


Introduction to Modern Time
Series Analysis



Gebhard Kirchgässner · Jürgen Wolters

Introduction
to Modern Time
Series Analysis

With 43 Figures and 17 Tables

123



Professor Dr. Gebhard Kirchgässner
University of St. Gallen
SIAW-HSG
Bodanstrasse 8
CH-9000 St. Gallen
Switzerland
Gebhard.Kirchgaessner@unisg.ch

Professor Dr. Jürgen Wolters
Freie Universität Berlin
Institute for Statistics and Econometrics
Boltzmannstraße 20
14195 Berlin
Germany
wolters@wiwiss.fu-berlin.de

Library of Congress Control Number: 2007932230

ISBN 978-3-540-73290-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover-design: WMX Design GmbH, Heidelberg

SPIN 12071654 42/3180YL - 5 4 3 2 1 0 Printed on acid-free paper



Preface

Econometrics has been developing rapidly over the past four decades. This 
is not only true for microeconometrics which more or less originated 
during this period, but also for time series econometrics where the 
cointegration revolution influenced applied work in a substantial manner. 
Economists have been using time series for a very long time. Since the 
1930s when econometrics became an own subject, researchers have mainly 
worked with time series. However, economists as well as econometricians 
did not really care about the statistical properties of time series. This 
attitude started to change in 1970 with the publication of the textbook Time

Series Analysis, Forecasting and Control by GEORGE E.P. BOX and
GWILYM M. JENKINS. The main impact, however, stems from the work of 
CLIVE W.J. GRANGER starting in the 1960s. In 2003 together with ROBERT

W. ENGLE, he received the Nobel Prize in Economics for his work. 
This textbook provides an introduction to these recently developed 

methods in time series econometrics. Thus, it is assumed that the reader is 
familiar with a basic knowledge of calculus and matrix algebra as well as 
of econometrics and statistics at the level of introductory textbooks. The 
book aims at advanced Bachelor and especially Master students in 
economics and applied econometrics but also at the general audience of 
economists using empirical methods to analyse time series. For these 
readers, the book is intended to bridge the gap between methods and 
applications by also presenting a lot of empirical examples. 

A book discussing an area in rapid development is inevitably incomplete 
and reflects the interests and experiences of the authors. We do not 
include, for example, the modelling of time-dependent parameters with the 
Kalman filter as well as Marcov Switching Models, panel unit roots and 
panel cointegration. Moreover, frequency domain methods are not treated 
either.

Earlier versions of the different chapters were used in various lectures 
on time series analysis and econometrics at the Freie Universität Berlin, 
Germany, and the University of St. Gallen, Switzerland. Thus, the book 
has developed over a number of years. During this time span, we also 
learned a lot from our students and we do hope that this has improved the 
presentation in the book.
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1   Introduction and Basics 

A time series is defined as a set of quantitative observations arranged in 
chronological order. We generally assume that time is a discrete variable. 
Time series have always been used in the field of econometrics. Already at 
the outset, JAN TINBERGEN (1939) constructed the first econometric model 
for the United States and thus started the scientific research programme of 
empirical econometrics. At that time, however, it was hardly taken into ac-
count that chronologically ordered observations might depend on each 
other. The prevailing assumption was that, according to the classical linear 
regression model, the residuals of the estimated equations are stochasti-
cally independent from each other. For this reason, procedures were ap-
plied which are also suited for cross section or experimental data without 
any time dependence 

DONALD COCHRANE and GUY H. ORCUTT (1949) were the first to no-
tice that this practice might cause problems. They showed that if residuals 
of an estimated regression equation are positively autocorrelated, the vari-
ances of the regression parameters are underestimated and, therefore, the 
values of the F and t statistics are overestimated. This problem could be 
solved at least for the frequent case of first order autocorrelation by trans-
forming the data adequately. Almost at the same time, JAMES DURBIN and 

GEOFFREY S. WATSON (1950/51) developed a test procedure which made 
it possible to identify first order autocorrelation. The problem seemed to be 
solved (more or less), and, until the 1970’s, the issue was hardly ever 
raised in the field of empirical econometrics. 

This did not change until GEORGE E.P. BOX and GWILYM M. JENKINS 
(1970) published a textbook on time series analysis that received consider-
able attention. First of all, they introduced univariate models for time se-
ries which simply made systematic use of the information included in the 
observed values of time series. This offered an easy way to predict the fu-
ture development of this variable. Today, the procedure is known as Box-

Jenkins Analysis and is widely applied. It became even more popular when 
CLIVE W.J. GRANGER and PAUL NEWBOLD (1975) showed that simple 
forecasts which only considered information given by one single time se-
ries often outperformed the forecasts based on large econometric models 
which sometimes consisted of many hundreds of equations. 
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In fact, at that time, many procedures applied in order to analyse rela-
tions between economic variables were not really new. Partly, they had al-
ready been used in other sciences, especially for quite a while in the ex-
perimental natural sciences. Some parts of their theoretical foundations 
had also been known for a considerable time. From then on, they have 
been used in economics, too, mainly because of two reasons. Up to then, 
contrary to the natural sciences there had not been enough economic ob-
servations available to even consider the application of these methods. 
Moreover, at the beginning of the 1970’s, electronic computers were ap-
plied which were quite powerful compared to earlier times and which 
could manage numerical problems comparatively easy. Since then, the de-
velopment of new statistical procedures and larger, more powerful com-
puters as well as the availability of larger data sets has advanced the appli-
cation of time series methods which help to deal with economic issues. 

Before we discuss modern (parametric) time series procedures in this 
chapter, we give a brief historical overview (Section 1.1). In Section 1.2, 
we demonstrate how different transformations can show the properties of 
time series. In this section, we also show how the lag operator can be used 
as a simple but powerful instrument for modelling economic time series. 

Certain conditions have to be fulfilled in order to make statistical infer-
ence based on time series data. It is essential that some properties of the 
underlying data generating process, in particular variance and covariances 
between elements of these series, are not time dependent, i.e. that the ob-
served time series are stationary. Therefore, the exact definition of station-
arity is given in Section 1.3. which also introduces the autocorrelation 
function as an important statistical instrument for describing (time) de-
pendencies between the elements of a time series. Finally, in Section 1.4, 
we introduce Wold’s Decomposition, a general representation of a station-
ary time series. Thus, this chapter mainly covers some notions and tools 
necessary to understand the later chapters of this textbook. 

1.1   The Historical Development of Time Series Analysis 

Time series have already played an important role in the early natural sci-
ences. Babylonian astronomy used time series of the relative positions of 
stars and planets to predict astronomical events. Observations of the plan-
ets’ movements formed the basis of the laws JOHANNES KEPLER discov-
ered. 

The analysis of time series helps to detect regularities in the observa-
tions of a variable and derive ‘laws’ from them, and/or exploit all informa-
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tion included in this variable to better predict future developments. The ba-
sic methodological idea behind these procedures, which were also valid for 
the Babylonians, is that it is possible to decompose time series into a finite 
number of independent but not directly observable components that de-
velop regularly and can thus be calculated in advance. For this procedure, 
it is necessary that there are different independent factors which have an 
impact on the variable. 

In the middle of the 19th century, this methodological approach to as-
tronomy was taken up by the economists CHARLES BABBAGE and 
WILLIAM STANLEY JEVONS. The decomposition into unobserved compo-
nents that depend on different causal factors, as it is usually employed in 
the classical time series analysis, was developed by WARREN M. PERSONS 
(1919). He distinguished four different components: 

 a long-run development, the trend, 

 a cyclical component with periods of more than one year, the business 
cycle,  

 a component that contains the ups and downs within a year, the seasonal 
cycle, and 

 a component that contains all movements which neither belong to the 
trend nor to the business cycle nor to the seasonal component, the resid-

ual.  

Under the assumption that the different non-observable factors are inde-
pendent, their additive overlaying generates the time series which we can, 
however, only observe as a whole. In order to get information about the 
data generating process, we have to make assumptions about its unob-
served components. The classical time series analysis assumes that the sys-
tematic components, i.e. trend, business cycle and seasonal cycle, are not 
influenced by stochastic disturbances and can thus be represented by de-
terministic functions of time. Stochastic impact is restricted to the residu-
als, which, on the other hand, do not contain any systematic movements. It 
is therefore modelled as a series of independent or uncorrelated random 
variables with expectation zero and constant variance, i.e. as a pure ran-
dom process.  

However, since the 1970’s, a totally different approach has increasingly 
been applied to the statistical analysis of time series. The purely descrip-
tive procedures of classical time series analysis were abandoned and, in-
stead, results and methods of probability theory and mathematical statistics 
have been employed. This has led to a different assessment of the role of 
stochastic movements with respect to time series. Whereas the classical 
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approach regards these movements as residuals without any significance 
for the structure of time series, the modern approach assumes that there are 
stochastic impacts on all components of a time series. Thus, the ‘law of 
movement’ of the whole time series is regarded as a stochastic process, 
and the time series to be analysed is just one realisation of the data gener-
ating process. Now the focus is on stochastic terms with partly rather com-
plex dependence structures.  

The first steps in this direction were taken by the Russian statistician 

EVGENIJ EVGENIEVICH SLUTZKY and the British statistician GEORGE 

UDNY YULE at the beginning of the last century. Both of them showed that 
time series with cyclical properties similar to economic (and other) time 
series can be generated by constructing weighted or unweighted sums or 
differences of pure random processes. E.E. SLUTZKY and G.U. YULE de-
veloped moving average and autoregressive processes as models to repre-
sent time series. HERMAN WOLD (1938) systematised and generalised 
these approaches in his doctoral thesis. Their widespread practical usage is 
due to GEORGE E.P BOX and GWILYM M. JENKINS (1970), who developed 
methods to implement these models empirically. They had abandoned the 
idea of different components and assumed that there was a common sto-
chastic model for the whole generation process of time series. Firstly, this 
method identifies a specific model on the basis of certain statistical figures. 
Secondly, the parameters of this model are estimated. Thirdly, the specifi-
cation of the model is checked by statistical tests. If specification errors 
become obvious, the specification has to be changed and the parameters 
have to be re-estimated. This procedure is re-iterated until it generates a 
model that satisfies the given criteria. This model can finally be used for 
forecasts. 

Recently, the idea of decomposing a time series has been taken up 
again, particularly for the modelling of seasonal variations. However, con-
trary to the classical approach, it is now assumed that all components of a 
time series can be represented by simple stochastic models. The procedure 
for the seasonal adjustment of time series used by EUROSTAT is, for ex-
ample, based on such an approach. 

Moreover, since the 1980’s the possible non-stationarity of time series 
has increasingly been taken into consideration. Non-stationarity might not 
only be caused by deterministic but also by stochastic trends and, further-
more, the non-stationarity of time series is no longer simply eliminated 
through the application of filters in order to continue within the framework 
of stationary models. Non-stationarity is rather explicitly taken into ac-
count when constructing models, as long as this is possible and seems to 
make sense. Accordingly, after this introduction of the basic principles, we 
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will first deal with models of stationary time series and then turn to the 
modelling of non-stationary time series.  

1.2   Graphical Representations of Economic Time Series  

When investigating (economic) time series, it is generally useful to start 
with graphical representations to detect those properties of the series which 
can be seen by simply looking at the plot of a time series. In this context, it 
is important to consider different transformations of the time series to be 
analysed, as, for example, its levels, its changes and its relative changes. 
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Figure 1.1: Real Gross Domestic Product of the Federal Republic  

of Germany, 1960 – 2004 

Figure 1.1 shows the real Gross Domestic Product (GDP) of the Federal 
Republic of Germany from the first quarter of 1960 to the fourth quarter of 
2004, in prices of 1995. The data stem from the National Accounts of the 
Federal Republic of Germany issued by the German Institute of Economic 
Research (DIW) in Berlin. This time series increases in the long run, i.e. it 
has a positive trend. On the other hand, it shows well-pronounced short-
run movements which take place within one year. These are seasonal 
variations. A remarkable shift in the level of the series is due to the Ger-
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man Unification: from the third quarter of 1990 on, the series is based on 
data for unified Germany while the earlier data are based on the former 
West Germany only.  
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Figure 1.2: Changes of the Real Gross Domestic Product ( GDP) 

 of the Federal Republic of Germany, 1960 – 1989  

When changes from quarter to quarter are analysed, i.e. GDPt = GDPt – 
GDPt-1, where t is the time index, Figure 1.2 shows that the trend is elimi-
nated by this transformation, while the seasonal variations remain. (Be-
cause of the structural break due to the German Unification, we only con-
sider the West German data from 1960 to 1989.) The resulting values 
fluctuate around zero with almost constant amplitude. Moreover, the sea-
sonal component shows a break: up to 1974, the annual minimum is almost 
always located in the first quarter, from 1975 onwards in the fourth quar-
ter. 

If the relative changes from quarter to quarter are to be observed, we 
take the quarterly growth rates. In percentage points, these are usually cal-
culated as 

(1.1) t t 1
t

t 1

GDP GDP
qgr 100

GDP
. 
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However, the problem with this representation is that there is an asymme-
try with respect to positive and negative changes: A rise from 100 to 125 is 
seen as an increase of 25 percent, whereas a decline from 125 to 100 is 
seen as a decrease of ‘only’ 20 percent. This can lead to considerable prob-
lems if average growth rates are calculated for time series with strongly 
pronounced fluctuations. In an extreme case this might lead to the calcula-
tion of positive average growth rates in spite of a negative trend. In order 
to avoid this, ‘continuous’ growth rates are usually employed today, which 
are calculated (again in percentage points) as 

(1.1') qgrt  = (ln(GDPt) – ln(GDPt-1)) · 100. 

Here, ln( ) denotes the natural logarithm. In the following, we will always 
use this definition. As the approximation ln(1 + x)  x is valid for small 
values of x, the differences between (1.1) and (1.1') can generally be ne-
glected for small growth rates.  
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Figure 1.3: Growth rates of the Real Gross Domestic Product (qgr) 

of the Federal Republic of Germany, 1960 – 1989  

Figure 1.3 shows that the growth rates, too, reflect a seasonal pattern. In 
1975, this pattern is clearly disrupted. However, contrary to Figure 1.2, the 
amplitude and thus the relative importance of the seasonal variation has 
obviously been declining over time. 



8      1   Introduction and Basics 

-10

-5

0

5

10

15

20

1965 1970 1975 1980 1985

bn Euro

year

 

Figure 1.4: Annual changes of the Real Gross Domestic Product ( 4GDP) of 

the Federal Republic of Germany, 1960 – 1989 

If seasonal variations are to be eliminated, changes should be related to the 
same quarter of the preceding year and not to the preceding quarter. With 

4GDPt = GDPt – GDPt-4, Figure 1.4 shows the annual changes in the Ger-
man Gross Domestic Product as compared to the same quarter of the pre-
vious year. This series does no longer show any seasonal variations. These 
changes are mostly positive; they are only negative during recessions. This 
is particularly true for 1967, when Germany faced its first ‘real’ recession 
after the Second World War, as well as for the recessions in 1975 and 
1981/82 which followed the two oil price shocks. 

The annual growth rates, i.e. the corresponding relative annual changes 
(in percent), are, however, more revealing. They are presented in Figure 

1.5 and can be calculated as  

 agrt   =   (ln(GDPt) – ln(GDPt-4)) · 100. 

The sixties and seventies are characterised by highly fluctuating growth 
rates between -3.5 and just under 10 percent. In the seventies, the big re-
cession of 1975 can clearly be recognised, as well as the recession in the 
early eighties. Subsequently, real growth rates were positive, but at a lower 
level than before, between zero and just under five percent. 
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Figure 1.5: Annual growth rates of Real Gross Domestic Product (agr) of the 

Federal Republic of Germany, 1960 – 1989  

A further possibility to eliminate the seasonal variations without eliminat-
ing the trend is given by the following transformation: 

 t t t 1 t 2 t 3

1
GDPS (GDP GDP GDP GDP )

4
. 

Four consecutive values of the time series are added and, in order to avoid 
a shift in the level, divided by 4. Thus we get an (unweighted) moving av-
erage of order four, i.e. with four elements. Figure 1.6 shows the series 
GDP and GDPS for the period from 1961 to 2004. The latter indicates the 
long-term development, the so-called smooth component of the Gross 
Domestic Product around which the actual values fluctuate. The smooth 
component clearly indicates four recessions: in the late 1960’s, the mid 
1970’s, the early 1980’s and the last one after 1992. It also shows the 
structural break caused by German Unification. It is also obvious that this 
change in level is partly smoothed and thus ‘averaged away’. This example 
clearly shows that different ways of transforming one and the same time 
series can reveal the different kinds of information contained in it.  
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Figure 1.6: ‚Smooth Component‘ and actual values of the Real Gross Domestic 

Product of the Federal Republic of Germany, 1961 – 2004 

We introduce the lag operator L to show the relation between the differ-
ences and the moving average. Let x be a time series. If we apply the lag 
operator on this series, all values are delayed by one period, i.e.  

(1.2) Lxt  =  xt-1. 

If we apply the lag operator to xt-1, we get xt-2 because of relation (1.2), and 
we can indicate 

 Lxt-1  =  L(Lxt)  =  L2xt  =  xt-2 . 

By generalising we get 

(1.3) Lkxt  =  xt-k ,   k  =  ..., -1, 0, 1, 2, ... . 

For k = 0 we get the identity L0xt = xt. Usually, instead of L0 we just write 
‘1’. For k > 0 the series is shifted k periods backwards, and for k < 0 k  pe-
riods forward. For example: L-3xt = xt+3. Furthermore, the usual rules for 
powers apply. Thus, we can write the following: 

 Lmxt-n  =  Lm(Lnxt)  =  Lm+nxt  =  xt-(m+n) . 

The following notation results from using the lag operator for the first dif-
ferences: 
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(1.4) xt  =  xt – xt-1  =  (l – L)xt . 

For fourth differences it holds that  

(1.5) 4xt  =  xt – xt-4  =  (l – L4)xt , 

while growth rates as compared to the same quarter of the preceding year 
can be written as 

(1.6) 4ln(xt)  =  ln(xt) – ln(xt-4)  =  (l – L4)ln(xt) . 

Finally, the unweighted moving average of order four can be written as  

(1.7) xst   =   
1

4
(xt + xt-1 + xt-2 + xt-3)   =   

1

4
(1 + L + L2 + L3)xt . 

Quite generally, a lag polynomial of order p can be represented as  

 p(L)xt   =   (1 – 1L – 2L
2 – ... – pL

p)xt 

                         =   xt – 1xt-1 – 2xt-2 – ... – pxt-p. 

As far as this is possible without any misunderstandings, we usually delete 
the suffix p that indicates the order of the lag polynomial.  

Trivially, there can be no delay if we apply the lag operator on a con-
stant , i.e. it holds that  

 (L)   =  (1 – 1 – 2 – ... – p) . 

Thus, the value of the lag polynomial is the sum of all its coefficients in 
this case. We get the same result if we substitute L by L0 = 1: 

(1.8) (1)  =  1 – 
p

i
i 1

.  

Relations (1.4) to (1.7) show the great advantage of the lag operator: trans-
formations can be represented independently from the special time series, 
simply by a polynomial in the lag operator. Moreover, the same operations 
as with common polynomials (in real or complex variables) can be per-
formed with lag polynomials, especially multiplication and division. For 
the multiplication the commutative law holds, i.e.  

 (L) (L)  =  (L) (L). 

Such polynomials of the lag operator are also called ‘linear filters’. If we 
multiply the first difference filter (1.4) with the moving average of fourth 
order (1.7) multiplied by four, we get the filter of fourth difference (1.5) be-
cause of  
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(1 – L)(1 + L + L2 + L3)   =   (l – L4). 

This reveals that, as the long-term component is eliminated by the first dif-
ference filter and the seasonal component by the moving average, both 
components are eliminated from a time series by the product of those two 
filters, the filter of fourth differences.  

1.3   Ergodicity and Stationarity  

Formal models for time series are developed on the basis of probability 
theory. Let the T-dimensional vector of random variables x1, x2, ..., xT be 
given with the corresponding multivariate distribution. This can also be in-

terpreted as a series of random variables 
T

t t 1
x , as stochastic process or 

as data generating process (DGP), Let us now consider a sample of this 

process of length T. Consequently, the real numbers (1) (1) (1)
1 2 Tx ,x , , x  are 

just one possible result of the underlying data generating process. Even if 

we were able to observe this process infinitely long, (1)
t t 1

x  would be just 

one realisation of this stochastic process. It is obvious, however, that there 
is not just one realisation of such a process, but, in principle, an arbitrary 
number of realisations which all have the same statistical properties as they 
all result from the same data generating process. 

In the following, a time series is considered as one realisation of the un-
derlying stochastic process. We can also regard the stochastic process as 
the entirety of all of its possible realisations. To make the notation as sim-
ple as possible, we will not distinguish between the process itself and its 
realisation. This can be taken out of the context. 

Stochastic processes of the dimension T can be completely described by 
a T-dimensional distribution function. This is, however, not a practicable 
procedure. We rather concentrate on the first and second order moments, 
i.e. on the mean (or expected value) 

E[xi], i = 1, 2, ..., T, 

the T variances 

V[xi]  =  E[(xi – E[xi])
2],   i = 1, 2, ..., T, 

as well as the T(T-1)/2 covariances 

Cov[xi,xj]  =  E[(xi – E[xi])(xj – E[xj])],   i < j . 
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Quite often, these are denoted as autocovariances because they are covari-
ances between random variables of the same stochastic process. If the sto-
chastic process has a multivariate normal distribution, its distribution func-
tion is fully described by its moments of first and second order. This holds, 
however, only in this special case. 

As we usually have only one time series, i.e. just one realisation of the 
stochastic process in practical applications, we have to make additional as-
sumptions in order to be able to perform statistical inference. For example, 
to be able to estimate the expected value, the variance and the covariances 
of the stochastic process {xt}, there should be more than one realisation of 
this random variable available for a given point in time t. 

The assumption of ergodicity means that the sample moments which are 
calculated on the basis of a time series with a finite number of observations 
converge (in some sense) for T   against the corresponding moments of 
the population. This concept is only meaningful, however, if we can as-
sume that, for example, the expectations E[xt] =  and the variances V[xt] = 

2 are constant for all t. 
More precisely, a DGP is said to be mean ergodic if 

 
2T

tT
t 1

1
lim E x 0

T
 

and variance ergodic if 

 
2T

2 2
tT

t 1

1
lim E (x ) 0

T
 

These conditions are ‘consistency properties’ for dependent random vari-
ables and cannot be tested. Therefore, they have to be assumed. 

A stochastic process has to be in statistical equilibrium in order to be er-
godic, i.e. it has to be stationary. Two different kinds of stationarity can be 
distinguished. If we assume that the common distribution function of the 
stochastic process does not change by a shift in time, the process is said to 
be strictly stationary. As this concept is difficult to apply in practice, we 
only consider weak stationarity or stationarity in the second moments. We 
first define stationarity for the corresponding moments of the stochastic 
process {xt}: 

(i) Mean Stationarity: A process is mean stationary if E[xt] = t =  is 
constant for all t. 
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(ii) Variance Stationarity: A process is variance stationary if V[xt] = E[(xt 
– t)

2] = 2 is constant and finite for all t. 

(iii) Covariance Stationarity: A process is covariance stationary if 
Cov[xt,xs] = E[(xt – t)(xs – s)] = (|s–t|) is only a function of the 
time distance between the two random variables and does not depend 
on the actual point in time t. 

(iv) Weak Stationarity: As variance stationarity immediately results from 
covariance stationarity for s = t, a stochastic process is weakly sta-
tionary when it is mean and covariance stationary. 

Because we only assume this kind of stationarity in the following, we 
mostly drop the adjective weak. 

Example 1.1 

We call the stochastic process {ut} a pure random or a white noise process, if it 
has the following properties: E[ut] = 0 and V[ut] = 2 for all t, as well as Cov[ut,us] 
= E[utus] = 0 for all t  s. Apparently, this process is weakly stationary. The ran-
dom variables all have mean zero and variance 2 and are uncorrelated with each 
other.  

Example 1.2 

Let the stochastic process {xt} be defined as 

(E1.1) 1
t

t 1 t

u for t 1,
x

x u for t 2,3, ,
 

where {ut}  is a pure random process. This stochastic process, a random walk 
without drift, can also be written as  

(E1.2) 
t

t j
j 1

x u . 

Let us assume that we generate {ut} by flipping a fair coin. We get heads with 
probability 0.5 (in this case, our random variable has the value  +1) and tails with 
probability 0.5 (in this case, our random variable has the value -1). Let us start, for 
example, with x0 = 0 for t = 0. Then it is easy to see that all possible realisations 
(time series) of this random walk can only take values within the area in Figure 

1.7 which is limited by the two bisectors. If each flip results in heads (tails), the 
corresponding time series would take the value +1 (-1) for t = 1, the value +2 (-2) 
for t = 2, and so on. 
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Figure 1.7: Example of a random walk where only the steps +1  

and –1 are possible 

Which moments of first and second order does the stochastic process defined in 
(E1.1) have? Due to (E1.2) and the properties of a pure random process it holds 
that  

t t

t j j
j 1 j 1

E x E u E u 0  , 

t t
2

t j j
j 1 j 1

V x V u V u t , and 

t s t s
2

t s j i j i
j 1 i 1 j 1 i 1

Cov x , x E u u E u u min(t,s) . 

Thus, the random walk without drift is mean stationary, but neither variance nor 
covariance stationary and, consequently, also not weakly stationary. The random 
walk without drift is an important element of a category of non-stationary stochas-
tic processes which, as will be shown later, are well suited to describe the devel-
opment of economic time series. 

It is impossible to evaluate the dependence of random variables of a sto-
chastic process by using autocovariances as these are not normalised and, 
therefore, dependent on the applied measurement units. If the covariances 
are normalised with the respective variances, the result is a term which is 
independent of the applied measurement unit, the autocorrelation function. 
For weakly stationary processes this is given by  
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(1.9) ( )   =  t t
2

t

E[(x )(x )]

E[(x ) ]
  =  

( )

(0)
,     =  ..., -1, 0, 1, ..., 

and has the following properties: 

(i) (0)  =  1,  

(ii) ( )  =  (- ), and 

(iii) ( )     1, for all . 

Because of (i) and the symmetry (ii) it is sufficient to know the autocorre-
lation function or the autocorrelogram for  = 1, 2, .... 

Due to the ergodicity assumption, mean, variance and autocovariances 
of stationary processes can be estimated in the following way:  

T

t
t 1

1
ˆ x

T
, 

T
2

t
t 1

1
ˆ ˆ(0) (x )

T
, 

ˆ( )   =  
T

t t
t 1

1
ˆ ˆ(x )(x )

T
,     =  1, 2, ..., T-1. 

These are consistent estimators of , (0) und ( ). The consistent estima-
tor of the autocorrelation function is given by  

(1.10) ˆ ( )   =  

T

t t
t 1

T
2

t
t 1

ˆ ˆ(x )(x )

ˆ(x )
  =  

ˆ( )
ˆ(0)

,    =  1, 2, ..., T-1. 

This estimator is asymptotically unbiased. For white noise processes, its 
variance can be approximated by 1/T and it is asymptotically normally dis-
tributed. Due to this, approximate 95 percent confidence intervals of 

2 / T  are often indicated for the estimated autocorrelation coefficients. 
According to M. S. BARTLETT (1946), the variance of autocorrelation 

coefficients of stochastic processes in which all autocorrelation coeffi-
cients disappear from the index value k + 1 on, ( ) = 0 for  > k, is ap-
proximately given by  
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k
2

j 1

1
ˆ ˆV ( ) 1 2 ( j)

T
,   > k. 

In order to evaluate estimated time series models, it is important to know 
whether the residuals of the model really have the properties of a pure ran-
dom process, especially whether they are uncorrelated. Thus, the null hy-
pothesis to be tested is  

H0: ( ) = 0 for  = 1, 2, ..., m, m < T. 

The first possibility to check this is to apply the 95 percent confidence lim-

its 2 / T  valid under the null hypothesis to every estimated correlation 
coefficient. If some ˆ ( )  lie outside these limits, this is evidence against 
the null hypothesis.  

To make a global statement, i.e. to test the common hypothesis whether 
a given number of m autocorrelation coefficients are null altogether, 
GEORGE E. P. BOX and DAVID A. PIERCE (1970) have developed the fol-
lowing test statistic: 

(1.11) Q   =   T 
m

2

j 1

ˆ ( j) . 

Under the null hypothesis it is asymptotically 2 distributed with m degrees 
of freedom.  

As – strictly applied – the distribution of this test statistics holds only 
asymptotically, G. M. LJUNG and GEORGE E. P. BOX (1978) proposed the 
following modification for small samples,  

(1.12) Q*   =   T(T + 2)
2m

j 1

ˆ ( j)

T j
, 

which is also asymptotically 2 distributed with m degrees of freedom.  
It should be intuitively clear that the null hypothesis of non-auto-

correlation of the residuals should be rejected if some of the ˆ ( j)  are too 
large, i.e. if Q or Q* is too large, or – to be more precise – if they are larger 
than the corresponding critical values of the 2 distribution with m degrees 
of freedom for a specified significance level.  

An alternative to these testing procedures is the Lagrange-Multiplier 
Test (LM Test) developed by TREVOR S. BREUSCH (1978) and LESLIE G. 
GODFREY (1978). Like the Q test the null hypothesis is  

H0:   The residuals are not autocorrelated, 
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which is tested against the alternative that the residuals follow an autore-
gressive or a moving average process of order p. The test can be performed 
with an auxiliary regression. The estimated residuals are regressed on the 
explanatory variables of the main model and on the lagged residuals, up to 
order p. The test statistic which is 2 distributed with p degrees of freedom 
is given by T-times the multiple correlation coefficient R2 of the auxiliary 
regression, with T being the number of observations. Alternatively, an F 
test can be used for testing the combined significance of the lagged residu-
als in the auxiliary regression. 

Compared to the Durbin-Watson test which is used in traditional 
econometrics for testing autocorrelation of the residuals of an estimated 
model, the Q (Q*) as well as the LM test have two major advantages: 
firstly, they can check for autocorrelation of any order, and not only of first 
or fourth order. Secondly, the results are also correct if there are lagged 
endogenous variables in the regression equation, whereas in such cases the 
results of the Durbin-Watson test are biased in favour of the null hypothe-
sis. 

The fact that the residuals are not autocorrelated does not imply that 
they are independently and/or normally distributed; absence of autocorre-
lation does only imply stochastic independence if the variables are nor-
mally distributed. It is, however, often assumed that they are normally dis-
tributed, as the usual testing procedures are based on this assumption. 
Whether this is actually true depends on the higher moments of the distri-
bution. Especially the third and fourth moments are important, 

E[(xi – E[xi])
i],   i  =  3, 4. 

The third moment is necessary to determine the skewness of the distribu-
tion which can be estimated by  

Ŝ    =   

T
3

t
t 1

3

ˆx
1

T ˆ(0)
 . 

For symmetric distributions (as the normal distribution) the theoretical 
value of the skewness is zero. The kurtosis which is based on the forth 
moment can be estimated by 

K̂    =   

T
4

t
t 1

2

ˆx
1

ˆT (0)
 . 
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For the normal distribution it holds that K = 3. Values larger than three in-
dicate that the distribution has ‘fat tails’: the density of a distribution in the 
centre and at the tails, i.e. outside the usual ± 2  limits, is higher and in the 
areas in between smaller than the density of a normal distribution. This 
holds, for example, for the t distribution. Such fat tails are typical for fi-
nancial market data with high periodicity. 

Using the skewness S and the kurtosis K, CARLOS M. JARQUE and ANIL 

K. BERA proposed a test for normality. It can be applied directly on the 
time series itself (or on its differences). Usually, however, it is applied to 
check estimated regression residuals. The test statistic  

JB   =   2 2T m 1ˆ ˆS (K 3)
6 4

 

is 2 distributed with 2 degrees of freedom. T is again the sample size, and 
m the number of estimated parameters. The hypothesis that the variable is 
normally distributed is rejected whenever the values of the test statistic are 
larger than the corresponding critical values. 

Example 1.3 

The price development in efficient markets as, for example, stock prices or ex-
change rates, can often be represented by a random walk. An example is the ex-
change rate between the Swiss Franc and the U.S. Dollar. Monthly data of this se-
ries are shown in Figure 1.8a for the period from January 1980 to December 2003. 
Below this, continuous monthly returns corresponding to (1.1') are presented. 
They behave like a pure random process. This can be seen from the correlogram: 
none of the estimated correlation coefficients which are presented in Figure 1.8c is 
significantly different from zero. (The dashed lines in Figure 1.8c represent the 
approximate 95 percent confidence limits.) Moreover, neither the Box-Pierce Q* 
test nor the Breusch-Godfrey LM test indicate autocorrelation: For m = 2 and m = 
12 the test statistics are Q*(2) = 2.349, Q*(12) = 16.856, LM(2) = 2.208, LM(12) 
= 18.291. (The critical values of the 2 distribution at the 10 percent significance 
level with 12 degrees of freedom is 18.549, with 2 degrees of freedom 4.605 and 
9.210 at the 1 percent level.) On the other hand, the hypothesis of normality has to 
be rejected at the 1 percent level since JB = 11.542. The reason for this is the kur-
tosis with a value of 3.804. 
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Figure 1.8: Exchange rate Swiss Franc US Dollar,  
monthly data, January 1974 to December 2003 
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1.4   The Wold Decomposition 

Before we deal with special models of stationary processes, a general 
property of such processes is discussed: the Wold Decomposition. This de-
composition traces back to HERMAN WOLD (1938). It exists for every co-
variance stationary, purely non-deterministic stochastic process: After sub-
tracting the mean function, each of such processes can be represented by a 
linear combination of a series of uncorrelated random variables with zero 
mean and constant variance. 

Purely non-deterministic means that all additive deterministic compo-
nents of a time series have to be subtracted in advance. By using its own 
lagged values, any deterministic component can be perfectly predicted in 
advance. This holds, for example, for a constant mean, periodical, poly-
nomial, or exponential series in t. Thus, one can write: 

(1.13) xt – t  =  j t j
j 0

u    with   0  =  1   and  2
j

j 0

 . 

There, ut is a pure random process, i.e. it holds that 

 E[ut]  =  0   and   E[ut us]  =  
2 for t s

0 otherwise
 . 

The quadratic convergence of the series of the j guarantees the existence 
of second moments of the process. There is no need of any distributional 
assumption for this decomposition to hold. Especially, there is no need of 
the ut to be independent, it is sufficient that they are uncorrelated. 

For the mean we get  

t tE x   =  j t j
j 0

E u   =  j t j
j 0

E u   =   0, 

i.e., it holds that 

E[xt]  =  t. 

The variance can be calculated as follows:  

V[xt]   =   E[(xt – t)
2]   =   E [(ut + 1 ut-1 + 2 ut-2 + ...)2] . 

Because of E[ut ut-j] = 0 for j  0, this can be simplified to  

 2 2 2 2 2
t t 1 t 1 2 t 2V[x ] E[u ] E[u ] E[u ]  
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  =   2 2
j

j 0

(0) . 

Thus, the variance is finite and not time dependent. Correspondingly, with 
 > 0 we get the time independent autocovariances 

 Cov[xt, xt+ ]   =   E[(xt – t)(xt+  – t+ )]     

  =   E[(ut  +  1 ut-1  +  …    ut-   +  +1 ut- -1  +  …) 
       · (ut+   +  1 ut+  -1  +  …    ut  +  +1 ut-1  +  …)] 

  =   2(1·   +  1 +1  +  2 +2  +  …) 

  =   2
j j

j 0

   =   ( )   <   ,  

with 0 = 1. It becomes clear that the autocovariances are only functions of 
the time difference, i.e. the distance between two random variables. Thus, 
all conditions of covariance stationarity are fulfilled. Because of (1.9) the 
autocorrelation function is given by: 

j j
j 0

2
j

j 0

( ) ,     =  1, 2, ... . 

All stationary models discussed in the following chapters can be repre-
sented on the basis of the Wold Decomposition (1.13). However, this rep-
resentation is, above all, interesting for theoretical reasons: in practice, ap-
plications of models with an infinite number of parameters are hardly 
useful. 
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2   Univariate Stationary Processes  

As mentioned in the introduction, the publication of the textbook by 
GEORGE E.P. BOX and GWILYM M. JENKINS in 1970 opened a new road to 
the analysis of economic time series. This chapter presents the Box-
Jenkins Approach, its different models and their basic properties in a rather 
elementary and heuristic way. These models have become an indispensa-
ble tool for short-run forecasts. We first present the most important ap-
proaches for statistical modelling of time series. These are autoregressive 
(AR) processes (Section 2.1) and moving average (MA) processes (Section 

2.2), as well as a combination of both types, the so-called ARMA proc-
esses (Section 2.3). In Section 2.4 we show how this class of models can be 
used for predicting the future development of a time series in an optimal 
way. Finally, we conclude this chapter with some remarks on the relation 
between the univariate time series models described in this chapter and the 
simultaneous equations systems of traditional econometrics (Section 2.5).  

2.1   Autoregressive Processes 

We know autoregressive processes from traditional econometrics: Already 
in 1949, DONALD COCHRANE and GUY H. ORCUTT used the first order 
autoregressive process for modelling the residuals of a regression equation. 
We will start with this process, then treat the second order autoregressive 
process and finally show some properties of autoregressive processes of an 
arbitrary but finite order. 

2.1.1   First Order Autoregressive Processes  

Derivation of Wold’s Representation 

A first order autoregressive process, an AR(1) process, can be written as 
an inhomogeneous stochastic first order difference equation, 

(2.1) xt   =     +   xt-1  +  ut, 
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where the inhomogeneous part  + ut consists of a constant term  and a 
pure random process ut. Let us assume that for t = t0 the initial value 

0t
x is 

given. By successive substitution in (2.1) we get 

0t 1x  =     +  
0t

x  + 
0t 1u  

0t 2x  =     +  
0t 1x  + 

0t 2u  

 =     +  (   +  
0t

x  + 
0t 1u )  + 

0t 2u  

 =     +    +  2
0t

x  +  
0t 1u  + 

0t 2u  

0t 3x  =     +  
0t 2x  + 

0t 3u   

0t 3x  =     +    +  2   +  3
0t

x  + 2
0t 1u  + 

0t 2u  + 
0t 3u  

    

0t
x  =   (1  +    +  2  +  …  +  -1)   +  

0t
x  

       +  -1
0t 1u   +  -2

0t 2u   +  …  +  
0t 1u  + 

0t
u , 

or 

0t
x    =   

0t
x  + 

0

1
j

t j
j 0

1
u

1
 . 

For t = t0 + , we get 

(2.2) xt   =   0

0

t t
tx  + 

0 0t t t t 1
j

t j
j 0

1
u

1
. 

The development and thus the properties of this process are mainly deter-
mined by the assumptions on the initial condition 

0t
x . 

The case of a fixed (deterministic) initial condition is given if x0 is as-
sumed to be a fixed (real) number, e.g. for t0 = 0, i.e. no random variable. 
Then we can write: 

xt   =   t x0  +  
t t 1

j
t j

j 0

1
u

1
. 

This process consists of both a time dependent deterministic part and a 
stochastic part. Thus, it can never be mean stationary. 
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We can imagine the case of stochastic initial conditions as (2.1) being 
generated along the whole time axis, i.e. -  < t < . If we only observe 
realisations for positive values of t, the initial value x0 is a random variable 
which is generated by this process. Formally, the process with stochastic 
initial conditions results from (2.2) if the solution of the homogeneous dif-
ference equation has disappeared. This is only possible if | | < 1. There-
fore, in the following, we restrict  to the interval –1 <  < 1. If 

0
0

t
t
lim x is 

bounded, (2.2) for t0  -  converges to  

(2.3) xt   =   j
t j

j 0

u
1

 . 

The time dependent deterministic part has disappeared. According to Sec-

tion 1.4, the AR(1) process (2.1) has the Wold representation (2.3) with 
j = j and | | < 1. This results in the convergence of 

2
j

j 0

  =  2 j

j 0

  =  
2

1

1
. 

Thus, the process (2.1) is weakly stationary.  

The Lag Operator 

Equation (2.3) can also be derived from relation (2.1) by using the lag op-
erator defined in Section 1.2: 

(2.1') (1 – L)xt   =    + ut, 

If we solve for xt we get 

(2.4) xt   =  
1 L

 + 
1

1 L
ut . 

The expression 1/(1 – L) can formally be expanded to a geometric series,  

1

1 L
  =   1  +  L  +  2L2  +  3L3  +  …  . 

Thus, we get 

xt   =   (1  +  L  +  2L  +  …)   +  (1  +  L  +  2L  +  …)ut 

             =   (1  +    +  2  +  …)   +  ut  +   ut-1+  2 ut-2  +  … , 

and because of | | < 1 
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xt   =   j
t j

j 0

u
1

 . 

The first term could have been derived immediately if we substituted the 
value ‘1’ for L in the first term of (2.4). (See also relation (1.8)). 

Calculation of Moments 

Due to representation (2.3), the first and second order moments can be cal-
culated. As E[ut] = 0 holds for all t, we get for the mean 

E[xt] =   j
t j

j 0

E u
1

 

E[xt] =   j
t j

j 0

E u
1

   =   
1

  =   

i.e. the mean is constant. It is different from zero if and only if   0. Be-
cause of 1 –  > 0, the sign of the mean is determined by the sign of . For 
the variance we get 

V[xt] =   
2

tE x
1

  =  

2

j
t j

j 0

E u  

 =   E[(ut + ut-1 + 2ut-2 + ... )2]  

 =   E[ 2
tu  +  2 2

t 1u  +  4 2
t 2u  +  …  +  2 utut-1  +  2 2utut-2  +  …  ] 

 =   2(1 + 2 + 4 + ...), 

because E[ut us] = 0 for t  s and E[ut us] = 2 for t = s. Applying the sum-
mation formula for the geometric series, and because of | | < 1, we get the 
constant variance  

V[xt]   =   
2

21
. 

The covariances can be calculated as follows:  

Cov [xt,xt- ] =   t tE x x
1 1
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 =   E[(ut +  ut-1 + ... +  ut-  + ...) 

        (ut-  +  u t- -1 + 2 u t- -2 + ...)] 

 =   E[(ut +  ut-1 + ... + -1 ut- +1  

       + (ut-  +  u t- -1 + 2 u t- -2 + ...))  

        (ut-   +   u t- -1  + 2 u t- -2  +  ...)] 

 =    E[(ut-  + ut- -1 + 2ut- -2 + ... )2] . 

Thus, we get  

Cov [xt,xt- ]   =    V[xt- ]   =     
2

21
. 

The autocovariances are only a function of the time difference  and not of 
time t, and we can write: 

(2.5) ( )   =     
2

21
,     =  0, 1, 2, ... . 

Therefore, the AR(1) process with | | < 1 and stochastic initial conditions 
is weakly stationary.  

An Alternative Method for the Calculation of Moments 

Under the condition of weak stationarity, i.e. for | | < 1 and stochastic ini-
tial conditions, the mean of xt is constant. If we apply the expectation op-
erator on equation (2.1), we get: 

E[xt]   =   E[  +  xt-1 + ut]   =    +  E[xt-1] + E[ut] . 

Because of E[ut] = 0 and E[xt] = E[xt-1] =  for all t we can write 

E[xt]   =      =   
1

. 

If we consider the deviations from the mean,  

tx   =   xt  –   

and substitute this in relation (2.1), we get: 

tx  +   =    +  t 1x  +     +  ut . 

From this it follows that 
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tx  =    +  (  – 1)  +   t 1x  +  ut 

 =    +
1

(  – 1)  +   t 1x  +  ut 

(2.6) tx   =    t 1x  +  ut . 

This is the AR(1) process belonging to (2.1) with E[ tx ] = 0.  

If we multiply equation (2.6) with tx  for   0 and take expectations 
we can write: 

(2.7) E[ t tx x ]   =    E[ t t 1x x ]  +  E[ tx ut] . 

Because of (2.3) we get 

tx   =   ut-   +   ut- -1  +  2 ut- -2  +  … . 

This leads to 

(2.8) E[ tx ut]   =   
2 for 0

0 for 0
 . 

Because of the stationarity assumption and because of the (even) symme-
try of the autocovariances, ( ) = (- ), equation (2.7) results in 

 = 0: E[ 2
tx ] =    E[ t t 1x x ] +  2, 

or 

 (0) =     (1) + 2,    

 = 1: E[ t t 1x x ] =    E[ 2
t 1x ], 

or 

 (1) =   (0) . 

This leads to the variance of the AR(1) process  

(0)   =   
2

21
. 

For   1 (2.7) implies 

(1)   =    (0) 
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(2)   =    (1)   =   2 (0) 

(3)   =    (2)   =   3 (0) 

           

( )   =    ( -1)   =    (0)  . 

Thus, the covariances can be calculated from the linear homogenous first 
order difference equation  

( ) –  ( -1)   =   0 

with the initial value (0) = 2/(1 – 2). 

The Autocorrelogram 

Because of ( ) = ( )/ (0), the autocorrelation function (the autocorrelo-
gram) of the AR(1) process is  

(2.9) ( )  =   ,     =  1, 2, ... . 

If we use the autocorrelogram for checking whether the residuals of an es-
timated model are white noise and employ the Box-Pierce or Ljung-Box 
statistics given in (1.11) and (1.12), the number of degrees of freedom has 
to be reduced by the number of the estimated parameters (excluding the 
constant term). 

Example 2.1 

For  = 0  and  = {0.9, 0.5, -0.9}, Figures 2.1 to 2.3 each present one realisation 
of the corresponding AR(1) process with T = 240 observations. To generate these 
series, we used realisations of normally distributed pure random processes with 
mean zero and variance one. We always dropped the first 60 observations to elimi-
nate the dependence of the initial values.  

The realisation for  = 0.9, presented in Figure 2.1, is relatively smooth. This is 
to be expected given the theoretical autocorrelation function because random vari-
ables with a considerable distance between each other still have high positive cor-
relations.  

The development of the realisation in Figure 2.2 with  = 0.5 is much less sys-
tematic. The geometric decrease of the theoretical autocorrelation function is 
rather fast. The fourth order autocorrelation coefficient is only 0.0625. 

Contrary to this, the realisation of the AR(1) process with  = -0.9, presented in 
Figure 2.3, follows a well pronounced zigzag course with, however, alternating 
positive and negative amplitudes. This is consistent with the theoretical autocorrela-
tion function indicating that all random variables with even-numbered distance are 
positively correlated and those with odd-numbered distance negatively correlated.  



34      2   Univariate Stationary Processes 

 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

2015105

t

 ˆ 

-7.5 

-5 

-2.5 

0 

2.5 

5 

7.5 

 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

5 10 15 20

 c) Estimated autocorrelation function
with confidence intervals

b) Theoretical autocorrelation function 

a) Realisation 

xt 

 

Figure 2.1:   AR(1) process with  = 0.9 
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Figure 2.2:   AR(1) process with = 0.5 
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Figure 2.3:   AR(1) process with  = -0.9 
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It generally holds that the closer the parameter  is to + 1, the smoother the reali-
sations will be. For negative values of  we get zigzag developments which are 
the more pronounced the closer  is to - 1. For  = 0 we get a pure random proc-
ess. 

The autocorrelation functions estimated by means of relation (1.10) with the 
given realisations are also presented in Figures 2.1 to 2.3. The dotted parallel lines 
show approximative 95 percent confidence intervals for the null hypothesis as-
suming that the true process is a pure random process. In all three cases, the esti-
mated functions reflect quite well the typical development of the theoretical auto-
correlations. 

Example 2.2 

In a paper on the effect of economic development on the electoral chances of the 
German political parties during the period of the social-liberal coalition from 1969 
to 1982, GEBHARD KIRCHGÄSSNER (1985) investigated (besides other issues) the 
time series properties of the popularity series of the parties constructed from 
monthly surveys of the Institute of Demoscopy in Allensbach (Germany). For the 
period from January 1971 to April 1982, the popularity series of the Christian 
Democratic Union (CDU), i.e. the share of voters who answered that they would 
vote for this party (or its Bavarian sister party, the CSU) if there were a general 
election by the following Sunday, is given in Figure 2.4. The autocorrelation and 
the partial autocorrelation function (which is discussed in Section 2.1.4) are also 
presented in this figure. While the autocorrelation function goes slowly towards 
zero, the partial autocorrelation function breaks off after  = 1. This argues for an 
AR(1) process. 

The model has been estimated with Ordinary Least Squares (OLS), the method 
proposed in Section 2.1.5 for the estimation of autoregressive models. Thus, we 
get:  

 CDUt  =   8.053  + 0.834 CDUt-1  +  ût, 
  (3.43)   (17.10) 

 2R   =  0.683,   SE  =  1.586,   Q(11)  =  12.516  (p  =  0.326). 

