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Preface to the New Edition

A new edition entails a sustained interest in the subject — but then methodological disputes usually persist almost
indefinitely, so perhaps the signal is rather noisy. Certainly, the seven years since the publication of the first edition of
this book have witnessed spectacular advances. Even restricting consideration to parametric studies of discrete time
series, major developments have taken place in modelling dynamic systems, in analysing non-stationary data, in
understanding economic forecasting, in econometric computing, in methodology, and in computer automation: see,
among many others, Doornik and Hendry (1997), Johansen (1995), Clements and Hendry (1999), Doornik (1999),
Hendry (1995a), and Hoover and Perez (1999). Given such widely available treatments of the first four topics, I have
concentrated on the last two, which anyway are the focus of this book.

The new Epilogue explains the recent advances in computer automation of model selection that justify its title: ‘The
Success of General-to-Specific Model Selection’. As so often in the history of econometrics, implementing an
operational procedure rapidly leads to improvements in performance. Interacting closely with the computer program
PcGets has radically altered my views on model selection, and on how successful it can be despite the extant theoretical
analyses which present a somewhat unhopeful picture. As chapter 20 discusses, a new door has been opened on an old
subject, revealing a gold mine of opportunities. After only a couple of years, such immense progress has been made
that I no longer even attempt to beat PcGets in modelling: on both computer-generated and real data, on no occasion
have I succeeded — nor to my knowledge has anyone else who has used $β$-test versions. Moreover, this is matched
by its outstanding simulation characteristics. Yet the field is in its infancy — to quote from the final chapter:

The prospects for empirical econometric modelling are as exciting today as I have ever seen — the best imaginable
note on which to conclude this book.

I am greatly indebted to Andrew Schuller of Oxford University Press for his help and encouragement in undertaking
this new edition; to Jason Pearce for ensuring smooth production thereof; to Blackwell Publishers for permission to
publish a new



edition; to Hans-Martin Krolzig for invaluable contributions to the conceptualization and creation of computer
software to implement general-to-specific in PcGets, as well as his helpful comments on chapter 20; and to Jurgen
Doornik for his immense help in developing typesetting and indexing systems based on Latex, his wonderful editor
OxEdit, and his Ox language, in which PcGets is written. My grateful thanks to them all.

Numerous colleagues have directly or indirectly influenced my thinking on modelling methodology since the first
edition, among whom the following certainly deserve thanks for their insights, suggestions and criticisms, even if they
will not necessarily agree with my conclusions: Chris Allsopp, Anindya Banerjee, Gunnar Bårdsen, Julia Campos,
Jurgen Doornik, Rob Engle, Neil Ericsson, Tony Espasa, David Firth, Clive Granger, Eilev Jansen, Søren Johansen,
Katarina Juselius, Hans-Martin Krolzig, Massimiliano Marcellino, Grayham Mizon, John Muellbauer, Ed Nelson, Bent
Nielsen, Ragnar Nymoen, Peter Phillips, Jean-François Richard, Neil Shephard, Timo Teräsvirta and Ken Wallis. Also,
Hans-Martin Krolzig kindly allowed me to draw extensively from our current joint research, including Hendry and
Krolzig (1999a, 1999b, 2000) and Krolzig and Hendry (2000).

The research was generously financed by the United Kingdom Economic and Social Research Council, whose
sustained support through the funding of Modelling Non-stationary Economic Time Series (R000237500) and Econometric
Modelling of Cointegrated Processes (R000234954) has been essential. I am also grateful to Nuffield College, Oxford, and to
the Leverhulme Trustees for the award of a Personal Research Professorship: together, these provided the time to
undertake and report the research.

Finally, I am grateful to Kevin Hoover and Stephen Perez for restarting this project with their innovative ideas.

DFH

June, 2000
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Preface

This is a collection of my main essays on econometric methodology from the period 1974– 85 during which the
approach developed into its present form, integrated by a commentary on the motivations, personalities and ideas
central to its formalization. Sue Corbett of Blackwell Publishers initiated the idea of drawing together the main steps
through which the methodology had evolved, since a developmental viewpoint can be clarifying. In particular, an
important part of the explanation for why a given methodology takes its current form are the successes and failures of
its earlier incarnations. As each study reproduced below was undertaken, new issues and problems were highlighted,
stimulating further developments and leading me to discard aspects of previous approaches as inadequate. Indeed, that
process has continued unabated, so the story is still progressing, outdating some of the themes and interpretations
discussed herein, but fortunately not the historical sequence. The ideas discussed below are now sufficiently developed,
interrelated and formalized to allow an integrated treatment, and the outcome is the present volume.

Five criteria were used to select the included papers from the 40 that I published during 1971– 85: their importance in
the evolution of the methodology; their role in the continuity of the exposition; their focus on methodology; the
subject matter of their empirical application; and the accessibility or otherwise of the original publication to economists
world-wide. The first and third criteria eliminated technical papers on econometric theory, estimation methods (other
than the synthesis in chapter 13) and Monte Carlo techniques (except for the second half of chapter 7). Conversely,
despite their being accessible, eight papers from international econometrics journals were included because of their
central role and the needs of continuity. Given an overall length restriction, the fourth criterion induced the arbitrary
choice of including studies of consumers' expenditure and money demand but excluding most of my empirical papers
on housing and credit markets, despite the fact that the latter came high on the fifth criterion. The second and fifth
criteria then led to the choice of most of the remaining chapters, except for the Postscript which extends the horizon to
1989.

The book is divided into four parts: Roots and Route Maps, Empirical Modelling



Strategies, Formalization, and Retrospect and Prospect. The preambles to each part and to each chapter sketch the
points that I believe I was trying to make at the time, the lessons I learnt, the developments which were triggered in
turn, and the crucial issues I completely missed! Since the chapters differ greatly in the mathematical, statistical and
conceptual demands they make of the reader, the major departures in their ordering from the historical sequence arise
from attempting to ensure a more even progression in difficulty. In practice, most of the methodological developments
recorded below derived from confronting substantive empirical problems. Not only are theory and application
inseparable below, each empirical study is itself the vehicle for the exposition and the analysis of the associated
methodological advance or rethink. Often, precise formalization of the concepts, principles and procedures came later.
Consequently, while chapters 2, 3, 6–12 and 18 concern specific empirical problems, they have a substantial theoretical
component as well as analyses of practical problems like collinearity, seasonality, autocorrelation, simultaneity and
parameter constancy. Throughout, attention is restricted to the analysis of economic time-series data, based on linear
models (perhaps after suitable data transformation).

‘Methodology’ is construed in the wide sense of ‘the study of methods’ (see, for example the usage in chapter 2) and
most of the book concerns specifics rather than grand themes. It seems self-contradictory to claim that there exists a
single valid methodology for discovering hitherto unknown features of our world: until they are discovered, we cannot
know what would have been the ‘best’ way of discovering them. This argument does not render methodology otiose:
there may be no best way to drive a car, but steering with one's eyes closed is patently a bad way. Critical appraisal of
currently used methods is feasible and can reveal serious flaws in them. Much of the book concerns doing so
(destructive criticism) and then offering a less objectionable alternative (constructive criticism) which is evaluated in
turn. Criticisms are based on theoretical economic and econometric analyses, empirical applications and Monte Carlo
simulations, which interact to narrow down the range of legitimate (or perhaps ‘best practice’) methods. By pursuing
such an approach to the study of economic time series, the book contributes to the steady progress of econometric
methodology that we have witnessed in recent years. Finally, since half of the chapters were originally written as
expositions of important technical developments, methodological advances or new concepts, most of which remain
germane, the material should help in understanding recent debates about econometric methodology.

xvi PREFACE
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Introduction

The collection begins with the paper after which it is named, since that chapter provides a gentle romp through many
of the major topics and offers a guide to the main themes of the book. Moreover, it was written at about the half-way
stage in time between my first rudimentary grapplings with model specification issues and my views as of 1990.
Nevertheless, chapter 1 has a serious message: econometrics is potentially scientific precisely because alchemy is
creatable, detectable and refutable. Although important technical difficulties about the properties of tests and of model
selection procedures based on sequential testing await resolution, model evaluation is a legitimate activity
independently of past and present controversies about the constructive uses of econometrics. That ‘the three golden
rules of econometrics are test, test and test’ is a constant theme from my first research to my latest writings. The
validity of a model is a property of the model in relation to the evidence and so cannot be affected by how that model
is selected. If the model is valid, it will pass all of our tests at an appropriate significance level (usually dependent on the
sample size, the number of tests and the data characteristics). If the model is invalid, we should be able to detect that
by a sufficiently rigorous test procedure. In neither case, therefore, can validity be affected by how the model was
found, designed or created. In practice, models are more or less adequate approximations rather than strictly valid or
invalid, but the point remains that the adequacy of an empirical model is an intrinsic property which is not impugned
by the method of construction. As we shall see, however, such an implication does not make the selection method
irrelevant: in particular, some methods (e.g. guessing) have little chance of discovering adequate models. Much of the
present volume concerns developing criteria for model adequacy and analysing alternative approaches to building
empirical models, so ‘methodology’ is construed in the general sense (‘with a small m’ as Boland (1989) expresses it)
and does not entail only the grand issues (as, for example, in Popper, 1968).

The alchemy practised in chapter 1 is to explain UK inflation ‘better’ by rainfall than by the stock of money. Since
chapter 1 was written, an immense literature has evolved concerning the analysis of non-stationary data and nonsense
regressions,



and the converses of cointegration and error correction. These analyses help resolve when we can attach meaning to
empirical regressions, so the associated concepts recur many times below.

The roots of the approach are taken up in chapters 2 and 3, which embody many of my later ideas in embryonic form.
My first empirical modelling exercise was a small system of aggregate demand relationships in the UK, using
estimators specifically developed to tackle the ‘problems of autocorrelation and simultaneity’. Chapter 2 sought to
apply the approaches in Sargan (1958) and (1964a) to small simultaneous systems, in order to discriminate between
cases where (vector) residual autocorrelation arose from autoregressive errors or from mis-specification of the lag
structure of the observed data series, and to ascertain the relative importance of dynamic mis-specification and
simultaneity. Rather than simply asserting that residual autocorrelation reflected autoregressive errors and therefore
applying a ‘more sophisticated’ estimation method to resolve that problem, tests were used to check whether the
dynamics of the pre-specified model needed to be generalized. Therein lay three difficulties that I did not clearly
perceive at the time of writing (1969), but which became increasingly obvious as my work on the approach proceeded.

1 In practice, the correct model was not known a priori, merely requiring estimation of its parameters. An
awkward model selection problem generally confronted any empirical investigator and the conventional
paradigm of assuming that the model was known in advance of examining the data was simply not appropriate.

2 It was not legitimate to use the outcomes of model specification tests for constructive revision of a model. If a
model was incorrect, many test statistics might yield rejection outcomes and so it could not be appropriate in
general to assume that, if any given null hypothesis was false, the postulated alternative must be true: both
could be false, because the framework was incorrect.

3 Generalizing an initial simple model in the face of specification test rejections raised a host of problems, not
least that of when to stop and what sense to make of earlier interpretations when a later test rejected.

At this stage, these were merely puzzles to me. Chapter 3 was written five years after chapter 2 and embodies (albeit in
an inchoate form) a number of roots that have since proved dominant. The approach is more nearly that of simplifying
an initial general system; an attempt is made to account for the performance of previous empirical models by testing
them for mis-specifications predicted by the economic theory; and the underlying economic theory, which patched a
static long run onto dynamic adjustment, delivered a model form which I later recognized as an error correction
mechanism. Both chapters skirt around, but miss, Denis Sargan's later notion of common factors in lag polynomials
(denoted COMFAC; see Sargan (1980a) and chapter 4), and the importance of data non-stationarities, issues which
play an important part in what follows.

Part I is completed by chapter 4, again written about five years further on (1980), jointly with Adrian Pagan and Denis
Sargan. Written with ‘hindsight’ relative to most of the other chapters herein, it is offered as a route map, sketching the
major

2 INTRODUCTION



issues, models, concepts and techniques, and referring forwards to later chapters. All of part I is explicitly system
oriented, but my empirical efforts had starkly revealed that few of the component equations were trustworthy, and so
without any conscious decision my attention gradually became focused on single-equation models.

Part II, which describes the development of empirical modelling strategies, reflects that tendency. Throughout the late
1960s and early to mid-1970s, much of the research into time-series econometrics reflected an intense rivalry between
a data-analytic viewpoint (closely related to Box and Jenkins, 1976) and economic-theory-driven econometric
modelling. At the London School of Economics (LSE), from where most of the material in this book originated, the
econometrics research group included (for substantial periods up to 1980) James Davidson, Meghnad Desai, James
Durbin, Andrew Harvey, myself, Grayham Mizon, Denis Sargan, Pravin Trivedi and Kenneth Wallis. At the risk of
simultaneous over-simplification and excessive generality, we emphasized the complementarity of the two approaches,
and sought to synthesize the best elements in both. In setting the scene for part II, chapter 5 commences with an
extract evaluating the ‘time-series’ approach to econometrics, which summarizes the main themes to follow. These
include a critique of pure time-series methods, as well as brief discussions of non-stationarity, differencing and error
correction models, the reinterpretation of residual auto-correlation (now using Denis Sargan's COMFAC idea), the
explanation of competing models’ findings and ways to reduce the proliferation of conflicting results, and the
respective roles of criticism and construction.

COMFAC in single equations is discussed at greater length in chapters 6 and 7, written jointly with Grayham Mizon.
These comprise two closely related papers investigating the important conceptual clarification of autoregressive errors
as common-factor dynamics. However, the evidence seemed less favourable to its being a solution to model selection
problems in practice. Chapter 8 (written with James Davidson, Frank Srba and Stephen Yeo) also considers many of
the issues raised in chapter 5, especially the explanation of other models’ results, and while it is substantively focused
on modelling aggregate consumers’ expenditure, it has a strong methodological slant: modelling strategies, parameter
constancy, collinearity, seasonality and encompassing are investigated. Although the main product was an empirical
equation which could claim some success (since known as DHSY from the acronym of its authors), its properties
immediately prompted a progressive improvement, stimulated by Thomas von Ungern-Sternberg and reproduced as
chapter 9. A third extension, to test whether DHSY could encompass the rational-expectations permanent-income
model of Robert Hall (1978), appears as chapter 10 (again with James Davidson), which en route allowed both
replication and testing of the earlier findings. The penultimate chapter of this volume provides a retrospective
evaluation of the empirical evidence on consumers’ expenditure and the success of the chapter 8 model as of 1982,
while doubling as a final exposition of the empirical methodology. This group of four papers is intended to illustrate
the progressive nature of the research in practice. A recent review is provided in Hendry et al. (1990b).

The major area of application now switches from consumers’ expenditure to

INTRODUCTION 3



transactions money demand, although historically that switch actually happened after chapter 8. Contemporaneously, a
major change took place in the methodology. DHSY was written as a ‘detective story’; investigators were viewed as
acquiring evidence, forming conjectures, testing hypotheses and seeking to create a model which could account for the
complete set of evidence confronting them, both successes and failures. Beyond rigorous testing and encompassing,
the methodology was unstructured and almost anarchical in what stratagems were acceptable. This presented a gloomy
prospect — did empirical researchers all need Sherlock Holmes's acumen, industry and creativity to make any useful
contributions?

Two events set the scene for the later integrated approach. First, in the COMFAC approach, one must commence
from the most general model considered admissible and then sequentially simplify it, testing at each step whether or
not a given lagged set of variables corresponds to an autoregressive error. It is inherently ‘general to specific’ as in
testing (say) the order of a data autoregression in Anderson (1971). Pravin Trivedi (1973) had applied the Anderson
approach and Grayham Mizon also adopted this viewpoint in his 1977a paper on selecting dynamic models using
ordered and nested sequences of tests. Nevertheless, I did not realize the generality of that idea and hence did not
perceive its wide applicability beyond dynamic specification. DHSY had stumbled over the need to test against the
general model but did not focus on its central role in a structured methodology. Incidentally, note that chapter 8 was
first written in 1974–5 and was essentially completed before chapter 7 was begun, even though they appeared in the
reverse order — which is why the later publication does not reflect the earlier one.

Second, Jean-François Richard at the Centre for Operations Research and Econometrics (CORE) (Louvain-la-Neuve,
Belgium, where a group was investigating model reduction methods) realized that there were close parallels between
the emerging LSE approach and that evolving at CORE. Richard's paper to the 1977 Econometric Society Meeting in
Viennal (published as Richard, 1980) combined with the Sargan–Mizon viewpoint made me realize at last (probably
after dozens of hours of discussion!) that the solution to most of my earlier puzzles lay in commencing empirical
modelling from the general, not from the specific. Chapter 11 reflects this gestalt shift and opens up a far more positive
prospect for empirical econometrics based on a structured and communicable approach. As Adrian Pagan notes in his
1987 survey, commencing from a general model is central to most of the major methodological approaches now extant
in econometrics. Of course, generality is not a panacea to all econometric ills: no matter how general its initial
specification in terms of dynamics, error structures, functional forms or evolving parameters, a relationship between
inflation and rainfall must remain nonsense. Indeed, given the earlier argument that model validity is independent of
the selection method, the issue about modelling strategy is really one of research efficiency, as will emerge below.

The initial objective in chapter 11 was to field-test the emerging methods in a new area and investigate their ability both
to produce useful or improved models and to encompass previous findings. Chapter 11 also offers a critique of
‘simple-to-general’ modelling methods and contrasts the outcome with that achieved by working throughout within an
initially general well-defined framework and seeking admissible simplifications which yield parsimonious, constant and
encompassing
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equations. A test of this model on new data is also reproduced, extracted from chapter 17. Chapter 12 is a later
evaluation and replication exercise based on an improved though closely similar specification developed at the Bank of
England (see Trundle, 1982); but be warned, it provides a polemical conclusion to part II! Hendry and Ericsson
(1991a, b) conclude this sequence and Baba et al. (1992) apply the approach to US data.

Part III turns to the formalization of the concepts and methods. First, chapter 13 explains why the topic of ‘optimal
estimation’ hardly appears in the plot, despite being a necessary ingredient of empirical modelling. The answer is that
the notion of an ‘estimator-generating equation’ (EGE) reduces the vast literature on estimating individual equations
and linear simultaneous systems to a single relatively simple expression. The chapter shows how to derive the EGE
from the ‘score’ (first derivative of the log-likelihood function) and then how to solve the EGE for all existing
estimators (and many more). The issue of how to obtain and compute maximum likelihood estimators is also tackled
in terms of the properties of numerical optimization algorithms. The original paper analysed the case of linear systems
with vector autoregressive errors, but the relevant sections have been omitted here.

While it only surfaces explicitly in chapters 14 and 19, much of my time and effort have been devoted to making the
methodology operational by writing suitable computer programs to implement new methods and approaches. The
early ‘software’ was a collection of rather unfriendly mainframe batch programs whose primary virtue was simply that
the tools were rendered usable. Since then, the approach has been implemented on personal computers (PCs) via PC-
GIVE, an interactive menu-driven modelling program specifically developed to embody the methodology and
technology discussed in this book in friendly software, to facilitate both teaching and research in time-series
econometrics (see Hendry, 1986c). PC-GIVE builds upon the well-tested and accurate algorithms of the AUTOREG
library (described in chapter 14, written with Frank Srba who also programmed many of the routines), but exploits the
powerful graphics available on PCs to allow the most ‘sophisticated’ of econometrics to be easily used and readily
understood.2 The Postscript reproduces the Introduction to the PC-GIVE book.

As will be obvious from the affiliations of the co-authors, from the mid-1980s onwards the conceptual frameworks
and approaches of two other institutions began to be assimilated into my views (and, in turn, their views were also
modified). First, as noted above, the econometricians at CORE, comprising in particular Jean-Pierre Florens, Michel
Mouchart and Jean-François Richard, had pursued a programme of research into the general notion of model
reduction in a Bayesian framework (since synthesized in Florens et al., 1990). The merging of this research with the
LSE approach not only offered a more structured methodology, it also induced a considerable advance in formalizing
key modelling concepts such as exogeneity and encompassing, which play important roles below. Secondly, the
econometrics group at the University of California at San Diego, including Robert Engle, Clive Granger and Halbert
White, also focused on time-series econometrics and were advancing the analysis on several related fronts, especially in
developing relevant tests, more robust procedures and the concept of cointegration.

Those generous — and vital! — institutions that fund research often complain
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about requests for overseas travel money, yet to the extent that the methodology advanced herein has lasting value,
much of its worth would never have materialized for me without a regular three-way interchange between London
(now Oxford), Louvain-la-Neuve (and later also Duke University) and the University of California, San Diego. As
attested by the acknowledgements to many of my publications, criticisms from those of a related yet different
perspective are essential in clarifying one's own thinking: a substantial proportion of the good ideas in this volume
emerged during intensive discussions in the coffee lounges, common rooms, seminars and offices of CORE, LSE and
UC San Diego.

The crucial, but highly contentious, topic of exogeneity which is analysed in chapter 15 (jointly with Rob Engle and
Jean-François Richard) is a product of such interchanges and provides a formal account of the role of conditioning in
the applied studies of part II. Three concepts of exogeneity (weak, strong and super) are advanced to sustain,
conditional inference, conditional forecasting and conditional policy analysis respectively. The tentative formalization
of many of the modelling concepts offered in chapter 16 (written with Jean-François Richard) likewise develops the
CORE–LSE link and evolved through extensive discussions between myself and Jean-François, while I enjoyed the
generous hospitality which he and his family extended to me when I resided with them for the second half of 1979.
The chapter investigates the constructs of innovations, invariance, encompassing and admissibility, relates these to
exogeneity and progressive modelling strategies, and introduces the notion of designing models to satisfy certain
criteria. An overview, again jointly with Jean-François, linking these statistical concepts to economic formulations, is
provided in chapter 17, which also generalizes the estimator-generating formula to so-called ‘incomplete’ linear
models. A sequence of six expository themes is proposed for interpreting time-series econometrics: models are derived
as reductions from the process which actually generated the data, inducing parameter transformations (affecting their
constancy, invariance and interpretation); conditioning and weak exogeneity are linked to contingent plans of economic
agents; a typology of linear dynamic equations is advanced (described earlier in the chapter 4 route map and so not
reproduced here); an EGE covers estimation theory for linear sub-systems; the efficient score describes diagnostic
testing; and encompassing interrelates empirical models. Thus, almost the whole of part III reflects a synthesis of the
LSE ideas with those developed at CORE. Perhaps the single most important link for me is that of general-to-specific
modelling with the theory of reduction, from which a much clearer conception of modelling and model-related
concepts emerges. As chapter 19 describes, the links with San Diego have in turn borne many valuable products since
1984.

The volume ends in part IV. Chapter 18 offers an exposition of the main ideas and concepts, using the application of
consumers' expenditure behaviour in the United Kingdom to clarify their empirical content and implications. The
Postscript summarizes the model class; the properties of specific linear models, including cointegration and error
correction; model evaluation and the associated information taxonomy, leading onto sequential conditioning;
exogeneity and invariance; constancy and recursivity; encompassing; and the theory of reduction as a basis for
modelling. Test types, modelling strategies and system estimation are also briefly
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discussed. Extensions of the approach to system modelling are provided in Hendry et al. (1988) and Hendry and
Mizon (1991). Granger (1990) conveniently draws together much of the general methodological debate, and Hendry et
al. (1990a) extensively discuss their respective viewpoints.

As noted above, a short preamble precedes each chapter, noting its salient themes, links to earlier and later
developments, lessons learnt or missed, some of the major influences and some of the personalities who swayed the
development in fruitful directions. For coherence, and to avoid duplication, all references have been updated to
published versions, in an author–date format, and are collected at the end of the volume.

I hope that chapter 1 is sufficiently self-contained and clearly written that it does not need a separate preamble!

Notes
1 Which was also the precursor to chapter 15; see below.
2 PC-GIVE is available from the Oxford Institute of Economics and Statistics: see Hendry (1989).
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1 Econometrics – Alchemy or Science?1

1 Alchemy and Science
While there are many distinguished precedents for public lectures at the School being discourses about subjects on
which the speaker is an evident amateur, I do not intend to discuss at length either ‘scientific method’ or the general
relationship between ‘alchemy’ and ‘science’. No doubt my colleagues in the Philosophy and Scientific Method
Department will be greatly relieved. Nevertheless, some background will be useful, especially to distinguish
connotative from denotative aspects of ‘alchemy’ and ‘science’.

Alchemy denotes the putative art of transmuting base metals into noble ones, a possibility implicit in Greek theories of
matter; as such, alchemical experiments helped focus chemical effort and could be interpreted as embryonic systematic
chemistry. In this sense, my question is simply a matter of timing – after all, the title does not juxtapose astrology and
science!

The familiar connotations of alchemy are less happy, and are well represented by Ben Jonson's erudite comedy The
Alchemist (1612) with its bogus and obscurantist ‘puffer’ (so-called from the phrenetic use of bellows in transmutation
attempts) called Subtle. That the pejorative sense is now dominant may derive partly from the mystical associations of
the quest for the ‘Philosophers' Stone’ and partly from ‘recipes’ for simulating gold using alloys of base metals;
intended to deceive the public, such recipes may well have deceived many alchemists themselves. The relevance of
these comments to the current state of econometrics will be apparent shortly.

Precisely what ‘science’ denotes is remarkably unclear, but the present mental associations of objectivity and progress
ensure that simply using this prestigious

1 Reprinted from Economica, 47 (1980) 387–406. I am indebted to many colleagues for their help and advice in preparing this inaugural lecture but should like to thank in
particular Mary Morgan, John Muellbauer, Frank Srba and Raija Thomson. The research was financed in part by Grant HR6727/1 from the Social Science Research Council
to the Study in the History of Econometric Thought at the London School of Economics.



epithet confers an air of authority; to wit, the London School of Economics and Political Science – would anyone
attend the London School of Economics and Political Alchemy? Parenthetically, the implication of authority is rather
odd given that the fifteenth-century revival of science in western Europe was a reaction against argument by authority.
In any case, the high reputation of the physical sciences may decline in the next decade should public expectations on
environmental control remain unfulfilled; if there are many more nuclear accidents, we may yet be glad to be called
‘political economists’ rather than ‘economic scientists’.

What is this thing called ‘science’? (See the excellent text by Chalmers, 1976.) During an address under the shadows of
Sir Karl Popper and the late Imre Lakatos, whose distinguished contributions have revolutionized our understanding
of ‘science’, there is a distinct risk of yielding several hostages to fortune by trespassing on a debate that has flourished
since Francis Bacon (see Popper, 1968, 1969; Lakatos, 1974). This danger notwithstanding, an adequate if condensed
view is as follows.

Science is a public process. It uses systems of concepts called theories to help interpret and unify observation
statements called data; in turn the data are used to check or ‘test’ the theories. Theory creation may be inductive, but
demonstration and testing are deductive, although, in inexact subjects, testing will involve statistical inference. Theories
that are at once simple, general and coherent are valued as they aid productive and precise scientific practice. In
particular, restrictiveness increases the hazards of possible rejection and hence augments ‘plausibility’ if
disconfirmation does not occur. Although objectivity and potential falsifiability against data are crucial to science,
in practice observations are theory dependent, rejections can be rationalized (often leading to degenerate research
programmes) and, even when evidence is highly unfavourable and reasonable alternative theories exist, views are
usually changed only slowly: after all, we are discussing a human endeavour! As Baron Turgot expressed the matter in
1749: ‘Suppositions which are arrived at on the basis of a small number of poorly understood facts yield to
suppositions which are less absurd, although no more true’ (Meek, 1973, p. 45). The history of natural science (e.g.
Mason, 1977) provides many instances of ideas derided at conception which are taken as axiomatic later, and Kuhn
(1970) has argued that science actually progresses through ‘revolutionary’ changes in basic theoretical frameworks
brought about by cumulative failures to solve problems. Note that in this characterization experimentation may be a
useful, but is not an essential, attribute.

Alchemy could well have remained ‘scientific’ – perhaps as a degenerate research programme or a rejected theory – but
instead it seems to have turned to mysticism and away from objectivity. Stainslas de Rola (1973) argues that the
unfortunate connotations of alchemy are undeserved since ‘immature science’ is a false interpretation of alchemy and
‘true’ alchemy is actually a secret art striving for the ‘absolute’. Feel free to choose the intended meaning of ‘alchemy’ in
my title!

2 Econometrics
Unfortunately, I must now try to explain what ‘econometrics’ comprises. Do not confuse the word with ‘econo-
mystics’ or with ‘economic-tricks’, nor yet with
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‘icon-ometrics’. While we may indulge in all of these activities, they are not central to the discipline. Nor are
econometricians primarily engaged in measuring the heights of economists.

A more accurate idea of the subject is provided in the constitution of the Econometric Society, founded in 1930, which
defined its main objectives as ‘the advancement of economic theory in its relation to statistics and mathematics’
(Econometrica, 1933, p. 1). In this broad sense, econometrics commences an analysis of the relationships between
economic variables (such as quantities and prices, incomes and expenditures, etc.) by abstracting the main phenomena
of interest and stating theories thereof in mathematical form. The empirical usefulness of the resulting ‘models’ is
evaluated using statistical information of supposed relevance, and econometrics in the narrow sense (used hereafter)
concerns the interpretation and analysis of such data in the context of ‘established’ economic theory.

Thus, econometric theory is the study of the properties of data generation processes, techniques for analysing
economic data, methods of estimating numerical magnitudes of parameters with unknown values and procedures for
testing economic hypotheses; it plays an analogous role in primarily non-experimental disciplines to that of statistical
theory in inexact experimental sciences (e.g. Blalock, 1961). As expressed by Wold (1969), ‘Econometrics is seen as a
vehicle for fundamental innovations in scientific method, above all, in the development of operative forecasting
procedures in non-experimental situations.’ In Wold's view, econometrics needs to overcome both a lack of
experimentation (which precludes reproducible knowledge) and the passivity of forecasts based on extrapolative
methods.

Applied and empirical econometrics are sometimes regarded as separate ‘engineering’ branches of the subject, literally
involving the mere application of standard statistical methods to economic data. Since, to quote Frisch (1933), ‘the
mutual penetration of quantitative economic theory and statistical observation is the essence of econometrics’, the
greatest loss from our inability to experiment may be the artificial divisions it promotes between data collectors, data
users, econometric theorists and mathematical economists.

The need for quantitative empirical knowledge to answer questions involving changes in economic variables has been
adequately promulgated by Schumpeter (1933) and Phillips (1956) (the former argued that economics is really the most
quantitative of all the sciences since economic quantities are made numerical by life itself whereas other subjects had to
invent their measurement processes). For predicting the consequences of changes, forecasting likely future outcomes
and controlling variables to attain objectives, econometric models play a central role in modern economics. Substantial
resources have been devoted to empirical macro-econometric models which comprise hundreds or even thousands of
statistically calibrated equations, each purporting to represent some autonomous facet of the behaviour of economic
agents such as consumers and producers, the whole intended to describe accurately the overall evolution of the
economy.

Despite its obvious potential, econometrics has not had an easy time from many who have made major contributions
to the development of economics, beginning with Keynes's famous review in 1939 of Tinbergen's book, Statistical
Testing of Business-Cycle Theories. In an oft-quoted passage in his Comment (1940, p. 156) Keynes accepts that Tinbergen's
approach is objective but continues:
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No one could be more frank, more painstaking, more free from subjective bias or parti pris than Professor
Tinbergen. There is no one, therefore, so far as human qualities go, whom it would be safer to trust with black
magic. That there is anyone I would trust with it at the present stage, or that this brand of statistical alchemy is ripe to
become a branch of science, I am not yet persuaded. But Newton, Boyle and Locke all played with Alchemy. So let
him continue.
(Keynes, 1940, p. 156; my italics)

It is interesting to record the following quotation from Geoffrey Keynes (1946): ‘Newton was not the first of the Age of
Reason. He was the last of the magicians . . . an unbridled addict [of alchemy] . . . [during] the very years when he was
composing the Principia.’ Oh that econometrics had such alchemists as Newton! Again the issue is one of timing since
Maynard Keynes, despite his trenchant criticisms, does not liken econometrics to a theoryless reading of entrails as
some seem to believe. (For a fuller discussion of Keynes's views on econometrics, see Patinkin, 1976).
Notwithstanding Keynes's comments, Tinbergen was later joint recipient of the first Nobel Prize in economics.

An echo of this debate recurs in the early 1970s. For example, following a sharp critique of mathematical economics as
having ‘no links with concrete facts’. Worswick (1972) suggests that some econometricians are not ‘engaged in forging
tools to arrange and measure actual facts, so much as making a marvellous array of pretend-tools’ (my italics). In the
same issue of the Economic Journal, Phelps Brown (1972) also concludes against econometrics, commenting that
‘running regressions between time series is only likely to deceive’. Added to these innuendoes of ‘alchemical’ practices,
Leontief (1971) has characterized econometrics as ‘an attempt to compensate for the glaring weakness of the data base
available to us by the widest possible use of more and more sophisticated statistical techniques’. To quote Hicks, ‘the
relevance of these methods [i.e. econometrics] to economics should not be taken for granted; . . . [Keynes] would not
have been surprised to find that . . . econometrics is now in some disarray’ (1979, p. xi). With the manifest breakdown
in the early 1970s of the large empirical macroeconometric systems, outside scepticism does not bear mention.

Rather than abandon the study of econometrics or reply to those criticisms by quoting equally eminent authorities who
hold more favourable views (e.g. Stone, 1951; Koopmans, 1957, 1979), I should like instead to demonstrate the
scientific status of econometrics by first showing alchemy at work empirically. This will enable us to understand the
sense in which the quoted criticisms are valid, and by explaining why various apparently alchemical results are obtained
en route my approach will suggest constructive strategies for enhancing the role of scientific method in econometrics.

So let us practise alchemy!

3 Econometrics as Alchemy
Econometricians have found their Philosophers' Stone; it is called regression analysis and is used for transforming data
into ‘significant’ results! Deception is easily practised from false recipes intended to simulate useful findings, and these
are derogatively
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referred to by the profession as ‘nonsense regressions’ (although I could not find an equivalent of ‘puffer’, regressor
already having another meaning).

Figure 1.1 presents (seasonally adjusted) quarterly time-series data for the United Kingdom over the period
1964(ii)–1975(ii) relating to the age-old and seemingly unresolved controversy concerning the effect of money (here
personal sector M3) on prices (here the consumer price index); the variables, denoted M and P, are plotted on a
logarithmic scale. Advance warning that ‘alchemy’ may be present could be gleaned from the letters to The Times, 4–6
April 1977, where Llewellyn and Witcomb establish a higher correlation between annual inflation and cases of
dysentery in Scotland (one year earlier) than Mills obtained between inflation and the rate of change of excess money
supply (two years before).

The plot ofM against P in figure 1.2 seems to confirm their close relationship (the correlation is over 0.99). Regression
estimates of the explanation of P byM yield the results in figure 1.3; the fit is impressive as M ‘explains’ 98 per cent of
the variation of P and has a ‘significant’ coefficient (the quantities in parentheses are estimated standard errors).1 The
residuals are systematic rather than random, but this so-called ‘nuisance’ of autocorrelation (see chapter 6) can be
‘eliminated’ by suitably transforming the equation to introduce lagged values of the variables (i.e. the values of the
variables in the previous period, denoted Mt − 1, Pt − 1): see

Figure 1.1 Quarterly time-series data for the United Kingdom over the period 1964(ii)–1975(ii).
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Figure 1.2M versus P.

Figure 1.3P, static equation
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Figure 1.4P, dynamic equation

figure 1.4. The squared correlation is now 0.9985 but the money variables no longer significantly influence P and a
prediction test rejects the constancy of the parameters of the equation. Evidently, we can make money matter or not by
appropriate specification of the model, and hence ‘(self?) deception’ is easy by selecting whichever finding
‘corroborates one's theory’.

A second example will clarify this issue. Hendry's theory of inflation is that a certain variable (of great interest in this
country) is the ‘real cause’ of rising prices. I am ‘certain’ that the variable (denoted C) is exogenous, that causality is
from C to P only and (so far as I am aware) that C is outside government control although data are readily available in
government publications. Figure 1.5 shows the quarterly time series (seasonally unadjusted) and figure 1.6 the cross-
plot of P against C (again in logs). There is evidently a close but non-linear relationship, and regression analysis
assuming a quadratic equation yields the results in figure 1.7. As earlier, there is a ‘good fit’, the coefficients are
‘significant’, but autocorrelation remains and the equation predicts badly. However, assuming a first-order
autoregressive error process2 at last produces the results I anticipated (see figure 1.8); the fit is spectacular, the
parameters are ‘highly significant’, there is no obvious residual autocorrelation (on an ‘eyeball’ test), and the predictive
test does not reject the model. My theory performs decidedly better than the naive version of the monetary
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Figure 1.5P, consumers' expenditure deflator; C, see text: log scale; P (1970) = 100.

one but, alas, the whole exercise is futile as well as deceitful since C is simply cumulative rainfall in the United
Kingdom. It is meaningless to talk about ‘confirming’ theories when spurious results are so easily obtained.

Since correlation does not entail any direction of causation, perhaps the rapid inflation explains our wet weather? One
must regret the omission of such an important theory from the otherwise excellent History of the Theories of Rain by
Middleton (1965).

Figure 1.6 Cross-plot of P against C.
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Figure 1.7P, structural equation

Figure 1.8P, autoregressive equation

.
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Doubtless, some equations extant in econometric folklore are little less spurious than those I have presented. Before
you despair at this hopeless subject, the statistical problem just illustrated was analysed in one of its manifestations by
Yule in 1926 and has been re-emphasized many times since (see in particular Granger and Newbold, 1974). The crucial
factor for my argument is that before doing these regressions the relevant theory enabled me to deduce what would occur
and hence to construct the desired examples on my first try – what could be more scientific? We understand this
problem and have many tests for the validity of empirical models (those just quoted duly fail two such tests3). We even
have theories that reveal that prediction need not be a powerful test of a model since false models can manifest
parameter constancy (chapter 11).

Such understanding is well past the stage of alchemy even if some editors can be persuaded to publish on the basis of
econometric fools' gold: caveat emptor, but do not denigrate the whole subject. That modern chemistry can explain
alchemical results is a confirmation of its scientific status, not cast into doubt by any modern charlatans who might use
chemical theory to simulate gold. The case for scientific econometrics rests instead on best practice empirical work such
as Sargan (1964a) – a precursor of many useful developments in recent econometrics. My discussion also highlights
that an essential requirement of any useful model in a non-experimental subject is that it can explain why previous false
models provided their observed results (see chapter 8).

To conclude this section, it must be stressed that none of the evidence presented lends support to, or casts doubt on,
any theory of aggregate price determination, nor is it asserted that ‘nonsense’ regressions of the type illustrated
constitute the basis of the criticisms noted earlier, a point amplified below.

4 Econometrics' Problems
To quote Patinkin (1976), ‘though not all of Keynes' criticisms were well taken . . . I find it somewhat depressing to see
how many of them are, in practice, still of relevance today’. Forty years after Keynes wrote, his review should still be
compulsory reading for all who seek to apply statistical methods to economic observations. Taken literally, Keynes
comes close to asserting that no economic theory is ever testable, in which case, of course, economics itself ceases to
be scientific – I doubt if Keynes intended this implication. However, his objections make an excellent list of what
might be called ‘problems of the linear regression model’, namely (in modern parlance): using an incomplete set of
determining factors (omitted variables bias); building models with unobservable variables (such as expectations),
estimated from badly measured data based on index numbers (Keynes calls this the ‘frightful inadequacy of most of
the statistics’); obtaining ‘spurious’ correlations from the use of ‘proxy’ variables and simultaneity as well as (and I
quote) the ‘mine [Mr Yule] sprang under the contraptions of optimistic statisticians’; being unable to separate the
distinct effects of multicollinear variables; assuming linear functional forms not knowing the appropriate dimensions
of the regressors; mis-specifying the dynamic reactions and lag lengths; incorrectly pre-filtering the data; invalidly
inferring
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‘causes’ from correlations; predicting inaccurately (non-constant parameters); confusing statistical with economic
‘significance’ of results and failing to relate economic theory to econometrics. (I cannot resist quoting Keynes again – If
the method cannot prove or disprove a qualitative theory and if it cannot give a quantitative guide to the future, is it
worth while? For, assuredly, it is not a very lucid way of describing the past.’) To Keynes's list of problems, I would add
stochastic mis-specification, incorrect exogeneity assumptions (see Koopmans, 1950a; and chapter 15), inadequate
sample sizes, aggregation, lack of structural identification and an inability to refer back uniquely from observed
empirical results to any given initial theory.

That the subject is exceedingly complicated does not entail that it is hopeless. Considerable progress has been made on
the technical aspects, such as studying the consequences of the various problems just listed, designing means of
detecting these, developing methods that mitigate some of their ill effects or handle several complications at once, and
analysing the properties of estimators when the sample size is small (see Sargan, 1976; Phillips, 1977; inter alia). Much
of this technical work is essential background to understanding and correctly interpreting empirical findings and,
although some work may have turned out to be otiose in retrospect, the ever-increasing level of technique is not a
symptom of alchemy. To borrow Worswick's phrase, whether or not ‘econometric escalation’ is justifiable will depend
on whether it facilitates clearer findings or camouflages tenuous evidence.

Empirical practice has tended to lag behind the theory ‘frontier’ with unfortunate consequences. Well before the oil
crisis, critics suggested that macroeconometric systems were seriously mis-specified and hence would manifest
predictive failure if changes in the process generating the data merely altered the correlation structure of the variables
(see, for example, the discussion in Hickman, 1972). Many of the specification mistakes were obvious and relatively
easy to correct, and doing so might have helped to prevent the models failing so badly just when they were most
needed. Even so, that cataclysm and similar government-induced events are one of the few ways in which false models
can be rejected – econometrics may be the sole beneficiary from government manipulation of the economy. Without
wishing to look this particular gift-horse in the mouth, dare one suggest that controlled experiments could be more
informative than inadvertent and uncontrolled ones?

At the micro-level, experimentation is occurring (for example on diurnal variation in energy consumption with
changing tariff structures). Regrettably, experimental ‘control’ is proving elusive, especially for relativities and
dynamical and inertial patterns of behaviour. Despite such difficulties, experimentation in economics merits far greater
resources than the meagre financial ration currently allocated by our political masters allows. This is not a criticism of
the Social Science Research Council (SSRC), which has played a major role in supporting econometric research in the
United Kingdom from a very limited budget roughly equal to the interest on the annual grant to the Science Research
Council. As Leontief (1971) expressed the matter, ‘the scientists have their machines while the economists are still
waiting for their data’. To mention one constructive step, the collection of panel data would be of very great assistance
in testing economic theories at a disaggregated level.
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Economic data are notoriously unreliable (see, for example, Morgenstern, 1950) and in an important sense
econometrics is little more than an attempted solution to our acute shortage of decent data. Yet accurate observation is
vital. To take one important example, a variable like ‘real personal disposable income’ is extremely difficult to ‘measure’
accurately and a constant price series of after-tax ‘income’ of the personal sector bears little relation to the economist's
concept of ‘income’ (as defined, for example, by Hicks, 1939, ch. 14). Unfortunately, discrepancies in measuring
income may have major policy implications. If income is measured using real rather than nominal interest rates to
ensure that changes in real wealth are equal to real income less real expenditure, then the ratio of consumers'
expenditure to adjusted income has not fallen particularly sharply, unlike the ratio of the unadjusted series (see chapter
9). Thus, the savings ratio ‘properly measured’ may not have risen at all. A non-obvious converse is that the
government may not be in deficit. A recent Bank of England study (Taylor and Threadgold, 1979) has done the
appropriate ‘inflation accounting’ at the macro-level, with dramatic results: if the implicit tax created by inflation
eroding the real value of those financial assets that are public sector debt is added to government revenue, and
subtracted from personal sector savings, then the government has frequently been in real surplus and the private sector
in real deficit (see their table C).

One might anticipate that the massive nominal borrowing by the public sector, now apparently the main focus of
government policy, has altered the ‘national debt’, and this expectation is quite correct – in a most surprising way.
Certainly, the nominal level of the debt has increased rapidly, but as Reid (1977) has shown, the ratio of national debt
to national income – which seems a sensible measure of real public indebtedness – was in 1975 similar to the value
prevailing at the end of the last century and hence probably close to its lowest value since the Napoleonic wars!

An implication of these two statistics (namely, the real government surplus and the falling real debt ratio) is that the
state of net government indebtedness to the rest of the economy must have been changing. Hibbert (1979) has kindly
provided the orders of magnitude that he has recently calculated, and even with all the usual caveats about definitions
and data accuracy the numbers are stunning. In 1957 the public sector was a net debtor to the tune of about 8 per cent
of total net national wealth; by 1966 it has become a net creditor to a similar extent, and by 1975 the public sector
owned 26 per cent of net national wealth. The statistics mesh consistently and reveal enormous and very rapid real
changes behind the monetary veil. Such an outcome does not seem to have been an intended consequence of any
postwar government policy. Yet a further implication of these data is that the recession manifest in the current high
level of unemployment may be due in part to the implicit government surplus with the public sector borrowing
requirement (PSBR) being a mere monetary epiphenomenon.

The facts in this last conjecture are fairly well established, although the interpretation and policy implications may not
be unique. For my purposes, the conjecture need not even be correct since my point is that attempts to reduce the
PSBR in the belief that it is a ‘cause’ of inflation rather than a ‘consequence’ of recession will impose major costs on
society if that belief is mistaken. Would it not have been worthwhile to devote rather greater resources to researching the
matter beforehand?
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Yet our government has reduced the SSRC's budget – and in its calculations of ‘average student costs’ implicitly values
the entire research output of the university sector at zero. However little the government might value our theories or
empirical evidence, to base policy on hope or belief really is alchemy. Keynes, this time in his General Theory (1936, p.
383), provides the most apt quotation: ‘Practical men, who believe themselves to be quite exempt from any intellectual
influences, are actually the slaves of some defunct economists.’ I hesitate to continue his quote – but he did then say
‘Madmen in authority, who hear voices in the air, are distilling their frenzy from some academic scribbler of a few years
back’. Hopefully, that will not be the fate of this lecture a few years hence.

Stretching somewhat my argument about the value of data, endless billions of dollars have been spent on space
exploration by the US government just to collect a few observations of some lumps of rock and gas (with incidental
kudos, ‘technical spin-off ’ and tenuous ‘defence’ advantages). What government anywhere has spent one-thousandth
as much in deliberately observing (experimentally or non-experimentally) or trying to understand an economic system
of at least equal importance to our lives?

5 A Structure for Econometrics
Econometricians are the natural critics of economists' empirical findings, and although that is an easy way to make
enemies, the counter-criticisms of econometrics noted earlier are not simply the revenge of the aggrieved. However,
their valid basis is not econometric alchemy but a misallocation of resources. (This is not a new theme; for an earlier
debate, see Orcutt (1952) and the following discussion.)

What should have become a relatively minor aspect of the subject, namely deriving methods for estimating the
parameters of known models, has been accorded the centre of the stage as casual perusal of any current econometrics
textbook will confirm. The rapid development of computer speeds and storage capacity should by now have relegated
most of estimation theory to footnotes about numerical approximations and refocused attention on all of the issues
surrounding methodology, inference, model formulation and equation selection (see Griliches, 1974; Mizon, 1977a;
Leamer, 1978). We have responded as quickly as Diplodocus used to move on a frosty morning and should remember
that the Saurischia once dominant are now extinct.

The economic system is the outcome of centuries of adaptive human behaviour; agents seem to optimize their ‘state’
given the environment, which adapts in response both socially and physically. Econometricians conceptualize this
system as a complex non-linear, interdependent, multivariate, disequilibrium dynamical process dependent on agents'
expectations and their adjustments, subject to random shocks, and involving many phenomena that are unobservable;
relevant time-series data are inaccurate and exist for only short periods and for a few major variables; economic
theories are highly simplified abstractions usually of a comparative statics form invoking many explicit ceteris paribus
clauses (with yet others implicitly required), most of which are invalid in empirical applications – little wonder that
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our macroeconometric representations are less than perfect.

This conceptualization is the real basis for Keynes's critique, but instead of construing the issue as one of ‘problems
for the linear model’, turn the matter on its head and begin with a characterization of the economy that does have the
relevant properties. As elsewhere, it may pay to take an overview to be simplified if allowable rather than attempt to
generalize a simple approach in many different directions simultaneously. A crude schematic structure for
econometrics is as follows. To a first approximation, after suitably transforming the original variables (with all non-
linearities allocated to identities), many data generation processes in economics can be conceived of as (see, inter alia,
Richard, 1980)

(1.1)

where is a vector of endogenous variables, is a vector of all relevant past and present information (so that
where denotes the expectations operator) and denotes a variate that is normally and independently distributed,
with a mean of μ and a covariance matrix of . The parameter matrix is taken as approximately constant by
working in a sufficiently large (but assumed finite) dimensional parameter space. Normality is a convenient fiction
which restricts attention to sample information in the first two moments of the data, and independence of successive
observations is achieved by construction. For sufficiently large T, accurate data and knowledge of both the required
data transformations and the composition of zt, the enormous number of parameters in P could be estimated directly
using the fact that (1.1) defines the likelihood function

(1.2)

An ‘economic theory’ corresponds to asserting that P depends on only a smaller number of parameters, denoted by
the vector θ, and written as4

(1.3)

where is the parameter space; if θ is identifiable (i.e. uniquely entailed by P) then all hypotheses like (1.3) can be tested
using the principle due to Wald (1943).

In terms of my discussion of ‘science’, estimation of P hardly qualifies and is far from providing a simple theory. A
major role of equation (1.3) is to limit the number of variables that have to be considered (which is a crude application
of Occam's razor) but the real case against ‘measurement without theory’ has been powerfully presented by Koopmans
(1949) in his well-known debate with Vining (1949a, b). Many of my present criticisms were noted by both parties to
that debate. Accepting that we must work within the best available economic theory framework to contribute towards
scientific knowledge, the econometric problem arises because the scale of the model and the paucity of the available
observations preclude direct estimation of P (but see Sargent and Sims, 1977) and indeed of θ. Attention is thereby
focused on submodels and hence on the weak exogeneity properties of the ‘regressor’ variables in the submodels. If
can be factorized in terms of both data and parameters such that

(1.4)
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where , so that any changes in either θi leaves the other unaffected (for a precise statement, see chapter 15) and
θ2 are ‘nuisance parameters’, then can be analysed separately from (Koopmans, 1950a). In such a case, is said
to be weakly exagenous for θ1 and can be taken as given when analysing the submodel that determines . One
interesting implication is that variables about which agents form ‘rational expectations’ cannot be taken as weakly
exogenous since, by hypothesis, θ1 depends on θ2 in such models.

Even assuming that no mistakes have been made in formulating and that the dimensionality is tractable, it is still
unlikely that detailed analysis of the likelihood function will be feasible and some summarization will prove essential
(Edwards, 1972). Estimation theory concerns alternative rules of attaching numbers to θ1 given the data, and this can
be done in (infinitely) many ways which can have very different properties. Nevertheless, the entire topic can be
resolved by noting that (for )

(1.5)

is an estimator-generating equation in that other estimators can be interpreted as approximations to solving (see
chapter 13, based on ideas considered by Durbin, 1988). Since computers have greatly alleviated the need to choose
approximations that minimize the computational burden, we may as well solve for the most likely value of θ1, i.e.
such that and is negative definite (unless the likelihood function is such that the summarization in (1.5) will
be misleading). Inference is also almost entirely dependent on (see, for example, Rao, 1973; Breusch and Pagan,
1980), and so we can proceed to other matters.

Additional problems which are less easily solved are, first, that at present is based on an excessively idealized
abstraction (which is more a guide to how the econometric model should look if the idealized state were to occur than
a useful set of restrictions for imposing on data), and, second, that the structure and composition of zt are unknown.
Thus we have ‘econometric modelling’, that activity of matching an incorrect version of (1.3) to an inadequate
representation of (1.1), using insufficient and inaccurate data. The resulting compromise can be awkward, or it can be a
useful approximation which encompasses previous results, throws light on economic theory and is sufficiently constant
for prediction, forecasting and perhaps even policy. Simply writing down an ‘economic theory’, manipulating it to a
‘condensed form’ (see Desai, 1981a) and ‘calibrating’ the resulting parameters5 using a pseudo-sophisticated estimator
based on poor data which the model does not adequately describe constitutes a recipe for disaster, not for simulating
gold! Its only link with alchemy is self-deception.

As an illustration consider the transactions demand for money. In an equilibrium world with constant transactions
technology and static expectations, agents are assumed to keep a constant ratio between nominal (real) money and
nominal (real) income:

(1.6)
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Between such worlds, K(·) will be lower if interest rates r or inflation are higher, yielding, for example,

(1.7)

In spite of the strong assumptions, (1.7) embodies a number of useful ideas (including independence from units of
nominal variables) which it seems reasonable to require of an econometric model's solved equilibrium form. However,
(1.7) is a demand schedule, not a behavioural plan, and it is not sensible to attempt direct estimation of α and β.
Indeed, attempting to do so for M1 yields (see chapter 11)

(1.8)

where T is the sample size. Such results are uninterpretable since d indicates significant autocorrelation (so that the
quoted standard errors are badly downward biased) and the model is rejected by the χ2(20) test for parameter
constancy. The results hardly ‘corroborate’ the ‘theory’, and so we do not seem to find a relationship where one was
anticipated on grounds of ‘common sense’ as much as ‘economic theory’. Restricting the coefficients of Y and P to be
unity increases s to 0.067 and lowers d to 0.45, and so that ‘solution’ can be rejected. Even neglecting the possibility
that (1.8) is just another ‘spurious regression’, it is not possible to decide whether or not the ‘theory’ has been rejected
since the model obviously does not adequately describe the disequilibrium data. Yet the dynamic equation eventually
chosen as a reasonable model of the same data series had s = 0.13 and yielded the ‘equilibrium’ solution

(1.9)

which is consistent with the hypothesized demand schedule. Moreover, the long-run homogeneity postulates could not
be rejected, nor could parameter constancy (which also tested the weak exogeneity assumptions concerning P, Y and r)
despite the obvious failure of (1.8).

My approach is admittedly ad hoc, since although ‘optimization’ is a sensible organizing principle for economic theory,
derived models will be empirically useful only if the associated criteria functions adequately represent agents' decision
problems (that is, their objectives, costs and constraints). Present formulations are not entirely satisfactory.
Consequently, my own empirical ‘research programme’ has been to investigate modelling based on minimal
assumptions about the intelligence of agents and the information available to them, with maximal reliance on data
using ‘economic theory’ guidelines to restrict the class of model considered, as in the M1 example. Agents form
contingent plans, but respond like servo-mechanisms to changes in weakly exogenous variables (see, for example,
Phillips, 1954). The resulting feedback models mimic ‘rational’ behaviour for disequilibrium states around an otherwise
constant steady-state growth path, and highlight features that seem worth incorporating in empirical time-series
equations based on tighter theoretical specifications. The approach is complementary to both pure time-series
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analysis and theory-based quantitative economics, and has as its next stage the introduction of expectational and
adaptive behaviour so that agents can learn to react rationally in non-steady-state worlds. Fortunately, others are also
successfully tackling modelling from an economic theory viewpoint (see Nerlove, 1972) and, in particular, Muellbauer
(1979) has derived interesting empirical equations from explicitly dynamic theories.

6 Is Econometrics Alchemy or Science?
The ease with which spurious results could be created suggested alchemy, but the scientific status of econometrics was
illustrated by showing that such deceptions are testable. In our rapidly changing world, undetected fallacies quickly
become positive instances of Goodhart's ‘law’ (1978) to the effect that all econometric models break down when used
for policy.

It is difficult to provide a convincing case for the defence against Keynes's accusation almost 40 years ago that
econometrics is statistical alchemy since many of his criticisms remain apposite. The characterization of science offered
earlier did not exclude econometrics a priori simply because of its inability to conduct controlled experiments. But
empirical substantiation of the claim to be a science does require the existence of credible evidence, namely findings
that are acceptable independently of political beliefs or preconceptions about the structural form of the economy (for a
related critique from a systems theorist, see Kalman, 1979). The turbulence of the 1970s has greatly facilitated the
rejection of ‘false’ models, and although we are a long way from producing ‘answers’, striking progress has been
achieved since Keynes wrote, albeit at the cost of making the subject highly technical and increasingly inaccessible to
non-specialists (for an interesting exposition, see Bray, 1979).

The alternative claim has been made by Hicks (1979, p. xi) that ‘as economics pushes on beyond “statics” it becomes
less like science and more like history’. While this correctly highlights both the importance of the historical context and
the fact that there is only one realization of any economic time series, it does not rule out a scientific approach to
dynamic economics.

Econometricians may well tend to look too much where the light is and too little where the key might be found.
Nevertheless, they are a positive help in trying to dispel the poor public image of economics (quantitative or otherwise)
as a subject in which empty boxes are opened by assuming the existence of can-openers to reveal contents which any
ten economists will interpret in 11 ways.

Whether or not econometrics will prove to be more analogous to alchemy than to science depends primarily on the
spirit with which the subject is tackled. Obviously, I cannot speak for how others will choose to use econometrics,
although I believe that at this School we have attempted to tackle the subject scientifically. Hopefully, my examples may
persuade you that such is at least potentially feasible. Far more rapid progress could be made if all empirical studies
would provide greatly improved test information to allow readers to judge plausibility correctly. The three golden rules
of econometrics are test, test and test;6 that all three
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rules are broken regularly in empirical applications is fortunately easily remedied. Rigorously tested models, which
adequately described the available data, encompassed previous findings and were derived from well-based theories
would greatly enhance any claim to be scientific.

The study of what little econometric light we have is far from being an easy option, especially as taught at this School;
nevertheless, there can be few more exciting or intellectually rewarding subjects and I commend its study to you.

Notes
1 s and d respectively denote the equation standard error and the Durbin–Watson statistic. An estimated coefficient

is conventionally called significant if the interval of plus and minus two standard errors does not include zero; in
that case one can reject with approximately 95 per cent confidence the hypothesis that the coefficient is zero. Since
both coefficients and their standard errors are estimated, and the numbers obtained depend on the method of
estimation and the choice of model, ‘significance’ of coefficients can change radically with the equation
specification, as indeed occurs below.

2 That is, where the residual in one period is proportional to the residual one period previously plus a random
variable; i.e. ût = λ ût − 1 + êt, where ût is the tth residual.

3 The two χ2 values in figure 1.8 are a (likelihood ratio) test for a common factor and a ‘Box-Pierce’ test for
residual autocorrelation respectively – see Pierce (1971), Breusch and Pagan (1980), Sargan (1980a) and chapter
7 – both of which ‘reject’ the model specification.

4 It may be useful to have a ‘microeconomic foundation’ for macroeconometrics but it is not essential and may be
counterproductive: ‘If it were necessary in the equations of hydrodynamics to specify the motion of every water
molecule, a theory of ocean waves would be far beyond the means of 20th century science’ (Wilson, 1979).

5 Or, to quote Hicks (1979, p. xi): ‘decorated with least squares and confidence intervals’.
6 Notwithstanding the difficulties involved in calculating and controlling type I and II errors.
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2 Stochastic Specication in an Aggregate Demand
Model of the United Kingdom2

Preamble
My first attempts at empirical macroeconometrics during 1969 were based on the following view of the ‘conventional’
approach to econometrics. Economic theorists had deduced how optimizing agents would behave in all aspects of
economic life and hence what interdependencies should exist between observable variables; economic statisticians had
designed and implemented measurement systems for national accounts so that the appropriate data series had been
collected and collated; econometricians had estimated and tested empirical counterparts of the economists' theories on
those data; but progress in econometric theory and computing had led to the development of more powerful
estimators (namely, those I was going to use), the application of which to the already known economic structure would
produce more efficient estimates of the parameters of interest – and hence better forecasts and policy. A major puzzle
was why the assumptions of the econometric theory (e.g. those underlying the Gauss–Markov theorem) were not
satisfied in data applications, but more sophisticated econometric estimators could be derived to take account of most
‘problems’.

In my defence, I can only plead that my naivety dissipated very fast as I quickly realized that such an approach not only
did not work, it could not work: after all, I knew some of the economic theorists – they were extremely clever, but they
were not omniscient! And omniscience, or a close approximation thereto, was a necessary condition for such a
methodology to work. I began at once to try and develop some improved approaches.

Many other researchers had also realized that the reigning emperor was at best scantily clad. Ed Leamer in his 1978
consolidation designated the above view as needing the Axiom of Correct Specification, so that the econometric model
had to coincide with the actual economic mechanism except for an independent error. Clive Granger and Paul
Newbold

2 Reprinted from Econometrica, 42, 3 (May 1974) 559–78. This is a substantially revised version of a paper presented to the Barcelona Meeting of the Econometric Society.
The author gratefully acknowledges an immense debt to Denis Sargan for advice throughout the preparation of the paper and also wishes to thank Robin Harrison for
valuable research assistance in developing the program library, and Pravin K. Trivedi, Kenneth F. Wallis and the Seminar Groups at Essex, Oxford and Warwick for useful
comments on an earlier draft, while freeing them all of responsibility for any residual errors. The anonymous referees of Econometrica also helped to clarify the argument.



(1974) chastised many extant models as having ‘nonsense equations’, a follow-up to Yule (1926). And Charles Nelson
(1972) demonstrated that simple extrapolative models often forecasted better than large-scale econometric systems.
The present chapter was completed in 1969 before I was aware of many of the parallel critiques and developments
(there were long publication delays even then!). Nevertheless, the points which were explicitly at the centre of the paper
were as follows.

1 Dynamic and stochastic specification were inseparable – one could not expect to build useful models by
arbitrarily asserting the former, and mechanistically patching the latter.

2 Simultaneity and dynamics also interacted closely and needed a joint treatment, albeit that time disaggregation
reduced the role of the former and enhanced that of the latter.

3 Rigorous testing was essential (‘we should know what problems are untreated, rather than just hope that they
are absent’) and had to be of interesting null hypotheses, using valid tests (not, for example, the
Durbin–Watson statistic in dynamic models).

4 The likelihood function was central to estimation and inference (leading to chapter 13 below).
5 Serial correlation was an admissible simplification of the dynamics only if a test of the induced restrictions was

insignificant. How to do this test was as yet only understood for first-order cases, following Sargan's seminal
paper (1964a), but could be generalized to systems, revealing that cross-equation serial correlation could matter
in practice.

6 Seasonality and dynamics also interacted, making model selection very complicated.
7 An operational emphasis was essential since econometric methods were useful only once they were embodied

in a computer program, and as a consequence much of my effort went into writing and testing the software
(the precursor to AUTOREG).

Some of the specific lessons which I learnt during the course of the study can also be seen.

(a) Corroboration of theory-models is not enough to justify their adoption since the same data might also reject
the model on a different test or corroborate a conflicting model (see Ericsson and Hendry (1989) for an
extension).

(b) Adopting the alternative hypothesis when a null is rejected is not only a non sequitur, it is frequently fairly
disastrous in practice.

(c) ‘Simple-to-general’ modelling procedures have inherent flaws since a later rejection invalidates all earlier
inferences.

(d) To interpret any of the empirical evidence correctly, one needed to be able to account for all of the results.

While almost no work on Monte Carlo methods is included in this volume, I had undertaken a great deal of simulation
analysis contemporaneously (see Hendry and Trivedi, 1972; Hendry, 1973; followed by Hendry and Harrison, 1974;
Hendry, 1975a). In Monte Carlo methods, three important notions are transparent. First, the process generating the
data, and the models fitted to those data, are distinct entities. Second, one knew the ‘whole story’ (i.e. the actual
mechanism) and hence, except perhaps in very small samples, had no problem in understanding all of the evidence,
even when mis-specified models were estimated. Third, ‘simple-to-general’ modelling strategies would not work well,
especially compared with fitting the most general equation at the outset which in the limited context of Monte Carlo
experiments would be tantamount to omniscience: since all the Monte Carlo studies used relatively simple data
generation processes, it was easy to nest the actual data generation process in an estimable equation. However, ‘real’
data mechanisms were extremely complicated, and so the methodological implications of the third notion were not
obvious to me at the time. The Monte Carlo analogy played and still plays an important background role in my
thinking about modelling procedures, and by 1973 it was already altering my views and suggesting possible
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solutions to the problems I saw, as well as new critiques: if simple-to-general would not work when I knew the answer,
why should it work when I did not?

However, I also missed some crucial lessons which were to recur later.

1 The paper contains no graphs: I never looked at the data! (although I did check its accuracy on printouts).
2 I simply assumed that all non-modelled variables would be ‘exogenous’ and hence would have appropriate

statistical properties, although I doubt if I had a very clear idea about precisely what properties were needed
(despite discussing whether or not to endogenize disposable income).

3 That the parameters of my theory-model might not be constant did not cross my mind despite the forecast test
outcome – the real shock to my initial approach (sketched at the start of this Preamble) came when I tried to
‘predict’ the first two quarters of 1968 some time later and obtained values in the hundreds for my χ2 forecast
statistic with 12 degrees of freedom.1

4 The overall specification of the dynamic system (i.e. the so-called reduced form) followed from that of the
structural model, so that the over-identification tests conducted were conditional on the untested validity of the
unrestricted reduced form: I did not perceive that the entire order of the approach was inappropriate.

Thus, I was still conditioned in many ways to implicitly following the conventional road.

By the time this chapter appeared in print, the AUTOREG library (described in chapter 14) was well developed and
quite widely used. Meghnad Desai pointed out one of the main methodological thrusts by referring to the library as a
‘model destructor’ since its vast array of tests usually could be relied on to detect some serious departure of a model's
specification from its assumed properties. The need to test models destructively to ascertain their problems and weak
points remains paramount and is a clear lesson of the following chapter.

However, the converse of rules or guidelines for model construction were prominent by their absence, making 1970–5
a difficult period for empirical researchers (some of whom virtually developed ‘AUTOREG phobia’ from fears about
what it might do to lovingly constructed equations!). The need to develop a more constructive aspect was clear, and
implicit in chapter 2 is an unsuccessful effort towards doing so by using test outcomes as ‘constructive indicators of
mis-specification in dynamic models’, although that idea is countered by the caveat noted in (b) above. The evolution
of a more coherent notion lay some time in the future, but the seeds of dissent were sown and several had taken root.
Latent among these ideas was the glimmer that the procedures of empirical researchers were dependent on what their
software allowed via easy calculations, which later emerges in chapter 8 as the notion that computer programs embody
implicit methodologies, and in the final chapter as a program which had an explicit methodology.

Note
1 Actually, most of that failure was due to ignoring the reaction of consumers to a pre-announced tax change, so ‘bad

luck’ mattered here – see the dummy variable for purchase tax in chapter 8. Still, it was a salutary lesson.
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1 Introduction
Applied macroeconometric investigations have usually been directed at estimating the systematic or deterministic
components of economic relationships, while paying minimal attention to the stochastic properties of the processes
under study. Thus one can cite the common habit of assuming that errors are white noise; although this hypothesis is
regularly (if not always validly) tested by the Durbin–Watson statistic, even when significant autocorrelation is
indicated, it tends to be regarded as a nuisance (i.e. a problem to be removed) rather than as a factor to be integrated
into the structural development of the model, or as information suggestive of the need to revise the dynamic
specification.

One reason for this may be the (believed) difficulty of allowing for the joint existence of lagged endogenous regressors
and autocorrelated disturbances in simultaneous systems of relationships. However, it is not yet clear which subset of
these deserves most attention should it prove impossible to solve the complete estimation problem.1 On the one hand,
we know that mis-specification of the error structure in single dynamic equations can have serious effects on the
validity of estimation and the accuracy of forecasts (see, for example, Malinvaud, 1966, ch. 14). Equally, the importance
of an appropriate treatment of simultaneity has been amply demonstrated (see Johnston (1972, ch. 13) for a convenient
summary), and in both cases the analytical asymptotic results have received subsequent experimental confirmation for
small samples. Nevertheless, little is known about the relative importance of these two problems in empirical research
or the degree of sensitivity of results to alternative estimator choices.

An important factor affecting this issue is the increasing availability of time-disaggregated data as this tends to enhance
the role of ‘recursive’ formulations (simply construed as having all regressors predetermined) and hence both the value
of and the need for methods which allow the estimation of high-order autocorrelation processes, but which ignore
simultaneity (see Wallis, 1972a). Partially countering this, with short observation periods one must be prepared for
cross-equation error serial covariances (and not just contemporaneous covariances), so that the development of models
with non-diagonal matrices of autocorrelations becomes necessary (see Sargan, 1961; Hendry, 1971).

The estimates presented below are intended to assist in evaluating these problems. A dynamic model of aggregate
demand in the United Kingdom is estimated by a variety of methods which depend on differing assumptions about
simultaneity and autocorrelation to investigate the existence (or otherwise) of within- and / or between-equation error
autocorrelations in a small empirical system which appears reasonably well specified on such conventional criteria as
goodness of fit, simulation performance and forecast accuracy. The estimates can be interpreted as testing a number of
specification assumptions that are normally maintained hypotheses, and the results suggest an important role for
autocorrelation as a constructive indicator of mis-specification in dynamic models (compare Sargan, 1964a).

Indeed, despite its apparently satisfactory performance, the alternative estimators reveal a number of mis-specifications
in the system under study. Appropriate

32 ROOTS AND ROUTE MAPS



computational methods have been developed for a wide range of autocorrelation processes, and it would seem that the
instrumental variable class of estimators are not computationally expensive, yet can yield useful information. Systems
methods are certainly feasible for the size of model used here, and so might be applicable to larger structures on a
‘block recursive’ basis (see Fisher, 1965), but they require considerably more computer time.

2 Methodology: Autocorrelation and Simultaneity
The formal structure of the model to be analysed2 is

(2.1)

where Bi and Cj are matrices of coefficients, |B0| ≠ 0, and yt and zt are p × 1 and q × 1 vectors of observations on the
endogenous and exogenous variables at time t. The vector ut is a p × 1 vector of stochastic terms generated by

(2.2)

where the Ri are p × p matrices of autoregressive coefficients and εt is NID(0, Σ) with Σ positive definite and
unrestricted. We assume there exists sufficient a priori information on the coefficients of the Bi and Cj to identify every
parameter in (2.1) and (2.2) (see Sargan, 1961, 1972) and for stationarity we assume that all the roots of the polynomial
matrices and lie outside the unit circle, where Lθxt = xt − θ and R0 ≡ I.

Equation (2.2) defines an mth-order vector autoregressive process, the ith equation of which is (using Rl = (rijl))

(2.3)

While consistent and asymptotically efficient estimates of (2.1) and (2.2) can be obtained by maximizing the required
likelihood function, unless both m and p are small relative to the sample size, unrestricted estimation of (2.2) will not be
possible or, if accomplished, will provide very imprecise coefficient estimates. Conversely, if invalid prior restrictions
are imposed on (2.3), we shall obtain inconsistent estimates of the rijl and, when n > 0 (as will be assumed below), of the
parameters of (2.1) also.3. Thus, before opting for any particular compromise, it seems useful to consider the
implications for estimator choice of alternative restrictions on the rijl.

One obvious possibility is m = 0 which reduces the analysis to two cases: (i) p = 1, whence (2.1) defines a single
dynamic equation with predetermined regressors and white noise errors, so that ordinary least squares (OLS)
estimation is legitimate; and (ii) p > 1 which defines a standard system of simultaneous equations, again with serially
independent errors, and hence two-stage least squares (TSLS) or, if
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the entire system has been specified, full information maximum likelihood (FIML) are viable.

When m > 0 there are three situations to consider, soluble by generalizations of OLS, TSLS and FIML respectively:4
(iii) if p = 1, (2.3) defines an mth-order scalar autoregressive process, estimable by the appropriate non-linear extension
of least squares denoted autoregressive least squares (ALS) (see, for example, Malinvaud, 1966; Hendry and Trivedi,
1972); (iv) if p > 1 but all rijl = 0 for i ≠ j (i.e. there are no across-equation serial correlations), one can use the
autoregressive generalization of the instrumental variable approach (AIV) proposed by Sargan (1959) (also see Sargan
(1964a) and compare Fair (1970)); and (v) finally, when p > 1 and the Ri are non-diagonal, estimation can be
accomplished by autoregressive full information maximum likelihood (AML) (see Sargan, 1961; Hendry, 1971).5

Below we apply all these estimators to the one body of data, and while this could be as misleading as data mining, the
following justification is offered. Since (i)–(v) are special cases of the maintained hypothesis defined by (2.1) and (2.2),
the methods locate optima in various subspaces of the complete parameter space and so should yield useful
information about the stochastic structure of the model being used. This might, for example, indicate mis-
specifications in the deterministic structure so that revision yields a system with white noise errors, estimable by (ii)
(see, for example, the analysis of equations (2.4)–(2.7) below). Clearly, however, although the final set of estimates may
not directly allow for autocorrelation, this is a completely different proposition from blindly assuming (ii) at the start of
the study and never testing the assumption of serial independence. In effect, one would like to do an analysis of the
residuals as in the classical regression model; because of the presence of lagged endogenous regressors, the
autocorrelation properties of the residuals yield a biased picture of the spectrum of the errors; thus one adopts the
reasonable alternative of estimating the parameters of the assumed error process.

Nevertheless, the results must be interpreted with care, since a ‘significant’ outcome of a test in (i), for example, may
not be due to the failure of the particular hypothesis one wished to test, but may arise from the invalidity of some other
assumption which at the time seemed safe to make but which later evidence leads one to doubt. Falsification of earlier
premises is a familiar difficulty in empirical research, and the spirit of the following analysis is to interpret the results as
an investigator would who had the same information as the reader at the stage each set of findings is presented rather
than to adopt the omniscient position of ‘knowing the whole story’ at the start, as one might do in Monte Carlo work.
This course seems preferable since one can never claim to know the ‘true’ structure in a science, and, indeed, the
evidence from later results which leads one to question the initial estimates may itself be incorrect and hence be a poor
basis for criticism.

3 Methodology: Autocorrelation and Dynamics
The determination of an appropriate lag structure in dynamic models is still mainly an empirical question often
resolved by experimenting with a set of lagged regressors using OLS or TSLS. This could yield misleading results in
view of the well-known

34 ROOTS AND ROUTE MAPS



lagged-dependent-variable-autocorrelated error bias, and so we adopt an approach which explicitly recognizes the
interaction between the equation dynamics and the stochastic specification (see Sargan, 1964a). To illustrate this,
consider (iii) with a model such that m = n = p = 1, and write the only equation in normalized form as

(2.4)

where the elements of zt are predetermined. For simplicity, in this single-equation context, rewrite the appropriate
specialization of (2.2) as

(2.5)then transforming (2.4) to eliminate (2.5) to eliminate (2.5) yields

(2.6)

which we denote the restricted transformed equation (RTE). An alternative possibility is that (2.4) has a mis-specified
dynamic structure (with the autocorrelation reflecting the omitted variables) and the correct relationship is a general
linear one between yt and (yt − 1, yt − 2, zt, zt − 1). Deleting any redundant members of zt − 1 (i.e. those which are linearly
dependent on the elements of zt such as a constant term), an estimable hypothesis is

(2.7)

where is the set of non-redundant variables in zt − 1. Since (2.7) is equivalent to ignoring the autoregressive
restriction in (2.6) and recombining regressors which occur more than once, it is denoted the unrestricted transformed
equation (UTE). Equations (2.4) and (2.7) are estimable by OLS, and (2.6) by ALS, and on the basis of the residual
sums of squares (S1, S2 and S3 respectively) one can construct F and/or χ2 tests based on the likelihood ratio principle
to discriminate between the three alternatives.

First, one can test the significance of in (2.6) either by using (2.8)

or by the asymptotically equivalent t test on . Next the validity of the autoregressive restriction on (2.6) relative to
(2.7) can be tested using (2.9)

whereN is the number of restrictions imposed on (2.7) to obtain (2.6). Finally, we can test the significance of â1 and the
â3i in (2.7) either jointly by the standard F test on a set of additional regressors (which depends on S1/S2 − 1 and should
be significant if both (2.8) and (2.9) are) or individually by t tests. Without enumerating all possible outcomes, if no test
is significant one chooses (2.4) with white noise errors, whereas, if all are, (2.7) is selected, whence the entire procedure
can be repeated with this as a new baseline. (Compare the ‘identification’ approach of Box and Jenkins, 1976.)

This analysis can easily be generalized to n > 1 and/or m > 1, though now, for example, one might also want to test
‘composite’ hypotheses6 such as
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(2.10)

against ‘simple’ ones such as

(2.11)

to obtain a parsimonious representation of the autocorrelation. As discussed above, the further generalization to (iv)
with p > 1 involves using instrumental variables rather than least squares, and if the equation is over-identified this
allows an additional χ2 specification test asymptotically equivalent to that proposed by Hood and Koopmans (1953)
(see Basmann, 1960; Fisk, 1967). To maintain comparability between equations when using AIV, all the predetermined
regressors in (2.7) are used as instruments when estimating (2.4) and (2.6), in addition to the set of over-identifying
predetermined variables selected from the reduced form of (2.1). Finally, analogous generalizations are possible to (v)
(see Hendry, 1971).

Since a large number of alternative estimators are used, to help control against ‘spurious’ results, the last two sample
observations are retained for an asymptotically valid χ2 test of post-sample parameter stability, applied to each final
specification. Let ft denote the vector of errors between the realized outcome and that ‘predicted’ by known values of
all reduced form regressors, and let be a consistent estimate of the reduced form error variance matrix; then

(2.12)

on the null hypothesis that all the parameters are stable and consistently estimated.7

4 An Aggregate Demand Model for the United Kingdom, 1957–1967
The system is intended to be a schematic representation of the demand sector of previous macro-models of the United
Kingdom (see Ball and Burns, 1968; Hilton and Heathfield, 1970, especially the chapter by Byron; also compare Klein
et al., 1961). We use quarterly seasonally unadjusted data series for the period 1957(i) to 1967(iv). To facilitate
interestimator comparisons, only equations linear in both variables and parameters are considered, even though neither
complication is insurmountable for most of the methods described below (see Eisenpress and Greenstadt (1966) and
Klein (1969) for the former, and, for example, Wallis (1972a) and Williams (1972) for the latter).

The behavioural equations explain consumers’ expenditure on durable goods (denoted by Cd) and all other goods and
services (Cn), gross domestic fixed capital formation (I), inventory investment (Iv) and imports of goods and services
(M). Gross domestic product (Y) is determined by the usual accounting identity, and the model is closed by an
empirical relation to determine disposable income (Yd). The majority of the specifications are conventional but naive;
this is partly to minimize the computational burden and partly to focus attention on the stochastic processes.
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Precise definitions of the variables are given in the Appendix and the exact specification of the system is indicated by
the OLS estimates presented in table 2.1; dummy variables for a constant term and three seasonal shift factors are
included in every equation but, to save space, estimates of these are not presented.

The specification of the individual equations requires little comment. Equation (i) is derived from a stock-adjustment
expected (or permanent) income model, and includes a dummy variableN for the annual vehicle registration letter. In
the United Kingdom since 1963, the last letter of vehicle registration plates represents the year of purchase and this has
had a marked effect on the seasonal allocation of expenditure on cars; by switching the month in which new letters
commenced, it was used as a policy instrument in 1967 to alter the seasonal pattern and so requires explicit inclusion in
the equation given the decision to use a parametric representation of seasonality (compare Williams, 1972). Equation
(ii) is simply a transformed permanent income equation, and (iii) and (iv) are derived from flexible accelerator-capital
stock adjustment models. Equation (v) assumes linear price, income and stock building effects (lagged imports were
not significant as a regressor) and (vi) is a transformed distributed lag relationship.8

It must be stressed that the present model only seems to be somewhat of a caricature because aggregate demand
relationships have been intensively studied. The system is almost certainly mis-specified in a number of respects, which
may well have generated the autocorrelation observed below,9 but it would be incorrect to deduce that this vitiates the
purpose of the exercise. In general we do not know how well specified our models are; one of the points of this paper
is the importance of thoroughly testing as many assumptions as possible, revising the specification

Table 2.1 Ordinary Least Squaresa

R2 s2b DWc d

(i) 0.903 972 1.69 1.1

(ii)
0.994 926 2.64 3.7

(iii) 0.980 1000 1.95 0.5

(iv) 0.732 1781 2.02 1.7

(v) 0.965 1235 1.69 4.5

(vi) 0.974 7298 1.81 0.4

a For definitions of symbols, see the appendix.
b s2, equation error variance adjusted for degrees of freedom.
c DW, Durbin–Watson statistic.
d , test of post-sample parameter stability.
e Standard errors are shown in parentheses below coefficients.
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in the light of the information so obtained. The particular lag structure adopted for the model was chosen according to
the analysis in section 3, but was tested only against the alternative of first-order autocorrelation.

5 Methods Which Neglect Autocorrelation

5.1 Ordinary Least Squares
Table 2.1 presents these estimates (which of course also ignore simultaneity). The R2 values are high, and every
coefficient has the expected sign and a reasonable magnitude, although the long-run propensity to consume non-
durables (0.64) is low, yielding an income elasticity at the mean of only 0.76. For durables (Cd) the corresponding
elasticity is 1.86. The accelerator coefficients in (iii) and (iv) are rather large, suggesting an upward bias due to ignoring
simultaneity through the GNP identity; the seasonal coefficients for Iv showed a sign pattern which was opposite to
that for the other domestic expenditure series, suggesting a ‘buffer stock’ model. The income and price elasticities of
demand for imports (evaluated using (∂ M/∂ Z)/( / )) are 0.90 and −0.41 respectively.

Given the method adopted for selecting the lag structure, it is perhaps not surprising that only one of the
Durbin–Watson statistics indicates significant auto-correlation (on this, see section 6) but, except for (v), these are
biased towards 2. Since none of the χ2 tests of parameter stability is significant, the specification appears adequate,
though some allowance for simultaneity seems desirable.

5.2 Two-Stage Least Squares
The system comprises ten lagged endogenous and seven exogenous variables (the latter are N, Pm, GXT, a constant,
and three seasonal dummies) which provides 17 possible instruments. Two selections were considered, namely using
just the exogenous variables (plus a trend dummy), which yielded a number of coefficient estimates with ‘wrong’ signs,
and using all the predetermined variables in the model, which yielded the set of results presented in table 2.2.10

All the coefficients of endogenous regressors (except in (iv)) are smaller than the corresponding values in table 2.1, as
might be expected given the likely simultaneity biases affecting OLS (if the chosen instruments are more legitimate
than the least squares regressors). Nevertheless, the estimates in three of the equations are unacceptable as their χ2 test
of specification is significant, although this result does not indicate what remedial action is required. Again, none of the
parameter stability tests is significant, nor have the estimated error variances increased much, suggesting a flat
likelihood surface.

5.3 Full Information Maximum Likelihood
The estimates recorded in table 2.3 are rather different from both previous sets: the short-run propensity in (ii) seems
more sensible, although the long-run value
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Table 2.2 Two-Stage Least Squares

a

NI s2

(i) 14.3 19 982 0.8

(ii) 23.1*b 18 957 3.2

(iii) 20.1* 19 1071 0.6

(iv) 13.1 18 1797 1.7

(v) 7.4 19 1345 2.3

(vi) 26.0* 18 7361 0.4

a denotes a test of identification/specification with i degrees of freedom where i = NI − NR − 4 for NR regressors and NI instrumental
variables used in estimation (e.g. i = 11 in (i)).

b The asterisk denotes significance at the 0.05 level.

remains low, and the accelerator effects are insignificant for both I and Iv, making these simply second-order
autoregressions. This suggests that the apparently well-determined effects in OLS depend on simultaneity bias,
especially as it is implausible to argue that fixed investment changes substantially in response to current sales
movements. The sample correlations between the observations and the reduced form ‘predictions’ are high (the
correlations between the simulated and realized paths are reasonable, being, for example, 0.94 for Δ Y, which variable
is indirectly derived) and the χ2 tests for system parameter stability are insignificant, all the one-period-ahead forecasts
(based on known values of predetermined variables) being within ± 2ω.

However, the likelihood ratio test of all the over-identifying restrictions yields a value of 150.9 for , implying that
some of the a priori restrictions are inconsistent with the sample information embodied in the unrestricted reduced
form (URF). With only 39 observations but 17 regressors in the URF, the asymptotic justification for this statistic is
very weak,11 an interpretation supported by the value of 164.6 for the test of parameter stability applied to the URF
forecasts which suggests a spurious goodness of fit over the sample period.

6 Methods Which Treat Autocorrelation But Neglect Simultaneity

6.1 Autoregressive Least Squares
An alternative cause of the changes between OLS and FIML in tables 2.1 and 2.3 might be that FIML is relatively
more sensitive to mis-specification (see Cragg, 1968);
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Table 2.3 Full Information Maximum Likelihood

ω2a v2b CORRc

(i) 929 784 0.940

(ii) 835 804 0.997

(iii) 1231 1583 0.985

(iv) 2249 1917 0.767

(v) 1921 1037 0.967

(vi) 7754 6513 0.984

One-period-ahead ‘forecasts’
Cd Cn I Iv M Yd Y Δ Y
520 4566 1486 5 1693 5507 6679 −96

547 4555 1518 74 1697 5480 6787 12
537 4821 1546 −41 1665 5644 6856 177

544 4757 1564 −49 1602 5614 6871 192

a Reduced form error variance, not adjusted for degrees of freedom.
b Structural form error variance, not adjusted for degrees of freedom.
c Correlation over the sample period between the ‘dependent’ variable and its value ‘predicted’ by the derived reduced form.
d System parameter stability test for one-period-ahead forecasts.

Table 2.4 Autoregressive Least Squares (M = 1)

SE( )a b c (i) s2 F(j, l)d (j, l)

(i) 0.41 (0.26) 2.2 1.1 2 1.1 950 0.8 3, 28
(ii) −0.36 (0.17) 5.1*e 0.1 1 4.8 838 2.2 2, 31
(iii) −0.01 (0.34) 0.0 0.0 1 0.4 1033 0.0 2, 29
(iv) −0.01 (0.29) 0.0 1.5 1 1.6 1838 0.6 2, 30
(v) 0.13 (0.21) 0.5 1.5 3 3.2 1257 0.4 4, 28
(vi) 0.18 (0.28) 0.8 0.7 1 0.5 7379 0.6 2, 31

a Standard error of (see, for example, (2.5)).
b Likelihood ratio test of ρ1 = 0.
c Likelihood ratio test of the validity of the autoregressive restriction in (2.6) with i degrees of freedom.
d Test of
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in (2.7) with (j, l) degrees of freedom.
e The asterisk denotes significance at the 0.05 level.
thus, as discussed in sections 1–3, we use ALS to check the dynamic formulation, and extend the analysis to allow for
simultaneity in the next section. A value of m = 4 is chosen as a reasonable compromise between the sample size of 39
and the need to check for mis-specified seasonality (see, for example, Wallis, 1972a); thus error processes of the forms
(2.5), (2.10) and (2.11) are estimated.

When m = 1, the point estimates are naturally very similar to those shown in table 2.1 (see section 3 above), and so
table 2.4 just presents summary and test statistics. The dynamic specification appears to be locally acceptable as none
of the χ2 tests of (2.6) against (2.7) is significant, nor are any of the F tests on the joint significance of the additional
regressors in (2.7) compared with (2.4). Thus the significant value of in (ii) can be taken to represent autocorrelation
and not an inappropriate lag structure. In fact the unrestricted transformed equation satisfies the autoregressive
restriction almost exactly, the RTE and UTE being respectively12

(2.13)

(2.14)

The formulation in terms of (2.4) and (2.5) is therefore preferable; it involves one fewer parameter, which effects a
reduction in collinearity, without reducing the value of the likelihood function. Further, since (ii) is often derived from a
transformed permanent income hypothesis, one might have postulated the equation

(2.15)

which has an autocorrelation coefficient of (which would equal −0.49 if b2 equalled 0.84, as in both OLS
and ALS). There is simulation evidence

Table 2.5 Fourth-Order Autoregressive Least Squares

a
b s2

(i)
8.2 6.5 933 4.9

(ii)
12.4*c 8.6* 665 7.9*

(vi)
10.3* 9.8* 6496 5.1

a Likelihood ratio test of ρi = 0(i = 1, . . . , 4) in (2.10).
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b Likelihood ratio test of the joint marginal significance of and in (2.10).
c The asterisk denotes significance at the 0.05 level.

that, in samples of about 40, ALS estimates of ρ1 are biased towards zero when ρ1 is negative or is approximating a
negative moving-average error (see Hendry and Trivedi, 1972); hence interpreting (2.5) as approximating the error on
(2.15), one might judge these estimates as support for the standard permanent income model. Later results, however,
suggest that this is an over-simplification.

Each equation can be estimated in a stepwise manner for m = 2, 3 and 4 for both of the processes (2.10) and (2.11)
(which allows likelihood ratio tests on intermediate hypotheses); in table 2.5 we report the final set of results for (2.10)
for the three equations which exhibit significant higher order autocorrelation.13 The values for (iii), (iv) and (v) are
3.8, 1.4 and 0.1 respectively, providing no evidence of autocorrelation, and in every equation the roots of the estimated
error processes lie outside the unit circle.

The statistic testing (2.10) against (2.5) indicates that autocorrelation of higher than first order is present for (ii) and
(vi); clearly, therefore, the assumption of serial independence underlying 5.1 and 5.2 is untenable for these equations.
Before concluding that one must therefore allow for such complex processes as are recorded in table 2.5, it seems
worth investigating (2.11) and in particular testing (2.10) against (2.11). The relevant statistics for Cd, Cn and Yd are
presented in table 2.6; no significant changes materialize for I, Iv or M. Equations (ii) and (vi) have values
significantly different from zero on both t and tests, and rather unexpectedly, given the point estimates of the ρi
(especially for (ii)), in no case is the likelihood ratio test of (2.11) against (2.10) significant. Thus such autocorrelation as
is present in this model can be parsimoniously represented by (2.11). Indeed, the tests of parameter stability in table
2.5, are all considerably larger than those in table 2.6, suggesting that the former suffer from a degree of ‘overfitting’.

Continuing the analysis discussed in section 3 but applied to four-period lags, we next test the appropriateness of
autocorrelation as against dynamic misspecification, and the evidence (table 2.6, fourth and fifth columns) leads us to
reject the hypothesis of appropriate dynamics for (i) and (ii), which implies that the autocorrelation is acting as a ‘proxy’
for the omitted lagged regressors. However, for (vi), an analysis similar to that of (2.13) and (2.14) favours the choice
of the RTE. Now of course, all three reported F tests on the joint significance of the additional variables in the UTE
reject the null hypothesis at the 0.05 level (as before, the corresponding F statistics for (iii)–(v) are insignificant).

Since these results relate to four-period lags, they could be interpreted alternatively

Table 2.6 Autoregressive Least Squares for a Four-Period Lag.

a SE( ) (i) s2 F(j,l) (j,l) b s2 of
UTE

(i) 0.19 (0.21) 1.0 17.1*c 4 0.0 1013 3.0* 5, 23 7.2 740
(ii) 0.44 (0.17) 5.8* 12.8* 2 4.8 717 6.1* 3, 27 6.6 540
(vi) 0.41 (0.19) 5.9* 4.6 2 4.0 6588 3.0* 3, 27 4.4 6222

a As in table 2.4 but applying to (2.11) rather than (2.5).
b Likelihood ratio test of (2.10) against (2.11).
c The asterisk denotes significance at the 0.05 level.
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as implying mis-specified seasonality. As noted above, a stable intercept-shift formulation cannot fully represent an
evolving seasonal pattern, and this could induce fourth-order autocorrelation in the residuals. If we are willing to
assume that such evolution is steady, it can be represented by a set of four seasonal dummies interactive with trend,14
and the postulated model becomes

(2.16)

where x′t = (yt − 1z′t) and the Qit are the usual intercept-shift dummies. For hypotheses of the form (2.11), the preceding
analysis was repeated on (2.16), and the essential results are recorded in table 2.7.

In (i), (ii) and (v), the are significantly different from zero as a group, but this is not the case for (iii), (iv)
and (vi), and so (compare table 2.6) the significance of is neither necessary (v) nor sufficient (vi) for the significance
of the . In (i) and (v), however, the statistics reject the hypothesis of parameter stability, and so (2.16) is not an
appropriate specification for these equations. A strong possibility is that the interactive dummies and the four-period
lagged regressors are proxies; this can be tested by comparing their marginal joint significance in the UTE of (2.16)
derived by assuming ut = ρ4ut − 4 + εt. Since the UTE includes both the Qjtt and (yt − 4, x′t − 4) this is achieved by an F test on
the partial significance of each set of regressors. Doing so, the hypothesis δj = 0 (j = 1, . . . , 4) is rejected only in
equation (ii); conversely the regressors introduced by the transform are not significant in any equation.

Thus since is not significant when estimating (2.16) for Cn, it seems reasonable to conclude that the fourth-order
autocorrelation indicated seasonal misspecification; indeed, is also insignificant so that the interaction dummies have
removed the autocorrelation completely for this equation. On the other hand, for Cd, the more appropriate
formulation seems to involve four-period lagged regressors and level seasonal dummy variables. Finally, for Yd the
specification is not clear cut since if the Qjtt are excluded we observe fourth-order autocorrelation and cannot reject the
autoregressive restriction in favour of omitted four-period

Table 2.7 Ordinary Least Squares and Autoregressive Least Squares for M = 4

Equation (2.16) UTE of (2.16)(m = 4) RTE of (2.16)(m = 4)

F(4, j)a j F ↑ (4,
j)bc

j SE( ) i

(i) 2.9* 27 21.0* 2.4 19 13.9* −0.11 0.22 0.4 16.4* 4 3.9*
(ii) 5.0* 29 5.3 5.2* 23 3.7 −0.07 0.20 0.2 1.1 2 4.6
(iii) 1.0 27 1.7 1.2 19 0.5 −0.39 0.23 4.9* 5.9 4 0.3
(iv) 1.2 28 5.8 2.1 21 6.9* −0.31 0.24 2.6 5.9 3 5.3
(v) 5.9* 28 12.8* 2.7 21 4.1 −0.27 0.21 2.4 3.4 3 10.5*
(vi) 2.6 29 0.7 1.5 23 6.8* 0.03 0.22 0.02 5.2 2 0.8

a F test of the joint significance of the in (2.16) with 4 and j degrees of freedom.
b F test of the joint significance of the in the unrestricted transformed equation derived from (2.16) when allowing for fourth-order

autocorrelation.
c Other notation as in tables 2.4 and 2.6.
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lagged regressors, but if the interactive dummies are included they are insignificant as are both the four-period lag
regressors and . Since the sample size after creating lags is now only 36, the inability to discriminate between such
closely competing hypotheses is hardly surprising. The remaining equations stand as specified. Thus, detailed
investigation of autocorrelation has revealed substantial misspecifications in dynamics and seasonality in the original
structure, but this would obviously require further study should one desire to use some variant of this model for policy
purposes.

7 A ‘Limited Information’ Treatment of Autocorrelation and
Simultaneity

7.1 Autoregressive Instrumental Variable Approach
Since the discussion of section 6 ignores the endogeneity of some of the regressors, it is important to check whether
the conclusions are altered when allowance is made for simultaneity. An analysis parallel to that of the previous section
can be conducted, but using instrumental variables rather than least squares. As the ALS estimates have been
adequately analysed we need only note that, when m = 1, the point estimates are close to those in table 2.2 (matching
the similarity of OLS and ALS), the sole significant again being in (ii) (with the same value as in table 2.4), and when
m = 4 the results differ from those underlying table 2.6 in the way that the original OLS and TSLS estimates differed –
namely, generally smaller coefficients for endogenous variables – but the values of are almost identical.

For hypotheses of the form (2.10), the large number of lagged regressors rendered useless the choice of all
predetermined variables as instruments and hence only the predetermined variables in the relevant UTE plus purely
exogenous variables were used. Nevertheless, the results obtained were similar to those shown in table 2.5, the
estimated autocorrelation coefficients and their standard errors being almost identical. Manifestly, therefore, one would
have drawn equivalent conclusions to those obtained by ALS (though this might reflect an inappropriate choice or
number of instruments). The computational costs of the two estimators are very similar, but the marginal cost of either
set, given the other, is small assuming that one can commence each iterative algorithm at the point to which the other
converged. Stress was placed on the former simply because the testing theory is better known, even though it depends
on the invalid assumption that the regressors are predetermined.

8 Full Information Estimation of Vector Autocorrelation
In a study designed to understand the functioning of the economic system, an investigator would probably update his
specification to incorporate the earlier results before proceeding to ascertain whether they were conditional on the
assumption of zero across-equation autocorrelation. For comparability, the structural specification is being held
constant here, and hence one must interpret the estimates in
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this section as more generalized checks for the forms of mis-specification discussed above but applied to the system as
a whole.

When m = 1,

(2.17)and transforming the system (2.1) to eliminate this autocorrelation yields

(2.18)

where A = (B0, B1, . . . , Bn, C0, . . . , Ck) and xt′ = (yt′, yt − 1′, . . . , yt − n′, zt′, . . . , zt − k′) (which provides an alternative
interpretation of the estimator as a generalization of FIML taking account of the non-linear between-parameter
restrictions). For example, for n = 2 and k = 0 (as with the present model), we obtain the transformed structure

(2.19)

A significant value of R1 will therefore augment the set of reduced form variables by (yt−3, zt−1), alter the weights in the
lag distribution of y = f(z) and, if off-diagonal elements are significant, introduce into an equation lagged values of
variables which are in the system but which were not initially included in the structural formulation of that equation.

A vector generalization of the analysis in (2.4)–(2.7) could be applied to both the structural and the reduced form
stochastic and dynamic specifications (see Hendry, 1971), but since the unrestricted reduced form of (2.19) involves 26
variables and the sample size is 39, this is hardly feasible, and so we concentrate on observing the effects on the
structural parameters of estimating various specializations of (2.2).

For (2.17), the estimates are presented in table 2.8 and are very different from any of those discussed above. The
hypothesis that R1 = 0 is rejected on a likelihood ratio test ( ), four diagonal and three off-diagonal elements
being larger than twice their standard errors.15 This contrasts with the ALS and AIV results where only one equation
exhibits significant first-order autocorrelation, and indicates the danger of relying on these estimators when R1 is non-
diagonal. In effect, what has transpired is a redistribution of ‘explanatory power’ from the equation dynamics to the
error process; if one rearranges the estimates as in (2.19), retaining only those elements of 1Â which are greater than
twice their standard errors for clarity, the resulting equations for Cd and Iv are, for example,16

(2.20)and

(2.21)

Thus (2.20) regenerates a relationship for Cd similar to that found earlier, while (2.21) reveals a slightly more complex
accelerator than initially assumed, plus a
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Table 2.8 Autoregressive Maximum Likelihood

ω2 v2 CORR
(i) 835 729 0.946

(ii)
611 458 0.998

(iii)
1251 1193 0.984

(iv) 1365 1067 0.866

(v) 1685 1080 0.971
(vi) 5966 4827 0.987

a For notation, see table 2.3. The standard errors above and in table 2.9 are not based on the slightly incorrect formulae quoted in Hendry
(1971) but on the correct variant thereof.

b Matrix of standard errors of the elements of 1.

dependence on consumer durable expenditure (similar to that reported by Evans, 1969, ch. 8) and a fall in inventories
(ceteris paribus) in the quarter following a change in the vehicle registration letter.

The χ2 test of parameter stability is significant in the first quarter but not in the second, and like the ALS evidence
suggests that the autocorrelation may represent incorrect dynamic specification.

Such autocorrelation as is present in this model may not be completely accounted
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for by a first-order vector autoregressive process, and so a second-order scheme was estimated.17 The final estimates
are not presented here since the sample size is too small to accord these more than an illustrative status, but 12 2ij were
greater than 0.4, 1 was unaltered apart from the first column which became almost zero, and the estimated structural
coefficients were similar to those in table 2.8.

Finally, the results pertaining to (2.11) suggest estimating its vector equivalent (ut = R4ut−4 + εt), and there are a number
of interesting aspects of these results, which are presented in table 2.9. First, 16 elements of 4 are greater than twice

Table 2.9 Autoregressive Maximum Likelihood (M = 4)a

ω2 v2 CORR
(i) 631 587 0.953

(ii)
562 515 0.997

(iii)
815 907 0.989

(iv)
1299 1008 0.859

(v)
959 617 0.979

(vi)
3441 3079 0.991

a For notation, see table 2.3.
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their standard error and, of the diagonal elements, only 224 is similar to its value in table 2.6. Thus, the earlier analysis
invalidly assumed 4 to be diagonal, which may not vitiate its conclusions (this would depend on the results of applying
equivalent specification tests to the system) but clearly indicates that the findings were not comprehensive. In view of
the discussion in section 6, the result for Yd is interesting and strongly confirms the mis-specification of this ad hoc
equation. Despite the marked degree of autocorrelation, the structural coefficients are similar to the FIML estimates
(unlike the results for m = 1), which perhaps reflects the smaller extent of bias arising from the dependence of yt−1 and
yt−2 on ut−4 compared with ut−1. However, the post-sample parameter stability test rejects the null hypothesis, leaving the
researcher the task of respecifying the dynamics, testing the validity of the new over-identifying restrictions against the
enlarged reduced form, and checking the autocorrelation structure of the re-estimated model.

9 Conclusion
The above results caution against the policy of simply estimating parameters and testing the (all too often
uninteresting) null hypothesis of ‘no relation’. Rather, it seems important to examine every aspect of a model as
thoroughly as possible, since even if interminable revision is not practical, we should know what problems are
untreated rather than just hope that they are absent. This applies to estimating autocorrelation schemes as much as
structural parameters since invalid representation of mis-specified dynamics by an autoregressive process need not
produce improved results.

On the positive side, the single-equation methods (ALS, AIV) at least highlighted the existence of mis-specification and
provided clues to its solution even if they were inherently unable to reveal such problems as cross serial correlation.
Since all the results for tables 2.1, 2.2, 2.4 and 2.6 required 20s of CPU time, the ‘single-equation’ methods seem to
provide value for money. This granted, the prevalence of autocorrelation when the observation period is a quarter or
shorter and our reliance on data to determine lag relationships are strong arguments for automatically estimating them
jointly rather than testing one conditional on dubious assumptions about the other. Certainly, there always exists a
sufficiently stringent test that any model will fail; most of those considered above, however, are hardly in that category,
and they seem to be a reasonable set of requirements that a structure should pass if it is proposed for policy analysis or
control.

Appendix
Cdt Real consumption expenditure on durable goods, valued at market prices
Cnt Real consumption expenditure on all other goods and services, valued at market prices
It Real gross domestic fixed capital formation at market prices
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Ivt Real value of the physical increase in stocks and work in progress at market prices
Mt Real value of imports of goods and services
Gt Real current government expenditure on goods and services at market prices
Ydt Real total personal disposable income
Yt Real gross domestic product at factor cost
Pmt Index of relative import prices
Xt Real value of exports of goods and services at market prices
Tt Real adjustment to factor cost (taxes on expenditure less subsidies)
Nt Dummy variable for the annual vehicle registration letter

All data except Pm and N are in 1958 prices, not seasonally adjusted and cover the period 1957(i)–1967(iv); they were
taken from Economic Trends, October 1968, tables (A), (D) and (J). Two lags were created, and two observations were
retained for the post-sample parameter stability test yielding a standard sample size of 40 − m for an m th-order
autoregressive scheme.

Pm is a spliced index series of import unit values (compiled from various Monthly Digests of Statistics) divided by the
implicit deflator of GDP. Real personal disposal income is derived from the series in current prices by dividing by the
implicit deflator of aggregate consumption at market prices.

The identities in the system are

where

In tables 2.1–2.9, Zj denotes Zt − j as a shorthand.

Finally, the definition of N is as follows:

Notes
1 Relative to (say) data measurement errors, aggregation bias or omitted variable mis-specifications etc., these

problems may not even be the most important.
2 Identities can be incorporated in (2.1) without undue difficulty.
3 The possible combination of autocorrelation and simultaneity without lagged endogenous regressors (n = 0) is not

considered here, given the essentially dynamic nature of the model; for a discussion of techniques, see Amemiya
(1966) and Wickens (1969).

4 A further possibility is to switch to estimation of the reduced form of (2.1) and (2.2) (see Hendry, 1971).
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5 All the programs used in this study are described in Hendry (1970); note that when the underlying specification is
valid, each of the above estimators either is, or is asymptotically equivalent to, a maximum likelihood estimator. For
the iterative methods, the relevant likelihood function was first concentrated with respect to all unrestricted
parameters (which includes the seasonal dummy variables in AML and FIML), and the resultant expression was
maximized directly using a variant of Gauss–Seidel when m = 1 and a routine due to Powell (1965) when m > 1 for
(iii) and (iv), and the routine developed by Powell (1964) in all other cases.

6 Since (2.2) can be reformulated as a set of ‘final’ form relationships in which each ujt is a pth-order autoregression
with a complex moving-average error which has both current and lagged covariances with equivalent errors on
other equations, there is no necessary connection between the integer m in (2.2) and (2.10) unless all Ri are
diagonal.

7 When p = 1, ft can only be interpreted as a ‘forecast error’ if all the regressors are predetermined. This test
deliberately ignores the asymptotically negligible sampling variances of the estimated parameters and hence should
provide a stringent test in finite samples, as seems desirable when testing for possible previous type II errors.

8 This is certainly a crude approximation for what is a very large sector in most macro-models, but given a constraint
on the size of the system feasible here, it seems preferable to the alternative mis-specification of treating Yd as
exogenous. Note that all the lag specifications could also arise from transformed rational approximations to
distributed lag relationships as in Jorgenson (1965).

9 For example, the significant fourth-order autocorrelation found may indicate that the seasonal pattern is more
complex than a time-invariant intercept shift between quarters (see Thomas and Wallis, 1971).

10 Because of AIV (see section 3 above) the set of instruments used for each equation also included all non-
redundant regressors lagged one period.

11 depends on

where and where is the vector of reduced form residuals at time t; the circumflex and tilde
denote unrestricted estimates and restricted estimates respectively. If, instead, one used

where the hi are the average number of unconstrained parameters per equation in the unrestricted and restricted
reduced forms (an approximate correction for degrees of freedom which might be considered), the resulting
statistic unfortunately ceases to be valid, and converges to .

12 Note how the negative autocorrelation implies positive values for the ‘omitted’ variables in (ii).
13 For Cd, although the overall likelihood ratio test (of (2.4) against (2.4) + (2.10)) does not allow rejection of the

hypothesis that ρi = 0 (i = 1, . . . , 4), two are greater than twice their standard errors and is close to this also.
14 This was suggested by one of the referees.
15 These are not corrected for degrees of freedom.
16 These are chosen for having the largest ijl; standard errors of elements of j − 1 j − 1 are not available.
17 This helped to ascertain whether it was feasible to estimate a higher order scheme using the computational

approach developed in Hendry (1971). In total, the problem involved maximizing a non-linear function of 114
parameters, transformed by concentrating the likelihood function to yield an expression which was more complex
but depended
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only on the 18 parameters in (i)–(vi). Although the computational cost was substantially greater than for m = 1 (to
evaluate the likelihood function required about 1/6 s of CPU time on the London University CDC 6600), it
proved possible to estimate such a process.
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3 Testing Dynamic Specication in Small
Simultaneous Systems: An Application to a Model

of Building Society Behaviour in the United
Kingdom3

with Gordon J. Anderson

Preamble
The precedent of a five-year gap between initiation and completion of the previous chapter was slavishly followed for
this one! The study was begun with Gordon Anderson in response to a challenge about the inability of econometrics to
throw any light on the disequilibria induced by capital rationing. The challenge related to the difficulties believed to face
small industrial firms in attracting outside capital financing, but as UK building societies were notorious for their
mortgage rationing and were a well-defined sector with homogeneous and accurately measured data, an analysis of
their behaviour seemed to offer excellent possibilities for success. Pride comes before a fall – it proved exceptionally
difficult to establish unequivocal econometric evidence of rationing in a dynamic context, even though we knew it was
present. Moreover, the model was too complicated to estimate with the existing computer technology.

Nevertheless, compared with chapter 2 a number of econometric methodology issues were significantly clearer to me
by the time the paper was completed.

1 The order of testing must be general to simple, including commencing with the completely unrestricted
reduced form (if that is estimable).

3 Reprinted from Intriligator, M.D. (ed.), Frontiers of Quantitative Economics, vol. IIIA, Amsterdam: North-Holland, 1977, ch. 8C. This is a totally revised version of Hendry
(1975b), incorporating earlier work on capital rationing in building societies by D.F. Hendry and M.J. Webb and also drawing heavily on Anderson (1974). The research
was supported by a grant from the Social Science Research Council to the Econometric Methodology project at the London School of Economics. The paper was
completed while I was visiting at the Cowles Foundation, supported by grants from the National Science Foundation and the Ford Foundation at Yale University. We are
indebted to John Spencer for providing the data from his study with C. St. J. O'Herlihy and to Frank Srba for invaluable help with the computer programming.



2 An acceptable model must be able to explain why other researchers found the results they reported, allowing
both more powerful (predictive) tests of models, and going beyond data corroboration.

3 System autocorrelation could also be interpreted as a ‘convenient simplification’ when certain restrictions were
satisfied, but not in general, although again this was solved only for the first-order case, and a system test for
longer lags versus vector autoregression could be constructed.

The ‘time-series versus econometrics’ debate was at its misguided height, and so the other focus of the paper was an
attempt to defuse this debate by integrating some of the good ideas from both approaches. On the one hand, the long-
run equilibrium of the system was explicitly economic-theoretic and the short-run dynamics were guided by
optimization theory albeit that only one lag was explicitly incorporated. This provided the skeletal framework for the
model. On the other hand, the empirical equations were not to be restricted to the specific lag structure thus derived.
Consequently, the resulting equations were explicitly formulated as growth rates related to levels to embed the time-
series approach (which argued for analysing differenced data only, since levels were non-stationary) in an econometric
system which nevertheless had a levels long-run solution to capture economic theory information.

At that stage, I was convinced that static-equilibrium economic theory was powerful enough to delineate how the non-
stationary levels of economic variables would be related. To quote from the paper, ‘there are ways to achieve
stationarity other than blanket differencing . . . the theory input would appear to be “lost” unless levels variables are
included’. The algebra naturally led to error correction mechanisms (ECMs) where levels disequilibria determined
changes (including non-unit long-run responses). However, it was not until the struggle to resolve the problems of
chapter 8 that I realized both that ECMs were a class of model with importantly different properties from most of the
conventionally used classes (see chapter 4 for an analysis) and that Sargan (1964a) was again the key precursor. Equally,
I was unaware of the important effects which the inherent non-stationarity in the original levels variables entailed for
the distributions of many of the estimators and tests used, especially tests of the validity of the long-run theory. I
merely asserted that (for example) ratios induced stationarity; it was much later that the formal idea of cointegration
was introduced by Clive Granger (see chapter 19 for a brief discussion): this issue will recur in chapters 6 and 7.

Perhaps the most important aspect of the paper was its determined attempts at a constructivist methodology. It argued
that the creation of theory models could be based on integrating long-run economic theory with control-theoretic
dynamic adjustment, even for institutions without the conventional raison d’être of profit maximization. The initial
evaluation of such theory models could occur without direct data implementation by checking whether they correctly
predicted mis-specifications in existing empirical models and rejecting, extending or revising the theory accordingly.
This was the precursor to the notion of encompassing extensively employed in chapter 8 and formalized in chapter 16
(also see Mizon (1984) and Mizon and Richard (1986) for test procedures and Hendry and Richard (1989) for a
survey). Implementation of the empirical analogue of the theory was to be from the ‘least restricted hypothesis to the
most’ (italics in the original) analogous to that recommended by Ted Anderson (1971). That seemed to offer a feasible
constructive data modelling strategy which avoided having dubiously to infer from test rejections how to generalize a
manifestly incorrect model. The issue of where to commence a study in terms of the generality of the initial model was
still assumed to be given by the theory. Moreover, although Grayham Mizon presented his paper on specification
versus mis-specification testing at the same World Congress, we did not seriously investigate diagnostic testing of the
initial system to ensure that later inferences would be based on a valid starting point.

TESTING DYNAMIC SPECIFICATION IN SYSTEMS 53



The actual estimates of the model did not appear until much later (as Anderson and Hendry, 1984) since I was diverted
into analysing many of the methodological issues highlighted by the following study, and testing their efficacy in other
areas.

The key problem that remained (although I would not have verbalized it as such at the time) was how to discover
useful empirical relationships if the economic theory was not essentially perfect. I had completely discarded the hope
of omniscience and, because of the issues of identification and simultaneity and an increasing worry about the
unrealism of autoregressive error representations, I returned to a detailed study of one equation from my chapter 2
model, namely the consumption function. This digression from analysing systems to focus on single equations was to
last almost a decade, and all the empirical studies in part II are of individual equations. A clearer understanding of how
to model systems, other than as groups of separately modelled single equations, only emerged (for me) in the late
1980s and is reported in Hendry et al. (1988) for stationary processes and in Hendry and Mizon (1991) for integrated
data series. Nevertheless, the intent throughout was to develop better procedures for modelling systems, and the
methods that have resulted are the product of intensive analysis of single-equation models and the consequent
evolution of a general framework.

1 Introduction
The literature on estimating economic models from time-series data has revealed a considerable state of ferment in
recent years. Conventional econometric approaches have been sharply questioned (see, for example, Granger and
Newbold, 1974) and the forecasting ability of systems estimated by such methods has been criticized (see Cooper,
1972). Conversely, the main alternatives advocated, namely fitting autoregressive integrated moving average (ARIMA)
equations (see Box and Jenkins, 1976) or the closely related ‘control-theoretic’ methods (see Astrom, 1970) are far
from having unqualified support from practitioners (see Chatfield and Prothero, 1973; Wall and Westcott, 1974). As
argued by the last authors and by Nerlove (1972), a crucial function is left to the ‘mutually supportive roles of theory
and measurement’.

The criteria which determine the selection of an ARIMA representation are roughly as follows: maximize the
likelihood of the model transformed to be stationary and invertible, basing the initial specification on autocorrelation
analysis of the data such that the chosen form is the most parsimonious without violating diagnostic checks on the
residuals being ‘white noise’. For a multiple input process, considerable judgement is required.

These criteria are basically sensible but minimal. Slight problems are that some economic variables are not well
represented by ARIMA models (e.g. tax rates) and that there are ways to achieve stationarity other than blanket
differencing. More importantly, emphasizing single-output models distracts attention from the joint dependence of
economic variables and, by allowing almost no weight to theory or prior information accrued from other studies,
including relevant variables, signs and magnitudes of parameters, orders of lags etc., exacerbates the difficulty of using
short data series. Indeed, by placing all the initial emphasis on the (albeit important) dynamics–autocorrelation
interaction it may underplay the multivariate aspect which remains of primary concern to the economist. On the other
hand, initially examining
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only the multivariate relationship is equally unhelpful and it seems imperative to consider both ab initio (see chapter 2
and Zellner and Plam, 1974). Even then it is essential that the analysis be conducted in the context of an appropriate
economic theory.

Unfortunately, although interdependence and dynamics have been accorded equal importance in general theoretical
analysis (see, for example, Hicks, 1939), the latter has not been successfully developed for operational use. Economic
theories remain for the most part of the long-run equilibrium–comparative statics variety and their practical value has
been queried (see Nerlove, 1972). Also, since this is precisely the component which differencing (to achieve
stationarity) will remove, the theory input would appear to be ‘lost’ unless levels variables are included.

Nevertheless, this paper is an attempt to integrate a ‘long-run equilibrium’ theory of the behaviour of building societies
with a short-run control-theoretic model of their dynamic disequilibrium adjustment deliberately designed such that
the equilibrium solution of the latter reproduces the former. The theory also suggests which data transformations may
be useful (e.g. differencing, ratios etc.). While simple, it is based on established institutional evidence and Hendry
(1975b) has shown that it includes three other extant models of building societies as special cases.

Finally, a sequential procedure for statistically testing the dynamics, autocorrelation and economic theory restrictions is
developed, and we jointly apply these to the model of O'Herlihy and Spencer (1972) to investigate whether the
economic theory predicts any mis-specifications of variables or dynamics, whether the statistical approach reveals any
in practice (their system was estimated by two-stage least squares) and, if so, how closely these coincide with our
anticipations from the theory.

2 Building Societies
These non-profit-making co-operative institutions (denoted BSs) dominate the UK mortgage market with their 70 per
cent share, and they also hold 25 per cent of private financial assets. Most are members of the Building Societies
Association, and they meet monthly to agree on mortgage and deposit interest rates, acting essentially as a cartel by
quoting (for the most part) homogeneous figures. Mortgages have a standard life of 20–25 years, while deposits can be
withdrawn on demand. Changes in either interest rate affect the complete stock immediately. Since the availability and
price of mortgages have been important politically, BSs have been subjected to considerable indirect government
pressure and/or help at various times. Revell (1973) provides an excellent discussion of their structure and functioning.

Clayton et al. (1974) investigated the objectives that BSs claim to set for themselves, Ghosh and Parkin (1972) and
Ghosh (1974) considered their portfolio and debt behaviour, O'Herlihy and Spencer (1972) built a formal econometric
model of their behaviour and estimated the existence and extent of credit rationing, the London Business School
model of the UK economy contains a submodel of BS behaviour (see Renton, 1975, ch. 1) and Riley (1974) has
developed a model for the Treasury based on time-series analysis methods (see Astrom, 1970). As discussed
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in Hendry (1975b), none of these studies is fully satisfactory, although all aid our understanding in different respects.

Since BSs constitute a homogeneous sector, problems of aggregation and measurement errors are likely to be of
relatively less importance than usual. Conversely, the credit rationing for which these institutions are well known is a
serious additional complication, as it seems to be chronic (rather than a transient ‘switching of regimes’ type) and
endogenous to the system. Thus there may be no observations on the demand for mortgages schedule, which need
not preclude estimating the effects of changes in demand but does rule out using the conventional market clearing
equation to close the system for observability. Further, as BSs act as a group, the equally conventional Walrasian’
equation of prices adjusting in response to excess demand is not valid either. Clearly ‘chronic’ rationing entails an ability
to control both price and quantity (although ‘transient’ rationing could be a slowly evolving disequilibrium). As an
operational criterion we use the following: if an increase in the mortgage interest rate induces a non-decrease in
advances, ceteris paribus, then rationing was previously present.

