.5 28 31 31.5
24.5 25 28 28 23 23 23.5 25

21.5 23.5 24 28
17 24.5 26 29.5
22.5 25.5 25.5 26
23 24.5 26 30
22 21.5 23.5 25
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Table 14.6. The heights (cm) of 20 girls in the London growth study, classified by
their mother’s height. (Tan et al., 2001)

Girl’s age
6 7 8 9 10

Short mother

111.0 116.4 121.7 126.3 130.5
110.0 115.8 121.5 126.6 131.4
113.7 119.7 125.3 130.1 136.0
114.0 118.9 124.6 129.0 134.0
114.5 112.0 126.4 131.2 135.0
112.0 117.3 124.4 129.2 135.2

Medium mother

116.0 122.0 126.6 132.6 137.6
117.6 123.2 129.3 134.5 138.9
121.0 127.3 134.5 139.9 145.4
114.5 119.0 124.0 130.0 135.1
117.4 123.2 129.5 134.5 140.0
113.7 119.7 125.3 130.1 135.9
113.6 119.1 124.8 130.8 136.3

Tall mother

120.4 125.0 132.0 136.6 140.7
120.2 128.5 134.6 141.0 146.5
118.9 125.6 132.1 139.1 144.0
120.7 126.7 133.8 140.7 146.0
121.0 128.1 134.3 140.3 144.0
115.9 121.3 127.4 135.1 141.1
125.1 131.8 141.3 146.8 152.3

ally decrease with age because the distance represents the relative position
of two points. No further information was provided.

(a) Develop a model to describe the change over time of these mea-
surements that allows for differences between the two sexes.

(b) Are there systematic differences among the individuals participa-
ting in this study?

14.4 The London growth study had a number of objectives involving the growth
patterns of children. One part involved boys and girls in a children’s home
outside London between 1948 and 1972, called the Harpendon Growth
Study. Children were measured twice a year until puberty, then every three
months until the end of their growth spurt, and finally every year until they
were 20 years old. The results for a selection of 20 girls at ages 6, 7, 8, 9,
and 10 years are shown in Table 14.6, classified by the mother’s height.

(a) Develop an appropriate model to describe these data.
(b) How does growth depend on the mother’s height?
(c) Are there any differences among the girls not explained by their

mother’s height?
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Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley.
Aickin, M. (1983) Linear Statistical Analysis of Discrete Data. New York: John Wiley.
Aitkin, M., Anderson, D., Francis, B., and Hinde, J. (1989) Statistical Modelling in GLIM.

Oxford: Oxford University Press.
Akaike, H. (1973) Information theory and an extension of the maximum likelihood prin-
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autoregression, 12–13, 191–194, 216–224,
228–229, 256–257

continuous, 218, 257–259
birth, 13–14, 71, 79, 93, 175, 177–178, 183–190,

194, 202
doubly stochastic, 202
linear, 78, 143
nonhomogeneous, 74
pure, 74, 143

birth and death, 108
Brownian motion, 194, 233, 234, 238, 239
compound Poisson, 195–196
contagion, 78, 183–190
counting, 72–76
deterministic, 6
diffusion, 12, 233–252, 289–293

integrated Ornstein–Uhlenbeck, 219, 239
Ornstein–Uhlenbeck, 238–240
Wiener, 194, 224, 233–240

gamma, 194
learning, 186–188
mark–accumulator, 195, 196

Markov, 11–12
Markov chain, 11, 101–124, 151, 167, 196–198

aperiodic, 106–107
continuous-state, 191
continuous-time, 134–142, 286
embedded, 137, 139, 141, 143
first-order, 115–117
hidden, 151, 161–167, 205–206, 259–263
irreducible, 104–107, 135, 139, 162
periodic, 106–107
second-order, 118–119