The estimated t values are given in parentheses. The autocorrelogram, which is 
also given in Figure 2.4, does not indicate any higher-order process. Moreover, 
the Box-Ljung Q Statistic with 12 correlation coefficients (i.e. with 11 degrees of 
freedom) gives no reason to reject this model. 

Stability Conditions 

Along with the stochastic initial value, the condition | | < 1, the so-called 
stability condition, is crucial for the stationarity of the AR(1) process. We 
can also derive the stability condition from the linear homogenous differ-
ence equation, which is given for the process itself by 
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Figure 2.4:   Popularity of the CDU/CSU, 1971 – 1982 
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xt  –   xt-1  =  0, 

for its autocovariances by  

( )  –   ( -1)  =  0 

and for the autocorrelations by 

( )  –   ( -1)  =  0. 

These difference equations have stable solutions, i.e. lim ( ) =  0, if and 

only if their characteristic equation  

(2.10)   –    =  0 

has a solution (root) with an absolute value smaller than one, i.e. if | | < 1 
holds. We get an equivalent condition if we do not consider the character-
istic equation but the lag polynomial of the corresponding difference equa-
tions, 

(2.11) 1  –   L  =  0. 

This implies that the solution has to be larger than one in absolute value. 
(Strictly speaking, L, which denotes an operator, has to be substituted by a 
variable, which is often denoted by ‘z’. To keep the notation simple, we 
use L in both meanings.) 

Example 2.3 

Let us consider the stochastic process 

(E2.1) yt  =  xt + vt . 

In this equation, xt is a stationary AR(1) process, xt  =   xt-1 + ut, with | | < 1; vt is 
a pure random process with mean zero and constant variance 2

v  which is uncorre-

lated with the other pure random process ut with mean zero and constant variance 
2
u . 

We can interpret the stochastic process yt as an additive decomposition of two 
stationary components. Then yt itself is stationary. In the sense of MILTON 

FRIEDMAN (1957) we can interpret xt as the permanent (systematic) and vt as the 
transitory component.  

What does the correlogram of yt look like? As both xt and vt have zero mean, 
E[yt] = 0. Multiplying (E2.1) with yt-  and taking expectations results in 

E[yt-  yt]  =  E[yt-  xt]  +  E[yt-  vt] . 

Due to yt-   =  xt-  + vt- , we get 

E[yt-  yt]  =  E[xt-  xt]  +  E[vt-  xt]  +  E[xt-  vt] +  E[vt-  vt]. 
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As ut and vt are uncorrelated, it holds that E[vt-  xt] = E[xt-  vt] = 0, and because of 
the stationarity of the two processes, we can write  

(E2.2) y( )  =  x( ) + v( ) . 

For  = 0 we get the variance of yt as 

y(0)  =  x(0) + 2
v   =  

2
u

21
 + 2

v . 

For   > 0, because of v( ) = 0 for   0, we get from (E2.2) 

y( )  =  x( )  =  
2
u

21
 . 

Thus, we finally get  

y( )  =  
2 2 2

v u1 (1 ) /
 ,     =  1, 2, ...,  

for the correlogram of yt. The overlay of the systematic component by the transi-
tory component reduces the autocorrelation generated by the systematic compo-
nent. The larger the variance of the transitory component, the stronger is this ef-
fect.  

2.1.2   Second Order Autoregressive Processes  

Generalising (2.1), the second order autoregressive process (AR(2)) can 
be written as 

(2.12) xt  =   + 1 xt-1 + 2 xt-2 + ut, 

with ut denoting a pure random process with variance 2 and 2  0. With 
the lag operator L we get 

(2.13) (1 – 1 L – 2 L
2) xt   =    + ut. 

With (L) = 1 – 1 L – 2 L
2 we can write 

(2.14) (L) xt   =    + ut. 

As for the AR(1) process, we get the Wold representation from (2.14) if 
we invert (L); i.e. under the assumption that -1(L) exists and has the 
property 

(2.15) (L) -1(L)  =  1 

we can ‘solve’ for xt in (2.14): 

(2.16) xt   =   -1(L)   +  -1(L) ut . 
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If we use the series expansion with undetermined coefficients for 
-1(L)  =  0 + 1L + 2L

2 + ... 

it has to hold that 

1  =  (1 – 1 L – 2 L
2 )( 0 + 1L + 2L

2 + 3L
3 + ... ) 

because of (2.15). This relation is an identity only if the coefficients of Lj, 
j = 0, 1, 2, ..., are equal on both the right and the left hand side. We get 

2 3
0 1 2 3

2 3
1 0 1 1 1 2

2 3
2 0 2 1

1 L L L ...

L L L ...

L L ...

  . 

Comparing the coefficients finally leads to 

L0:           0  =  1 

L1:   1 – 1 0  =  0    1  =  1. 

L2:   2 – 1 1 – 2 0 =  0    2  =  2
1  + 2 . 

L3:   3 – 1 2 – 2 1 =  0    3  =  3
1  + 2 1 2 . 

By applying this so-called method of undetermined coefficients, we get the 
values j, j = 2, 3, ..., from the linear homogenous difference equation  

j – 1 j-1 – 2 j-2 =  0 

with the initial conditions 0 = 1 and 1 = 1. 
The stability condition for the AR(2) process requires that, for j  , 

the j converge to zero, i.e. that the characteristic equation of (2.12), 

(2.17) 2 – 1  – 2  =  0, 

has only roots with absolute values smaller than one, or that all solutions 
of the lag polynomial in (2.13), 

(2.18) 1 – 1 L – 2 L
2  =  0 

are larger than one in modulus. Together with stochastic initial conditions, 
this guarantees the stationarity of the process. The stability conditions are 
fulfilled if the following parameter restrictions hold for (2.17) and (2.18): 

1  +  (- 1)  +  (- 2)  >  0, 

1  –  (- 1)  +  (- 2)  >  0, 

1  –  (- 2)  >  0. 
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As a constant is not changed by the application of the lag operator, the 
number ‘1’ can substitute the lag operator in the corresponding terms. 
Thus, due to (2.16), the Wold representation of the AR(2) process is given 
by 

(2.19)  xt   =   j t j
j 01 2

u
1

, 0 = 1. 

Under the assumption of stationarity, the expected value of the stochastic 
process can be calculated directly from (2.12) since E[xt] = E[xt-1] = E[xt-2] 
= . We get 

  =   + 1  + 2  

or 

(2.20) E[xt]   =      =   
1 21

 . 

As the stability conditions are fulfilled, 1 – 1 – 2 > 0 holds, i.e. the sign 
of  also determines the sign of . 

In order to calculate the second order moments, we can assume – with-
out loss of generality – that  = 0, which is equivalent to  = 0. Multiply-
ing (2.12) with xt- ,   0, and taking expectations leads to 

(2.21) E[xt-  xt]  =  1 E[xt-  xt-1]  + 2 E[xt-  xt-2]  +  E[xt-  ut] . 

Because of representation (2.19), relation (2.8) holds here as well. This 
leads to the following equations 

(2.22) 

2
1 2

1 2

1 2

0 : (0) (1) (2)

1 : (1) (0) (1)

2 : (2) (1) (0)

 , 

and, more generally, the following difference equation holds for the auto-
covariances ( ),  2,  

(2.23) ( ) – 1 ( -1) – 2 ( -2)  =  0. 

As the stability conditions hold, the autocovariances which can be recur-
sively calculated with (2.23) are converging to zero for   . 

The relations (2.22) result in  

(2.24) V[xt]   =   (0)   =   22
2 2

2 2 1

1

(1 ) [(1 ) ]
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for the variance of the AR(2) process, and in 

(1)   =   21
2 2

2 2 1(1 ) [(1 ) ]
, 

and 

(2)   =   
2 2

21 2 2
2 2

2 2 1(1 ) [(1 ) ]
, 

for the autocovariances of order one and two. 
The autocorrelations can be calculated accordingly. If we divide (2.23) 

by the variance (0) we get the linear homogenous second order difference 
equation,  

(2.25) ( ) – 1 ( -1) – 2 ( -2)  =  0 

with the initial conditions (0) = 1 and (1) = 1/(1 – 2) for the autocorre-
lation function. Depending on the values of 1 and 2, AR(2) processes can 
generate quite different developments, and, therefore, these processes can 
show considerably different characteristics.  

Example 2.4 

Let us consider the AR(2) process 

(E2.3) xt  =  1 + 1.5 xt-1 – 0.56 xt-2 + ut 

with a variance of ut of 1. Because the characteristic equation 
2 – 1.5  + 0.56  =  0 

has the two roots 1 = 0.8 and 2 = 0.7, (E2.3) is stationary, given that we have 
stochastic initial conditions. The expected value of this process is 

   =   
1

1 1.5 0.56
 .   =   16.6 . 

The variance of (E2.3) can be calculated from (2.24) as (0) = 19.31. A realisation 
of this process (with 180 observations) is given in Figure 2.5 in which the (esti-
mated) mean was subtracted. Thus, the realisations fluctuate around zero, and the 
process always tends to go back to the mean. This mean-reverting behaviour is a 
typical property of stationary processes.  

Due to (2.25) we get  

( ) – 1.5 ( -1) + 0.56 ( -2)  =  0,     =  2, 3, ...,  
with  (0) = 1,   (1) = 0.96 



44      2   Univariate Stationary Processes 

for the autocorrelation function. The general solution of this homogenous differ-
ence equation is 

( )   =   C1 (0.8)  + C2 (0.7)  , 

where C1 and C2 are two arbitrary constants. Taking into account the two initial 
conditions we get  

( )   =   2.6 (0.8)  – 1.6 (0.7)  

for the autocorrelation coefficients. This development is also expressed in Figure 
2.5. The coefficients are always positive but strictly monotonically decreasing. 
Initially, the estimated autocorrelogram using the given realisation is also mono-
tonically decreasing, but, contrary to the theoretical development, the values begin 
to fluctuate from the tenth lag onwards. However, except for the coefficient for  = 
16, the estimates are not significantly different from zero; they are all inside the 
approximate 95 percent confidence interval indicated by the dotted lines. 

The characteristic equations of stable autoregressive processes of second 
or higher order can result in conjugate complex roots. In this case, the time 
series exhibit dampened oscillations, which are shocked again and again 
by the pure random process. The solution of the homogenous part of (2.12) 
for conjugate complex roots can be represented by  

xt   =   dt (C1 cos (f t) + C2 sin (f t)) 

with C1 and C2 again being arbitrary constants that can be determined by 
using the initial conditions. The dampening factor  

d   =   2  

corresponds to the modulus of the two roots, and  

f   =   1

2

arccos
2

 

is the frequency of the oscillation. The period of the cycles is P = 2 /f. 
Processes with conjugate complex roots are well-suited to describe busi-
ness cycle fluctuations.  

Example 2.5 

Consider the AR(2) process 

(E2.4) xt   =   1.4 xt-1 – 0.85 xt-2 + ut, 

with a variance of ut of 1. The characteristic equation 
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2 – 1.4  + 0.85   =   0 

has the two solutions 1 = 0.7 + 0.6i and 2 = 0.7- 0.6i. (‘i’ stands for the imagi-
nary unit: i2 = - 1.) The modulus (dampening factor) is d = 0.922. Thus, (E2.4) 
with stochastic initial conditions and a mean of zero is stationary. According to 
(2.24) the variance is given by (0) = 8.433.  

A realisation of this process with 180 observations is given in Figure 2.6. Its 
development is cyclical around its zero mean. For the autocorrelation function we 
get  

( ) – 1.4 ( -1) + 0.85 ( -2)  =  0,     =  2, 3, ...,  
(0) = 1,   (1) = 0.76,  

because of (2.25). 
The general solution is 

( )   =   0.922  (C1 cos (0.709 ) + C2 sin (0.709 )) . 

Taking into account the two initial conditions, we get for the autocorrelation coef-
ficients  

( )   =   0.922  (cos (0.709 ) + 0.1 sin (0.709 )) , 

with a frequency of   f  =  0.709. 
In case of quarterly data, this corresponds to a period length of about 9 quarters. 

Both the theoretical and the estimated autocorrelations in Figure 2.6 show this 
kind of dampened periodical behaviour.  

Example 2.6 

Figure 2.7 shows the development of the three months money market rate in 
Frankfurt from the first quarter of 1970 to the last quarter of 1998 as well as the 
autocorrelation and the partial autocorrelation functions explained in Section 2.1.4. 
Whereas the autocorrelation function tends only slowly towards zero, the partial 
autocorrelation function breaks off after two lags. As will be shown below, this 
indicates an AR(2) process. For the period from 1970 to 1998, estimation with 
OLS  results in the following: 

GSRt   = 0.577  + 1.407 GSRt-1  – 0.498 GSRt-2  +  ût,. 
 (2.82) (17.49) (-6.16) 

2R   =  0.910,   SE  =  0.812,  Q(6)  =  6.431  (p  =  0.377), 

with t values being again given in parentheses. On the 0.1 percent level, both es-
timated coefficients of the lagged interest rates are significantly different from 
zero. The autocorrelogram of the estimated residuals (given in Figure 2.7c) as 
well as the Box-Ljung Q statistic which is calculated with 8 correlation coeffi-
cients (and 6 degrees of freedom) does not indicate any higher order process. 
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Figure 2.5:   AR(2) process with 1 = 1.5, 2= -0.56. 
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Figure 2.6:   AR(2) process with 1 = 1.4 and 2 = -0.85. 



48      2   Univariate Stationary Processes 

 

 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

a) Three months money market rate in Frankfurt  
 1970 – 1998 

 ) ( ˆ 

c) Estimated autocorrelation function of the  
residuals of the estimated AR(2) process 

 with confidence intervals 

 ) ( ˆ 

b) Estimated autocorrelation (__) and partial 
autocorrelation (·····) functions with confidence 
intervals 

105 15 20

5 10 15 20

0

2

4

6

8

10

12

14

16

1970 1975 1980 1985 1990 1995

year

Percent 

 

Figure 2.7:   Three months money market rate in Frankfurt, 1970 – 1998. 
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The two roots of the process are 0.70 ± 0.06i, i.e. they indicate cycles which are 
strongly dampened. The modulus (dampening factor) is d = 0.706; the frequency 
f = 0.079 corresponds to a period of 79.7 quarters and therefore of nearly 20 years. 
Correspondingly, this oscillation cannot be detected in the estimated autocorrelo-
gram presented in Figure 2.7b. 

2.1.3   Higher Order Autoregressive Processes  

An AR(p) process can be described by the following stochastic difference 
equation,  

(2.26) xt  =   + 1 xt-1 + 2 xt-2 + ... + p xt-p + ut, 

with p  0, where ut is again a pure random process with zero mean and 
variance 2. Using the lag operator we can also write: 

(2.26') (1 – 1 L – 2 L
2 – ... – p L

p) xt   =    + ut. 

If we assume stochastic initial conditions, the AR(p) process in (2.26) is 
stationary if the stability conditions are satisfied, i.e. if the characteristic 
equation  

(2.27) p – 1 
p-1 – 2 

p-2 – ... – p   =   0 

only has roots with absolute values smaller than one, or if the solutions of 
the lag polynomial  

(2.28) 1 – 1 L – 2 L
2 – ... – p L

p   =   0 

only have roots with absolute values larger than one. 
If the stability conditions are satisfied, we get the Wold representation 

of the AR(p) process by the series expansion of the inverse lag polynomial,  

p
1 p

1

1 L ... L
   =   1 + 1L + 2L

2 + ... 

as 

(2.29) xt   =   j t j
j 01 p

u
1 ...

 . 

Generalising the approach that was used to calculate the coefficients of the 
AR(2) process, the series expansion can again be calculated by the method 
of undetermined coefficients. 

From (2.29) we get the constant expectation as 
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E[xt]   =  
1 p1 ...

  =    . 

Again, because of the stability condition, we get 1 – 1 – 2 – ... – p  >  0. 
Without loss of generality we can set  = 0, i.e.  = 0, in order to calcu-

late the autocovariances. Because of ( ) = E[xt-  xt], we get according to 
(2.26) 

(2.30) ( )   =  E[xt-  ( 1 xt-1 + 2 xt-2 + ... + p xt-p + ut)] . 

For  = 0, 1, ... , p, it holds that 

(2.31)    

2
1 2 p

1 2 p

1 2 p

(0) (1) (2) (p)

(1) (0) (1) (p 1)

(p) (p 1) (p 2) (0)

 

because of the symmetry of the autocovariances and because of E[xt-  ut] = 
2 for  = 0 and zero for  > 0. 
This is a linear inhomogeneous equation system for given i to derive 

the p + 1 unknowns (0), (1), ..., (p). For  > p we get the linear homoge-
nous difference equation to calculate the autocovariances of order  > p: 

(2.32) ( ) – 1 ( -1) – ... – p ( -p)    =    0. 

If we divide (2.32) by (0) we get the corresponding difference equation to 
calculate the autocorrelations: 

(2.33) ( ) – 1 ( -1) – ... – p ( -p)    =   0. 

The initial conditions (1), (2), ..., (p) can be derived from the so-called 
Yule-Walker equations. We get those if we successively insert  = 1, 2, ..., 
p in (2.33), or, if the last p equations in (2.31) are divided by (0), 

 (1) = 1 +  2 (1) +  3 (2) + ... +  p (p-1) 
 (2) = 1 (1) +  2 +  3 (1) + ... +  p (p-2) 

(2.34)  
 (p) = 1 (p-1) +  2 (p-2) +  3 (p-3) + ... +  p  

If we define ' = ( (1), (2), ..., (p)), ' = ( 1, 2, ..., p) and 
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p p

1 (1) (2) (p 1)

(1) 1 (1) (p 2)
R

(p 1) (p 2) (p 3) 1

 

we can write the Yule-Walker equations (2.34) in matrix form, 

(2.35)    =   R  . 

If the first p autocorrelation coefficients are given, the coefficients of the 
AR(p) process can be calculated according to (2.35) as  

(2.36)    =   R-1   . 

Equations (2.35) and (2.36) show that there is a one-to-one mapping be-
tween the p coefficients  and the first p autocorrelation coefficients  of 
an AR(p) process. If there is a generating pure random process, it is suffi-
cient to know either  or  to identify the AR(p) process. Thus, there are 
two possibilities to describe the structure of an autoregressive process of 
order p: the parametric representation that uses the parameters 1, 2, ..., p, 
and the non-parametric representation with the first p autocorrelation coef-
ficients (1), (2), ..., (p). Both representations contain exactly the same 
information. Which representation is used depends on the specific situa-
tion. We usually use the parametric representation to describe finite order 
autoregressive processes (with known order). 

Example 2.7 

Let the fourth order autoregressive process 

xt  =  4 xt-4  + ut,   0  <  4  <  1, 

be given, where ut is again white noise with zero mean and variance 2. Applying 
(2.31) we get: 

(0)   =   4 (4)  +   2, 

(1)   =   4 (3), 

(2)   =   4 (2), 

(3)   =   4 (1), 

(4)   =   4 (0). 

From these relations we get 
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(0)   =   
2

2
41

 , 

(1)   =   (2)   =   (3)   =   0, 

(4)   =   4

2

2
41

 . 

As can easily be seen, only the autocovariances with lag  = 4j, j = 1, 2, ... are dif-
ferent from zero, while all other autocovariances are zero. Thus, for  > 0 we get 
the autocorrelation function  

( )   =   
j
4 for 4 j, j 1, 2, ...

0 elsewhere.
. 

Only every fourth autocorrelation coefficient is different from zero; the sequence 
of these autocorrelation coefficients decreases monotonically like a geometric se-
ries. Employing such a model for quarterly data, this AR(4) process captures the 
correlation between random variables that are distant from each other by a multi-
plicity of four periods, i.e. the structure of the correlations of all variables which 
belong to the i-th quarter of a year, i = 1, 2, 3, 4, follows an AR(1) process while 
the correlations between variables that belong to different quarters are always 
zero. Such an AR(4) process provides a simple possibility of modelling seasonal 
effects which typically influence the same quarters of different years. For empiri-
cal applications, it is advisable to first eliminate the deterministic component of a 
seasonal variation by employing seasonal dummies and then to model the remain-
ing seasonal effects by such an AR(4) process. 

2.1.4   The Partial Autocorrelation Function 

Due to the stability conditions, autocorrelation functions of stationary fi-
nite order autoregressive processes are always sequences that converge to 
zero but do not break off. This makes it difficult to distinguish between 
processes of different orders when using the autocorrelation function. To 
cope with this problem, we introduce a new concept, the partial autocorre-

lation function. The partial correlation between two variables is the corre-
lation that remains if the possible impact of all other random variables has 
been eliminated. To define the partial autocorrelation coefficient, we use 
the new notation,  

xt   =   k1xt-1  +  k2xt-2  +  …  +  kkxt-k  +  ut, 

where ki is the coefficient of the variable with lag i if the process has or-
der k. (According to the former notation it holds that i = ki  i = 1,2,…,k.) 
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The coefficients kk are the partial autocorrelation coefficients (of order k),  
k = 1,2,… . The partial autocorrelation measures the correlation between xt 
and xt-k which remains when the influences of xt-1, xt-2, ..., xt-k+1 on xt and 
xt-k have been eliminated. 

Due to the Yule-Walker equations (2.35), we can derive the partial 
autocorrelation coefficients kk from the autocorrelation coefficients if we 
calculate  the coefficients kk, which belong to xt-k, for k = 1, 2, ... from the 
corresponding linear equation systems 

k1

k2

kk

(1)1 (1) (2) (k 1)

(1) 1 (2) (k 2) (2)

(k 1) (k 2) (k 3) 1 (k)

,   k = 1, 2, ... . 

With Cramer’s rule we get  

(2.37) kk

1 (1) (1)

(1) 1 (2)

(k 1) (k 2) (k)

1 (1) (k 1)

(1) 1 (k 2)

(k 1) (k 2) 1

,   k = 1, 2, ... . 

Thus, if the Data Generation Process (DGP) is an AR(1) process, we get 
for the partial autocorrelation function: 

11  =   (1) 

22  =   

1 (1)

(1) (2)

1 (1)

(1) 1

  =  
2

2

(2) (1)

1 (1)
  =  0, 

because of (2) = (1)2. Generally, the partial autocorrelation coefficients 
kk = 0 for k >1 in an AR(1) process. 

If the DGP is an AR(2) process, we get 
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11  =  (1),   22  =  
2

2

(2) (1)

1 (1)
, kk  =  0   for   k > 2 . 

The same is true for an AR(p) process: all partial autocorrelation coeffi-
cients of order higher than p are zero. Thus, for finite order autoregressive 
processes, the partial autocorrelation function provides the possibility of 
identifying the order of the process by the order of the last non-zero partial 
autocorrelation coefficient. We can estimate the partial autocorrelation co-
efficients consistently by substituting the theoretical values in (2.37) by 
their consistent estimates (1.10). For the partial autocorrelation coefficients 
which have a theoretical value of zero, i.e. the order of which is larger than 

the order of the process, we get asymptotically V[ kk
ˆ ] = 1/T for k > p . 

Example 2.8 

The AR(1) process of Example 2.1 has the following theoretical partial autocorre-
lation function: 11 = (1) =  and zero elsewhere. In this example,  takes on the 
values 0.9, 0.5 and -0.9. The estimates of the partial autocorrelation functions for 
the realisations in Figures 2.1 and 2.3 are presented in Figure 2.8. It is obvious for 
both processes that these are AR(1) processes. The estimated value for the process 

with  = 0.9 is 11
ˆ  = 0.91, while all other partial autocorrelation coefficients are 

not significantly different from zero. We get 11
ˆ  = -0.91 for the process with  = 

-0.9, while all estimated higher order partial autocorrelation coefficients do not 
deviate significantly from zero. 

The AR(2) process of Example 2.4 has the following theoretical partial autocor-
relation function: 11 = 0.96, 22 = -0.56 and zero elsewhere. The realisation of this 
process, which is given in Figure 2.5, leads to the empirical partial autocorrelation 
function in Figure 2.8. It corresponds quite closely to the theoretical function; we 

get 11
ˆ  = 0.95 and 22

ˆ  = -0.60 and all higher order partial autocorrelation coeffi-

cients are not significantly different from zero. The same holds for the AR(2) 
process with the theoretical non-zero partial autocorrelations 11 = 0.76 and 22 = 

-0.85 given in Example 2.5. We get the estimates 11
ˆ  = 0.76 and 22

ˆ  = -0.78, 

whereas all higher order partial correlation coefficients are not significantly differ-
ent from zero. 
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2.1.5   Estimating Autoregressive Processes 

Under the assumption of a known order p we have different possibilities to 
estimate the parameters: 

(i) If we know the distribution of the white noise process that generates 
the AR(p) process, the parameters can be estimated by using maxi-
mum likelihood (ML) methods.  

(ii) The parameters can also be estimated with the method of moments by 
using the Yule-Walker equations. 

(iii) A further possibility is to treat 

(2.26) xt  =   + 1 xt-1 + 2 xt-2 + ... + p xt-p + ut, 

as a regression equation and apply the ordinary least squares (OLS) 
method for estimation. If (2.26) fulfils the stability conditions, OLS 
provides consistent estimates. Moreover, ˆT( )  as well as 

i i
ˆT( ) , i = 1, 2, ..., p, are asymptotically normally distributed.  

If the order of the AR process is unknown, it can be estimated with the 
help of information criteria. For this purpose, AR processes with succes-
sively increasing orders p = 1, 2, ..., pmax are estimated. Finally, the order 
p* is chosen which minimises the respective criterion. The following crite-
ria are often used: 

(i) The final prediction error which goes back to HIROTUGU AKAIKE 
(1969)  

FPE   =  
T

(p) 2
t

t 1

T m 1
ˆ(u )

T m T
 . 

(ii) Closely related to this is the Akaike information criterion (H. AKAIKE 
(1974)) 

AIC   =  
T

(p) 2
t

t 1

1 2
ˆln (u ) m

T T
 . 

(iii) Alternatives are the Bayesian criterion of GIDEON SCHWARZ (1978) 

SC   =  
T

(p) 2
t

t 1

1 ln T
ˆln (u ) m

T T
  

(iv) as well as the criterion developed by EDWARD J. HANNAN and 
BARRY G. QUINN (1979)  
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HQ   =  
T

(p) 2
t

t 1

1 2ln(ln T)
ˆln (u ) m

T T
 . 

(p)
tû  are the estimated residuals of the AR(p) process, while m is the number 

of estimated parameters. If the constant term is estimated, too, m = p + 1 
for an AR(p) process. These criteria are always based on the same princi-
ple: They consist of one part, the sum of squared residuals (or its loga-
rithm), which decreases when the number of estimated parameters in-
creases, and of a ‘punishment term’, which increases when the number of 
estimated parameters increases. Whereas the first two criteria overestimate 
the true order asymptotically, the two other criteria estimate the true order 
of the process consistently. 

Example 2.9 

As in Example 2.6, we take a look at the development of the three months money 
market interest rate in Frankfurt am Main. If, for this series, we estimate AR proc-
esses up to the order p = 4, we get the following results (for T = 116): 

p = 0:   AIC  =  4.8312,  HQ  =  4.8409,   SC  =  4.8549; 

p = 1:   AIC  =  2.7184,  HQ  =  2.7377,   SC  =  2.7659; 

p = 2:   AIC  =  2.4467,  HQ  =  2.4756,   SC  =  2.5179; 

p = 3:   AIC  =  2.4619,  HQ  =  2.5004,   SC  =  2.5569; 

p = 4:   AIC  =  2.4789,  HQ  =  2.5271,   SC  =  2.5975. 

With all three criteria we get the minimum for p = 2. Thus, the optimal number of 
lags is p* = 2, as used in Example 2.6. 

2.2   Moving Average Processes 

Moving average processes of an infinite order have already occurred when 
we presented the Wold decomposition theorem. They are, above all, of 
theoretical importance as, in practice, only a finite number of (different) 
parameters can be estimated. In the following, we consider finite order 
moving average processes. We start with the first order moving average 
process and then discuss general properties of finite order moving average 
processes.  
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2.2.1   First Order Moving Average Processes  

The first order moving average process (MA(1)) is given by the following 
equation:  

(2.38) xt   =     +  ut  –  ß ut-1 ,  

or 

(2.38') xt  –     =   (l – ßL)ut , 

with ut again being a pure random process. The Wold representation of an 
MA(1) process (as of any finite order MA process) has a finite number of 
terms. In this special case, the Wold coefficients are 0 = 1, 1 = -ß and j 
= 0 for j  2. Thus, 2

jj
 is finite for all finite values of ß, i.e. an MA(1) 

process is always stationary. 
Taking expectations of (2.38) leads to 

E[xt]   =     +  E[ut]  –  ß E[ut-1] =    . 

The variance can also be calculated directly, 

V[xt] =   E[(xt – )2]   

 =   E[(ut – ß ut-1)
2] 

 =   E[( 2
tu  – 2ß ut ut-1 + ß2 2

t 1u )] 

 =   (1 + ß2) 2   =   (0) . 

Therefore, the variance is constant at any point of time. 
For the covariances of the process we get 

E[(xt – )(xt+  – )]  =   E[(ut – ß ut-1)(ut+  – ß ut+  -1)] 

 =   E[(utut+  – ß utut+  –1 – ß ut-1ut+  + ß2 ut-1ut+  -1)] . 

The covariances are different from zero only for  = ± 1, i.e. for adjoining 
random variables. In this case  

(1)   =   - ß 2 . 

Thus, for an MA(1) process, all autocovariances and therefore all autocorre-
lations with an order higher than one disappear, i.e. ( ) = ( ) = 0 for   2. 

The correlogram of an MA(1) process is 

(0)  =  1,   (1)  =  
21

,    ( )  =  0  for    2. 
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If we consider (1) as a function of ß, (1) = f(ß), it holds that f(0) = 0 and 
f(ß) = - f(-ß), i.e. that f(ß) is point symmetric to the origin, and that |f( )|  
0.5. f( ) has its maximum at  = -1 and its minimum at  = 1. Thus, an 
MA(1) process cannot have a first order autocorrelation above 0.5 or be-
low -0.5.  

If we know the autocorrelation coefficient (1) = 1, for example, by es-
timation, we can derive (estimate) the corresponding parameter  by using 
the equation for the first order autocorrelation coefficient,  

(1 + ß2) 1  +  ß   =   0 . 

The quadratic equation can also be written as  

(2.39) ß2  +  
1

1
 ß  +  1   =   0,  

and it has the two solutions 

ß1,2   =   2
1

1

1
1 1 4

2
 . 

Thus, the parameters of the MA(1) process can be estimated non-linearly 
with the moments method: the theoretical moments are substituted by their 
consistent estimates and the resulting equation is used for estimating the 
parameters consistently. 

Because of | 1|  0.5, the quadratic equation always results in real roots. 
They also have the property that ß1ß2 = 1. This gives us the possibility to 
model the same autocorrelation structure with two different parameters, 
where one is the inverse of the other. 

In order to get a unique parameterisation, we require a further property 
of the MA(1) process. We ask under which conditions the MA(1) process 
(2.38) can have an autoregressive representation. By using the lag operator 
representation (2.38') we get 

ut   =   –  
1

  +  
1

1 L
xt . 

An expansion of the series 1/(1 – ßL) is only possible for  < 1 and re-
sults in the following AR( ) process 

ut   =   –  
1

  +  xt  +  ß xt-1  +  ß2 xt-2  + ... 

or 
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xt  +  ß xt-1  +  ß2 xt-2  + ...   =   
1

  +  ut  

This representation requires the condition of invertibility (  < 1). In this 
case, we get a unique parameterisation of the MA(1) process. Applying the 
lag polynomial in (2.38'), we can formulate the invertibility condition in 
the following way: An MA(1) process is invertible if and only if the root 
of the lag polynomial  

1 – ßL   =   0 

is larger than one in modulus. 

Example 2.10 

The following MA(1) process is given: 

(E2.5) xt   =   t  –  ß t-1,   t ~ N(0, 22), 

with ß = -0.5. For this process we get 

E[xt]  =  0, 

V[xt]  =  (1 + 0.52)·4  =  5,    

(1)  =  
2

0.5

1 0.5
  =  0.4, 

( )  =  0   for       2. 

Solving the corresponding quadratic equation (2.39) for this value of (1) leads to 
the two roots ß1 = -2.0 and ß2 = -0.5. If we now consider the process 

(E2.5a) yt   =   t  +  2 t-1,   t ~ N(0, 1), 

we obtain the following results: 

E[yt]  =  0, 

V[yt]  =  (1 + 2.02)·1  =  5,    

(1)  =  
2

2.0

1 2.0
  =  0.4, 

( )  =  0   for       2, 

i.e. the variances and the autocorrelogram of the two processes (E2.5) and (E2.5a) 
are identical. The only difference between them is that (E2.5) is invertible, be-
cause the invertibility condition < 1 holds, whereas (E2.5a) is not invertible. 
Thus, given the structure of the correlations, we can choose the one of the two 
processes that fulfils the invertibility condition, without imposing any restrictions 
on the structure of the process.  
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With equation (2.37), the partial autocorrelation function of the MA(1) 
process can be calculated in the following way:  

11   =   (1), 

22   =   

1 (1)

(1) 0

1 (1)

(1) 1

  =  
2

2

(1)

1 (1)
  <  0 , 

33   =   

1 (1) (1)

(1) 1 0

0 (1) 0

1 (1) 0

(1) 1 (1)

0 (1) 1

  =  
3

2

(1)

1 2 (1)
    0   for   ß    0, 

44   =   

1 (1) 0 (1)

(1) 1 (1) 0

0 (1) 1 0

0 0 (1) 0

1 (1) 0 0

(1) 1 (1) 0

0 (1) 1 (1)

0 0 (1) 1

  =  
4

2 2 2

(1)

(1 (1) ) (1)
  <  0 , 

etc. 
If  is positive, (1) is negative and vice versa. This leads to the two 

possible patterns of partial autocorrelation functions, exemplified by ß = ± 
0.8: 

  = 0.8,   ii: {-0.49, -0.31, -0.22, -0.17, ... } , 

  = -0.8,   ii: {0.49, -0.31, 0.22, -0.17, ... } . 

Thus, contrary to the AR(1) process, the autocorrelation function of the 
MA(1) process breaks off, while the partial autocorrelation function does 
not. 
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Example 2.11 

The time series which are discussed in this book are measured in discrete time, 
with intervals of equal length. Exchange rates, for example, are normally quoted at 
the end of each trading day. For econometric analyses, however, monthly, quar-
terly, or even annual data are used, rather than these daily values. Usually, aver-
ages or end-of-period data are used for temporal aggregation. Such an aggregation 
might result in an MA(1) process, as shown by the following simple example as 
well as by the time series of the exchange rate between the Swiss Franc and the 
United States Dollar.  

Let x be a time series which follows a random walk, 

 xt   =   xt-1  +  ut , 

where u is again a pure random process. In the following, we consider the tempo-
ral aggregation over two time periods, i.e. we construct two different aggregated 
series from these data, the end-of-period data 

(E2.6a) yt  =   xt 

 =   yt-2  +  ut  +  ut-1, 

as well as the temporal averages 

(E2.6b) ty  = 
1

2
(xt  +  xt-1) 

  =   t 2y  + 
1

2
 ( ut  +  2 ut-1  +  ut-2) . 

Thus, the differences over the two periods of the end-of-period data follow an 
MA(1) process 

2 yt =   ut  +  ut-1 

 =   t . 

However, if we observe this series only every other period, with the autocovari-
ance function 

E( t · t – 2k)   =   
2
u2 for k 0

0 elsewhere
 

we get a pure random process. Contrary to this, the differences over the two peri-
ods of the averaged data follow an MA(2) process 

2 ty  = 
1

2
 ( ut  +  2 ut-1  +  ut-2) 

 =   t . 
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When observing this series only every other period, we get the autocovariance 
function  

E( t  · t 2k )   =   

2
u

2
u

3
for k 0

2
1

for k 1
4

0 elsewhere

 , 

and therefore an MA(1) process. The first order autocorrelation coefficient is  = 
1/6. Thus, we can describe this process in the following way: 

(E2.7) 2 ty    =   tu   –  t 2u  

with 

   =   – 21 1 4 / 2   =  2 2 3      -0.172. 

GEORGE C. TIAO (1972) showed that relation (E2.7) is independent of the number 
of subperiods m that are included in the average. For m   we get   -0.268. 

Example 2.12 

Example 1.3 as well as Figure 1.8 present the end-of-month data of the Swiss 
Franc and the U.S. Dollar over the period from January 1974 to December 2003. 
The autocorrelogram of the first differences of this time series indicates that they 
follow a pure random process. The tests we applied did not reject this null hy-
pothesis. 

If we use monthly averages instead of end-of-month data, the following MA(1) 
process can be estimated for the first difference of the logarithms of this exchange 
rate: 
 ln(et)   =  - 0.003  +  ût  +  0.340 ût-1, 
  (-1.28) (6.82) 

2R  =  0.099,   SE  =  0.029,   Q̂ (11)  =  8.656  (p  =  0.654),  

with the t values again given in parentheses. ln(·) denotes the natural logarithm. 
The estimated coefficient of the MA(1) term is highly significantly different from 
zero. The Box-Ljung Q statistic indicates that there is no longer any significant 
autocorrelation in the residuals. As m  20 is relatively large (in this context), the 
estimated values of the MA(1) term should not be too different from the theoreti-
cal value given by G.C. TIAO (1972). In fact, it does not significantly differ from 
this value at the 5 percent level. 
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2.2.2   Higher Order Moving Average Processes  

In general, the moving average process of order q (MA(q)) can be written 
as 

(2.40) xt   =     +  ut  –  ß1 ut-1  –  ß2 ut-2  –  ...  –  ßq ut-q 

with ßq  0 and ut as a pure random process. Using the lag operator we get  

(2.40') xt  –   =   (1 – ß1L – ß2L
2 –  ...  – ßqL

q)ut 

 =   ß(L)ut . 

From (2.40) we see that we already have a finite order Wold representation 
with k = 0 for k > q. Thus, there are no problems of convergence, and 
every finite MA(q) process is stationary, no matter what values are used 
for ßj, j = 1, 2, ..., q. 

For the expectation of (2.40) we immediately get E[xt] = . Thus, the 
variance can be calculated as: 

V[xt] =   E[(xt – )2]   

 =   E[(ut – ß1 ut-1  –  ...  –  ßq ut-q)
2] 

 =   E[( 2
tu  + 2 2

1 t 1u  + ... + 2 2
q t qu  – 2ß1 utut-1 – ...  

  – 2 ßq-1ßq ut-q+1ut-q)] . 

From this we obtain 

V[xt]   =   (1  + 2
1  + 2

2  + ... + 2
q ) 2 . 

For the covariances of order  we can write 

Cov[xt, xt+ ] =   E[(xt – )(xt+  – )] 

 =   E[(ut – ß1 ut-1  –  ...  –  ßq ut-q) 
  (ut+  – ß1 ut+ -1  –  ...  –  ßq ut+ -q)] 

 =   E[ut(ut+  – ß1 ut+ -1  –  ...  –  ßq ut+ -q) 
  – ß1 ut-1(ut+  – ß1 ut+ -1  –  ...  –  ßq ut+ -q) 

   
  – ßq ut-q(ut+  – ß1 ut+ -1  –  ...  –  ßq ut+ -q)] . 

Thus, for  = 1, 2, ..., q we get 
  =  1:   (1)  =  (– 1 + 1 2 + ... + q-1 q)

2, 

(2.41)
   =  2:   (2)  =  (– 2 + 1 3 + ... + q-2 q)

2, 
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  =  q:   (1)  =  – q
2, 

while we have ( ) = 0 for  > q. 
Consequently, all autocovariances and autocorrelations with orders 

higher than the order of the process are zero. It is – at least theoretically – 
possible to identify the order of an MA(q) process by using the autocorre-
logram.  

It can be seen from (2.41) that there exists a system of non-linear equa-
tions for given (or estimated) second order moments that determines 
(makes it possible to estimate) the parameters ß1, ..., ßq. As we have al-
ready seen in the case of the MA(1) process, such non-linear equation sys-
tems have multiple solutions, i.e. there exist different values for ß1, ß2, ... 
and ßq that all lead to the same autocorrelation structure. To get a unique 
parameterisation, the invertibility condition is again required, i.e. it must 
be possible to represent the MA(q) process as a stationary AR( ) process. 
Starting from (2.40'), this implies that the inverse operator ß-1(L) can be 
represented as an infinite series in the lag operator, where the sum of the 
coefficients has to be bounded. Thus, the representation we get is an 
AR( ) process 

ut =   – 
(1)

 + ß-1(L) xt  

 =   – 
(1)

 + j t j
j 0

c x  , 

where 

1   =   (1 – ß1L – ... – ßqL
q)( 1 + c1L + c2 L

2 + ... ), 

and the parameters ci, i = 1, 2, ... are calculated by using again the method 
of undetermined coefficients. Such a representation exists if all roots of  

1 – ß1L – ... – ßqL
q   =   0 

are larger than one in absolute value.  

Example 2.13 

Let the following MA(2) process 

xt  =  ut + 0.6 ut-1 – 0.1 ut-2  

be given, with a variance of 1 given for the pure random process u. For the vari-
ance of x we get 

V[xt]  =  (1 + 0.36 + 0.01)  1  =  1.37 . 
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Corresponding to (2.41) the covariances are 

(1)   =   + 0.6 – 0.06   =   0.54 

(2)   =   – 0.1  . 

( )   =   0   for  > 2 

This leads to the autocorrelation coefficients (1) = 0.39 and (2) = -0.07. To 
check whether the process is invertible, the quadratic equation  

1 + 0.6 L  0.1 L2   =   0 

has to be solved. As the two roots -1.36 and 7.36 are larger than 1 in absolute 
value, the invertibility condition is fulfilled, i.e. the MA(2) process can be written 
as an AR( ) process 

xt  =   (1 + 0.6 L – 0.1 L2) ut , 

ut  =   
2

1

1 0.6L 0.1L
 xt 

  =   (1 + c1 L + c2 L
2 + c3 L

3 + ) xt . 

The unknowns ci, i = 1, 2,  ..., can be determined by comparing the coefficients in 
the following way:  

1   =   (1 + 0.6 L – 0.1 L2)(1 + c1 L + c2 L
2 + c3 L

3 + ) 

1   =   1  +   c1  L  +        c2 L
2  +       c3 L

3  +  

 +  0.6 L  +  0.6 c1 L
2  + 0.6 c2 L

3  +   

         0.1 L2  0.1 c1 L
3    

It holds that 

               c1  +  0.6      =  0      c1  =  0.60, 

c2  +  0.6 c1  –  0.1      =  0      c2  =  0.46, 

c3  +  0.6 c2  –  0.1 c1  =  0      c3  = 0.34, 

c4  +  0.6 c3  –  0.1 c2  =  0      c4  = 0.25, 

                        . 

Thus, we get the following AR( ) representation 

xt  –  0.6 xt-1  +  0.46 xt-2  –  0.34 xt-3  +  0.25 xt-4       =   ut . 

Similarly to the MA(1) process, the partial autocorrelation function of the MA(q) 
process does not break off. As long as the order q is finite, the MA(q) process is 
stationary whatever its parameters are. If the order tends towards infinity, how-
ever, for the process to be stationary the series of the coefficients has to converge 
just like in the Wold representation. 
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2.3   Mixed Processes 

If we take a look at the two different functions that can be used to identify 
autoregressive and moving average processes, we see from Table 2.1 that 
the situation in which neither of them breaks off can only arise if there is 
an MA( ) process that can be inverted to an AR( ) process, i.e. if the 
Wold representation of an AR( ) process corresponds to an MA( ) proc-
ess. However, as pure AR or MA representations, these processes cannot 
be used for empirical modelling because they can only be characterised by 
means of infinitely many parameters. After all, according to the principle 
of parsimony, the number of estimated parameters should be as small as 
possible when applying time series methods.  

Table 2.1:  Characteristics of the Autocorrelation and the Partial 

Autocorrelation Functions of AR  and MA Processes 

 autocorrelation function partial autocorrelation 
function 

MA(q) breaks off with q  does not break off 

AR(p) does not break off breaks off with p  

In the following, we introduce processes which contain both an autoregres-
sive (AR) term of order p and a moving average (MA) term of order q. 
Hence, these mixed processes are denoted as ARMA(p,q) processes. They 
enable us to describe processes in which neither the autocorrelation nor the 
partial autocorrelation function breaks off after a finite number of lags. 
Again, we start with the simplest case, the ARMA(1,1) process, and con-
sider the general case afterwards. 

2.3.1   ARMA(1,1) Processes 

An ARMA(1,1) process can be written as follows, 

(2.42) xt   =     +   xt-1  +  ut  –  ß ut-1 , 

or, by using the lag operator 

(2.42') (1 – L) xt   =     +  (1 –  ßL) ut , 
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where ut is a pure random process. To get the Wold representation of an 
ARMA(1,1) process, we solve (2.42') for xt, 

xt   =   
1

  +  
1 L

1 L
 ut . 

It is obvious that    must hold, because otherwise xt would be a pure 
random process fluctuating around the mean  = /(1 – ). The j, j = 0, 1, 
..., can be determined as follows: 

1 L

1 L
  =   0  +  1L  +  2L

2  +  3L
3  +  … 

 1 – L   =   (1 – L)( 0  +  1L  +  2L
2  +  3L

3  +  …) 

 1 – L   =   0  +  1L   +   2L
2  +    3L

3  +  …   
                         – 0L  –  1L

2  –  2L
3  –  …  . 

Comparing the coefficients of the two lag polynomials we get 

L0:   0  =  1 

L1:   1 – 0  =  – ß    1  =   – ß  

L2:   2 – 1  =  0    2  =  (  – ß)  

L3:   3 – 2  =  0    3  = 2(  – ß) 

 

Lj:   j – j-1  =  0     j  = j-1(  – ß) . 

The j, j  2 can be determined from the linear homogenous difference 
equation 

j – j-1 = 0 

with 1 =  – ß as initial condition. The j converge towards zero if and 
only if | | < 1. This corresponds to the stability condition of the AR term. 
Thus, the ARMA(1,1) process is stationary if, with stochastic initial condi-
tions, it has a stable AR(1) term. The Wold representation is 

(2.43)  xt   =   
1

 + ut  +  (  – ß) ut-1 +  (  – ß) ut-2 + 2(  – ß) ut-3 + ... . 

Thus, the ARMA(1,1) process can be written as an MA( ) process. 
To invert the MA(1) part, |ß| < 1 must hold. Starting from (2.42') leads 

to 
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ut   =   
1

  +  
1 L

1 L
 xt . 

If 1/(1 – ßL) is developed into a geometric series we get  

ut =   
1

  +  (1 – L)(1 + ßL + ß2L2 + ... ) xt 

  =   
1

  +  xt + (ß – ) xt-1 + ß(ß – ) xt-2 + ß2(ß – ) xt-3 + ... . 

This proves to be an AR( ) representation. It shows that the combination 
of an AR(1) and an MA(1) term leads to a process with both MA( ) and 
AR( ) representation if the AR term is stable and the MA term invertible. 

We obtain the first and second order moments of the stationary process 
in (2.42) as follows: 

E[xt] =   E[   +   xt-1  +  ut  –  ß ut-1] 

 =     +   E[xt-1] . 

Due to E[xt] = E[xt-1] =  , we get  

   =   
1

 , 

i.e. the expectation is the same as in an AR(1) process. 
If we set  = 0 without loss of generality, the expectation is zero. The 

autocovariance of order   0 can then be written as 

(2.44) E[xt- xt]   =   E[xt- (  xt-1  +  ut  –  ß ut-1)], 

which leads to 

(0)   =    (1)  + E[xtut] –  E[xtut-1] 

for  = 0. Due to (2.43), E[xtut] = 2 and E[xtut-1] = (  – ß) 2. Thus, we can 
write 

(2.45) (0)   =    (1)  +  (1 – ß(  – ß)) 2. 

(2.44) leads to 

(1)   =    (0)  + E[xt-1ut] –  E[xt-1ut-1]  

for  = 1. Because of (2.43) this can be written as 

(2.46) (1)   =    (0)  – ß 2 . 
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If we insert (2.46) in (2.45) and solve for (0), the resulting variance of the 
ARMA(1,1) process is 

(2.47) (0)   =   
2

2

1 2

1
 2. 

Inserting this into (2.46), we get  

(2.48) (1)   =   
2

( )(1 )

1
 2 

for the first order autocovariance. For   2, (2.44) results in the autoco-
variances 

(2.49) ( )   =    ( -1) 

and the autocorrelations 

(2.50) ( )   =    ( -1) . 

This results in the same difference equation as in an AR(1) process but, 
however, with the different initial condition  

(1)   =   
2

( )(1 )

1 2
 . 

The first order autocorrelation coefficient is influenced by the MA term, 
while the higher order autocorrelation coefficients develop in the same 
way as in an AR(1) process. 