The lack of identification of mortgage demand was solved by O'Herlihy and Spencer using ‘prior’ subjective
information (primarily based on newspaper reports) formulated in dummy variables to proxy ‘mild’, D(1), and ‘strict’,
D(2), rationing (see figure 3.1). Criticisms of this approach are its subjective nature, that it implies constant absolute
magnitude effects of rationing, that the dummies are really endogenous and are not an ‘explanation’ of rationing, hence
being difficult to use for forecasting, and that the method is highly specific to the BS sector. Our ‘guideline’ theory
suggests that rationing is potentially present due to the inherent nature of how BSs make their decisions. Specifically,
rationing seems to be generated by the efforts of BSs to reconcile conflicting objectives rather than to achieve a sole
target such as profit maximization (compare Ghosh, 1974). To model this we adopt a ‘managerial’ type of theory based
on the optimization of an objective function comprising several goals and subject to several (cost) constraints on the
variability of the instruments to attain the targets. This is an explicitly dynamic ‘control theory’

Figure 3.1 Mortgage interest rate rm versus mortgage lending M: Md, demand for mortgages perceived by building
societies.
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approach, but it only partly circumvents the awkward dilemma of postulating ‘desired’ variables separately determined
outside of the optimization framework (see Theil, 1964).

We do not consider the overall portfolio allocation problem, however (see, for example, Ghosh and Parkin, 1972), but
treat other assets as a single entity. A simple linear expository model of their long-run behaviour can be developed as
follows.
2.1 Capital Account

(3.1)

where the symbols denote respectively assets, liquid assets, other assets, mortgages, deposits, reserves and liabilities. We
postulate that BSs plan to re-lend a constant proportion θ1 of deposits as mortgages (this being their primary function
as co-operative institutions):

(3.2)We also postulate that BSs hold a constant proportion θ2 of their assets in liquid form,

(3.3)accept all deposits offered,

(3.4)maintain a constant ratio θ3 of reserves to assets,

(3.5)and, in equilibrium, they realize their plans. From equations (3.1)–(3.5) we have

(3.6)and

(3.7)Finally, the private sector's equations for mortgage demand and deposit supply are

(3.8)

(3.9)

where y is disposable income; rm, rd and rc are pre-tax mortgage, deposit and competitive interest rates; PH and P are
price indices for housing and all goods; and
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T is the tax rate. BSs pay tax on interest earnings for depositors at a rate which differs slightly from the standard tax
rate and they generally quote after-tax deposit interest rates: r = rd(1 − T).

2.2 Current Account

(3.10)

where E = θ5A are management expenses (the inclusion of overheads does not materially affect the analysis) and S is
the ‘surplus’ planned to equilibrate the reserve ratio. Dividing by A and rearranging:

(3.11)

where θ6 = 1/(θ3 − 1) < 0. Let Kt = (R/A)t. Then, if At ≈ (1 + g)At − 1 (say), S/A = Kt − [1/(1 + g)]Kt − 1 (zero
in stationary equilibrium), and if BSs do plan to have Kt = θ3 then, for given g, rc, Kt − 1 and θi, equation (3.11) determines
rd as a function of rm (the ‘mark-up’) or vice versa on renormalizing on rm. Note that Δ (S/A)t = − [1/(1 + g)]Δ Kt − 1 if Kt
= θ3.

This analysis leaves (for example) rm to be determined, and, in the absence of a profit maximization motive, some other
objective function must be postulated. The crucial point is that, if BSs do not equilibrate Ms and Md, then, as a near
monopoly which believes in keeping interest rates low (or is ordered to do so by the government), which does not seek
to maximize S, and which plans to achieve its balance sheet goals, they will ration credit to control both price and
quantity. Two extreme possibilities are (i) that the government dictates rm on political grounds or (ii) that

Figure 3.2 Behaviour of the theoretical model.
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BSs do equilibrate Ms and Md and so choose rm as the implicit solution of

(3.12)

Either way, given rm, equation (3.11) determines rd, equation (3.9) gives D, equation (3.2) givesM and so on. The system
allows one to establish most of the anticipated comparative statics results for changes in y, rc, T etc. when equation
(3.12) operates. Figure 3.2 summarizes the behaviour of the model for an arbitrarily given low value rm, and fixed y, rc,
PH, P, T. By abstracting from the dynamics we have implicitly taken

where ND and NA are net deposits and net advances respectively and

(3.13)

where the symbols denote respectively gross deposits, withdrawals, gross advances and principal repayments. Out of
stationary equilibrium, to obtain

(3.14)

the four components in equation (3.13) must be modelled. Note, however, that in equilibrium

(3.15)

if the mortgage life is n years.

In disequilibrium, rm and GA will not be constant and there will be premature terminations as well as routine
repayments.

Given this ‘long-run’ framework we can formulate the objective function of BSs and introduce dynamics at the same
time. As argued above, their prime objective is to achieve the long-run aim of re-lending a relatively constant fraction
of their expected total deposits t as mortgages, but now t ≠ Dt because of the stochastic nature of cash flows,
unforeseen changes in y, rc etc. At the same time they pay some attention to satisfying ‘reasonable’ mortgage
applications and maintaining their long-run reserve ratio while attaching adjustment costs to changes in their
instruments (if only to avoid ‘bang-bang’ control). Four other objectives or costs which do not affect the formal
specification of the control rules but do alter the precise parameterization are as follows: maximizing the growth rate
of assets, minimizing lending rates, adjusting faster the more they are out of equilibrium, and equilibrating interest rate
differentials with the money market.

To facilitate comparison with existing models we take the objective function to be quadratic in the variables and to be
one period only. This is because BSs do act as if they were myopic, but introducing a time horizon t* > 1 in the
objective function (equation (3.16) below) ‘simply’ creates leads in the analysis and first-period certainty equivalence
applies (see Hay and Holt, 1975). However, the control is also equivalent to ignoring terminal conditions and the
stability properties of this model are well known. The objective function of the model can be summarized as follows.
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1 We measure the ‘disutility’ of ‘disequilibrium’ by (Mt − θ1 t)2, even though such costs are probably asymmetric
away from equilibrium.

2 Since and , we take the disutility of not supplying the required volume of
housing finance to be , thus assuming chronic rationing.

3 To achieve the desired reserve ratio requires the appropriate surplus, and, if θ5 is constant, to model the BSs
making marginal adjustments rather than re-evaluating the entire basis of the mark-up each period we
include α2[Δ rmt − (1/θ1)Δ rdt + θ4θ7 Δ rct − θ7Δ (S/A)t]2, on normalizing with respect to rm in equation (3.11), with
θ7 = 1/θ1 (1 − θ3). This term could also be interpreted as a cost of adjusting the differential.

4 Inertia to avoid high frequency oscillations in NAt and rdt seems desirable, but there are adjustment costs in any
event arising from processing costs and destabilizing influences on the housing market for the former and
administrative costs (perhaps less so with computers) and the creation of uncertainty for depositors concerning
the latter. Thus we include λ1(Δ NAt)2 + λ2(Δ rdt)2.

The objective function which results to determine BS behaviour is

(3.16)

where θ8 = θ7/(1 + g), and BSs seek to minimize this by choice of NAt, rmt and rdt. Completely independent empirical
support exists for formulating a myopic objective function (in which t* denotes six months) with conflicting aims and
emphasizing the goals of stable flows of funds; reserves in line with assets: re-lending the maximum, subject to
achieving the desired liquidity ratio; attempting to satisfy the demand for housing finance; and not maximizing profits.
This support is provided by Clayton et al. (1974), who conducted a questionnaire survey of how the Building Societies
Association perceived the role of BSs in the housing market; they reached the conclusions noted in the previous
sentence.

While ct is not ‘homogeneous’ in its arguments and it would be preferable to deflateM, D and NA byA (say), we retain
equation (3.16) for simplicity, with t* = 1. Minimizing ct with respect to NAt, rmt and rdt yields the basic system equations
(3.25), (3.27) and (3.28), closed by equations (3.23), (3.26) and (3.29)–(3.32), as follows.

(3.17)

(3.18)
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(3.19)The εit represent optimization errors, but must also include any mis-specifications. Further

(3.20)

(3.21)and

(3.22)where

(3.23)

and β2(B) is a polynomial in the lag operator B. Note that equation (3.23) includes both ‘rational’ expectations and
ARIMA models as special cases depending on what values the BSs use for the βj. We obtain from these and equation
(3.17)

(3.24)or

(3.25)

As required, in equilibrium equation (3.25) reproduces equation (3.2). From equation (3.16) we have 0 < λ1, λ2, α1, α2

< 1 if the first objective is the major one, and hence
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From equation (3.18), and assuming (possibly with additional lags) that equation (3.8) is approximated by

(3.26)where denotes the rate of inflation, we obtain (neglecting variations in Tt)

(3.27)Finally, from equations (3.19) and (3.23), and using equation (3.27) to eliminate Δ rmt,

(3.28)

Using equations (3.22) and (3.23) for t, Δ rdt depends positively on Δ rct and negatively on Mt − 1 − θ1Dt − 1. Note that all
three control equations depend on the excess demand for mortgages. To close the system, an equation is required for
Ds, which need not be equation (3.23) as the BSs could be using an incorrect model. To allow for different lag
responses between deposits and withdrawals, we use

(3.29)with and , so that . Thus,

(3.30)

A similar equation is postulated for WDt except that the signs of the coefficients will be reversed compared with
equation (3.30), although the net effect (for NDt) remains as for the γi. Finally, empirically

Equivalently we have

(3.31)

where PRt is composed of routine repayments and premature terminations. If monthly payments are held constant an
increase in rmt will reduce PRt, but for recently effected loans this effect will operate even if the length of life of the
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mortgage is held constant. Increased income and/or house prices will probably increase premature repayments. Thus,
allowing for equation (3.15) and, with linearity, to explain changes in PRt we propose (subject to additional lags)

(3.32)
In equilibrium this reproduces equation (3.15). As argued in Hendry (1975b), dimensional analysis, homoscedasticity
and stationarity all argue for logarithmic or ratio forms for all of these equations; we keep linearity, however, for
comparison with O'Herlihy and Spencer.

Table 3.1 Single-Equation Estimates

(a) Original model, as reproduceda (see O'Herlihy and Spencer, 1972)
(1) (s = 18.0)

(2) (s = 11.5)

(3) (s = 17.3)

(4) (s = 3.9)

(5) (s = 0.18)

(6) (s = 0.10)

(b) Reformulated model (see Anderson, 1974)

(1)
(s = 18.2)

(2) (s = 9.6)

(4)
(s = 3.9)

(5) (s = 0.17)

(6)
(s = 0.09)

a Less four observations for forecasts. The sample size was 54 and s denotes the equation standard error. See table 3.3 for the complete set of
definitions. An asterisk denotes that seasonal dummy variables were included but are not reported. Instrumental variables estimation was
used where required. No respecification improving equation (3.3) was obtained, and ρ1 denotes the first-order autoregressive error
parameter.
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Table 3.2 Forecast Errorsa

GD/P WD/P GA/PH PR rm r
A B C A B C A B C A B C A B C A B C

19-
69(-
ii)

20 −14 −19 19 12 14 16 16 17 16 11 13 −0.-
40

−0.-
25

−0.-
23

0.39 0.36 0.37

19-
69(-
iii)

−15 −20 −38 38 26 18 3 3 3 8 2 4 −0.-
31

−0.-
27

−0.-
30

−0.-
04

−0.-
03

0.03

19-
69(-
iv)

2 −6 −8 22 4 16 −17 −17 −15 7 0 1 −0.-
03

0.01 −0.-
02

−0.-
13

−0.-
18

−0.-
12

19-
70(-
i)

20 14 13 16 8 −5 1 1 4 1 7 5 −0.-
24

−0.-
18

−0.-
10

−0.-
04

−0.-
17

−0.-
01

A, 3.2 19.1*b 1.6 23.4* 9.4 18.6*

B, 2.5 9.9 1.6 12.3* 5.7 20.4*

C, 6.4 9.6 1.6 18.0* 4.8 16.8*

a A, O'Herlihy and Spencer; B, Anderson (1974); C, O'Herlihy and Spencer re-estimated allowing for .
b The asterisk denotes significance at the 0.05 level.
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3 The Model of O'herlihy and Spencer
The formulation of the model of O'Herlihy and Spencer is shown in table 3.1(a) (see table 3.2 for four one-period
ahead forecasts). The gross deposits equation is similar to equation (3.9), as is that for withdrawals (compare equation
(3.23)), and the principal repayments equation is (very roughly) Δ PRt = φ1 Δ GAt. Given

Table 3.3 Definitionsa

Variable Definition Source
GDt Gross increase in shares and deposits outstanding, net of interest credited to

accounts during period t
Financial Statistics

WDt Withdrawals of shares during period t Financial Statistics
PRt Repayments of mortgage principal during period t Financial Statistics
NAt Net advances of principal during period t Financial Statistics
rmt Average rate of interest charged on new mortgages during period t Financial Statistics
rt Average rate of interest offered, post tax, on deposits during period t (= rdt (1 −

Tt))
Financial Statistics

NDt GDt + interest credited to accounts - WDt Financial Statistics
LQt Liquidity ratio × 100 where the liquidity ratio is cash and ‘non-mortgage’

investments as a fraction of total assets at the end of period t
Financial Statistics

rbt Average rate of interest paid on bank deposits withdrawable at seven days' notice,
during period t

Financial Statistics

rlt Average rate of interest paid by local authorities on short-term loans during period
t

Financial Statistics

Tt Standard rate of income tax expressed as a percentage payable during period t Inland Revenue
yt Personal disposable income in current money terms Digest of Statistics
Pt General index of retail prices Digest of Statistics
PHt Index of new house prices Digest of Statistics

Liquidity and reserves constructions O'Herlihy and
Spencer

GAt NAt + PRt O'Herlihy and
Spencer

Dt Deposit and shares total at end of period t Financial Statistics
Mt Mortgage total outstanding at the end of period t Financial Statistics
Q1, Q2, Q3 Seasonal dummy variables Construction
D(1),
D(2)

Mild and severe rationing dummy variables O'Herlihy and
Spencer

a The following is taken from Financial Statistics, notes, April 1972, with reference to building societies:
(1) Statistics are based on returns from a sample of about 85 societies with assets amounting to 90 per cent of total

building society assets: all societies exceeding $50 million, are included, two-fifths of societies with assets of $10
million to $50 million, and one-thirteenth of societies with assets of less than $10 million. Each year figures are
reconciled with statutory returns made to the Registrar of Friendly Societies by all building societies.

(2) Pre-1965 statistics are based on annual and quarterly samples smaller than the sample size now used
(33 societies), together with annual statistics of the Registrar.
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equations (3.31) and (3.15) we can expect very considerable simultaneity between these, and this expectation is
supported by the extremely large coefficient on GAt.

The gross advances equation can be interpreted as equation (3.24) with (see figure 3.1),
and withMt − 1 − θ1Dt − 1 omitted. Note that if this last term is reformulated in a stationary way as (M/D)t − 1

− θ1 then this is approximately equal to {[1 − θ1 (1 − θ3)] − LQt − 1}/(1 − θ3). Here LQ = (A − M)/A, which will be
highly correlated with the form chosen by O'Herlihy and Spencer, namely

(3.33)

as the denominator is always positive. Both the mortgage and deposit interest rate equations are formulated in levels:
the former is made a geometric distributed lag of r and so equation (3.27) predicts a number of omitted variables while
the latter depends negatively on (see the previous sentence) and on (a transform of Kt similar to L0) such that the
dependent variable could easily be made Δ rt (compare equation (3.28)). Given these theoretical predictions of mis-
specification, we next develop a statistical theory for testing the formulation of the system.

4 Statistical Testing of Dynamic Specication in Small Simultaneous
Systems
The determination of an appropriate lag structure in dynamic models is still primarily treated as an empirical matter,
generally resolved by experimenting with a set of lagged regressors using a relevant estimator (e.g. ordinary or two-
stage least squares). This can yield very misleading results in view of the well-known lagged dependent variable-
autocorrelated error bias, especially in simultaneous equations systems (see Hendry, 1975a). However, an econometric
approach which explicitly recognizes the interaction between the equation dynamics and the stochastic specification
was developed by Sargan (1964a) and can be generalized as follows.

Consider a model given by (for l ≥ 1 chosen a priori: e.g. l = 1 or l = 4)

(3.34)where , with restricted reduced form

(3.35)

where and . The transformed reduced form (eliminating the
autocorrelation) is

(3.36)Equivalently, we have an unrestricted version of equation (3.35):

(3.37)

where , and its transformation
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(3.38)Finally, we could ignore the autoregressive restriction in equation (3.38):

(3.39)

where are all the non-redundant regressors in . Comparing equation (3.37) with equation (3.39) indicates that
the variables omitted from the former are being approximated by a first-order vector
autoregressive process of lag l in ξt. This approximation will, of course, be valid if equation (3.37) is the true model, in
which case estimating equation (3.39) will be inefficient. The converse does not hold, and there are many situations in
which mis-specified dynamics cannot be well approximated by error autocorrelation, hence producing inconsistent
estimates in equation (3.37). However, in the first situation, the likelihood values of equations (3.37) and (3.39) should
be similar, whereas in the second, that for equation (3.39) should be ‘considerably’ larger than the likelihood for
equation (3.37). Obviously, if l = 1, Q5 ≡ 0.

This observation leads to a sequential testing procedure for the various restrictions (see, for example, Anderson, 1971,
ch. 6.4). The symbol Lη denotes the loglikelihood value when the error on the equation is η. The chosen order of
testing is such that each hypothesis is investigated without conditioning on untested assumptions about a further
hypothesis to be investigated, i.e. from the least restricted hypothesis to the most. Despite this apparently very natural
approach, most empirical work appears to proceed in the opposite direction and, indeed, investigators generally
conduct tests only within equation (3.34) and for l = 1 and F either zero or diagonal (the latter being required for
autoregressive instrumental variables (AIV) to be valid). Appropriate technology does exist, however, for conducting
the required tests (see Hendry, 1971), and it is not too expensive (see Hendry and Tremayne, 1976). Our sequence is as
follows.

Ha: the autoregressive restriction on equation (3.38) is valid. If this is true then

(3.40)for m regressors in , where m* = m if l = 1, and m* = m + n if l > 1.
If Ha is rejected then the system requires dynamic respecification (go to Hd).
If Ha is not rejected proceed to test Hb.

Hb: G = 0 in equation (3.38). If this is true then

(3.41)

for n equations. If Hb is rejected use ‘autoregressive’ estimators; otherwise use ‘white noise’ estimators. Next we have

Hc:
(i.e. ). If this is true then either

(3.42)
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if Hb was rejected or

(3.43)

if Hb was not rejected, for N over-identifying restrictions. (Before proceeding from Hb to Hc one could also test
whether G was diagonal: Ha and Hb assumed it unrestricted. If the diagonality refers to F, it could be tested after Hc.) If
Hc is rejected then the over-identifying restrictions are invalid and the exclusion restrictions in equation (3.34) require
modification (or the underlying theory is false). Finally, if Ha is rejected one could attempt to respecify the dynamics by
testing

This last test is intended to denote testing rows and/or columns of the matrices for significance, and it could
be based on appropriate modifications of the methods proposed in multivariate analysis (see, for example, Anderson,
1958, ch. 8). For the usual sample sizes and numbers of reduced form regressors in econometrics, some ‘degrees of
freedom’ adjustments seem appropriate and those used below are of the form

(3.44)

where and (for example)

(3.45)

for with K = K1 + K2 regressors in equation (3.39), K1 = n + k, K2 = n + m* and k exogenous
variables, so that K3 = 2n + k.

Generalizing the analysis for longer lags in yt in the initial formulation is straightforward; doing so for higher orders of
autocorrelation is not, however, as it raises potential non-nesting problems. However, even if l = 1 and n is small (3–6
say) the ARIMA representations derived from equation (3.39) will have very high order lags (in the empirical analysis
we chose l = 1 since initially guessing lags which are slightly too short seems a reasonably likely mistake).

Conversely, specializing the analysis to individual equations using the autoregressive error generalization of limited
information maximum likelihood, or its asymptotic equivalent of AIV, yields the approach developed by Sargan
(1964a). Since this special case has already proved useful in revealing dynamic mis-specifications in empirical research
(see, for example, chapter 2) and is not expensive computationally, we first re-estimated the O'Herlihy and Spencer
model by AIV to test (for each equation separately) the validity of the autoregressive restriction (Ha for a structural
equation), the significance of the autoregressive parameter (Hb for n = 1) and also the implicit hypothesis of zero
residual autocorrelation of higher order (see Pierce, 1971). Taking account of this information we produced a revised
system with no residual autocorrelations other than, where required, a valid first-order autoregressive error. The results
for this revised system are reported in table 3.1(b). The respecification brings the system closer to our theoretical form
and improves its forecasting performance (other than r), but the forecast tests indicate that significant mis-
specifications remain (see table 3.2). However, just
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re-estimating the original equations by AIV with a fourth-order autoregressive error (compare Wallis, 1972a) produced
an equivalent improvement in the forecast accuracy as shown in table 3.2. We conclude that while there is some benefit
in using AIV and its related tests, relative to two-stage least squares, to yield consistent estimates, all these individual
equation estimators rely on the validity of the untested hypotheses that F is diagonal and that both Ha and Hc are valid.
The importance of this is that we cannot really a priori expect these hypotheses to hold and hence we are making the
‘maintained’ hypothesis have less prior plausibility than many of the ‘null’ hypotheses that we are seeking to test –
anticipating rejection.

Even when all these implicit hypotheses are valid, AIV remains inefficient asymptotically compared with full
information estimation (note the results in Rothenberg, 1973, ch. 5). Both arguments emphasize the potential
advantages of estimating and testing the system as a whole, and, although 54 observations is hardly a large sample for a
six-equation model, it seems worth examining the practical value of the various tests applied to the original O'Herlihy
and Spencer specification.

The non-linearity relating GA and GA/PH precludes a direct application of our analysis to their model, but if we
revise it slightly (and quite reasonably) to use PR/PH instead of PR, so that all values are in real terms, then the model
does become linear. The results for the various test statistics are shown in table 3.4. (Equation (3.42) is adjusted using
K1 = 4 + 6 + [22/6], K2 = K − K1 = 9.) Two points of note are that the small sample size means that the degrees of
freedom (df) adjustment has a major impact on equation (3.45) and that the validity of the over-identifying restrictions
is clearly rejected (Hc), even if the results for Ha and Hb are equivocal.

Apart from the equation for PR, the restricted reduced form of the original model can be obtained by solution, while
the unrestricted reduced form can be estimated directly. We have also done this subject to a different (but similar)
approximation from that used for table 3.4, namely, making PR depend on (GA/PH)t − 1 instead of on GAt − 1 in the
reduced form. These unrestricted and solved reduced form estimates (ignoring PRt in the latter and GAt − 1 in both) are
presented in table 3.5, and there are a number of major differences between them. Most importantly, in the
unrestricted form the rationing dummies are not significant in GA/PH, but they are in GD/ P, while is significant in
GA/PH. Thus the dummies appear to represent unexpected downward shifts in the supply of deposits, and if the
supply of advances is not formulated as a ‘processing’ equation the dummies naturally proxy a fall in advances. This
result conforms closely with the theory in section 2. It should be noted (when interpreting the remaining coefficients)
that rmt − 1 and rt − 1 are very

Table 3.4 Asymptotic χ2 Statistic Values

Equation Unadjusted Adjusted df
3.40 76 48
3.41 75 36
3.42 204 122 56
3.45 151 41 84
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Table 3.5 Unrestricted Reduced Form Estimatesa

D(1) D(2) Tt rbt (y/P)t (D/P)t
− 1

(GD/
P)t − 1

(GA/
PH)t − 1

PRt − 1 rmt − 1 rt − 1

(GD/
P)*

−19.0 −26.0 45.0 −16.0 0.06 0.08 −21.0 −30.0 0.29 −0.26 −0.71 −15.0 −35.0

(2.4)*b (2.6)* (3.7)* (4.0)* (4.0)* (3.9)* (1.5) (3.5)* (2.2)* (1.6) (1.3) (1.5) (1.5)
(WD/
P)*

2.0 1.0 −15.0 8.0 −0.05 0.07 2.5 18.0 0.06 −0.13 0.59 −7.0 8.0

(0.4) (0.2) (1.9) (3.5)* (5.5)* (5.3)* (0.3) (3.3)* (0.8) (1.4) (1.8) (1.1) (0.5)
(GA/
PH)*

7.0 −3.0 −5.0 −2.0 0.02 −0.01 45.0 7.6 0.42 0.39 −0.18 −0.7 −16.0

(1.2) (0.5) (0.6) (0.5) (1.4) (0.4) (4.3)* (1.1) (4.2)* (3.2)* (0.4) (0.1) (0.9)
PR* 3.0 1.0 −9.0 −0.8 −0.0-

02
0.01 −3.8 1.4 0.18 0.08 0.29 2.1 2.6

(1.3) (0.4) (2.5)* (0.7) (0.4) (1.0) (0.9) (0.6) (4.6)* (1.8) (1.9)* (0.7) (0.4)
−14.0 −12.0 4.0 2.4 0.04 0.04 −17.0 −15.0 −0.2 0.04 −1.2 30.0 64.0
(1.6) (1.0) (0.3) (0.6) (2.4)* (1.5) (1.1) (1.6) (1.6) (0.2) (2.0)* (2.5)* (2.6)*

100r* −6.0 8.0 0.2 2.8 −0.0-
03

0.04 −16.0 −5.0 −0.04 −0.13 −0.55 9.4 40.0

(1.1) (1.1) (0.3) (1.2) (0.3) (3.2)* (1.7) (1.0) (0.4) (1.3) (1.6) (1.5) (2.8)*
a The s values (adjusted for degrees of freedom) are 15.3, 9.4, 11.9, 4.5, 0.16, 0.09 (t values in parentheses).
b The asterisk on the t value denotes significance at the 0.05 level.

Table 3.6 Solved Reduced Form Estimatesa

D(1) D(2) Tt rbt (y/P)t (D/P)t
− 1

(GD/
P)t − 1

(GA/
PH)t − 1

PRt − 1 rmt − 1 rt − 1

(GD/
P)*

44 −10 0.06 −6.0 −2.0 0.62 35

(WD/
P)*

−9 9 −0.05 0.07 4.0 1.0 −21

(GA/
PH)*

−16 −29 0.02 0.72

100rm −16 −6 35 92
100r −16 −6 93
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collinear, but many of the other coefficients in common between the two reduced forms have markedly similar values.

5 Conclusion
The statistical tests of the various implicit hypotheses (and such hypotheses are often made in time-series studies)
revealed a number of mis-specifications in the BS model we have examined. The new estimates suggest appropriate
ways of revising the formulation of the model and, despite the ‘pre-test’ problems in doing this (see, for example, Bock
et al., 1973), we believe its justification is considerably enhanced by the existence of independent predictions from a
theoretical analysis that such mis-specifications would indeed occur.

Further, corroborating the predictions endows the theory with some credibility. However, to estimate our own model
efficiently requires a relatively complicated computer program generalizing the method in Hendry (1971) to systems
with non-linear cross-equation restrictions on the parameters. This program has now been developed, and we intend
to report our results from it at a later date.
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4 Dynamic Specication4

with Adrian R. Pagan and J. Denis Sargan

Preamble
Despite the anachronism, the book seemed to need a forward look based on hindsight. This chapter written jointly
with Adrian Pagan and Denis Sargan for The Handbook of Econometrics serves that purpose. It is the fruit of several
SSRC-financed research programmes at the LSE, developments at CORE and related research at the Australian
National University. It offers a route map in terms of an exposition of dynamic specification, a typology of simple
dynamic models, an introduction to many of the concepts analysed below and a brief overview of the methodological
framework. Chapters 16 and 17 offer more formal analyses of the concepts and framework respectively but require a
great deal more knowledge of econometric theory and the background ideas. As noted above, chapter 18 also tries to
exposit the ideas from a different angle, namely in terms of an applied example, and chapter 19 reviews the approach.

This chapter evolved out of a number of diverse yet related strands. Denis Sargan had completed the formalization of
his COMFAC procedure for single equations and its generalization to systems. Grayham Mizon and I had completed
two studies of COMFAC and its relation to dynamic specification and error correction (chapters 6 and 7). Adrian
Pagan and I had written a survey of the distributed lag literature during his visit to CORE. The typology of models had
evolved as a convenient teaching tool for my econometrics lectures at LSE. Jean-François Richard had formulated the
concept of weak exogeneity and together with Rob Engle we were seeking to explore its implications (chapter 15).
Jean-François and I had also made considerable progress in clarifying the conceptual basis of the methodology
(chapters 16 and 17), originally written as chapters for a monograph on Dynamic Econometrics (which is still in progress!).
And I had carried out numerous empirical studies (chapters 6–11), which firmly demolished most of my previously
held views on how to do empirical research.

4 Reprinted from Griliches, Z. and Intriligator, M. D. (eds), Handbook of Econometrics, vol. II, Amsterdam: Elsevier, 1984, ch. 18. We are grateful to Jean-François Richard for
his helpful advice, and to James Davidson, Rob Engle, Clive Granger, Andrew Harvey, Svend Hylleberg and Timo Teräsvirta for comments on an earlier draft. Financial
support from the Social Science Research Council to the Programme in Methodology, Inference and Modelling at the London School of Economics and from the Centre for
Operations Research and Econometrics at the Catholic University of Louvain-la-Neuve is gratefully acknowledged.



The attempt to write this chapter forced us to try and integrate the disparate strands into a coherent whole.

I cannot tell what my co-authors learned from or thought about the attempt, nor is it possible in retrospect to decide
which papers prompted the most important reappraisal of my views. Nevertheless, from the group of papers in which
I was involved (being written between 1978 and 1982) I realized at last what the essential difficulty was with my earlier
empirical studies: the equation or model to be estimated was obtained from a theoretical derivation and was made
stochastic by adding on an appropriately behaved ‘error term’. The distributions of the dependent variables were then
derived from those of the error terms and that generated the likelihood function for estimation, inference, etc. It all
seemed coherent. Implicitly, however, it still assumed omniscience. In a theory framework, the model obtained is a
function of the assumptions made and as such is freely created by its proprietor. In an empirical framework, the data
are given, and so the distributions of the dependent variables are already fixed by what the data generation process
created them to be— I knew that from Monte Carlo. But I kept missing the obvious point until Jean-François drove it
home during my CORE visit: the consequence of given data and a given theory model is that the error is the derived
component, and one cannot make ‘separate’ assumptions about its properties. My model derivations were in essence
back to front, and I had to reverse the process and obtain the error's distribution from that of the data distributions in
empirical modelling (for a detailed exposition, see Hendry, 1987).

The present chapter is a half-way house down that road. Some sections embody the data → error route and others the
error → data route. The former induces notions of model design, reparameterizations etc., and the latter induces
notions of mis-specification, model revision and so on. Thus, as a route map it is more analogous to a sixteenth-
century map of the New World than a twentieth-century map of the Americas. Nevertheless, it is intended to be a
guide to what at the time were new explorations, and so I hope it helps to that end.

Now a brief guide to the chapter and its relation to later chapters.

Section 1 is closely related to (and based on) the more extensive discussion in chapter 8 as to why dynamic
specification poses such awkward issues when the ‘correct’ model is not known a priori.

Section 2.1 then explains the analysis of exogeneity, developed more fully in chapter 15, and the overall model
reduction framework, described in detail in chapter 17. Next, section 2.2 summarizes chapter 13, part 1. Sections
2.3–2.5 are not covered elsewhere in this volume and offer a general discussion of the problems involved in dynamic
specification. They include consideration of the economic theoretic basis for alternative models, and the interpretability
of dynamic equations. The typology of single-equation dynamic models in section 2.6 builds on a preliminary idea
initially advanced in chapter 8, and first published in chapter 17 (but omitted from that chapter in this reprint in view
of its inclusion here). The typology seeks to clarify the properties of the many different model types which occur in the
later chapters and in empirical work generally. It reveals that the results obtained on fitting a given model type are
highly dependent on the type selected. Only by estimating unrestricted dynamic models can one ascertain the extent to
which results are an artefact of the type used. This reinforces the arguments in Sims (1972a, 1974a). In particular, the
discussions about model types (b), (c) and (g) are useful for chapters 6 and 7, and those about (f) and (h) for chapters
8–11. Chapter 19 updates the typology.

Section 4 provides a more extensive discussion of error correction models, which arose in chapter 3 (without being so
named therein) and will play a major part in the later empirical studies. Finally, section 5 develops the generalization of
the approach to systems of equations. For reasons of space, most of section 3 and all of section 5 of the original have
been omitted here; they respectively analysed finite distributed lags and the dynamic-stochastic
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specification interaction based on the type (g) model. The interested reader is referred to the original for further details,
noting that The Handbook of Econometrics is certainly not the least accessible publication form I have used!

1 Introduction
Dynamic specification denotes the problem of appropriately matching the lag reactions of a postulated theoretical
model to the autocorrelation structure of the associated observed time-series data. As such, the issue is inseparable
from that of stochastic specification if the finally chosen model is to have a purely random error process as its basic
‘innovation’, and throughout this chapter dynamic and stochastic specification will be treated together. In many
empirical studies, most other econometric ‘difficulties’ are present jointly with those of dynamic specification but to
make progress they will be assumed absent for much of the discussion.

A number of surveys of dynamic models and distributed lags already exist (see, inter alia, Griliches, 1967; Wallis, 1969;
Nerlove, 1972; Sims, 1974a; Maddala, 1977; Thomas, 1977; Zellner, 1979a), while Dhrymes (1971) treats the
probability theory underlying many of the proposed estimators. Nevertheless, the subject matter has advanced rapidly
and offers an opportunity for critically examining the main themes and integrating previously disparate developments.
However, we do not consider in detail: (a) Bayesian methods (see Drèze and Richard (1984) for background and
Guthrie (1976), Mouchart and Orsi (1976) and Richard (1977) for recent studies); (b) frequency domain approaches
(see, in particular, Sims, 1974a; Engle, 1976; Espasa, 1977; Granger and Watson, 1984); nor (c) theoretical work on
adjustment costs as discussed, for example, by Nerlove (1972). Although theories of intertemporal optimizing
behaviour by economic agents are continuing to develop, this aspect of the specification problem is not stressed below
since, following several of the earlier surveys, we consider that as yet economic theory provides relatively little prior
information about lag structures. As a slight caricature, economic-theory based models require strong ceteris paribus
assumptions (which need not be applicable to the relevant data generation process) and take the form of inclusion
information such as y = f(z) where z is a vector on which y is claimed to depend. While knowledge that z may be
relevant is obviously valuable, it is usually unclear whether z may in practice be treated as ‘exogenous’ and whether
other variables are irrelevant or are simply assumed constant for analytical convenience (yet these distinctions are
important for empirical modelling).

By way of contrast, statistical-theory based models begin by considering the joint density of the observables and seek
to characterize the processes whereby the data were generated. Thus, the focus is on means of simplifying the analysis
to allow valid inference from submodels. Throughout the chapter we shall maintain this distinction between the
(unknown) data generation process and the econometric model postulated to characterize it, viewing ‘modelling’ as an
attempt to match the two. Consequently, both aspects of economic and statistical theory require simultaneous
development. All possible observables cannot be considered from the outset, so that economic theory restrictions on
the analysis are essential; and while
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the data are the result of economic behaviour, the actual statistical properties of the observables corresponding to y
and z are also obviously relevant to correctly analysing their empirical relationship. In a nutshell, measurement without
theory is as valueless as the converse is non-operational.1 Given the paucity of dynamic theory and the small sample
sizes at present available for most time series of interest, as against the manifest complexity of the data processes, all
sources of information have to be utilized.

Any attempt to resolve the issue of dynamic specification first involves developing the relevant concepts, models and
methods, i.e. the deductive aspect of statistical analysis, prior to formulating inference techniques. In an effort to
reduce confusion we have deliberately restricted the analysis to a particular class of stationary models, considered only
likelihood-based statistical methods and developed a typology for interpreting and interrelating dynamic equations.
Many of our assumptions undoubtedly could be greatly weakened without altering, for example, asymptotic
distributions, but the resulting generality does not seem worth the cost in complexity for present purposes. In a
number of cases, however, we comment parenthetically on the problems arising when a subset of parameters changes.
Nevertheless, it is difficult to offer a framework which is at once simple and unambiguous and encompasses a
comprehensive range of phenomena yet allows ‘economic theory’ to play a substantive role without begging questions
as to the validity of that ‘theory’, the very testing of which may be a primary objective of the analysis.

Prior to the formal analysis it seems useful to illustrate by means of a relatively simple example why dynamic
specification raises such difficult practical problems. Consider a consumption-income (C−Y) relationship for quarterly
data given by

(4.1)

where Δ4xt = xt − xt − 4, ln is logarithm to the base e, εt is assumed to be white noise and is ‘normal’ income such that

(4.2)The unrestricted distributed lag relationship between ln Ct and ln Yt has the form

(4.3)When δ′ = (0, 0.5, 0.25, −0.2) (but this is unknown) (4.3) has coefficients

(4.4)
Under appropriate conditions on Yt, estimation of the unknown value of δ (or of δ0, α, β) is straightforward, and so
this aspect will not be emphasized below. However, the formulation in (4.1)–(4.4) hides many difficulties experienced
in practice and the various sections of this chapter tackle these as follows.

Firstly, (4.1) is a single relationship between two series (Ct, Yt) and, at best, is
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only a part of the data generation process (denoted DGP). Furthermore, the validity of the representation depends on
the properties of Yt. Thus, section 2.1 investigates conditional submodels, their derivation from the DGP, the
formulation of the DGP itself, and the resulting behaviour of {εt} (whose properties cannot be arbitrarily chosen at
convenience since, by construction, εt contains everything not otherwise explicitly in the equation). To establish
notation and approach, estimation, inference and diagnostic testing are briefly discussed in section 2.2, and are
followed in section 2.3 by a more detailed analysis of the interpretation of equations like (4.1). However, dynamic
models have many representations which are equivalent when no tight specification of the properties of {εt} is available
(section 2.4) and this compounds the difficulty of selecting equations from data when important features (such as m in
(4.3), say) are not known a priori. Nevertheless, the class of models needing consideration sometimes can be delimited
on the basis of theoretical arguments and section 2.5 discusses this aspect. For example, (4.1) describes a
relatively simple situation in which agents make annual decisions, marginally adjusting expenditure as a short
distributed lag of changes in ‘normal’ income and a ‘disequilibrium’ feedback to ensure a constant static equilibrium
ratio of C to Y (or Yn). This model constrains the values in (4.3) to satisfy 1 − Σ αi = Σ βi (inter alia) although
appropriate converse reformulations of (4.3) as in (4.1) are rarely provided by economic theory alone.

Since (4.3) has a complicated pattern of lagged responses (with 11 non-zero coefficients in (4.4)) unrestricted
estimation is inefficient and may yield very imprecise estimates of the underlying coefficients (especially if m is also
estimated from the data). Consequently, the properties of restricted dynamic models representing economic data series
are important in guiding parsimonious yet useful characterizations of the DGP and section 2.6 offers a typology of
many commonly used choices. For example, (4.1) is an ‘error correction’ model (see also section 4.2) and, as shown in
(4.4), negative effects of lagged Y and C may be correctly signed if interpreted as arising from ‘differences’ in (4.1).
Note, also, that long lags in (4.3) (e.g. m = 7) need not entail slow reactions in (4.1) (e.g. from (4.4) the median lag of Yn

on Ct is one quarter). The typology attempts to bring coherence to a disparate and voluminous literature.

This is also used as a framework for structuring the more detailed analyses of finite distributed lag models in section 3
(not included here) and other dynamic formulations in section 4 (which include partial adjustment models, rational
distributed lags and error correction mechanisms). Moreover, the typology encompasses an important class of error
autocorrelation processes (due to common factors in the lag polynomials), clarifying the dynamic-stochastic link and
leading naturally to an investigation of stochastic specification in the original section 5 (not included here).

While the bulk of the chapter relates to one-equation submodels to clarify the issues involved, the results are viewed in
the context of the general DGP and so form an integral component of system dynamic specification. However,
multidimensionality also introduces new issues and these are considered in section 5 of this chapter (originally
section 6) together with the generalized concepts and models pertinent to systems or submodels thereof.

Since the chapter is already long, we do not focus explicitly on the role of expectations
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in determining dynamic reactions. Thus, on one interpretation, our analysis applies to derived equations which, if
expectations are important, confound the various sources of lags (see Sargent, 1981). An alternative interpretation is
that by emphasizing the econometric aspects of time-series modelling, the analysis applies howsoever the model is
obtained and seeks to be relatively neutral as to the economic theory content (see, for example, chapter 16).

2 Data Generation Processes

2.1 Conditional Models
Let xt denote a vector of n observable random variables, the matrix of initial conditions, where
and . For a sample of size T, let be the joint data density function where θ ∈ *Θ is an
identifiable vector of unknown parameters in the interior of a finite-dimensional parameter space Θ. Throughout, the
analysis is conducted conditionally on θ and , and the likelihood function is denoted by . The joint data
density is sequentially factorized into

(4.5)

It is assumed that the conditional density functions in (4.5) have the common functional form

(4.6)

where is an ‘innovation’ and, by construction,

so that

Implicitly, we are ignoring important issues of aggregation (over agents, space, time, goods etc.) and marginalization
(with respect to all other variables than those in ) by assuming that (4.5) is an adequate statistical representation for a
DGP. Hopefully, this conflation of the concepts of DGP and model, due to deliberate exclusion of other difficulties,
will not prove confusing. Concerning the economic behaviour determining , we suppose economic agents to form
contingent plans based on limited information (see Bentzel and Hansen, 1955; Richard, 1980). Such plans define
behavioural relationships which could correspond to optimizing behaviour given expectations about likely future events,
allow for adaptive responses and/or include mechanisms for correcting previous mistakes. To express these in terms
of xt will require marginalizing with respect to all unobservables. Thus, assuming linearity (after suitable data
transformations) and a fixed finite lag length (m) yields the model
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(4.7)

In (4.7) the value of m is usually unknown but in practice must be small relative to T. The corresponding ‘structural’
representation is given by

(4.8)

with εt = Bυt and , where B and are well-defined functions of θ and B is of rank n∀ θ ∈ Θ (strictly, the
model need not be complete in that (4.6) need only comprise g ≤ n equations to be well defined: see Richard, 1979).

From (4.5)–(4.8), εt ∼ IN (0, * Σ) where but, as will be seen below, this class of processes does not thereby
exclude autocorrelated error representations. Also, while not considered below, the model could be generalized to
include, for example, autoregressive conditional heteroscedasticity (Engle, 1982a).

Direct estimation of {πi} is generally infeasible (see, however, section 5.3 and Sargent and Sims, 1977) and in any case
still involves important assumptions concerning parameter constancy, the choices of n and m and the constituent
components of . Generally, econometricians have been more interested in conditional submodels suggested by
economic theory and hence we partition into and factorize the data densities and likelihood
function correspondingly as

where (φ1, φ2) is an appropriate reparameterization of θ, and

(4.9)

Certain parameters, denoted ψ, will be of interest in any given application because of either their ‘invariance’ to
particular interventions or their relevance to policy or to testing hypotheses suggested by the associated theory etc. If ψ
is a function of φ1 alone, and φ1 and φ2 are variation free, then zt is weakly exogenous for ψ and fully efficient inference is
possible from the partial likelihood (see Koopmans, 1950a; Florens and Mouchart, 1980a; Richard, 1980;
Geweke, 1984; and chapter 15). Thus, the model for zt does not have to be specified, making the analysis more robust,
more comprehensible and less costly, and hence facilitating model selection when the precise specification of (4.8) is
not given a priori. Indeed, the practice whereby is specified in most econometric analyses generally involves many
implicit weak exogeneity assertions and often proceeds by specifying the conditional model alone, leaving to be
whatever is required to ‘complete’ in (4.9). That ψ can be estimated efficiently from analysing only the
conditional submodel does not entail that zt is predetermined in

(4.10)

(using an obvious notation for the partition of B and ), but merely that the
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model for zt does not require joint estimation with (4.10).

If, in addition to being weakly exogenous for ψ , the following holds for zt,

(4.11)

so that lagged ys are uninformative about zt given , and hence y does not Granger-cause z (see Granger, 1969;
Sims, 1977a; Geweke, 1984), then zt is said to be strongly exogenous for ψ. Note that the initial choice of xt in effect
required an assertion of strong exogeneity of xt for the parameters of other potentially relevant (economic) variables.
Also, as shown in section 2.6, case (g), if (4.11) does not hold, so that y does Granger-cause z, then care is required in
analysing model formulations which have autocorrelated errors since z will also Granger-cause such errors.

The remainder of this chapter focuses on dynamic specification in models like (4.10) since these encompass many of
the equation forms and systems (with a ‘linearity in variables' caveat) occurring in empirical research. For example, the
system

(4.8*)
where

with m* + r* = m, can be re-expressed as (4.8) with non-linear relationships between the parameters. However, unique
factorization of the {πi} into requires further restrictions on such as block diagonality and/or
strong exogeneity information (see Sargan, 1961; and section 5.1).

2.2 Estimation, Inference and Diagnostic Testing
Since specific techniques of estimation, inference and diagnostic testing will not be emphasized below (for a discussion
of many estimation methods, see Dhrymes, 1971; Zellner, 1979a; and chapter 17) a brief overview seems useful. At a
slight risk of confusion with the lag operator notation introduced below, we denote loge of the relevant partial
likelihood from (4.9) by2

(4.12)In (4.12), ψ is considered as an argument of L(·), when zt is weakly exogenous and (4.8) is the DGP. Let

(4.13)

The general high dimensionality of ψ forces summarization in terms of maximum likelihood estimators (denoted
MLEs), or appropriate approximations thereto, and under suitable regularity conditions (most of which are satisfied
here granted
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(4.6))—see, for example, Crowder (1976)—MLEs will be ‘well behaved’. In particular if the roots of

(4.14)

(a polynomial in g of order no greater than nm) are all outside the unit circle, then when is the MLE of ψ

(4.15)

where , and is positive definite. Note that is given by (with negative definite) and
numerical techniques for computing are discussed in Dent (1980) and in Quandt (1984). Phillips (1980) reviews
much of the literature on exact and approximate finite sample distributions of relevant estimators. If (4.8) is not the
DGP, a more complicated expression for is required although asymptotic normality still generally results (see, for
example, Domowitz and White, 1982).

Note that can be used as an estimator generating equation for most of the models in the class defined by
(4.10) when not all elements of ψ are of equal interest (see Hausman, 1975; and chapter 13).

To test hypotheses of the general form , where has continuous first derivatives at ψ and imposes r
restrictions on ψ = (ψ1 . . . ψk)′, three principles can be used (see Engle, 1984), namely: (a) a Wald test, denoted W (see
Wald, 1943); (b) the maximized likelihood ratio, LR (see, for example, Cox and Hinkley, 1974, ch. 9); and (c) the
Lagrange multiplier, LM (see Aitchison and Silvey, 1960; Breusch and Pagan, 1980; Engle, 1982b). Since (a) and (c) are
computable under respectively the maintained and the null hypotheses alone, they are relatively more useful as their
associated parameter sets are more easily estimated. Also, whereas (b) requires estimation of both restricted and
unrestricted models, this is anyway often necessary given the outcome of either the W or LM tests. Because of their
relationship to the unrestricted and restricted versions of a model, W and LM tests frequently relate respectively to tests
of specification and mis-specification (see Mizon, 1977b), i.e. within and outside initial working hypotheses. Thus (see
Sargan, 1980a) W forms apply to common factor tests, whereas LM forms are useful as diagnostic checks for residual
autocorrelation. Nevertheless, both require specification of the ‘maintained’ model.

Formally, when (4.8) is the DGP, and , with , where . Then
we have the following.

1 From (4.15), on

(4.16)
where . Let and denote evaluation at ; then on H0

(4.17)
Furthermore if Wa and Wb are two such Wald criteria based upon two sets of
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constraints such that those for Wa are obtained by adding constraints to those characterizing , then

(4.18)
Such an approach adapts well to commencing from a fairly unconstrained model and testing a sequence of
nested restrictions of the form , where ri > ri − 1 and rejecting entails rejecting

. This occurs, for example, in a ‘contracting search’ (see Leamer, 1984), and hence W is useful in
testing dynamic specification (see Anderson, 1971, p. 42; Mizon, 1977a; Sargan, 1980a).

2 Let denote the MLE of subject to ; then

(4.19)3 Since is obtained from the Lagrangian expression

(4.20)then, when H0 is true,

(4.21)and hence the test is also known as the ‘efficient score’ test (see Rao, 1973).

Note that , where , the converses not holding. Also (4.17), (4.19) and (4.21) show the three tests to be
asymptotically equivalent both under H0 and under the sequence of local alternatives (for constant δ).
All three tests are non-central with non-centrality parameter and are therefore consistent against any fixed
alternative (i.e. T−1/2δ constant).3 As yet, little is known about their various finite sample properties (but see Berndt and
Savin, 1977; Evans and Savin, 1982; and chapter 7).

It must be stressed that rejecting H0 by any of the tests provides evidence only against the validity of the restrictions
and does not necessarily ‘support’ the alternative against which the test might originally have been derived. Also,
careful consideration of significance levels is required when sequences of tests are used. Finally, generalizations of
some of the test forms are feasible to allow for (4.8) not being the DGP (see Domowitz and White, 1982).

2.3 Interpreting Conditional Models
For simplicity of exposition and to highlight some well-known but important issues we consider a single-equation
variant of (4.10) with only one lag, namely

(4.22)

There are (at least) four distinct interpretations of (4.22) as follows (see, for example, Wold, 1959; Richard, 1980).

1 Equation (4.22) is a regression equation with parameters defined by

(4.23)
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where so that and . When (4.23) holds, β = (β1β′2)′ minimizes the variance
of e.
Whether β is or is not of interest depends on its relationship to and the properties of zt (e.g. β is clearly of
interest if is a function of β and zt is weakly exogenous for β).

2 Equation (4.22) is a linear least-squares approximation to some dynamic relationship linking y and z, chosen on the
criterion that et is purely random and uncorrelated with . The usefulness of such approximations depends
partly on the objectives of the study (e.g. short-term forecasting) and partly on the properties of the actual
DGP (e.g. the degree of non-linearity in y = f(z), and the extent of joint dependence of yt and zt): see White
(1980a).

3 Equation (4.22) is a structural relationship (see, for example, Marschak, 1953) in that β is a constant with respect
to changes in the data process of zt (at least for the relevant sample period) and the equation is basic in the sense
of Bentzel and Hansen (1955). Then (4.22) directly characterizes how agents form plans in terms of
observables and consequently β is of interest. In economics such equations would be conceived as deriving
from autonomous behavioural relations with structurally invariant parameters (see Frisch, 1938; Haavelmo, 1944;
Hurwicz, 1962; Sims, 1977a). The last interpretation is the following.

4 Equation (4.22) is derived from the behavioural relationship

(4.24)

If

(4.25)

then et is the composite: et = ε1t − γ1 ε2t so that in general and depends on γ1.

More generally, if is a non-constant function of need not be structurally invariant, and if incorrect weak
exogeneity assumptions are made about zt, then estimates of γ need not be constant when the data process of zt alters.

That the four ‘interpretations’ are distinct is easily seen by considering a data density with a non-linear regression
function ((1) ≠ (2)) which does not coincide with a non-linear behavioural plan ((1) ≠ (4), (2) ≠ (4)) in which the
presence of inextricably combines and , thereby losing structurality for all changes in (i.e. (3) does
not occur). Nevertheless, in stationary linear models with normally distributed errors, the four cases ‘look alike’.

Of course, structural invariance is only interesting in a non-constant world and entails that, in practice, the four cases
will behave differently if changes. Moreover, even if there exists some structural relationship linking y and z, failing
to specify the model thereof in such a way that its coefficients and are variation free can induce a loss of
structurality in the estimated equation to interventions affecting . This point is important in dynamic specification as
demonstrated in the following section.
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2.4 The Status of an Equation
Any given dynamic model can be written in a large number of equivalent forms when no tight specification is provided
for the error term. The following example illustrates the issues involved.

Suppose there existed a well-articulated, dynamic but non-stochastic economic theory (of a supply-demand form)
embodied in the model

(4.26)

(4.27)

where Qt, Pt, It and Ct are quantity, price, income and cost, respectively, but the properties of vit are not easily pre-
specified given the lack of a method for relating decision time periods to observation intervals (see Bergstrom (1984) for
a discussion of continuous-time estimation and discrete approximations). It is assumed below that (Ct, It) is weakly, but
not strongly, exogenous for {αi}, and that (4.26) and (4.27) do in fact correspond ‘reasonably’ to basic structural
behavioural relationships, in the sense just discussed.

First, consider (4.26); eliminating lagged Qs yields an alternative dynamic relation linking Q to I and P in a distributed
lag:

(4.28)where . Alternatively, eliminating Pt from (4.26) using (4.27) yields the reduced form

(4.29)

which in turn has a distributed lag representation like (4.28) but including {Ct − j | j ≥ 0} and excluding Pt. Further,
(4.27) can be used to eliminate all values of Pt − j from equations determining Qt to yield

(4.30)transformable to the distributed lag

(4.31)

(where the expressions for bji as functions of αk are complicated), which is similar to (4.28) but with {Ct − i} in place of
{Pt − i}.

Manifestly, the error processes of the various transformations usually will have quite different autocorrelation
properties and we have
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Almost all of these errors are likely to be autocorrelated, with correlograms that may not be easy to characterize simply
and adequately, emphasizing the link of dynamic to stochastic specification.

In the illustration, all the ‘distributed lag’ representations are solved versions of (4.26) + (4.27) and if estimated
unrestrictedly (but after truncating the lag length!) would produce very inefficient estimates (and hence inefficient
forecasts etc.). Consequently, before estimating any postulated formulation, it seems important to have some cogent
justifications for it, albeit informal ones in the present state of the art: simply asserting a given equation and ‘treating
symptoms of residual auto-correlation’ need not produce a useful model.

Indeed, the situation in practice is far worse than that sketched above because of two additional factors: mis-
specification and approximation. By the former is meant the possibility (certainty?) that important influences on yt have
been excluded in defining the model and that such variables are not independent of the included variables. By the latter
is meant the converse of the analysis from (4.26) + (4.27) to (4.31), namely that theory postulates a general lag
relationship between Qt and its determinants It, Ct as in (4.31) (say), and to reduce the number of parameters in b3i and
b4i various restrictions are imposed. Of course, a similar analysis applies to all forms derived from (4.27) with Pt as the
regressand. Moreover, ‘combinations’ of any of the derived equations might be postulated by an investigator. For an
early discussion, see Haavelmo (1944).

For example, consider the case where Ct is omitted from the analysis of (4.26) + (4.27) when a ‘good’ time-series
description of Ct is given by

(4.32)

where di(L) are polynomials in the lag operator L, Lkxt = xt − k and ζt is ‘white noise’, independent of Q, P and I.
Eliminating Ct from the analysis now generates a different succession of lag relationships corresponding to
(4.28)–(4.31). In turn, each of these can be ‘adequately’ approximated by other lag models, especially if full allowance is
made for residual autocorrelation. Nevertheless, should the stochastic properties of the DGP of any ‘exogenous’
variable change (such as Ct in (4.32)), equations based on eliminating that variable will manifest a ‘structural change’
even if the initial structural model (4.26) + (4.27) is unaltered. For this reason, the issue of the validity of alternative
approximations to lag forms assumes a central role in modelling dynamic processes. A variety of possible
approximations are discussed in section 3 of the original paper and, in an attempt to provide a framework, section 2.6
outlines a typology of single-equation dynamic models. First, we note a few quasi-theoretical interpretations for
distributed lag models.

2.5 Quasi-Theoretical Bases for Dynamic Models
First, equations with lagged dependent variables arise naturally in situations where there are types of adjustment costs
like transactions costs, search costs, optimization costs etc. and/or where agents react only slowly to changes in their
environment
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owing to habit, inertia or lags in perceiving changes and so on. Thus economic agents may attach monetary or utility
costs to instantaneous alteration of instruments to achieve plans fully. Even when there are no adjustment costs, slow
reactions are likely because of the uncertainty engendered by the future and the lack of perfect capital and futures
markets. Although formal modelling of such costs is still badly developed–Nerlove (1972) and Sims (1974a) provide
references and discussion–it appears that what optimal rules there are prove to be extraordinarily complex and, given
the fact that only aggregates are observed, such theory would seem to be only a weak source of prior information. In
fact it is not impossible that distributed lags between aggregate variables reflect the distribution of agents through the
population. For example, if agents react with fixed time delays but the distribution of the length of time delays across
agents is geometric, the aggregate lag distribution observed will be of the Koyck form. In the same way that
Houthakker (1956) derived an aggregate Cobb–Douglas production function from individual units with fixed
capital–labour ratios, some insight might be obtained for the format of aggregate distributed lags from similar
exercises (see, for example, Trivedi, 1982).

However, it seems likely that many agents use simple adaptive decision rules rather than optimal ones although, as Day
(1967) and Ginsburgh and Waelbroeck (1976) have shown, these have the capability of solving quite complex
optimization problems. A further example of the potential role of these adaptive ‘rules of thumb’ arises from the
monetarists' contention that disequilibria in money balances provide signals to agents that their expenditure plans are
out of equilibrium (e.g. Jonson, 1976) and that simple rules based on these signals may be adopted as the costs are low
and information value high. Stock-flow links also tend to generate models with lagged dependent variables.

In any case, state-variable feedback solutions of optimization problems often have alternative representations in terms
of servomechanisms of a form familiar to control engineers, and it has been argued that simple control rules of the
type discussed by Phillips (1954, 1957) may be more robust to mis-specification of the objective function and/or the
underlying economic process (see Salmon and Young, 1978; Salmon, 1979a). For quadratic cost functions, linear
decision rules result and can be expressed in terms of proportional, derivative and integral control mechanisms. This
approach can be used for deriving dynamic econometric equations (see, for example, chapter 3), an issue discussed
more extensively below. Since such adaptive rules seem likely solutions of many decision problems (see, for example,
Marschak, 1953) lagged dependent variables will commonly occur in economic relationships. Thus, one should not
automatically interpret (say) ‘rational lag’ models such as (4.26) as approximations to ‘distributed lag’ models like
(4.28); often the latter will be the solved form, and it makes a great deal of difference to the structurality of the
relationship and the properties of the error term whether an equation is a solved variant or a direct representation.

Next, finite distributed lags also arise naturally in some situations such as order-delivery relationships, or from
aggregation over agents etc. and often some knowledge is available about properties of the lag coefficients (such as
their sum being unity or about the ‘smoothness’ of the distribution graph). An important distinction in this context is
between imposing restrictions on the model, such that
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(say) only steady-state behaviour is constrained, and imposing restrictions on the data (i.e. constraints binding at all
points in time). This issue is discussed at greater length in chapter 8 and noted again in section 2.6, case (h).

Thirdly, unobservable expectations about future outcomes are frequently modelled as depending on past information
about variables included in the model, whose current values influence yt. Eliminating such expectations also generates
more or less complicated distributed lags which can be approximated in various ways although, as noted in section 2.3,
case (4), changes in the processes generating the expectations can involve a loss of structurality (see, for example,
Lucas, 1976). Indeed, this problem occurs on omitting observables also, and although the conventional interpretation
is that estimates suffer from ‘omitted variables bias’ we prefer to consider omissions in terms of eliminating (the
orthogonalized component of) the corresponding variable with associated transformations induced on the original
parameters. If all the data processes are stationary, elimination would seem to be of little consequence other than
necessitating a reinterpretation of coefficients, but this does not apply if the processes are subject to intervention.

Finally, observed variables often are treated as being composed of ‘systematic’ and ‘error’ components in which case a
lag polynomial of the form can be interpreted as a ‘filter’ such that represents a systematic
component of zt and is the error component. If yt responds to according to some theory, but the {di} are
unknown, then a finite distributed lag would be a natural formulation to estimate (see, for example, Godley and
Nordhaus (1972) and Sargan (1980b) for an application to models of full-cost pricing). Conversely, other models assert
that yt only respond to wt (see, for example, Barro, 1978) and hence restrict the coefficients of zt and to be of equal
magnitude, opposite sign.

As should be clear from the earlier discussion but merits emphasis, any decomposition of an observable into (say)
‘systematic’ and ‘white noise’ components depends on the choice of information set: white noise on one information
set can be predictable using another. For example

(4.33)

is white noise if each of the independent νjt − j is, but is predictable apart from γ0ν0t using linear combinations of lagged
variables corresponding to the {νjt − j}. Thus, there is an inherent lack of uniqueness in using white noise residuals as a
criterion for data coherency, although non-random residuals do indicate data ‘incoherency’ (see Granger (1983) and
chapter 10 for a more extensive discussion). In practice, it is possible to estimate all the relationships derivable from
the postulated DGP and check for mutual consistency through mis-specification analyses of parameter values, residual
autocorrelation, error variances and parameter constancy (see chapter 8). This notion is similar in principle to that
underlying ‘non-nested’ tests (see Pesaran and Deaton, 1978) whereby a correct model should be capable of predicting
the residual variance of an incorrect model and any failure to do this demonstrates that the first model is not the DGP
(see, for example, Bean, 1981). Thus, ability to account for previous empirical findings is a more demanding criterion
of model selection than simply having ‘data coherency’: i.e. greater power

86 ROOTS AND ROUTE MAPS



is achieved by adopting a more general information set than simply lagged values of variables already in the equation
(for a more extensive discussion, see chapter 16).

Moreover, as has been well known for many years,4 testing for predictive failure when data correlations alter is a strong
test of a model since in modern terminology (excluding chance offsetting biases) it indirectly but jointly tests
structurality, weak exogeneity and appropriate marginalization (which includes thereby both dynamic and stochastic
aspects of specification). A well-tested model with white noise residuals and constant parameters (over various
subsamples), which encompasses previous empirical results and is consonant with a pre-specified economic theory
seems to offer a useful approximation to the DGP.

2.6 A Typology of Single Dynamic Equations
In single-equation form, models like (4.22) from the class defined in (4.6) and (4.7) are called autoregressive distributed
lag (AD) equations and have the general expression

(4.34)

where di(L) is a polynomial in L of degree mi. Thus, (4.34) can be denoted AD(m0, m1, . . . , mk) although information on
zero coefficients in the di(L) is lost thereby. The class has {ε1t} white noise by definition and so not all possible data
processes can be described parsimoniously by a member of the AD(·) class; for example, moving-average errors
(which lead to a ‘more general’ class called ARMAX–see section 4) are formally excluded but, as discussed below, this
raises no real issues of principle. In particular, AD(1, 1) is given by

(4.35)

which for present purposes is assumed to be a structural behavioural relationship wherein zt is weakly exogenous for
the parameter of interest β′ = (β1β2β3), with the error ε1t ∼ IN(0, σ11). Since all models have an error variance, (4.35) is
referred to for convenience as a three-parameter model. Although it is a very restrictive equation, rather surprisingly
AD(1, 1) actually encompasses schematic representatives of nine distinct types of dynamic model as further special
cases. This provides a convenient pedagogical framework for analysing the properties of most of the important
dynamic equations used in empirical research, highlighting their respective strengths and weaknesses, and thereby, we
hope, bringing some coherence to a diverse and voluminous literature.

Table 4.1 summarizes the various kinds of model subsumed by AD(1, 1). Each model is only briefly discussed; cases
(a)–(d) are accorded more space in this section since cases (f), (h) and (i) are considered in greater detail in section 4
(cases (e) and (g) are considered in sections 3 and 5 respectively of the original paper).

The nine models describe very different lag shapes and long-run responses of y to x, have different advantages and
drawbacks as descriptions of economic time series, are differentially affected by various mis-specifications and prompt
generalizations which induce different research avenues and strategies. Clearly (a)–(d) are
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Table 4.1 Model Typology

Type of model Equation Restrictions on (4.35) Generalization

(a) Static regression (4.36) yt = β1zt + et β2 = β3 = 0 yt = ∑ β1jzj, t + et

(b) Univariate time series (4.37) yt = β3yt − 1 + et β1 = β2 = 0 yt = ∑ β3jyt − j − 1 + et

(c) Differenced data/
growth rate

(4.38) Δ yt = β1 Δ zt + et β3 = 1, β2 = −β1 Δ yt = ∑ β1j Δ zj,t + ∑ β3jΔ yt
− j − 1 + et

(d) Leading indicator (4.39) yt = β2zt − 1 + et β1 = β3 = 0 yt = ∑ ∑ β2jkzj;t − k − 1 + et

(e) Distributed lag (4.40) yt = β1zt + β2zt − 1 + et β3 = 0 yt = ∑ ∑ β1jkzj,t − k + et

(f) Partial adjustment (4.41) yt = β1zt + β3yt − 1 + et β2 = 0 yt = ∑ β1jzj,t + ∑ β3jyt − j − 1 + et
(g) Common factor (au-
toregressive error) (4.42)

β2 = − β1β3

(h) Error correction (4.43) Δ yt = β1 Δ zt + (1 −
β3) (z − y)t − 1 + et

∑ βi = 1

(i) Reduced form/dead
start

(4.44) yt = β2zt − 1 + β3yt − 1 +
et

β1 = 0 yt = ∑ ∑ β2jkzj, t − k − 1 + ∑ β3jyt
− j − 1 + et
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one-parameter models whereas (e)–(i) are two-parameter models and, on the assumptions stated above, all but (g) are
estimable by ordinary least squares (OLS) (whereas (g) involves iterative least squares). Each case can be interpreted as
a model ‘in its own right’ or as derived from (or an approximation to) (4.35) and these approaches will be developed in
the discussion.

The generalizations of each ‘type’ in terms of increased numbers of lags and/or distinct regressor variables naturally
resemble each other more than do the special cases chosen to highlight their specific properties, although major
differences from (4.34) persist in most cases. The exclusion restrictions necessary to obtain various specializations
from (4.34) (in particular, (4.36)–(4.40) and (4.44)) seem difficult to justify in general. Although there may sometimes
exist relevant theoretical arguments supporting a specific form, it is almost always worth testing whatever model is
selected against the general unrestricted equation to help gain protection from major mis-specifications.

(a) Static regression models of the general form

(4.45)

rarely provide useful approximations to time-series data processes (but see Hansen, 1982). This occurs both because of
the ‘spurious regressions’ problem induced by the observations being highly serially correlated (see Yule, 1926;
Granger and Newbold, 1974), with associated problems of residual autocorrelation and uninterpretable values of R2,
and because the assertion that (4.45) is structural with zt weakly exogenous for β has not proved viable in practice.
While equilibrium economic theories correctly focus on interdependence and often entail equations such as y = f(z)
where linearity seems reasonable, imposing (4.45) on data restricts short-run and long-run responses of y to z to be
identical and instantaneous. It seems preferable simply to require that the dynamic model reproduces y = f(z) under
equilibrium assumptions; this restricts the class of model but not the range of dynamic responses (see (h)). Finally, for
forecasting yt+j, (4.45) requires a prior forecast of zt+j and so lagged information is needed at some stage and seems an
unwarranted exclusion from behavioural equations.

(b) In contrast, univariate time-series models focus only on dynamics but often serve as useful data-descriptive tools,
especially if selected on the criterion of white noise residuals (see Box and Jenkins, 1976). A general stationary form is
the autoregressive moving-average (ARMA) process

(4.46)

where γ (L) and δ (L) are polynomials of order m0, m1 (with no redundant factors), and (4.46) is denoted ARMA (m0,
m1) with (4.37) being ARMA(1, 0). Equations like (4.37) can be suggested by economic theory and, for example,
efficient markets and rational expectations models often have β3 = 1 (see, for example, Hall, 1978; Frenkel, 1981), but
for the most part ARMA models tend to be derived rather than autonomous. Indeed, every variable in (4.8) has an
ARMA representation5 (see, for example, Zellner and Palm, 1974; Wallis, 1977) but such reformulations
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need not be structural and must have larger variances. Thus, econometric models which do not fit better than
univariate time-series processes have at least mis-specified dynamics, and if they do not forecast ‘better’6 must be highly
suspect for policy analysis (see, inter alia, Prothero and Wallis, 1976).

In principle, all members of our typology have generalizations with moving-average errors, which anyway are likely to
arise in practice from marginalizing with respect to autoregressive or Granger-causal variables, or from measurement
errors, continuous time approximations etc. However, detailed consideration of the enormous literature on models
with moving-average errors is precluded by space limitations (see section 4.1 for relevant references). In many cases
moving-average errors can be quite well approximated by autoregressive processes (see, for example, Sims, 1977a, p.
194), which are considered under (g) below, and it seems difficult to discriminate in practice between autoregressive
and moving-average approximations to autocorrelated residuals (see, for example, Hendry and Trivedi, 1972).

(c) Differenced data models resemble (a) but after transformation of the observations yt and zt to yt − yt − 1 = Δ yt and Δ zt.
The filter Δ = 1 − L is commonly applied on the grounds of ‘achieving stationarity’, to circumvent awkward inference
problems in ARMA models (see Box and Jenkins, 1976; Fuller, 1976; Phillips, 1977; Evans and Savin, 1981; Harvey,
1981a) or to avoid ‘spurious regressions’ criticisms. Although the equilibrium equation that y = β1z implies Δ y = β1 Δ z,
differencing fundamentally alters the properties of the error process. Thus, even if y is proportional to z in equilibrium,
the solution of (4.38) is indeterminate and the estimated magnitude of β1 from (4.38) is restricted by the relative
variances of Δ yt to Δ zt. A well-known example is the problem of reconciling a low marginal with a high and constant
average propensity to consume (see chapter 8, and compare Wall et al., 1975, and Pierce, 1977). In any case, there are
other means of inducing stationarity, such as using ratios, which may be more consonant with the economic
formulation of the problem.

(d) Leading indicator equations like (4.39) attempt to exploit directly differing latencies of response (usually relative to
business cycles) wherein, for example, variables like employment in capital goods industries may ‘reliably lead’ GNP.
However, unless such equations have some ‘causal’ or behavioural basis, β2 need not be constant and unreliable
forecasts will result; thus econometric models which indirectly incorporate such effects have tended to supersede
leading indicator modelling (see, inter alia, Koopmans, 1947; Kendall, 1973).

(e) As discussed in section 2.4, distributed lags can arise either from structural–behavioural models or as implications of
other dynamic relationships. Empirically, equations of the form

(4.47)

where α (L) is a polynomial of order m1, frequently manifest substantial residual autocorrelation (see, inter alia, many of
the AD(0, m1, . . . , mk) equations in Hickman (1972) or, for example, new housing ‘starts–completions’ relationships in
Waelbroeck (1976)). Thus, whether or not zt is strongly exogenous becomes important
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for the detection and estimation of the residual autocorrelation. ‘Eliminating’ autocorrelation by fitting autoregressive
errors imposes ‘common factor restrictions’ whose validity is often dubious and merits testing (see (g) and Sargan,
1980a), and even after removing a first-order autoregressive error the equation may yet remain prey to the ‘spurious
regressions’ problem (see Granger and Newbold, 1977a). Moreover, collinearity between successive lagged zs has
generated a large literature attempting to resolve the profligate parameterizations of unrestricted estimation (and the
associated large standard errors) by subjecting the {αj} to various ‘a priori constraints’. Since relatively short ‘distributed
lags’ also occur regularly in other AD(·) models, and there have been important recent technical developments, the
finite distributed lag literature is briefly noted in section 3.

(f) Partial adjustment models are one of the most common empirical species and have their basis in optimization of
quadratic cost functions where there are adjustment costs (see Eisner and Strotz, 1963; Holt et al., 1960). Invalid
exclusion of zt − 1 can have important repercussions since the shape of the distributed lag relationship derived from
(4.41) is highly skewed with a large mean lag when β3 is large even though that derived from (4.35) need not be for the
same numerical value of β3: this may be part of the explanation for apparent ‘slow speeds of adjustment’ in estimated
versions of (4.41) or generalizations thereof (see, especially, studies of aggregate consumers' expenditure and the
demand for money in the United Kingdom). Moreover, many derivations of ‘partial adjustment’ equations like (4.41)
entail that et is autocorrelated (see, for example, Maddala, 1977, ch. 9; Kennan, 1979; Muellbauer, 1979) so that OLS
estimates are inconsistent for the βi (see Malinvaud, 1966) and have inconsistently estimated standard errors, and
residual autocorrelation tests like the Durbin–Watson statistic are invalid (see Griliches, 1961; Durbin, 1970).
However, appropriate LM tests can be constructed (see Godfrey, 1978; Breusch and Pagan, 1980). Finally, generalized
members of this class such as

(4.48)

have unfortunate parameterizations since ‘levels’ variables in economics tend to be highly intercorrelated.

(g) Common factor representations correspond one-to-one to autoregressive error models and most clearly demonstrate
the dynamic–stochastic specification link in terms of ‘equation dynamics’ versus ‘error dynamics’ (see Sargan, 1964a,
1980a; and chapters 6 and 7). To illustrate the principles involved, reconsider (4.35) written in lag operator notation
(with β1 ≠ 0):

(4.35*)

where both lag polynomials have been normalized. Under the condition

(4.49)

the lag polynomials coincide and constitute a common factor of 1 − β3L. Dividing both sides of (4.35*) by 1 − β3L yields
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(4.50)

where

(4.51)

Consequently, the equations

(4.52)

uniquely imply and are uniquely implied by

(4.53)

Usually, |β3| < 1 is required; note that (4.52) can also be written as

(4.54)

where is a ‘quasi-difference’ and the operator 1 − β3L ‘eliminates’ the error autocorrelation.

This example highlights two important features of the AD(·) class. First, despite formulating the class as one with a
white noise error, it does not exclude auto-regressive error processes. Second, such errors produce a restricted case of the
class and hence the assumption of an autoregressive error form is testable against a less restricted member of the AD(·)
class. More general cases and the implementation of appropriate tests of common factor restrictions are discussed in
section 5 of the original paper.

The equivalence of autoregressive errors and common factor dynamics has on occasion been misinterpreted to mean
that autocorrelated residuals imply common factor dynamics. There are many reasons for the existence of
autocorrelated residuals including omitted variables, incorrect choice of functional form, measurement errors in lagged
variables and moving-average error processes as well as autoregressive errors. Consequently, for example, a low value
of a Durbin–Watson statistic does not uniquely imply that the errors are a first-order autoregression and automatically
‘eliminating’ residual autocorrelation by assuming an AD(1) process for the error can yield very misleading results.

Indeed, the order of testing is incorrect in any procedure which tests for autoregressive errors by assuming the
existence of a common factor representation of the model: the validity of (4.49) should be tested before assuming
(4.52) and attempting to test therein Hb : β3 = 0. In terms of commencing from (4.35), if and only if Ha : β2 + β1β3 = 0 is
true will the equation have a representation like (4.52) and so only if Ha is not rejected can one proceed to test Hb : β3 =
0. If Hb is tested alone, conditional on the belief that (4.49) holds, then failure to reject β3 = 0 does not imply that yt =
β1zt + et (a common mistake in applied work) nor does rejection of Hb imply that the equations in (4.52) are valid. It is
sensible to test Ha first since only if a common factor exists is it meaningful to test the hypothesis that its
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root is zero. While (4.52) is easily interpreted as an approximation to some more complicated model with the error
autocorrelation simply acting as a ‘catch all’ for omitted variables, unobservables etc. a full behavioural interpretation is
more difficult. Formally, on the one hand, and hence agents adjust to this shifting ‘optimum’
with a purely random error. However, if the {ut} process is viewed as being autonomous then the first equation of
(4.52) entails an immediate and complete adjustment of y to changes in z, but if agents are perturbed above (below) this
‘equilibrium’ they will stay above (below) for some time and do not adjust to remove the discrepancy. Thus, (4.52) also
characterizes a ‘good/bad fortune’ model with persistence of the chanced-upon state in an equilibrium world. While
these paradigms have some applications, they seem likely to be rarer than the present frequency of use of common
factor models would suggest, supporting the need to test autoregressive error restrictions before imposition. The final
interpretation of (4.53) noted in section 5 of the original paper serves to reinforce this statement.

Despite these possible interpretations, unless y does not Granger-cause z, then z Granger-causes u. If so, then
regressing yt on zt when {ut} is autocorrelated will yield an inconsistent estimate of β1, and the residual autocorrelation
coefficient will be inconsistent for β3. Any ‘two-step’ estimator of (β1, β3) commencing from these initial values will be
inconsistent, even though (a) there are no explicit lagged variables in (4.52) and (b) fully iterated maximum likelihood
estimators are consistent and fully efficient when zt is weakly exogenous for β (see chapter 13 for a survey of estimators
in common factor equations). Finally, it is worth emphasizing that, under the additional constraint that β3 = 1, model
(c) is a common factor formulation.

(h) Error correction models such as (4.43) are a natural reparameterization of AD(·) equations when

(4.55)

If β3 ≠ 1, the steady-state solution of (4.43) for Δ z = g = Δ y is

(4.56)

and hence y = z in static equilibrium, or Y = K(g)Z (more generally) when y and z are ln Y and ln Z, respectively (see
Sargan, 1964a; and chapter 11). Thus, (4.55) implements long-run proportionality or homogeneity and ensures that the
dynamic equation reproduces in an equilibrium context the associated equilibrium theory. Moreover, H0: δ = 0 is easily
tested, since (4.35) can be rewritten as

(4.57)

which anyway offers the convenient interpretation that agents marginally adjust yt from yt − 1 in response to changes in zt
(β1 being the short-run effect), the previous disequilibrium (z − y)t − 1 ((1 − β3) being the ‘feedback’ coefficient) and the
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Table 4.2 Parameter Values for Other Models When (4.57) Is Homogeneous

(a) β1 = 1 − β3 = 1 (b) β1 = 1 − β3 = 0 (c) 1 − β3 = 0
(d) β1 = β3 = 0 (e) β3 = 0 (f) β1 = 1 − β3

(g) β1 = 1 (i) β1 = 0

previous level zt − 1 (which is irrelevant under proportionality). Since many economic theories have proportional forms in
static equilibrium, error correction models might be expected to occur frequently. Indeed, an important property of
(4.43) is that, when δ = 0, (4.57) coincides with (4.43) and all of the other models in this typology become special cases
of (4.43). Thus, given δ = 0 a modelling exercise which commenced from (4.43) even when one of the other types
represented the actual DGP would involve no mis-specification and which other special case was correct would be
readily detectable from the values of the parameters in (4.43) given in table 4.2. The converse does not hold: fitting any
of (a)–(g) when (h) is true but table 4.2 restrictions are invalid induces mis-specifications, the precise form of which
could be deduced by an investigator who used (h). Thus, when δ = 0, error correction is essentially a necessary and
sufficient model form and it is this property which explains the considerable practical success of error correction
formulations in encompassing and reconciling diverse empirical estimates in many subject areas (see, inter alia, Henry et
al., 1976; Bean, 1977; Cuthbertson, 1980; Davis, 1982; and chapters 3, 8 and 11). In an interesting way, therefore,
(4.43) nests ‘levels’ and ‘differences’ formulations and, for example, offers one account of why a small value of β1 in (c)
is compatible with proportionality in the long run, illustrating the interpretation difficulties deriving from imposing
‘differencing filters’.

(i) Equation (4.44) could constitute either the reduced form of (4.35) on eliminating zt (assuming its process to be AD(1,
1) also, or a special case thereof) or a ‘dead-start’ model in its own right. For example, if zt = λ zt − 1 + ε2t and (4.35) is the
behavioural equation, (4.44) is also ‘valid’ with parameters

(4.58)

but is no longer structural for changes in λ, and λ is required for estimating β. Indeed if δ = 0 in (4.55), (4.58) will not
exhibit proportionality unless β1 (1 − λ) = 0. Also, β2 + β1 λ < 0 does not exclude y = z in equilibrium, although this
interpretation will only be noticed if (yt, zt) are jointly modelled.

Conversely, if (4.44) is structural because of an inherent lag before z affects y, then it is a partial adjustment type of model,
and other types have deadstart variants in this sense.

Distributed lags often have autocorrelated errors and other dynamic models usually embody short distributed lags.
Since generalizations can blur important distinctions, the preceding typology is offered as a clarifying framework.
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3 Finite Distributed Lags

3.1 A Statement of the Problem
A finite distributed-lag relationship has the form

(4.59)

where

(4.60)

and is a member of the AD(0, m1, . . . , mn) class. For ease of exposition and notation, attention is centred on a bivariate
case, namely AD(0, m) denoted by

(4.61)

where {zt} is to be treated as ‘given’ for estimating , and ut is a ‘disturbance term’. It is assumed that
sufficient conditions are placed upon {ut} and {zt} so that OLS estimators of w are consistent and asymptotically
normal (e.g. that (4.8) is the DGP and is a stable dynamic system with w defined by ).

Several important and interdependent difficulties hamper progress. First, there is the issue of the status of (4.61),
namely whether it is basic or derived and whether or not it is structural, behavioural etc. or just an assumed
approximation to some more complicated lag relationship between y and z (see sections 2.3 and 2.4). Unless explicitly
stated otherwise, the following discussion assumes that (4.61) is structural, that and that zt is weakly
exogenous for w . These assumptions are only justifiable on a pedagogic basis and are unrealistic for many economics
data series; however, most of the technical results discussed below would apply to short distributed lags in a more
general dynamic equation. Second, W(L) is a polynomial of the same degree as the lag length and, for highly
intercorrelated {zt − j}, unrestricted estimates of w generally will not be well determined. Conversely, it might be
anticipated that a lower order polynomial, of degree k < m say, over the same lag length might suffice, and hence one
might seek to estimate the {wj} subject to such restrictions. [Section 3.2 (not included here) considered some possible
sets of restrictions whereas section 3.4 discussed methods for ‘weakening’ lag weight restrictions. ‘Variable lag weights’
wherein the {wj} are dependent on economic variables which change over time were considered in section 3.6.

However, n, m0 and m are usually unknown and have to be chosen jointly, and this issue was investigated in section 3.3
together with an evaluation of some of the consequences of incorrect specifications. Further, given that formulations
like (4.61) are the correct specification, many alternative estimators of the parameters have been proposed and the
properties of certain of these were discussed in section 3.5 and related to sections 3.2 and 3.4.
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Frequently, equations like (4.61) are observed to manifest serious residual autocorrelation and section 3.6 briefly
considered this issue as well as some alternative specifications which might facilitate model selection.]

4 Innite Distributed Lags

4.1 Rational Distributed Lags
Almost all individual estimated equations in macroeconometric systems have been members of the general class of
autoregressive moving-average models with ‘explanatory’ variables, denoted by ARMAX(·) and written as

(4.62)where

(4.63)

and there are no polynomial factors common to all the αj(L). Then (4.62) is said to be ARMAX(m0, m1, . . . , mn, mn+1)
(generalizing the AD(·) notation with the last argument showing the order of the moving-average error process). The
{zjt} in (4.62) are not restricted to be ‘exogenous’ in the sense defined in section 2, and could be endogenous, weakly or
strongly exogenous or lagged values of variables endogenous elsewhere in the systems, and might be linear or non-
linear transformations of the original (raw) data series. However, it is assumed that the parameters of (4.62) are
identifiable and constant over any relevant time period.

The formulation in (4.62) can be expressed equivalently as

(4.64)

where all common factors have been cancelled in the ratios of polynomials. An important special case of (4.64) is
where φ (L) = ρ (L) (i.e. α0 (L) = αn + 1 (L) in (4.62)) which we call the rational distributed lag (RDL),

(4.65)

and like the AD(·) class, RDL is defined here to have white noise disturbances relative to its information set. Equation
(4.65) generalizes (4.59) to infinite lag responses. Thus, ARMAX(·) is RDL with ARMA(·) errors or AD(·) with MA(·)
errors, and if any denominator polynomial is of non-zero order some of the derived lag distributions are infinite.
Relative to the class defined by (4.62) the parameter spaces of AD(·) and RDL(·) models constitute a set of measure
zero in the general parameter space. In practical terms, however, all the models in this chapter constitute more or less
crude first approximations to complicated underlying economic processes and, for high-order lag polynomials, provide
rather similar data descriptions.
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Indeed, if all the roots of the δi(L) (i = 1, . . . , n), ρ (L) and φ (L) polynomials in (4.64) lie outside the unit circle, by
expanding the inverses of these polynomials as power series, a wide range of alternative approximations can be
generated (extending the analysis in section 2.3 above). But selecting equations purely on the basis of ‘goodness of
approximation’ is of little comfort if the resulting model does not correspond to either a behavioural or a structural
relationship, and as stressed below derived parameters (such as mean lags, long-run outcomes etc.) can differ greatly
between ‘similar’ approximations.

Consequently, the choice of model class relevant to empirical research does not seem to us to be an issue of principle
but a matter of whether (a) the formulation is coherent with available theory and/or prior information concerning
structural/behavioural relationships, (b) the parameterization is parsimonious with easily understood properties and (c)
the equation is easily manipulated, estimated (when its form is known) and selected (when the exact orders of all the
lag polynomials, relevant regressors etc. are not known a priori). These criteria may conflict since simple easily estimated
equations may not provide the most parsimonious representations or may be non-structural etc. Moreover, if the
unknown DGP takes one form (e.g. an error correction AD(1, 1)) but an encompassing model is investigated (say,
ARMAX(1, 1, 1)), then parsimony cannot be claimed even if a ‘minimal representation’ of the dynamics is selected. For
example, (4.43) becomes

(4.66)

which necessitates four rather than two parameters in the absence of knowledge that δ11 = ρ1 and γ10 + γ11 = 1 − δ11, the
imposition of which restrictions depends on the relevant behavioural theory. Conversely, an inadequate dynamic-
stochastic representation entails inconsistency of parameter estimates and a loss of structural invariance, so both data
coherency and theory validity are necessary, and such considerations must take precedence over arguments concerning
approximation accuracy, generality of class etc.

An important consequence for econometric analysis (as against data description) is that closely similar dynamic model
specifications can entail rather different behavioural implications. To isolate some of the differences, consider the three
simplest cases of partial adjustment (PA), error correction (ECM) and RDL, with one strongly exogenous variable {zt},
each model defined to have white noise disturbances relative to its information set:

(4.67)

(4.68)

(4.69)

The three models have the same non-stochastic static equilibrium solution, namely

(4.70)

and so could be interpreted as alternative implementations of a common theory. Expressed in ECM form, however,
(4.67) and (4.69) are
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(4.71)

(4.72)

where . Thus, both (4.67) and (4.69) constrain the response to changes in ye and to past disequilibria to be the
same, a strong specification which may well be at variance with observed behaviour (compare the arguments for the
‘optimal partial adjustment’ model in Friedman, 1976). Also, the disequilibria in the PA and ECM models are
measured differently from those of the RDL in that the latter are relative to rather than yt − 1. Accordingly, an RDL
formulation is appropriate to behaviour wherein agents ignore the impact of past disturbances on the measured data,
concentrating instead upon the ‘permanent’ component so that disturbances in any period are not transmitted into
future behaviour unlike in PA and ECM models.

Which formulation of the impact on plans of past disturbances is most appropriate to any particular situation must be
an empirical matter, although in general the truth probably lies at neither extreme since adjustments to pure shocks are
likely to differ from responses to past plans; and equation disturbances are anyway composites of measurement errors
and all mis-specifications as well as shocks. Since the RDL form in (4.69) generalizes easily to

(4.73)

which still has (4.70) as its static solution but corresponds to

(4.74)

the real distinction between AD(·) and RDL lies in their respective stochastic specifications. Yet investigators alter
error assumptions for convenience without always acknowledging the consequential changes entailed in behavioural
assumptions.

With the conventional practice of ‘allowing for autocorrelated residuals’, distinctions between model types become
hopelessly blurred since disturbances in ARMAX(·) models are transmitted k periods into the future if φ (L)/ρ (L) is
of degree k in L (and hence k is infinite if ρ (L) is not of degree zero).

The literature on ARMAX models and all their special cases is vast and it is quite beyond the scope of this chapter to
even reference the main relevant papers, let alone adequately survey the results (see, among many others, Aigner, 1971;
Nicholls et al., 1975; Osborn, 1976; Wallis, 1977; Harvey and Phillips, 1979; Zellner, 1979a; Anderson, 1980; Palm and
Zellner, 1980; Davidson, 1981; Harvey, 1981a, section 7.3; and the references therein). When all zit are strongly
exogenous in (4.64) separate estimation of γi(·)/δi(·) and φ (·)/ρ (·) is possible (see Pesaran (1981), who also derives
several LM-based residual diagnostic tests). However, this last result is not valid if any of the zi are Granger-caused by y
in the model information set, nor will conventionally estimated standard errors provide a useful basis for model
selection until the residuals are white noise. [The general issue of stochastic specification was considered in section 5,
not included here.]
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4.2 General Error Correction Mechanisms
There is a close relationship between error correction formulations and ‘servomechanism’ control rules (see Phillips,
1954, 1957). In chapter 9, α and γ in (4.68) are interpreted as parameters of ‘derivative’ and ‘proportional’ feedback
controls, introducing the additional interpretation of stock variables in flow equations as ‘integral controls’. Also,
Nickell (1985) derives the ECM as the optimal decision rule for an infinite horizon quadratic optimization problem
when the ‘exogenous’ variables are neither static nor random walk processes and Salmon (1979a) demonstrates that
state-variable feedback rules can be reparameterized in servomechanism (and hence, if appropriate, in ECM) form.
Thus, the ECM specification is compatible with ‘forward-looking’ as well as ‘servomechanistic’ behaviour, and since
many static-equilibrium economic theories yield proportionality or homogeneity results (or are transformable thereto),
this model form has a potentially large range of applications.

Suppose that a given static theory entails (in logarithms) that

(4.75)

and no theory-based dynamic specification is available. Then the following model at least ensures consistency with
(4.75) in static equilibrium:

(4.76)

Such a formulation has a number of useful features. Firstly, the proportionality restriction is easily tested by adding
as a separate regressor, and non-rejection entails that (4.75) is the static solution of (4.76) for γ1 ≠ 0. Generally,

low values of the mi suffice to make et white noise and the resulting short distributed lags usually can be adequately
represented by one or two Almon polynomial functions, so that the final parameterization is relatively parsimonious
(see, for example, chapter 11). Also, the ki are often unity (or four for quarterly—seasonally unadjusted—data); the
parameterization is frequently fairly orthogonal (certainly more so than the levels of variables); and despite the
‘common’ lagged dependent variable coefficient (i.e. 1 + γ1) the formulation allows for very different lag distributions
of y with respect to each zi. Moreover, using Δ yt as the dependent variable helps circumvent the most basic ‘spurious’
regressions problem without losing long-run information from using differenced data only (compare, for example,
Pierce, 1977). Also, using Δ zjt − i as regressors shows that ‘level representations’ (of yt on zjt − i) will have negative
coefficients at some lag lengths but this does not preclude all the solved distributed lag weights from being positive.
Furthermore, if (4.76) is a good data description when (4.75) is a useful equilibrium assertion, then omitting the
feedback variables and need not produce detectable residual autocorrelation, so that a model
in differenced data alone might seem acceptable on a ‘white-noise residual’ criterion although it violates
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homogeneity (see, for example, chapter 8 and, as a possible example, Silver and Wallace, 1980). Finally, in practice,
ECMs have successfully reconciled disparate empirical evidence in many areas, as discussed in section 2.6, case (h).

On a steady-state growth path, the solution of (4.76) entails that λ0 in (4.75) depends on the growth rates of the zi, a
feature which has been criticized by Currie (1981). This issue is closely related to the existence of short-run (apparent)
trade-offs (since sequences of above- or below-average values of Δ zis will lower or raise the ratios of y to the zis in
levels), and hence to the ‘Lucas critique’ of (1976) concerning the non-invariance of certain econometric equations to
changes in policy rules. Also, Salmon and Wallis (1982) discuss the need for the input variables over the estimation
period to ‘stimulate’ responses relevant to later behaviour if structurality is to be retained when policy alters the time
profile of some zits as well as emphasizing the need to allocate dynamic responses correctly to expectation formation
and behavioural responses. On both issues, again see Haavelmo (1944).

Constant-parameter linear models are only locally useful and adaptive processes in which the βji (say) depend on other
functions (e.g. higher order differences) of the data merit consideration, so that ‘trade-offs’ in effect disappear if they
entail exploiting information which actually ceases to be neglected when it becomes relevant. Sometimes, such models
can be reparameterized as linear in parameters with non-linear variables acting as modifiers when they are non-
constant. Also, note that the restriction of ECMs to cases in which y has a unit elasticity response to one variable (or a
combination of variables) is not essential since ‘logit’ feedbacks with variable elasticities which eventually converge to
unity are easily introduced (see, for example, chapter 17); other recent discussions are Salmon (1982), Kloek (1982) and
Patterson and Ryding (1982).

We have not discussed partial adjustment models extensively since there are already excellent textbook treatments, but
it is interesting that ECM is equivalent to partial adjustment of y − z to Δ z in (4.68) (not of y to z unless α = γ β). Thus,
on the one hand, care is required in formulating to which variable the PA principle is applied, and, on the other hand,
the equivalence reveals that the ECM in (4.68) is most heavily dampening of discrepancies from equilibrium due to
once-for-all impulses in zt (so Δ zt goes . . . , 0, δ, − δ, 0, . . . ) than of permanent changes in the level of zt, and least for
changes in the growth rate of zt (although integral corrections and higher order derivative responses help mitigate the
last two). In the case β = 1, α ≠ γ in (4.68), if the DGP is an ECM but this is approximated by a PA model, the impact
effect of z on y is generally underestimated although the derived mean lag need not be overestimated since the
coefficient of yt − 1 can be downward biased. Specifically, rewriting (4.68) (for β = 1) as

(4.77)

when zt is highly autoregressive, the impact effect will be estimated for PA at around γ (rather than α) and the feedback
coefficient at around 1 − γ, whereas if Δ zt is sufficiently negatively correlated with yt − 1 the mean lag will be
underestimated. This issue conveniently leads to the general topic of derived statistics in AD(·) models.

100 ROOTS AND ROUTE MAPS



4.3 Derived Statistics
Given the general equation (4.62), there are many derived statistics of interest including long-run responses, roots of
the lag polynomials, summary statistics for the solved lag distributions etc., and approximate or asymptotic standard
errors of these can be calculated in many cases (subject to various regularity conditions). The general problem is: given

for a sufficiently large sample size T, to compute where, to first order, and
(which, if necessary, can be computed numerically as in Sargan, 1980a). Of course, normality could be a

poor approximation when corresponds to (say) a latent root or the mean lag (see, for example, Griliches (1967)
who discusses asymmetrical confidence intervals), but in the absence of better approximations it seems more useful to
quote the relevant values of and than provide no summaries at all. However, the mean lag can be a misleading
statistic for lag distributions that are highly asymmetrical and is meaningless if the derived lag weights are not all of the
same sign. For many distributions, it could be more useful to quote some of the fractiles rather than the first two
moments (e.g. the median lag and the time taken for nine-tenths of the response to be completed): as an illustration,
when β = 1 in (4.68), α = 0.5 and γ = 0.05 yields a mean lag of ten periods yet has a median lag of one period and 70
per cent of the adjustment has taken place by the mean lag (but 90 per cent adjustment takes 31 periods!). Changing γ
to 0.1 halves the mean lag but does not alter the median lag or the percentage response at the mean lag, while reducing
the number of periods at which 90 per cent response is reached to 15. For skew distributions there seems little
substitute to presenting several fractiles (or some measure of the skewness).

At first sight it may seem surprising that derived estimates of long-run responses might have large standard errors
given that the typical spectral shape of economic variables has much of the power near the origin (i.e. in low frequency
components) — see Granger (1966). There is no paradox here, however, since highly autoregressive series also have
primarily low frequency components yet may provide little long-run information about relations between variables.
Alternatively expressed, the long run of (4.62) for n = 1 is y = [α1 (1)/α0 (1)] z = Hz, and if α0(L) has a root close to
unity, estimates of H can fluctuate wildly for seemingly small changes in . Thus, valid theoretical information
about H can be of immense value in empirical analysis and, for example, if H = 1, switching from unrestricted
estimation of (4.65) to (4.68) can substantially reduce parameter standard errors (and hence forecast error variances).
Conversely, for highly autoregressive series much of the sample variability may be due to the dynamics and until this is
partialled-out a misleading picture of the economic interrelationships may emerge (not just from ‘spurious’ regressions,
but also the converse of attenuating important dependences). For econometric research, there seems little alternative to
careful specification of the dynamics — and hence of the ‘error term’ (as discussed in section 5 of the original paper).
Note that reparameterizations of the original formulation (4.62) can allow direct estimation of the long-run response
and/or mean lag etc. as in Bewley (1979).
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5 Dynamic Specication in Multi-Equation Models

5.1 Identication With Autoregressive Errors
The problems that arise in multi-equation models are very similar to those discussed in earlier sections: to introduce
suitable lag structures which represent correctly our a priori economic intuitions about the behaviour of the variables in
the long and the short period, but which are not limited by an over-simplistic specification of the lags in the system nor
made over-complex by the confusion of the basic dynamics of the economy with the stochastic processes generating
the errors in the system.

Consider the latter problem first. Suppose that in lag operator notation we write the structural equations in the form

(4.78)

where is a matrix of polynomials in the lag operator L, with specified maximum lags on each variable,
xt is a vector of observed variables, made up on n endogenous variables yt and m strongly exogenous variables , and
ut is the vector of errors on the structural equations, all in period t. B (L) is a square matrix such that (the zero-lag
coefficient matrix) is non-singular. Suppose now that the ut are generated by an ARMA process of the form

(4.79)

where R (L) and S (L) are square matrix lag polynomials of degree r and s respectively, and . Our general
econometric methodology first requires us to discuss identification for such models. We can find sufficient conditions
for identification by formulating the problem as follows. Eliminating ut between equations (4.78) and (4.79) we obtain

(4.80)Writing this in the form

(4.81)where

(4.82)

consider conditions which ensure that the factorization is unique for a given with a given maximum lag on each
variable. Clearly, if A (L) and R (L) satisfy (4.82), then HA (L) and satisfy

and if there are no prior restrictions on the covariance matrix of , then if we write
and , the model consisting of equations (4.78) and (4.79) with

stars on the lag matrices is observationally equivalent to (4.80). Conditions similar to those discussed by Hsiao (1984)
are necessary for identification. Sufficient conditions for identification are as follows:
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1 equation (4.81) is identified when is of the form , and the only constraints specify the minimum
lag on each variable (sufficient conditions for this are those given by Hannan (1970) and discussed by Kohn
(1979) and Hsiao (1984));

2 conditions which ensure that there is a unique factorization for (4.82) subject to the same maximal lag
conditions, and ;

3 standard conditions for identification, which ensure that linear or non-linear constraints on the coefficients of
A (L) are only satisfied if , discussed by Hsiao.

However, Hsiao does not deal with conditions of type (2), and these will be discussed briefly here. Necessary and
sufficient conditions for identification are given by Sargan (1983) when only the maximum lags on the variables are
specified. The conditions depend on the presence or absence of latent roots of the A (L) polynomial. A (L) has a latent
root λ if, for some non-zero vector h,

(4.83)

A necessary condition for there to be more than one solution is that (4.83) is satisfied for some λ and h. (The paper
referred to above gives a slightly different formulation which makes it easier to discuss cases where A (z) has an infinite
latent root.) This condition is also sufficient, provided that a factorization condition is satisfied which can be taken to
have a prior probability of unity.

A necessary condition that the model is not locally identified is that A (z) and R (z) have a latent root λ in common, in
the sense that for some non-zero vector h (4.83) is satisfied and for some non-zero vector k

This is a sufficient condition that the Jacobian (first-order derivative) conditions for identification are not satisfied. But
even if the Jacobian is not full rank, it does not follow that the model is not locally identified. This is discussed in the
above paper.

The estimation of the model has two stages. The first is to decide on the various lags on the different variables, and on
the autoregressive and moving-average processes. Suitable test procedures are required for this and they will be
discussed in section 5.2.

Given the specification of these maximum lags then parameter estimation can proceed using maximum likelihood
procedures, or procedures asymptotically equivalent to these. For a complete model, if a numerical optimization
program which does not require analytical derivatives of the likelihood function, such as a conjugate gradient
procedure or one using numerical differentiation, is used to optimize the likelihood function, it is no more difficult to
fit a model of the form (4.80) than a less restricted model of form (4.81), since all that is required as an addition to a
program for producing maximum likelihood estimates of (4.81) is a subroutine for computing the coefficients of
as functions of the unconstrained elements of A (L) and R (L).

It can be argued that since, in using ARMA models for the generation of the errors in econometric models, we are
merely making use of convenient approximations, there might be considerable advantages (at least in the stage of
making preliminary estimates of the model to settle its economic specification provisionally) in using a
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model with a fairly high order autoregressive specification and a zero-order moving-average specification. In practice
the time to compute moving-average specifications can be large when the latent roots of the moving-average matrix
polynomials tend to move towards the unit circle, and the convergence properties of autoregressive specifications may
be much better. Chapter 13 contains a discussion of estimators for which are asymptotically equivalent to
maximum likelihood estimators for models of this type but which may be lower in computing requirements.

For ‘incomplete’ models it may be necessary to modify the model before it is feasible to estimate it. The simplest way
of defining the modified model is to retain both equations (4.78) and (4.79) but now to allow B (L) to be a rectangular
matrix. Thus, it is assumed that the errors on the incomplete model are generated by an ARMA model, which involves
only the errors on the set of equations to be estimated. Note that starting from a complete set of equations whose
errors are generated by an ARMA model, by eliminating the errors of the equations whose coefficients are not to be
estimated, it is possible to obtain a higher order ARMA process generating the errors on the equations to be estimated.
Thus the current formulation is of some generality. One method of estimating the incomplete system is to use a set of
instrumental variables. These can be chosen rather arbitrarily initially, but as the specification is refined a set can be
chosen which is efficient if the model is linear in the variables. Generalizing to the case where the A (L) coefficients
depend in a general non-linear way on a set of p parameters forming a vector , the estimators can be regarded as
minimizing a criterion function of the form

(4.84)

where E is the matrix of white noise errors or ‘innovations’ in the ARMA process and is some preliminary
consistent estimate of the variance matrix of . is the matrix of instrumental variables, which may include lagged
values of the predetermined variables. If the A (L) coefficients considered as functions of have continuous first-
order derivatives in some neighbourhood of the true value the instrumental variables estimates will be as efficient as
the corresponding limited information maximum likelihood estimates if it is possible to express the expectations of

, conditional on all lagged values of , as linear functions of the for all j, and for all i. This result
follows from the discussion of Hausman (1975), and in the case of a purely autoregressive specification is most easily
satisfied by using as instrumental variables the current values of zt and the lagged values of xt up to and including the
rth-order lag. When the ARMA model contains a moving-average process, it is difficult to produce estimates of the
conditional expectations from an incomplete model, but if the latent roots of the moving-average process are not too
close to the unit circle there may be a comparatively small loss of efficiency in using up to some maximum s*,
which is such that the total number of instrumental variables is not more than a fixed proportion (say 40 per cent) of
the sample size. With such a set of instrumental variables an iterative minimization of (4.84) is possible, by computing

and

(4.85)
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recursively for given values of the parameters, starting from the values . This procedure
may not be optimal in a model with no exogenous variables, where end corrections corresponding to ut being a
stationary time series might give better results, but in a model with an autoregressive side there seems to be no simple
alternative to the crude assumptions for et listed above. The recursive generation of , uses the equation (4.85) in
the form

noting that has a zero-order coefficient matrix equal to zero. Recent discussions of estimators for models with
vector moving-average error processes include Osborn (1977), Reinsel (1979), Anderson (1980) and Palm and Zellner
(1980).

5.2 Reduced Form, Final Form and Dynamic Multipliers
From (4.78) it is of some interest to discuss the behaviour of yt in response to changes in the , particularly when some
of the zt may be regarded as government-controlled variables which can be changed independently so as to affect the
level of the yt variables. The standard reduced form of the model can be written

where

and has a degree one less than that of B(L). This equation is useful for directly simulating the impact of a change
in . Two types of dynamic multiplier can be distinguished: (i) the impact multiplier; (ii) the cumulative multiplier. The
first considers the impact of a unit change in an element of zt in time period t on all subsequent values of ; the
second considers the change in , if an element of is changed by one unit for all τ ≥ t. Since the second multiplier
is obtained from the impact multiplier by summation for all τ ≤ s, only the impact multiplier will be considered here.
Suppose that we wish to consider the impact multipliers for some subset of elements of , which we form into a
vector , and denote the corresponding rows of C(L) by . Then clearly, if we denote the change in by , the
corresponding endogenous-variable changes , will be obtained by solving the equation

where if τ ≠ t. If we write for the solution

then the coefficients give the impact multipliers, in period τ = t + s, of the change in in period t.

Formally, we may write
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but a more practical computing procedure is to solve sequentially the equations

(4.86)for . In fact it is better to use the reduced form, and if we write

then the equations (4.86) are equivalent to

(4.87)where

These can be solved for sequentially noting that in the jth equation the matrix coefficient of is .
Asymptotic standard errors for the can be computed in the usual way, expressing them as functions of the B(L) and
C(L), and using implicit differentiation to obtain the first derivatives from (4.86) (see, for example, Goldberger et al.,
1961; Theil and Boot, 1962; Brissimis and Gill, 1978).

The final equations of Tinbergen (see Goldberger, 1959) are obtained by multiplying equation (4.78) by adj B(L) where
this is the adjoint matrix of B(L) considered as a matrix polynomial. Since

we can then write

(4.88)

A possible method of testing models which is particularly appropriate for comparison with ARIMA statistical time-
series models (used, for example, by Zellner and Palm, 1974; Wallis, 1977) is to estimate a model of the form (4.88)
first, neglecting the constraints that every endogenous variable has the same scalar lag polynomial on the left-hand side
of (4.88). Thus, unconstrained ARMA explanations of each yit in terms of lagged zt are estimated by single-equation
ARMA maximum likelihood estimation. Then tests are made to check that the coefficients of the lag polynomials
applied to the yit, i = 1, . . . , n, are all the same. There are severe difficulties in doing this successfully. First, if there are
more than two endogenous variables, and more than one lag on each endogenous variable in (4.78), then det B(L) and
adj are both of at least the fifth degree in L, and in models which are at all realistically treated as complete
econometric models the degree must be much larger than this. This of course requires a large sample before
asymptotic theory can be a good approximation, since each equation to be estimated will contain a large number of
variables of various lags. If the total number of lags
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on the variables in the final equation form (4.88) is determined by significance tests then there is an obvious probability
that the subsequent tests will reject the constraints that all the yit are subject to the same lag operator. Indeed, there is
no reason why the unconstrained estimates of the longer lagged coefficients should be significantly different from zero.
The true values of these coefficients can be expected to be small if the model is stable since the higher order
coefficients contain the products of many latent roots all less than one in modulus. Thus, it would be better to allow
the maximum lag to be determined by feasibility. Even then, the size of model may have to be small to estimate
unconstrainedly the set of equations of the final form. Finally, there are many implicit restrictions on the coefficients of
adj which it is difficult to put in explicit form. Since, unless the right-hand-side polynomials satisfy these implicit
constraints, the constraint that all the left-hand-side polynomials are the same is of little interest, it appears that starting
from the unconstrained final equation is not really an adequate way of testing the specification of realistic econometric
models. Moreover, parameter constancy in derived equations like (4.88) relies on all the equations in (4.78) being
structurally invariant.

If the zt are regarded as generated by ARMA processes, so that

(4.89)

where εt is a white noise series, then we can eliminate zt from (4.88) using (4.89) to give

or

(4.90)

The error term on (4.90) contains a complicated moving average of the εt, and if ut itself is generated by a general
ARMA stochastic model then the stochastic specification is even more complicated. Assuming for simplicity that

, where et is white noise, there is a corresponding final form:

(4.91)

Equation (4.91) gives separate ARMA-type representations for each element of . Note that the autoregressive
polynomial will generally be the same for each yit (the exception occurs if a recursive structure can be
set up by partitioning yt into subsections). For a given yit, the right-hand side of (4.91) also can be represented as a
single moving-average process, the maximum lag of which is the same as the maximum lag in the terms of the right-
hand side of (4.91). Note, however, that this new representation neglects the detailed correlation structure of the
different components of the right-hand side of (4.91) and so loses a great deal of information which is contained in the
specification (4.91). Thus, using the individual ARMA equations to forecast yit would give less accurate forecasts than
using the detailed model (4.91), and the use of original model (4.78) to forecast should also give more accurate
forecasts than (4.91). With a correctly specified
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system, this should be true for an estimated model. And in estimating the model it will be found that greater efficiency
in the estimation of the coefficients of (4.91) is obtained by first estimating (4.80) and (4.89) taking account of any
appropriate constraints and then substituting the resulting estimates of A(L), S(L), D(L) and F(L) into equation (4.91)
to give ARMA equations for the individual yit. For an example of some relevant applied work see Prothero and Wallis
(1976), and for a different emphasis, Zellner (1979a). Also, Trivedi (1975) compares ARMA with econometric models
for inventories.

The suggested alternative for testing the specification is that the original model or its reduced form is estimated using
the maximal feasible lags. Then constraints reducing the order of the lags in each reduced form equation are tested
using asymptotic t or F ratio tests (Wald test) or by using likelihood ratio tests (see Sargan (1978) and, for an example,
chapter 3).

5.3 Unconstrained Autoregressive Modelling
Alternatively, one may consider, following Sargent and Sims (1977), the possibility of an autoregressive representation
for the economy in which the distinction between endogenous and exogenous variables is ignored. In an effort to
estimate the dynamics of the system with no a priori constraints, the equations are written in the form

(4.92)

where P (L) is an unconstrained matrix lag polynomial of maximum lag q and et is a white noise vector. This can be
regarded as a linear approximation to an autoregressive representation of the stochastic model generating yt if the yt are
stationary time series (see Hannan, 1970) with the et being approximations to the innovations in the . If the yt are
non-stationary but are stationary, then a set of equations of the form (4.92) may still be a good approximation but
unit latent roots should occur in the latent roots equation for the system. However, there may be problems if we
consider (4.92) as an approximation to an ARMA system of the form

(4.93)

if S(L) has roots close to the unit circle. In particular, if the true system is of ARMA form in a set of endogenous
variables , and the equations are mis-specified by taking a subset of variables yt which includes the first differences
of the corresponding variables , then corresponding differences of white noise will occur in the errors of the ARMA
model for the . Thus, over-differencing the variables will invalidate the Wold autoregressive representation and the
corresponding finite autoregressive representation will not hold; Sims has tended to work with levels variables in
consequence. With the length of sample available for estimating the equations by multiple regression, it is necessary to
work with a relatively small model and to restrict q rather drastically. Sargent and Sims (1977) also considered models
which contain index variables, which in effect introduce non-linear restrictions in the coefficients P (L) by requiring
each yit to depend upon past values of k index variables, k < n, where n is the number of variables . It is to be
expected
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that when the number of regression equations is allowed to increase to be of the same order as T, the estimated
coefficients become sensitive to changes in the variables. Sims interprets his results by considering the effect of an
innovation in a particular variable on later values of the other variables, but the interpretation is complicated by the
correlation between the contemporaneous innovations on the different variables (see, for example, Sims, 1980).
Additionally, marginalizing with respect to elements of other than those retained in yt will produce an ARMA form
as in (4.93) unless none of the excluded variates Granger-causes the , and as in all derived representations, strong
assumptions are necessary to ensure parameter constancy.

5.4 Alternative Forms of Disequilibrium Model
The simplest model of disequilibrium is that of Samuelson–Tobin in which the tendency of economic variables to their
equilibrium values is modelled by introducing an equilibrium static equation for each endogenous variable:

where this is a vector of equilibrium values of n endogenous variables expressed as functions of a set of m exogenous
variables. Writing the Samuelson-Tobin model is (see, for example, Samuelson, 1947)

(4.94)

where D is an arbitrary square matrix. The simplest special case is where D is a positive diagonal matrix, with every
diagonal element satisfying

This type of model can be regarded as derived from an optimal control problem where the function whose expected
values is to be minimized is

(4.95)As S → ∞, the optimal control solution when is

where, if , then

or, if we write

Now if W and M are both positive definite the matrix on the right-hand side is positive definite such that every latent
root is real and greater than 2. can then
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clearly be chosen to be symmetric, so that every root is real, and if λk is a root of and λm a corresponding root of
, then

We can pick such that λk satisfies

provided that M is non-singular, and and has the same set of latent roots.

This choice of K is appropriate, since unstable solutions cannot be optimal. Then for we have that λd = 1 −
λk, and so

(4.96)

Note that ifW is a diagonal matrix then D is symmetric. Of course without prior knowledge of W and M it is difficult
to specify D, and even the constraints that D has real latent roots satisfying (4.96) are difficult to enforce.

The generalization of the model (4.94) to more complicated time lags is obvious, but perhaps rather arbitrary. Using
the lag operator notation a general formulation would be

(4.97)

where and are matrix polynomials of any order. However, if is being written as an arbitrary linear
function of current and lagged values of a set of exogenous variables, then (4.97) may contain some redundancy and in
any case a useful simplification may be obtained by considering either of the following special cases:

(4.98)or

(4.99)

If no attempt is made to put constraints on the and D matrices in (4.99), a further transformation can be
considered by using this form with the restriction that D is diagonal and (the zero-order coefficient matrix in

) has its diagonal elements equal to one, or perhaps better that and is unrestricted. In specifying
when there are linear restrictions on these equilibrium functions each of which affects only one element

of such forms (rather than the more usual assumption that ) have the advantage that the corresponding
restriction affects only one equation of (4.99).

If there are restrictions on and D, then an equivalent model with an arbitrary lag on may make a
better formulation if the rather ad hoc economic considerations to be considered below are applied. It is less easy to
formulate an optimal control approach which will give significant restrictions on and D. Thus, for example, if we
write
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then a loss function of the form

leads to optimal control equations of the form (4.97) (with the property that if is held constant the adjustment
equations are stable) but further restrictions, along the lines that the latent roots are all real, are not appropriate, since
the results for the first-order case are dependent on the special separability assumption for the loss function used in the
first-order case. (For a discussion of optimal control closed loop paths see Chow (1975).)

A possibility of some importance, which prevents the normalization , is that D is in fact singular. This arises
particularly where there are identities corresponding to exact equations satisfied by the whole set of endogenous
variables, or where some variables react so quickly during the unit time period that the general equation of type (4.99)
becomes inappropriate. If the partial equilibrium for this variable is stable, and is attained within the unit time period,
then a static equation, or a dynamic equation obtained by differencing the static equation, is introduced into the model.

This possibility can be found in applied studies from various fields, for example in models of wage-price inflation (as in
Sargan (1980a) or Laidler and Cross (1976)), models of entrepreneurial behaviour (as in Brechling (1973) or Nadiri and
Rosen (1969)), models of consumer behaviour (as in Phlips (1978) or Deaton (1972a)), or models of portfolio choice
(as in Tobin (1969)).

Somewhat similar specializations in the form of the general adjustment equations occur where there are buffer
variables, such as cash in portfolio choice models, or inventories in some models of firm behaviour, or hours worked
in models of labour demand. Buffer variables in the short period are regarded as absorbing the consequences of
disequilibrium. Here if a sufficiently short time period is employed it may be appropriate to assume that the change in
the buffer variable is determined by an appropriate overall identity.

If it is known how agents formulate , and a loss function of the form (4.95) is appropriate, then a useful
theory-based dynamic specification can be derived. For example, if is generated by , then the
solution linear decision rule is

(4.100)

which is a system error-correction form (see section 2.6; chapter 3; and Nickell, 1985). In (4.100), and depend
on A, W and M such that and
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in (4.94) if , and an intercept in the equation would produce an intercept in (4.100) (so that the decision rules
would depend on the growth rate of in a log-linear model). Similarly, a rational expectations assumption in models
with strongly exogenous variables provides parameter restrictions (see Wallis (1980), noting that the vector of first
derivatives of the likelihood function provides an estimator generating equation for the model class, in the sense of
section 2.2, suggesting fully efficient computationally cheap estimators and highlighting the drawbacks of ‘fixed point’
methods). Nevertheless, stringent diagnostic testing of models must remain an essential component of any empirical
approach to dynamic specification (see chapter 2 and Sargan, 1980a).

Finally, where the economic model is set up in a form which makes it depend on a discrete decision period, and the
unit time period is inappropriate, the use of continuous-time-period models, and the discrete-time-period
approximations to them discussed by Bergstrom (1984), may considerably improve the dynamic specifications of
the model whenever there are valid a priori restrictions on the continuous-time model.

Notes
1 This is a very old point, but bears repetition: ‘all induction is blind, so long as the deduction of causal connections

is left out of account; and all deduction is barren so long as it does not start from observation’ (taken from J.N.
Keynes, 1890, p. 164). Also, it has long been seen as essential to treat economic theory as a ‘working “first
approximation to reality” in statistical investigations’–see Persons (1925).

2 Strictly, (4.12) relates to but is used for notational simplicity; L(·) can be considered as the reparameterized
concentrated likelihood if desired.

3 For boundary points of θ, the situation is more complicated and seems to favour the use of the LM principle–see
Engle (1984). Godfrey and Wickens (1982) discuss locally equivalent models.

4 See, for example, Marget's (1929) review of Morgenstern's book on the methodology of economic forecasting.
5 Implicitly, therefore, our formulation excludes deterministic factors, such as seasonal dummies, but could be

generalized to incorporate these without undue difficulty.
6 It is difficult to define ‘better’ here since sample data may yield a large variance for an effect which is believed

important for policy but produces inefficient forecasts. A minimal criterion is that the econometric model should
not experience predictive failure when the ARMA model does not.
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Part II The Development of Empirical Modelling
Strategies

Chapters 2 and 3 chart the state of play up to about 1975, highlighting the problems I saw confronting empirical
research, and some of the developments seeking to resolve those problems. In fact, five branches of my research were
growing more or less contemporaneously: (1) Monte Carlo; (2) computer implementation; (3) empirical applications;
(4) econometric technology; and (5) methodology.

1 The ostensible role of Monte Carlo had been to study by simulation the finite sample behaviour of econometric
estimators and tests in situations which were too complicated to analyse. However, I had become interested in the
methodology of Monte Carlo, and sought to tackle its two main problems of specificity (results may depend in
unknown ways on the points chosen for study from the parameter space) and imprecision (a different set of
replications would generate a different outcome for a given point in the parameter space). Techniques for resolving
both were used in my first study (with Pravin Trivedi in 1972), where we estimated regressions linking (for example)
biases to data generation process (DGP) parameter values in order to increase generality (a form of response surface)
and used antithetic variates to reduce imprecision. My (1973) asymptotic theory analysis of the Monte Carlo results
obtained by Steve Goldfeld and Richard Quandt (1972) suggested reformulating the response surface approach by
using asymptotic outcomes as regressors. In effect, this led me to explain the deviation of the finite sample outcome
from its asymptote, rather than from zero.

Denis Sargan showed me how to relate this idea to the variance reduction technique known as control variables,
essentially using the Monte Carlo estimate of the asymptotic behaviour as a within-experiment control for the
simulated finite sample behaviour. This led to a series of papers (Hendry and Harrison, 1974; Hendry and Srba, 1977;
Hendry, 1979b) specifically on such techniques, the development being summarized in Hendry (1984a) and in the
book about the Monte Carlo program called PC-NAIVE (see Hendry et al., 1991).