Markov renewal, 74, 137–138, 144–145
memoryless, 77
negative binomial, 179–180
orderly, 72, 76, 79, 83
point, 72–76

binary, 108–114
doubly stochastic, 79, 198–202
marked, 73, 79, 195–198

Poisson, 73, 75–83, 105–106, 143, 189, 194
alternating, 134, 199
compound, 195–196
doubly stochastic, 199
mixed, 199
nonhomogeneous, 73, 77–80, 83–85, 89–91,

138, 203–205, 276
pure jump, 136
random walk, 107–108, 121–122, 223–224, 234,

289–293
renewal, 9, 71, 72, 74, 79–83, 85–87, 89, 91–93,

138
Burr, 176–177
doubly stochastic, 199–202
log normal, 176–177
Markov, 74, 137–138, 144–145
nonhomogeneous, 83, 93
Poisson, 78
Weibull, 76, 176–177, 201

self-exciting, 198
semi-Markov, 74, 134, 137–138, 144–145, 198
stochastic, 3–16

stationary, 8
survival, 39–66
Wiener diffusion, 194, 224, 233–240
Yule, 74

process time, 43
product limit estimate, 47
profile, 155

marginal, 102, 151, 259
underlying, 7, 151, 152, 155, 157–158, 219–220,

252, 259–262, 264, 273–275, 279, 307, 313
progressive model, 133, 134, 142–145
proportional hazards, 48–49

semiparametric, 48, 76
prospective design, 43–45
pure birth process, 143
pure jump process, 136

quasi-independence model, 122–124
quasi-symmetry model, 119

random coefficients, 310–313
random effects, 171–172, 239, 303–306
random walk, 107–108, 121–122, 223–224, 234,

289–293
randomness, 6

departures, 79–80
rate

absorption, 287, 288
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elimination, 287, 288
exponential, 291

failure, 45
mortality, 45

rate function, 72
reached state, 104
reciprocal link function, 30–31
recurrence, 106–107
recurrence probability, 107
recurrence time, 106

backward, 81
forward, 81

recurrent events, 5, 9, 13, 71–93, 133, 134
recurrent state, 106–107
recursive prediction, 158–161, 180, 219–220, 252,

259–262, 264, 271–275, 279, 307, 313
recursive residuals, 13, 220
reflecting barrier, 108, 121, 289
regeneration point, 9, 77, 80, 106
regression

linear, 21–25
multiple, 24–25

log linear, 75
logistic, 101, 108, 109, 111–114, 184–185, 196
nonlinear, 34
Poisson, 89

renewal function, 72, 80
renewal intensity, 74, 80–81
renewal process, 9, 71, 72, 74, 79–83, 85–87, 89,

91–93, 138
Burr, 176–177
doubly stochastic, 199–202
log normal, 176–177
Markov, 74, 137–138, 144–145
nonhomogeneous, 83, 93
Poisson, 78
Weibull, 76, 176–177, 201

repeated events, see recurrent events
repeated measurements, 303–313
replications, 9–10
reset test, 213
residual lifetime, 81
residuals, 13, 73, 256

previous, 217, 220, 249, 272
recursive, 13, 220
squared, 251

retrospective design, 18, 43
return time, 106
reversibility, 103, 119–121
Richards growth curve, 278–279
risk function, 45
risk set, 47, 58

S-shaped growth curve, 275–278
saturated model, 47, 65, 114, 117, 119, 121–123, 309
scatterplot, 19–21
score equation, 235
seasonality, 213–215, 217, 219–221
self-exciting process, 198
semi-Markov process, 74, 134, 137–138, 144–145,