If the process is stable and invertible, i.e. for | | < 1 and |ß| < 1, the sign 
of (1) is determined by the sign of (  – ß) because of (1 + ß2 – 2 ß) > 0 
and (1 – ß) > 0. Moreover, it follows from (2.49) that the autocorrelation 
function – as in the AR(1) process – is monotonic for  > 0 and oscillating 
for  < 0. Due to | | < 1 with  increasing, the autocorrelation function also 
decreases in absolute value. 

Thus, the following typical autocorrelation structures are possible:  

(i)  > 0 and  > ß: The autocorrelation function is always positive.  

(ii)  > 0 and  < ß: The autocorrelation function is negative from (1) 
onwards. 

(iii)  < 0 and  > ß: The autocorrelation function oscillates; the initial 
condition (1) is positive. 

(iv)  < 0 and  < ß: The autocorrelation function oscillates; the initial 
condition (1) is negative. 
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Figure 2.9:   Theoretical autocorrelation functions of ARMA(1,1) processes 
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Figure 2.9 shows the development of the corresponding autocorrelation 
functions up to  = 20 for the parameter values , ß  {0.8, 0.5, -0.5, -0.8} 
in which, of course,   ß must always hold, as otherwise the ARMA(1,1) 
process degenerates to a pure random process.  

For the partial autocorrelation function we get  

11   =   (1)   =   
2

( )(1 )

1 2
 , 

22   =  

1 (1)

(1) (2)

1 (1)

(1) 1

  =  
2

2

(2) (1)

1 (1)
  =  

2

(1)( (1))

1 (1)
, 

because of (2) =  (1), 

33   =  

1 (1) (1)

(1) 1 (2)

(2) (1) (3)

1 (1) (2)

(1) 1 (1)

(2) (1) 1

  =  
2

3 2 2

1 (1) (1)

(1) 1 (1)

(1) (1) (1)

1 2 (1) (1) (2 )
 

        =  
2

3 2 2

(1)( (1))

1 2 (1) (1) (2 )
 , etc. 

Thus, the ARMA(1,1) process is a stationary stochastic process where nei-
ther the autocorrelation nor the partial autocorrelation function breaks off. 

The following example shows how, due to measurement error, an 
AR(1)-process becomes an ARMA(1,1) process.  

Example 2.14 

The ‘true’ variable tx  is generated by a stationary AR(1) process, 

(E2.8) tx   =    t 1x   +  ut , 

but it can only be measured with an error vt, i.e. for the observed variable xt it 
holds that 

(E2.9) xt   =   tx   +  vt , 
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where vt is a pure random process uncorrelated with the random process ut. (The 
same model was used in Example 2.3 but with a different interpretation.) If we 
transform (E2.8) to 

tx    =   tu

1 L
 

and insert it into (E2.9) we get 

(1 – L) xt   =   ut  +  vt  –   vt-1 . 

For the combined error term t = ut + vt –  vt-1 we get 

(0)   =   2
u   +  (1 + 2) 2

v  

(1)   =    -  2
v  

( )   =    0   for       2, 

or 

(1)  =  
2
v

2 2 2
u v(1 )

,   ( )  =  0   for       2. 

Thus, the observable variable xt follows an ARMA(1,1) process,  

(1 –  L) xt   =   (1 – ß L) t , 

where ß can be calculated by means of (1) and t is a pure random process. (See 
also the corresponding results in Section 2.2.1.) 

2.3.2   ARMA(p,q) Processes 

The general autoregressive moving average process with AR order p and 
MA order q can be written as 

(2.51)  xt   =     +  1 xt-1  +  ...  +  p xt-p  +  ut  –  ß1 ut-1  –  ...  –  ßq ut-q , 

with ut being a pure random process and p  0 and ßq  0 having to hold. 
Using the lag operator, we can write 

(2.51')  (1 – 1L – ... – pL
p) xt   =     +  (1 – ß1L – ... – ßqL

q) ut , 

or 

(2.51'') (L) xt   =     +  ß(L) ut . 

As factors that are common in both polynomials can be reduced, (L) and 
ß(L) cannot have identical roots. The process is stationary if – with sto-
chastic initial conditions – the stability conditions of the AR term are ful-
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filled, i.e. if (L) only has roots that are larger than 1 in absolute value. 
Then we can derive the Wold representation for which 

ß(L)   =   (L)(1 + 1L + 2 L
2 + ... ) 

must hold. Again, the j, j  = 1, 2, ..., can be calculated by comparing the 
coefficients. If, likewise, all roots of ß(L) are larger than 1 in absolute 
value, the ARMA(p,q) process is also invertible. 

A stationary and invertible ARMA(p,q) process may either be repre-
sented as an AR( ) or as an MA( ) process. Thus, neither its autocorrela-
tion nor its partial autocorrelation function breaks off. In short, it is possi-
ble to generate stationary stochastic processes with infinite AR and MA 
orders by using only a finite number of parameters. 

Under the assumption of stationarity, (2.51) directly results in the con-
stant mean  

E[xt]   =      =  
1 p1

 . 

If, without loss of generality, we set  = 0 and thus also  = 0, we get the 
following relation for the autocovariances: 

( ) =   E[xt- xt]  

 =   E[xt- ( 1 xt-1  +  ...  +  p xt-p  +  ut  –  ß1 ut-1  –  ...  –  ßq ut-q)] . 

This relation can also be written as  
( )   = 1 ( -1)  +  2 ( -2)  +  ...  +  p ( -p)  

 +  E[xt- ut]  –  ß1 E[xt- ut-1]  –  ...  –  ßq E[xt- ut-q] . 

Due to the Wold representation, the covariances between xt-  and ut-i, i = 0, 
..., q, are zero for  > q, i.e. the autocovariances for  > q and  > p are gen-
erated by the difference equation of an AR(p) process,  

( )  –  1 ( -1) –  2 ( -2) –  ... –  p ( -p)   =   0   for  > q    > p 

whereas the first q autocovariances are also influenced by the MA part. 
Normalisation with (0) leads to exactly the same results for the autocorre-
lations. 

If the orders p and q are given and the distribution of the white noise 
process ut is known, the parameters of an ARMA(p,q) process can be esti-
mated consistently by using maximum likelihood methods. These esti-
mates are also asymptotically efficient. If there is no such programme 
available, it is possible to estimate the parameters consistently with least 
squares. As every invertible ARMA(p,q) process is equivalent to an AR( ) 
process, first of all an AR(k) process is estimated with k sufficiently larger 
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than p. From this, one can get estimates of the non-observable residuals ût. 
By employing these residuals, the ARMA(p,q) process can be estimated 
with the least squares method, 

xt   =     +  1 xt-1  +  ...  +  p xt-p  –  ß1 ût-1  –  ...  –  ßq ût-q  +  vt . 

This approach can also be used if p and q are unknown. These orders can, 
for example, be determined by using the information criteria shown in Sec-

tion 2.1.5.  

Example 2.15 

Figure 2.10 shows the development of the US three months money market rate 
(USR) as well as the estimated autocorrelation and partial autocorrelation function 
of this time series for the period from March 1994 to August 2003 (114 observa-
tions). The following ARMA(1,1) model has been estimated for this time series: 

USRt   =  – 0.006  + 0.831 USRt-1  +  ût  – 0.457 ût-1,. 
 (-0.73) (10.91) (-3.57) 

2R   =  0.351,   SE  =  0.166,   Q(10)  =  7.897  (p  =  0.639). 

The AR(1) as well as the MA(1) terms are different from zero at the 0.1 percent 
significance level. The autocorrelogram of the estimated residuals, which is also 
given in Figure 2.10, as well as the Box-Ljung Q statistic, which is calculated for 
this model with 12 autocorrelation coefficients (i.e. with 10 degrees of freedom), 
do not provide any evidence of a higher order process.  

2.4   Forecasting 

As mentioned in the introduction, in the 1970’s, one of the reasons for the 
broad acceptance of time series analysis using the Box-Jenkins approach 
was the fact that forecasts with this comparably simple method often 
outperformed forecasts generated by large econometric models. In the fol-
lowing, we show how ARMA models can be used for making forecasts 
about the future development of time series. In doing so, we assume that 
all observations of the time series up to time t are known. 

2.4.1   Forecasts with Minimal Mean Squared Errors  

We want to solve the problem of making a -step ahead forecast for xt with 
a linear prediction function, given a stationary and/or invertible data gen-
erating process.  
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Figure 2.10: Three months money market rate in New York, 1994 – 2003 
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Let x̂ t( ) be such a prediction function for xt+ . Thus, x̂ t( ) is a random 
variable for given t and . As all stationary ARMA processes have a Wold 
representation, we assume the existence of such a representation without 
loss of generality. Thus,  

xt  =   + j t j
j 0

u ,   0  =  1,    2
j

j 0

  <  , 

where ut is a pure random process with the usual properties E[ut]  =  0,    

E[utus]  =    
2 for t s

0 for t s
. 

Therefore, it also holds that 

(2.52) xt+    =     +  j t j
j 0

u ,     =  1, 2, ... . 

For a linear prediction function with the information given up to time t, we 
assume the following representation  

(2.53) tx̂ ( )   =     +  k t k
k 0

u ,     =  1, 2, ... . 

where the k , k = 0, 1, 2, ..., are unknown. The forecast error of a -step 

forecast is ft( ) = xt+  – tx̂ ( ),  = 1, 2, ..., . In order to make a good fore-
cast, these errors should be small. The expected quadratic forecast error 
E[(xt+  – tx̂ ( ))2], which should be minimised, is used as the criterion to 

determine the unknowns k . Taking into account (2.52) and (2.53) we can 
write 

E [ 2
tf ( )] =   

2

j t j k t k
j 0 k 0

E u u  

 =   
2

t 1 t 1 1 t 1 k k t k
k 0

E u u u ( )u . 

From this it follows that 

(2.54) E [ 2
tf  ( )]   =   

2
2 2 2 2
1 1 k k

k 0

1 . 
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The variance of the forecast error reaches its minimum if we set k  = +k 
for k = 0, 1, 2, ..., . Thus, we get the optimal linear prediction function for 
a -step ahead forecast from (2.53), as 

(2.55) tx̂ ( )   =     +  k t k
k 0

u ,     =  1, 2, ... . 

For the conditional expectation of ut+s, given ut, ut-1, …, it holds that 

E[ut+s|ut, ut-1, ...]   =   t su for s 0

0 for s 0
 . 

Thus, we get the conditional expectation of xt+ , because of (2.52), as 

E[xt+ |ut, ut-1, ...]   =     +  k t k
k 0

u . 

Due to (2.55), the conditional expectation of xt+ , with all information 
available at time t given, is identical to the optimal prediction function. 
This leads to the following result: The conditional expectation of xt+ , with 
all information up to time t given, provides the -step forecast with mini-
mal mean squared prediction error.  

With (2.52) and (2.55) the -step forecast error can be written as 

(2.56)   ft( )   =   xt+  – tx̂ ( )   =   ut+  + 1ut+ -1 + 2ut+ -2 + ... + -1ut+1 

with  

E[ft( )|ut, ut-1, ...]   =   E[ft( )]   =   0 . 

From these results we can immediately draw some conclusions: 

1. Best linear unbiased predictions (BLUP) of stationary ARMA proc-
esses are given by the conditional expectation for xt+  ,  = 1,2, … 

tx̂ ( )   =   E[xt+ |xt, xt-1, ...]   =   Et[xt+ ] . 

2. For the one-step forecast errors (  = 1), ft(1) = ut+1, we get 

E[ft(1)]   =   E[ut+1]   =   0,   and 

E[ft(1)fs(1)]   =   E[ut+1us+1]   =   
2 for t s

0 for t s
. 

The one-step forecast errors are a pure random process; they are identi-
cal with the residuals of the data generating process. If the one-step 
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prediction errors were correlated, the prediction could be improved by 
using the information contained in the prediction errors. In such a case, 

however, tx̂ (1) would not be an optimal forecast. 

3. For the -step forecast errors (  > 1) we get 

ft( )   =   ut+  + 1ut+ -1 + 2ut+ -2 + ... + -1ut+1 , 

i.e. they follow an MA( -1) process with E[ft( )] = 0 and the variance 

(2.57) V[ft( )]   =   2 2 2
1 11  . 

This variance can be used for constructing confidence intervals for -
step forecasts. However, these intervals are too narrow for practical ap-
plications because they do not take into account the uncertainty in the 
estimation of the parameters i, i = 1, 2, ..., -1. 

4. It follows from (2.57) that the forecast error variance increases mono-
tonically with increasing forecast horizon : 

V[ft( )]      V[ft( -1)] . 

5. Due to (2.57) we get for the limit 

lim  V[ft( )]   =   2 2
1 1lim 1 2   =   2 2

j
j 0

   =   V[xt] , 

i.e. the variance of the -step forecast error is not larger than the vari-
ance of the underlying process.  

6. The following variance decomposition follows from (2.55) and (2.56):  

(2.58) V[xt+ ]   =   V[ tx̂ ( )]  +  V[ft( )] . 

7. Furthermore,  

tˆlim x ( )   =   k t k
k 0

lim u    =      =   E[xt] , 

i.e. for increasing forecast horizons, the forecasts converge to the (un-
conditional) mean of the series.  

8. The concept of ‘weak’ rational expectations whose information set is 
restricted to the current and past values of a variable exactly corre-
sponds to the optimal prediction approach used here.  
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2.4.2   Forecasts of ARMA(p,q) Processes 

The Wold decomposition employed in the previous section has advantages 
when it comes to the derivation of theoretical results, but it is not practi-
cally useful for forecasting. Thus, in the following, we will discuss fore-
casts directly using AR, MA, or ARMA representations. 

Forecasts with a Stationary AR(1) Process 

For this process, it holds that 

xt   =    +  xt-1 + ut , 

with | | < 1. The optimal -step-forecast is the conditional mean of xt+ , i.e. 

Et[xt+ ]   =   Et[  +  xt+ -1 + ut+ ]   =    +  Et[xt+ -1] . 

Due to the first conclusion, we get the following first order difference 
equation for the prediction function  

tx̂ ( )   =     +   tx̂  ( -1) , 

which can be solved recursively: 

 = 1:   tx̂ (1)   =     +   tx̂ (0)   =     +   xt  

 = 2:   tx̂ (2)   =     +   tx̂ (1)   =     +     + 2 xt 

             

  tx̂ ( )   =   (1 +  + ... + -1)  +  xt 

 tx̂ ( )   =   
1

1
   +  xt   =   

1
  +   (xt – 

1
) . 

As  = /(1 – ) is the mean of a stationary AR(1) process,  

tx̂ ( )   =     +   (xt – )   with   tˆlim x ( )   =    , 

i.e., with increasing forecast horizon , the predicted values of an AR(1) 
process converge geometrically to the unconditional mean  of the proc-
ess. The convergence is monotonic if  is positive, and oscillating if  is 
negative. 

To calculate the -step prediction error, the Wold representation, i.e. the 
MA( ) representation of the AR(1) process, can be used,  

xt   =     +  ut +   ut-1  +  2 ut-2  +  3 ut-3  + ... . 
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Due to (2.56) and (2.57) we get the MA( -1) process  

ft( )   =   ut+   +   ut+ -1  + 2 ut+ -2  +  ...  +  -1
 ut+1 

for the forecast error with the variance  

V[ft( )]   =   2 2( 1)1 2   =    
2

2

1

1
 2. 

With increasing forecast horizons, it follows that 

lim V[ft( )]   =   
2

21
   =   V[xt] , 

i.e. the prediction error variance converges to the variance of the AR(1) 
process. 

Forecasts with Stationary AR(p) Processes 

Starting with the representation 

xt   =     +  1 xt-1  +  2 xt-2  +  ...  +  p xt-p  +  ut , 

the conditional mean of xt+  is given by 

Et[xt+ ]   =     +  1 Et[xt+ -1]  +  ...  +  p Et[xt+ -p] . 

Here, 

Et[xt+s]   =   t

t s

x̂ (s) for s 0

x for s 0
 . 

Thus, the above difference equation can be solved recursively:  

 = 1:   tx̂ (1)   =     +  1 xt  +  2 xt-1  +  ...+  p xt+1-p  

 = 2:   tx̂ (2)   =     +  1 tx̂ (1)  +  2 xt  +  ...  +  p xt+2-p , etc. 

Forecasts with an Invertible MA(1) Process 

For this process, it holds that 

xt   =     +  ut  –   ut-1 

with |ß| < 1. The conditional mean of xt+  is  

Et[xt+ ]   =     +  Et[ut+ ]  –   Et[ut+ -1] . 

For  = 1, this leads to 
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(2.59) tx̂ (1)   =     –   ut , 

and for   2, we get 

tx̂ ( )   =    , 

i.e. the unconditional mean is the optimal forecast of xt+ ,  = 2, 3, ..., . For 
the -step prediction errors and their variances we get: 

ft(1) =   ut+1, V[ft(1)] =   2 

ft(2) =   ut+2  –  ß ut+1, V[ft(2)] =   (1 + ß2) 2 

           

ft( ) =   ut+   –  ß ut+ -1, V[ft( )] =   (1 + ß2) 2 . 

To be able to perform the one-step forecasts (2.59), the unobservable vari-
able u has to be expressed as a function of the observable variable x. To do 
this, it must be taken into account that for s  t, the one-step forecast errors 
can be written as 

(2.60) us   =  xs – s 1x̂ (1). 

For t = 0, we get from (2.59) 

0x̂ (1)   =     –  ß u0 

with the non-observable but fixed u0. Taking (2.60) into account, we get 
for t = 1 

1x̂ (1)  =     –  ß u1 =     –  ß (x1 – 0x̂  (1)) 

 =     –  ß x1  +  ß (  – ß u0) 

 =   (1 + ß)  –  ß x1  – ß2 u0 . 

Correspondingly, we get for t = 2 

2x̂ (1)   =     –  ß u2  =     –  ß (x2 – 1x̂  (1)) 

  =     –  ß x2  +  ß( (1 + ß) –  ß x1 – ß2 u0) 

  =   (1 + ß + ß2)  –  ß x2  – ß2 x1 – ß3 u0 . 

If we continue this procedure we finally arrive at a representation of the 
one-step prediction which – except for u0 – consists only of observable 
terms,  

tx̂ (1)   =   (1 + ß + ... + ßt)  –  ß xt  – ß2 xt-1 – ... – ßt x1 – ßt+1 u0 . 
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Due to the invertibility of the MA(1) process, i.e. for |ß| < 1, the impact of 
the unknown initial value u0 finally disappears. 

Similarly, it is possible to show that, after q forecast steps, the optimal 
forecasts of invertible MA(q) processes, q > 1 are equal to the uncondi-
tional mean of the process and that the variance of the forecast errors is 
equal to the variance of the underlying process. The forecasts in observ-
able terms are represented similarly to those of the MA(1) process. 

Forecasts with ARMA(p,q) Processes 

Forecasts for these processes result from combining the approaches of pure 
AR and MA processes. Thus, the one-step ahead forecast for a stationary 
and invertible ARMA(1,1) process is given by   

tx̂ (1)   =     +   xt  –  ß ut. 

Starting with t = 0 and taking (2.60) into account, forecasts are succes-
sively generated. We first get 

0x̂ (1)   =     +   x0  –  ß u0, 

where x0 and u0 are assumed to be any fixed numbers. For t = 1 we get  

1x̂ (1) =     +   x1  –  ß u1   =     +   x1  –  ß(x1 – 0x̂ (1)) 

 =   (1 + ß)  +  (  – ß) x1  +  ß  x0 – ß2u0 , 

which finally leads to 

(2.61)  tx̂ (1) =   (1 + ß + ... + ßt)  +  (  – ß) xt  +  ß(  – ß) xt-1  +  ... 

 +  ßt-1(  – ß) x1  +  ßt  x0 – ßt+1u0 . 

Due to the invertibility condition, i.e. for |ß| < 1, the one-step forecast for 
large values of t does no longer depend on the unknown initial values x0 
and u0. 

For the -step forecast,  = 2, 3, ..., we get 

tx̂ (2)   =     +   tx̂ (1) 

tx̂ (3)   =     +   tx̂ (2) 

  

Using (2.61), these forecasts can be calculated recursively. 
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2.4.3   Evaluation of Forecasts 

Forecasts can be evaluated ex post, i.e. when the realised values are avail-
able. There are many kinds of measures to do this. Quite often, only graphs 
and/or scatter diagrams of the predicted values and the corresponding ob-
served values of a time series are plotted. Intuitively, a forecast is good’ if 
the predicted values describe the development of the series in the graphs 
relatively well or if the points in the scatter diagram are concentrated 
around the bisecting line in the first and/or third quadrant. Such intuitive 
arguments are, however, not founded on the above-mentioned considera-
tions on optimal predictions. For example, as (2.59) shows, the optimal 
one-step forecast of an MA(1) process is a pure random process. This im-
plies that the graphs compare two quite different processes. Conclusion 6 
given above states that the following decomposition holds for the vari-
ances of the data generating processes, the forecasts and the forecast er-
rors, 

V[xt+ ]   =   V[ tx̂ ( )]  +  V[ft( )] . 

Thus, it is obvious that predicted and realised values are generally gener-
ated by different processes. 

As a result, a measure for the predictability of stationary processes can 
be developed. It is defined as follows, 

(2.62) P( )2   =   t

t

ˆV[x ( )]

V[x ]
   =   1  –  t

t

V[f ( )]

V[x ]
, 

with 0  P( )2  1. At the same time, P( )2 is the correlation coefficient be-
tween the predicted and the realised values of x. The optimal forecast of a 
pure random process with mean zero is tx̂ ( ) = 0, i.e. P( )2 = 0. Such a 
process cannot be predicted. On the other hand, for the one-step forecast of 
an MA(1) process, we can write 

P(1)2   =   
2 2

2 2(1 )
   =   

2

21
   >   0. 

However, the decomposition (2.58), theoretically valid for optimal fore-
casts, does not hold for actual (empirical) forecasts, even if they are gener-
ated by using (estimated) ARMA processes. This is due to the fact that 
forecast errors are hardly ever totally uncorrelated with the forecasts. 
Therefore, the value of P( )2 might even become negative for bad’ fore-
casts. 
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JACOB MINCER and VICTOR ZARNOWITZ (1969) made the following 
suggestion to check the consistency of forecasts. By using OLS the follow-
ing regression equation is estimated  

(2.63) xt+    =   a0  +  a1 tx̂ ( )  +  t+ . 

It is tested either individually with t tests or commonly with an F test 
whether a0 = 0 and a1 = 1. If this is fulfilled, the forecasts are said to be 
consistent. However, such a regression produces consistent estimates of 
the parameters if and only if tx̂ ( ) and t+  are asymptotically uncorrelated. 
Moreover, to get consistent estimates of the variances, which is necessary 
for the validity of the test results, the residuals have to be pure random 
processes. Even under the null hypothesis of optimal forecasts, this only 
holds for one-step predictions. Thus, the usual F and t tests can only be 
used for  = 1. For  > 1, the MA( -1) process of the forecast errors has to 
be taken into account when the variances are estimated. A procedure for 
such situations combines Ordinary Least Squares for the estimation of the 
parameters and Generalised Least Squares for the estimation of the vari-
ances, as proposed by BRYAN W. BROWN and SHLOMO MAITAL (1981). 

JINOOK JEONG and GANGADHARRAO S. MADDALA (1991) have pointed 
out another problem which is related to these tests. Even rational forecasts 
are usually not without errors; they contain measurement errors. This im-
plies, however, that (2.63) cannot be estimated consistently with OLS; an 
instrumental variables estimator must be used. An alternative to the esti-
mation of (2.63) is therefore to estimate a univariate MA( -1) model for 
the forecast errors of a -step prediction, 

f̂ t( )   =   a0  +  ut  +  a1 ut-1  +  a2 ut-2  +  ...  +  a -1 ut- +1 , 

and to check the null hypothesis H0: a0 = 0 and whether the estimated re-
siduals ût are white noise. 

On the other hand, simple descriptive measures, which are often em-
ployed to evaluate the performance of forecasts, are based on the average 
values of the forecast errors over the forecast horizon. The simple arithme-
tic mean indicates whether the values of the variable are – on average – 
over- or underestimated. However, the disadvantage of this measure is that 
large over- and underestimates cancel each other out. The mean absolute 

error is often used to avoid this effect. Starting the forecasts from a fixed 
point of time, t0, and assuming that realisations are available up to t0+m, 
we get 

MAE( )   =   
0

m

t j
j 0

1
f ( )

m 1
,     =  1, 2, ... . 
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Every forecast error gets the same weight in this measure. The root mean 

square error is often used to give particularly large errors a stronger 
weight: 

RMSE( )   =   
0

m
2
t j

j 0

1
f ( )

m 1
,     =  1, 2, ... . 

These measures are not normalised, i.e. their size depends on the scale of 
the data. 

The inequality measure proposed by HENRY THEIL (1961) avoids this 
problem by comparing the actual forecasts with so-called naïve forecasts, 
i.e. the realised values of the last available observation, 

U( )   =   
0

0 0

m
2
t j

j 0

m
2

t j t j
j 0

f ( )

(x x )
 ,     =  1, 2, ... . 

If U( ) = 1, the forecast is as good as the naïve forecast, tx̂ ( ) = xt. For 
U( ) < 1 the forecasts perform better than the naïve one. MAE, RMSE und 
Theil’s U all become zero if predicted and realised values are identical 
over the whole forecast horizon. 

Example 2.16 

All these measures can also be applied to forecasts which are not generated by 
ARMA models, as, for example, the forecasts of the Council of Economic Experts 
or the Association of German Research Institutes. Since the end of the 1960’s, 
both institutions have published forecasts of the German economic development 
for the following year, the institutes usually in October and the Council at the end 
of November. HANNS MARTIN HAGEN and GEBHARD KIRCHGÄSSNER (1996) in-
vestigated the annual forecasts for the period from 1970 to 1995 as well as for the 
subperiods from 1970 to 1982 and from 1983 to 1995. These periods correspond 
to the social-liberal government of SPD and F.D.P. and the conservative-liberal 
government of CDU/CSU and F.D.P.. 

The results are given in Table 2.2. Besides the criteria given above, the table 
also indicates the square of the correlation coefficient between realised and pre-
dicted values (R2), the estimated regression coefficient â1 of the test equation 
(2.63) as well as the mean error (ME). According to almost all criteria, the fore-
casts of the Council outperform those of the institutes. This was to be expected, as 
the Council’s forecasts are produced slightly later, at a time when more informa-
tion is available. It holds for the forecasts of both institutions that the mean abso-
lute error, the root mean squared error as well as Theil's U are smaller in the sec-
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ond period compared to the first one. This is some evidence that the forecasts 
might have improved over time. On the other hand, the correlation coefficient be-
tween predicted and realised values has also become smaller. This indicates a de-
terioration of the forecasts. It has to be taken into account that the variance of the 
variable to be predicted was considerably smaller in the second period as com-
pared to the first one. Thus, the smaller errors do not necessarily indicate im-
provements of the forecasts. It is also interesting to note that on average the fore-
cast errors of both institutions were negative in the first and positive in the second 
subperiod. They tended to overestimate the development in the period of the so-
cial-liberal coalition and to underestimate it in the period of the conservative-
liberal coalition. 
 

Table 2.2:  Forecasts of the Council of Economic Experts   

and of the Economic Research Institutes 

 Period R2 RMSE MAE ME â1 U 

1970 – 1995 0.369 1.838 1.346 -0.250* 1.005* 0.572 

1970 – 1982 0.429 2.291 1.654 -0.731 1.193* 0.625 Institutes 

1983 – 1995 0.399 1.229 1.038 0.231 1.081 0.457 

1970 – 1995 0.502* 1.647* 1.171* -0.256 1.114 0.512* 

1970 – 1982 0.599* 2.025* 1.477* -0.723* 1.354 0.552* 
Council of 
Economic 
Experts 

1983 – 1995 0.472* 1.150* 0.865* 0.212* 1.036* 0.428* 

‘*’ denotes the ‘better’ of the two forecasts. 

2.5   The Relation between Econometric Models and 
ARMA Processes  

The ARMA model-based forecasts discussed in the previous section are 
unconditional forecasts. The only information that is used to generate 
these forecasts is the information contained in the current and past values 
of the time series. There is demand for such forecasts, and – as mentioned 
above – one of the reasons for the development and the popularity of the 
Box-Jenkins methodology presented in this chapter is that by applying the 
above-mentioned approaches, these predictions perform – at least partly – 
much better than forecasts generated by large scale econometric models. 
Thus, the Box-Jenkins methodology seems to be a (possibly much better) 
alternative to the traditional econometric methodology.  



88      2   Univariate Stationary Processes 

However, this perspective is rather restricted. On the one hand, condi-
tional rather than unconditional forecasts are required in many cases, e.g. 
in order to evaluate the effect of a tax reform on economic growth. Such 
forecasts cannot be generated by using (only) univariate models. On the 
other hand, and more importantly, the separation of the two approaches is 
much less strict than it seems to be at first glance. As ARNOLD ZELLNER 
and FRANZ C. PALM (1974) showed, linear dynamic simultaneous equation 
systems as used in traditional econometrics can be transformed into 
ARMA models. (Inversely, multivariate time series models as discussed in 
the next chapters can be transformed into traditional econometric models.) 
The univariate ARMA models correspond to the final equations of econo-
metric models in the terminology of JAN TINBERGEN (1940).  

Let us consider a very simple model. An exogenous, weakly stationary 
variable x, as defined in (2.64b), has a current and lagged impact on the 
dependent variable y, while the error term might be autocorrelated. Thus, 
we get the model 

(2.64a) yt   =   1(L) xt  + 2(L) u1,t , 

(2.64b) (L) xt   =   (L) u2,t , 

where 1(L) and 2(L) are lag polynomials of finite order. If we insert 
(2.64b) in (2.64a), we get for y the univariate model 

(2.64a') (L) yt   =   (L) vt 

with 

 (L) vt   :=   1(L) (L) u2,t  + 2(L) (L) u1,t . 

As (L)vt is an MA process of finite order, we get a finite order ARMA 
representation for y. It must be pointed out that the univariate representa-
tions of the two variables have the same finite order AR term. 
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3   Granger Causality 

So far we have only considered single stationary time series. We analysed 
their (linear) structure, estimated linear models and performed forecasts 
based on these models. However, the world does not consist of independ-
ent stochastic processes. Just the contrary: in accordance with general 
equilibrium theory, economists usually assume that everything depends on 
everything else. Therefore, the next question that arises is about (causal) 
relationships between different time series.  

In principle, we can answer this question in two different ways. Follow-
ing a bottom up strategy, one might first assume that the data generating 
processes of the different time series are independent of each other. In a 
second step, one might ask whether some specific time series are related to 
each other. This statistical approach follows the proposals of CLIVE W.J. 
GRANGER (1969) and is today usually employed when causality tests are 
performed. The alternative is a top down strategy which assumes that the 
generating processes are not independent and which, in a second step, asks 
whether some specific time series are generated independently of the other 
time series considered. This approach is pursued when using vector auto-

regressive processes. The methodology, which goes back to CHRISTOPHER 

A. SIMS (1980), will be described in the next chapter. Both approaches are 
employed to investigate the causal relationships which potentially exist be-
tween different time series. 

However, before we ask these questions we should clarify the meaning 
of the term causality. Ever since GALILEO GALILEI and DAVID HUME, this 
term is closely related to the terms cause and effect. Accordingly, a vari-
able x would be causal to a variable y if x could be interpreted as the cause 
of y and/or y as the effect of x. However, where do we get the necessary 
information from? In traditional econometrics, when distinguishing en-
dogenous and exogenous (or predetermined) variables, one assumes that 
such information is a priori available. Problems arise, however, if there are 
simultaneities between the variables, i.e. if it is possible that x is causal to 
y and y is causal to x. The usual rank and order conditions for the identifi-
cation of econometric simultaneous equations systems show that the dif-
ferent relations can only be identified (and estimated) if additional infor-
mation is available, for example on different impacts of third variables on 
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the dependent variables. It is impossible to determine the direction of cau-
sality of instantaneous relations between different variables if there is no 
such information. In this case, the only possibility is to estimate a reduced 
form of the system. 

As far as possible, modern time series analysis abstains from using ex-
ogenous information, so that the way in which the identification problem is 
treated in traditional econometrics is ruled out. On the other hand, the idea 
of causality is closely related to the idea of succession in time, at the latest 
since DAVID HUME who said that cause always precedes effect. Traditional 
econometrics shared the same view. However, the time periods represented 
by a single observation are too long to assume that a change in one vari-
able might only influence other variables in later time periods, especially 
when using annual data. As time series analyses are usually performed 
with data of higher frequencies, the situation looks different here. Using 
monthly data, we assume in many cases that changes in one variable only 
influence other variables in later months. For example, the change in min-
eral oil prices on the international spot markets might only have a delayed 
effect on Swiss or German consumer prices for petrol or light heating oil. 
Thus, it is reasonable to use succession in time as a criterion to find out 
whether or not there exists a causal relation between two series. 

If such a causal relation exists, it should be possible to exploit it when 
making forecasts. As seen above, it is often possible to make quite good 
forecasts with univariate models. The precondition for this is that the in-
formation contained in the past values of the variable is optimally ex-
ploited. Identification and estimation of ARMA models, for example, are 
attempts in this direction. However, if x is causal to y, current and lagged 
values of x should contain information that can be used to improve the 
forecast of y. This implies that the information is not contained in the cur-
rent and lagged values of y. Otherwise it would be sufficient to consider 
only the present and past values of y. Accordingly, the definition of causal-
ity proposed in 1969 by CLIVE W.J. GRANGER looks at this incremental 

predictability, i.e. it examines whether the forecasts of the future values of 
y can be improved if – besides all other available information – the current 
and lagged values of x are also taken into account. 

There is, however, another reason why the lagged values of the corre-
sponding variables are taken into account when it comes to the question of 
causality. Even if they are stationary, economic variables often show a 
high degree of persistence. This may lead to spurious correlations (regres-
sions) between xt and yt, in case xt has no impact on yt and yt depends on 
yt-1 which is not included in the regression equation. CLIVE W. GRANGER 
and PAUL NEWBOLD (1974) showed that such spurious regressions can 
arise even if highly autocorrelated variables are generated independently 
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from each other. If past values of both the dependent and the explanatory 
variables are included, the risk diminishes as this implies that the times se-
ries are filtered. With respect to the causal relation between (two) time se-
ries, only the innovations of these series do matter. Correspondingly, G. 
WILLIAM SCHWERT (1979) also refers to the results of causality tests as 
“the message in the innovations”. 

In the following, we present the definition of Granger causality and the 
different possibilities of causal events resulting from it (Section 3.1). This 
is followed by a characterisation of these causal events within the frame-
work of bivariate autoregressive and moving average models as well as by 
using the residuals of the univariate models as developed in the preceding 
chapter (Section 3.2). Section 3.3 presents three test procedures to investi-
gate causal relations between time series: the direct GRANGER procedure, 
the HAUGH-PIERCE test and the HSIAO procedure. In Section 3.4, we ask 
how these procedures can be applied in situations where more than just 
two variables are considered. The chapter closes with some remarks on the 
relation between the concepts of Granger causality and rational expecta-
tions if applied to the analysis of economic policy (reaction) functions 
(Section 3.5). 

3.1   The Definition of Granger Causality 

In the following, we again assume that we have weakly stationary time se-
ries. Let It be the total information set available at time t. This information 
set includes, above all, the two time series x and y. Let tx  be the set of all 

current and past values of x, i.e. tx :=  {xt, xt-1, ..., xt-k, ... } and analogously 

of y. Let 2(·) be the variance of the corresponding forecast error. For such 
a situation, C.W.J. GRANGER (1969) proposed the following definition of 
causality between x and y: 

(i) Granger Causality: x is (simply) Granger causal to y if and only if the 
application of an optimal linear prediction function leads to 

2 2
t 1 t t 1 t t(y I ) (y I x ),  

i.e. if future values of y can be predicted better, i.e. with a smaller 
forecast error variance, if current and past values of x are used. 

(ii) Instantaneous Granger Causality: x is instantaneously Granger causal 
to y if and only if the application of an optimal linear prediction func-
tion leads to 
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2 2
,t 1 t t 1 t 1 t(y {I x }) (y I ),  

i.e. if the future value of y, yt+1, can be predicted better, i.e. with a 
smaller forecast error variance, if the future value of x, xt+1, is used in 
addition to the current and past values of x.  

(iii) Feedback: There is feedback between x and y if x is causal to y and y 
is causal to x.  

Feedback is only defined for the case of simple causal relations. The rea-
son is that the direction of instantaneously causal relations cannot be iden-
tified without additional information or assumptions. Thus, the following 
theorem holds:  

Theorem 3.1:  x is instantaneously causal to y if and only if y is instanta-
neously causal to x. 

According to this definition there are eight different, exclusive possibilities 
of causal relations between two time series:  

(i) x and y are independent: (x, y) 

(ii) There is only instantaneous causality: (x–y) 

(iii) x is causal to y, without instantaneous causality: (x y) 

(iv) y is causal to x, without instantaneous causality: (x y) 

(v) x is causal to y, with instantaneous causality: (x y) 

(vi) y is causal to x, with instantaneous causality: (x y) 

(vii) There is feedback without instantaneous causality: (x y) 

(viii) There is feedback with instantaneous causality: (x y) 

In the definition given above, It includes all information available at time t. 
Normally, however, only the current and lagged values of the two time se-
ries x and y are considered: 

It  :=  {xt, xt-1, ..., xt-k, ..., yt, yt-1, ..., yt-k, ...}. 

In many cases, the limitation of the information set does hardly make 
sense. Thus, when discussing the test procedures, we must also ask how 
these procedures can be applied if (relevant) ‘third variables’ play a role. 
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3.2   Characterisations of Causal Relations 
        in Bivariate Models 

In Chapter 1 we already explained that, according to the Wold decomposi-
tion theorem, any weakly stationary process can be represented as an (infi-
nite) moving average of a white noise process. Correspondingly, each pair 
of time series can be represented by a bivariate MA( ) process. If this 
process is invertible, it can also be represented as a bivariate (infinite) AR 
process. In the following, starting with the above-mentioned definition of 
causality, causal relations between two time series are first of all character-
ised by AR representation and then by MA representation. Finally, accord-
ing to LARRY D. HAUGH (1976) causal relations between two time series 
can also be characterised by the residuals of their univariate ARMA mod-
els. These three characterisations, which are the basis of different testing 
procedures, are presented in the following. 

3.2.1   Characterisations of Causal Relations using the 
           Autoregressive and Moving Average Representations 

Each bivariate system of invertible weakly stationary processes has the fol-
lowing autoregressive representation (deterministic terms are neglected 
without loss of generality): 

(3.1) t t t11 12

t t t21 22

y y u(L) (L)
A (L)

x x v(L) (L)
 . 

A(L) is a matrix polynomial. Its elements, ij(L), i, j = 1,2, are one-sided 
(infinite) polynomials in the lag operator L. These polynomials are identi-
cal to zero, ( ij(L)  0), if all their coefficients, which are denoted as k

ij , 

are equal to zero. u and v are white noise residuals which might be con-
temporaneously correlated with each other. In order to normalise the equa-
tions, we set 

 0 0
11 22 1 . 

As (3.1) is a reduced form, it must hold that 

(3.2) 0 0
12 21 0 . 

In this system, instantaneous causality exists if and only if u and v are con-
temporaneously correlated because then the forecast errors of y and x can 
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be reduced if the current value of x or y is included in the forecast equation 
along with all lagged values of x and y. Then, however, there always exist 
representations with either 0

12   0 and 0
21  = 0 or 0

12  = 0 and 0
21   0. 

Both representations are observationally equivalent. However, because of 
these two representations there is also one with 0

12   0 and 0
21   0 which 

is observationally equivalent to the two other representations. 
In the terminology of traditional econometrics, this implies that the 

structural form (3.1) is not identified. It is well known that a specific struc-
tural form of any econometric model can be transformed into another 
structural form which is observationally equivalent by pre-multiplying it 
with any quadratic regular matrix P whose rank is equal to the number of 
endogenous variables. The same happens if we go from one representation 
to another. Instantaneous causality therefore results in:  

(3.3) ((x – y)  (x  y)  ( x  y)  (x  y)) 
     0 0

uv 12 21(0) 0 0 0 , 

where ‘ ’ denotes equivalence. In the following, we only consider the re-
duced form, i.e. relation (3.2) holds. 

The individual causal events lead to the following representations:  

(3.4a) ((x, y)  (x – y))     12(L)    21(L)    0, 

(3.4b) ((x  y)  (x  y))  ( 12(L)   0)    21(L)    0, 

(3.4c) ((x  y)  ( x  y))     12(L)   0    ( 21(L)    0), 

(3.4d) ((x  y)  (x  y))  ( 12(L)   0)    ( 21(L)    0). 

Thus, a simple causal relation between x and y only exists if all coeffi-
cients of the lag polynomial 21(L) are equal to zero, ( 21(L)    0) and if 
there exists at least one non-zero coefficient of the lag polynomial 12(L), 

( 12(L)    0). 
Analogous to (3.1) and (3.4), we can also characterise the different 

causal relations by using the moving average representation 

(3.5) t t t11 12

t t t21 22

y u u(L) (L)
B(L)

x v v(L) (L)
 . 

B(L) is also a matrix polynomial, whose elements ij(L), i,j = 1,2, are one-
sided (infinite) polynomials in the lag operator L. To normalise the system 
we set  

 0 0
11 22 1 . 
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(3.2) also leads to 

(3.6) 0 0
12 21 0 . 

As B(L) results from the inversion of A(L), the following relations be-
tween the parameters of the MA and the AR representation hold: 

(3.7a) 11(L)  =     22(L) / (L),  

(3.7b) 12(L)  =  – 12(L) / (L),  

(3.7c) 21(L)  =  – 21(L) / (L),  

(3.7d) 22(L)  =     11(L) / (L),  

with 

 (L)   =   11(L) 22(L) – 12(L) 21(L). 

This leads to 

(3.8a) 12(L)    0    12(L)    0, 

(3.8b) 21(L)    0    21(L)    0. 

Thus, in analogy to (3.4) the different causal events result in  

(3.9a) ((x, y)  (x – y))     12(L)    21(L)    0, 

(3.9b) ((x  y)  (x  y))  ( 12(L)   0)    21(L)    0, 

(3.9c) ((x  y)  ( x  y))     12(L)   0    ( 21(L)    0), 

(3.9d) ((x  y)  (x  y))  ( 12(L)   0)    ( 21(L)    0). 

The conditions for the different polynomials hold independently of 
whether we choose the AR or the MA representation.  

3.2.2   Characterising Causal Relations by Using the Residuals  
           of the Univariate Processes  

As an alternative to (3.1) and (3.5), x and y can also be represented by two 
separate univariate ARMA models. In the Wold representation, this leads 
to: 

(3.10) t t t11

t t t22

y a a(L) 0
(L)

x b b0 (L)
. 
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Once again, ii(L), i = 1, 2, are one-sided infinite polynomials in the lag 
operator L normalised by 

0 0
11 22 1. 

The residuals a and b are again white noise, and they might also be con-
temporaneously correlated. We assume that the two MA processes are 
again invertible. The following representation shows the relation between 
(3.5) and (3.10): 

(3.11) t t1

t t

y u
(L) (L) B (L)

x v
,  

or 

(3.11a) t t t11 12

t t t21 22

y u u(L) (L)
(L) (L) (L)

x v v(L) (L)
 

with H(L) = (L)-1 B(L). The different lag polynomials result in  

(3.12a) 11(L)  =  11(L) / 11(L), 

(3.12b) 12(L)  =  12(L) / 11(L), 

(3.12c) 21(L)  =  21(L) / 22(L), 

(3.12d) 22(L)  =  22(L) / 22(L). 

This leads to the following relation between the residuals u and v and the 
residuals a and b: 

(3.13)  t t t t1 1

t t t t

a y u u
(L) (L) B(L) (L)

b x v v
 , 

with the following equivalencies because of (3.7) and (3.12):  

(3.14a) 12(L)  0    12(L)  0    12(L)   0, 

(3.14b) 21(L)  0    21(L)  0    21(L)   0. 

Analogous to (3.4) and (3.9) the different causal events can be expressed 
as restrictions on the ij’s:  

(3.15a) ((x, y)  (x – y))     12(L)    21(L)    0, 

(3.15b) ((x  y)  (x  y))  ( 12(L)   0)    21(L)    0, 

(3.15c) ((x  y)  ( x  y))     12(L)   0    ( 21(L)    0), 
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(3.15d) ((x  y)  (x  y))  ( 12(L)   0)    ( 21(L)    0). 

Thus, ij is subject to the same conditions as ij and ij .  
For the crosscorrelation function between the residuals of the univariate 

processes, a and b, ab(k), we get: 

(3.16) t t k ab
ab 2 2

a bt t

E[a b ] (k)
(k)

(0) (0)E[a ] E[b ]
 , 

with: 

(3.17) ab(k) = E[at bt-k], 

  = E[( 11(L) ut + 12(L) vt)  ( 21(L) ut-k + 22(L) vt-k)], 

  = E[ 11(L) ut · 21(L) ut-k] + E[ 11(L) ut · 22(L) vt-k] 

  + E[ 12(L) vt  21(L) ut-k] + E[ 12(L) vt  22(L) vt-k]. 

Without instantaneous causality this is reduced to 

ab(k)   =    E [ 11(L) ut  21(L) ut-k] + E[ 12(L) vt  22(L) vt-k] 

because of the orthogonality of u and v. 
Thus, if we exclude instantaneous causality, we get: 

(i) x is not causal to y: 

 In this case, 12(L)  0 and ut and at are white noise. Because of nor-
malisation it holds 11(L)  1, i.e. at = ut. This leads to 

(3.18a) ab(k)  =  E[ut  21(L) ut-k]  =  0   for   k  0. 

(ii) y is not causal to x: 

 In this case, 21(L)  0 and vt and bt are white noise. Because of nor-
malisation it holds 22(L)  1, i.e. bt = vt. This leads to 

(3.18b) ab(k)  =  E[ 12(L) vt  vt-k]  =  0   for   k  0. 

(iii) y and x are independent: 

 In this case, 12(L)  21(L)  0 and  ut, vt, at and bt are white noise. It 
follows 11(L)  22(L)  1, i.e. at = ut and bt = vt. This leads to 

(3.18c) ab(k)  =  0    k. 

From the above results we get 

(3.19a) (x  y)  (  k, k > 0:  ab(k)  0)    (  k, k  0:  ab(k) = 0). 
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(3.19b) (x  y)  (  k, k < 0:  ab(k)  0)    (  k, k  0:  ab(k) = 0). 

(3.19c) (x  y)  (  k1, k1 < 0:  ab(k1)  0)    (  k2, k2 > 0:  ab(k2)  0). 

As far as instantaneous causality between x and y can be excluded, the 
causal relation may also be characterised by using the crosscorrelation 
function between the residuals a and b of the univariate ARMA processes. 
If there is instantaneous causality, (3.17) leads to 

(3.20) ab(0)    0. 

However, if there is feedback, this condition is neither necessary nor suffi-
cient for the existence of instantaneous causality.  

3.3   Causality Tests 

All these characterisations can be used for testing causality. In 1972, 
CHRISTOPHER A. SIMS was the first to propose a test for simple Granger 
causal relations. This test was based on the moving average representation. 
However, some problems occurred with this procedure. Therefore, it is 
hardly applied today and will not be discussed here. THOMAS J. SARGENT 
(1976) proposed a procedure which is directly derived from the Granger 
causality definition. It is usually denoted as the direct Granger procedure. 
LARRY D. HAUGH and DAVID A. PIERCE (1977) proposed a test which 
uses the estimated residuals of the univariate models for x and y. Finally, 
CHENG HSIAO (1979) proposed a procedure to identify and estimate 
bivariate models which – like the direct Granger procedure – is based on 
autoregressive representation and can also  be interpreted (at least implic-
itly) as causality tests. We will present these three procedures and illustrate 
them by examples. 

3.3.1   The Direct Granger Procedure 

As mentioned above, this procedure proposed by T.J. SARGENT (1976) is 
directly derived from the Granger definition of causality. Similar to the 
method of C.W.J. GRANGER (1969), a linear prediction function is em-
ployed. In the following, let x and y be two stationary variables. To test for 
simple causality from x to y, it is examined whether the lagged values of x 
in the regression of y on lagged values of x and y significantly reduce the 
error variance. By using OLS, the following equation is estimated: 



3.3   Causality Tests       103 

(3.21) 
1 2

0

k k
k k

t 0 11 t k 12 t k 1,t
k 1 k k

y y x u , 

with k0 = 1. An F test is applied to test the null hypothesis, H0: 
1
12  = 2

12  

= … = 2k
12  = 0. By changing x and y in (3.21), it can be tested whether a 

simple causal relation from y to x exists. There is a feedback relation if the 
null hypothesis is rejected in both directions. To test whether there is in-
stantaneous causality we finally set k0 = 0 in relation (3.21) and perform a t 
or F test for the null hypothesis H0: 

0
12  = 0. Accordingly, the correspond-

ding null hypothesis can be tested for x. According to Theorem 3.1 given 
above, we expect the same result for testing the equation for y and for x. 
However, as our data are based on finite samples, we will generally get 
different numerical values for the test statistics. However, with k1 = k2, i.e. 
if we include the same number of lagged variables for the dependent as 
well as for the explanatory variable in both test equations, we get exactly 
the same numerical values for the test statistics. The reason for this is that 
the t or F statistics are functions of the partial correlation coefficient be-
tween x and y. Its value does not depend on the direction of the regression; 
it only depends on the correlation between the two variables and the set of 
conditioning variables which are included. If k1 = k2, the same condition-
ing variables are included irrespectively of the dependent variable.  