However, Monte Carlo methods also directly influenced my thinking about empirical methodology. As noted above,
Monte Carlo helped clarify the distinction



between the mechanism (or DGP) and the model (or econometric equation). Next, it helped me understand the notion
that the ‘errors’ on an empirical model were a derived function of the properties of the DGP. Third, it highlighted the
inadequacies of simple-to-general modelling strategies. Finally, it must have been an important background input to
formulating the notion of encompassing which asks whether one empirical model can account for the results obtained
by another: in a Monte Carlo context, where the numerical values of the DGP parameters are known, it is possible to
numerically calculate what results any model fitted to data from that DGP should produce in a sufficiently large
sample. Thus, one could always account for the results of estimated models when the DGP was known; the next step
was to ask if one could do so using an estimated model as if it were the DGP (see chapter 8).

Several Monte Carlo studies are reported in part II, although of these only the study of COMFAC with Grayham
Mizon in 1980 is substantive (chapter 7).

2 Partly from writing Monte Carlo programs and partly because of extending the econometric software of AUTOREG
(reviewed in chapter 14), much of my time was spent programming computers; and debugging the code! I was ably
assisted by Robin Harrison, Andy Tremayne and Frank Srba at the LSE; and Neil Ericsson, Yock Chong, Adrian
Neale and Jurgen Doornik at Oxford, but the task was endless (and still continues with PC-GIVE, PC-FIML and PC-
NAIVE to this day). Program development is rather like solving detective mysteries: incorrect results appear under
some circumstances and the bug (or bugs) have to be detected from the evidence in the output, apprehended and
corrected — without creating further errors. I find programming a very challenging activity and have always felt that
the intellectual effort involved is seriously underestimated by those who have never tried to write computer code
exceeding a hundred lines. PC-GIVE now comprises over 65,000 lines of code, and I regard it as one of my major
contributions to empirical econometrics. As noted in the Introduction, it explicitly embodies the methodology, the
evolution of which is the subject of this book.

There has always been a constant interaction between computer implementation and econometric theory and
methodology in my research. Chapters 13 and 14 exemplify the impact on econometric theory, but I cannot now
articulate specific instances where the feedback from programming onto methodology was fundamental until I tried to
develop PC-FIML in 1984–6. There, my thinking about system modelling was radically changed by the exigencies of
writing coherent software (see Hendry et al., 1988).

3 In 1972, house prices in London virtually doubled in about three months and I became intensely interested in
analysing that phenomenon. The ensuing research endogenized house prices in the building society model of chapter
3, and in turn led to studies of new construction and new house prices with Neil Ericsson (see Ericsson and Hendry,
1985; Hendry, 1986a). The house price equation itself was not published until 1984 (referenced as Hendry (1984b)
from Hendry and Wallis (1984)) but even by 1976–7, I was using my model successfully to predict the next housing
boom and to test out my ideas about data analysis in a situation of considerable personal relevance.

My other main area of empirical application between 1974 and 1978 was
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consumers’ expenditure, and that topic is amply covered below, as is money demand which became the focus of my
interest around 1977. Since most of part II is about the interaction between empirical studies and the evolution of the
methodology, I will not comment further on that aspect here.

4 Empirical research and programming both require disproportionately large time inputs relative to their professional
evaluation, have very long gestation lags (as the reader must have noted by now) and are difficult to publish. Thus, they
cannot be recommended as ways to establish or develop a career, and especially cannot be recommended as methods
of fulfilling publication commitments for grant-awarding bodies. Developing new technology (estimators, tests,
distributions etc.), however, is relatively straightforward, fairly rapid for the most part and easy to publish when the
result is ‘new’ and ‘correct’. Moreover, ‘sophisticated tools’ or ‘new frills on established tools’ seem to carry excess
glamour and can be recommended as an excellent career route. This may partly reflect the risk aversion of editors
(empirical results are often controversial, whereas no-one attacks ‘correct theory’ however dull and otiose it may be)
but is also a product of professional refereeing practices (empirical work is usually reviewed by a subject area specialist
and a specialist econometrician, one of whom is almost bound to find a ‘mistake’ or regard the results as obvious). Of
course, it is also the product of the manifest methodological fact that destruction is valid and all too easy for empirical
models of complicated data processes, whereas construction is invalid in general and extremely hard in practice. A
resolution of this prevalent problem is offered by the methodology which evolves in this book, namely to treat all
empirical research findings as part of a progressive research process, not as final answers. Thus, the correct criteria are
whether a study improves over previous knowledge in the relevant area, and not whether the result is a new law which
can be carved in stone (for a similar view, see Pagan, 1987).

The last claim was not the view of economics editors in the 1970s, and probably is not their view even now, so how did
I survive? The obvious answer is correct — I published theory papers intermittently. The main ones, other than on
Monte Carlo, were (1971), (1975a) and (1976a), as well as Hendry and Tremayne (1976), although only the (1976a)
piece is reprinted here (as chapter 13), partly as it was easily the most important of these contributions and partly
because it had an important, if indirect, impact on the communication of the methodology as follows.

A substantial fraction of the space in many econometrics textbooks is devoted to linear simultaneous equations
estimators, of which there are dozens. Deriving these, their limiting distributions and their asymptotic equivalences
consumed a considerable proportion of the time when teaching econometrics courses, with the opportunity cost that
far less time could be devoted to the intrinsically more difficult problems of econometric modelling. By discovering a
single simple formula from which all known (and many other) estimators could be derived, and their asymptotic
relationships seen at once, a massive amount of time and intellectual energy were freed for other topics. The formula
(which I called an estimator generating equation) was based on earlier work of Jim Durbin (1963) which has only
recently appeared in print (Durbin, 1988). Jerry Hausman independently evolved a closely related approach in his 1975
paper.
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5 By 1975, econometric methodology had become a theme in its own right, and Aris Spanos kept directing me towards
related ideas in other subjects, especially the philosophy of science literature. I am embarrassed to admit that I had
virtually no professional contact with my colleagues in that discipline while at LSE, although I knew several of them
socially. In retrospect, I probably saw myself as trying to solve specific empirical puzzles and modelling problems
rather than attacking methodological issues (with a capital M). In any case, economist friends often joked that those
who could not do anything else did methodology, and I was not yet ready to contemplate the ultimate decline that I did
methodology! Fortunately, Aris persuaded me to read several of Karl Popper's books (1961, 1963, 1968) as well as
those by Thomas Kuhn (1970) and Imre Lakatos (1974), which fostered my interest in scientific methodology (as
chapter 1 will have confirmed). I learned a great deal about invalid practices, became convinced of the essential role of
progressive research strategies and gradually realized that no valid constructive methodology could be promulgated.
Nevertheless, to use an analogy suggested by Gene Savin, while random searching for gold might strike a vast hoard,
and sound geological study could lead to a failed search, most investors would back a company using the latter over the
former.

Despite completing several time-consuming empirical studies, it was clear that I did not know how to do empirical
research, nor could I teach students how to do it in anything like a structured way. The role of destructive testing was
reasonably clear but no constructive approaches seemed justifiable.

Three events helped clarify the way ahead, although their outcomes are reported in exactly the reverse order in
chapters 5, 6 and 8. First, I was working with James Davidson on modelling aggregate consumers' expenditure and the
impact of measurement errors on parameter estimates, where we had a number of puzzling results. I still remember
the afternoon in the LSE Economics Research Centre when we suddenly realized that the type of model in chapter 3
characterized a class which had the generic property of reconciling long-run equilibria with dynamic trajectories. It did
not take long to show that it was the same type of model as in Sargan (1964a) and, most importantly for our pressing
needs, it accounted for most of the mass of seemingly conflicting evidence we had accumulated about consumers'
expenditure in the United Kingdom. The model class in question is that of error correction mechanisms (ECMs),
which are exposited in chapter 4 above and are investigated and applied in chapter 8 below. The later discovery of the
important role played by inflation (following Deaton, 1977) then resolved the remaining anomalies (or so we thought).

Second, I had tried unsuccessfully in mid-1975 to generalize to higher order error processes Denis Sargan's (1964a)
test (see chapter 4, section 2.6, case (g)) for the validity of a first-order autoregressive error against the alternative of
one-period-longer lags. In retrospect, the basic problem with my attempt was that the hypotheses were unordered, and
sometimes non-nested, which was in turn a result of viewing the problem as simple to general. In a remarkably quick
response, Denis formulated the general concept of common factors in dynamic equations, extending his earlier results
to sequences of Wald tests and implementing the new method in a computer
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algorithm (called COMFAC) which inherently had to operate from the general to the simple. These results were
eventually published as Sargan (1980a), and they led Grayham Mizon to write his (1977a) paper on the selection of
dynamic models, which also exploited a general-to-specific framework to develop naturally ordered sequences of
hypotheses, an approach he had advocated and applied to functional forms in Mizon (1977b) (written several years
earlier).

COMFAC yielded a nearly complete understanding of autoregressive errors in dynamic equations and confirmed the
inappropriateness of the conventional approach to mopping-up residual autocorrelation. While both of these notions
(error correction and COMFAC) are technical developments, they had important methodological implications.
Consequently, Grayham Mizon and I felt that an exposition was needed, leading to chapter 6, which was written after
chapter 8 was completed, even though it appeared in print earlier. I have also put the other paper on COMFAC with
Grayham as chapter 7, although it was completed much later (1980). Grayham had been working in 1975 at Statistics
Canada on the demand for durable goods and saw that study as a convenient vehicle for trying out COMFAC
procedures. Following chapter 8 and our 1978 paper, we became involved in investigating the behaviour of other
model types (note the dismal performance of the ECM we tried) and in studying the finite sample properties of
COMFAC, which accounts for the delay. The interaction between Monte Carlo evidence and empirical research was
close in the overall LSE approach and yet is not well represented in this volume, so that chapter 7 usefully emphasizes
that interplay as well as illustrating several aspects of both Monte Carlo and data analysis.

Third, despite having completed chapter 3 by mid-1975, I became inadvertently embroiled in the ‘time series versus
econometrics’ debate, and responded in chapter 5. Although it was published first, chapter 5 was written after the first
draft of chapter 8; however, it also fed back to influence how we completed the DHSY study (as it has since been
referenced; usually pronounced ‘daisy’). Had the order of the research been the same as that of the publications, some
of the mistakes in chapter 8 might have been avoided, as we shall see below.

The remaining chapters of part II arose as consequences of each other and reactions to chapters 5–8, and illustrate the
progressive research strategy in operation. Thomas von Ungern-Sternberg (then at LSE) proposed a number of
potential improvements to DHSY, and chapter 9 reveals that he was correct. The role of inflation could be interpreted
primarily as proxying income mis-measurement; an integral correction mechanism was needed in addition to the ECM,
and, by not going from the general to the simple at every stage, several of the inferences in DHSY on the roles of
seasonality and liquid assets were awry.

Chapter 10 was necessary to test DHSY against the model type proposed by Hall (1978) and was a step in the
formalization of encompassing as an independent construct in model evaluation.

Chapter 11 sought to extend the methodology to account for apparent predictive failure and was explicitly general to
simple. It was the empirical stimulus to the formalization recorded in part III since many of the concepts were
imprecise at the time the chapter was written, but it helped popularize ECMs. Chapter 11, part (ii), is a later evaluation,
which also benefited from a progressive step reported in Trundle
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(1982). Finally, chapter 12 is a review of much of my work on money demand; it is rather polemical, but at the time I
was experiencing great difficulty in publishing empirical studies in the journals whose readership I arrogantly thought
needed to know about these developments.
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5 On the Time-Series Approach to Econometric
Model Building5

Preamble
On this occasion, the first chapter of a new part does need a brief preamble of its own.1

Chapter 5 is a critique of a critique presented at a conference at the Federal Reserve Bank of Minneapolis in 1975;
Christopher Sims (1977a) (who edited the conference volume in which it appeared) called my piece ‘somewhat
ascerbic’. The 1973 oil crisis had proved to be a large shock to OECD economies, and an even larger one to their
macroeconometric models. Many of these systems mis-predicted badly and their credibility fell sharply within the
profession. Views differed widely as to why such predictive failure occurred and ranged from taking the outcome as
corroboration of pre-held beliefs that such models were nearly useless, through regarding it as evidence of their
incorrect (Keynesian) economic theory basis, or seeing the problem as a reflection of inappropriate methodology; to
extending the systems to incorporate oil sectors and significant influences from oil prices, thereby attributing the
problem to a mis-specification which by implication was now corrected. Criticisms abounded, as did proposals for
solutions. My own view was that the concept of macroeconometric systems based on stochastic-dynamic equations
which did not assume that all markets cleared and all agents correctly foresaw the future remained a sensible basis for a
research programme. The flaws with their present incarnation lay in inappropriate research tactics, particularly due to
using excessively restrictive equation specifications where many of the constraints were imposed without testing.

In effect, I concurred with many of the criticisms extant in the literature, but dissented from most of the proposed
solutions, as these seemed equally open to criticism in turn. The alternatives I suggested undoubtedly also had
drawbacks, but the idea that all research — whether theoretical, methodological or empirical — should form part of a
steady progression had already begun to seem the central concept (see the penultimate paragraph of the chapter).

Many of the points in chapter 5 had occurred in my earlier work and I was certainly not the first to enunciate them
anyway. However, those made explicitly concern

5 Reprinted from Sims, C.A. (ed.), New Methods in Business Cycle Research, Minneapolis, MN: Federal Reserve Bank of Minneapolis, 1977, pp. 183–202. This research was
undertaken in part while the author was visiting at the Cowles Foundation, Yale University, supported by grants from the National Science and Ford Foundations. He is
grateful to Kenneth F. Wallis for valuable comments on an earlier draft of the paper and to Stephen M. Goldfeld, Cheng Hsiao, Charles F. Manski and Thomas J.
Rothenberg for helpful discussions about the material herein.



1 the relationships between non-stationarity, differencing and error correction models,
2 the inappropriate assumption that residual autocorrelation corresponded to autoregressive errors (i.e. that

common factors were present without conducting COMFAC tests),
3 the proliferation of competing models, and how to reduce their number, and
4 the fact that the quality of empirical research could be improved at low cost.

Clearly, (1) relates closely to the views in chapter 3, and had already been advocated as a resolution of the debate
between time-series analysts and quantitative economists. However, I still assumed that long-run economic theory
information could be implemented to produce stationary variables and blithely ignored any need to review the
underlying distributional theory when the raw data were non-stationary. These lacunae helped to prompt the counter-
critique in Granger (1981b) which led on to the theory of cointegration he enunciated in Granger and Weiss (1983),
Granger (1986) and Engle and Granger (1987) (see chapter 19).

Equally, (2) is a brief exposition of Sargan (1964a) with the benefit of drafts of Sargan (1980a). Chapters 6 and 7 focus
on this issue and the intimately related one of general-to-simple modelling. I remain convinced that COMFAC is a
crucial modelling concept as it reveals that autoregressive errors are a special case of dynamic models and hence are a
restriction of a model, and not a generalization as presented in most textbooks. A widespread understanding of that
point (and a corresponding revision of the textbooks!) would probably yield the largest single improvement in the
quality of time-series econometrics.

Point (3) is a pre-statement of the notions embodied in chapter 8, which derived from chapter 3’s attempt at ‘theory
encompassing’. The analysis is tentative and vague, although the principle is clearly stated.

Finally (4) reflects upon the issue of ‘quality control’ through rigorous testing in empirical econometrics, based on the
belief that, properly used, econometrics in the sense of the ‘mutual penetration of quantitative economic theory and
statistical observation’ (Frisch, 1933) could deliver useful empirical relationships, for testing economic theory,
predicting and policy making.

On the positive side, this chapter was a precursor to the power function response surfaces in chapter 7 and in later
papers such as my 1984 Monte Carlo survey and Chong and Hendry (1986). At the conference, and during the year I
spent in the USA between 1975 and 1976, kindly hosted by Yale University and then the University of California at
Berkeley, I also learned that my approach was not generally regarded as being a development of ‘traditional’
econometrics but was viewed as ‘atheoretical’. At the time — having only just completed chapter 3 — I found this
reaction very odd, but in retrospect I can see that two facets of my approach probably induced it. First, my modelling
methods were becoming increasingly data based since my worst mistakes in earlier studies had derived from not
carefully analysing the data prior to modelling it. Second, the economic theory models I found most useful either were
of long-run equilibria or, if dynamic, were feedback mechanisms rather than expectations equations. Intertemporal
optimization theories were becoming the basis for a substantial fraction of applied econometrics in North America,
and the resulting models inherently involved expectations, usually assumed to be rational in the sense of Muth (1961).
Thus, the epithet ‘atheoretical’ probably connoted ‘not intertemporal optimization’ rather than the view espoused by
Thomas Sargent and Christopher Sims in the second paper on which chapter 5 comments (see, for example, Gilbert,
1986).

Note
1 The original title was ‘Comments on Granger–Newbold's “Time-series approach to econometric model building”
and Sargent–Sims' “Business cycle modeling without pretending to have too much a priori economic theory” ’. It has
been abbreviated as above for convenience.
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1 Introduction
It is certainly impossible to disagree with Granger and Newbold (1977a) on the desirability of incorporating the best
features of time-series analysis into econometric practice. Moreover, many of Granger and Newbold's criticisms of
econometric modelling are obviously valid and should be implemented as rapidly as possible in the conduct of
empirical research. Indeed, econometricians have voiced similar criticisms of current methodology, and the additional
support of Granger–Newbold will hopefully increase the probability of changing the state of the art in an appropriate
direction.

Nevertheless, one must not misconstrue the solution to such criticisms since it would be equally unproductive to adopt
only a time-series approach which neglected econometric methods. Also, since econometrics has derived benefit from a
time-series-based critique, it would seem useful to undertake the converse in the hope of facilitating further interaction.
Thus, I shall first consider whether more appropriate econometric methodology than ordinary least squares (OLS)
with only Durbin–Watson statistic diagnostic testing can help resolve the ‘nonsense regressions’ problem and then
discuss certain difficulties which can arise in selecting appropriate univariate autoregressive moving-average (ARMA)
models for stationary data series. Next, the role of differencing will be examined, and finally the systems case will be
briefly considered.

At the outset, however, Granger and Newbold are incorrect in suggesting that econometrics has not been much
concerned with lag structures and/or with attempting to overcome ad hockery in theories which incorporate lags (see,
among others Koyck, 1954; Nerlove, 1958; Fisher, 1962; Jorgenson, 1966; Dhyrmes, 1971). Further, contrary to an
impression also supported by Naylor et al. (1972), econometric estimation is not and never has been synonymous with
simultaneous equations estimation. Considerable attention has been devoted to estimating models with autocorrelated
residuals, including both autoregressive schemes (see Cochrane and Orcutt, 1949; Sargan, 1959; Fisk, 1967) and
moving-average representations (see Klein, 1958; Phillips, 1966; Trivedi, 1970). I certainly agree that all too often
autocorrelation has been treated as a ‘nuisance’ and that usually only low-order processes have been examined, but this
is not universal.1 These comments are not intended as an apologia; rather they are an attempt to stress that the ‘two
philosophies’ are not as distinct as Granger and Newbold initially suggest.

2 Autocorrelation Transforms Applied to Non-Stationary Data Series
The results in tables I and II of Granger and Newbold (1977a) provide two salutary warnings:

1 do not misinterpret the ‘significance’ of regression coefficients based on highly autoregressive data when
equations have high R2 but low Durbin–Watson statistic values;
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2 mechanical use of the Cochrane–Orcutt transformation to ‘correct’ autocorrelation will not solve the problem
of spurious significance when residual autocorrelation actually represents mis-specified dynamics (compare
Prais, 1975).

These criticisms are certainly valid, but may be labelled as applying to ‘poor average’ practice. Thus, a more appropriate
procedure would include the test for the validity of the autoregressive transform proposed by Sargan (1964a) and
described again below. Further, this test provides a constructive diagnostic statistic for one important aspect of
dynamic specification (see chapter 2). Indeed, such a procedure has interesting implications when applied to the
spurious regressions’ problem discussed by Granger and Newbold.

Consider their equation

(5.1)

where Yt and Xt are independent IMA(1,1) processes. Direct OLS estimation of (5.1) produces the results Granger and
Newbold show in their table I. If the (false) assumption is made that the low Durbin–Watson values arise from the
process

(5.2)
then applying the Cochrane–Orcutt procedure generates the outcomes in their table II. The autocorrelation transform
reduces but does not completely remove the spurious significance problem.

However (5.1) and (5.2) are equivalent to

(5.3)which is a restricted version of

(5.4)

Sargan (1964a) proposed testing the validity of the autoregressive restriction in (5.3) using the result that, if k valid
restrictions are imposed, then twice the natural logarithm of the likelihood ratio is asymptotically distributed as . If vt
in (5.3) is normally distributed (as it is in Granger and Newbold's study) then

(5.5)

when (5.4) is the unrestricted version of (5.3). On the other hand, if the apparent autocorrelation in (5.1) arises because
it is a mis-specified approximation to (5.4), the latter will produce a better fit than (5.3) and hence too large a value for
z1. It would be interesting to know how often (5.5) led to the rejection of (5.3) against (5.4) at a conventional
significance level for in Granger and Newbold's autoregressive integrated moving-average (ARIMA) model. I
hazard the guesses that z1 would reject (5.3) reasonably frequently relative to the number of cases of spurious
significance in table II and also that, in (5.4), Xt and Xt − 1 would now rarely have a significant effect — certainly their
individual coefficients could not generally be significant because of collinearity and this finding should prompt a
further revision of the dynamic specification.
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Precisely how one proceeds at this stage will depend on the status of the theory relating Yt to Xt. If the study is simply
an exploratory empirical modelling of the data set, then it would seem reasonable to repeat the analysis described
above with (5.4) constituting the new baseline; alternatively, one could recommence the exercise using a specialization
of (5.4) obtained by deleting regressors with t values smaller in absolute value than some positive number c (e.g. c might
be unity). Either way, provided that the refitting is conducted allowing for wt to be autocorrelated (compare chapter 2),
then it is hard to see why an approximately correct model could not be detected even for the paradigm used by
Granger and Newbold. Clearly, these suggestions could be checked in a simulation study similar to that reported by
Granger and Newbold.

As with any iterative model revision approach (including Box–Jenkins methods), preliminary test biases may be a
serious problem.2 Thus, Peck (1975) provides simulation evidence that (on a median absolute error criterion) for
almost all values of the autoregressive error parameter ρ in (5.2) the maximum likelihood estimator allowing for
autocorrelation like (5.2) is superior to most other estimators based on preliminary tests of the significance of ρ for
most significance levels (except, of course, automatic rejection of H0: ρ = 0). On the other hand, this supports the
principle (suggested above) that refitting should always allow for potential autocorrelation and that (5.2) is a simple and
inexpensive process to estimate using modern computing equipment.3

Nevertheless, (5.4) is still an incorrect approximation to the ARIMA process

(5.6)

which actually generated the data, and even if the Xt regressors were deleted (5.4) would continue to remain
inappropriate if the autocorrelation in wt was assumed to be autoregressive. [This remark raises the issue of the
consequences of using incorrect approximations to ARMA or ARIMA processes, and since Granger and Newbold
have described allowance for autoregressive errors like (5.2) as ‘naive’, section 3 of the original paper considered such
incorrect approximations in some detail for simple ARMA models.]

3 Differencing Economic Time Series
Granger and Newbold recommend the use of first differences to achieve (more) stationary series and so avoid the
problems discussed by Granger and Newbold (1974). There certainly do exist cases where differencing can be helpful,
but it is not a universal panacea (no mechanical procedure ever is in econometrics). This occurs because there are two
distinct interpretations of a difference transformation to an equation.

Operator Form
In this mode, Δ = 1 − B (where B is the lag operator) is considered to operate on an equation (taking (5.4) as an
example), transforming
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(5.7)

to

(5.8)

An intercept in (5.8) would correspond to a trend term in (5.7), and the autocorrelation properties of the error term
are completely altered since Δ wt is white noise if (and only if) wt is a random walk.

Restriction Form
An equation in first differences can also be obtained from (5.7) by imposing the parameter restrictions that γ2 = −γ3

and γ4 = 1 which yields

(5.9)

In this case, if the restrictions are valid, the interpretation of both the intercept and the error term are unaltered and (5.9)
implies the exclusion of Δ Xt−1 and Δ Yt−1 compared with (5.8). Equally important is that if (5.9) is the true data
generation process for some series Yt, Xt such that Δ Yt, Δ Xt and wt are stationary and wt is white noise, then so must
be the error wt on the equation (5.7) in levels (see Granger and Newbold, 1974). Further, the validity of the difference
restriction seems to be testable since, on the null hypothesis, wt is stationary and the variables Xt−1 and Yt−1 added to
(5.9) should have zero coefficients; indeed the test is just one of their joint significance when included in (5.9). In this
context (5.8) becomes an incorrect specification (falsely including Δ Xt−1 and Δ Yt−1 and excluding the intercept) and has
a moving-average error with a coefficient of −1. However, new problems of ‘spurious significance’ should not afflict
Granger and Newbold's procedures unless these are carelessly applied, since always proceeding from the most
parsimonious case should ensure detection of (5.9) before (5.8) is reached. It is also worth repeating that the original
problem (of obtaining ‘nonsense’ results if γ2 = 0 but Yt is regressed on Xt without including Yt−1) still lurks in the
background.

Nevertheless, in econometric terms the problem with differencing is not over, since both (5.8) and (5.9) have
unacceptable features as universally valid types of formulation for economic systems. Let Yt = ln Yt and xt = ln Xt when
Y and X are, say, consumption and income. Then (5.9) has no equilibrium solution (or is zero if γ1 = 0), and the time
paths that yt can describe are independent of the states of disequilibrium existing in the period prior to observation.
Since there are more ways of obtaining stationarity than differencing, the choice of which transformation to adopt
should be based on economic theory considerations. Marginal adjustments do suggest differencing, and Fisher (1962)
has argued in favour of difference formulations for short-run analysis because they avoid the need to specify the long-
run behaviour of the process under study (compare chapter 3). On the other hand, long-run unit elasticities suggest
the use of ratios. Reconsider (5.7) written as

(5.10)

(yt−1 − xt−1 = ln (Yt−1/Xt−1)). This imposes the weaker (but still testable) restriction that 1 − γ4 = γ2 + γ3 = −γ5 > 0 and
produces an equation such that
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1 the mean lag in levels is long but finite, and most of the adjustment occurs in the first period;
2 the long-run elasticity of Y with respect to X is unity, but the propensity varies with the growth rate of X;
3 the time path of yt is dependent on previous disequilibrium states;
4 the equation has sensible steady-state and equilibrium properties.

Such a formulation is excluded if only differenced variables are considered. A model of the form (5.10) helps explain
the very low long-run consumption–income elasticities reported by Wall et al. (1975) who estimate equations like (5.9)
(excluding all levels variables) using bivariate modelling techniques based on a Box–Jenkins transfer function approach.
Moreover, the Q statistic failed to indicate the existence of this mis-specification.4

4 Simultaneous Equations Systems
The above analysis has deliberately ignored the problem of contemporaneous feedbacks affecting the relationship
under study in order to isolate some specific difficulties which I felt merited attention. Simultaneity is well known to
introduce a host of additional problems including non-unique identification of structural relations (in the
econometricians' sense), bias and inconsistency in structural parameters estimated by least squares procedures (which
can create spuriously significant relationships as well as camouflaging the very existence of the inconsistencies), bias in
residual autocorrelations towards white noise and so on (see, for example, Hendry, 1975a). Thus, Teräsvirta (1976) has
demonstrated that the relevant variant of the Q statistic does not have a χ2 distribution in systems with feedback. It
seems as difficult to justify the use of Box–Jenkins transfer functions for structural estimation (compare Wall et al.,
1975) as it is to justify two-stage least squares estimation of dynamic models with autocorrelated errors (see Hendry
and Harrison, 1974); both inappropriate applications are likely to yield seriously biased estimates.

The eight-step method proposed by Granger and Newbold is, of course, designed to avoid the immediately preceding
objections (also compare Wall and Westcott, 1974). On the one hand, the discussion in previous sections suggests that
there are problems involved in correctly identifying appropriate univariate ARMA processes, that diagnostic tests may
lack power to detect certain inadequacies and that differencing is not fully valid in an interesting class of dynamic
models. The impact of such difficulties for bivariate modelling exercises seems to deserve investigation. However, if
the results are only intended for forecasting purposes, these problems in no way proscribe the use of Granger and
Newbold's approach as a supplement to other methods (although its labour intensity might!). Specifically, such forecasts
could provide a formidable opponent for econometric systems to try and outperform, and the pooling of forecasts
from these rather different sources seems to merit greater empirical application (see, for example, Nelson, 1972).
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5 Conclusion on Granger and Newbold
A thorough understanding of time-series analysis is an essential component of the intellectual tool-kit of
econometricians studying time-series data – but it remains only one of many ingredients. Granger and Newbold have
helpfully pointed out problems of potential relevance to that non-negligible proportion of applied work which neglects
time-series considerations. One symptom of that neglect may be the less than totally impressive forecasting record of
macroeconometric systems (see Naylor et al., 1972).

My major doubts concern how to remedy such a situation. This paper has investigated the possibility that time-series
methods may be plagued by difficulties similar to those which trouble econometric model builders, although the
consequences of mis-specifying ARIMA models are obviously rather different from the consequences of mis-
specifying econometric systems. Some practical evidence has accumulated, however, since there have been several
recent empirical studies comparing time-series models with econometric equivalents (see inter alia Zellner and Palm,
1974; Trivedi, 1975; Prothero and Wallis, 1976). Such studies also serve to highlight how similar the ‘two philosophies’
are by interpreting ARIMA processes as representing the (unrestricted) final forms of the same systems for which the
econometrician seeks estimates of the structural equations. For short data series, valid structural information from
economic theory must be of considerable importance for estimation efficiency and both Trivedi (1975) and Prothero
and Wallis (1976) find that the econometric model fits rather better over the sample period. Unfortunately, such
evidence is not incompatible with the econometric system also forecasting less well.

Nevertheless, I suspect that generalizations of econometric techniques specifically designed for multivariate times
series will prove more useful in the medium term than any purely data-based approach. Such developments are feasible
and are applicable to simultaneous equations systems of more than two variables (see Chapter 3). Moreover, the
modelling can be closely linked to (and test) the relevant economic theory, hopefully producing the joint outputs of
understanding and reasonable forecasts.

6 On Business Cycle Modelling Without Pretending to Have Too
Much a priori Economic Theory
The Sargent and Sims (1977) generalization of factor analysis to the frequency domain is a most useful addition to the
range of techniques currently available for investigating time-series data. Existing time domain methods comprise a
variety of specializations of vector ARMA representations and of econometric systems, with occasional use (in
economics) of factor analysis. In the frequency domain there are spectral analysis, spectral estimation of econometric
models and now the Sargent–Sims ‘specfac’ analysis.

All these methods can be conveniently interpreted as seeking to provide parsimonious (but different) parameter-
izations of the matrix of cross-spectra of
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the endogenous variables (denoted by Sy(ω) for ω ∈ (0, π)). Thus, a (vector) ARMA process assumes that Sy(ω) can be
closely approximated by a (matrix) rational function; spectral analysis assumes constancy of the spectrum within
certain neighbouring frequency band groups and variation between groups (i.e. a step-function form); and an
econometric model assumes some specialization of an ARMA process for the error (often a constant over all
frequency bands) and parameterizes Sy(ω) from this and the observed spectral matrix of the ‘exogenous’ variables. In
their unobservable k-index model, Sargent and Sims postulate that 2π Sy(ω) = H1(ω) + H2(ω) whereH1(ω) is symmetric
positive semi-definite of rank k, and H2(ω) is diagonal. Assuming that y is normally distributed, maximum likelihood
estimates of H1 and H2 can be obtained together with information about the relative likelihoods of various values of k.

In practice, each data series is first separately pre-whitened by fitting a fifth-order autoregressive process with constant
and trend, and r frequency bands are used so that when a value of k > 1 is chosen it is not obvious how parsimonious
the resulting description is. Nevertheless, it is clear that new insights into the coherence structure of a data set can be
achieved by using ‘specfac’, and the development of an operational algorithm must be warmly welcomed.

However, I must question the motivation underlying the Sargent–Sims approach. Certainly, ‘important statistical
regularities are missed by large scale models’. But this does not imply that one must seek substitutes for conventional
econometric methods, as opposed to producing complements (which is how I prefer to interpret the role of the papers
presented by Granger and Newbold and Sargent and Sims), together with some (perhaps substantial) revision and re-
emphasis within econometrics.

On the one hand, the claimed proliferation of non-nested theories suggests that researchers are not building
successively on previous results by rejecting these in the course of establishing more general models (which yet remain
as parsimonious as the data will tolerate). This demands a more rigorous application of methodology, not its
abandonment. Too often ‘parsimony’ in an econometric model relates to unwarranted and unnecessary assumptions
about properties of the error process. When little is known concerning an auxiliary hypothesis, every effort should be
made to avoid assumptions whose failure will produce serious inconsistencies. Conversely, one can often fruitfully
exploit assumptions whose invalidity only produces inefficiency, unless this means a very large increase in variance. For
example, when estimating the structural form of a simultaneous system one can arbitrarily restrict the error covariance
matrix and/or the reduced form parameters without affecting consistency.5 Considerable simulation evidence
comparing ‘full’ and ‘limited’ information estimators suggests that even the efficiency loss of doing this is small.
Compare such a situation with that of estimating a dynamic equation with an ignored autocorrelated error; doing so can
produce large inconsistencies as well as serious inefficiencies in estimation and forecasting. A further example is that an
omitted first-order autoregressive error can be approximated by including one lag longer in every variable in the
equation with consistent but inefficient results, whereas the converse is not true, in general.

A closely related point is that the particular parameterization adopted for a behavioural relationship should often be
selected on the criterion of generating near
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orthogonal regressors to reflect agents' use of independent sources of information relevant to their decisions (see
chapter 8). This has the added advantages of circumventing collinearity problems and of minimizing any potential
biases arising from (unsuspected) omitted variables. There remain many other constructive ways of directly improving
econometric practice. Thus, it does not seem useful to concentrate on obtaining possibly spurious ‘improved
estimation efficiency’ by using, say, instrumental variables based on solved reduced forms if the cost is neglecting
autocorrelation and dynamic specification problems.

These comments assume that econometrics should strive to remain quantitative economics and not become just
statistical modelling. The latter certainly provides an alternative answer to the proliferation of economic theories – by
eschewing them totally. But this has the consequence that there is no paradigm to guide new research or integrate and
summarize achieved findings, and hence little progress results. Sargent and Sims note that the possible conclusions
from ‘specfac’ need not corroborate all conceivable economic theories; however, the deliberate avoidance of much a
priori input also means that it is unlikely to lead to the exclusion of many theories either.

Overall, I agree with the thrust of the criticisms which both Granger and Newbold and Sargent and Sims make of
existing methods. Nevertheless, I am not persuaded that new methods of business cycle research are the optimal
response for correcting inadequacies in econometric systems as against a (major?) redirection of attention towards
solving problems the existence and seriousness of which are well known. [The appendix on power functions is omitted
to avoid overlap with chapter 7.]

Notes
1 For counter-examples to each of these statements, see Sargan (1964a) and Wallis (1972a) – note that the former

also provides the test statistic for second-order autocorrelated residuals which Granger–Newbold request, but see
Durbin (1970) for a slight correction.

2 See, for example, Bock et al. (1973) and for a discussion of sequential testing procedures for autocorrelation see
Mizon (1977a).

3 Higher order autoregressive schemes are also relatively easy to estimate.
4 For a more detailed discussion and an application to the consumption-income relationship, see chapter 8.
5 See the ‘estimator generating formula’ in chapter 13.
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6 Serial Correlation as a Convenient Simplication,
not a Nuisance: A Comment on a Study of the
Demand for Money by the Bank of England6

with Grayham E. Mizon

Preamble
Because of their intimate links and common emphases, the two papers on COMFAC with Grayham Mizon come in
sequence. Although their publication was separated by two years, there was considerable overlap in the periods during
which the research was undertaken. As noted earlier, the development of COMFAC started at LSE in 1975, but the
analysis of its implications, its finite sample statistical properties and its empirical performance continued into 1979, by
which time Grayham had left LSE for Southampton University. The immediate stimulus to this chapter was a paper by
Graham Hacche (then at the Bank of England) on modelling broad money demand. I was editing econometrics papers
for the Economic Journal, and when Tony Courakis submitted a comment on Hacche's paper, Grayham Mizon and I
decided to comment as well since we were unhappy about the use of differenced data in econometric modelling.

Thus, chapter 6 was written as an exposition of COMFAC, and reiterates the analysis of the first-order autoregressive
error case described in chapter 2 but with an entirely different emphasis. Now we focus on the conceptual aspects, with
the unrestricted dynamic model having primacy and autocorrelated errors being a potential way of reducing the
parameterization. In earlier work, because of the implicit simple-to-general approach, the same statistic was treated as
merely another check on the initial autoregressive error model against a less restricted, but perhaps uninteresting,
alternative. The approach is forcefully general to simple in a sequential simplification strategy, although the application
is actually to equation

6 Reprinted from Economic Journal, 88 (September 1978) 549–63. This research was financed in part by a grant from the Social Science Research Council to the Programme in
Quantitative Economics at LSE. The idea of writing this paper arose during the refereeing process of Tony Courakis's note, and we are grateful to him for supplying his
data. We are also indebted to Denis Sargan for permission to quote extensively from his two unpublished papers on COMFAC, to Stephen Yeo for his comments on a
previous draft and to Frank Srba for undertaking all the calculations described below.



evaluation, not to model construction. A clear distinction is drawn between residual autocorrelation and error
autoregression: the former could be due to many possible causes and hence did not entail the latter. Conversely,
assuming an autoregressive error representation was identical to assuming a set of common factors in the dynamic
model and hence was a restriction of that model and not a generalization as I had viewed the matter in chapter 2, and
as many textbooks still do.

Non-stationarity and differencing again arise as major issues of contention. We interpreted differencing as imposing a
common factor and setting its value at unity, so that it became a testable restriction on a dynamic model. Many of our
arguments happen to remain correct, but we took no account of the different distributional properties of the tests
when unit roots existed in the individual data series. Wayne Fuller (1976) had considered that case, and David Dickey
and he developed those procedures in their 1979 and 1981 papers. In discussion, Gene Savin (then at Cambridge
University) questioned our assumption that t statistics remained valid when there were unit roots in the time series.
Naturally, Monte Carlo seemed the obvious way to investigate such an issue and so we simulated a two-equation
process with one unit root equation and one equation with an error correction mechanism (ECM). At conventional
critical values, the t test on the latter's coefficient rejected about 5 per cent of the time under the null when there was
no ECM feedback, and more often under the alternative, which we now call cointegration, and so we concluded that
we were not far wrong! As Aneuryn Evans and Gene Savin (1981) later discovered, we were just lucky.1 The
distribution is skewed under the null, but in the cases we had simulated, the 5 per cent critical value of |t| did occur in
the neighbourhood of 2 (see Dolado et al. (1990) for a review).

That simple Monte Carlo took several days to create, run and analyse in 1977–8 using NAIVE on a mainframe
computer. To gauge possible gains in productivity since then and to cross-check our earlier findings, I re-ran the
experiments in 1989 using PC-NAIVE (see Hendry et al., 1991). It took less than five minutes to recreate the data
generation process and model, just over an hour to calculate 10,000 replications on a 80386 computer, and about ten
minutes to analyse the results including the graphs reproduced below. The data generation process was

where the first equation is estimated by least squares. The rejection frequency for the t test that the ECM coefficient
was zero yielded P(|t| ≥ 2) = 0.052 (± 0.004). The empirical density function of t from the experiment is shown in
figure 6.1, standardized to have a zero mean and unit variance, and reveals a nearly normal distribution. Our earlier
Monte Carlo had indeed yielded the ‘correct’ result. However, (t ≤ − 2) = 0.040 and (t ≥ 2) = 0.012 and so most of
the 5 per cent rejection frequency is in the lower tail as predicted.

In fact, the hour it took the computer to calculate the simulations included doing the experiment recursively at every
sample size from T = 10 to T = 100. Figure 6.2 records the frequency with which |t| ≥ 2 occurred at each T, so that
the outcomes are shown for 90 experiments in all. The test rejection frequency is sample-size dependent but remains in
the interval (0.045, 0.058) near to, but overestimating, the nominals per cent level. Kremers et al. (1992) provide a
theoretical explanation for this result in terms of the signal-to-noise ratio, so such an outcome seems related to the
finding in Hylleberg and Mizon (1989). Note that the overall research productivity gain during the decade needs to be
measured in terms of several orders of magnitude!

When writing chapter 6, we worried about prior seasonal adjustment of the data. Ken Wallis's 1974 paper had revealed
that dynamic specification could be distorted by pre-filtering
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Figure 6.1 Frequency distribution of the t test on an ECM under H0 when T = 100.

Figure 6.2t test rejection frequency for an ECM under H0.

data, when different filters were applied to each of the variables entering a relationship. We also knew from DHSY the
extent to which results changed from adjusted to unadjusted data, but for comparability we accepted Graham Hacche's
data exactly as he had analysed them.

Finally, we were concerned that econometrics was drifting away from integrating economic analysis with statistical
theory and towards time-series modelling, so we sought to relate the conventional long-run money demand theory to
our empirical estimates in a similar way to that used in chapter 3. Since chapter 8 (DHSY) was essentially completed,
ECMs were separately delineated and their properties seemed promising — perhaps more so in the event than our
fondest hopes, given later research on cointegration.
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Notes
1Or unlucky perhaps, since otherwise we might have stumbled over cointegration notions before Clive Granger
formulated this idea.

1 Introduction
Tests of serial correlation in residuals have been used to check model adequacy for many years and the d statistic of
Durbin and Watson (1950) and the h statistic of Durbin (1970) have become important tools in the model building kit
of social scientists in general, as well as of economists. Similarly, the increased availability of computing facilities has
made possible the estimation of most forms of model (whether single equations or simultaneous systems) with serially
correlated error processes, parameterized as autoregressions and/or moving averages, or even not parameterized using
spectral methods (see, inter alia, Osborn, 1976; Espasa, 1977; and chapter 13). The ability to ‘allow for’ serial
correlation without great difficulty is well reflected in the applied economics/econometrics literature (see, for example,
Pindyck and Rubinfeld, 1976). However, is serial correlation correctly viewed as a nuisance for which ‘allowance’ is
required or does such a view of serial correlation represent a misunderstanding of its nature? The purpose of this note
is to suggest that serial correlation can be interpreted as a convenient way of representing dynamic relationships,
following the ‘common factor’ analysis of autoregressive error processes proposed by Sargan (1980a) (also see Mizon,
1977a).1 We hope that our exposition may encourage a reappraisal by empirical researchers of serial correlation in
residuals, clarify its relationship to dynamic specification and yield insight into some problems of applying ‘black-box’
time-series methods to economics data. The analysis leads to using sequential statistical procedures to test a number of
important hypotheses which are all too often arbitrarily assumed to be valid. Evidence acquired from the tests can be
incorporated in a model based on general economic considerations to produce an adequate approximation to the
process generating the data. If the model chosen at the termination of the selection process has an autoregressive error,
then it will be seen that this is a convenient simplification and not a nuisance, since it allows a reduction in the number
of parameters required to specify the data generation process. As a consequence, there is a gain in estimation efficiency
without loss of consistency.

The next section presents the conceptual aspects of the common factor approach to investigating dynamic equations,
while the third section applies the technique to one of the demand for money equations obtained by Hacche (1974) to
illustrate the practical value of the method. However, we believe that several aspects of the methodology so well
exposited by Hacche are not generally valid in economics and if widely adopted could misdirect empirical econometric
research using time-series data. Thus, we offer a critique of certain other features of Hacche's methodology, these
being in any case intimately connected with the problems of dynamic specification and serial correlation. To avoid any
possible confusion over similarity of name with the completely different technique of ‘factor analysis’ (see Anderson,
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1958), in what follows we have chosen to refer to Sargan's common factor method as COMFAC, which is the name of
the relevant computer program developed by Sargan and Sylwestrowicz (1976a).

2 COMFAC Analysis
Consider a stable linear regression equation relating a variable yt to its own lagged value and to the current and lagged
values of a regressor variable xt:

(6.1)

where |β1| < 1 and vt has a zero mean, a constant variance σ2 and is serially independent. Models similar to (6.1) occur
frequently in empirical econometrics (see many of the equations comprising the macroeconomic systems described in
Renton, 1975). Define the lag operator L such that Lnyt = yt − n and rewrite (6.1) as

or

(6.2)

In this alternative (but equivalent) notation, equation (6.1) is seen to result from multiplying the dependent variable yt
by a first-order polynomial in the lag operator L and multiplying the regressor variable xt by another first-order
polynomial in L.

If the parameter γ1 is equal to −β1 γ0, then equation (6.2) becomes

(6.3)

so that the terms involving yt and xt have a common factor of 1 − β1L and hence the polynomials in L multiplying yt
and xt have a common root2 of β1. Dividing both sides of equation (6.3) by the common factor yields

(6.4)

where

or
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from which it is seen that ut is generated by a first-order autoregressive process. Consequently, if the model (6.1) with
one-period-lagged variables satisfies the restriction γ1 = −β1 γ0, then the polynomials in the lag operator have a
common root and (in our terminology) this root is the serial correlation coefficient of a first-order autoregressive error
process when (6.1) is written as a static model with the error term ut. Thus, the fact that ut is generated by a first-order
autoregression is actually a convenience (and not a nuisance to be eliminated) in that model (6.4) only requires the
three parameters β1, γ0 and σ2 to be estimated rather than the four parameters β1, γ0, γ1 and σ2 of model (6.1). It is true
that while ordinary least squares can be used to estimate (6.1), the estimation of (6.4) involves more ‘complicated’
techniques, but this is not a serious problem given the wide availability of computationally efficient (and very fast)
programs implementing the Cochrane–Orcutt technique (for a survey, see chapter 13). The benefit from estimating
(6.4) rather than (6.1) when the common root restriction γ1 = −β1 γ0 is valid is the improved statistical efficiency of the
parameter estimates.

Whether or not such a common root restriction is valid could be tested as in Sargan (1964a) by comparing the
goodness of fit of model (6.1) with that of model (6.4).3 Nevertheless, it must be emphasized that estimating the ‘static
model’

(6.5)

and using the Durbin–Watson d statistic calculated from the residuals ût to test whether ut is serially independent
(against the alternative of a first-order autoregression) is not a test of the common root restriction. In fact, it can be
seen from the derivation of (6.4) that the d statistic tests whether the common root β1 is zero conditional on the
(arbitrary and untested) assumption that a common root formulation is valid. Of course, if (6.4) constituted the true
model then the common root restriction would be valid and the d test would provide a valid check for autocorrelation.
Conversely, when (6.1) has a common factor, it can be simplified to a static model with an autoregressive error. Thus,
there is a one-to-one correspondence between common factor dynamics and autoregressive errors. This statement
does not entail that residual autocorrelation (revealed by a significant d statistic for example) derives from such a source.

Equation (6.1) is obviously more general than equation (6.3) and hence there exists an infinity of situations in which
the dynamic behaviour cannot be summarized accurately by an autoregressive error; that is, a common factor cannot
necessarily be found. Expressed somewhat differently, comparison of (6.1) with (6.4) shows that the variables β1yt − 1 +
γ1xt − 1 in (6.1) are omitted from (6.4) and are being approximated by the error autoregression β1ut − 1. Consider the case
when γ1 ≠ −β1 γ0. An investigator who commenced from (6.5) (without an estimated autoregressive error) would
usually observe a significant value of d calculated from the residuals ût. This reflects the fact that (6.4), with a non-zero
common root, will usually provide a better approximation to (6.1) (especially in terms of goodness of fit) than will (6.5)
where the root is further restricted to be zero (see Hendry, 1975a). Frequently, a significant d will lead to an attempt to
allow for the observed autocorrelation, which entails estimating (6.4). However, the approximation of (6.1) by (6.4)
could still be very poor and a conventional mis-specification analysis indicates that substantial coefficient biases will
usually occur, yielding misleading values for impact and long-run multipliers, mean lags etc. In other words, residual
autocorrelation may reflect little more than dynamic mis-specification, which is a well-known but frequently ignored
result. The appropriate strategy is to commence from the general model and investigate how far it can be simplified
legitimately. Such an approach will be
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consistent whichever of the contending equations, (6.1), (6.4) or (6.5), constitutes the true model.

Before developing the generalization of the above analysis, we turn to a special case of the model with one-period lags
and a common root which has assumed undue importance in empirical work. This is equation (6.3) with β1 = 1, which
produces a simple regression model in the first differences (rather than the levels) of the variables:

(6.6)

when Δ = 1 − L. The use of differences to transform trending series to approximate stationarity has been advocated
by Box and Jenkins (1976) and their model building strategy appears to be gaining in popularity in economics (see
Naylor et al., 1972). Granger and Newbold (1974; 1977b, ch. 4) have forcefully described the pitfalls awaiting
economists who use regressions based on the levels of trending variables and have emphasized the long famous
‘spurious’ (or nonsense) regressions problem (see Yule, 1926). Nevertheless, instances of nonsense equations are not
unknown in applied economics.4 Granger and Newbold suggest that the danger is especially large when the warning of
a significant d statistic has been ignored5 and, to circumvent this problem, also propose the use of differenced variables.
However, while we accept that there are situations in which differencing is fully appropriate (namely, when there is a
common root of unity), there are also situations in which it can cause problems as serious as those it aims to solve (see
chapter 5). For example, if the true model is

(6.7)

where εt is a white noise error, but because yt and xt have trends a model in differences is used,

then the error ωt = Δ εt is a moving average with a coefficient of −1, swapping one awkward problem (potentially
spurious fits) for another (an error process with a root of minus unity). It is interesting to note that such ‘over-
differencing’ of the variables in a linear regression will result in the first-order serial correlation coefficient of the errors
being close to −0.5, a phenomenon often found in studies using differences (e.g. Hacche, 1974). Prothero and Wallis
(1976) note that a similar difficulty can occur also with ‘seasonal differences’ (i.e. using 1 − L4 on quarterly seasonally
unadjusted data in an attempt to remove seasonal factors). However, if the true model is equation (6.7) and the
tentative working hypothesis is equation (6.1), then there is a common root but its value is zero and the COMFAC
approach should detect this and allow the redundant dynamics or autocorrelation to be eliminated.

It might be objected that one cannot know a priori that (6.7) is the true model, and since economic time series often
have strong trends, any model formulated in levels is a potential candidate for the spurious regressions phenomenon.
A careful distinction is essential at this stage since we agree with the statement in the previous sentence, but do not
agree that analysing only differenced variables will necessarily provide a good solution to the problem. Rather, it seems
desirable to be able to test
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the hypothesis that the appropriate model should be formulated in differences by testing the hypothesis of a unit
common root against the alternative of a model which contains one more lagged value of both yt and xt with
unrestricted coefficients. A test of this last hypothesis can be effected by first testing whether there is a common root in
the alternative model, and if this hypothesis is not rejected, then testing whether that root is unity. Such a procedure
takes advantage of the fact that the hypothesis of a common root of unity is a composite hypothesis, and that the
constituent hypotheses ((i) there is a common root and (ii) that root is unity) form a uniquely ordered nest — see
Mizon (1977a). For example, when the appropriate model is a static equation with autocorrelation like (6.4) (in the
levels of yt and xt with |β1| < 1), then such a two-step procedure (in reasonable sample sizes) with a high probability
should not reject the common root hypothesis (i) (there being a common root of β1 in the equation yt = γ0xt + β1yt − 1 − β1

γ0xt − 1 + εt), but then hypothesis (ii) that the root is unity should be rejected (unless β1 is close to unity). If the
appropriate model is (6.1) with γ1 ≠ − β1 γ0, then (i) itself should be rejected.

A crucial point about such an approach is that it will be valid even if the underlying variables are ‘spuriously’ related in
levels but unrelated in differences. This can be seen as follows. Reformulate the maintained hypothesis (6.1) as

(6.8)

If equation (6.6) is valid (for any value of γ0), then the coefficients of yt − 1 and xt − 1 must both be zero in (6.8).6 A
common root entails γ1 = −β1 γ0 and that root is unity if also β1 = 1 in which case (6.8) does specialize to (6.6).
Hence the composite hypothesis of a unit root can be tested by testing the joint significance from zero of the
coefficients of yt − 1 and xt − 1 in (6.8). Moreover, if vt in equation (6.6) is a white noise (or stationary) error, then vt in (6.8)
must be also and hence so must vt in (6.1). Indeed equations (6.1) and (6.8) are really identical, and the parameters of
either can be derived uniquely from the parameters of the other. Of course, the same is true of estimates of the
parameters: and derived from (6.8) must be identical to the values obtained by direct estimation of (6.1) and
the validity of such estimates cannot be affected by whether the transformation to the differenced form (6.8) is made
before or after estimation. Moreover, a model in differences like (6.6) can always be rewritten as a model in levels like
(6.1) (with parametric restrictions of the form β1 = 1 and γ0 = −γ1) and the error process will be unaffected by such a
reformulation. Thus, if differencing is a valid solution to the spurious regression problem, then so must be the
inclusion of lagged values of all the variables. However, we have demonstrated above that it is not always valid to take
the converse path of reducing a general dynamic relationship in levels to a simpler equation in differences only, since
there may not be any common factors.

Although the preceding analysis has been restricted to the case of a one-period lag and one regressor only, the main
points apply in general for higher order lags and more than one regressor. Thus consider the equation

(6.9)

where β (L), γ (L) and δ (L) are scalar polynomials in L of orders p, q and r respectively. It is possible for β (L), γ (L)
and δ (L) to have at most l common
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roots (where l = min(p, q, r)) and if in fact there are n ≤ l common roots, then there exists a polynomial ρ (L) of order n
common to β (L), γ (L) and δ (L). Therefore

or

(6.10)

where β*(L), γ*(L) and δ*(L) are polynomials of order p − n, q − n and r − n respectively. Consequently, using (6.10),
(6.9) can be rewritten as

(6.11)so that

(6.12)where

(6.12a)

which means that the error term ut in (6.12) is generated by an autoregressive process of order n. The reduction in the
number of parameters from the general model (6.9) is 2n (or kn for k different regressors) which can greatly enhance
estimation efficiency. Also, the computational cost of estimating the parameters of (6.12) + (6.12a) by non-linear
optimization need be incurred only when the COMFAC algorithm indicates that such a model is a reasonable
description of the data process. As earlier, if ρ (L) has a factor Δ = 1 − L such that ρ (L) = (1 − L) ρ* (L), then (6.12)
can be modified to

(6.13)with

The above analysis assumes that the orders of the lag polynomials are known and in practice this will not be the case.
Two approaches could be adopted to solve this, both being two-stage decision procedures which commence from the
most general (unrestricted) model which it seems reasonable to consider but sequentially simplify it in different ways.
Either way, the lengths of the longest lags must be specified a priori (p, q, r in (6.9) for example). In the first method,
sequential tests for reducing the order of the dynamics are conducted as in Anderson (1971, ch. 3.2) until a test value
exceeding the chosen critical limit is obtained. Then the COMFAC algorithm is applied to the equation so selected,
maintaining the overall lag length at the value found during the first stage (see Sargan, 1980a). Alternatively, the
common factor technique could be applied directly to the model as specified a priori and then the equation could be
simplified later by testing for zero roots from the set of n common roots extracted.7 Since we wish to test a sequence of
(implicit) common root hypotheses about an existing model, we have adopted the second approach in the next section.
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A formal discussion of the computer algorithm COMFAC for implementing the common root tests is provided in
Sargan (1980a), with an extension in Sargan and Mehta (1983). We have used the Wald test form described in the
former paper since the controlled simulation study in chapter 7 suggests that this test has reasonable power properties
in finite samples for models like (6.1) when the common factor restriction is invalid. Briefly, the approach works as
follows. First, the coefficients and their variance matrix in the general unrestricted equation (equation (6.9)) are
estimated by the desired method (say, ordinary least squares): denote these results by and . The restrictions in
(6.10) are equivalent to requiring a (vector) non-linear function of b, denoted f(b), to be zero: for example, in equation
(6.1) the restriction takes the form that γ1 + β1 γ0 = 0. The (asymptotic) variance matrix of is given by
when and hence

will be distributed as a central χ2 variate in large samples when the restrictions are valid. The degrees of
freedom of the χ2 will be equal to the number of restrictions being tested. The appropriate numerical algorithms in
COMFAC have been implemented by Sargan and Sylwestrowicz (1976a) for use with the program GIVE.

3 Demand for Money Study of Hacche (1974)
There are five very closely related issues which concern us about the approach in Hacche (1974), namely: stationarity
and differencing; dynamic specification; serial correlation; seasonal adjustment (denoted SA below) of the data and the
formulation of the regression model. The first three of these issues have been the subject of the previous section but to
clarify our approach we must record some important points relating to SA of data and equation formulation.

Lag polynomials like β (L) and γ (L) can also be interpreted as linear filters since an ‘adjusted’ series such as
(say) will have certain frequencies attenuated or enhanced relative to the original series yt, depending on

the values of the parameters in β (L) (e.g. the difference filter Δ = 1 − L heavily attenuates low frequency (trend)
components of yt). Wallis (1974) demonstrates that the widely used US Bureau of the Census method II, variant X-11,
procedure can be adequately characterized as a two-sided lag polynomial of the form

and hence ‘seasonally adjusted’ data take the form . If two series yt and xt are related by the equation

(6.14)

and are subject to separate SA procedures using filters λ (L) and μ (L) such that and , then
the relationship between the adjusted series must be of the form

(6.15)
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where

(6.16)

When a relationship between series is involved, the error term will contain the ‘omitted variables’ γ (L) [λ (L) − μ (L)]
xt unless the same SA filter is used for both series, and the transformed error λ (L) vt will not be white noise unless the
filter used for yt eliminates the original ‘seasonal noise’ in vt. Otherwise, as Wallis shows, inappropriately applied SA
procedures can create serial correlation and dynamic specification problems which lead to inconsistent and inefficient
estimates. The data series used by Hacche appear to have been separately adjusted and, in particular, interest rates were
not adjusted using the same filter as for the money stock, which could cause seasonal bias problems (see experiment B
in Wallis, 1974). We must emphasize that it only seems silly to subject a non-seasonal variable like interest rates to an
SA filter because a concept appropriate to adjusting a series is being incorrectly applied in the context of filtering a
relationship (a related comment applies to differencing a relationship in order to remove trends from variables). Note,
also, that if any filter which reduced vt to white noise in (6.16) was one-sided then from (6.14)

(6.17)

where wt = λ (L) vt is white noise by hypothesis and hence λ (L) corresponds to a non-redundant common factor in the
unrestricted dynamic equation relating the unadjusted levels of the variables (if vt in (6.14) is white noise, then the
common factor in (6.17) is redundant). We conclude that SA of the variables in a relationship is appropriate when it is
designed to remove noise at seasonal frequencies, in which case it is also usually necessary (see Sims, 1974b).
Nevertheless, as comparison of (6.14) and (6.15) highlights, correct SA should not alter the lag structure. If one
anticipated long lags (e.g. four periods) prior to SA, then these should still occur after SA. Thus, use of SA data does
not justify confining tests of dynamic specification to one or two lags only (see chapter 8). Further, if λ (L) ≠ μ (L) then
SA will alter the lag structure and little can be deduced validly about the underlying dynamic reactions from the
estimated lag coefficients.

The equation specifications adopted by Hacche take the general form (see Hacche, 1974, p. 258)8

(6.18)

where vt = ρ vt − 1 + εt with εt assumed to be white noise. In equation (6.18), In denotes loge and M, P, Y and r are as
defined in Hacche (1974) and Courakis (1978) withM being (nominal) M3 holdings of the personal sector, Y personal
disposable income at 1970 prices, P the implicit deflator of Y and r the yield on consols; M, Y and P are seasonally
adjusted. The value of ρ was chosen by Hacche using a rough grid search over −1 < ρ < 1 by steps of 0.2, selecting
to minimize (Hacche does not state if the quoted standard errors were conditional on the estimated value of ρ).
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Consider a general unrestricted log-linear model relating M to Y, P and r:

(6.19)

We chose a maximum lag of four periods (J = 4) for the regressors in (6.19) partly because the data were quarterly and
partly because the sample size of 51 observations did not merit trying for more than 22 coefficients.9 Compared with
equation (6.18), the restrictions imposed by Hacche on (6.19) to obtain (6.18) with six coefficients are as follows: (i) a
common root of unity (corresponding to Δ); (ii) a common root of ρ; (iii) two common roots of zero (corresponding
to the maximum lag lengths in (6.18), transformed to remove the autoregressive error, of one period for Pt, two
periods for Yt and rt and three periods for Mt); (iv) a unit elasticity of M with respect to P.

The four common factors provide 12 restrictions, with the three fixed values of the roots and the unit elasticity
providing the remaining four restrictions on (6.19) to yield (6.18). Consequently, the extraction of four common
factors from (6.19), corresponding to roots of (1, ρ, 0, 0) will reproduce the dynamic specification in (6.18). We note
from tables A and B in Hacche (1974) that all the estimates of ρ are either −0.6 or −0.4 and that no other useful
diagnostic information is provided about residual autocorrelation. Moreover, although we have used least squares for
comparability with Hacche's results, we doubt the validity of treating Yt, Pt and rt as exogenous.10 Also, we stress that
the dynamic specification of (6.18) must be rejected against (6.19) either if four common factors can be rejected in
(6.19) or even should four common factors be found, if the corresponding roots differ significantly from (1, ρ, 0, 0).

Space precludes our discussing the issue of ‘multicollinearity’ in a time-series context but we note that, although few of
the coefficients in the unrestricted estimation of (6.19) are ‘individually significant’ (see table 6.1), whatever ‘collinearity’
may be present need not prevent the rejection of the hypothesis of four common roots (see below). By comparison
with (6.19), estimation of (6.18) (by method 5.1 in chapter 13) for the whole sample period yields11

(6.20)

The R2 for the equation without the autoregressive error is 0.42 . is the equation standard error
adjusted for degrees of freedom and coefficient standard errors are shown in parentheses. is the Box–Pierce
random residual correlogram test: see Pierce (1971).

Note that this equation ‘passes’ the conventional time-series diagnostic test. The solved coefficients from (6.20) for the
levels of the variables are shown in table 6.2.
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Table 6.1 Equation (6.19) With J = 4

Variable j = 0 j = 1 j = 2 j = 3 j = 4
ln Mt − 1 − j 0.92 (0.22) −0.05 (0.28) −0.17 (0.28) −0.22 (0.29) 0.30 (0.23)
ln(1 + rt − j) 0.90 (0.39) −0.82 (0.66) −0.99 (0.76) 1.28 (0.81) −0.63 (0.68)
ln Yt − j 0.22 (0.13) 0.05 (0.15) 0.14 (0.15) 0.01 (0.15) 0.20 (0.13)
ln Pt − j 0.59 (0.25) −0.71 (0.42) 0.94 (0.59) −0.99 (0.60) 0.24 (0.39)

.

Table 6.2 Solved Coefficients from Equation (6.20)

Variable j = 0 j = 1 j = 2
ln Mt − 1 − j 1.53 0.46 −0.07
ln(1 + rt − j) 0.89 −1.07 0.18
ln Yt − j 0.13 −0.16 0.03
ln Pt − j 0.67 −0.80 0.13

The use of Δ ln (Mt − 1/Pt) would entail a coefficient of −0.33 on Δ2 ln Pt if the model was reformulated using ln
(M/P)t − 1 (see Goldfeld (1973) and compare (6.21) below). These numbers differ considerably from the results in table
6.1.

First, sequentially testing for the existence of one, two, three or four common factors in (6.19) yields the results shown
in table 6.3. Three common factors can be extracted without ‘loss of fit’ but the fourth produces a large value for the
test statistic, supporting the hypothesis that invalid restrictions are being imposed.12 To check that this outcome did not
arise purely from the choice of J = 4 in (6.19), we

Table 6.3 Common Factor Tests of Equation (6.19)

Common factor Value of statistic Degrees of freedom
First 0.20 3
Second 0.54 3
Third 2.57 3
Fourth 9.71 3

Table 6.4 Equation (6.19) With J = 2

Variable j = 0 j = 1 j = 2
ln Mt − 1 − j 0.92 (0.19) 0.03 (0.26) −0.10 (0.18)
ln(1 + rt − j) 0.88 (0.38) −0.77 (0.58) −0.50 (0.55)
ln Yt − j 0.24 (0.12) −0.03 (0.13) 0.09 (0.12)
ln Pt − j 0.69 (0.21) −0.81 (0.35) 0.26 (0.34)

.
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Table 6.5 Roots of the Lag Polynomials in (6.19)

J = 4
ln M 0.61 ± 0.56i 0.84 −0.51 ± 0.55i
ln(1 + r) 0.51 ± 0.54i 1.28 −1.31
ln Y 0.54 ± 0.77i −0.86 ± 0.97i
ln P 0.30 ± 0.57i 1.11 −0.59
J = 2
ln M 0.74 −0.25 0.48
ln(1 + r) 1.24 −0.55
ln Y 0.02 + 0.61i 0.02–0.61i
ln P 1.10 −0.14

also applied the test to the unrestricted estimates of (6.19) with J = 2 (i.e. this tests (i) and (ii) conditional on (iii)). The
coefficient estimates are reported in table 6.4 and the test statistic values for the two separate common factors are
1.63 and 9.03 respectively, and so again there is evidence against Hacche's formulation. The roots of the polynomials
in (6.19) for J = 4 and J = 2 are reported in table 6.5.

For theoretical reasons discussed in chapter 8 we would find it surprising if unit root restrictions were appropriate for
economic time series. Equations formulated like (6.18) provide no mechanism for disequilibria between the levels of the
variables (M, P, Y, r) to influence the time path ofM.Moreover, all long-run information in the data is lost by choosing
the filter 1 − L. To illustrate a form of model which is not rejected against (6.19), which avoids all of the theoretical
objections to (6.18) and which has interesting short-run dynamic behaviour with reasonable long-run properties, we
estimated an analogue of the model used in chapter 8. This also demonstrates with great clarity precisely why the
common factor hypotheses implicit in Hacche's model are invalid. Specifically, we obtained

(6.21)

tests for extracting one common factor from the generalization of (6.21) in which every variable also occurs with
one further lag and tests whether the corresponding root is zero: these two statistics show no indication of dynamic
mis-specification or serial correlation in the residuals from (6.21) of one lag longer. It is possible that higher order lags
may be significant and, although economic theory suggests that this is unlikely, such a possibility highlights the
importance of the choice of the maintained hypothesis.
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Table 6.6 Solved Coefficients from Equation (6.21)

Variable j = 0 j = 1 j = 2 j = 3 j = 4
ln Mt − 1 − j 1.03 −0.26 0.00 0.00 0.00
ln(1 + rt − j) 0.81 −0.81 0.00 0.00 −0.61
ln Yt − j 0.21 0.02 0.00 0.00 0.14
ln Pt − j 0.60 −0.63 0.26 0.00 0.00

The solved coefficients from (6.21) are recorded in table 6.6.13

The most obvious point about (6.21) is that it has four variables (with individually significant coefficients) which were
omitted from (6.20). Moreover, the last three variables are level effects and strongly reject the hypothesis that there is a
common root of unity (see equation (6.8) above). A major point about (6.21) is that it is simply a reformulated (though
restricted) levels equation and the close match between the coefficients in tables 6.1 and 6.6 shows the advantages of
such a formulation. The specific choice of parameters in (6.21) was not made to highlight this aspect, although we
would stress that any investigator committed to analysing only data in differenced form — for whatever philosophical
reasons — could never detect such a relationship. Rather, the form of (6.21) was based on the desire to enter separate
decision variables with sensible economic interpretations for both long-run and short-run influences on the demand
for money. Thus the coefficient of Δ ln Pt shows a negative influence due to the rate of inflation, although, in
equilibrium, the long-run elasticity of M with respect to P in (6.21) is unity. Next, previous disequilibria in the
relationship between the levels of ‘real’ money and ‘real’ income affect current demand through the (inverse) ‘velocity’
measure ln (M/PY)t − 1. Moreover, as shown below, this same variable allows one to derive a sensible long-run steady-
state money demand function. The interest rate and income effects at four-period lags may be due in part to the
inappropriate use of separate SA filters for the various data series, but long-run considerations suggest including some
level measure of interest rates; the significant income coefficient immediately rejects the hypothesis of a long-run unit
income elasticity.

Consider a steady-state growth path along which

all of these growth rates being constants (which could be zero). Since (6.21) describes a stable difference equation with
roots of 0.59 and 0.45, the time paths of the variables will converge to (taking π3 = 0)

(6.22)

and hence

where
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(6.23)

using (although our choice of formulation in (6.23) is obviously not unique). The long-run interest
elasticity of M with respect to r evaluated at the mean of r yields −0.2 and the absolute value of this elasticity increases
as r increases. However, the impact elasticity is positive in (6.21) and, if rt increased steadily, the income velocity of Mt

would appear to decrease and only later increase if plotted against rt (see chart B in Hacche). Similar comments apply to
the effects of .

The large income elasticity may reflect the considerable upsurge in M following the introduction of competition and
credit control policies in 1971. Indeed, since we concur with the arguments presented by Hacche (1974) and Goodhart
(1978) that aggregate relationships for M3 like any of those presented above are not appropriate for the post-1971
period as important variables are omitted, we have not attempted further economic modelling of the M/PY
relationship (although we would expect equations of the form of (6.21) to provide a better basis for future research
than equations like (6.18)). Nevertheless, it is worth stressing that the dynamic model (6.21) seems consonant with the
time-series properties of the data and yields a long-run solution which appears to be fully consistent with standard
economic theory statements of the demand for money function (see, inter alia, Artis and Lewis, 1976; Friedman, 1956,
ch. 1; Johnson, 1971, ch. 13).

4 Conclusion and Summary
This paper has attempted to clarify the nature of serial correlation and its relationships with dynamic specification,
differencing and seasonal adjustment using the common factor interpretation proposed by Sargan (1980a). The
problems inherent in imposing arbitrary restrictions were stressed and compared with the alternative of commencing
from a general dynamic relationship and sequentially simplifying it according to the information in the data. The
COMFAC algorithm was applied to the demand for money function of Hacche (1974) and provided evidence against
his dynamic specification in the differences of the variables. An alternative model in levels, which nevertheless avoided
any ‘spurious’ regressions problems, was estimated and tested. The derived long-run properties of the levels model
seemed sensible and its coefficients were close to those of the general dynamic relationship. We conclude that it is
perfectly feasible to test differencing and serial correlation restrictions in practice, and that ‘econometric’ models
appropriately formulated can prove superior to ‘time-series’ descriptions which explicitly ignore long-run information
in the data.

Notes
1 Although we do not explicitly consider situations in which serial correlation derives from incorrect functional

form, much of the analysis would apply to attempts to represent such autocorrelation by an autoregressive scheme.
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2 The root of the polynomial 1 − β1L = 0 is 1/β1 and for single equations this is the usual terminology (see Granger
and Newbold, 1977b). However, economics is a multivariate subject and on a matrix interpretation β1 corresponds
to a latent root of the equation |λ I − β1| = 0. For this reason we refer to β1 as the (latent) root and for stability and
stationarity our terminology requires that roots lie inside the unit circle. The idea of common roots also occurs in
the literature on autoregressive moving-average models (see Box and Jenkins, 1976) where the roots are common
to all the variables and the error term. Thus, the occurrence of such roots poses identification problems, and we shall
refer to this situation as one having redundant roots.

3 This is actually a likelihood ratio test which differs from the sequence of Wald tests proposed by Sargan (1980a)
and used in the approach described below.

4 See, for example, the Letters to the Editor of The Times, April 1977.
5 One does not have to be a time-series analyst to doubt the credibility of equations in which R2 > d, yet economists

regularly publish such results (see, for example, Mizon (1974) and the models in Waelbroeck (1976)).
6 A further interesting transformation of (6.8) is

This emphasizes that the change in yt depends on the change in xt, the ‘disequilibrium’ between the levels of yt and xt in
the previous period, and the level of xt − 1 (which measures any departure from a long-run unit elasticity if yt and xt
are in logarithms): see equation (6.21) below.

7 A common root of zero entails the factor 1 − 0L and imposing the zero for any root which is negligible shortens
the lag length by one for every variable; this could reflect initial over-inclusion of lagged variables.

8 Hacche's model, its justification and the assumptions whose validity is in question are set out clearly in Courakis
(1978, pp. 539–42).

9 As the exercise was illustrative and the sample of 35 observations from 1963(i) to 1971 (iii) proved too small for
sensible estimates of (6.19) when J = 4, most of our estimates are based on fitting equations to the entire sample
period provided by Courakis (1963(i)–1975(iii)). We have used rt unlagged rather than lagged one quarter as in
Hacche, and the variable 1 + rt denotes 100 + Rt where Rt is measured in percentages.

10 The parameter values input to the COMFAC algorithm can be estimated in any desired way, and hence using
instrumental variables or maximum likelihood estimates creates no additional complications.

11 These and the ensuing results should be contrasted with those in Courakis (1978) to obtain a full picture, especially
regarding the elasticity estimates shown in Courakis's table 4, p. 546.

12 Strictly, since we are choosing the largest of four test statistics, we need to set the type I error of each test at about
0.01 to have an overall 5 per cent size and hence we cannot reject the unrestricted four-roots hypothesis with 95
per cent confidence. However, the largest is significant at the 0.025 level, providing 90 per cent confidence in
the overall test outcome.

13 If both Δ ln (1 + rt − 2) and Δ ln Pt − 2 are added to (6.21), they have coefficients of −0.79 (0.48) and 0.26 (0.27)
respectively and raise R2 to 0.71.
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7 An Empirical Application and Monte Carlo
Analysis of Tests of Dynamic Specication7

with Grayham E. Mizon

Preamble
This 1980 follow-up to chapter 6 resulted from trying to use COMFAC as a sequential simplification device in
empirical analysis, and not being very successful. Such an outcome might have been due to the poor power properties
of the procedure, and the Monte Carlo sections address that issue. Alternatively, unsuccessful outcomes could arise
from COMFAC being a poor representation of economic agents' behaviour. At the time, we inclined to the latter view
and so tried various other model reduction devices, retaining COMFAC as a destructive testing device for invalid
‘autocorrelation corrections’. Also note the strong caveat about arbitrarily imposing error correction representations
without testing their data coherency; and the discussion of diagnostic testing of the initial model.

By the time chapter 7 appeared, the closely related work at CORE on model reduction had begun to provide a
theoretical rationale for general-to-simple, leading directly to the formalization of part III. Using the terminology in
Spanos (1986), the evolving framework distinguished between the statistical model used to characterize the data
(i.e. the initial general specification) and the econometric model, which must be interpretable in terms of the underlying
economic theory and be a valid simplification of the statistical model. Thus, unless COMFAC restrictions had an
economic theoretical basis (which chapter 4 suggested was limited) there seemed little reason to seek such a
simplification. Nevertheless, simplification procedures in general became central to the approach.

The empirical section of this chapter involves many of the same difficulties as we confronted for UK money demand,
including seasonality (especially of farmers’ incomes), lag length

7 Reprinted from Review of Economic Studies, 47 (1980) 21–45. An earlier version of this paper, based on work done while Mizon was visiting the Current Economic Analysis
Division of Statistics Canada during August and September 1975, was presented at the European Meeting of the Econometric Society, Helsinki, in August 1976. The
financial and research assistance provided by Statistics Canada, and the valuable computational assistance provided by Frank Srba and Tony Chan at LSE, and Peter Smith at
Southampton, are gratefully acknowledged. The authors also wish to thank Denis Sargan for his advice and for the use of his COMFAC program to calculate the Wald
criteria, and are indebted to Stephen Yeo for his comments and help in interpreting the Canadian data.This research was supported in part by a grant from the Social Science
Research Council to the Quantitative Economics Programme at LSE.



selection, the choice of simplification and the constancy of the chosen specification. While the focus is on dynamic
specification, the treatment is much more like succeeding than preceding studies. Thus, like chapters 1 and 4, chapter 7
is one of the main bridges between my pre- and post-1980 views in this volume, noting that the first and seventh
chapters appeared in 1980, whereas chapter 4 was partly written during a six-month visit to CORE in 1980 and more
clearly reveals the influence of Jean-François Richard's thinking on mine.

1 Introduction
The shortage of detailed information from economic theory to determine the dynamic structure of economic
relationships has long been recognized (e.g. Nerlove, 1972), and has caused some researchers recently to rely almost
exclusively on the methods of time-series analysis for model building with economic time-series data. Furthermore, a
number of studies of the forecasting performance of econometric models vis à vis that of time-series models (e.g.
Naylor et al., 1972; and further references in Prothero and Wallis, 1976) have been interpreted as demonstrating the
superiority of time-series model building methodology over that of econometrics. To the extent the econometric
models have been based on static economic theory, with dynamics possibly introduced via serially correlated error
processes, or have been in the mould of simple models involving first-order dynamics such as the partial adjustment
and adaptive expectations models, the implied criticism of econometric modelling is probably valid. However,
econometricians need not restrict the range of models and techniques in this way, for they are fortunate in being able
to combine structural information from economic theory (especially for long-run equilibrium or steady-state
behaviour) with the techniques of time-series analysis and those of econometrics. We believe that the econometrician's
search for an acceptable representation of the process generating the data being analysed is made easier by the use of
both economic theory and the methods of time-series analysis, and that the latter are complementary to econometric
methods rather than substitutes for them. Rather than abandoning an econometric approach to modelling altogether
and using ‘black-box’ time-series methods, we favour an approach which uses reasonable statistical procedures to test
various hypotheses (which are too often arbitrarily selected and assumed to be valid), contained within a general
unrestricted model, and then incorporates this evidence in a model whose structure is suggested by general economic
considerations, to obtain an adequate approximation to the data generation process.

Our aim in this paper is to employ some of the statistical procedures for determining dynamic specification, first
proposed in Sargan (1964a) and extended by Sargan (1980a) (see also Mizon, 1977a; and Sargan and Mehta, 1983), to
illustrate how their use, together with the guidelines provided by the economic theory of the demand for durable
goods, can lead to the selection of a useful model of Canadian expenditure on consumer durables. Since the tests of
dynamic specification used do not have high power against all alternative hypotheses, and only their asymptotic
properties have been analysed, we also perform a controlled simulation study of the small sample size and power
characteristics of the Wald and likelihood ratio tests of common factor restrictions, and the Lagrange multiplier
(proposed by Godfrey, 1978; Breusch and Pagan, 1980), Wald and likelihood ratio tests for residual autocorrelation.
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Another important purpose of this simulation study is to illustrate the value of a computationally inexpensive Monte
Carlo analysis of problems not yet having analytical solutions. In doing this we emphasize the importance of using
analytical information (especially from asymptotic theory) to control the simulation, the value of a carefully chosen
experimental design, and the use of response surfaces as convenient summaries which help reduce the specificity of
Monte Carlo results.

Procedures for determining dynamic specification in econometric equations are briefly discussed in the next section.
This is followed by an analysis of the demand for consumer durables (excluding automobiles) equation from a
quarterly econometric model of Statistics Canada. The Monte Carlo methods to be used for analysing the finite sample
properties of test statistics whose asymptotic distribution is known are described in section 4 and then applied in
section 5 to investigate two of the specification tests used in the empirical study. The final section provides a brief
summary and the conclusion.

2 Testing Procedures
Perhaps the most common analysis of dynamic specification undertaken by econometricians has been distributed lag
analysis, in which a major concern has been to achieve acceptable finite parameterizations of possibly infinite
distributed lags, with a primary aim of making parameter estimation feasible and simple. Though the distributed lag
literature contains much analysis of the problem of choosing the shape of lag distributions, little attention has been
paid to determining empirically the value of the maximum lag in such relationships (or in the case of rational
distributed lags to determining the polynomial orders); for example, Dhrymes (1971) in a whole book on distributed
lags devotes four pages to the determination of their order. However, for Almon distributed lags Godfrey and Poskitt
(1975) have considered the problem of determining the optimal order of an approximating polynomial given the order
of the distributed lag, Trivedi and Pagan (1979) present an extended analysis of this problem, and Sargan (1980b)
suggests tests of hypotheses about the maximum lag. Additionally, it is very common to find empirical economic
studies which use time-series data but fit equations based on static models (e.g. the estimation of Cobb–Douglas or
constant elasticity of substitution production functions and the estimation of demand equation systems), and only
when significant serial correlation in the residuals is observed are dynamic formulations adopted. However, since the
Durbin–Watson and Durbin h statistics (see Durbin, 1970) are the most common tests of mis-specification used in this
context, the prevalent dynamic formulations are ones with first-order (or occasionally simple fourth-order for quarterly
data) autoregressive errors, and so untested common factor restrictions are imposed which can lead to the acceptance of
models with mis-specified dynamic structure and hence result in incorrect inferences about mean lags and long-run
elasticities and propensities — see chapter 6. The following analysis provides a framework within which these
problems can be tackled, by having a general unrestricted dynamic model as the maintained hypothesis and
systematically simplifying in the light of the sample evidence. This can be done in many ways since there is no unique
ordering of the
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hypotheses under consideration and below we examine testing for the presence of common factors and the order of
dynamics. Indeed one of the essential features of the procedure for determining dynamic specification outlined in
Sargan (1980a) (and denoted COMFAC below) is that it starts from the most general model to be considered (i.e.
including the maximum number of lags) and tests sequentially whether restricted versions of it are consistent with the
data. This is in marked contrast with the common practice of starting with the simplest (i.e. most restricted) model and
attempting to determine whether it is necessary to consider a more general one. The contrast between the tests of
specification of the former approach (which systematically tests restricted models within a general maintained
hypothesis) and the tests of mis-specification of the latter approach (which tests the need to consider more general
models usually without a specified maintained hypothesis) is emphasized and discussed in Mizon (1977b).

The class of models considered has the form

(7.1)

where θ (L) is a vector of k + 1 polynomials in the lag operator L of orders m0, m1, m2, . . . , mk respectively, with θ0 (L)
operating on the normalized or dependent variable yt, and θj (L) operating on the regressor variable zjt, j = 1, 2, . . . , k.
The values of mj, j = 0, 1, 2, . . . , k which denote the largest lag for each variable are taken to be sufficiently large that
the error wt may be treated as serially independent with zero mean and constant variance . This class of model is
denoted AD(m0, m1, . . . , mk) for autoregressive–distributed lag with the relevant orders shown in parenthesis and the
number of different regressor variables equal to k. The model (7.1) for the maximum polynomial orders 0, 1, 2, . .
. , k, which must be specified a priori, forms the maintained hypothesis. Two specializations are considered having the
forms

(7.2a)

when ρ (L) is a scalar polynomial in L of order r, α (L) is a vector of k + 1 polynomials in L of orders l0, l1, . . . , lk, and
the error εt is white noise, and

(7.2b)

where the restrictions on θ (L) to define θ * (L) are chosen on the basis of economic theory considerations relating to
the likely decision variables of agents, a point amplified below.

Concentrating on (7.2a) first, comparison of (7.1) and (7.2a) shows that (7.2a) will be valid if θ (L) in (7.1) satisfies

(7.3)

which implies that the polynomials in θ (L) have a common factor of ρ (L). However, (7.2a) can be written alternatively,
but equivalently, as
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(7.4)

which is a dynamic linear model with errors generated by an autoregression of order r so that α (L) represents
systematic dynamics and ρ (L) error dynamics as in Mizon (1977a). Of course, it is possible that serially correlated
errors arise because of an underlying moving average, or combined autoregressive moving-average process rather than
an autoregressive process, but because moving-average error processes pose identification, estimation and testing
problems we consider autoregressive error processes only. However, the correlogram for a moving-average process
can be reasonably approximated by an autoregressive process (see chapter 5), and indeed the Lagrange multiplier test
for residual serial correlation does not depend on whether the underlying process is moving average or autoregressive
(see Godfrey, 1978).

Empirically to determine the dynamic specification of the model (7.1) as a specialization of the type (7.2a) it is
necessary to determine the order of dynamics (i.e. the length of lag for each variable j ≤ j, j = 0, 1, . . . , k) and to
test whether the factorization (7.3) of θ (L) is consistent with the data for some value of r, ≤ min ( j). This is
formally equivalent to determining the orders of systematic dynamics l0, l1, . . . , lk and the order of error dynamics r,
and this equivalence suggests the following procedures. It is noted though that the empirical implementation of these
two approaches, despite their formal equivalence, might lead to different model choices.

One procedure first determines how many common factors are consistent with the data at the chosen significance
level, within the maintained hypothesis, and secondly tests for zero roots among the set of common roots extracted.
The first stage of this procedure can use the COMFAC algorithm with unrestricted parameter estimates for the
maintained hypothesis obtained by any desired estimation methods such as ordinary least squares (OLS) or
instrumental variables (IV).

The second stage requires parameter estimates for the model and these can be obtained by
method 5.1 in chapter 13. A property of this procedure is that the lag lengths can only differ across variables to the
extent that the a priori specified values of maximum lag, j (j = 0, 1, . . . , k) differ. This procedure is illustrated in the
next section as it can be a useful approach when it is desired to test a set of common factor restrictions.

An alternative procedure first conducts sequential tests for reducing the order of dynamics until a test statistic exceeds
the chosen critical value, and secondly uses the COMFAC algorithm to test how many common factors there are in the
model of type (7.1) (but with lag lengths fixed at the values determined in the first stage). The determination of the
order of dynamics in the first stage can be done for all k + 1 variables simultaneously, or for each variable separately,
but in either case the test statistics can be compared with critical values from the central χ2 distribution asymptotically,
though with small sample corrections and degrees of freedom adjustments they can be compared with the critical
values of the F distribution. If all the regressors are predetermined, the first stage only requires the unrestricted
estimation of the parameters of the maintained hypothesis which can be done by OLS, and OLS parameter estimates
will also be appropriate for COMFAC in stage two for the model of form (7.1) with the orders of dynamics
determined by the first stage. It is only when the order of common factors has been determined that
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the ‘more complicated’ estimation methods are needed.

The details of these and other procedures are discussed in Mizon (1977a), but it is relevant to emphasize that for each
of the two stages within each procedure the hypotheses to be tested form a uniquely ordered sequence, and that
provided the testing is carried out as indicated in Anderson (1971, ch. 3.2) (i.e. beginning with the most general model
and sequentially testing more restricted models), the tests induced in each stage will have high power asymptotically. It
should be noted, though, that the hypotheses in each of the two stages are uniquely ordered because they are
concerned solely with the order of dynamics (maximum lags) and the number of common factors. We are in practice,
of course, interested in additional hypotheses, and this makes it more difficult to make statements about statistical
power. Similarly, since the stages of the two-stage procedures are not independent it is not easy to determine the power
of the procedures as a whole, though all the tests involved will reject any fixed invalid hypothesis with probability unity
as the sample size tends to infinity, and section 5 contains simulation evidence on their small sample behaviour.

The determination of the number of common factors that can be extracted from models of the form (7.1) without
significant loss of fit is an important part of the procedures described above. In fact, this problem consists of testing
the sequence of hypotheses

(7.5)

for r = 0, 1, 2, . . . , m when m = min ( i) and θm (L) is the vector of k + 1 polynomials in L for the maintained
hypothesis. The common factor restrictions implicit in (7.5) can be written generally as , so that given
unrestricted parameter estimates such that

(which implies that

where with , the Wald testing principle can be used to yield the test statistic

. When H0: f(θ) = 0 is true, η3 is asymptotically distributed as a central χ2 variate with R (usually R = rk when there are r
common factors as in (7.5)) degrees of freedom. Although the estimates of θ are easily obtained, the restrictions

and their derivatives can be complicated to compute, as the following examples illustrate. First, consider the
linear regression model yt = γ zt + ut when ut = ρ ut − 1 + εt, |ρ| < 1, so that the common factor restricted
transformed structure is yt = ρ yt − 1 + γ zt − ρ γ zt − 1 + εt, which is to be compared with the unrestricted model yt = θ0yt − 1

+ θ1zt + θ2zt − 1 + wt. The constraint implicit in moving from the unrestricted model to the restricted transformed
structure is f (θ) = θ2 + θ0 θ1 = 0. This is discussed by Sargan (1964a), and is seen to be easily parameterized and tested.
Second, consider the slightly more general model (which is more likely to be encountered in practice): yt = β yt − 1 + γ0zt
+ γ1zt − 1 + ut with ut = ρ ut − 1 + εt, |ρ| < 1. The restricted transformed structure here is yt = (ρ + β)yt − 1 − ρ β yt − 2 + γ0zt +
(γ1 − ρ γ0)zt − 1 − ρ γ1zt − 2 + εt which
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has four parameters to be estimated compared with the unrestricted model yt = θ0yt − 1 + θ1yt − 2 + θ2zt + θ3zt − 1 + θ4zt − 2 +
wt which has five. Hence there is one restriction implicit in the restricted model, but it is more difficult to parameterize,
for the mapping between the restricted and unrestricted parameters

implies the restriction

Therefore even for this second-order dynamics example the calculation of the Wald test statistic is complicated, and the
degree of complexity increases with the order of dynamics and the number of common factors being tested. These
considerations led Sargan (1980a) to note that the constraints can be expressed in the form that a certain
matrix, whose elements consist of the θ coefficients and zeros, should have a given rank, which can in turn be
translated into equivalent determinantal conditions. We have adopted Sargan's approach in this study and used the
numerical algorithms, called COMFAC, developed by Sargan and Sylwestrowicz (1976a) for use with the program
GIVE. It should be noted that the use of the Wald testing principle means that the computational expense of
estimating the parameters corresponding to all hypotheses, which is required for likelihood ratio tests, is avoided. This
is especially important when methods more complicated than OLS have to be used, and problems associated with
multiple optima can be expected — see Sargan and Mehta (1983). Statistically the two principles lead to asymptotically
equivalent tests, and since the COMFAC algorithm is computationally inexpensive and easy to use, the Wald test seems
preferable to the likelihood ratio test, unless it has poorer finite sample properties. Since the simulation study of the
finite sample behaviour of both tests in section 5 below does not provide any clear grounds for preferring either test,
the computational advantage of the Wald test led us to use that form.

An important choice in using any of the sequential testing procedures outlined above is that of significance levels.
Clearly, in order to control the probability of type I error for a procedure as a whole it is necessary to choose the
significance levels for each test in the sequence of tests carefully. For example, the second procedure mentioned above
has a significance level of δa = 1 − [1 − ε (a)]n for the sequence of tests for reducing the order of dynamics — stage (a)
— when n is the maximum number of tests possible in the sequence and ε (a) is the significance level common to all
tests in this sequence. The value of n will be determined by the maintained maximum order of dynamics and any a
priori specified minimum order of dynamics for stage (a); it should be noted that it is not necessary to use the same
significance level for all tests in the sequence; in fact if the εi (a) differ for all tests. Stage (b)
tests for the number of common factors and the significance level for this sequence of tests is

, or 1 − [1 − ε (b)] if a common ε (b) is used for all tests when is the order of dynamics determined in stage (a).
The significance level for the procedure as a whole is more difficult to derive because stages (a) and (b) are not
statistically independent.
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However, it is possible to use the Bonferroni inequality to provide a lower bound on the probability of not making a
type I error. If δ is the overall significance level then 1 − δ ≥ = 1 − δa − δb when δa and δb are as defined above. As
an example, consider a case when is chosen as 0.9 (i.e. the overall significance level will be at most 10 per cent) and
δa and δb are both 0.05; then if n = 4, ε (a) will have to be 0.0128 with critical values corresponding to a probability of
0.0064 for two-sided alternatives. The value of ε (b) would be similarly determined depending on the value of .
Hence for this example the significance levels used for the individual tests in the sequences of stages (a) and (b) would
have to be approximately 1 per cent in order to ensure that the procedure's significance level is no more than 10 per
cent. This point is often ignored in applied studies, in which typically a series of tests is performed using conventional
significance levels for each test, so that the overall significance level can be very large. However, to the extent that the
consequences of inconsistency are believed to be more serious than those of inefficiency in estimation, the implicit
choice of large significance levels might be reasonable. Such judgements, and decisions in practice, though, are not
independent of the degree of generality of the chosen maintained hypothesis.

The above discussion has concentrated on particular procedures for determining dynamic specification, but these are
only a part of a specification search. The problem of model choice or specification search can be profitably thought of
and approached as a decision problem. The decision criterion might be a measure of forecasting accuracy and/or the
desire to gain detailed structural information about the process generating the data relevant to the problem. The
actions then consist of the choice of functional form, of the set of variables (including the length of lag on variables as
well as selection from a set of different variables), of the error structure and of the data set. There will usually be many
alternatives for each category of action mentioned above, and relative to the most general models to be considered
most of these alternatives can be generated by sets of restrictions, so that there will be a collection of hypotheses from
which an acceptable subset has to be chosen. Searches relative to a specified set of models have been categorized into
specification and mis-specification searches by Mizon (1977b). Specification searches start with an a priori maintained
hypothesis Hm, and then systematically search for a subset (which might consist of one model) of acceptable models
within Hm. The hypotheses considered in such local searches usually form a composite hypothesis, so that the
problems caused by lack of structure or unique ordering amongst them arise, but these problems can be reduced by
exploiting the structure or ordering that does exist, and by imposing some structure on the remaining hypotheses. In
fact, this is precisely what is done in the discussion above of testing for common factors and lag lengths. The economic
theory considerations which lead to (7.2b) as a restricted version of (7.1) provide another form of specification search.
Since these specification searches are attempting to find an acceptable simplification of Hm they have been called
simplification searches by Leamer (1978).

An obvious difficulty with any specification search procedure is the choice of Hm, and even if the specification searches
are done efficiently they may result in a poor choice of model if Hm was chosen badly. In order to guard against this
possibility tests of mis-specification can be conducted which will check the adequacy of
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the chosen Hm. The Durbin–Watson and the diagnostic test statistics of time-series analysis are usually employed in
exactly this way. Many of these mis-specification searches use Lagrange multiplier (LM) test statistics, as opposed to the
Wald (W) or likelihood ratio (LR) test statistics which are usually associated with specification searches. Although the
three test statistics (W, LR and LM) for a particular null hypothesis against a given alternative have the same asymptotic
distribution, and the differences in their computational costs are known for particular examples, little is known about
their small sample behaviour. In section 5 therefore we conduct a Monte Carlo analysis of the three test statistics for a
widely used test of mis-specification, that for first-order autocorrelation in dynamic models.

In the next section we illustrate the use of specification and mis-specification searches in a model of consumers'
expenditure on non-automobile durable goods in Canada. COMFAC is used as a sequential simplification procedure
within a general maintained hypothesis. The results indicate that it is rarely possible to reject an autoregressive error
specification, but the simulation findings in section 5 encourage us to emphasize that failure to reject a hypothesis does
not necessarily imply its acceptance, and so we look for alternative simplifications using economic theory
considerations.

3 Empirical Application
As an illustration of the practical use and empirical performance of these procedures for determining dynamic
specification we now analyse a model of Canadian expenditure on consumer durables (excluding automobiles,
expenditure on which is markedly affected by the Auto Pact with the USA), which is one of the equations from
Statistics Canada's quarterly econometric model. The set of explanatory variables consists of those that either appeared
in the 1975 version of the quarterly model or were considered for inclusion in it. The data are for the aggregate
Canadian economy, quarterly and seasonally unadjusted for the period 1960(i)–1976(ii), giving a total of 66
observation, the last six of which are used for parameter constancy tests. As the number of lagged variables created
was varied, the exact sample size used for estimation is recorded in each instance below. The dependent variable C is
the per capita constant dollar expenditure on consumer durables excluding automobiles in 1971 prices. The current
dollar expenditure figures divided by this series provide the implicit deflator for non-automobile consumer durable
expenditure PD. The income series used, Y, is per capita current dollar personal disposable income deflated by the
implicit deflator PT for total consumer expenditure on durables and non-durables in 1971 prices. This income series
includes net income received by farm operators from farming operations which is highly seasonal, being negative for
all but the third quarter of many years. It seems unreasonable to believe that the economic agents receiving this income
base their durable expenditure decisions quarter by quarter on such a variable, and this is precisely the type of situation
in which ‘permanent income’ concepts seem most relevant. To focus attention on other issues, however, the analysis
was conducted without disaggregating income, but since the model chosen had a seasonally varying average propensity
to spend (equivalent to
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a simple form of seasonal adjustment), this pre-simplification is unlikely to have seriously distorted the results. In any
case, very similar results were obtained using a ‘smoothed’ series for farm income (of a quarter of annual income). The
relative price variable PR was calculated as PD/PT and further details concerning all these series can be obtained from
the Statistics Canada publication National Income and Expenditure Accounts, volume 3, September 1975.

The general form of model considered below was AD(m0, m1, m2) as in equation (7.1) with k = 2, the dependent
variable being c = log C (lower case letters denote the natural logarithm of upper case variables) with y = log Y and
p = log PR as regressor variables and the intercept varying seasonally.1 The model form assumed for a steady-state
growth path of all the variables was

where Ki varies seasonally and depends (potentially) on the growth rates of Y and/or PR. Out of steady state, the
precise lag structure cannot be specified a priori and since the quarterly data series provided a sample of 66
observations a relatively general maintained hypothesis for the orders of the dynamic reactions was selected, with
maximum lags j set at 8 for all j. This formulation allowed a great deal of flexibility in the determination of the
dynamic structure, particularly for the implied shape and length of the distributed lag relationship between c and the
regressors p and y. OLS estimation was used throughout as any contemporaneous feedback from c to y seemed unlikely
to be important. Also, for models with = 4, the likelihood ratio criterion proposed in Sargan (1964a) suggested that
models in the logarithms of the variables were preferable to models in levels.

The correlograms of the series ct, yt and pt are shown in table 7.1, and as with many economic time series, the
correlograms are slow to die out. Also, there is marked seasonality in the ct and yt series, although not in phase.

Given the seasonal pattern it is not obvious how to determine the model specification; in particular it is possible that
most non-zero coefficients occur at seasonal lags, so that testing for successively shorter lags than the pre-specified
maximum lags need not be optimal. Similarly the seasonal behaviour in c might be represented well by the seasonality
in y and p, with or without seasonal dummy variables. The hypotheses corresponding to these alternatives provide an
example of a set of hypotheses which are not ordered, so that alternative testing procedures can yield different results.
Nevertheless, some simplification seemed desirable and so we chose to test for successively shorter lags, anticipating m
= 4 as a relatively parsimonious compromise. Although the results we report include seasonal dummy variables we
also investigated models without them, but simplification and data-instigated searches

Table 7.1 Correlograms for c, y, p Over Eight Periods

Variable j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
ct − j 0.82 0.89 0.81 0.98 0.79 0.86 0.77 0.96
yt − j 0.88 0.84 0.88 0.99 0.87 0.81 0.86 0.98
pt − j 0.96 0.93 0.92 0.92 0.86 0.80 0.78 0.77
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always led us to models which included them. The sequence of tests to determine the order of lag length resulted in
≤ 4, the value of the test for H0: m = 4 against H1: m = 5 being 1.27, consonant with a variate approximately distributed
as F (4, 27) on H0. Table 7.2 records the estimates for = 4.

In table 7.2, coefficient standard errors are shown in parentheses, 0 is the intercept, j (j = 1, 2, 3) are the coefficients
of the seasonal dummies, T denotes the sample size, s is the standard deviation of the residuals and Σ denotes the sum
of the lag coefficients. The four test statistics η7 (T2), η6 (T2, T − κ), η5 (n − 4) and ηM (n/2) are respectively
asymptotically distributed as

and on their nulls and in pairs test parameter constancy (see chapter 11 and Chow, 1960) and residual
autocorrelation (see Pierce, 1971; Godfrey, 1978; also section 5 below), with T2 post-sample observations, κ parameters
in the estimation equation and n residual autocorrelations. The lag polynomial in ct has two pairs of complex roots (0.40
± 0.22i and −0.26 ± 0.43i) and apart from a number of redundant parameters and some ill-determined individual
coefficient estimates, the equation seems to be an adequate description of the data on ct.

In steady-state growth with Δ1c = g1, Δ1y = g2, Δ1p = g3, the long-run solution for the model in table 7.2 is

(7.6)

where Ki = exp(−2.52 + 0.35Q1 + 0.25Q2 + 0.54Q3 − 2.21g2 − 1.55g3) and Qi denotes the ith seasonal, noting that g1 =
1.3g2 − 0.55g3 from equation (7.6). Thus, Ki falls as either g2 or g3 increases, and (for g2 = 0.006, g3 = 0.012) varies from a
high of 0.13 for the fourth quarter to a low of 0.08 for the first quarter so that C/Y behaves seasonally both directly
through Ki and indirectly through any seasonality in Y and PR. Finally, C is income elastic but price inelastic.

Several simplifications of the model with = 4 seemed worth investigating. First, we tested the hypothesis that the
dynamic structure could be represented by an error autoregression and applied the COMFAC procedure to the
estimates in table 7.2, obtaining the results shown in table 7.3. Setting the overall test size at 10 percent, the hypothesis
of three (of fewer) common factors cannot be rejected whereas four common factors can be. Nevertheless, the
estimates in table 7.2 are not very consonant with the hypothesis of an AD(1, 1, 1) model with third-order
autoregressive errors since (for example) the coefficients of yt − 2 and pt − 2 are far larger than the corresponding
coefficients at t − 1. Indeed, estimation of such a model (from AD(1, 1, 1) and ηM (3) initial values) yielded the marked
increase in s to 0.025

Table 7.2 Estimates for AD(4, 4, 4) With Constant and Three Seasonal Dummy Variables

Variable j = 0 j = 1 j = 2 j = 3 j = 4 Σ
ct − j −1 0.30 (0.16) −0.05 (0.16) 0.09 (0.17) −0.05 (0.16) −0.71
yt − j 0.42 (0.21) −0.05 (0.22) 0.39 (0.21) 0.21 (0.18) −0.04 (0.18) 0.93
pt − j −0.62 (0.31) −0.69 (0.53) 1.24 (0.55) −0.75 (0.57) 0.43 (0.43) −0.39
kj −1.79 (0.57) 0.25 (0.08) 0.18 (0.08) 0.38 (0.09) –

T = 55 R2 = 0.9948 s = 0.0227 η7(6) = 12.7 η6(6, 37) = 0.93 η5(8) = 15.1 ηM(6) = 3.5
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Table 7.3 Tests of COMFAC Restrictions

Direct tests Incremental tests
No. of common fac-
tors

Degrees of freedom Value of test statistic Degrees of freedom Value of test statistic

1 2 0.47 2 0.47
2 4 1.24 2 0.77
3 6 6.09 2 4.85
4 8 32.01 2 25.92

shown in equation (7.7) (possibly because of multiple optima problems—see Sargan and Mehta, 1983):

(7.7)
where (6) denotes the likelihood ratio test of three common factor restrictions based on the values of the
restricted and unrestricted versions of the AD(4, 4, 4) model. Hence the likelihood ratio test indicates the rejection of
the common factor restrictions which the COMFAC analysis had suggested were data admissible, providing an
empirical illustration of the simulation findings in section 5. It is interesting to record that when estimating the AD(1,
1, 1) model (without autoregressive errors) η5 (11) = 14.2 whereas ηM (6) = 17.0, indicating that the latter is a more
useful diagnostic statistic.

Failure to reject a hypothesis does not entail that it must be accepted, and as COMFAC may be rejecting invalid
common factor restrictions too infrequently (see section 5) we decided to investigate alternative ways of reducing the
dimensionality of the parameter space.

Note that the ‘error correction’ model proposed in chapter 8 has a specification which makes invalid common factor
restrictions in a general dynamic model difficult to reject, and yet, if these are accepted, biased parameter estimates, and
derived moments of the lag distributions, result. In fact, the ‘annual decision taking’ formulation excluding seasonal
dummies is easily rejected, the estimates being

(7.8)
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Although this is not a nested special case of table 7.2 (because of the presence of yt − 5), s has increased by almost 40 per
cent, partly through excluding the seasonal dummies and partly because a unit income elasticity has been imposed.
However, we believe that these estimates are worth recording as a caution against imposing an untested model on data
since on conventional criteria (parameter ‘significance’, signs and magnitudes, forecast accuracy, and random residual
correlogram) such a fitted model would often be judged ‘acceptable’.

Inspection of the results in table 7.2 suggests another simplification in which 0 = 1, 1 = 0 and 2 = 2 (but with the
price variables being and Δ1pt) and searches in this direction found reasonable models. Similarly, specification
searches using a ‘smoothed’ farm income series yielded models with variables which closely resembled an integral
control mechanism (see Phillips, 1957), and these were reported in an earlier version of the paper. Hence our searches
for a good approximation to the data generation process have illustrated the fact that there can be a set of models
which are almost indistinguishable empirically but have different interpretations.

The data-instigated simplification we finally chose was 0 = 1, 1 = 3 and 2 = 4 but with the sum of the price
coefficients restricted to be zero (equivalent to using in place of p), and estimation yielded

(7.9)

The reformulation of both regressors and regressand was selected to achieve ‘sensible’ decision variables which would
be relatively orthogonal, and the substantial reduction in the estimated standard errors of the seasonals reflects the
‘success’ of the choice (subject to some discounting for having several tries!). The smaller values of η6 and η7, however,
are encouraging and support the use of the restrictions (which are obviously not data rejectable). The derived
parameter estimates are recorded in table 7.4 and equation (7.10) reports the steady-state solution. Thus

(7.10)

where

and denotes the annual rate of inflation in PR ; with ranges from 0.07 to 0.15. Since η6 <
1, the value of s will be somewhat smaller
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Table 7.4 Solved Coefficients from Equation (7.9)

Variable j = 0 j = 1 j = 2 j = 3 j = 4 Σ
ct − j −1 0.44 0 0 0 −0.56
yt − j 0.16 −0.09 0.48 0.25 0 0.80
pt − j −0.63 −0.56 1.19 −0.83 0.83 0
kj −1.46 0.29 0.25 0.39 —

Table 7.5AD(4, 4, 4) Over the Entire Sample

Variable j = 0 j = 1 j = 2 j = 3 j = 4 Σ
ct − j −1 0.37 (0.14) −0.05 (0.15) 0.09 (0.16) 0.03 (0.14) −0.56
yt − j 0.41 (0.18) −0.11 (0.21) 0.34 (0.19) 0.20 (0.18) −0.09 (0.17) 0.75
pt − j −0.69 (0.27) −0.40 (0.47) 1.16 (0.49) −1.09 (0.53) 0.84 (0.37) −0.18
kj −1.47 (0.43) 0.26 (0.08) 0.19 (0.07) 0.37 (0.09) —

T = 61 R2 = 0.9956 s = 0.0226 η5 (8) = 9.2 ηM (6) = 3.2

when (7.9) is estimated from the entire sample, and as a final comparison the unrestricted AD(4, 4, 4) model was re-
estimated including the six forecast observations, with the results shown in table 7.5.

In many respects, the main advantage of a simplification search is well illustrated by these estimates since the restricted
solved coefficients for T = 54 are closer to the unrestricted estimates which are based on the longer sample, a result
consistent with equation (7.9) being an accurate approximation to the underlying data generation process.

4 Monte Carlo Methods
Most studies of properties of econometric tests in dynamic models have used either numerical integration or
simulation methods to tabulate numerical values of ‘sizes’ and ‘powers’ (see, inter alia,Maddala and Rao, 1973; Guilkey,
1974; Kenkel, 1974; L'Esperance and Taylor, 1975; Peck, 1975; Tillman, 1975). Investigators have generally conceded
that the main drawbacks of their approaches comprise the following:

1 the results obtained are specific to the parameter values considered;
2 simulation estimates are imprecise even when based on a large number of replications;
3 tabulation strains the memory without producing much insight.

The objectives of this section are to develop some simple methods which attempt to avoid the objections in (1)–(3) and
to apply such methods to investigate the behaviour in finite samples of several of the tests of dynamic specification
used above, including likelihood ratio and Wald tests for common factors and Lagrange multiplier tests for residual
autocorrelation.
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To achieve these aims, we consider large sample approximations to the power functions of the tests at any chosen
nominal significance level, and then ‘calibrate’ the approximations for finite samples using response surfaces which
relate simulation estimates to the asymptotic formulae. The analytical results highlight the factors determining power at
any nominal significance level, and the response surfaces reveal the asymptotic approximations to be quite useful for
the classes of model which we have investigated (more accurate approximations could be obtained by retaining higher
order terms in T−M with M > 1 (see Lee, 1971) using, for example, Edgeworth expansions (see Davis, 1971; Sargan,
1976)).

The principles underlying our approach are relatively standard but for expository purposes are developed for a very
simple situation which can be generalized to the multivariate case. Thus we consider testing the hypothesis H0: α = α0

using a Wald test (see Wald, 1943; Aitchison, 1962) for the model

(7.11)and

(7.12)

In large samples, the least squares (which is equivalent to the maximum likelihood) estimator of α has the
distribution

(7.13)and hence

(7.14)

where χ2 (n, μ2) denotes a non-central χ2 variate with n degrees of freedom and non-centrality parameter μ2 (central if μ
= 0). To test H0 against H1 : α ≠ α0 at nominal (and large sample) significance level δ, one computes

(7.15)and rejects H0 if η1 ≥ d1 where prob[χ2 (1, 0) ≥ d1] = δ.

When H0 is false, the large sample power of η1 can be evaluated against a sequence of alternative hypotheses given by

(7.16)(see, for example, Kendall and Stuart, 1961, ch. 25; Durbin, 1970). From (7.13), when (7.16) holds,
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(7.17)where

and hence

noting that

(7.18)

The large sample power of η1 to reject H0 against H1 for any chosen values of is given by prob [χ2 (1, μ2)
≥ d1] and this can be calculated from the area of the relevant non-central χ2 distribution lying in the interval [d1, ∞].
However, some insight into the properties of the test can be obtained by using the well-known approximation to the
non-central χ2 of a proportion of the familiar central χ2 adjusted to have the same first two moments (but different
degrees of freedom). Thus (see Kendall and Stuart, 1961, ch. 24),

(7.19)where

(7.20)

These values of h, m ensure that the two χ2s in (7.19) have the same first two moments, namely:

(7.21)and

Consequently, the approximate and large sample power P* of η1 given is (using (7.19) and (7.20))

(7.22)
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where h* = d1/h, h = (1 + 2μ2) / (1 + μ2) and m = (1 + μ2)2 / (1 + 2μ2). The following interesting properties of η1 are
revealed by (7.22).

1 If H0 is true, μ = 0 so that h = 1 = m and hence

(7.23)
confirming the appropriate nominal and large sample size of the test.

2 If α ≠ α0, μ2 → ∞ with T, so that h→ 2 and m→ ∞. Therefore, so that the test is
consistent and rejects H0 against any fixed alternative with probability unity for sufficiently large T (this
determined the choice of alternative in (7.16)).

3 As γ increases for fixed T, μ2 and m increase monotonically and so the power also increases towards unity;
conversely, the probability of type II error increases as δ falls and hence d1 increases. Heuristically, the power of
η1 given arises from the fact that its actual distribution depends on a χ2 with m degrees of freedom centred
on hm, whereas it is being compared with a critical value d1 based on a central χ2 with one degree of freedom; as
m increases, the probability of η1 exceeding d1 tends to unity.

4 The large sample power P* of η1 is easily and cheaply calculated from (7.22) for any choice of (although m
need not be integer, (7.22) can be computed for the nearest integers on both sides of m and an approximate
value calculated by linear interpolation). Alternatively, P* could be computed directly from prob [χ2 (1, μ2) ≥ d1].

To summarize, equation (7.22) highlights in a simple analytical formula the way in which the factors α, δ, γ, T
determine the large sample power of η1 to reject H0 against the sequence (7.16). As such, the approach seems to
provide a reasonable compromise between a highly labour-intensive analysis (such as Phillips, 1977) and a computer-
intensive simulation (like Orcutt and Winokur, 1969). Moreover, P* can be used as a statistical control for between-
experiment variation in simulation estimates of , to improve the accuracy with which power functions are
determined when T is finite (compare the equivalent for moments of estimators in Hendry and Srba, 1977). The actual
power2 is, of course, unknown and the naive Monte Carlo estimate is the proportion of times that η1 ≥ d1 in N
random replications. Since

(7.24)

to produce a 95 per cent confidence interval of ± 0.01 requiresN = 40,000 (1 − P)P (e.g. N = 3600 for P = 0.1 or 0.9;
N = 10,000 for P = 0.5; and N = 1900 for P = 0.05 or 0.95) (see Sargan, 1976). Thus, for a reasonable number of
values of (the parameter space under consideration), an inordinately expensive experiment would be required
to achieve accurate and general results.

The main interest in a test's properties would seem to be accurate estimation (or evaluation) of P as a function of
(say), rather than just P at a few isolated points in Ψ . The simulation equivalent is a response surface

relating to the design variables through an appropriate choice of where ε is a composite of
the error in approximating φ (·) by φ* (·) and the error in estimating P by . The form of φ* (·) should ensure that all
power estimates and predictions lie in the interval [0, 1] and that identical results occur from studying type II errors
rather than powers. Moreover, it seems efficient to include P* as one of the determinants of to evaluate the accuracy
of the asymptotic approximations discussed above.

These considerations rule out a large number of potential candidates for φ* (·) (including, for example, the linear
approximations tried in an earlier version of this paper, which additionally suffer from a ‘spurious regressions’ problem
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since ≈ P* at very low and very high powers, ensuring a high R2 independently of the quality of the fit over most of
the region of interest, revealed by a low Durbin–Watson statistic when the data from the experiments were ordered
according to the value of the non-centrality parameter!).

We chose the function

(7.25)implemented in the form (see Cox, 1970, ch. 6)

(7.26)denoted by

where

In (7.26), the dependent variable should have roughly a unit variance around [NP(1 − P)]1/2 ln [P/(1 − P)] and
consequently the adequacy of the approach can be evaluated by (a) β1 = 1, (b) σν = 1, (c) g(·) = 0, as well as by the R2

from

Figure 7.1 Plots of P* and for T = 25 .
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estimating (7.26) (compare the ‘Stein-James smoothing’ proposed by Effron and Morris, 1975).

Note thatH = 0 if F = 0 or N and observations for which this occurred, or where P* ≥ 0.9999, were deleted from the
regression. Thus, unlike other experiments, ‘extreme’ points provide no information if the experimental evidence is
summarized via and, for example, (7.26).3

To illustrate the above analysis, 20 experiments were conducted from α = 0 (0.05) 0.95 with
(without loss of generality) using N = 800, re-using identical random numbers between

experiments. Although only α > 0 was considered, the two-sided test η1 was used with d1 = 3.84. Figure 7.1 shows plots
of P* and and it is clear that P* increasingly overestimates as α increases from 0.5 until P* ≈ 1. This finding
suggests trying g(ψ) = β2α2/(1 − α2) = β2μ2/T as an additional regressor with P* (δ and T being omitted since they were
not varied) and estimation yielded

(7.27)

(with ordered as in figure 7.1), where η6 (T2, T1 − κ) is the Chow test described in section 2 for T2 = 4 (randomly
chosen) experiments retained for prediction, from a model with κ regressors estimated from T1 observations.

A similar outcome resulted for T = 50 (see figure 7.2), with a much steeper power function ( ≈ 1 for α ≥ 0.65), slight
underestimation of P* at low powers and larger underestimation for 0.75 ≤ P* ≤ 0.95. Such results are approximately
what would be anticipated in view of the Edgeworth expansion for the t ratio (7.13) provided by Phillips (1977), and
starkly reveal the defects of a simulation study relative to an analytical derivation. The term in μ2/T is reminiscent of
the form of inconsistency response surface found by Hendry and Srba (1977) and hence it was decided to modify
equation (7.25) to allow which yields a class of response surfaces given by

(7.26*)

and this is the formulation used in section 5 below.

As a basis for studying much more complicated situations, given the number of approximations involved (the
assumption that η1 has a χ2 distribution, the approximation to the non-central χ2 in (7.19), the use of asymptotically
valid values of P* and relatively inaccurate estimates of P) the results are rather encouraging. Indeed, R2 is close to
unity, the regression accurately predicts the four randomly chosen values of α, and 1 is not ‘significantly’ less than
unity. However, 2 is ‘significantly’ different from zero, the fitted regression exhibits significant residual autocorrelation
because P* overestimates the simulation-based power values at high power4 and s is much in excess of unity. These
disadvantages are offset by the erratic behaviour of despite N = 800 (note that P* is a zero variance asymptotically
unbiased, though biased, estimator of P), and in fact the 95 per cent confidence intervals for P at 0.05 (or 0.95) and 0.5
are ± 0.016 and ± 0.036. When the experiments were
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Figure 7.2 Plots of P* and for T = 50.

re-run using N = 400, sometimes decreased as α increased, demonstrating the unreliability of crude simulation. In
contrast, P* provides an analytical result which is inexpensive to compute and yields insight into the behaviour of the
test. Overall, the mixed , P* calibration approach seems sufficiently worthwhile to use for investigating other tests of
dynamic specification.

5 The Finite Sample Properties of the Tests
The class of relationship under study is AD(m0, m1):

(7.28)
and zt is generated by

(7.29)
In fact, zt is also stochastic in that it was generated separately for each replication rather than being held fixed in the N
replications. The COMFAC algorithm developed by Sargan and Sylwestrowicz (1976a) can be used to form a sequence
of Wald tests for common factors in the lag polynomials of unrestricted dynamic equations like (7.28) using the test
statistic

(7.30)

which, as described in section 2, is asymptotically distributed as χ2(r, 0) when is true and imposes r
restrictions. As with η1, H0 is rejected when η3 ≥ dr where prob [χ2(r, 0) ≥ dr] = δ. The COMFAC algorithm for
implementing η3 was incorporated in NAIVE (see Hendry and Srba, 1977) for the simulation experiments.

When H0 is false, the power of η3 can be evaluated against the sequence of alternatives
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(7.31)

such that

(7.32)Thus, to use the power approximation analysis described above requires calculation of

(7.33)

The population second moments of the data can be calculated from (7.28) and (7.29), thus determining V; and
and μ2 are then evaluated for any given model. Note from (7.33) that the power of η3 (at any chosen δ)

depends on the sample size (T), the magnitude of the discrepancy from the common factor restrictions , the
(asymptotic) variance of the unrestricted estimator of and the Jacobian from θ to . Having calculated
μ2, P*(η3|ψ) can be computed from the equivalent of (7.22).

The two special cases of (7.28) investigated were AD(1, 1) and AD(2, 1) respectively, testing for one common factor (i.
e. r = 1) in both. In the first case

(7.34)

so that f (θ) = θ0θ1 + θ2 = γ/T1/2 (obtained by setting θ2 = γ/T1/2 − θ0θ1).5 For each of the five values of γ = 0 (0.5) 2, nine
independent experiments were

Table 7.6 Properties of COMFAC for AD(1, 1) When λ = 0.9
T θ0 γ

0.0 0.5 1.0 1.5 2.0
(i) 75 0 10 0.03 0.03 0.04 0.05 0.06

P*
0.05 0.05 0.06 0.08 0.10

(ii) 25 0.8 1 0.06 0.24 0.42 0.66 0.87

P*
0.05 0.17 0.43 0.71 0.91

(iii) 55 0.4 0.1 0.04 0.50 0.99 1.0 1.0

P*
0.05 0.59 0.99 1.0 1.0

replicated with (but estimated), using a Graeco–Latin 3 × 3 design generated from
T = (25, 55, 75), θ0 = (0, 0.4, 0.8), λ = (0.3, 0.6, 0.9) and (see Cochran and Cox, 1957, p. 146). The
small value N = 100 was selected to see what levels of accuracy could be achieved at relatively low cost given the
generality sought from 45 experiments. Note that cannot be more accurate than two digits, and to illustrate typical
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results table 7.6 records the outcomes of and P* for the three sets of experiments with λ = 0.9.