198
semiparametric proportional hazards, 48, 76
sequence effect, 308, 309
serial dependence, 12–13, 152–158, 160
serial update, 175
series-specific model, 304
sigmoidal growth curve, 275–278
simplex distribution, 293–295
sink compartment, 285

skew Laplace distribution, 247–249
slope, 22

random, 305
smoother

Kalman, 217, 255–259
smoothing, 227
source compartment, 285
spectral analysis, 226–230
spectral decomposition, 104, 136
spectral density function, 226, 227
spells, 161–167, 259
spherical autocorrelation, 219
stable distribution, 241–246
staggered entry, 43
state, 3

absorbing, 40–41, 60, 64, 105, 107, 133, 134,
136–138, 142, 205

accessible, 104
communicating, 104
ergodic, 107
hidden, 5, 161–180, 205–206, 259–262
persistent, 107
reached, 104
recurrent, 106–107
transient, 106–107, 138

state dependence, 12, 45, 61, 75, 166
state equation, 256
state space, 3, 5–6, 11, 102

minimal, 5
state transition equation, 162, 173, 256, 257
state transition matrix, 256
stationarity, 8, 74, 80–81, 103, 105, 107, 115, 137,

258, 269
second-order, 8
strict, 8

stationary increments, 73, 76, 194, 196, 269
steady-state equation, 103
stochastic integral, 75
stochastic process, 3–16

stationary, 8
stochastic transition matrix, 102, 174, 256, 260
stopping rule, 42–43
stopping time, 43, 44, 73, 106
Student distribution, 233, 247
survival process, 39–66
survivor function, 45–47, 50, 72–76, 144

exponential, 50, 77
log logistic, 50
Weibull, 50

symmetry model, 119

Taylor’s series, 25, 244
test

Chow, 213
Durbin–Watson, 213
reset, 213

theorem
central limit, 241
elementary renewal, 80, 107
ergodic, 8

thinning, 77, 80
time, 4

aligned, 43
arrival, 71, 73, 74, 78
chronological, 43
continuous, 4, 12, 164, 218
discrete, 4, 12, 101–124
first passage, 106
hitting, 106
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interarrival, 71, 73, 74, 76, 78–83, 87, 93, 108, 199,
203

operational, 78
process, 43
recurrence, 106
return, 106
stopping, 43, 44, 73, 106

time alignment, 43–45
time censoring, 42
time domain, 226
time origin, 8, 14, 41, 43, 48, 71–72, 80, 177, 179,

183, 202, 311
time reversible, 103, 119–121
time series, 203, 213–230, 233–252, 255–264, 269
time update, 162, 173, 257, 258
time-varying covariate, 10, 12

endogenous, 5, 46, 74
exogenous, 5, 79

training, 162
transfer matrix, 286
transformation

log, 220–221
time, 236–238

transient state, 106–107, 138
transition, 133–134
transition intensity, 72, 134, 164, 189, 261
transition matrix

hidden, 161–167, 206, 259–262
homogeneous, 102–108, 115–117, 141–142
intensity, 136–145, 164, 189, 261
probability, 102–124, 136
stochastic, 102, 174, 256, 260

transition probability
Markovian, 134

trend, 7, 10, 83–85

underdispersion, 90–91, 188–190
underlying profile, 7, 151, 152, 155, 157–158,

219–220, 252, 259–262, 264, 273–275, 279, 307,
313

update
count, 174, 177–178, 180
cumulated, 174
event, 175
filtering, 163, 173, 257, 258
frailty, 171–172, 179, 312
Kalman, 174
Markov, 175, 177, 178, 262
observation, 163, 173, 257, 258
parameter, 171–175
serial, 175
time, 162, 173, 257, 258

variable
dummy, see indicator
explanatory, see covariate
factor, 26
independent, see covariate
indicator, 26–27

Viterbi algorithm, 164
volatility, 171, 233–252, 262
volume of distribution

apparent, 289
von Bertalanffy growth curve, 273

wearing out, 82
Weibull distribution, 32, 47–60, 74, 91–93, 170–171,

196–202, 260–262
Weibull intensity, 50, 61–64, 144–145
Weibull renewal process, 76, 176–177, 201
Weibull survivor function, 50
weighted average, 227
white noise, 228
Wiener diffusion process, 194, 224, 233–240
window, 8, 85

Yule process, 74
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