One problem with this test is that the results are strongly dependent on 
the number of lags of the explanatory variable, k2. There is a trade-off: the 
more lagged values we include, the better the influence of this variable can 
be captured. This argues for a high maximal lag. On the other hand, the 
power of this test is the lower the more lagged values are included. 

Two procedures have been developed to solve this problem. In general, 
different values of k2 (and possibly also of k1) are used to inspect the sensi-
tivity of the results to the number of lagged variables. One of the different 
information criteria presented in Section 2.1.5 can be used alternatively. As 
we have included an explanatory variable, the number of estimated pa-
rameters, m, has to be adjusted. If, besides the constant term on the right 
hand side, we include  k1 lagged values of the dependent and k2 values of 
additional variables, it holds that m = k1 + k2 + 1. 

Example 3.1 

When, in the 1970’s, Granger causality tests were applied for the first time, the fo-
cus of interest was on the relation between money and income. (See, e.g., C.A. 
SIMS (1972) as well as E.L. FEIGE and D.K. PEARCE (1979).) The simple causal 
relation from the (real) quantity of money to the real gross national product was 
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interpreted as evidence for the monetarist hypothesis of short-run real effects of 
monetary policy, whereas the reverse relation was interpreted as evidence for 
Keynesian doctrines. If such a relation exists, it can be used for predictive pur-
poses. 

In the 1980’s and 1990’s there was an intensive discussion to what extent the 
real economic development can be predicted by the term structure of interest, es-
pecially by using the difference between long-run and short-run interest rates. 
Figure 3.1 demonstrates this possibility by presenting the annual growth rates of 
the real German GDP and the four quarters lagged interest rate spread for the pe-
riod from 1970 to 1989. The precondition for using this spread as a predictor is a 
simple Granger causal relation between this spread and real GDP. The question is 
which one is ‘better’ suited to indicate the real effects of monetary policy.  
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Figure 3.1: Growth rate of real GDP and the four quarters lagged interest 

rate spread in the Federal Republic of Germany, 1970 – 1989 

(in percent). 

In the following, we investigate by using quarterly data whether Granger causal 
relations existed in the Federal Republic of Germany for the period from 1965 to 
1989 between the quantity of money M1 or the interest rate differential and the 
real GDP. (As the German reunification in 1990 is a real structural break we only 
use data for the period before.) For the dependent as well as for the explanatory 
variable, we always use four or eight lags, respectively. 4ln(GDPr) denotes the 
annual growth rate of real GDP, 4ln(M1r) the annual growth rate of the quantity 
of money M1, GLR the rate of government bonds (as a long-run interest rate), and 
GSR the three months money market rate in Frankfurt (as a short-run interest rate).  
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The results in Table 3.1 show that there is only a simple causal relation from 
money to GDP. The null hypothesis that no such relation exists can be rejected at 
the 1 percent significance level by using eight lags and even at the 0.1 percent 
level by using four lags. By contrast, the null hypothesis that no reversed causal 
relation exists cannot even be rejected at the 10 percent significance level. The 
same is true for an instantaneous relation. 

The results for the relation between the interest rate differential and the GDP 
are quite different. There is a simple causal relation from the monetary indicator to 
GDP, too, but this relation is much less pronounced than the relation between 
money and income, and, in addition, there is a simple relation in the reverse direc-
tion. Thus, there exists feedback between these two variables. 

There is, first of all, a very pronounced instantaneous relation between the two 
monetary indicators. Besides this, there is a simple relation from the interest rate 
differential to money growth, while no relation seems to exist in the reverse direc-
tion. This reflects the fact that the German Bundesbank used the quantity of 
money as an intermediate target which it tries to influence. It can, however, only 
do this indirectly via (money market) interest rates. (Before 1987, the Bundesbank 
had used central bank money as its intermediate target, from then on it used the 
quantity of money M3.) It takes some time before money growth has fully ad-
justed to a monetary impulse based on interest rates. This is reflected in the simple 
Granger causal relation from interest rate differential to money growth as well as 
in the instantaneous relation between these two variables. 

Table 3.1  Test for Granger Causality (I): Direct Granger Procedure 

1/65 – 4/89, 100 Observations 

y x k1 k2 F(y x) F(y x) F(y–x) 

4ln(GDPr) 

 

4ln(GDPr) 

 

4ln(M1r) 

 

4ln(M1r) 

 

GLR – GSR 

 

GLR – GSR 

 

4 

8 

4 

8 

4 

8 

4 

8 

4 

8 

4 

8 

6.087***

3.561** 

3.160* 

1.927(*) 

5.615***

2.521* 

1.918 

1.443 

3.835** 

2.077* 

1.489 

1.178 

0.391 

0.001 

0.111 

0.279 

10.099** 

15.125*** 

‘(*)’, ‘*’, ‘**’, or ‘***’ denotes that the null hypothesis that no causal relation exists 
can be rejected at the 10, 5, 1 or 0.1 percent significance level, respectively. 
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3.3.2   The Haugh-Pierce Test 

This procedure which was first proposed by L.D. HAUGH (1976) and later 
on by L.D. HAUGH and D.A. PIERCE (1977) is based on the crosscorrela-
tions ab(k) between the residuals a and b of the univariate ARMA models 
for x and y. In a first step, these models have to be estimated. By using the 
Box-Pierce Q statistic given in (1.11) (or the Box-Ljung Q statistic given 
in (1.12)) it is checked whether the null hypothesis – that the estimated re-
siduals are white noise – cannot be rejected. Then, analogous to the Q sta-
tistic, the following statistic is calculated: 

(3.22) S   =   T ·
2

1

k
2
ab

k k

ˆ (k) . 

Under the null hypothesis H0: ab(k) = 0 for all k with k1  k  k2, this sta-
tistic is asymptotically 2 disdributed with k2 – k1 + 1 degrees of freedom. 
It can be checked for k1 < 0  k2 > 0 whether there is any causal relation at 
all. If this hypothesis can be rejected, it can be checked for k1 = 1  k2  1 
whether there is a simple causal relation from x to y. In the reverse direc-
tion, for k1  -1  k2 = -1, it can be checked whether there is a simple 
causal relation from y to x. Finally, it can be tested by using ab(0) whether 
there exists an instantaneous relation. However, the results of the last test 
are questionable as long as the existence of a feedback relation cannot be 
excluded. 

But this is not the only problem that might arise with this procedure. G. 
WILLIAM SCHWERT (1979) showed that the power of this procedure, 
which uses correlations, is smaller than the power of the direct Granger 
procedure which uses regressions. Thus, following a remark by EDGAR L. 
FEIGE and DOUGLAS K. PEARCE (1979), this test might only be a first step 
to analyse causal relations between time series. On the other hand, infor-
mation on the relations between two time series, which is contained in 
crosscorrelations, can be useful even if no formal test is applied. This in-
formation offers a deeper insight into causal relations than just looking at 
the F and t statistics of the direct Granger procedure.  

Example 3.2 

To perform the Haugh-Pierce test we estimate univariate models for the three 
variables and for the period from the first quarter of 1965 to the last quarter of 
1989. The results are presented below; the numbers in parentheses are again the 
corresponding t statistics: 
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4ln(GDPr,t)   =  0.658  + 0.861 4ln(GDPr,t-1)  – 0.105 4ln(GDPr,t-4)  +   
 (3.09) (12.80) (1.63) 

+   û1,t  – 0.266 û1,t-8, 
 (2.58)  

2R   =  0.669,  SE = 1.395,  AIC = 3.542,  SC = 3.646,  Q(9) = 5.602 (p = 0.779). 

4ln(M1r,t)   =  0.295  + 0.908 4ln(M1r,t-1)  +  û2,t  – 0.773 û2,t-4  – 0.134 û2,t-5, 
 (1.98) (19.44) (-13.06) (-2.25) 

2R   =  0.764,  SE = 1.897,  AIC = 4.158,  SC = 4.261,  Q(9) = 10.910 (p = 0.282). 

(GLR – GSR)t   =  0.291  + 1.039 (GLR – GSR)t-1  – 0.422 (GLR – GSR)t-3 

 (2.81) (15.95) (-3.56) 

 +   0.426 (GLR – GSR)t-4  – 0.297(GLR – GSR)t-5 + û3,t, 
 (3.00) (-3.17)  

2R   =  0.796,  SE = 0.771,  AIC = 2.368,  SC = 2.498,  Q(8) = 11.390 (p = 0.181). 

In all three cases, the Box-Ljung Q statistic calculated for 12 lags does not indi-
cate any autocorrelation of the estimated residuals. 
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Figure 3.2a: Crosscorrelations between the residuals of the univariate 
models of GDP and the quantity of money M1.  
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Figure 3.2b: Crosscorrelations between the residuals of the univariate 

models of GDP and the interest rate spread 
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Figure 3.2c: Crosscorrelations between the residuals of the univariate 

models of the quantity of money M1 and the interest rate 

differential  
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The next step was to calculate the crosscorrelation functions presented in Figure 
3.2. (The dotted lines are the approximate 95 percent confidence intervals.) It is 
quite obvious that this procedure leads to less pronounced (possible) causal rela-
tions. Only in a few cases the estimated crosscorrelation coefficients exceed the 5 
percent bounds. In particular, the causal relation between interest rate differential 
and GDP cannot be detected. 

The impression received by the graphs is confirmed by the test statistic S, see 
equation (3.22). Again we use four or eight lags, respectively. As Table 3.2 shows, 
there is a simple causal relation from the quantity of money to GDP and, in addi-
tion, an instantaneous relation which is, however, only significant at the 10 per-
cent level. Moreover, the relations between the two monetary indicators corre-
spond to the results of the direct Granger procedure. On the other hand, the test 
does not detect any relation from the interest rate spread to GDP; the only relation 
between these two variables is the reverse causation which is significant at the 10 
percent level. According to these results, it should be impossible to make better 
forecasts on real economic development by using the interest rate as predictor.  

Table 3.2:  Test for Granger Causality (II): Haugh-Pierce Test 

1/65 – 4/89, 100 Observations 

y x ˆ(0)  k S(y x) S(y x) S(y<=>x) 

4ln(GDPr) 4ln(M1r) 0.178(*) 4 16.485** 7.047 26.707** 

   8 16.558* 11.049 30.782** 

4ln(GDPr) GLR – GSR 0.071 4 5.073 8.442(*) 14.653 

   8 8.902 10.083 19.492 

4ln(M1r) GLR – GSR 0.280** 4 12.170* 10.090(*) 30.078*** 

   8 16.450* 11.154 35.421*** 

‘(*)’, ‘*’, ‘**’, or. ‘***’ denotes that the null hypothesis that no causal relation exists 
can be rejected at the 10, 5, 1 or. 0.1 percent significance level, respectively. 

However, the results are not untypical for this procedure. Firstly, the appli-
cation of different test procedures might produce different results: one pro-
cedure might detect a causal relation, the other one might not. Reviewing 
different papers on the relation between money and income, EDGAR L. 
FEIGE and DOUGLAS K. PEARCE (1979), therefore, referred to the “casual 
causal relation between money and income”. Secondly, ‘non-results’ are to 
be expected in particular if the Haugh-Pierce test is applied. D.A. PIERCE 
(1977), for example, was unable to find statistically significant relations 
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between various macroeconomic variables whereas economists are con-
vinced that such relations do exist. 

3.3.3   The Hsiao Procedure 

The procedure for identifying and estimating bivariate time series models 
proposed by CHENG HSIAO (1979) initially corresponds to the application 
of the direct Granger procedure. However, the lag lengths are determined 
with an information criterion. C. HSIAO proposed the use of the final pre-
diction error. Any other criterion presented in Section 2.1.5 might of 
course also be used. 

Again, the precondition is that the two variables are weakly stationary. 
The procedure is divided into six steps:  

(i) First, the optimal lag length *
1k  of the univariate autoregressive proc-

ess of y is determined. 

(ii) In a second step, by fixing *
1k , the optimal lag length *

2k  of the ex-
planatory variable x in the equation of y is determined. 

(iii) Then *
2k  is fixed and the optimal lag length of the dependent variable 

y is again determined: *
1k . 

(iv) If the value of the information criterion applied in the third step is 
smaller than that of the first step, x has a significant impact on y. Oth-
erwise, the univariate representation of y is used. Thus, we get a (pre-
liminary) model of y. 

(v) Steps (i) to (iv) are repeated by exchanging the variables x and y  
Thus, we get a (preliminary) model for x.  

(vi) The last step is to estimate the two models specified in steps (i) to (v) 
simultaneously to take into account the possible correlation between 
their residuals. Usually, the procedure to estimate seemingly unre-

lated regressions (SUR) developed by ARNOLD ZELLNER (1962) is 
applied. 

The Hsiao procedure only captures the simple causal relations between the 
two variables. The possible instantaneous relation is reflected by the corre-
lation between the residuals. However, by making theoretical assumptions 
about the direction of the instantaneous relation, it is possible to take into 
account the instantaneous relation in the model for y or in the model for x.  
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Example 3.3 

As explained above, the first steps of the Hsiao procedure are different from the 
usual application of the direct Granger procedure, where the number of lags is 
fixed (and might be varied), insofar as an information criterion is used to deter-
mine the optimal lag length. In our example, we used a maximal length of eight 
lags for the dependent as well as for the explanatory variable, and we calculated 
the values of the Akaike and the Schwarz criterion. In doing so, we did not take 
into account a possible instantaneous relation. 

Table 3.3:   Optimal Lag Length for the Hsiao Procedure 

 Akaike Criterion  Schwarz Criterion 

Relation *
1k  *

2k  *
1k  *

1k  *
2k  *

1k  

4ln(M1r)  4ln(GDPr) 4 1 1 1 1 1 

4ln(GDPr)  4ln(M1r) 5 3 8 4 0 4 

(GLR – GSR)  4ln(GDPr) 4 2 1 1 2 1 

4ln(GDPr)  (GLR – GSR) 5 5 5 5 0 5 

Table 3.3 shows quite different results for the two criteria. As expected, the opti-
mal lag length is sometimes smaller when using the Schwarz criterion as com-
pared to the Akaike criterion. In our example, this leads to economic implications. 
Both criteria reveal simple causal relations from the quantity of money as well as 
the interest rate differential to real GDP. Reverse causation, however, can only be 
found with the Akaike criterion. While we find one-sided relations only with the 
Schwarz criterion, we get feedback relations with the Akaike criterion. 

The models which were estimated using these lags are given in Table 3.4 for 
the relation between money and income and in Table 3.5 for the relation between 
the interest rate spread and income. In all cases, the simple causal relation from 
the monetary indicator to GDP is significant. This also holds when – using Wald 
tests – we check the common null hypotheses that all coefficients as well as the 
sum of the coefficients of the interest rate differential in the GDP equations are 
(jointly) zero. In all cases, the null hypothesis can be rejected at the 0.1 signifi-
cance level. The reverse causal relations detected by the Akaike criterion are sig-
nificant at the 5 percent level in the money equation and at the one percent level in 
the interest rate equation. On the other hand, none of the models detects an instan-
taneous relation: in both cases, the values of the correlation coefficient between 
the residuals of the two equations are below any conventional critical value. 
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Table 3.4:  Models Estimated with the Hsiao Procedure 
1/65 – 4/89, 100 Observations 
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Table 3.5:  Models Estimated with the Hsiao Procedure 
1/65 – 4/89, 100 Observations 
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3.4   Applying Causality Tests in a Multivariate Setting  

Whenever such a test is applied, one can hardly assume that there are no 
other variables with an impact on the relation between the two variables 
under consideration. The definition of Granger causality given above does 
not imply such a limitation despite the fact that the relation between just 
two variables is investigated: besides ty  and tx , the relevant information 

set It can include the values of any other variables j,tz , j = 1, ..., m. To dis-

tinguish between (real) causal and spurious relations, this enlargement of 
the relevant information set is crucial.  

However, the above presented test procedures only take into account the 
past values of x and y as the relevant information set. In order to apply 
these models in a multivariate framework, two questions have to be an-
swered: (i) How can the procedures be generalised so that they can be ap-
plied in a model with more than two variables? (ii) Which conclusions can 
be drawn if the procedure considers only two variables, but, nevertheless, 
relations to additional variables do exist? 

3.4.1   The Direct Granger Procedure with More Than Two 
           Variables  

As the Haugh-Pierce test uses the crosscorrelation function between the re-
siduals of the univariate ARMA models, it is obvious that only two time 
series can be considered. Thus, it is not possible to generalise as to situa-
tions with more than two variables. However, the direct Granger procedure 
is a different case. Let z1, ..., zm be additional variables. According to the 
definition of Granger causality, the estimation equation (3.21) can be ex-
tended to 

(3.23) yt   =   0  +  
1k

k
11 t k

k 1

y   +  
2k

k
12 t k

k 1

x   +  
j 2km

k
j j,t k

j 1 k 1

z   +  ut, 

if we test for simple Granger causal relations, with k
j , k = 1, ..., kj+2, j = 1, 

..., m, being the coefficients of the additional variables. It does not matter 
whether the additional variables are endogenous or exogenous since only 
lagged values are considered. After determining the numbers of lags k1, k2, 
k3, ..., (3.23) can be estimated using OLS. As in the bivariate case, it can 
be checked via an F test whether the coefficients of the lagged values of x 
are jointly significantly different from zero. By interchanging x and y in 
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(3.23), it can be tested whether there exists a simple Granger causal rela-
tion from y to x and/or feedback. 

However, problems arise again if there are instantaneous relations. It is, 
of course, possible to extend the test equation (3.23) by including the cur-
rent value of x analogous to (3.21) in order to test for instantaneous causal-
ity as per the definition given in Section 3.1. Again, it holds that it is im-
possible to discriminate between whether x is instantaneously causal to y 
and/or y is instantaneously causal to x without additional information. It 
also holds that if all conditioning variables have the same maximal lag, i.e. 
for k1 = k2 = k3 = ... = km+2, the values of the test statistics are identical irre-
spectively of which equation is used to check for instantaneous causality 
between x and y. However, as long as the other contemporaneous values of 
the additional variables zj are not included, the resulting relations might be 
spurious instantaneous relations. 

Example 3.4 

The results of the direct Granger procedure as well as those of the Hsiao procedure 
given above indicate that both monetary indicators are Granger causal to the real 
economic development and can therefore be used for predictive purposes. The 
question that arises is not only whether one of the indicators is ‘better’, but also 
whether forecasts can be improved by the use of both indicators. This can be in-
vestigated by using the trivariate Granger procedure.  

Table 3.6:  Test for Granger Causality: 

Direct Granger Procedure with Three Variables 

1/65 – 4/89, 100 Observations 

y x z k F(y x) F(y x) F(y–x) 

4ln(GDPr) 4ln(M1r) GLR – GSR 4 2.747* 3.788** 0.573 

   8 2.866** 2.361* 0.127 

4ln(GDPr) GLR – GSR 4ln(M1r) 4 0.260 1.978 0.247 

   8 1.430 1.817(*) 0.229 

4ln(M1r) GLR – GSR 4ln(GDPr) 4 7.615*** 0.417 7.273*** 

   8 3.432** 1.009 8.150*** 

‘(*)’, ‘*’, ‘**’, or ‘***’ denote that the null hypothesis that no causal relation exists 
can be rejected at the 10, 5, 1 or 0.1 percent significance level, respectively. 
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Again, we use four and eight lags. The results are presented in Table 3.6. z de-
notes the respective conditioning (third) variable. The results for M1 and for the 
interest rate spread are quite different. While we still find a significant simple 
causal relation from the quantity of money to real GDP as well as a reverse rela-
tion, the interest rate differential and real GDP seem to be totally independent as 
soon as M1 is considered as a third variable. This indicates that the quantity of 
money is sufficient for predictive purposes; the interest rate spread does not con-
tain any information which is not already contained in M1 but which is relevant 
for the prediction of real GDP. This is astonishing as once again (as with the 
bivariate tests) we find a highly significant simple causal relation from the interest 
rate differential to M1. 

Analogous to this procedure, third variables can also be considered using 
the Hsiao procedure. In this case, first the optimal lag length of the de-
pendent variable y and the conditioning variables z1 to zm must be deter-
mined before the optimal lag length k2* of the variable of interest x is 
fixed.  

Example 3.5 

Applying the trivariate Hsiao procedure, we start with the equation of interest, i.e. 
the equation for real GDP. Let us first consider the equations of Table 3.4 with the 
lagged quantity of money as explanatory variable. If we add the interest rate dif-
ferential with the Akaike criterion we get the optimal lag length of two compared 
to the one lag indicated by the Schwarz criterion. In both cases, however, the val-
ues of the criterion are higher than when this variable is not included. Thus, the in-
terest rate differential, along with real M1, does not significantly contribute to the 
explanation of real GDP, and we can stick to the bivariate model of Table 3.4. 

We get the same results if we add the quantity of money as additional variable 
to the equations including the lagged interest rate spread in Table 3.5. We get the 
optimal lag one by using both criteria. In both cases, however, the value of the cri-
terion is below the value that results without considering this variable. If, once 
again, we vary the maximal lag of the interest rate differential we end up with the 
equation including M1 as explanatory variable. However, we have just found out 
that the interest rate spread does not have a significant impact. Thus, we stick to 
the estimated equations of Table 3.4. 

A quite different procedure is to apply the definition of Granger causality 
not to single variables but to groups of variables: a vector Y of dependent 
variables and a vector X of explanatory variables. We can ask for the rela-
tions between these two groups of variables. The next chapter will discuss 
this within the framework of vector autoregressive processes. 
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3.4.2 Interpreting the Results of Bivariate Tests in Systems 
With More Than Two Variables  

To what extent do the results of bivariate tests apply for systems with more 
than two variables? Let us first consider instantaneous relations. Such rela-
tions can be detected with the direct Granger procedure as well as with the 
Haugh-Pierce test. However, definite evidence whether these relations are 
real or only spurious can only be found in a complete model and by using 
additional information. Insofar, the results of bivariate tests are only pre-
liminary with respect to instantaneous relations. 

What are the consequences for simple causal relations if third variables 
are not considered? G. KIRCHGÄSSNER (1981) shows that it usually im-
plies that an existing simple causal relation appears as a feedback relation. 
In the reverse case it holds that if the relation between x and y is only one-
sided in the bivariate model, there are no third variables which are Granger 
causal to x and y. Thus, whereas the measured feedback relation might be 
spurious and the inclusion of other variables might reduce it to a one sided 
relation, the reverse does not hold.  

Which are the effects of spurious correlations on the results of Granger 
causality tests if there is no direct causal relation between x and y but if 
both depend on a third variable z? C.A. SIMS (1977) showed that rather ex-
treme assumptions are necessary to avoid such a spurious relation as feed-
back relation in the data.  

With respect to non-considered third relevant variables as well as to 
spurious correlations as a result of the common dependence on third vari-
ables, the following holds: If it is found that, in a bivariate model, only a 
one-sided causal relation from x to y (or from y to x) without feedback ex-
ists, this should also hold when additional variables are included in the 
model. On the other hand, spurious feedback might occur due to several 
reasons, without the ‘true’ relation being a feedback relation. Thus, the fact 
whether feedback exists or not can only be verified within a full model. 

However, it has to be taken into account that spurious feedback relations 
arising, for example, from omitted variables or from measurement errors 
are, in most cases, rather weakly pronounced compared to the ‘real’ causal 
relations. Thus, they might often not be detected with causality tests. 
Moreover, as shown above, spurious independence arises quite often when 
these test procedures are applied. If, however, the (relatively strongly pro-
nounced) direct causal relations cannot be detected in many cases, it is 
even more unlikely that feedback relations which result from measurement 
errors or omitted third variables are detected by causality tests. Thus, the 
interpretation of detected unidirectional causal relations should also be 
treated cautiously. Finally, it should not be ignored that in case a specific 
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null hypothesis is not rejected, this does not imply that the null hypothesis 
is true. 

3.5   Concluding Remarks 

The definition of causality proposed by C.W.J. GRANGER (1969) has been 
heavily criticised in the first years after the publication of his paper as it 
reduces causality to incremental predictability. ‚Post hoc, ergo propter 
hoc?‘ was the question. It is correct that causality implies predictability, 
but the reverse is not generally correct. In time series analysis, this concept 
of causality is nevertheless widely accepted today. 

Partly, the criticism was definitely exaggerated. Succession in time is a 
principal element of the classical causality definition of DAVID HUME, and 
exactly this idea was taken up by the definition of C.W.J. GRANGER. Inso-
far, the latter is in the classical tradition. However, even if a ‘true’ causal 
relation exists, its structure does not have to coincide with the structure 
represented in the data. Even if the true model contains a temporal asym-
metry, the same asymmetry does not have to be reflected in the data. The 
technical problem how the data can be measured and actually are measured 
plays a crucial role here. Firstly, as explained above, due to the long peri-
ods covered by one observation, simple causal relations may appear to be 
instantaneous relations. Of course, this holds especially when annual data 
are used. Secondly, when different variables are measured with different 
time delay it might even occur that the measured relation is in the reverse 
direction of the true one. When x is causal to y, the tests might indicate 
that y is causal to x. Finally, different methods of temporal aggregation 
might disguise the true relation if, for example, monthly averages are used 
for one time series and end of month data for another one. 

If economic policy follows a given (contingent) rule, there will gener-
ally be a feedback relation even if the ‘true’ relation is a unidirectional one. 
If the rule is deterministic it might even be the case that only the reverse 
causation can be detected. Let x be the economic policy instrument and y 
the objective variable, which are connected by the simple linear relation 

(3.24) yt   =   0  +  1 yt-1  +  2 xt  +  ut. 

Let u be white noise. The coefficients of this relation are assumed to be 
constant and known to the government. It strives for a constant (optimal) 
value y*. In this situation, the optimal (deterministic) rule is given by  
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(3.25) xt   =   
2

1
[y*  –  0  –  1 yt-1]. 

For the objective variable, it holds that 

(3.26) yt   =   y*  +  ut, 

i.e. it follows a white noise process with mean y* and variance 2
u . In this 

case, neither past nor current values of x can improve the forecasts of y. 
By inserting (3.26) into (3.25) we get 

(3.27) xt   =   
2

1
[y*(1 – 1)  –  0  –  1 ut-1] . 

As ut-1 is contained in yt-1, but not in xt-1, forecasts of x can be improved 
using past values of y (besides past values of x), i.e. there is a simple 
Granger causal relation from y to x: the measured causal relation goes into 
the opposite direction of the true relation. 

If however, one assumes that the government is not able to steer exactly 
the economy as, for example, it does not exactly know the coefficients of 
the ‘true’ model, it might, instead of (3.25), follow the stochastic rule 

(3.25') xt   =   
2

1
[y*  –  0  –  1 yt-1]  +  vt,   E[vt]  =  0, 

where v is independent of u. In such a situation there is also an instantane-
ous relation between x and y because v, the stochastic part of x, has an im-
pact on y but is independent of the lagged values of y. If, in addition to 
that, it is assumed that there is a delay in the effect of x on y, we also get a 
simple causal relation from x to y. 

Thus, as soon as the government reacts systematically to past develop-
ments we expect reverse causal relations. However, under realistic as-
sumptions we can also expect that there is a simple Granger causal relation 
in the ‘true’ direction. This also holds under the conditions of the New 
Classical Macroeconomics if unexpected changes, for example in mone-
tary policy, affect real and/or nominal economic development with some 
delay. Insofar, Granger causality tests can be used to investigate the effec-
tiveness of economic policy. On the other hand, we only get distinctive 
evidence for the true model if we make additional, sometimes rather re-
strictive assumptions. 

There is also an interesting relation between the efficiency of (financial) 
markets and (instantaneous) Granger causality. If the price in an efficient 
market really contains all (publicly) available information and can, there-
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fore, be modelled as a random walk or a martingale, there is no simple 
Granger causal relation from any other variable on this price. Only instan-
taneous relations are possible, because any simple causal relation would 
indicate that information is available which has not been used efficiently. 
Thus, the existence or non-existence of Granger causal relations between 
economic variables has substantial implications. But one should not forget 
that Granger causality is a statistical concept: given a specific set of in-
formation, it asks for the (incremental) predictability of y using x. The 
power of these tests, especially of the Haugh-Pierce test, is often rather 
low and spurious independence might occur, sometimes caused by omitted 
variables. But, nevertheless, it is not sensible in this context to speak of 
mis-specifications as this always presupposes the existence of a ‘true’ 
model. A concept that allows results only according to a specific informa-
tion set has no room for the idea of a ‘true’ model. As shown above, this 
does not preclude that (stochastic) economic models imply Granger causal 
relations for the variables included in these models. 
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4   Vector Autoregressive Processes 

The previous chapter presented a statistical approach to analyse the rela-
tions between time series: starting with univariate models, we asked for re-
lations that might exist between two time series. Subsequently, the ap-
proach was extended to situations with more than two time series. Such a 
procedure where models are developed bottom up to describe relations is 
hardly compatible with the economic approach of theorising where – at 
least in principle – all relevant variables of a system are treated jointly. For 
example, starting out from the general equilibrium theory as the core of 
economic theory, all quantities and prices in a market are simultaneously 
determined. This implies that, apart from the starting conditions, every-
thing depends on everything, i.e. there are only endogenous variables. For 
example, if we consider a single market, supply and demand functions si-
multaneously determine the equilibrium quantity and price. 

In such a system where each variable depends on all the other ones, the 
structural form of an econometric model is no longer identifiable. We need 
additional information to identify it. In traditional econometrics, it is usu-
ally assumed that such information is available. One might, for example, 
plausibly assume that some variables are not included in some equations. 
In a market for agricultural products, for example, there should be no (di-
rect) impact of consumer income on the supply nor of the weather on the 
demand of such products.  

However, CHRISTOPHER A. SIMS (1980) exemplified that such exclu-
sion restrictions are no longer justified as soon as we assume that individu-
als have rational expectations. For example, the world market prices of 
coffee largely depend on the Brazilian production, which is put on the 
market in autumn. If a hard frost in spring destroys a significant part of the 
Brazilian coffee harvest, supply will be smaller in autumn. This should 
lead to higher prices. At first glance, this should have no impact on the 
demand function. However, if American consumers know about the frost, 
they might try to buy additional (still cheap) coffee in order to stock up. 
Thus, the weather in Brazil becomes a determinant of the coffee demand in 
the United States; a variable which was thought to be excludable from the 
demand function is now included. According to CH. A. SIMS, nearly all ex-
clusion restrictions are incredible. 
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He developed the approach of Vector Autoregressive Systems (VAR) as 
an alternative to the traditional simultaneous equations system approach. 
Starting from the autoregressive representation of weakly stationary proc-
esses, all included variables are assumed to be jointly endogenous. Thus, 
in a VAR of order p (VAR(p)), each component of the vector X depends 
linearly on its own lagged values up to p periods as well as on the lagged 
values of all other variables up to order p. Therefore, our starting point is 
the reduced form of the econometric model. With such a model we can 
find out, for example, whether specific Granger causal relations exist in 
this system. In doing so, we follow a top-down approach based on an 
econom(etr)ic philosophy contrary to the statistical bottom-up approach of 
CLIVE W.J. GRANGER. However, it has to be mentioned that the number of 
variables that can jointly be analysed in such a system is quite small; at 
least in the usual econometric applications, this is limited by the number of 
observations which are available. Nevertheless, vector autoregressive sys-
tems play a crucial role in modern approaches to analyse economic time 
series. This holds, for example, for the LSE-Approach which was origi-
nally developed by J. DENNIS SARGAN (1964) at the London School of 
Economics (LSE) and today is most prominently represented by DAVID F. 
HENDRY.  

This chapter will show the conclusions about the relation between sta-
tionary time series that can be drawn from such a system. Essentially, we 
ask how new information that appears at a certain point in time in one 
variable is processed in the system and which impact it has over time not 
only for this particular variable but also for the other variables of the sys-
tem. In this context, we will introduce two new instruments: the impulse 
response function and the variance decomposition. The latter depends on 
the possibility shown in Section 2.4 that the variance of a weakly station-
ary variable can be reconstructed as the variance of the forecast error if the 
prediction horizon goes to infinity.  

In the following, the autoregressive and the moving average representa-
tions of the system as well as its error correction representation are pre-
sented (Section 4.1). Furthermore, we will see how forecasts can be gener-
ated in such a system. Section 4.2 asks for possible Granger causal 
relations between sub-vectors in this system. Section 4.3 presents the im-
pulse response analysis and Section 4.4 the variance decomposition. We 
close with some remarks on the status of the economic theory in such a 
system (Section 4.5). 
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4.1   Representation of the System 

We start with the k-dimensional stochastic process X. The reduced form of 
the general linear dynamic model of this process, a vector autoregression 
of order p, VAR(p), can be described as 

(4.1) Xt   =     +  A1 Xt-1  +  A2 Xt-2  +  ...   +  Ap Xt-p  +  Ut . 

The Ai, i = 1, ..., p, are k-dimensional quadratic matrices, and U represents 
the k-dimensional vector of residuals at time t. The vector of constant 
terms is denoted as . This system can compactly be written as 

(4.1') Ap(L) Xt  =    +  Ut , 

with 

Ap(L)   =   Ik  –  A1L  –  A2L
2 –  …  –  ApL

p , 

E[Ut]  =  0,   E[Ut Ut']  =  uu,   E[Ut Us']  =  0   for   t    s, 

where, again, we drop the suffix p of the matrix polynomial Ap(L) for ease 
of convenience. The residuals U might be contemporaneously correlated 
which indicates instantaneous relations between the endogenous variables 
in relation (4.1). 

This system is stable if and only if all included variables are weakly sta-
tionary, i.e. if (with stochastic initial conditions) all roots of the character-
istic equation of the lag polynomial are outside the unit circle, i.e. 

(4.2) det(Ik  –  A1 z  –  A2 z
2  –  ... –  Ap z

p)    0   for   |z|    1 . 

Under this condition, system (4.1') has the MA representation  

(4.3) Xt =   A-1(L)   +  A-1(L) Ut 

 =     +  Ut –  B1 Ut-1  –  B2 Ut-2  –  B3 Ut-3  –  ... 

 =     +  B(L) Ut ,    B0  =  Ik , 

with 

B(L)  :=  I  – j
j

j 1

B L     A-1(L),     = A-1(1)   =  B(1) . 

The autocovariance matrices are defined as: 

(4.4) X( )   =   E[(Xt – )(Xt-  – )'].  

Without loss of generality, we set  = 0 and, therefore,  = 0. Due to (4.1), 
it holds that  



128      4   Vector Autoregressive Processes 

E[Xt Xt-  '] =    A1 E[Xt-1 Xt-  ']  +  A2 E[Xt-2 Xt-  ']  +  ... 

   +  Ap E[Xt-p Xt-  ']+  E[Ut Xt-  '] . 

This leads to the equations determining the autocovariance matrices for   0:  

(4.5a) X( ) =   A1 X( –1)  +  A2 X( –2)  +  ...  +  Ap X( –p),    

(4.5b) X(0) =   A1 X(–1)  +  A2 X(–2)  +  ...  +  Ap X(–p)  +  uu  

  =   A1 X (1)'  +  A2 X (2)'  +  ...  +  Ap X (p)'  +  uu  . 

The last equation is due to the fact that ij( ) = ji(– ) holds for the ij-
element of X( ), ij( ). Thus, X( ) = X (– )' . 

The individual correlation coefficients are defined as   

ij( )   =   ij

ii jj

( )

(0) (0)
 ,   i, j,  =  1, 2, ..., k. 

Thus, we get the autocorrelation matrices as  

(4.6) RX( )   =   D-1 X( ) D-1  

with 

D-1   =   

11

22

kk

1/ (0) 0 0

0 1/ (0) 0

0 0 1/ (0)

 . 

Example 4.1 

Let the following VAR(1) model be given: 

1,t

2,t

x

x
   =   

0.6 0.3

0.3 0.6
1,t 1

2,t 1

x

x
  +  1,t

2,t

u

u
 

with 

uu   =   
1.00 0.70

0.70 1.49
, 

or, in the compact representation 

(E4.1) (I  –  A1 L) Xt   =   Ut . 
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To check whether the system is stable, the roots of |I – A1z| = 0 have to be calcu-
lated according to (4.2), i.e. we have to solve the system 

1 0.6z 0.3z

0.3z 1 0.6z
  =   0 . 

This results in  

z1  =  10

9
 ,   z2  =  10

3
 , 

which both are larger than one in modulus. Thus, the system is stable. The MA 
representation of (E4.1) is given as  

Xt   =  
1

I

I A L
Ut   =   (I  +  A1 L  +  2

1A L2  +  ...) Ut , 

or, explicitly written as, 

1,t

2,t

x

x
  =  1,t

2,t

u

u
  +  

0.6 0.3

0.3 0.6
1,t 1

2,t 1

u

u
  +  

0.45 0.36

0.36 0.45
1,t 2

2,t 2

u

u
 

+  
0.378 0.351

0.351 0.378
1,t 3

2,t 3

u

u
  +   ... . 

For the variance-covariance matrix we get, because of (4.5), 

x(0)   =   A1 x(1)'  +  uu , 

x(1)   =   A1 x(0) . 

This leads to 

(E4.2) x(0)   =   A1 x(0) A1' +  uu . 

To get the variances 11(0) and 22(0) for x1 and x2 as well as their covariance 
12(0), we have to solve the following linear equation system because of (E4.2): 

 0.64 11(0)  + 0.36 12(0)  – 0.09 22(0)   = 1.00 

 0.18 11(0)  + 0.55 12(0)  +  0.18 22(0)  =  0.70 

 – 0.09 11(0)  + 0.36 12(0)  + 0.64 22(0)  = 1.49 

This leads to 
11(0)  =  2.17,   12(0)  =  -0.37,   22(0)  =  2.84. 

Thus, the instantaneous correlation between x1 and x2 is -0.15. 
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VAR(p) models are often used for forecasting. According to the considera-
tions in Section 2.4, the following holds for the autoregressive representa-
tion (4.1): 

(4.7) tX̂ (1)  =   Et[Xt+1] 

  =     +  A1 Xt  +  A2 Xt-1  +  ...   +  Ap Xt-p+1 

tX̂ (2)   =     +  A1 tX̂ (1)   +  A2 Xt  +  A3 Xt-1  +  ...   +  Ap Xt-p+2 . 

Alternatively, we get 

(4.8) tX̂ (1)    =     –  B1 Ut  –  B2 Ut-1  –  B3 Ut-2  –  ...  

for the MA representation (4.3) . 
While the autoregressive representation is mainly relevant to generate 

forecasts, the MA representation is used for calculating the corresponding 
forecast errors as well as for additional methods to analyse the dynamic 
properties of the system. 

As an alternative to the AR and MA representations (4.1') and (4.3), 
there is an error correction representation for every stationary VAR of or-
der p: 

(4.9) *
p 1A (L) Xt   =     –  A(1) Xt-1  +  Ut, 

with 

*
p 1A (L)   =  I  –  *

1A L  –  ...  –  *
p 1A Lp-1 

and 

*
iA   =   

p

j
j i 1

A ,   i  =  1, 2, ..., p–1. 

As the vectors Xt-i, i = 1, ..., p-1, together with Xt-1, generate the same 
vector space as the vectors Xt-i, i = 1, ..., p, the (finite order) autoregressive 
representation and the error correction representation are observationally 
equivalent. The advantage of the latter is that A(1), the matrix of the long-
run equilibrium relations, can be estimated directly in the framework of a 
linear model. 

Example 4.2 

We start with the general dynamic model of a single equation, but (for reasons of 
simplicity) we consider only one explanatory variable which is assumed to be ex-
ogenous: 
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(E4.3) p(L) yt   =      +  q(L) xt  +  ut . 

In the long-run equilibrium it holds that  

yt  =  yt-1  =  ...  =  yt-p  =  ...  =  y , 

xt  =  xt-1  =  ...  =  xt-q  =  ...  =  x , 

ut  =  0. 

From this we get for the long-run equilibrium:  

(E4.4) p(1) y   =      + q(1) x  , 

y   =   q

p p

(1)

(1) (1)
x  

=     +   x   

with 

  =  / p(1),     =  ßq(1)/ p(1). 

According to (4.9), if y and x are weakly stationary (or, as discussed in Chapter 6, 
nonstationary but cointegrated), the following representation of the general dy-
namic linear model is an alternative to (E4.3). Here, the short- and long-run effects 
are separated and can be directly estimated: 

(E4.5)  *
p 1 (L) (1 – L)yt   =     +  *

q 1 (L) (1 – L)xt  –  0 yt-1  +  1 xt-1  +  ut  

with 

*
p 1  (L)   =   1  –  *

1 L  –  ...  –  *
p 1 Lp-1, 

*
i   =   

p

j
j i 1

,   i  =  1, 2, ..., p–1, 

*
q 1  (L) =   *

0   –  *
1 L  –  ...  –  *

q 1 Lq-1, 

*
i   =  

q

j
j i 1

 ,   j  =  1, 2, ..., q–1,   *
0  =  0 . 

0  =  p(1),   1  =  q(1). 

In equilibrium yt = xt = 0 and ut = 0 hold and, therefore, yt = y  as well as xt = 

x  for all t. From this it follows that 

–  0 y   +    +  1 x    =   0  

or 
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– p(1) y   +    +  ßq(1) x    =   0 , 

and again we get (E4.4) as representation of the long-run equilibrium.  

Example 4.3 

We consider the relation between the German (GER) and the Swiss (SER) three 
months money market rates. We use monthly data for the period from January 
1975 to November 1998. Preliminary Granger causality tests (the results of which 
are not given here) have indicated that, along with an instantaneous relation, there 
is a simple causal relation from German to Swiss interest rates: The null hypothe-
sis that there is also a simple relation in the reverse direction can neither be re-
jected by using first differences nor by using levels at any conventional signifi-
cance level. Assuming that the instantaneous causation runs from German to 
Swiss interest rates, using levels we get the following equation for the Swiss rates: 

SERt   =   – 0.121
( 1.60)

  + 0.717
(9.10)

GERt  + 0.994
(18.68)

SERt-1  – 0.080
( 1.57)

SERt-2 

– 0.636
( 7.66)

GERt-1  +  ût, 

2R  =  0.965,   SE  =  0.466,   Q(10)  =  8.810 (p  =  0.550). 

(The numbers in parentheses are again the estimated t statistics). If we estimate the 
error correction representation directly, we get the following result: 

SERt  =   – 0.121
( 1.60)

  + 0.717
(9.10)

 GERt  + 0.080
(1.57)

 SERt-1  – 0.086
( 4.00)

SERt-1 

 + 0.081
(3.66)

GERt-1  +  ût, 

Both relations are observationally equivalent. Aside from the multiple correlation 
coefficient, all test statistics for the equation as well as the residual error variance 
take the same values. On the other hand, as the variance of the dependent variable 
is reduced by taking first differences, the 2R  necessarily decreases; its value is 
now 0.286. 

Moreover, the linear estimate of the error correction model is equivalent to the 
following non-linear estimation: 

SERt  =   0.717
(9.10)

 GERt  + 0.080
(1.57)

 SERt-1  – 0.086
( 4.00)

(SERt-1 + 1.419
(1.63)

   

– 0.946
( 6.98)

GERt-1)  +  ût, 
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The estimate shows that during this period Swiss short-run interest rates devel-
oped parallelly with the German rates, but on a level lower by about 1.5 percent-
age points, i.e. the so-called ‘Swiss interest rate bonus’ was about 1.5 percentage 
points. As the estimated coefficient of GERt-1 is not significantly different from 
one, this relation is consistent with a relative version of uncovered interest parity.  

Relation (4.1), the starting point of the entire approach, is the reduced form 
of a dynamic linear econometric system where each equation includes the 
same explanatory variables. Therefore, the different equations of this sys-
tem can be estimated using OLS. This leads to consistent estimates of the 
parameters with the same efficiency as a generalised least squares estima-
tor. However, if there are zero restrictions, the individual equations of the 
system are considered as seemingly unrelated and are therefore simultane-
ously estimated as a system. Here, the SUR method is applied to get effi-
cient estimates.  

To estimate the system, the order p, i.e. the maximal lag of the system, 
has to be determined. As (4.1) shows, the same maximal lag is used for all 
variables. In order to fix p, the information criteria described in Section 

2.1.5 can be used again. HELMUT LÜTKEPOHL (1991, pp. 128ff.), for ex-
ample, showed that in the multivariate case with k variables, T observa-
tions, a constant term and a maximal lag of p, these criteria are as follows:  

(i) The final prediction error (FPE): 

(4.10a) FPE(p)   =   
k

ˆ ˆuu

T k p 1
(p)

T k p 1
 

(ii) The Akaike criterion (AIC): 

(4.10b) AIC(p)   =   2
ˆ ˆuu

2
ln (p) (k pk )

T
. 

(iii) The Hannan-Quinn criterion (HQ): 

(4.10c) HQ(p)   =   2
ˆ ˆuu

2ln(ln(T))
ln (p) (k pk )

T
. 

(iv) The Schwarz criterion (SC): 

(4.10d) SC(p)   =   2
ˆ ˆuu

ln(T)
ln (p) (k p k )

T
. 

ˆ ˆuu (p)  is the determinant of the variance-covariance matrix of the esti-

mated residuals. Again it holds that the Hannan-Quinn criterion as well as 
the Schwarz criterion consistently determine the (finite) order of the true 
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maximal lag, while the final prediction error and the Akaike criterion tend 
to overestimate it. This is also reflected in the following relations which, 
because of the different punishing terms, hold for these criteria: 

(i) p̂ (SC)    p̂  (HQ), 

(ii) p̂  (SC)    p̂  (AIC)   for   T    8, 

(iii) p̂  (HQ)    p̂  (AIC)   for   T    16. 

Example 4.4 

We use the same quarterly data and the same period from 1965 to 1989 as in Ex-

amples 3.1 to 3.5: the annual growth rate of real GDP ( 4ln(GDPr)), the annual 
growth rate of the real quantity of money M1 ( 4ln(M1r)), and the interest rate dif-
ferential (GLR – GSR). Considering the whole system, we get the following val-
ues for the information criteria:  

p  =  2:   AIC  =  10.210,   SC  =  10.757, 

p  =  3:   AIC  =  10.341,   SC  =  11.123, 

p  =  4:   AIC  =  10.409,   SC  =  11.425. 

Thus, according to the Akaike as well as to the Schwarz criterion (and, therefore, 
also according to the Hannan-Quinn criterion) we get an optimal lag length of two 
periods. This leads to the following estimates: 

4 r,t

4 r ,t

t

ln(GDP )

ln(M1 )

(GLR GSR)

  =   

0.142

1.094

0.510

  +  
4 r,t 1

4 r,t 1

t 1

0.611 0.078 0.133 ln(GDP )

0.183 0.761 0.981 ln(M1 )

0.015 0.036 0.995 (GLR GSR)

 

  +  
4 r,t 2

4 r,t 2

t 2

0.096 0.091 0.205 ln(GDP )

0.024 0.108 0.438 ln(M1 )

0.077 0.070 0.128 (GLR GSR)

  +  
1,t

2,t

3,t

û

û

û

. 

For the individual equations we get the following test statistics:  

(i)  4ln(GDPr): SE = 1.327,  AIC = 3.471,  SC = 3.654, 

Q(10) = 16.406 (p = 0.089), 

(ii) 4ln(M1r): SE = 1.905,  AIC = 4.194,  SC = 4.376, 

Q(10) = 20.024 (p = 0.029), 

(iii) GLR – GSR: SE = 0.786,  AIC = 2.422,  SC = 2.605, 

Q(10) = 17.296 (p = 0.068). 
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Between the residuals the following correlations exist:  

12
ˆ  = 0.102,  13

ˆ  = 0.045,  23
ˆ  = 0.285. 

Again, we see the instantaneous relation between the growth rate of real M1 and 
the interest rate differential.  