The results for the 45 experiments were pooled to estimate the overall response surface between and P* with five
randomly selected experiments retained for the prediction test: (7.35)

In this case, P* provides a good approximation to the general behaviour of , noting that the standard errors of at
0.05 and 0.5 are 0.022 and 0.050 respectively. The functional approximation is not rejected by the prediction test, the
coefficient of P* is not significantly different from unity, although the intercept is from zero, R2 is high and s is quite
close to unity. In fact, the central χ2 approximation to η3 also held well in terms of the first two moments as shown in
equations (7.36) and (7.37), which record regressions of η3 on and ln SD(η3) on ln SD[χ2(1, μ2)]
respectively:

(7.36)

(7.37)where η7 (T2) is the χ2 test of predictive accuracy for T2 prediction observations first introduced in section 2.

For many practical purposes, P* provides as adequate an approximation to the unknown P as does for COMFAC
applied to (7.34) but at a fraction of the cost.

To check our approach and obtain information on the comparative finite sample performances of two asymptotically
equivalent tests, we also investigated the likelihood ratio (LR) test for a first-order common factor originally proposed
by Sargan (1964a). For the same experiments (i.e. identical data) as the Wald test, the response surface corresponding
to (7.35) was (using R to denote the simulation-estimated power of the LR test),

(7.38)

The performance of the two tests is clearly very similar in this simple case, and seems adequately described by the
asymptotic approximation.

Turning next to the AD(2, 1) model, this was defined by (7.39)

with and zt generated by (7.29). P* (η3 | ψ) was calculated as before using equations (7.31)–(7.33). To
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help comparability, a similar experimental design was selected, using the same values of as earlier, with
(but estimated), setting θ0 = ξ + ρ, θ1 = − ξ ρ and θ3 = − ρ + γ /T1/2 where ρ = (0, 0.4, 0.8) and ξ =

(0, ± 0.2, ± 0.4, ± 0.6, ± 0.8). A 3 × 3 Graeco–Latin square was formed from the values of with a
value of ξ being randomly assigned to each experiment, these sets of nine experiments then being conducted for each
of the five values of γ, using N = 200 (again re-using the random numbers as γ varied). Both Wald and LR tests for
common factors were conducted and table 7.7 records illustrative values of the tests’ relative rejection frequencies in
the experiments with λ = 0.6.

The estimated response functions were

(7.40)and

(7.41)

Both tests perform rather poorly in terms of the asymptotic approximation, although both (7.40) and (7.41) serve as
reasonable descriptions of the experiments conducted, accurately predicting five randomly selected experimental
outcomes.

The average sizes of the Wald and LR tests (γ = 0) were approximately 0.04 and

Table 7.7 Properties of COMFAC Tests in AD(2, 1) When λ = 0.6
T ξ ρ γ

0 0.5 1 1.5 2
(i) 55 0 0 1 P* 0.050 0.051 0.053 0.062 0.081

W

0.035 0.025 0.040 0.045 0.075

R

0.060 0.080 0.090 0.115 0.145

(ii) 25 0.6 0.4 10 P* 0.050 0.052 0.056 0.063 0.071

W

0.000 0.000 0.000 0.000 0.000

R

0.160 0.160 0.150 0.165 0.180

(iii) 75 −0.2 0.8 0.1
P*

0.050 0.350 0.889 0.997 1.00

W

0.080 0.495 0.940 1.00 1.00

R

0.080 0.475 0.940 1.00 1.00
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0.09 respectively, so that the latter deviates from its nominal significance level; however, the Wald test tended to reject
infrequently at small sample sizes as table 7.7 illustrates.6 Overall, even for AD(2, 1) models and r = 1, COMFAC had a
fairly large type II error and we conjectured that this would worsen as the number of lags increased on the very limited
comparison basis of the AD(1, 1) findings. The response surfaces for the first two moments of the tests suggest that
on this criterion the Wald test is closer to the asymptotic approximation based on χ2 than is the LR (see Sargan, 1980a)
since

(7.42)

(7.43)

(7.44)

(7.45)

Thus the first two moments of η3W are close to those of the asymptotic approximation whereas substantial
underestimation occurs for η3R. These findings guided our use of the Wald test in the empirical section above, namely
as an attempt to reject common factor representations without entailing selecting such a representation when it could
not be rejected at conventional significance levels.

In the final set of experiments, we examined the performance of three asymptotically equivalent tests for first-order
autocorrelation in dynamic models (conditional on knowing that a common factor representation existed), both to
illustrate the approach for a well-studied problem and to compare the finite sample properties of the Lagrange
multiplier (LM) based tests used in the empirical analysis above with those of Wald and LR form. In addition a
‘portmanteau’ LM test for fourth-order residual autocorrelation was investigated.

The data generation process was

(7.46)
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with ρ = (± 0.4, ± 0.75), d = (± 1, ± 10), ξ = (± 0.4, ± 0.8), T = (19, 39, 59, 76) and were used to generate
a 4 × 4 Graeco–Latin square (set (i)) which was then replicated but with ρ = 0 (ii) and ξ = 0 (iii), to calibrate the
significance level of the tests and check on any ‘power loss’ through incorrectly including the lagged dependent
variable. Typical results (from the four experiments with ρ = +0.4) are shown in table 7.8, using the notation η* for
χ2(1, μ2), ηW, ηR, ηM for the Wald, LR and LM tests of H0: ρ = 0, η* (4) for χ2(4, μ2) and ηM (4) for the LM test for fourth-
order autocorrelation (note that ηM (4) ã η* (4) with the same non-centrality parameter as η* but different degrees of
freedom). The power approximations described earlier were again used, and although μ2 is a complicated function of
the parameters of (7.46) it is easily computed using (where and ũt is the OLS residual)
for the alternatives ρ = γ /T1/2 with fixed γ. A nominal significance level of δ = 0.05 (where prob [χ2 (n, 0) ≥ dn] = δ)
was used for all the tests which were computed using and ηM = TR2, with R2 calculated
from the regression of ũt on (ũt − 1, yt − 1, z1t, z2t) (see Godfrey, 1978), where a circumflex denotes maximum likelihood
estimator and . ηM (4) is TR2 from regressing ũt on (ũt − 1, . . . , ũt − 4, yt − 1, z1t, z2t). Note that ηW and ηR are of
the form of TR2/(1 − R2) and T ln (1 − R2) for suitably defined regressions (different from those of the LM test) and
that x ≤ ln (1 − x) ≤ x/ (1 − x) for 0 < x < 1. Thus, although we have been unable to prove that ηM ≤ ηR ≤ ηW for H0 :
ρ = 0 in model (7.46) (see Berndt and Savin, 1977) we conjecture that such a

Table 7.8 Autocorrelation Test Results

E1 E2 E3 E4

P η SD P η SD P η SD P η SD
(i)
η* 0.37 3.8 3.6 0.75 7.8 5.4 0.91 11 6.5 0.97 14 7.4
ηW 0.37 4.8 6.9 0.66 7.7 6.3 0.80 9.3 6.4 0.88 14 9.3
ηR 0.30 3.5 4.1 0.66 6.8 5.1 0.80 8.7 5.6 0.90 13 7.6
ηM 0.27 2.4 2.6 0.57 5.5 4.0 0.78 7.4 4.7 0.88 11 6.1
η* (4) 0.23 6.8 4.4 0.52 10.8 5.9 0.72 14 7.0 0.85 17 7.8
ηM (4) 0.10 5.2 2.9 0.32 8.2 4.2 0.46 10 5.0 0.76 14 6.1
(iii)
η* 0.37 3.8 3.6 0.74 7.8 5.4 0.85 9.7 6.1 0.97 14 7.4
ηW 0.33 4.5 6.9 0.64 7.4 6.2 0.79 8.7 7.1 0.93 15 9.4
ηR 0.30 3.3 4.0 0.63 6.6 5.1 0.80 8.2 6.1 0.93 13 7.6
ηM 0.26 2.4 2.6 0.57 5.3 4.0 0.73 6.6 4.0 0.91 12 6.1
η* (4) 0.23 6.8 4.4 0.52 10.8 5.9 0.64 13 6.5 0.85 17 7.8
ηM(4) 0.08 5.2 2.8 0.34 8.1 4.3 0.43 9.5 4.3 0.76 14 6.1

Parameter values in (i)
E1 E2 E3 E4

ξ −0.4 −0.8 0.8 0.4
d 1 −10 −1 10
T 19 39 59 76
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result holds for the mean values, a hypothesis supported by the finding that ηM ≤ ηR ≤ ηW in almost all the experiments
we conducted (see, for example, table 7.8). A similar ordering was observed for the standard deviations of the tests so
that no power or significance level implications follow from the inequality (although there was a tendency for M =
(ηM) < (ηR) ≈ (ηW)).

The following response surfaces were obtained:

(7.47)

(7.48)

(7.49)

(7.50)

All three first-order autocorrelation tests deviate significantly from the asymptotic power function, with W having the
smallest coefficient on L(P*)/T and M the largest as well as the largest on 1/ T, although the R2 values are high and

. Moreover, ηM(4) performed even worse than the three first-order autocorrelation tests with P[η*(4)] being much
lower than P(η*) (as anticipated), and P[ηM(4)] being much less than P[η*(4)], but it is hardly surprising that a
‘portmanteau’ test should have rather low power against specific alternatives, or that it is not close to its large sample
distribution for T ≤ 60. When |ρ| = 0.75, all the tests had near unit power for T > 19, and when ρ = 0, the average
rejection frequencies of all the tests were around the nominal level of 0.05 (0.06, 0.065, 0.05 and 0.04 for ηW, ηR, ηM and
ηM(4) respectively). Since autocorrelation seems easy to detect when it is ‘large’ and is relatively unimportant when
‘small’ we conclude that the LM tests provide useful ‘diagnostics’ for modelling stationary dynamic processes.

Finally, to relate the asymptotic power function approach to the control variate (CV) methods used by Hendry and
Srba (1977) in studying the distribution of in

Table 7.9 Correlation of and Its Control Variate

E1 E2 E3 E4
(i) 0.80 0.87 0.86 0.93
(ii) 0.78 0.90 0.92 0.95
(iii) 0.81 0.86 0.89 0.93
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the present class of model, table 7.9 records the correlations of with its CV for the four experiments reported in
table 7.8. The correlations are all fairly high and increase rapidly with T, but for T ≠ 76 the CV only accounts for about
80 per cent of the within-experiment variation in . Thus, both the CV and the response surface evidence suggest that
the asymptotic approximations are useful but not fully adequate by themselves.

6 Summary and Conclusions
The paper describes some sequential simplification procedures for stationary, linear dynamic equations and applies
these to model consumers’ expenditure on non-automobile durable goods in Canada. Since only the asymptotic
distributions of the various dynamic specification tests used (common factor and residual autocorrelation) are known,
simple methods for studying their finite sample properties are developed, resulting in logistic response surfaces relating
empirical rejection frequencies to asymptotic powers, where the latter are easily calculated numerically and the former
are obtained by Monte Carlo simulation.

The simple log-linear model (7.9) proposed to explain expenditure on durables is judged to be consonant with the
data, and does not suffer from predictive failure over the six quarters following the end of the estimation sample.
However, several of the simplification procedures considered (e.g. COMFAC and the annual change model in chapter
8) did not prove useful, and since there are arguments favouring the use of relatively unrestricted models (see Leamer,
1978), (7.9) may not be the best choice of model. The choice of (7.9) does seem justified though, not least because it is
easy to interpret and appears to have superior parameter constancy to other models that we considered. In advocating
and employing specification searches which start from a general dynamic model and then systematically searching for
reasonable simplifications that are data admissible, tests for common factors and residual autocorrelation are
considered. These tests jointly form the basis of the procedures described in section 2 for determining dynamic
specification. However, in the simulation study we analysed the small sample behaviour of these tests separately,
leaving the analysis of their joint behaviour for future research.

Both the empirical and the simulation studies suggest that the common factor tests may have low power in rejecting
invalid restrictions in even the simple models AD(1, 1) and AD(2, 1), and that the asymptotic distributions are rather
crude, but nevertheless useful, approximations to the behaviour of the tests for sample sizes of less than 80
observations. In particular, for the AD(2, 1) model the Wald and LR common factor tests behave very differently from
the asymptotic approximation, though the response surfaces do give an accurate description of the experiments
conducted. Although the average size of the COMFAC test at 0.04 is less than that of the LR common factor test
(0.09) and COMFAC does appear to have a large probability of type II error, which we conjecture would increase with
the order of dynamics, the response surfaces for the first two moments of the test statistics’ distributions suggest that
the COMFAC distribution is closer to a χ2 distribution than the distribution of the LR statistic is. We conclude,
therefore, that
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in view of these simulation results and the fact that the Wald test is computationally easier to obtain than the LR
common factor test (given the existence of the COMFAC algorithm), COMFAC can be usefully employed in attempts
to reject common factor representations provided that the failure to reject at conventional significance levels does not
entail selecting such a representation. This proviso is particularly important when COMFAC is being used as a part of
a specification or simplification search, and less important when it is used as a diagnostic check. Hence COMFAC can
be a useful tool in specification searching, but it must not be used uncritically.

The simulation evidence on the widely used diagnostic checks for residual autocorrelation is favourable, in that all
three tests, Wald, LR and LM, easily detect autocorrelation when it is ‘large’, and when it is ‘small’ its detection is less
important. Interestingly, the inequality ηW ≥ ηR ≥ ηM appears to hold for the mean values of these residual
autocorrelation tests, but even though the size of each of the tests is close to the nominal 5 per cent this has no power
implications, since a similar inequality appears to hold between the standard deviations of the test statistics. It does
mean, though, that the LM test will on average reject less frequently than the other two tests which is a reasonable
feature for a test of mis-specification. Hence the evidence favours the use of the easily computed LM test for residual
autocorrelation as a useful diagnostic for mis-specification, which has high power when common factor restrictions are
valid and the error term manifests substantial first-order autocorrelation. Though clearly the portmanteau LM has low
power against the specific alternative of first-order autocorrelation the simulation evidence does favour its use, and
there is empirical evidence in section 3 that it is to be preferred to the conventional time-series portmanteau statistic of
Pierce (1971).

Finally, we note that Monte Carlo simulation for problems not yet having analytical solutions, especially when the
experimental design is carefully chosen and the results of asymptotic theory are used to calibrate the inter-experimental
results via response surfaces, can be very useful without being computationally expensive.

Notes
1 Other potential regressors were considered in preliminary analysis, including r (the interest rate on three month

Government of Canada treasury bills), Δ ln PT (the rate of inflation) and L (the sum of end of month currency in
circulation plus demand deposits per capita). The first two were not retained as their total influence was empirically
negligible in models with = 4, and the last was not used as it seemed an unhelpful variable, being a very poor
proxy for either ‘liquid assets’ or an integral control mechanism.

2 Strictly, rejection frequency since the actual size may differ substantially from the nominal size δ.
3 James Davidson has suggested an alternative form of experimentation which deserves consideration, using a very

large number of randomly generated values of ψ and analysing one replication per experiment.
4 This may be due in part to the smoothing caused by re-using the random numbers. Also note the very different

sense in which we consider asymptotic approximations to be useful compared with (say) the tests on distribution
functions used by Basmann et al. (1974) since
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the t test of β2 = 0 rejects the hypothesis that the are observations from the P* distribution at the 0.01 level.
5 Since V depends on θ2, μ2 is not invariant to sign changes in γ.
6 While re-using the random numbers as γ increases reduces the variability between such experiments, it has the

undersirable effect of causing autocorrelation and hence (for example) the sequence of zero rejects for W in set
(ii): on balance we would not adopt such a practice again.
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8 Econometric Modelling of the Aggregate
Time-Series Relationship Between Consumers'
Expenditure and Income in the United Kingdom8

with J. E. H.Davidson, F. Srba and S. Yeo

Preamble
Since DHSY marked my real break from the conventional approach (described in the preamble to chapter 2), it may be
helpful to sketch some of its antecedents. In the first half of the 1970s, consumption functions in the United Kingdom
were not predicting well. I was still bruised from my encounter with trying to predict 1968 and failing miserably, and
hence was puzzling over the causes of both massive and persistent mis-prediction. There were a number of papers by
time-series protagonists claiming better prediction records than those of econometric systems (see, for example,
Naylor et al., 1972; Cooper, 1972), and yet it was clear that their methods had to be special cases of econometrics
techniques (see Zellner and Palm (1974) and Prothero and Wallis (1976) for formal analyses). The proliferation of
incompatible consumption models was also worrying since at most one of them could be ‘correct’. Why did our
research methods not yield unique answers on common data sets?

During 1974–5, James Davidson and I had investigated quarterly versions of permanent income–life cycle models of
the stereotypical kind found in macro systems, and confirmed that such equations were indeed dominated in terms of
goodness of fit and predictive accuracy by simple time-series representations. The key issue was whether the
underlying economic analysis was wrong or merely its implementation in an empirical model. My papers on mis-
specification (1975a) and Monte Carlo (Hendry and Harrison, 1974) together with the general theoretical analysis of
building society behaviour in chapter 3 had revealed (to me) how to

8 Reprinted from Economic Journal, 88 (December 1978) 661–92. This research was financed in part by a grant from the Social Science Research Council to the Econometric
Methodology Project at the London School of Economics. Preparation of the initial draft of the paper was supported by grants from the National Science and Ford
Foundations while Hendry visited at the Cowles Foundation, Yale University. Yeo gratefully acknowledges the financial assistance of a Canada Council Doctoral Fellowship.
We are grateful to Gordon Anderson, Charles Bean, Jeremy Bray, Angus Deaton, John Flemming, Grayham Mizon and John Muellbauer for helpful comments on previous
drafts.



reconcile conflicting evidence when the data generating process (DGP) was known or believed to be known, and so it
seemed reasonable that an analogous notion could be used within a class of models even if the DGP was not known.
Which class, if any, could possess such a property? I have no recollection of initially noticing any connections within
this disparate set of problems, beyond the obvious point that knowledge of the ‘correct’ model would remove them all.

As noted earlier, the vital clue was provided by the concept of an error correction mechanism (ECM) (although ECMs
have been used in chapters 5–7 above, DHSY was their source). The analogy to the mortgage–deposit ratio of chapter
3 was the consumption–income ratio and suddenly both the theories and the evidence seemed reconcilable. Yet again,
Denis Sargan's (1964a) paper was the crucial precursor and must have been an important stimulus, although it was
only after struggling with consumers' expenditure that I realized the general implications of his wage–price model.
Moreover, despite having taught control theory and having been aware of Bill Phillips's papers on the uses of
servomechanisms for economic policy (see Phillips, 1954; 1957), I did not immediately grasp the relationship between
his notion of proportional feedback and ECMs as models for the behaviour of individual agents, although that gap was
filled by 1977–8.

We next realized how to develop encompassing explanations which applied even when the DGP was unknown. If the
ECM-based model was provisionally treated as the DGP, then we could understand the connection between the time-
series equation and the permanent-income equation, using the ECM as an intermediary. In its simplest, form, the
ECM was

(1)

where εt ∼ IN (0, σ2) and c, y denoted the logarithms of real consumers' expenditure C and real income Y respectively.
The time-series model set γ to zero (i.e. excluded the ECM log (C/Y)t−1). Because growth rates Δ Yt and disequilibria (c
− y)t−1 were little correlated, and the latter had a relatively small variance, the resulting equation had roughly the correct
estimate of β and a residual standard error which was not greatly in excess of σ. By actually estimating β (i.e. the short-
run coefficient) the time-series model would manifest a small income elasticity. But (1) could also be written as

(2)

The permanent-income model which we considered set γ − β to zero (i.e. excluded Yt − 1). Since Yt and Yt − 1 were highly
positively correlated, if γ − β was negative then the estimate of β would be badly biased towards zero, and because {Yt}
had a large variance the fit would deteriorate considerably. Nevertheless, the sum of the coefficients of yt and ct − 1 would
remain near unity (the value anticipated by many economic theories for the long-run income elasticity of
consumption). Moreover, we had a new idea to explain the proliferation of incompatible empirical models:
methodologies such as ‘time-series’ or ‘theory calibration’ acted like blinkers on a horse, namely to narrow vision, and
the resulting estimates were perhaps more an artefact of the restrictions imposed by the methodology than a reflection
of the properties of the data being analysed.

At that stage, we had discovered a general econometric model which was consistent with long-run economic theory
and encompassed much of the empirical evidence, as well as making intuitive sense. Unfortunately, it predicted no
better than existing equations! A further long lag ensued while we tried to ascertain what would explain the predictive
failure (Frank Srba and Stephen Yeo were co-authors by then). This time, Angus Deaton's work came to the rescue
(see Deaton, 1977) by suggesting an important role for (unanticipated) inflation in the consumption function. On the
very first try with our ECM augmented by inflation (and
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its change) we struck gold: a well fitting and constant model which had no difficulty predicting the first half of the
1970s. Had Angus Deaton not proposed his ‘unanticipated inflation’ hypothesis, the DHSY model might have been
stillborn, although as chapter 5 showed, many of the lessons learnt in its development were well taken prior to having
obtained a complete explanation.

If it had not been totally obvious to me before, it was now manifest that methodology, however brilliantly conceived,
was at best a necessary and not a sufficient ingredient for successful empirical research. Poor or restrictive methodology
could preclude discovering useful models. To use a phrase due to John Herschel (1830), in ‘the context of discovery’
creative insights, serendipity and good luck were equally as essential as methodology, even though they were not yet
susceptible to scientific analysis.

In writing chapters 3 and 8, the concept of a progressive research strategy had gradually evolved. The model of
building society behaviour had first revealed that considerable improvements in understanding empirical phenomena
could be achieved despite the model not being the ‘final word’ — indeed, Gordon Anderson and I felt we understood
why most previous empirical models behaved as they did, even though our own had not yet been estimated. The ability
of an ECM to account for the failure of other consumption function models despite being a manifestly false model (as
it could not describe the 1970s prior to incorporating inflation effects) confirmed both the possibility and the value of
viewing empirical modelling as part of a progressive sequence and not as a ‘one-off ’ analysis forging economic laws.
Aris Spanos had persisted in drawing my attention to the literature on the philosophy of science, especially Lakatos
(1974), which helped clarify my thinking and provided an ‘authority’ to cite in support. These ideas play a major role in
the rest of the story. In particular, we realized that most of the puzzles noted at the start of this preamble were
interrelated and could be jointly reconciled.

A wide range of econometric issues is confronted in this chapter and an analysis is offered of each topic in isolation,
and occasionally conjointly. To summarize the chapter the main issues were as follows.

1 We sought to account for the proliferation of rival models of consumers' expenditure, using a ‘detective story’
approach. The formal sequential simplification method still lay in the future despite chapter 3, but within the
confines of our evolving methodology we developed ‘locally general models’ such as equation (8.20) below,
which emphasized systematic dynamics relative to error dynamics (which imposed COMFAC restrictions).
However, by not reverting to the general unrestricted specification when additional variables were tried, we
made mistakes, especially about the importance of liquid assets, leading to chapter 9.

2 The ECM was formalized as a class of models, and was found to have good properties in a pilot Monte Carlo
study. The role of error correction in encompassing was analysed along the lines of equations (1) and (2) above,
and a preliminary typology of models was described (the precursor to chapter 4 above).

3 Parameter constancy and its obverse of predictive failure were major concerns, primarily because of the help
the latter offered through its power to reject inadequate models.

4 Data graphs instantly revealed the flaws of the consumption equations reported in chapter 2! The data were
highly seasonal (much more so for expenditure than income) and strongly trended, and the
consumption–income ratio also trended (downwards).

5 The economic theory was used to structure the empirical analysis and delineate the class of theory-consistent
models; within the class, the data determined the dynamics as well as the parameter estimates. Modelling was
viewed as matching economic theory to data evidence.

6 Encompassing provided the guiding framework, based on a mixture of standardization
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and embedding to create a common general model. We took this approach, rather than (say) non-nested tests,
for three reasons. First, non-nested testing allowed the possibility that all the models might be rejected and
hence did not fit comfortably with the notion of progressive research. Second, we wanted to account for the
results obtained by previous researchers, not merely demonstrate that they were incorrect. Finally, we also
wished to explain why the previous models had been selected, given that they were false as judged by the DHSY
equation. This first attempt at ‘selection encompassing’ necessitated determining an equation which closely
mimicked the DGP in those aspects relevant to consumers' expenditure and then analysing what the rival
methodologies should have found when applied to such a DGP compared with what they did find. If the two
matched, we could feel much more confident that the DHSY model really could account for all the available
evidence.

7 We explicitly conditioned consumption on income despite the ‘simultaneous equations problem’. I had
undertaken a number of empirical, analytical and Monte Carlo studies of least squares and instrumental
variables methods in simultaneous systems (see chapter 2; Hendry, 1973, 1975a, 1979b;1 Hendry and Harrison,
1974). The overall findings suggested that dynamic mis-specification induced far larger biases than
simultaneity, unless the latter corresponded to implicitly regressing a variable on itself when the true coefficient
was zero (as in an identity W ≡ X + Z where X is then regressed on W even though X does not actually
depend on W). Although income could only be spent or saved, and hence appeared to have expenditure as a
component, that was an allocation equation given income, not the equation determining income. Also, the
anticipated coefficient of income in a consumption function was far from zero. The estimated income
coefficients, which did not appear upward biased relative to their anticipated values, and the constancy of the
final model suggested that the bias must be small, since any potential bias should change with changing data
covariances. We reported instrumental variables estimates, which were also consistent with negligible biases,
but these were conditional on a model specification selected by least squares. The concept of weak exogeneity,
analysed in chapter 15, would have helped to sustain our analysis.

8 The differencing/unit roots issue is confronted and related to ECMs. It is amusing to recall my confidence that
we had finally resolved that problem — immediately prior to the extensive later developments on cointegration
(see chapter 19).

9 Multicollinearity was treated as an issue of ‘choice of parameterization’ rather than ‘choice of regressors’.
Orthogonalizing transformations were selected as corresponding to parameters of interest, and related to a
simple theory-model of agent behaviour.

10 Seasonality and prior seasonal adjustment were discussed, with the preferred empirical solution being close to
the recommended procedure of Box and Jenkins (1976) in that it involved four-period differences, but with a
four-period lagged ECM as well. A crucial distinction was drawn between the effects of seasonal adjustment
on procedures for estimating a known model and on procedures for selecting models. It could be very difficult
to uncover the ‘correct’ equation from adjusted data.

11 Yet again, the time-series versus econometrics debate was noted. On this occasion, however, it was the
predictive failure of the former, and not the latter, which provided decisive evidence favouring ‘econometric’
equations for forecasting.

12 Measurement error effects were studied since we had anticipated that these might be large, but yielded a blank.
13 A servomechanistic interpretation of behaviour was very much to the fore. This was only partly because the

selected feedback model needed a rationalization. Since econometricians were also economic agents and yet
had proved unable to predict future events at all satisfactorily despite detailed empirical studies, I did not
believe that all other agents were somehow able to predict the future correctly. An important aspect of error
correction
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is that it allows agents to make mistakes and yet maintain consistent long-run plans and so mimic the
economists' view of rationality. That idea deserved exploration and DHSY offered a tentative formulation.

The next three chapters form a closely linked sequence in time, in ideas and in subject matter. They reflect an attempt
to develop methodology through practical application and are both the precursors of and stimulants to much of the
formal analysis in part III. They also illustrate a progressive sequence of empirical models, and demonstrate that
econometric models can survive for sustained periods after their creation.

On the one hand, the substantive estimates in DHSY had an immediate practical impact in the United Kingdom. Many
of the economy-wide econometric models tried a variant of it in their systems, and retained such an equation for the
next six to eight years. However, some of the outcomes prompted considerable controversy. For example, embedding
DHSY in the Treasury model led to a large number of sign changes on important multipliers: owing to the inflation
effect, stimulating demand could have perverse effects if inflation rose more rapidly than real disposable income,
inducing an offsetting fall in the consumption–income ratio. Bean (1977) provided a rigorous test of our findings
which proved persuasive in the adoption of a similar formulation in the Treasury model. Thus, the DHSY equation
was embodied in the main econometric model used for economic policy advice, yet for a prolonged period it did not
suffer from the effects of the ‘Lucas critique’ (1976) despite the absence of explicit expectations formation.

On the other hand, the modelling strategy manifest in DHSY still seemed too much ‘hit or miss’. Fortunately, it also
presented many possible directions for improvement, and several of these are followed up below.

Note
1 First written in 1975.

1 Introduction
Although the relationship between consumers’ expenditure and disposable income is one of the most thoroughly
researched topics in quantitative economics, no consensus seems to have emerged in the United Kingdom about the
short-run dynamic interactions between these two important variables. In support of this contention, we would cite the
plethora of substantially different quarterly regression equations which have been reported by Byron (1970), Deaton
(1972b, 1977), Ball et al. (1975), Bispham (1975), Shepherd et al. (1975), Wall et al. (1975), Townend (1976), Bean
(1977) and chapter 2. Moreover, this list of studies is representative, rather than exhaustive.

The diversity of the published estimates is really surprising since most of the investigators seem to have based their
regression equations on similar economic theories and seem to have used approximately the same data series.
Specifically, therefore, we wish to explain why their results manifest quite dissimilar short-run multipliers, lag reactions
and long-run responses. This requires examining the extent to which the estimates are mutually incompatible as well as
their inconsistency with the empirical evidence. More generally, we hope to be able to specify which aspects
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of the methodology used were primarily responsible for creating the differences in the published results.

Close inspection of the above list of studies reveals that, despite their superficial similarities, they differ in many
respects the importance of which is not obvious a priori. Initially, therefore, to highlight the issues involved we
concentrated on three studies only (Hendry (chapter 2), Ball et al. (1975) and Wall et al. (1975), denoted H, B and W
respectively). Rather than use the elegant but very technical theory recently developed for testing ‘non-nested’ models
(see Pesaran and Deaton, 1978) we have chosen to ‘standardize’ those aspects of the three studies which do not seem
crucial to explaining the original differences between the results. This allows analogues of the contending models to be
embedded in a common framework within which nested tests are feasible. By stressing the implications for each model
of the results obtained by others it will be seen below that our approach assigns a major role to mis-specification
analysis (see Hendry (1979b) for a discussion of mis-specification theory in dynamic systems).

A proliferation of non-nested models is symptomatic of certain inappropriate aspects of present practice in
econometrics. We would suggest that this problem can be mitigated to some extent by adopting the following
principles. First, we consider it an essential (if minimal) requirement that any new model should be related to existing
‘explanations’ in a constructive research strategy such that previous models are only supplanted if new proposals
account (so far as possible) for previously understood results, and also explain some new phenomena. Second, to
avoid directionless ‘research’ and uninterpretable measurements, a theoretical framework is also essential.
Unfortunately, much existing economic analysis relates to hypothetical constructs (for example, ‘permanent income’)
and/or is based on unclearly specified but stringent ceteris paribus assumptions, and leaves many important decisions in
formulating an operational model to ad hoc considerations (e.g. functional form, dynamic specification, error structure,
treatment of seasonality etc.). Nevertheless, economic theory does furnish some helpful postulates about behaviour in
steady-state environments and to guide an empirical analysis it seems sensible to incorporate such information as is
available explicitly. Third, to be empirically acceptable, an econometric model obviously must account for the
properties of the data (e.g. the autocorrelation function in a time-series study). It is not valid to ‘accomplish’ this aim
simply by not looking for counter-evidence (e.g. by claiming the absence of autocorrelation in a dynamic equation on
the basis of an insignificant value for a Durbin–Watson d statistic).

The combination of not encompassing previous findings, introducing ad hoc auxiliary assumptions and not rigorously
testing data compatibility leaves plenty of room for a diversity of outcomes from model building even in a common
theoretical framework with a common data set. Indeed, one could characterize ‘econometric modelling’ as an attempt
to match the hypothetical data generation process postulated by economic theory with the main properties of the
observed data. Any model which fails to account for the gestalt of results which are obtained from the data set cannot
constitute the actual data generation process. Consequently, a further minimal requirement when modelling from a
common data set is that the chosen model should explain both the results obtained by other researchers and why their
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research methods led to their published conclusions. The former usually can be achieved through the appropriate mis-
specification analysis from a sufficiently general model which could be based on a priori theory (see, for example,
chapter 3) or empirical considerations. Any theory gains some plausibility by an explanation of different empirical
results, but a data-based construction always must be susceptible to a potential post hoc ergo propter hoc fallacy. However,
given the research methods which any investigator claimed to use it is not trivial even from a data-based general model
to explain why they reached certain conclusions. That the general model is not obtained by every investigator seems to
depend on the operation of (self-imposed) constraints limiting the range of specifications, estimators, diagnostic tests
etc. which are employed. Such arbitrary and unnecessary constraints can play a large role in determining the final
equations selected and a further major objective of this chapter is to illustrate the advantages of using a wide range of
different techniques (including both ‘econometric’ and ‘time-series’ methods) when analysing aggregate economic data.

We believe that considerable insight can be achieved by trying to explain the inter-relationships between the
consumption function studies in chapter 2, Ball et al. (1975) and Wall et al. (1975). Our analysis proceeds by noting
seven potential explanations for the main differences between these three studies, namely the choice of (i) data series,
(ii) methods of seasonal adjustment, (iii) other data transformations, (iv) functional forms, (v) lag structures, (vi)
diagnostic statistics and (vii) estimation methods. It proves possible to ‘standardize’ the models on a common basis for
(i)–(iv) such that the major differences between the studies persist. This allows us to nest the standardized contending
theories as special cases of a general hypothesis and test to see which (if any) are acceptable on statistical grounds. Such
an approach leads to the selection on statistical criteria of the equation which we consider to be the least reasonable of
the three on the basis of economic theory considerations. To account for this outcome we investigate the role of
measurement errors in the data, but draw a blank. Next, we develop an econometric relationship (which was originally
obtained as an empirical description of the data series) and show that it satisfies our desired theory criteria, fits as well
as the previously best fitting equation and includes the rejected models as special cases. Moreover, this relationship is
such that, if it were the true model, then it is reasonably easy to see in retrospect why the alternative research methods
led to their various conclusions. Finally, we conduct a variety of tests on a modified version of our chosen model and
show that it adequately accounts for the atypical consumption behaviour observed over the period 1971–5.

The data and the three econometric studies are described in sections 2 and 3 respectively. Sections 4 and 5 investigate
the standardization aspects and multicollinearity respectively and in section 6 we consider the selection of the equation
which performs ‘best’ on statistical criteria. Section 7 discusses the effects of certain of the data transformations on
measurement errors. In section 8 we propose a possible explanation for all the previous results through a serious, but
hard to detect, dynamic mis-specification, and conditional on this interpretation re-evaluate the role of (v)–(vii) above.
Inflation effects are considered in section 9 and section 10 concludes the study.

It should be noted that throughout the chapter we are only concerned with expenditure
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excluding durables. Also, we must stress the most of the modelling described below was carried out during 1974–5
using data series in 1963 prices and estimating up to the end of 1970 only. Re-estimation using an extended data set in
1970 prices was undertaken in early 1977 without re-specifying any of the earlier equations and still terminating the
estimation period in 1970. The data to the end of 1975 was used for testing and the additional equations based on
Deaton (1977) were included at this stage.

2 The Data
Let Yt denote personal disposable income, Cdt consumers' expenditure on durable goods, St personal saving and Ct
consumers' expenditure on all other goods and services, all variables being in constant prices. The main series used in
this study are taken from Economic Trends (1976 Annual Supplement) and are quarterly, seasonally unadjusted in million
pounds at 1970 prices. Although Ct and Cdt are separately deflated, the series are such that Yt = Ct + Cdt + St. Figure 8.1
shows the time series of Yt and Ct for the period 1958(i)–1976(ii) (the data for 1957 were used to create variables like Ct
− Ct − 4).

The salient features of the data are the strong trends in both Ct and Yt, the magnitude and stability of the seasonal
pattern in Ct compared with that of Yt (although the seasonal shape has tended to become increasingly ‘elongated’ over
time), the regularity of the ‘output’ series Ct compared with the ‘input’ series Yt, and the marked change in the
behaviour of the Yt series after 1972. Detailed scrutiny reveals the presence of ‘business cycles’ which are more clearly
seen in the transformed series Δ4Yt = Yt − Yt − 4 and Δ4Ct graphed in figure 8.2 (Δ4 is referred to below as the four-
period or annual difference, as compared with the fourth difference

Figure 8.1 Time paths of personal disposable income Y and consumers' expenditure C.
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Figure 8.2 Four-period changes in data series.

). Figure 8.2 also confirms the greater variance of the income series, and casual inspection suggests that using annual
differences has removed most of the seasonality in both series. As shown in figure 8.3, the average propensity to
consume (Ct/Yt, denoted APC) has fallen steadily over the sample period from around 0.9 to under 0.8 although, as
explained below, this evidence is still consonant with a long-run income elasticity of expenditure close to unity. If Ct is
plotted against Yt as in figure 8.4, marked differences in the average propensities to consume in the various

Figure 8.3 The average propensity to consume.
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Figure 8.4 Scatter diagram of personal disposable income and consumers' expenditure.

quarters are clear. The upper and lower lines show the patterns of observations for the fourth and first quarters
respectively. Finally, plotting Δ4C against Δ4Y yields a scatter diagram (see figure 8.5) in which the slope (marginal
propensity to consume, MPC) of the ‘short-run’ consumption function is much smaller than that of the relationship
portrayed in figure 8.4, and a wide range of values of Δ4C seems to be compatible with any given value for Δ4Y. A
closely similar picture emerges from the equivalent graphs of the logarithms of the data series, except that now the
seasonal pattern for Ct does not appear to change over time (see figure 8.6). The

Table 8.1 Correlograms for Ct, Yt, Δ4Ct and Δ4Yt

Lag 1 2 3 4 5 6 7 8
C 0.79 0.80 0.75 0.99 0.76 0.76 0.72 0.99
Y 0.95 0.95 0.93 0.97 0.93 0.93 0.91 0.96
Δ4C 0.49 0.24 −0.02 −0.28 −0.23 −0.24 −0.02 −0.07
Δ4Y 0.50 0.24 0.04 −0.33 −0.17 −0.16 −0.16 −0.02
Lag 9 10 11 12 13 14 15 16
C 0.72 0.73 0.67 0.99 0.68 0.68 0.60 0.98
Y 0.92 0.92 0.89 0.96 0.91 0.90 0.86 0.95
Δ4C −0.05 0.09 0.02 0.04 0.02 0.06 0.20 0.35
Δ4Y −0.03 0.01 −0.02 −0.03 −0.04 −0.08 0.04 0.18
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Figure 8.5 Scatter diagram of four-period changes.

correlograms for Ct, Yt, Δ4Ct and Δ4Yt over the period to 1970(iv) are shown in table 8.1.

From the slightly shorter data series 1957(i)–1967(iv) in 1958 prices, Prothero and Wallis (1976) obtained a number of
univariate time-series models for Ct and Yt, no

Figure 8.6 Logarithms of consumers' expenditure.
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one of which was uniformly superior. Their most parsimonious descriptions were

(8.1)

(8.2)
In (8.1) and (8.2), L denotes the lag operator such that LjCt = Ct − j, εt represents a white noise error process with
estimated standard deviation , and is the Box–Pierce (1970) test for a random residual correlogram. Such time-
series descriptions show Ct and Yt to obey similar equations but with the variance of the random component of Yt

nearly ten times as large as that of Ct.

3 Three Econometric Studies and Their Research Methods
Since the main objective of this study is to explain why a large number of econometric descriptions of the data have
been offered, there seems no need for a long section dealing with relevant economic theories. However, we do wish to
stress that most theories of the consumption function were formulated to reconcile the low short-run MPC with the
relative stability claimed for the APC over medium to long data periods (see inter alia Duesenberry, 1949; Brown, 1952;
Friedman, 1957; Ando and Modigliani, 1963). Broadly speaking, all these theories postulate lag mechanisms which
mediate the response of Ct to changes in Yt (e.g. previous highest Ct, Ct − 1, ‘permanent income’ and wealth respectively).
Thus, the permanent income hypothesis (PIH) assumes that

(8.3)

where ut is independent of Ypt and has finite variance, and where Ypt is ‘permanent income’. Friedman (1957)
approximated Ypt using

(8.4)to obtain

(8.5)while Sargent (1977) interprets this as a rational expectations formulation when Yt is generated by

(8.6)

which would add an intercept to (8.5). Since Yt is assumed exogenous, (8.3) and (8.6) ensure that Ct and Yt will have
similar time-series properties, and as Sargent (1977) shows

(8.7)
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where is white noise and λ* depends on and . Since , it is of course more efficient to analyse (8.5)
than (8.7).

At the aggregate level, a steady-state form of the life cycle hypothesis (LCH) is exposited by Modigliani (1975) as

(8.8)

where At is end period private wealth and r (the rate of return on assets), α and δ are constant. Out of steady state, α
and δ (like θ in (8.3)) vary with a number of factors including the rate of interest and the expected growth of
productivity. If capital gains and interest are included in income, then from (8.8) and the identity

(8.9)we can obtain

or

(8.10)

which again produces a distributed lag model of Ct and Yt.1

It is noticeable that neither the PIH nor the LCH is much concerned with seasonal patterns of expenditure and models
based on such theories are often estimated from annual or from seasonally adjusted quarterly data series.

Against this background we can consider the three econometric studies.

(H) Hendry (chapter 2) estimated several equations of the form

(8.11)

where Qjt denotes a dummy variable for the jth quarter. He imposed various restrictions on the parameters, used a
number of different estimators and considered various autocorrelation structures for εt. For example, assuming a
constant seasonal pattern (dj = 0, j = 1, . . . , 4), no autocorrelation and using raw data, 1957(i)–1967(iv) in 1958 prices,
least squares estimation yielded (see H, table 2.1)

(8.12)In (8.12) the numbers in parentheses are standard errors,
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R2 is the squared coefficient of multiple correlation, is the standard deviation of the residuals and DW is the
Durbin–Watson statistic. Then testing (8.12) for (i) fourth-order autoregressive residuals, (ii) omitted four-period
lagged values of Ct, Yt and Ct − 1 and (iii) an evolving seasonal pattern, H found that each of these three factors was
present if allowed for separately.When included in combinations, however, they appeared to act as substitutes since only
the last remained significant in the three sets of pairwise comparisons.

Consequently, H selected (8.11) (with εt assumed serially independent) as the best description of his data and obtained
the following least squares estimates (instrumental variables estimates were similar):

(8.13)

When selecting this outcome, all other potential mis-specifications were apparently deliberately ignored by H to
highlight the problems of stochastic specification. Even granting this escape from sins of omission, there are several
important drawbacks to econometric formulations like (8.11)–(8.13), and many of the following criticisms apply to
other published regression equations. First, the assumed seasonal pattern is ad hoc and would yield meaningless results
if extrapolated much beyond the sample period. Moreover, one of the more interesting aspects of the data (the regular
seasonal pattern of Ct) is attributed to unexplained factors, where by contrast a model like

would at least correspond to the possible behavioural hypothesis of a different MPC in each quarter of the year.
Second, since the derived mean lag and long-run (static equilibrium) MPC coefficients in (8.12) are given by â2 / (1 −
â2) and â1 / (1 − â2) respectively, these can be altered considerably by minor changes in â2 when that coefficient is close
to unity. In turn, â2 can vary markedly with different treatments of residual autocorrelation. Next, both the short-run
and long-run MPCs are very small in (8.13) (yielding a long-run elasticity of about 0.2) and are radically different from
the corresponding estimates in (8.12) although only the treatment of seasonality has changed. In part this is due to the
inclusion of a trend in (8.13), but this is hardly an explanation and simply prompts the question as to why the trend is
significant when one believes that the economic variables are actually determining the behaviour of Ct (most of the
very close fit of (8.13) is due to the trend and seasonals). Finally, it is difficult to evaluate the plausibility of the results as
presented in (8.12) and (8.13). For example, R2 is unhelpful since the data are trending (see Granger and Newbold, 1974).
Also, DW has both low power against high-order residual auto-correlation in static equations and an incorrect
conventional significance level in dynamic equations2 (see Durbin, 1970). No forecast or parameter stability tests are
presented and the appropriateness of least squares is not obvious (although Hendry (chapter 2) did in fact publish
forecast tests and other diagnostic checks and used less restrictive estimators).

Overall, with or without evolving seasonals, (8.11) does not seem to be a useful
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specification for studying consumption-income responses, however well it may happen to describe the data for a short
time period.

(B) Ball et al. (1975) present an equation rather like (8.12) but based on seasonally adjusted data (abbreviated to SA
below and denoted by a superscript a) for the period 1959(ii)–1970(iv), estimated by least squares:

(8.14)

Dt represents a dummy variable with zero values everywhere except for 1968(ii) when it is unity (1968(i) and (ii) are
anomalous quarters owing to advance warning in the first quarter of 1968 of possible purchase tax increases in the
second quarter; these duly materialized, and considerable switching of expenditure between these quarters resulted). Gt

denotes direct transfer payments to individuals and, as specified in (8.14), Gt is immediately and completely spent. 2 is
the adjusted value of R2.

Many of the criticisms noted in H apply to (8.14) and, in addition, the use of SA data must be considered. Seasonal
adjustment methods can be interpreted as filters applied to time series to remove frequency components at or near
seasonal frequencies, such filters often being many-period weighted moving averages (e.g. 24 periods for quarterly data
in the commonly used Bureau of Census Method II version X-11 program). In published statistics, single series tend to
be separately adjusted. However, as documented by Wallis (1974), separate adjustment of series can distort the
relationship between pairs of series and in particular can alter the underlying dynamic reactions. Thus, Wallis records a
case of four-period lags being incorrectly identified as one period after SA and the possibility of such a dynamic
misspecification applying to (8.14) merits investigation since earlier variants of (8.14) in the London Business School
model based on unadjusted data used Ct − 4 as a regressor.

Note that the estimates in (8.14) again seem to imply a long-run (static equilibrium) elasticity of less than unity (MPC =
0.74, APC = 0.84) which is consistent with figure 8.3 and reasonably similar to (8.12) despite the very different
treatment of seasonality.

(W) Wall et al. (1975) analyse total consumers' expenditure using SA data for 1955 (i)–1971 (iv) with
estimation based on the transfer function methodology proposed by Box and Jenkins (1976). Their published model is

(8.15)

The relative first-difference transformation was adopted to make the variables ‘stationary’. Given their advocacy of
Box–Jenkins methods, we assume that W estimated (8.15) with the residuals treated as ‘white noise’ because they had
found
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no evidence of residual autocorrelation.

However, (8.15) has no static equilibrium solution and is only consistent with a steady-state growth rate of about 2 per
cent per annum. Indeed, the ad hoc mean correction of 0.21 is 35 per cent of the mean of and, as a consequence, the
conventionally calculated long-run elasticity is 0.55. Moreover, (8.15) implies that any adjustment to income changes is
completed within six months and is independent of any disequilibrium between the levels of Ct and Yt. Also, the use of

may entail some aggregation bias in view of the extra variables usually included in models of durables
purchases (see, for example, Williams, 1972; Garganas, 1975). However, it is not surprising that (8.15) results from
estimation based on data like that in figure 8.5.

4 A Standardized Framework
The studies listed as H, B and W above satisfy the requirement that approximately the same data set (C, Y) is involved
in all three cases. Nevertheless, the results differ in many respects and are conditioned by very different auxiliary
hypotheses. Indeed, the first problem is to find enough common elements to allow direct comparisons to be made!
Our approach is to re-estimate close equivalents of (8.13)–(8.15) in a standard framework which tries to isolate which
factors do, and which do not, induce differences in the results. We begin by examining the roles of the data period,
seasonal adjustment procedures, data transformations and functional forms since it might be anticipated that small
alterations to these should not greatly change the findings of any particular study.

We chose the data series graphed in figure 8.1, with the 20 observations for 1971(i)–1975(iv) being used purely for
forecast tests.3 The choice of data period did not seem to be too important, and we preferred raw to SA data for the
reasons noted in the discussion of H and B, namely ‘Wallis' effect’ and our desire to ‘model’ the seasonal behaviour of
C rather than filter it out. Sims (1974b) has pointed out that the use of raw data involves a potential risk of ‘omitted
seasonals’ bias if there is also seasonal noise in the error on the equation of relevance; however, the estimates recorded
below do not suggest the presence of such a problem.

A major assumption which we made in order to develop analogues of the various equations is that the closest
equivalent of a transformation of the form (in SA data) is Δ4Zt = Zt − Zt − 4 (in raw data), since both
transformed variables represent changes net of seasonal factors (we have also estimated most of the analogue
equations using SA data and report below on the negligible changes this induces). The converse equivalence is not valid,
however, since dynamics should be unaltered when a linear filter is correctly applied to a relationship (see Wallis, 1974;
and chapter 6). Also, we assumed that Δ1 ln xt ≈ Δ1/xt − 1 (where ln denotes loge) and so could approximate W's variable

in SA data by Δ4ln(Ct + Cdt) in raw data.

Finally, models in differences can be related to those in levels by noting that there are two distinct interpretations of
‘differencing’, a point most easily demonstrated by the following relationship:4
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(8.16)where wt is an exogenous regressor generated by a stationary stochastic process and vt is a stationary error.

Differencing as a Filter or Operator
Applying the operation Δ4 to equation (8.16) yields

(8.17)and hence the features which are altered comprise:

1 the elimination of trends and the re-interpretation of the constant seasonal pattern in (8.17) as corresponding
with the evolving pattern in (8.16);

2 the autocorrelation properties of vt (e.g. if vt = vt−4 + νt, where νt is white noise, then Δ4vt is white noise, whereas if
vt = νt, Δ4vt is a four-period simple moving average with a coefficient of −1);

3 the form of all the non-dummy variables in (8.16) (which re-occur as annual differences in (8.17)).

Differencing as a Set of Coefcient Restrictions
Applying the restrictions β1 = − β2 and β3 = 1 to (8.16) yields

(8.18)

Now, the changes from (8.16) are the elimination of wt−4 and xt−4 as independent regressors and the occurrence of the
transformed variables Δ4xt and Δ4wt. The interpretation of the constant and the seasonal pattern is unaltered and when
the restrictions are valid the autocorrelation properties of vt are unaffected – if vt in (8.16) is white noise then so is vt in
(8.18) (contrast the arguments presented in Granger and Newbold, 1974). One immediate and obvious application of
this interpretation is the converse step of deriving (8.16) from (8.18) which allows valid comparisons of models
involving differenced variables with those using level variables.

Combining all the above approximations, we move from (8.15) via the equivalence of with Δ4ln Ct to

(8.19)
which provides our version of (8.15). For comparison with equations in log-levels we use the unrestricted version of
(8.19), namely

(8.20)
where (8.19) corresponds to imposing λ1 = −λ2, λ3 = −λ4 and λ5 = 1 in (8.20). Since no seasonal dummy variables are
introduced in (8.20) this procedure requires that Δ4 in (8.19) removes any seasonal factors; some support for such a
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proposition is provided in figure 8.2 but this issue will be reconsidered below. We assumed that it was reasonable to use
Ct in place of in developing (8.19) for reasons presented above. Throughout, we have estimated most specifications
in both linear and log-linear forms, comparing these where necessary using the likelihood criterion proposed by Sargan
(1964a). Thus (8.19) can be compared through (8.20) and the linear-log mapping with whatever equivalents are chosen
for (8.13) and (8.14) (we chose to use Ct rather than Ct − Gt when approximating (8.14) to maintain closer comparison
with both (8.15) and (8.11)).

The main justification for adopting the above approximations is simply that the important features of and differences
between the results in (8.13)–(8.15) survive the standardization sequence. First, to illustrate the effects of changing the
sample period to 1958(ii)–1970(iv) and using 1970 prices, re-estimation of (8.13) by least squares yields

(8.21)
In (8.21), D0 = Dt − 1 − Dt, which assumes that the 1968(i) announcement caused a switch in expenditure between
quarters.5z1(k) is a test of parameter stability or one-period-ahead forecast accuracy using the actual future values of the
regressors for the next k quarters. Letting ft denote the forecast error, then

(8.22)
which would be distributed as in large samples if the parameters in (8.21) remained constant.6z2(l) is the Pierce
(1971) residual correlogram statistic distributed as in large samples when the residuals are serially independent.7 The
only noticeable differences between (8.13) and (8.21) are the change in due to the change in the base of the implicit
deflator for C, and the increase in the coefficient of Ct − 1. However, z2 indicates the presence of significant
autocorrelation (actually, of fourth order) and z1 strongly rejects parameter stability (when comparing equations, it
should be noted that z1 is not a measure of absolute forecast accuracy).

Next, we estimated two analogues of (8.14) from the same sample, namely

which, not surprisingly, is also similar to (8.12); and

(8.23)
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which is reasonably similar to (8.14). (Δ1Yt was included in (8.23) to allow for a one-lag income effect but DW still
indicates considerable first-order residual autocorrelation.) Lastly, for (8.15)

(8.24)

We have quoted (8.24) in linear (rather than log) form for immediate comparison with (8.21)–(8.23) but, despite this
change of functional form, (8.24) reproduces the main features of (8.15) (a long-run elasticity of about 0.5, a large and
significant intercept and ‘white noise’ errors). All the re-estimated analogues are rejected by the forecast test, although
this does not affect our ability to choose between them; an explanation for the overall poor forecasts is provided in
section 9. Equation (8.22) also exhibits very marked four-period autocorrelation and re-estimation assuming an error
of the form ut = ρ4ut − 4 + εt yielded and . Consequently, all the models estimated from
the raw data require some allowance for four-period effects.

A similar story emerges if SA data are used and seasonal dummies are omitted from all the models. Specifically for
(8.22), (8.23) and (8.24) we obtained (for the rather different data period 1963(i)–1973(ii), forecasting
1973(iii)–1975(ii))

(8.22a)

(8.23a)

(8.24a)

These results support our contention that the choices of the exact data period and of the seasonal adjustment
procedures do not markedly affect the estimates obtained, although it should be noted that the goodness of fit ranking
of the models on SA data is the opposite of the prevailing with raw data. Only (8.24a) has an error
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variance close to its raw data counterpart, and hence the selection of equations is greatly altered by SA.

Thus (i)–(iv) can be eliminated as the main factors accounting for the differences in (8.13)–(8.15) and we can proceed
to consider (v)–(vii) which represent more important differences in methodology. At this stage, our standardized
analogues of (8.13)–(8.15) can be nested as special cases of the model

(8.25)

and hence (8.21)–(8.24) can all be tested directly against the estimated version of (8.25).

5 On Multicollinearity
Can sensible estimates of (8.25) be obtained given the general misapprehension that ‘severe collinearity problems are
bound to be present’? To resolve this, consider the well-known formula (see, for example, Theil, 1971, p. 174)

(8.26)

where ri is the partial correlation between the regressand and the ith regressor allowing for the influence of the other
m − 1 regressors in the equation. The lefthand side of (8.26) is the square of the conventionally calculated t statistic to
test H0: ξi = 0.

A crucial point is that a partial correlation like ri can increase as m increases to m + n even if the n added variables are
highly (but not perfectly) collinear provided they are relevant to explaining the regressand. Thus t values can increase even
though the moment matrix requiring inversion in least squares becomes ‘more singular’ in the sense of having a
smaller determinant or a smaller ratio of the least to the greatest eigenvalue (compare, for example, the analysis
assuming that the true model is known in Johnston, 1972, ch. 5.7). In effect, the issue is that ‘collinearity problems’ are
likely to occur in conjunction with omitted variables problems. If the n initially excluded regressors are important in
determining the regressand, then adding them may well help resolve what appears to be a collinearity problem between
the m originally included variables, since ‘small’ t values can arise from downward biases in as well as from ‘large’
values of . Consequently, it is not universally valid to assume that a group of badly determined estimates indicates
the presence of collinearity (to be solved by reducing the dimensionality of the parameter space) rather than omitted
variables bias (solved by increasing the dimensionality of the parameter space). To illustrate these points consider the
following estimates of a special case of (8.25) (which incidentally immediately demonstrates some misspecification of
(8.23)):
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(8.27)

Conventionally, Δ1Yt is ‘insignificant’ (but see Bock et al. (1973) for an analysis of some of the consequences of using a
‘preliminary test’ estimator in which ‘insignificant’ regressors are excluded prior to re-estimation), and the trend
coefficient is significant. Now compare (8.27) with the equation in which every regressor also re-occurs with a four-
period lag:8

(8.28)
Patently, despite including three more regressors, the t values for Yt, Δ1Yt and Ct−4 are all considerably larger in (8.28)
than in (8.27), whereas the trend coefficient has become negligible in (8.28) and reveals the possibility of explaining the
behaviour of Ct by economic variables alone (the seasonal dummies are also insignificant in (8.28)).

6 Selection of the ‘Best’ Equation
We now return to choosing between the various equations on statistical criteria. Even before estimating (8.25) it can be
seen that (8.28) encompasses (8.23) and allows immediate rejection of the latter. Moreover, adding Ct−1 to (8.28)
cannot worsen the goodness of fit and so (8.22) can be rejected also. Testing (8.21) proves more of a problem since in
chapter 2, (8.21) was chosen in preference to an equation similar to (8.28) (but excluding Δ1Yt, Δ1Yt−4 and Ct−8) whereas
for the present data (8.28) fits marginally better. Strictly, (8.28) is not nested within the (initially) general equation (8.25),
although this is only because of the presence of the insignificant regressor Ct−8 and so can be ignored. Direct estimation
of (8.25) yields

(8.29)
The fit of (8.29) is little better than that of either (8.21) or (8.28) even though many of the four lagged variables and
evolving seasonals appear to be significant on t tests.
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Thus, given either set of variables, the additional explanatory power of the other set is small and so to a considerable
extent we re-confirm their substitute roles. Relative to chapter 2, the four-period lags are more important in the larger
sample.

The most interesting outcome is that (8.24) cannot be rejected against (8.29) by testing the joint significance of all the
restrictions using an F test based on the residual sums of squares (F(12, 31) = 1.9). Thus at the chosen significance
level (using, for example, the S method discussed by Savin, 1984) no other subset of the restrictions can be judged
significant either; alternatively, individual t tests on restrictions would need to be significant at (at least) the 0.4 per cent
level to preserve the overall size of the test at 5 per cent when considering 12 restrictions. On this basis, (8.24) seems to
provide an adequate parsimonious description of the data (although other equations are also not significantly worse
than (8.29) at the 5 per cent level), and it seems that the Δ4 transform satisfactorily removes seasonality.

Moreover, if (8.24) were close to the correct data generation process then we would expect just the sort of result
shown in (8.28) (the fits are similar, the lag polynomial in Ct has a root near unity, the seasonal dummies are
insignificant and four-period lags of income variables have roughly equal magnitudes, opposite signs to current dated
equivalents). Tentatively accepting such a hypothesis, (8.22) and (8.23) would constitute poor approximations to (8.24)
and hence are easy to reject whereas (8.21) is a reasonable approximation and is not easily discarded (see figure 8.1 and
8.4). Also, the relationship between (8.24) and (8.28) corresponds closely with the interpretation of differences as
arising from coefficient restrictions but does not cohere with the ‘filtering’ interpretation. The large change in the
constant term is probably due to collinearity, since the exact unrestricted equivalent of (8.24) is

(8.30)

The coefficients of (8.30) correspond very closely with those of the unrestricted equation which would be anticipated if
(8.24) validly described the expenditure relationship, although the large standard error of the intercept in (8.30)
compared with (8.24) is a distinct anomaly requiring explanation in due course. In summary, the evidence points
strongly to accepting (8.24) as the best simple description of the data despite the loss of long-run information and the
theoretical drawbacks discussed in section 3.

7 Measurement Errors
Zellner and Palm (1974) note that difference transformations can substantially alter the ratio of the ‘systematic’
variance to the measurement error variance of time series. Since large measurement error variances in regressors can
cause large downward
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biases in estimated coefficients (see, for example, Johnston, 1972, ch. 9.3) it is possible that the low-income elasticities
in (8.24) could be caused by the effects of the Δ4 transform enhancing relative measurement errors.

A formal mis-specification analysis of a simple model where observations are generated by a first-order autoregressive
process with coefficient ψ1 and first-order autoregressive measurement error with coefficient ψ2 reveals that ψ1 > ψ2 is a
necessary and sufficient condition for differencing to induce a relative increase in measurement error variance. The
amount by which the measurement error bias in the coefficient of a differenced regression exceeds the corresponding
bias in the regression in levels depends directly and proportionately on ψ1 − ψ2. Davidson (1975) found that data
revisions were highly autoregressive, and although by itself this does not imply that the unknown errors also will be
autoregressive, two other factors argue for the magnitude of ψ1 − ψ2 being small for Yt. First, if there were large
measurement errors in Δ4Yt these would occur one period later in Δ4Yt − 1 which would create a negative first-order
moving-average error on (8.24) and we could find no evidence of this — nor did Wall et al. (1975) in their similar
equation (8.15). Second, we re-estimated (8.24) by weighted least squares assuming a measurement error variance of
50 per cent of the variance of Δ4Yt and yet there was no noticeable increase in the coefficients. All these points
together, though individually rather weak, suggest that errors-in-variables biases do not explain the low long-run
elasticities. Conversely, any simultaneity bias which might arise from least squares estimation would tend to cause
upward biased coefficients and hence can be discarded as an explanation also. Thus we return to figure 8.2 and 8.5
which originally indicated the source of the problem: the variance of Δ4Yt is much larger than that of Δ4Ct and so any
model like (8.24) must end up having ‘small’ coefficients.

8 A Simple Dynamic Model
In one sense, the above results simply reproduce the familiar problem of reconciling short-run and long-run
consumption behaviour. However, there is a more serious difficulty since the original set of models included several
distributed lag variants of permanent income and/or life cycle theories (see section 3 above) and yet, in a direct
comparison, the statistical evidence favoured the model which accounted for only short-run behaviour. Clearly,
therefore, either some new implementation of the PIH or LCH is required or (assuming that we do not wish to
canvass a new theory) an account must be provided of why the evidence takes the form which it does. Naturally, we
prefer the latter course.

Fisher (1962) advocated using equations involving only differenced variables to facilitate the study of short-run
behaviour without having to specify trend-dominated long-run components. The main defects in this strategy are that
one loses almost all a priori information from economic theory (as most theories rely on steady-state arguments) and all
long-run information in the data (yet Granger's ‘typical spectral shape’ suggests that economic data are highly
informative about the long run: see Granger, 1966). Moreover, as noted when discussing (8.15), it seems inappropriate
to assume that short-run behaviour is independent of disequilibria in the levels of the variables.

A simple modification of equations in differences can resolve these three problems. Consider a situation in which an
investigator accepts a non-stochastic steady-state theory that Xt = KWt, where K is constant on any given growth path
but may vary with the growth rate. In logarithms, letting xt = ln Xt etc., the theory becomes
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(8.31)The differenced variable equivalent is

(8.32)

However, to assume that (8.32) had a white noise error would deny the existence of any ‘long-run’ relationship like
(8.31), and to assume that (8.31) had a stationary error process would cause a negatively autocorrelated error to occur
on (8.32). Furthermore, the Δ1 operator in (8.32) could just as validly have been Δ4 — on all these points the theory is
unspecific.

On the basis of (8.31), the investigator wishes to postulate a stochastic disequilibrium relationship between xt and wt,
which will simplify to (8.31) in steady state. In the absence of a well-articulated theory of the dynamic adjustment of xt
to wt, it seems reasonable to assume a general rational lag model of the form

(8.33)

where α (L) and β (L) are polynomials in the lag operator L of high enough order that vt is white noise. For simplicity
of exposition we consider the situation where both polynomials are first order:

(8.34)

Clearly, (8.31) and (8.32) are the special cases of (8.34) when β2 = α1 = 0, β1 = 1, and β1 = −β2 = 1, k* = 0, α1 = 1
respectively; these coefficient restrictions force behaviour to be in steady state at all points in time. However, to ensure
that for all values of the estimated parameters, the steady-state solution of (8.34) reproduces (8.31) one need only
impose the coefficient restriction β1 + β2 + α1 = 1 or

yielding the equation

(8.35)

(which is more general than (8.31) or (8.32) but less general than (8.34)). The specification of (8.35) is therefore guided
by the long-run theory; there is no loss of long-run information in the data since (8.35) is a reformulated ‘levels
equation’; and compared with the ‘short-run’ model

(8.36)

the vital ‘initial disequilibrium’ effect is provided by γ(wt − 1 − xt − 1). Consequently, (8.35) does indeed resolve the three
problems noted above (it is straightforward to generalize the analysis to equations of the form of (8.33)). An important
example of this class of model is the real-wage variable formulation used by Sargan (1964a).

In (8.35) consider any steady-state growth path along which
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Then the solution of (8.35) with vt = 0 is

(8.37)or, assuming γ ≠ 0,

where

(8.38)

(implicitly, in (8.31) k = [k* − g(1 − β1)]/γ). Thus for any constant growth rate, if γ ≠ 0, (8.35) automatically generates a
long-run elasticity of unity for all values of the parameters, whereas if γ = 0 the elasticity is β1. Interpreting Xt as Ct and
Wt as Yt, then the derived APC (= MPC in steady-state growth) is a decreasing function of the growth rate g, consonant
with inter-country evidence (see Modigliani, 1975). Note that the above analysis remains valid even if k* = 0 (in which
case K < 1 for γ, g > 0 and 1 > β1 > 0), so that the theory entails no restrictions on the presence or absence of an
intercept in (8.35).9

If, from the steady-state solution (8.38), the growth rate of Wt changes from g to g1 the ratio of X to W will gradually
change from K to

and hence even prolonged movements in one direction of the observed X/W ratio do not rule out a long-run unit
elasticity hypothesis for a given growth rate. If g is a variable, then (X/W)t will not be constant either, although the data
will be consistent with a model like (8.35). The important implication of this is that a variable, or even trending,
observed APC does not by itself refute a unit elasticity model (the unit elasticity restriction is easily tested in (8.35) by
including wt − 1 as a separate regressor and testing its coefficient for significance from zero). Estimation of (8.31)
requires that the data satisfy a unit elasticity restriction (this will be false out of steady state) whereas estimation of
(8.35) only requires that the model satisfy this restriction and that the data are consonant with the model.

The estimation of restricted dynamic models like (8.35) from finite samples does not seem to have been the subject of
any investigations to date. Consequently, we undertook a pilot simulation study of least squares estimation of δ1 and δ2

in

(8.35)*

for
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and

with ut ∼ NI(0,9), independent of vt. The results are shown in table 8.2 for 100 random replications. For T ≥ 34, the
biases are very small, SE provides an accurate estimate of SD and H0: δi = 0 is rejected with considerable frequency.
This contrasts favourably both with the bias which would arise from estimating μ in a simple dynamic model of the
form

(where the bias is approximately equal to −2μ/T and so has the same sign but is about five times as large as the
corresponding bias in in table 8.2) as well as with the biases and the variances which would be obtained from
unrestricted estimation of

(8.34)*

Thus there may be an ‘estimation’ advantage from formulating dynamic equations as in (8.35), although for small δ2 it
may not be easy to establish as significant at the 0.05 level unless T is relatively large.

When the appropriate lag length in (8.35) is four periods, the resulting model can be written as

(8.39)

For small γ the historical seasonal pattern of the APC will persist with modifications from any ‘seasonality’ in Δ4 lnWt.
Note that (8.35) and (8.39) are stable dynamic processes for 2 > γ > 0, and that K is relatively robust to changes in the
values of β1 and γ > 0 (contrast the properties of the solved long-run MPC from (8.12)). However, K is not a
continuous function of γ at γ = 0 (switching from zero to infinity) which reflects dynamic instability in (8.39) at γ = 0.

The solved distributed lag representation of (8.35) is

(8.40)Table 8.2 Simulation Findings for (8.35)*

T 14 34 54 74 14 34 54 74
Bias 0.010 −0.013 −0.003 0.003 −0.026 −0.009 −0.004 −0.007
SD 0.106 0.062 0.041 0.044 0.108 0.060 0.043 0.038
SE 0.090 0.058 0.044 0.038 0.105 0.060 0.045 0.039
H0 rejected 99 100 100 100 15 41 60 82

SD, the sampling standard deviation; SE, the average estimated standard error; ‘H0 rejected’, the frequency with which the null hypothesis
H0: δi = 0 was rejected when the nominal test size was 0.05. The values for δ1, δ2 and were based on empirical estimates of
analogous consumption functions.
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where

and

The mean lag is (1 − β1)/γ which could be very large for γ close to zero, but, depending on the magnitude of β1, much
of the adjustment could occur instantaneously (for example, the median lag could be less than one period). If νt is white
noise, then (8.40) will manifest considerable autocorrelation for small γ, no matter how long a distributed lag is used
for wt.

The final feature of (8.35) is of crucial importance; if the growth rate g is relatively constant, then Xt will be
approximately equal to and hence from (8.31) xt−1 − wt−1 ≈ k. In such a state of the world, the intercept and wt−1 −
xt−1 would be almost perfectly collinear in (8.35). A similar collinearity also must affect any attempt to estimate (8.34)
unrestrictedly. Although either regressor could be dropped without much loss to the goodness of fit, setting k* = 0
does not affect the long-run behaviour (see (8.38) above) but setting γ = 0 does. This phenomenon at last provides a
potential explanation both for the discrepant behaviour of the standard error of the intercept between (8.24) and (8.30)
and for the low elasticity of the former equation, since the initial disequilibrium effect has been excluded from (8.24)
but is still indirectly present in (8.30).

However, before considering empirical variants of (8.35) it seems worth commenting on the relationship between
equations like (8.35) and the four main theories of consumers' behaviour discussed in section 3. First, it is clear that
both (8.34) and (8.35) resemble Brown's (1952) model; also, the term γ(wt−1 − xt−1) could be interpreted as a ‘ratchet’ to
the ‘short-run’ relationship (8.36) (compare Duesenberry, 1949) although it is a ‘ratchet’ which operates in either
direction for any sustained change in the growth rate of wt. The distributed lag form (8.40) could be interpreted as an
empirical approximation to ‘permanent income’ in a model which always satisfies a long-run steady-state unit elasticity
postulate (see Friedman, 1957). Moreover, using Ct = xt and Yt = wt, (8.35) corresponds to a transformed ‘life cycle’
model. For example, the wealth model of Ball and Drake (1964) is the special case of (8.35) in which β1 = γ and
Deaton (1972b) presents a modified life cycle model of the same form but with revaluations of wealth as an additional
variable. More recently, Deaton (1977) presents a savings equation closely similar to (8.35) but with the rate of inflation
as an additional regressor (this study is discussed in section 9 below). Similar reasoning applies to models using
changes in liquid assets in consumption equations (see Townend, 1976).

Nevertheless, as stressed above, the transformations involved in deriving the PIH and LCH (or eliminating any stock
variable) significantly affect the properties of the error process, and it is possible (at least in principle) to distinguish
between the contending hypotheses on this basis, subject to requiring that the error on the ‘true’ model is white noise.
Even so, it is exceedingly hard in practice to decide in a time-series context alone which relationships are ‘autonomous’
and which are merely ‘good approximations’. In terms of modelling any relationship between C and Y, the only really
definite conclusion is that it seems vital to include some factor to account for the effect represented by wt−1 − xt−1.
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Returning to the problem of reconciling the estimates in (8.24) and (8.30), consider the alternative restriction of
dropping the intercept and retaining Ct−4 − Yt−4, which in log terms yields

(8.41)

A relationship like (8.41) can be derived from a simple ‘feedback’ theory in which consumers plan to spend in each
quarter of a year the same as they spent in that quarter of the previous year (ln Ct = ln Ct−4) modified by a proportion of
their annual change in income (+ 0.49Δ4 ln Yt), and by whether that change is itself increasing or decreasing
(−0.17Δ1Δ4Yt) (compare Houthakker and Taylor, 1970); these together determine a ‘short-run’ consumption decision
which is altered by −0.06 ln (Ct−4/Yt−4), the feedback from the previous C/Y ratio ensuring coherence with the long-run
‘target’ outcome Ct = KYt. The parameterization of (8.41) is determined by the choice of a set of plausible decision
variables which incorporate relatively independent items of information, allowing agents to assess their reactions
separately to changes in each variable. This seems a ‘natural’ parameterization to adopt and, as the small standard
errors (8.41) show, the resulting parameters are precisely estimated. Moreover, if any omitted decision variables can be
reformulated as orthogonal to the already included regressors, then the potentially serious problem of ‘omitted
variables bias’ is transformed to a problem of estimation efficiency. In practical terms, previously estimated coefficients
will not change radically as new explanatory variables are added (see equation (8.45) below). The use of transformed
variables like Δ4ln Ct etc. is not because we want to ‘seasonally adjust’ and/or achieve ‘stationary’ (with the attendant
loss of spectral power at low frequencies noted by Sims, 1974b) but because Δ4ln Ct represents a sensible decision
variable when different commodities are being purchased in different quarters of the year.

The significance value of z1 in (8.41) reveals that other factors need to be included to provide a full account of the
behaviour of Ct and this aspect is considered in section 9. Nevertheless, (8.41) seems consistent with the salient
features of the data in figures 8.1–8.6 and straightforwardly explains the large difference between the short-run and
long-run MPC. The impact elasticity is 0.32, rising to 0.49 after one quarter, the remaining 51 per cent of the
adjustment taking a considerable time to occur, which matches the relatively small value of the variance of
consumption relative to that of income noted earlier. With only three ‘economic’ variables, the model seems a
reasonably parsimonious explanation of trend, cycle and seasonal components. Also it provides a suitable basis for
discussing why the studies by H, B and W reached their published results.

First, a model like (8.41) could never be detected by any methodology in which the first step was to difference data and
then only to investigate the properties of the differenced series (as Wall et al., 1975, do). Subject to that restriction,
(8.24) (or its log equivalent) provides an excellent approximation in terms of goodness of fit despite its apparent lack of
coherence with steady-state theory and long-run evidence.

Next, the lag structure of (8.41) could not be detected by researchers who only
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investigated lags of one or two periods and never used diagnostic tests for higher order residual autocorrelation (see
Ball et al., 1975). The use of SA data does not justify neglecting higher-order lags. If a model like (8.39) constitutes the
true data generation process then this should not be greatly altered by filtering out seasonal frequencies from the data.
Indeed, re-estimating (8.41) on the SA data used earlier yields

(8.41a)

The coefficients are very similar to those in (8.41), but the use of SA data has created considerable negative fourth-
order residual autocorrelation (e.g. a coefficient at four lags of −0.7 in a tenth-order residual autoregression) which
would induce any investigator who did not previously believe in a model like (8.41) to select an equation with
considerably less emphasis on four-period effects.

Lastly, despite estimating equations with four-period lags similar to unrestricted variants of (8.41), Hendry (chapter 2)
selected (8.11) as his preferred equation. The seasonal pattern for Ct seems to evolve whereas that for ln Ct does not
(see figures 8.1 and 8.6 above) and hence the use of the untransformed data appears to have been one factor
determining Hendry's choice. Further since C/Y was relatively constant over the period to 1967, the inclusion of an
intercept in all the models considered by Hendry would greatly reduce the partial significance of four-period lagged
variables. Both of these effects favour the incorrect selection of the evolving seasonals model as the best description of
the data. Moreover, it is interesting that, if a model like (8.39) is assumed as a data generation process and wt is highly
correlated with wt−1, then regressing xt on wt and xt−1 will yield estimates like those in (8.12) when the data are not prior
seasonally adjusted, and the true partial coefficient of xt−1 is zero. In summary, therefore, (8.41) seems to have the
requisite properties to explain why previous researchers' methodologies led to their published conclusions.

Finally, in terms of the levels of the variables, equation (8.39) becomes

(8.42)

Such an equation can be approximated closely by

(8.43)

The mis-specification of (8.42) as (8.43) entails restricting the coefficient of wt−4 to be γ β1 − β1 instead of γ − β1. This
mis-specification will be negligible for small γ and β1 > 0. Consequently, it is easy to approximate incorrectly the four-
period dynamics by fourth-order autocorrelation. Since γ is small, imposing the further restriction that the
autocorrelation coefficient is unity will not noticeably worsen the fit and provides an alternative sequence whereby an
incorrect differenced model might be selected (for a more general discussion of this last issue see chapter 6).
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9 Ination Effects
Deaton (1977) has presented evidence for a disequilibrium effect of inflation on consumer's expenditure, which he
interprets as consumers mistaking unanticipated changes in inflation for relative price changes when sequentially
purchasing commodities. Since the forecast period contains inflation rates which are considerably greater than any
observed during the sample used for estimation (the graph of Δ4ln Pt, where Pt is the implicit deflator of Ct, is shown in
figure 8.7), Deaton's analysis offers a potential explanation for the poor forecast performance of all the estimated
models.

In view of the functional form of the models (8.24) and (8.41), the regressors Δ4ln Pt and Δ1Δ4ln Pt were included to
represent the level and rate of change of inflation. Retaining the same sample and forecast periods yielded the results
shown in equations (8.44) and (8.45) respectively (for comparability, we have chosen the log equivalent of (8.24)):

(8.44)

(8.45)Figure 8.7 Annual rate of change of prices.
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Both equations confirm Deaton's result that inflation was significantly reducing consumers' expenditure prior to 1971.
Also, the inclusion of inflation effects in (8.45) has resolved the forecast problem: the considerable fall in the APC after
1971 (see figure 8.3) can be explained by the sharp increase in inflation and the five-year-ahead ex post predictions from
(8.45) satisfy the parameter stability test (figure 8.8 shows the plots of Δ4 ln Ct and over the period to 1975(iv)).
Nevertheless, simply including the two additional regressors does not of itself guarantee an improved forecasting
performance as z1 in (8.44) shows. This outcome is easy to understand on the hypothesis that (8.45) constitutes the
‘true’ model, since the behaviour of C/Y is negatively influenced by changes in Pt and so the approximation of C/Y by
a constant is very poor over the forecast period. Consonant with this argument, and illustrating the robustness of the
parameter choice in (8.41), the only parameter estimate to be substantially altered by the inclusion of Δ4 ln Pt and Δ1 Δ4

ln Pt is the coefficient of ln (C/Y)t−4. The fact that (8.44) has a lower value of than (8.45) is evidence against
suppressing the intercept, and indeed an intercept is significant if added to (8.45). However, ln (C/Y)t−4 loses
significance if this is done and z1(20) = 137. Thus, (8.44) and (8.45) exhibit an interesting conflict between goodness of
fit and parameter stability as criteria for model selection. Bearing in mind that the forecast period is very different in
several respects from the estimation period, the predictive accuracy of (8.45) is rather striking. Adding this to the earlier
theoretical arguments, we have no hesitation in dropping the constant term instead of ln (C/Y)t−4.

On a steady-state growth path with constant annual real income growth rate g and inflation rate μ, (8.45) yields the
solution

(8.46)

Figure 8.8 Actual and predicted values of annual change in consumption.
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When g = 0.02 and μ = 0.05 (as roughly characterized the 1960s) K = 0.84, whereas if μ increases to 0.15, K falls to
0.74 (which is similar to the 1970s). Variations in the rate of inflation induce substantial changes in the ratio of C to Y.

There are a number of theories in addition to Deaton's which would lead one to anticipate significant inflation effects
in (8.45). For example, during periods of rapid inflation, the conventional measure of Yt ceases to provide a good
proxy for ‘real income’ (note that equation (8.9) above holds when capital gains and losses are accounted for in Yt) and
Δ4 ln Pt etc. ‘pick up’ this effect. Models like (8.10) based on the LCH but transformed to eliminate wealth should
manifest negative inflation effects of the form Δ4 ln Pt through the erosion of the real value of the liquid assets
component of At. Although one might expect agents to alter the composition of their wealth portfolio by shifting into
real assets such as housing when inflation is rapid, it is not clear how this would affect expenditure decisions. In terms
of empirical evidence, Townend (1976) found a real net liquid assets variableN to be significant in his specification of
the consumption function together with negative inflation effects (based on Almon lags). Using Townend's data for Nt

(1963(iii)–1975(i), retaining the last two years' data for a forecast test) the only form which yielded significant results
when added to (8.45) was Δ1 ln Nt (which could be due in considerable measure to the joint endogeneity of Ct and Nt):

(8.47)

The main impacts of adding Δ1 lnNt to (8.45) are the halved coefficient of ln (C/Y)t−4 (in an LCH framework, these are
proxies) and the dramatic change to almost zero in the coefficient of Δ4 ln Pt, consistent with the hypothesis that Δ4 ln
Pt is a proxy for the erosion of the value of liquid assets from inflation. Nevertheless, the effect of accelerating inflation
retains a large negative coefficient. The marked deterioration in the forecast performance of (8.47) suggests an
incorrect specification and hence we decided to omitNt from further consideration, attributing its significance in (8.47)
to simultaneity.10

To test the validity of the various restrictions imposed on (8.45) (price level homogeneity, exclusion restrictions and the
unit income elasticity) we estimated the general unrestricted model

(8.48)

The results are shown in table 8.3, and table 8.4 records the equivalent values derived from the restricted model (8.45)
(it seemed spurious to include five lagged values of in (8.48), although doing so does not greatly alter the results,
falling to 0.0059). The restrictions are not rejected on a likelihood ratio test, and indeed the two sets of estimates are
rather similar. Moreover, to two decimal digits,
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Table 8.3 Unrestricted Estimates of (8.47)

j 0 1 2 3 4 5
ln Ct−j – 0.12 (0.17) 0.02 (0.04) −0.06 (0.04) 0.98 (0.05) −0.11 (0.17)
ln Yt−j 0.25 (0.06) 0.10 (0.08) −0.06 (0.07) 0.11 (0.07) −0.18 (0.07) −0.16 (0.08)
ln Pt−j −0.59 (0.21) 0.50 (0.29) −0.23 (0.24) 0.12 (0.24) 0.44 (0.28) −0.24 (0.21)

.

Table 8.4 Solved Estimates from (8.45)

j 0 1 2 3 4 5
ln Ct−j – 0 0 0 0.90 0
ln Yt−j 0.26 0.21 0 0 −0.16 −0.21
ln Pt−j −0.41 0.28 0 0 0.41 −0.28

and , favouring the hypotheses of price homogeneity and a unit elasticity for income.

Finally, re-estimation of (8.45) assuming Δ4 ln Yt, Δ1 Δ4 ln Yt, Δ4 ln Pt and Δ1 Δ4 ln Pt to be endogenous and using
instrumental variables11 yielded the outcome

(8.45)*

where z3(l) is the test for validity of the choice of instrumental variables discussed by Sargan (1964a) and is distributed
as in large samples when the instruments are independent of the equation error. It is clear that the coefficient
estimates and the goodness of fit are hardly altered, providing no evidence of simultaneity biases.

An interesting result emerges from estimating (8.45) over the entire sample period (to 1975(iv)):

(8.45)**

is extended to allow for the introduction of VAT (see note 5). Manifestly, the coefficient estimates and are
hardly changed from (8.45), as would be expected given the value for z1(20) on equation (8.45). R2 has therefore
increased, and the coefficient standard errors are smaller, especially for Δ4 ln Pt. However, the equivalent long-period
estimates of (8.44) alter considerably, with increasing to 0.0063 and z2(16) to 28. Thus, the overall data set does not
offer much evidence against
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deleting the intercept, and strongly favours retaining ln(C/Y)t−4. From the longer sample period, a significant coefficient
for Δ4 ln Yt−2 also can be established, creating a ‘smoother’ distributed lag of Ct on Yt.

10 Summary and Conclusions
A simple dynamic model which conforms with a range of theoretical requirements and matches all the salient features
of the data was used to explain various recently published relationships between consumers' expenditure on non-
durables and disposable income. Extended to allow for the effects of inflation noted by Deaton (1977), the model
produces an acceptable set of post-sample predictions over 20 quarters using the actual data for incomes and prices.
While noting the implications of the analyses of Leamer (1974, 1975) for an exercise like that described above, we feel
that our ‘prejudiced search for an acceptable model’ has not been fruitless. We conclude that it is worthwhile trying to
explain the complete set of existing findings; that restrictions derived from economic theories can be valuable in
econometric modelling if correctly implemented to restrict the model but not the data; the seasonal adjustment of data
can confuse the selection of an appropriate dynamic specification; that ‘multicollinearity’ is not necessarily resolved by
restricting the parameter space rather than by enlarging it; and that econometric relationships can predict accurately
over periods in which the behaviour of the regressors is sufficiently different that mechanistic time-series methods will
fail. However, we do not conclude that our model represents the ‘true’ structural relationship since there are several
important issues which have not been considered (including changes in income distribution and direct wealth effects).
Hopefully, our methods, models and results will facilitate future work on these problems.

Notes
1 The derivation of (8.10) is less convincing if a white noise error is included in (8.8), since the error on (8.10) would

be a first-order moving average with a root of minus unity, reflecting the inappropriateness of differencing (8.8).
2 DW is quoted below as a conventional statistic (from which, for example, Durbin's h test could be calculated if

desired).
3 We ignored the two observations for 1976 as being liable to considerably larger revisions than the earlier data.
4 Equations involving variables denoted by xt and wt are used to illustrate simplified versions of principles which can

be generalized validly to the relationship between C and Y.
5 The introduction of VAT in 1973 was treated as being similar to the 1968(i)–(ii) budget effect and hence we

projected as +1, −1 in 1973(i)–(ii). This improved the forecast accuracy in these quarters and demonstrated the
value of investigating ‘special effects’.

6 A significant value for z1 indicates both an incorrect model and a change in the stochastic properties of the variables
in the ‘true’ data generation process of Ct, whereas an insignificant value for z1 only shows that the latter has not
occurred and is fully consistent
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with an incorrect model for Ct (see Hendry, 1979b). Note that a large value of z1 occurs when the variance of the
forecast errors is large relative to the variance of the sample residuals.

7 The results of Hendry (chapter 5) and Davis et al. (1977) suggest that ‘small’ values of z2 should be treated with
caution and do not necessarily indicate the absence of residual autocorrelation.

8 Equation (8.28) can be derived from (8.27) by assuming that the residuals in (8.27) follow a simple fourth-order
autoregressive process, and then carrying out the usual ‘Cochrane–Orcutt’ transformation, but ignoring the
parameter restrictions implied by the auto-regressive transform.

9 If k* = 0, then K = 1 when g = 0. Consequently, care must be exercised when simulating to equilibrium a model
containing equations of the form of (8.35) for a subcategory of expenditure.

10 Other regressors which were added to (8.47) without yielding significant results were unemployment, the relative
price of durables to non-durables and short-term interest rates. The largest t value was for Δ1Δ4 ln(unemployment)
and Bean (1977) reports a significant value for this variable in a variant of (8.45). Note that, if the significance of
Δ1lnNtis due to simultaneity, then the vanishing of the direct effect of Δ4ln Pt on Δ4ln Ct provides no evidence on the
‘erosion of the value of real liquid assets’ hypothesis.

11 The instruments used were ln Yt−j (j = 1, . . . , 5), ln Pt−j (j = 1, 4, 5), ln Ft−j, ln Et−j, ln It−j (j = 0, . . . , 4) (where Ft, Et, It
respectively denote the real value of current government expenditure, exports and gross domestic fixed capital
formation) and the predetermined variables in the regression.
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9 Liquidity and Ination Effects on Consumers'
Expenditure9

with Thomas vonUngern-Sternberg

Preamble
The printer's ink was scarcely dry when Thomas von Ungern-Sternberg noted three important problems with the
DHSY specification.

1 If consumption did not equal income, an asset stock must be altering: why was there no feedback onto
expenditure behaviour of changes in that asset? Integral correction mechanisms offered a potential solution,
and a tighter link to control theory of the form in Phillips (1954, 1957). In turn, this clarified error correction
mechanisms generally, and allowed an encompassing explanation for the evidence on liquid assets in DHSY.

2 Could we discriminate between the many possible explanations for the role of inflation? Was it unanticipated
effects as in Deaton (1977), money illusion or mis-measurement of real income due to ignoring the impact of
inflation on the values of nominal assets and nominal interest rates? The last of these seemed the most fruitful.

3 Deleting the seasonal dummies in DHSY seemed a mistake in retrospect: the seasonality would gradually die
out in the form DHSY selected. Reintroducing seasonals resolved one of DHSY's ‘paradoxes’, namely why the
goodness of fit with the intercept exceeded that with the error correction mechanism term, although the
resulting model (with an intercept) predicted badly.

We immediately began to investigate these ideas.

By this stage, the notion of a progressive research strategy for empirical modelling was explicit, sustained by
encompassing. I still viewed encompassing as applied mis-specification analysis since specific test procedures were still
several years away from development (see Mizon (1984), Mizon and Richard (1986) and the survey in Hendry and
Richard (1989)), as was the formalization of the concept of encompassing (chapter 16). The empirical analysis

9 Reprinted from Deaton, A.S. (ed.), Essays in the Theory and Measurement of Consumers’ Expenditure, Cambridge: Cambridge University Press, 1981, ch. 9. This research was
financed in part by a grant from the Social Science Research Council to the Quantitative Economics Programme at the London School of Economics. Valuable assistance
from Frank Srba is gratefully acknowledged. We are indebted to Charles Bean, Angus Deaton. Robert Engle, George Hadjimatheou, Jean-François Richard, Tom
Rothenberg, Mark Salmon and Pravin Trivedi for helpful comments on an earlier version of the paper, although we do not hold them responsible for the residual errors.



certainly included the least restricted hypothesis, but again only as a test baseline, not as part of a reduction sequence.
However, the implicit inconsistency between analysis proceeding from general-to-simple within a study, but being
simple-to-general across studies (an issue initially raised by Bob Marshall) was not even noticed. This lacuna is
probably due to my then prevailing belief that non-nested testing was different in kind from nested testing. Given two
non-nested models, no unique route existed for nesting them, and so any particular choice always seemed arbitrary.
One of the useful insights from the theory of reduction is that the wrong question is being posed: at an earlier stage in
the reduction process, the two models were nested and hence remain comparable despite their apparent non-nesting.
As Mizon and Richard (1986) show, encompassing can resolve the problem and, in doing so, reveals that a nesting
model is implicitly present in non-nested tests, since tests against that nesting model are equivalent to tests between the
competing models. Thus, the nesting model is instrumental. Moreover, in a progression between studies, to avoid
inconsistencies it is imperative to retain the complete sequence of variables used previously, i.e. each new study should
re-commence from the entailed general model embedding all the earlier studies (see Ericsson and Hendry, 1989).

That last point resolved the conundrum as to why DHSY find that liquid assets are irrelevant, and yet they transpire to
be crucial in this chapter. In DHSY, the test of the importance of liquid assets is conditional on maintaining a unit
elasticity of expenditure with respect to income, which in turn is tested when liquid assets are excluded; however, the
general model requires letting income enter unrestrictedly and, on doing so, liquid assets are found to be significant.

The related issue is the status of the variables in a stock-flow model. The economic analysis assumes that the flow of
consumption relative to that of income depends on the (log of the) ratio of the asset stock to the flow of income,
where the nominal stock is the cumulation of all past values of nominal income less nominal consumption (i.e.
cumulated nominal saving). Inflation erodes the nominal stock and interest receipts augment it. In a stationary world,
there is no difficulty in maintaining such a formulation. However, if the income process is non-stationary, due to an
evolving component (integrated of order one, denoted I(1) in the terminology introduced by Granger (1981b),
entailing the need to difference once to eliminate the evolving component), then so is consumption and hence, in
general, so is saving. Thus, the stock will generally be I(2) and considerable care is needed to ensure that the
econometric equation is balanced in that all of its variables can be written as I(0). The research agenda implicit in that
difficulty, namely how to ascertain the degree of integration of time series and their transformations and how to check
that models can be written in terms of I(0) variables etc., has been the focus of a vast amount of subsequent research
(see inter alia Engle and Granger, 1987; Oxford Bulletin, 1986; Banerjee et al., 1992). As ever in applied research, all these
insights lay in the future and could not be drawn upon at the time.

Follow-ups evaluating the later success of the HUS model (as it inevitably became known) are provided in chapter 18,
Hendry et al. (1990b) and Carruth and Henley (1990).

1 Introduction
In a recent study of the time-series behaviour of consumers’ expenditure in the United Kingdom, Davidson et al.
(1978) (denoted DHSY below: see chapter 8 in this volume) presented results for an equation in constant (1970) prices
relating consumers’ expenditure on non-durables and services (C) to personal disposable income Y and the rate of
change of prices P:
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(9.1)

In (9.1), lower case letters denote loge of corresponding capital letters, Pt is the implicit deflator of Ct, Δj = (1 − Lj)
where Lkxt = xt−k and εt is assumed to be a white noise error process. Dt is a dummy variable for 1968(i) and (ii) and for
the introduction of VAT.

DHSY selected equation (9.1) using the criteria that it

1 encompassed as special cases most previous empirical models relating Ct to Yt,
2 was consonant with many steady-state economic theories of non-durable consumption,
3 explained the salient features of the available data,
4 provided a simple dynamic model in terms of plausible decision variables of economic agents,
5 helped explain why previous intestigators had selected their (presumed incorrect) models and
6 exhibited an impressive degree of parameter constancy over 20 quarters after the end of the estimation sample

(through a period of rapid change in P and C/Y).

Nevertheless, DHSY did not conclude that (9.1) represented a ‘true’ structural relationship and three issues merited
immediate re-examination, namely liquidity effects, the role of inflation and the treatment of seasonality.

Although DHSY obtained negative results when investigating liquid asset effects in (9.1), Professor Sir Richard Stone
established a significant influence for cumulated savings on consumers' expenditure using annual data (see, for
example, Stone, 1966; 1973). Moreover, the dynamic specification of (9.1) is logically incomplete as some latent asset
stock must be altering when total expenditure is unequal to income. Alternatively expressed, in the terminology of
Phillips (1954) and (1957), the formulation in (9.1) includes derivative and proportional control mechanisms but omits
integral control, and the influence of liquid assets is considered below as an observable proxy for such an integral
control. This interpretation is close to the spirit of Professor Stone's approach. Integral correction mechanisms are
analysed in section 2, together with a pilot Monte Carlo study of the finite sample properties of least squares estimators
in such models.

Several theories have been offered to account for the direct influence of inflation on savings (see, for example, Deaton,
1977; Bean, 1978; and the references cited therein) and in section 3 we consider the model developed in Ungern-
Sternberg (1978) based on the mis-measurement of real income in inflationary conditions. The resulting equation
avoids the problem in (9.1) that, as inflation increases, C/Y falls without a positive lower bound.

The empirical evidence for the United Kingdom is re-examined in section 4 using an extension of (9.1) which allows
for a seasonally varying average propensity to consume and thereby explains one of the ‘paradoxes’ noted by DHSY.
Section 5 concludes and summarizes the study.

Since (9.1) accounts for much previous empirical research relating C to Y in the United Kingdom, we commence from
DHSY's model and supplant it by an equation which still satisfies the six criteria noted above. Although the resulting
model remains
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parsimonious, is data coherent and exhibits a fair degree of parameter constancy, it is undoubtedly far from being the
final resolution of this complex subject. It is offered as a further step in that scientific progression which has been a
hallmark of Professor Stone's research.

2 Integral Correction Mechanisms
Simple dynamic models based on ‘error correction’ feedbacks as in (9.1) are important in linking equations formulated
in levels with those formulated in differences of the original variables. Further, an error correction mechanism (denoted
ECM) has many interesting dynamic and econometric properties (see, for example, Sargan, 1964a, DHSY; and chapter
11) and, appropriately specified, can ensure that an estimated equation reproduces as its steady-state solution the
economic theory from which it was derived, thus facilitating rigorous testing of theories. Consequently, (9.1) provides
an example of a useful class of dynamic equations.

Nevertheless, (9.1) has a major flaw as a complete account of the dynamic behaviour of flow variables. Consider the
simplest example of an ECM relating two variables denoted by wt and xt:

(9.2)

where and , with 1 > γ1, γ2 > 0. The non-stochastic steady-state solution of (9.2) when Δ1xt
= g must have Δ1wt = g and hence

(9.3)

and (9.2) is stable provided that 2 > γ2 > 0. However, the convergence ofWt to its steady-state growth path following
any disturbance is monotonic and if γ1 < 1 then wt converges to xt + k from below (above) when xt increases
(decreases) (note that, in terms of stabilizing W/X, Δ1xt has the appropriate negative coefficient). Consequently, even
when K = 1 (k = 0) there is a cumulative under-adjustment if xt is steadily increasing or decreasing. If wt is an
expenditure and xt an accrual then some stock of assets is implicitly altering and for decreases in xt, the asset stock is
essential to finance the ‘over-spending’.

In the terminology of Phillips (1954, 1957), (9.2) incorporates derivative (Δ1xt) and proportional (xt−1 − wt−1) control
mechanisms, but no integral control (Σj<t(xj − wj)). Such an integral can be interpreted most easily by introducing a state
variable At (which may or may not be observable) defined by (using end-of-period definitions)

(9.4)

In terms of the original variables, At is the integral of past discrepancies between X and W. Whether or not integral
control mechanisms (denoted ICMs) influence behaviour is, from this viewpoint, simply a matter of dynamic
specification. Nevertheless, economic theory is far from being devoid of alternative interpretations (for example,
Pissarides (1978) presents a theoretical analysis of the role of liquid assets
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in consumption which yields conclusions similar to those obtained below) and we record with interest that Phillips
(1954, p. 310) considered the ‘Pigou effect’ to be an integral regulating mechanism inherent in the economy.

Indeed, many previous researchers have incorporated integral variables in expenditure equations, including the explicit
use of cumulated savings by Stone (1966, 1973), liquid assets (see, inter alia, Zellner et al., 1965; Townend, 1976) and
wealth (see Ball and Drake, 1964; Deaton, 1972b, 1976; and Modigliani, 1975). However, since there are many
econometric relationships in which integral effects are potentially relevant but do not appear to have been used
previously (such as wage–price equations) we develop the simplest form of model which extends (9.2) to allow for an
ICM, following an approach similar to that of Deaton (1972b) and chapter 3.

To focus attention on the dynamic specification, we assume that a prior steady-state utility maximization exercise leads
agents to seek to maintain constant ratios both between W and X as in (9.2) and between A and X (ceteris paribus),
namely:We = K* X and Ae = B* X where e denotes ‘dynamic equilibrium’. For consistency with (9.4) in steady state, K*
= 1 − [g/(1 + g)]B*. Either linear or log-linear decision rules could be formulated, but since we want the latter in order
to generalize (9.2) (noting also that both DHSY and Salmon (1979b) found that Sargan's (1964a) likelihood criterion
favoured log-linear models for Ct), (9.4) has to be replaced by its steady-state approximation:

(9.5)

where H* = (1 + g)/B*. The long-run targets can be written in logarithms as

(9.6)

Since the actual outcomes are stochastic, and (9.4) rather than (9.5) holds for the observed data, disequilibria can
occur. To model agents assigning priorities to removing these, a quadratic loss function is postulated where the first
two terms are the relative costs attached to discrepancies occurring between planned values ( and ) and their
respective steady-state outcomes. Further, to stabilize behaviour when the environment remains constant (i.e. to avoid
‘bang-bang’ control in response to random fluctuations), agents attach costs to changing from wt−1. However, when
the primary objectives are to attain (9.6), it does not seem sensible to quadratically penalize changes in when it is
known that has changed. Thus there is an offset term to allow more adjustment at a given cost when has
changed than when it is constant. By comparison, partial adjustment models enforce quadratic adjustment costs
irrespective of how much the target is known to have changed.

Collecting together these four terms in a one-period loss function yields

(9.7)

where λi ≥ 0 (i = 1, . . . , 4). Allowing for the possibility that the current value of xt might be uncertain, has to be
minimized with respect to (or ), taking into account that (9.5) holds for planned quantities. The deliberately
myopic formulation
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in (9.7) naturally leads to a ‘servomechanism’ solution when xt is known, or more generally on setting to
zero:

(9.8)where independently of and the θi ∈ (0, 1) are given by

The three variables in (9.8) correspond respectively to derivative, proportional and integral control mechanisms as
required; the equivalent partial adjustment cost function would constrain θ1 + θ3 to equal θ2 (which, in the absence of an
ICM, entails having prior information that θ1 = θ2, i.e. that xt − 1 does not occur in the equation).

The planning rule for wt given by the above approach is of the form advocated by Richard (1980), where agents'
behaviour is described by conditional expectations functions, but agents have no control over the variability around the
function. Indeed, the uncertain and highly variable nature of real income makes a feedback control model like (9.8) an
attractive behavioural possibility for expenditure. Also, the inclusion of specific mechanisms for correcting past
mistakes makes the white noise assumption for ut more tenable.

Let ; then (9.8) holds with Δ1 t replaced by Δ1xt and ut by vt = ut − θ1 εt where .
Conversely, time aggregation could introduce simultaneity between x and the equation error for the observation period
even if xt is weakly exogenous in the decision time period (see Richard, 1980); these two effects will be offsetting and
are in principle testable, but, for the remainder of this paper, both are assumed to be absent.

Equation (9.8) seems to be the simplest generalization of (9.2) which incorporates an integral control and it yields a
non-stochastic steady-state solution when Δ1xt = g = Δ1wt = Δ1at given by

(9.9)

where φ = θ3/θ2 > 0 and D = exp{[θ0 − (1 − θ1)g]/θ2}. Moreover, (9.5) (for planned magnitudes) and (9.8) imply that

(9.10)

(where deviates from ut by a term involving the product of the disequilibria in the two endogenous variables).
Consequently, in non-stochastic steady state

(9.11)

and hence
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(9.12)

where k = −gB/(1 + g) (i.e. K = 1 − gB/(1 + g)), and

(9.13)

whenM = λ3k*/λ1 (1 + g). Expanding b +MB in a first-order Taylor series around b* yields b = b* + (λ4 − λ3)gk*/(gλ1 −
λ3k*2) = b* + O[g/(1 + g)].

Equations (9.11) and (9.12) reproduce the forms of the ‘desired’ relationships in (9.6), and show that the long-run
ratios depend on the agents' aims and on the losses attached to the various terms in the objective function (9.7). Since
only two alternatives are allowed (e.g. spending Wt or saving Δ1At), W = X when g = 0, but in practice this restriction
need not hold for a subcategory of expenditure.

The dynamic reaction of wt to exogenous changes in xt can be expressed in the form

(9.14)

and is the same for the autoregressive–distributed lag representation of at (using (9.5) and (9.10)), where

(9.15)

Equation (9.15) is identical to the lag polynomial of the simple multiplier–accelerator model and has stable roots since
0 < θ2, θ3H* < 1, the roots being a complex conjugate pair if , in which case the adjustment
path is oscillatory with period of oscillation given by 2π/δ where cos δ = − ψ1/2ψ2

1/2 (for an exposition see Allen, 1963,
ch. 7).

Changes in xt have an impact elasticity of θ1 (1 − θ1) on wt (at), and for θ1 ≠ 1, discrepancies are created between the
actual values of At and Wt and their ‘equilibrium’ levels BX and KX respectively, both of which are partly corrected in
the next period. In fact, even if θ1 = 1, the ECMs are still required to correct for stochastic variation (i.e. unless ut = 0 ∀
t) or for ‘unanticipated’ changes in xt, when that variable is not known for certain until the end of the period.

Rather little is known about the finite sample properties of least squares estimators of the θi in (9.8), both when the
equation is correctly specified and when the lag structure has been wrongly formulated. The case θ3 = 0 was
investigated by DHSY and here we consider the one set of parameter values (θ0, θ1, θ2, θ3) = (− 0.1, 0.5, 0.3, 0.1) at
sample sizes T = (20, 40, 60, 80) when (i) the model is correctly formulated, (ii) the ICM is omitted and (iii) both the
ICM and the proportional ECM are omitted. and xt was generated by

with et ∼ NI(0, 9). The first 50 values of each data series were discarded in every replication, and each experiment was
replicated 400 times, identical random numbers being used across the three sets of experiments. Normalizing on λ1 =
1, the underlying
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parameter values are (γ2, γ3, γ4) = (0.97, 2.58, 1.10) with g = 0 and h* = −1. These parameter values were selected to
mimic the empirical results reported below; the chosen model has a static equilibrium solution given by

with the roots of the polynomial being 0.8 ± 0.245i. To investigate the usefulness of autocorrelation diagnostic
tests as indicators of the dynamic mis-specifications, rejection frequencies for Lagrange multiplier (LM) based tests of
first- and (general) fourth-order residual autocorrelation were computed (see Godfrey, 1978; Breusch and Pagan,
1980). The results for T = 80 are recorded in table 9.1 (similar outcomes were obtained at the other sample sizes), and
several features merit note.

First, the simulation findings reveal no new problems for estimating correctly specified single equations involving
integral control variables since, although at is generated by a cumulative process as in (9.4), at − xt is stationary as
shown in equation (9.10). In case (i), the coefficient biases are small and SD ≈ SE with the residual autocorrelation
tests having approximately the right empirical significance levels as found more generally in chapter 7. Dropping the
ICM does not cause very large biases in and but does bias the intercept to zero; s2 is biased upwards by almost 30
per cent and the LM tests detect significant autocorrelation in the residuals only 11 per cent of the time. Further, the
equilibrium solution remains w = x so that this mis-specification would seem to be very difficult to detect.
Consequently, these findings are consistent with ‘true’ models like (9.8), generating data which are apparently well
explained by equations like (9.2) (as reported by DHSY, for example). Except for a further large increase in s2, the
outcome is not much changed by also dropping the proportional ECM (note the results obtained by Wall et al, 1975).

Thus, although at − xt is highly autoregressive, dropping at−1 − xt−1 does not

Table 9.1 Simulation Findings for (9.8) at T = 80

θ1 θ2 θ3 θ0 s2 z4(1) z4(4)
(i) Biasa 0.00 0.01 0.01 −0.01 0.00 0.06 0.04

SD 0.04 0.05 0.02 0.13
SE 0.04 0.05 0.02 0.12

ii) Bias −0.01 −0.03 – 0.10 0.29 0.11 0.11
SD 0.04 0.04 – 0.04
SE 0.04 0.05 – 0.13

(iii) Bias −0.04 – – 0.10 0.76 0.16 0.06
SD 0.05 – – 0.05
SE 0.05 – – 0.15

a For coefficient estimates, bias denotes the simulation estimate of , and for z4(i) (the LM test for ith order residual autocorrelation)
shows the per cent rejection frequency of the null of no autocorrelation.
SD, the sampling standard deviation; SE, the average estimated coefficient standard error; –, the parameter in question was not estimated
(and hence has a bias of −θj). The sampling standard error of the estimated bias is SD/20.
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cause detectable autocorrelation in the residuals. This is important given that the derivation of equations like (9.12) is
often ostensibly by differencing a stock–flow relationship (see, for example, ch. 8, p. 187); such interpretations are not
unique because of the two formulations of ‘differencing’ noted by DHSY (p. 191), and (9.2) can be obtained from a
linear equation relating wt to xt and at either by filtering or by imposing invalid coefficient restrictions on the integral
control, with very different implications for the error process. It should be noted that Mizon and Hendry (chapter 7)
found the LM autocorrelation tests to have reasonable rejection frequencies when the error was generated as an
autoregressive scheme.

There are obviously a large number of steps from obtaining simple error correction models like (9.8) to empirical
implementation, of which aggregation over agents and time, and the choice of a proxy for At, are perhaps the most
important in the present context. A proper treatment of aggregation is beyond the scope of this chapter, but (9.8) still
provides a useful guide to equation formulation in terms of interpretable and relatively orthogonal variables.

For Ct, the stock of real net liquid assets of the personal sector (denoted by LAt) seems to play a role analogous to that
of At (complicated by portfolio adjustments in response to changes in rates of return on other assets and durable
expenditure, jointly denoted by Nt):1

Thus, in logarithms,

(9.16)

where H = Y/LA, ηt depends on Nt (and changes in H) and the variability of ηt is assumed to be small relative to that
of Δ1pt and yt − ct. The data for PtLAt are taken from the various issues of Financial Statistics (see, for example, table 10.3
in the June 1979 issue where PtLAt is the total identified less bank advances). In fact, the form of equation (9.16) points
directly to the issue examined in the next section.

3 Real Income and Ination
The measure of personal disposable income used by DHSY is the ‘conventional’ series reported in Economic Trends and
comprises wages, salaries, earnings of the self-employed, rents, net interest receipts, dividends and transfer payments
less direct taxes, all revalued using the implicit deflator for total consumers' expenditure. Since the personal sector is a
substantial net creditor (see Economic Trends, 1978, p. 291), interest receipts are a non-negligible fraction of Y; moreover,
as inflation increases, nominal interest rates tend to rise, thereby increasing the interest component of Y. It seems
inappropriate to measure ‘real income’ as increasing in such a situation, since the large nominal interest receipts are
offset by capital losses on all monetary assets, which are not being deducted from the income variable used (Townend
(1976) makes a related point, but does not estimate such an effect). It is easy to understand why the national income
accounts should wish to calculate income as the sum of readily observable components, avoiding hard to measure and
rather volatile changes in the
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real values of a spectrum of assets. However, if Y*, the real income perceived by consumers, differs from Y, then
consumption functions based on Y will manifest predictive failure when the correlation between Y and Y* alters.

Hicks (1939, ch. 14) discusses the many difficulties involved in defining and measuring real income when interest rates
and prices (and expectations about these) are changing. One improvement over Y might be ‘that accrual which would
leave real wealth intact’, but despite recent improvements in the available statistical evidence we doubt our ability to
construct such a quarterly time series relevant to consumers' expenditure. Indeed, to the extent that Y* differs from Y,
it must do so by some easily observable magnitude.

Since most households are aware of their liquid asset position and since the personal sector's losses on liquid assets are
a major component of its overall financial loss during inflationary periods, (where denotes the rate of inflation)
seems a prime candidate for relating perceived to measured income. Moreover, aggregate data on net liquid assets
(which comprise, very roughly, 20 per cent of wealth and 40 per cent of financial assets) seem reasonably accurate and
will occur in our models as the basis of the ICM in any case. Thus the simplest initial hypothesis is that
where β has been introduced to account for any scale effects due to wrongly choosing measures for or LA; note that
if β = 1 (i.e. if the loss on our measure of net liquid assets is the variable which consumers perceive as negative
income), then (9.16) could be rewritten as where H0 = Y*/LA.

More or less inclusive measures proxyingAt could be chosen, and the validity of these is open to test on the data. For
example, the choice of LA entails that agents react asymmetrically to erosion of their deposits in building societies as
against their mortgages from the same institutions, but, to the extent that such variables behave similarly, the scaling
will be corrected by β (for example, building society mortgages are about 40 per cent of LA and are very highly
correlated with LA). A two-year moving average of the quarterly inflation rate of the retail price index R was selected
for (i.e. ).

To give some idea of the magnitude of the correction to real income involved in Y*, if β = 1 and (per quarter)
then, using , inducing a dramatic reduction in the income measure. As increases,
LA falls, so that does not increase without bound, unlike the linear term in Δ4 ln Pt in (9.1). Further, when is
small, Y* and Y are very highly correlated and this breaks down only when inflation increases substantially;
consequently, if C = f(Y*) but models attempted to explain C by Y, then such equations would fail only when altered
rapidly. Moreover, the increase in in the 1970s in the United Kingdom is closely correlated with the fall in LA/ Y
(see figures 9.1 and 9.2) and hence including alone as a linear regressor (as DHSY do, for example) would provide an
excellent proxy for : i.e.

(9.17)

The converse also holds, of course, but our hypothesis seems potentially able to account for the existing evidence.
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Figure 9.1 Annual inflation measured by the CPI (P) and RPI (R).

Figure 9.2 Ratio of liquid assets to income (LA/Y).
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Alternatively expressed, assuming that the long-run income elasticity of consumption is unity, the apparent fall in C/Y
during the 1970s must be due in large part to mis-measurement of the denominator; one simple check on the
credibility of this hypothesis is the behaviour of C/Y* (which should be more nearly constant than C/Y). Figure 9.3
shows the time series of ct − yt and (for β = 0.5) and confirms that the use of has greatly stabilized the
consumption–income ratio. The main test of the hypothesis is, of course, whether the resulting model performs as well
as (9.1) on the six criteria of section 1, which includes satisfying all the diagnostic tests in section 4 below.

It should be stressed that the use of Y* is in principle complementary to the theory in Deaton (1977), although in
practice the explanations are likely to be more nearly substitutes. Our model is also distinct from the hypothesis that
the fall in C/Y is due solely to consumers rebuilding their real liquid assets; certainly an ICM (like a real balance effect)
implies that C/Y will fall when LA/ Y has fallen, but this is a joint determinant together with the increase in . Since
our model uses LA/Y* as the ICM (which also falls less than LA/ Y) and since DHSY accounted fully for the fall in
C/Y using , the correction to Y constitutes a major part of the explanation for the rise in the observed savings ratio.
We note that the London Business School (1980) model also requires both inflation and integral effects, although their
specification is rather different from equation (9.27) below.

4 Empirical Evidence for the United Kingdom
For ease of comparability, we retained DHSY's data definitions and, so far as possible, their actual data series,
extending the sample to 1977(iv) (no further data being

Figure 9.3 Time series of ct − yt and for β = 0.5.
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available in 1970 prices) but curtailing the early period to 1962(iv) owing to the lack of observations on liquid assets
prior to this date. Also, the implicit deflator of C (P) was replaced by R (the two data series are very highly correlated as
shown in figure 9.1). Re-estimating equation (9.1) from 1963(i) and testing its predictions for 1973(i)–1977(iv) yields

(9.18)

In (9.18), , T denotes the estimation sample size, s is the standard deviation of the residuals, z1 (20) and z2 (8)
are the χ2 predictive test and the Box–Pierce statistic as reported by DHSY, and z3 (20, 34) and z4 (6) are the Chow test
of parameter constancy and the Lagrange multiplier test for residual autocorrelation respectively. Note that if z1 (n) > n
then the numerical values of parameter estimates provide inaccurate predictions, but z3 could still be less than unity so
that, with the best re-estimated parameter values, s will not increase.

While the greatly changed behaviour of means that the last 20 observations on ct are far from easy to predict, the
predictive performance of (9.18) is distinctly less impressive than that over the DHSY forecast period of 20 quarters
(which included the first 12 observations of the present forecast set). Re-estimation over the entire sample yields

(9.19)

confirming the change in parameter values (especially for ) and the increase in s. Although the values of z2, z3 and z4
in (9.18) are not significant, the evidence in (9.19) suggests that it may be possible to improve on the DHSY
specification using the ideas developed in sections 2 and 3.

One direct check (which could have been undertaken before proceeding but in fact was computed later) is to test the
null hypothesis that β = 0 by applying to (9.19) the LM test proposed in Engle (1982b). Engle's statistic (based on
(9.17)) rejects the null at the 5 per cent significance level, and while rejection cannot be taken as corroborating any
given alternative hypothesis, it does confirm the potential for improvement and is consistent with the argument in
section 3.

First, DHSY's steady-state assumption that C = KY seems questionable in view of the strong and persistent seasonal
behaviour of C/Y (see figure 9.3). A steady-state solution of the form C = KiY (where Ki varies seasonally) is more
plausible
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Figure 9.4 Time-series plots of Δ4yt and .

on the basis of their own analysis and suggests an error correction mechanism of the form loge(C/KiY)t−4 which could
be implemented by either geometrically ‘seasonally adjusting’ Y or adding seasonal dummies. Indeed, seasonal dummy
variables are significant if added to (9.1) which thereby fits better than equation (8.44) of DHSY, resolving their conflict
(p. 205) between goodness of fit and parameter constancy. In most results reported below, the Ki were estimated
unrestrictedly as coefficients of seasonal dummies, although very similar results were obtained when C/Y was
corrected using the quarterly sample means.

Second, DHSY's test for the significance of liquid assets by adding LA to (9.1) is inappropriate as it forces the steady-
state solution to be C/Y = Kf(LA) which is dimensionally incorrect (scale changes in LA alter C/Y); it seems more
reasonable to anticipate that C/Y = Kf(LA/Y). Such a mistake would have been avoided had the authors estimated the
least restricted model in their class (see table 9.2 below), but omitting the ICM did not induce autocorrelated residuals.

Third, the analysis in section 3 requires recomputing real income using (with , henceforth denoted
by t). Since β enters non-linearly in y*, initial estimates were obtained using a grid search over 0 ≤ β ≤ 1 by steps of 0.1
for a specification similar to (9.18) but excluding and and including . The minimum
residual sum of squares for various sample periods lay in the interval [0.4, 0.6] and was selected for most of the
subsequent regression analysis (see figure 9.4 for the time-series plots of Δ4yt and ).

Conditional on were insignificant if added to the otherwise unrestricted log-linear equation
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Table 9.2 Unrestricted Estimates of (9.20) With β = 0.5

j 0 1 2 3 4 5 6
ct−j −1.0 −0.04 (0.12) −0.05 (0.09) 0.29 (0.11) 0.61 (0.13) – –

0.26 (0.04) 0.19 (0.06) 0.06 (0.06) −0.10 (0.07) −0.10 (0.06) −0.17 (0.05) −0.04 (0.04)
lat−j – 0.29 (0.10) −0.39 (0.17) 0.10 (0.17) 0.07 (0.11) – –
Qjt 0.03 (0.20) −0.05 (0.02) −0.03 (0.01) −0.04 (0.01) – – –
Dt−j 0.01 (0.004) – – – −0.01

(0.003)
– –

T = 51 R2 = 0.9978 s = 0.0053 z1 (6) = 33.5 z2 (8) = 14.0 z3 (6, 30) =
1.7

The roots of α(L) = 0 are 0.95, −0.78, −0.10, ± 0.90i.
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(9.20)

(where n = 3 for c, la and Q and 6 for y*) and table 9.2 reports the estimates obtained for (9.20). The s value is
substantially smaller than DHSY report for their unrestricted model, and being individually significantly different
from zero at the 0.05 level. Because of the shorter sample period, only six observations have been retained for
parameter constancy tests and, while both z1 and z3 are unimpressive, the parameterization is profligate (the equivalent
z3 value using Y in place of Y* is 2.13).

The long-run solution of (9.20) derived from table 9.2 is

where ki varies seasonally, g is the quarterly growth rate of y* and la, and numerically computed asymptotic standard
errors of the derived parameters are shown in parentheses. The sum of the coefficients of y* and la is not significantly
different from unity (0.95 (0.10)) but, as discussed by Currie (1981), the coefficient of g is badly determined and is not
significantly different from zero.