Although the VAR(2) model is the best with respect to information criteria, the 
values of the Box-Ljung statistic indicate that the residuals of all three equations 
are still autocorrelated. Thus, the dynamics of the system is not fully captured. 
However, when specifying vector autoregressive models it is important that the re-
siduals are really white noise. If we estimate a VAR(4) model, we get the follow-
ing values for the test statistics of the different equations: 

(i)  4ln(GDPr): SE = 1.333,  AIC = 3.533,  SC = 3.872,   

Q(8) = 9.340 (p = 0.314), 

(ii) 4ln(M1r): SE = 1.762,  AIC = 4.092,  SC = 4.431,   

Q(8) = 11.390 (p = 0.181), 

(iii) GLR – GSR: SE = 0.777,  AIC = 2.454,  SC = 2.793, 

Q(8) = 9.661 (p = 0.290). 

For the instantaneous correlations we get:  

12
ˆ  = 0.081,  13

ˆ  = 0.054,  23
ˆ  = 0.280. 

The values of these criteria change considerably. The standard error of regression 
slightly improves in the M1 equation and hardly changes in the other equations. 
The Akaike criterion also improves in the M1 equation, but deteriorates slightly in 
the other equation, while the Schwarz criterion always deteriorates. On the other 
hand, the values of the Box-Ljung Q statistic improve considerably in all three 
equations; now the null hypothesis that there is no autocorrelation left in the re-
siduals can never be rejected. The lowest p value is 0.18. Thus we will use the 
VAR(4) model for all further calculations in this chapter.  

Contrary to the parsimony principle applied in the univariate analysis, the 
VAR(p) models are over-parameterised systems. The individual parame-
ters can hardly be interpreted meaningfully. For this reason, other methods, 
like Granger causality tests, impulse response analyses and variance de-
compositions, are employed. These methods are presented in the follow-
ing. 
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4.2   Granger Causality 

Now we will consider the Granger causal relations between the two sub-
vectors X1 and X2 of the vector X. X1 has the dimension m and X2 the di-
mension k – m, 0 < m < k. For the MA representation we get 

(4.11a) Xt   =   1,t

2,t

X

X
   =   1

2

 + 11 12

21 22

B (L) B (L)

B (L) B (L)
1,t

2,t

U

U
 . 

The corresponding AR representation is: 

(4.11b) 11 12

21 22

A (L) A (L)

A (L) A (L)
1,t

2,t

X

X
   =   1

2

 + 1,t

2,t

U

U
 . 

Irrespective of instantaneous causality; the following is true for (4.11): 

(i) X2 is not Granger causal to X1 if and only if B12(L)  0. Analogous to 
Section 3.2.1 it holds that B12(L)  0 is equivalent to A12(L)  0. Thus, 
it also holds that X2 is not Granger causal to X1 if and only if A12(L)  
0 in the corresponding AR representation. 

(ii) X1 is not Granger causal to X2 if and only if B21(L)  0. Analogous to 
Section 3.2.1 it holds that B21(L)  0 is equivalent to A21(L)  0. Thus, 
it also holds that X1 is not Granger causal to X2 if and only if  A21(L) 

 0 in the corresponding AR representation. 

As in the bivariate case instantaneous relations involve some complica-
tions. The variance-covariance matrix of the system (4.1) can be decom-
posed into:  

(4.12) uu   =   P P', 

where P is a regular lower triangular matrix. Such a (Choleski) decomposi-
tion exists for each regular variance-covariance matrix. Using this triangu-
lar matrix, the MA representation (4.3) can be transformed in the following 
way:  

(4.13) Xt   =      +  Ut  –  j t j
j 1

B U  

 Xt   =      +  P P-1 Ut  –  1
j t j

j 1

B P P U  
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 =     +  P Wt  –  j t j
j 1

W  

 =     +  (L) Wt, 

with 

j  =  Bj P,   0  =  P,   Wt  =  P-1 Ut, 

ww =   P-1 uu P
-1'   =   P-1 P P' P-1' 

 =   Ik . 

Thus, the following decomposition exists for the subvectors:  

Xt   = 1,t

2,t

X

X
   =   1

2

 + 
0
11
0 0
21 22

0 1,t

2,t

W

W
 

 + 
1 1
11 12
1 1
21 22

1,t 1

2,t 1

W

W
  +  ...  . 

W is a vector of innovations whose elements – contrary to the elements of 
U – are also instantaneously uncorrelated. Moreover, the variances of these 
elements are 1. 

The transformation with matrix P implies an ordering of the variables; 
causal directions are assumed for the instantaneous relations. The variable 
xi has an impact on the variable xj, j > i, while the instantaneous relation in 
the reverse direction is excluded. In terms of traditional econometrics, this 
implies that the model is exactly identified and, correspondingly, the pa-
rameters of the structural form can be consistently estimated using OLS. 
This method to identify the model is one possibility to proceed from the 
reduced to the structural form of a simultaneous system of equations and to 
give the innovations an economic interpretation. This structural form is 
called structural VAR. Due to the exact identification, the residuals of the 
different equations are not crosscorrelated with each other. 

The following holds for this system: There is no instantaneous causality 
if and only if 0

21  = 0. In this situation uu is block diagonal, i.e. it holds 
that  

E[U1,t U2,t']   =   0. 

The fact that X2 is not causal to X1 and that there is no instantaneous cau-
sality leads to 
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0
21  =  0      1

12  =  2
12  =  ...  =  0. 

Such results depend, of course, on the sequence of the different variables, 
i.e. on the kind of causal order assumed for the instantaneous relations.  

Example 4.5 

If we divide the three variables of the vector of Example 4.4 in the following way: 

X1  =  [ 4ln(GDPr)],   X2'  =  [ 4ln(M1r)   GLR – GSR], 

we get the following results by using Wald tests: 

(i)  H0: ¬ (X2  X1): 
2ˆ  = 28.272 (p = 0.000), 

(ii) H0: ¬ (X1  X2): 
2ˆ = 25.992 (p = 0.001), 

(iii) H0: ¬ (X1 – X2): 
2ˆ = 0.658 (p = 0.720). 

Thus, there is feedback but no instantaneous relation between the subvectors.  

4.3   Impulse Response Analysis 

In the following, we show how, at a specific point of time t0, an impulse 
that originates from one equation proceeds through the system: How does 
a change in the residuals 

0i,tu  or in the innovations 
0i,tw , i = 1, ..., k, influ-

ence the components of the vector X? In system (4.3), the use of the multi-
variate Wold representation instead of the MA representation   

Xt   =     + 0 Ut +  1 Ut-1  +  2 Ut-2  +  3 Ut-3  +  ... , 

0  =  I,   i  =  - Bi,   i  =  1, 2, ...,  

with ji ,  = 0, 1, 2, ..., results in the so-called impulse response se-

quences. They measure the effect of a unit impulse, i.e. of a shock with the 
size of one standard deviation of the error term ui of the variable i at time t0 
on the variable j in later periods. As Ut are the residuals of the reduced 
form, they are in general crosscorrelated and, therefore, have no direct 
economic interpretation. Thus, it makes sense not to investigate shocks 
with respect to the residuals U but with respect to the innovations W which 
are not crosscorrelated. Because of the Choleski decomposition of the 
variance-covariance matrix of the residuals U, in accordance with the con-
siderations in Section 4.2, the innovations can be calculated as  

Wt   =   P-1 Ut, 
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with a lower triangular matrix P. Due to (4.13), the MA representation of 
X can – analogously to the Wold decomposition – be written as 

(4.14) Xt   =     +  0 Wt  +  1 Wt-1  +  2 Wt-2  +  ... 

with 0 = P and i = -Bi P = i P, i = 1, 2, ... . Here, 0
ji  are impact multi-

pliers that measure the immediate impact of a unit shock in variable i on 
variable j. The lagged effects are described by the k2 impulse response se-
quences ji , i,j = 1, ..., k,  = 1, 2, ..., ; they show how each of the k vari-

ables are influenced by each of the k innovations. The reaction of the vec-
tor X at time t0+m on the innovations at time t0 leads to  

0t mX   =   m 
0t

U    =   m 
0t

W  , 

or, if  we only consider non crosscorrelated unit shocks,  

0t mX   =   m . 

If we set m = 1, 2, ..., we can observe (and graphically represent) the time 
path. If it is a stationary system, the effect expires over time, i.e. the values 
of the impulse response function (at least asymptotically) approach zero. 
This implies that after a unique shock the variables return to their mean.  

The cumulative impulse response function describes the effects of a 
permanent shock on the system. The cumulative effects of a unit shock up 
to period t0+m are given by 

m

j
j 0

 

If, in a stationary system, m tends to infinity, we get    

(4.15) 
m

jm
j 0

lim    =   (1)   =   B(1) P   =   A(1)-1 P 

for the long-run effect. 

Example 4.6 

Again, we consider the model of Example 4.1. To calculate the innovations of this 
VAR(1) process, it is assumed that x2 does not have an instantaneous impact on 
x1. For the decomposition uu = P P', we denote the elements of the lower triangu-
lar matrix as: 
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P   =   11

21 22

p 0

p p
 . 

Due to (4.12) we get 

1.00 0.70

0.70 1.49
  =  

2
11 11 21

2 2
11 21 21 22

p p p

p p p p
 

From this we derive p11 =  p22 = 1 and p21 = 0.7. The innovations W can be calcu-
lated as 

1,t

2,t

w

w
  =   P-1 1,t

2,t

u

u
  =  

1.0 0.0

-0.7 1.0
1,t

2,t

u

u
, 

or 
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Figure 4.1:   Impulse response functions 
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w1,t   =   u1,t, 

w2,t   =   u2,t  –  0.7 u1,t. 

For the impulse response analysis, we need representation (4.14). This leads to 

 Xt =   A1 Xt-1  +  Ut, 

  =   i
1 t i

i 0

A U  

 =   i 1
1 t i

i 0

A P P U   =  i t i
i 0

W , 

with 

i  =  i
1A P,   i  =  1, 2, ... . 

Thus, we get the following matrices: 
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Figure 4.2:   Cumulative impulse response functions  
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 0  =  
1.0 0.0

-0.7 1.0
,   1  =  

0.39 -0.30

0.12 0.60
,   2  =  

0.20 -0.36

-0.05 0.45
, 

 3  =  
0.13 -0.35

-0.09 0.38
, ... 

The numerical results as well as the graphical representations of the impulse re-
sponse functions in Figure 4.1 show that an innovation in x1 does not have a per-
manent effect on the system. The impact on the variable itself as well as on x2 is 
dying away relatively fast. For the latter, we get a slightly positive impact for the 
first period, and, subsequently, very small negative impacts. 

By contrast, a shock in x2 has a longer lasting impact on the variable itself as 
well as on x1. As, in order to identify the system, we assumed that P is a lower tri-
angular matrix, i.e. that x2 has no instantaneous impact on x1, the first value in the 
impulse response function of x1 on x2 is zero. 
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Figure 4.3:   Impulse response functions 
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The cumulative impulse response functions in Figure 4.2 show that after the 
initial effect of the reaction of x2 on x1 the system converges monotonically to its 
long-run limiting values (multipliers). Because of (4.15) and (E4.1) we get 

A(1)-1 P   =  (I – A1)
-1 P   =  

2.714 -4.268

-0.286 5.714
. 
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Figure 4.4:   Cumulative impulse response functions 

Example 4.7 

For the system given in Examples 4.4 and 4.5, ordinary and cumulative impulse 
response functions are estimated. We assumed for the instantaneous relations that 
the interest rate differential has an impact on the quantity of money as well as on 
GDP, while the instantaneous impact of real M1 is restricted to GDP. Thus, we as-
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sume the following ordering of the variables: (GLR – GSR)  4ln(M1r)  
4ln(GDPr). 
The results are presented in Figures 4.3 and 4.4. Furthermore, the analytically 

derived 95 percent confidence intervals are indicated. Figure 4.3 shows that in the 
short run, the increase of the interest rate differential has a positive impact on real 
money as well as – with some delay – on GDP. (GEBHARD KIRCHGÄSSNER and 
MARCEL R. SAVIOZ (2001) showed that this effect results from the reduction of 
the short-run interest rate and not from an increase of the long-run interest rate.) 
Additionally, there is a short-run impact of real M1 on GDP. This impact lasts two 
years at the most; after nine quarters the impulse response function is no longer 
significantly different from zero. As Figure 4.4 shows, the only long-run impact is 
that of the interest rate differential on the two other variables; all other cumulative 
impulse response functions are no longer significantly different from zero after 
three years at the latest.  

4.4   Variance Decomposition 

The starting point of the following discussion is the transformed Wold rep-
resentation (4.14) 

Xt   =     +  j t j
j 0

W ,   ww  =  I. 

Taking conditional expectations, we get 

Et[Xt+ ]   =    + 
1

j t t j
j 0

E [W ]   +  j t j
j

W . 

Due to Et[Wt+s] = 0 for s > 0 the terms for  j = 0, 1, ..., -1 can be omitted, 
while the values for j   are already realised and therefore observable. 
Thus, following the considerations in Section 2.4, we get for the optimal 
forecasts 

(4.16) tX̂ ( )   =    + j t j
j

W . 

For the data generating process we can write 

Xt+    =    + j t j
j 0

W . 

The forecast error is given by  
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(4.17) Ft(Xt+ )  =   Xt+   –  tX̂ ( )  

Ft(Xt+ )  =  
1

j t j
j 0

W . 

With an increasing forecast horizon, i.e. for   , the forecast error con-
verges to the stochastic part of the  process.  

The forecast error can be decomposed in the following way: For its j-th 
component, j  {1, ..., k}, it holds that 

xj,t+   –  j,tx̂ ( )  =   
1

i
j1 1,t i

i 0

w  +  ...  + 
1

i
jk k,t i

i 0

w  

 =  
1k

i
jm m,t i

m 1 i 0

w , 

i.e. we have a summation not only over the different time periods, i = 0, ..., 
-1, but also over the contributions of the different innovations wm, m = 1, 

..., k. 
As ww = I, i.e. because the individual elements of W are not only white 

noise and uncorrelated with each other but also have variance of one, it 
holds for the variance of the components of this forecast error that  

(4.18) E[(xj,t+   –  j,tx̂ ( ) )2] =   

2
1k

i
jm m,t i

m 1 i 0

E w  

  =   
1k 2i

jm
m 1 i 0

, 

i.e. because of E[wm,t+ -i wr,t+ -s] = 0 except for m = r and i = s, all cross 
terms are omitted, and because of E[(wm,t+ -i)

2] = 1 only the squares of the 
coefficients are left.  

On the other hand, the variance can be decomposed into those parts that 
are generated by the impact of the individual innovations wm, m = 1, ..., k, 
on the variable j when a forecast over  periods is performed. In this case, 
we get  

(4.19) 

1
2i

j m
i 0

jm 1k 2i
j s

s 1 i 0

,    m  =   1, ..., k,     =  1, 2, ...  



146      4   Vector Autoregressive Processes 

for the respective shares. 
With an increasing time horizon, i.e. for   , it is not only the vari-

ance of the forecast error but also the variance of the variable itself that can 
be decomposed into those fractions that are generated by the different in-
novations wm. As these fractions are, by construction, orthogonal to each 
other, they add up to one. Thus, the analysis of the forecast errors leads to 
a decomposition of the variances of the system’s variables.  

Example 4.8 

The variance decomposition of the VAR(1) process described in Examples 4.1 and 
4.6 is presented in Table 4.1. Here, the immediate effects in the first period are 
presented, the effects after 4, 8, and 20 periods as well as the long-run effects. In 
the first period, according to the identifying restriction that there is no instantane-
ous effect from x2 to x1, in the first period the variance of x1 is exclusively gener-
ated by its own innovations. The impact of x2 on x1 increases monotonically and 
in the long-run generates about 42 percent of the variance of this variable. Con-
trary to this, the impact of x1 on x2, rather strong with 33 percent in the first pe-
riod, decreases over time, and in the long-run generates only about 20 percent of 
the variance of x2. Thus, 80 percent of the variance of x2 are generated by its own 
innovations and only 20 percent by those of x1, while only 58 percent of the variance 
of x1 are generated by its own innovations, but 42 percent by the innovations of x2. 
 

Table 4.1:   Variance Decomposition 

Forecast horizon  x1 x2 

x1 100.000 0.000 
1 period 

x2 32.834 67.166 

x1 77.866 22.134 
4 periods 

x2 23.089 76.911 

x1 65.085 34.915 
8 periods 

x2 20.957 79.043 

x1 58.527 41.473 
20 periods 

x2 19.838 80.162 

x1 58.020 41.980 
infinity 

x2 19.748 80.252 
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Example 4.9 

The variance decomposition for the vector autoregressive process of Example 4.4 
is given in Table 4.2a. First, we again suppose the causal direction (GLR – GSR) 

 4ln(M1r)  4ln(GDPr). We consider the immediate reaction, i.e. the reaction 
in the same quarter in which the innovation occurs, forecast horizons of one, two, 
and five years, as well as an infinite forecast horizon in order to capture the de-
composition of the total variance.  
 

Table 4.2a:  Variance Decomposition  
1/65 – 4/89, 100 Observations 

Forecast horizon  4ln(GDPr) 4ln(M1r) GLR – GSR 

4ln(GDPr) 99.231 0.482 0.286 

4ln(M1r) 0.000 92.202 7.798 1 quarter 

GLR – GSR 0.000 0.000 100.000 

4ln(GDPr) 82.898 12.479 4.621 

4ln(M1r) 8.994 41.336 49.670 1 year 

GLR – GSR 9.223 0.487 90.289 

4ln(GDPr) 51.948 15.604 32.448 

4ln(M1r) 13.896 34.910 51.193 2 years 

GLR – GSR 16.124 8.998 74.878 

4ln(GDPr) 48.235 16.049 35.716 

4ln(M1r) 14.738 35.244 50.018 5 years 

GLR – GSR 15.719 13.062 71.219 

4ln(GDPr) 48.187 16.132 35.681 

4ln(M1r) 14.733 35.258 50.009 infinity 

GLR – GSR 15.676 13.079 71.244 

 

In the first quarter, the variances of all variables are mainly driven by their own 
innovations. This also holds for the growth rate of real GDP. Again, this indicates 
that there is hardly any instantaneous relation between the two monetary variables 
on the one hand and the real variable on the other hand. During the first year it is 
mainly the quantity of money that has an impact on GDP, while the interest rate 
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spread, which has already had a considerable impact on the quantity of money in 
the first year, only fully affects real GDP in the second year. After about two 
years, the process of monetary policy influencing real developments is almost 
complete. Altogether, about half of the variance of the growth rate of real GDP is 
caused by its own innovations, while the other half results from monetary innova-
tions. About two thirds of them are generated by the interest rate differential and 
less than one third by the quantity of money. Moreover, there is a clear hierarchy 
between the two monetary variables: while the interest rate has a strong impact on 
the quantity of money, also in the long run, the reverse impact is quite weak. In 
addition, the feedback from real development to monetary variables is also rather 
weak. 
 

Table 4.2b:  Variance Decomposition 

1/65 – 4/89, 100 Observations 

Forecast horizon  4ln(GDPr) 4ln(M1r) GLR – GSR 

4ln(GDPr) 99.231 0.667 0.102 

4ln(M1r) 0.000 100.000 0.000 1 quarter 

GLR – GSR 0.000 7.798 92.292 

4ln(GDPr) 82.898 15.740 1.361 

4ln(M1r) 8.994 60.685 30.321 1 year 

GLR – GSR 9.223 7.326 83.450 

4ln(GDPr) 51.948 26.995 21.057 

4ln(M1r) 13.896 50.669 35.435 2 years 

GLR – GSR 16.124 11.184 72.692 

4ln(GDPr) 48.234 25.978 25.787 

4ln(M1r) 14.738 50.970 34.292 5 years 

GLR – GSR 15.719 16.065 68.216 

4ln(GDPr) 48.187 26.033 25.780 

4ln(M1r) 14.733 50.999 34.286 infinity 

GLR – GSR 15.676 16.136 68.188 

As we have shown repeatedly, there is a well pronounced instantaneous relation 
between the two monetary variables. Insofar, the order of the variables in the sys-
tem has a considerable impact on the results. To show this, we have changed the 
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order between these two variables in Table 4.2b, i.e. we now suppose the causal 
ordering 4ln(M1r)  (GLR – GSR)  4ln(GDPr). The result is that the two 
monetary variables have about the same impact on the variance of real GDP. On 
the other hand, the hierarchy between the two monetary variables mentioned 
above is hardly influenced by this. 

4.5   Concluding Remarks 

The concept of vector autoregressive processes which was originally pro-
posed by CHRISTOPHER A. SIMS (1980) has become an indispensable in-
strument of empirical economic research. One reason is that two new 
methods of analysis were developed, impulse response analysis and vari-
ance decomposition, which provided new insights into the dynamic rela-
tions between the variables of a system. However, Chapter 6 will show 
that this approach is today mainly employed in the analysis of systems 
with nonstationary variables. 

The new procedures are mainly based on the MA representation of the 
system. First, the AR representation is used, and a finite order AR process 
is estimated. However, to analyse the effects, a transition to the MA repre-
sentation is unavoidable. This shows that the MA representation intro-
duced in Chapter 2 is not only an analytical device but also crucial to the 
substantive interpretation of the relations between the different variables of 
a system. 

Considering vector autoregressions, it becomes obvious that – compared 
to traditional econometrics – the significance of the residuals has drasti-
cally changed. In traditional econometrics, they were merely regarded as 
unexplained effects ‘disturbing’ the true relationship between the vari-
ables. In vector autoregressions they are the channel through which new 
information flows into the system. For this reason they require special con-
sideration. As the variance decomposition shows, all stochastic variables 
are finally generated by such innovations. Statistical analysis has to ask at 
what time such an innovation first appears in the system and how it ‘moves 
along’ the system. All other substantive questions can be traced back to 
these questions. 

Finally, there is the same problem as when we discussed the concept of 
Granger causality: data analysis alone is not sufficient to make meaningful 
statements about the relations between (economic) variables. First, we 
need information on which variables are to be jointly investigated in such a 
system. When considering vector autoregressions, this question is of spe-
cial relevance as only rather few variables (with a finite number of lags) 
can be included, given the large number of parameters to be estimated. 
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Furthermore, the problem of how to handle instantaneous relations is 
more severe than when testing for Granger causality. If such relations ex-
ist, and they nearly always exist, we need external information, i.e. infor-
mation not included in the data, to order the variables. Even if, at first 
glance, the VAR approach seems to get along without theoretical consid-
erations, we need considerable theoretical (pre-)information to apply it cor-
rectly to economic data and to be able to interpret it in a meaningful way. 
Here, ‘theory-free’ data analysis is as impossible as in other contexts. A 
further development taking this into account is the approach of structural 

vector autoregressions where identifying restrictions are used to generate 
the innovations W and to give intuitive meaning to them. 
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5   Nonstationary Processes 

So far we have only considered stationary time series. As a matter of fact, 
however, most economic time series are trending, like, for example, the 
GDP series investigated in Chapter 1. We tried to eliminate the trend by 
using first differences or growth rates. These filtered series can be investi-
gated by employing the concepts that were developed for the analysis of 
stationary time series. 

There are, however, two basic problems with this procedure. Firstly, if 
we employ these transformations, information is lost about the trends 
which have been eliminated. However, if there exist relations between the 
long-run components of economic time series, this lost information might 
be of special interest to economists. Secondly, we exclusively used visual 
inspection to determine whether a series is stationary or nonstationary. 
This procedure might raise problems whenever the roots of the lag poly-
nomial in the autoregressive part of a possible stationary process are close 
to one. In this case, it is appropriate to use test procedures in order to de-
cide by means of statistical criteria whether we will consider the time se-
ries as a realisation of a stationary or a nonstationary process. 

In the following, we first present two different concepts of trending be-
haviour, the concepts of deterministic and of stochastic trends (Section 

5.1). Then we discuss the elimination of such trends (Section 5.2). In Sec-

tion 5.3 we present tests for unit roots (stationarity) and in Section 5.4 pos-
sible decompositions of time series in a stationary and a nonstationary 
component. In Section 5.5 we present some generalisations before we fi-
nally discuss economic implications of models with either deterministic or 
stochastic trends. (Section 5.6). 

5.1   Forms of Nonstationarity 

Due to the fact that a time series represents only one realisation of a sto-
chastic process, only some special forms of nonstationarity can be handled. 
One possibility is that the expectations are time dependent, i.e. that the 
mean is determined by a deterministic trend. Such a trend might usually be 
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modelled or at least approximated by a polynomial in t, possibly after hav-
ing performed logarithmic transformations. Such a process is no longer 
mean stationary but still covariance stationary. Such trendstationary proc-
esses can be written as 

(5.1) yt   =  
m

j
j

j 0

t  + xt, 

where x is a stationary and invertible ARMA(p,q) process with mean zero. 
Thus, we have   

(5.2) (L) xt   =   (L) ut . 

It is easy to see that 

E[yt]   =   
m

j
j

j 0

t    =   t 

and that 

E[(yt – t)( yt+  – t+ )]   =   E[xt xt+ ]   =   x( ). 
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Figure 5.1: Linear and quadratic trend, superimposed  

by a pure random process 
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Because of the constant variance of the process, its realisations fluctuate 
with limited amplitude around the deterministic trend. Refer to Figure 5.1, 
where a linear and quadratic trend is superimposed by a pure random proc-
ess. The deviations from the trend are always transitory. If long-run fore-
casts are performed for such a process, these follow the mean function, and 
the forecast errors stay finite, no matter how long the forecast horizon 
might be. This is essentially a deterministic approach. Despite the fact that 
such deterministic trends are quite often used in popular analyses, they are 
in most cases no appropriate instrument for long-run forecasts. 
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Figure 5.2: Realisations of AR(1) processes 

 = 1.03 (------), = 0.97 (———) 

Another possibility to generate nonstationary processes is to use autore-
gressive processes which violate the stability conditions. If we consider, 
for example, an AR(1) process with  > 1 and the given initial condition 
y0,  

yt   =    yt-1  +  ut,    > 1 

we immediately get  

yt   =   y0 
t 

t 1
j

t j
j 0

u  . 

Therefore, we get 
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E[yt]   =   y0 
t   =   t . 

Thus, the mean of this process grows exponentially for  > 1. 
The variance of this process can be calculated as follows,  

V[yt] =   (1 + 2 + 4 + ...+ 2(t-1)) 2
u  , 

 =   
2t

2

1

1
 2

u  , 

i.e. the variance also grows exponentially with t. Thus, the process is ex-
plosive. 

We get a stationary development for AR(1) processes if –1 <  < 1, but 
explosive solutions if | | > 1. The realisations of such processes with  = 
1.03 and  = 0.97 are shown in Figure 5.2. If  < -1 the variance increases 
in t as for  > 1, whereas the mean alternates with an explosive amplitude.  

The special case of  = 1 results in a random walk: 

(5.3) yt   =   yt-1  +  ut , 

where u is again a pure random process. Adding a constant term leads to a 
random walk with drift, 

(5.4) yt   =     +  yt-1  +  ut . 

For a given initial condition y0 we get the representation 

(5.5) yt   =   y0  +   t  +  
t

i
i 1

u . 

All first and second order moments are time dependent. In particular for 
0 <  < t we get 

E [yt]   =   y0  +   t   =   t , 

V[yt]   =   t 2   =   (0,t) , 

Cov[yt, yt- ]   =   (t – ) 2   =   ( ,t) . 

Thus, the autocorrelation function is also time dependent:  

( ,t)   =   
t

t(t )
   =    

t

t
    =   1

t
. 

The autocorrelation coefficients converge to one for given  and increasing 
t. Thus we get a relatively smooth development of the realisations, despite 
the fact that the variance increases with t. Moreover, the random walk is 
mean stationary for  = 0. The nonstationarity results from the time de-
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pendence of the variance and the covariances. Contrary to the situation of 
stationary processes which fluctuate around their mean with a limited am-
plitude, the reversion to a fixed value (mean reverting behaviour) rarely 
occurs for nonstationary processes. Figure 5.3 shows the behaviour of a 
random walk with and without drift. The linear trend generated by the 
positive drift parameter can clearly be recognised.  
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Figure 5.3:   Random walk with (-----) and without (––––) drift 

It results in an obvious generalisation if the pure random process u in (5.3) 
or (5.4), respectively, is substituted by a general, weakly stationary AR-
MA(p,q) process, denoted as x: 

(5.6) yt   =     +  yt-1  +  xt . 

Transforming (5.6) by using wt := yt – yt-1 eliminates the nonstationarity, as 
wt =  + xt is stationary. Such processes are called difference stationary or 
integrated processes, as the original process recurs by inverting the process 
of taking differences, i.e. by summation (integration). Thus, the following 
definition generally holds: 

• A stochastic process y is integrated of order d (I(d)), if it can be trans-
formed to a stationary (invertible) stochastic process by differencing d 
times, i.e. 

(1 – L)d yt   =    + xt , 
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 where x is an ARMA(p,q) process. The original process y is then de-
noted as an ARIMA(p,d,q) process. It contains d roots of 1.0 (unit roots). 

Such processes are characterised by stochastic trends. For a linear stochas-
tic trend, the expectation of the change in the process is constant, whereas 
for a linear deterministic trend the change in the process itself is constant. 

Let m = 1 and xt = ut in relation (5.1). We thus get the trend-stationary 
process 

(5.7) yt   =    0  +  1 t  +  ut , 

whereas relation (5.5) holds for the random walk with drift:  

yt   =   y0  +   t  +  
t

i
i 1

u . 

Both processes contain a linear deterministic trend and a stochastic part. 
The latter is stationary in relation (5.7), but nonstationary in relation (5.5). 
This implies that shocks only have a transitory effect in (5.7) because they 
disappear after one period, whereas they have a permanent impact in (5.5). 

Let wt := yt – yt-1 in equation (5.6) and substitute (5.2). We thus have 

wt   =      + 
(L)

(L)
 + ut, 

or 

(5.8) (L) wt   =   (1)   +  (L) ut,  

or 

(5.8') (L)(1 – L) yt   =     +  (L) ut. 

We thus get an AR part of order p+1 with one root of 1.0, while all other 
roots are larger than 1.0 (in modulus). This is an ARIMA(p,1,q) process. If 
first differences are not sufficient to get a weakly stationary process, we 
have to difference the series d-times. In this case, equation (5.8') can be 
generalised to the ARIMA(p,d,q) process 

(5.9) (L)(1 – L)d yt   =     +  (L) ut . 

as was already done in the definition above. 
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5.2   Trend Elimination 

To transform the nonstationary processes (5.1) and (5.9) into stationary 
processes, the deterministic or the stochastic trend have to be eliminated, 
respectively. Let us assume that m = 1 in relation (5.1) and d = 1 in rela-
tion (5.9). In this case, we have a linear deterministic or stochastic trend. 
According to their definition, the nonstationarity of I(1) processes can be 
eliminated by forming first differences. The same procedure might be ap-
plied to models with a linear deterministic trend. Taking first differences 
on both sides of relation (5.1) we get (for m = 1)  

yt – yt-1   =   1 + xt – xt-1 . 

Because of (5.2) this can also be written as 

(L) wt   =    (1) 1 + (1 – L) (L) ut . 

We get a stationary ARMA(p,q+1) process for w which, however, is not 
invertible because of the unit root in the MA part. Using first differences 
does not lead back to the original stationary process x but to a new station-
ary process which exhibits artificial short-run cycles due to over-
differentiation. (In case of a quadratic deterministic trend, we get similar 
results by differencing the series twice.)  

In Figure 5.4, the scatter diagrams between the differences of the non-
stationary series and the original white noise processes, which have gener-
ated the trend stationary and difference stationary series, show clear differ-
ences. Whereas differencing the random walk reproduces exactly the 
realisation of the white noise process, the first differences of the trend sta-
tionary process do not correspond to the realisations of the generating 
white noise process. 

One might also try to eliminate the linear trend by a regression on a time 
trend. The scatter diagrams in Figure 5.5 show that this method is appro-
priate for trend stationary processes. The regression residuals largely cor-
respond to the realisations of the generating white noise process. On the 
other hand, there is no relation between the regression residuals and the re-
alisations of the white noise process for integrated processes. 

The results in Table 5.1 further clarify this situation. For the realisation 
of a trend stationary process with a constant term of 5.0 and a slope coeffi-
cient of 1.0 we get, as expected, estimates of the regression on time which 
are quite close to the true parameters. The adjusted coefficient of determi-
nation is high and the Durbin-Watson statistic gives no indication of first 
order autocorrelation. Taking the usual t statistic in case of the realisation 
of the random walk, we also get a highly significant regression coefficient 
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Figure 5.4: Scatter diagrams of the first differences against the 

original residuals of nonstationary processes 
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Figure 5.5: Scatter diagrams of the residuals of regressions on a time trend 

against the original residuals of nonstationary processes 
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Figure 5.6  Actual and estimated values and residuals of the models with 

linear deterministic and stochastic trends 
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for the trend variable. Furthermore, we get – for the ‘wrong’ model – an 
acceptable value of the coefficient of determination, even if the Durbin-
Watson statistic correctly indicates high first order autocorrelation. This is 
also true for the random walk with drift. However, the coefficient of de-
termination and the t statistic of the regression coefficient of the trend 
variable are now much higher due to the fact that this process implicitly 
contains a linear trend.  

Table 5.1:  Results of Linear Trend Elimination 

(100 Observations) 

Figure 5.6 shows the residuals, the actual and the estimated values of re-
gressions of the model with linear trend and the random walk with drift on 
a linear trend. It is obvious that the residuals of the model of a random 
walk with drift still contain systematic variations which might be wrongly  
interpreted as genuine cycles. 

These examples clearly indicate that the analysis of nonstationary time 
series requires a serious investigation of the trending behaviour, i.e. of the 
causes of the nonstationarity, as an inappropriate trend elimination proce-
dure might generate artificial movements in the resulting time series. There 
is a risk that these statistical artefacts are interpreted in terms of econom-
ics. 

5.3   Unit Root Tests 

As we have seen, it is important to take the kind of nonstationarity into ac-
count, i.e. to ask whether the series contains a deterministic or a stochastic 
trend when it comes to transforming nonstationary into stationary time se-
ries. Otherwise, statistical artefacts might appear in the transformed series. 
Within the framework of the Box-Jenkins approach, nonstationary behav-
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iour of time series is covered by ARIMA(p,d,q) models. Time series ana-
lysts have long tried to find the order of differencing, d, leading to a sta-
tionary ARMA process simply by considering the autocorrelation function. 
For these purposes, the estimated correlograms of the levels and the suc-
cessive differences are investigated. If the autocorrelation coefficients de-
crease very slowly with increasing order, this is taken as evidence of non-
stationarity. The following rule of thumb can be used for this procedure: 
Determine the order of differencing in such a way that the autocorrelation 
coefficients approach zero quite rapidly and that the variance of the result-
ing series is smallest compared to variances resulting from other orders of 
differencing. Generally, this guarantees that there is no overdifferencing: 
overdifferenced series often have a rather pronounced negative first order 
autocorrelation coefficient, and the estimated variance of the series is often 
increased by the transformation which actually leads to overdifferencing. 

This descriptive procedure can be generalised if not only multiple unit 
roots are determined by successive differencing but when, quite generally, 
all roots with an absolute value of one are determined in the characteristic 
equation or in the lag polynomial of the autoregressive part. 

This approach, which goes back to GEORGE C. TIAO and RUEY S. TSAY 
(1983), uses the following model as starting point: 

(5.10) (L) (L)yt   =    + (L)ut , 

where all roots of (L) = 0 are on the unit circle and all roots of (L) = 0 
and (L) = 0 are outside the unit circle. If, instead of the true model (5.10), 
autoregressive models with increasing order k = 1, 2, ..., pmax are estimated 
with ordinary least squares, 

(5.11) yt   =   a0  +  a1 yt-1  +  ...  +   ak yt-k  +  (k)
tv , 

it can be shown that all roots on the unit circle are consistently estimated. 
This is true despite the fact that the residuals of (5.11) will usually be auto-
correlated because of the wrong AR order and/or the missing MA part. 
Due to the autocorrelation of the residuals, however, this consistency result 
does not hold for the roots of the stable part of the model. But even if the 
order of the estimated AR process exceeds the order of the nonstationary 
part (L), the number of the roots on the unit circle remains constant. This 
stability property can be used to determine all roots which cause nonsta-
tionarity. In order to do so, the roots of the characteristic equation (or the 
corresponding lag polynomial) of the AR(k) process in equation (5.11)  

(5.12) k  –  1â k-1  –  …  –  kâ    =   0,   k  =  1, 2, ..., pmax , 
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are successively calculated. This allows us to determine the degree of the 
polynomial of the nonstationary autoregressive factor as well as the corre-
sponding transformation which has to be applied in order to eliminate this 
factor. 

5.3.1   Dickey-Fuller Tests 

The procedures described so far neither provide a formal test nor do they 
allow to distinguish between trend stationary and difference stationary be-
haviour of a time series. Both demands can principally be satisfied by us-
ing unit root tests. Such tests have first been developed by WAYNE A. 
FULLER (1976, pp. 366 ff.) as well as by DAVID A. DICKEY and WAYNE A. 
FULLER (1979, 1981). 

If we set m = 1 in relation (5.1) and if we suppose that we have a sta-
tionary AR(1) process in (5.2), we get  

(5.13) yt   =    0  +  1 t  +  
1

1

1 L
ut 

or 

yt   =   [(1 – 1) 0 + 1 1] + (1 – 1) 1 t + 1 yt-1  + ut . 

With  = (1 – 1) 0 + 1 1, ß = (1 – 1) 1 and  = 1, this relation can be 
written as  

(5.14) yt   =    + ß t +  yt-1  + ut . 

If the AR(1) process has a unit root, i.e. if 1 = 1,  

(5.15) yt   =   1 + yt-1  + ut  

leads to a random walk with drift, which can be used as the null hypothesis 
of a test, while the alternative hypothesis, | 1| < 1, leads to a trend station-
ary process. 

If we want to distinguish between a stationary AR(1) process with a 
mean different from zero and a nonstationary AR(1) process, with 0  0 
and 1 = 0 and under the null hypothesis 1 = 1,  

yt   =   yt-1  + ut 

leads to a random walk without drift, while the alternative is a stationary 
AR(1) process with mean different from zero.  

If we can assume a priori that the mean is zero, i.e. that 0 = 0, the null 
hypothesis 1 = 1 again leads to a random walk without drift, whereas the 
alternative is  
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yt   =    yt-1  + ut   with | | < 1. 

These distinctions with respect to the alternative hypotheses are necessary 
as in all three cases even the asymptotic distributions under the null hy-
pothesis no longer correspond to the standard distributions. They also de-
pend on other parameters, especially on those of the trend and the mean. If 
we start from the general model (5.14), the null hypothesis is  = 1 in all 
three cases, i.e. the AR part has a unit root. It can be shown that, under the 
null hypothesis, the least squares estimator of  is downward biased and 
has a skewed left distribution. Thus, even if the null hypothesis  = 1 is 
true, we expect values smaller than one for ˆ . Correspondingly, the usual t 

statistic of ˆ  – 1, which is normally used as test statistic, no longer follows 
a t distribution. Critical values for the t tests of all three cases have first 
been provided by WAYNE A. FULLER (1976, Table 8.5.2, p. 373). They 
were derived by using simulations. Today, slightly more precise critical 
values are usually employed which were derived through simulations by 
JAMES G. MACKINNON (1991, p. 275). Nowadays, these values are inte-
grated in many computer programs. For a one-sided test against the alter-
native  < 1, a significance level of 5 percent and 100 observations, the 
critical values are -1.94 for a zero mean, -2.89 if the mean is different from 
zero and -3.46 if a linear trend is included in addition. As all these values 
are larger in absolute value than the critical value of the t distribution, 
which is -1.65, using this distribution would reject the null hypothesis far 
too often. The decision would mistakenly be in favour of a stationary or 
trend stationary process despite the fact that the series contains a random 
walk with or without drift. If the combined hypotheses  =  = 0 and  = 1, 
or  = 0 and  = 1, respectively, are to be tested, the F tests proposed by 
DAVID A. DICKEY and WAYNE A. FULLER (1981) with the critical values 
tabulated by these authors (pp. 1062f.) can be used. 

Example 5.1 

To demonstrate the deviation of the distributions of the estimated parameters ˆ  

and t̂  from the standard distributions, we performed a Monte-Carlo simulation. 
We generated 100'000 realisations with T = 200 observations for the model  

(E5.1) yt   =    yt-1  +  ut 

with  = 1.0. Then, we estimated relation (5.15). The empirical distributions of ˆ  

and t̂  (which are smoothed with a kernel estimator) are given in Figure 5.7. First 
of all, we can see that ˆ  is not symmetrically distributed around its true value of 

one; the mean of the estimated coefficients is 0.973. Thus, there is a systematic  
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Figure 5.7: Density of the estimated autocorrelation coefficient and the 

t statistic under the null hypothesis of a random walk. 

underestimation of the autoregressive parameter. Second, this leads to a strong de-
viation of the estimated t values under the null hypothesis H0:  = 1.0 of the corre-
sponding t distribution; the mean of the distribution of the estimated t statistic is 
-1.534 instead of the theoretical value of zero. The area under the density function 
left of -1.96, the critical value which is usually employed for this sample size, is 
not 2.5 percent but 30.18 percent. For a one-sided test, a significance level of 5 
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percent and the usual critical value of -1.64, the null hypothesis would be rejected 
in 35.58 percent of all cases. However, if we use the critical values of J.G. 
MACKINNON (1991), which, in this situation, are  -2.876 at the 5 percent level and 
-3.465 at the 1 percent level, with rejection rates of 4.99 percent and 0.99 percent, 
the significance levels are almost exactly realised in our simulations. 

In order to use the conventional t value directly, which implies a test of the 
estimated parameter against the null hypothesis of zero, relation (5.14) can 
be transformed by subtracting yt-1 on both sides: 

(5.16) yt   =    + ß t + (  – 1)yt-1  + ut . 

If the autoregressive process is of order higher than one, i.e. if we have an 
AR(p) process with p > 1, the tests can be generalised quite easily, because 
an AR(p) process 

yt   =   1 yt-1  +  2 yt-2  +  ...  +  p yt-p  + ut 

can immediately be reparameterised as 

yt   =    yt-1 + 1 yt-1 + 2 yt-2 + ... + p-1 yt-p+1 + ut 

with 

   =   0  =  
p

j
j 1

,   i  =  –
p

j
j i 1

,   i = 1, 2, 3, ..., p – 1. 

If this AR(p) process has a unit root, it holds that 1 – 1 – 2 – ... – p = 0 
or  = 1, respectively. All alternative hypotheses discussed so far can be 
applied to this more general situation. In addition, the same asymptotic dis-
tributions hold as in the AR(1) case. This allows us to use the same critical 
values. Thus, for the situation with deterministic trend the generalisation of 
the test equation (5.16) is  

(5.17) yt   =    + ß t + (  – 1) yt-1 + 1 yt-1 + ... + k yt -k + ut 

for the Augmented Dickey-Fuller (ADF) test, where k is chosen to ensure 
that the residuals follow a pure random process. 

If the data generating process is trend stationary but the unit root test is 
mistakenly performed without including a time trend, these tests have, as 
PIERRE PERRON (1988) showed, asymptotically disappearing power, i.e. 
the null hypothesis of a random walk is not rejected often enough, and is 
never rejected in the limiting case. Thus, the quality of a unit root test 
largely depends on whether the test is performed within the appropriate 
model. If the data suggest that a deterministic trend might exist, one should 
start with model (5.17) to perform the tests and use the simplified versions 
only if the null hypothesis H0: ß = 0 cannot be rejected and it is, therefore, 
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not necessary to include a time trend into the test equation. The analogous 
argumentation holds for the constant term.  

Correspondingly, PIERRE PERRON (1988) proposed the following strat-
egy to perform unit root tests: We start with the general model (5.17) 

yt   =     +  ß (t – T/2)  +  (  – 1) yt-1  +  
k

i t i
i 1

y   +  ut, 

where the trend variable is centred, however, ensuring that it has no effect 
on the estimated constant term. (T denotes the sample size.) We can use 
the Dickey-Fuller t test with the null hypothesis H0:  = 1 and the alterna-
tive hypothesis that yt is trend stationary. We can also use an F test in order 
to test the combined hypothesis H0: ( , , ) = ( , 0, 1). If this hypothesis 
is rejected, it might be assumed that a deterministic trend exists. In addi-
tion, we can test this with the null hypothesis H0:  = 0. If both null hy-
potheses cannot be rejected, we can, in a second step, use the model  

(5.17') yt   =     +  (  – 1) yt-1  +  
k

i t i
i 1

y   +  ut  

and again perform a t test for the null hypothesis H0:  = 1, i.e. we test for 
a unit root. In this situation, the alternative hypothesis is the existence of a 
stationary AR process. 

If, in addition, it has to be tested whether the constant term is zero, we 
can again perform an F test with H0: ( , ) = (0, 1). If this null hypothesis 
cannot be rejected, we can use the model  

(5.17'') yt   =   (  – 1) yt-1  +  
k

i t i
i 1

y   +  ut, 

in order to test H0:  = 1. 
Even if the residuals in model (5.14) are generated by an MA or ARMA 

process, test equation (5.17) can be used because invertible MA and 
ARMA processes can be approximated by higher order autoregressive 
processes. However, this might lead to a considerable reduction of the test 
power. Thus, with increasing k it is – ceteris paribus – increasingly diffi-
cult to reject the null hypothesis of nonstationarity.  

If the true data generating process is an ARIMA(0,1,1) process, i.e. if  

(1 – L) yt   =    (1 – ß L) ut 

with 0 < ß < 1, problems arise if ß is close to (but still smaller than) one. 
Then, the unit root in the autoregressive part is nearly outweighed by the 
MA part. Using simulations, G. WILLIAM SCHWERT (1987, 1989) showed 
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that in this case the true null hypothesis is rejected far too often. SAÏD E. 
SAÏD  and DAVID A. DICKEY (1985) proposed a procedure that takes into 
account the MA component and thus reduces the bias of the test results 
considerably. In all cases, the critical values derived by J.G. MACKINNON 
(1991) for the t tests and by D.A. DICKEY and W.A. FULLER (1981, p. 
1063) for the F tests can be used. 
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Figure 5.8:  Development of the Swiss, German/European and US 

 Euromarket interest rates. Monthly data,  

January 1983 – December 2002 

Example 5.2 

Figure 5.8 shows the Euromarket three months interest rates of the United States 
(UER), Switzerland (SER) and ‘Euroland’ (GER/EER). As the Euro has been the 
common currency of the member countries of the European Monetary Union only 
since January 1, 1999, and as, in the period before, many of these countries 
pegged their currencies more or less to the strongest European currency, the Ger-
man Mark, we use the German interest rate for the period up to December 1998. 
To test whether these series have a unit root, we performed ADF tests. As these 
data do not contain obvious trends - which, by the way, would be surprising in 
case of interest rates - we performed the tests with model (5.17'). To determine the 
lag length k, we used the Hannan-Quinn criterion.  

The results are given in Table 5.2. It is obvious that the hypothesis of a unit 
root cannot be rejected for all three interest rates. In a second step, using model 
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(5.17''), we applied the test on the first differences of these time series to deter-
mine the order of integration. Here, the null hypothesis of nonstationarity can 
clearly be rejected. Taking this into account, we assume that the interest rate series 
are integrated of order one (I(1)). It follows from this that ARIMA(p,1,q) proc-
esses are appropriate statistical models for such series. The interest rate series 
show high persistence and (at best) only very weakly pronounced mean reverting 
behaviour. 

Table 5.2:  Results of the Augmented Dickey-Fuller Tests 

1/1983 – 12/2002, 240 Observations 

Levels 1. Differences Variable 
k test statistic k test statistic 

SER 3 
-1.194 
(0.678) 

2 
-7.866 
(0.000) 

GER/EER 1 
-0.957 
(0.768) 

0 
-11.959 
(0.000) 

UER 1 
-0.995 
(0.755) 

0 
-11.151 
(0.000) 

The tests were performed for levels with as well as for first differences without a con-
stant term. The numbers in parentheses are the p values. The number of lags, k, has been 
determined with the Hannan-Quinn criterion.  

5.3.2   The Phillips-Perron Test 

An alternative approach to consider autoregressive and/or heteroskedastic 
error terms in relation (5.14) goes back to PETER C.B. PHILLIPS and 
PIERRE PERRON (1988). Here, unlike in equation (5.17), these effects are 
not modelled by adding lagged differences in the parametric part of the 
equation. The test statistic for the hypothesis  = 1 is, however, rather ad-
justed by a non-parametric estimate of the variance of the estimated pa-
rameter ˆ  that takes the autocorrelation of the residuals into account. 

To estimate the adjusted variance of the residuals the two authors pro-
pose 

(5.18) 2
Tms    =   

T m T
2
t im t t i

t 1 i 1 t i 1

2
ˆ ˆ ˆu w u u

T
, 

where û are the least squares residuals of equation (5.14). The truncation 
parameter m denotes the maximal order up to which the autocovariances 
are included. With sample size T, m has to increase to infinity, but not as 
fast as T. The wim are weights that do not only ensure the consistency of 
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this variance estimator but also its non-negativity. PIERRE PERRON (1988) 
proposed to use the following weights which go back to M.S. BARTLETT 
(1948): 

(5.19) wim   =    1  –  
i

m 1
 ,   i = 1, ..., m. 