Such results are consistent with the theory developed in section 2, but a more parsimonious restricted specification
facilitates interpretion of the data. First, for the derivative term, the results in DHSY and Bean (1978) suggest using a
distributed lag in and the simple Almon polynomial (see Sargan, 1980b) adequately captures this.
Note that is, in effect, ‘self-seasonally adjusted’, and continuing this idea for the ICM suggests using (la − y*)t − 1 as
defined above; likewise, the proportional ECM takes the form (c − ki − y*)t − 4 discussed earlier. Finally, to strengthen
derivative control and dampen any potential oscillatory behaviour generated by the ICM, Δ1lat − 1 was also included as a
regressor (see table 9.2). Thus, the restricted dynamic model to be estimated is of the general form

(9.21)

Estimation of this specification yielded

(9.22)

Since the z4 (6) value indicated significant fourth-order residual autocorrelation, the simple autoregressive form ut = ρ4ut
− 4 + εt was assumed and re-estimation provided the equation.
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(9.23)

where z6 is an approximate F test of parameter constancy based on the change in s2 when the sample size is increased.
Figure 9.5 shows the plot of the actual data and the fit of (9.23), including the six ‘prediction’ observations. Since z1 (6)
≈ 6 and z6 < 1, parameter constancy is ensured when the sample is extended to include the last six observations and (in
contrast to (9.18)) s will fall; re-estimation yielded

(9.24)

Figure 9.5 Plot of the actual data and the fit of equation (9.23).
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In both (9.23) and (9.24), z5(5) denotes the likelihood-ratio-based χ2 test of the autoregressive error ‘common factor’
restrictions (see Sargan, 1964a; and chapter 7).

There are many interesting features of these results which deserve comment. First, s is less than 0.5 per cent of C and,
even in terms of tracking the quarterly movements in the annual growth rate, the equation fits extremely well.
Compared with (9.19) (the most comparable sample period), the s value is over 30 per cent smaller. Further, the
proportional ECM coefficient is nearly twice as large as in (9.19), reflecting the omitted seasonals bias of the latter,
although the sum of the income change coefficients is almost identical. All the individual coefficients are well
determined and the diagnostic statistics (including the parameter constancy tests) are insignificant, and yet the last six
observations seem to ‘break’ a collinearity between (la − y*)t−1 and the intercept, judging by the fall in their standard
errors (this could be due to the marked upturn in LAt which occurred during 1977).

Finally, given that the integral control is close to the cumulated real savings measure used in Stone (1973) and Deaton
(1976) it is interesting that the R2 of (9.24) (without the fourth-order autoregressive error) is 0.934, similar to values
previously obtained using annual data for changes in Ct.

Despite the many steps and approximations from the simple theory of section 2 to equations like (9.21), the results are
readily interpretable in terms of the parameters of (9.5)–(9.7) above. The static solution of (9.24) (i.e. when g = 0) is

(9.25)

Taking b* = 1.1 (the mean of la − y* prior to 1970) and normalizing λ1 = 1 yields λ2 = 0.65 (from φ), λ3 = 3.9 (from θ3)
and λ4 = 1.9 (from θ1); the over-identifying restrictions can be used as a consistency check and the λi and b* imply θ0/θ2

= −0.48 as against −0.55 in (9.25). Note the efficiency gain in estimating φ relative to the solution from (9.20).

If the annual growth rate of Y is g > 0, the two values of θ0/θ2 match more closely and the term 2.7g must be subtracted
from (9.25). The λi are hardly altered for g = 0.025 (the sample average was 0.022) and b* differs from b by about 0.02
per cent. Eliminating la − y* from (9.25) using b* = 1.1 and g = 0.025 yields

(9.26)

which compares closely with the time series shown in figure 9.3. If LA/Y* depended on any outside variables (such as
interest rates) then these would enter (9.26) as a ‘reduced form’ effect.

The full long-run impact of in (9.25) is hard to obtain, but neglecting any behavioural dependence of LA/Y* on ,
using eb* = B* = 3 yields , where μ is the annual rate of inflation. This is a much smaller inflation effect than
that obtained by DHSY, primarily because of the downward bias in their coefficient of (c − y)t−4 and their omission of
an ICM.

As a check on the choice of , equation (9.24) was re-estimated using non-linear least squares to compute the
optimal value of β, in an equation which set to zero and used the quarterly sample means to compute
(denoted by (ca − y*a)t below) to economize on parameters:
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(9.27)

(d is the Durbin–Watson statistic value). The results in (9.27) are consistent with the initial choice of as 0.5 and
suggest little bias in the quoted standard errors from conditioning on . Similar results were obtained when estimating
equations like (9.27) over different sample periods (see Ungern-Sternberg, 1978) although point estimates of β were
not well determined in smaller sample sizes.

Lastly, as a weak test of parameter constancy, equation (9.21) with was used to predict the 20 quarters on which
(9.18) was tested:

(9.28)

In contrast to (9.19), there is no evidence of significant parameter changes although, as shown in table 9.3, the
correlation structure of the main regressors altered radically between the estimation and prediction periods. Indeed,
fitting (9.21) to only the last 20 observations provides the estimates (setting ρ4 to zero given the sample size)

(9.29)Table 9.3 Data Correlations

1964(iv)–1972(i-
v)

1973(i)–1977(iv)
Δ4ct (c − y*)t−4 (la − y*)t−1 Δ1lat−1

Δ4ct 0.94 0.22 0.71 0.46
0.85 0.25 0.56 0.41

(c − y*)t−4 0.18 0.22 −0.09 0.34
(la − y*)t−1 −0.25 −0.38 0.04 0.12
Δ1lat−1 0.19 0.07 −0.17 −0.15
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(where z7(9, 35) is the covariance F test between T = 53 and the two subsamples, all with ρ4 = 0). The estimates in
(9.28) and (9.29) are remarkably similar to those given in table 9.3 and strongly suggest that the relationship under
study is not simply a conditional regression equation (see Richard, 1980). Supporting this contention, re-estimation of
(9.23) using t, ct−1 and the lagged regressors as instrumental variables for yielded almost identical results with s =
0.0050, z8(6) = 4.3 (an asymptotically valid test of the independence of the instruments and the error), (0.07)
and z1(6) = 5.8.

5 Summary and Conclusions
Three extensions of the model presented in chapter 8 are considered, namely integral correction mechanisms, a re-
interpretation of the role of their inflation variable and a re-specification of the seasonal behaviour of consumers'
expenditure on non-durables and services (C) in the United Kingdom. For the first of these, we adopt an approach
similar to that of Stone (1966, 1973) (who used cumulated real savings in an annual model) which leads to the use of
the ratio of liquid assets to income (LA/ Y) in the empirical equation as a proxy for integral control. The second
extension involves the recalculation of real income by subtracting a proportion of the losses on real liquid assets due to
inflation and yields a ratio of consumption to perceived income (Y*) which is substantially more stable than the
ratio of the original series. Allowing for a seasonally varying average propensity to consume (Ki) produces a model with
a steady-state solution given by

(9.30)

where and where Ki also depends on the growth rate of real income. The dynamic formulation of (9.30)
satisfies the equation selection criteria proposed by DHSY and both simulation evidence and analysis are used to
explain how they managed to choose an incorrect model (with mis-specifications not detectable by their diagnostic
statistics) which nevertheless provided a reasonable approximation to (9.28) above over their sample period.

The results are consistent with Stone's findings and, like Deaton (1976) and Townend (1976), we confirm the
importance of some cumulative measure in explaining C in the United Kingdom. In addition, the hypothesis that real
income is seriously mis-measured in times of inflation is supported by the data and plays a major role in accounting for
the sharp fall in C/Y during the 1970s (compare Siegel, 1979).

Strikingly similar results have also been obtained for equivalent equations using West German semi-annual data (see
von Ungern-Sternberg, 1978), providing strong
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additional support for our hypothesis concerning the negative income effects of inflation on consumers' expenditure.

Note
1 Strictly, the first term should be (1 + Δ1pt)−1, the result quoted being accurate only for small values of Δ1pt.
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10 Interpreting Econometric Evidence: The
Behaviour of Consumers' Expenditure in the United

Kingdom10

with James E. H. Davidson

Preamble
Consumption function studies were almost becoming a treadmill! Partly to update and test the DHSY and HUS
specifications, and partly to check whether they encompassed Robert Hall's (1978) formulation, James Davidson and I
returned to the topic in early 1980. We sought to evaluate Hall's model on UK data both by direct testing and by
encompassing it via eliminating the contemporaneous income term from DHSY. The former could only reject the Hall
model whereas the latter could reject either model or even both. In addition, we tried to tackle the ‘feedback versus
feedforward’ debate then becoming prominent in the wake of Robert Lucas (1976) paper.

The way I had used economic theory in previous empirical studies was becoming critically questioned at seminar
presentations, so despite the major role which I thought theory formulations had played in chapters 3 and 6–9, a latent
criticism of ‘measurement without theory’ lurked in the background. As noted in chapter 5 above, the issue is probably
more one of the interpretation of the implications of economic analysis rather than its presence or absence, especially
concerning intertemporal optimization by economic agents. Chapter 17 considers some of the associated issues and
the papers by Salmon (1982), Nickell (1985) and Pagan (1985) all offer insights into the close links between feedback
and feedforward representations of economic behaviour. Certainly, the styles of this chapter and of the paper it was
criticizing (i.e. Hall, 1978) are very different, but I think the objectives of using theory-based empirical models to
understand data phenomena and improve theory are the same for both.

The concept of weak exogeneity was in the process of formalization (see Richard, 1980; and chapter 15), as were the
basic concepts discussed in chapter 16, and some of these ideas appear in the analysis, including innovations and
encompassing. At the time, we did not perceive the powerful encompassing implications which changing marginal
processes

10 Reprinted from European Economic Review, 16 (1981) 177–92. Paper presented at the International Seminar in Macroeconomics, Oxford, June 23–24, 1980. We are indebted
to Frank Srba for valuable assistance and to John Muellbauer and participants at the conference for helpful comments. This research was financed in part by the
International Centre for Economics and Related Disciplines and the Social Science Research Council.



(here, income, liquid assets and inflation) entailed for conditional models (such as consumption functions). These
implications would have clarified the Lucas critique and provided a more general test of expectations–based models.
The merging of the notions of encompassing and predictive failure depended on the prior development of super
exogeneity (see chapter 15 and Engle and Hendry, 1989) and the formalization of encompassing (see chapter 16), and
first appears in Hendry (1988b) and Favero and Hendry (1989).

Concerning the substantive findings, the empirical results favoured the error correction mechanism over the model
proposed by Hall both on criteria of direct testing and encompassing. Nevertheless, even the ‘best’ ex ante predictor of
the change in aggregate consumers' expenditure had surprisingly little explanatory power. The final follow-up study of
consumers' expenditure is left until chapter 18 since its objective was more to exposit the evolving methodology in the
context of consumers' expenditure, as a familiar illustration, rather than to offer new substantive evidence per se (see
Hendry et al. (1990b) for an update on DHSY).

1 Introduction
In two chapters in this volume (chapter 8, denoted DHSY, and chapter 9, denoted HUS), an attempt was made to
account for the empirical findings of most published ‘aggregate consumption function’ studies based on UK quarterly
time-series data. Their approach involved specifying a number of criteria which any chosen empirical model should
satisfy and they sought to select a simple equation which was not only data coherent and consistent in broad outline
with the main theories of consumers' expenditure but also explained why previous studies obtained the results they
reported and had not selected the ‘best’ equation. In both DHSY and HUS, the Gestalt of data evidence strongly
favoured error correction formulations for the dynamic response of real consumers' expenditure on non-durables (C)
to real personal disposable income (Y) — the latter chapter also included real personal sector liquid assets (LA) as an
‘integral’ correction. Moreover, although both papers were primarily concerned with methodological issues, their finally
chosen equations seem to have continued to track the data with the anticipated accuracy despite further changes in
both the expenditure–income ratio and the data intercorrelations (see, for example, Davies, 1979).

One important approach was not investigated in either study, namely the model based on a permanent income/life
cycle theory of consumers' expenditure where agents hold rational expectations about future real income accruals. As
an implication of that approach, Hall (1978) deduced that Ct should follow a ‘random walk’, i.e.

(10.1)

where α1 > 1 allows for a trend, and vt is ‘white noise’ independent of past values of income. Fitting such an equation to
quarterly (seasonally adjusted) data for the United States, Hall found that (10.1) provided an adequate description of
the data in that such an equation seemed to have random residuals, and lagged income did not appear significantly if
added. These findings were interpreted as supporting the postulated theory. Since the results in DHSY and HUS
encompassed an equation like (10.1) as a special case and were not necessarily incompatible with such a data
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process it seemed worth investigating the validity of (10.1) for UK data.

The following framework is proposed for interpreting the econometric evidence, given that the forms of equation in
DHSY and HUS survived a range of tests and encompassed most empirical models other than (10.1). If Ct were a
random walk with a completely autonomous error process (so (10.1) defines the true model) then it is inconceivable
that any of the other estimated equations could have survived predictive failure tests. Consequently, we follow Hall in
interpreting (10.1) as an implication of the data generation process, but consider the situation in which a log-linear
error correction mechanism (ECM) defines the true model and income is strongly exogenous. For clarity, different
symbols are used, bearing the interpretation that (X, Q) are (C, Y) respectively.

(10.2)

(10.3)

where lower-case letters denote logarithms of corresponding capitals, Δjxt = (xt − xt − j), and 0 < γ1, γ2 < 1, with

(10.4)

Regarded as a servomechanism, (10.2) enables agents to maintain X = KQ (where K = exp [(γ1 − 1)g/γ2] in a world of
stochastic variation around any steady-state growth path with constant growth rate Δ1q = g. Thus (10.2) is consistent
with the proportionality aspect of the permanent income hypothesis, but otherwise is based on ‘feedback’ rather than
‘anticipation’ assumptions. Equation (10.3) is interpreted purely as a data description (see table 10.4(c) below) and
issues of log versus linear, the endogeneity or ‘exogeneity’ of q etc. are discussed later. For the moment, it suffices to
note that (10.2) is estimable by least squares under the assumptions stated and has an error variance of .

However, if an investigator only considered lagged regressors, then since (10.2) can be re-expressed as

(10.5)

where β1 = γ1, β2 = γ2 − γ1 and β3 = 1 − γ2, eliminating qt using (10.3) yields

(10.6)

where π1 = β2 + β1λ, π2 = β3 and wt = vt + γ1ut. The apparent equilibrium solution of (10.6) no longer yields
proportionality between X and Q (unless λ = 1); also, π1 typically will be small as β1 and β2 usually have opposite signs
(with π1 < 0 possible); next, (β1, β2) can be recovered only by jointly modelling the x and q processes so that qt − 1 is not
weakly exogenous for the βi in (10.6) and finally, even when (10.2) is structural, (10.6) is not for interventions which
affect the data generation process of qt (see chapter 15). Consequently, direct estimation of the parameters of (10.6) is
inefficient and could induce an incorrect decision to delete the ‘insignificant’ regressor qt − 1, leading to the selection of
an equation like (10.1),
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(10.1′)

as the ‘appropriate’ model. Moreover, the deletion of qt − 1 need not cause noticeable residual autocorrelation in (10.1′).

This analysis is most easily understood by simulating the three models ((10.2), (10.6) and (10.1′)) when (10.2)–(10.4)
defines the data generation process (analogous results obtain allowing for x to Granger-cause q, but add little
additional insight and so are not reported below). The data generation process in the Monte Carlo analysis used
‘typical’ values for the parameters based on DHSY, namely and T = 74, and replicated
(10.2)–(10.4) 200 times, using NAIVE (see chapter 14). The intercept was estimated for every model, {qt} was
generated independently in each replication, and the first 20 initial data values were discarded.1 A circumflex denotes
the ‘econometric’ estimate and an overbar denotes the mean simulation outcome. The following simulation statistics
are reported:δ mean value of the coefficient of the relevant regressorSD sampling standard deviation of SE mean
estimated standard error of F proportional rejection frequency of the null H0: δ = 0σ2 mean residual varianceηk
proportional rejection frequency of the Lagrange multiplier test for general kth-order residual autocorrelationIn the
tables, figures in parentheses denote standard errors; all tests are at 5 per cent nominal significance levels.

First, the results for equation (10.2) are as might be anticipated (see table 10.1). Not surprisingly, the ECM adequately
characterizes the data and closely reproduces the population parameters; the two autocorrelation tests reject slightly
less often than their nominal levels (but within two standard errors). Solving for from estimates of (10.2) + (10.3)
should yield standard errors of around (0.04, 0.04)

Table 10.1 Simulation Results for Equation (10.2)

Regressor δ δ SD SE F η1 η4 σ2

Δ qt 0.50 0.50 0.04 0.04 1.00 0.04 0.03 1.00
(0.003) (0.01) (0.01)

(q − x)t − 1 0.10 0.12 0.04 0.04 0.92
(0.003)

Table 10.2 Simulation Results for Equation (10.6)

Regressor δ δ SD SE F η1 η4 σ2

qt − 1 0.075 0.090 0.08 0.07 0.32 0.06 0.03 3.5
(0.006) (0.01) (0.01)

xt − 1 0.90 0.83 0.10 0.09 1.00
(0.007)
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Table 10.3 Simulation Results for Equation (10.1′)

Regressor δ δ SD SE F η1 η4 σ2

xt − 1 0.98 0.93 0.05 0.04 1.00 0.10 0.09 3.6
(0.004) (0.02) (0.02)

(these figures are based on using and the asymptotic covariance matrix of and obtaining from the
formula in Goldberger et al. (1961)).

Next, the simulation estimates of equation (10.6) are presented in table 10.2. Both standard errors are almost twice as
large as in table 10.1 and H0: π1 = 0 is rejected only a third of the time, so the loss of efficiency is important. σ2 correctly
estimates and, as earlier, η1, η4 reject at about the 5 per cent level.

Finally, if the investigator deleted qt − 1 so that equation (10.1′) was estimated, we have table 10.3, where δ = θ is defined
by ; interestingly, δ − δ ≈ − (1 + 3δ)/T, the usual formula for the bias to O(T−1).

Although q is highly autoregressive, and both qt, qt − 1 are excluded, neither η1 nor η4 detect residual autocorrelation more
than a small percentage of the time, and ‘invalid’ tests (such as Durbin–Watson) should perform even worse. Given
that σ2 is close to that obtained for equation (10.6), it is easy to see how (10.1′) might be selected when (10.2) is the true
model and q is exogenous, but (for whatever reason) only lagged regressors were considered.

The models used by DHSY and HUS are certainly more complicated than (10.2) and the framework is not intended to
imply that the equivalent of must be insignificant for UK data (in fact, yt − 1 enters significantly below). The analysis
does show, however, that the same model (here (10.1)) can be implied by ‘contradictory’ theories and hence, while
observing an ‘implication’ of a theory provides a check on its data consistency, it does not really offer ‘support’.

Before testing (10.1), it is clearly essential to re-establish the validity of the empirical equivalents of the analogue
models, and in the interval since DHSY and HUS selected their equations, new data (on a new, 1975, price index basis)
have accrued which allow a powerful independent test of their formulations (see section 2). Following this, the
implications for the Hall model are derived from HUS using the empirical equivalent of (10.3) and, against this, (10.1)
is tested. The evidence leads to rejection of (10.1) but seems consistent with HUS and so section 4 briefly examines the
issues of simultaneity and data coherency. Finally, the interpretation of equations in terms of ‘forward’- versus
‘backward’-looking behaviour is reconsidered and suggests that there is less incompatibility between the various
approaches than might appear at first sight.

2 A Reappraisal of DHSY and HUS
Equations (10.7) and (10.8) respectively report least squares re-estimates of these two models based on the 1975 price
index data;2 all series are quarterly, seasonally
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unadjusted and in constant prices over the period 1964(i) (T = 1) to 1979(iv) (T = 64) with C, Y, LA as defined above
and P and D denoting the retail price index and the dummy variable (for 1968(i)–(ii) and the introduction of value
added tax) used by HUS. As earlier, lower-case letters denote loge of corresponding capitals and Δj denotes a j-period
difference. Thus, the DHSY model yields

(10.7)

where

T = a, b + nf denotes estimation from (a, b) and prediction over the next n observations
residual standard deviation

z1(n, T − K) F test of parameter constancy due to Chow (1960) for n post-sample observations and K
regressors
z2(n) asymptotically equivalent χ2 test (see chapter 11)
z3(l) Box–Pierce autocorrelation statistic based on the residual correlogram
z4(l) Lagrange multiplier test for lth-order error autocorrelation (i.e. η1 above)

Figure 10.1 shows the graph of Δ4ct and the fit/predictions from (10.7) (note that ‘prediction’ means using known
values for the regressors, with parameter estimates held fixed). The estimates in (10.7) are closely similar to those
reported in DHSY, parameter constancy is maintained over the prediction period and no evidence is present of
residual serial correlation. Also, extending the estimation sample to T = 6, 56 + 8f (so that only completely new
observations are retained for the predictive failure tests) yields . These empirical results
corroborate those reported independently by Bean (1977) and Davies (1979) and provide further empirical support for
the theoretical arguments developed in Deaton (1980).

Next,

(10.8)
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Figure 10.1 Equation (10.7).

where and is an eight-quarter moving average of the rate of change of the retail price index, R* = R(1 −
Ty) − Δ4p, where R is the local authority three-month interest rate and Ty is the standard marginal rate of income tax, Qit

are seasonal dummy variables, is the estimated first-order autoregressive error coefficient and z5(k) is the likelihood
ratio test of the common factor restriction (see Sargan, 1964a, 1980a).

The specification in (10.8) differs slightly from HUS, but is not significant3 (and has a t value of about 0.6 if Δ1lat − 1

is added, which in turn has a t of 1.7 and reduces , supporting the HUS formulation) and the use of the single-period
value of la − ya (rather than a four-period moving average) improves both the fit and the predictions and removes the
four-period autocorrelation found by HUS. Figure 10.2 shows the graph of (10.8) and figure 10.3 provides the time
series of c − y and c − ya to demonstrate the effects of adjusting the income series for inflation-induced losses on liquid
asset holdings. As with (10.7), the estimates are similar to those reported earlier (and seem robust to the noted changes
in specification), and exhibit parameter constancy despite the dramatic changes which occurred in c − ya after 1976
(note that the adjusted expenditure-income ratio reaches a peak in 1976 prior to falling sharply). Since z1(·) and z2(·) are
Lagrange multiplier-based tests, it is legitimate under the null to test other periods for parameter constancy after model
fitting, and doing so for 10f (using Δ1lat − 1 as a regressor) yields . While parameter constancy is not
rejected, z2 indicates that the estimates are not well determined over the shorter estimation period.
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Figure 10.2 Equation (10.8).

Figure 10.3 Consumption-income ratios.
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The long-run steady-state constant growth ‘equilibrium’ solutions from (10.7) and (10.8) have the form

(10.9)

where φ = 0, 0.45 in (10.7) and (10.8) respectively and B(·) depends negatively on the growth rate of Y (g) and inflation
. Long-run proportionality as in (10.9) is a well-known attribute of both permanent income and life cycle theories, as

is a negative dependence on g. The presence of LA/ Y can be rationalized in several ways when capital market
imperfections and uncertainty prevail (see, for example, Flemming, 1973; Pissarides, 1978). Note that although the
solution (10.9) takes the same form for (10.7) and (10.8) under the static equilibrium condition that LA/ Y is constant,
marginalizing with respect to all current and lagged values of LA is an unnecessary restriction on the information set
which would be counterproductive if the partial correlations between included and excluded variables altered.

The empirical equivalent of (10.3) is reported in table 10.4(c) below, and using this to eliminate current yt from (10.8)
yields4

(10.10)

Thus, on the hypothesis that (10.8) describes the data generation process, the data evidence suggests that lagged y and
lagged la should influence ct given lagged cs.

3 The Hall Model
If Ct is determined by permanent income and the latter is the discounted rational expectation of future income
accruals, since innovations to the information set are white noise, Hall (1978) deduced that Ct would follow a random
walk5 with drift or trend as in (10.1). As noted above, the empirical evidence for the United States quoted by Hall is
consistent with such a hypothesis.

Below, log-linear rather than linear models are used, but this change seems inconsequential, and UK evidence favours
the former. However, Hall's data seem to have been seasonally adjusted and, depending on the filter used for the
different series, the results could be distorted thereby (see Wallis, 1974; and DHSY). Although it is unlikely that the
substance of the arguments would be changed radically by the use of adjusted versus raw series, the fit of (10.1)
requires re-interpretation in terms of filtered data, and application to unadjusted data (as herein) involves substantially
different lag lengths.

The unrestricted fifth-order autoregression for ct suggested the following analogue of (10.1) (see Prothero and Wallis,
1976):

(10.11)
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Figure 10.4 provides the time-series graph, and at first sight the tracking performance appears satisfactory. However,
the standard deviation of Δ4ct is only 0.0195 and the interval from (10.11) is ± 0.0220; specifically, on the six
occasions when Δ4ct changed by more than ± 0.022, the model's prediction error/residual fell outside the interval
four times, and of 29 sign changes in Δ1 Δ4ct (i.e. when Δ4ct changed direction) (10.11) had the opposite sign (for Δ1 Δ4ĉt)
on 21 occasions! Nevertheless, the residuals from (10.11) are not detectably autocorrelated, which entails that all other
lagged values of ct are potentially legitimate instrumental variables.

It should be clear that neither (10.1) nor (10.11) is claimed to be the data generation process; both are derived models
and there are many objections to arguing that the true consumption equation is a random walk with an autonomous
error process generated independently of Y, LA etc., not least the fact that random walks can drift anywhere and so
produce C much in excess of Y. Rather, the stochastic implications obtained by Hall can be expressed succinctly as: no
other potential lagged variables Granger-cause the residuals in (10.1) (see Granger, 1969; and chapter 15).

On methodological grounds, to test (10.1) (or, here, (10.11)) adequately against other models, all the additional
variables should be included at the outset. First testing ct on yt − j (j ≥ 1) alone, then on lat − j (j ≥ 1) alone etc. can seriously
bias the outcome. Thus, table 10.4(a) reports the estimates for a model of the form

(10.12)

where n is 5 for ya, 4 for c and 3 for Q, la and R* (in table 10.4(b), δj is set to zero for all j).

Figure 10.4 Equation (10.11).
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Table 10.4 Least Squares Estimates of the Unrestricted Consumption Equation

j 0 1 2 3 4 5 6
(a)
ct−j −1 0.59 (0.22) −0.09 (0.17) 0.42 (0.16) 0.71 (0.17) −0.17 (0.24) -

- 0.20 (0.09) 0.03 (0.10) −0.19 (0.10) −0.13 (0.11) −0.25 (0.11) 0.01 (0.10)
lat−j - 0.21 (0.19) −0.50 (0.22) 0.10 (0.23) 0.07 (0.14) - -

- 0.05 (0.19) 0.11 (0.24) −0.28 (0.27) 0.21 (0.19) - -
Qjt 0.10 (0.35) −0.06 (0.02) −0.01 (0.02) −0.04 (0.02) - - -
Djt 0.02 (0.01) - - - −0.01 (0.01) - -
T = 7, 58 +
6f z1(6, 27) =
1.0

R2 = 0.994
z2(6) = 12

z4(6) = 8

(b) Least squares estimates excluding the real interest rate
ct−j −1 0.52 (0.20) −0.07 (0.16) 0.40 (0.15) 0.71 (0.16) 0.13 (0.23) -

- 0.21 (0.08) 0.03 (0.09) −0.19 (0.09) −0.14 (0.10) −0.22 (0.10) −0.02 (0.09)
lat−j - 0.32 (0.12) −0.51 (0.19) −0.00 (0.20) 0.10 (0.12) - -
Qjt 0.03 (0.32) −0.06 (0.02) −0.01 (0.02) −0.04 (0.02) - - -
Djt 0.02 (0.01) - - - −0.01 (0.01) -
T = 7, 58 +
6f z1(6, 31) =
1.9

R2 = 0.993
z2(6) = 19

z4(6) = 5

(c) Autoregressive model for adjusted real income
−1 0.58 (0.18) 0.34 (0.22) −0.12 (0.24) −0.07 (0.24) 0.12 (0.20)

Qjt, t 1.4 (1.3) −0.05 (0.02) −0.01 (0.01) −0.01 (0.02) −0.001
(0.001)

-

T = 6, 44 +
20f z1(20,
29) = 1.0

R2 = 0.97
z2(20) = 40

z4(6) = 6
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Figure 10.5 Equation (10.13).

Although such over-parameterized regressions must be treated with care, several lagged variables are individually
significant rejecting the strong implications underlying (10.1). Indeed, the estimates in table 10.4(b) correspond
reasonably to the solved ‘reduced form’ (10.10) which obtains on marginalizing (10.8) with respect to current y, using
the empirical data process reported in table 10.4(c). Further, directly reparameterizing table 10.4(b) yields

(10.13)

This fits and predicts only slightly worse than (10.7) (DHSY) and, noting that the predictions are still ex ante, is a
substantial improvement over (10.11). Figure 10.5 shows the time-series track of (10.13). Clearly, while the residuals
from (10.11) may be white noise, components thereof are functions of lagged observables and hence are Granger-
caused by both y and la.

4 Analysis of Results

4.1 Endogeneity of Yt

One reason why investigators are sometimes reluctant to include Yt in consumption functions is that Yt and Ct are
believed to be simultaneously determined and hence
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an (upward) biased coefficient will result from regression estimates. This is testable by using as instruments an
appropriate set of lagged variables which might help agents to predict Yt at time t − 1, and on both HUS and Hall's
arguments, all other lagged variables are appropriate; in particular lagged Cs are valid. However, measurement errors in
Y induce biases in the opposite direction and DHSY and HUS both note that instrumental variable estimates of (10.7)
and (10.8) are almost identical to those quoted above.

There is clearly a time aggregation problem in using an observation period of a quarter when agents may be revising
decisions monthly or even weekly, and shorter observation period data would provide a more powerful test of the
alternative models, but it is hard to establish evidence of sufficiently strong within-quarter feedbacks from Ct to Yt to
yield serious biases in the parameters of interest. It must be stressed that the fact that Ct and Yt are linked by identities
is irrelevant to the status of Yt as ‘endogenous’ or ‘predetermined’: to argue otherwise is to confuse the properties of
the measurement system with those of the data generation processes which determine outcomes: an identity is simply a
constraint and per se cannot determine anything (see, inter alia, Buiter, 1980; Spanos and Taylor, 1984; and compare
Sargent, 1978). In any case, hazarding to predictive failure when data correlations change jointly tests putative
structurality, and weak exogeneity (see chapter 15). Consequently, if some structural consumption function existed, but
(10.7) or (10.8) did not reasonably approximate this or Yt was not weakly exogenous for its parameters (e.g. because of
simultaneity) then regression estimates should manifest predictive failure (especially for (10.7) which was initially
selected from pre-1971 data). Since such has not occurred, the evidence does not support an assertion that including Yt

induces substantial simultaneity bias in models of Ct. The coherence of (10.10) with the estimates in table 10.4(b)
further supports such an interpretation.

4.2 Data Coherency
Much empirical research treats a model as being data coherent if its fit deviates only randomly from the observations.
The converse, namely that non-random residuals imply data incoherency, is certainly true; but although there are many
necessary conditions for model adequacy, there do not appear to be any sufficient conditions in a scientific discipline.
The terms ‘random errors’ and ‘white noise’ are often used loosely to refer to serially uncorrelated time series, but
strictly white noise disturbances should be defined as innovations which are unpredictable relative to a given
information set (see Granger, 1983). Typically, diagnostic tests for randomness in residuals are simply tests for
autocorrelation. However, in checking for data coherency it is clear that a somewhat more general information set than
the past history of the series itself is appropriate. Serially uncorrelated series may be largely predictable from other
lagged information; for example,

(10.14)

is serially independent when all the υj, t − j are, and yet all but γ0υ0t is predictable in
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principle from lagged data. Moreover, processes with a strong intertemporal component may still be serially
uncorrelated, as for example

(10.15)

which contains an infinite moving average but is ‘white noise’ if .

Hence, the criterion of uncorrelated residuals is a very weak test of model adequacy — indefinite numbers of models
which are ‘data coherent’ on this criteria will exist. It is found for example (see HUS) that deleting (q − x)t − 1 from
(10.2) does not create detectable autocorrelation. We reiterate the stress which DHSY placed on the need to account
for all other relevant empirical findings before according plausibility to an estimated model.

5 ‘Forward-Looking’ Versus ‘Backward-Looking’ Behaviour
The original derivations of (10.7) and (10.8) placed stress on their servomechanism interpretations since minimal
assumptions about the ‘rationality’ and/or ‘intelligence’ of agents were required: (10.7) and/or (10.8) mimic ‘rational’
behaviour seeking to achieve a target like (10.9) in a steady-state world, without needing any ‘expectational’ hypotheses.
Nevertheless, feedback control rules frequently correspond to reformulations of state-variable feedback solutions of
forward-looking optimal control problems (see, for example, Salmon and Young, 1978; Salmon, 1979a); indeed, the
basic form of ECM first obtained by one of the authors arose naturally in an optimal control context (see chapter 3).
Moreover, Nickell (1985) has derived a range of circumstances in which ECMs are the optimal responses of agents in a
dynamic environment using optimal predictors of regressor variables. These arguments re-emphasize the non-
uniqueness of interpretations of empirical findings as ‘support’ for postulated theories in non-experimental disciplines:
feedback and forward-looking behaviour can ‘look alike’ in many states of nature if deliberately designed experimental
perturbations of expectations are excluded. In fact, Dt is a dummy precisely for such ‘experiments’ (albeit, inadvertently
conducted) and demonstrates that agents are fully capable of anticipatory behaviour — yet to date, we seem to lack
general ways of modelling such events. Overall, the problem is not one of reconciling error correction or expectational
interpretations, but of distinguishing their separate influences.

Notes
1 Technically, there are difficult inference problems for processes like (10.1) when α1 is ‘near’ the unit circle (see

Phillips, 1977; Evans and Savin, 1981) and hence the analogue Monte Carlo considers only stationary processes;
but pilot experiments suggested that similar results obtained for λ = 1.02.

2 See Economic Trends, Annual Supplement of January 1980 and the issue of May 1980.
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3 R* was tried as a ‘control’ to partial out any changes in real interest rates. In fact, Δ1 lat − 1 retains a similar coefficient
to that reported by HUS if Δ1Rt − 3 is excluded (namely 0.2), and this is used below in deriving equation (10.10).

4 In fact, ct − 1 ‘Granger-causes’ yt if added to table 10.4(c) (see Granger, 1969) and incorporating this feature would
further improve the ‘match’ with later results.

5 John Muellbauer pointed out to us that an error on the relationship linking Ct to would produce a negative
moving-average error on (10.1) (and hence bias the least squares estimates of α1) which need not be detectable by,
for example, a Durbin–Watson test; see Muellbauer and Winter (1980) for a related discussion.
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11 Predictive Failure and Econometric Modelling in
Macroeconomics: The Transactions Demand for

Money11

Preamble
A natural question to ask of the approach adopted by DHSY was ‘will it work in other subject matter areas?’ The
opportunity to test an answer was presented immediately after DHSY was published when another demand for money
study was reported by the Bank of England which included models in levels only and in differences only. If
encompassing worked, it should be possible to develop a unique model; and given the role error correction had played
in both chapter 6 and DHSY to reconcile long-run and short-run models, a similar approach looked very promising
for the transactions demand for money.

A major change in the emphasis of the methodology had taken place between 1976 and 1978, following Jean-François
Richard's realization of the important parallels with the approach at CORE. Many of the concepts in DHSY dovetailed
with the CORE ideas, and conversely many of their ideas both clarified and extended the DHSY approach. In
particular, the concept of models being reductions of the underlying data generation process (DGP), due to eliminating
some variables and conditioning on others, neatly formalized both that aspect of DHSY and my related
contemporaneous Monte Carlo research. Moreover, the reduction approach explained the sense in which error
processes were derived rather than autonomous and hence why models could be designed to satisfy pre-selected criteria
(such as Durbin–Watson statistic values of 2). But if errors and hence models could be designed, what ‘design’ criteria
should be adopted? Attempting to resolve that issue leads directly to chapter 16.

A useful side effect of the DHSY–CORE merger was to relate the methodology much more closely to the extant
statistical literature, where concepts of reduction to sufficient statistics,

11 Reprinted from Ormerod, P. (ed.), Economic Modelling, London: Heinemann, 1979, ch. 9. The research was supported in part by a grant from the Social Science Research
Council to the Quantitative Economics Programme at the London School of Economics. I am grateful to Richard Coghlan for supplying his data, and to Jeremy Bray,
Richard Coghlan, Charles Goodhart, Lawrence Klein, Grayham Mizon, Adrian Pagan, Morris Perlman and Deane Terrell for helpful comments on earlier versions of the
paper. All of the results reported below are based on the author's AUTOREG Computer Programme Library and I am greatly indebted to Frank Srba for his invaluable
assistance in undertaking and evaluating the calculations.



conditioning on ancillary statistics, marginalizing etc. were standard (see, for example, Barndorff-Nielsen, 1978).

The methodological point of importance arising from the research reported in the present chapter is the re-emphasis
on commencing from general models and sequentially reducing these to parsimonious data representations as in
chapters 3 and 6. Since empirical models were reductions of the DGP by marginalizing and conditioning, to apply that
idea explicitly in data analysis required that one should begin from the most unrestricted yet feasible mimic of the DGP
and reduce it to a model (maquette?) thereof. Consequently, a simple-to-general approach is compared directly with a
general-to-simple approach in a practical context, much to the benefit of the latter.

I continued to regard the ‘time-series versus econometrics’ debate to be misplaced. As chapter 3 argued, the
autoregressive integrated moving-average (ARIMA) model form used by time-series advocates could be viewed as a
special case of an econometric model form in which the information from related variables was ignored. Logically,
therefore, ARIMA models should never outperform econometric models on economics data, and their doing so in any
instance must be due to the latter mis-specifying the dynamics. Consequently, any successes of ARIMA models simply
reveal the importance of dynamics in econometrics, and a major theme of chapter 11 is to analyse the implications of
that finding. However, what I did not realize at the time is that the issue of model forms (on which others also had
focused) must be a red herring. With hindsight, the obvious question is why econometric equations did not in practice
embed the ARIMA reductions as special cases, and that is an issue of modelling methods. Box and Jenkins (1976) had laid
out systematic procedures for discovering useful data representations in a restricted model class (for univariate
processes) when the researcher did not know how the data were generated. Econometric models needed the same type
of methodology: since the DGP was unknown, the data had to be systematically analysed to develop a useful statistical
summary, which was the objective of the general-to-simple strategy. However, the general model, which constituted the
initial point of the data analysis, depended on both economic analysis (the ‘cognitive’ stimulus to including potential
determinants) and previous empirical evidence (the ‘physical’ stimulus). If applied studies are to be validly
encompassed later, they have to be included unrestrictedly from the outset. Once an acceptable or congruent statistical
model is developed, it has to be interpretable either through existing theory or by forging new theoretical analyses.
Conjectures can be tested against the statistical baseline to see if they lie in the space of acceptable models, and the
finally chosen econometric model must be a parsimonious representation of the well-established statistical model (i.e.
one of the acceptable conjectures). This approach evolves in chapter 16 and is emphasized in Spanos (1986).

Thus, the section on the flaws of simple-to-general methods, which includes as a special case merely imposing a prior
theory onto data, is really the key to why econometric model forms were not functioning well in practice. The chapter
only relates it in a negative way to the time-series debate, however, by showing that both a structural break in a
marginal process and model mis-specification are necessary for predictive failure and the latter is indicated if time-
series representations of the variable of interest do not also manifest structural breaks.

The other crucial idea deriving from Jean-François Richard's work was that of weak exogeneity (see Richard, 1980)
with its emphasis on efficient conditional inference about parameters of interest. The first aspect led to a
reconsideration of conditioning on contemporaneous variables and the construct of weak exogeneity (see chapter 15)
and the second, through a concern with constant parameters, led to super exogeneity. The present chapter stresses the
issue of constancy versus non-constancy, its interpretation and its role in model selection. More recently, the
development of good graphical facilities on personal computers has allowed a focus on recursive procedures for more
intensively investigating parameter
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constancy and evaluating invariance (see Hendry and Neale, 1987; Hendry, 1988b; Engle and Hendry, 1989).

The applications of error correction mechanisms (ECMs) to both data modelling and encompassing are also discussed
in the context of processes experiencing regime shifts and, again, ECMs are able to account for the available evidence.
However, since different econometric specifications have different susceptibilities to changes elsewhere in the
economy, it is important to evaluate a range of models when testing the adequacy of any particular claim.

The chapter includes a re-evaluation of a variant of my model using new data, taken from section 7 of chapter 17
(published four years afterwards). As with later tests of the constancy of DHSY, the evidence reveals that the out-of-
sample performance is comparable with in-sample fit, even though the models were explicitly data based. While such
an outcome could have been due to good luck, it was at least consistent with the view that data-basing improved rather
than hindered forecasting performance. By chapter 18, I had realized that an important distinction helped clarify why
such an outcome was possible, namely the distinction between the intrinsic validity of a model (a property of the
model, independently of how it was discovered) and the initial credibility of the selected model (which might depend
on the discovery route): see Johnson (1984, ch. 12) for a similar analysis. And as chapter 18 records, I also realized that
this dichotomy was a special case of Karl Popper's (1969) distinction between conjectures and refutations.

More recent updates of the same model are provided by Hendry and Mizon (1991b), who test the weak exogeneity of
the conditioning variables for the parameters of interest in a system of 1(1) variables, and Hendry and Ericsson
(1991b), who extend the sample to 1989, demonstrate constancy of the same equation with a modification of the
measure of opportunity cost to reflect financial innovation, and test super exogeneity and invariance.

1 Introduction
It is widely recognized that instability in an estimated econometric equation provides little evidence about the stability
or otherwise of the sought-after economic relationship. This is especially true of research into demand for money
functions where it has proved far from easy to establish stable empirical relationships for the United Kingdom (see, for
example, Hacche, 1974; Artis and Lewis, 1976; Hamburger, 1977). Attempts to account for observed instability have
included the possibility of mis-specification (excluded variables and incorrect exogeneity assumptions), and the
coincidence of a major policy change (competition and credit control in 1971) with the commencement of apparent
parameter change. However, for the transactions demand equation, mis-specified exogeneity and policy change
explanations are not very convincing and recently Coghlan (1978) presented evidence for relatively stable M1
relationships common to both the 1960s and 1970s.

The term ‘stability’ in the preceding paragraph related to the constancy over time of the estimated parameters in an
equation and not to the latent roots of the dynamics of a model being such as to yield convergence to equilibrium or
steady state. As the latter usage is well established, the former will be called ‘predictive accuracy’ since econometric
formulations which are constant over time will provide ‘accurate’ predictions of a regressand given the correct values
of the regressors where ‘accurate’ denotes ‘within the anticipated forecast confidence region’. (The chapter is not
concerned either with ex ante forecasts — where these depend on any judgemental
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factors such as intercept adjustments, ad hoc parameter modifications, exogenous variables projections etc. – or with
‘absolute’ forecast accuracy measures.) Conversely, ‘predictive failure’ indicates that the model formulation can be
rejected against an unspecified alternative using post-estimation sample data.

The linkages of structural breaks and mis-specifications to predictive failures are discussed in section 2 together with
some alternative forecast test procedures. The role of ‘simple-to-general’ modelling methods as a potential factor
leading to mis-specification is considered in section 3 using transactions demand models for illustration. The converse
strategy of ‘general to simple’ is briefly reviewed in section 4, followed in section 5 by an analysis of ‘error correction’
feedback mechanisms in dynamic equations, and their effect on predictive accuracy for M1. Section 6 concludes the
study.

The chapters by Davidson et al. (chapter 8) on modelling consumers' expenditure and Hendry and Mizon (chapter 6)
on testing the specification of M3 equations are sufficiently closely related in framework to obviate reconsidering many
of the econometric issues raised therein. In particular, the problems of seasonal adjustment of data and multi-
collinearity, the importance of explaining the Gestalt of previous findings and the sequential testing of common factors
for autocorrelation will not be discussed below in order to highlight the additional material and keep the paper to a
sensible length (see Coghlan (1978) for an evaluation of a number of previously reported M1 equations). In his
interesting and thorough study of money demand in the United States, Goldfeld (1973) also considered a wide range of
specification issues, although these differ somewhat from the problems emphasized below. Pagan (1977) adopted a
similar approach to testing implicit econometric assumptions in a study of M1 demand in Australia and concluded that
inappropriate research techniques leading to mis-specification could adequately account for the observed apparent
instability. And general model selection procedures for dynamic equations were discussed by Mizon (1977a).

2 Predictive Failure and Model Mis-Specication
Over the last few years, researchers monitoring macroeconomic relationships appear to have needed to revise their
models frequently to counteract what are loosely classified as ‘structural breaks’. Certainly, many important changes
have occurred recently, including the oil crisis, the move from (adjustable) fixed to (controlled) floating exchange rates,
the introduction of the competition and credit control regulations, trade liberalization following the United Kingdom's
entry into the EEC etc., all of which probably altered certain economic relationships. Moreover, theoretical arguments
have been adduced that ‘structural equations’ may not be constant, rapidly adjusting to incorporate changes in policy
rules and depending on ‘rational expectations’ about future events (see, for example, Sims, 1980). Consequently, it is
easy to rationalize the predictive failure of an econometric system on the grounds that some ‘structural break’
occurred, although this is both vacuous unless the precise structural break factors are themselves specified and very
unconvincing if extrapolative models continue to forecast with reasonable accuracy!
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Further, while a genuine structural break in a relationship may be sufficient to induce predictive failure in that equation,
it is not necessary in the following sense: if all the true structural equations in a system remained unaltered but the
behaviour of some exogenous variables changed, then all mis-specified econometric approximations to the equations
of that system could manifest ‘shifts’ (i.e. apparent structural breaks).1 To account for the phenomenon of predictive
failure, the hypothesis of mis-specified econometric relationships interacting with the changed behaviour of a small
number of variables (arising from the major breaks noted above) is undoubtedly not novel. However, it is sufficiently
constructive and parsimonious relative to postulating shifts in a wide range of underlying economic relationships to
merit careful consideration. Also it has some prior plausibility since few researchers would maintain that previous
model specifications were correct, and there are some empirical findings which seem to provide illustrations of such
interactions.

First, concerning the issue of correct model specification, all situations in which a ‘naive’ time-series model (see Box
and Jenkins, 1976; Granger and Newbold, 1977b) outperforms the corresponding ‘econometric’ system constitute
prima facie evidence that the latter suffers from mis-specification (at a minimum, dynamic and/or stochastic). Even a
relatively rudimentary handling of system dynamics and autocorrelation seems to produce models which are superior
to univariate autoregressive integrated moving-average (ARIMA) descriptions (see Prothero and Wallis, 1976) and
although this is obviously a weak criterion, more detailed analysis can yield improvements over ‘transfer function’
models (see chapter 8). Conversely, inadequate treatment of the dynamic–stochastic specification leaves open the
possibility that mechanical predictors which correctly model the main dynamics of the data generation process may be
more accurate than resource intensive systems which are coherent in terms of economic theory but econometrically
mis-specified (see, for example, Cooper, 1972).

Second, while residual autocorrelation can arise from error autocorrelation, it is at least as likely to derive from the many
forms of potential mis-specification which afflict time-series modelling, including ignored simultaneity, omitted
variables, measurement errors and incorrect functional form as well as dynamic–stochastic specification mistakes.
However, since residual autocorrelation refers to something that is not included in a model, then whatever its source it
again indicates mis-specification. The problems involved in ‘removing’ such autocorrelation by simply assuming some
error process and incorporating it in the model are discussed in chapter 6. Noting that most of the models reported in
Hickman (1972) manifested substantial residual autocorrelation, no surprise should have been expressed at Cooper's
findings. In order to highlight the issues just discussed, section 3 examines in some detail the effects of inappropriately
modelling a ‘sensible’ economic relationship.

Turning to examples of mis-specification interacting with the changed behaviour of a variable, the greatly increased
rate of inflation in the United Kingdom in the mid-1970s would have induced shifts in all estimated equations which
excluded if the true structural relationships depended on or any variable highly dependent on . Moreover, earlier
variations in need not have been so large or so persistent in one direction as to induce predictive failure, yet at the
same time could have been
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adequate for estimating the correct specification had it been proposed. In particular, Deaton (1977) demonstrates the
effect of on savings behaviour prior to 1970 and Davidson et al. (chapter 8) confirm the equivalent effect on
consumers' expenditure and highlight the large shifts which occurred later in the 1970s in consumption equations
excluding . Further, it must be stressed that the excluded variables need not be previously unthought of effects but could
be functions of variables which were already included in some (but incorrect) form – witness the predictive failure of the
Wall et al. (1975) equation extended to include but having the dynamic specification mistake reported in chapter 8. A
similar outcome is recorded below in section 5 for some transactions demand for money functions.

Of course, mis-specification per se is not sufficient for predictive failure since, under unchanged structure in stationary
stochastic systems completely incorrect equations will continue to forecast within the accuracy limits anticipated from
their error variances (see, for example, Hendry, 1979b). For example, univariate ARIMA models constitute
approximations to the final form equations of econometric systems (see Zellner and Palm, 1974; Prothero and Wallis,
1976), and hence should forecast reasonably so long as the underlying structure does not alter. A similar result holds
for other derivable relationships, whether or not these have white noise errors. Conversely, an ARIMA model ceasing
to predict within the anticipated confidence interval for any variable is evidence of a change in the behaviour of that
variable either directly or through a change in its final form determination. Morever, the latter is liable to affect several
equations and hence it may be possible to detect which variables(s) have changed. Consequently, by examining the
concomitant behaviour of the predictions from ‘econometric relationships’, ‘time-series models’ etc., constructive
revision strategies are possible which could facilitate rapid model improvement during periods of change.

When model specification is incorrect in unknown ways, there is no single ‘best’ modelling method, and the idea in the
previous paragraph tries to exploit the information provided by different equation formulations having different
susceptibilities to mis-specification. In such a context, ‘time-series’ models can be a valuable adjunct to
econometric systems, although they are certainly not an adequate substitute. Whatever model is conjectured as a
tentative working hypothesis, reasonable effort should be devoted to testing it, learning its weak points and discovering
which aspects of the data generation process are not yet explained, and comparison with ARIMA descriptions is a
useful part of this activity. (For an excellent and much more detailed discussion of the issues in ‘specification searches'
see Leamer (1978).)

To summarize: rejecting an equation on a test of forecast accuracy implies either that it has experienced a real
structural break or that it is mis-specified and the behaviour of a relevant variable has changed, whereas not rejecting is
compatible with considerable mis-specification. This provides the framework for interpreting the prediction findings
reported in the following sections.

A small technical issue concerns the choice of forecast test since different tests have power against different
alternatives and often make different auxiliary assumptions about (for example) the constancy of error variances,
whether regressors are fixed or stochastic and whether the equation is correctly specified (for an exposition of a
number of tests see Fisher, 1970).
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Let y1 = X1 β1 + u1 and y2 = X2 β2 + u2 be models for estimation and prediction periods of length T1 and T2 respectively
with , the former sample providing estimates b1 and for β1 (κ × 1) and . Let f2 = y2 − X2b1 be the post-
estimation-sample residuals, and assume that (which entails assuming a correctly specified model for the
estimation period); then Chow (1960) showed that

whereV = I + X2 (X′1X1)−1X′2. Note that if s2 is based on the entire sample of T = T1 + T2 observations, and h = (T −
κ)/(T1 − κ), then and hence as . Consequently, z5 will assume large values if either β1 ≠ β2 or
as seems appropriate when testing for predictive failure (for example, β1 = β2 with could occur if a new set of
variables orthogonal to X started to influence y during the prediction period).

For stochastic regressors, z5 is only approximately distributed as F and so an asymptotically equivalent test which
neglects the variation due to estimating β1 is also reported, namely in large samples when H0 is true. Thus
z4 simply compares within- and post-sample residual variances (neither test measures ‘absolute’ forecast accuracy).

More detailed study of parameter constancy could be undertaken using, for example, n-step-ahead simulations and/or
recursive residuals (see Brown et al., 1975) but z4 and z5 will suffice for the purposes of this study.

3 ‘Simple-To-General’ Modelling Methods
A non-negligible fraction of empirical econometrics can be characterised as excessive presimplification with inadequate
diagnostic testing (see Leamer, 1974). By this is meant that investigators:

1 commence from theories which are drastic abstractions of reality (usually of a long-run steady-state world
subject to stringent ceteris paribus assumptions concerning all but a very small number of variables);

2 formulate highly parsimonious relationships to represent their theories (see many of the equations reported in
Hickman, 1972; Renton, 1975; Waelbroeck, 1976);

3 estimate their equations from the available data using techniques which are ‘optimal’ only on the assumption
that the highly restricted model is correctly specified;

4 test a few of the assumptions explicitly or implicitly underlying the exercise (such as the conventional
investigation of residual autocorrelation);

5 revise the specification in the light of the evidence acquired; and
6 re-estimate accordingly.

While it is not impossible to end with a sensible model from a very restrictive start using ‘iterative model building’
methods, success manifestly depends on the
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thoroughness with which diagnostic testing is pursued: commencing from a simple model and not rigorously testing it
is a reasonably certain path to concluding with a mis-specified relationship.

An example which provides somewhat of a caricature of the above process without invidiously criticizing any specific
study is as follows. Let M, P, X, r denote the nominal money stock, price level, real income and nominal interest rate
respectively, and assume that a consensus theoretical specification of the transactions demand for money function is
given by

(11.1)

where Xe denotes ‘expected’ or ‘permanent’ income etc as appropriate (see, inter alia, Friedman, 1956, ch. 1; Johnson,
1971, ch. 13; Goldfeld, 1973; Hacche, 1974; Artis and Lewis, 1976; Hamburger, 1977; Coghlan, 1978). Adding the
auxiliary assumptions that f defines a multiplicative function, that expectations are static and that there is a long-run
unit elasticity of M/P with respect to X yields the ‘inverse-velocity’ equation

(11.2)

with α, β < 0, and K assumed constant. With the further assumptions that (11.2) does not hold exactly but has a
multiplicative error exp(εt) at time t where εt ∼ NI(0, σ2), that the relevant data for M, P, X, r are nominal M1, the
implicit deflator ofX, constant (1970) price total final expenditure (all quarterly, seasonally adjusted) and local authority
three-month interest rates respectively, and that rt and are independent of εt, then maximum likelihood estimation of
(11.2) (i.e. ordinary least squares after taking logarithms to base e, denoted ln) for the period 1963(i)–72(i) yields

(11.3)

where T denotes the number of observations in the estimation sample (five lags were created). The estimates of α and
β have the ‘right signs’, ‘sensible orders of magnitude’ and seem to be ‘significantly different from zero at the 5 per cent
level’, although the goodness of fit is not spectacular.

Since (11.3) ‘corroborates’ the a priori theory, some investigators might stop at this stage. Others might proceed to test
diagnostically various of the (arbitrary) pre-simplifying assumptions noted earlier, and as the data are time series the
assumed absence of serial correlation is an obvious candidate. Indeed the Durbin–Watson statistic (DW) has the value
0.45 indicating significant residual autocorrelation in (11.3). If this derived from a first-order autoregressive error and if
all the other assumptions made above were correct, then the quoted estimates of α, β would be unbiased but inefficient
and their standard errors would be downward biased. Consequently and may not in fact be ‘significantly different
from zero at the 5 per
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cent level’ as claimed above. However, it is easy to ‘allow for’ such an error process and (iterative) Cochrane–Orcutt
yields (method 5.1 in chapter 13)

(11.4)

where denotes the estimated first-order autoregressive error coefficient.

The estimates in (11.4) are not very consonant with the interpretation offered in the previous paragraph since the
parameter estimates have changed drastically and neither economic variable retains a significant coefficient; such a
finding is more reminiscent of an omitted variable effect where the lagged error has approximated the (unknown)
missing regressor. Moreover, as is very close to unity and has reduced s by a factor of over 3, the results in (11.3) and
(11.4) imply that just regressing ln(M/PX)t on its own lagged value would yield an R2 of about 0.95 which suggests a
potential candidate for the omitted regressor. Thus, the interpretation of the residual autocorrelation as error
autocorrelation is suspect.

Possible paths from (11.4) begin to multiply rapidly, but two obvious routes for some would be (i) to impose and
re-estimate (11.4) in first differences (see the discussion in chapter 6 of the model estimated by Hacche (1974) and the
analysis in section 5 below), or (ii) to check whether the residual autocorrelation derived from invalidly restricting the
model through price homogeneity and the unit income elasticity, which yields

(11.5)

At first sight, the unit income elasticity restriction appears to be rejected in (11.5) (indeed ln Xt has an ‘insignificant’
coefficient), whereas price homogeneity does not, but while DW is considerably larger than in (11.3) it still indicates
significant residual autocorrelation which invalidates the t tests just quoted! Again, ‘allowing for’ autocorrelation yields

(11.6)

Now the evidence favours price homogeneity but a near zero income effect – and that in a ‘transactions’ demand for
money equation! Imposing a unit income elasticity restriction as in (11.3) may produce a more ‘sensible’ equation and
could even improve the forecast performance if it happened to be closer to reality than a zero
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effect, but it will hardly increase understanding of the data and leaves unexplained the puzzle of why a non-unit
coefficient was obtained in the first place.

Since much applied work is a ‘prejudiced search for an acceptable model’ (see Leamer, 1975), anyone who considered
the evidence in (11.6) to be unacceptable would presumably re-specify the equation and/or seek a further test for
constructive revision. One possible diagnostic is to test the common factor restriction imposed by assuming an
autoregressive error in (11.4) and (11.6) (see Sargan, 1964a; also chapter 6 for an exposition). Doing so using a
likelihood ratio test yields z1(2) = 7.6 for (11.4) and z1(3) = 17.2 for (11.6), where on the hypothesis of a valid
autoregressive error representation z1(k) is distributed as in large samples. Thus, in both cases the common factor
hypothesis is rejected at the 5 per cent level, revealing that the residual autocorrelation does not derive from a first-
order autoregressive error.

Such an outcome highlights a major problem with the ‘specific-to-general’ approach, namely that every test is
conditional on arbitrary assumptions which are to be tested later, and if these are rejected all earlier inferences are
invalidated, whether ‘reject’ or ‘not reject’ decisions. Until the model adequately characterizes the data generation
process, it seems rather pointless trying to test hypotheses of interest in economic theory. A further drawback is that
the significance level of the unstructured sequence of tests actually being conducted is unknown.

Nevertheless, continuing as earlier to expand the model on the basis of every negative outcome, the relevant
generalization of (11.4) given z1(2) is

(11.7)

In (11.7), z2(k) denotes the Pierce (1971) residual correlogram test, and z3(l) is the Lagrange multiplier test for lth-order
residual autocorrelation, distributed as in large samples when the errors are white noise (see Godfrey, 1978; Breusch
and Pagan, 1980). Again, the fit has improved and now there is no strong evidence of residual autocorrelation.
Moreover, in steady-state growth, (11.7) yields

(11.8)

where K* ≈ exp[0.4 + 8 (g3 + g2 − g1)] and and g3 are the steady-state growth rates ofM, P and X respectively. In
turn, (11.8) implies that g1 = g2 + g3 and hence K* is simply exp(0.4) in such a state of the world. It must be stressed that
the assumptions on which (11.8) is based (specifically, an accommodating money supply to meet whatever demand
requires) preclude ‘inverting’ the equation to ‘explain’, for example, P or is the result of g2 + g3 because of the assumed
behaviour of agents in demanding money given , X and r. Note that
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the apparently ‘insignificant’ coefficients of r and actually imply large long-run effects and that the mean lags of lnM
with respect to ln X and ln r are zero and almost two years respectively. Overall, (11.7) is consonant with the original
theory (11.2), ‘passes’ the diagnostic tests presented and accounts for 96 per cent of the sample variance of velocity.

A similar analysis could be applied to (11.6) but we have followed the story far enough, and will mimic the random
stopping point aspect associated with this approach. The final diagnostic is simply to check the parameter constancy of
all the equations quoted above for the period following the introduction of competition and credit control (namely the
20 quarters 1972(ii)–77(i)); the outcomes for z4 are

Since z4 measures forecast accuracy relative to s, equation (11.7) performs best by a wide margin, although all five
equations are rejected.2 This outcome is a good illustration of a predictive failure which might be attributed to a
‘structural break’ following competition and credit control. Nevertheless, on the evidence presented below, it is
probably due to dynamic mis-specification combined with the changed time-series properties of X, P, r since a
generalization of (11.7) satisfies the z4 test over the same forecast period (see section 5).

The objective of this section has been to stress some of the difficulties inherent in the specific-to-general econometric
modelling approach using a relatively simple specification as a baseline, and it is irrelevant that in practice investigators
might commence from models with slightly longer lag structures if these still do not represent the general maintained
hypothesis. It is important to distinguish this approach from one in which the general model really is defined at the
start of the analysis but all specializations thereof are estimated to check their mutual consistency. An analogy would be
in testing for nth-order autocorrelation; for computational reasons the models are estimated from simple to general but
the sequence of tests is conducted from highest order to lowest order (see Anderson, 1971). While not entirely in this
second category, the ‘detective’ approach of reconciling all the evidence adopted in chapter 8 attempts to conduct its
analysis within a reasonably well-defined framework, although in fact the initial general working hypothesis is later
found to be false.

4 From the General to the Specic
In an attempt to avoid the difficulties just discussed, it seems natural to consider the converse method: intended
overparameterization with data-based simplification. Commencing from the most general model which it seems
reasonable (or possible) to maintain, sequential testing procedures are used to select a data coherent specialization.
This re-emphasizes the distinction Mizon (1977b) draws between tests of specification (within a maintained hypothesis,
and often based on Wald's test procedure (1943) such as the common factor sequence of tests in Sargan (1980a)) and
tests of mis-specification (diagnostic tests for greater generality than initially assumed and often based on the Lagrange
multiplier or efficient score procedure as
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used above for autocorrelation (see Aitchison and Silvey, 1960; Rao, 1973; and, for recent developments, Godfrey,
1978; Breusch and Pagan, 1980; Engle, 1982b).

The main problems in the general-to-specific methodology are (i) that the intention may not be realized — the chosen
(ostensibly general) model could actually comprise a very special case of the data generation process, so that diagnostic
testing remains important; (ii) data limitations — sample size or the information content of the data may be
inadequate; (iii) there is no uniquely ‘best’ sequence for simplifying the model — different approximations which have
similar sample likelihoods may forecast very differently; and (iv) the individual tests will often have large type II error
probabilities if the overall sequence is not to have a high type I error.

Nevertheless, so little hard evidence exists about lag responses that it can be worth estimating the unrestricted ‘rational
lag’ equation as a baseline, choosing a maximal lag length according to any available evidence (e.g. as 4 or 5 for
quarterly data series because of seasonal dynamics). Such an approach has in fact yielded reasonable results for testing
a money demand function proposed by Hacche (1974) (see chapter 6) and for investigating transactions demand
equations in the interesting study undertaken by Coghlan (1978). Commencing from unrestricted distributed lag
representations of (11.2) having the general form

(11.9)

Coghlan concluded that satisfactory parsimonious representations of the data generation process (on the basis of
goodness of fit, the Gestalt of the sample evidence, similarity to (11.9) and short-run post-sample parameter constancy)
were given by (for 1964(i)–71(iv), t ratios in parentheses; from Coghlan (1978), table B)

(11.10a)

(11.10b)

Specifically, for the same sample period as for (11.3) to (11.7) estimation of (11.10b) yields
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(11.11)

This equation both fits better than (11.7) and has distinctly better parameter constancy properties: neither z4 nor z5
rejects the hypothesis of predictive accuracy at the 1 per cent level (the graphs of the actual and predicted values from
(11.11) are shown in figure 11.1). The relative parameter stability can be seen by estimating (11.11) from the sample
1963(i)–76(iii) (retaining the last two data points for the z4 test):

(11.12)

The value of R2 has increased but, as anticipated from z5, s has not and so there is minimal evidence of predictive
failure despite the fact that the sample correlations of the variables indicate a marked change in behaviour pre- and
post-1971 (table 11.1 reports the correlation matrices for the variables in the closely related specification to (11.12)
discussed below). Clearly, if (11.12) did constitute the correct structural equation, rejection of the constancy of the
econometric equations (11.3)–(11.7) is unsurprising and provides no evidence about the existence of some stable
transactions demand relationship. Since only the dynamic specification has changed this appears to be an excellent
example of the hypothesis of section 2. Coghlan (1978) reports similar constancy properties for (11.10a) (see his chart
A).

The formulation of models like (11.11) and (11.12) in terms of differenced variables only has been criticized on a
number of grounds in chapter 8 and chapter 6. Moreover, it seems essential to consider some modified specification in
the levels of the variables which encompasses both (11.10a) and (11.10b) in order to account for their manifest similarity
and constancy despite (apparently) very different long-run properties. Further, there is room for improvement in
forecast accuracy, since the z4 test would reject (11.11) at the 5 per cent level. ‘Error correction’ mechanisms provide a
convenient way of achieving all these aims; hence we now consider the role of feedbacks in dynamic models and
investigate their contribution to explaining predictive failure in transactions demand functions.
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Figure 11.1 Equation (11.11).

Table 11.1 Data Correlation Matrices

Subper-
iod

Whole
period

1 2 3 4 5 6 7 8

1 0.30 −0.46 −0.61 −0.19 0.07 0.01 −0.25
2 0.31 0.18 −0.01 −0.39 −0.43 0.36 −0.42
3 −0.52 −0.24 0.24 −0.21 −0.33 0.26 −0.24
4 Δ2 ln Pt −0.24 0.30 0.00 −0.15 −0.24 0.17 −0.04
5 Δ ln Pt−2 0.08 0.12 −0.34 −0.01 0.84 −0.82 0.73
6 Δ ln Pt−3 0.30 −0.13 −0.47 −0.11 0.39 −0.83 0.66
7 −0.31 0.06 0.49 0.09 −0.52 −0.58 −0.82
8 ln rt−2 0.09 −0.24 −0.36 −0.17 0.34 0.33 −0.73
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5 Feedback Mechanisms in Differenced Models
Consider the following simple dynamic model3 relating a variable denoted by yt to a single regressor denoted by xt:

(11.13)

where 0 ≤ θ2 < 1 and . Provided that θ2 ≠ 0, (11.13) defines a stable dynamic equation in the levels of yt and xt
with a mean lag given by μ = (1 − θ1)/θ2 and a median lag of (approximately) ψ = [0.7 + ln (1 − θ1)]/θ2 (for θ1 ≤ 0.5). In
non-stochastic steady-state growth with Δ ln xt = g = Δ ln yt, the solution to (11.13) yields

(11.14)

where K = exp {− [(1 − θ1)g − θ0]/θ2} so that (11.13) characterizes a process with long-run unit elasticity, for all values
of θ0, θ1 and θ2 ≠ 0. When g is constant, ln (yt−1/xt−1) ≈ ln K = k, and in such a state of the world

(11.15)

where and is approximately white noise, and hence a simple differenced data model will adequately describe
the data. In terms of the levels of the variables, an equation of the form

(11.16)

will generally exhibit substantial autocorrelation,4 well approximated by υt = (1 − θ2)υt−1 + εt which, for small θ2, will be
close to unity, supporting the choice of (11.15). Alternatively, adding the lagged dependent variable to (11.16) will
produce a partial adjustment model with little obvious residual autocorrelation, but usually having estimates of θ1 and 1
− θ2 which are biased towards zero, so that μ and ψ are respectively underestimated and overestimated.

In all of these mis-specified models, a change in the growth rate of xt will induce an apparent ‘structural break’ due
entirely to the incorrect dynamic formulation, yet (11.13) will continue to track the data with an error variance of . To
be appropriate for all possible time paths of xt, a model like (11.13) which incorporates an ‘error correction’
mechanism seems essential: by way of contrast, (11.15) entails that economic agents ignore disequilibria between the
levels of yt and xt. It seems more reasonable to assume that long-run relationships are followed because of the
disequilibrium effect θ2 ln (xt−1/yt−1) rather than because agents never make mistakes.

Two objections which have been made to formulations like (11.13) are that

1 the ‘long-run’ outcome (11.14) is surely irrelevant in practice and hence there is no real presumption favouring
‘levels’ over ‘differences’ formulations and

2 the mean lag of models with small values of θ2 may entail implausibly slow adjustment whereas (11.15)
demonstrates very rapid adjustment.

These objections indicate misunderstandings concerning the roles of equilibrium and adjustment in econometrics.
First, the ‘long run’ given by (11.14) does not relate
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solely to what will occur in future as t → ∞; instead, unless the growth rate of xt has been constantly changing, then
currently observed data generated by (11.13) will reflect a relatively constant ratio of yt to xt. Second, while (11.15)
manifests rapid adjustment in terms of changes, it also shows infinitely slow adjustment to any levels
relationship; conversely (depending on the parameter values), most of the adjustment in (11.13) can occur
instantaneously (i.e. ψ < 1). The longer mean lag reflects the use by agents of the ‘low-frequency filter’ (yt−1/xt−1) such
that their current behaviour is modified by the ‘long-run’ information in (11.14) embodied in the lagged ratio. Thus,
care is required in interpreting a long mean lag derived from a distributed lag model estimated in levels, since such an
outcome is not incompatible with rapid adjustment (in the median lag sense) combined with a slower equilibrating
error correction mechanism; for example, (θ1, θ2) = (0.5, 0.1) implies μ = 5 but ψ = 0.

This analysis indicates that a model like (11.15) with white noise errors could, for certain time-paths, provide a
reasonable approximation to (11.13) without contradicting the existence of a ‘long-run’ relationship between the levels
of the variables such as (11.2). Moreover, this is one way in which the mutual stability of (11.10a) and (11.10b) could be
reconciled since the former can be rewritten as

(11.10c)

Consequently, both (11.10a) and (11.10b) are special cases of an unrestricted equation of the form of (11.10c) which
generalizes (11.13), obtained by imposing different parameter restrictions,5 and the very success of both (11.10a) and
(11.10b) in describing the one data series points strongly towards requiring an error correction model to account for all
the observed characteristics of previously estimated models as analysed above.

To investigate the possibility of feedback mechanisms for M1 models, consider adding the following regressors to
equation (11.12):

Including ln (M/PX)t−1 as a regressor in (11.12) imposes both price homogeneity and a unit elasticity ofM with respect
to X in steady state, although these two hypotheses are easily tested by including ln Pt−1 and ln Xt−1 as separate
regressors. Further modifications of (11.12) incorporated in (11.17) are the choice of Δ ln (M/P)t as the regressand and
the inclusion of Δ2 ln Pt as a regressor (restricting Δ ln Pt−1 to entering through that variable).

Since Coghlan's analysis used most of the sample data, the modified regression was first estimated for the same period
as (11.12) and tested over the four
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observations 1976(ii)–77(i) which yielded

(11.17)

The actual t values for the last two coefficients are 2.04 and 2.10 respectively, and the new variables have the
anticipated signs and sensible magnitudes. Indeed (11.17) is close to what might have been expected given the results in
(11.10a) and (11.10b) by, in effect, encompassing the two non-nested models.

The similarity of the sets of coefficients on the short distributed lags of Δ ln Xt and of Δ ln rt suggests reformulating
(11.17) by imposing identical coefficients to economize on parameters (i.e. zero-order Almon polynomials); this yields

(11.18)

The restrictions have lowered the coefficient standard errors without noticeably lowering R2 and hence are not data
rejected. Note that

where L is the lag operator.

In steady state, the solution to (11.18) can again be written as in (11.2) with K = exp (0.3 − 1.8g3), α = −0.38 and β =
−4.4 (using g3 = g1 − g2). This indicates ‘long-run’ elasticities of M with respect to r and of −0.38 and
(compare Cagan (1956) and note that β in (11.2) has units of ‘quarters’).

The solved coefficients from (11.12) and (11.18) in terms of the levels of the variables are shown in table 11.2 together
with the direct estimates of the general
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Table 11.2 Estimated and Derived Coefficients for Equation (11.9) for the Complete Sample

i 0 1 2 3 4
(a) Equation (11.9)
ln Mt−i−1 0.72(0.19) 0.07(0.22) −0.22(0.20) 0.08(0.17) 0.12(0.15)
ln Xt−1 0.20(0.19) 0.24(0.20) −0.07(0.19) −0.28(0.21) 0.13(0.20)
ln rt−i −0.04(0.02) −0.01(0.03) −0.04(0.03) 0.03(0.03) −0.03(0.03)
ln Pt−i 0.18(0.30) 1.08(0.48) −1.52(0.58) 0.97(0.72) 0.52(0.43)

Ĉ = 0.30(0.78) R2 = 0.999 s = 0.014 DW = 2.1
(b) Equation (11.12)
ln Mt−i−1 1.0 – – – –
ln Xt−i 0.33 0.09 −0.17 −0.25 –
ln rt−i −0.04 0.03 −0.06 0.07 –
ln Pt−i – 1.2 −2.1 1.4 −0.50
(c) Equation (11.18)
ln Mt−i−1 0.91 – – – –
ln Xt−i 0.28 0.09 0 −0.28 –
ln rt−i −0.04 0 −0.03 0.04 –
ln Pt−i −0.20 1.5 −2.1 1.4 −0.50

unrestricted equation (11.9). The fits of (11.12) and (11.18) are not significantly different from the fit of (11.9), and the
coefficient estimates are all reasonably similar. Also, note that the lagged dependent variable coefficient is closer to
unity in (11.18) than in, for example, (11.10a) as anticipated from the simulation findings in chapter 8.

It remains to investigate how the re-specification of the dynamics has affected the constancy of the relationship,
remembering that since many of the models were originally established from considering the complete sample period,
their fitting with similar coefficients to subperiods is less impressive than say the predictive test on new raw data used
in (11.11). Nevertheless, since there is some chance of a negative outcome because of predictive failure, it may be
possible to refute the hypothesis that the revised equation adequately characterizes the data for the subsample:

(11.19)

The model shows a fair degree of parameter constancy, having smaller ‘forecast’ errors than (11.11) for 15 of the 20
observations (see figure 11.2) reflected in the
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Figure 11.2 Equation (11.19).

substantially smaller and insignificant value of z4(20). Thus the error correction feedback does seem to play a useful
role when ‘tracking’ data over a reasonably long period. Given the large change in the correlation structure of the data
shown in table 11.1,6 the existence of constant parameters in (11.19) seems to provide a powerful argument for
considering it to be a good approximation to a ‘structural relationship’, and a further improvement over (11.11).

As a postscript, it may be noted that Δ ln Pt effectively cancels from all the equations (11.17)–(11.19) and hence a more
parsimonious specification can be obtained by using Δ ln (Mt/Pt−1) as the regressand. Since three new observations
appeared during work on this chapter, it seemed of interest to fit this last model to the longest estimation sample used
above and predict the seven observations 1976(ii)–77(iv) which yielded

(11.20)
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In (11.20), (the average growth rate) and F(14, 27) denotes the F test against the fit of (11.9), which reveals
no evidence of invalid restrictions (as might be expected given the data-based selection of (11.20)). Such an equation
has only one more parameter than (11.7), yet describes far richer dynamic reactions embodied in relatively sensible
functions of the data. Moreover, the formulation allows very different lag patterns for each of X, r, P (despite having a
‘common’ exponential tail due to the lagged dependent variable coefficient of 0.904); indeed these may be found
surprising since, for Xt, μ and ψ are only 1.4 and 0.6 quarters (with 96 per cent of the adjustment to income changes
occurring within nine months), while for rt the corresponding figures are 7.9 and 4 quarters (with 40 per cent of
adjustment occurring within nine months).

6 Summary and Conclusions
Following a discussion of predictive failure, attention is focused on the possibility that it derives from mis-specification
interacting with the changed behaviour of a few variables; a precedent is inflation effects on the consumption function
as in chapter 8. A potential explanation for mis-specification in terms of inappropriate modelling procedures is
examined in section 3, and the alternative approach of sequentially simplifying a general relationship is briefly discussed
in section 4. The demand for the narrow money stock is used as an illustration in both sections and in section 5, where
slight modifications of the demand for M1 equations proposed by Coghlan (1978) demonstrate the importance of a
disequilibrium component which incorporates an error correction feedback mechanism. The resulting model yields a
sensible long-run equation relating velocity to interest rates and inflation and predicts up to 20 quarters ahead with
reasonable accuracy. If a relationship in the levels of the variables does exist, then any ‘differenced’ equation could only
be valid close to a steady-state time path, and hence, although perhaps adequate for short-run forecasting, would
provide another instance conforming with ‘Goodhart's law’ if used as a basis for policy changes (see Goodhart, 1978).
Equation (11.20) may well suffer the same fate (e.g. if important variables are omitted), but the specification does at
least seem to have theoretical plausibility and fairly constant parameters despite a substantial change in the behaviour
of the rate of inflation, real income and interest rates. Moreover, it highlights how apparent ‘structural breaks’ in
simpler equations (like (11.3)–(11.7)) need reflect no more than dynamic mis-specification. Finally, the analysis
emphasizes the potential advantages when the dynamics are uncertain of considering the most general (theory-based)
maintained hypothesis at the start of the analysis, and sequentially simplifying it in a data-coherent way.

Perhaps the most serious criticism of the section 4 approach is the possibility that the data provide inadequate
information to enable the ‘correct’ model to be selected. Indeed, few investigators would have retained the results in
(11.9) or (11.11) had such relationships even been fitted prior to 1971. Since it is infeasible to estimate (11.19) from 32
observations only, the proposed approach could not have been implemented at the time. Nevertheless, the outcome
seems much more satisfactory than that which concluded section 3 and strongly suggests that estimating rather general
dynamic
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representations of the economic theory should be part of any time-series modelling exercise.

7 An Empirical Illustration12

With Jean-François Richard

To evaluate the finally chosen model (11.20), we now test it against data which have become available only since that
study was completed. To simplify notation, lowercase letters denote the logarithms of the corresponding capitals,
except for rt, and Δj denotes a j-period difference. The earlier model was proposed on the basis that, for the existing
data, it satisfied all of the test statistics reported, which entails empirically satisfying the relevant model design criteria
discussed in chapter 17. This included accounting for most previous findings of M1 equations in the United Kingdom.
For the overall sample 1963(i)–1980(ii) (less four lags), ordinary least squares re-estimation yields

(11.21)

where the coefficients on the right-hand side of (11.21) have standard errors 0.27, 0.02, 0.19, 0.20, 0.020, 0.009 and
0.015 respectively. Note that in (11.21) we are using a Lagrange multiplier interpretation of the Chow tests for
1978(iv)–1980(ii) and for 1975(iii)–1980(ii). In addition, η4(1) is the Lagrange multiplier test for first-order
autoregressive conditional heteroscedasticity, i.e.

(Engle, 1982a), distributed as χ2(1) asymptotically under the null that φ1 = 0; z1 (5) is the maximized likelihood ratio test
for a common factor in the first-order autoregressive generalization of (11.21) asymptotically distributed as χ2(5) under
the null; and η5 (j, T − k − j) is the general functional-form–heteroscedasticity test from White (1980b), distributed in
large samples as F(j, T − k − j) on the null of homoscedasticity.

Further descriptive statistics are provided by figure 11.3 which shows the time-series graph of Δ1 (mt − pt−1) and the fit
of (11.21); and the following features of the standardized residuals from (11.21): maximum, 2.2; minimum, −2.0;
skewness, 0.03; excess kurtosis, −0.4. There is no evidence of any problems of ‘outliers’ and the first four moments are
not unlike those of a normal distribution.

Even though the final seven observations could not have been used in selecting the specification, the model ‘survives’
all the tests including that of parameter
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Figure 11.3 Time series of changes in demand for money and fit of (11.21) (Δ1 (mt − pt − 1)).

constancy when (11.4) fails. Indeed, the estimated error variance of (11.21) is about 2 per cent (!) of that of (11.4), and
even in terms of residual standard deviations the best of the earlier equations has a value more than double that of in
(11.21). Consequently, it seems worth commenting on the interpretation of this model.

First, the specification is an error correction form which reproduces (11.2) in static equilibrium. More generally,
consider a steady-state growth path along which r, Δ1x = g and are constant, and if we note that from
(11.22), the dynamic equilibrium equation derived from (11.21) is

(11.22)

where the coefficients on the right-hand side have standard errors of 0.23, 5.0, 0.13 and 2.4 respectively. Although the
derived coefficients in (11.22) have relatively large standard errors, the η6(·). Wald statistic value strongly rejects the null
of no association and the solved model is in accord with the initial theory in (11.2). Nevertheless, the underlying
unrestricted levels equation corresponding to (11.21) has complicated dynamics, as shown in table 11.3, but is
summarized using seven estimated parameters for lag functions selected as being data coherent and non-collinear
decision variables, e.g. is the average growth rate of real income over the previous three quarters. Since the residual
standard error of the general model estimated unrestrictedly is 1.3 per cent ofM, the simplification from potentially 20
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Table 11.3 Derived Lag Coefficients from (11.21)

j = 0 j = 1 j = 2 j = 3 j = 4
mt−j – 0.926 – – –
xt−j 0.24 0.074 – −0.24 –
rt−j −0.04 – −0.038 0.04 –
pt−j – 1.074 −1.57 0.88 −0.31
1 0.041 – – – –

parameters to seven is acceptable. The lag reactions of M to changes in X, r, P are all very different: that for X is very
fast (as seems sensible for transactions demand), whereas that for Δ1p is very slow.

It is clear from figure 11.3 that (following a policy change) the data variance increased substantially after 1971. Even so,
(11.21) is not rejected by parameter constancy tests. This supports both the weak exogeneity assumptions about xt and
rt and the structural invariance of the model, especially since the policy authorities sought to control either interest rates
or money supply differentially over most of the sample period. Also, since (11.21) has residuals which are not
detectably different from white noise against an information set including up to seven lags of m, it should not prove
easy to develop univariate time-series models which ‘outperform’ it in terms of goodness of fit or parameter constancy.
While the overall forecasting performance of M from a submodel for all the variables obviously cannot be decided on
the basis of (11.21) alone, parameter constancy in (11.21) seems a necessary condition for such an exercise to be useful;
note that the largest quarter to quarter change in Δ1(mt − pt−1) is over .

In any case, structural modelling is undertaken for other purposes than simply forecasting, e.g. policy analysis, testing
of theories, and it is noteworthy that (11.21) explains why the error on (11.4) was not white noise and encompasses
that earlier model. The predictive failure of (11.4) can be explained in terms of changes in the correlations of its
regressors with those in (11.21) between sample and forecast periods, with the derived parameters of (11.4) not being
invariants for such changes. For a recent evaluation of models like (11.21), see Trundle (1982).

We conclude on an interpretative note. How demand for M1 responds to changes in interest rates which in turn lower
both real incomes and inflation (as in recent UK monetary policy) depends on the ‘true’ numerical magnitudes of all
the responses. The evidence in (11.21) reveals that M1 could increase or decrease as r rises and, say, Δ1p falls,
depending on the sizes of their changes. Thus, to understand why M1 might rise as r rises (but, for example, Δ1p is
falling) or fall as r falls (but, for example, X is falling) even though a negative relation is anticipated, a structural
invariant multivariate model of agents' behaviour seems essential; and useful characterizations seem feasible.
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Notes
1 Richard (1980) has recently described how such a situation can be confused with a ‘switch of regimes’.
2 The 5 per cent level for is 31.4; the 1 per cent level is 37.6.
3 The arguments presented below are additional to those discussed in chapter 8 and chapter 6 and reference should

be made to those chapters for a more complete analysis of the properties of the dynamic model (11.3), and the
problems of differencing.

4 As indeed will any distributed lag representation.
5 Equation (11.7) can also be expressed as a special case of (11.10c) with both short- and long-run unit income

elasticities and a mean lag of zero.
6 Note that the correlations in the upper triangle of table 11.1 are for the whole period of 52 observations and so

include the 32 data points used to compute the correlations in the lower triangle.
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12 Monetary Economic Myth and Econometric
Reality13

Preamble
The concluding chapter of this Part is a polemical follow-up to chapter 11. It attempts to exposit the important
concepts from chapters 5–11 in the context of empirical modelling of money demand. It also critically comments on
the range of debates then raging about econometric methodology. In fact, Hendry and Mizon (1990), which is a direct
response to Ed Leamer's (1983) challenge to ‘take the con out of econometrics’, was being written at the same time
and, like chapter 12, had the analyses of chapters 15–17 as a basis.

Part of the explanation for the polemical nature of the chapter was my frustration with economic policy in the United
Kingdom. I had acted as a special adviser to the Treasury and Civil Service Select Committee of the House of
Commons on Monetary Policy (see Hendry, 1981) and endorsed the Committee's report which highlighted the
complete lack of empirical evidence for many of the assertions on which the government of Margaret Thatcher based
its economic policy. The Committee's advice was ignored at the time, although by the second half of the 1980s
monetary policy more closely resembled what they suggested. Because the chapter was written for a new journal
specifically concerned with policy issues, and since econometric evidence was increasingly cited in policy debates, it
provided a suitable vehicle for criticizing other methodologies and other evidential claims.

In the chapter it is argued that empirical econometric equations do not just chance to ‘break down’ out of sample,
having been constant within sample: rather, many models have already ‘broken down’ on the available data before
being published, but their proprietors are unaware of this because they have not rigorously tested for constancy. New
observations merely highlight the pre-existing failure. Thus, regime changes play a vital role in helping to eliminate
poor specifications, and hence are a help and not just a problem.

A distinction is explicitly drawn between the constructive and destructive modes of econometric research. In the
former (Herschel's (1830) ‘context of discovery’) non-econometric influences such as luck, brilliance, serendipity and
creativity are crucial if new congruent models are to be developed: there do not seem to be any sufficient conditions
for how to

13 Reprinted from Oxford Review of Economic Policy, (1985) 72–84. I am greatly indebted to Chris Allsopp for considerable help and encouragement in preparing this paper and
to John Muellbauer for valuable comments. The research was supported in part by grant B00220012 from the Economic and Social Research Council.



discover valid empirical models. For example, one could in principle dream the answer without recourse to data or
stumble over the same answer after analysing hundreds of regressions. Nevertheless, different methods of model
construction can and do differ radically in their research efficiency, and general-to-simple offers the best prospect from
that viewpoint.

Conversely, in the latter, or destructive, mode (Herschel's ‘context of evaluation’) econometric testing is generally
applicable since tests can be obtained with known behaviour under the null that the model to be tested is valid
(analytically in large samples or by simulation for a customized problem). Consequently, conditional on believing their
own model, the proprietors of that model should agree to the legitimacy of the relevant test, and hence be persuaded
by its outcome.

Two issues arise: (1) how to define the null of model validity; and (2) what tests to select.

1 Since models restrict data in many ways, a taxonomy of information is needed to delineate what aspects of
model validity are testable. Such a taxonomy in fact follows directly from the theory of reduction given the
sequence of steps needed to derive any model from the data generation process. A null hypothesis corresponds
to each element of the taxonomy and rejecting that null reveals model invalidity (subject to resolving (2), of
course). The concept of congruency, which summarizes satisfying all the ingredients in the taxonomy, then
characterizes a valid model (see chapters 16 and 17 for the formal analysis). It was while editing this paper that
Christopher Allsopp suggested the use of the word ‘congruent’ to describe the match in all salient respects
between a model and the data, to replace the acronym ‘TADC’ of chapter 16. Teun Kloek has suggested that
this choice is not entirely felicitous since the mathematics usage (e.g. congruent triangles or matrices)
interrelates two objects of the same kind whereas the present sense appears to relate different objects. A partial
resolution of this linguistic difficulty is to note that a triangle can also be congruent with the top of a (sliced off)
triangular pyramid, where different objects are compared. Alternatively, once the data are fully characterized by
the Haavelmo distribution (the joint density of all the observables: see, for example, Spanos, 1986; Hendry et
al., 1989) congruency is a relation between the model and the Haavelmo distribution, so that similar entities are
being compared.

2 A different set of considerations (drawing on both economics and statistics) is needed to delineate the
alternatives against which testing is worthwhile. The power functions of many econometric tests depend only
on the distance, and not the direction, of any departure from the null, and for alternatives close to the null,
many different departures turn out to be locally equivalent (see, for example, Godfrey and Wickens, 1982).
However, different statistics for testing a given null may have very different powers to reject that null when it is
false, depending on the properties of the data generation process. Thus, no test need dominate all others across
different states of nature. Despite the importance of such issues, they are too technical to analyse in a volume
such as this. The interested reader is referred to Cox and Hinkley (1974), Lehmann (1959) and White (1990).

The structure of destructive testing also reveals that there can be no sufficient conditions for model validity in an
empirical social science. An innovation relative to one information set may prove explicable on another; human
behaviour may alter, and so future parameters may differ from present ones; and so on. However, a stringent list of
necessary conditions exists and places tight requirements on a model even to be deemed well designed or congruent with
all the available evidence.

A background development during the period 1978–82 was the introduction of microcomputers, heralding the
personal computer (PC) revolution. Prior to 1980, empirical work was
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conducted with cumbersome and unfriendly batch programs tailored to specific mainframe computers: most of these
machines existed in small numbers and they usually differed dramatically from other computers in how they operated,
thus creating no incentives to develop powerful, friendly or transportable software. PCs, however, were produced by
the million and were largely standardized (though compatibility has steadily waned as the diversity of PC manufacturers
has increased), and so huge incentives were created for software development – and as we all know, the market
responded. Econometrics was no exception despite the relatively small size of the discipline. Much of my leisure time
since 1982 has been spent rewriting AUTOREG (see chapter 14) for PCs to meet the much higher standards of
power, presentation and ease of use expected by PC users. Chapter 12 was my first substantive field trial of the PC-
GIVE module and, like the Monte Carlo example noted above, revealed a gigantic leap in productivity: from once
being an arduous six-month task, model evaluation could be undertaken at home in one evening! Moreover, it was
both much more fun (aided by colour graphics and a reliable and flexible program specifically designed in the light of
all the work reported in this book) and yielded a higher quality product, as judged against the criteria underlying
congruency. Further developments to PC-GIVE since 1984 have again increased both the productivity of empirical
researchers and the quality of the resulting models relative to those prevalent in the 1970s (see chapter 19, and Hendry,
1989).

The substantive results in section 6 below indicated that the M1 demand equation (modified to a simpler specification
following work by John Trundle (1982) at the Bank of England) remained on course and did not exhibit predictive
failure on a further extension of the data, which included the 1979 policy change to emphasizing monetary control.
This finding in turn yielded a clue to a deeper evaluation of super exogeneity and hence to tests which potentially could
confirm or refute the Lucas (1976) critique (see Hendry, 1988b; Engle and Hendry, 1989). The section re-analysing
Friedman and Schwartz (1982) briefly describes the results by Hendry and Ericsson in 1983, which eventually
appeared in print during 1991 (Hendry and Ericsson, 1991a), and section 7 notes Baba et al. (1992).

Finally, section 6 has a prediction about the response of the UK clearing banks to interest being taxed at source. I note
that interest-bearing chequing accounts have since proliferated, and deposit account interest rates match those on offer
from building societies. Hendry and Ericsson (1991b) present a model of M1 which incorporates this innovation.

1 Present Controversy: A Funeral Pyre or the White Heat of Technical
Advance?
Few of the main macroeconomic forecasting systems can produce sensible forecasts without the tender loving care of
their proprietors. Many econometric equations in common use show significant deterioration in the accuracy with
which they characterize data as time passes. And many economists are sceptical about empirical evidence, feeling it
lacks ‘credibility’. Monetary relationships have the dubious distinction of being among the leaders in this field, as
witnessed by the very large mispredictions of M1 models in the United States over what is now known as the ‘missing
money’ period (1973–6) as well as during the recent ‘great velocity decline’ (1979–82). In the United Kingdom, models
of M1 and M3 demand experienced large ‘structural breaks’ following the competition and credit control regulation
changes and the move to floating exchange rates. Perhaps it is no suprise that ‘Goodhart's law’ should have been
formulated with respect to money demand equations.

These factors are closely interrelated and in part represent different facets of the
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same underlying problem – a problem of methodology. Somewhat as a caricature, the conventional approach in
empirical economics is as follows: (i) postulate an arbitrary theory (arbitrary in the literal sense of being at the free
choice of the investigator); (ii) find a set of data with the same names as the theory variables (such as ‘money’,
‘incomes’, ‘interest rates’, ‘inflation’ etc.); (iii) make a range of auxiliary simplifying assumptions (e.g. choosing a linear
model, assuming away measurement errors); (iv) fit the theory-model to the data to see the degree of match.
Corroboration is sought, and accepted, with minimal testing to check whether rejection is possible against interesting
alternative hypotheses (such as non-random errors, and changing parameters). Consequently, very few models are
rejected and a plethora of disparate empirical results coexists (even when mutually contradictory in terms of claimed
empirical findings!). For general surveys of monetary econometric equations, see Desai (1981b) and Laidler (1985).

An objective observer should indeed be sceptical: the approach just sketched is inherently non-scientific and it would
be surprising if it threw light on anything more than the investigators' personal prejudices. Nevertheless, this is not a
necessary state of affairs: had many of the models just caricatured been tested on pre-existing data, they would have been
found to have broken down already – all that later data did was to highlight the various hidden defects. Models which
are in fact not constant within sample are an unreliable basis for post-sample forecasting, let alone policy.

Poor methodology and poor models alone, however, are not sufficient to explain model failure for the following
reason. If the world were constant (in that economic data were generated by an unchanging mechanism), so would be
econometric representations of it, however badly specified and/or untested. If the world did not change, the falsity or
invalidity of models could not be revealed. Thus, changes in the properties of economics data are necessary to account
for the observed phenomenon of predictive failure and model breakdown. Of course, the last decade of turbulence has
been amply adequate to that task. Unfortunately once it is granted that changes do occur in the data generation
process, that alone is potentially a sufficient explanation for model failure. How then is one to distinguish between
legitimate appeals to a ‘regime shift’ (such as oil shocks or floating exchange rates) upsetting an otherwise ‘good’
model, and the same claim being an excuse for the deserved failure of a poor model?

There are two factors which can help to discriminate:

1 Can specific events be appealed to as likely potential causes of the claimed shift (e.g. the switch from fixed to
floating exchange rates, or the formation of OPEC)?

2 What has happened over the same historical period to purely extrapolative forecasting devices (such as the
well-known Box–Jenkins methods)?

If extrapolative methods have not failed, and no obvious external source of regime change is specified. . . . The point
hardly needs elaboration, especially as a third check has already been alluded to, namely the extent to which the claimed
relationships have survived rigorous within-sample testing.

Several authors have recently added to the chorus of complaints about the validity/credibility of econometric evidence.
Lucas (1976) argued that model failures
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were often due to ignoring the crucial role of expectations in economic behaviour and deduced his notorious ‘policy
critique’ from this assertion. Yet documented empirical instances where this critique has been shown to be the main (let
alone the sole) explanation for an equation's breakdown are exceedingly rare. Sims (1980) argued that macroeconomics
provided no useful theory information for guiding econometric research, characterizing existing approaches as
‘incredible’. His proposed solution of allowing the data to play a direct and much larger role in empirical analysis than it
does in the straitjacket of the ‘conventional’ approach has much merit, but in my view swings too far. In particular, his
unrestricted equations inextricably mix features which are relatively variable with those which are potentially more
constant, rendering the whole non-constant. The perceptive reader will note the contradiction between the Lucas and
Sims critiques since the former appears to be arguing for more reliance on theory, and Sims for less.

More fuel has been added to the pyre of econometrics by Leamer (1983) in a piece entitled ‘Let's take the con out of
econometrics’. He argues that models are fragile and whimsical, meaning that claimed empirical results (like ‘interest
rates negatively affect money demand’) are easily ‘reversed’ by relatively minor changes in model specification and that
many econometric results reflect the whims and prejudices of investigators as much as the information content of the
data. He proposes one technique called ‘extreme bounds analysis’ which generates the complete range of coefficient
estimates which investigators with widely different beliefs could produce from a given set of data. However, Leamer
has been taken to task by McAleer et al. (1985) who argue that his proposed approach is unreliable because it eschews
rigorous testing of models against data evidence. The present writer shares their views in large part (having argued in
chapter 1 that the three golden rules of econometrics are test, test and test).

What is the justification for my standpoint, and does it throw light both on the existing controversies and on appraising
claimed empirical evidence? The next section seeks to answer these questions. Then in section 3 we consider a
simplified framework for model evaluation, based on a crucial departure from a conventional analysis, namely that the
world is always evolving and in a state of flux and hence econometric methods must be tailored to cope with this
inherent difficulty. The primary objectives then become isolating and calibrating the constancies of the existing social
framework; not eternal constants, since there are no permanent inviolable laws in a social science, but current
behavioural rules that evolve slowly relative to the changes in the observed data. Finally, sections 4–7 will illustrate this
expository analysis with empirical evidence from studies of the demand for money.

2 Construction and Destruction: Pious Hope versus Hard Reality
For most of my professional life, I have been writing articles critical of econometric practice (what not to do and why
you should not do it), while developing computer software to implement a rather different approach. The basis of my
viewpoint is that all constructive suggestions are invalid in that the correct way to learn about the world depends on how
it is constructed – which is not known until after the learning
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has occurred. Thus, any methodological prescription must be open to counter-examples: the ‘truth’ could be
discovered by ‘wrong’ methods (cf. Kepler's attempts to fit the regular solids into his planetary orbits) or by chance
(Eureka!) and not by painstaking scientific endeavour (which happened, say, to lack a crucial insight into a problem).
Nevertheless, the possibility that drunken prospectors might find gold by falling down and sticking their pick in does
not mean that geological science is irrelevant to gold mining. Thus, I advocate an approach which combines
constructionist aspects in a basically destructive methodology: crudely put, by eliminating the worst models, we are left
with the less bad ones. Moreover, an essential prerequisite for tentatively accepting a model is that it can explain
previous findings, including why such models broke down when they did. This we have called an encompassing
strategy (cf. chapter 8 and Mizon, 1984). A new model supplants existing models only if it accounts for the phenomena
they can explain and some additional features (especially any previous anomalies). Application of this principle yields a
progressive sequence of models, which at the worst are summaries of previous research and at best (subject to all the
criteria to be noted shortly) may usefully characterize certain features of the economy.

Various search strategies are open to modellers trying to develop adequate if simplified characterizations of economic
behaviour, and, in turn, any formal strategies can be subjected to prior statistical analysis to examine their likely
properties (e.g. the frequency with which they select the correct model, or a close approximation to it, in a situation
where we generate artificial data from known structures). Most formal strategies are woefully poor. For example,
fitting models without first looking at the data is wonderful if your model chances to coincide with reality, and rather
unhelpful otherwise. Revising it in the light of later evidence to eliminate the worst misfits ensures that it matches
where it touches – but otherwise leads to invalid inference. The explanation for this last assertion is simple in a
complex world: if many factors determine an outcome and only one or a few are allowed for, their estimated effects are
contaminated by the effects of the excluded factors (unless they chance to be all mutually uncorrelated). Moreover, a
revision process of gradually expanding a model and stopping at the first insignificant improvement maximizes the
initial contamination and hence maximizes the likelihood of false inferences.

The converse of starting with as unrestricted or general a model as the data will sustain minimizes the contamination
effects but spreads the explanation so thinly that it can be difficult to recognize what are the main determinants. Thus,
a simplification search is needed which may differ between investigators, data sets and choices of elimination rules.
While open to reasonable objections, nevertheless this approach does seem in practice to produce more robust and
interesting models than other routes I have tried. And since all constructive routes are invalid, the only objective at the
present stage is to eliminate models that are really poor representations of the data.

The valid aspect of econometrics is its destructive role. It does not make one many friends, but it does help to take the
con out of economics. Once a model has been developed (by any method whatsoever) its construction excludes many
features of the world. For example, if a model is claimed to have random errors, or constant
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parameters and so on, such claims are testable conditional on temporarily accepting the model as a valid description of
the data. A test (or set of tests) can be derived which the builder of the model is bound to accept as valid given his
model, and a reject outcome is as close to a conclusive result as a social science can ever come. New data, new tests
and new rival models also provide unprejudiced evidence against which to evaluate any existing model, but frequently
the investigator's own data set is more than adequate to refute the claimed results.

To recap, no method of constructing a model is necessarily bad or good, but some methods seem in practice to deliver
more robust findings. Specifically, general models properly simplified have been of some value in generating useful
approximations to economic behaviour. One reason for this is that rejection on a range of tests within sample is ruled
out by the design and construction of such models. Thus, as claimed, the worst contenders have been eliminated so
that ‘better’ ones remain. These can then be tested as new evidence accrues, but in any case must encompass previous
findings and hence summarize existing knowledge in a progressive research sequence. Rigorous testing of models
against data and against each other is a crucial aspect of this approach (with appropriate care in allowing for the
number of tests conducted when appraising the overall findings), and it applies to Lucasian, Simsian and Leamerian
modelling strategies alike. By requiring encompassing of previous models, one requires encompassing of their failures
as well as of their successes and that is the aspect which tends to throw most light on the appraisal of claimed empirical
findings. Obviously, mutually contradictory results could not coexist in this methodology. However, alternative
hypotheses could, although few areas of economics suffer from a plethora of competing models which fully account
for all the empirical evidence.

The natural question to arise is: what tests should be conducted? Presumably, an infinite number of potential tests
exists (most still undreamt of by economists) but only a small select number could be applied to any data set. Thus, the
next section addresses the issue of what types of information are relevant and a minimal set of associated tests which
might be used. It must be stressed that such tests are of necessary conditions for models not to be invalid. No sufficient
conditions for validating models can exist in an empirical science; and failure to reject one of the necessary conditions
does not establish that the model is valid, but only that it is not demonstrably invalid. Finally, corroboration of
theoretical claims is an extremely weak form of ‘favourable’ evidence since not only can false premises entail correct
conclusions, but it can happen that each of several items of evidence apparently ‘confirming’ a theory when taken
together refute that theory (cf. the earlier discussion on contamination from excluded influences).

3 Evaluation Criteria: Or More Than You Ever Wanted to Know About
Testing Models
The complete set of information available to an investigator comprises (i) the data deemed relevant, (ii) existing
subject-matter theory (iii) the structure of the measurement system and (iv) the data that other investigators have used
(non-overlapping
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with (i)). Each of (i) and (iv) can be divided with respect to any particular data point into (a) previous data, (b) current
data and (c) future data. Thus, we have an eightfold partition of all the information. Model evaluation consists of
testing models against each of these subsets.

For example, the claim that a model adequately characterizes the available data history (i) (a) translates into the
proposition (usually called the null hypothesis) that deviations of the model's fit from the actual outcome are relatively
‘small’ and non-systematic. This null can be tested against several interesting alternatives corresponding to different
forms of systematic lack of fit (e.g. the errors or model residuals are correlated over time, or have a variance which
changes over time). Similarly, any claim to characterize (i)(c) corresponds to an assertion of parameter constancy over
time, which is directly testable. Without wishing to conduct an extensive enumeration of all the possible claims and
tests, note that (iv)(a) concerns tests for historical encompassing of rival models (which must include previous models)
and (iv)(c) concerns forecast encompassing (can the model explain the forecasting performance of rival models?). The
large technical literature deriving tests and examining their properties for samples which realistically reflect the
characteristics of economic data need not concern us. The important point is that usable tests do exist, are available
(many of the tests are embodied in the better econometric software packages including, for example, the AUTOREG
library) and have clear implications for testing others' models.

In fact, we have scaled a sufficient height to obtain an overview of the fires burning below. Conventional modelling
assumes that the model and data process coincide at the outset; i.e. that the data were actually generated by the factors
in the model plus a random innovation impinging from nature. As such, any misfit should lead to rejection of the
model. Instead, to rescue their pet hypotheses, investigators may run literally ‘hundreds of regressions’ (cf. Friedman
and Schwartz, 1982, p. 266), hoping that one of these will ‘corroborate’ their ideas. Thus, difficulties are camouflaged
or papered over, not revealed; the resulting models are not robust and it is little wonder they break down when
confronted with new data and/or new economic policies. As asserted earlier, they do not even adequately characterize
existing data.

The alternative is to view modelling in a more engineering spirit – that is, as a matter of designing models to achieve
certain (albeit limited) objectives. Thus, the model is viewed as an inherently simplified mimic of behaviour, not a
facsimile of the data process, and its unexplained component (residual) is derived as ‘everything not elsewhere specified’.
Then, one designs the model such that (i)(a) the residual is unsystematic (i.e. is an innovation or ‘news’ relative to the
available data) and has a relatively constant variance; (i)(b) the variables treated as given are ones which economic
agents could act contingently upon; (i)(c) the parameters are as constant as possible on subsets of the existing data; (ii)
it is consistent with theory; (iii) it is admissible given the properties of the measurement system (e.g. predictions of
prices are positive, or of unemployment are less than 100 per cent etc.); and (iv) it encompasses previous models
(either historically or that and their forecasts). An important ingredient of this design process is to structure the model
so that its explanatory factors are as little intercorrelated as feasible while corresponding to the sort of decision
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variables economic agents might actually use (e.g. rates of growth, interest differentials etc.).

Models designed in such a way seem to describe the data relatively robustly. In each case, the model is not justified by
how it was constructed, but by how it performs against new evidence. A year's embargo on publishing empirical claims
after submission to a journal to allow new data to accrue for a ‘post-script’ set of tests would be a useful check on the
validity of claims. The charge that ‘data-mining’ occurs is germane only to the extent that by ignoring the implications
of using a data-based modelling strategy one is (mis)led to select weak models. It is not a justifiable complaint in
general since the converse of building models without knowing what features of the data even need explanation seems
like a reversion to the worst practices of scholasticism. Further, by adopting the modelling strategy proposed above,
one should never need to run hundreds of regressions.

On the one hand, seen as a sharp critical razor, econometrics is far from being in a mess; its major problem is that the
speed of generation of garbage has usually exceeded that of its incineration by professionals – leaving nature to do the
job instead. However, the availability of standardized microcomputers and the consequential international
compatibility of data and software should soon allow rapid testing and replication exercises, leading to the demolition
of many of the at present conflicting assertions. On the other hand, if a model based on sensible theory and designed
on pre-1978 data continues to perform as anticipated for the following 20–30 quarters, then the theory-based critical
assertions of Lucas and Sims or the statistical objections of Leamer seem irrelevant: it behoves them to explain why
such an event occurred given that other models do not have good track records over a similar period. This is especially
true in the United Kingdom since the Thatcher experiment seems to have perturbed the economy more than any other
domestic regime has succeeded in doing since 1921. Of course, even well-designed models remain models: they are not
‘truth’ in any definable sense, merely having residuals which have not yet been explained. The progressiveness of the
strategy is reflected in an improving sequence of interrelated, successively encompassing models, and in the class of
economic and statistical theory issues these raise. For one example, still not completed by any means, but helping to
resolve an important ingredient of all macroeconomic systems – the consumption function – see chapters 8, 9, 10 and
18; Davis (1982), Harnett (1984), Pesaran and Evans (1984) and Bollerslev and Hylleberg (1985).

4 Empirical Illustration A: Or Assertion Versus Empirical Evidence
A supposed cornerstone of the monetarist viewpoint is the recent book by Friedman and Schwartz (1982). It received
generally favourable reviews as a work of scholarship (cf. Laidler, 1982; Goodhart, 1982; Mayer, 1982; although see
Congdon, 1983; Moore, 1983; per contra). A wide range of claims concerning the behaviour of monetary economies was
made by Friedman and Schwartz and they asserted that these claims were consistent with the long-run historical
evidence. A remarkable feature of their book is that none of the claims was actually subjected to test (cf.
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Hendry and Ericsson, 1991a). Rather, equations were reported which did not manifestly contradict their theories and
this non-contradiction was taken for ‘corroboration’. On close examination, quite a number of their claims were not
econometrically testable, but the ‘stability of the demand for money as a function of a small number of arguments’
could be tested. The most obvious test was a split-sample one (fitting their model separately to each half of the data
period) and this rejected parameter constancy. In addition, the basic claim of ‘price homogeneity’ (that nominal money
is proportional to the price level ceteris paribus) also could be rejected as could the specification of the equation (e.g. a
trend was significant if added). And this was despite their having a poorly fitting money demand model with a standard
error of around 5 per cent of the money stock (when residuals are large, tests which seek to discriminate between
hypotheses have low power to do so). Testing may be destructive, but since Friedman and Schwartz immediately drew
major policy implications from their study, it may prove less destructive of economic well-being to highlight
unsubstantiated claims and poor models prior to their policy implementation.

5 Regime Shifts: Or Why Econometrics Textbooks Need to Be
Rewritten
The vast bulk of the theory of econometrics is predicated on a ‘constant world’ assumption. The methods of Sims
explicitly require stationarity, and most of the classical econometrics problems (identification, estimation etc.) implicitly
assume unchanging parameters in the processes which generate the data. As a simplifying assumption to allow the
subject to develop, one cannot but admire what has been achieved. As a description of reality, it is wildly off target, for
one of the most pervasive problems in econometrics is model breakdown, bringing us full circle to the starting point of
this essay. Hopefully, the explanation is now clearer. All models are crude simplifications, but many are hopelessly
crude because of the methods used in their formulation, which camouflaged their inherent flaws: i.e. they were very
badly designed. The first hot blast of post-sample reality ensured the conflagration of these straw-houses. In chapter 11
I discuss the extent to which model failure can be traced to mis-specification in a world of change which does not rule
out the possibility of establishing relatively constant relationships for the same dependent variables over the same
historical epochs. And, following the encompassing strategy, the model I present reveals why earlier ones failed.

Therefore, if all but good models manifest parameter non-constancy, then identifying/selecting/isolating the constant
relationships becomes a major objective of econometrics. In that case, many of the earlier ‘problems’ of econometric
theory disappear. For example, how to tell whether a fitted equation is a supply or a demand curve or a mixture is not a
serious issue if only one of the two schedules is constant: find the constant one. This in fact re-emphasizes the main
point behind the early analyses of ‘identification’ (summarized by Working, 1927). Likewise, the high intercorrelations
of economic time series seemed to jeopardize our ability to select the relevant explanatory factors: however, if the
correlations are not constant and
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one seeks a constant relationship, then discrimination becomes far easier (include the ‘wrong’ variables and the
equation fails when the correlations alter). With turbulence, data become informative between rival claims and few
models survive – a far cry from the present proliferation of contending ‘explanations’.

6 Empirical Illustration B: UK Money Demand Re-Revisited
In a series of studies commencing in 1978, the demand for narrow money in the UK (M1 measure) was modelled
using the approach described above (cf. chapters 11 and 17 and Trundle, 1982). The follow-up analyses have
suggested that the originally selected model has remained remarkably constant over the period since 1977 (the end of
the then available data set) even though substantial changes have occurred in the authorities' policy objectives and
control rules. As part of a parallel investigation of the demand for M1 in the United States (Baba et al., 1992), we
returned to test the recent performance of my earlier model for the United Kingdom. One change adopted to match
the US data was to use gross national product GNP as the measure of income in place of the earlier Total Final
Expenditure series (TFE); the other data series were the same (including being quarterly seasonally adjusted,
unfortunately). The model assumes that in a static equilibrium state, agents wish to hold money M in proportion to
their nominal income PI (where I is real income) but hold less as inflation and/or interest rates R rise:

(12.1)

with α, β < 0. The graph ofM/PI is shown in figure 12.1 and well represents a ‘flight from money’. It is readily verified
empirically that the precise choice of income

Figure 12.1 Log(M/PI).
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measure does not alter the findings already reported. For example in chapter 11 a caricature model was estimated –
intended to show the results of applying the conventional methodology. If this model is refitted to the period
1963(i)–1972(ii) using GNP data we obtain

(12.2)

where T is the sample size,M is M1, I is constant price GNP, P is the GNP price deflator, R is the local authority three-
month interest rate, at annual rates, lower-case letters denote logarithms of corresponding capitals and Δ1xt = xt − xt − 1.
Also s is the standard deviation of the residuals and conventional standard errors are shown in parentheses.

By the usual criteria of corroboration this model does not look too bad – and could possibly be accepted, or even
applied in a policy context. However, if the sample is extended to 1977(i) (T = 52) the standard deviation rises to 8.7
per cent, and for the period up to 1982(iv) to 12.7 per cent. Thus the ‘badness of fit’ doubles, and the coefficients
change by around 100–200 per cent, although they do retain ‘the right signs’. Thus, forecasts from an equation such as
(12.2) would have been very poor: it is a badly designed model.

To mimic the earlier study and to illustrate the methods outlined above, a general dynamic equation relating m to p, i
and R with up to four lags in every variable was fitted for the period 1961(i)–1977(i) and then simplified to yield an
interpretable, parsimonious model. (The choice of R, rather than log R follows from Trundle, 1982.) The selected
equation, which fits dramatically better than the ‘caricature’, is

(12.3)

Here, z(·) is an appropriate test for residual autocorrelation of up to and including third order (distributed as F(3, 43) if
the residuals are not autocorrelated). Although the lag structure is somewhat different from the model reported in the
earlier studies, this is due to using the level rather than the logarithm of interest rates and to the use of GNP. However,
the main features of the earlier study are reproduced including large negative interest rate and inflation elasticities, a
feedback of 10 per cent from previous ‘disequilibria’ between money and income (measured by m − p − i) and a
residual standard deviation of 1.5 per cent (against 1.3 per cent for TFE over the same period, suggesting that it may
be a slightly better measure of ‘transactions’ for M1).

Now, testing the above restricted model on the period up to 1982(iv) yields

(12.4)
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The coefficients are hardly altered and the model actually fits quite a bit better notwithstanding the Lucas/Sims/
Leamer critiques and the Thatcher experiment! The residuals have a variance of 1 per cent of that of the caricature
model. Incidentally, these results were obtained in one evening on a personal computer using the author's interactive
programme PC-GIVE and did not require any ‘trials’ not reported (the simplification sequence took four steps
following the more detailed structuring proposed in Hendry, 1986a). The choice of variables produces very low
intercorrelations, the largest being −0.68 between Rt and (m − p − i)t−2 with all but two being under . Figure 12.2
shows the one-step-ahead fit of the model against the actual data, based on the whole sample.

In a hypothetical ‘static state’ when all change has ceased (except inflation at a constant rate), our equation suggests
that

(12.5)

where is annual inflation and, like R, is (for example) 0.05 for 5 per cent. Thus the elasticity ofM with respect to R is
about −0.56 at R = 10 per cent; and a rise in inflation from say 5 per cent to 10 per cent lowers M/PI by about 9 per
cent. These estimates are similar to the magnitudes we found in the United States although other substitution,
innovation and volatility effects were included in the latter study (and the residual standard deviation was under 0.4 per
cent).

Since 1982, the annual rate of inflation has fallen considerably (although UK interest rates have not) and hence a rising
ratio ofM/PI would correspond to agents' desires to hold idle money balances. Taking as dropping from 12 per cent
to 4 per cent, with R constant, a ‘neutral’ policy should envisage M/PI rising by around

Figure 12.2 Fitted and Actual Values Of Δ1log (M/P).
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12 per cent (more if R also fell). Notice that, despite being well above the going inflation rate, such a rise would not be
inflationary: rather it would reflect the reduced costs of holding idle money, and hence the increased desire for
‘liquidity’. There are clear implications for the ‘stringency’ of any set of monetary targets.

A standard blunder with equations of the form estimated above is to ‘invert’ them to ‘determine’ the price level or
nominal income or interest rates etc. This is an invalid and indeed rather meaningless step warned against in chapter
11. The equation is predicated on the assumption that agents could obtain the M1 balances they desired and is a
contingent behavioural rule given interest rates, inflation and incomes. Then agents choose to hold on average the
amounts of M1 predicted by the equation. This conditional model is constant across changes which destroy other
models (the caricature inter alia) and the technical term for its parameters is that they are super exogenous to the
historical interventions of the authorities. Such equations cannot be inverted and still remain constant. That is,
attempting to explain by the obverse of our model should produce predictive failure. That is a testable proposition.

Indeed we have the following contrast between (a) for 1963(i)–1972(iv)

(12.6)

and (b) for 1963(i)–1977(iv)

(12.7)

Thus the residual standard error has doubled although that for our money demand equation was unchanged at 1.4 per
cent over these two periods. Although (12.6) and (12.7) describing Δ1pt have smaller percentage standard errors than
the corresponding models for Δ1 (m − p)t, this does not mean they are ‘better’ models. The standard deviations of
inflation and real money are 1.6 per cent and 2.4 per cent respectively for 1963(i)–1977(iv), and even a simple second-
order autoregression for Δ1pt has a residual standard error of only 1.0 per cent. Whatever was ‘causing inflation’ during
the mid-1970s, it was not a constant relationship based on the inverse of the demand for M1 equation. In fact, while
the specification of equation (12.4) corresponds to received wisdom in terms of formulating M1 demand as a demand
for real money, the empirical evidence here and in the United States points directly to agents planning in nominal terms
in the short run. First, note that Δ1 (m − p)t ≡ Δ1mt − Δ1pt. If the Δ1pt component of the dependent variable is taken to
the right-hand side (the model is linear in such variables and is invariant under linear transformations of its variables)
the coefficient of inflation becomes +0.20 Δ1pt (0.12)
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and hence is statistically insignificant. In effect Δ1pt vanishes so that one could not logically invert the model to explain
inflation. Of course, in the ‘long run’, agents adjust their nominal money holdings in line with nominal income and
hence eventually demand real money in relation to real income. But that is consequential on prices changing, not
directly causative of their doing so. In technical terms, it is invalid to switch the endogenous–exogenous status of the
variables while preserving the same parameters. The one constancy between (12.6) and (12.7) is the negative coefficient
of (m − p − i)t − 2!

Does this mean that ‘money did not cause inflation’? First, we must confront the ‘helicopter problem’ – surely prices
would rise if pound notes were scattered in large volumes from the air (or by post as Alfred Marshall discussed in his
evidence to the Committee on Bimetallism almost a century ago (see Marshall, 1926))? Indeed, but in such an
experiment I believe equations like those promulgated above would ‘break down’ dramatically. Panic could well ensue
with a complete collapse of faith in currency (so it is back, to cigarettes – or cowrie shells?). War might erupt, who
knows? Certainly not the economist nor the econometrician. In periods of catastrophic change, human behaviour
patterns are not constrained to reproduce previously manifested historical forms: we are nothing if not creatures of
innovation. Perhaps the one useful moral of this train of argument is – don't try the experiment.

This view might be seen as an extreme Lucasian one, but it is not. For a wide range of interventions (e.g. tax changes,
rules on deduction of tax at source of income, financial innovation, and possibly even hyper-inflation), the model
presented above has some chance of characterizing the outcome as long as the contingent structure is retained. Only
the violation of the latter is prima facie disastrous for the reasons just discussed.