Using this adjusted variance, we get the following F Test with the null hy-
pothesis H0: ( , , ) = ( , 0, 1) for the model with time trend and constant 
term in equation (5.14): 

(5.20) TrF    =   
2 2 6 2 2
Tm Tm

Tr 2
Tm Tm

(s s ) T (s s )s ˆ ˆF T( 1)
s 2 s 48 X 'X

, 

where s is the estimated standard error of regression (5.14) and X the ma-
trix of predetermined variables, i.e. the matrix X contains, besides the vec-
tor of ones, the two column vectors yt-1 and t: 

X   =   [1  yt-1  t] . 

TrF̂  is the conventional F statistic for the null hypothesis given above. In-
stead of the usual t statistic to test the null hypothesis H0:  = 1 in this 
model with trend, the following adjusted test statistic has been proposed: 

(5.21) Trt    =   
2 2 3
Tm

Tr
Tm Tm

(s s )Ts
t̂

s 4s 3 X 'X
. 

Here, Trt̂  denotes the usual t statistic.  
If the tests in (5.20) and (5.21) cannot reject the corresponding null hy-

potheses, it might be assumed that there is no deterministic trend. In this 
case, the stronger null hypothesis H0: ( , , ) = (0, 0, 1) can be tested with 
the following statistic:  

(5.20') TrF    =   
2 2 6 2 2
Tm Tm

Tr 2
Tm Tm

(s s ) T (s s )s ˆ ˆF T( 1)
s 3s 48 X 'X

 

Under the assumption that there is no deterministic trend in the data, the 
test statistic  
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(5.20'') F    =    
2 2 2 2 2
Tm Tm

T2
2Tm Tm

t
t 1

(s s ) T (s s )s ˆ ˆF T( 1)
s 2 s

4 y y
 

tests the combined null hypothesis H0: ( , ) = (0, 1). Here, F̂  is the usual 

F statistic for this null hypothesis. If it cannot be rejected, we can check 
the null hypothesis H0:  = 1 in the model without deterministic compo-
nents with 

(5.21'') t    =   

t 1

2 2
Tm

T
Tm 2

Tm
t 2

0.5 (s s )Ts
t̂

s
s y

 

i.e. we check whether the series contains a random walk without drift. If 
this hypothesis is rejected, with  

(5.21') t    =   
2 2
Tm

T
2Tm

Tm t
t 1

0.5 (s s )Ts
t̂

s
s y y

 

the hypothesis of a random walk with drift can be tested. t̂  and t̂  are 

again the usual t statistics. In all cases, the critical values derived by J.G. 
MACKINNON (1991) for the t tests and by D.A. DICKEY and W.A. FULLER 
(1981, p. 1063) for the F tests can be used. 

The augmented Dickey-Fuller test, which parametrically models the 
autocorrelation of the residuals, has the advantage that we can test whether 
the residuals of the estimated test equation are still autocorrelated. This is 
not possible with the Phillips-Perron test. On the other hand, the advantage 
of this nonparametric approach is that the results are less sensitive to small 
changes of the truncation parameter m. (However, as DONALD W. AN-
DREWS (1991) showed, the choice of m is not without problems when it 
comes to practical applications. Here, m is often chosen equal to approxi-
mately the fourth root of the sample size.) The power of the ADF test is 
reduced by too large a number of lagged differences. On the other hand, 
too small a number of lags has the effect that the test is no longer correctly 
applicable due to the autocorrelation of the estimated residuals. Firstly, for 
the nonparametric tests the number of lags has no impact on the estimated 
parameters, and, secondly, if the autocorrelation coefficients tend towards 
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zero they have, at best, a small impact on the estimated variance. The in-
crease of m does not reduce the sample size of the estimated equation. 
Thus, one should assume that nonparametric tests are better suited to cope 
with the autocorrelation of the residuals. However, this holds only partly.  
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Figure 5.9a: Density of the estimated coefficients and of the t statistics 

 for the null hypothesis of an AR(1) process with  = 0.95. 
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Figure 5.9b:   Density of the estimated coefficients and of the t statistics 

 for the null hypothesis of an AR(1) process with  = 0.90.  

G. WILLIAM SCHWERT (1987, 1989) showed in a simulation study that, 
once the model contains an MA term with negative autocorrelation, the 
true null hypothesis is even more often rejected when using the Phillips-
Perron test as compared to the augmented Dickey-Fuller test. Thus, the 
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procedure proposed by SAÏD E. SAÏD  and DAVID A. DICKEY (1985), which 
considers this problem, should definitely be applied in this case. 

One problem with the ADF test as well as with the Phillips-Perron test 
is that their power is rather low if, under the alternative hypothesis, the 
first order autocorrelation coefficient is close to one, if, for example, 0.95 

  < 1 holds for an AR(1) process. In such situations, i.e. if the mean re-
verting behaviour is only very weakly pronounced, very large sample sizes 
are necessary to reject the null hypothesis. With economic data, however, 
such a sample size is rare, at least as long as only monthly, quarterly or 
even annual data are available.  

Example 5.3 

To illustrate the problems with respect to the power of unit root tests, we once 
again performed Monte-Carlo simulations. In order to do so, we again generated 
100'000 realisations with a sample size of 200 observations for model (E5.1). 
However, in this simulation we used the values  = 0.95 and  = 0.90 for the auto-
regressive parameter. 

As Figures 5.9a and 5.9b show, the estimated values are also shifted considera-
bly to the left. The estimated means are 0.928 for  = 0.95 and 0.880 for  = 0.90. 
Thus, only 25.1 percent and 32.3 percent of the estimated values are on the right 
of the true value for  = 0.95 and for  = 0.90 respectively. 

The density functions of the t statistics indicate the low test power for values of 
 close to 1.0. If the test is performed for the null hypothesis  = 1.0 and the true 

value is  = 0.95, even by applying the critical values of J.G. MACKINNON (1991), 
the null hypothesis can only be rejected in 8.3 percent of all situations using the 1 
percent significance level and in 30.5 percent of all situations using the 5 percent 
significance level. Thus, the type II error occurs in 91.7 or 69.5 percent of all 
situations. However, for  = 0.90 it occurs much less often: when testing at the 1 
percent level we falsely accept the null hypothesis in 52.6 percent of all cases and 
at the 5 percent level in 14.7 percent of all cases. 

5.3.3   Unit Root Tests and Structural Breaks   

A further problem arises if (trend) stationary processes have a structural 
break. In such situations, the tests described so far are usually unable to re-
ject the null hypothesis of a unit root even if the sample size increases: the 
power of the test tends asymptotically towards zero. If we know the date of 
the structural break, we can perform unit root tests separately for the time 
before and after the structural break. The problem is, however, that the 
power of these tests is reduced due to the smaller sample sizes. 

An alternative to this procedure was proposed by PIERRE PERRON (1989, 
1994). He assumes that the date of the structural break, t*, is known. A 
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typical example for such an assumption is the German Unification. He dis-
tinguishes two models: the first one is formulated in analogy to an additive 
outlier (AO model) and represents a sudden break in level or a change in 
the slope of the deterministic trend. The second model allows for an outlier 
in the innovations (OI model) and assumes a gradual adjustment to the 
new situation; the shocks on the trend function (the deterministic compo-
nent of the model) have the same impact on the level of the series as regu-
lar shocks. 

As most economic time series exhibit a trend, PIERRE PERRON uses AO 
models showing a coincidence of structural break with deterministic trend. 
Thus, in order to eliminate deterministic components, he first of all esti-
mates the following relations with OLS: 

(5.22) yt   =     +  ß t  +  1 DVt  +  xt , 

(5.22') yt   =     +  ß t  +  1 DVt  +  2 DVt (t – t*)  +  xt , 

(5.22'') yt   =     +  ß t  +  2 DVt (t – t*)  +  xt , 

where the dummy variable DV is zero up to the structural break which 
takes place in t* and one afterwards. For the residuals of the equations 
(5.22) or (5.22'), tx̂ , he performs the augmented Dickey-Fuller-Test based 
on the following regression: 

(5.23) tx̂    =   (  – 1) t 1x̂   +  
k

i t i
i 0

d DV   +  
k

i t i
i 1

x̂   +  ut . 

JÜRGEN WOLTERS and UWE HASSLER (2006) demonstrate why it is neces-
sary to include lagged DV in (5.23). 

For the residuals of equation (5.22''), PERRON uses the regression 

(5.23') tx̂    =   (  – 1) t 1x̂   +  
k

i t i
i 1

x̂   +  ut . 

For the OI model with a linear trend, however, we get the following test 
equation for a structural break in the level of the series  

(5.24) yt   =    +  ß t  +  1 DVt  +  2 DVt  +   (  – 1) yt-1   

+   
k

i t i
i 1

y   +  ut . 

For the model with a structural break in the level of the series as well as in 
its deterministic trend we get 
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(5.24') yt   =    +  ß t  +  1 DVt  +  2 DVt  +   3 DVt (t – t*) 

 +   (  – 1) yt-1  +   
k

i t i
i 1

y   +  ut . 

In the AO as well as in the OI model, the test statistic is the t value of ˆ  – 1. 
Critical values which also depend on the date of the structural break are 
given in PIERRE PERRON (1989, pp. 1376ff.; 1994, pp. 137ff.). 

5.3.4   A Test with the Null Hypothesis of Stationarity  

An alternative procedure for testing the stationarity properties of time se-
ries was proposed by DENIS KWIATKOWSKI, PETER C.B. PHILLIPS, PETER 

SCHMIDT and YONGCHEOL SHIN (KPSS, 1992). They developed a test 
where the null hypothesis is not the existence of a unit root but – quite the 
contrary – stationarity. (This test is therefore often called a stationarity test 
contrary to the unit root tests discussed so far.) 

Contrary to relation (5.14) where we assume high positive autocorrela-
tion in the time series, the starting point of this KPSS test is the following 
model: 

(5.25) yt   =   t + ß t + ut , 

where now instead of the commonly used constant term, a random walk,  

(5.25a) t   = t-1 + t  

is allowed. 
The residuals of (5.25a), , are assumed to be independently and identi-

cally normally distributed. Under the null hypothesis that y is trend sta-
tionary, the variance of  is zero, i.e. t is a constant. The problem is now 
to find a test procedure which can discriminate between a constant term 
and a random walk. Such a test is designed for situations in which a ran-
dom walk might possibly be added to a (trend) stationary component. It is 
the purpose of the test to detect this random walk.  

The KPSS test tries to discriminate as follows between a purely trend 
stationary process and a process with an additive random walk. In a first 
step, y is regressed on a constant term and possibly also on a deterministic 
trend, i.e. it is adjusted for the mean and for the possible impact of a de-
terministic trend. In a second step, partial sums of the residuals û of these 
regressions are considered: 
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St,j   =   
t

i, j
i 1

û , 

where j = , Tr, indicates whether the original series is only adjusted for 
the mean or also for a deterministic trend. If y is a stationary process, the 
sum of the residuals with zero mean, is integrated of order one. The sum of 
the squares of an I(1) process diverges with T2. Therefore, the test statistic 

(5.26) jˆ    =   

T 2

t, j
t 1

2 2
u

S
1

T s
,   j = , Tr, 

has a limiting distribution that does not depend on additional parameters. 
Critical values for this statistic, which are again derived with simulations, 
are given by D. KWIATKOWSKI, P.C.B. PHILLIPS, P. SCHMIDT and Y. SHIN 
(1992, p. 166). 

In this form, the test presupposes that the residuals of the original proc-
ess (5.25) are white noise. As this is usually not the case, the possible 
autocorrelation must be taken into account. The authors suggest that in-
stead of 2

us , as with the Phillips-Perron test, the estimator for the variance 

defined in (5.18), 2
Tms  – adjusted for the impact of autocorrelation – should 

be employed. Asymptotically, the same critical values as in the model with 
white noise residuals are appropriate. 

Example 5.4 

UWE HASSLER and JÜRGEN WOLTERS (1995) asked whether the inflation rates of 
consumer prices (calculated with respect to the previous month) in the United 
States, the United Kingdom, France, Germany and Italy are weakly stationary. 
They used seasonally adjusted monthly data from January 1969 to September 
1992. They employed the ADF test and the Phillips-Perron test, where the null 
hypothesis postulates a unit root, as well as the KPSS test, where we assume weak 
stationarity under the null hypothesis, and they performed the test for different lag 
lengths k and different truncation parameters, m, respectively. All test equations 
contain a constant term but no trend variable. 

The results are given in Table 5.3. Irrespective of the number of autocovari-
ances included, the Phillips-Perron test always rejects the null hypothesis of a unit 
root at least at the 1 percent significance level. According to these results, the in-
flation rates of all countries are stationary. On the other hand, the KPSS test nearly 
always rejects the null hypothesis of stationarity also at the 1 percent level. Thus, 
according to these results, the inflation rates exhibit nonstationary behaviour. The 
situation is different for the ADF test. The null hypothesis of a unit root is always 
rejected for k = 3, but only in three out of five cases for k = 6, and never for k = 
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12, not even at the 10 percent level. In this example, the results of the semi-
parametric tests, the Phillips-Perron and the KPSS tests, are hardly influenced by 
the value of m, whereas the results of the ADF test are sensitive to changes of k. 
Moreover, the results of the two semi-parametric tests contradict each other. 

Table 5.3:  Results of Unit Root and Stationarity Tests for Inflation 

1/1969 – 9/1992, 285 Observations 

 m/k United States United Kingdom France Germany Italy 

Phillips- 
Perron 

6 

12 

-8.95** 

-10.20** 

-9.30** 

-10.54** 

-5.82** 

-6.84** 

-10.32** 

-11.65** 

-6.40** 

-7.39** 

KPSS 6 

12 

0.81** 

0.51* 

1.02** 

0.65** 

1.57** 

0.91** 

1.26** 

0.80** 

0.94** 

0.56** 

ADF 3 

6 

12 

-4.43** 

-3.06* 

-1.86 

-4.48** 

-2.97* 

-2.27 

-2.71(*) 

-1.71 

-1.29 

-4.98** 

-3.49** 

-1.75 

-3.31* 

-2.24 

-2.39 

‚(*)‘, ,*‘ or ,**‘ denotes that the correspondi ng null hypothesis can be rejected at the 10, 
5, or 1 percent significance level, respectively.  

Source: U. HASSLER and J. WOLTERS (1995, Tables 3 and 4, p. 39). 

As Example 5.4 shows, problems arise whenever different test procedures 
produce different, contradictory results and when these results are to be in-
terpreted. One reason for such contradictions might be the fact that the 
tests discussed so far can only differentiate between the integer orders of 
integration d = 0 and d = 1, which corresponds to the methodology of the 
ARIMA(p, d, q) models with d = 0, 1, 2, ..., . One possibility to handle the 
problem is to gain more flexibility by abandoning the restriction to integer 
orders of integration: d might be treated as a real number. How this is done 
within the framework of fractionally integrated ARMA models is dis-
cussed below in Section 5.5. 

5.4   Decomposition of Time Series 

If one takes into account that nonstationary time series might contain a sta-
tionary component along with the nonstationary one, the decomposition of 
the series into two components, a permanent and a transitory one, seems 
fairly obvious: 

(5.27) yt   =   p
ty  + t

ty  , 
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where yp denotes the permanent (nonstationary) and yt transitory (station-
ary) component. Such a decomposition makes it possible to find a measure 
of the persistence of the series, i.e. for the relative importance of changes 
in its permanent component compared to changes in the series itself. 

Such a decomposition was proposed, for example, by STEPHEN BEVE-
RIDGE and CHARLES R. NELSON (1981). They showed that every ARIMA 
model with d = 1 can be represented as the sum of a random walk, possibly 
with drift, 

(5.28) p
ty    =    + p

t 1y  + vt , 

and a stationary component which is the difference between the process y 
itself and its nonstationary component yp.  

Starting point for the decomposition is the general ARIMA(p,1,q) 
model. To make things easier, we use the Wold decomposition of y, writ-
ten in the following form: 

yt   =    + (L) ut + yt-1. 

By recursive substitution we get 

yt =    + (L) ut +  + (L) ut-1 + yt-2 

 =   2  + (L) (ut + ut-1) + yt-2 

  

 =   t  + (L) 
t

i
i 1

u + y0 . 

With the additional assumptions y0 = 0 and ut = 0 for t < 0 it follows that 

yt   =   t  + 
t 1

j t i
j 0 i j

u  . 

This can be transformed to  

yt =   t  + 
t 1

j t i
j 0 i 0

u  – 
j 1

j t i
j 1 i 0

u . 

 =   t  + 
t 1

t i
i 0

(1) u  – t i j
i 0 j i 1

u . 

Defining 
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p
ty    =   t  + 

t 1

t i
i 0

(1) u , 

leads to the representation given in (5.28). Thus, we get 

(5.29) p
ty    =    + p

t 1y  + (1) ut , 

where vt = (1) ut. 

(5.30) t
ty    =   (L) ut ,   with   i   =   – j

j i 1

,   i = 0, 1, 2, ...  

holds for the transitory component t
ty  = yt – p

ty . 
The permanent component yp can also be represented by the observed 

values of y. To show this, we start with the representation of an 
ARIMA(p,1,q) process, 

(L) yt   =     +  (L) ut   with     =  / (1), 

where the roots of (L) = 0 and (L) = 0 are all outside the unit circle. 
Solving for u results in  

ut   =   
(L)

(L)
yt  –  

(1)
   =   

(L)

(L)
yt  –  

(1)

(1)
 . 

Thus, (5.29) leads to 

p
ty  =     +  (1) ut 

 =     +  t

(1) (L) (1)
y

(1) (L) (1)
, 

or 

(5.31) p
ty    =   

(1) (L)

(1) (L)
yt , 

respectively, i.e. the permanent component can be represented as a 
weighted average of the observed values.  

As a measure of the persistence of the time series, P, we define 

(5.32) P   =   
2
v

2
y

   =   
2 2

u
2

y

( (1))
 . 
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The problem with this decomposition, however, is that the residuals of the 
stationary and the nonstationary parts are perfectly negatively correlated, 
except for the degenerated case (1) = 0, where the permanent component 
is the straight line t. If we assume a different value for the correlation be-
tween these two parts, we get a different decomposition. (An obvious as-
sumption would be that the innovations of the permanent and transitory 
parts are uncorrelated.) Thus, depending on the assumption about the cor-
relation between the two innovation series, we can derive rather different 
decompositions leading to different values of the persistency measure. 

An alternative measure for the persistence of a time series was proposed 
by JOHN H. COCHRANE (1988). He considers the ratio of the variance of 
the changes that are accumulated over k periods to the variance of the one 
period change, 

(5.33) Vk   =   
2

t k t 1

2
t t 1

E(y y )1

k 1 E(y y )
 ,   k = 1, 2, ..., . 

As the changes (of an I(1) process) are stationary by definition, and be-
cause of  

(j)   =   t j t j 1 t t 1

2
t t 1

E[(y y )(y y )]

E[(y y ) ]
 , 

we get 

(5.34) Vk   =   1  +  2
k

j 1

j
1

k 1
(j) . 

If k tends to infinity, we get  

(5.35) k
k
lim V    =   1  +  2

j 1

( j) . 

As (k) tends towards zero with increasing k in stationary processes, J.H. 
COCHRANE (1988) proposed to increase k until Vk approaches its maxi-
mum and to use this k to estimate the persistence of a series. 

Example 5.5 

The special case of a random walk, yt  =  yt-1 + ut results in: 

E[(yt+k – yt-1)
2] =   E[( yt+k + yt+k-1 + ... + yt)

2] 

 =   (k + 1) 2
u  
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According to (5.32), we thus get 

Vk   =   1,   k  =  1, 2, ... , 

i.e. this measure shows that the random walk does not contain any stationary 
(transitory) component besides the stochastic trend.  

A different approach to decompose a time series into a permanent compo-
nent yp and a transitory (cyclical) component yt goes back to ROBERT J. 
HODRICK and EDWARD C. PRESCOTT (1997). Contrary to the approach of 
S. BEVERIDGE and CH.R. NELSON (1981) which is based on an 
ARIMA(p,1,q) model, R.J. HODRICK and E.C. PRESCOTT (1997) do not 
presume an explicit model for the observed time series. The idea is rather 
to model the permanent component yp sufficiently smooth. The sum of 
squares of the second differences of yp is taken as a measure of the 
smoothness of the time path. On average, the cyclical component, yt = y – 
yp should not deviate substantially from zero over the observation period. 
To approach these goals, the following objective function is minimised 
with respect to yp 

(5.36) Z( p
ty ; )   =   

T
p 2

t t
t 1

(y y )   +  
2T 1

p p p p
t 1 t t t 1

t 2

(y y ) (y y )  

The smoothness of yp can be controlled for with the penalty parameter . 
The larger  is chosen, the smoother is the time path of yp. For   , yp 
follows a linear trend. The values of  depend on the periodicity of the 
data. In practical applications, the following values are often chosen:  = 
100 for annual data,  = 1'600 for quarterly data, and  = 14'400 for 
monthly data. The result of this minimisation is the so-called Hodrick-
Prescott (HP) filter which provides the permanent or trend component, re-
spectively. 

Example 5.6 

The permanent component of the annual German inflation rate is to be determined 
by using the Beveridge-Nelson approach and the HP filter. We investigate the pe-
riod from the first quarter of 1975 to the last quarter of 1998, as this corresponds 
to the period when the German Bundesbank used the quantity of money as its tar-
get. To measure inflation we use the implicit deflator of the gross national product 
(PGNP), i.e. IRt = 100 · (ln(PGNPt) – ln(PGNPt-4)). Estimating an ARIMA model 
leads to the following result: 

(E5.2) IRt   =    – 0.308
( 3.29)

IRt-4  +  ût  +  0.275
(2.68)

ût-2, 
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2R  =  0.145,   SE  =  0.571,   Q(6)  =  4.233 (p  =  0.645), 

where the t values are again indicated in parentheses. Both estimated coefficients 
differ significantly from zero at the 1 percent level, and the Box-Ljung Q statistic, 
calculated with 8 correlation coefficients (6 degrees of freedom), does not indicate 
any remaining autocorrelation of the residuals. For the ARIMA(4, 1, 2) model in 
(E5.2) we get: 

(E5.3a) (L)   =   1 + 0.308 L4, and 

(E5.3b) ß(L)   =   1 + 0.275 L2. 
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Figure 5.10a: German Inflation Rate: Actual values (––––), permanent com-
ponent according to S. BEVERIDGE and CH.R. NELSON (-------), 

permanent component according to R.J. HODRICK and E.C. 

PRESCOTT (– - – - –). 

The Wold representation (L) is derived by a series expansion of ß(L)/ (L). This 
results in 

(L)   =  
(L)

(L)
 , 

(1)   =  
(1)

(1)
  =  

1.275

1.308
  =   0.975. 
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Because of the parameters estimated in (E5.2), we get 2
IR  = 1.188 2

u  for the 

variance of IR. According to (5.31), the permanent component IRp,BN is  

p,BN
tIR    =   0.975 

4

2

1 0.308 L

1 0.275 L
 IRt ,   or 

p,BN
tIR    =   – 0.275 p,BN

t 2IR   +  0.975 IRt  +  0.300 IRt-4 . 

Figure 5.10a shows the observed inflation rate IR, together with the permanent 
component IRp,BN which was calculated according to the Beveridge-Nelson ap-
proach. The development of the permanent component is quite similar to the ac-
tual inflation rate. The only difference is that it does not exhibit the extreme am-
plitudes of the original series. Contrary to this, when using the HP filter, the 
permanent component of the series, IRp,HP, which is also shown in Figure 5.10a, is 
much smoother. It must be taken into account that it was not calculated with  = 
1'600, which is normally used for quarterly data, but with  = 100, because other-
wise the development would have been too smooth. 
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Figure 5.10b: German Inflation Rate: cyclical component according to 

S. BEVERIDGE and CH.R. NELSON (--------), cyclical component 
according to R.J. HODRICK and E.C. PRESCOTT (––––). 

Figure 5.10b shows the cyclical components IRt,BN and IRt,HP, the differences be-
tween the actual inflation rate and the two estimates of its permanent component. 
The values calculated by the HP filter have a much larger amplitude and a consid-
erable less smooth development than the values calculated according to 
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S. BEVERIDGE and CH.R. NELSON (1981). Nevertheless, the negative and positive 
deviations of both series mostly occur in the same periods. The correlation be-
tween the two cyclical components is 0.638. 

5.5   Further Developments 

As shown above in Example 5.4, problems arise if tests lead to systemati-
cally contradictory results which cannot be interpreted as being statistical 
artefacts. This indicates that the approach used so far to handle nonstation-
arities is not flexible enough. The fractionally integrated models discussed 
below are one possibility to cope with this problem and to get more flexi-
ble solutions. 

A further, not yet discussed problem arises whenever fourth differences 
(for quarterly data) or twelfth differences (for monthly data) are performed 
in order to transform a nonstationary into a stationary time series. This 
procedure is often used when annual growth rates are calculated (with 
quarterly or monthly data). The problem of seasonal integration which is 
presupposed by this procedure shall also be discussed in the following. 

5.5.1   Fractional Integration 

As mentioned above, the concept of integrated time series should be ex-
tended to that effect that the order of integration, d, is no longer restricted 
to be an integer number. It might be any real number. By forming first dif-
ferences, we can always reduce the value of d by one. In the following, we 
therefore only consider the interval 0  d  1. In analogy to the definition 
of integrated variables given in Section 5.1 the following definition holds: 

• A stochastic process y is fractionally integrated of order d, 0 < d < 1, if 
it can be transformed into a weakly stationary invertible process using 
the filter (1 – L)d, i.e. 

(1 – L)d yt   =    + xt , 

 where x is an ARMA(p,q) process. The transformation (1 – L)d results 
from the binomial series development  

(5.37)   (1 – L)d =   1  –  dL  – 2d (1 d)
L

2!
  –  3d (1 d) (2 d)

L
3!

 –  ... 

 =  j
j

j 0

d L   with dj  =  
j 1 d

j
 dj-1,   d0  =  1. 
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The original process y is then denoted as an ARFIMA(p,d,q) process 
(Autoregressive Fractional Integrated Moving Average Process).  

The coefficients dj are quadratically sumable for d  < 0.5. For this rea-
son, the process is stationary for 0 < d < 0.5, but nonstationary for d  0.5. 
Thus, there is a whole range of values of d (0.5  d  1) that generate per-
sistent processes and not only the single value d = 1 (or integer multiples 
of it), like with the ARIMA(p,d,q) models. In case of d  0.5, the time se-
ries is said to have a long memory.  

The inverse filter (1 – L)-d is given by the substitution of d by -d in 
(5.37),  

(5.37')  (1 – L)-d   =   1  +  dL  + 2d (1 d)
L

2!
  +  3d (1 d) (2 d)

L
3!

  +  ... . 

Thus, if we apply the filter (1 – L)-d on the stationary and invertible 
ARMA(p,q) process with the representation (L) xt = ß(L) ut, we get an 
ARFIMA process with 

yt   =   (1 – L)-d xt. 

If xt = ut, i.e. a pure random process, we get the model of a pure, fraction-
ally integrated noise:  

(5.38) (1 – L)d yt  =  ut   or   yt  =  (1 – L)-d ut . 

The series expansion in (5.37) or (5.37'), respectively, indicates that this 
process might be represented as a special AR( ) or MA( ) process. Rela-
tion (5.38) gives the most parsimonious parameterisation of it, employing 
only one single parameter. 

The unit root tests discussed in Sections 5.3.1 and 5.3.2 test the null hy-
pothesis d = 1 against the alternative hypothesis d = 0, while the KPSS test 
described in Section 5.3.4 tests the null hypothesis d = 0 against the alter-
native hypothesis d = 1. If the ‘true’ d is between zero and one, both null 
hypotheses might be rejected, as was the case in Example 5.4. The reason 
for this apparent contradiction between the results of the two tests is that 
the modelling approach only allowed for zero and one to be possible or-
ders of integration and was thus too restrictive. 

Example 5.7 

Due to the contradicting results with respect to the stationarity properties pre-
sented in Example 5.4, UWE HASSLER and JÜRGEN WOLTERS (1995) estimated 
ARFIMA models for the inflation rates of these countries. They showed that ac-
cording to (5.38), the monthly inflation rates of all these countries can be mod-
elled as purely fractionally integrated white noise . The values of d vary from d = 
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0.40 for Germany, d = 0.41 for the United States, d = 0.51 for the United King-
dom, d = 0.54 for France up to d = 0.57 for Italy. The null hypothesis that the or-
der of integration equals 0.5 can in no case be rejected. As fractional processes 
with d  0.5 are nonstationary, at least the interest rates of the United Kingdom, 
France and Italy show persistent behaviour, even if they are not I(1). 

5.5.2   Seasonal Integration 

The integrated processes discussed so far exhibit nonstationary behaviour 
because there is a unit root in the lag polynomial of the autoregressive part. 
This can be eliminated by forming first differences. One might ask 
whether there are additional roots on the unit circle which imply nonsta-
tionarity and can be economically interpreted. As shown in Section 1.2, the 
application of the filter l – L4 generated developments of quarterly data 
which no longer exhibit seasonal variations. The factorisation  

(1 – z4)   =   (1 – z2) · (1 + z2)   =   (1 – z) · (1 + z) · (1 – iz) · (1 + iz) 

where i2 = -1, immediately shows that l – z4 has four roots on the unit cir-
cle, i.e. 

z1  =  1,   z2  =  -1,   z3,4  =  ± i. 

Using the filter 1 – L, the following process can be generated with ut as 
white noise  

(1 – L) yt  =  ut,  

or 

yt  =  yt-1  +  ut . 

This corresponds to a random walk which can be used to model stochastic 
trend behaviour. Applying the filter 1 + L, the process  

(5.39) yt   =   - yt-1  +  ut  

can be similarly generated. For large values of t, the correlation between 
two adjacent elements of this process approaches -1, i.e. the process exhib-
its regular two-period fluctuations which correspond to fluctuations within 
a period of half a year for quarterly data. This also becomes clear if yt-1 is 
substituted in (5.39), which leads to  

yt   =   yt-2  +  ut  –  ut-1 . 

If we only considered every second observation, we would again get a ran-
dom walk.  
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The roots ± i correspond to the filter 1 + L2, which can generate the 
process 

(5.40) yt   =   - yt-2  +  ut . 

Here, all adjacent elements are uncorrelated, while the correlation between 
the values of y which are two periods apart from each other converges to 
-1 for large values of t. Thus, the process exhibits fluctuations with a 
length of four periods, corresponding to seasonal variations in the context 
of quarterly data. This also becomes clear if yt-2 in (5.40) is substituted. 
This leads to  

yt   =   yt-4  +  ut  –  ut-2 . 

If we only considered every fourth period, we would again get a random 
walk. 

Thus, the processes with roots -1 and ± i capture the nonstationary sea-
sonal fluctuations of quarterly data. To eliminate such fluctuations, the fil-
ter 

(1 + L) · (1 + L2)   =   1  +  L  +  L2  +  L3 , 

must be used, i.e. a fourth order moving average eliminates nonstationary 
seasonal fluctuations of quarterly data. Because of 

(1 – L4)   =   (1 – L) · (1  +  L  +  L2  +  L3) , 

forming annual differences also eliminates any stochastic trend, as Figures 

1.4 and 1.5 in Chapter 1 already showed. 
In analogy to the ADF test, SVEND HYLLEBERG, ROBERT F. ENGLE, 

CLIVE W.J. GRANGER and B.S. YOO (1990) (HEGY) developed a proce-
dure which not only tests for the stochastic trend but also for the different 
seasonal roots. In order to perform this test, the quarterly series y has to be 
transformed in the following way: 

y1,t   =   (1  +  L  +  L2  +  L3) yt, 

y2,t   =   – (1  –  L  +  L2  –  L3) yt, 

y3,t   =   – (1  –  L2) yt, 

y4,t   =   (1  –  L4) yt . 

y1 is a series which no longer contains any seasonal unit root. y2 is a series 
which does not contain a stochastic trend, nor any annual fluctuations, 
whereas the stochastic trend as well as the half annual cycle have been 
eliminated from y3. Finally, y4 does not have any root on the unit circle. 
Disregarding all deterministic terms like the constant term, a time trend or 
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seasonal dummies, the following equation is estimated by OLS in order to 
perform the HEGY test: 

*(L) y4,t   =   1 y1,t-1  +  2 y2,t-1  + 3 y3,t-1  +  4 y3,t-2  +  ut , 

where the order of the lag polynomial *(L) is chosen in a way that the es-
timated residuals û are white noise. 

The null hypothesis that there is no stochastic trend is stated as  

H0:   1  =  0, 

the null hypothesis that there is no nonstationary semi-annual component 
as 

H0:   2  =  0 

and the null hypothesis that there is no nonstationary annual component as 

H0:   3  =  4  =  0. 

The test statistics are the corresponding t or F values, respectively. As with 
the 'usual' unit root test, the classical t and F distributions do not hold for 
this test. Depending on which deterministic terms are included, different 
critical values are appropriate. The corresponding values for the HEGY 
test, derived again with simulations, are provided in S. HYLLEBERG et al. 
(1990, Tables 1a and 1b, pp. 226f). 

5.6   Deterministic versus Stochastic Trends 
in Economic Time Series 

It has hardly ever been disputed that economic time series are trending, 
even though procedures for stationary variables have mostly been applied. 
As mentioned in Chapter 1, even the classical time series analysis distin-
guished between trend, (business) cycle, seasonal variation and irregular 
movements. However, the ‘nature’ of the trend has hardly ever been con-
sidered. Depending on the kind of procedure, either high order moving av-
erages were calculated or linear or polynomial (deterministic) trends esti-
mated and subtracted from the original series. Series transformed in this 
way were used for further investigations. 

Whether such a trend is deterministic or stochastic, however, is not only 
important for the application of the appropriate statistical procedures but 
also has an impact on the economic interpretation. If, for example, the 
logarithm of the gross national product follows a linear deterministic trend, 
the model not only implies a constant long-run growth rate but also the fact 
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that all deviations from the long-run equilibrium path are only temporary; 
all deviations are counter-balanced in the long run. Contrary to this, when 
the series follows a stochastic trend, singular changes have permanent con-
sequences: the series has a (long) memory. Even if the long-run growth 
rate is fixed, a variable deviating from the growth path it has followed so 
far will hardly ever return to the path: from this new initial point, the de-
velopment continues with the same (average) growth rate but along a new 
path (with a different level). Thus, these kinds of shocks are called perma-
nent contrary to the transitory shocks in the model with a deterministic 
trend.  

Permanent and transitory shocks have a different economic meaning. 
Permanent shocks are usually attributed to the supply side, transitory 
shocks rather to the demand side of the economy. Correspondingly, unex-
pected changes of the quantity of money are typically interpreted as transi-
tory shocks: They might have real effects in the short run, but they have no 
long-run impact at least as long as the classical dichotomy is accepted. 
Therefore, monetary policy might be stabilising in the short run, but has 
hardly any long-run effect on economic growth, at least as long as inflation 
is ‘moderate’. One indication for this is that empirical studies on the rela-
tion between (moderate) inflation and economic growth do not exhibit 
conclusive results. Contrary to this, a technology shock is usually seen as 
permanent: The development of a new technology which has not been 
available so far has a permanent effect on the production possibilities in an 
economy and might, therefore, shift the economy to a new growth path 
with a higher initial position. Against this background it is understandable 
that it has been extensively discussed in the United States whether GNP 
has a unit root or not, a question which at first glance seems to be a purely 
technical one. 

The distinction between permanent and transitory shocks has, above all, 
an impact on business cycle theory. Traditional Keynesian as well as 
Monetarist approaches assume that cyclical fluctuations are caused by 
transitory shocks. As shown in Chapter 2, given a specific structure of the 
economic system (or the time series representing this system), uncorrelated 
random shocks can generate cycles with certain frequencies. If the neces-
sary information is available, (anti-cyclical) stabilisation policy can coun-
teract and thus smooth the economic development. Correspondingly, in 
their discussion on the possibility of the government to perform an active 
stabilisation policy, Monetarists and Keynesians focused on two questions: 
(i) Which one is the better instrument, monetary or fiscal policy? (ii) Does 
the government (or the central bank, respectively) have the information 
necessary to perform a successful stabilisation policy or does it even make 
things worse because interventions often take place at the wrong point of 
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time? The general possibility of stabilisation policy was not called into 
question.  

A quite different stance has been taken by the Real Business Cycle The-

ory which belongs to the New Classical Macroeconomics. It attempts to 
interpret business cycles as results of technology shocks. In such a model, 
any economic policy that tries to stabilise business cycles is useless in the 
first place. Theoretical models with such properties have been developed. 
However, the empirical evidence is not very convincing. Even if the exis-
tence of permanent shocks is taken into account, it is sensible to assume 
that there are both temporary and permanent shocks on the supply side as 
well as on the demand side. The question no longer is whether such im-
pacts exist at all but rather how strong the different impacts (shocks) are in 
relation to each other. Recent empirical research goes in this direction.  

This implies, however, that the same model has to allow for transitory as 
well as permanent shocks. While the traditional models of a deterministic 
trend do not have this possibility, as they only know transitory deviations 
of the fixed long-run equilibrium path, models with a stochastic trend usu-
ally also contain a transitory component. It is the purpose of the procedures 
discussed in Section 5.4 to differentiate between these two components. 

Finally, it must be mentioned that, given the existence of permanent 
shocks, the distinction between trend and cycle is dubious. From an eco-
nomic perspective, this implies that a distinct separation between eco-
nomic growth on the one hand and the development of the business cycle 
on the other hand is no longer possible; if the economic system has the ap-
propriate structure, economic growth occurs in cycles. This is a new way 
to take up an old idea, which was already developed by JOSEPH A. 
SCHUMPETER in his Theory of Economic Development. In this theory, 
business cycles are also generated by supply shocks and not by demand 
shocks. 

For all this, however, we should take into account that we always use 
samples for empirical analysis and that the ‘true’ data generating processes 
are different from the ones assumed in our models. For example, we often 
assume that the investigated variables are normally distributed. This im-
plies that the occurring values can be both very high and very low, even if 
we know that this would be impossible in a concrete situation. Body 
heights are a classical example of this. The same is true for the differentia-
tion between stationary and nonstationary variables. If a variable is really 
stationary, the estimator for the mean of the coming year might be better 
provided by the mean of some past observations with long distances be-
tween each other than by the mean of the last three months. On the other 
hand, the assumption of nonstationarity implies that, with increasing time 
horizon, the variable will almost certainly exceed any limit. Both assump-
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tions are, for example, invalid for interest rates. When we investigate sam-
ples, perform tests and finally decide to (preliminarily) regard the variable 
as stationary or nonstationary, we assume that the chosen model is the best 
available approximation on the unknown data generating process of the 
model classes we considered. This might be different in case of a different 
time period or a different frequency of data. 
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6   Cointegration 

In the preceding chapter, we used stochastic trends to model nonstationary 
behaviour of time series, i.e. the variance of the data generating process in-
creases over time, the series exhibits persistent behaviour and its first dif-
ference is stationary. For many economic time series, such a data generat-
ing process is a sufficient approximation, so that in the following we only 
consider processes which are integrated of order one (I(1)). 

For a long time, econometricians have not taken into account that eco-
nomic time series might be integrated. They applied traditional statistical 
procedures developed for the investigation of stationary stochastic series. 
CLIVE W.J. GRANGER and PAUL NEWBOLD (1974) showed that this might 
lead to severe problems. In a simulation study they regressed two inde-
pendently generated random walks on each other. They observed that the 
least-squares regression parameters do not converge towards zero but to-
wards random variables with a non-degenerated distribution. Testing these 
parameters by employing the critical values of the usual t distribution, the 
null hypothesis of a zero coefficient is (wrongly) rejected much too often. 
Furthermore, the coefficient of determination does not converge towards 
the theoretically correct value of zero but towards a non-degenerated dis-
tribution. The estimated residuals show I(1) behaviour as expected for 
theoretical reasons. This implies that the Durbin-Watson statistic of the re-
siduals converges towards zero. 

Example 6.1 

We performed Monte Carlo simulations to illustrate the problem of spurious re-
gressions. First, we generated 100'000 replications with a sample size of T = 200 
observations for two independent random walks x and y. Then we estimated the 
following equation: 

yt   =   a  +  b xt  +  vt 

using ordinary least squares. As both series are independently generated, the slope 
coefficient as well as the R2 should be zero. In this case, v follows a random walk, 
i.e. the first order autocorrelation coefficient is one and the value of the Durbin- 
Watson statistic zero. Figure 6.1 shows the density functions of the t statistic of 

b̂ , R2 and the Durbin-Watson statistic (smoothed by a kernel estimator). 
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Figure 6.1: Densities of the estimated t values, R2's, and  

the Durbin-Watson statistic 
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The test statistic t̂  has a symmetric density function, which, however, has a 
much larger variance than the standard normal distribution. The vertical dashed 
lines show the critical values of the normal distribution for the 2.5 and 97.5 per-
centiles, ± 1.96. If the classical distribution theory would be used (wrongly), a 
significant result would not only arise in 5 percent but in 83.32 percent of all 
cases. The correct values for the 2.5 and 97.5 percentiles are ± 21.06, indicated by 
solid lines. 

The density function of R2 shows that values greater than 0.2 (0.5) have a prob-
ability of 46.13 (16.13) percent despite the fact that the true R2 should be zero. 
The classical F distribution for the null hypothesis H0: R

2 = 0, applied with 200 
observations, leads to a critical value of 0.019 at the 5 percent level. Thus, when 
using this wrong distribution, almost all estimates would be accepted as being sig-
nificant. 

In these simulations, the estimated values of the Durbin-Watson statistic are be-
tween zero and 0.4. The probability that a value greater than 0.2 occurs is 4.62 
percent. This almost corresponds to the figures given by ROBERT F. ENGLE and 
BYUNG SAM YOO (1987, Table 4); they report a critical value of 0.20 at the five 
percent significance level for a sample size of 200 observations. Thus, contrary to 
the t and F tests, the Durbin-Watson test provides the expected results. 

To avoid such spurious relations, time series analysts advised against the 
use of the original series but recommended that they should be transformed 
to that effect that they can be considered as realisations of weakly station-
ary processes. GEORGE E.P. BOX and GWILYM M. JENKINS (1970, pp. 
378f.), for example, recommended that, in order to estimate the dynamic 
relations between time series, one had to difference the series until their 
correlograms no longer indicated nonstationarity, and that after these trans-
formations the cross-correlation functions should be used to identify the 
relation. This is one possible reason for the spurious independence results 
of Granger causality tests mentioned in Chapter 3.  

Example 6.2 

The following example illustrates how differencing leads to an underestimation of 
the true relation between I(1) variables. Given the following relations: 

(E6.1) yt   =   wt  +  uy,t , 

(E6.2) xt   =   wt  +  ux,t , 

(E6.3) wt   =   wt-1  +  uw,t , 

where ui, i = {x, y, w} are three pure random processes and uw is independently 
generated from ux and uy. Thus, y and x are I(1) processes; they contain a common 
stochastic trend. 
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To eliminate this trend, first differences are performed. The following regres-
sion is estimated to capture the relation between the two variables: 

yt   =   a xt  +  vt,   t = 1, …, T. 

The least squares estimator gives the following result: 
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Contrary to the true one to one relation between the levels of x and y, the estima-
tion in differences leads to a slope parameter which is smaller than one if ux and uy 
are uncorrelated. The larger the variance 

x

2
u  is compared to the variance 

w

2
u the 

smaller is this estimate. This holds even more if ux and uy are negatively corre-
lated. If their correlation is positive, both under- or overestimations might occur. 

This example reveals two problems. Firstly, estimated regression coeffi-
cients may not be significantly different from zero, although the respective 
relation exists. Secondly, estimated regression coefficients might be biased 
downwards because of errors-in-variables, even if they are statistically 
significant. To evade the Skylla of spurious independence as well as the 
Charybdis of spurious regressions, i.e. to render the type I and type II er-
rors as unlikely as possible, C.W.J. GRANGER and P. NEWBOLD (1974, p. 
118) recommended to estimate the relations in the levels as well as in first 
differences, in order to be better able to (economically) interpret the re-
sults. 

To solve this problem, it is necessary to develop statistical procedures 
which are suited for capturing relations between nonstationary variables 
correctly. This solution is provided by the theory of cointegrated relations 
developed in the 1980s. The idea goes back to CLIVE W.J. GRANGER 
(1981, 1986) and was popularised in papers by ROBERT F. ENGLE and 
CLIVE W.J. GRANGER (1987), JAMES H. STOCK (1987) as well as SØREN 
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JOHANSEN (1988). Today, these procedures have become standard instru-
ments for every time series econometrician. There are two main reasons 
for the rapid dissemination of this approach: First, the estimated cointe-
grating relations are closely connected to economic equilibrium relations. 
Second, in many applications it is sufficient to use ordinary least squares to 
get consistent estimates. Thus, traditional programme packages can be 
used further on. 

A quite simple approach to avoid the spurious regression problem with 
I(1) variables is to include lagged values of the dependent and independent 
variables into the regression since, in this case, parameter values exist for 
which the residuals are I(0). Applying OLS results in consistent estimates 
of all parameters. (See J.D. HAMILTON (1994, pp. 561ff.).) 

In the following, we define cointegrated processes and present their 
properties (Section 6.1). Section 6.2 shows how single equation models 
with integrated variables can be estimated and how cointegration tests can 
be performed. The handling of systems of such equations using vector 
autoregressions as discussed in Chapter 4 is described in Section 6.3. Sec-

tion 6.4. discusses the significance of these procedures for the analysis of 
long-run economic (equilibrium) relations. 

6.1   Definition and Properties of Cointegrated Processes 

Quite generally, cointegration might be characterised by two or more I(1) 
variables indicating a common long-run development, i.e. they do not drift 
away from each other except for transitory fluctuations. This defines a sta-
tistical equilibrium which, in empirical applications, can often be inter-
preted as a long-run economic relation. 

R.F. ENGLE and C.W.J. GRANGER (1987) defined cointegration as fol-
lows: 

 The elements of a k-dimensional vector Y are cointegrated of order (d, 
c), Y ~ CI(d, c), if all elements of Y are integrated of order d, I(d), and 
if there exists at least one non-trivial linear combination z of these 
variables, which is I(d-c), where d  c > 0 holds, i.e. iff 

' Yt   =   zt ~ I(d-c). 

 The vector ß is denoted as cointegration vector. The cointegration rank 
r is equal to the number of linearly independent cointegration vectors. 
The cointegration vectors are the columns of the cointegration matrix 
B, with 



204      6   Cointegration 

B' Yt   =   Zt . 

If all variables are I(1), it holds that 0  r < k. For r = 0, the elements of the 
vector Y are not cointegrated. Correspondingly, the appropriate model is a 
system of first differences.  

Important properties of cointegrated relations were summarised in the 
Granger Representation Theorem, presented by R.F. ENGLE and C.W.J. 
GRANGER (1987, pp. 255f.). The most important part of this theorem is: 

 If the kx1 vector Y is cointegrated of order CI(1, 1) with cointegration 
rank r, besides the AR representation 

A(L) Yt   =   Ut, 

with Ut being white noise, there also exists an error correction repre-
sentation (as discussed in Section 4.1) 

A*(L) (1 – L)Yt   =   –  Zt-1  +  Ut , 

with 

A(1)   =    · B', 

 and B being kxr matrices of rank r, 0 < r < k, and  

Zt   =   B' Yt 

being an rx1 vector of I(0) variables. 

In addition to this theorem, the following two lemmata hold: 

Lemma 1: If xt and yt are I(1) and cointegrated, xt and yt+  are also coin-
tegrated for any . 

Lemma 2: If x and y are I(1) and cointegrated, x is Granger causal to y 
and/or y is Granger causal to x. 

Lemma 1 holds because  

yt+    =   yt  +  yt+1  +    +  …  +  yt+  , 

implying that yt+  differs from yt only by a stationary term, which does not 
change the cointegration relation. Lemma 2 holds because an error correc-
tion representation exists for at least one of any two cointegrated variables, 
and error correction representations always imply Granger causal relations. 
However, the reverse – Granger causality between integrated variables im-
plies cointegration – does not hold. 
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6.2   Cointegration in Single Equation Models: 
Representation, Estimation and Testing 

In the following, we start with the most simple case, a bivariate model, i.e. 
a simple regression relation between two I(1) variables. Then we extend 
the analysis to a multivariate (single equation) regression model.  