Our analysis suggests one possible way of accounting for the failure of ‘monetarist’ predictions to explain
macroeconomic outcomes under the so-called Thatcher experiment. The stereotypical ‘Friedmanite’ model of a stable
demand for money confronting an ‘exogenously’ controlled supply with equilibrium achieved by adjustments in the
price level requires money demand equations with nominal money being exogenous. But the models above are of
endogenous nominal money. And if the authorities' control rules have altered, then by being a constant relationship our
equation is neither a supply function nor confounded therewith. Consequently, the evidence is wholly counter to that
stereotypical view, and conclusions based on that view are unlikely to describe reality.

An amusing prediction is possible from our work concerning the impact of the recent decision to deduct tax on
interest at source from the clearing banks. Rt above is not tax adjusted (quite unlike our US models where tax is an
important determinant of M1 demand).1 Indeed, using R(1 − T) where T is the standard rate of tax actually worsens
the goodness of fit of the overall model, albeit slightly. Since Rt is supposed to measure the opportunity cost of holding
money, one is led to the view that tax on interest earnings is not being fully paid. If so, clearing banks could either
experience an out-flow of funds once tax becomes inevitable, or be forced to increase their interest rates to offset such
a tendency (or money holders are simply irrational). To model this effect within the present equation would probably
involve a switch to defining interest rates as R(1 − T) once deductibility is enforced.
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7 Empirical Illustration C: US Money Demand Explained
As noted above, in joint work with Baba and Starr, we have been modelling M1 demand in the United States. As in the
United Kingdom the ratio of M1 to nominal GNP has fallen substantially during the last 20 years. Our study proposes
ways of accounting for this through financial innovation and the volatility of long-term interest rates, and allows for
taxes, inflation, substitution between competing assets, and dynamic adjustment. We are able to establish a relatively
constant equation which also accounts for the failures of previous models during the ‘missing money’ episode and
following the new operating procedures of the Federal Reserve Bank in 1979(iv) (for previous surveys, see Judd and
Scadding, 1982; Laidler, 1985). The value of s varies over the range 0.36–0.39 per cent for a variety of subsamples of
the data and all the ‘new’ items incorporated in our approach seem necessary to explain the observed behaviour of M1.
The modelling is as for the United Kingdom, the model is similar to a generalization of (12.4), and the results are
numerically remarkably close for the common parameters (the α and β analogues are −4.8 and −1.6 respectively
although the US income elasticity is 0.5). Thus, nominal M1 money seems endogenously determined by the private
sector's demands to hold it, and the ‘inversion’ to determine prices or inflation fails as badly as it did on the UK data.

Overall, the model fits about as well as most of the best previous representations (and its residual variance is about
one-fiftieth of that of the equation reported in Cooley and Le Roy (1981) who dispute the uniqueness of the sign on
the interest rate coefficient).

8 Conclusion
Economic analysis is an essential tool for understanding how monetary economies function. Its use, however, is
severely curtailed and often counter productive unless it is firmly based on empirical evidence. That evidence is
frequently econometric in nature but, unfortunately, much of the existing empirical work is not credible and has not
produced constant relationships. Thus a further precondition to understanding is the rigorous econometric testing of
empirical assertions.

The logic of that view was presented above. It may seem that this casts econometrics in a destructive role and that few
empirical claims would stand up to rigorous testing. If this is the case then well and good: it is far better that
uncertainties and ignorance should be recognized than that invalid models should be used as a basis for policy. Since
the proof of these puddings is in their eating, some dumplings were sampled. Testing was revealed as a powerful device
for highlighting invalid assertions, despite the latter being apparently ‘corroborated’ by empirical evidence.

But the need for rigorous testing can also be seen in a more constructive light: to eliminate bad models and point the
way to better. A strategy was outlined involving the simplification of general dynamic equations to parsimonious
characterizations of the data which are then susceptible to reasonably powerful within-sample tests. Though such a
procedure is open to legitimate objections as a means of constructing
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models, so too, in principle, are all other ‘constructive’ methodologies. The one valid rule – think of the truth at the
start – is not a little unhelpful. Precisely how best to find ‘good’ empirical models is mainly a matter of research
efficiency, productivity and ‘flair’. The validity of the entailed claims is established on post-sample evidence, no matter
how the model was developed.

The suggested modelling strategy yielded constant characterizations of the holdings of M1 in the United Kingdom and
United States, which are interpretable as demand functions. The resulting models were predicated on the endogeneity
of M1 – despite ‘targeting’ or attempted control by the monetary authorities. Hence they do not sustain the common
procedure of inverting the relationship whereby the price level is derived as an equilibrium or market clearing outcome
given the money supply. Moreover, such equations are not likely to be invariant to switches in the exogeneity of M1,
given their contingent nature.

To establish any point to a policy of controlling M1, a different paradigm is required, in which the mechanism by which
money influences prices is articulated and tested. Since the demand for M1 changes greatly as inflation, real incomes,
disequilibria etc. alter, there is nothing in the analysis that precludes M1 from having an important macroeconomic role
when economic agents are perturbed from their ‘equilibrium’ demands. Only the claim that prices can be determined
by inverting the M1 demand equation is discredited given the empirical constancy of the conditional model, despite
changes in the data properties.

Finally, the constancy of the estimated equations may still not be an adequate basis for policy (though of course they
are more useful than equations which have broken down). They are conditional on a given state of financial institutions
and technology, and as new assets are ‘invented’ or develop in response to changing circumstances, their yields will
influence the demand for money. (Witness money market mutual funds and ‘supernow’ accounts in the United States;
perhaps interest-bearing building society cheque accounts will greatly influence even the conservative British in due
course.) Econometrically, this can be allowed for once the relevant agents' reactions are measurable to recover the
behavioural constancies; for policy, however, the equation appears to shift.

Monetary relationships are among the most susceptible to these effects (cf. Goodhart, 1978), making some past policy
recommendations look less appetizing in retrospect than the prospects claimed at the time. Thus while rigorous
econometric testing can dispose of some monetary myths, and can offer constant characterizations of the data which
are historically useful, their relevance to policy needs to be carefully assessed. Money demand models remain useful
when either it is known that financial innovations will not occur or, if they will occur, their quantitative effects can be
anticipated. A necessary, though insufficient, basis is careful empirical modelling of the past.

Notes
1 This phenomenon vanished on the revised data set reported in Baba et al. (1992), bringing the results slightly closer

to those found for the United Kingdom.
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Part III Formalization

Many facets interact to determine the ultimate success or failure of an empirical study. Luck may save poor
methodology; or bad econometrics may wreck a creative theory; clever thinking or valuable insights can point up the
crucial ingredients or reformulations needed for a useful model to emerge from an inadequate starting point; or,
despite the best available methodology, technology and intellect, the problem under study may have no solution. Since
we are empirically investigating social behaviour it is unimaginable that sufficient conditions can be stated which will
guarantee the success of any given study: succinctly, methodology alone is inadequate.

However, the preceding argument does not entail that methodology is worthless. That there is no ‘best’ way does not
imply that all ways are equally good. Despite its inadequacy, an important role remains for methodology, and
consequently for concepts and strategies which sustain modelling. Since good ideas can be lost by poor
implementation, including inappropriate estimation, there are many necessary conditions for the empirical success of a
model. In this third part of the book, such conditions are formulated as requirements for models to be congruent data
representations, and most of the following papers are concerned with analysing the attributes of congruency.

The five chapters in this part are respectively concerned with estimation, computation, conditioning, model concepts
and an overall framework for analysing economic time series. Chapter 13 develops the notion of an estimator
generating equation (EGE) for linear simultaneous systems estimators (briefly discussed in chapter 4). The EGE is a
simple formula based on the first derivatives of the likelihood function, from which almost all estimation methods for
a given model class can be derived. By summarizing the topic of linear systems estimation, which often comprised a
substantial part of textbook treatments, attention can be refocused on other problems — and economists should be
the last scientists to ignore the implications of opportunity cost! The EGE idea can also be applied to models with
errors in variables (see Hendry, 1976b) and a further follow-up to ‘incomplete systems’ is described in chapter 17.



The EGE idea helped my research in an indirect, but important, way. The paper helped establish my reputation as an
econometric theorist in terms of conventional professional criteria, making it easier for me to explore unconventional
ideas, and yet hope to publish them. The status quo in any scientific endeavour represents the cumulation of the ideas,
methods and concepts deemed successful over its history, and this rightly imparts a conservative bias against new ideas
or approaches. In addition, the existing participants have invested heavily in their present intellectual capital, and new
developments, especially new routes, are initially resisted since they threaten the value of that capital. However, recent
entrants stand to gain most by adopting the latest ideas because this strategy both takes them fastest to the research
frontier and circumvents the need to become masters of the knowledge so painfully acquired by earlier entrants.
Consequently, over time new ideas percolate through a profession despite initial resistance.

Unfortunately, new entrants with genuinely new ideas often find these extremely difficult to publish because of the
conservative bias and because it can be hard to explain a new idea in terms of existing concepts. If the innovative new
entrants do not have excellent pedagogical skills, their ideas may languish. However, a previously established reputation
facilitates publication and so allows the ideas a fighting chance: at the margin, it helps to be respected by the editor of a
journal even if that respect is for rather different contributions. Of equal importance is that one's ego is far less dented
by a one-line referee's report which characterizes a hard-won new idea as ‘rubbish, which the author has said three
times before’: an established figure has some grounds for his or her cognitive rationalization that the referee is an idiot,
whereas for a new entrant the third or fourth devastating denunciation can induce total despair and abandonment of
the idea, or the profession.

In my own microcosmic case, I (and my co-authors!) certainly received some damning reports, but I also received
constructive and encouraging ones. Papers rejected outright by some journal often were invited by another; and despite
some adverse reactions to various aspects of the developing methodology, yet other journals commissioned specially
written papers to exposit or clarify the approach that was evolving. Nevertheless, the certainty of employment in my
post at the London School of Economics, and the fact that I became quite widely known after this chapter was
published, were at least facilitating factors. If I wished to dissent from prevailing views and approaches then I could do
so securely, irrespective of whether or not that dissent would lead to a fruitful outcome.

To return to the overview of this part, chapter 14 is only the tip of the iceberg of programming but it serves both as an
overall exposition of the methodological framework pre-1980 and as a description of the mutual interdependence
between computational considerations based on numerical analyses and on statistical analyses. Then chapter 15 is
devoted to an analysis of exogeneity which is a key concept for both conditional single-equation models (as used
throughout part II) and open simultaneous systems. Moreover, the process of precisely formalizing one modelling
concept both highlighted the need to formalize others and suggested a framework for doing so, namely the theory of
reduction. Chapter 16 resulted as a first attempt at formalization, and chapter 17 followed as an overview of the whole
approach, which also reconsiders many of the themes developed in earlier chapters.
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The main drawback to segmenting the book between empirical applications and formalizations of the concepts and
strategies is the false impression it may create that the two evolved separately. Each aspect interacted closely with the
others: empirical puzzles stimulated conceptual and methodological developments, which had to be programmed for
future applied research, often requiring a Monte Carlo study of small-sample performance. The resulting framework
clarified some earlier difficulties but revealed others as well as highlighting previously unnoticed phenomena, thereby
inducing a continuing cycle.

One may legitimately ask of a methodology which espouses an empirically progressive research strategy whether it
itself is progressive. This question has two aspects: (i) is there excess content to the methodology, namely does it clarify
problems beyond those which the methodology was created to explain?; and (b) is any of that excess content
corroborated and found to improve empirical research? Part IV offers a brief evaluation. First, we must formalize the
methodology, and part III is the attempt.
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13 The Structure of Simultaneous Equations
Estimators14

Preamble
Chapter 13 needs a separate preamble. Its primary aim at the time of writing was to downplay the prominence of
optimal estimation methods in econometrics textbooks and thereby allow more attention to be devoted to other
aspects of modelling. Building on the papers by James Durbin (written in 1963) and Denis Sargan (1958) (and, of
course, Koopmans, 1950b), the score equations determining the full information maximum likelihood (FIML)
estimator in a complete linear simultaneous system are reinterpreted as an estimator generating equation (EGE) for all
systems and single-equation estimators.1 Thus, dozens of extant estimators are encapsulated in a simple expression,
which also reveals how to generate new estimators as desired. Moreover, whether any given estimator is consistent and
efficient can be ascertained directly from its method of generation using the EGE. While the chapter is relatively long,
that is only because it actually demonstrates how to obtain most existing estimators from the EGE. Once the theorem
is proved, however, only the EGE and a few salient special cases need to be taught.

The EGE idea actually occurred to me in the middle of a lecture on FIML when I was deriving equation (13.13) below
based on Durbin's unpublished (1963) paper (Durbin, 1988). At that point, it needed only a minor change to the
software code of FIML to produce any other estimator. In its personal computer reincarnation, PCFIML has over
12,000 lines of code; of that, the total for the EGE is under 40 lines (or about 200 if one includes the code for
obtaining all the possible reduced form matrices). Estimation of a given model is the minor part of the program that a
minor, albeit essential, tool in modelling deserves. From my perspective, the EGE achieved its immediate objective in
so far as I ceased to research into econometric estimation techniques and was able to concentrate my attention on
empirical analyses and modelling tools and methods, both in teaching and research. This was an essential step for me
in consolidating all the methods on which I had previously worked as well as greatly simplifying the underlying
computer programs.

Over the years, a number of readers have enquired about the notation of chapter 13,

14 Reprinted from Journal of Econometrics, 4 (1976) 51–88. Revised version of a paper presented to the 1974 Econometric Conference at Grenoble. I am grateful to Grayham
Mizon, Jean-François Richard, Denis Sargan and Kenneth Wallis for helpful discussions about the material herein. This research was supported by a grant from the Social
Science Research Council.



specifically the use of implicit selection and vectorizing operators together with the matrix form of the econometric
model, rather than (say) the more conventional explicit selection matrix and the vec(·) operator with a vector model as
is usual for ordinary least squares or three-stage least squares. The answer is that writing the program FIML described
in chapter 14 helped to define the EGE formalization! In computer code, it is natural to write the score in the compact
form of equation (13.8) below, for any size of system with any linear mapping from the coefficient matrix (denoted A)
to the parameter vector (θ). Models are then defined by specifying which elements of A correspond to θs, and that
mapping can be written as a vector of integers (e.g. θ1 comes in position (1, 4) = 4 of A, θ2 in position (2, 3) = n + 3 of
A if A is k × n and so on). The vector of integers is the only selection operator needed by the program and, in
addition, it allows easy and accurate model specification or respecification on the computer.

The other aspect stressed in the present chapter is the close link between optimal estimation and numerical
optimization. First, estimators are viewed as numerical rules or algorithms for approximating the solution of the score,
and are classified by their choice of initial values, number of iterations and approximation to the Hessian of FIML.
This class of different statistical approximations must be distinguished from the class of alternative numerical
optimization methods which implement FIML in different ways (e.g. Newton–Raphson or conjugate directions etc.)
but are all equal on convergence. Second, in COMFAC problems, many ostensibly different estimators transpire to be
just different optimization algorithms (see section 5 below). Interestingly, numerical efficiency and statistical efficiency
are also closely linked: one step of a numerically efficient (second-order convergent) method from consistent initial
values is statistically (asymptotically) efficient; and not iterating a numerically inefficient algorithm can lead to a
statistically inefficient estimator. This idea was later applied to Monte Carlo in Hendry and Srba (1977) and to
recursive updating in Neale (1988). A brief overview of the links between optimization and estimation is also offered in
chapter 14.

The EGE idea was extended to models with errors in variables in my comment on a paper by Ted Anderson (1976).
The main point of that comment was that instrumental variables and weighted regression methods were just different
solutions of the same basic expression, with the surprise that the former were far more robust to mis-specification of
the error covariance matrix. The original EGE is also extended to so-called ‘incomplete’ systems in chapter 17.
Potentially, the EGE notion applies much more widely and in joint research with Ken Wallis we have derived an EGE
for the class of rational expectations models discussed in Wallis (1980) which both reveals the existence of some non-
iterative yet fully (asymptotically) efficient estimators and shows why fixed-point methods usually do not work
(analogous to case 5.4 below). Generalized method of moments (GMM) estimators are based on a similar principle to
the EGE (see, for example, Hansen, 1982) and both approaches exploit the claimed orthogonality between a set of
instrumental variables and an unobservable error term, weighted by the appropriate covariance matrix. Jerry Hausman
(1975) uses this basic property of instrumental variables to derive FIML as an instrumental variables estimator. The
construct of an EGE is also closely related to the notion of an efficient estimating equation analysed by Godambe
(1976) and Godambe and Thomson (1974), although I was unaware of that literature at the time.

The issue of modelling a simultaneous system is not discussed in this chapter; an early approach was noted in chapter 3
with its follow-up in Anderson and Hendry (1984), and my most recent ideas are described in Hendry et al. (1988) in
the context of PCFIML and in Hendry and Mizon (1991) for cointegrated processes. Most of the empirical studies in
part II are single-equation analyses, in part because it was unclear (to me) until recently how to model systems ab initio
(especially so until it became clear how to model the special case of a single-equation system) and in part because the
concepts are usually easier to explain in simple cases. Chapter 19 briefly comments on system modelling issues.
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Note
1 Durbin's paper appeared in Econometric Theory, 1988.

1 Introduction
In the three decades since Haavelmo's (1943) analysis of the consequences of failing to treat the joint endogeneity of
economic variables appropriately, there has developed a vast literature proposing estimators and deriving their
asymptotic sampling distributions, interrelationships and comparative advantages etc. It is demonstrated in this chapter
that almost all simultaneous equations estimators can be interpreted as numerical approximations to the full
information maximum likelihood (FIML) estimator, and hence one simple formula can be obtained which
encompasses all of them and highlights their close basic similarities despite the present apparent diversity. This clarifies
the situation concerning asymptotic equivalences, while allowing the numerical variants to induce very different finite
sample properties.

A similar approach was adopted in the original paper to the large class of estimators designed for equations with
autoregressive error processes, but is not reproduced here.

It should be noted that as our primary purpose is an exposition of the interrelationships between a vast array of
methods, rigour is sacrificed (if necessary) where this enhances clarity.

2 Simultaneous Equations Estimators
As a basic statistical framework, we shall use the following set of assumptions, which could be generalized in many
ways with little additional complexity.1 The true structural model is known to have the specification

(13.1)

where

so that

B is an n × n non-singular matrix of (unknown) fixed parameters of the endogenous variables yt and C is an n × k
matrix of (unknown) fixed parameters of the strictly exogenous variables zt. There are adequate, exact, valid, prior zero
restrictions on B and C such that every required parameter is identifiable given a suitable normalization rule, usually bii
= − 1 (i = 1, . . . , n). The zt are measured without error and have a distribution function which is independent of the
parameters of (13.1) and εt, and T−1Z′Z is positive definite with a finite probability limit H. The additive error εt is
distributed as NI(0, Σ), where Σ is unrestricted a priori apart from being positive definite and finite. We shall usually also
assume T > n + k. The circumflex, tilde and overbar will respectively denote maximum likelihood, instrumental
variables (IV) and least squares estimators.
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As is well known (see Koopmans and Hood, 1953) the log likelihood function L is given by

(13.2)

where A and Σ are now considered as arguments of L, and not as the true parameters (to simplify notation). Clearly
the FIML parameter estimates are those which maximize L subject to the a priori restrictions on A.

For any matrix D = (d1 . . . dm), let Dv′ = (d′1 . . . d′m) and let superscript u denote a selection operator to choose only
unrestricted elements of a matrix. Thus δ = Av includes all the elements of A, whereas (vu ≡ r denoting
retained elements being the combined operator) yields the vector of a priori unrestricted structural parameters.

Using the invariance property of maximum likelihood, maximize (13.2) with respect to Σ−1 by solving ∂ L/∂ Σ−1 = 0,
which yields

(13.3)and then solve ∂ L/∂ φ = 0, which implies

(13.4)

so that (13.3) + (13.4) is the set of (non-linear) equations to be solved for the FIML estimator of A. However, the
approach of Durbin (1988) yields a more convenient expression. From (13.3),

(13.5)

where the reduced form of (13.1) is

(13.6)with W′ = B−1E′, and

(13.7)so that we also have X = (Y : Z) = ZQ′ + (W : 0) where Q′ = (Π′ : I).

Substituting (13.5) in (13.4) therefore yields

(13.8)
Maximum likelihood estimators of A and Σ must satisfy (13.3), (13.7) and (13.8) (to be mutually reconciled) as these
are necessary conditions for maximizing L; a check that a global maximum has been achieved can be conducted using
(13.2) as a criterion function. However, given any data matrix X and a model specification, this is purely a numerical
problem, although one which involves solving a set of non-linear equations. Expressed in general terms, we seek
maxθL(θ) where θ is the vector of all the parameters in L (i.e (A: Σ)) and to achieve this we could adopt an iterative rule
of the form
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(13.9)

where θ1 is the vector of initial values, J is the number of iterations (which could be determined arbitrarily or be a
variable dependent on some convergence criterion), gj is a vector of search directions, Gj is a modifying matrix to define
the metric for the problem (both gj and Gj being functions of θj) and λj is a scalar to determine the step length to
maximize L (θj+1). We shall consider different algorithms to be induced by varying the formulae determining any of
(θ1, λ, G, g, J). Two closely related classes must now be clearly distinguished:

1 choices which just induce different algorithms for implementing FIML;
2 choices which (either deliberately or inadvertently) produce algorithms approximating FIML.

Choices within class (1) imply that L (θ) is used as a criterion function to monitor the progress of the iteration so that,
assuming no multiple optima difficulties and a suitably stringent test for convergence, iteration is carried out to
convergence and (to the limits of numerical accuracy) we obtain and . Variation within (1) therefore relates to
computational efficiency and, while this is of considerable importance, we postpone a detailed discussion until section 5 to
concentrate on class (2).

When (13.8) is evaluated at (13.3) and (13.7), it is dependent only on φ and a formulation equivalent to (13.9) is to seek
solutions to q(φ) = 0. However, we could also derive approximate solutions in this way, and this in fact transpires to be a
dramatically convenient approach to characterizing (2) which unifies all existing simultaneous equations estimation
theory since, if the algorithms approximating FIML are well defined, they constitute estimation rules. Thus, consider
the possible class of estimators approximating (13.8), (13.3) and (13.7)

(i) ,
where

(ii) Σ2 = A2 (X′X/T) A′2and
(iii) Q′1 = (Π′1 : I),

with
(iv)

(13.10)

In (13.10) the subscripts denote that different estimators could be used in each expression, the numbers showing the
order in which the estimators are often obtained, with the possibility that (for example) Π1 depends on the same
estimator of A as Σ2 etc. Every member of this class is a numerical approximation to the maximum likelihood solution
commencing from different initial values and/or iterating a different number of times (including not iterating). Since
(iii) and (iv) are definitions and (ii) is the ‘obvious’ estimator of Σ (as AX′ = E′), the formula essentially centres on (i),
which is a relatively simple expression. But, conditional on any
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given values for Q1 and Σ2, (i) is linear in A, and so constitutes a generating equation for econometric estimators in that
variations in the choice of Q1 and Σ2 generate almost all known estimators for A. Thus, the formulae for almost all
econometric estimators for linear simultaneous equations are just specializations of (13.10). This not only achieves a
major economy of teaching and memory, but clarifies the structure of large groups of estimators and their asymptotic
equivalences and consolidates the current proliferation of methods.2 In the next two sections, we apply this theorem to
systems (structural and reduced forms) and individual equation estimators respectively.

3 Systems Methods

3.1 Full Information Maximum Likelihood
We use the notation that a circumflex denotes a maximum likelihood estimator (see Koopmans, 1950b, ch. 2; Hood
and Koopmans, 1953, ch. 6); then the FIML estimator solves (13.10) for such that the same Aj = Â occurs in all four
terms from which both and are derived. Granted the usual regularity conditions for maximum likelihood
estimation (see Kendall and Stuart, 1961, ch. 18), we then have (throughout, ∼ denotes ‘asympotically distributed as’)

where

(13.11)

(a possible choice for Gj in (13.9)) and

(13.12)

and so q is (13.8) evaluated at (13.3) and (13.7) and is the expression for −∂ L0/∂ φ where L0 is the concentrated
likelihood function. However,

(13.13)

and hence, although Σ−1 and Q′ depend on φ through (13.3) and (13.7) respectively, since plim (E′Z/T) = 0, terms
involving their derivatives with respect to φ in (13.13) are asymptotically negligible for any consistent estimator of A.
Conversely, variations in estimating Σ and Q will not affect the asymptotic distribution of Â subject to the minimal
condition that the estimators of Σ and Q are consistent. Let
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so that

(13.14)Then from (13.13), dropping the asymptotically negligible terms,

(13.15)

where superscript u denotes selecting rows and columns corresponding to unrestricted aij prior to inversion.

The reason that FIML requires iterative solution is that, to maximize the likelihood, it must reconcile all the
relationships between the data and the parameters such that the latter are mutually consistent at all sample sizes.
Nevertheless, (13.13) shows that, provided they are consistent, sampling variability in the estimators of Q and Σ does
not affect the asymptotic distribution of . Re-expressed in numerical terms, iterating with respect to consistent
estimators of Q and Σ leaves the asymptotic distribution of unaffected. Thus, there is an infinitely large class of
asymptotically efficient estimators derivable by solving (13.10)(i) conditional on consistent estimators of Q and Σ and
this in fact includes all methods known at present. Further, even if Q1 and Σ2 are not consistent for Q and Σ, providing
plim T−1Z′ E = 0, every solution of (13.10)(i) yields a consistent estimator for A (see section 5 for numerical
optimization methods).

3.2 Three-Stage Least Squares
This method was proposed by Zellner and Theil (1962). In (13.10), evaluate Σ2 using (consistent) two-stage least
squares (2SLS) or IV estimates for A2 (denoted 2) and replace Q′1 by ′ = (Π′ : I) (an overbar denotes least squares),
where3

(13.16)

is the unrestricted reduced form estimator of Π so that (iv) is ignored. Since Z′ X = X′ Z (Z′ Z)−1Z′ X = X′ MX, forM
= Z (Z′ Z)−1Z′, normalizing the diagonal of B and vectoring (13.10)(i) yields (on cancelling T−1 and using y = (Y′)ν)

(13.17)

which is readily verified to be three-stage least squares (3SLS) (compare Madansky, 1964; Sargan, 1964b).

3.3 Iterated Three-Stage Least Squares
If (13.17) is iterated numerically revising only Σ2 from (13.10)(ii) the convergence point will in general differ
(numerically) from FIML for all finite T, leaving the asymptotic distribution unaffected (see Dhrymes, 1973). However,
(13.17) could equally be written as

(13.18)

STRUCTURE OF SIMULTANEOUS EQUATIONS ESTIMATORS 297



and iterating this with respect to both Σ and Q using (ii) and (iv) will yield FIML on convergence (revising Q as well
would add negligibly to the computational cost). Indeed, it corresponds to a ‘block’ Gauss–Seidel solution of (13.10),
successively linearizing it in the form (13.18). Writing = Z ′ provides an IV interpretation (see Hausman, 1975).
Alternatively, since X = ZQ′ + (W:0) and plim T−1Z′W = 0, replacing the remaining X in (13.18) by Z ′ provides a
‘two-stage’ interpretation (i.e. replacing the regressors by their ‘systematic’ components):

(13.19)This is obviously the same as (13.17) but could be expressed more generally as

(i)

or as
(ii)

(13.20)for = Z Q′1.

Further, these are all obvious special cases of (13.19). However, for Q1 ≠ , (13.20) cannot be written explicitly as
(13.10), and hence (13.13) cannot be used as the criterion for deciding on asymptotic efficiency. Indeed, the efficiency
of φ3does now depend on that of Q1 and will be asymptotically efficient if and only if Q1 is at least as efficient as . Thus,
for example, 2SLS values of Q1 will not suffice in (13.20) even though they would in (13.18). Further, the consistency of
φ3 depends on the consistency of Q1.

Another alternative would be to replace X in (13.10)(i) by its ‘systematic’ component ZQ′1, but now if Q1 satisfies the a
priori restrictions on A, namely AQ = 0, the next iteration simply reproduces A1.

3.4 Linearized Full Information Maximum Likelihood
Evaluate Σ2 and Q1 in (13.10) using the same consistent estimator Ã of A, and solve for A3. From section 3.1, this is
equivalent to using the Newton–Raphson algorithm ( , 1, G, q, 1) in (13.9). When Ã − A is O(1/T1/2), since
Newton–Raphson is second order convergent, the one-step estimates solve (13.10)(i) to O(1/ T) (see Rothenberg and
Leenders, 1964).

3.5 Iterated Instrumental Variables
Using any IV estimator of A, solve (13.10)(ii), (13.10)(iii) and (13.10)(iv) for and and as before let = Z ′. Re-
estimate A using (13.10)(i) written as

(13.21)

Apart from the choice of initial values, this is identical to (13.18) and converges numerically to FIML if iterated using
(13.10) (see Brundy and Jorgenson, 1971).
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Generally, note that (13.10)(i) can be vectored as

(13.22)

and that only the consistency of the parameters of the ‘generalized instruments’ affects the efficiency of A3 (see equation
(13.13) above). Heuristically, such instruments are ‘optimal’ as Σ−1 allows for the between-equation error correlations
and heteroscedasticity while . In dynamic models, ‘simulation predictions’ of xt could be used instead of
reduced form predictions, but this would not be fully efficient in correctly specified systems.

3.6 System κ-Class
The system κ-class estimator considers Q1Z as a ‘unit’ such that Q1 cannot be explicitly written, using for some matrix κ*

(13.23)

(see Srivastava (1971) and Savin (1973), who considers κ* = α I for scalar α). Now, however, irrespective of whether
(13.23) is used in (13.20) or (13.22), the analysis in (13.13) cannot be applied and such estimators require separate
proofs of their asymptotic efficiency. A point requiring care is that even if plim κ* = I, so that (13.22) + (13.23) satisfy
(13.10) asymptotically, and both T−1Q1Z′ZQ1′ and T−1Q1Z′X converge to QHQ′, the resulting estimator will not be
asymptotically efficient unless plim T1/2 (κ* − I) = 0 (compare section 4.6 below).

All the above estimators therefore differ solely in the choice of initial values and iterative algorithm (where the latter
subsumes the choice of number of iterations) for solving (13.10). Nevertheless, their finite sample behaviour can be
radically different (as comparison of FIML and 3SLS dramatically illustrates), as can computational cost and the
conditions necessary for the computability of the estimators. Manifestly, there remain infinitely many members of the
class of asymptotically efficient estimators; some of these may well have better (finite) sampling properties than those
already known, and/or cost less to calculate, but it seems a plausible conjecture that they are all specializations of
(13.10), since it comprises the class of all approximations to FIML.

3.7 Reduced Form Estimation
If the complete system (13.1) is just identifiable,

(13.24)
has a unique solution for (B: C) from any arbitrary Π. Π can therefore be estimated unrestrictedly and, if a maximum
likelihood estimator is used, by invariance the values of (B: C) from (13.24) will also be maximum likelihood. But
(13.10)(i) can be rewritten as

(13.25)
which has (13.16) as the solution noting that only the second ‘block’ corresponding to I in Q′1 is retained since there are
no derivatives for coefficients of Y. If the system is in reduced form (B = I), but with exclusion restrictions, an
immediate solution of (13.25) is
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(see Zellner, 1962), and plim Σ2 = Σ is sufficient for the efficiency of .

3.8 Minimum Distance Estimators
Expression (13.25) remains true ifA is over-identified, although as this imposes restrictions onΠ the efficient solution
is no longer (13.16). Let be the reduced form error variance matrix (which is unrestricted if Σ
is); then (13.25) becomes

(13.26)

As in (13.13), replacing Q1 and Ω2 by any consistent estimators will not affect the asymptotic distribution of Π3, and
one possible choice is and Ω = T−1 × Y′ (I − M) Y. Then (13.26) could be iteratively solved for B3 and as
functions of φ. This is in fact the usual minimum distance estimator, alternatively derived from minimizing

(13.27)

as a function of φ, directly establishing its asymptotic equivalence to FIML (see Malinvaud, 1970, ch. 9; Rothenberg,
1973, ch. 4). If Q1 and Ω2 were also iteratively revised using (13.10), the convergence point in all sample sizes would
provide FIML estimates of the restricted reduced form parameters (by invariance); this would add little to
computational cost, while providing the value of the likelihood function at the optimum for inference.

Simultaneous least squares (see Brown, 1960; Dhrymes, 1972) is obtained by setting Ω2 = I in (13.26) and hence
cannot be asymptotically efficient in general.

3.9 Subsystem Estimation
A further variant is when good structural specifications are available for some equations while no reasonable theory
exists concerning others or these equations are just identified. If the latter set are replaced by unrestricted reduced
forms and the whole system is then estimated by FIML, a subsystem variant of limited information maximum
likelihood is produced (see Hood and Koopmans, 1953, ch. 6). Also, Court (1973) has proposed a 3SLS equivalent
(which will not improve the efficiency of estimation of the over-identified subset) from which more efficient reduced
form estimates than (13.16) are obtained. This is (13.10)(i) written as

(13.28)

(where BdY′ + CdZ′ = E′d is the well-specified subset (Bd being n1 × n, say) and Y′b − ΠbZ′ =W′b is the remainder) using
2 for Σ2 and for Q1, and hence resulting in a variant of (13.17). Again, different consistent estimators of Σ and Q
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could be adopted without affecting the asymptotic distribution.

Finally, note that (13.10) is not the correct expression for FIML when Σ is known to be diagonal, so that the various
asymptotic equivalences cannot be claimed to hold, and in fact it is well known that FIML is more efficient
asymptotically than 3SLS in that case.

4 Individual Equation Methods
Equation (13.10) also specializes to the class of estimators which recognizes the joint dependence of the regressors but
neglects over-identifying information on all other equations. Since the consistency of Σ2 for Σ is not necessary to ensure
that A3 is consistent for A, a sufficient condition for (13.10)(i) to hold is

(13.29)

This would be necessary if Σ was diagonal, but then (13.10) would not be the appropriate expression for FIML
derivatives as just noted.

A more useful derivation is to consider (13.28) when n1 = 1, with all equations except the ith exactly identified, the ith
being the first row of A. Thus let A′ = (ai: D′), where D = [(0: I): −Πb], and let

(13.30)Then (13.28) becomes

(13.31)Since hω = −Φ σ, the second ‘block’ in (13.31) can be solved for Πb in the form

(13.32)

and substituting this back into (13.31) yields (13.29) immediately.

As in (13.13), derivatives of Q1 with respect to a3i in (13.29) are asymptotically negligible (being multiplied by T−1Z′ εi) so
that for any consistent estimator of Q all solutions of (13.29) yield asymptotically equivalent estimators of ai with
asymptotic variance matrix σii (QHQ′)−1. Also, as before, variations in the choice of Q1 generate all ‘limited information’
type estimators.

4.1 Limited Information Maximum Likelihood
Limited information maximum likelihood (LIML) solves (13.29) subject to (13.32) and (13.10)(ii), (13.10)(iii),
(13.10)(iv), using the same estimator of ai throughout (LIML and FIML coincide if all equations but the ith are just
identified). Noting the equivalence between (13.30) and (13.3) so that
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(13.33)

post-multiply (13.32) by Z′Xâi and substitute for σ and h from (13.33),

where

and as we have

(13.34)

Thus is O(1/ T) and is the smallest latent root of [(X′MX − λ X′ X)ai]u = 0 with ai1 = −1, and âi is the corresponding
latent vector. Finally, using (13.34) in (13.29) and deleting the first row (which provides the normalization) yields the
more familiar expression for LIML (see Anderson and Rubin, 1949)

(13.35)

Alternatively, if the first row is retained, we have the expression

where

(13.36)

which generates the ‘Ω class’ of estimators recently proposed by Keller (1975), using other estimators of μ Ω than .
Further, the preceding analysis immediately clarifies that the resulting estimator of ai is consistent provided that the
estimator of μ Ω is O(T1/2) (even if it is inconsistent) and efficient if it is O(1) (or less). Because LIML enforces the
estimates of Σ, D and Q all to be coherent with âi using the maximum likelihood functional relationships, LIML is the
hardest estimator to derive explicitly from (13.10); even so it is no more tedious than doing so via the concentrated
likelihood function (see, for example, Klein, 1974).
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4.2 Two-Stage Least Squares
2SLS can be interpreted as either (13.29) using for Q1 or (13.35) with (note (13.34) if ). Since = X′ Z(Z′
Z)−1, = Z = MX and hence X′ = ′ (by the idempotency ofM) so that a ‘two-stage’ formulation is valid (see
Basmann, 1957; Theil, 1961; Theil also considers iterative 2SLS). Thus we have three forms for (13.29):

(13.37)Nevertheless, this is only true because the resulting estimator remains a special case of (13.29).

4.3 Iterative Two-Stage Least Squares
Since applying 2SLS to every equation is equivalent to using (13.20)(ii) with ′ = Z′ but Σ2 = I, solving (13.37) even
with restricted estimates of Q will not yield FIML efficient estimates of ai. Further, if (subject to a normalization
condition) the ‘two-stage’ formulation given by the middle expression in (13.37) is used but with the estimator of Q
based on solved 2SLS estimates of A, as these cannot be ranked in asymptotic efficiency relative to , the resulting
estimator of ai cannot be ranked relative to 2SLS (compare sections 3.3 and 4.7).

Also, the consistency of this estimator of ai depends on Q1 being consistent for Q. Finally, if the ‘two-stage’ form
(Q1Z′ZQ′1a3i)u is adopted for all the variables in X, from any values of Q1 satisfying the a priori restrictions on A, Q′1a3i =
0 and the initial estimates are reproduced (see Basmann and Bakony, 1961).

4.4 Instrumental Variables
Equation (13.29) is an IV estimator using ′ = Q1Z′ as the set of instruments, thus exploiting the independence of the
exogenous variables and the errors (see Sargan, 1958). Further, as Q ‘weights’ the Zs in linear combinations for each Yj

according to how important a determiner of that Yj the various Zs are in the reduced form this provides an ‘optimal’
set of instruments (compare McCarthy, 1972). Note that the IV estimator remains consistent even when plim Q1 ≠ Q,
and that a vast range of choices for Q1 exists. In particular we have Q1 = (2SLS), Q1 = (in (13.32)) (LIML) and also
Q1 = which yields the iterated IV estimator.

4.5 Iterated Instrumental Variables
This iterated IV is the ‘limited information’ analogue of section 3.5 (see Brundy and Jorgenson, 1971). From any IV
estimator Ã of A, solve for from (13.10)(iii) and (13.10)(iv) and compute

(13.38)

Further iteration will not affect the asymptotic distribution; note that IV and this estimator are computable for k > T >
m (m regressors) whereas 2SLS is not (see, however, Fisher and Wadycki, 1971).

4.6 κ-Class
The κ-class uses (13.23) with κ* = κ I for Q1Z′ in (13.29) or can be obtained from κ = 1/(1 + λ) for arbitrary λ in
(13.35) and hence cannot be written explicitly as a product of Q and Z for κ ≠ 1 or (see Theil, 1961). As noted
above, a sufficient condition for consistency is plim κ = 1; but κ-class only have the same
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asymptotic distribution as LIML if plim T1/2 (κ − 1) = 0. Thus κ = 1 ± 1/T1/2 does not yield an LIML asymptotically
efficient estimator, despite satisfying the estimator generating equation (13.29) asymptotically.

Eliminating the predetermined variables from (13.35), we can reformulate LIML (relating it to the least generalized
residual variance principle) such that we require the smallest latent root of |Fd − λ Fc| = 0, where Fd = Y′c (I − Mc) Yc

and Fc = Y′c (I − M) Yc, Zc and Yc are all the included exogenous and endogenous regressors in the relevant equation,
respectively, and Mc = Zc (Z′cZc)−1Z′c. Since κ-class comprises all values of κ, we have the well-known alternative
interpretation that 2SLS is κ-class with κ = 1, and ordinary least squares (OLS) is κ-class with κ = 0 etc. (the choice of
other appropriate values of κ has been considered by Nagar (1959) and Sawa (1973)).

A convenient summary of the effects of varying κ is provided by Farebrother (1974).

4.7 Fix Point
While fix point (FP) uses a reformulated interdependent (REID) system specification this does not preclude its
derivation in the above framework (see Mosbaek and Wold, 1970; Maddala, 1971a; Lyttkens, 1973). Normalizing on
the diagonal of B, in structural predictor form the REID specification has B = (I − B*) with B* having zeros on its
diagonal and postulates

(13.39)where W′ = (I − B*)−1E′ as in (13.6),

and hence

so that on taking expectations in (13.39)

(13.40)

If Y* was known, the coefficients in (13.39) could be estimated by OLS, but empirical implementation necessitates
estimating Y* which yields a non-linear problem in the parameters B*, C, Y*. One of the proposed algorithms
(Mosbaek and Wold, 1970, p. 128) is as follows. Given any initial value Y1 of Y* (e.g. from Y1 = ZΠ′1 with Π1 based on
2SLS estimates of A) apply OLS to the empirical equivalent of (13.39). This involves regressing Y on Y1 and Z to yield

and C2 or, at the jth iteration,

(13.41)

and one estimates and Cj by OLS. From these generate Yj using the empirical equivalent of (13.40) in structural
form,

(13.42)
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to update the iteration. The fixed point is defined by and hence if convergence occurs at the Jth
iteration from (13.42) we have at j = J

(13.43)

as required from (13.40). The reduced form method of generating Yj uses (13.43) for all values of j, although this might
radically alter both the convergence properties and the values of B*, C to which the iteration converges.

Despite the apparent gulf between this development and (13.10), FP is a straightforward special case of our generating
formula using the modification to (13.20)(ii) with ZQ′1 = = (Yj:Z) and Σ2 = I, where Yj is generated by either of the
structural or reduced form methods. Thus FP is also an approximation to FIML, but by choosing (implicitly) Σ2 = I it
is (under REID) inefficient relative to FIML. Further, by using a ‘two-stage’ reformulation (often called repeated least
squares) the analysis in section 3.3 applies and the asymptotic distribution of the estimator of A depends on that of Q1,
such that if it converges it is asymptotically equivalent to iterative 2SLS. Thus, if (13.43) is used to generate Yj (as in
Edgerton, 1974), FP appears as an iterated ‘two-stage’ estimator, while an IV equivalent is provided in section 4.5. In
comparing the various possibilities, Maddala (1971a) found that IV + (13.43) always converged (this is (13.38) applied
to all equations and is LIML efficient), ‘two-stage + (13.42) was next best (this is FP), whereas the alternative pairings
rarely converged. Since FP cannot be ranked in asymptotic efficiency compared with LIML, the ‘two-stage’ substitution
has affected its statistical distribution while the generation of Yj by (13.42) or (13.43) has equally clearly altered its
numerical properties.

4.8 Single-Equation Estimation
Trivially, if n = 1, (13.10) has OLS estimates as its solution.

Summarizing the development, the expression (Σ−1AX′ ZQ′)r = 0 defines the structure of simultaneous equations
estimators and provides a simple means of creating new methods by using various estimators for Σ and Q, although
this is an activity which by now must have a negligible marginal product.4 All the available methods appear as numerical
variants of (13.10), either of fixed s-steps (for small s) or iterative to convergence, using different initial values, treating
ZQ′1 as two terms or as , and solving the set of equations simultaneously or only partially. These variations can affect
both the large- and the small-sample distribution properties, and (13.10) helps clarify these asymptotic equivalences as
well as unifying the theory.

The former have been covered during the above discussion but space considerations prohibit surveying present
research on the finite sample situation.

In closing this section, however, it seems worth pointing out that, to practitioners, the true structural specification of
the system is rarely known and hence an equally valuable selection criterion between estimators is their robustness to
mis-specification. ‘Two-stage’ formulations (other than 2SLS) seem weaker here than IV estimates; equally, stochastic κ
(LIML) also induces different susceptibility (see Fisher, 1966a). Greater information on this aspect seems desirable as it
may be more
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important in guiding the choice of the estimator than formal small-sample properties assuming correct specification.

5 Single-Equation Methods for Autoregressive Errors
The case n = 1 is denoted autoregressive least squares (ALS). While this is not a simultaneous equations problem any
longer, similar principles apply and the inter-relationships within this large subgroup can be substantially clarified by
once more considering all the estimators as alternative numerical approximations to the maximum likelihood method.
Further, this is a convenient problem for analysing case (1) in section 2, as it has all the essential non-linear
complications while the two-parameter specialization (with one non-constant exogenous regressor) is a useful
pedagogical device for graphical exposition of the various numerical optimization methods which have been proposed
for implementing econometric estimators.

To simplify notation, write the equation of concern with unrestricted γ as

(13.44)and let

(13.45)so that

Let θ = (γ, ρ), and note that the concentrated likelihood function (neglecting initial conditions), obtained by eliminating

(13.46)is

Thus the estimator generating equation specializes to (q = ∂ f/∂ θ)

(13.47)Further, it is useful to record −∂ q/∂ θ (dropping asymptotically negligible terms):

(13.48)

5.1 Maximum Likelihood Estimation of (γ, ρ) (Autoregressive Least Squares)
The maximum likelihood estimator solves equation (13.47) for which maximizes5f (θ), and since the equations are
non-linear in γ and ρ some iterative algorithm
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must be adopted. The framework of section 2 is convenient, in particular equation (13.9),

and the set

Stepwise Optimization
Choose Φa = (0, 1, (F*)−1, q, J) where F* is F with Z+′wl = 0 which induces separate estimation of γ and ρ (see Cochrane
and Orcutt, 1949). Since q(θ) = 0 implies

we have

(13.49)

and hence the alternative stepwise interpretation which exploits the property that, given ρ, (13.49)(i) is linear in γ and,
given γ, (13.49)(ii) is linear in ρ. These calculations are just successive OLS estimations and hence every step produces
an increase in the likelihood and the procedure converges with probability unity (see Sargan, 1964a).

Figure 13.1 Iso-contours Of the Likelihood Function: →, Increasing Values; Subscripts, the Number Of the Iteration.
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Figure 13.2 Iso-likelihood Contours For Correlated Parameters.

For one regressor this is just ‘axial search’, a method which has received considerable criticism for its computational
inefficiency (see Box et al., 1969; Dixon, 1972; Klein, 1974, p. 92). Figure 13.1 portrays the situation for exogenous Z.
The plots show iso-contours of the likelihood function, with the arrow denoting increasing values and subscripts
denoting the number of the iteration. Thus, γ1 is the OLS estimate ignoring autocorrelation and ρ1 is the estimate of ρ
based on OLS residuals where DW denotes the Durbin–Watson statistic.

From equation (13.48) using the same argument as in (13.13), if y1 ∉ {Z} any consistent estimator of ρ will yield an
asymptotically efficient estimator of γ and conversely (hence the diagnostic value of DW). But ρ1 will be close to only if
the contours are approximately circular, or are ‘vertical’ ellipses. The rate of convergence (and the closeness to the
optimum achieved by the first few steps) thus depends on the shape and slope of the contours and could be slow if
these are elongated in a

Figure 13.3 Direction Of Total Progress After Three Axial Searches.
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direction which is parallel to neither axis. Such is likely to occur when the lagged dependent variable is a regressor,
which illustrates why DW is then not a useful statistic (see figure 13.2). In effect, this is a criticism of the initial value
(0, 0) used to commence this algorithm, although in practice any pair ( , ) could be used. Further, the choice of λj = 1
∀ j is not optimal for dynamic equations and choosing λj to maximize f [θj + λjF* (θj)−1q(θj)] at every iteration (which is a
scalar line search in the direction of total progress — see figure 13.3 and the section ‘Conjugate Directions’ below)
considerably alleviates the slow convergence problem (especially if combined with sensible θ1) while retaining the
advantage of κ-dimensional conditional optimization without search.6 Note that this section does not justify the use of
ad hoc successive substitution methods, but merely the subset that corresponds to stepwise maximization of some
criterion function (see section 5.4).

Grid Search
Since −1 < ρ < 1 for stationarity, the optimum can be located within ± 0.1 using a grid of steps of 0.1 (requiring the
equivalent of 19 iterations of the above procedure). This corresponds to solving equation (13.49)(i) for successive least
squares estimates of γ conditional on each value of ρ ∈ {−0.9, −0.8, . . . , 0.9}, and choosing that which yields the
highest likelihood (see Hildreth and Lu, 1960). A ‘finer’ grid search by steps of 0.01 could then be undertaken for the
interval of 0.2 which brackets . However, this would require a further 19 iterations to improve the precision to ± 0.01
and it seems definitely cheaper to switch to stepwise optimization at this point, as is often done (compare Klein, 1974,
p. 92). A potential advantage of doing the first grid search is to reveal any multiple optima, provided that these are not
sharp spikes. Graphically, of course, the grid is simply a series of ‘line searches’ (of the form ρ1ρ′1 in figure 13.1) parallel
to the γ axis by intervals of 0.1. Unlike stepwise optimization, it does not generalize usefully to other situations,
including higher order autoregressive schemes. In terms of Φ, equation (13.9) is applied to stepwise optimization for θ
= γ (i.e. ignoring equation (13.49)(ii)) with J = 1 but repeated for the grid over ρ using f purely as a criterion.

Newton–Raphson and Gauss–Newton
The Newton–Raphson and Gauss–Newton procedures use Φc = (θ1, 1, F−1, q, J) (although λj chosen as suggested for
stepwise optimization is not uncommon) (see Sargan, 1964a). If Z is strictly exogenous this will be slower than
stepwise optimization as Z+′ wl = 0 is approximately true. If yl ∈ {Z}, θ1 = 0 is hopeless as then F−1q corresponds to
regressing y on Z and yl. If F in (13.48) is partition inverted, the first ‘block’ of F−1q is (for general θj)

(13.50)

whereM* = I − wl (w′lwl)−1w′l so that M*Z+ are the residuals from regressing Z+ on wl. Thus Gauss–Newton is simply a
stepwise method with the additional step of
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computingM*Z+ in place of Z+ and so existing programs for stepwise optimization can be easily converted.7 Combined
with optimizing over λj and using consistent estimates ( , ) for θ1 this provides an inexpensive algorithm, which
virtually always converges. Variants of Gauss–Newton (including those based on numerically evaluating first
derivatives) have been extensively used for estimating moving-average error models (see inter alia Hendry and Trivedi,
1972; Williams, 1972; Marquardt, 1963; Box and Jenkins, 1976).

In graphical terms, q defines the gradient while −F−1 is negative definite and defines the metric such that, for a
quadratic, their product maps θ1 into the maximum. Note that steepest descent is just Φs = (θ1, −1, I, q, J), but, if λj is
optimized, this is the same as stepwise optimization for k = 1. Also quadratic hill climbing (see Goldfeld and Quandt,
1972) combinesΦc and Φs in Φq = (θ1, 1, (F + μ I)−1, q, J), where μ is chosen to ensure that (F + μ I) is positive definite.
This has been successfully used for autoregressive FIML, but for n = 1 is unlikely to surpass equation (13.50).

Variable Metric or Quasi-Newton
The variable metric or quasi-Newton estimator is Φd = (θ1, λ, Gj, q, J), where Gj evolves during the iteration by Gj + 1 =
Gj + Dj such that G1 = I and GJ = F−1 (see Powell, 1972). Thus the Davidon–Fletcher–Powell (DFP) algorithm chooses

(13.51)

where

whereas Broyden's rank-one algorithm uses (J ≥ k + 1)

(13.52)

(see, for example, Dixon, 1972).

Applied to any non-linear maximum likelihood estimator (of which ALS is just an example) these make for reasonably
fast algorithms which only require f and q to be programmed and hence are quite easy to implement if, for example,
DFP is already ‘packaged’.

Conjugate Directions
In fact, an important advantage of the conjugate directions approach is that it does not even require the first
derivatives and operates from values of the likelihood function only (see Powell, 1964; Hendry, 1971). By appropriate
use of the concentrated likelihood function to map the problem into the lowest possible dimensional space, it can
provide a computationally efficient (and easily programmed) algorithm.

In two dimensions, the stepwise optimization approach was shown to be that of axial search. Now, after one search has
been accomplished in each axis direction from (γ1, 0) to locate (γ2, ρ1), the direction of total progress is defined by the
vector difference
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and, since this shows the direction in which the parameter values are changing, it is a good direction to investigate, as is
obvious from figure 13.3. The optimum in that direction can be located by any line search procedure (e.g. fitting a
quadratic and choosing the optimum of the quadratic). Further, this defines a search direction which is not parallel to
the original (perpendicular) axes but is closer to the elongation of the ellipses. In fact, since (γ2, ρ1) and (γ1, 0) are both
maxima of the function in the direction of the γ axis (corresponding to different values of ρ), for a quadratic their
difference is conjugate to that direction. Thus, a set of conjugate directions can be constructed by retaining all (non-
collinear) directions of total progress. Further, given a set of conjugate directions, the maximum of a quadratic of k
variables can be located by exactly one search in each direction. Thus, assuming that the likelihood function can be
reasonably approximated by a quadratic in the neighbourhood of the optimum, Powell's algorithm will be quadratically
convergent. In practice, however, for this application, because it does not exploit the bilinearity of the scalar
autocorrelation case, it tends to be slower than stepwise optimization (for autoregressive FIML its performance is
often impressive). Thus we haveΦe = (θ1, λ, I, g, J) where g represents k + 1 search directions in each iteration for (γ, ρ)
(updated as above) commencing from the co-ordinate axes.

Iterated to the same convergence accuracy these algorithms all define the same estimator (ALS), but we can also
consider the class of approximations to (13.47). An additional notation is very convenient here, namely (noting that
lagged values are always denoted by l) define

(13.53)

so that we derive estimators by solving

(13.54)

If yl ∈ {Z} efficient estimation of γ(ρ) is required for ρ(γ).

5.2 Linearized Autoregressive Least Squares
Linearized ALS is in fact just one step of equation (13.50), i.e. , where (see
Hatanaka, 1974). Hence from a first-order Taylor series expansion and so one iteration produces an
asymptotically efficient (if somewhat arbitrary) estimator. θ1 = based on purely exogenous regressors seems a
reasonable choice. (Compare Sargan (1964a) and the following discussion.)
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5.3 Two-Step Estimation
Two-step estimation uses (13.54)(ii) to solve for ρ2 from γ2 = (a consistent IV estimator) and then solves (13.54)(i) for
γ3 (actually the closely related Aitken expression is used: see Wallis, 1967). While not asymptotically efficient for
dynamic equations (see Maddala, 1971b) the efficiency loss does not appear to be large (see Wallis, 1972b; Hatanaka,
1974). Thus Φ2 = (0, 1, F* − 1 (θ2), q(θ2), 1), where θ2 = ( , ρ2).

Other variations are quite possible, but to repeat, if yl is a regressor, non-iterative estimators other than those described
in section 5.2 will not be fully efficient asymptotically.

5.4 Lagged Residual Methods
A rather different approach to ‘treating’ autocorrelation has been based on a modification of (13.44), namely (see
Gupta, 1969; Feldstein, 1970)

(13.55)

From any consistent estimator of γ calculate from (y − Z ), substitute this lagged for wl in equation (13.55) and
estimate γ and ρ by least squares. The method can be iterated, estimating at each step

(13.56)

until the fixed point γj = γj − 1, ρj = ρj − 1 is reached. Each stage of the iterate (except calculating (yl − Zlγj − 1)) requires the
minimization of e′jej and at the optimum the estimates satisfy the non-linear restriction on the restricted transformed
relationship of equation (13.45). But appearances can be deceptive for the formulation in terms of (13.56) stops this
from being a fully efficient solution to (13.54). Heuristically, equation (13.54)(i) is obtained by allowing both γs in (13.56)
to vary simultaneously whereas applying OLS to equation (13.56) holds the γj − 1 multiplying Zlfixed. Indeed, the least
squares equations for (13.55) are

(13.57)

and hence for ρ ≠ 0 these yield different results from equation (13.54). (I am grateful to Honor Stamler for this
analysis.) In practice, recalculating wl means that successive iterates of equation (13.56) can lead to increases in the
residual sum of squares, and in addition are inefficient (compare section 4.7) and provide conditional standard errors
(see Grether and Maddala, 1972).

6 Conclusion
Virtually every known (classical) econometric estimator for dynamic or static systems or single equations, with or
without autoregressive errors, appears as a numerical
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approximation to the maximum likelihood (first derivative) equations. Further, this formulation clarifies for which
‘nuisance’ parameters efficient estimation is directly required and for which consistent estimation suffices (in not
affecting the asymptotic distribution of the main parameters of interest). By appropriate choice of the numerical
algorithm, asymptotically efficient estimators can be obtained in a few steps whereas the same number of steps using
similar but less efficient algorithms yields statistically inefficient results. The forms of equations (13.10) and (13.47)
generalize directly to higher order or vector autocorrelation, spectral estimation (see Espasa, 1977), non-linear
parameters etc., and a similar approach could be adopted. Equally, the approach of section 5 can be applied to clarify
alternative estimators for models with moving-average errors.

If criteria other than asymptotic efficiency and computational cost are used the choice of the approximation (if any)
remains an open question. For example, problems of finite sample distribution (e.g. the existence of moments) or
robustness may have to be judged against the powerful arguments in favour of using the likelihood for inference (see
Edwards, 1972) and the objectivity of maximum likelihood estimators. Nevertheless, I hope that the present result
helps elucidate the structure of simultaneous equations estimators so that such questions can be more easily tackled.

Notes
1 For example, by allowing for identities, lagged endogenous variables, non-normal errors etc., which do not affect

the asymptotic results (see, for example, Mann and Wald, 1943).
2 Hausman (1975) has proposed an IV interpretation of FIML, providing an alternative grouping system. Also,

compare Chow (1964) and Malinvaud (1970, ch. 19).
3 This can also be derived from (13.10); see equation (13.25).
4 For example, consider applying generalized least squares using a consistent estimator of Ω at each step estimating

(13.41) in place of OLS; i.e. solve (13.20)(ii) with consistent Σ2 etc.
5 Again ignoring initial conditions.
6 The standard errors of the estimated coefficients provided by these intermediate regressions are of course

conditional standard errors which ignore the variability of the estimator of ρ; specializing (13.48) yields the correct
result and this coincides with the conditional estimates only if yl ∉ {Z}.

7 Note that equation (13.50) is equivalent to regressing y+ on Z+ and wl (compare Hatanaka, 1974).

STRUCTURE OF SIMULTANEOUS EQUATIONS ESTIMATORS 313



14 AUTOREG: A Computer Program Library for
Dynamic Econometric Models With Autoregressive

Errors15

With Frank Srba

Preamble
No matter how powerful and general econometric theory may become, it is only of operational value after it has been
implemented in computer software. Like many other disciplines over the last quarter century, econometrics has been
serviced by an ever increasing number of computer packages. Most econometric software has embodied an implicit
methodology and modelling approach, but widely distributed programs have usually lagged some years behind the
state-of-the-art technical econometric frontier. Consequently, a large share of my research time has always been
devoted to programming in order to implement the various estimators, tests and modelling strategies discussed above,
leading to the AUTOREG library described in the present chapter.

The evolution of AUTOREG mirrors the story of the methodological developments described in earlier chapters.
Initially, the programs focused on ‘optimal estimation’ based on the implicit assumption that the dynamic models
under study were more or less correctly specified. The tests offered were mainly tests of model specification, where the
null was just a special case of an already estimated more general model. Then an increasing number of diagnostic tests
was included for mis-specification (see, for example, Mizon, 1977a) gradually leading to the implementation of ‘model
building’ procedures. In parallel, the Monte Carlo simulation programs evolved to allow the properties of the various
new methods to be studied in finite samples, as well as to embody advances in Monte Carlo methods.

I have always found computer programming to be an intellectually challenging activity.

15 Reprinted from Journal of Econometrics, 12 (1980) 85–102. We are grateful to the Computer Unit at LSE for considerable help in preparing AUTOREG, to Ray Byron, Carol
Hewlett, Grayham Mizon, Denis Sargan, Juri Sylwestrowicz, Pravin Trivedi and Ross Williams for invaluable advice at many stages during the last decade, to Robin Harrison
and Andrew Tremayne for assistance in developing several of the programs and to Raija Thomson for organizing and typing much of the documentation for the library.
Initial versions of most of the programs in AUTOREG were written by Hendry in partial fulfilment of the requirements for the PhD degree at London University.
Developments to AUTOREG since July 1973 have been financed in part by a grant from the United Kingdom Social Science Research Council to the Econometrics
Methodology and Quantitative Economics Projects at the London School of Economics.



it is extremely difficult to write software code that will function in the wide range of situations to which a user
community will certainly subject it, often involving circumstances totally unanticipated by the programmer. Locating
the source or sources of a given problem, and correcting it so that no further bugs are induced, involves similar
considerations to empirical modelling: detective work, creative insights, discovery processes, luck and serendipity all
play a role, combined with an understanding of the behaviour and complexities of simultaneous interdependences and
dynamics. Moreover, the detection and elimination of a bug involves an uncertain time horizon and all too often
represents the outcome of an apparently unconnected mistake whose consequences materialize only from an
interaction with a rarely triggered state. The tactics of debugging are of course distinctly different from those of
econometric modelling, since the code system does not itself adapt to changed inputs, allowing detailed
‘experimentation’ to determine the causes of errors. The strategy is nevertheless very similar — collect evidence,
think hard, test conjectures and develop encompassing explanations for the phenomena observed during the
experiments. Once you have successfully programmed an econometric technique, you really understand it. Thus, there
is a useful direct symbiosis between the econometric technology and its implementation, as well as the indirect one of
acquiring knowledge as to the practical performance of new proposals.

This chapter records the structure and state of AUTOREG in 1978–9 (in sections 5 and 6), and describes both its
validation (section 7) and the relative costs of the different modules (section 8). In addition, it summarizes several of
the theorems from chapter 13, to emphasize the distinctions between

1 the discovery problem of finding a suitable model specification (section 1),
2 the estimation problem of exactly or approximately solving the score equations via the estimator generating

equation for a given model specification (section 2),
3 the numerical problem of maximizing any specific likelihood function (section 3), and
4 the statistical problem of formulating (section 1) and subsequently analysing the properties of estimators

(section 4).

These four problems determined the structure of the software which thereby explicitly embodied the methodology of
part II above. Thus, the numerical and statistical aspects were closely linked, the likelihood function was the core of
every analysis and associated tests were based on the likelihood. Because statistical tests are relatively specific to the
null and alternative envisaged and often raise no new issues of programming, the chapter under-represents their
importance in the software library: as noted earlier, many users of AUTOREG regarded it as a tool kit for model
destruction!

The developments envisaged in section 9 did in fact take place (see Chong and Hendry (1986, 1990) for the distributed
array processor implementation, and Hendry (1986c, 1989) for descriptions of the data handling module), but these
were not the major changes to come. Shortly after this chapter appeared, the microcomputer revolution brought forth
inexpensive, yet powerful, standardized personal computers (PCs) with interactive graphics capabilities. High quality
general software also rapidly appeared and stimulated concurrent advances in econometrics software. To exploit this
technological advance and implement the continually evolving methodology, AUTOREG has been converted to a PC
format in the form of the PC-GIVE and PC-NAIVE systems. As recorded in Hendry (1989), however, had I correctly
appraised the effort that would be involved, I would not have started the conversion. First, the change from batch
processing to menu-driven graphics-oriented interactive computing, with stringent checks to avoid ‘crashing’, increased
the code size fivefold: I had guessed it would double. The resulting programs soon reached the upper bounds of PC
capabilities. Second, PC users grew accustomed to excellent and powerful general packages for word
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processing, databases and spreadsheets, and demanded similar quality products in econometrics. A part-time
programmer could not easily attain the required standards. Third, I had absorbed the implications of the approach
described in chapters 15–17 and this necessitated a major restructuring of the econometrics routines (the ‘hard
software’) as well as the surrounding code in which it was embodied (‘soft software’). Fourth, new econometrics
techniques and tests had appeared and the library needed to be extended to include them (especially recursive
procedures). Finally, users demanded superior and detailed documentation, including explanations of the econometrics
as well as the software.

The consequence was an almost total rewrite of the code which involved several thousand hours of evening and
weekend input over six years and virtually overwhelmed me. Fortunately, compilers and linkers improved to cope with
the increasing code size; and I benefited from Adrian Neale's skills and code in developing routines for PC-NAIVE
(see Hendry and Neale, 1987). Despite the effort involved, I think the result is worthwhile. PC-GIVE offers an
implementation of the methodology to anyone who wishes to adopt or try it; it has substantially improved my teaching
with live classroom demonstrations; it sustains live presentations of empirical research to establish the credibility of
econometric evidence; it has helped clarify system modelling (see Hendry et al., 1988); and it has dramatically reduced
the time taken to complete empirical research. Indeed, chapter 12 already reflected the resulting leap in the productivity
of empirical modelling relative to the mainframe batch processing underlying chapter 11. PC-NAIVE was released in
March 1991, and it too is a boon to teaching through enabling the creation and revision of Monte Carlo experiments in
about a minute and their execution by recursive simulation in a few minutes (see Hendry et al., 1991). Since the
program is again menu driven, and almost uncrashable, it is easy to demonstrate the finite sample behaviour of
econometric methods in the classroom. Thus, PC-AUTOREG has replaced the batch programs described in the
following chapter but with a closely related interactive system (now into version 7: see Doornik and Hendry, 1992).

1 Econometric Background
The general model around which the AUTOREG Library is formulated comprises a linear dynamic simultaneous
equations system with autoregressive errors of the form

(14.1)where

(14.2)and

(14.3)

with et and vt being unobservable vectors of random variables which for analytical convenience are assumed to behave
as

(14.4)
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where Ω and Φ are finite positive definite matrices.1

In (14.1), yt and zt are p × 1 and m × 1 vectors of observations on the jointly determined and ‘exogenous’ variables
respectively. The κ non-zero non-normalized coefficients in the Bi and Ci matrices are functions of k ≤ κ unrestricted
parameters θ, the appropriate restrictions being derived from whatever theory accounts for the determination of yt.
The system is assumed to be stationary and linear after suitable transformations of the discrete-time data series and
hence all the roots of the polynomial matrices in h,

must lie outside the unit circle.

Given (14.4), the log-likelihood function for (14.1) + (14.2) conditional on the zs and initial values of the ys is

(14.5)

where2

(14.6)

and N = max(l + r + 1, n + r + 1). Clearly, L(·) is a very complicated function in a high dimensional space and hence
considerable summarization is essential if any progress is to be made. This can be done in a number of stages.

First, L(·) itself may be summarized in terms of its first two derivatives (compare Edwards, 1972) leading to maximum
likelihood estimation (MLE) (or quasi-MLE if et is not normally distributed). Let ψ denote the vector of unrestricted
arguments of L(·) in (14.5) and let ; then obtaining given any data set is purely a numerical problem,
albeit one requiring non-linear optimization methods and raising difficult issues of efficient computation and finding
global rather than just local optima: optimization is considered in section 3 below.

Frequently, it is computationally efficient to locate by solving ∂ L/∂ ψ = q(ψ) = 0 subject to
being negative definite and this suggests a further simplification through approximating the solution of q(ψ) = 0. Such
an idea leads to the ‘estimator generating equation’ approach and is discussed in section 2.

Further valid summarization cannot be achieved in general simply by ignoring information (e.g. neglecting equations
which are not of direct interest) since the joint occurrence of system autocorrelation and dynamics enforces system
estimation techniques. However, special cases of (14.1) and (14.2) may occur either validly or as a result of the arbitrary
imposition of restrictions. Such specializations are usually more tractable than the initial problem, and for
computational efficiency require separate programs, as discussed in section 5.

All the preceding summaries of L(ψ) can be classified as ‘optimal estimation’ in that, subject to some resource
constraint, an investigator seeks the best estimates he can obtain for a pre-specified model. In practice, the correct
specification of the
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model is unknown and so various estimators might be tried together with a range of tests of specification and mis-
specification (see Mizon, 1977b) and AUTOREG is designed to aid such ‘model building’. However, the same point
leads to a distinction between the properties of the ‘true’ data generation process and those of the ‘assumed’ model and
hence the need to study the behaviour of estimators and tests in both appropriate and inappropriate applications. In
turn, numerical efficiency requires that, if this is to be done by stochastic simulation experiments, then an asymptotic
analysis should be conducted at the same time. Consequently, numerical values of the data population second
moments must be computed.

Consider the case n = r = s = 1 and l = 0 so that the transformed reduced form of (14.1) + (14.2) is given by

(14.7)

and hence the system (14.1)–(14.3) can be represented in companion form as

(14.8)

or, in an obvious notation,

(14.9)

A similar procedure will yield the companion form of (14.1)–(14.3) for general values of n, r, s and l as a suitably
stacked first-order vector autoregression as in (14.9) (a further reason for choosing the name AUTOREG for the
library: note that stationarity requires all the eigenvalues of Δ to have modulus less than unity). By construction,

, and letting then

(14.10)where

(14.11)and hence

(14.12)

where ν denotes column vectoring and ⊗ the associated Kronecker product. Thus for given values of Bi, Ci, Ri, Di, Ω
and Φ, (Δ, Γ) can be formed and M0, M1 can be calculated from (14.11) and (14.12) (useful checks on the calculations
are provided by common elements in M0 and M1). Finally, the appropriate terms from these population second
moments can be used to calculate plims of estimators, asymptotic standard errors, control variables for Monte Carlo
experiments and so on as described in more detail in section 4 (the actual Monte Carlo programs are described in
section 6).
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Several special features of the data generation process (14.9) were deliberately assumed above without comment to
clarify the exposition, and are not an inherent limitation on the underlying econometric model. For example,
measurement error problems can be tackled using certain of the instrumental variables estimators; variables which are
redundant when lagged are usually automatically eliminated when testing dynamic specification and so on. More
importantly, perhaps, the ‘closure’ assumption (14.3) is adopted purely for simplicity and it would not affect the basic
analysis to allow lagged ys to influence zt; in any case, such an assumption is testable should one wish to explain the
behaviour of the zt but it is assumed below that the likelihood function for zt contains negligible information about θ
(see Florens et al., 1976).

Further, the common factor restrictions embodied in (14.2) are also testable and provide additional evidence on the
validity of the dynamic specification (see Sargan (1964a, 1980a) for the single-equation case and chapter 6 for an
exposition and application; Sargan (1978) and Yeo (1978) discuss the vector case using Wald procedures, and Hendry
and Tremayne (1976) provide a reduced form illustration based on the likelihood ratio principle).

The moving-average error case is not explicitly included in the library since many other investigators have developed
algorithms (see, inter alia, Trivedi, 1970; Box and Jenkins, 1976; Osborn, 1976; Prothero and Wallis, 1976; Wall, 1976;
Harvey and Phillips, 1979; with useful surveys provided by Aigner, 1971; Nicholls et al., 1975); also, to the orders of
approximation involved in empirical research, autoregressive and moving-average errors seem reasonable proxies for
each other (see Hendry and Trivedi, 1972; Godfrey, 1978). More general assumptions can be included without great
difficulty: for example, using spectral methods (see Espasa and Sargan, 1977) leads to SPECFIML as implemented by
Espasa (1977) using one of the AUTOREG programs as the basis.

Work on efficient treatment of missing data in dynamic systems (see Sargan and Drettakis, 1974) has also been
implemented from the AUTOREG basis (see Drettakis, 1973).

If adequate data existed, direct estimation of the πi in generalizations of (14.7) would be possible and would allow Wald
tests of economic theory restrictions; generally, unfortunately, this is not possible, but interesting attempts at minimally
constrained estimation are described in Sims (1977a, 1980). Finally, the existence of many different representations of
the data (see, for example, Zellner and Palm, 1974; Prothero and Wallis, 1976; Hendry 1979b) poses very difficult
problems for empirical research in the usual situation where the exact model specification is uncertain a priori;
consequently, AUTOREG incorporates a large number of ‘diagnostic tests’ to aid ‘model building’ (see Leamer (1978)
for an excellent discussion and critique of specification search procedures).

The inclusion of the likelihood term for initial conditions could significantly affect MLE final parameter values if any
of the latent roots of the estimated dynamics were close to unity, since the asymptotic approximations involved cease
to be accurate in such a situation. However, near non-stationarity may be better handled by reformulating the model
than by arbitrarily imposing stationarity conditions and it is assumed that the former will be done so that (14.5)
remains a good approximation
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to the complete log-likelihood function.

Aspects of program validation and development level are discussed in section 7 and approximate computing costs are
noted in section 8. The concluding section describes some likely future developments.

2 Estimator Generation
Within the class of problems encompassed by (14.5) + (14.6), the present main constraint inhibiting frequency of use
and/or the scale and complexity of problem which can be tackled is probably central processor unit (CPU) time. Since
computational efficiency is of the essence, considerable effort has been (and is continuing to be) devoted to finding
good procedures for the high-cost areas such as iterative optimization and stochastic simulation experiments. The
theme of this and the next two sections is that these apparently dissimilar numerical areas are not only intimately
interlinked but are also closely related to methods of approximating q(ψ) which in turn may affect the statistical properties
of the resulting procedure.

As noted above, once L(ψ) is specified the statistical formulation is complete and locating the maximum of L(·) (either
unrestrictedly or in any lower dimensional subspace) is a numerical problem. Any algorithm which is a well-defined
rule mapping from a fixed data set to a unique3 value of ψ denoted defines an estimator. All algorithms which attain
yield statistically equivalent results, but if an algorithm is selected which only ever calculates an approximation to
maxψL(ψ) then this can affect the statistical properties of the estimator; i.e. depending on the algorithm, and may or
may not have equivalent statistical properties either in large or in finite samples. Conversely, different estimators can be
interpreted as alternative numerical methods for approximating the optimum of L(·). As shown in chapter 13, this
approach provides a convenient way of categorizing all extant econometric estimators through examining solutions of
the equation q(ψ) = 0. To take a familiar example, where r = 0, letA = (B0 . . . BnC0 . . . Cl) and letX = (x1 . . . xT)′, where

so that Axt = et and with ; then q(θ) is given by

(14.13)

where ()ρ denotes vectoring and retaining equations corresponding to unrestricted elements ofA (i.e. Aρ = θ). Equation
(14.13) defines the estimator generating equation (EGE) for the system Axt = et ∼ NI(0, Ω) and yields full information
maximum likelihood (FIML), three-stage least squares (3SLS), limited information maximum likelihood (LIML), two-
stage least squares (2SLS) etc. as solutions depending on the choices of estimators for the ‘auxiliary’ parameters Ω and
H. Any consistent estimators for (Ω, H) will yield an estimator of A which is asymptotically equivalent to FIML
whereas choosing the unit matrix for Ω and a consistent estimator for H yields the LIML-equivalent class and so on.

The important point about (14.13) is that, given any values for Ω−1 and H, the expression is linear in A and can be
solved immediately. Thus a program written around (14.13) can produce a vast range of non-iterative estimators very
flexibly and
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can use the output of (say) 3SLS to commence the optimization of L(·) for FIML. Of course, if one simply seeks any
estimator which is asymptotically equivalent to FIML, then the program can be terminated after 3SLS or the full
information instrumental variables estimator (FIVE) and in this sense the desired result has been achieved with
considerable computational efficiency; although this may seem an unusual interpretation, obtaining non-iterative
solutions and/or cheaply calculating good initial values are two important aspects of numerically efficient procedures.

3 Numerical Optimization
If FIML estimates are to be calculated, then Ω and H become functions of A, (14.13) becomes highly non-linear in θ
and an iterative optimization method is required. Since the speeds of good and bad routines can differ by factors of
many thousands, ‘good’ choices are of vital importance. Unfortunately the choice of a ‘good’ numerical optimization
algorithm is not straightforward because no method is ‘best’ on all criteria (e.g. robustness, accuracy, flexibility, speed,
scale independence and memory requirements) for all problems (e.g. varying numbers of parameters, forms of
function etc.) in all circumstances (e.g. as machine structure and/or capital/labour costs vary). Nevertheless,
reasonable choices are possible, although they tend to be problem and relative cost specific and primarily depend on
the ease with which various analytical derivatives of L(·) can be calculated and programmed. Three situations of
interest are when the following are available:

1 L(·) only;
2 L(·) and q(·) only;
3 L(·), q(·) and Q(·).

1 In the choice between conjugate directions such as the method of Powell (1964) and a variable metric method using
finite differences such as Davidon–Fletcher–Powell (DFP, see, for example, Dixon, 1972) or Gill–Murray–Pitfield
(1972) (GMP, see Wolfe, 1978) the latter seems generally much faster and (using the variant from the NAG library
(1977)) rarely fails to converge. Note that having to program only L(·) trades considerable flexibility for altering
programs against the costs of a (generally) slower algorithm.

2 When analytical first derivatives are also available, the corresponding variant of GMP seems excellent and is usually
more efficient than DFP (see Sargan and Sylwestrowicz, 1976b). Thus instead of successively solving equations of the
DFP form

(14.14)

where i denotes the iteration number, λi is a scalar chosen to and Ki is recursively updated to converge to
Q(·)−1, GMP solves

(14.15)

where Λi is diagonal and Gi is lower triangular with a unit diagonal. The solution to (14.15) is obtained by first solving
for φi from Giφi = qi and then obtaining
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from where both sets of equations involve simple recursive formulae; Pi is then updated to ensure that Pi + 1 is
positive definite as in conventional variable-metric rules. Clearly, the EGE expression plays a central role in this class of
algorithm.

3 If Q(·) has been programmed, modified Newton–Raphson seems to be efficient (see, for example, Hendry and
Tremayne, 1976) as does the equivalent GMP algorithm, both being faster than routines using only q(·). Most of the
optimization routines currently attached by AUTOREG are from the NAG (1977) implementation.

Special features of any given problem handsomely repay exploitation: for example, concentrating L(·) with respect to
any set of parameters which reduces the dimensionality of the parameter space without creating a more complex
function (as can be done for seasonal dummies which occur in every equation); or if L(·) can be reduced to a sum of
squares of non-linear functions or is decomposable into a stepwise optimization form and so on. So far as possible,
such features are incorporated into AUTOREG programs and this is a major reason for having a range of programs
for special cases.

4 Method Evaluation
The asymptotic distributions of most of the estimators derivable from (14.5) are known for correctly specified models. Very
little is known about estimator behaviour in a wide range of mis-specified situations (either asymptotic or finite sample
results) and relatively little is known about the finite sample distributions of many of the estimators even when the
model specification is correct. Although analytic research into these areas is in progress, the role of stochastic
simulation experiments is likely to remain large for some time to come. For iterative estimators, the cost of replicated
trials and intensive experimentation can be prohibitive and hence to achieve general and precise results requires
efficient Monte Carlo techniques such as antithetic variates or control variables (denoted CV) or an unlimited budget!
To ensure efficiency gains, a CV needs to have the same large-sample distribution as the estimator under study yet
have known small-sample properties. These two statements suggest seeking CVs from the relevant EGE, and in
particular making the choice to maximize analytical tractability. To illustrate the procedure involved, consider deriving
the CV for θ for the FIML class based on (14.13), noting that where , and ()u denotes
selecting elements corresponding to unrestricted coefficients in A. The optimization technique known as ‘scoring’ is
based on

(14.16)

and, from EGE theory, one step of (14.16) from consistent initial values yields an asymptotic equivalent to FIML (see,
for example, Rothenberg and Leenders, 1964). But θ is consistent for θ (!) and hence

(14.17)

is such that plim whereas and
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since and . Thus θ* is an appropriate CV for (but is manifestly non-operational outside of the
Monte Carlo context). In particular, for FIML and 3SLS, (14.17) yields4

(14.18)

remembering that Axt = et (compare Mikhail, 1972). Alternative derivations of CVs in dynamic systems using
expansions based on Nagar (1959) are discussed in Hendry and Harrison (1974). The method of scoring also underlies
the Lagrange multiplier class of tests — see, for example, Breusch and Pagan (1980).

To summarize the above results, the EGE defines the relevant class of estimator, with approximate non-iterative
solutions and exact iterative solutions obtainable by a range of numerical optimization techniques, the choice of which
can influence the statistical properties of the estimator, while one algorithm (i.e. scoring) applied to the true parameter
values yields the CV required for efficient simulation study of the finite sample behaviour of the various estimators in
the class. Note that θ* differs from by O(1/ T), and if the model were static then θ* in (14.18) would be normally
distributed (for a more extended discussion see Hendry and Srba, 1977). Analysis of CV expressions like (14.18)
frequently yields more insight into an estimator's properties than extensive simulation of the estimator itself.

The construction of θ* requires the population second moments of the data, and these are available from (14.11) and
(14.12). For mis-specified models, appropriate CVs can be obtained in an analogous manner once the model has been
reparameterized so that the relevant estimator automatically yields consistent estimates of the new parameters. For
example, in an ordinary least squares (OLS) context considered in detail in Hendry (1979b), where5

(14.19)

let

and let

Then for

The reparameterized model is

(14.20)

and so is ‘really’ estimating βl from the EGE (X′ω) = 0 and the CV for is

(14.21)

As before, etc. only depend on M0 and M1. If the mis-specification is at all serious, the difference between β and
βl will dominate any discrepancy
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between βl and (assuming that the moment exists) and between and on any one trial, so that simply
conducting the (inexpensive) numerical asymptotic analysis will often answer a mis-specification question to adequate
accuracy without resorting to simulation experiments which will be expensive even if well controlled. Similar
procedures are available for existing higher moments. Finally, as noted by Hendry and Srba (1977), inefficient CVs can
be obtained for some problems by applying inefficient numerical optimization methods to the EGE (e.g. inappropriate
stepwise techniques) highlighting the interconnection between efficient optimization, efficient estimation and efficient
simulation. Even so, the issue of capital/labour substitution again lurks in the background — e.g. if the asymptotic
analysis itself requires a major labour input, then a crude simulation will be the ‘cheaper’ solution at present relative
prices — and hence there remains a definite role for ‘naive’ stochastic simulation experiments. This applies forcefully
to investigating issues associated with non-stationarity where theory tends to be especially intractable.

5 Structure of the Library
AUTOREG comprises nine main computer programs: GIVE, RALS, FIML, ARFIML, ARRF, GENRAM,
NAIVE, CONVAR and DAGER. Programs are denoted in italic capitals: thus FIML is the program which computes
(inter alia) FIML. The first six programs are for the estimation, testing and analysis of empirical models, the next two
are for Monte Carlo investigations of the finite sample distributions and asymptotic behaviour of four of the
estimation methods provided in GIVE, and DAGER provides a general data generation and asymptotic moment
calculation routine.

The programs operate on the University of London CDC7600 according to a relatively standardized input procedure
including their job control cards and the program instruction cards. Thus, for example, a card deck for GIVE will run
unaltered on RALS (but produce more general — and more expensive — output), and a FIML deck needs no
alteration to function on ARFIML or RAML (RAML is the special case of GENRAM where there are no non-linear
parameter restrictions). Output is printed in a similar style and is reasonably well documented. Detailed manuals are
available for every program (in some cases, both technical manuals and simplified users' guides) although these assume
that the user is familiar with the econometric principles of the programs being used.

A relatively complete picture of AUTOREG can be constructed by categorizing as follows: (i) possible program
choices for different model specifications; and (ii) the range of estimators computed by each program and the
optimization algorithms available. For (i), the taxonomy used in chapter 2 is adopted with different classes of model
being defined by the values of p, r and κ − k (assuming that n and m are greater than zero). For example, p = 1 defines
a single equation, r = 0 entails no autocorrelation and κ = k implies no (non-linear) restrictions on the parameters
(linear restrictions are ignored in the taxonomy) so that (1, 0, 0) yields OLS and so on. All these estimators are derived
by maximizing the relevant specialization of (14.5) (or by approximating this via the appropriate EGE) and the
associated
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section number from Hendry (1976a) is noted in parentheses to define each method unambiguously.

5.1 Possible Program Choices Categorized by (p, r, κ − k)
(a) (1, 0, 0) This yields a simple linear equation estimable by OLS (3.8)

(GIVE).
(b) (1, r, 0) An (iterative) autoregressive least squares (ALS) estimator (7.1) is

required for consistent asymptotically efficient estimates (GIVE,
RALS).

(c) (1, 0, κ − k) Non-linear least squares problems up to cubic functions of
parameters can be solved (GENRAM), but -

(d) (1, r, κ − k) this program would be more appropriate computationally when
allowing for autocorrelation as well.

(e) (p, 0, 0) If B0 ≠ I, an interdependent system occurs, which is estimable one
equation at a time by instrumental variables (3.4) or 2SLS (3.2)
(GIVE, RALS), or for a complete system by 2SLS (3.2), the limited
information instrumental variables estimator (LIVE) (3.5) or (inefficiently in
numerical terms) LIML (3.1) (using FIML, or simultaneously by
FIML (2.1), 3SLS (2.2) or FIVE (2.5) (again using FIML).
If B0 = I, reduced form estimation occurs, only requiring
multivariate least squares (MLS) (2.7) if the coefficients are
unrestricted (FIML, autoregressive reduced form (ARRF)) or a
specialization of 3SLS if there are exclusion restrictions.

(f) (p, r, 0) If B0 ≠ I but all of the Ri matrices are diagonal, autoregressive
instrumental variables (AIV) methods (6.4) are viable (GIVE,
RALS). If the Ri are non-diagonal but B0 = I then we have the
vector generalization of (b) denoted ARF (5.7) (ARRF).
If B0 ≠ I and the Ri are non-diagonal, then a system method such
as autoregressive FIML (5.1) or autoregressive 3SLS (5.2) is
required (ARFIML, RAML).

(g) (p, r, κ − k) Including the possibility that r = 0, this is the general model (14.1)
+ (14.2), estimable by maximizing (14.5) subject to (14.6)
(GENRAM).

In the converse categorization 5.2, the individual estimation programs are listed in approximately decreasing frequency
and increasing cost of use (note that a range of data transformations, graphing etc. is possible in all the programs).

5.2 Possible Estimators Categorized by Program and Optimization Method
(i) GIVE Provides OLS, IV, ALS and AIV estimators, the latter two being for simple scalar error schemes of the

form ut = Riut−i + et. Unrestricted distributed lags, Almon polynomials, simple and partial correlograms of data
and residuals, various tests of dynamic specification, forecast accuracy etc. are also computed as are latent roots
of data moment matrices; the COMFAC and
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WALD routines developed by Sargan (1980a) can be attached as can Lagrange multiplier tests for residual
autocorrelation (see Godfrey, 1977; Breusch and Pagan, 1980). GIVE is mainly designed to aid single-equation
‘model building’ in situations where the dynamic specification is uncertain. ALS and AIV are found by a grid
search over Ri = −0.92 (0.1) 0.98 followed by stepwise optimization.

(ii) RALS This is the generalization of GIVE to scalar error processes of the form using the method
of Powell (1965) to minimize . Function minimization allows flexibility in implementing interesting cases —
see, for example, Wallis (1972a) — and IV estimation is allowed.

(iii) FIML6 In addition to providing structural and solved estimates, standard errors etc. for any of 2SLS, 3SLS,
LIVE, FIVE, FIML and MLS, output includes tests of structural restrictions, forecast tests, seasonal shift
intercepts, the simulation behaviour of estimated models, long-run and dynamic multipliers and latent roots of
the dynamics. The analytical first derivative version of GMP (3.2) is recommended, although the Powell (1964)
algorithm is also available.

(iv) ARFIML This generalizes FIML for (simple) non-diagonal vector autoregressive error schemes and outputs
comparable information to FIML, although at present the EGE only includes one other estimator (namely, a
variant of A3SLS). The optimization procedure is also the same as FIML.

(v) ARRF This provides the unrestricted reduced form equivalent of ARFIML and outputs system tests of
dynamic specification as well as appropriate point estimates etc. Stepwise optimization, modified
Gauss–Newton (recommended; see Hendry and Tremayne, 1976) and analytical second derivative GMP
(3.3) are all available. Because of the very large dimensionality of the parameter space even with small systems,
ARRF is a convenient test program for evaluating alternative optimization methods.

(vi) RAML This is simply the special case of GENRAM which generalizes ARFIML to unrestricted error
processes like (14.2); optimization choices include the Powell (1964) method and either of the numerical or
analytical derivative versions of GMP (3.1, 3.2), the last being recommended.

(vii) GENRAM Finally we reach the general case, where the coefficients of the Bi and Ci matrices can be written as
combinations of up to cubic functions of θs (see Williams, 1972) with, if required, general vector autoregressive
error processes of the form (14.2), allowing for various possible dependences of Ω on θ also, to encompass
‘latent variables’ structures. To obtain a high degree of flexibility for developing further capabilities jointly within
GENRAM (e.g. ‘switching of causality’ models as in Richard (1980), only function optimization is used (either
Powell or GMP (3.1)).

6 The Monte Carlo Programs
NAIVE and CONVAR were developed to investigate OLS, IV, ALS and AIV applied to various specifications of the
system (14.1)–(14.4).7 The effects of a vast range
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of mis-specifications on estimators and tests can be studied using crude simulation in NAIVE (the acronym for
numerical analysis of instrumental variables estimators). In CONVAR, all the theoretical asymptotic first and second
moments of the data and the estimators are calculated and CVs are used to produce efficient and precise simulation
estimates of the finite sample moments of the econometric estimators (which has its major application in investigating
the accuracy of asymptotic approximations). Both programs enforce n ≤ 1, l = 0, p ≤ 2, m ≤ 4, r ≤ 1, T ≤ 80 but
CONVAR also restricts B1 and R1 to be zero except for their (1, 1) elements. We are currently undertaking studies of
the sizes and powers of a number of test statistics using both these programs and DAGER, which computes (14.11)
and (14.12) and generates data from systems like (14.7) in order to calculate asymptotic power approximations such as
those discussed in Sims (1977a, pp. 186–92).

7 Program Validation and Development Stage
All the AUTOREG programs have been carefully tested at several stages in their development as follows:

1 against published results (e.g. FIML, 2SLS, OLS);
2 against special cases of each other (e.g. RALS against GIVE for r = 1; ARFIML against GIVE for p = 1, r =

1; RAML against RALS for p = 1, r = 2, against FIML for p = 8, r = 0, and against ARFIML for p = 2, r = 1;
ARRF against ARFIML for p = 3, r = 1);

3 by Monte Carlo simulation (OLS, ALS, IV, AIV, in GIVE by NAIVE and CONVAR; in turn, the coherence
between asymptotic results and the CVs' behaviour applies a strong check on the validity of CONVAR which
was also tested in comparable cases against NAIVE);

4 by single runs on artificial data generated by DAGER from known parameters.

Nevertheless, satisfying all these tests in no way implies that the programs are ‘correct’ and ‘bugs’ are regularly noted
and corrected since additions and alterations are frequently made and these can inadvertently invalidate previously
correct calculations (we regularly re-estimate the model in chapter 2 to check on this). However, changes to the
operating system of the computer, or the compiler, and especially changes to other computers can reveal errors in
operations which previously appeared to function correctly.

Four development stages can be distinguished: (i) for personal research only: (ii) usable by other researchers; (iii)
adequately documented and tested for general use; (iv) thoroughly checked, simplified and ‘foolproofed’ to a sufficient
extent for use in teaching. In such terms:

GENRAM, RAML and DAGER are at stage (ii)
ARRF, RALS and CONVAR are at stage (iii)
GIVE, NAIVE, FIML and ARFIML are at stage (iv)
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8 Computing Costs
The following are approximate CPU requirements from recent representative runs of the various programs on the
CDC7600 in seconds:

GIVE About 0.1 s per ten-variable equation with autocorre-
lation estimated

RALS 8.2 s for re-estimating the model in chapter 2 (six
equations each estimated with every order of autore-
gressive error process up to fifth)

FIML 1.7 s for the same model (six equations with 18
parameters in the concentrated likelihood function)
including 2SLS, 3SLS and FIML (using GMP (3.2))

ARFIML 6.2 s for the building societies model of O'Herlihy and
Spencer (1972) (six equations, 22 unrestricted param-
eters from 2SLS initial values) by GMP (3.2)

ARRF 18 s for the building societies model reduced form (78
‘structural’ parameters, 24 seasonals and 36 autore-
gressive coefficients, from MLS initial values) by
Gauss–Newton

RAML 15 s for FIML by GMP (3.1) for the building societies
model from 2SLS

NAIVE and CONVAR The times for these are, of course, totally dependent on
the number of experiments and replications and the
sample size chosen; for four estimators for 40 models
with 25 replications and variable sample sizes (i.e. the
experiments conducted by Hendry and Srba, 1977). 60
s were required on CONVAR. By comparison, for two
estimators, two models, 100 replications and sample
size 60, 3.5 s were required on NAIVE.

Thus GIVE and FIML are usually exceedingly fast, RALS and ARFIML are somewhat slower, NAIVE and
CONVAR are completely problem dependent and only RAML, and hence GENRAM and ARRF, consume really
‘substantial’ amounts of CPU time per run.

GIVE, NAIVE and FIML have proved to be successful teaching programs in both theory and applied econometrics
courses at LSE at undergraduate and graduate levels.

9 Future Developments
The most radical changes to AUTOREG are likely to arise from successful functioning of the distributed array
processor (DAP) being installed in London University. The DAP is a 64 × 64 array of microprocessors capable of
parallel processing and, as it is based on outer product formulations, the computing time for operations like matrix
multiplication and inversion increases only linearly with the size of the problem up to 64 × 64 (after which partitioning
must be used). Since these two operations constitute the main cost of most second-derivative iterative algorithms, the
DAP will radically alter the efficiency ranking of many methods as well as the scale of problem which can be routinely
tackled (e.g. the modified Gauss–Newton
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method proposed by Berndt et al. (1974) seems well suited to DAP implementation for estimating systems non-linear
in both variables and parameters, as does the non-linear algorithm of Sargan and Sylwestrowicz (1976b)).

A further important development is the implementation of an overall model/data handling program which will flexibly
attach the existing programs as if they were subroutines to ease usage of the library by non-specialists. Finally, minor
additions to AUTOREG occur very regularly as the need arises in the authors' empirical and theoretical researches,
such that every two or three years a new version of AUTOREG is defined (the present one is Mark IV). All requests
for further information and/or enquiries relating to updating or obtaining AUTOREG or any of the programs therein
for purposes of academic study, teaching or personal research should be directed to the first author.

Notes
1 Exact equations (identities) are easily incorporated in the analysis and are allowed for in all the relevant programs.
2 This formulation is intended to include the possibility that Ω depends on θ.
3 Within the preset limits of desired, or attainable, computational accuracy.
4 For an analysis of Monte Carlo when moments do not exist, see Sargan (1981).
5 The set of assumptions on which the data generation process (14.9) is based are sufficient to ensure that

and in (14.19) as discussed in, for example, Hannan (1970, ch. 4).
6 The programs FIML, ARFIML, RAML and GENRAM in fact maximize concentrated likelihood functions,

having analytically maximized with respect to all possible parameters: for example, for RAML these comprise
R1, . . . , Rr, Ω, coefficients of constants and seasonal adjustment dummy variables and/or trends. Early versions of
these programs were used in Hendry (1971) and chapter 2.

7 In fact NAIVE also allows the ‘observed’ data to differ from that actually generated by the system due to
measurement errors, and is not restricted to stationary systems. An early version of NAIVE was used in Hendry
and Trivedi (1972), and an early version of CONVAR by Hendry and Harrison (1974).
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15 Exogeneity 16

with Robert F. Engle and Jean-François Richard

Preamble
The direct antecedent to ‘Exogeneity’ was a paper which Jean-François Richard presented to the Vienna meeting of the
Econometric Society in 1977 (eventually published as Richard, 1980). Although that paper was a tour de force, even its
author would not have claimed that the original presentation was instantly transparent! This derived from its attempts
to span the rather different ‘traditions’ of CORE and LSE, to cover a wide range of issues and to do so in a general
framework: the discussion of exogeneity is at most a third of the paper, and its full set of implications is not explicitly
stated. Rob Engle, when visiting LSE in 1979, proposed clarifying and if necessary extending the concept of weak
exogeneity and relating it to other notions in the literature, so we set to work — incidentally precipitating what have
proved for me to be two productive and continuing collaborations. In the summer of 1979, Ken Wallis hosted a three-
week Econometrics Workshop at Warwick University, funded in part by the UK Social Science Research Council (now
Economic and Social Research Council). This meeting was attended by researchers from all over the world and
witnessed lengthy, stimulating and occasionally vigorous discussions about exogeneity, especially with Christopher Sims
who had offered an alternative view in Sims (1972b, 1977b). Such interchanges helped to clarify our thinking and are
another example of the invaluable role of funding agencies in fostering research.

Exogenous variables play a crucial role in econometrics, yet the concept of exogeneity is treated with remarkable
imprecision and brevity in most textbooks. Moreover, specific claims about exogeneity have in the past provoked
considerable controversy (see, for example, Orcutt, 1952). The general idea of exogenous connotes ‘being determined
outside of (the

16 Reprinted from Econometrica, 51(2) (March 1983) 277–304. This paper is an abbreviated and substantially rewritten version of CORE Discussion Paper 80–38 (and UCSD
Discusion Paper 81–1). This was itself an extensive revision of Warwick Discussion Paper No. 162, which was initially prepared during the 1979 Warwick Summer
Workshop, with support from the Social Science Research Council. We are indebted to participants in the workshop for useful discussions on several of the ideas developed
in the paper and to Mary Morgan for historical references. We also greatly benefited from discussions with A.S. Deaton, J.P. Florens, S. Goldfeld, A. Holly, M. Mouchart, R.
Quandt, C. Sims and A. Ullah. Three anonymous referees made many constructive comments. Financial support from the Ford Foundation, the National Science
Foundation and the International Centre for Economics and Related Disciplines at the London School of Economics is gratefully acknowledged.



model under analysis)’, and yet researchers frequently attempt to ascribe the status of ‘exogenous’ to a variable per se (as
with, say, the sun's energy) and then deduce certain inferences therefrom (e.g. the variable is a valid instrument for
estimation). As shown in this chapter, such notions are ambiguous and can deliver misleading conclusions, as with the
construct of strict exogeneity in Sims (1977b). Instead, we argue for analysing exogeneity in the framework of model
reduction, addressing the issue of when inferences about parameters of interest (denoted ψ) based on a complete
analysis of the joint density function of all the observable variables coincide with inferences based on only the
conditional density of one subset of variables ( say) given another subset zt. If there is no loss of information about ψ
from only analysing the conditional submodel, then is said to be weakly exogenous for ψ. The approach builds on both
Koopmans (1950a) and Barndorff-Nielsen (1978).

Thus, weak exogeneity is a relationship linking certain variables to parameters of interest and is precisely the condition
needed to sustain valid inferences about those parameters in models which condition on contemporaneous variables.
The formulation of exogeneity in the following chapter is in terms of a ‘sequential cut’ from which ψ is ‘recoverable’,
and at first sight looks rather artificial, but there is a sound intuitive basis: if all information about ψ can be recovered
from the conditional model of given , then the marginal process determining is irrelevant, and hence is in
practice determined outside of the (conditional) model under study. Conversely, if the marginal model of contains
information about ψ, a complete analysis must involve modelling , so that is determined within the model and
hence it is not exogenous.

The resulting construct is not specific to a particular class of models and it highlights interesting aspects of previously
studied problems. For example, weak exogeneity throws light on the old issue of ‘the direction of regression’: in a
bivariate case, should one regress on or vice versa? As shown below, only one direction can deliver the parameters
of interest and, in worlds of parameter change, at most one direction will yield constant parameters (see Engle and
Hendry, 1989). Moreover, when applied to models involving unobservable expectations, weak exogeneity highlights
potential internal contradictions and clarifies precisely which inferences can be sustained even when conditioning is
invalid (see Hendry and Neale, 1988). As sketched in Richard (1980) and more extensively analysed in chapter 17,
weak exogeneity is also intimately linked to economic theories in which agents form plans and act contingently on the
available information.

A final benefit was the resulting formalization of a lacuna in DHSY, who had treated income as if it were weakly
exogeneous (but without that concept) on the pragmatic grounds that the resulting model adequately characterized all
the available evidence. The examples in the present chapter seek to illustrate these points, revealing en route that weak
exogeneity is neither necessary nor sufficient for strict exogeneity, that there is no necessary relationship between the
presence of weak exogeneity and the validity of any particular estimation method (other than the relevant maximum
likelihood estimator in sufficiently large samples), and that tests of weak exogeneity in dynamic systems are usually only
of sufficient (and not of necessary) conditions for its presence.

Econometricians engage in many activities other than just within-sample inference, and so it is natural to enquire about
the exogeneity conditions needed to sustain, say, conditional forecasting and conditional policy analysis. Since these last
two must both commence from empirical models, weak exogeneity is necessary for the conditioning variables— but is
not sufficient. Thus, to forecast more than one period ahead, conditional on fixed values of the zs, the additional
requirement of no feedback from y onto z is needed (i.e. Granger non-causality: see Granger, 1969) leading to the
concept of strong exogeneity. Similarly, to justify a policy analysis which involves changing the marginal model
determining while holding
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ψ constant. a condition of parameter invariance is required, leading to super exogeneity. However. Granger non-causality
is neither necessary nor sufficient for super exogeneity.

This construct of super exogeneity has a central role in the methodology. On the one hand, looking back, it both
formalizes the intuitive ideas of chapter 11 above and clarifies the implicit link between parameter constancy and valid
conditioning assumed in DHSY, allowing later empirical studies to be grounded on a more rigorous basis. Moreover, it
links together a long sequence of important contributions to the analysis of autonomy and exogeneity from Frisch
(1938), Haavelmo (1944) and Koopmans (1950a) through Bentzel and Hansen (1955). Strotz and Wold (1960) and
Hurwicz (1962) to Lucas (1976) and Sargent (1981). On the other hand, looking forward, super exogeneity sets a limit
to the reduction of models by conditioning if parameters of interest are to remain constant and be invariant to changes
in marginal processes. This leads naturally to an even greater emphasis on testing constancy and invariance (see Engle
and Hendry, 1989). focusing on periods when policy variables or expectations mechanisms are known (or believed) to
have altered (an issue examined in Hendry, 1988b), necessarily exploiting recursive testing procedures (see Hendry and
Neale, 1987).

Although the chapter does not consider any integrated processes, weak exogeneity seems as relevant to cointegrated
systems as it is to stationary or changing worlds. Johansen (1992) shows that under weak exogeneity single-equation
estimation remains efficient in a cointegrated system, whereas if weak exogeneity fails, then system modelling is needed
despite the super consistency of estimators in l(1) processes (see Stock. 1987: Phillips, 1990; Phillips and Loretan, 1991;
also see Granger (1986) for a survey of cointegration and Engle and Granger (1987) for the initiating analysis:1
Johansen (1988) proposes a maximum likelihood estimator for the dimension of the cointegrating space). In some
cases, the failure of weak exogenity due to the presence of a cointegrating vector in several equations can lead to a large
loss of efficiency (see Hendry and Mizon (1991) for an example). Thus, testing for weak exogeneity is as important in
non-stationary cointegrated systems as it is in stationary cases (see Ericsson, 1992).

Note
1 Other authors also suffer from having papers appear in the reverse order to their writing!

1 Introduction
Since ‘Exogeneity’ is fundamental to most empirical econometric modelling, its conceptualization, its role in inference
and the testing of its validity have been the subject of extensive discussion (see inter alia Koopmans, 1950a; Orcutt,
1952; Marschak, 1953; Phillips, 1956; Sims, 1972b, 1977b; Geweke, 1978, 1984; Richard 1980). Nevertheless, as
perusal of the literature (and especially econometrics textbooks) quickly reveals, precise definitions of ‘exogeneity’ are
elusive, and consequently it is unclear exactly what is entailed for inference by the discovery that a certain variable is
‘exogenous’ on any given definition. Moreover, the motivation underlying various ‘exogeneity’ concepts has not always
been stated explicitly so that their relationships to alternative notions of ‘causality’ (see Wiener, 1956; Strotz and Wold,
1960; Granger, 1969; Zellner, 1979b) remain ambiguous. This results in part
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because some definitions have been formulated for limited classes of models so that appropriate generalizations such
as to non-linear or non-Gaussian situations are not straightforward, while others are formulated in terms involving
unobservable disturbances from relationships which contain unknown parameters. Whether or not such disturbances
satisfy orthogonality conditions with certain observables may be a matter of construction or may be a testable
hypothesis and a clear distinction between these situations is essential.

In this chapter, definitions are proposed for weak and strong exogeneity in terms of the distributions of observable
variables,1 thereby explicitly relating these concepts to the likelihood function and hence efficient estimation:2
essentially, a variable zt in a model is defined to be weakly exogenous for estimating a set of parameters λ if
inference on λ conditional on zt involves no loss of information. Heuristically, given that the joint density of random
variables (yt, zt) can always be written as the product of yt conditional on zt times the marginal of zt, the weak exogeneity
of zt entails that the precise specification of the latter density is irrelevant to the analysis and, in particular, that all
parameters which appear in this marginal density are nuisance parameters. Such an approach builds on the important
paper by Koopmans (1950a) using recently developed concepts of statistical inference (see, for example, Barndorff-
Nielsen, 1978; Florens and Mouchart, 1980a). If, in addition to being weakly exogenous, zt is not caused in the sense of
Granger (1969) by any of the endogenous variables in the system, then zt is defined to be strongly exogenous.

The concept of exogeneity is then extended to the class of models where the mechanism generating zt changes. Such
changes could come about for a variety of reasons; one of the most interesting is the attempt by one agent to control
the behaviour of another. If all the parameters λ of the conditional model are invariant to any change in the marginal
density of zt, and zt is weakly exogenous for λ, then zt is said to be super exogenous. That is, changes in the values of zt or
its generating function will not affect the conditional relation between yt and zt. This aspect builds on the work of Frisch
(1938), Marschak (1953), Hurwicz (1962), Sims (1977b) and Richard (1980).

The chapter is organized as follows: formal definitions of weak, strong and super exogeneity are introduced in section
2, and, to ensure an unambiguous discussion, the familiar notions of predeterminedness, strict exogeneity and Granger
non-causality are also defined. These are then discussed in the light of several examples in section 3. The examples
illustrate the relations between the concepts in familiar models showing the importance of each part of the new
definitions and showing the incompleteness of the more conventional notions. Special attention is paid to the impact of
serial correlation. The analysis is then applied to potentially incomplete dynamic simultaneous equations systems in
section 4. The conclusion restates the main themes and implications of the chapter.

1.1 Notation
Let xt ∈ ℝ

n be a vector of observable random variables generated at time t, on which observations (t = 1, . . . , T) are
available. Let denote the t × n matrix
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(15.1)

and let X0 represent the (possibly infinite) matrix of initial conditions. The analysis is conducted conditionally on X0.
For a discussion of marginalization with respect to initial conditions, see Engle et al. (1980), hereafter EHR. The
information available at time t is given by

(15.2)

The process generating the T observations is assumed to be continuous with respect to some appropriate measure and
is represented by the joint data density function where θ, in the interior of Θ, is an (identified) vector of
unknown parameters. The likelihood function of θ, given the initial conditions X0, is denoted by .

Below, denotes the n-dimensional normal density function with mean vector μ and covariance matrix Σ. The
notation xt ∼ IN (μ, Σ) reads as ‘the vectors x1, . . . , xT are identically independently normally distributed with common
mean vector μ and covariance matrix Σ’. Cn denotes the set of symmetric positive definite matrices.

The vector xt is partitioned into

(15.3)The matrices and Xt are partitioned conformably:

(15.4)

The expressions ‘xt‖yt’ and ‘xt‖yt| wt’ read respectively as ‘xt and yt are independent (in probability)’ and ‘conditionally on
wt, xt and yt are independent’. In our framework it is implicit that all such independence statements are conditional on θ.
The operator Σ denotes a summation which starts at i = 1 and is over all relevant lags.

2 Denitions
Often the objective of empirical econometrics is to model how the observation xt is generated conditionally on the
past, and so we factorize the joint data density as

(15.5)

and focus attention on the conditional density functions D(xt|Xt − 1, θ). These are assumed to have a common
functional form with a finite3 dimensional parameter space Θ.

The following formal definitions must be introduced immediately to ensure an unambiguous discussion, but the
examples presented below attempt to elucidate their
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content; the reader wishing a general view of the paper could proceed fairly rapidly to section 3 and return to this
section later.

2.1Granger Non-Causality
For the class of models defined by (15.5), conditioned throughout on X0, Granger (1969) provides a definition of non-
causality which can be restated as follows.

Definition 15.1 does not Granger-cause zt with respect to Xt−1 if and only if

(15.6)
i.e. if and only if

(15.7)If condition (15.6) holds over the sample period, then the joint data density factorizes as

(15.8)where the last term is and the middle term is therefore .

Where no ambiguity is likely, condition (15.6) is stated below as ‘y does not Granger-cause z’. Note that the definition
in Chamberlain (1982) is the same as definition 15.1.

2.2 Predeterminedness and Strict Exogeneity
Consider a set of g ≤ n behavioural relationships (whose exact interpretation is discussed in section 4 below):

(15.9)

where B* and {C*(i)} are g × n matrix functions of θ, with rank B* = g almost everywhere in Θ and ut is the
corresponding ‘disturbance’.

The following definitions are adapted from Koopmans and Hood (1953) – see also Christ (1966, chs IV.4, VI.4) and
Sims (1977b).

Definition 15.2 zt is predetermined in (15.9) if and only if

(15.10)Definition 15.3 zt is strictly exogenous4 in (15.9) if and only if

(15.11)
The connections between strict exogeneity and Granger non-causality have been discussed by several authors –
and in particular by Sims (1977b) and Geweke
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(1978) – for complete dynamic simultaneous equations models. This issue is reconsidered in section 4. See also
the discussion in Chamberlain (1982) and Florens and Mouchart (1982).

2.3 Parameters of Interest
Often a model user is not interested in all the parameters in θ, so that his (implicit) loss function depends only on some
functions of θ, say

(15.12)

These functions are called parameters of interest. Parameters may be of interest, for example, because they are directly
related to theories the model user wishes to test concerning the structure of the economy. Equally, in seeking empirical
econometric relationships which are constant over the sample period and hopefully over the forecast period,
parameters which are structurally invariant (see section 2.6) are typically of interest.

Since models can be parameterized in infinitely many ways, parameters of interest need not coincide with those which
are chosen to characterize the data density (e.g. the mean vector and the covariance matrix in a normal framework).
Consider, therefore, an arbitrary one-to-one transformation or reparameterization

(15.13)

together with a partition of λ into (λ1, λ2). Let Λi denote the set of admissible values of λi. The question of whether or
not the parameters of interest are functions of λ1 plays an essential role in our analysis: that is, whether there exists a
function φ,

(15.14)such that

(15.15)

When (15.15) holds, λ2 is often called a nuisance parameter.5

2.4 Sequential Cuts
Let xt ∈ IRn be partitioned as in (15.3) and let λ = (λ1, λ2) be a reparameterization as in (15.13). The following definition
is adapted from Florens and Mouchart (1980a) who generalized the notion of cut discussed (for example) by
Barndorff-Nielsen (1978) to dynamic models.

Definition 15.4 [(yt|zt; λ1), (zt; λ2)] operates a (classical) sequential cut on D(xt|Xt−1, λ) if and only if

(15.16)where λ1 and λ2 are variation free, i.e.
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(15.17)

Since Λi denotes the set of admissible values of λi, condition (15.17) requires in effect that λ1 and λ2 should not be
subject to ‘cross-restrictions’, whether exact or inequality restrictions, since then the range of admissible values for λi
would vary with λj (i, j = 1, 2; j ≠ i).

2.5 Weak and Strong Exogeneity
The following definitions are adapted from Richard (1980). As in (15.12), ψ denotes the parameter of interest.

Definition 15.5 Zt Is Weakly Exogenous Over the Sample Period For ψ If and Only If There Exists a
Reparameterization With λ = (λ1, λ2) Such That

(i) ψ is a function of λ1 (as in (15.15)).
(ii) [(yt|zt; λ1), (zt; λ2)] operates a sequential cut.

Definition 15.6 Zt Is Strongly Exogenous Over the Sample Period For ψ If and Only If It Is Weakly
Exogenous For ψ and In Addition

(iii) y does not Granger-cause z.

When (ii) holds, factorizes as in

(15.18)

where

(15.19)

(15.20)

and the two factors in (15.18) can be analysed independently of each other (which, irrespective of whether or not (i)
holds, may considerably reduce the computational burden). If in addition (i) holds, then all the sample information
concerning the parameter of interest ψ can be obtained from the partial likelihood function . If it were known
(or assumed a priori) that zt was weakly exogenous for ψ, then the marginal process D(zt|Xt−1, λ2) would not even need
to be specified. However, tests of the weak exogeneity of zt for ψ, as described in section 6.1 of EHR and Engle
(1982b), evidently require that the joint model D(xt|Xt−1, λ) be specified.

The factorization (15.18)–(15.20) does not entail that the conditional process generating {yt|zt} and the marginal
process generating {zt} can be separated from each other, i.e. for example, that zt can be treated as ‘fixed’ in the
conditional model D(yt|zt, Xt−1, λ1), since lagged values of yt may still affect the process generating zt.6 Factorizing the
joint data density requires an additional
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assumption and this is precisely the object of Granger non-causality. When both (ii) and (iii) hold we can factorize
as in

(15.21)

where

(15.22)

(15.23)

It must be stressed that the definition of Granger non-causality as given in (15.6) and (15.8) includes no assumption
about the parameters. This is precisely why it must be completed by an assumption of weak exogeneity in order to entail
a complete separation of the processes generating respectively {yt|zt} and {zt}.

2.6 Structural Invariance and Super Exogeneity
A closely related issue of statistical inference is parameter constancy. Over time, it is possible that some of the
parameters of the joint distribution may change perhaps through changing tastes, technology or institutions such as
government policy making. For some classes of parameter change or ‘interventions’ there may be parameters which
remain constant and which can be estimated without difficulty even though interventions occur over the sample
period. This is a familiar assumption about parameters in econometrics which is here called invariance. Just as weak
exogeneity sustains conditional inference within a regime, we develop the relevant exogeneity concept for models
subject to a particular class of regime changes.

Definition 15.7 A parameter is invariant for a class of interventions if it remains constant under these interventions.
A model is invariant for such interventions if all its parameters are.

Definition 15.8 A conditional model is structurally invariant if all its parameters are invariant for any change in the
distribution of the conditioning variables.7

Since weak exogeneity guarantees that the parameters of the conditional model and those of the marginal model are
variation free, it offers a natural framework for analysing the structural invariance of parameters of conditional models.
However, by itself, weak exogeneity is neither necessary nor sufficient for structural invariance of a conditional model.
Note, first, that the conditional model may be structurally invariant without its parameters providing an estimate of the
parameters of interest. Conversely, weak exogeneity of the conditioning variables does not rule out the possibility that
economic agents change their behaviour in relation to interventions. That is, even though the parameters of interest
and the nuisance parameters are variation free over any given regime, where a regime is characterized by a fixed
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distribution of the conditioning variables, their variations between regimes may be related. This will become clear in
the examples.

The concept of structurally invariant conditional models characterizes the conditions which guarantee the
appropriateness of ‘policy simulations’ or other control exercises, since any change in the distribution of the
conditioning variables has no effect on the conditional submodel and therefore on the conditional forecasts of the
endogenous variables. This requirement is clearly very strong and its untested assumption has been criticized in
conventional practice by Lucas (1976) and Sargent (1981).

To sustain conditional inference in processes subject to interventions, we define the concept of super exogeneity.

Definition 15.9 zt is super exogenous for ψ if zt is weakly exogenous for ψ and the conditional model D(yt|zt, Xt − 1, λ1)
is structurally invariant.

Note that definition 15.9 relates to conditional submodels: since estimable models with invariant parameters but no
weakly exogenous variables are easily formulated (see example 15.2 below), super exogeneity is a sufficient but not a
necessary condition for valid inference under interventions (see, for example, the discussion of feasible policy analyses
under rational expectations in Wallis (1980) and the formulation in Sargent (1981)).

It is clear that any assertion concerning super exogeneity is refutable in the data for past changes in D(zt | Xt − 1, λ2) by
examining the behaviour of the conditional model for invariance when the parameters of the exogenous process
changed. For an example of this see chapter 11. However, super exogeneity for all changes in the distribution of zt
must remain a conjecture until refuted, both because nothing precludes agents from simply changing their behaviour at
a certain instant and because only a limited range of interventions will have occurred in any given sample period
(compare the notion of non-excitation in Salmon and Wallis, 1982). Such an approach is, of course, standard scientific
practice. When derived from a well-articulated theory, a conditional submodel with zt super exogenous seems to satisfy
the requirement for Zellner causality of ‘predictability according to a law’ (see Zellner, 1979b).

2.7 Comments
The motivation for introducing the concept of weak exogeneity is that it provides a sufficient8 condition for conducting
inference conditionally on zt without loss of relevant sample information. Our concept is a direct extension of
Koopmans' (1950a) discussion of exogeneity. He shows that an implicit static simultaneous equations system which
has the properties (a) that the variables of the first block of equations do not enter the second block, (b) that the
disturbances between the two blocks are independent and (c) that the Jacobian of the transformation from the
disturbances to the observables is nowhere zero, will have a likelihood function which factors into two components as
in (15.18), a conditional and a marginal. The variables in the second block are labelled exogenous. Implicit in his
analysis is the notion that
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the parameters of interest are all located in the first block and that this parameterization operates a cut. The failure to
state precisely these components of the definition leads to a lack of force in the definition as is illustrated in several of
the examples in this chapter. Koopmans then analyses dynamic systems in the same framework, leading to a notion of
exogeneity which corresponds to our strong exogeneity and predeterminedness corresponding to that concept as
defined above.

Koopmans presents sufficient conditions for the factorization of the likelihood but does not discuss the case where the
factorization holds but his sufficient conditions do not. Our work therefore extends Koopmans' by making precise the
assumptions about the parameters of interest and by putting the definitions squarely on the appropriate factorization
of the likelihood. More recent literature has in fact stepped back from Koopmans' approach, employing definitions
such as that of strict exogeneity in section 2.2. As shown in section 4, strict exogeneity, when applied to dynamic
simultaneous equations models, includes condition (iii) of definition 15.6 together with predeterminedness; condition
(ii) of definition 15.5 is not required explicitly but, at least for just identified models, is often satisfied by construction;
condition (i) of definition 15.5 is certainly absent which, in our view, is a major lacuna9 since, unless it holds, strict
exogeneity of zt does not ensure that there is no loss of relevant sample information when conducting inference
conditionally on zt. On the other hand, if (i) and (ii) hold, then (iii) becomes irrelevant10 since it no longer affects
inference on the parameters of interest. This does not mean that condition (iii) has no merit on its own — a model
user might express specific interest in detecting causal orderings and ψ should then be defined accordingly — but
simply that it is misleading to emphasize Granger non-causality when discussing exogeneity. The two concepts serve
different purposes: weak exogeneity validates conducting inference conditional on zt while Granger non-causality
validates forecasting z and then forecasting y conditional on the future zs. As is well known, the condition that y does not
Granger-cause z is neither necessary nor sufficient for the weak exogeneity of z. Obviously, if estimation is required
before conditional predictions are made, then strong exogeneity which covers both Granger non-causality and weak
exogeneity becomes the relevant concept.