6.2.1   Bivariate Cointegration 

Let x and y be two I(1) processes. In general, any linear combination of 
these two variables will again be an I(1) process. However, if there exists a 
parameter b so that the linear combination  

(6.1) yt – b xt   =   zt  +  a 

is stationary, then x and y are cointegrated. The I(0) process z has an ex-
pectation of zero. The parameter a defines the level of the corresponding 
equilibrium relation which is given by 

(6.2) y   =  a  +  b x . 

The vector ' = [1 -b] is the cointegration vector. It is unique only because 
of its normalisation, as · '  with   0 also leads to a stationary linear 
combination of y and x. The stationary process z describes the deviations 
from the equilibrium, the equilibrium error. Because of the finite variance 
of z, the deviations of the equilibrium are bounded; the system is always 
returning to its equilibrium path. Thus, relation (6.2) is an attractor.  

Cointegration of x and y implies that both variables follow a common 
stochastic trend which can be modelled as a random walk,  

(6.3a) wt   =   wt-1  +  ut , 

where u is again a white noise process. Thus, the two cointegrated I(1) 
processes can, for example, be represented as 

(6.3b) yt   =   b wt  +  ty   with  ty  ~ I(0) 

and 

(6.3c) xt   =   wt  +  tx   with  tx  ~ I(0). 

The linear combination 

(6.3d) yt – b xt   =   ty  – b tx    =   zt 
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is stationary, as a linear combination of stationary processes is again sta-
tionary. Thus, (6.3d) is a cointegrating relation.  

According to the Granger representation theorem, there exists an error 
correction representation for any cointegrating relation. In the bivariate 
case its reduced form can be written as:  

(6.4a)   yt   =   a0  –  y(yt-1 – b xt-1)  + 
xn

xj t j
j 1

a x  + 
yn

yj t j
j 1

a y  +  uy,t , 

(6.4b)   xt   =   b0  +  x(yt-1 – b xt-1)  + 
xk

xj t j
j 1

b x  + 
yk

yj t j
j 1

b y  +  ux,t , 

with ux and uy as pure random processes. If x and y are cointegrated, at 
least one i, i = x, y, has to be different from zero. It is obvious that, in this 
case, a relation exists between the levels of the variables. A model esti-
mated only in first differences would be misspecified because the term yt-1 
– b xt-1 is missing. The representation (6.4) has the advantage that it only 
contains stationary variables although the underlying relation is between 
nonstationary (I(1)) variables. Thus, if the variables are cointegrated and 
the cointegration vector in (6.4) is known, the traditional statistical proce-
dures can be applied for estimating and testing. The parameterisation in 
system (6.4) provides a separation of the short-run adjustment processes 
modelled by the lagged differences of the variables from the adjustment to 
the long-run equilibrium because the system also reacts to the deviations 
from the equilibrium relation which are lagged by one period. 

In case of b > 0, system (6.4) is stable whenever 0  y < 2 and also 0  
x < 2 hold, and if at least one of the two parameters is different from zero. 

This implies that – ceteris paribus – a positive deviation from the long-run 
equilibrium leads to a reduction of y and an increase of x and, therefore, to 
a reduction of the initial equilibrium error: the system tends towards its at-
tractor (6.2). If the initial equilibrium error is negative, a corresponding ad-
justment process is initiated. If one of the two adjustment coefficients is 
zero, i.e. if x = 0, the adjustment is only possible via changes in y. The 
development of the I(1) variable x is independent of the equilibrium error, 
it is – so to speak – the stochastic trend driving the system. In this situa-
tion, x is called weakly exogenous. If x > 0 and y is negative, or if y > 0 
and x is negative, the system might also be stable. According to S. 
JOHANSEN (1995, p. 54), however, this depends on the other parameters of 
the system. 

Thus, in a bivariate system with two I(1) variables, only the following 
two situations can occur:  
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(i) The two variables are not cointegrated, i.e. x = y = 0. Then the sys-
tem contains two stochastic trends. 

(ii) The two variables are cointegrated, i.e. at least one i, i = x, y, is posi-
tive. Then the system contains one cointegrating relation and one 
common stochastic trend. It follows from Lemma 2 that at least one 
simple Granger-causal relation between x and y exists. 

Example 6.3 

Let the ARIMA(1,1,0) process 

(E6.4) (1 – L) xt   =   ut   with   | | < 1,  

be given, and the relation  

(E6.5a) yt   =   b xt  +  zt,   b  0, 

with 

(E6.5b) zt   =    zt-1  +  vt , 

where ut and vt are white noise. Because of the definition of cointegration, it is ob-
vious that x and y are cointegrated for | | < 1. However, if  = 1, there is no coin-
tegration. In this case, the development of y is determined by two stochastic 
trends. 

To derive the error correction model corresponding to (E6.4) and (E6.5a,b), we 
first insert (E6.5b) in (E6.4a). This leads to 

 yt   =    yt-1  +  b xt  –   b xt-1  +  vt . 

Subtracting yt-1 on both sides of this equation and adding as well as subtracting the 
term b xt-1 on the right hand side, we get the structural form of the error correction 
representation, 

 yt   =   –(1 – ) yt-1  +  b (1 – ) xt-1  +  b xt  +  vt . 

By taking (E6.4) into account, the reduced form of the error correction model is 
given by 

(E6.6a) xt   =    xt-1  +  ux,t ,  

(E6.6b) yt   =   –(1 – ) (yt-1  –  b xt-1)  +  b  xt-1  +  uy,t , 

where ux,t = ut and uy,t = vt + but. 
The error correction equation of x, (E6.6a), does not contain the equilibrium er-

ror y – b x. Thus, x is weakly exogenous and drives the whole system. If there is 
cointegration, i.e. for -1 <  < 1, it holds that 0 < y < 2 for the adjustment parame-
ter y = (1  ). Thus, the system is stable; y is adjusting to the long-run equilib-
rium. For  = 1, i.e. if there is no cointegration, (E6.6b) no longer contains the er-
ror-correction term. The system contains two stochastic trends. In any case, the 
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error correction model only contains stationary variables, the differences of I(1) 
variables and the stationary equilibrium error. 

6.2.2   Cointegration with More Than Two Variables 

If there are only two I(1) variables after normalisation, there are either only 
one (unique) cointegrating relation and one common stochastic trend or 
two stochastic trends. The situation is much more complicated if there are 
more than two I(1) variables which are cointegrated.  

Let us consider the situation of three I(1) variables, yi, i = 1, 2, 3. Then 
two independent cointegrating relations could exist, as, for example, by as-
suming zero expectations for all variables: 

 y1,t   =   b2 y2,t  +  z1,t,   b2    0, 

 y2,t   =   b3 y3,t  +  z2,t,   b3    0. 

In this case, '
1  = [1 -b2 0] and '

2  = [0 1 -b3] are linearly independent. 
However, linear combinations of 1 and 2 provide cointegration vectors 

which include all three I(1) variables, Y' = [y1 y2 y3],  

    =    1  +  (1 – ) 2   =   2

3

1 (1 b )

(1 )b

,   0    1. 

ß  are again cointegrating vectors. This follows from  
'  Yt =    y1,t  +  (1 –  (1 + b2)) y2,t  –  (1 – ) b3 y3,t 

 =    (y1,t – b2 y2,t)  +  (1 – ) (y2,t – b3 y3,t) 

 =    z1,t  +  (1 – ) z2,t   =   z ,t , 

where z  as a linear combination of the two I(0) processes z1 and z2 is also 
stationary. For  = 1, we get the cointegration vector ß1, and for  = 0 the 
cointegration vector ß2. These two vectors form the basis of the cointegra-
tion space with dimension two, r = 2, because there are only two linearly 
independent cointegration vectors. However, as there exists an infinite 
number of bases for this space, the representation of the equilibrium rela-
tions is not unique. Thus, we again face the well known identification 
problem of traditional econometrics; only additional a priory restrictions 
(which are not contained in the data) can lead to a unique representation.   

With k = 3 I(1) variables and r = k – 1 = 2 cointegrating relations, the 
system contains just one stochastic trend; otherwise the supposed pairwise 
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cointegration between y1 and y2, y2 and y3, as well as y1 and y3 would be 
impossible. 

On the other hand, if a system of three I(1) variables contains two sto-
chastic trends, there can only be one cointegrating relation, and the corre-
sponding cointegration vector is again unique after normalisation, e.g. for 

' = [1 2b  3b ]. Then the long-run equilibrium relation is 

y1,t   =   2b y2,t  +  3b y3,t . 

According to the definition in Section 6.1, a vector with k integrated vari-
ables of order one, I(1), is cointegrated of rank r, 0 < r < k, if there exist 
exactly r linearly independent cointegration vectors i  0, i = 1, 2, …, r. 
Combining the cointegration vectors as columns of the cointegration ma-
trix B,  

B = [ 1 2 … r]  

indicates the deviations of the r statistical equilibria Z' = [z1 z2 … zr] as 

(6.5) B' Yt   =   Zt . 

In case of I(1) variables, the system contains k – r common stochastic 
trends. The cointegration rank r must always be smaller than the number of 
I(1) variables k, because otherwise the cointegration matrix B would be 
invertible and Yt = B'-1Zt would be a linear combination of stationary proc-
esses. This contradicts the assumption that all k variables are I(1). If r = k – 
1, we get the special case of only one common stochastic trend in the sys-
tem. Therefore, pairwise cointegrating relations exist between all compo-
nents of Y. 

6.2.3   Testing Cointegration in Static Models 

In order to handle cointegrating relations in single equation models cor-
rectly, it has to be presupposed that there exists at most one cointegrating 
relation between k I(1) variables which comprehends all variables. In this 
case, unit root tests can be used to test for cointegration by applying them 
to the residuals of an estimated (static) equilibrium relation. If y1 is taken 
to be the dependent variable and if there exists no cointegration relation 
between y2, …, yk, the test equation is given by 

(6.6) y1,t   =   a  +  
k

j j,t
j 2

b y   +  zt  
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for the k I(1) variables, where (in the case of cointegration) z is again the 
equilibrium error. The parameters b2, b3, …, bk can be estimated consis-
tently with the least squares approach. This method minimises the residual 
variance. If the estimated parameters differ from the true cointegration pa-
rameters, the residual process is nonstationary, i.e. its variance is increas-
ing with increasing sample size T. On the other hand, the residual process 
is stationary for the cointegrating parameters and, therefore, has a finite 
variance. Apparently, this is the minimum.  

Table 6.1:  Critical Values of the Dickey-Fuller Test on 

Cointegration in the Static Model 

k 
 1 2 3 4 

 Model with constant term 

0.10 -2.57 -3.05 -3.45 -3.81 

0.05 -2.86 -3.34 -3.74 -4.10 

0.01 -3.43 -3.90 -4.30 -4.65 

 Model with constant term and time trend 

0.10 -3.13 -3.50 -3.83 -4.15 

0.05 -3.41 -3.78 -4.12 -4.43 

0.01 -3.96 -4.33 -4.67 -4.97 

The values for k = 1 are the critical values of the Dickey-Fuller unit root test. 

Source:   U. HASSLER (2004, Table 1, p. 111). 

Following this logic, R.F. ENGLE and C.W.J. GRANGER (1987) proposed a 
testing procedure for the null hypothesis that there is no cointegrating rela-
tion and, therefore, the residual process is nonstationary, H0: zt ~ I(1), 
against the alternative of cointegration, i.e. that this process is stationary, 
H1: zt ~ I(0). It requires two steps to perform this test. Firstly, relation (6.6) 
is estimated with OLS. Secondly, the augmented Dickey-Fuller test, as 
presented in Section 5.3.1, is applied to the estimated residuals. As OLS 
residuals have a zero mean by construction, the version without determi-
nistic terms, (5.17''), is used. However, the critical values are different be-
cause the test is applied to a ‘generated’ and not to an observed time series. 
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They depend on the number of I(1) variables k but also on the determinis-
tic components of the equilibrium relation, i.e. on whether a constant term 
and/or a deterministic time trend is included in model (6.6). 

Table 6.1 shows some asymptotic critical values derived through simu-
lations by JAMES G. MACKINNON (1991). The null hypothesis of no coin-
tegration is rejected for too small values of the test statistic. The values for 
k = 1 are those of the augmented Dickey-Fuller unit root test. Following 
the considerations in UWE HASSLER (2004), the critical values for the 
model with a constant term are valid if and only if the regressors in (6.6) 
only contain a unit root but no linear trend. If, on the other hand, the data 
generation process of at least one (single) regressor in (6.6) also contains a 
linear trend, the correct critical values are those in the lower part of Table 

6.1 for the case k-1. However, these values are hardly different from those 
of the model without a trend. 

The test is correct if and only if the explanatory variables, y2, y3, …, yk, 
themselves are not cointegrated and the unique cointegration relation in-
cludes y1. In practical applications, it is recommended to start with small 
models in relation (6.6) and to add additional variables only as long as the 
null hypothesis of no cointegration cannot be rejected. Due to the invari-
ance property of cointegration, i.e. that two or more variables do not 
change their cointegration property if further I(1) variables are added, the 
specific-to-general approach is appropriate in this framework. 

In the case of cointegration, the parameter estimates 2 3 k
ˆ ˆ ˆb ,b , ,b , in 

equation (6.6) are super consistent, i.e. they converge with a rate of T to-
wards their true values, and therefore their convergence is faster than the 
one of parameters estimated in regressions with stationary variables, which 

converge with a rate of T . Contrary to the stationary case, simultaneity 
of the variables or errors in variables do not inhibit this consistency result. 
However, the estimates are biased for finite samples. ANINDYA BANERJEE, 
JUAN J. DOLADO, DAVID F. HENDRY and GREGOR W. SMITH (1986) 
showed that 1 – R2 is a measure of the bias. The reason for this is that in 
the case of cointegration R2 tends towards one with increasing sample size, 
because the variances of the nonstationary regressors, which increase with 
the sample size, dominate the finite variance of the stationary error term. 

Example 6.4 

The situation of a simple regression can be used to demonstrate the bias. Let y and 
x be cointegrated I(1) variables, i.e. the relation  

(E6.7a) yt   =   a  +  b xt  +  zt,  
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holds and zt is stationary. As explained above, this relation can be estimated super-
consistently with OLS. The same holds for the reverse regression 

(E6.7b) xt   =   ã  +  b yt  +  vt . 

The product of the two regression coefficients estimated with OLS leads to: 

 ˆb̂ b    =   
2(Cov[y, x])

ˆ ˆV[y] V[x]
   =   R2    1. 

If the variables are cointegrated, R2 tends towards one, i.e. b̂  tends towards 1b̂ . 
To the extent that R2 is smaller than one for finite samples, the product of the two 
estimated coefficients is systematically underestimated. 

Moreover, standard inference procedures are not possible as, in general, 
the t statistics do not have asymptotically normal distributions. However, 
following PENTI SAIKKONEN (1991) as well as JAMES H. STOCK and 
MARC W. WATSON (1993), a simple correction can be applied to the test 
equation (6.6) ensuring that the estimation is still super consistent and that 
the estimated t statistics are, nevertheless, asymptotically normally distrib-
uted: Additional lagged and future differences of the regressors are in-
cluded to ensure that the I(1) regressors are uncorrelated with the residuals:  

(6.7)   y1,t =   a  +  
k

j j,t
j 2

b y   +  
1

2

k

2, j 2,t j
j k

y   +  …  +  
1

2

k

k, j k,t j
j k

y  

       +  tz . 

Information criteria might be used to determine the maximal lag and lead 

k1 and k2. The t statistics of 2 3 k
ˆ ˆ ˆb ,b , , b  converge towards a normal dis-

tribution with the corresponding true parameters as expectations and the 
variance 2/V[ tz ], with 

 2   =   V[ tz ]  +  2 t t
1

Cov z z . 

This long-run variance can be estimated according to (5.18). 

Example 6.5 

Figure 6.2 shows the logarithm of the real quantity of money M1 in per capita 
terms, m, the logarithm of the real per capita Gross National Product (GNP), y, 
and the long-run interest rate, r, for the Federal Republic of Germany. We use 
quarterly data from the first quarter of 1960 to the last quarter of 1989, i.e. for the 
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period before the German Unification. Unit root tests clearly indicate that all three 
time series are I(1). The Engle-Granger approach is used to investigate whether 
cointegration relations exist between these variables. However, this approach can 
only be applied if there exists just one cointegrating relation. Thus, we start by 
checking whether the time series are pairwise cointegrated. The null hypothesis of 
no cointegration can never be rejected in all three possible cases. 

In the next step we regress the quantity of money, m, on GNP, y, and the inter-
est rate, r. We chose m as the dependent variable as we are interested in a long-run 
money demand function. When estimating this relation with OLS, we include sea-
sonal dummies along with the constant term because m as well as y exhibit strong 
seasonal variations. To ensure that the constant term really captures the level ef-
fect, we use centred seasonal dummies si, i = 1, 2, 3, which take on the value 0.75 
for the i-th quarter and -0.25 elsewhere. Thus, we have an annual mean of zero. 
The estimated relation (with the standard errors in parentheses) is: 

(E6.8) mt   = 1.370
( 0.124)

t1.113 y
( 0.016)

t3.059 r
( 0.260)

1,t0.036 s
( 0.010)

2,t0.036 s
( 0.010)

 

 3,t0.018 s
( 0.010)

+  tẑ , 

 R2  =  0.987,   SE  =  0.038,   T  =  116. 

The Dickey-Fuller unit root test for the estimated residuals ẑ  provides the follow-
ing test equation: 

tẑ   = t 1ˆ0.240 z
( 3.66)

+  ût . 

The estimated test statistic is -3.66. m and y contain a linear trend as we can see 
from Figure 6.2. Due to economic reasons, (E6.8) does not include a trend. There-
fore we have to take the critical values for k = 2 from the lower part of Table 6.1. 
These critical values are -3.50 at the 10 percent and -3.78 at the 5 percent signifi-
cance level. Thus, the null hypothesis can (only) be rejected at the 10 percent 
level. Economically, the estimated parameters are meaningful and can be inter-
preted in the sense of a long-run money demand function. The estimated income 
elasticity of the money demand function is close to one and the interest rate elas-
ticity is negative; at an interest rate level of 5 percent, for example, it has the value 
of -0.15 (= - 3.059 · 0.05). 

6.2.4   Testing Cointegration in Dynamic Models 

Despite the super consistency of the estimates, the static approach has the 
disadvantage that with a finite number of observations the estimated coin-
tegration parameters might be seriously biased. This bias is only slightly 
reduced with an increasing number of observations. One possible reason  
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Figure 6.2:   Data for the Federal Republic of Germany, 1961  1989 
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for the bias are highly autocorrelated residuals due to the fact that the dy-
namic is neglected in relation (6.6). It is explicitly captured in the error 
correction equations. Because of the Granger representation theorem men-
tioned above, a cointegration test can also be performed in the uncondi-
tional error correction equation of y1,  

(6.8)  y1,t   =   a0  –  1 y1,t-1  +
k

j j,t 1
j 2

y   +
1k

1j 1,t j
j 1

a y   + …  

 +
kk

kj k,t j
j 1

a y  +  u1,t,  

or 

(6.8') y1,t   =   a0 – 1

k
j

1,t 1 j,t 1
j 2 1

y y  +
1k

1j 1,t j
j 1

a y   + …  

 +
kk

kj k,t j
j 1

a y  + u1,t ,  

respectively. With 

(6.9) bj   =   j

1

,   j  =  2, …, k,  

the expression in parentheses in (6.8') can be written as 

(6.10) y1,t-1  –  b2 y2,t-1   –  …  –  bk yk,t-1   =  zt-1 . 

If all yi, i = 1, …, k, are I(1), the first differences of these variables are sta-
tionary. Thus, equations (6.8) or (6.8') are only balanced, i.e. the stationary 
variable y1 is explained by stationary variables, if (6.10) is a stationary 
linear combination which reflects deviations from the long-run equilibrium 
or, if this is not the case, it does not contribute to the explanation of y1, 
i.e. if 1 = 0. Thus, for the cointegration test in the error correction frame-
work we get the null hypothesis 

 H0:   (y1, y2, ..., yk) are not cointegrated, i.e. 1  =  0, 

against the alternative  

 H1: the variables are cointegrated, i.e. 1 > 0. 

If there is cointegration, the adjustment parameter has to be positive, 1 > 
0, as the model would otherwise not be stable; there would be no adjust-
ment towards the equilibrium. The test is performed in such a way that 
equation (6.8) is estimated by using ordinary least squares and the lag 
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lengths k1, ...  kk are chosen so that the estimated residuals û do not exhibit 
significant autocorrelation. 

The test statistic is the t value of ˆ 1. The null hypothesis that there is no 
cointegration is rejected if these values are too small. The corresponding 
critical values are given in ANINDYA BANERJEE, JUAN J. DOLADO and 
RICARDO MESTRE (1998, Table 1, pp. 276f.). Again, these values depend 
on whether relation (6.8) is estimated with or without a constant term or a 
trend and, of course, on the number of I(1) variables included in the test 
equation. Selected asymptotically valid critical values are given in Table 
6.2. 

Table 6.2:  Critical Values of the Cointegration Test 
in the Error Correction Model 

k 
 2 3 4 

 Model with constant term 

0.10 -2.89 -3.19 -3.42 

0.05 -3.19 -3.48 -3.74 

0.01 -3.78 -4.06 -4.46 

 Model with constant term and time trend 

0.10 -3.39 -3.62 -3.82 

0.05 -3.69 -3.91 -4.12 

0.01 -4.27 -4.51 -4.72 

Source:   U. HASSLER (2004, Table 4, p. 112). 

 

UWE HASSLER (2000) showed that in the case that relation (6.8) contains 
only a constant term, the critical values are only correct if the I(1) regres-
sors do not contain a deterministic trend. If at least one of the k I(1) vari-
ables contains a deterministic trend, we get the correct critical values from 
the lower part of Table 6.2 (for the model with constant term and trend), 
now choosing the critical values for the case k – 1. If (6.8) contains only 
two I(1) variables, the appropriate critical values are those of unit root tests 
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when the test equation includes a deterministic trend, i.e. the critical values 
for the model with constant term and trend for k = 1 are given in Table 6.1. 

When these tests are applied in empirical research, it is not clear from 
the outset which equations of the multivariate error correction model con-
tain the error correction term. Thus, the described test procedure must also 
be applied with the dependent variables y2, y3, ..., yk.  

In relation (6.8) the instantaneous changes of y2, y3, ...,  yk might also be 
included if the adjustment parameters in the corresponding equations are 
zero, i.e. that 2 = 3 = ... = k = 0. This means that y2, y3, ...,  yk are weakly 
exogenous for the estimation of the parameters in the long-run relation. In 
a Monte Carlo study, UWE HASSLER and JÜRGEN WOLTERS (2006) 
showed that using the conditional error correction equation, i.e. including 
the instantaneous changes of y2, y3, …, yk in equation (6.8), results in 
a more powerful cointegration test than without these variables. The gen-
eral finding is that in any case, the conditional error correction regression 
outperforms the unconditional one. 

If there is cointegration, equation (6.10) provides an estimation of the 
cointegrating vector if the theoretical values in (6.9) are substituted by 
their least squares estimates. This is the non-linear cointegration estimator 
going back to JAMES H. STOCK (1987) which is also super consistent. The 
representation (6.8') gives the corresponding error correction equation. 

Example 6.6 

Now we use the data of Example 6.5 to test for cointegration in the error correc-
tion model (6.8). This approach avoids the possible bias in the Engle-Granger pro-
cedure since the short-run dynamic is not neglected. It serves as a starting point 
for the estimation of a complete money demand function. To capture the strong 
seasonal movements in m and y, the maximal lag for the changes in the explana-
tory variables is four. Centred seasonal dummies are also included. Eliminating 
the variable with the lowest t value successively leads to the following parsimoni-
ous model (with t values in parentheses): 

(E6.9)    mt   = 0.145
( 1.96)

  0.166
( 3.90)

 mt-1  + 0.183
(3.81)

yt-1  0.382
( 4.48)

rt-1   

 0.195
( 2.42)

mt-1  + 0.160
(2.05)

mt-2  + 0.279
(3.64)

mt-4  0.259
( 2.72)

yt-1 

 0.508
( 5.92)

yt-2  0.323
( 3.80)

yt-3  0.191
( 2.12)

 yt-4  1.215
( 3.91)

rt-1 
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 0.042
( 2.55)

s1,t  0.001
( 0.10)

s2,t   0.037
( 2.25)

s3,t  +  ût , 

 R2  =  0.937,   SE  =  0.013,   T  =  115,   JB  =  10.38 (p = 0.01), 

 LM(1) = 0.116 (p = 0.734),   LM(2) = 1.683 (p = 0.191), 

 LM(4) = 1.050 (p = 0.836),   LM(8) = 0.963 (p = 0.470). 

The Jarque-Bera test (JB) rejects the null hypothesis of normality of the residuals 
at the 1 percent level. On the other hand, the residuals do not show deviations 
from white noise according to the Lagrange Multiplier tests (LM(n)) that test 
autocorrelation up to order n. This means that the specification in (E6.9) captures 
the short- and long-run dynamics of the variables in a reasonable way. 

There exists a cointegrating relation between m, y, and r if the estimated coeffi-
cient of mt-1 is significantly negative. In this case, where m and y contain determi-
nistic trends, as can be seen from Figure 6.2, and no trend term is included in 
(E6.9), the correct critical value is found in the lower part of Table 6.2 for the case 
k = 2. Thus, the critical value with a 5 percent significance level is –3.69. Since 
the estimated t value is –3.90, the null hypothesis of no cointegration can be re-
jected at the 5 percent level. Equation (E6.9) is balanced. According to (6.8') and 
(6.9), this leads to the following long-run money demand equation: 

(E6.10) m   =   1.104 y  –  5.023 r . 

Comparing this result with the static long-run money demand function in (E6.8), 
we see that the income elasticity is about the same but that we get a stronger inter-
est rate effect. Assuming an interest rate of 5 percent, the long-run interest rate 
elasticity is -0.25, contrary to -0.15 in the static approach. 

6.3   Cointegration in Vector Autoregressive Models  

Assuming that the k variables, y1, y2, …, yk, collected in the vector Y, are 
integrated of order one, the following cases are possible: Either there is no 
cointegration at all or there exist one or two up to k – 1 linear independent 
cointegration vectors. In this case we cannot use single equation proce-
dures which allow at most for one cointegration relation. We no longer get 
unique relations as seen in Section 6.2.2. If we have more than two I(1) 
variables we must at first estimate the cointegration rank r, i.e. the number 
of linearly independent cointegration vectors. This can be done with a pro-
cedure developed by SØREN JOHANSEN (1988).  
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6.3.1   The Vector Error Correction Representation 

Starting point of this approach is an adequate statistical description of the 
linear relations between the k nonstationary variables. The usual way is the 
modelling as a vector autoregressive process of finite order p. We can use 
the techniques for stationary processes presented in Chapter 4. Therefore, 
we have  

(6.11) Yt   =   
p

j t j
j 1

A Y  +  Dt  +  Ut , 

where U denotes a normally distributed k-dimensional white noise process, 
D represents the deterministic terms, and Aj, j = 1, 2, …, p, are kxk-
dimensional parameter matrices. The reparametrisation as a vector error 
correction model as described in Sections 4.1 and 6.1 leads to  

(6.12) Yt   =   –  Yt-1  +  
p 1

*
j t j

j 1

A Y   +  Dt  +  Ut , 

with 

   =  A(1)  =  I – 
p

j
j 1

A    und   *
jA   =  

p

i
i j 1

A ,   j  =  1, 2, …, p–1. 

The matrix  represents the long-run relations between the variables. 
Since all components of Yt are I(1) variables, each component of Yt,…, 

Yt-p+1 is stationary and each component of Yt-1 is also integrated of order 
one. This makes relation (6.12) unbalanced as long as  has a full rank of 
k. In this case the inverse matrix -1 exists and we could solve equation 
(6.12) for Yt-1 as a linear combination of stationary variables. However, 
this would be a contradiction. Therefore,  must have a reduced rank of r 
< k. Then, the following decomposition exists: 

(6.13) 
(kxk) (kxr) (rxk)

B'  , 

where all matrices have rank r. B'Yt-1 are r stationary linear combinations 
which guarantee that the equations of system (6.12) are balanced. The col-
umns of B contain the r linearly independent cointegration vectors and the 
matrix  contains the so-called loading coefficients which measure the 
contributions of the r long-run relations in the different equations of the 
system. The adjustment processes to the equilibria can be derived from 
these coefficients. 
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If there is no cointegration, i.e. if r = 0,  is the zero matrix and (6.12) is 
a VAR of order p-1 in Y. This system possesses k unit roots, i.e. k sto-
chastic trends. If r = k – 1, the system contains exactly one common sto-
chastic trend and all the variables of the system are pairwise cointegrated. 
As a general rule, the system (6.12) contains k – r common stochastic 
trends and r linearly independent cointegration vectors for a cointegration 
rank r with 0 < r < k. 

Example 6.7 

Let the following three-dimensional VAR(3) without deterministic terms be given: 

Yt   =   

1.3 0 0.8

0.2 0.4 0

0 0.3 1.2

Yt-1  +  

0.7 0 0.2

0.1 0.3 0

0 0.6 0.2

Yt-2  

   +  

0.5 0 0.3

0.1 0.3 0

0 0 0.2

Yt-3  +  Ut, 

with 
 E[ui,t uj,t-k]  =  0   for   i   j   and   k    0, 

 E[ui,t ui,t-k]  =  2
i

0 for k 0

for k 0
 ,   i  =  1, 2, 3. 

Using (6.12) we find the error correction representation: 

Yt   =   –  

0.9 0 0.3

0 0 0

0 0.3 0.2

Yt-1  +  

1.2 0 0.5

0.2 0.6 0

0 0.6 0.4

Yt-1   

 +  

0.5 0 0.3

0.1 0.3 0

0 0 0.2

Yt-2  +  Ut. 

The matrix  contains the long-run equilibrium relations  

   =   

0.9 0 0.3

0 0 0

0 0.3 0.2

. 



6.3   Cointegration in Vector Autoregressive Models       221 

Since the rank of  is two, we have two cointegrating relations and one common 
stochastic trend. Thus, any two variables are pairwise cointegrated. Normalising 
the first cointegration vector on y1 and the second one on y3, we find the following 
decomposition of the 3x3 matrix  in the 3x2 loading matrix  and the 2x3 coin-
tegration matrix B': 

0.9 0

0 0

0 0.2

1
3

3
2

1 0

0 1
  =   

0.9 0 0.3

0 0 0

0 0.3 0.2

. 

Thus, the two long-run relations are 

(E6.11a) y1,t  –  
1

3
 y3,t   =   z1,t, 

(E6.11b) y3,t  –  
3

2
 y2,t   =   z2,t. 

Substituting (E6.11b) into (E6.11a) transforms the first equilibrium relation into 

y1,t  –  
1

2
 y2,t   =   z1,t  +  

1

3
 z2,t   =  1,tz . 

This leads to the following decomposition 

0.9 0.3

0 0

0 0.2

1
2

3
2

1 0

0 1
  =   

0.9 0 0.3

0 0 0

0 0.3 0.2

. 

This example shows that the decomposition in (6.13) is not unique, as we 
get  

(6.14)    =   B'   =   H-1HB'   =   B'  

for any regular rxr matrix H. 
This is the reason why we can only estimate the cointegration rank r. 

We are confronted with the usual identification problem for structural 
econometric systems. The cointegration vectors describing the economic 
long-run equilibria can only be estimated if meaningful economic restric-
tions are imposed. 
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6.3.2   The Johansen Approach 

The approach proposed by SØREN JOHANSEN (1988) is a maximum likeli-
hood estimation of (6.12) that considers restriction (6.13). Assuming first 
of all that the system (6.11) does not contain deterministic terms, we can 
write 

(6.15) Yt  +  'Yt-1   =   *
1 t 1A Y  +  ...  +  *

p 1 t p 1A Y  +  Ut . 

We get the maximum likelihood estimation of *
jA , j = 1, ..., p-1, by apply-

ing ordinary least squares on (6.15) if  and B are given. Eliminating the 
influence of the short-run dynamics on Yt and Yt-1 by regressing Yt 
(Yt-1) on the lagged differences, we get the residuals R0t (R1t) for which  

(6.16) R0t   =   – 'R1,t  + tÛ  

holds. Here, R0 is a vector of stationary and R1 a vector of nonstationary 
processes. The idea of the Johansen approach is to find those linear combi-
nations 'R1 which show the highest correlations with R0. The optimal 
values of  and the variance-covariance matrix  of U can be derived for 
known B by ordinary least squares estimation of (6.16). We get 

(6.17) ˆ ( )    =   – S01B(B'S11B)-1 

and 

(6.18) ˆ (B)    =   S00  –  S01B(B'S11B)-1 B'S10 

with 

(6.19) Sij   =   T-1
T

'
i,t j,t

t 1

R R    for   i, j  =  0, 1. 

It can be shown  that the likelihood function concentrated with (6.17) and 

(6.18) is proportional to T / 2ˆ| (B) | . Therefore, the optimal values of B re-
sult from minimising the determinant 

 S00  –  S01B(B'S11B)-1 B'S10  

with respect to B. SØREN JOHANSEN (1995, pp. 91f.) showed that this is 
equivalent to the solution of the following eigenvalue problem 

(6.20) S11  –  S10
1

00S S01   =   0 

with the eigenvalues i and the corresponding k-dimensional eigenvectors 
i, i = 1, 2, ..., k, for which 
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 i S11 i   = S10
1

00S S01 i. 

Using the arbitrary normalisation 

 

'
1

'
k

S11[ 1 ... k]   =   Ik ,  

with Ik being the k-dimensional identity matrix, leads to a unique solution.  
1  1

ˆ   ...  k
ˆ   0 holds for the ordered estimated eigenvalues. It can be 

shown that for k I(1) variables with cointegration rank r exactly r eigen-
values are positive and the remaining k – r eigenvalues are asymptotically 
zero. The cointegrating vectors are estimated by the corresponding eigen-
vectors and combined in the kxr matrix 

 B̂    =   [ 1ˆ  ... rˆ ]. 

The number of significantly positive eigenvalues determines the rank r of 
the cointegration space. This leads to two different likelihood ratio test 
procedures: 

(i) The so-called trace test has the null hypothesis 

H0:   There are at most r positive eigenvalues 

 against the alternative hypothesis that there are more than r positive 
eigenvalues. The test statistic is given by  

 (6.21) Tr(r)   =   – T 
k

i
i r 1

ˆln(1 ) . 

(ii) The so-called max test analyses whether there are r or r + 1 cointegrat-
ing vectors. The null hypothesis is  

H0:   There are exactly r positive eigenvalues 

 against the alternative hypothesis that there are exactly r + 1 positive 
eigenvalues. The corresponding test statistic is given by  

 (6.22) max(r, r+1)  =   – T r 1
ˆln(1 ) . 

The series of tests starts with r = 0 and is performed until the first time the 
null hypothesis cannot be rejected. The cointegration rank is given by the 
corresponding value of r. The null hypothesis is rejected for too large val-
ues of the test statistic. Since the test statistics do not follow standard as-
ymptotic distributions, the critical values are generated by simulations. The 
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critical values depend on the included deterministic terms in the VAR(p) 
of relation (6.11) and the specification of the deterministics in the long-run 
relations of the corresponding error-correction model. To present the pos-
sible situations, we substitute (6.13) into (6.12) and generalise the resulting 
vector error correction model to 

(6.23) Yt   =   –  B*' *
t 1Y   +  c  +  d t  + 

p 1
*
j t j

j 1

A Y   +  Ut , 

with 

B*'   =  
11 1k 1 1

r1 rk r r

c d

c d

   =   [B' c  d ] 

and 

 

1,t 1

t 1
*
t 1 k,t 1

y

Y

Y 1y

t 11

t 1

. 

If we use seasonally unadjusted data, centred seasonal dummies should 
also be included as regressors in (6.23). 

The following five parameterisations of the deterministic terms in (6.23) 
are possible: 

(i) The levels Y do not contain deterministic trends and the cointegrating 
relations do not contain constant terms:  

 B*' *
t 1Y   –  c  –  d t   =    B' Yt-1 . 

(ii) The levels Y do not contain deterministic trends but the cointegrating 
relations contain constant terms: 

 B*' *
t 1Y   –  c  –  d t   =    (B' Yt-1  +  c ). 

(iii) The levels Y contain linear deterministic trends and the cointegrating 
relations contain constant terms: 

 B*' *
t 1Y   –  c  –  d t   =    (B' Yt-1  +  c )  +  . 
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 In this case (and the following cases), the decomposition of the con-
stants is arbitrary. S. JOHANSEN (1995) chooses the orthogonal com-
plement matrix  of  with '   = 0 and [ ] invertible for the 
decomposition. 

(iv) The levels Y and the cointegrating relations contain linear determinis-
tic trends: 

 B*' *
t 1Y   –  c  –  d t   =    (B' Yt-1  +  c   +  d (t-1))  +  . 

(v) The levels Y contain quadratic deterministic trends and the cointe-
grating relations contain linear deterministic trends: 

  B*' *
t 1Y   –  c  –  d t   =    (B' Yt-1  +  c   +  d (t-1))  + (  +  t). 

By using simulations, critical values for these five situations were derived 
by MICHAEL OSTERWALD LENUM (1992) and S. JOHANSEN (1995, Tables 

15.1 to 15.5, pp 214ff.). 
Because of (6.14), the cointegration vectors are not identified. They are 

simply stationary linear combinations which do not necessarily have mean-
ingful economic interpretations. They might, however, represent linear 
combinations of economic equilibrium conditions. Thus, the question is 
how to test linear restrictions in the r cointegrating vectors. S. JOHANSEN 
(1988) developed a method to test restrictions on B which have the follow-
ing form 

(6.24) H0:   B  =  G ,  

where G is a given kxs matrix with full rank s, s < k, and  is an sxr ma-
trix of free parameters. Estimating the vector error correction model under 
the restriction (6.24) with the Johansen approach results in r positive ei-
genvalues *

1  > *
2  > ... > *

r . A likelihood ratio test compares the unre-
stricted with the restricted model, both with cointegration rank r. The cor-
responding likelihood ratio statistic is given by 

(6.25) LR   =   T
*r
i

i 1 i

(1 )
ln

ˆ(1 )
 . 

It is asymptotically 2 distributed with r·(k – s) degrees of freedom.  
Restrictions can also be formulated with respect to the adjustment pa-

rameters. The property of weak exogeneity is of special interest: 

• A variable is weakly exogenous with respect to the cointegration pa-
rameters if and only if no cointegrating relation is included in the equa-
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tion of this variable, i.e. if the corresponding row of the matrix  con-
tains only zeros. 

Example 6.8 

From January 1986 to December 1998, the German Bundesbank published 
monthly money market rates with times of maturity of one month, r1, three 
months, r3, and six months, r6. Figure 6.3 shows the three months money market 
rates. (The development of the two other interest rates is quite similar.) Theoreti-
cally, the relation between these interest rates can be described by the expectation 
hypothesis of the term structure. Its linearised version is: 

(E6.12) rm,t   =   
m 1

t 1,t i
i 0

1
E [r ]

m
  +  m . 

rm, m = 1, 3, 6, denote nominal interest rates with a horizon of m months, m a risk 
premium, and Et[·] the conditional expectation, given all information up to time t. 
Because of  

 r1,t+i   =   r1,t  +  r1,t+1  +  r1,t+2  +  …  +  r1,t+i , 

(E6.12) can be written as 

(E6.12') rm,t   =   r1,t  +  
m 1

t 1,t i
i 1

1 m i
E [ r ]

m m
  +  m . 

Performing unit root tests for the interest rates r1, r3 and r6, the null hypothesis of 
nonstationarity cannot be rejected for the levels of these variables, but it can be re-
jected for their first differences. Thus, the interest rates should be treated as I(1) 
variables. Because of (E6.12') it is obvious that  

 rm,t  –  r1,t  ~  I(0),   m  =  3, 6  

for the interest rates spreads. 
Therefore, any other difference between the interest rates is also stationary. 

Consequently, the three interest rates should contain one stochastic trend and gen-
erate two cointegrating relations. Possible linearly independent cointegration vec-
tors are 

 '
1   =  [1 0 -1],   '

2   =  [0 1 -1] . 

Other representations are also possible, like, for example,  

 '
1   =  '

2  – '
1   =  [-1 1 0],   '

2   =  – '
1  – '

1   =  – '
2   =  [0 -1 1] . 

We use monthly data from January 1987 until December 1998 for the empirical 
analysis. First we estimate a VAR in the levels of the variables. Following the in-
formation criteria given from (4.10a) to (4.10d), we get different orders for the 
VAR. The Final Prediction Error (as well as the Akaike criterion) suggests a 
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maximum lag of three months, the maximum lag suggested by the Hannan-Quinn 
criterion is two months and that of the Schwarz criterion one month. Therefore, an 
additionally necessary criterion is that the estimated residuals do not exhibit sig-
nificant autocorrelation. According to the Lagrange-Multiplier test, we only get 
satisfactory results for a maximum lag of three months. Thus, in the following, we 
assume that the order of the VAR is three. 
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Figure 6.3:   German three months money market rate in Frankfurt 

For the parameterisation of the corresponding second order vector error correction 
models (VECM(2)), we assume that the variables do not contain a linear determi-
nistic trend. Thus, the constant terms are elements of the cointegrating relations. 
The results of the trace and the max tests are given in Table 6.3. As expected ,there 
are two cointegrating relations; both are significant at the 1 percent level. Thus, it 
is one stochastic trend that drives the whole system. Assuming pairwise cointegra-
tion, we get, for example, the following long-run relations: 

r1,t   =  0.241
(0.118)

  + 1.017
(0.019)

r6,t  +  ẑ 1,t, 

r3,t   =  0.150
(0.065)

  + 1.017
(0.010)

r6,t  +  ẑ 2,t. 

(The standard errors are given in parentheses.) The estimated coefficients of r6,t 
are not significantly different from one. It follows from this that – according to our 
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theoretical considerations, the interest rate spreads z16 = r1 – r6 and z36 = r3 – r6 are 
stationary. This implies that z13 = r1 – r3 is also stationary. If the null hypothesis is 
accepted then the mean adjusted spreads are given by  

(E6.13a) SP31   =   r3  –  r1  –  0.0087 , 

(E6.13b) SP63   =   r6  –  r3  –  0.0042 . 

The negative constant terms indicate that the term structure is on average (or in 
equilibrium) ‘normal’, i.e. the long-run rates are higher than the short-run ones.  
 

Table 6.3:   Results of the Johansen Cointegration Test 

Hypothesis Eigenvalue Trace Test 
Critical Value

(1 Percent) max Test 
Critical Value 

(1 Percent) 

r = 0 0.217 63.51 41.07 35.14 26.81 

r  1 0.170 28.38 24.60 26.89 20.20 

r  2 0.010 1.49 12.97 1.49 12.97 

 
In the following, we estimate a parsimoniously parameterised vector error correc-
tion model. We start with a VECM(2) where the deviations of the equilibrium 
(which is represented by the mean-adjusted spreads) are predetermined. Using the 
Zellner approach to estimate seemingly unrelated regressions, we successively 
eliminate the least significant variables. This leads to the following system of 
equations, where the estimated t statistics are given in parentheses:  

(E6.14a) r1,t   =  0.648
(10.84)

SP31t-1  0.082
( 1.92)

r1,t-1  +  û1,t, 

 R2  =  0.239,   SE  =  0.229,   LM(2)  =  0.38 (p = 0.69), 
LM(4)  =  0.38 (p = 0.82),   LM(8)  =  1.33 (p = 0.24). 

(E6.14b) r3,t   =   0.256
(6.83)

SP63t-1  +  0.140
(2.78)

r3,t-1  +  û3,t, 

 R2  =  0.141,   SE  =  0.228,   LM(2)  =  0.30 (p = 0.74), 
LM(4)  =  0.17 (p = 0.95),   LM(8)  =  0.84 (p = 0.56). 

(E6.14c) r6,t   =   0.250
(4.41)

 r6,t-1  +  û6,t, 

 R2  =  0.113,   SE  =  0.235,   LM(2)  =  0.94 (p = 0.39), 
LM(4)  =  0.59 (p = 0.67),   LM(8)  =  1.34 (p = 0.23). 
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The estimated residuals of this system do not exhibit significant autocorrelation. 
As the equation for r6 does not contain a cointegration vector, the six months rate 
is the weakly exogenous variable which drives the whole system. The system is 
stable. This can be illustrated in the following way: Assume the three months rate 
is out of equilibrium; it is, for example, larger than the six months rate. This im-
plies a reduction of r3 from equation (E6.14b) in direction to the equilibrium and 
an increase of r1 in equation (E6.14a) and thus also a return to the equilibrium. If 
r3 is smaller than r6, a reverse process which also converges to the equilibrium will 
be established. 

6.3.3   Analysis of Vector Error Correction Models 

In the following, we discuss several concepts which are important for the 
interpretation of error correction models, like, for example, the concept of 
weak exogeneity or the implementation of Granger causality tests. In any 
case, a vector error correction model can be transformed into the corre-
sponding vector autoregressive model. This allows to calculate the impulse 
response functions and to decompose the variances. 

Taking the cointegration restriction (6.13) into account and neglecting 
the deterministic terms, the reduced form of an error correction model 
(6.12) can be written as 

(6.26a) Yt   =   –  B'Yt-1  + 
p 1

*
j t j

j 1

A Y   +  Ut,   Ut ~ N (0, ). 

The necessary and sufficient condition for Y not to be integrated of order 2 
is that 

 
p 1

' *
k j

j  1

C I A  B  

has full rank with  and B  being the orthogonal complements of  and B. 
In this case, we can solve (6.26a) by deriving its moving average represen-
tation  

(6.26b) Yt   =   C
t

i
i  1

U   +  C*(L)Ut  +  *
0y  

where C = B  -1C   and *
0y  denote the initial values. C*(L) is an infinite-

order polynomial in the lag operator with coefficient matrices *
jC  that go 

to zero with j going to infinity. C has the rank k – r if (6.26a) has cointe-
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gration rank r. Therefore, equation (6.26b) indicates the stochastic trend 
representation of Y with k – r common trends.  

In the following, we will derive the conditional error correction repre-
sentation by partitioning the vector Y in (6.26a) into two subvectors X and 
Z, i.e. Y' = [X', Z']. This leads to 

(6.27) t

t

X

Z
  =   – x

z

 B' Yt-1  +  j

j

*p 1
x

*
j 1 z

A

A
Yt–j + x,t

z,t

U

U
, 

with vectors and matrices having the appropriate dimensions and the vari-
ance-covariance matrix 

   =   xx xz

zx zz

 ,   zx   =  '
xz  . 

If Z is interpreted as a vector of conditioning variables, even the current 
changes of Z, i.e. Zt, can be applied as explanatory variables for X. Fol-
lowing SØREN JOHANSEN (1992) or H. PETER BOSWIJK (1995), the equiva-
lent transformation of (6.27) leads to 

(6.28a) Xt   =   *
0A Zt  –  x z B' Yt-1  + 

j

p 1
*
x z t j

j 1

A Y  + Ux z,t , 

(6.28b) Zt   =   –  z B' Yt-1  + 
j

p 1
*
z t j

j 1

A Y  + Uz,t . 

Here, it holds that 

* 1
0 xz zzA ,   x z  =  x – *

0A  z ,   
j j j

* * * *
x z x 0 zA A A A , 

 j = 1, 2, …, p-1,   Ux z,t  =  Ux,t – *
0A  Uz,t . 

In its systematic part, representation (6.28a) contains the contemporaneous 
correlation between X and Z. If xz = 0, then X and Z are block recur-
sive and (6.28a, b) is identical with (6.27). 

If either (6.27) or (6.28a,b) is the true data generating process, the coin-
tegrating matrix B can be estimated efficiently by using the Johansen ap-
proach or performing a simultaneous estimation of (6.28a,b). However, the 
question of whether the cointegration vectors estimated in this way have an 
economic interpretation as long-run equilibrium relations remains open 
because of (6.14). 

S. JOHANSEN (1992), H. P. BOSWIJK (1995) and NEIL R. ERICSSON 

(1995) showed that it is possible to estimate B efficiently from (6.28a) 
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without using (6.28b), (i) if Z is weakly exogenous, i.e. z = 0, (ii) if none 
of the cointegrating relations of (6.28b) is also part of (6.28a), or (iii) if the 
system is block recursive, i.e. if xz = 0 holds. 

If one of these conditions is fulfilled and if the sub-vector X contains 
only one single variable, the conditional error correction equation (6.28a) 
is a structural equation and the long-run relation has a structural interpreta-
tion. However, if the subvector X contains more than one single variable, 
the conditional error correction equations (6.28a) – in general – no longer 
have a structural interpretation because possible instantaneous relations be-
tween the endogenous variables are not covered. Thus, the cointegration 
vectors may no longer represent structural relations. 

If, on the other hand, Z is weakly exogenous, (6.28a) can be used to de-
rive a structural error correction model by multiplying it with a regular 
and correspondingly normalised matrix 0, which, in addition, contains the 
identifying restrictions: 

(6.29) 0 Xt   =   *
0A Zt  –  x z B' Yt-1  + 

j

p 1
*
x z t j

j 1

A Y  + x z,tU , 

with 

 * *
0 0 0A A ,   x z   =  0 x z ,   

j

*
x zA  =  0 

j

*
x zA ,  j = 1, 2, …, p-1, 

 x z,tU  =  0 x z,tU . 

The efficient estimation of B in (6.29) generates structural long-run rela-
tions. Only the estimation of structural error correction models leads to 
long-run relations with a structural interpretation, as these relations are ex-
actly determined by the identifying restrictions. Every other situation leads 
to cointegrating vectors for which we cannot normally expect a direct eco-
nomic interpretation. Usually, however, linear combinations of the cointe-
grating vectors can be interpreted as economic long-run equilibrium rela-
tions. 

If there is only one endogenous variable in (6.28a) and if all explanatory 
variables are weakly exogenous, the parameters of the long-run relation 
can be estimated efficiently by using OLS, and the usual test statistics can 
be applied. If, on the other hand, the explanatory variables are not weakly 
exogenous and if we have identified cointegrating relations, OLS can still 
be applied to get super consistent estimates. However, the asymptotic effi-
ciency is lost and the usual test statistics are no longer applicable. 

The concept of Granger causality in the VAR framework has been dis-
cussed in Chapter 4. If vector error correction models are transformed into 
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VAR models, the considerations in Section 4.2 hold. On the other hand, 
tests for Granger causality can also be performed using error correction 
models. CLIVE W.J. GRANGER and JIN-LUNG LIN (1995) showed that the 
advantage of this procedure is that it allows to differentiate between long-
run and short-run causal relations. 

Example 6.9 

Let the following error correction model with two cointegrated I(1) variables be 
given,  

y1, t   =   – 1 (y1,t-1  –   y2, t-1)  +  a11 y1, t-1  +  a12 y2, t-1  +  u1, t , 

y2, t   =      2 (y1,t-1  –   y2, t-1)  +  a21 y1, t-1  +  a22 y2, t-1  +  u2, t . 

Here, 

zt   =   y1, t  –   y2, t 

represents the long-run relation. The variable y2 is not Granger causal to y1 if its 
lagged values are not included in the equation for y1. Thus, there is no causal rela-
tion from y2 to y1 if 1 = 0 and a12 = 0 holds. There exists only ‘short-run’ causality 
if 1 = 0 but a12  0, and only ‘long-run’ causality if 1  0 but a12 = 0. Similar con-
siderations hold for the question of whether y1 is Granger causal to y2.  

Cointegration always implies the existence of a Granger causal relation. Thus, 
if cointegration exists, at least one i, i = 1,2, is different from zero. Apparently, 
the opposite relation does not hold. 

When testing for Granger causality, problems can arise when it is open 
whether the nonstationary variables are cointegrated or not. For this situa-
tion HIRO Y. TODA and TAKU YAMAMOTO (1995) (and in a similar way 
also JUAN J. DOLADO and HELMUT LÜTKEPOHL (1996)) propose the fol-
lowing procedure: Starting point is a VAR in levels. Using the usual crite-
ria described in Chapter 4, its optimal lag length p is determined. Then, a 
VAR of order p+d is estimated, where d is the (assumed) maximum degree 
of integration of the variables. Using this VAR, Wald tests for simple 
Granger causality are performed, and only the first p coefficients are em-
ployed to perform the test. The disadvantage of this procedure is that, 
compared with the error correction representation, the estimates of the 
VAR are less efficient due to the additionally included lagged variables. It 
avoids, however, misspecifications that might invalidate the test results. 

At a first glance, everything said about forecasts with vector autoregres-
sive processes in Section 4.1 holds for the use of cointegrated systems for 
forecasting, as every error correction model can be transformed into a 
VAR in levels. Here, it also holds that  
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tŶ (h)    =   Et[Yt+h] ,   h  =  1, 2, … . 

Moreover, it is also possible to calculate impulse response functions and 
decompose variances in cointegrated systems. Because of the unit roots, 
these statistics converge – if at all – considerably more slowly than in sta-
tionary models. The error correction representation which is possible for 
systems of stationary or cointegrated variables interprets the possible pa-
rameters in a more informative way but does not change anything with re-
spect to the relations between the variables. Thus, their explicit considera-
tion does neither lead to different forecasts nor to different impulse-
response functions or different variance decompositions compared to those 
of the VAR in levels. 

This is different if there are restrictions in the deterministic part of the 
model. Then, the use of error correction models should lead to better fore-
casts. This was already presented by ROBERT F. ENGLE and BYUNG SAM 

YOO (1987). However, this is not necessarily the case, as, for example, 
PETER F. CHRISTOFFERSEN and FRANCIS X. DIEBOLD (1998) or MICHAEL 

P. CLEMENTS and DAVID F. HENDRY (2001) showed. The reason for this is 
that, in the long-run, even very small deviations in the constant term of the 
cointegrating relation might produce large deviations of the predicted from 
the realised values. A possible alternative to forecasts with error correction 
models are, therefore, forecasts with a VAR in first differences. As the first 
differences eliminate the long-run relations, the implied long-run forecasts 
for the levels are more or less the status quo. 

Thus, the question arises what is to be predicted. The (unconditional) 
long-run development of variables with stochastic trend (without strong 
drift) cannot be predicted. This still holds when employing error correction 
models. On the other hand, the knowledge of the long-run equilibrium re-
lations given by the error correction representation is necessary for condi-
tional long-run forecasts. Short- to medium-term forecasts can be per-
formed with models in first differences as well as with error correction 
models. Using the development of German money market interest rates, 
UWE HASSLER and JÜRGEN WOLTERS (2001) showed that (in this case) 
forecasts with an error correction model, with a constant term only in the 
cointegration relation, were superior to forecasts based on a VAR in first 
differences. It is, however, impossible to say how far this result can be 
generalised. Quite generally, models without restrictions on the constant 
term seem to produce inferior forecasts for variables without trend than al-
ternative approaches restricting constant terms to zero. 
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6.4   Cointegration and Economic Theory  

Macroeconomic theory is mainly based on long-run equilibrium relations, 
like the quantity equation, purchasing power parity, or uncovered interest 
rate parity. Economic theory rarely tells us anything about short-run dy-
namics. Although these relations hardly ever hold exactly in reality, some 
of them are part of nearly all usual models. They play a role as, for exam-
ple, purchasing power parity and uncovered interest rate parity in monetary 
international economics. It is usually argued that we only observe short-

run deviations from the equilibrium, which is compatible with the long-run 
validity of these relations.  

The error correction models introduced in Chapter 4 allow for a repre-
sentation which differentiates between long-run equilibrium relations and 
short-run adjustment processes. Nevertheless, if the variables are station-
ary, the short-run dynamic has to be correctly specified in order to estimate 
the long-run relations consistently. Given that economic theory does 
mostly not consider short-run dynamics, these adjustment processes are 
usually modelled ad hoc, using statistical criteria. 

If variables are nonstationary but cointegrated, it is possible that the pa-
rameters of long-run relations are estimated (super) consistently without 
considering the short-run dynamics. Taking the short-run dynamics into 
account improves the efficiency of the estimates (and the power of the cor-
responding tests) but does not change the consistency properties. Thus, a 
misspecification of the short-run dynamics (or the omission of stationary 
variables) does not lead to inconsistent estimates of the equilibrium rela-
tions between the nonstationary variables. The same holds for simultaneity 
problems and for errors in the (explanatory) variables. Contrary to esti-
mates with stationary variables, these problems do not lead to inconsistent 
estimates. 

All these aspects facilitate the empirical examination of economic theo-
ries. In order to estimate long-run equilibrium relations consistently, we no 
longer need the complete and fully specified model. It is sufficient to know 
which (nonstationary) variables are elements of these relations. It is even 
possible to estimate a model with OLS. Thus, the propagation of cointegra-
tion analysis also leads to a kind of renaissance of OLS estimations. 

However, if tests are to be performed for the estimated relations, the 
price for these more ‘simple’ estimation procedures becomes easily obvi-
ous: Most test statistics do not follow their usual distributions, there are 
even massive deviations in some cases. This also holds asymptotically. 
Moreover, in most cases the exact distributions for finite samples are un-
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known. Thus, we have to resort to simulated critical values, as presented in 
many papers, or generate them by bootstrapping. 

This does not mitigate the fact that the development of cointegration 
analysis has brought time series econometrics back closer to economic 
theory. In the 1970s, the expansion of the Box-Jenkins analysis had gener-
ated a large gap between these two. The results mentioned in Chapter 2 
demonstrated that univariate models without (economic) theoretical under-
pinning led to better forecasts of the future development of economic vari-
ables. This seemed to justify the gap. These procedures did, of course, not 
allow for conditional forecasts, which are as important for economic policy 
as pure predictions. For conditional forecasts we need (empirically sup-
ported) knowledge about the basic long-run equilibrium relations. Such in-
formation can be generated much better and more precisely by using coin-
tegration analysis rather than by employing traditional econometric 
methods. Thus, time series analysis and empirical investigations performed 
by its methods have again become much more relevant for economic pol-
icy advice than it seemed to be the case in the 1970s. 
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7   Autoregressive Conditional Heteroskedasticity 

All models discussed so far use the conditional expectation to describe the 
mean development of one or more time series. The optimal forecast, in the 
sense that the variance of the forecast errors will be minimised, is given by 
the conditional mean of the underlying model. Here, it is assumed that the 
residuals are not only uncorrelated but also homoskedastic, i.e. that the un-
explained fluctuations have no dependencies in the second moments. 
However, BENOIT MANDELBROT (1963) already showed that financial 
market data have more outliers than would be compatible with the (usually 
assumed) normal distribution and that there are ‘volatility clusters’: small 
(large) shocks are again followed by small (large) shocks. This may lead to 
‘leptokurtic distributions‘, which – as compared to a normal distribution – 
exhibit more mass at the centre and at the tails of the distribution. This re-
sults in ‘excess kurtosis’, i.e. the values of the kurtosis are above three.  

Example 7.1 

As an example, we take the German Stock Market Index (DAX). We use daily ob-
servations from 2 January 1996 to 19 May 1999, i.e. we have 842 observations. 
Figure 7.1a shows the time series, Figure 7.1b the continuous returns, i.e. the first 
differences of the logarithms of this series. ‘Clusters’ appear. While the develop-
ment of the series is relatively quiet at the beginning, i.e. the amplitude is small; 
more pronounced fluctuations can be observed in the second half of the observa-
tion period. This leads to the excess kurtosis which can be seen in Figure 7.1c: 
The kurtosis of the returns is 6.633, i.e. far above the value of 3.0, which would be 
expected if the variable were normally distributed. Thus, we get a value of 
456.051 (p = 0.000) for the Jarque-Bera statistic. The null hypothesis of normal 
distribution has to be rejected at any conventional significance level. 

The correlogram of the returns indicates second order autocorrelation. If we es-
timate an AR(2) model (with the modulus of t values in parentheses) for this series 
we get: 

ln(DAXt)   = 0.001
( 2.07)

  – 0.090
( 2.62)

 ln(DAXt-2)  +  tˆ , 

2R   =  0.007,   SE  =  0.015,  Q(9)  =  5.947 (p = 0.745). 
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Figure 7.1: German Stock Market Index, 2 January 1996 until 19 May 1999, 

842 observations 
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Figure 7.1: German Stock Market Index, 2 January 1996 until 19 May 

1999, 842 observations (continued) 

Figure 7.1d indicates that the residuals of this model no longer exhibit any signifi-
cant autocorrelation. On the other hand, Figure 7.1e shows highly significant 
autocorrelation between the squares of these residuals. This indicates dependency 
in the second moments of the residuals, which contradicts the assumption of a 
constant, time-invariant variance. Thus,  is not pure white noise. 

In order to capture such problems by extending the models, we first pre-
sent the conditional and unconditional means and variances of an AR(1) 
process. As shown in Section 2.1.1, for the process (2.1) 

ˆ( )

ˆ( )
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xt  =   +  xt-1 + ut,   with   | | < 1, 

holds 

E[xt]   =  
1

   and   V[xt]  =  
2

21
. 

Contrary to this, the conditional mean 

E[xt | xt-1, … ]   =   Et-1[xt]   =     +   xt-1 

is not constant but depends on the observation of the previous period. 
However, for the conditional variance it holds that 

V[xt | xt-1, … ] =   E[(xt – Et-1[xt])
2 | xt-1, …] 

 =   E[ 2
tu | xt-1, …]  =  2 . 

It is constant, just like the unconditional variance. Thus, phenomena like 
volatility clusters cannot be described by this model. We need different 
distributional assumptions to allow for ‘fat tails’, i.e. for values of the kur-
tosis above three. 
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Figure 7.2:  Density functions of a transformed t distribution with 5 degrees of 

freedom, variance one and a standard normal distribution 
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One possibility is to leave the normal distribution and to use, for example, 
a t distribution. Figure 7.2 shows a t distribution with five degrees of free-
dom which is transformed so that it has a variance of one, i.e. the same 
variance as the standard normal distribution. Its kurtosis is nine. It can 
clearly be seen that the sides are steeper compared to the normal distribu-
tion also presented in Figure 7.2. (In ‘stable distributions’, the density 
functions are shaped similarly to the t distribution.) 

On the other hand, in his paper on inflation in Great Britain, ROBERT F. 
ENGLE (1982) retained the normal distribution assumption but allowed the 
conditional variance of the residuals to vary linearly with the lagged 
squared residuals. This leads to models with autoregressive conditional 
heteroskedastic residuals, the ARCH models. The residuals of these mod-
els are also leptokurtic. The idea behind this approach is that the same 
models which are used to represent the conditional mean of a variable, i.e. 
AR, MA or ARMA models, can be applied to the squared residuals of 
equations. Section 7.1 will present these ARCH models. Generalisations 
will be discussed in Section 7.2, and problems of estimation and testing in 
Section 7.3. We will conclude this chapter with examples of the applica-
tion of ARCH/GARCH models in financial market analysis (Section 7.4). 

7.1   ARCH Models 

In the following, we will first discuss dependencies of the squared residu-
als by using autoregressive models. The main properties of such models 
will be presented. In addition, we will show that it largely depends on the 
frequency of data collection whether autoregressive conditional heteroske-
dasticity occurs.  

7.1.1   Definition and Representation 

Let us assume that the variable y can be explained in a linear model with 
the predetermined variables X and the parameter vector ,  

(7.1) yt   =   '
tX   +  t . 

Along with truly exogenous deterministic and stochastic variables, the vec-
tor X might also contain lagged endogenous variables. The error term  has 
zero mean, E[ t] = 0, and a constant unconditional variance, 2

tE[ ]  = 2. It 
also holds that  is not autocorrelated whereas 2 is allowed to be autocor-
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related. It is assumed that this autocorrelation can be captured by an AR(q) 
process, 

(7.2) 2
t    =   0  +  1 

2
t 1   +  2 

2
t 2   +  …  +  q 

2
t q   +  t , 

were t is white noise. The information set It contains all information 
which is available at time t (as in Chapter 3), thus It-1 = {yt-1, yt-2, …, Xt-1, 
Xt-2, …}. If the parameter vector  is known, this information set also con-
tains all residuals up to time t – 1 because of t-i = yt-i – '

t iX , i = 1, 2, … .  

The conditional variance of t , 
2
th  can be written as 

(7.3) 2
th    :=   V[ t | It-1]   =   E[ 2

t | It-1] . 

Because of (7.2) we get the ARCH(q) model 

(7.4) 2
th    =   0  + 

q
2

i t i
i 1

 

with 0 > 0 and i  0 for i = 1, …, q – 1, as well as q > 0. These condi-
tions ensure that the conditional variance is always positive. 

If a large shock occurs in equation (7.1), i.e. if there is a large positive 
or negative value of , this leads, according to relation (7.4), to a series of 
large values for the conditional variance, as the latter is a monotonically 
increasing function of lagged squared realised values of . If the occurring 
shock is only small, further small shocks are assumed to occur in the near 
future. The higher the value of q, the more extended are the volatility clus-
ters. 

ARCH effects can, for example, result from random coefficients, as 
shown by ANIL K. BERA and MATTHEW L. HIGGINS (1963). Let  be a 
time dependent autoregressive process of order q (in contrast to the as-
sumption above),  

t   =   
q

it t i
i 1

  +  ut , 

with 

ut    (0, 0),   it  =  i  +  it,   i    (0, i),   i  =  1, 2, …, q, 

Cov[ it, jt]  =  0   for   i    j, Cov[ it, ut+j]  =  0   for all i and j. 

Then the conditional variance of the residuals  leads to 

E[ 2
t | It-1]   =   0  +  1 

2
t 1   +  2 

2
t 2   +  …  +  q 

2
t q , 
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i.e. the residuals do not follow an AR(q) but an ARCH(q) process. 

Example 7.2 

Assume that the residuals follow the AR(1) process with random coefficient 

t   =   t t-1  +  ut , 

with 

t    ( , 1)   and   ut    (0, 0), 

where t and ut are independently generated. Then the conditional mean of the re-
siduals results in 

E[ t  It-1]   =    t-1, 

and their conditional variance in 

2
t t 1E[ I ]    =   0  +  1

2
t 1 , 

i.e. the residuals do not only follow an AR(1) but also an ARCH(1) process. This 
allows, for example, to model time dependent risk premia. 

Large values of q demand models with many parameters, which contra-
dicts the parsimony principle of univariate time series analysis. Therefore, 
R.F. ENGLE (1982) proposed the following model with distributed lags 
where only two parameters have to be estimated: 

(7.5) 2
th    =   0  +  1

q
2

i t i
i 1

w  

with 

wi   =   
2(q 1 i)

q (q 1)
,   i  =  1, 2, …, q . 

These weights decrease linearly and sum up to one. 
For estimating and testing, assumptions on the conditional distribution 

of  have to be made. Following R.F. ENGLE (1982), it is often assumed 
that the residuals follow a conditional normal distribution,  

(7.6) t | It-1   ~   N(0, 2
th ) . 

The assumption of a conditional univariate normal distribution implies that 
neither the joint nor the marginal distributions are normal. It is, however, 
possible to approximate leptokurtic distributions. 
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7.1.2   Unconditional Moments 

In the following we use a special version of the law of iterated expecta-

tions 

(7.7) E[Z]   =   E[E[Z | I]],  

where Z is a random variable and I the relevant information as a set of 
conditioning random variables.  

Due to (7.6), it holds that E[ t | It-1] = 0. Thus, because of (7.7) E[ t] = 0 
also holds. Due to (7.7) and (7.3), we get  

2   =   E[ 2
t ]   =   E[E[ 2

t | It-1]]  =  E[ 2
th ]  

for the unconditional variance of the residuals. 
Because of (7.4) we get 

2   =   E[ 2
th ]   =   0  +  

q
2

i t i
i 1

E[ ]    =   0  +  2 
q

i
i 1

. 

This leads to 

(7.8) 2   =   0
q

i
i 1

1

,   if   
q

i
i 1

 <  1 . 

If this condition is violated, this process does not possess a finite variance. 
For the kurtosis of an ARCH(1) process, R.F. ENGLE (1982) derived the 

following expression 

(7.9) K[ t]   =   
4
t

2 2
t

E[ ]

(E[ ])
   =   3 

2
1

2
1

1

1 3
. 

Thus, the kurtosis only exists if  3 2
1  < 1. It is larger than three, i.e. than its 

value in case of a normal distribution. We get this value if 1 tends towards 
zero. Compared to a normal distribution with the same variance, the 
ARCH(1) process has more mass in the centre of the distribution and fatter 
tails. As shown above, these are the properties often exhibited by financial 
market data if they are measured in short time distances. 

For the autocovariances, we get 

E[ t t- ]   =   E[E[ t t-  | It-1]] 

 =   E[ t-  E[ t | It-1]]   =   0 

for   1. 
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As the ARCH(q) process has zero mean and is not autocorrelated, it is 
weakly stationary if its variance is finite, i.e. if the above shown condition 
that the sum of the i, i = 1, …, q, is smaller than one is fulfilled.  

The fact that  is not autocorrelated does, of course, not imply that it is 
distributed independently. After all, the autocorrelation of 2 is modelled in 
relation (7.2). This prevents higher moments from disappearing. 

Example 7.3 

For the time series of the German Stock Market Index used in Example 7.1 we can 
estimate the following model: 

ln(DAXt)   = 0.0013
( 3.37)

  – 0.072
( 1.97)

 ln(DAXt-2)  +  t
ˆ , 

2
tĥ    =   52.52 10

( 3.96)
  + 2

t 1ˆ0.163
(3.79)

 + 2
t 2ˆ0.149

(3.29)
 + 2

t 3ˆ0.107
(2.11)

 + 2
t 4ˆ0.063

(1.72)
  

  +  2
t 5ˆ0.120

(2.54)
 + 2

t 6ˆ0.139
(2.85)

 + 2
t 7ˆ0.139

(2.62)
 + 2

t 8ˆ0.085
(2.20)

,  

2R   =  -0.004,   SE  =  0.015,  Q(9)  =  5.794 (p  =  0.760),   JB  =  65.652. 

Looking at the t values given in parentheses, we can conclude that, with one-sided 
tests, all estimated parameters prove to be positive significant at least at the 5 per-
cent level. Thus, they satisfy the conditions for a non-negative variance. The sum 
of the ARCH coefficients is 0.965 (< 1). Therefore, the unconditional variance ex-
ists and has a value of 2.33 · 10-5. The value of the Jarque-Bera statistic indicates 
that the null hypothesis of a normal distribution can still be rejected at any conven-
tional significance level, but now it is much smaller than before. The reason for 
this is that the kurtosis is now only 3.806 compared with the kurtosis 6.633 of the 
data themselves. Thus, the kurtosis of the estimated residuals, standardised with 

tĥ , comes quite close to the one of a normal distribution. In addition, the squared 

standardised residuals do no longer exhibit significant autocorrelation. (The estima-
tion of such models is discussed in Section 7.3.) 

7.1.3   Temporal Aggregation 

In the following, we will derive the behaviour of the conditional variance 
of an ARCH(q) process if the series can only be observed over time inter-
vals that are larger than the frequency of the data generating process. For 
example, only monthly, quarterly or annual data might be available instead 
of daily observations. We consider the case of temporal aggregation where 
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only every m-th observation is taken into account. This is, for example, the 
case if, instead of (available) daily data, only end-of-month or end-of-
quarter data are used for interest rate or exchange rate data. 

We consider an ARCH(1) process with 1 = . By repeated substitution 
with q = 1 in relation (7.2), we get: 

2
t   =   0  +   2

t 1   +  t , 

 =   0  +   ( 0  +   2
t 2   +  t-1)  +  t , 

 =   0 (1 + )  +  2 2
t 2  +  t  +   t-1 , 

 =   0 (1 + )  +  2 ( 0  +   2
t 3   +  t-2)  +  t  +   t-1 , 

 =   0 (1 +  + 2)  +  3 2
t 3   +  t  +   t-1  +  2 t-2, 

 =   … , 

and, finally, for arbitrary m,  

(7.10) 2
t    =   0 

m 1
j

j 0

  +  m 2
t m   +  

m 1
j

t j
j 0

. 

The conditional variance in the original relation leads to 

2
th     =   E[ 2

t | It-1]   =   0  +   2
t 1  

for t = 1, 2, …, T. 
If only every second value is observed, i.e. the information set changes 

to It-(2) = { yt-2, yt-4, …, Xt-2, Xt-4, …} for t = 2, 4, …, T, and due to (7.10) 
we get  

2
t (2)h     =   E[ 2

t | It-(2)]   =   0 (1 + )  +  2 2
t 2  

for the conditional variance and m = 2. 
In the general situation when only every m-th value is observed, we get, 

according to relation (7.10):  

(7.11) 2
t(m)h     =   E[ 2

t | It-(m)]   =   0 
m1

1
  +  m 2

t m  

for t = m, 2m, 3m, …, T. 
The conditional variance of the temporally aggregated data again fol-

lows an ARCH(1) process. Due to 0 <  < 1, however, the ARCH effect 
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becomes the weaker the longer the observational intervals. If m increases 
above all limits we get 

2
t(m)m

lim h    =   0

1
. 

Here, the temporally aggregated process has a constant conditional vari-
ance. Because of (7.8) it coincides with the unconditional variance of the 
ARCH(1) process. This effect was detected by FRANCIS X. DIEBOLD 
(1988, pp. 12ff.) when modelling temporally aggregated exchange rates. If, 
in addition, the distributional assumption (7.6) holds, not only the condi-
tional distribution is normal but also the unconditional one, i.e. the fat tails 
disappear.  

Example 7.4 

Let the following ARCH(1) model be given: 

2
th   =   0.1  +  0.5 2

t 1 ,   t  =  1, 2, …, T. 

This process has the unconditional variance of  

2   =  
0.1

1 0.5
  =   0.2 

and the kurtosis of 

K   =   
1 0.25

3
1 0.75

  =  9. 

If we observe only every second value, i.e. for t = 2, 4, …, the conditional  vari-
ance changes to  

2
t(2)h   =   0.15  +  0.25 2

t 2  

because of (7.11). 
The unconditional variance of the temporally aggregated process is still 0.2, 

while the kurtosis is reduced to 3.4615. Thus, ARCH effects can hardly be no-
ticed. If we aggregate once again and consider only every fourth observation, i.e. 
if t = 4, 8, …, we get the following process: 

2
t(4)h   =   0.1875  +  0.0625 2

t 4 . 

The variance is still 0.2, but the kurtosis has become 3.0237. Thus, the ARCH ef-
fect has disappeared almost completely. 



252      7   Autoregressive Conditional Heteroskedasticity 

Example 7.5 

We consider the exchange rate between the Swiss Franc and the U.S. Dollar, as 
used in Example 1.3 of Chapter 1. For the period from January 1980 to December 
2003, we get the kurtosis of 3.095 for the end-of-month data shown in Figure 1.8. 
The value of the Jarque-Bera statistic is  0.870 (p = 0.647). Thus, the null hy-
pothesis of a normal distribution cannot be rejected at any conventional signifi-
cance level. If we use daily data for the same period, we have 5913 observations 
and the value of the Jarque-Bera statistic is 1408.207. This extremely high value is 
almost exclusively determined by the kurtosis of 5.351, as the value of the skew-
ness of -0.216 is hardly different from the value of -0.126 which is based on 
monthly data. 

7.2   Generalised ARCH Models 

Modelling the dependencies between the squared residuals by ARMA-
models, we get parsimonious parameterisations. These approaches can be 
extended to represent asymmetric effects, i.e. to allow for different impacts 
of positive and negative shocks. 

7.2.1   GARCH Models 

If the maximum lag in ARCH(q) models becomes too large, problems with 
the non-negativity constraints might occur if the estimates are not re-
stricted appropriately. To get more parsimoniously parameterised models 
in which such problems occur less frequently but which are nevertheless 
capable of dealing with long-lasting volatility clusters, the approach of re-
lation (7.5) was applied. Its disadvantage is, however, that possible dynam-
ics of ARCH processes are captured only restrictively, i.e. with given, 
linearly declining weights. 

Independently of each other, TIM BOLLERSLEV (1986) and STEPHEN J. 
TAYLOR (1986) developed a more flexible generalisation of the ARCH ap-
proach, the Generalised Autoregressive Conditional Heteroskedasticity 
(GARCH) model which is more flexible than the approach (7.5). They ad-
ditionally included p lagged values of the conditional variance into relation 
(7.4). This leads to a GARCH(p,q) process: 

(7.12)    2
th    =   0  +  1 

2
t 1   +  …  +  q 

2
t q   +  1 

2
t 1h   +  …  +  p 

2
t ph . 

Sufficient conditions for the non-negativity of the conditional variance of 
this process are 0 > 0, i  0, i = 1, …, q – 1, q > 0, i   0, i = 1, …, p – 1, 

p > 0. 
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Using the lag polynomials 

(L)  :=  1 L    +  …  +  q L
q,   (L)  :=  1 L  +  …  +  p L

p , 

(7.12) can be written as 

(7.13) 2
th    =   0  +  (L) 2

t   +  (L) 2
th , 

or, if all roots of 1 – (L) are outside the unit circle, as 

(7.13') 2
th    =   0

1 (1)
  +  2

t

(L)

1 (L)
. 

If the rational function of the lag operator is expanded into a series as, for 
example, in Section 2.1.2, we get the ARCH( ) process 

(7.14) 2
th    =   *

0   +  2
i t i

i 1

, 

with *
0  > 0 and i  0, i = 1, 2, …, . Thus, GARCH(p,q) models allow the 

parsimonious parameterisation for conditional variances in the same way 
as ARMA(p,q) models for conditional means. 

The non-negativity conditions of the i are sufficient for the conditional 
variances to be strictly positive. Thus, they are less restrictive than the 
conditions placed on  i and i for equation (7.12). 

In the following way we can show that 2
t  really follows an ARMA 

process: Due to (7.2) and (7.3), t = 2
t  – 2

th  and 

E[ t | It-1]   =   E[ 2
t  – 2

th  | It-1]   =   0 . 

Thus,  has zero mean and is uncorrelated. It satisfies the conditions of 
white noise. If we insert (7.12) into 2

t  = 2
th   +  t we get 

2
t    =   0  +  1 

2
t 1     +  …  +  q 

2
t q    

        +  1 (
2
t 1  – t-1)  +  …  +  p (

2
t q  – t-p)  +  t . 

It follows that 

(7.15) 2
t    =   0  +  

n
2

i i t i
i 1

( )   +  t  –  
p

i t i
i 1

, 

with n = max(p, q). Relation (7.15) shows that the structure of dependence 
of the squared residuals of a GARCH(p,q) process is given for 2 by an 
ARMA(n,p) process. 
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The considerations to calculate the unconditional variance and the auto-
correlation function of  for a GARCH process are the same as for the 
ARCH process in Section 7.1.2. Thus, the residuals are uncorrelated. Ac-
cording to (7.13),  we get 

(7.16) V[ t]   =   E[ 2
t ]   =   0

1 (1) (1)
  

for the variance. 
Thus, it is necessary for the existence of the variance of a GARCH(p,q) 

process that 

(1)  +  (1)   =   
q

i
i 1

  +  
p

i
i 1

  <  1. 

Together with the non-negativity constraints given above this condition is 
also sufficient. If the above condition holds, the GARCH(p,q) process is 
weakly stationary. 

7.2.2   The GARCH(1,1) Process 

For the empirical modelling of financial market data, a GARCH(1,1) 
model is often sufficient. It is given by  

(7.17) 2
th    =   0  +   2

t 1   +   2
t 1h  , 

with 0 > 0,  > 0 and  > 0. Due to (7.15), the squared residuals follow the 
ARMA(1,1) process  

(7.18) 2
t    =   0  +  (  + ) 2

t 1   +  t  –   t-1 , 

which is stable for 0 <  +  < 1. Then, the unconditional variance also ex-
ists:   

(7.19) V[ t]   =   0

1
. 

According to JÜRGEN FRANKE, WOLFGANG HÄRDLE and CHRISTIAN 

HAFNER (2004, p. 221), the kurtosis also exists if 3 2 + 2  + 2 < 1: 

(7.20) K[ t]   =   3  +  
2

2 2

6

1 2 3
 . 

It is always above three, the value of the normal distribution, since  > 0 
holds.  Thus, the GARCH(1,1) process can be used to model distributions 
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with fat tails. If  tends towards zero, the heteroskedasticity disappears and 
the value of the kurtosis tends towards three. It depends more strongly on  
than on . Correspondingly, in order to reach high values of the kurtosis, 
high values of  are always more effective than high values of . 

By transforming (7.17), we can show that the GARCH(1,1) model is 
really able to represent long-lasting effects: 

(1 – L) 2
th    =   0  +   2

t 1 , 

2
th    =   0

1
  +  2

t 11 L
, 

(7.21) 2
th    =   0

1
  +  j 1 2

t j
j 1

. 

Due to  > 0,  > 0 and  +  < 1, the GARCH(1,1) process is transformed 

into an ARCH( ) process with geometrically declining weights. The lar-

ger , the longer is the effect of the shocks. Even if  +  = 1, i.e. if we 
have an Integrated GARCH process (IGARCH), representation (7.21) is 
still valid for the conditional variance whereas the unconditional variance 
does not exist in this case. 

To forecast the conditional variances of a GARCH(1,1) process, we use 
the ARMA(1,1) representation in (7.18). Following the considerations in 
Section 2.4.1, we get the optimal forecasts for the period t +  with  > 0 as 

2
t | th    =   E[ 2

t | It] . 

(7.18) results in 

2
t    =   0  +  (  + ) 2

t 1   +  t+   –   t+ -1 . 

Thus, for the one step ahead forecast we get 

2
t 1 | th    =   E[ 2

t 1 | It]   =   0  +  (  + ) 2
t   –   t 

  =   0  +   2
t   +   2

th . 

For  = 2 we get 

2
t 2 | th    =   E[ 2

t 2 | It]   =   0  +  (  + ) E[ 2
t 1 | It] 

and, therefore, 

2
t 2 | th    =   0  +  (  + ) 2

t 1 | th . 
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Iteration leads to 

2
t | th    =   0 

11 ( )

1
  +  (  + ) -1 2

t 1 | th . 

If the forecast horizon grows above all limits, if  +  < 1 and when taking 
(7.19) into account, we have 

2
t | tlim h    =   0

1
   =   V[ t]. 

Thus, the conditional variance of  converges towards its unconditional 
variance. This is no longer true for an IGARCH process. In this case we 
have  +  = 1, implying that the conditional variance grows linearly with 
the forecast horizon. The conditional variance for period t, which defines 
the information set for the forecasts, has a permanent influence.  

Example 7.6 

If we apply an AR(2) process for the mean and a GARCH(1,1) process for the 
conditional variance of the DAX returns used in Examples 7.1 and 7.3, the AR(2) 
parameter is no longer significantly different from zero even at the 10 percent sig-
nificance level. Thus, the correspondingly reduced model is 

 ln(DAXt)   = 0.0012
( 3.27)

  +  tˆ , 

 2
tĥ    =  63.69 10

( 3.22)
 + 2

t 1ˆ0.164
( 6.23)

 + 2
t 1

ˆ0.829h
( 33.34)

, 

2R   =  -0.004,   SE  =  0.015,  Q(10)  =  5.686 (p  =  0.841),   JB  =  75.307, 

with t values given in parentheses. 
The simple as well as the partial autocorrelations of the squared residuals are no 

longer significantly different from zero. 
Because of  +  = 0.993 the unconditional variance is 0.00056. The high per-

sistence that was already apparent in Example 7.3, where a pure ARCH process 
was applied, becomes obvious again if the estimated GARCH(1,1) model is, ac-
cording to (7.21), transformed into an ARCH representation: 

2
tĥ    =   0.0000215  +  0.164 2

t 1
ˆ  +  0.136 2

t 2
ˆ  +  0.113 2

t 3ˆ  

 +  0.093 2
t 4

ˆ  +  0.077 2
t 5

ˆ  +  0.064 2
t 6ˆ  + … . 

The significant value of the Jarque-Bera statistic is caused by the still existing ex-
cess kurtosis. Although the kurtosis has been reduced drastically, it is still 3.953. 
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7.2.3   Nonlinear Extensions 

A problem arises especially when estimating higher order ARCH models 
without restrictions: the estimated coefficients violate the non-negativity 
constraints. To avoid this problem, JOHN GEWEKE (1986) suggested to use 
a multiplicative approach for the conditional variance: 

2
th    =   qo 1 2

22 2
t 1 t 2 t qe ... . 

This expression is always positive, regardless of whether the parameters 
are positive or negative. By taking logarithms, we get the estimating equa-
tion 

(7.22) ln( 2
th )  =   0  +  1 ln( 2

t 1 )  +  …  +  q ln( 2
t q ) . 

All models discussed so far have the disadvantage that positive and nega-
tive shocks exert the same impact on the conditional variance as the signs 
disappear due to squaring. On the other hand, it is well known that the re-
action of volatility of share prices is different if the shocks are negative, 
i.e. if they result from bad news, than if they are positive, i.e. if they result 
from good news. This leverage effect leads to higher volatility as a result 
of negative shocks as compared to positive ones. In the following, two ex-
tensions of the symmetric GARCH(1,1) model are presented which are ca-
pable to treat such asymmetric effects. 

The Threshold ARCH model (TARCH), developed by LAWRENCE R. 
GLOSTEN, RAVI JAGANNATHAN and DAVID E. RUNKLE (1993) assumes 
different GARCH models for positive and negative shocks. Thus, the 
TARCH(1,1) model can be written as 

(7.23) 2
th    =   0  +   2

t 1   +   2
t 1 t 1d   +   2

t 1h  , 

with 

dt   =   t1 if 0

0 otherwise
. 

If  > 0, a leverage effect is observed as the impulse  +  of negative 
shocks is larger than the impulse  of positive shocks. 

By presenting an Exponential GARCH model (EGARCH), DANIEL B. 
NELSON (1991) not only captures asymmetries but also ensures that the 
conditional variance is always positive. The EGARCH(1,1) model can be 
written as 
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(7.24) ln( 2
th )  =   0  +  t 1

t 1h
  +   t 1

t 1h
  +   ln( 2

t 1h ) . 

Here, the standardised residuals /h are used. The ARCH effect is pro-
duced by the absolute value of the standardised residuals and not by their 
squares. The asymmetry is also captured by the standardised residuals. For 
  0 we find an ARCH effect of  +  for positive residuals and one of  – 
 for negative residuals. If a leverage effect exists, we expect  to be nega-

tive. 

Example 7.7 

To investigate whether the leverage effect plays a role for the DAX returns, the 
data of Example 7.1 are taken to estimate a TARCH(1,1) as well as an 
EGARCH(1,1) model. The results of the TARCH model are: 

ln(DAXt)   = 0.0011
( 2.89)

  +  tˆ , 

2
tĥ    = 63.75 10

( 3.20)
 + 2

t 1ˆ0.146
( 4.34)

  + 2
t 1 t 1ˆ0.032 d

( 0.85)
 + 2

t 1
ˆ0.830h

( 33.30)
, 

2R   =  -0.005,   SE  =  0.015,  Q(10)  =  5.911 (p  =  0.823),   JB  =  74.492, 

where t values are given in parentheses. For the EGARCH model we get: 

ln(DAXt)   = 0.0009
( 2.46)

  +  tˆ , 

ln( 2
tĥ )   =  0.501

( 5.78)
   + t 1

t 1

ˆ
0.281

ĥ(7.00)
  – t 1

t 1

ˆ
0.059

ĥ( 2.99)
  2

t 1
ˆ0.968 ln(h )

( 120.55)
, 

2R   =  -0.005,   SE  =  0.015,  Q(10)  =  5.147 (p  =  0.881),   JB  =  75.000, 

with t values given in parentheses. 
The main difference between these two approaches is that the leverage effect is 

significant in the EGARCH but not in the TGARCH model. In the former, the 
short-run reaction to positive shocks is 0.222 and 0.340 on negative shocks. This 
difference is highly significant. In both models, the remaining deviation from a 
normal distribution of the residuals is again due to the existing excess kurtosis: 
The estimated kurtosis is 3.953 in the TARCH and 3.931 in the EGARCH model. 

Usually, it is assumed that higher returns of a financial asset imply a 
higher risk. Therefore, mean and variance tend to go into the same direc-
tion. If we assume the risk premium to be time-dependent, this can be rep-
resented by applying the ARCH-in-mean (ARCH-M) approach developed 
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by ROBERT F. ENGLE, DAVID M. LILIEN and RASSEL P. ROBINS (1987). 
Relation (7.1) is extended to 

(7.25) yt   =   '
tX   +   2

th   +  t , 

with 

t | It-1   ~   N(0, 2
th ), 

where the variance 2
th  might be generated by an ARCH or GARCH proc-

ess. As this variance is part of model (7.25), the residuals of the original 
model (7.1), , 

t   =   yt  –  '
tX    =    2

th   +  t , 

are now autocorrelated. 

7.3   Estimation and Testing 

We consider model (7.1) 

yt   =   '
tX   +  t , 

and allow for a time-dependent conditional variance of t, i.e. we assume  

(7.26) t | It-1   ~   f(0, 2
th ),  

where f is a distribution function and the conditional variance 2
th  possibly 

follows a (G)ARCH process. 
If the residuals in (7.1) are independent, as is assumed in the classical 

model, autocorrelation appears neither in the estimated residuals nor in 
their squares. 

Usually, a model for the mean is regarded as appropriate if the estimated 
residuals do not exhibit significant autocorrelation and if the null hypothe-
sis of normally distributed residuals cannot be rejected. If the Jarque-Bera 
test (described in Section 1.3) indicates that the normality assumption has 
to be rejected because the value of the kurtosis is larger than three, this can 
be seen as evidence for the existence of (G)ARCH effects. If such effects 
exist, the simple as well as the partial autocorrelation functions of the 
squared residuals should have values significantly different from zero. 
This can be checked by applying the Q and Q* statistics described in Sec-

tion 1.3 on the squared residuals. Under the null hypothesis of no autocor-
relation these statistics are asymptotically 2 distributed, and the number of 
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degrees of freedom is (as in the linear case) equal to the considered num-
ber of autocorrelation coefficients (of the squared residuals) minus the 
number of estimated parameters in the equation for the mean. 

It can also be checked by using Lagrange Multiplier tests whether auto-
regressive conditional heteroskedasticity exists. The squared residuals are 
in an auxiliary regression regressed on a constant and their own lagged 
values up to order q, 

2
tˆ    =   0  +  1 

2
t 1ˆ     +  …  +  q 

2
t qˆ   +  t . 

The test statistic is T · R2, i.e. the product of the number of observations, T, 
and the multiple correlation coefficient of the auxiliary regression, R2. Un-
der the null hypothesis of homoskedasticity this statistic is 2distributed 
with q degrees of freedom. Alternatively, an F statistic can be performed 
for the combined null hypothesis H0: 1 = 2 = ... = q = 0. 

In these tests, it is possible to employ the OLS residuals of equation 
(7.1), as they are consistently estimated despite the existence of (G)ARCH 
effects. These estimates are, however, not efficient. If such effects exist, 
relations (7.1) and (7.2) (or other (G)ARCH specifications) are therefore 
usually estimated simultaneously using maximum likelihood methods. For 
the conditional distribution in (7.26) a normal distribution is mostly sup-
posed, i.e. it is assumed that the standardised residuals /h follow a stan-
dard normal distribution. This does, of course, not imply that the uncondi-
tional distribution is normal, too, because h2 is also a random variable 
under this assumption. The above ARCH(1) and GARCH(1,1) models ex-
emplified that the tails of the unconditional distribution are typically fatter 
than those of the normal distribution.  

Normally, when estimating such processes, the stationarity conditions 
are not imposed as this would be numerically too complex. To avoid the 
risk of these conditions being violated, one should choose rather small val-
ues of p and q. The standard programme systems employ two procedures 
with respect to the non-negativity constraints. The first one is to use no re-
strictions at all. If negative values of i or i are estimated, it has to be 
checked whether all composite parameters i in (7.14) are positive. The al-
ternative is to impose the sufficient conditions directly on the i and i. 
This often leads to corner solutions which do not necessarily represent the 
maximum of the likelihood function. 

Even if the assumption of the normal distribution of standardised re-
siduals does not hold, the maximum likelihood estimator is still providing 
consistent results despite the misspecification of the likelihood function, if 
at least the first two moments are specified correctly. However, these quasi 

maximum likelihood estimates demand corrections for the consistent esti-
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mation of the standard errors. Such a procedure is to be found, for exam-
ple, in JAMES D. HAMILTON (1994, p. 663). 

For (7.26), TIM BOLLERSLEV (1987) assumes a conditional t distribution 
with a small number of degrees of freedom. As shown above, for a finite 
number of degrees of freedom the t distribution has fatter tails than the 
normal distribution. With an increasing number of degrees of freedom, 
however, it converges to the latter. (From 100 degrees of freedom on, there 
is practically no longer any difference from the normal distribution.) This 
provides the possibility to check whether a conditional normal distribution 
is appropriate. 

7.4   ARCH/GARCH Models as Instruments of Financial 
Market Analysis 

To evaluate the risk of different portfolio strategies is one of the basic 
tasks of financial market analysis. As mentioned in the introduction of this 
chapter, when modelling asset returns, it has long been known that the re-
siduals of the estimated models are not homoskedastic but that their vari-
ances partly show strong variations over time. A possibility to reflect this 
in the models is provided by the ARCH  and GARCH approaches.  

The estimated conditional standard deviations of the residuals can, for 
example, be used to construct more precise intervals for the forecasts of 
asset returns. Point forecasts of returns modelled according to equation 
(7.1) are the same regardless of whether the residuals follow a (G)ARCH 
process or not. In both cases, the conditional expectation given all informa-
tion up to period t is an optimal forecast (compare Section 2.4). 

If the residuals are homoskedastic, the forecast error variance only de-
pends on the length of the forecast horizon but not on the elements of the 
information set It. In case of heteroskedastic residuals, we use, according 
to (2.57), the information set dependent conditional variances for the con-
struction of forecast error variances. These conditional variances can be 
derived from the ARMA representation (7.15) of the squared residuals 
which are assumed to follow a GARCH process. 

Moreover, estimates of conditional variances to capture volatilities are, 
for example, necessary for the following approaches: 

 The approach of FISCHER BLACK and MYRON S. SCHOLES (1973) is of-
ten employed to evaluate options. Besides the basic price, the expiry 
date, the share price and the riskless interest rate, an estimate of the 
volatility is necessary. All of these quantities can usually be observed 
directly except for the last one.  
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 The Value at Risk (VaR) has recently been applied to capture market 
risks. It is defined as the maximum loss to be expected over a fixed time 
horizon (holding period) with a specified confidence level. Typically, a 
normal distribution is assumed to calculate a VaR for holding periods of 
one day or ten days and confidence levels of 95 or 99 percent. This im-
plies that the probability that losses are larger than calculated by the 
VaR is five or one percent. 

Statistically, the VaR is an -quantile of the left edge of a distribution 
for the change of the value of a portfolio. To calculate this quantile, be-
sides other quantities, the conditional standard deviation of the portfolio 
returns,  which cannot be observed directly, is necessary . 

A variety of models exists for estimation VaR (see especially PHILLIPPE 

JORION (2001)). Here, we will focus on approaches which estimate volatil-
ities by time series methods. 

Traditionally, ‘historical volatilities’, i.e. the standard deviations of the 
last n price changes, are used to estimate this conditional heteroskedastic-
ity. If x is the price change of an asset, for this approach it holds that 

tˆ   =   
n 1 2

t i ( t )
i 0

1
x x

n
   with   (t )x   =  

n 1

t i
i 0

1
x

n
. 

To give current observations a higher weight, exponentially weighted 
moving averages are used. 

The ARCH/GARCH approach provides an alternative. ROBERT F. 
ENGLE (2001) shows, for example, how a GARCH(1,1) model can be used 
to calculate the VaR. 

Two different other applications have already been mentioned. Firstly, 
the ARCH approach can be used to model time-dependent risk premia. 
Secondly, the ARCH-M model allows to represent the possibility that as-
sets with higher expected returns imply higher risk. At least risk neutral 
and risk avers investors will only buy assets with higher risk if they can 
expect a higher return. 

In many practical applications, the ARCH/GARCH approaches have to 
be generalised to take multivariate situations into account. The dynamics 
of a k-dimensional vector of residuals, which are temporarily uncorrelated 
but conditionally heteroskedastic, are to be represented. Then, the condi-
tional covariances have to be modelled in addition to the conditional vari-
ances. To limit the number of parameters to be estimated, additional a pri-
ori restrictions are necessary. Some of the most popular specifications are, 
for example, discussed in ANIL K. BERA and MATTHEW L. HIGGINS 
(1993). 
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261, 264 

Temporal aggregation  62, 89, 118, 
122, 249-51, 264 



274      Subject Index 

Term structure of interest rates  104, 
226, 228, 239 

Theil’s U  86, 90 
Trend elimination  159-63, 196 

U 

Unit root test  163-80, 188, 191, 
194, 196, 209-11, 216 
Dickey-Fuller test  165-71, 173-

75, 177, 210-11 
HEGY test  190-91 
Phillips-Perron test 171-76, 179, 

194-95 

V 

Value at risk  262, 264-65 

Volatility   241, 244, 246, 252, 257, 
261 

W 

White noise  14, 16, 33, 56, 74, 85, 
97, 100-01, 106, 118-19, 145, 
159, 179, 189, 191, 204-05, 219, 
246, 253 

Wold decomposition  2, 21-23, 27, 
29, 40, 42, 49, 57-58, 64, 67-68, 
74, 77, 80, 97, 99, 138-39, 144, 
181 

Y 

Yule-Walker equations  50-51, 53, 
56 

 