Note that if [(yt|zt; λ1), (zt; λ2)] operates a sequential cut, then the information matrix, if it exists, is block-diagonal
between λ1 and λ2. In fact for most of the examples discussed in this chapter and in EHR the condition that the
information matrix be block-diagonal appears to be equivalent to the condition that the parameterization should
operate a sequential cut. However, at a more general level, the finding that the information matrix is block-diagonal
between two sets of parameters, one of which contains all the parameters of interest, does not entail that the likelihood
function factorize as in (15.18). Block-diagonality of the information matrix may reflect other features of the likelihood
function. Therefore, it seems difficult to discuss exogeneity by means of information matrices without explicitly
referring to reparameterizations in terms of conditional and marginal submodels. Further, information matrices are
often difficult to obtain analytically especially in the presence of lagged endogenous variables.

Note also that some definitions seem designed to validate specific estimation methods such as ordinary least squares
within a single-equation framework. For
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example, Phillips (1956, section IV) presents conditions justifying least squares estimation in dynamic systems, which if
fulfilled would allow regressors to be treated as ‘given’, despite the presence of Granger causal feedbacks. The concept
of weak exogeneity is not directly related to validating specific estimation methods but concerns instead the conditions
under which attention may be restricted to conditional submodels without loss of relevant sample information. Later
selection of an inappropriate estimator may produce inefficiency (and inconsistency) even when weak exogeneity
conditions are fulfilled.

Many existing definitions of exogeneity have been formulated in terms of orthogonality conditions between observed
variables and (unobservable) disturbances in linear relationships within processes which are usually required to be
Gaussian. Definitions 15.5 and 15.6 apply equally well to any joint density function and therefore encompass non-
linear and non-Gaussian processes and truncated or otherwise limited dependent variables. As such non-classical
models come into more use it is particularly important to have definitions of exogeneity which can be directly applied.
See, for example, Gourieroux et al. (1980) or Maddala and Lee (1976). For a formulation tantamount to weak
exogeneity in the context of conditional logit models, see McFadden (1979, section 5.1). Exogeneity has also been
discussed from the Bayesian point of view by Florens and Mouchart (1980a). The issue then becomes whether or not
the posterior density of the parameters of interest as derived from a conditional submodel coincides with that derived
from the complete model. Such is the case if zt is weakly exogenous and in addition λ1 and λ2 in definition 15.5 are a
priori independent. However, the conditions are not necessary and it may be the case that, in the absence of a sequential
cut, the prior density is such that the desired result is still achieved.

3 Examples
Many of the points made in the previous section can be illustrated with the simplest of all multivariate models, the
bivariate normal. Because this is a static model, the concepts of weak and strong exogeneity coincide as do the
concepts of predeterminedness and strict exogeneity. The central role of the choice of parameters of interest is seen
directly.

Example 15.1 Let the data on yt and zt be generated by

(15.24)

with the conditional distribution of yt given zt

(15.25)

where β = ω12/ω22, α = μ1 − β μ2 and . Letting

(15.26)

the model is correspondingly reformulated as
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(15.27)

(15.28)

where cov(zt, u1t) = cov(v2t, u1t) = 0 by construction. The parameters of the conditional model (15.27) are (α, β,
σ2) and those of the marginal model (15.28) are (μ2, ω22). They are in one-to-one correspondence with (μ, Ω)
and are variation free since, for arbitrary choices of (α, β, σ2) and (μ2, ω22) in their sets of admissible values
which are respectively ℝ2 × IR+ and IR × IR+, μ and Ω are given by

(15.29)

and the constraint that Ω be positive definite is automatically satisfied (see lemma 5.1 in Drèze and Richard
(1984), for a generalization of this result to multivariate regression models). It follows that zt is weakly
exogenous for (α, β, σ2) or for any well-defined function thereof.

However, similar reasoning applies by symmetry to the factorization

(15.30)

(15.31)

where , and cov(yt, u2t) = cov(v1t, u2t) = 0 by construction. Therefore, yt is weakly
exogenous for (γ, δ, τ2) or for any well-defined function thereof. In this example the choice of parameters of interest is
the sole determinant of weak exogeneity which is therefore not directly testable.

Next, consider the concept of predeterminedness which is here equivalent to that of strict exogeneity. Regardless of
the parameters of interest, zt is predetermined in (15.27) by construction and so is yt in (15.30). Which variable is
predetermined depends upon the form of the equation, not upon the properties of the joint density function. Until
some of the parameters are assumed to be more fundamental or structural (i.e. parameters of interest), the notion of
predeterminedness has no force. When is the parameter of interest, zt is predetermined in equation (15.27) but not
weakly exogenous while yt is weakly exogenous but not predetermined. Similar results hold in more complex models
where the assumptions of exogeneity can be tested.

This example also illustrates the ambiguity in Koopmans' sufficient conditions as discussed in section 2.7 since their
application leads to the conclusion that zt is exogenous in (15.27) and (15.28) while yt is exogenous in (15.30) and
(15.31), a conclusion which seems to misrepresent Koopmans' views about exogeneity.

Now consider the concepts of structural invariance and super exogeneity. Will the parameter β in (15.27) be invariant
to an intervention which changes the variance of z? The answer depends upon the structure of the process. If β is truly
a constant parameter (because, for example, (15.27) is an autonomous behavioural equation) then σ12 will vary with σ22

since, given (15.26), σ12 = β σ22. Alternatively it might be σ12 which is the fixed constant of nature in (15.24) and in this
case β will not be invariant to changes in σ22; zt can be weakly exogenous for β within one regime
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with β a derived parameter which changes between regimes. By making β the parameter of interest, most investigators
are implicitly assuming that it will remain constant when the distribution of the exogenous variables changes; however,
this is an assumption which may not be acceptable in the light of the Lucas (1976) critique. Similar arguments apply to
α or σ2. Therefore, if (α, β, σ2) are invariant to any changes in the distribution of zt or, more specifically in this restricted
framework, to changes in μ2 and ω22, then zt is super exogenous for (α, β, σ2). If, on the other hand, β is invariant to
such changes while α and σ2 are not, for example because μ1 and ω11 are invariant, then zt might be weakly exogenous
for β within each regime but it is not super exogenous for β since the marginal process (15.28) now contains valuable
information on the shifts of α and σ2 between regimes.11 It is clear from the above argument that weak exogeneity does
not imply structural invariance. It is also clear that, even if β is invariant to changes in the distribution of z or in fact the
conditional model (15.27) is structurally invariant, the parameter of interest could be γ and therefore zt would not be
weakly exogenous, and thus not super exogenous either.

Finally, since weak exogeneity explicitly requires that all relevant sample information be processed, over-identifying
restrictions are bound to play an essential role in a discussion of weak exogeneity assumptions.12 This will be discussed
further in section 4 within the framework of dynamic simultaneous equations models. Example 15.2 illustrates the role
of over-identifying restrictions in a simple structure.

Example 15.2 Consider the following two-equation over-identified model:

(15.32)

(15.33)

(15.34)

Equation (15.33) is a typical control rule for an agent attempting to control y. For example, this could be a
governmental policy reaction function or a farmer's supply decision or a worker's rule for deciding whether to
undertake training. These cobweb models have a long history in econometrics. The parameter of interest is
assumed to be β.

The reduced form consists of (15.33) and

(15.35)

(15.36)and the conditional density of yt given zt is

(15.37)where

(15.38)
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which can be written as the regression

(15.39)

The condition which is of first concern is the value of the parameter σ12. If σ12 = 0, then zt is predetermined in (15.32)
and is weakly exogenous for β since (β, σ11) and (δ1, δ2, σ22) operates a cut. Even so, for δ2 ≠ 0, y Granger-causes z and
therefore z is not strongly exogenous, nor is it strictly exogenous. However, the important criterion for efficient
estimation is weak exogeneity, not strong exogeneity, and tests for Granger causality have no bearing on either the
estimability of (15.32) or the choice of estimator.

If σ12 is not zero, then zt is not weakly exogenous for β because this parameter cannot be recovered from only the
parameters b, c1, c2, σ2 of the conditional distribution (15.37). In (15.32) zt is also not predetermined; however, in (15.39)
it is, again showing the ambiguities in this concept. Whether or not a variable is predetermined depends on which
equation is checked, and is not an intrinsic property of a variable.

The preceding results remain unchanged if δ2 = 0, in which case y does not Granger-cause z, yet zt is still not weakly
exogenous for β when σ12 ≠ 0. Granger non-causality is neither necessary nor sufficient for weak exogeneity or, for that
matter, for predeterminedness.

Suppose instead that b is the parameter of interest and δ2 ≠ 0. Then ordinary least squares on (15.39) will give a
consistent estimate. This will not be an efficient estimate, however, since the parameters should satisfy the restriction

(15.40)

and consequently joint estimation of (15.39) and (15.33) would be more efficient. The parameterization (b, c1, c2, σ2), (δ1,
δ2, σ22) does not operate a cut because the parameter sets are not variation free and so zt is not weakly exogenous for b.
If, however, δ2 = 0 so that the system becomes just identified then zt will be weakly exogenous for b as (b, c1, σ2), (δ1, σ22)
operates a cut. In both cases, zt is still predetermined in (15.39).

Which parameter ‘ought’ to be the parameter of interest requires further information about the behaviour of the
system and its possible invariants. Usually, it seems desirable to choose as parameters of interest those parameters
which are invariant to changes in the distribution of the weakly exogenous variables. Returning to the first case where β
is the parameter of interest and σ12 = 0, the investigator might assume that (β, σ11) would be invariant to changes in the
distribution of z. If this were valid, zt would be super exogenous, even though it is still Granger-caused by y and so it is
not strongly exogenous nor strictly exogenous. Changes in the parameters of (15.33) or even of the distribution of zt
will not affect estimation of β nor will control of z affect the conditional relation between yt and zt given in (15.32).
Conversely, if δ2 = 0 but σ12 ≠ 0, then (b, c1, σ2) and (δ1, σ22) operates a cut, and z is strictly exogenous in (15.39) and
strongly exogenous for b, yet that regression is by hypothesis not invariant to changes in either δ1 or σ22, cautioning
against constructing cuts which do not isolate invariants.

The assumption of super exogeneity is testable if it is known that the parameters
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of the marginal distribution have changed over the sample period. A test for changes in β could be interpreted as a test
for super exogeneity with respect to the particular interventions observed.

To clarify the question of structural invariance in this example, consider a derivation of the behavioural equation
(15.32) based on the assumption that the agent chooses y to maximize his expected utility conditional on the
information available to him. Let the utility function be

(15.41)

where β is a parameter which is by hypothesis completely unrelated to the distribution of z and hence is invariant to
any changes in the δs in equation (15.33). Allowing for a possible random error νt, arising from optimization, the
decision rule is

(15.42)

where represents the agent's expectation of zt conditionally on his information set It. In the perfect information case
where zt is contained in and (15.32) follows directly from (15.42). Hence β is structurally invariant and the
assumption that σ12 = cov(vt, ε2t) = 0 is sufficient for the weak exogeneity of β and, consequently, for its super
exogeneity. The imperfect information case raises more subtle issues since, as argued in, for example, chapter 17,
may not coincide with the expectation of zt as derived from (15.33). In this example, however, we discuss only the
rational expectations formulation originally proposed by Muth (1961) whereby it is assumed that and in
(15.33) coincide. Hence (15.32) follows from (15.42) and

(15.43)

so that σ12 = cov(vt, ε2t) − β σ22. Therefore, the conventional assumption that cov(vt, ε2t) = 0 entails that σ12 = −β σ22 ≠ 0
in which case zt is neither weakly exogenous nor super exogenous for β even though β is invariant. On the other hand,
rational expectations per se does not exclude the possibility that σ12 = 0 (so that zt remains weakly exogenous for β)
since, for example,

(15.44)

suffices.

Under the familiar assumptions cov(vt, ε2t) = 0, the conditional expectation (15.37) and the reduced form (15.35)
coincide. No current value of z belongs in the conditional expectation of yt given (zt, It). Nevertheless, zt is not weakly
exogenous for β because the parameter β cannot be recovered from the reduced form coefficients c1 and c2 alone. This
illustrates that, even when the current value fails to enter the conditional expectation, weak exogeneity need not hold.

If the ci were the parameters of interest, then zt would be weakly exogenous, but these reduced form parameters are not
structurally invariant to changes in the δs. The Lucas (1976) criticism applies directly to this equation regardless of
whether y Granger-causes z. The derivation and the non-invariance of these parameters suggests why they should not
be the parameters of interest. Once again, testing for

EXOGENEITY 345



Granger causality has little to do with the Lucas criticism or the estimability or formulation of the parameters of
interest. It is still possible to estimate β efficiently, for example by estimating (15.32) and (15.33) jointly as suggested by
Wallis (1980), but this requires specifying and estimating both equations.13 If there is a structural shift in the parameters
of the second equation, this must also be allowed for in the joint estimation. This example shows the close relationship
between weak exogeneity and structural invariance and points out how models derived from rational expectations
behaviour may or may not have weak exogeneity and structural invariance.

Example 15.3 This final example shows that with a slight extension of the linear Gaussian structure to include
serial correlation the concept of predeterminedness becomes even less useful.

Consider the model

(15.45)

(15.46)

(15.47)

(15.48)

Although this model is unidentified in a rather subtle sense, this need not concern us here as all the special cases to be
discussed will be identified. The issue is dealt with more fully in EHR.

The conditional expectation of yt given zt and Xt−1 implies the regression

(15.49)where

(15.50)The covariance between zt and ut is given by

(15.51)

Note first that, as indicated by (15.51), the condition σ12 = 0 is not sufficient for the predeterminedness of zt in (15.45).
However, σ12 = 0 is sufficient for the weak exogeneity of zt for the parameters β and ρ, as can be seen directly from
(15.50) where the parameters of the conditional model (15.49) are subject to a common factor restriction but are
variation free with those of the marginal model (15.47). Thus, the parameters of (15.49) could be estimated by
imposing the restrictions through some form of autoregressive maximum likelihood method. Ordinary least squares
estimation of β in (15.45) will be inconsistent whereas autoregressive least squares will be both consistent and
asymptotically efficient. This example shows
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the advantages of formulating definitions in terms of expectations conditional on the past.

A second interesting property of this model occurs when σ12 ≠ 0 but γ = 0. Again (15.51) shows that zt is not
predetermined in (15.45) but, surprisingly, it is weakly exogenous for β and ρ. The three regression coefficients in
(15.49) are now a non-singular transformation of the three unknown parameters (β, ρ, σ12/σ22) and these operate a cut
with respect to the remaining nuisance parameter σ22. Ordinary least squares estimation of (15.49) provides efficient
estimates of its parameters and the maximum likelihood estimate of β is −d/c. Both ordinary least squares and
autoregressive least squares estimation of (15.45) would yield inconsistent estimates of β.

The case where

(15.52)

raises several important issues which are discussed in detail in EHR. In short, the condition (15.52) identifies the
model but violates both condition (i) and condition (ii) in definition 15.5 so that zt is not weakly exogenous for (β, ρ),
neither is it for (b, c, d) in (15.49). In particular, the autoregressive least squares estimator of β in (15.45) and (15.46) is
inconsistent even though, as a consequence of the predeterminedness of zt in (15.45), the first-step ordinary least
squares estimators of β in (15.45) and ρ in (15.46) are consistent (but not efficient).

This concludes the discussion of the examples. It is hoped that these have shown the usefulness of the concepts of
weak and strong exogeneity, structural invariance and super exogeneity in analysing familiar and possibly some
unfamiliar situations. Further examples can be found in EHR including a truncated latent variable model based upon
Maddala and Lee (1976).

4 Application to Dynamic Simultaneous Equations Models
In this section we shall apply our analysis to dynamic simultaneous equations models (DSEMs). As this is the arena in
which notions of exogeneity are most heavily used and tested, it is important to relate our concepts to conventional
wisdom. It will be shown that the conventional definitions must be supplemented with several conditions for the
concepts to have force. However, when these conditions are added, then in standard textbook models
predeterminedness becomes equivalent to weak exogeneity and strict exogeneity becomes equivalent to strong
exogeneity. Finally, our framework helps clarify the connections between such (modified) concepts and the notions of
Wold causal orderings (see Strotz and Wold, 1960), ‘block recursive structures’ (see Fisher, 1966b) and ‘exogeneity
tests’ as in Wu (1973).

Following Richard (1979, 1980) the system of equations need not be complete and thus the analysis is directly a
generalization of the conventional DSEM. Assuming normality and linearity of the conditional expectations

, let14

(15.53)
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where {Π(i)} and Ω are functions of a vector of unknown parameters θ ∈ Θ.

Define the ‘innovations’ or ‘reduced form disturbances’ vt by

(15.54)Then, φt being conditional on Xt−1,

(15.55)and hence

(15.56)We define the dynamic multipliers Q(i) by the recursion

and

(15.57)and note that

(15.58)

Often the specification of θ is (partially) achieved by considering sets of behavioural relationships. Such relationships
can correspond to optimizing behaviour given expectations about future events, allow for adaptive responses and
include mechanisms for correcting previous mistakes. In our framework, where attention is focused on the conditional
densities D(xt | Xt−1, θ) it is natural to specify these relationships in terms of the conditional expectations φt. Consider,
therefore, a set of g ≤ n linear behavioural relationships of the form

(15.59)

where B and {C(i)} are g × n matrix functions of a vector of ‘structural’ coefficients δ ∈ Δ, with rank B = g almost
everywhere inΔ. The δs are typically parameters of interest. We can also define a g-dimensional vector of unobservable
‘structural disturbances’:

(15.60)which also satisfy, by construction, the properties (15.55) and (15.56).

Let Σ denote the covariance matrix of εt. In all generality Σ is also treated as a function of δ. From (15.53), (15.54),
(15.59) and (15.60) we must have εt = Bvt and

(15.61)
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The identities (15.61) define a correspondence between Δ and Θ or, equivalently, a function h from Δ to P(Θ), the set
of all subsets of Θ. To any given δ ∈ Δ, h associates a subset of Θ which we denote by h(δ). In the rest of the chapter it
is assumed that (i) δ is identified in the sense that

(15.62)and (ii) all values in Θ are compatible with (15.61),

(15.63)

so that {h(δ)} is a partition of Θ.

Let s denote the number of non-zero columns in {Π(i)} and Cn the set of n × n symmetric positive definite matrices. If
Θ = IRsn × Cn except for the set of zero Lebesgue measure, then the model (15.53) is just identified. It is over-identified if Θ
is a strict subset of IRsn × Cn.

When g < n, it often proves convenient to define an auxiliary parameter vector, say θ ∈ Θ of the form θ = (δ, θ2) where
θ2 is a subvector of θ defined in such a way that Θ and Θ are in one-to-one correspondence. If, in particular, {Π(i)} and
Ω are subject to no other constraints than those derived from the identities (15.61) as implicitly assumed in this
section, then we can select for θ2 the coefficients of n − g unconstrained ‘reduced form’ equations,15 whereby

(15.64)
The specification of many econometric models ‘allows for’ serial correlation of the residuals, i.e. incorporates linear
relationships of the form

(15.65)

where B* and {C* (i)} are claimed to be parameters of interest (or well-defined functions thereof) and ut is seen as a g-
dimensional ‘autonomous’ process, subject to serial correlation. Note that if (15.65) is to be used to derive the
distribution of xt from that of ut, then the system must be ‘complete’, i.e. g = n.

Provided that ut has an autoregressive representation,

(15.66)

where et ∼ IN (0, Σ), then (15.65) can be transformed to have serially uncorrelated ‘errors’ (the new parameterization
being subject to common factor restrictions as in Sargan, 1980a) in which case the transformed model can be
reinterpreted in terms of conditional expectations as in (15.53). More general specifications of ut are not ruled out in
principle, but might seriously complicate the analysis.

We can now unambiguously characterize and interrelate the concepts of Granger non-causality, predeterminedness and
strict exogeneity, as given in definitions 15.1–15.3, for potentially over-identified and incomplete DSEMs which have
been transformed to have serially uncorrelated residuals. Since these concepts may apply only to a subset of the
equation system (15.59), this is accordingly partitioned into
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the first g1 ≤ p equations and the remaining g2 = g − g1 ≤ q equations – see, for example, Fisher (1966b) on the notion of
block recursive structures. We partition the Πs, Qs and Ω conformably with the variables xt′ = (yt′ zt′), B conformably
with the variables and the equations and the Cs and Σ conformably with the equations as

(15.67)

Theorem 15.1 For the class of models defined by (15.53) plus (15.59):

(i) y does not Granger-cause z if and only if Q21 (i) = 0 for all i ≥ 1;
(ii) zt is predetermined in the first g1 equations of (15.59) if and only if B1Ω2 = 0;
(iii) zt is strictly exogenous in the first g1 equations of (15.59) if and only if B1Ω Q2′ (i) = 0 for all i ≥ 0.
(iv) Conditions (i) and (ii) are sufficient for (iii). If g1 = p, they are also necessary for (iii).
(v) If B21 = 0, Σ12 = 0 and rank B22 = q (= g2), then zt is predetermined in the first g1 equations of (15.59).
Proof: The proof follows from the definitions 15.1–15.3 together with (15.57), wherefrom it can be shown by
recurrence that (Π21 (i) = 0; i ≥ 1) is equivalent to (Q21 (i) = 0; i ≥ 1). See EHR for more details.

In order to discuss weak exogeneity the parameters of interest must be defined. In the theorems below it will be
assumed that the parameters of interest are all grouped together in the first g1 equations. Thus it is not a cavalier matter
which equations are put in the first group. For example, in a control problem, the first g1 equations might describe the
behaviour of the economic agents given the controlled
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values of zt, while the remaining g2 equations describe the control rules which have been operative.

Factorizing the joint density (15.53) also requires the introduction of an appropriate reparameterization. This is the
object of lemma 15.1 which translates into our notation results which are otherwise well known.

Lemma 15.1 The joint density (15.53) factorizes into the product of the conditional density

(15.68)

and the marginal density

(15.69)

with λ1 = (Δ12, {Π1.2 (i)}, Ω11.2), λ2 = ({Π2 (i)}, Ω22),

(15.70)

Proof: See, for example, Press (1972, sections 3.4 and 3.5).

If the model (15.53) is just identified, then λ1 and λ2 are variation free with respective domains of variation Λ1 = IRp × q ×
{IRp × n} × Cp and Λ2 = {IRq × n} × Cq and zt is weakly exogenous for ψ if and only if ψ is a function of λ1 only. However,
in order to be operational within the framework of DSEMs, such a condition should be expressed in terms of the
structural coefficients δ since these are themselves typically parameters of interest. Also, most applications involve
over-identified models for which λ1 and λ2 are no longer variation free unless some additional conditions are satisfied.
Thus, the object of theorem 15.2 is to derive general conditions on δ for the weak exogeneity of zt for ψ. By their nature,
these conditions are sufficient and, as in section 3, it is easy to construct examples in which they are not necessary.
Consequently, in so far as so-called ‘exogeneity tests’ are typically tests for such conditions, rejection on such a test
does not necessarily entail that the weak exogeneity assumption is invalid (see, for example, example 15.3 when σ12 ≠ 0
and γ = 0).Theorem 15.2 For the DSEM in (15.53) plus (15.59) consider the following conditions:

(i) B1Ω2 = 0,
(ii) B21 = 0,
(iii) (B1, {C1 (i)}, Σ11) and (B2, {C2 (i)}, Σ22) are variation free,
(iv) ψ is a function of (B1, {C1 (i)}, Σ11),
(v) Σ12 = 0,
(vi) rank B22 = q,
(vii) (B2, {C2 (i)}, Σ22) are just identified parameters.
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The following sets of conditions are sufficient for the weak exogeneity of zt for ψ:

(a) (i) (ii) (iii) (iv),
(b) (ii) (iii) (iv) (v) (vi),
(c) (i) (iii) (iv) (vii).

Proof: The basic result (a) generalizes theorem 3.1 in Richard (1980) in that it also covers cases where restrictions are
imposed on Σ. The proof in Richard extends to the more general case since, under (i) and (ii), the identity Σ = BΩB′
separates into the two identities Σ11 = B11Ω11.2B′11 and Σ22 = B22Ω22B′22. Result (b) follows from (a) together with condition
(ii) and (v) in theorem 15.1. Result (c) follows by applying (a) to a system consisting of the first g1 behavioural
relationships and g2unrestricted reduced form equations whose parameters are in one-to-one correspondence with (B2,
{C2 (i)}, Σ22) and variation free with (B1, {C1 (i)}, Σ11) following conditions (vii) and (iii).

The major differences in the sufficient conditions for weak exogeneity and for predeterminedness are conditions (iii)
and (iv) of theorem 15.2, which assure the model builder that there are no cross-equation restrictions to the second
block of equations and that there are no interesting parameters in that block.

To show the importance of these conditions in any definition, consider a set of g ≤ p < n just identified behavioural
relationships, as given by (15.59), such that BΩ2 ≠ 0. As is well known (see, for example, Strotz and Wold, 1960) the
system (15.59) can be replaced by an observationally equivalent one in which zt is predetermined and hence is strictly
exogenous if y does not Granger-cause z. For example let

(15.71)

(15.72)

whereΦ is an arbitrary but known g × g non-singular matrix so that ( , { (i)}) are just identified by construction. Such
transformations, with Φ = I2, have been implicitly used in examples 15.1–15.2. Replacing (15.59) by

(15.73)

leaves (15.53) unaffected, but now Ω2 = 0. Consequently, ( , { (i)}) can be estimated consistently from the
conditional model D (yt | zt, Xt−1, ·) together with (15.73). These estimates would be efficient provided that (15.59) were
just identified. However, it is essential to realize that, since g ≤ p < n, the parameters (B, {C (i)}) are typically not
functions of ( , { (i)}) alone and, if the former are of interest, transforming (15.59) to (15.73) does not allow valid
inference conditionally on zt.

Thus, although at first sight, in normal DSEMs weak exogeneity appears to be close to the notion of a Wold causal
ordering, without the concept of parameters of interest the latter lacks force since there may be no cut which separates
the parameters of interest and the nuisance parameters. Nevertheless, it must be stressed that Wold and Jureen (1955,
p. 14) explicitly include the condition that ‘each
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equation in the system expresses a unilateral causal dependence’ which, in the spirit of our use of sequential cuts, seems
designed to exclude arbitrary transformations of the system (15.59); see also the distinction in Bentzel and Hansen
(1955) between basic and derived models.

In Wu's (1973) analysis, where g1 = 1, it is implicit that conditions (iii) and (vii) of theorem 15.2 are satisfied in which
case the condition for predeterminedness (B1Ω2 = 0) is indeed sufficient for the weak exogeneity of zt for the
parameters of the first behavioural equation (but not necessarily for other parameters of interest). It must be stressed,
however, that if the remaining behavioural equations in the model under consideration are over-identified, then
predeterminedness might no longer be sufficient on its own for the weak exogeneity of zt. Therefore, even if the
conditions (iii) and (iv) of theorem 15.2 are incorporated in the definition of predeterminedness as is sometimes
implicitly done, there would remain many situations where weak exogeneity and predeterminedness would still differ.
Cases (a) and (b) in theorem 15.2 provide sufficient conditions which are applicable to more general cases than the one
considered in Wu. Note, however, that condition (ii) in particular is not necessary and that case (c) could be made
more general at the cost of some tedious notation as hinted by the following example.16Example 15.4 Consider a
(complete) DSEM with n = 3, p = g1 = 1, q = g2 = 2 and

The bs and cs are assumed to be variation free. The condition B1Ω2 = 0, which is equivalent to σ12 = b2σ11 and σ13 = 0, is
sufficient for the weak exogeneity of (y2t, y3t) for (b1, c1, σ11) even though B′21 = (b2, 0) ≠ 0 and the third behavioural
relationship is over-identified (but does not contain y1t!). Note that the predeterminedness of y2t in the first behavioural
relationship (σ12 = b2σ11) is sufficient for the consistency of ordinary least squares estimation of (b1, c1, σ11) in that
relationship but not for the weak exogeneity of (y2t, y3t) — or y2t alone — for (b1, c1, σ11). In the absence of additional
restrictions such as σ13 = 0 a more efficient estimator of (b1, c1, σ11) is obtained by, for example full information maximum
likelihood estimation of the complete DSEM.

Note finally from theorem 15.1(v) and 15.2(b) that the standard block-recursive model is sufficient for both (block)
predeterminedness and (block) weak exogeneity (again assuming the parameterization satisfies (iii) and (iv)); this may
help explain its importance in the development of the theory of simultaneous equations models.

5 Summary and Conclusions
Given the pervasive role of the concept of ‘exogeneity’ in econometrics, it is essential to characterize uniquely the
implications of claims that certain variables are
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‘exogenous’ according to particular definitions. Also, it is useful to have definitions which require minimal conditions
and yet are applicable to as wide a class of relevant models as possible. Consequently, general and unambiguous
definitions are proposed for weak, strong and super exogeneity in terms of the joint densities of observable variables and
the parameters of interest in given models, thus extending and formalizing the approach in Koopmans (1950a).
‘Exogeneity’ assertions are usually intended to allow the analysis of one set of variables without having to specify
exactly how a second related set is determined and such an analysis could comprise any or all of inference, forecasting
or policy. In each case, the conclusions are conditional on the validity of the relevant ‘exogeneity’ claims (a comment
germane to theoretical models also, although we only consider observable variables) and, since different conditioning
statements are required in these three cases, three distinct but inter-related concepts of exogeneity are necessary.

The joint density of the observed variables xt = (y′tz′t)′, conditional on their past, can always be factorized as the
conditional density of yt given zt times the marginal density of zt. If (i) the parameters λ1 and λ2 of these conditional and
marginal densities are not subject to cross-restrictions (i.e. there is a cut) and (ii) the parameters of interest (denoted by
ψ) can be uniquely determined from the parameters of the conditional model alone (i.e. ψ = f(λ1)), then inference
concerning ψ from the joint density will be equivalent to that from the conditional density so that the latter may be
used without loss of relevant information. Under such conditions, zt is weakly exogenous for ψ and, for purposes of
inference about ψ, zt may be treated ‘as if ’ it were determined outside the (conditional) model under study, making the
analysis simpler and more robust.

Conditions (i) and (ii) clearly are not sufficient to treat zt as if it were fixed in repeated samples, since the definition of
weak exogeneity is unspecific about relationships between zt and yt−i for i ≥ 1. However, if (iii) y does not Granger-cause
z, then the data density of factorizes into the conditional density of given times the marginal of

and hence {zt} may be treated as if it were fixed. If (i), (ii) and (iii) are satisfied, then zt is strongly exogenous for ψ and
forecasts could be made conditional on fixed future zs.

Nevertheless strong exogeneity is insufficient to sustain conditional policy analysis since (i) does not preclude the
possibility that, while λ1 and λ2 are variation free within any given ‘regime’, λ1 might vary in response to a change in λ2

between ‘regimes’. The additional condition that (iv) λ1 is invariant to changes in λ2 (or more generally the conditional
distribution is invariant to any change in the marginal distribution) is required to sustain conditional policy experiments
for fixed λ1, and zt is super exogenous for ψ if (i), (ii) and (iv) are satisfied (so that (iii) is not necessary either).

In fact, if the generating process of the conditioning variables is susceptible to changes over either sample or forecast
periods, then the failure of (iv) will invalidate inference and predictions based on the assertion that λ1 is a constant
parameter, whether or not zt includes ‘policy variables’. In worlds where policy parameters change, false super
exogeneity assumptions are liable to produce predictive failures in conditional models (see Lucas, 1976). Control
experiments which involve changes in λ2 must first establish the super exogeneity of zt for ψ under the class of
interventions
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considered; we know of no sufficient conditions for establishing such results, but a necessary condition is that the
conditional model does not experience predictive failure within sample (see chapter 11).

Even in constant-parameter worlds (and certainly in worlds of parameter change), the new concepts are distinct from
the more familiar notions of predeterminedness and strict exogeneity. Following precise definitions of these two
concepts, it is shown through examples that their formulation in terms of unobservable disturbances entails ambiguous
implications for inference and that strict exogeneity is neither necessary nor sufficient for inference in conditional
models without loss of relevant information. Moreover, models in which predeterminedness is obtained by
construction need not have invariant parameters and, since predeterminedness is necessary for strict exogeneity,
establishing only the latter does not provide a valid basis for conditional prediction or conditional policy. The various
concepts are compared and contrasted in detail in closed linear dynamic simultaneous equations systems, and the
usefulness of (i) and (ii) in clarifying the debate about Wold causal orderings is demonstrated.

It is natural to enquire about the testable implications of alternative exogeneity assumptions. Condition (iv) is indirectly
testable (as noted) via tests for parameter constancy, although as with all test procedures. Rejection of the null does not
indicate what alternative is relevant and non-rejection may simply reflect low power (so that there are advantages in
specifying the regime shift process as in Richard, 1980). Condition (iii) is common to both strong and strict exogeneity
notions and may be testable in the conditional model (see Sims, 1972b; Geweke, 1984) but may also require
specification of the marginal density of zt as in Granger (1969). Also, predeterminedness tests have been the subject of
a large literature (see inter alia Wu, 1973).

To test weak exogeneity, the conditional and marginal densities could be embedded in a joint density function, although
the choice of the latter may or may not generate testable implications. It is somewhat paradoxical to estimate the
parameters of a (potentially very complicated) marginal model just to test whether or not one needed to specify that
model. Moreover, mis-specifications in the marginal model may induce false rejection of the null of weak exogeneity.
Nevertheless, Engle (1982b, 1984) considers various weak exogeneity tests based on the Lagrange multiplier principle.
Also, on a positive note, while both weak exogeneity and parameter constancy are conjectural features in a conditional
modelling exercise, if the data generating process of zt has changed but the conditional model has not, then some
credibility must attach to the latter since it was hazarded to potential rejection and survived.

Finally, we believe that the new concepts are not only general (being based explicitly on density functions and
encompassing worlds of parameter change) and unambiguously characterized (thus clarifying a vital concept in
econometrics) but also highlight interesting and novel aspects of familiar problems (as shown in the examples in
section 3).
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Notes
1 The emphasis on observables does not preclude formulating theories in terms of unobservables (e.g. ‘permanent’

components, expectations, disturbances etc.), but these should be integrated out first in order to obtain an
operational model to which our concepts may be applied.

2 Throughout the chapter, the term ‘efficient estimation’ is used as a shorthand for ‘conducting inference without
loss of relevant information’, and does not entail any claims as to, for example, the efficiency of particular
estimators in small samples.

3 It is assumed that the dimensionality of Θ is sufficiently small relative to nT that it makes sense to discuss, ‘efficient’
estimation.

4 We use the term ‘strictly exogenous’ where some authors use ‘exogenous’ to distinguish this concept from that
introduced below.

5 The concept of nuisance parameter, however, is ambiguous. Whether or not a parameter is a nuisance parameter
critically depends on which (re)parameterization is used. If, for example, θ = (α, β) and β is the sole parameter of
interest, then α is a nuisance parameter. In contrast, a reparameterization using (α, γ) where γ = β/α entails that β is
not a function of γ alone, and so α is not a nuisance parameter.

6 It follows that, unless y does not Granger-cause z, is not sensu stricto a likelihood function, although it is
often implicitly treated as such in the econometric literature, but it is a valid basis for inferences about ψ, provided
that zt is weakly exogenous for ψ.

7 The definition can always be restricted to a specific class of distribution changes. This will implicitly be the case in
the examples which are discussed in section 3.

8 It is also necessary for most purposes. However, since in (15.14) ψ need not depend on all the elements in λ1 it
might happen that ψ and λ2 are variation free even though λ1 and λ2 are not in which case neglecting the restrictions
between λ1 and λ2might entail no loss of efficiency for inference on ψ. More subtly, whether or not cuts are necessary
to conduct inference based on partial models without loss of information obviously very much depends on how
sample information is measured. See in particular the concepts of G- and M-ancillarity in Barndorff-Nielsen
(1978).

9 This criticism is hardly specific to the concept of exogeneity. For example, unless there are parameters of interest, it
is meaningless to require that an estimator should be consistent since it is always possible to redefine the
‘parameters’ such that any chosen convergent estimation method yields consistent estimates thereof (see for
example, Hendry, 1979b).

10 Evidently if one wished to test the conditions under which (ii) held then over-identifying restrictions such as the
ones typically implied by Granger non-causality would affect the properties of the test.

11 This illustrates the importance of incorporating in definition 15.9 the requirement that the conditional model
D(yt|zt, Xt−1, λ1) be structurally invariant even though ψ may depend only on a subvector of λ1.

12 An interesting example of the complexities arising from over-identification occurs if ω11 = 1 in (15.24) a priori. Then
the factorization (15.27) and (15.28) no longer operates a cut as a result of the over-identifying constraint σ2 + β2ω22

= 1, while the factorization (15.30) and (15.31) still does. Further, β and σ2 are well-defined functions of (γ, δ, τ2)
since β = δ/(δ2 + τ2) and σ2 = τ2/(δ2 + τ2), while α is not. Therefore, zt is no longer weakly exogenous for (β, σ2)
while yt now is! Neither of these two variables is weakly exogenous for α.

13 Depending on the model formulation, instrumental variables estimation of (say) (15.32) alone is sometimes fully
efficient.
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14 Our framework explicitly requires that the distribution of the endogenous variables be completely specified.
Normality (and linearity) assumptions are introduced here because they prove algebraically convenient. Other
distributional assumptions could be considered at the cost of complicating the algebra. Furthermore, there exist
distributions, such as the multivariate Student distribution, for which there exist no cuts. Evidently weak exogeneity
can always be achieved by construction, simply by specifying independently of each other a conditional and a
marginal model, but is then no longer testable. More interestingly, conditions such as the ones which are derived
below could be viewed as ‘approximate’ or ‘local’ exogeneity conditions under more general specifications. Given
the recent upsurge of non-linear non-Gaussian models in econometrics this is clearly an area which deserves
further investigation.

15 This is current practice in the literature on so-called limited information procedures. Non-Bayesian inference
procedures based on likelihood principles are invariant with respect to the choice of these n − g reduced form
equations, provided they form a non-singular set of equations together with the g structural relationships (15.59).
Also, in a Bayesian framework there exist prior densities on θ such that the corresponding posterior densities on δ
have similar invariance properties. For details see for example Drèze and Richard (1984) for g = 1, or Richard
(1979) for g > 1.

16 We are grateful to A. Holly for providing us with this example and, more generally, for pointing out several
shortcomings in earlier drafts of this section.
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16 On the Formulation of Empirical Models in
Dynamic Econometrics17

With Jean-François Richard

Preamble
The next two chapters were written more or less contemporaneously with ‘Exogeneity’ (as was chapter 4) and each
drew on, and influenced, the others. I spent an exceptionally fruitful six months at CORE with Jean-François Richard
in 1980 (writing this chapter), immediately followed by six months in San Diego with Rob Engle (when much of
chapter 17 was written). The complementarity of the CORE and LSE approaches to modelling now led Jean-François
and I to seek a merger which integrated and hence extended both. Retrospectively, the developments seem quite
natural but at the time were far from obvious (to me at least!). The theory of reduction discussed in Florens et al.
(1974, 1976), Richard (1980) and Florens and Mouchart (1980a, b) fitted hand-in-glove with general-to-simple
modelling strategies as described in chapter 3, Mizon (1977a), chapters 6, 7 and 11 and Sargan (1980a) and precisely
matched what occurred in Monte Carlo (see Hendry and Harrison, 1974; Hendry, 1979b, 1984a). As noted in the
preamble to the previous chapter, exogeneity formalized important aspects of both DHSY and chapter 11, whereas
common factor ideas clarified the analysis in Richard (1980) for autoregressive error processes. Importantly for me,
the concepts in reduction theory brought previously diverse ideas into a common framework and resolved a number
of earlier methodological puzzles. These were distinct benefits, but since more seemed possible, chapter 16 sought to
analyse the framework and thereby extend the manual of ‘good empirical practice’ through delineating more rigorous
quality-control procedures.

The crucial concept was that all empirical models were implicitly derived from the data generation process by reduction
operations (such as marginalizing and conditioning) rather than inheriting the properties of the theoretical model from
which their formulation arose. Reductions induced transformed parameters, and corresponding disturbance terms,
which together determined the quality of the empirical model. For example, excessive reduction of

17 Reprinted from Journal of Econometrics, 20 (1982) 3–33. The authors are greatly indebted to Frank Srba for undertaking the computations reported below, and to Jean-Pierre
Florens, Knud Munk and Aris Spanos for many stimulating discussions on this topic, but do not hold them responsible for the views expressed herein. Financial support
from the International Centre for Economics and Related Disciplines and from the Social Science Research Council to the Methodology, Inference and Modelling
programme at the London School of Economics is gratefully acknowledged.



the lag length in a dynamic model could induce residual autocorrelation. The reduction idea simultaneously explained
why residuals may not have the properties assumed for error terms and why such residuals could be ‘redesigned’ to
satisfy some criterion, such as Durbin–Watson statistics of about 2.0 achieved by ‘autocorrelation corrections’. I had
earlier characterized this issue as problem ‘camouflage’. Moreover, invalid reductions could generate non-constant
parameterizations or non-encompassing models (e.g. omitting inflation from the consumption function) but it might
not be possible to camouflage such mis-specifications by mechanistic corrections, unlike residual autocorrelation, since
the relevant ‘redesign’ strategy was not obvious. An analysis of model design concepts had become essential.

Despite the lesson learned when writing ‘Exogeneity’ that the categorical imperative was ‘be precise’, and
notwithstanding the overall framework of reduction, it was unclear how one formalized model formulation. We defined
many of the concepts in an early draft of this chapter and investigated their implications and relationships, but even by
mid-1981 the approach lacked a Gestalt. The key was a ‘taxonomy of information sets’ developed partly in response to
a challenge by Larry Boland during a seminar at Simon Fraser University. The universe of available information was
conceptually partitioned into the six disjoint sets of the (relative) past, present and future of the investigator's own data,
evidence from rival models, and theory and measurement information (although later partitions have been finer, as
noted in chapter 12). To each of the six elements in that partition there corresponded specific concepts from the
modelling literature for which we could prove various properties and links. Consequently, six information sets
characterized model selection criteria and hence null hypotheses, against which tests of different alternatives could be
developed: the proliferation of tests was due to the potentially infinite range of alternatives, not to a large number of
criteria. This provided the overall framework within which formal relationships between concepts could be established
as well as offering new interpretations of existing ideas.

The chapter begins by distinguishing between theory models, which are free creations, and empirical models which
must be reductions of the data generation process. As earlier, the Monte Carlo analogy is invoked as an obvious
exemplar. An empirical illustration highlights the problems of empirical model formulation and the issues to be
analysed. The main empirical model concepts considered relate to the following.

1 Past data: white noise and innovation processes; their mutual connections; their relationships to Granger
causality and common factors; data coherency; parsimony and variance dominance leading on to model
selection criteria.

2 Contemporaneous data: exogeneity, both weak and strong; and the distinction between exogeneity at the levels of
the process and of the model.

3 Future data: parameter constancy and invariance; super exogeneity; and the consequent inadequacy of any
model selection criterion based only on full-sample parsimonious non-dominance.

4 Rival models: encompassing, and its basis in model reduction, hence including ‘non-nested’ models as in Cox
(1961) since all models are nested in the process; the necessity but insufficiency of variance dominance for
model selection in linear models; and hence the anti-symmetry and obvious reflexivity of encompassing; the
transitivity of encompassing is claimed, inducing an important potential role for encompassing to sustain a
progressive research strategy; and parsimonious and minimal encompassing are introduced.

5 Theory information: theory consistency and parameters of interest, as well as the possibility of a feedback from
economic theory to the actual data generation process.

6 Measurement system: data admissibility; identities; and functional form specification.

Drawing these concepts together leads to the definition of an empirical model being a tentatively adequate conditional
data characterization (TACD), renamed congruent by Chris
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Allsopp (see chapter 12 above). The earlier empirical illustration is then re-analysed in the light of the formal structure
to interrelate the concepts with test statistics. In fact, Aart de Vos has pointed out to me that the selected model has a
number of drawbacks and is not a good illustration. The chapter ends by demonstrating the inadequacy of dynamic
simulation as a model evaluation criterion, in stark contrast to encompassing.

I can no longer remember why the proof that encompassing is transitive was dropped from the original paper —
which is a pity because it was not correct! Consider three rival linear regression models, each of which claims to be a
congruent representation against the overall information set, so that all the models are in a common probability space:

(1)

(2)

(3)

Denote encompassing by E and let the two hypotheses under test be H1 : M1 E M2 and H2 : M2 E M3. If encompassing
were transitive, then H1 + H2 should imply that M1 E M3. Care is required in formulating such an idea. In the chapter,
we implicitly employ the following argument: to ‘complete’ the specifications for testing H1 and H2, we need the two
mappings of X onto Z and of Z onto W. Suppose that, historically, H2 is first tested and accepted and then an
investigator seeks to test H1. To derive (3) from (2), a projection of Z onto W will suffice:

(4)
so that using (4), M2 implies that

(5)and hence . Given M2only, then to test H1 let

(6)

Thus, from which it follows that . Unfortunately, this argument does not prove direct
transitivity. Certainly the proprietor of M1 can derive the parameters of M3 from M1 but only by using M2 as an
intermediary. If (6) is interpreted as the projection of X onto Z and W, so that W is orthogonal to X given Z, then no
problem arises. However, forgetting to retainW in the information set for testing encompassing can lead to problems.
In a direct confrontation, M1 need not encompass M3 since if

(7)but we only project X onto W with a coefficient , it will not be the case that if .

The absence of direct transitivity is a result of changing the probability model during the analysis and is essentially the
consequence of proceeding from the simple to the general between studies. At the end of testing H2, we have ascertained
that

(8)The explicit claim underlying M1 is that

(9)However, if (6) rather than (7) is used to derive M2, then implicitly M1 becomes :
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(10)
Equations (8) and (10) could both hold without (9) being true. In the projection framework, if M1 is correctly stated as
in (9), and (7) holds, then

(11)

and H1 will be valid only if and . Although M2 E M3 and hence M3 is redundant relative to M2, the
information set must not be curtailed to Z alone when testing M1 against M2, interpreted as the claim that .

Alternatively, it can also occur that M1 E M2 and M1 E M3 but M1 does not encompass the union of M2 and M3 (i.e. M2

does not encompass M3). This is due to the same problem of curtailing the information set, namely to (y, X, Z) for
testing M1 E M2 and to (y, X, W) for testing M1 E M3. A very practical example was inadvertently discovered by DHSY,
as noted above, who separately tested their model with a unit income elasticity (M1) against one with an additional
income term (M2) and, on not rejecting that hypothesis, tested M1 against a model with liquid assets (M3), again not
rejecting. Nevertheless, HUS rejected M1 against a model with both a non-unit income elasticity and liquid assets. This
problem was noted in chapter 12 and Ericsson and Hendry (1989) offer a more extensive analysis with the implication
that, although the single occurrence of either of two items of evidence can corroborate a theory or model, their joint
occurrence can refute it! The conundrum disappears if the converse route of general to simple is adopted. The analysis
then commences with the joint density of (y, X, Z, W) and evaluates reductions towards one of the Mi. Consequently,
if M1 were to be selected, it would be because y, conditional on X, was independent of Z and W. Thus M1 would be a
valid reduction of Mm,

(12)and hence would encompass both submodels M2 and M3.

This approach leads to the notion of parsimonious encompassing (Ep) where the simple or small model is asked to account
for the results of the larger or more general model within which it is nested. Since M1 is nested within Mm, then Mm E
M1 automatically. However, it is an altogether different issue as to whether or not M1 Ep Mm and it can do so only if M1

is a valid reduction of Mm; i.e. given X, then Z and W are indeed irrelevant. M1 will encompass M2 and M3 in such a
situation since Z and W contain no information about y not already provided by X. Hendry and Richard (1989)
provide a recent survey which clarifies the properties of E and Ep. In fact, what the above analysis establishes is that if
M1 Ep Mm and M2 is nested in Mm, then M1 E M2 (similarly for M3 and the union of M2 and M3). It can also be shown
that if we introduce an ,

(13)

then and together imply that M1 Ep Mm. Moreover, if Mm is a valid reduction of a yet more general
model M so that Mm Ep M, then M1 Ep M. This follows since M1 is a valid reduction of a valid reduction (note that we
are concerned with concepts here: in finite samples, changes in degrees of freedom imply that reversals could occur).1
Thus, parsimonious encompassing is transitive; and, closing the circle of the theory of reduction which brought it into
being, parsimonious encompassing defines the limits to model reduction.

Finally, formal test statistics for encompassing have since been developed in Mizon (1984) and Mizon and Richard
(1986). Chapter 19 updates the analysis.
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Note
1I wonder whether not including formal proofs of these transitivity claims will likewise be problematic in retrospect . . .
(see Hendry, 1992, for details).

1 Introduction
Notwithstanding the emphasis on ‘model building’ in econometrics, there does not seem to exist a formal analysis of
‘models’ and/or of concepts relevant to empirical models in particular. This chapter is offered as a step towards
developing such an analysis. While it is clearly feasible to undertake a completely formal treatment – corresponding to
that of, say, Florens and Mouchart (1980a) for the theory of reduction – initially it seemed most useful and
comprehensible to consider the problem more heuristically (and primarily in the context of linear processes).

The framework of the chapter is as follows. Available information is conceived of as being partitioned into disjoint
sets: past, present and future observations, other data relevant to contending hypotheses, and theory information. For
each item, specific concepts are relevant: ‘white noise’ for lagged data, ‘exogeneity’ for present, ‘parameter constancy’
for future, and ‘encompassing’ for contending models are some examples. For each concept, various properties are
established (e.g. ‘encompassing’ is asymmetric and transitive and so defines an ordering) and relationships between
concepts are developed (e.g. if model A has a larger residual variance than Model B, then it cannot encompass
model B).

Many widely used concepts arise naturally in the present framework, although the insufficiency of certain of these as a
basis for empirical modelling does not seem well known. For example, it is inappropriate to select models by the sole
criterion that they have white noise residuals (or that combined with a parsimony condition) as this does not
necessarily preclude better fitting models being developed from the same basic information. Indeed, these could even
be more parsimonious than the initial model if the model building strategy does not ensure that the white noise process
is in addition an innovation process relative to the available information. Similarly, simply selecting ‘best fitting’ models
(again with or without parsimony conditions) does not by itself ensure encompassing. Perhaps less well known, and yet
of great practical importance, selecting models by the goodness of their ‘dynamic simulation tracking performance’ is
invalid in general and tells more about the structure of the models than about their correspondence to ‘reality’.

It must be stressed that the purpose of the chapter is the formulation and preliminary analysis of a number of concepts
relevant to the empirical econometric analysis of time-series observations. In such a framework, economic theory plays
a relatively neutral role in the sense that the concepts apply irrespective of the models being based on inadequate (or
naive) theories or on sophisticated, general and/or well-established theories (see for example the approach in Sargent,
1981). The relationship between theory models and empirical models is discussed in section 2, which is followed by an
empirical illustration chosen to ‘set the scene’ for the analysis of section 4 in which the main concepts and their
interrelationships are discussed.
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The empirical example is reconsidered in section 5, and section 6 evaluates the role of dynamic simulation in model
selection. Concluding comments are provided in section 7.

2 Theory Models and Empirical Models
A model of any set of phenomena is a formal representation thereof in which certain features are abstracted while
others are ignored with the intent of providing a simpler description of the salient aspects of the chosen phenomena: ‘a
model always represents only some but not all the features of the original’ (Hayek, 1963, p. 14). Models comprise sets
of structures each of which is a well-defined characterization of that which is to be explained. Two classes of model are
important: theory models and empirical models. Despite their common aim of seeking an ‘accurate’ representation of
perceived ‘reality’ and their close interdependence in practice, it is essential to maintain a clear distinction between the
two classes in what follows.

Theory models consist of the logically valid implications of sets of initial assertions and qualifying conditions (i.e. ceteris
paribus clauses) so that, in principle, they are ‘free creations of the human mind’ (see for example Einstein, 1950).
Succinctly, theory models postulate theory relationships between latent variables which are defined in the context of
the theory using theory connectives such as ‘causal dependence’ (see for example Simon, 1953) and contextual
concepts such as ‘equilibrium’ (see for example Spanos and Taylor, 1984). The empirical relevance or otherwise of the
theory follows from the correspondence conditions (or measurement equations) mapping latent onto observable
variables (for example Losee, 1980). However, since any given theory may not correctly and completely characterize
the perceived world, the perceptibility of necessary connections among observed events is open to doubt (following
Hume, 1758). Consequently, the unqualified term ‘causality’ will refer below only to an asymmetric relationship defined
in the context of a theory model (for recent discussions of ‘causality’ in econometrics see inter alia Zellner, 1979b;
Granger, 1980; Florens and Mouchart, 1981). Of course a major function of any economic theory model in
econometrics is to sustain inferences from observed ‘empirical regularities’ to conjectured ‘causal dependences’. In
modern treatments, the anticipated presence or absence of certain data correlations is deduced from the causal
structure of the theory model, and the outcome is used to ‘corroborate or refute’ the theory model. This obviates the
need to try and infer ‘causes from correlations’, but only by focusing attention on the problem of ‘testing’ theory
models.

Most theories form part of a sequence of formulations all of which are conditional on the empirical validity of many
lower level theories (even if this is usually left implicit in our procedures) and are testable, if at all, only in conjunction
with such theories, the ceteris paribus clauses and a particular model implementation. If observed data and theory
implications are inconsistent, there is both latitude concerning to which features the inconsistency is attributed, and
ample scope for introducing ad hoc assumptions to neutralize any anomalies (see Lakatos, 1974). However, an
agglomeration of test failures against a background of well-established lower level
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theories may lead to the discarding of the sequence of theories in question as ‘degenerating’ in favour of less suspect
alternatives (when such exist) until such time as that theory sequence can account successfully for previous anomalies.
Generally, this last step will require explanations to have excess empirical content, some of which is corroborated.
Blaug (1980) provides an excellent discussion of such issues in economics using Lakatos's concept of Scientific
Research Programmes (see Worrall and Currie, 1978). Since this last notion evolved precisely because of the
impossibility of ‘proving’ theories combined with the enormous difficulties of ‘refuting’ them, a primary construct used
below is that of a ‘progressive’ research programme in which novel ‘facts’ are anticipated by the theory sequence and
are later corroborated empirically.

The process of testing a theory model is generally undertaken via an empirical model which comprises relationships
between measured variables. However, whereas the former may have been a ‘free creation’ and although it delineates the
structure of the latter (which will generally use the same names for the observable counterparts of the latent variables),
nevertheless the use of observed data creates a fundamental distinction between the two classes since an empirical
model must, by default, be simply a recombination of whatever process generated the data. Which particular recombination is
obtained depends on the constraints imposed by the theory and the properties of the underlying data generation
process. In a Monte Carlo context, this analysis is trivially obvious: the data generation process determines the
properties of the data set which determines whatever results are obtained on estimating any given relationship by a
well-specified method. The implications of this viewpoint for empirical research will be discussed below, following a
brief consideration of the role of statistical-theory models in econometrics.

The theory of statistical inference proceeds by postulating various stochastic processes, deducing implications of their
behaviour and using the resulting analysis to interpret observed outcomes: the archetypal example is a coin-tossing
‘model’ as a Bernoulli trial. Being concerned with the logical study of a hypothetical data generation process (denoted
by DGP below) in statistical theory the maintained theory model is never questioned, and issues of interest concern
whether specific structures are identifiable, how ‘best’ to estimate the parameters of such as are etc. As expressed by
Malinvaud (1966, p. 64), inference concerns narrowing the scope of the model in the light of the data. However,
conflating the DGP and the model in empirical research provides an unsound basis for inference until the model in some
sense adequately characterizes the data. The data directly convey information about the DGP (although we may not know
how to interpret that information without an appropriate theory) and many features of most models are open to
evaluation against the data to investigate how well the model describes that data. But even in the best formulated
instances, the complexity of economic DGPs and the inherent simplicity of econometric models ensure that the axiom
of correct specification (see Leamer, 1978, p. 4) is not a sufficient basis for inference. Should that axiom be valid in any
particular case, the model simply coincides with the DGP and the potential recombination is an identity mapping, but
this seems an unlikely eventuality.

Many of the concepts and issues described above are most easily clarified by
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examining an empirical illustration which is deliberately formulated to highlight the relevant points and is not claimed
to represent in any way how econometricians actually conduct empirical research.

3 An Illustration: The Repayment of Mortgage Principal
The theory model is a static-equilibrium world in which all stocks and flows are constant so that in every period a
constant proportion of the outstanding stock of mortgage loans is repaid each period ,

(16.1)

Note that the repayment profile for any individual loan is nonetheless non-linear and dependent on the rate of interest
even in such a world. Also, (16.1) is typical of many theory models in economics – it seems logically correct given

the assumptions and provides the useful information that is independent of . Next, script letters denote latent
variables defined in a static-equilibrium context in which (16.1) holds in both real and nominal terms, and indeed in
various equivalent transformations such as linear-in-logs, first (or, ∀ j < ∞, jth-order) differences etc., as stressed below.
Finally, comparing between equilibria, an increase in causes an increase in (whereas, for example, an increase in
repayments dynamically lowers the remaining mortgage stock ceteris paribus).

In the United Kingdom, most mortgages have been provided by building societies (see chapter 3 and Mayes, 1979),
and for these institutions excellent quarterly time-series data (Rt, Mt) exist with negligibly small (pure) measurement
errors (italic capitals denote the measured ‘equivalent’ of script variables, lower-case letters denote loge of the
corresponding capital and Δjxt = xt − xt−j). However, equivalent theory models do not necessarily yield equivalent
empirical models: let and then consider

where denotes an appropriate price index. Without wishing to belabour the point, log-linear equivalents exist of each
of these, as do variants in (any order of) differences and so on. Unfortunately, all these theory-consistent models (and
many more possibilities) can have distinctly different empirical properties in terms of (say) residual variance,
heteroscedasticity, autocorrelation etc. Since almost no repayments of new loans occur within one quarter, for quarterly
data lagged M seems preferable to current and logarithms seem preferable to original units as entailing positivity and a
constant percentage residual variance. This suggests estimating

(16.2)
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where St denotes three seasonal dummy variables (to allow for known seasonal activity in the housing market), and a0 =
−logeN and a1 = 1 are anticipated. Parenthetically, equations like (16.2) have occurred in many large estimated
macroeconometric systems (see for example Waelbroeck, 1976) and, since mt − 1 is ‘predetermined’, are usually
estimated by ordinary least squares (OLS) on the auxiliary assumption that . For UK data from 1958(i) to
1979(iii) OLS estimation yields

(16.3)

where the estimated standard errors are given in parentheses, is the residual standard error and DW is the
Durbin–Watson statistic. Figure 16.1 shows the time-series graph of (rt, t).

Certainly, â1 ≈ 1 and â0 implies N ≈ 6 years (close to the mean time between household moves in the United
Kingdom), but DW rejects the assumption of serial independence in the residuals (and so the quoted standard errors
are downward biased), although this is easily ‘rectified’. However, while the R2 is ‘high’, it is only 0.33 when rt − mt − 1 is
the regressand – and would be zero for that variable on seasonally adjusted data! Figure 16.2 highlights this lack of fit,
despite being essentially a replot of figure 16.1. Granger and Newbold (1974) would describe (16.3) as a ‘classic’
spurious regression (R2 > DW), and so ‘refitting’ in first differences to remove the trend and autocorrelation,

(16.4)

Figure 16.1rt.
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Figure 16.2rt − mt−1.

The null of serially uncorrelated residuals can no longer be rejected against the alternative of first-order
autocorrelation, (16.4) implements another of the theory-model equivalents, has fallen considerably, and â1 is not
‘significantly different from unity’. On such criteria, (16.4) seems to provide an adequate model.

Appearances can be deceptive, however: if the error on (16.4) really were an autonomous white noise process, then rt −
mt−1 would be a random walk, and so could assume any value, rendering (16.1) a useless theory (see chapter 8). Further,
DW has been used as a selection criterion and, if the only equations reported are those with DW ≈ 2, it hardly
provides useful ‘test’ information. Moreover, the claim that the residuals in (16.4) are white noise (even if it were true)
does not entail that the equation is an ‘adequate description of the data’, since, for example, the unit common factor
assumption in (16.4) could be invalid and hence either or both rt−1 and mt−2 could be significant if added as regressors
(see Sargan, 1980a, and chapter 6). According to (16.1), we ‘know’ that a1 = 1, yet after fitting (16.4) all that can be said
is that [0.37, 1.29] provides a 95 per cent confidence interval for a1!

It seems clear that a formal analysis of the various concepts involved in formulating empirical models, and of their
interrelationships, is necessary in order to clarify the problems encountered above. Relating back to section 2, a crucial
issue is that some unknown mechanism generated (rt, mt) from which (16.2) is a derived representation such that εtmust
contain everything affecting rt not explicitly included in (16.2): the assertion that is tantamount to the claim
that (16.2) is the DGP even though (16.3) immediately contradicts that by its obvious failure to describe many salient
data features. Thus, (a0, a1) is a (reduced) reparameterization of the parameters (θ) of the (unknown) underlying DGP
induced
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by the method of estimation and so is defined implicitly by the auxiliary claims that , and . The
constancy of and the reduction necessary to obtain (16.2) determine the constancy (or otherwise) of (â0, â1) as T
varies, the properties of the residuals and so on (for a general analysis of the theory of reduction – in a Bayesian
framework – see Florens and Mouchart, 1980a).

Relating forward to section 4, issues meriting consideration are the predictability of white noise errors, their use as an
equation selection criterion and their relationship to goodness of fit, the theory consistency of empirical models, the
validity of data transformations and so on. We hope that our analysis will allow a useful framework to be developed for
formulating and selecting empirical models which do not coincide one-to-one with the actual DGP. Also, while (16.1)
is obviously a very rudimentary starting point (to highlight specific issues), similar potential difficulties lurk behind any
empirical study, however good its initial theory, the difference being a matter of degree not of kind.

4 An Analysis of Empirical-Model Concepts
For notational convenience, the mechanism generating the outcome of a k-dimensional time-sequential
economic process is assumed continuous with respect to an appropriate measure as in, for example, chapter 15, and is
therefore described by the density function

(16.5)

where is a finite-dimensional, identifiable, sufficient parameterization (see, for example, Madansky,
1976, ch. 2). Also, denotes parameters which are fixed throughout the time horizon T, while regroups transient
parameters (as in, say, Crowder, 1976). is the matrix of initial conditions and . To aid the exposition
and simplify proofs, the analysis is implicitly restricted to the linear framework, although we conjecture that many of
the results apply more generally. If is assumed to be strongly mixing and (16.5) involves a finite lag dependence,
then the results in Domowitz and White (1982) seem to provide an adequate basis for a valid asymptotic distribution
theory for least squares approximations to a wide range of models. Below, T is assumed sufficiently large that large-
sample theory is applicable.

The analysis is based on a partition of the available information (described in section 1 above) into past (or lagged)
data, current data, future data, the separate data of contending hypotheses, and theory information. This ordering is
chosen for analytical convenience so that the elements of the partition can be considered cumulatively.

4.1 Past Information
Definition 16.1 is a (mean) white noise process if , where . Thus is not
predictable linearly from its past (see Granger, 1983) beyond its unconditional mean (taken to be zero).
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Note that may be predictable either fully or in part given an extended information set and indeed may have a
temporal structure (see chapter 10). Also, need not be homoscedastic and in particular could follow an
autoregressive conditional heteroscedastic (ARCH) scheme (see Engle, 1982a). If , given definition 16.1,
then is a (vector) martingale difference sequence (see Whittle, 1970, ch. 9). Since from any stochastic process with
a rational spectrum a white noise component can be extracted by an appropriate filter, having a white noise residual is a
minimal criterion for an empirical model to satisfy rather than an ‘adequate’ stopping point in a modelling exercise.

To minimize repetition, it is convenient to allow for the possibility that contemporaneous information might be
available even though this section is explicitly concerned only with past data.

Definition 16.2 (i) is a mean innovation process (MIP) with respect to an information set if ; and
(ii) is an innovation process with respect to if it is an MIP and .

Whether or not is an innovation process critically depends on the information set under consideration. White
noise is certainly an MIP relative to its own history and if contains , then innovations are also white noise.
However, if where describes the past of an additional set of variables , then is an MIP with
respect to only if does not Granger-cause e (see Granger, 1969; and chapter 15).

As an example, let be a subvector of , let and let where is a rational polynomial matrix in the
lag operator L such that {εt} is vector white noise; then these conditions are not sufficient to ensure that {εt} is an MIP
with respect to . Models with invalid common factors in lag polynomials are an instance of non-innovation white
noise. Thus, for any given time series of data, a multiplicity of empirical models can be constructed which have
disturbances that are not detectably different from white noise.

Econometric models typically consist of a hypothetical description of the (conditional) process generating a subset of
the observable variables, say . Let denote the conditioning (‘exogenous’) observable variables and let consist of
all the other variables in (whether latent or observable) so that is now partitioned into . Let .

Definition 16.3 (i) A statistical model of is any parametric stochastic representation
where P (·) is a probability density function and is the corresponding parameterization. (ii) An empirical
model of is any complete numerical specification of a statistical model thereof.

When no ambiguity arises, the generic ‘model’ is used as a shorthand below for whichever of these two concepts
applies. However, the hypothesized density functions should not be confused with the genuine data density
functions which they are designed to mimic. The latter can be
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derived, conceptually at least, from the DGP (16.5) by marginalizing with respect to and sequentially conditioning
with respect to (see Florens and Mouchart, 1980a, b; and chapter 17). In the linear case, such reductions could be
conducted analytically, as in chapter 15, so that, for example, under the axiom of correct specification, would be an
explicit function of . More generally, the properties of the pseudo-partial likelihood function

(16.6)

depend on the underlying DGP, as does the behaviour of estimators of . Which ever interpretations model builders
accord to , such ‘parameters’ are de facto those functions of which happen to be consistently estimated by the
‘estimators’ that have been selected on the basis of the statistical model under consideration (see Hendry, 1979b;
Domowitz and White, 1981).

Let and denote expectations operators with respect to the density functions D (·) and P (·) respectively. The
‘errors’ receive considerable attention in econometric modelling, and correctly so since under the axiom
of correct specification should be an MIP relative to and even relative to if does not Granger-cause

. In practice, however, often is not even white noise. Hence we define the following.

Definition 16.4 A model is data coherent if the error process is (at least) white noise.

Thus, the actual and fitted values differ ‘randomly’ in a data-coherent model: this is the notion used, for example in
chapter 8. In effect, the Δ operator in (16.4) was an adequate filter for achieving residuals that were not first-order
autocorrelated. However, DW ≈ 2.0 does not imply that the residuals are white noise: a ‘portmanteau’ test for a flat
spectrum would be required to throw light on that issue (i.e. non-rejection achieved by low power1 tests is hardly
persuasive). Further, white noise need not be an MIP. Note that one important aspect of working with a model based
on a mean innovation process (even if this is heteroscedastic) is that valid inference about can proceed on the basis
of results in Domowitz and White (1981, 1982) for a useful range of stochastic processes relevant to economics data.

Since simply possessing a white noise error process does not characterize a unique choice of model, let g (·) denote a
(scalar) criterion function defined on , the class of models under consideration (for example, g (·) could denote the
negative of the log-likelihood value, or that corrected for the number of estimated parameters or {− R2} or σ2 or
generalized variance for a system etc.). Then we have definition 16.5.

Definition 16.5 The model A1g-dominates the model A2 if and only if g (A1) < g (A2) (A1 and A2 are g-equivalent if g
(A1) = g (A2)).

Variance dominance is a major selection criterion in actual empirical research, in part because of the proposition that
‘true models’ dominate ‘false’ when the ‘model’
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contains the DGP as a special case (see for example Theil, 1971, p. 543; Leamer, 1978, p. 75). It remains to be
discussed precisely how useful variance dominance is when does not contain the DGP.

It follows from definition 16.5 that g-dominance is an asymmetric relationship and is transitive, both of which are
important attributes of a selection criterion. However, by itself dominance is not necessarily a decisive criterion since a
model based on the union of the regressors of all submodels (less redundant variables) cannot be variance- or
likelihood-dominated in its class, or, as noted by Poirier (1981), a nesting model in a class of false models has the
highest (large-sample) posterior odds. Nevertheless, we state theorem 16.1.

Theorem 16.1 Models without mean innovation error processes can be variance-dominated by a model with a mean
innovation error on the same data.

This is a well-known result, based on the fact that is the minimum mean square error predictor of given
and that is an MIP relative to . Theorem 16.1 provides a partial answer to the question raised

above about the usefulness of variance dominance when does not contain the DGP. Moreover, if the set of
conditioning variables in A1 is a subset of those in A2, thenA1 cannot variance-dominate A2, thus inducing one variant
of a progressive research strategy (see section 2 above). Indeed, this notion appears to lead naturally to model building
strategies which focus (at some stage) on relatively ‘unrestricted’ models (in terms of choice of regressor variables and
lag lengths) to calibrate the MIP error variance. Parsimony considerations may then induce a simplification search
procedure (on these issues, see Sims, 1980; Leamer, 1978; and chapter 11). Thus we have definition 16.6.

Definition 16.6 The model A is g-parsimonious if for all models Ai which are g-equivalent to A or g-
dominated by A.

Much of the so-called ‘model selection’ literature, in which model choice is based on the Akaike information criterion,
the final prediction error or the Schwartz criterion etc. (see Amemiya, 1980; Chow, 1981; Sawyer, 1983), is concerned
with selecting ‘parsimoniously undominated’ models for various choices of g (·), usually subject to a restriction that the
residual process be white noise.

As will be seen below, it is unclear that model selection should emphasize ‘parsimonious non-dominance’ to the
exclusion of other important features (such as invariance, encompassing and so on).

4.2 Contemporaneous Information
It is conventional in econometrics to condition analyses on current-dated information and this possibility was allowed
for above with models being conditional on .

The validity of such conditioning for purposes of inference, prediction and/or policy has long been a subject of debate
in econometrics concerning alternative
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notions of exogeneity. That important topic is the subject of a separate recent paper (see chapter 15) and therefore will
not be re-analysed herein beyond noting that we adopt the definitions and formulations of that chapter. However, in
order to make the present chapter essentially self-contained, we briefly restate the definitions of weak and strong
exogeneity as well as (in section 4.3 below) that of super exogeneity. Also, since we have already emphasized the
distinction between the DGP and models, it is useful to distinguish explicitly between, say, D-exogeneity and P-
exogeneity depending on whether we are discussing exogeneity at the level of the DGP (which is typically unknown
but fundamentally determines the empirical findings) or exogeneity at the level of models thereof. The definition of D-
exogeneity is based on the factorization

(16.7)

where is derived from the DGP (16.5) by marginalizing with respect to .

Definition 16.7 is D-weakly-exogenous for a set of ‘parameters of interest’ if these are functions of those of the
conditional DGP only, the latter being ‘variation free’ with the parameters of the marginal DGP .
Also, is D-strongly-exogenous if, in addition, y does not Granger-cause z.

P-exogeneity is defined in a similar way with reference to a hypothetical density function which typically
requires ‘completing’ the statistical model under consideration by an auxiliary model , at least for the purpose of
constructing parametric tests of P-exogeneity.

D-weak-exogeneity validates conducting inference on any function of the parameters of the conditional DGP ,
possibly including some parameters of a mis-specified model thereof, without loss of relevant sample information.
However, P-exogeneity is the concept which is de facto the object of any modelling exercise and, in particular,
specification errors (including errors affecting the auxiliary marginal model for ) may lead to a rejection of P-
exogeneity even though is D-weakly-exogenous.

4.3 Future Observations
The slightly unfortunate terminology ‘future observations’ is meant to denote that, if is the current-dated variable,
then comprises future information (even if such values are already known).

Definition 16.8 A statistical model A has constant parameters if for t = 1, . . . , T.

A standard statistic for evaluating parameter constancy is the Chow test (see Chow, 1960) although there exists a large
literature on investigating potential parameter variations related to the Kalman filter (for an exposition, see Harvey,
1981b). The important issue here, however, is that there is no necessary connection
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between parameter constancy and the criteria previously discussed. Since constant parameters are of interest for most
modelling purposes, the inadequacy of (say) ‘parsimonious non-dominance’ as the sole selection criterion is clear.

Note that constancy of the parameters of the DGP entails constancy of the parameters of statistical models thereof,
however mis-specified they may be, in so far as the latter are functions of the former. However, it is a common
empirical finding that DGPs are subject to interventions affecting some of their parameters. A typical example is that
of control variables which are subject to policy interventions. A critical issue for prediction or policy simulation
experiments is the constancy of the parameters of the corresponding conditional DGP (or model thereof) under
interventions affecting the DGP of the control variables.

Definition 16.9 (i) A statistical model has invariant parameters under a class of interventions if its parameters remain
constant under such interventions. (ii) zt is D-super-exogenous if it is D-weakly-exogenous and the conditional model
has invariant parameters.

Parameter invariance is a more demanding requirement than just constancy since the latter may simply be the result of
chance DGP constancy over the sample period or of invariance with respect to a limited class of interventions
(covering those which occurred over the sample period), while the former typically requires parameter constancy under
hypothetical interventions and is therefore conjectural (see for example Lucas, 1976; Sargent, 1981). However, within-
sample parameter change is sufficient to reject that conjecture.

Finally, to use an invariant empirical model of (where is weakly exogenous for the parameters of the
conditional model) for prediction of conditional on requires that be strongly exogenous over the period ]t +
1, T]. Otherwise, an auxiliary empirical model of is required in order to exploit the feedback of on .
Likewise, conditional simulation experiments (on which see section 6 below) require strong exogeneity.

4.4 Data Relevant to Contending Models
It is rare in economics to obtain a unanimous view on the precise determination of any economic variable and usually
there is a proliferation of rival empirical models. In our framework, these all constitute recombinations of the DGP
and hence are not ‘independent representations’, a point made in the context of time-series versus econometric models
by Wallis (1977). Thus, while the underlying theory models may be separate or non-nested, in that none is a special
case of any other, the empirical models are all nested within the DGP. This is manifest on attempting Monte Carlo
analysis of ‘non-nested’ models – enough of the DGP must be specified to generate all the observables, whence the
outcome depends on how the DGP was constructed (as well as on which separate hypotheses are postulated).

If the complete DGP were known (as in the Monte Carlo context since ‘real’ DGPs may be unknowable), then one
could deduce what results would obtain on estimating a given set of models, irrespective of whether these were
mutually separate or not. Consequently, one can ask of any specific model whether it mimics this property of
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the DGP in that it can account for the results obtained by other models; if so, then the first model is said to be
encompassing.

Encompassing could be defined at a high level of generality where contending models may differ by:

1 their choices of endogenous variables;
2 their functional forms;
3 their choices of conditioning variables.

In view of the scope of the present chapter, we shall formulate definitions which cover only (2) and (3) and illustrate
them with reference to linear models which differ solely in their choices of ‘regressors’.

Let and be two different subsets of the variables in ( and may have variables in common, see for
example Mizon and Richard (1986, section 4.4), in which case some of the density functions we introduce below are
singular and degrees of freedom for test statistics have to be adjusted conformably). Let and

be rival models. It is assumed that the model-builders had access to a common set of data and,
accordingly, that

(16.8)

which entails that

(16.9a)

(16.9b)

Definition 16.10 A1 least squares encompasses A2 if and only if ψ2t can be derived from ψ1t and the least squares
description of the (data) relationship linking and .

To link A1 and A2 essentially requires specifying a set of mutually compatible auxiliary density functions
— and carrying out the following marginalization:

(16.10)

However, the weaker form of encompassing in definition 16.10 only requires considering least squares approximations
of by .

Note that the validity of (16.10) requires that of formula (16.9a). (If (16.9a) did not hold, then A1 should first be
completed to form a model of conditional on and .) Provided that and belong to a common
class of parametric density functions, their reconciliation induces a mapping between parameter spaces, say,

(16.11)
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The application of definition 16.10 at the level of empirical models requires checking whether or not (16.11) holds for
the numerical values under consideration (see for example chapter 10). Alternatively, replacing the unknown
parameters in (16.11) by appropriate estimators may provide the basis of an encompassing test statistic, using a Wald
formulation. Mizon and Richard (1986) use another version of encompassing which builds on the pioneering work of
Cox (1961). Let denote the maximum likelihood estimator of ψ2t (under A2) and let denote the
expectation of with respect to under the working assumption that A1 is the relevant DGP, taking into account
(16.9a).

Definition 16.11 A1 Cox-encompasses A2 if and only if

It is easily shown that the two versions of encompassing coincide in linear worlds where the rival models differ only by
their choices of regressors and, furthermore, that in a single-equation framework the conventional F test statistic can
be interpreted as an encompassing test statistic (compare chapter 17, section 6, and Mizon and Richard, 1986, section
4.3). This interpretation offers the advantage that, in contrast with the conventional Neyman–Pearson framework, the
validity of the ‘nesting’ model based on the union of the two sets of regressors is irrelevant within an encompassing
framework.

It can also be shown that, in linear worlds, encompassing entails variance dominance. Let Σt be the covariance matrix
of . Dropping the time subscript (as irrelevant to the essence of the argument) partition Σ conformably with

:

Let

where Σyy· i is the covariance matrix of the residuals of the least squares approximation of y by . We can establish the
following lemma.

Lemma. If , then Σyy· 2 ≥ Σyy· 1.

Proof.

Since the assumption that is the least squares counterpart of assumption (16.9a), the lemma establishes that,
in a least squares framework, encompassing entails variance dominance. Since in addition encompassing is transitive,
the
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concept is close to that of a ‘sufficient model’ in a theory of reduction in that, knowing the encompassing model, one
can forget about other models, deriving them as the need arises (compare the notion of sufficient statistics). If A1

encompasses A2 when both models are linear least squares approximations the converse is false, and if A2 in turn
encompasses A3 thenA1 encompasses A3. Thus, encompassing is a central concept in any progressive research strategy
especially in view of the lemma that variance dominance is necessary but not sufficient: an encompassing model will
variance-dominate but a variance-dominating model need not encompass.

Two further consequences follow from this result: first, the emphasis on selecting variance-dominating models is
somewhat misplaced and should follow automatically from a selection procedure which seeks an encompassing model,
rather than being an ‘independent’ criterion; and second, since Cox-type non-nested hypothesis tests simply test for
variance-encompassing (see Cox, 1961; Mizon and Richard, 1986), if tests of the dominated model against the
dominating do not reject the former, the power of the test is revealed as low. Other intriguing implications can be
derived. Let A1 and A2 be two rival models with claimed constant parameters. If A1 encompasses A2 and it is known
that the relationship of to has altered over the sample period (a common occurrence in empirical work), the
modeller knowing A1 can deduce by using (16.11) over different subperiods what parameter change A2 should exhibit
(even though neither investigator has directly tested for such a contingency in A2!). Similarly for residual
autocorrelation: an encompassing model should allow one to predict the magnitude of this in contending models, and
so on.

Accounting for all the salient features of rival models may seem at first sight an overly demanding criterion: strictly
speaking the DGP is the only model that could encompass all its rivals while, at the same time, it is essentially
unknowable given limited sample evidence. It is obvious that any model, however good an approximation to the DGP,
could be rejected against a rival model expressly designed for that purpose. However, this is a vacuous exercise if it
does not lead to the formulation of ‘better’ models and so encompassing seems bound to be an essential component of
a progressive modelling strategy. In particular, in a subject with many separate models all being advocated as a basis for
policy, encompassing seems a reasonable requirement which remains impressive when obtained from a parsimonious
specification. Clearly, concepts such as minimal encompassing (with minimal dimension ψ) can be developed, and the
notion can be generalized to systems in which endogenous regressors occur and/or hypotheses differ as to what
variables are weakly or strongly exogenous etc.

4.5 Theory Information
Theory information plays an essential role in econometric analysis and it is doubtful if one could even define
parameters of interest in the absence of an adequately articulated theory. Indeed, the DGP itself may be dependent on
currently popular economic theory. In certain theories, ψ is highly constrained as in, say, rational expectations
formulations; see Lucas and Sargent (1981). A weak condition is the following.
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Definition 16.12 An empirical model is theory consistent if it reproduces the theory model under the conditions
assumed by the theory.

Lest it be thought that this is vacuous, note that, for example, in section 2 above, (16.4) was not consistent with the
static solution (16.1), from which it was ostensibly derived. As a further example, changes in assumptions about
error autocorrelation can alter the consistency of a model with a given dynamic behavioural theory (see for example
chapter 4).

Generally, theories incorporate measurement structures and hence models need to be consistent with whatever data
constraints are automatically binding (e.g. identities, positivity, lying between zero and unity etc.).Definition 16.13 An
empirical model is data admissible if its predictions satisfy all data constraints with probability unity.

For example, holds for the variables in section 2, so neither (16.3) nor (16.4) are data admissible. Attempting
to specify a functional form which is data admissible often leads to a model specification in which approximate
normality of the error process is reasonable. Unfortunately, tractability and admissibility may conflict and/or no
function can be found which jointly satisfies two data constraints (e.g. a linear identity and a positivity constraint).

As with admissible estimators, many investigators work with data-inadmissible models or achieve admissibility by
artefact (see Brainard and Tobin, 1968), usually for convenience or because the probability of violating constraints is
believed to be negligible.

4.6 Representing the DGP
Definition 16.14. A model is a tentatively adequate conditional data characterization (TACD) if:

1 it encompasses all rival models;
2 its error process is an MIP relative to the selected database;
3 its parameters of interest are constant;
4 it is data admissible;
5 its current conditioning variables are weakly exogenous for the parameters of interest.

A number of points need to be made about the concept of a TACD. First, such a model is not claimed to be the DGP,
simply to adequately represent it. Thus, in a Monte Carlo, data generated from the TACD should reproduce all the
investigated features of the original data. This does not preclude the development of ‘better’ TACDs using more
information, such that these successively encompass previous results with MIPs having ever smaller variances. Second,
we have not included ‘theory consistency’ as a criterion because of the well-known rationalization problem: there
always exists some theory consistent with the observed results unless these are mutually contradictory (which hopefully
(4) excludes). In any case, definition 16.14
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is applicable however naive or sophisticated the initial theory may have been.2 Next, weak exogeneity assertions often
are only indirectly testable but are partially checked by (1) and (3) holding for worlds in which some elements of θ are
transients which induce data correlation changes. Fourth, a sequence of TACDs would seem to characterize a useful
research strategy, which would be progressive if the theoretical framework enabled successive improvements to be
predicted in advance (rather than as responses to observed anomalies). Further, we believe it is possible to develop
TACDs and would cite chapter 8 as a potential example. In practice, successively encompassing TACDs also can be
generated (for example chapter 10). Parenthetically, we note that UK government policy has been based on a model
which uses a version of the equation in chapter 8 (see HM Treasury, 1980) so that on this measure the approach is of
some use. Finally, if the explanatory variables are all strongly exogenous, definition 16.11 can be modified to a
tentatively adequate conditional DGP and, if the model is closed, to a tentatively adequate DGP (note that (2)
subsumes data coherency).

Two more related issues remain to be discussed: the use of tests as selection criteria, and data mining. Concerning the
former, a model would not be advanced as a TACD (by an investigator who intended to develop such a
representation) unless appropriate test statistic values were obtained. Thus diagnostic tests employed in model
selection are satisfied by design and do not constitute ‘independent checks’ on the validity of the model, although new
statistics, later data and/or further rival models can provide genuine tests in so far as the TACD is hazarded to
potential rejection. Next, data mining has been used in both dismissive and positive senses, but the latter connotation
applies to any methodology aimed at developing TACDs since such an activity involves ‘judgement and purpose’ (see
Leamer, 1978, ch. 1). The former sense is justified when the modelling is structureless through lack of either a theory
context or a search strategy. But we wish to stress that despite estimating several variants prior to selecting any specific
model, conditional on its being a TACD, then for example the quoted parameter standard errors (estimated as in, say,
Domowitz and White, 1982) are consistent estimates of the sampling standard deviations of parameters estimated
from such a DGP. Such conditional statements seem less than convincing if models are not even TACDs.

4.7 Parameters of Interest
While a given theory defines what ‘parameters’ are of general interest, usually it leaves latitude concerning precisely
which features are basic and/or constant (e.g. propensities or elasticities etc.). Thus, additional considerations must be
invoked in designing models and ‘orthogonality’ and ‘parsimony’ enter at this stage. By the former is meant a
reparameterization based on prior considerations such that the associated variables are not highly intercorrelated; data-
dependent transformations (such as principal components) are deliberately excluded from our notion. The parameters
should have clear-cut interpretations (see for example Rothenberg, 1973) and near-orthogonal parameterizations often
arise naturally in modelling economic behaviour (see chapter 8). Our practical experience is that such parameters tend
to be robust to changes in both model specification and data correlations (which of
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course would follow trivially if ‘included’ and ‘excluded’ variables were, and remained, orthogonal).

The latter topic arises again here (see section 4.1 above) through its link with reparameterizations designed to enhance
robustness and facilitate model selection when prior specification is uncertain: it seems a reasonable objective to try
and achieve the maximum of explanation with the minimum of factors. Indeed, a data-admissible econometric model
with a parsimonious specification of constant interpretable parameters related to a well-formulated theory which still
succeeded in encompassing alternative (commensurable) hypotheses must deserve serious consideration in any
scientific research strategy. Later models almost certainly will be developed which are in turn encompassing and based
on ‘sounder’ theory, but this does not vitiate adopting the currently best available model. Note that our analysis does
not exclude the possibility that an entire sequence of models is wholly misconceived and, after a long progression, is
duly replaced by a (perhaps incommensurable) alternative sequence based on a totally different conceptual framework
(as occurred, for example, with Cartesian and Newtonian theories of planetary motion).

5 The Empirical Illustration Reconsidered
The concepts discussed in section 4 are applicable to the empirical models in section 3, but it is readily established
empirically that these equations fail on almost every criterion. Rather than criticize such simple formulations, however,
the purpose of this section is to describe a TACD consistent with (16.1) which helps exposit our ideas constructively.

The underlying theory is one of dynamic adjustment around a steady state defined by (16.1). The model allows for
activity changes in the housing market (most UK mortgages must be repaid on selling the associated house), the
consequentially varying age profile of loans (for actuarial reasons, a larger percentage is repaid on longer-standing
loans), changes in interest rates (total monthly payments are usually announced so that as I varies the proportion of
repayments may alter) and premature repayments out of deposits (presumably from balances excess to liquidity
requirements). The statistical model is an autoregressive–distributed lag of

on Δ1pt − 1, Δ1It − 1, Δ1mt − 1, Δ1dt − 1 with four lags on each variable, plus constant, St, mt − 1, It − 1 and V Δ1It − 2, where P denotes
an index of house prices and V is a dummy variable equal to unity until 1974(ii) and zero thereafter, and D denotes
building society deposits. Thus, the specification is

(16.13)

where {εt} is to be an MIP relative to the available information. The logistic form for the dependent variable ensures
data admissibility for the constraints
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0 ≤ R/M ≤ 1, although Rt/Mt − 1 is so small that only positivity is relevant in practice. Also, P is included to reflect
housing market activity, since demand changes rapidly result in house price changes given the essentially fixed stock.
Initially estimated models implicitly set γ0 at zero and experienced substantial predictive failure when Δ1It − 2 was
included as a regressor, posing a conflict between goodness of fit and parameter constancy. However, this was
diagnosed as due to a change in institutional arrangements in 1974 when continuously rising interest rates forced
building societies to demand increases in total monthly payments to maintain positive repayments of principal (note the
nadir of qt in 1974 in figure 16.3). Thus, γ0V is an example of a transient parameter.

The OLS estimates of (16.13) are not interesting per se, but it should be recorded that and that both the Chow
(1960) test for parameter constancy (for several periods) and Harvey's (1981a) F version of the Lagrange multiplier test
for sixth-order autocorrelation (see Godfrey, 1978) were not significant at the 0.05 level (these tests are denoted η1 (·)
and η2 (·) below, with degrees of freedom in parentheses). This evidence is consistent with {εt} being white noise and
an MIP on the present information. Next, (16.13) was simplified by imposing restrictions consistent with (16.1),
reparameterizing any short distributed lags and deleting inessential variables such that the overall F test of all the
restrictions was not significant at the 0.05 level (η3(·) below). Kiviet (1985) presents evidence about the independence
of some of the above tests of specification and mis-specification (adopting the dichotomy in Mizon (1977b)); see also
Kiviet (1986a).

The simplified equation thus selected for the period 1958(ii)–1981(iii) is

Figure 16.3qt.
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(16.14)

where the heteroscedasticity-consistent standard errors are given in parentheses (see White, 1980b; Domowitz and
White, 1982), and η4(1) is the test for first-order ARCH (see Engle, 1982a), asymptotically distributed as on the null
of no ARCH effect. It may be noted that the conventionally calculated standard errors are similar to those reported
above.

Descriptive statistics relevant to the scaled residuals are maximum, 2.10; minimum, −2.34; skewness, −0.20;
excess kurtosis, −0.53. There are no evident outlier problems, and the first four moments are similar to those of a
normal distribution, perhaps being somewhat ‘flatter’. Figure 16.3 shows the graph of {qt} and the corresponding fit.

Equation (16.14) appears to satisfy our criteria for being a TACD. The residual is white noise (on η2 (·)) and not
significantly different from the residual of (16.13) (on η3 (·)), and so it is unlikely that this model could be significantly
dominated on the present information set although there is evidence of autoregressive conditional heteroscedasticity
(η4 (·)). All the regressors are lagged or non-stochastic, and so measures the actual one-step-ahead forecast standard
error, which is under 4 per cent of , and η1 (·) is consistent with constant parameters (in fact, for several horizons). It
can be shown that the selected model encompasses both (16.3) and (16.4) above (although these are not ‘special cases’)
and the other Rt equations considered in chapter 3, as well as variance-dominating the equation in Mayes (1979) (we
have been unable to conduct a formal encompassing test against this last model, which has a standard error of 7.6 per
cent of , but four lagged values of personal disposable income were insignificant at the 0.05 level if added to (16.13)).
By construction, (16.14) is both data admissible, in that all values of t yield 0 ≤ Rt/Mt − 1 ≤ 1, and consistent with
(16.1). The static equilibrium solution yields N = 7.3 years, with substantial seasonal variation between 11.3 years and
6.9 years. The parameters are fairly well determined, with anticipated signs and sensible magnitudes, and have clear
interpretations, almost all the squared correlations between regressors being negligible (the largest is 0.30 between qt − 1

and a seasonal dummy). Five variables explain most of the non-seasonal variation in qt since 1974, over which period
the largest quarter-on-quarter change in rt − mt − 1 was 0.40 (about ), with the observed variance having increased
markedly since 1973. However, an important caveat before regarding the estimated parameters as measures of
invariants of housing market behaviour is that we have not included any factors to account for long-run changes in the
propensity to move house (e.g. household formation rates, job mobility determinants etc.); hopefully (16.14) may
provide a useful basis for developing a more general encompassing formulation in due course.
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6 Dynamic Simulation
Most large-scale estimated dynamic econometric models have been studied by simulation techniques at some time.
Indeed, simulation tracking performance is often viewed as a major aspect of ‘validating’ such models, i.e. of checking
their overall correspondence to ‘reality’ at least as revealed by the observed historical data – see for example Sowey
(1973) and McNees (1982). Judging by the frequency with which root mean square errors (RMSEs) based on dynamic
simulations are quoted and by the fact that small RMSEs seem to be viewed as ‘good’, it is worthwhile specifically
investigating the use of n-step MSEs (denoted by M(n) below) as a dominance criterion for model selection.

Of course,M(1) is the previously considered variance-dominance criterion, but the concern here is withM(n) when n is
‘large’, to highlight the issues involved. The analysis builds on the work of Haavelmo (1940), but focuses on different
aspects of model evaluation than ‘spuriously significant’ variables. Rather, our concern is with the choice of
information set underlying different ‘types’ of simulation and the bearing that the results of deterministic simulation
exercises may have on assessing the usefulness of a model for alternative purposes. The analysis proceeds by means of
a simple example which incorporates all the required features; additional complications like non-linearities, omitted
variables and unknown/non-constant parameters seem liable to exacerbate the problem.

Consider the linear stationary two-equation process in (16.15) and (16.16) where the parameters are known and
constant and the latent roots lie within the unit circle:

(16.5)

(16.16)

The one-step-ahead system predictions are computed from

(16.17)

and so have error variances

(16.18)

By way of contrast,

from (16.15).
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There are two alternative means of computing the deterministic dynamic simulation path for yt: treating the model as
‘open’ (so the analysis is conditional on {zt}) or as ‘closed’ (so (yt, zt) are jointly simulated), and we denote these by a
tilde and an overbar respectively. Then

(16.19)
For simplicity in what follows, initial conditions are ignored when this clarifies the analysis without misleading the logic.
From (16.19) and (16.15),

(16.20)
and hence

(16.21)

where .

Note from (16.20) that yt − ỹt is autocorrelated and heteroscedastic, although {εt} is neither. Also, as My (n) is the
average of (16.21) over t = 1, . . . , n, for large n it is approximately equal to or, more generally,

(16.22)

This notation is not fully informative compared with (16.21), but (16.22) is the expected value of the usual
deterministic simulation MSE treating z as strongly exogenous. Of course, if γ ≠ 0 then z is not in fact strongly exogenous,
but it is important to realize that (16.22) does not depend on the actual value of γ, but only on the assumption that the
model is open.

Next, consider the closed model simulation

(16.23)
Thus

(16.24)
which yields, for sufficiently large t, the unconditional variances of yt and zt given by (derived as in Hendry (1979b) for
example)

(16.25)
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In the special case that γ = 0, the unconditional variance of y is

(16.26)

Now, it is an inherent property of closed linear stationary models (which are at least TACDs) that their n-step
simulation error variance is close to the unconditional data variance for large n or, alternatively expressed, that their
deterministic simulation track converges on the unconditional data mean. Consequently, such models appear to track
‘very badly’ even when they are valid. Conversely, comparing (16.22) and (16.26) when {zt} is strongly exogenous, how
well the model appears to simulate depends on the extent to which the variance of {yt} is due to {zt} (the term {· } in
(16.26)). The crucial difficulty, however, is that (16.22) is unaffected by the value of γ, so that the ‘accuracy’ of the
simulation track is primarily dependent on the extent to which the selected model attributes data variance to factors
which are ‘outside the model’, irrespective of whether or not such factors really are strongly exogenous in practice. Nothing in the
analysis of simulating {yt} conditional on depended on z being strongly exogenous (except, of course, the
meaningfulness of the procedure!), provided that the investigator acted as if it were, as is clear from the choice of
conditioning sets in (16.21) and (16.24). Consequently, the validity of a model cannot be assessed by its n-step tracking
performance alone.

Rather, measures the extent to which the ‘explanation’ of {yt} is attributed to variables which are treated as if
they are strongly exogenous: the validity of the simulation is better assessed by tests of all the strong exogenity claims,
and the validity of the model by the criteria discussed in section 4. This adds a caveat to the analysis in McNees (1982)
since it is not appropriate to define exogenous as ‘outside the scope of the model’, and also points towards techniques
for resolving his ‘dilemma of model comparisons’ by investigating, for example, encompassing and the one-step
system predictions like (16.17).

It must be stressed that valid inter-model comparisons cannot be based simply on an agreement between modellers as
to which variables may be taken as strongly exogenous for computingM(n): even if a unique set is agreed and no other
is used by any modeller, the model with the lowestM(n) value (n > 1) may have nothing to commend it. For example,
consider a comparison between (16.15) and

(16.27)

with the assertion that , where (16.15) and (16.27) constitute ‘rival hypotheses’, when the DGP is (16.15) +
(16.16) with γ ≠ 0. By construction, (16.15) must therefore encompass and M(1) dominate (16.27) although, if
happens to be small, will be similar in magnitude to so that there will be little to choose between the models in
terms ofM(1). But if both modellers agree to treat z as strongly exogenous, (16.27) will have a much better simulation
track than (16.15) with error variance still equal to ! Yet if (yt, zt) are jointly simulated, (16.15) should perform better,
with both having far larger error variances than their equivalent conditional simulations (compare (16.21) and (16.24)).

For practical ex ante forecasting, the future values of non-deterministic

384 FORMALIZATION



‘exogenous’ variables are unknown and have to be projected by auxiliary equations, often of a surprisingly ad hoc nature
given that the resulting predictions of the endogenous variables will be conditional thereon. Thus, var(yT+n|YT, ZT) is the
relevant n-step forecast error variance and this varies from (16.18) for n = 1 to (16.25) for very large n, but never
coincides with (16.21). It follows that conditional simulations of the form (16.19) do not help select models which will
be best for n-step ex ante forecasts either.

There are several important implications of this analysis worth summarizing

1 Ranking models by M(n) as a dominance criterion reflects how much of the explanation is attributed to
variables not generated in the simulation; and hence

2 it is not necessarily a criticism of closed ‘time-series models’ that their values of M(n) exceed those of open
‘econometric’ models for n > 1 (nor a virtue for the latter), especially if the former have the smallerM(1) values
in post-sample forecast tests.

3 M(n) values calculated from simulations conditional on assumed known ‘strongly exogenous’ variables z need
reflect neither the operational (ex ante) forecasting characteristics of the model (since zT+i are unknown) nor the
‘goodness’ of the underlying model as a characterization of the DGP (if the z variables are not actually strongly
exogenous). It is also worth adding that

4 stocks will usually appear to simulate ‘badly’ even when changes in stocks are quite well determined because of
the additional dynamic latent root close to unity.

These conclusions are demonstrable by computer experiments in which the DGP is known and alternative models are
simulated under valid and invalid strong exogeneity assumptions. It must be stressed, however, that the only point at
issue here is the assessment of model validity by dynamic simulation, using M(n) as a selection criterion. Comparative
simulations – with the model fixed and the inputs perturbed as a numerical method for calculating multipliers – have
not been criticized, although it is well known that such counterfactuals depend on assumptions about super exogeneity
instead (see Lucas, 1976; and chapter 15).

7 Conclusion
An analysis of empirical-model concepts suggests that there are pertinent considerations affecting how such models
should be designed when available theory is not a complete quantitative characterization of the world. Many of the
notions investigated above are well known, but have previously been justified by arguments whose relevance is unclear
when the model does not include the DGP as a special case. Moreover, the relationships between widely used criteria
for model selection do not seem to have been the subject of much previous analysis.

Data modelling advances beyond mere description only if sustained by an associated theory, and so we have assumed
throughout that the best available theory is adopted. Nevertheless, no economic theory is likely to explain all observed
phenomena comprehensively and some means of ordering empirical models remains desirable. The main ordering
discussed above is based on encompassing both because
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it offers a more stringent check on model adequacy than that conventionally used (e.g. variance dominance combined
with white noise errors is only necessary and is not sufficient to ensure encompassing) and because it provides one
possible operational implementation of a progressive research strategy.3 By way of comparison, it does not seem valid
to base an ordering on dynamic simulation n-step mean square errors (for large n) alone.

Our practical experience, despite the turbulence of the 1970s, is that theory-consistent data-coherent, parsimonious
encompassing models can be developed. Further, those that have been proposed tend to manifest relatively constant
parameters of interest for quite extensive time periods, despite changes in data correlations (for a recent appraisal of
UK consumption functions, see Davis, 1982). The simple empirical example presented to illustrate the analysis is
consistent with this view.

Notes
1 Or, of course, incorrectly sized.
2 Naturally, one anticipates that ‘better’ theories will lead to better TACDs or to more rapid development of these.
3 Even so, we regrettably concur with Blaug (1980) that empirical investigators in economics are unlikely to progress

beyond being mere handmaidens to theorists.
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17 The Econometric Analysis of Economic Time
Series18

with Jean-François Richard

Preamble
This chapter proposes a general framework for interpreting recent developments in time-series econometrics,
emphasizing the problems of linking economics and statistics. There are six main expository themes: models are
viewed as (reduced) reparameterizations of data processes through marginalizing and conditioning; the latter operation
is related to the economic notion of contingent plans based on weakly exogenous variables; a typology of dynamic
equations clarifies the properties of conditional models; estimation of unknown parameters is treated using estimator
generating equations; tests are interrelated in terms of the efficient score statistic; and the concept of encompassing
rival hypotheses (separate or nested) provides an ‘overview’ criterion for evaluating empirical estimates which have
been selected to satisfy conventional criteria. The discussion is illustrated by an estimated model of the demand for
money.

As noted above, chapters 4 and 14–16 were written more or less contemporaneously and draw upon (and reiterate)
points from each other. Ole Barndorff-Nielsen invited myself and Jean-François Richard to do a survey of
econometrics for a series in the International Statistical Review. Since such a task was manifestly infeasible, we reduced the
topic to time-series econometrics and the Review deemed that acceptable. Instead of just summarizing what the main
results in the field were, we decided to try and integrate our approach into an overall framework which also sought to
explain the role of economic analysis within the statistical methodology. This decision involved discussing parameter
change, expectations and plans, their mutual links to conditioning, and both long-run economic theory and dynamic
adjustment (see section 2). One useful outcome was an explicit link between weak exogeneity and contingent plans.
The original section 3, which presented the model typology for the first time, has been omitted here since chapters 4
and 19 provide more comprehensive treatments. The renumbered section 3 is an extension of the approach in chapter
13 to ‘incomplete’ systems,

18 Reprinted from International Statistical Review, 51 (1983) 111–63. We are grateful to Gordon Anderson, James Davidson, Clive Granger, Andrew Harvey, Louis Phlips, Aris
Spanos and two anonymous referees of this journal for helpful comments on the material herein, to Mary Morgan for historical perspective, and to Frank Srba for
undertaking the estimation reported above. Financial support from the National Science Foundation to the University of California at San Diego, the Social Science Research
Council to the London School of Economics and the Ford Foundation is gratefully acknowledged.



and sections 4 and 5 respectively discuss testing and model selection. The empirical example in the old section 7 is
included as an annex to chapter 11, and so the retained sections of this chapter are almost exclusively concerned with
summarizing the formalization.

The outcome of our efforts was a rather extensive paper, especially as the published version was followed by
discussions from Manfred Deistler, Rob Engle, Clive Granger, Teun Kloek, Grayham Mizon and Paul Newbold. Some
of the issues our discussants raised are still the subject of lively research (especially cointegration).

Since completing this paper, I have attempted an update and clarification in Hendry (1987) which focuses more
formally on the stages of the reduction process, and is the basis for the analysis in chapter 19.

1 Introduction
Most empirical econometric studies are an attempt to interpret and summarize economic data in the light of both
statistical theory and economic analysis, while simultaneously seeking to evaluate the very legitimacy of these bodies of
knowledge for the task at hand. Three important difficulties hamper progress.

First, it is essential to take due account of the nature of economic activity which derives from the transacting behaviour
of large numbers of separate yet interdependent agents (such as producers and consumers) all striving to achieve their
disparate, self-selected (and generally opposed) objectives, given their initial endowments, the available information
about an uncertain future and the constraints imposed by the environment in which they operate. Since the plans of
such agents are not necessarily mutually consistent ab initio, outcomes generally differ from plans and certain
magnitudes must adjust to reconcile the various conflicting aims, in turn inducing different future behaviour.
Consequently, an economy is an inherently dynamic, stochastic, multidimensional, interdependent, non-linear and
evolving entity of considerable complexity, the overall functioning of which is only partly understood.

Second, and most unfortunately in view of the first problem, observations on economic quantities are usually
imprecise, samples are small and are not derived from controlled experimentation, and the observed data relate to the
final outcomes rather than the original plans and expectations. Finally, economic analysis, while providing the essential
conceptual framework and yielding many useful insights, often provides only a first approximation to how such
systems function in idealized states, such as (timeless) static equilibria in which all change has ceased or steady states in
which only constant growth occurs. Succinctly, the data generation process is complicated, data are scarce and of
uncertain relevance, experimentation is uncontrolled and available theories are highly abstract and rarely
uncontroversial.

Empirical macroeconomic models constitute the econometrician's attempt to characterize such economies
quantitatively, by summarizing economic time-series data using existing economic theories embodied in statistically
estimated parametric relationships. Even if we assume that the difficulties described above did not lead one to regard
econometrics as hopeless – which some have done, but we most certainly do not (see chapter 1) – it would be
astonishing if the statistical formulation of existing empirical models was not easily criticized, and, indeed, this has
provided
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one source of improvement, the other major contributors being developments in economic analysis and in
econometric technique; for a recent discussion, see Malinvaud (1981).

To clarify the basis for further constructive criticism, we present a framework for interpreting some recent
developments in time-series econometrics, which may be useful to statisticians in other subject areas. While our
overview is perforce idio-syncratic – and in effect comprises our own ‘theory’ of econometrics – nevertheless, offering
a framework seemed more helpful than adding to the already substantial set of surveys recording the subject-matter
content of econometrics; for good recent reviews, see, inter alia, Zellner (1979a) and the texts by Judge et al. (1980) and
Harvey (1981a), together with the many references therein for fuller bibliographic perspective. Although Bayesian
procedures can be applied fruitfully to all the models considered below, we have analysed only non-Bayesian
approaches given the scale of our topic; useful references for the interested reader are Zellner (1971), Leamer (1978),
Florens and Mouchart (1980b) and Drèze and Richard (1984). Finally, Cox (1981) surveys recent developments in
time-series analysis and Harvey (1981c) presents an exposition.

The chapter uses six main pedagogical devices to review the field described in the title. First, for simplicity, attention is
restricted to linear normal data processes so that models can be construed as reparameterizations of such processes by
marginalizing and/or conditioning (section 2.1). Next, the concept of weak exogeneity, which sustains inference in
conditional submodels, also allows the statistical formulation of the data generating mechanism to be related to the
economic notion of contingent plans on which economic agents are assumed to base their behaviour (section 2.3). Third,
a typology of dynamic equations (presented in chapter 4 to exposit their properties) interrelates the many ‘types’ of model
extant in empirical research. Fourth, the concept of an equation for generating different estimators summarizes and integrates
a vast literature on alternative estimation methods in econometrics (section 3). Next, a large range of tests can be
summarized in terms of the efficient score statistic, again providing coherence to a diverse and voluminous literature
(section 4). Lastly, the notion of encompassing is used to characterize an important aspect of the model selection problem
(section 5). In many respects, by emphasizing statistical considerations, the resulting approach is complementary to
that of Sargent (1981), who characterizes the data process in terms of the decision rules of optimizing economic
agents.

To motivate our framework, an empirical illustration first highlights several of the difficulties typically encountered in
econometrics, albeit in a deliberately accentuated form. The example draws on our own research generally; this also
allows testing the previously published model on new data. However, equation (17.3), estimated below, does not
represent a level of naivity unknown in econometrics (as perusal of ‘empirical’ journals will reveal): many economists
believe strongly in the validity of their theories, and use data evidence primarily to determine the orders of magnitude
of a small number of unknown coefficients relevant to their theories.

A well-known theory of the demand for money by private individuals for transacting (exchanging money for goods
and services) is that money holdings (denoted
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by M) are proportional (other things being equal) to nominal income PI, where P is an index of the price level and I is
constant-price (‘real’) income:

(17.1)

for some constant H1. The content of (17.1) is that economic agents demand ‘real’ money, M/P, as a function of ‘real’
income (and would not be fooled by a simple change in the units of a currency, e.g. dollars to marks), and that the
velocity of circulation of money V = PI/M will be constant, ceteris paribus (other things being equal), independently of the
values of P and I. Here, the infamous ‘ceteris paribus clause’ includes (implicitly) the restriction to a static equilibrium
world, i.e. a state in which all change has ceased. More generally, if a dynamic (or steady-state) equilibrium is allowed
with non-zero (but constant) inflation and one wished to compare across states with different levels of (and hence
of interest rates R), since agents tend to economize on their money holdings as inflation and/or interest rates increase

(17.2)

where a multiplicative function has been assumed consistent with the positivity of M and V.

The status of (17.2) is a dynamic equilibrium relationship and strictly all the variables involved are the latent constructs
of the theory; for a clear statement about equilibrium economic theory, see Weintraub (1979). Often, such
unobservables are mapped one-to-one onto observed data ‘equivalents’. Here, the series are quarterly seasonally
adjusted time series for the United Kingdom over the period 1963(i)–1980(ii), defined as follows:

M notes and coins in circulation plus sight deposits in Commercial Banks (M1 from Financial Statistics: see for
example 1981, p. 232, section 7)
I constant-price total final expenditure (from Economic Trends, Annual Supplement, 1980, table 10: current
values deflated by P in 1975 prices)
P implicit deflator of I (Economic Trends, 1980, tables 10–12)
R local government three-month interest rate (Financial Statistics, e.g. 1981, p. 232, sections 13, 15)

Given UK financial institutions, it is reasonable to assume that individuals can obtain the quantity of transactions
money they desire (by substitution from other liquid assets) and that the banking system determines short-term
interest rates. The time-series behaviour of velocity shown in figure 17.1 reveals a substantial increase over the sample
period (from 1.36 to 2.32) and while this is not inconsistent with a unit response of M to PI in a theory such as (17.2),
it does disconfirm (17.1) prior to ‘estimation’.

Let , with lower-case letters denoting logarithms of corresponding capitals and Δjqt = (qt − qt − j). Then, if we use
this typical mapping, take logs in (17.2) and allow for a disturbance et:

(17.3)

If we assume et ∼ IN(0, σ2), with it, rt and pt being ‘determined outside the model’
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Figure 17.1 Time-Series Graph Of Velocity Of Circulation Of Money (V = PI/M).

independently of et, maximum likelihood estimation is simply ordinary least squares regression, which yields

(17.4)

where the coefficients on the right-hand side of (17.4) have standard errors 0.08, 0.05 and 1.1 respectively.

In equation (17.4), T is the sample size, R2 the squared multiple correlation coefficient, the residual standard
deviation (here, 9.8 per cent of M) and DW the Durbin–Watson statistic (which rejects the hypothesis of serially
uncorrelated residuals). Also, η1(J, T − K − J) denotes the Chow (1960) test of parameter constancy for J periods and K
regressors, approximately distributed as F(J, T − K − J) on the null of no parameter change for the last J observations,
and η2(L, T − K − L) is the Lagrange multiplier based test for Lth-order residual autocorrelation, approximately
distributed as F(L, T − K − L) under the null of serial independence; see Godfrey (1978), Harvey (1981a) and section
4.

Although have the anticipated signs and ‘reasonable’ orders of magnitude, the results are uninterpretable: the
standard errors are downward biased because of the positive residual autocorrelation, which in turn indicates a
systematic departure of the model from the data, and parameter constancy is rejected. Even worse, including pt and it as
additional regressors, to test the proportionality in
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(17.1) and (17.2), reduces to 0.039, but has DW = 0.34 casting grave doubt on the mainstay of the theory. In fact, the
data standard deviation of Δ1mt is only 0.025, and so the fit of (17.4) is worse than useless for explaining money
holdings! Finally, the naive ‘time-series model’ that vt (= − mt + pt + it) is a first-order autoregressive process has a
residual standard error of 0.029, with η1(20, 44) = 0.9 and η2(6, 58) = 0.5, thus fitting and predicting better than these
‘econometric equations’.

Fortunately, it is possible to explain the above findings and to develop an approach which avoids many of the
problems. The primary objective of the chapter is to exposit the requisite concepts and a model based on (17.2) which
is nevertheless considerably more useful than (17.4) is reported in chapter 11. Among the various issues that must be
examined are the following:

1 the status of the explanatory variables it, rt, pt, Δ1pt supposed to be ‘determined outside the model’ (see section
2.1);

2 the assumption of constant parameters (section 2.2);
3 the mapping from the latent variables of the theory to the observed data series (section 2.3);
4 the assumptions about et, made independently of (1) even though by definition et must contain everything not

elsewhere specified (sections 2.2, 2.3);
5 the status of (17.2), given its equilibrium derivation and its dependence on ceteris paribus (section 2.4);
6 the role of time-series models and their relationships to econometric equations (section 2.3 and chapter 4);
7 the estimation of unknown parameters (section 3);
8 hypothesis and diagnostic tests (section 4);
9 model selection when specification is uncertain (section 5).

The general econometric problem of linking economics and statistics in data analysis is considered in the next section,
together with the issues of stationarity and ‘causality’ as well as (1)–(6). For simplicity, statistical formulations in
constant-parameter worlds are first considered in section 2.1, but results which depend critically on the constancy
assumption are remarked on parenthetically, and that problem is then discussed in section 2.2. Economic formulations
in terms of plans and expectations are analysed in section 2.3 in relation to the statistical framework, and the role of
‘equilibrium’ theory is evaluated in section 2.4.

2 An Econometric Framework

2.1 The Statistical Process Under Stationarity
To establish notation and terminology, it is convenient to commence with the statistical formulation of the process
postulated to generate the data in a stationary stochastic world. The observed data, denoted by the column vectors
{xt}, are a sample of T observations on K variables from the joint density function D(x1, . . . , xT|X0, θ) parameterized
by an identifiable finite-dimensional vector of unknown

392 FORMALIZATION



parameters θ ∈ Θ (a parameter space of non-zero Lebesgue measure), where X0 is the matrix of initial conditions and
D(·) is assumed continuous with respect to an appropriate measure. Let and . Since economists
conceive of the economy as an inherently sequential process, D(·) is automatically factorized as

(17.5)

The conditional densities on the right-hand side of (17.5) are assumed to be sufficiently constant over time for the
objectives of the study, an issue we return to in section 2.2 below. Throughout, we refer to parameter ‘constancy’,
reserving ‘stability’ for the property of the dynamic process being convergent. To achieve such a formulation may
require transformations of the original data. While many of the concepts introduced below apply to a wide range of
processes, for expository purposes {xt} is taken to be the outcome of such appropriate transformations that a normal
linear equations system is an adequate approximation to the data generating process. Thus, conditional on θ and X0,
the resulting process can be expressed as

(17.6)where

(17.7)

(17.8)

with {Πi} and Σ being functions of θ.

Since the lag length is invariably unknown, n requires selection with other features of the model, and hence a small
value has to be imposed in practice given available sample sizes. If we set εt = (xt − μt), which is a white noise
innovation relative to Xt − 1 by construction, (17.7) yields the dynamic system

(17.9)

Although there are interesting models of time-series heteroscedasticity of practical relevance (Engle, 1982a) it is
convenient to assume that the data transformations also induce constant Σ in order to focus attention on (17.6) and
(17.7).

While θ could consist of the elements of ({Πi}, Σ), parsimony typically leads to the latter being restricted, usually as
explicit functions of a smaller set of invariants which are our original vector θ; in a Bayesian approach, such explicit
expressions are necessary to avoid conditioning paradoxes in the assessment of a prior density on θ. Given that (17.6)
and (17.7) characterize the data generating process and that {Πi}, Σ are constant functions of θ, stationarity only
requires that all the roots ξi of
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satisfy |ξi| > 1, in which case the dynamic process (17.9) is both stable and ergodic; see for example Hannan (1970,
p. 204).

Crudely expressed, the statistical content lies in (17.6), and the economics content in appropriate specification of (17.7).
Econometric modelling involves developing a parsimonious yet relatively complete description of a relevant part of
(17.6) and (17.7) which in turn has constant parameters over historically useful time horizons and is specified in an
economically meaningful structure. The associated economic theory formulation is discussed in section 2.3 below, but
it is important to note that economists tend to analyse issues in terms of relationships which are claimed to
characterize the structure of decision taking by agents, called structural relationships, rather than in terms of processes
like (17.9) which are viewed as derived equations. Often, their models of the data generation process can be written in
the form

(17.10)

where the {Ai} are well-defined functions of θ, A0(θ) is of full row rank for θ almost everywhere in Θ (Richard, 1979)
and compatibility with (17.7) requires that, almost everywhere in Θ,

(17.11)

Restrictions imposed on the {Ai} by economic theories generally induce restrictions on {Πi} and certain of the
elements in {Ai} may be parameters of interest themselves and hence be included in θ. If different values of θ are
associated with a common value of ({Πi}, Σ) then there is a lack of identification: loosely speaking, a parameter λ is
identified if it is a well-defined function of ({Πi}, Σ).

Data sets in economics typically consist of a relatively small sample of observations on a large number of variables.
Therefore, to be manageable, the analysis must focus on a subset of the variables and, provided that the model user is
not interested in all the parameters of θ, that subset sometimes can be analysed without loss of relevant sample
information. Let ψ denote the parameters which are of direct interest because of their relevance either to policy or to
testing economic theories (or because of their constancy for forecasting and/or invariance to particular policy
‘interventions’). In so far as econometricians model in terms of parameters of interest, ψ may be a subvector of θ, but
more generally, ψ is a vector function of θ: ψ = f(θ).

In our framework, ‘models’ are inherently reduced reparameterizations of the data generation process and, from the
process (17.6) and (17.7), models may be derived by marginalizing, by conditioning or by doing both. These operations
are rarely discussed explicitly by economists, as models tend to be formulated on the basis of a priori theories which are
believed to characterize economic behaviour adequately so that the notions of processes and models are conflated as in
(17.3). Such an approach requires the axiom of correct specification (Leamer, 1978, p. 4) that all the assumptions of the
model are valid, and leads to a model building methodology in which violated assumptions are viewed as ‘problems’ to
be ‘corrected’. As an example of this approach in (17.4), since {et} is autocorrelated, the serial correlation should be
‘removed’ and using the typical first-order autoregressive
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error assumption yields , significantly improving the fit. However, a test of the validity of the autoregressive error
assumption (see Sargan, 1980a), denoted η3(h), approximately distributed as when the error is autoregressive yields
η3(2) = 17.1, strongly rejecting the attempted reformulation. Thus, further ‘problems’ remain if this route is chosen.

Most estimation theory in econometric textbooks is predicated on knowing the ‘correct’ model, while simultaneously
most practitioners are well aware that their models are inevitably inadequate in many respects. Consequently, it seems
more useful to try and design empirical models such that their residuals are white noise innovations relative to the
available information, thus using for example autocorrelation tests as selection criteria (that innovations like {εt} in (17.9)
are a martingale difference sequence then provides a feasible basis for developing large-sample distributional theory for
estimators and test statistics; see for example Hall and Heyde (1980), Hannan et al. (1980) and Crowder (1976)). In
terms of (17.4), we do not consider that model to be useful even with autocorrelation ‘removed’ since (among other
flaws) the absence of autocorrelation is necessary but is not sufficient to ensure that the residuals are innovations.

Returning to the general case, let x′t = (w′t, y′t, z′t), where {wt} denotes a (very large) vector of variables to be integrated
out (i.e. with respect to which the analysis is marginalized), {zt} is a vector to be treated as ‘given’ or ‘exogenous’ for
the purposes of the analysis (i.e. on which the analysis is conditional) and {yt} is the vector of variables which are to be
modelled. Generally, econometric models are first (implicitly) expressed in marginal form and then conditioning is
considered, and so we follow that practice here and factorize the data densities (17.5) as

(17.12)

where (φ1, φ2) is an appropriate reparameterization of θ. Loosely speaking, valid marginalization with respect to wt
requires that ψ be a function of φ2 alone (which mapping remains constant over the relevant period) and that φ1 and φ2

are variation free (i.e. are not constrained by cross-restrictions, so that (φ1, φ2) ∈ Φ1 × Φ2, where Φi denotes the set of
admissible values of φi), whence there is a classical sequential cut in (17.12); see for example Florens and Mouchart
(1980a) and Barndorff-Nielsen (1978). In practice, one may be willing to suffer some loss of efficiency to achieve a
tractable model when φ1 and φ2 are not variation free, but it must be stressed that omitting variables from an analysis
automatically enforces marginalization and an associated reparameterization (non-constant parameterizations will
result from marginalizing with respect to important variates whose relationships with retained variables alter). Note
that aggregation over time, space, agents, commodities etc. is equivalent to a combination of appropriately
reparameterizing and then marginalizing with respect to the remaining disaggregated variables.

Often, models are also marginalized with respect toWt − 1 and to be valid this requires thatWt − 1 does not influence (yt,
zt). In economics, this is usually referred to as Wiener–Granger non-causality (Wiener, 1956; Granger, 1969, 1980)
defined as: Wt − 1 does not Granger-cause st = (y′t, z′t)′ with respect to Xt − 1 if and only if

(17.13)
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When (17.13) holds for t = 1, . . . , T it is often expressed as ‘w does not Granger-cause s’ in which case the analysis can
be restricted to without loss of relevant sample information about φ2 (and also about ψ provided that the conditions
discussed above apply). Otherwise, integrating out lagged ws which do influence st alters the parameterization and
hence jeopardizes parameter constancy, and frequently introduces moving-average errors into models. Note that
Granger causality is defined with respect to a specific set of variables and its presence or absence can alter as the
selected set of variables is changed.

Assuming that (17.13) holds and that ψ = g (φ2), we next consider conditioning on zt using the factorization

(17.14)

where (λ1, λ2) is an appropriate reparameterization of φ2, and if denotes the likelihood function then

(17.15)

If ψ is a function of λ1 alone, and λ1 and λ2 are variation free (as discussed above for the φi), then zt is said to be weakly
exogenous for ψ, and inference about ψ from the partial likelihood can be conducted without loss of relevant
information; this concept derives from Koopmans (1950a) and is discussed in greater detail by Richard (1980) and in
chapter 15. Consequently, the model for zt does not need to be specified, provided that one does not wish to test the
conditions for weak exogeneity. The importance of this is that the analysis is not only less costly, more comprehensible
and more robust, but also that model selection is facilitated in the standard situation that the precise specification of
the data generation process is not given a priori. In practice, many econometric studies simply specify alone, leaving
implicit whatever weak exogeneity assertions are necessary to complete in (17.15).

While we have restricted the analysis to a sampling approach, Florens and Mouchart (1980a) discuss the concept of
reduction (conditioning and marginalizing) within a Bayesian framework where weak exogeneity is no longer necessary
for valid conditioning (conceptually at least) since, under an appropriate prior density, the absence of a cut may not
affect inference on ψ. Also, these authors discuss the relationship between exogeneity and ancillarity.

If in addition to zt being weakly exogenous for ψ, y does not Granger-cause z, then D(zt|St − 1, λ2) can be written as
D(zt|Zt − 1, λ2) in which case zt is said to be strongly exogenous for ψ. This condition is required to justify conditionally
forecasting (yt + 1, . . . , yt + m) given (zt + 1, . . . , zt + m). However, Granger non-causality of y for z is neither necessary nor
sufficient for conducting inference conditionally on zt without loss of relevant information.

The concepts introduced above may be illustrated using the following two-equation system:

(17.16)
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(17.17)

(17.18)

Equation (17.16) describes an error correction mechanism whereby an economic agent adjusts y, in response to
changes in z and the previous disequilibrium, towards the equilibrium solution that y = a + z, where a = β0/(1 − β3).
Equation (17.17) is a typical control rule for another economic agent attempting to influence y by means of the (policy)
variable z. For example, this could be a governmental policy reaction function or a farmer's supply decision so that the
exclusion of yt is very natural. The parameters of the system are exactly identifiable, and the process is stable under the
conditions shown. If γ3 = 0, y does not Granger-cause z, and yet zt is not weakly exogenous for β = (β0, β1, β3) when σ12

≠ 0. If σ12 = 0, then cov(zt, ε1t) = 0 which, given that yt is excluded from (17.17), is sufficient for the weak exogeneity of
zt for β. If σ12 = γ3 = 0 then zt is strongly exogenous for β.

Note the importance of the concept of parameters of interest in our definitions of weak and strong exogeneity.
Obviously, there exist many nine-parameter models which are observationally equivalent to the original model
(17.16)–(17.18) but have different ‘behavioural’ interpretations. One such model is obtained by replacing (17.16) and
(17.18) respectively by

(17.16′)

(17.18′)

Equation (17.16′) now describes a partial adjustment process. The parameters (β0, β1, β3, σ12) and (b0, b1, b3, ω12) are
related by

(17.19)

Therefore, if σ12 = 0, zt is not weakly exogenous for b = (b0, b1, b3)′ unless β1 + β3 = 1 in which case the two models
coincide. If instead σ12 = σ22 γ2

−1 (1 − β1 − β3), then zt is weakly exogenous for b but no longer for β.

Whether one is interested in β or in b may be simply a matter of preference among the corresponding economic
theories. This would be the case in stationary worlds since no sample evidence could ever discriminate between these
two theories. In contrast the choice between (17.16) and (17.16′) is bound to become critical as soon as the economy
under consideration is subject to interventions affecting the control equation (17.17). Worlds of parameter change are
discussed in section 2.2 but it is obvious from (17.19) that β and b cannot both be invariant with respect to changes in
(γ2, γ3), so that choosing the ‘wrong’ theory may entail parameter non-constancy or predictive failure.

In fact, the concept of exogeneity has been the subject of very extensive discussion in econometrics; see, inter alia,
Koopmans (1950a), Orcutt (1952), Marschak (1953),
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Phillips (1956), Sims (1972b, 1977a), Geweke (1978, 1984), Richard (1980) and chapter 15. As discussed above, the
notion of weak exogeneity builds on the important paper by Koopmans (1950a) using recently developed concepts of
statistical inference; see for example Barndorff-Nielsen (1978) and Florens and Mouchart (1980a). However, other
concepts of exogeneity are also currently used in econometrics and in particular that of ‘strict exogeneity’. Let ut be the
‘disturbance’ associated with the (structural) relationships

(17.20)

then (Koopmans and Hood, 1953; Christ, 1966, chs IV.4, VI.4; Sims, 1977a) zt is strictly exogenous in (17.20) if and
only if it is uncorrelated with past, present and future us. Sims (1977a) and Geweke (1978) discuss the connections
between strict exogeneity and Granger non-causality, and in chapter 15 it is shown that the strict exogeneity of zt in
(17.20) is neither necessary nor sufficient for the weak exogeneity of zt for ψ. In particular, the strict exogeneity of z in
(17.20) is uninteresting if it is achieved by a reparameterization from which ψ either cannot be derived or is not an
invariant. Also note that, if distributional assumptions are made about {ut} in (17.20), then A0 has to be square if
D(yt|zt, Xt − 1) is to be derived; in our framework, the distribution of the observables is characterized by (17.6) and
(17.7) while (17.10) serves to induce restrictions on {Πi}.

In summary, successively achieving valid marginalization and conditioning with respect to Wt and zt respectively
requires introducing a reparameterization of θ into (φ1, λ1, λ2) such that (i) φ1, λ1 and λ2 are all variation free and (ii) ψ is a
function of λ1 alone. Note that (i) is not necessary for validly analysing the submodel D(yt|zt, St − 1, λ1) in that the weaker
condition, (i′) λ1 and (φ1, λ2) are variation free, also supports jointly marginalizing and conditioning. However, while a
joint analysis may appear conceptually attractive, it does not seem of great practical relevance, is often complicated and
in any case rarely occurs in econometric practice where marginalization is not usually formally investigated (with the
notable exceptions of integrating out unobservable variables and analysing the consequences of aggregation).

2.2 Parameter Change
A standard basis for time-series analysis is the assumption that {xt} is a weakly or wide-sense stationary process with
constant unconditional first and second moments:

Many important technical and data analytical advances have followed from this assumption, including the concepts
discussed above. Nevertheless, γ and Γ(·) do not seem reasonable invariants for economic data, a point made by for
example Koopmans (1937), even when the {xt} are transformations of the raw data series such as logarithmic
differences, since stationarity requires far more than the absence
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of trends. Indeed, if γ and Γ(s) were constants, all least squares approximations of components of xt by any other
subsets of current and lagged xs (including for example univariate autoregressive integrated moving average
representations) would have constant coefficients, independently of their economic relevance. Consequently, predictive
failure would not be a problem and data intercorrelations would be constant apart from sampling fluctuations: yet
neither phenomenon is characteristic of empirical econometrics; see for example the η1(·) test of (17.4).

In part, of course, this may be due to using inappropriate data transformations such that (say) the moments of are
not time independent even though those of {xt} are. While this emphasizes the important role of functional form, it
remains true that many major changes have perturbed Western economies in the last 15 years including the creation of
OPEC and the consequent change in energy prices, the switch from ‘fixed’ to ‘floating’ exchange rates, the
enlargement of the European Economic Community, and a vast increase in the scale and volatility of government
intervention in economic affairs. These events in turn may well have altered how economic agents react to any given
circumstances.

There are many ways in which such ‘shocks’ could be handled, but in essence all require isolating the changes to
highlight the remaining constancies. Parameters which are invariant to interventions are obviously of interest and
behavioural models which involve only such invariants provide a useful basis for forecasting and policy analysis. A
major objective of econometric modelling is the development of structural submodels with invariant parameters, which entails both that
the underlying part of the data generation process has a constant parameterization and that a correctly specified variant
thereof is estimated. Conversely, the greatest drawback from invalid marginalizing and/or conditioning is that the
derived parameters may depend on non-invariants and hence all may appear to be non-constant even though only a
few elements of θ have changed; e.g. consider basing the data analysis on (17.1) rather than (17.2). Of course, in some
hyperparameterization (almost certainly only specifiable post hoc), θ can be considered as constant but this simply
creates problems in specifying the components of xt; conversely, treating everything as variable precludes the use of
economic theory. Consequently, we allow for some structurally invariant parameters with other elements of θ being
relevant only over certain subperiods, the timing of which is not necessarily known a priori by the econometrician.

Since weak exogeneity requires that the parameters of interest and those of the exogenous process are variation free, it
offers a useful framework within which to analyse the invariance of the former under interventions affecting the latter.
However, weak exogeneity is not sufficient for structural invariance since economic agents can always modify their
behaviour in retaliation to interventions if they so choose. For example, they can increase their responsiveness to
interest rate changes if governments reduce the rate of monetary growth; see, inter alia, Lucas (1976) and chapter 15.
Moreover, as stressed by Salmon and Wallis (1982), estimating the invariants of the data generation process also
requires adequate ‘excitation’ of the observations in the absence of additional information (e.g. one cannot estimate an
interest elasticity if interest rates never vary). In the light of these considerations, it is useful to introduce one further
exogeneity concept to generalize that notion to
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worlds where regimes can change, namely that zt is super exogenous for ψ if it is weakly exogenous and ψ is invariant to
interventions which change λ2.

Reconsider the models (17.16)–(17.18) and (17.16′)–(17.18′). If 12 = 0, then zt is super exogenous for β provided that
this vector is invariant to changes in (γ2, γ3). Ordinary least squares estimation of (17.16) would then lead to the valid
conclusion that (17.16) is a constant behavioural relationship and, equally importantly, would help isolate the source of
parameter non-constancy in competing models. If σ12 ≠ 0, full information maximum likelihood estimation of β would
be required since ordinary least squares estimated coefficients of (17.16) would now also depend on (γ2, γ3). In contrast,
full information maximum likelihood estimation of b in (17.16′)–(17.18′), and a fortiori ordinary least squares estimation
of b in (17.16′), could lead one to the invalid conclusion that the economy under consideration had modified its
behaviour in response to the policy change. Also, in the absence of policy changes over the observation period, (17.16′)
would still be inappropriate for prediction or simulation under new control policies. Obviously the argument could be
reversed in favour of b.

However, in contrast with the constant-parameter case, sample evidence is bound to discriminate between (17.16) and
(17.16′) as soon as (17.17) has changed over the observation period. The possibility that neither (17.16) nor (17.16′) are
invariant, or will continue to be invariant, cannot be ruled out. Our experience suggests, however, that there exist
‘simple’ behavioural equations which are remarkably constant over periods of considerable change; see chapter 8 for
example and the ‘follow-up’ in chapter 10 as well as the results in chapter 11 (see equation (11.21)).

Since we have introduced the notion of policy interventions, it must be stressed that in such worlds, since policy
depends on the past performance of the economy, usually it would be unrealistic to assume that y does not Granger-
cause z, while the weak exogeneity of z for ψ continues to play an essential role in the analysis. For example, in terms of
(17.3), if ψ′ = (1, α2) and {et} were white noise, then rt could be weakly exogenous even if its current value was
determined by the authorities in the light of the behaviour of mt − 1, it − 1 and pt − 1. More generally, consider an economy
described by the conditional submodel D(yt|zt, St − 1, λ1) which is subject to interventions from a government whose
behaviour is described by the marginal submodel D(zt|St − 1, λ2). One would anticipate that government interventions
would be fundamentally influenced by the past behaviour of the economy (Yt − 1) and that the control policies would be
difficult to model; provided that zt is super exogenous for ψ, neither difficulty impinges on inference about ψ.
Moreover, when elements of λ2 are operative at different times, if λ1 is an invariant, the conditional model nevertheless
allows valid prediction under policy changes, even though (say) a model of yt marginalized with respect to zt (or Zt)
would not; whether λ1 can be an invariant when the agents' behaviour depends on what they expect policy to be is
considered in section 2.3.

For the remainder of the chapter, we assume that the choice of {st} is such as to allow valid marginalization with
respect to wt (t = 1, . . . , T). To economize on notation and equations, it is then convenient to reinterpret (17.6)–(17.11)
as holding after marginalization so that xt = st = (y′t, z′t)′ and θ = φ2; alternatively, imagine that no w variates are relevant
to the formulation, although note that the {Ai} may
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represent different functions of θ if marginalization is required. Also, ψ must remain a well-defined function of λ1.

Now partition μt, Σ and {Πi} conformably with (y′t, z′t)′ such that, for example, etc. By properties of
the normal density, from (17.7),

(17.21)

where P0 = (Q0: D0) say, and {Pi, i = 0, . . . , n} depend only on λ1 as in (17.14). All the exogeneity concepts discussed
above can be characterized directly for the changed notation; for example zt is weakly exogenous for ψ = g(λ1) if (λ1, λ2)
∈ Λ1 × Λ2 and is super exogenous if also λ1 does not vary with λ2. It is worth stressing that the economic distinction
between ‘variables explained by the model’ and those ‘determined outside the scope of the model’ should not be
confused with the statistical concepts of ‘endogenous’ and ‘exogenous’ and it is precisely the purpose of the concept of
weak exogeneity to clarify when zt can be treated as being determined outside the conditional submodel under analysis
for purposes of inference on ψ. However, for other purposes, such as dynamic simulations of models conditional on a
fixed set , strong exogeneity is required, although for n-step ahead predictions if yt depends on zt − k for k ≤ n − 1 then
D(zt|Xt − 1, λ2) must be modelled anyway; and for comparative model simulation studies (often called scenario studies)
then super exogeneity of the perturbed variables is required. By itself, strict exogeneity, perhaps obtained by
construction, is not sufficient for any of these purposes, and unless the equation in which strict exogeneity is claimed
to occur happens to isolate invariants, predictive failure will result following major interventions.

The objective of the following subsection is to provide economic flesh for this statistical skeleton, complementing the
statistical concepts with economic interpretations. Also, the main ideas in the remainder of the chapter are as follows.
First, agents are assumed to formulate ‘plans’ for the variables whose values they seek to determine, contingent on the
available information; these variables are taken to be the subset yt and the planned magnitudes are identified with
either or depending on the information set. Next, the behavioural relationships may be either the result
of optimization (forward looking) or simply servomechanistic rules (feedback) depending on the decision problem.
For the former, the expectation held about ztby the agent (denoted by ) must be modelled and considerable debate
surrounds the assertion that which conflates the economic with the statistical interpretation of the
‘expectations’ involved. Third, while economic theories are often developed without reference to any specific data
phenomena, nevertheless such theories generally specify the variables comprising xt, the parameters of interest ψ and
their mapping to the {Ai} in (17.10), likely invariances, possible exogeneity assertions and (on occasion) potential
values of n. In addition, the relevant theory may constrain the class of admissible dynamic equations, often by
specifying the form of the equilibrium solution as in section 2.4. While this may suggest the estimation method (section
3) models
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are rarely adequately articulated to encompass all the main features of the data generating process. Consequently, data
modelling and post-data model evaluation remain important (sections 4, 5).

Finally, when {xt} satisfies certain data constraints (e.g. identities or positivity etc.), it is highly desirable that the model
also automatically satisfies the same constraints, which necessitates a careful consideration of functional forms.

2.3 The Economic Model: Plans and Expectations
We postulate that agents in the economy base their decisions on contingent plans (Bentzel and Hansen, 1955) which
implement optimizing behaviour given limited information (since information has costs of collection, processing etc.).
Such plans are the behavioural relationships noted above, and involve expectations about future events, adaptive responses
to changes in the environment and mechanisms for correcting past mistakes. Moreover, systems of such relationships
must account for how outcomes are determined and how disequilibria between plans and realizations are reconciled by
changes in prices, in quantities and/or in the extent of rationing. Finally, empirical relevance requires the specification
of mappings between the many latent variables of the theory and the observables of the data analysis. However, a
complete discussion of all the interactions between economic analysis and statistical modelling is well beyond the scope
of our chapter, and so we focus on the interpretation of conditional submodels as formulated above.

Let respectively denote those variables to be explained by the economic model and those determined outside
the scope of the theory, with and being respectively the economic agents' contingent plans for yt and their
expectations for zt. On the one hand, it is often natural to assume that coincides with the statistical expectation of yt
on the grounds that rational agents would notice and correct systematic departures from their plans, although whether
that expectation is or obviously depends on the agents' information sets at the time their plans are
finalized. Economists often phrase such statements with determining since the data generation process is the
economy and so takes whatever values it does because of economic behaviour. However, as discussed above, a
careful distinction is required between the data process and any postulated model thereof, since the assumed and actual
determinants of need not coincide. On the other hand, failures of market clearing such as rationing could necessitate
more complicated mappings of to yt than simply deviating by white noise errors and there is a large literature on this
particular problem, which is loosely called ‘disequilibrium econometrics’: see, inter alia, Goldfeld and Quandt (1976),
Bowden (1978) and Quandt (1982), and for an application to planned economies, Portes and Winter (1980). Moreover,
in the system as a whole, agents' plans may be inconsistent and as a consequence some participants may find their
plans thwarted.

If the process which generates zt is beyond the agent's control, as we hypothesize, might differ from the statistical
expectation of zt, and hence an auxiliary model of ‘expectations formation’ is required, potentially (and usually)
different from the data generation process of zt. Moreover, the current plan frequently depends on
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expectations about future values of zt and all such unobservables must be eliminated to produce an estimable model;
however, we restrict the analysis to current expectations to simplify the algebra since no new issues of principle arise in
addition to those already present when . Data about anticipations and expectations can be obtained from surveys, a
well-known study being Katona and Mueller (1968). However, to date use of this source has yielded equivocal results
in macroeconomic time-series studies; see for example Carlson and Parkin (1975). In any case prediction often
necessitates auxiliary equations to forecast the expectations data. Marget (1929) provides an early discussion of how
economic forecasts may affect the way agents behave.

To clarify the framework, all the ingredients of the economic model intended to represent the data generation process
of xt in (17.6) and (17.7) are restated together as follows.

First, a specification of the behavioural plan (with parameters denoted by *) is

(17.22)

where are well-defined functions of θ1 ∈ Θ1, or in terms of structural relationships analogous to (17.10)

(17.23)

where and are well-defined functions of θ1 and is of full row rank for θ1 almost everywhere in Θ1.
Compatibility of (17.22) and (17.23) requires that, almost everywhere in Θ1,

(17.24)

Second, we give a postulate concerning the formation of . If there is perfect information, ; otherwise, it is assumed
that

(17.25)

where {Gi} are well-defined functions of θ1. Important special cases of (17.25) are noted below.

Third, we give a description of the actual process determining , which from (17.6) and (17.7) is

(17.26)

where {Fi} are well-defined functions of θ2 Θ2. As considered below, whether or not the parameters of (17.25) and
(17.26) are related depends on the weak exogeneity of zt for ψ. If zt is weakly exogenous for the parameters of interest,
then (17.26) is irrelevant, whereas (17.25) remains relevant unless is observed.

Fourth, a mapping of the unobservables to the observables (yt, zt) is, for example, in the case that is white
noise,
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(17.27)

and conditionally on Xt − 1

(17.28)

However, this specification not only assumes agents are ‘rational’, it also short-circuits the steps from plans to
realizations to measured outcomes, and excludes (for example) rationing. Since deterministic variables (such as
seasonal dummies) and identities raise no substantive problems, it is convenient to assume that Ω is symmetric and
positive definite. In terms of the four specifications above, the illustration in (17.3) comprises the assumptions of a
plan which is independent of both past mistakes and anticipations, with perfect information about all the elements of
zt, where Ω12 = 0 and u1t = et is white noise.

Generally, the parameters of the model (17.22)–(17.28) have to be related unambiguously to those of the data
generating process (17.6) and (17.7). First, consider the perfect information case when and n* = n (for expositional
purposes). From the properties of the multivariate normal density, if we let

(17.29)

then for (17.22), compared with (17.7),

(17.30)

whereas for (17.23), compared with (17.10), . Moreover, from (17.21) requires that

(17.31)

Consequently, if Ω12 = 0 and θ1, θ2 are variation free, then zt is weakly exogenous for θ1; see chapter 15. Therefore the
condition that Ω12 = 0 is equivalent (in this perfect information case) to requiring that the contingent plan is the
conditional expectation .

Next, under imperfect information as represented by (17.25), can be eliminated from (17.22) or (17.23) to yield, if we
take (17.22) as an example, with n* = n again,

(17.32)

Using this derived equation raises problems concerning the identifiability of the original parameters and makes the
invariance of the coefficients in (17.32) dependent on the constancy of both (17.22) and (17.25). Formulae (17.30) and
(17.31) must be replaced by
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(17.33)

(17.34)

(17.35)

Note that (17.25) nests, inter alia, univariate time-series models, vector autoregressions, leading indicator forecasts etc.;
see for example Wallis (1977) for a discussion of these interconnections and compare Wall (1980). Moreover, the
assertion that Gi = Fi (i = 1, . . . , n) is known as ‘rational expectations’ (Muth, 1961; Sargent, 1979; Wallis, 1980; Lucas
and Sargent, 1981; Wickens, 1982), in which case Ω12 = 0 (an assumption often introduced in this literature) generally
precludes the weak exogeneity of zt for θ1. Conversely, if policy is totally unpredictable (or Gi and Fi are unrelated) then
zt can be weakly exogenous for θ1 when Ω12 = 0; alternatively, if Ω12 ≠ 0 and Fi = Gi then is sufficient for the
weak exogeneity of zt for θ1. In such a case, not only are agents ‘perfect’ forecasters, but their behaviour would not be
affected by knowledge of the exact values of zt prior to carrying out their plans (since now coincides with the
regression coefficients of yt on zt). Thus, even if zt did not suit them, agents would act as if they saw no possibilities of
‘renegotiating’ with the control authority. Finally, if Ω12 ≠ 0, poor forecasting of zt results in a loss of weak exogeneity
since knowledge of zt leads agents to revise their plans.

Clearly, care is required in formulating models involving expectations and joint analysis of yt and zt is usually necessary.
Since most dynamic economic theories based on intertemporal optimization yield decision rules in which expectations
about future events play a major role, this is likely to remain a very active research area; see for example Nickell (1981)
and Muellbauer (1979).

Also, the choice of n* is important since the formulae in (17.30)–(17.35) are invalid for n* < n; marginalizing with
respect to relevant lagged variables raises difficult issues of dynamic specification some of which are considered in
chapter 4.

2.4 Equilibrium Economic Theories
In essence, section 2.3 dealt with behavioural rules for out-of-equilibrium states and the question arises what role static
or long-run theories such as (17.1) or (17.2) might play in data analysis based on such rules. Two criticisms need to be
rebutted, and doing so provides a convenient way of introducing more positive aspects: (i) that the ‘long run’ is
irrelevant; and the obverse, (ii) that economic data are so informative about long-run trends that this is the one aspect
for which theory is not required. The former is not necessarily true even if economies are never in equilibrium. If agents
took appropriate account of past disequilibria in formulating their plans, then the system invariably would be tending
towards some equilibrium and it becomes an empirical matter how important ‘long-run’ factors are. Note that
equilibrium is a hypothetical state in this analysis, and derives its meaning from the context in which it is used as with
(17.1). Indeed, if (17.1) is defined to be an equilibrium relationship
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then its main role in an analysis of non-equilibrium data is to characterize conjointly the solution which the estimated
model should reproduce in an equilibrium environment and an associated measure of disequilibrium. For example,
consider the special case of (17.22) given by (for the monetary data)

(17.36)

For β3 ≠ 0, in a static equilibrium defined by Δ1m = Δ1p = Δ1i = 0, (17.36) solves to

(17.37)

whereH1 = exp(−β0/β3). Thus (17.37) reproduces (17.1); and correspondingly, (m − p − i)t − 1 is the associated measure
of disequilibrium (apart from the constant β0/β3). Consequently, in addition to suggesting a list of potential regressors,
static equilibrium theories often restrict the class of models implementing (17.22), which can be important for efficiency
of estimation, although this begs the answer to (ii)! However, as suggested in section 1, static theories need not
perform well when simply fitted to data’ not allowing for lag reactions, as in (17.4).

Point (ii) above seems to be a data-based inference which may derive from noting both that the levels of many
economic time series are growing over time and that these are highly intercorrelated so that their ‘typical spectral
shapes’ show spectral power mainly concentrated at low frequencies (Granger, 1966). While this finding may be
suggestive of trend-like or ‘long-run’ information, it entails nothing about the relevance of equilibrium theory to the
data analysis of relationships since it pertains to univariate information only (e.g. near random walks with drift have
‘typical spectral shapes’ yet are uninformative about long-run trends). Moreover, it is well known that variables with
typical spectral shapes will be highly intercorrelated in small samples independently of any ‘true’ relationships existing; this
‘spurious regressions’ problem follows from the analysis of Yule (1926) and is discussed by for example Granger and
Newbold (1974), thus cutting the ground from under the other comment ostensibly supporting (ii). Again it appears
that equilibrium theories might be useful, and in practice this seems to be the case; see for example chapter 8. Of
course, well-articulated dynamic adjustment theories could be even more helpful but there is a distinct lack of these as
yet; see for example the comments of Nerlove (1972) and Sims (1974a) and compare Sargent (1981).

In passing, note that economists are aware of the fallacy of inferring ‘causes’ from correlations even if some may do so
inadvertently on occasion; rather, the former are treated as a property of theoretical models (usually under the phrasing ‘y
is a function of, or depends on, z’ as with, say, (17.2) above), whereas the latter are necessarily all that can be observed.
Thus, they deduce from theory what connections should be observable in practice, claiming to test their deductions
from the presence or absence of various (partial) correlations; for a recent discussion of causality in economics, see
Zellner (1979b). ‘Best practice’ applications of Granger causality tests use the approach just described, although there
remains the difficulty that no assumptions are made about the parameters in, say, (17.13) (see chapter 15).

406 FORMALIZATION



3 Estimation
Methods of estimating values of unknown parameters in otherwise known model specifications have constituted a
major research area of econometrics. We include under this heading the derivations of estimators and their properties
such as limiting, approximate and exact (finite sample) distributions, as well as issues of numerical accuracy, non-linear
optimization and efficient Monte Carlo simulation. Even a brief survey and bibliography would exceed the present
chapter, but some useful recent references for each topic respectively are Maddala (1977), Hausman (1975), Sargan
(1976), Phillips (1980), Dent (1980), Berndt et al. (1974), Hendry and Srba (1977). Also, the close link between
econometric estimation and the Kalman filter is well exposited by Harvey (1981b); note that the model in
(17.22)–(17.28) above can be rewritten in state-space form for the latent variables .

The proliferation of estimators in econometrics appears to have bemused many statisticians; see, for example, the
discussion following Anderson (1976). However, for the class of models describing (17.6) and (17.7) a concept is
available which helps clarify the interrelationships between almost all the known methods, namely the notion of an
estimator generating equation, referred to in chapter 13. Moreover, although appropriate notation must be established first,
the formula for the estimator generating equation is remarkably simple and is closely related to the well-known score, i.
e. the vector of first derivatives of the likelihood function. Here we present the estimator generating equation for the
coefficients of the structural submodel (17.23) when zt is weakly exogenous for the coefficients .

Noting that (17.6) and (17.7) remain the data process, re-express (17.21) as

say, where Π = (D0P1 . . . Pn) and ξ′t = (z′tx′t−1 . . . x′t−n). Now if we let B = B0 and C = (C0A1 . . . An), the constraints in
(17.24) can be written as

(17.38)

for all λ1 ∈ Λ1. We consider the case where A = (B:C) is subject to only zero and normalization restrictions so that the
parameters of interest ψ are the unconstrained elements of B and C and conversely A is linear in ψ. Let

. If we assume known initial conditions for simplicity, then since yt|ξt ∼ N(Πξt, Σ) the log-likelihood
function (up to an additive constant) is given by

(17.39)

Current econometric terminology distinguishes between full information maximum likelihood (FIML) estimators and
limited information maximum likelihood (LIML) estimators. The former estimators are the maximum likelihood
estimators of a ‘complete’ system of equations (B square non-singular almost everywhere) whereby prior restrictions
are fully exploited. Limited information maximum likelihood estimators are the maximum likelihood estimators of an
‘incomplete’ system of equations (B rectangular with full row rank). The latter also applies to complete
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systems when, e.g. for numerical tractability, over-identifying prior restrictions on some of the equations under
consideration are neglected. The following formulae are applicable to either case with appropriate interpretations of the
symbols. Maximizing (17.39) with respect to (Π, Σ) when Σ is unrestricted (other than symmetric positive definite) but
Π is subject to (17.38), we obtain (Richard, 1979)

(17.40)where the tilde denotes a restricted maximum likelihood estimator,

Naturally, is such that + = 0 from the left-hand equation (17.40) and so from the right-hand equation (17.40)

(17.41)say. Note that

(17.42)The concentrated log-likelihood function L*(·) is given by

(17.43)The score is

(17.44)where and , the information matrix, is

(17.45)

When Q(ψ) = ∂ q(·)/∂ ψ′, since (17.23) is a valid representation by assumption, also. Further, because A is
linear in ψ, ∂ A/∂ ψj = Rj = (R1j: R2j) is a matrix of known constants and hence the jth element of q(·) obtained from
differentiating (17.43) with respect to ψj is

(17.46)or

(17.47)

Equation (17.46) could be used, as it stands, for computation of maximum likelihood estimates of ψ and hence of Ã
= ( , ), and . However, an asymptotically equivalent but much simpler form can be obtained by using (17.42) and

(17.48)
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so that (17.47) is reformulated as

(17.49)

where F′ = (Π′ : I).

This is an intuitively reasonable, and relatively simple, expression for computing . Since is the ‘systematic
component’ of X, and AX′ is orthogonal to this component with plim T−1ÃX′ Ξ = 0. Also, plim T−1ÃX′ Ξ ′ = 0 and
R′j serves to select the unrestricted coefficients. Consequently, it is natural to estimate ψj by setting to zero the finite
sample equivalent weighted by the inverse covariance matrix Ṽ−1. However, from (17.41), Ṽ depends on Ã so that
(17.49) is non-linear in and maximum likelihood estimation necessitates solution of (17.49) by an iterative rule such
as

(17.50)

where ψ(1) is a vector of initial values, K is the number of iterations (which could be predetermined or depend on a
convergence criterion), gk is a vector of search directions, Gk a modifying matrix to define the metric and λk a scalar step
length. The log-likelihood function L*(·) can be used as the objective function to ensure that each step increases the
likelihood until an optimum is located; standard choices for gk and Gk are q(ψ(k)) and Q(ψ(k))−1 respectively, or sometimes

for Gk: other choices are discussed in chapter 13 and in various papers in Dent (1980). On convergence, the
maximum likelihood estimator of ψ is obtained, whatever numerical optimization algorithm is adopted, at least to the
accuracy of the termination criterion.

This concept of alternative optimization rules for implementing maximum likelihood must be distinguished from
alternative approximations to solving

(17.51)where

(17.52)with

(17.53)

Given V and F, equation (17.51) is linear in A and so is easily solved; moreover, given A, it is trivial to recompute Π
andV. Thus, one can construe (17.51) as a method for generating estimators ofA, conditional on estimators ofV and F.
Moreover, because plim T−1ĀX′ Ξ = 0 for all consistent estimators Ā ofA, is the same for all estimators of ψ based
on consistent estimators of V and F, i.e. irrespective of their efficiency. Consequently, we refer to (17.51) as the
estimator generating equation with the following properties.

1 Every solution is an approximation to the maximum likelihood estimator obtained by variations in the ‘initial
values’ selected for V and F and in the number of steps taken through the cycle (17.51)–(17.53), including not
iterating.
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2 All known econometric estimators for linear dynamic systems can be obtained in this way, which provides a
systematic approach to estimation theory in an area where a very large number of methods has been proposed.

3 Equation (17.51) classifies methods immediately into distinct groups of varying asymptotic efficiency as
follows:

(a) as efficient asymptotically as the maximum likelihood Ã if (V, F) are estimated consistently;
(b) consistent for A if any convergent estimator is used for (V, F);
(c) asymptotically as efficient as can be obtained for a single equation out of a system if V = I but F is

consistently estimated.

Other efficiency classes also exist but are of less interest. A comprehensive analysis of conventional econometric
estimators is presented in chapter 13, and Lubrano (1979) considers ‘incomplete’ models (where B is non-square).

Given the structure of (17.51) it is unsurprising that there exist very large numbers of known distinct members of (a),
(b) and (c), and other classes of even less interest, and the estimator generating equation highlights further methods
which can be obtained with ease as well as clarifying into which asymptotic efficiency class they fall. Within efficiency
classes, choices can be made on the criteria of computational ease, robustness in finite samples, the entailed value of

and so on. Moreover, the estimator generating equation approach applies to other situations in which the
asymptotic distributions of estimators of parameters of interest (above, B, C) depend on ‘auxiliary parameters’ (above,
Π, V) only through the latter's probability limits (even though, for example, Π, V are functions of B, C). Important
examples are some errors-in-variables models, systems with vector autoregressive errors (i.e. valid common factors)
and models with rational expectations; also Espasa (1977) applies the estimator generating equation concept to a wide
range of spectral and related methods. Overall, (17.51) summarizes a vast literature, and offers the flexibility of
generating new methods with known asymptotic properties as the need arises.

Nevertheless, the specification of econometric models is far less certain than the only unknowns being simply the
values of some well-defined parameters. Thus, other considerations than ‘optimal estimation’ are important and, in
practice, diagnostic testing and selection methods play a major role in modelling; see section 4 and 5. Indeed, ‘mis-
specification’ of the model for the data generating process is certainly endemic in empirical research, although this is a
somewhat unhelpful comment in our framework where a model is always viewed as a reparameterization of the data
process. In an important range of cases, with δ = g(ψ), say, then a maximum likelihood estimator of δ maximizing

(or an estimator generating equation approximation thereto) will have

because of the incorrectly formulated likelihood function , with a limiting variance matrix around δ given by
, where q* = ∂ L*(·)/∂ δ, and not by . In certain important cases, Φ
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can be estimated consistently despite the model mis-specification; see, inter alia, White (1980a) and Hansen (1982).
These results, related to earlier developments by Cox (1961), seem reasonably general and should provide a valuable
approach to robust inference about δ when model specification is uncertain. White (1980c) uses the difference between

and for a diagnostic test of functional form mis-specification; although not explicit in our notation, etc.
generally vary with T as discussed by Domowitz and White (1982).

Finally, the availability of many choices of asymptotically equivalent estimators combined with relatively small sample
sizes puts a premium on results concerning the analytical derivations of exact and approximate finite sample
distributions; Phillips (1980) provides an excellent review and bibliography. Although empirical researchers cannot yet
compute exact distributions for even widely used estimators in typical economic data generation processes, useful
approximate results have been established and could be calculated; see for example Sargan (1976).

4 Testing
As with estimation, the score q(θ) plays a central role in hypothesis and diagnostic testing, and has been used in a
similar way to the estimator generating function to bring cohesion to a voluminous, diverse and often ad hoc literature;
see, for example, Breusch and Pagan (1980). Establishing terminology first, econometricians distinguish the three
standard testing principles (see for example Cox and Hinkley, 1974; Berndt and Savin, 1977):

1 Wald tests, denoted by W (Wald, 1943);
2 maximized likelihood ratio tests (see for example Cox and Hinkley, 1974, ch. 9);
3 Lagrange multiplier or efficient score tests (Aitchison and Silvey, 1960; Rao, 1973).

Consider testing the hypothesis that H0: f(θ) = 0, where is given by and, asymptotically,

(17.54)

where

(17.55)

If is easily computed, the Wald form, which applies to the maintained model, is most convenient and, for example,
provides a basis for common factor restriction tests (Sargan, 1980a) even though f(θ) is awkward to derive explicitly in
such a case. Maximized likelihood ratio tests are also very well known, but require estimation of both unrestricted and
constrained models (although this is anyway often required given the outcome of Wald or Lagrange multiplier tests).
However, econometricians have only recently appreciated both that most diagnostic tests can be derived from the
Lagrange multiplier principle and that, suitably constructed, such tests can have the same limiting distributions as Wald
and maximized likelihood ratio equivalents under both null hypotheses and sequences of local alternatives (see for
example
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Breusch and Pagan, 1980). Let denote the restricted estimator of θ subject to f(θ) = 0 obtained from the Lagrangian

(17.56)

using q(θ) + Jμ = 0, where μ is a vector of undetermined multipliers and J = ∂ f(·)/∂ θ′ is of rank N, when f(θ) = 0
imposes N restrictions, and is continuously differentiable at θ. Then on H0

(17.57)

asymptotically, where , and the second expression in (17.57), which follows from (17.56), relates Lagrange
multiplier to efficient score. Engle (1982b) presents a range of useful residual diagnostic tests based on the limiting
distribution of q(·), as well as their relation to the Cα class of Neyman (1959) and the mis-specification tests of
Hausman (1978).

By way of comparison with ηM(·) the Wald and maximized likelihood ratio tests of H0: f(θ) = 0 are given by

(17.58)

All three forms coincide for linear hypotheses in linear models, i.e. when L(θ) is quadratic, as, for example, with the
η1(·) test above in regression equations. Implicit in the left-hand equation (17.58) is the result that asymptotically

(17.59)

Given and and Ĵ can usually be calculated numerically, which provides a convenient means of calculating
standard errors of derived parameter estimates, an overall test being provided by the left-hand equation (17.58). Note
that the η3(·) test reported above is based on the maximized likelihood ratio principle whereas η2(·) is a Lagrange
multiplier test. Domowitz and White (1982) present mis-specification robust generalizations.

In general cases, not much is known as yet about the relative finite sample merits of the three types of test for
economic time series; however, see Evans and Savin (1982). Also for some simulation evidence on common factor and
residual autocorrelation tests, see chapter 7. It is worth noting that deriving (17.57) for a specific alternative may reveal
why other tests of that alternative do not function appropriately; see, for example, Durbin (1970). Note also that many
well-known diagnostic tests are indeed Lagrange multiplier based (e.g. the Durbin–Watson test).

Finally, there is considerable interest in the class of ‘non-nested’ hypothesis tests proposed by Cox (1961, 1962) and
applications are now widespread; see, among many others, Pereira (1977), Pesaran and Deaton (1978) and
Bean (1981), and for a recent summary MacKinnon (1983). However, these tests are most conveniently analysed in
section 5.

5 Model Selection
Again, this has been an area of very active research in recent years covering problems of pre-test biases (Judge and
Bock, 1978), model selection criteria (Sawa, 1978;
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Amemiya, 1980), specification search strategies, in particular the important contribution by Leamer (1978), as well as
posterior odds ratios; see for example Zellner (1971, ch. 10.5). Here, we explore the more obvious notion of checking
whether the fitted model describes all the relevant data features that could be accounted for by knowing the data
generation process; see for example chapter 8 and chapter 11.

If one knew the data generating process, then it would be possible to deduce in advance what results should be obtained
by estimating various ‘false’ models from the same data set. Consequently, one can ask of any estimated equation or
system which claimed to represent the data generation process whether it can account for all other models of the same
process (which by hypothesis are ‘false’) either by nesting them as in chapter 8 or by providing a baseline against which
they can be rejected as in Bean (1981). This is the property referred to as encompassing. It is important to realize that
‘separate’ hypotheses are susceptible to an encompassing investigation, and this notion helps clarify the role in model
selection of ‘non-nested’ tests, a point most easily illustrated as follows (see Cox (1961) and Mizon and Richard (1986)
for a more comprehensive analysis).

Consider two ‘competing’ single-equation hypotheses with claimed strongly exogenous regressors and parameters
estimated by least squares, denoted by a circumflex: with the assertion ε1t ∼ IN(0, σ11),

(17.60)and, with the assertion ε2t ∼ IN(0, σ22),

(17.61)We have also the ‘auxiliary’ data description

(17.62)

where and . If can be derived exactly from and so we ignore this case.

An investigator accepting (17.60) and (17.62) proceeds to note

(17.63)so that if his model is correct

(17.64)

Consequently, he should be able to deduce from (17.60) and (17.62) what is obtained on estimating (17.61). This yields
as testable hypotheses

(17.65)

The former is most easily tested using the Wald principle, estimating γ from (17.61) and Π, β from (17.62) and (17.60)
and computing

(17.66)
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When Ha holds, W ∼ χ2(k2) in large samples.

However, a simple transformation of W yields the ‘classical’ F test of δ = 0 in the ‘nesting model’

(17.67)

since γ = Π′ β if and only if δ = 0 in (17.67). Thus, the encompassing and embedding approaches yield the same
answer when exact test sizes are used. Moreover, γ = Π′ β implies σ22 = σ11 + β′ Ωβ and so Hb does not need separate
testing. However, the converse is false, since the scalar equality cannot necessarily ensure the k2-vector equality (unless
k2 = 1). The ‘non-nested’ tests prevalent in econometrics all seem to be testing the scalar hypothesis Hb (hence their
one degree of freedom, yet the same non-centrality parameter as the F test when Hb is false) which could be called
variance encompassing. Failure to reject Hb only weakly supports encompassing, since Ha could remain false, although
rejection of Hb certainly entails rejection of Ha.

Like all inferential information, encompassing ‘non-nested’ test results should be interpreted carefully. This comment
applies especially for equations which already satisfy all the criteria discussed earlier in this chapter. Summarizing these,
we suggest selecting models which are

1 data coherent (fit deviates from data by an innovation), with
2 weakly exogenous regressors (valid conditioning on contemporaneous variables), and
3 constant parameters (especially over periods in which data correlations alter) having
4 data-admissible functional forms and
5 theory-consistent formulations, which
6 encompass a wide range of contending models.

Models with these properties appear to offer a useful approximation to the unknown data generation process
enhanced if individual parameters are of direct interest, i.e. interpretable given the relevant theory, preferably are
parsimoniously chosen and correspond to nearly orthogonal decision variables. Equation (17.4) fails on at least (1), (3)
and (6).

6 Conclusion
The general properties of economic time series arising from the transacting behaviour of separate yet interdependent
agents are discussed for a stationary world. The stochastic mechanism generating the observed data ,
appropriately transformed so that linearity is reasonable, is formulated as the sequential process

(17.68)

where

(17.69)
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A statistical submodel characterizing aspects of this process is construed as resulting from

1 marginalizing with respect to a very large number of variables wt and their lags Wt − 1 believed to be irrelevant
when xt = (w′t, y′t, z′t)′, and

2 conditioning on a subset of variables zt.

The associated concepts are those of reparameterization, Granger non-causality (absence of feedback) and weak
exogeneity of zt for the parameters of interest, denoted by ψ, if ψ = f(λ1) can be estimated fully efficiently from the
conditional submodel D(yt| zt, Yt − 1, Zt − 1, λ1).

In a stationary world, even if (1) and (2) were invalidly implemented, the parameters of the resulting submodel would
be constant. Since parameter constancy is not characteristic of empirical econometric models, the chapter considers
worlds of parameter change where only some of the parameters are structural invariants of agents' behaviour, and a
primary objective of econometric modelling is to isolate such invariants. To achieve this aim, economists formulate
theoretical models of agents' behaviour in terms of their making contingent plans for yt, denoted by , dependent on
expected outcomes for and adapting to past realizations (Xt − 1):

(17.70)

A model of the expectational formation process is required unless is observed or zt is weakly exogenous for the
{Ai}. The assumed correspondence between the economic model variables and their counterparts in the
statistical process (17.68) and (17.69) is important and various assumptions above expectations formation are noted.

In the original publication a range of distinct special cases of single-equation dynamic models is exposited, together
with an outline of their respective properties and their relationships to equilibrium economic theories. This highlights
the joint links of dynamic to stochastic specification, and of economic theories to empirical models. For correctly
specified models, parameter estimation is considered by noting that the score q(ψ) (the vector of first derivatives of log
D(· | ·, λ1) with respect to ψ) provides an estimator generating equation the myriad solutions of which include most
known econometric estimators for the class of model in (17.68) and (17.69). A similar concept summarizes diagnostic
testing theory. The methodology of model selection is only briefly considered although the concept of encompassing
tests helps relate ‘classical’ and ‘non-nested’ procedures and provides a strong check on model specification.

Throughout, many of the concepts and the problems inherent in econometric modelling are illustrated by empirical
results on the demand for money for transactions purposes in the United Kingdom, reported in chapter 11.
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Part IV Retrospect and Prospect

The final part includes two chapters: a retrospective on the sequence of models for aggregate consumers' expenditure,
and a postscript which seeks to report on developments between the time of the latest included paper and the
completion of the preambles.

The theme of the methodology is one of progressive discovery of empirically and theoretically substantiated
information about how economies function. The methodology itself has also progressed and gradually has been able
both to explain more of what we observe to occur in empirical econometrics and to predict the general consequences
of certain research strategies. It has been, and must remain, only a facilitatory tool, neither necessary nor sufficient for
discovering valid structures. Nevertheless, any approach which enhances research productivity must be a valuable
adjunct to progress by more rapidly disposing of false avenues. Conversely, to be useful, an approach must be fully
understood and itself subject to critical appraisal.

The aim of part IV is to exposit the main ideas and methodology from two perspectives:

1 in terms of empirical research to relate the concepts to practical procedures;
2 in terms of an overview of the theoretical concepts and their interrelationships.

Chapter 18 was written for the 1983 meeting of the Scottish Economic Society as a response to difficulties which
colleagues and students had experienced in understanding chapters 15–17. As usual, the attempt to explain the
approach forced me to think more clearly; as usual, the result was far from being the final word on either consumers'
expenditure or econometric methodology.

The concluding chapter is heavily based on chapter 1 of Hendry (1989). It was written almost five years later than any
other chapter, and embodies the benefits of my having programmed the approach as well as having applied it to other
problems (UK housing markets, US money demand and French consumers' expenditure inter alia).

The struggle to escape from previous modes of thinking and fully explore the



reduction approach has had its costs. Most of the expositions I have written during the 1980s (including chapter 19)
only focus on the statistical and empirical aspects of modelling, and by benign neglect appear to downplay the role of
economic theory in the econometric enterprise. This emphasis was partly due to a desire to argue that reduction
interpretations were fruitful whatever the pre-existing state of economic theory, and hence were not merely an adjunct
of a specific economic analysis (e.g. Keynesian). But it was also partly because the then dominant paradigms of
economic theory used to sustain empirical models (e.g. rational expectations and omniscient economic agents) did not
seem to offer a useful starting point for discovering new knowledge. At the time that chapter 18 was written I was
working on the last step of the cycle, namely how empirical evidence which was summarized in congruent models
could be consolidated in theories of agent behaviour, but without much success (for example, Hendry and Spanos
(1980) remains incomplete). Nevertheless, the divergence from the mode of ‘theory claim, model assertion, hypothesis
test, accept/reject’ which led to the attempt to embody a progressive research strategy in a theory of reduction, began
from and continues with the desire for a more empirically substantiated body of economic theory than is currently
extant (see chapter 3 for example). Exciting developments await the creator of the tools for building theoretical
summaries of empirical evidence which encapsulate the autonomous aspects of economic behaviour in terms of
interpretable structures.
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18 Econometric Modelling: The ‘Consumption
Function’ In Retrospect19

Preamble
The penultimate reprint is my alternative attempt at expositing the methodology using the well-known empirical
illustration of the consumption function. The three primary objectives were to explain the overall framework briefly, to
relate each theoretical concept in the information taxonomy to the relevant empirical counterpart and to evaluate the
earlier research on the consumption function in chapters 8–10 by testing the model forms on UK data for the interwar
period. Three secondary aims were to exposit the formalization in part III, which post-dated DHSY, to reinterpret
some of their intuitive notions, and to show how the formalization could clarify problems experienced with the
‘conventional’ approach.

The paper commences almost exactly where chapter 10 ended, but its author (at least) believed he now had a far
clearer picture of the structure of modelling. The discovery/evaluation dichotomy and the necessity but insufficiency
of evaluation criteria to determine validity are stressed. Nevertheless, because modelling is essentially an exercise in
design to achieve certain predetermined selection criteria, rigorous evaluation will eliminate poor designs. The tension
between the valid, but destructive, use of econometrics as a device for critical evaluation, and its invalid, but
constructive, use in model discovery has permeated this volume. Its resolution in the present chapter revolves around
the idea in Popper (1963) that the validity of a theory (or model) is independent of how it is discovered: the apocryphal
tale of Archimedes' discovery of the principle of buoyancy by spilling water from his bath is the best-known illustration
of that theme, but other examples abound in the history of science (see

19 Reprinted from Scottish Journal of Political Economy, 30, 3 (November 1983) 193–220. Eighteenth Annual Lecture of the Scottish Economic Society delivered at the University
of Stirling on 5 February 1983. The Society acknowledges with gratitude the financial support provided by Shell International for the Annual Lecture.This research was
supported in part by grants from the Social Science Research Council to the MIME Programme at the London School of Economics and by HR8789 to Nuffield College. I
am indebted to Frank Srba and Neil Ericsson for the calculations reported below. The paper was prepared at the invitation of the Scottish Economic Society, the concluding
section then being modified to clarify issues arising in discussion. Helpful discussions with Neil Ericsson, Robert Marshall and John Muellbauer are gratefully acknowledged.



for example Mason, 1977, or Losee, 1980). Thus, both discovery and evaluation procedures become issues of research
efficiency: no approach is bound to succeed or is certain to fail, but some ways are much faster on average than others in
developing models which will pass evaluation tests. Models which regularly fail evaluation tests are certainly invalid in
some aspect.

Thus, section 1 sketches the theory of reduction as an explanation for the derivation of empirical models and
consequently for their susceptibility to design. That view leads naturally to an analysis of design criteria, and both
conventional criteria and the information taxonomy of chapters 16 and 17 are considered. Genuine testing can therefore
only occur after the design process is complete and new evidence has accrued against which to test. Because new data
had been collected since chapter 8 was published, the validity of the model could be investigated on the basis of
Neyman–Pearson (1933) ‘quality control’ tests. Thus, in sections 3–8, the six information sets are taken in turn; for
each I discuss the associated criteria, relate them to well-known test statistics (for which each criterion constitutes the
null) and apply the resulting tests to DHSY on an extended sample. Both quarterly and annual data frequencies are
used and the interwar and postwar UK data are compared, stressing the progressive research strategy that follows
from an encompassing approach to econometrics. The conjecture about using nominal values is discussed in Harnett
(1984). Finally, the discussion of encompassing only applies to parsimonious encompassing, as noted in the preamble
to chapter 16.

I had moved from LSE to Oxford shortly before writing chapter 18 (which was the last empirical study I carried out
on a mainframe computer) and Neil Ericsson was helping with the burden of computer programming and computing,
thus starting another long and fruitful collaboration. John Muellbauer had become a colleague at Nuffield and it fell to
him to detect — and persuade me to remove — the more egregious errors from such attempted expositions! Finally,
my study in the history of econometric thought with Mary Morgan was throwing increasing light on methodology
from an embryological viewpoint (see Morgan, 1990; Hendry and Morgan, 1991). The poem by Denis H. Robertson
from 1952 encapsulates many of the concerns that have remained pertinent for postwar econometrics despite the
Haavelmo revolution (see Morgan, 1987).

The Non-Econometrician's Lament
As soon as I could safely toddle
My parents handed me a model.
My brisk and energetic pater
Provided the accelerator.
My mother, with her kindly gumption,
The function guiding my consumption;
And every week I had from her
A lovely new parameter,
With lots of little leads and lags
In pretty parabolic bags.
With optimistic expectations
I started on my explorations,
And swore to move without a swerve
Along my sinusoidal curve.
Alas! I knew how it would end:
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I've mixed the cycle and the trend,
And fear that, growing daily skinnier,
I have at length become non-linear.
I wander glumly round the house
As though I were exogenous,
And hardly capable of feeling
The difference 'tween floor and ceiling.
I scarcely now, a pallid ghost,
Can tell ex ante from ex post:
My thoughts are sadly inelastic,
My acts incurably stochastic.
D. H. Robertson
3 September 1952
(italics added)
(from The Business Cycle in the Post-War World, ed. E. Lundberg, Macmillan, 1955)

1 Introduction
The main aim of this chapter is to exposit a number of concepts relevant to econometric modelling of economic time-
series data by reappraising the model developed in chapter 8 (denoted DHSY below). On the one hand, this should
help to clarify their investigation, which was conducted on a rather intuitive basis as a ‘detective story’, without formal
analyses of several important notions and model types. Such analyses have appeared only recently. On the other hand,
the relatively widespread use of the DHSY model (see the comprehensive study by Davis, 1984) suggests using it to
illustrate the ensuing developments in econometric ‘method’ and so to generate a greater understanding of both the
terminology and the conceptual basis of many recent modelling ideas. As the preceding poem reveals, however, the
language itself is not recent; plus ça change. . . . The technical basis for the present discussion is presented in chapters 16
and 17.

A distinction of importance in what follows is between evaluating and obtaining empirical econometric relationships.
These two aspects are certainly linked in so far as evaluation techniques help to exclude some potential models and
may even comprise the main basis of various methods aimed at locating useful data descriptions. Nevertheless, a
satisfactory evaluation outcome cannot be sufficient by itself for establishing a useful empirical equation, and at best is
only necessary.

Precisely how one should or even could obtain useful empirical models is not obvious. As Haavelmo (1944, p. 10)
expressed the matter, ‘It is almost impossible, it seems, to describe exactly how a scientist goes about constructing a
model. It is a creative process, an art . . . ’. Thus, important elements include inspiration in the formulation of both
relevant theory-models and their data analogues, as well as serendipity. Whereas formal evaluation is mechanistic,
obtaining is almost the antithesis. To quote a well-known illustration, rejecting a null hypothesis against an alternative
does not entail the validity of the latter. As stressed by Cross (1984) — citing Duhem — evidence can at most falsify
conjunctions of hypotheses. A complete
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rethink of the problem may be necessary, perhaps leading to the adoption of a wholly different framework which could
require considerable insight on the part of the investigator. A test may be mechanistic and can dispose but revision
cannot be mechanistic if something of permanent value is to be proposed. This is just Popper's (1969) dichotomy
between conjectures and refutations writ small: the only excuse for reiteration is to help avoid possible
misunderstanding below.

Much of the following analysis concerns the role of evaluation in model building. Specifically, the DHSY approach
used a number of selection criteria which a model had to satisfy to be acceptable and so we shall explore the notion of
designing the model to fulfil those criteria. It transpires that most of the data-related criteria are relatively easily satisfied
and so only weakly restrict the model choice. Thus, since they are merely necessary conditions, one cannot recommend
a model solely because it ‘passes’ tests based on data criteria. Nevertheless, many published equations fail to satisfy all
the criteria described later: ‘badly designed’ models have little in their favour if ‘good design’ is not too difficult to
achieve.

Here, a model is viewed as a simplified representation intended to capture the salient features of certain observed
phenomena. Theory models are freely created edifices in which latent constructs are manipulated according to well-
defined rules and consistent assumptions to yield implications hopefully germane to interpreting observed outcomes.
Most such models in OECD-area economies are based on an approach of decentralized optimization subject to
environmental/institutional constraints (generally conditional on stringent ‘ceteris paribus’ clauses). Anticipated
correlations (or the absence thereof) are deduced from the asserted causal structure of the theory and the theory-
model is ‘tested’ by checking the coherency of its implications with the data, usually by fitting a corresponding
empirical model.

Nevertheless, the empirical model is anything but a free creation: its properties are determined by the actual process
which generated the data. Often, the mismatch of fitted model and the anticipated outcome is viewed as a set of
‘problems’ to be solved or removed, leading to such notions as ‘wrong signs’, ‘omitted variables biases’, ‘residual
autocorrelations’ and so on. I prefer to view this issue differently, and enquire instead what operations were conducted
to reduce the data generation process to the model and hence whether the resulting parameters are of any interest for
the desired purpose. Thus, there are ‘wrong interpretations’ (rather than ‘wrong signs’), new parameters induced by
marginalization with respect to relevant variables (instead of ‘omitted variables bias’), sequential conditioning and so
on.

More generally, it is postulated that there exists a stochastic process generating all the variables (denoted by wt) which
are, and/or are believed to be, relevant (allowing for whatever measurement methods are involved). This vast complex
is called the data generation process (abbreviated to DGP). In practice, the DGP may well be unknowable to our
limited intellect, important variables may be unobservable, and/or the stochastic mechanism need not be constant
over time. Nevertheless, I assume that there does exist a ‘meta-parameterization’, denoted by θ, which characterizes
what is relatively constant in the process. Less restrictively, the mechanism is assumed to generate outcomes
sequentially over time. Empirical models result from reparameterizing the process, through eliminating (marginalizing
with respect to) all but a small subset of variables (those remaining being denoted by xt)
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and conditioning one subvector yt (called endogenous) of that remaining subset on another zt (called ‘exogenous’
because it is not determined within the model). Here the basic statistical operations of conditioning and marginalizing
are used in their conventional senses: given any two continuous random variables a and b then their joint probability
distribution D(a, b) can be expressed as

(18.1)

where D(a| b) is the conditional distribution of a given b and D(b) is the marginal distribution of b (see for example
Whittle, 1970).

Thus, the conceptual framework1 is that there exists some joint density denoted D(w1 . . . wT| θ) which by repeated
application of (18.1) corresponding to the notion of sequentially generating data yields the DGP:

(18.2)

However, the model only involves the tiny subset xt of the potential variables wt and so both current and lagged values
of all other variables must be eliminated. Doing this generates the model:

(18.3)

Economic theory hopefully offers guidance on sensible selections of x, and the associated choice of F(·) etc. Note that
λt will be a constant λ if θ is constant over t = 1, . . . , T and all excluded effects are, and remain, orthogonal to included
influences. Finally, letting x′t = (y′tz′t) where zt is deemed ‘exogenous’ then (again using (18.1))

(18.4)

The first factor on the right in (18.4) is the conditional model for {yt} and the second is the marginal model for {zt}.
For simplicity, λ is assumed constant in (18.4) (see section 5 below) and α is the transformation of λ needed to sustain
the factorization. Precisely how α is partitioned into α1 and α2 is very important for the legitimacy of the claim that zt is
exogenous (as discussed in section 4).

As an example, aggregation involves a data transformation from micro observations to a mixture of micro and macro
data (with a corresponding transformation in the parameters) followed by elimination of the micro data, and a resulting
greatly reduced set of variables and parameters. Whether or not the finally derived parameters are of interest will
depend on their relationship to the underlying parameters θ, including such features as constancy, interpretability and
so on. Finally, practicality necessitates restricting the lag length in the conditioning set, usually to a fixed finite value.

If we restrict ourselves to linear approximations (after suitable data transformations such as are briefly discussed in
section 6 below) then the generic result ends up ‘looking like’ that appearing in most econometrics textbooks: e.g.
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(18.5)

where xt now comprises all the regressor variables and β is a parameter vector asserted to be of interest and to be
constant over the sample. By construction from (18.5), however, {εt} is simply {yt − β′xt} and hence the ‘error’ must
contain everything which actually influences {yt} but is not explicitly included in the model. It is this notion of {εt}
being a derived, rather than an autonomous, process which prompts the consideration of trying to design the model
such that β and {εt} satisfy certain pre-specified criteria. For example, one obvious condition is to ensure that the
model adequately describes the data: after all, model aircraft are designed to fly! Other criteria also are important, and
so relevant design considerations are overviewed in the next section, and investigated in greater detail in sections 3–8.

First, however, the joint assertions that β is constant, xt is ‘exogenous’ and (say) εt ∼ IN(0, σ2) (denoting an independent
normally distributed process with a zero mean and a constant variance of σ2) in effect imply that (18.5) is the
conditional DGP since, given data on xt together with a value of β and the process for {εt}, then yt can be generated as
β′xt + εt. In practice, if based only on prior reasoning and without careful data analysis, such assertions tend to come
unstuck when estimation reveals the sorts of ‘problems’ noted earlier. Moreover, camouflaging the disease by
‘removing’ the symptoms seems an unlikely route to success. Conversely, (18.5) could be viewed as simply
decomposing the actually observed yt into a part which at present can be explained using observed data (i.e. β′xt) and a
part which cannot: with the growth of knowledge, their relative shares could alter radically, hopefully that of {εt}
diminishing. This matches the earlier analysis since the operations reducing the DGP (18.2) to the model (18.4) entail
that {εt} comprises (inter alia) all errors of measurement, of marginalizing and of functional form approximation and/
or parameter variations as well as sampling variability. Thus, being a derived process, {εt} must alter as the model does
and hence is a far cry from any presumed ‘autonomous shock’ to the original DGP. It is this view which DHSY adopt
and which I wish to discuss further.

2 Design Criteria
An important feature of viewing modelling as an exercise in design is the choice of the criteria by which the success of
the modelling exercise is to be judged. Even for model aircraft, there is more to it than just being able to fly: other
relevant factors include stability to atmospheric shocks, reliability of the motive force and robustness in the face of its
failure, cost of construction, running cost and so on. Evidently, these criteria can pull the design in conflicting
directions. Analogously, many criteria figure in designing econometric models and conflicts between these criteria can
occur in practice.

The main criteria conventionally reported in econometrics seem to be related to

1 goodness of fit,
2 absence of residual autocorrelation,
3 validity of exogeneity assertions,
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4 accuracy of predictions and parameter constancy,
5 absence of residual heteroscedasticity,
6 signs, magnitudes, precisions and interpretations of estimated coefficients and
7 validity of a priori restrictions on parameters.

In many cases, information relevant to only a small subset of these is recorded, making evaluation especially difficult.
More fundamentally, however, what specific statistics should be reported for each criterion and how should reported
statistics be interpreted?

To analyse the separate but interrelated issues involved, it is convenient to switch to a different taxonomy more closely
connected to that used by DHSY; where an overlap occurs with (1)–(7) it is noted parenthetically. Thus, the concepts
which will be investigated explicitly are recorded in table 18.1 together with the type of information relevant to each
criterion and the associated tests used below.

The discussion now focuses on the actual empirical model chosen by DHSY, in order to exposit these notions and
their relationships. Here, it is important to remember that statistical analysis proceeds using an ‘as if ’ strategy.
Conditional on treating the model as if it were the DGP, various test statistics are derived which have known
distributions when each hypothesis is valid;2 if the test outcome is consistent with its distribution, the model is
temporarily retained — if not it is ‘revised’. Since a reject outcome does not have a unique implication, the revision
process (i.e. obtaining the model) can be painful and slow, often relying on lucky or inspired guesses etc. Sometimes
this procedure is referred to pejoratively as ‘data mining’. However, ‘from the fact that it is of no scientific or logical
significance how a theory is arrived at it follows that no way is illegitimate’ (Magee, 1982, p. 32).

Nevertheless, if a model satisfying all requisite criteria has been selected by data-based revision, it can be tested only on
(genuinely) new data or against new criteria or new rival models. Thus, numerical values of test statistics reported
alongside parameter estimates usually serve to demonstrate the appropriateness (or otherwise) of the design exercise (e.
g. wind-tunnel performance is fine) and not of the

Table 18.1 Design Criteria and Associated Test Statistics

Design criterion Conventional
taxonomy

Type of infor-
mation

Section Associated tests

(i) Data coherency (1); (2); (5) ‘Past’ 3 (; ξ2, η2, η3; ξ4, η4)
(ii) Valid condition-

ing
(3) ‘Present’ 4 (ξ5)

(iii) Parameter con-
stancy

(4) ‘Future’ 5 (ξ1, η1)

(iv) Data admissibil-
ity

‘Measurement’ 6

(v) Theory consis-
tency

(6); (7) ‘A priori’ 7 (−; η3, ξ3)

(vi) Encompassing ‘Rival models’ 8 (η3, ξ6)
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model itself (e.g. the model stalls on takeoff!). Consequently, until a model has been rigorously tested against new
evidence, it seems hazardous to place much weight on its implications, no matter how ‘pleasing’ these seem.

The results actually obtained after much trial and error by DHSY using quarterly (seasonally unadjusted) data for
1958(i)–1975(ii) based on ordinary least squares (OLS) estimation are recorded for convenience:

(18.6)

Here, lower-case letters denote logarithms of corresponding capitals and

Ct consumers' expenditure on non-durables and services in constant 1970 prices
It personal disposable income in 1970 prices
Pt implicit deflator of Ct
Dt dummy variable equal to zero except for +1, −1 in quarters (i) and (ii) of 1968 and 1973 (and later in 1979(ii)

and (iii))
T sample size (after creation of any necessary lags)
R2 squared multiple correlation coefficient

standard deviation of residuals (adjusted for degrees of freedom)
ξ1(n) asymptotically valid test of parameter constancy for n periods ahead distributed as χ2(n) on the null
ξ2(m) where ri denotes the ith-order residual autocorrelation coefficient
(·) conventionally calculated coefficient standard errors
{·} statistic refers to equation over shorter sample period than that for which coefficient estimates are reported

Also, ηi(k, j) denotes an (approximate) F statistic with (k, j) degrees of freedom ostensibly testing the same null as the
associated ξi (e.g. ξ2, η2 both test for residual autocorrelation and ξ4, η4 both test for heteroscedasticity etc.).

In terms of the criteria in (1)–(6), how well designed is (18.6)?

3 Data Coherency
The notion that a model should adequately characterize the empirical evidence seems unexceptionable. Nevertheless, it
is far from obvious precisely how to define ‘data coherent’ and how to evaluate its presence or absence. Two separate
aspects are the closeness of the description and the absence of a systematic lack of fit. The former requires a scalar
criterion for ranking models — many examples are known such as , the Akaike information criterion etc. (see
for example Chow, 1981). The residual standard deviation as a percentage of the level of the behavioural variable being
modelled ( above) is one of the more useful descriptive statistics and
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also corresponds to a notion of variance dominance: for a given variable, model A variance dominates model B if
. This is already widely used in econometrics for the sort of argument presented in Theil (1971, p. 543), that the

‘true model’ variance dominates false models (at least in large samples). An alternative justification for its use when all
the models are approximations is noted below in section 8 and discussed more formally in chapter 16.

Next, residual autocorrelation clearly reveals a systematic lack of fit (where residual denotes the unexplained
remainder) and so a necessary condition for a non-systematic residual is that it be white noise. As defined here, a white
noise process is that which cannot be predicted linearly from its own past alone. The output of a computer pseudo-
random number generator generally has this property. Since models are usually more easily estimated under a null
hypothesis of no residual serial correlation, white noise is tested for by using the Lagrange multiplier approach (see for
example Godfrey, 1978; Breusch and Pagan, 1980; Engle, 1982b; and, for a lucid exposition, Pagan, 1981). The
resulting tests are generalized descendants of the well-known Durbin–Watson statistic, but are valid in dynamic models
and can be constructed for any reasonable order of autocorrelation. Following Harvey (1981a, p. 173) and the
simulation results in Kiviet (1985), these tests seem best expressed as approximate F statistics, denoted by η2(k, T − k
− l) for testing kth-order residual autocorrelation in a model with T observations and l regressors (this effectively
replaces ξ2(·)).

All the tests have been recalculated for DHSY based on the latest available data for 1964(i)–1982(ii) (Economic Trends,
Annual Supplement, 1983 edition, no. 8), with the estimates shown below:

(18.7)

Square brackets indicate standard errors calculated as in White (1980b). Figure 18.1 shows the graph of Δ4ct against .
Although η2(·) is not significant at the 5 per cent level, its value suggests that some residual autocorrelation may persist.

It must be stressed that white noise can have ‘structure’ (e.g. a model can underpredict peaks and overpredict troughs)
and can involve intertemporal connections as in

(18.8)

where the εit are unrelated white noise. Consequently, white noise may be predictable in part (or entirely) from other
information (as from ε2t − 1 in (18.8)): as an example, imagine knowing the formula of a random number generator. On
all this, see for example Granger (1983), and chapter 10. Moreover, most economic variables can be ‘filtered’ to
produce a white noise residual (this is the basis of Box–Jenkins methods — see their (1976) book — and is related to
the use of Δ4 above). Omitting from a model filtered variables which are nearly white noise will not produce residual
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Figure 18.1DHSY, Equation (18.7).

autocorrelation, and yet such components of the white noise error will be predictable from the observed data. Worst of
all, residuals which are apparently white noise may even be predictable using lagged functions of variables already
included in a model! This can occur when residual autocorrelation is incorrectly viewed as being due to error
autocorrelation and then ‘removed’ (as in a Cochrane–Orcutt transformation); the residual may become (nearly) white
noise but, as an invalid common factor has been imposed, remains predictable from lagged variables already in the
model (see for example chapter 6).

From this discussion, it should be clear that white noise residuals can be achieved by appropriately designing the model
(e.g. removing autocorrelation or adding enough lagged variables) and hence constitute a very weak criterion of model
adequacy — albeit one which many behavioural models fail to satisfy. A stronger condition is to require the residual to
be an innovation, unpredictable both from its own past and from the past of other variables in the model. If a general
model is estimated at the outset then its measures the innovation variance, and a test for a restricted model's error
being an innovation is simply that it does not fit significantly worse than the initial equation (i.e. is not variance
dominated by it). Conventionally, an F test is used; and against the alternative of a model explaining ct by five lags of
itself, of it and of pt (plus Δ4Dt), (18.7) yields η3(12, 51) = 1.0. Thus, (18.7) is not variance dominated by the more
general model. Nevertheless, a portmanteau test like η3(·) will have little power against a specific alternative (such as
one invalid restriction), and so again the criterion turns out to be weak. Note that as the
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error variance of the general model is less than or exceeds that of the restricted equation.

Returning to (18.7), the fit remains reasonably close (a residual standard deviation of under 0.9 per cent of
expenditure), but is almost 50 per cent worse than (18.6); this could reflect invalid marginalization, less accurate data
series or a ‘noiser’ world. Given the casual empiricism of the 1970s the last merits a brief investigation in terms of
testing for residual heteroscedasticity. As shown by ξ1(·) and η1(·) in section 5 below, potential heteroscedasticity does
not take the form of an increased residual variance pre- and post-1977(ii), nor from (18.6) did a shift occur between
pre-1971 and the period 1971(i)–1975(iv): such evidence does not support the conjecture of a noisier world. Of the
remaining possibilities, we tested for heteroscedasticity of an autoregressive conditional variety (ARCH — see Engle,
1982a), with ξ4(1) = 0.5, and for functional form mis-specification (see White, 1980b), with η4(17, 46) = 0.4. Neither
statistic indicates any problems, but their powers may not be large (see for example Engle et al. (1985) for the former).
In any case, the standard errors reported in (18.7) are heteroscedasticity consistent (see White 1980b; Domowitz and
White, 1982). Finally, a simple indicator of residual outliers is to calculate their skewness (SK) and excess kurtosis (EK)
after scaling to zero mean, unit variance: this yields SK = 0.3 and EK = 0.2, revealing a distribution whose first four
moments are very similar to those of the standard normal. The data accuracy conjecture is briefly discussed in section
6.

On the basis of this evidence, the model seems to be reasonably data coherent. However, this is on the new
observations and using new tests whereas the model was designed to satisfy only the earlier data-coherency tests on the
previous data. While tests may be weak within the estimation sample, this stricture can hardly apply to outcomes
obtained on new data.

4 Valid Conditioning
The legitimacy of treating current dated variables as ‘givens’ has generated substantial debate in econometrics as seen
by the many references in chapter 15. Statistically, the precise conditions for treating zt as weakly exogenous in the
conditional model for yt in (18.4) are that the parameters of interest can be obtained from α1 alone and that no
information about α1 is lost by ignoring α2. If so, then the model for zt does not require estimation and a fully efficient
analysis can be conducted just from the conditional model, and so the modelling exercise is both cheaper and more
robust. Thus, the partition of α into α1 and α2 requires that the two subsets of parameters are ‘unconnected’; it is not
sufficient simply to choose not to model zt.

Economically, if the behavioural model for yt is a contingent plan with agents reacting to the actual values of zt, rather
than say the expected values, then zt can often be treated as weakly exogenous (see chapter 17). Note that this allows
for the possibility of feedback for y onto z (e.g. xt − 1 includes yt − 1 and occurs in the marginal model in (18.4)). However,
zt is strongly exogenous if it is weakly exogenous and no such feedback occurs. While this last concept may be closer to
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the textbook notion of ‘exogeneity’, it is often unrealistically strong and unnecessary for most inference purposes.

Even for quarterly observations, the assertion that agents form a contingent plan is strong, as it excludes both within-
quarter feedbacks (e.g. from expenditure onto income) as well as expectations-based plans. Time aggregation is
necessarily present and the substantive issue is how good any weak exogeneity approximation is. This is difficult to test
directly, although an indirect evaluation is possible as part of investigating parameter constancy (see the next section).
Empirically, some evidence may be gleaned by comparing (18.7) with an annual-data equivalent for consumers' non-
durable expenditure (denoted by etc.) for 1952–80 which yields the following estimates (a circumflex denotes OLS
and a tilde two-stage least squares):

(18.9)

(18.10)

The data are shown in figure 18.3: note that the largest change in successive values of is about . The instrumental
variables used in (18.10) were where L denotes real liquid assets. Also ξ5(n) is Sargan's (1964a)
test of the independence of the instruments from the error, distributed as χ2(n) in large samples for n valid over-
identifying instruments. Thus, even at the annual level, there is little direct evidence of simultaneity although quarterly
feedback of ct − 1 onto yt has been established (see chapter 10).

Overall, despite the time aggregation to years, the results in (18.9) and (18.10) are very similar to those in (18.7), and
seem equally data coherent (there is some evidence in (18.9) of an ARCH effect, however). The main difference is the
apparent improved goodness of fit of (18.9) over (18.7), as is substantially lower in the former and indeed is smaller
than in (18.6). However, calendar-year changes are smoothed relative to four-quarter changes, and it must be
remembered that in (18.9) is a percentage of annual expenditure, whereas in (18.6) and (18.7) it is a percentage of
quarterly expenditure. There may also be a problem of relative data accuracy: for example if there exists a within-year
(seasonal allocation) error so that εt = ut + st where , then st vanishes in a between-year analysis. This
measurement accuracy issue is further considered in section 6. Note that EK indicates a distribution more
concentrated than the normal for the residuals in (18.9) and (18.10) (rather than having fatter tails).
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Figure 18.2 Equation (18.13), .

5 Parameter Constancy
Having covered the use of past and contemporaneous information, we turn to the ‘relative future’ (i.e. t + j for j > 0,
relative to t). Re-express (18.5) in matrix notation incorporating all the observations as

(18.11)

Partition the data into two subsamples (y1X1) and (y2X2) where it is found that

(18.12)

yet (the expressions in (18.12) are intended to convey ‘substantial’ differences between the subperiod data
correlations). Excluding chance offsetting influences, that conjunction of evidence seems to require that y is and
remains Xβ plus an orthogonal disturbance. Note that alone is not sufficient since the subperiod data moments
may be very similar.

Comparison of (18.6) with (18.7) revealed remarkable constancy in the coefficients
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other than Δ1Δ4pt and for (18.7) the last 20 quarters yield ξ1(20) = 29 and η1(20, 43) = 1.4 (the Chow (1960) test),
consistent with numerical and statistical parameter constancy, although is slightly larger over the later period. Table
18.2 reports the intercorrelations of the four main regressors and the regressand within successive fourths of the
sample period (roughly 17 observations apiece) and over the entire sample as well as the partial correlations over the
entire sample between the regressors and Δ4ct. Most combinations of change and constancy are apparent, with two of
the correlations having a range of unity or more (e.g. −0.57 to +0.43 for Δ4ct with Δ4pt). Also, two of the partials have
opposite signs to the full-sample simple correlations and are much larger in absolute value, consistent with a
behavioural basis for the model and re-emphasizing the dangers in an inherently multivariate subject of drawing
conclusions from simple correlations (a point stressed by Koopmans, 1937, p. 128). Finally, the parameter constancy is
consistent with the assertion that it is weakly exogenous in DHSY, with the caveat that the correlation of Δ4ct with Δ4it is
relatively constant itself.

Despite its drawbacks as a statistical test (see Kiviet, 1986a), ξ1(·) remains a helpful indicator of numerical parameter
constancy and hence of the likely usefulness of the equation for ex ante forecasting. A large value of ξ1(·) when η1(·) is
not significant means that forecasts would have been inaccurate although the underlying parameters had not altered.

An interesting test of the constancy of the DHSY model is to fit it unaltered to interwar data and (18.13) reports OLS
estimates for 1920–38 (annual observations from Feinstein, 1972, in 1938 prices):

(18.13)

Table 18.2DHSY Correlation Structure

1 Δ4ct 2 Δ4it 3 Δ1Δ4it 4 (c − i)t−4 1 2 3 4
I II

2 Δ4it 0.63 0.83
3 Δ1Δ4it 0.12 0.57 −0.04 0.30
4 (c − i)t−4 0.27 0.26 0.14 −0.46 −0.16 0.30
5 Δ4pt −0.45 −0.47 −0.28 −0.25 0.43 0.08 −0.26 −0.48

III IV
2 0.72 0.86
3 0.10 0.45 0.17 0.38
4 0.33 0.33 0.13 0.58 0.63 0.22
5 −0.57 −0.31 −0.06 −0.21 −0.42 −0.34 −0.35 −0.46

Overall Partials
2 0.84 0.88
3 0.11 0.38 −0.39
4 0.30 0.31 0.18 −0.61
5 −0.53 −0.36 −0.14 −0.61 −0.48
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Figure 18.2 shows the graph of the actual and fitted time series. Given one's prior beliefs as to relative data accuracy, it
is remarkable that the goodness of fit values of (18.9) and (18.13) are almost identical (yet the model was designed on
postwar quarterly data). All of the within-period test statistics are satisfactory (except SK and EK both of which reflect
one outlier of in 1932), but are rather weak

Figure 18.3 Comparative Interwar and Postwar Time Series.
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evidence as the sample is only 17 observations (η3 tests against on ). The pre-war/
postwar parameters are recognizably similar, although the inflation effect is smaller pre-war and barely significant (see
section 6). To interpret the overall outcome, consider the actual data series, which are shown in figure 18.3.

The downward trend in the average propensity to consume, the steady upward trend in inflation and the relative
variance of (until 1974) are remarkably similar. Against this, the liquid asset-to-income ratio is completely
different, as is the level of inflation. The derived steady-state solutions from (18.9) and (18.13) respectively are

(18.14)

(18.15)

where ξ3(n) is distributed as χ2(n) on the null that the derived parameters are jointly zero, and g and are the annual
rates of growth of real income and of prices. At , the pre-war ratio is lower than the postwar (0.88 versus 0.92 at g
= 2 per cent) consistent with the observable evidence, but without offering any explanation as to why. One possibility
is the value of the liquid asset-to-income ratio; another is noted in section 7. The concurrence of the falling Ca/Ia ratio
and large-scale unemployment in parts of both periods also prompts many conjectures. The most obvious of these is
the underconsumption hypothesis (see Keynes, 1936, ch. 23) although there is no evidence that shifts in the
consumption function itself induced the depression. Downward price flexibility also seems possible in the British
economy! While the coefficient of in (18.14) is twice that in (18.15), the latter is badly determined and so it is unclear
as yet whether there is any significant difference between the two periods in the postulated model.

Once the dynamics have been fully modelled, the power of parameter constancy tests to detect ‘shifts’ may actually be
rather low. This occurs because, when a weight near unity is given to the previous value of the regressand, any
permanent change in the level of a series is adjusted to in the next period so that only at the occurrence of the shift is a
large discrepancy between anticipated and actual fit observed. Averaged over several periods of non-shift, the initial
change may be undetectable. This suggests carefully examining the recursive residuals (see for example Harvey, 1981a,
p. 150). Yet again, in isolation the criterion seems weak, although the prevalence of model predictive failure definitely
confirms that it is not vacuous.

6 Data Admissibility
The next information set is that characterizing the measurement system and a model is data admissible if its fitted/
predicted values automatically satisfy definitional and/or data constraints. Thus, in (18.6), (18.7) etc. the log transform
ensures that Ĉt > 0 although this is not the only transform guaranteeing positivity. A more
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useful property is that the errors from a logarithmic dependent variable model could have constant variance and
generally seem closer to normality for inherently positive variables in economics. However, Ct > 0 is not the only
pertinent restriction since there is the definition

(18.16)

(where denotes ‘broad savings’ comprising durables plus financial asset accumulation).

Since one could equally well have modelled ‘savings’ rather than expenditure behaviour (but without constraining to
positivity, thus excluding a log transform for savings), data admissibility requires that . Sometimes such a
result is ‘achieved’ by constructing from (18.16) but this leaves open the possibility that the implied savings model
may be implausible (a point made in another context by Brainard and Tobin, 1968).

The alternative is to model both variables consistently with (18.16) and check that each is indeed data coherent etc. (see
for example Deaton and Muellbauer, 1980, ch. 1.2). Here we do so for interwar data without cross-equation
restrictions, using the rather natural choice of the savings ratio in an error correction formulation, since ca − ia
= log (Ca/Ia) = log (1 − Sa/Ia) ≈ − Sa/Ia where Sa denotes ‘broad savings’. Taking the analogue of (18.13) but with an
added intercept yields

(18.17)

The estimated companion equation for corresponding to (18.17) is

(18.18)

For the fitted values to satisfy (18.16), ût + t should be zero for all t = 1, . . . , T, and, of course, must have a mean of
zero. However, its standard deviation is only 0.00018 and it has a maximum of . Also, the coefficients of add
to almost unity, those of the error corrections are similar and the remaining coefficients have opposite signs as required
in order for (18.16) to hold.3 Indeed, even the derived steady-state solutions aggregate closely (using exp(x) ≈ 1 + x):

Overall, therefore, data admissibility seems acceptable for the DHSY formulation given a savings-ratio companion
equation. As emphasized by Spanos and Taylor (1984), since identities hold automatically by the design of the
measurement system, they need not be imposed provided that consistent sets of relationships are formulated;
conversely, a model need not be useful if identities are imposed but the entailed equations are invalid. Of course, since
logical consistency and tractability
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of functional forms can conflict, admissibility may be abandoned deliberately, and this should be recorded if so.

The other major property of the measurement system in economics is its notorious inaccuracy (see for example
Morgenstern, 1950). For the present, the main issue is the surprising robustness of the DHSY model in the face of the
very large data revisions that have occurred over recent years. The entire series on the quarterly savings ratio was
revised between 1981 and 1982; the largest change was from 10.6 to 7.6 per cent in 1974(iv), and the standard
deviation of the revisions was 0.7 per cent — which is of the same order of magnitude as the standard error on the
equation! Yet the coefficients of the DHSY equation changed relatively little and the residual variance increased only
marginally when fitted to the second set of revised data.

A conjecture which might account for such an anomalous outcome arises from distinguishing within-revision errors
from between-revision errors. If the entire informational basis for constructing C, I, S etc. is altered, they may all change
in a ‘coherent’ way such that, within a consistently revised series, our estimates of uncertainty based on between-
observation errors remain low. An analogy would be with a natural scientist's only estimate of the uncertainty of his
calculations being based on between-reading variations which could be very small relative to a large – but unknown –
error in the whole level of measurements provided by his instrument. Two conclusions would then follow: first, we
would grossly underestimate the uncertainty in our models from error variances and parameter covariances alone;
second, models which adequately characterized economic behaviour yet were robust to data inaccuracies would be
invaluable (the results in Swann (1985) suggest a close link between the latter and near orthogonal parameterizations).
Since DHSY can be reformulated almost exactly in nominal terms, and the nominal data are little revised, the increased
error variances may be attributable to less accurate price indices: we hope to report on this conjecture shortly.

7 Theory Consistency
The importance of theory consistency is disproportionately large relative to its space in this chapter simply because I
have little to add to the existing literature. On the one hand, sensible modelling cannot begin without some theoretical
context and parameters are uninterpretable in the absence of a well-articulated theory. As repeatedly stressed in
economics (for some references, see chapter 1), it is easy to generate garbage when measuring without theory. On the
other hand, theory without measurement is in danger of straying from the non-operational to the irrelevant, and
imposing theory-based models on data without testing is as unjustifiable as directionless data mining (for an excellent
discussion, see Leamer (1978); Sargent (1981) emphasizes the role of economic theory in data analysis).

One interesting exercise is the use of the well-established life-cycle hypothesis (LCH) in interpreting (18.14) and
(18.15).4 If At denotes total assets in constant prices, then a logarithmic approximation to the LCH yields the following
expression for the steady-state C/I ratio:
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(18.19)

where f(·) denotes a function of R (the real rate of interest) and N (non-financial assets). Since A = N + L, the
coefficient of g should exceed that of (as it does in both periods). Also, as shown in figure 18.3, L/I has a mean of
about unity, and so the derived coefficients have interpretable orders of magnitude. Perhaps the main counter-indicator
is that A/I would have to be larger pre-war than postwar whereas L/I must behave conversely, conflicting with figure
18.3. However, the standard errors are large in (18.15), and so those results might not differ significantly from (18.19)
(using the expansion of exp (x) = 1 + x as before).

Next, the error correction mechanism (ECM) is consistent with static-equilibrium homogeneity postulates by
construction, although care is required to ensure sensible behaviour in growth scenarios (see inter alia Currie, 1981;
chapter 9; Salmon, 1982; Kloek, 1982; Patterson and Ryding, 1982; and chapter 17). Here ‘equilibrium’ is a contextual
concept defined by ‘all change ceasing’, and is not an assertion about behaviour over a long run of real time (see
Spanos and Taylor, 1984). Nevertheless, the target to which agents are postulated as adjusting importantly affects the
meaning and interpretation of the estimated model. From (18.15), at g = 0.02 and , which is close to the
lowest observed value (see figure 18.3). This suggests that the entire interwar period is one of disequilibrium, with
consumers gradually adjusting C/I downwards, from the high value induced by the First World War, towards 0.88! The
estimated mean lag of years is consistent with such an interpretation of slow movement towards a distant
‘equilibrium’.

More surprisingly, despite imposing a unit elasticity, the ECM can quite adequately ‘track’ the observed fall in (C/I)t
without any modifying regressors:

(18.20)

Figure 18.4 shows the graph and fit of (18.20), although in this instance the R2 value is a useful index of the goodness
of the track. In several respects (namely SK, EK, ξ1 and η1), equation (18.20) may even be preferred to (18.13).
However, the purpose of presenting the estimates in (18.20) is to illustrate how ECMs only enforce unit elasticity in a
hypothetical equilibrium and can adequately characterize data which strongly violate a constant-ratio restriction but
only by attributing the observed outcome to disequilibrium, with consequentially large mean lags.

Alternative interpretations are also sustainable, with far more rapid adjustment. These necessitate moving, or
temporary, equilibria, with rapid adjustment thereto combined with a slow underlying drift towards some steady-state
outcome. One simple example can be based on attributing the fall in C/I to the rise in I such that the income elasticity
of expenditure is unity only in an equilibrium with very high
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Figure 18.4 Equation (18.20), ca − ia.

income levels and otherwise is less than unity. Thus, adding to (18.13), we have

(18.21)

While an alternative parameterization would be desirable, and there may be some parameter non-constancy in (18.21),
the illustration should suffice: the fit is 12 per cent better than (18.20), and now the mean lag is under one year, but the
result as it stands is not consistent with a unit elasticity in equilibrium. Fitting the equivalent of (18.21) to postwar data
yields per cent (a similar improvement over (18.9)) while leaving the estimates of coefficients in common with
(18.9) almost unchanged.

All the previous models are conditional on observed income, rather than modelling any income expectations process.
The latter view, using rational expectations, has
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been the focus of a substantial literature leading to the concept of ‘surprise’ consumption functions. In these, the
change in consumption (trend adjusted) is a white noise process, but is predictable if current income is known (see for
example Hall (1978) and Wickens and Molana (1982) for UK data). However, the tests in chapter 10 not only reject the
Hall model, but also show that it is encompassed by the DHSY specification (see section 8). Muellbauer (1983) also
presents evidence rejecting the Hall model. Nevertheless, the two types of model are related both theoretically and
empirically: for example, Nickell (1985) derives ECMs as the solution to a dynamic optimization problem and the
parameterization in DHSY is close to using ‘innovations’ via the four-quarter-change specification.

Auxiliary criteria in econometric estimation have usually included the match of actual to anticipated signs and
magnitudes of parameters and such features as lag reaction profiles. Precision of estimation (large t values) is also often
stressed, modified by the economic significance of the estimates (e.g. it would be odd to drop (c − i)t − 4 from (18.6) even
if its standard error exceeded the coefficient when one believed that (say) (18.14) was a valid theory). For behavioural
models, near orthogonality of regressors formulated according to sensible decision variables also seems desirable (see
chapter 8, p. 202). If relevant but excluded influences would enter the model orthogonally and remain orthogonal over
time, then estimated parameters can stay constant despite ‘mis-specification’. In the terminology of Domowitz and
White (1982), the model would be correct to first order.

8 Encompassing
Encompassing is the notion of being able to account for the results obtained by rival models given one's own findings.
A failure to achieve encompassing indicates an incomplete model, but, again, how it should be revised is rarely
obvious. In a linear least squares framework, encompassing is both transitive and asymmetric (if model A accounts for
the results of B, and B encompasses C, then A encompasses C; whereas B cannot at the same time encompass A).
Moreover, encompassing entails variance dominance (intuitively, it is unsurprising that a badly fitting model cannot
explain the findings of a well fitting one). However, variance dominance need not entail encompassing: it is necessary
but not sufficient – a strong argument for seeking an encompassing model building strategy which also reveals why
just selecting a ‘best fitting’ model offers no necessary protection against picking a spurious relationship.

Of equal interest is the fact that ‘non-nested’ tests (which directly confront rival models), based on the Cox (1961)
approach, are tests for variance encompassing in a regression context (i.e. they test whether can account for
and/or vice versa): see, inter alia, Pagan (1981), Deaton (1982), Mizon and Richard (1986) and the discussion following
MacKinnon (1983) who surveys the relevant literature. Note, therefore, that only one direction of testing is useful
(hazarding the better model against the poorer); the other should follow automatically or else reveals low test power.
Thus, variance dominance seems necessary to avoid rejection on such tests.
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The drawbacks of a research strategy based on non-nested tests (denoted by ξ6 in table 18.1) are that variance
encompassing is necessary but not sufficient for parameter encompassing, and that it emphasizes a ‘negative’ rather
than a ‘positive’ approach since all contending models could end being rejected. However, it fits well with a Popperian
approach of learning by rejection (see for example Boland, 1982), in many cases may be the only feasible test (as for
large systems when sample size is inadequate) and may have high power against interesting alternatives if model
‘misspecification’ is reflected in increased residual variance.

Another slightly surprising aspect of encompassing is that a Wald-based test of parameter encompassing between
regression models is a simple transformation of the classical F test for adding a subset of variables to a linear
regression equation (see for example chapter 17 and Dastoor, 1983). This suggests that no clear demarcation can be
drawn in linear worlds between embedding or nesting approaches (as for example DHSY used) or non-nested
methods (as in, say, Pesaran, 1974). For example, the ξ5(·) test is also a Wald test of the hypothesis that the structural
form encompasses the reduced form parameters. Nevertheless, encompassing seems to correspond to a ‘progressive
research strategy’ (see Lakatos, 1974; Worrall and Currie, 1978) in that encompassing models act like ‘sufficient
statistics’ to summarize the pre-existing state of knowledge. This was the main theme of DHSY. Recently, Cross (1982,
1984) has argued persuasively for progressive research strategies in economics in general and encompassing seems to
offer one econometric implementation of such a view (for a general discussion of ‘scientific method’ see Chalmers
(1976), and for its role in economics see Blaug (1980)).

It must be stressed that a nesting model which formed the union of all other hypotheses would automatically, but
rather vacuously, encompass and so a parsimony criterion remains pertinent. If the DGP is known to be D(·) in (18.2),
say, then knowledge of θ is encompassing and is the minimal set of parameters which allows explanation of all
submodels of {wt}. However, if the DGP is not known, then no minimal-encompassing model need exist.
Nevertheless, parsimonious encompassing formulations which accounted for most interesting rival hypotheses may be
feasible, and would have to have innovation errors. Conversely, an encompassing model with an innovation error
process can in turn be encompassed by other models using different information sets.

As an example, in chapter 9 Hendry and von Ungern-Sternberg (HUS) encompass DHSY by adding an integral
correction term to ensure stock as well as flow equilibrium. Continuing this line, Pesaran and Evans (1984) argue that
capital gains G should also be part of the information set and find ‘corroborating’ evidence for total consumers'
expenditure on annual data (1952–80). Testing their hypothesis on non-durables data against the HUS model yields

(18.22)

440 RETROSPECT AND PROSPECT



where with β = 1 and . This equation has a smaller innovation variance than (18.9) because of
the integral correction, but G does not help explain . Thus, G must primarily affect durables expenditure, which is
intuitively reasonable.

On quarterly data, there is some evidence that the real interest rate may influence consumers' expenditure/savings
decisions (see for example Davis, 1984). Also, Bollerslev and Hylleberg (1985) reject the unit elasticity assumption and
argue that a model with additional terms in income outperforms DHSY. Interestingly, if a DHSY type of formulation
is retained for the income components of the relationship (but using the equivalent of i*), then despite adding in
changes in liquid assets, liquid assets/income, real interest rates, seasonal dummies and fourth-order error
autocorrelation (to ‘correct’ for a change in the seasonal allocation of expenditure) the coefficients in common with
(18.7) are virtually identical. This demonstrates both the robustness of that aspect and the predictability of an
innovation process on an extended information set.

The concept of encompassing applies to models developed on a common data set and need not generalize across data
sets. An unfortunate illustration of this is the dramatic failure of a model like (18.22) (but without G) on interwar data:

is 0.8 per cent (compare (18.13)) and the proportionality of Ca to I* and L can be rejected when β = 1. (This may be
due to the very different behaviour of L/I pre-war and postwar: an encompassing explanation is not yet clear.) Even
so, a progressive strategy remains feasible and, by accounting for both data sets, may yield greater insight into the
behaviour of consumers' expenditure.

9 Summary and Conclusion
The chapter sought to exposit econometric modelling concepts while reappraising the consumers' expenditure
equation in chapter 8 and some of its successors. Available information was viewed as being partitioned into six sets
comprising (relative) past, contemporaneous and future observations, the measurement system, a priori theoretical
information and the data information used in rival models. For each set, relevant concepts and associated statistics
were discussed as aids in designing models to satisfy ‘sensible’ criteria. Results for interwar and postwar data were
presented to illustrate the analysis and to explain the process of model evaluation. The emphasis was on the need to
satisfy all the criteria, each of which may be weak in isolation, and especially on encompassing previous findings in a
progressive research strategy. However, no analysis was offered as to how to obtain useful models, since issues of
‘creativity’ are inherently involved in selecting which of many potential revision routes to pursue when evaluation
procedures highlight defects in a model.

As presaged in the introduction, this last topic has engendered some confusion, specifically concerning the role of
‘sequential simplification’ methods for model selection. Having experimented with a wide range of different model
building methods, I believe there remain major difficulties with the uncritical and/or mechanical application of all
approaches which are basically variants of expanding or
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contracting searches. When a sequence of hypotheses is ordered and nested and includes the DGP as a special case,
sequential simplification has certain desirable large-sample properties (see Anderson, 1971, ch. 3.2; Mizon, 1977a).
That there can be no imperative to adopt such a strategy when hypotheses are not uniquely ordered and/or are non-
nested is clear from the well-known drawbacks of forward versus backward selection algorithms in regression.
Additional difficulties (noted for example in chapter 11) include inadequate sample size, non-uniqueness of the chosen
model and most importantly the potential inappropriateness of the initially specified ‘unrestricted’ formulation.
Simplification per se merely provides an interpretation of the multidimensional evidence and is useful only if it creates a
more plausible and robust data representation. Not only does one face the standard ‘garbage-in, garbage-out’ problem,
the use of data-based restrictions in a single sample can endow the whole with a ‘spurious’ air of precision, although
the earlier sections sought to elucidate the interpretation to be placed on data-instigated models. Specifically, since
models can be designed to fulfil most data evaluation criteria on a given sample, satisfying such criteria cannot
decisively determine the credibility of the model. Thus, one must distinguish between statistics which act as selection
criteria and those which act as tests, with a consequential stress on the importance of investigating encompassing and
hazarding models to potential rejection on new evidence.

Even if the hypotheses constituted an ordered nest, the procedure being used for simplification may not be justifiable
and a very different model type may prove more useful (see for example chapter 7 where Mizon and Hendry
investigated the COMFAC method but chose their model on other grounds). In non-ordered situations, substantive
economic phenomena under debate may sometimes be either retained or discarded at choice by suitably modifying the
order of testing.

None of the above counters the need to estimate the ‘general’ formulation at some stage of an empirical analysis: it
defines the innovation variance on the given information choice, and is entailed by the given framework. Thus, it
would seem very hazardous to accept any model which fitted significantly worse than such a baseline, in the absence of
good reasons to the contrary (possible reasons might include a justification based on ‘overfitting’ if a large enough
number of lagged variables could be shown to act like ‘dummies’, each partialling out what would otherwise be a few
large residuals). Expanding searches which do not define a baseline, and terminate arbitrarily, have especially serious
flaws in a multivariate discipline, a point made by Haavelmo (1944, ch. 4). Specifically, a failure to partial out dynamic
reactions adequately seem both to camouflage underlying economic responses and to lead to subsequent predictive
failure.

Econometrics offers considerable scope as a critical apparatus and this is precisely the role of stringent evaluation
procedures (a theme more extensively explored in chapter 1). Offsetting this, models can be designed to satisfy most
selection criteria by data-based revision. This in part may serve to short-circuit a more laborious learning process and
in part puts the onus for testing on later evidence. Encompassing could be viewed as just one of the selection criteria,
in which case it is more than averagely demanding: even though an embedding model automatically encompasses
nested rivals, the resulting parameters may not have sensible interpretations,
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and parsimonious encompassing is a natural extension of the conceptual framework.

Conversely, encompassing could be viewed as an element in a progressive research strategy, in which case its role
would be to stimulate useful conjectures concerning how to reconcile potentially anomalous and disparate evidence.
‘Mechanistic procedures’ like contracting searches can at best yield convenient data summaries within sample and must
await genuine testing: their plausibility depends on their encompassing existing results and having interpretable
parameters related to a coherent theory. But ‘iterative model building’ based on expanding searchers likewise lacks
credibility unless it satisfies the various selection criteria, including encompassing. By whatever means empirical models
are obtained, and whatever criteria they satisfy, they can almost always be tested against other alternatives or re-
evaluated at a later date; and they most certainly should be if advocated as a basis for policy.

Finally, a formulation which encompasses both pre-war and postwar data, annual and quarterly observations, the
various rounds of data revisions and all the proposed information sets is not yet available; nor have inter-country tests
been conducted. Thus, there is plenty of scope for further progression.

Notes
1 Initial conditions are ignored for simplicity of notation.
2 Joint tests are feasible and interesting results have been obtained by Kiviet (1986a) and Godfrey and Wickens

(1982) inter alia.
3 The transform of (18.18) to the log-normal would add to the intercept, but that term is negligible here (see for

example Kennedy, 1983).
4 I am grateful to John Muellbauer for suggesting this link.
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19 Postscript: The Econometrics of PC-GIVE

Preamble
A postscript should be short, pithy and distinctly worth appending: laudable but ambitious aims! The more limited
objective of this final chapter is to relate some of the main ideas analysed above to recent developments as a guide to
the prospects likely to materialize. The framework that has evolved through the above studies, and many of those on
which I have drawn, is as follows:

1 data are generated by a complicated and evolving mechanism created, measured and changed by human
actions;

2 empirical models, while suggested by theoretical reasoning and past evidence, actually arise by reduction
operations on that mechanism with consequential transformations of the underlying parameters;

3 inappropriate marginalization influences parameter interpretability, constancy and invariance;
4 inappropriate sequential factorization potentially induces residual autocorrelation, not to be removed by

arbitrarily asserting and imposing common factor restrictions;
5 inappropriate conditional factorization may invalidate exogeneity claims;
6 being created by reduction operations, models are susceptible to design, and a taxonomy of information sets

delineates the relevant design criteria and hence the null hypotheses for valid model evaluation tests;
7 the ‘problem’ approach to econometric modelling is an implicit design process, founded on the non sequitur of

adopting the alternative hypothesis when a test rejects the null;
8 explicit design procedures which mimic the reduction notion by progressing from the general to the specific

have achieved some success in practice, although no sufficient conditions exist to justify any constructive
methodology; and

9 parsimonious encompassing sustains a progressive research strategy and determines the limits to reduction;
but checking the validity of any entailed reductions necessitates returning to the most general model whenever
the information set is extended.

A large number of less central, but nevertheless important, issues in empirical modelling can also be analysed in the
same framework, including collinearity as a function of the choice of parameterization; the links of theory models
(which are cognitive entities) to empirical



models (which are recombinations of observed data); functional form specification; the selection of test statistics; the
accuracy of the underlying data series; testing of the Lucas (1976) critique; and encompassing a vector autoregressive
representation (VAR) based on the modelling approach in Sims (1980) inter alia. To discuss all these topics would
require a book in itself and is well beyond the objectives of this last chapter. In fact, since completing this volume in
draft, I have written a companion book on Econometric Methodology (Hendry, 1992), completing a trilogy on the
computational, developmental and methodological aspects of the approach. A fourth book on Dynamic Econometrics
(Hendry et al.) is in progress, and a separate text on unit roots and cointegration is forthcoming (Banerjee et al., 1992).
I hope their availability will allow a more thorough evaluation of the framework. However, the objective of the final
chapter is the more limited one of trying to interlink the various strands and approaches in a short space. It has been
edited to be more self-contained than in the original publication and, specifically, the typology which duplicates some
of chapter 4 has been abbreviated and updated. Since the most time intensive of all my research activities has been
computer programming, it seems fitting to end with a chapter based on the software.

1 An Overview
The philosophy underlying the computer program PC-GIVE which embodies the methodology is as follows.
Economic time-series data are generated by a process of immense generality and complexity. The econometrician seeks
to model the main features of the data generation process (DGP) in a simplified representation based on the
observable data and related to prior economic theory. Since many important data features are inevitably assumed
absent in any economic theory, empirical models have to be developed interactively to characterize the data adequately
and be consistent with the theory. For example, a theory-model might assume white noise errors, whereas the lack of
any precise mapping of decision periods to data observation periods may mean that the estimated model manifests
substantial residual autocorrelation (perhaps of a seasonal form). Equally, the parameters of the theory may
correspond to model coefficients which are not empirically constant over time. PC-GIVE is designed to reveal such
‘problems’, and more generally to test models destructively.

An important component of any modelling exercise is to estimate the most general model which it is reasonable to
entertain a priori (see Pagan, 1987). PC-GIVE facilitates formulating general linear dynamic models while offering
protection against the possibility that the initial generality is in fact too specific to characterize the available data
adequately (see chapters 16 and 17 for greater detail), corresponding loosely to a constructive aspect of modelling.
Both of these aspects are analysed below.

Most econometrics packages focus on the estimation of economic models of varying degrees of complexity assuming
that their qualitative characteristics are known but the numerical values of the parameters need calibration. While
estimation represents a necessary ingredient in econometrics research, it is far from sufficient for practical empirical
modelling. PC-GIVE has been explicitly developed to aid the process of discovering ‘good’ models by offering a wide
range of evaluation tools, some of which are sophisticated estimation methods re-oriented to highlight potential
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model weaknesses. There is no royal road to developing ‘good’ models, but some considerations which have proved
helpful in related studies are discussed below, including an analysis of the criteria by which models might be judged.

In fact, there are many necessary but no sufficient conditions for model validity. Delineating these necessary conditions,
and analysing the intimate links between them, the available information and statistics for evaluating model adequacy,
forms the focus for the following discussion.

The class of dynamic linear systems analysed by PC-GIVE is described in section 2 in terms of a model typology. This
is followed by discussions of model evaluation in section 3, an information taxonomy for model evaluation and design
in section 4, and the types of test used in section 5. Section 6 then considers modelling strategies and the chapter
concludes with a brief discussion of estimation techniques in section 7.

2 The Model Class

2.1 Single-Equation Models
The class of models basic to PC-GIVE is that of linear dynamic systems. Dynamic linear equation analysis follows
from the use of lag operators (denoted by L) such that Lrxt = xt−r for a variable xt. Scalar polynomials in L are denoted
by . Lag polynomials like a(L) define either autoregressions when the equation is of the form

(19.1)

with m = 0 and a0 = 1 where εt is white noise (i.e. a serially uncorrelated process), or finite distributed lags if

(19.2)The autoregressive–distributed lag (ADL) class is given by

(19.3)

Many different xs may be used conjointly if required in models like (19.3), in which case the equation is written in a
more convenient notation as

(19.4)if there are k ‘explanatory’ variables (x1t, . . . , xkt).

Many important properties of the dynamic model (19.3) are determined by the polynomials a(L) and b(L). For
example, the model is stable if all the roots λi of the polynomial a(L) = 0 satisfy | λi| < 1.1 Further, (19.3) has common
factors (denoted COMFAC) if some of the roots of a(L) coincide with roots of b(L), so that, for example, a(L) = (1 −
ρ L)a*(L) and b(L) = (1 − ρ L)b*(L). In such a case

(19.5)
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where ut = ρ ut−1 + εt, generating the autoregressive error from a common factor in the structural lag polynomials (see
Sargan, 1980a; chapter 6; and section 2.2 below). If (yt, xt) are jointly stationary, then

(19.6)

is the long-run average solution to (19.3), which requires that a(1) ≠ 0 (i.e. no λi = 1) in order to be well defined and
b(1) ≠ 0 to be non-trivial. If in (19.1) r roots are equal to unity in absolute value, then yt is non-stationary and is said to
be integrated of order r, denoted I(r). If a(1) ≠ 0 and b(1) ≠ 0 when yt and xt are both I(1), but yt − Kxt is I(0), then yt and xt
are said to be cointegrated (see Engle and Granger, 1987; Granger, 1986; Hendry, 1986b). The solution in (19.6) remains
valid in the cointegrated case, perhaps with an intercept. Section 2.2 assumes that xt is I(1) and that yt and xt are
cointegrated.

2.2 A Typology of Simple Dynamic Models
Chapter 4 provides a detailed analysis of single-equation models like (19.4) and shows that most of the widely used
empirical models are special cases of (19.4). There are nine distinct model types embedded in (19.4), a point most easily
seen by considering the special case of k = n = 1 and m = 0, so that all of the polynomials are first order and only one
x variable is involved:

(19.7)

where denotes an independent normal random variable with mean μ and constant variance σ2).

Equation (19.7) is a special case of a linear single-equation dynamic model, with the apparently restrictive assumption
that {εt} is a white noise process. Yet most widely used model types are indeed schematically represented in (19.7), and
the typology highlights their distinct characteristics, strengths and weaknesses. If any member of the typology is
believed to be the model which generated the data, then this belief entails accepting any less restricted but identifiable
member, together with the restrictions needed to reduce the general model to the special one asserted. That statement
has profound implications not only for the general methodology of modelling espoused herein but also for such major
issues of current contention as the practice of ‘allowing for residual autocorrelation’, the validity of analysing over-
identified simultaneous systems (the Sims critique: see Sims, 1980) and the imposition of restrictions based on prior
theory, including the ‘Lucas critique’ (see Lucas, 1976).

To clarify the basis of our approach, table 19.1 lists the nine cases, deriving each via restrictions on the parameter
vector θ′ = (α1, β0, β1) of (19.7), noting that an intercept can be included without loss of generality in all models and is
omitted for simplicity of exposition only. Four of the cases impose two restrictions on θ and five impose one, and these
will be referred to respectively as one- and two-parameter models since σ2 is common to all stochastic models
(compare table 4.1).

Three important issues must be clarified: the status of {xt}; the dependence of
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Table 19.1 Typology of Simple Dynamic Models

Type of model θ Entailed restrictions on
(19.7)

(i) Static regression (0, β0, 0) α1 = β1 = 0 (no dynamics)
(ii) Univariate autoregres-
sive process

(α1, 0, 0) β0 = β1 = 0 (no covariates)

(iii) Leading indicator (0, 0, β1) α1 = β0 = 0 (no contemporaneity)
(iv) Growth rate (1, β0, −β0) α1 = 1, β1 = −β0 (no levels)
(v) Distributed lag (0, β0, β1) α1 = 0 (finite lags)
(vi) Partial adjustment (α1, β0, 0) β1 = 0 (no lagged x)
(vii) Autoregressive error
(COMFAC)

(α1, β0, −α1β0) β1 = −α1β0 (one common factor)

(viii) Long-run propor-
tionality: error correction

(α1, β0, 1 − α1 − β0) α1 + β0 + β1 = 1 (long-run unit response)

(ix) Dead-start (α1, 0, β1) β0 = 0 (only lagged information)

the model's properties on the data properties; and whether each model type is being treated as correctly specified or as
an approximation to a more general DGP such as (19.4). These three problems arise in part because the analysis has
not commenced from the most general system needed to characterize the observed data adequately, and in part
because the DGP is unknown in practice, and so we do not know which data properties to take as salient features in an
analytical treatment (never mind the empirical study to follow!). The system formulation is offered in section 2.3, and
so for the present we shall treat {xt} as if it were weakly exogenous for the parameters of interest in θ (see chapter 15
and section 4.2 below). As noted earlier, xt is assumed I(1), and for convenience we will take Δ xt to be a stationary
process. This determines the answer to the second issue; but since some economics time series seem I(0) (e.g.
unemployment), the case xt ∼ I(0) remains relevant. If xt and yt are cointegrated, then ut = yt − Kxt ∼ I(0), but such a
belief may be false and the case ut ∼ I(1) ∀ K must be noted. The typology treats each case in turn as if it were the
correct specification, but notes both the historical success of such an assumption and the likely consequences when it
is incorrect.

Static Regression
Equations of the form yt = b0xt + ut (with b0 and xt vectors in general) have played a large role in many
macroeconometrics systems as erstwhile ‘structural equations’.
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In practice, {ut} has usually been highly autocorrelated (reminiscent of nonsense correlations — see Yule, 1926) so that
inference about b0 is invalid (see for example Granger and Newbold, 1974; Phillips, 1986). Recently, however, static
equations have reappeared as part of a two-stage strategy for investigating cointegration with the focus on testing
whether or not {ut} is I(1) against the alternative that it is I(0) (see Engle and Granger, 1987). Then, b0 would be a
‘direct’ estimator of K in (19.6). Even so, the success of such an estimator in finite samples has been questioned (see
Banerjee et al., 1986) and must be dependent on the actual mean lag between y and x, noting that a static equation
imposes that mean lag at zero. Alternatively, the strategy of removing the autocorrelation in {ut} by fitting an
autoregressive process is considered in autoregressive errors (COMFAC models) below. Finally, viewed as a ‘structural
equation’, all the restrictions on dynamics and covariates are testable against (19.4), as are the implicit restrictions
highlighted in section 4 below.

Univariate Autoregressive Processes
The equation yt = a1yt − 1 + et serves as our representative of univariate time-series models (see Box and Jenkins, 1976). If
yt is I(1), a1 = 1, inducing a random walk when et is white noise. Autoregressive equations are widely used for ex ante
forecasting and have proved a powerful challenger to econometrics systems in that domain.2 In economics, the
manifest interdependence of economic decisions (e.g. one person's income is another's expenditure) entails that
univariate autoregressions must be derived and not autonomous processes. Here, the autoregression is obtained by
eliminating, or marginalizing with respect to, xt. For example, let xt = xt − 1 + νt where when in fact α1 = 1 and
β1 = − β0; then yt = yt − 1 + εt + β0νt and has a non-constant variance . Consequently econometric models should
both fit better than autoregressions (or else are at least dynamically mis-specified) and forecast better (or else the
econometric model must be highly suspect for policy).

That both these minimal requirements are sometimes not satisfied is due in part to the inappropriateness of some
methodological practices. A major objective of PC-GIVE is to offer an alternative approach which circumvents such
difficulties by commencing from a general dynamic specification which automatically embeds the relevant special cases.

Leading Indicator
Models of the form yt = c1xt − 1 + υt can be used in forecasting if x leads y with sufficient reliability (e.g. orders ahead of
output). In the absence of a sound behavioural theory, however, c1 need not be constant. If it is not, this will lead to
poor forecasting, especially in periods of change when good forecasts are most needed. Moreover, there seems no
good reason for excluding lagged ys, and if a general dynamic model is postulated then the econometric considerations
in sections 3, 4, 5 and 6 apply.
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Growth-Rate Models
The evolutionary and trend-like behaviour of many economic time series led earlier investigators to recommend
differencing data prior to statistical analysis. One example is Granger and Newbold (1977a), although, as argued in
chapters 3 and 5, there are other transformations (such as ratios) which potentially could also remove trends. This
leads on to the concept of cointegration discussed below. Growth-rate models are of the form

Such models successfully avoid ‘nonsense regressions’ problems in I(1) data, and from the transformed dependent
variable a useful measure of goodness of fit can be calculated. Nevertheless, if the variance of Δ xt is large relative to
that of Δ yt, d0 must be small even if yt and xt are cointegrated with K = 1 (this is the ‘permanent income’ issue in one
guise: see chapter 8). Further, although yt = Kxt implies Δ yt = KΔ xt, the converse is false in a stochastic world because
of integrating the error.

Alternatively, there are no a priori grounds for excluding levels from economic relationships since initial disequilibria
cannot be assumed to be irrelevant: i.e. the time path of Δ yt for a given sequence Δ xt will also depend in general on the
relationship between y0 and x0. Two further insights into the drawbacks of growth-rate models are discussed below.

On the methodological level, an egregious mistake still being committed in applied economics is to begin with a linear
approximation to a steady-state theory of the form yt = f(xt), fit a static model thereto, discover severe residual
autocorrelation and ‘correct’ that either by differencing or by using ‘Cochrane–Orcutt’ (but see their 1949 article) and
finding an autoregressive parameter near unity. While the goodness of fit may not be greatly worsened by imposing
differencing, dynamic responses can be substantially distorted and ignoring long-run feedbacks may seriously distort
policy.

Distributed Lags
Although using only one lag makes the resulting model highly schematic, the equation yt = f0xt + f1xt − 1 + ξt is
representative of the class of finite distributed lags. Such models remain open to the objections noted in static
regression above, are highly dependent on whether xt is weakly or strongly exogenous unless ξt is white noise (which in
practice it rarely is in this class) and tend to suffer from ‘collinearity’ due to the inappropriate parameterization of
including many levels of the regressor. Imposing so-called ‘a priori restrictions’ on the lag coefficients to reduce the
profligate parameterization has little to recommend it, although such restrictions are at least potentially testable. It is
hard to see any theoretical grounds for completely excluding lagged ys, given that they are another way of representing
a distributed lag relationship; and as shown below, considerable dangers exist in arbitrarily removing any residual
autocorrelation from ξt.
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Partial Adjustment
The equation yt = g0xt + g1yt − 1 + ζt occurs regularly in empirical macroeconomics, and can be derived from assuming a
long-run desired target of the form yt = Kxt subject to quadratic adjustment costs (see for example Eisner and Strotz,
1963; Nickell, 1985). While such a model type seems reasonable in principle, it does not entail that the y and x variables
which agents use in their decision rules are precisely the levels variables under study by the economist. For example,
agents may use the (log of the) consumption–income ratio as their yt, and the growth rate of income as their xt, rather
than the levels of both.3 The resulting econometric specification, however, is wholly different despite the common
element of ‘partial adjustment’.

Even when yt and xt are cointegrated in levels, the partial adjustment model has little to recommend it unless it happens
to coincide with the DGP. The mean lag is g1/(1 − g1) whereas the median lag (the number of periods to reach the half-
way stage towards equilibrium) is − log 2g1/log g1, so that a skewed distribution is imposed without consulting the data:
when g1 is near unity, both measures entail extremely slow adjustment, exacerbated by any untreated positive residual
autocorrelation. Further, xt and yt − 1 are usually highly correlated and so again an unfortunate parameterization is being
selected. Since there are no good arguments for a priori excluding all lagged xs and plenty of empirical evidence to
show that they do matter in many cases, this model type again seems suspect.4

Autoregressive Errors or COMFAC Models
As noted in section 2.1, the roots of a(L) and b(L) in (19.3) may be equal at some lag lengths, allowing cancellation. In
the case of (19.7) with β0 ≠ 0, we can write the equation as

Thus, if, and only if, α1 = − β1/β0 or β1 + α1β0 = 0, the equation can be rewritten as yt = β0xt + εt/(1 − ρ L) or

(19.8)

where ut = ρ ut − 1 + εt and ρ = α1, yielding a static model with an autoregressive error. The term 1 − α1L is a factor (in
this simple case, the only factor) of a(L) and similarly 1 + (β1/β0)L is a factor of b(L), so that when these are equal there
is a factor in common in a(L) and b(L) (leading to the name COMFAC). The converse that (19.8) induces a common
factor is obvious, and so there is an isomorphism between autoregressive errors and common factors in the lag
polynomials: if you believe one, you must believe the other. Clearly, (19.8) imposes restrictions on (19.7), and so these
are testable, and rejection entails discarding the supposed reduction to (19.8) (see chapter 6). Therefore the ADL class
includes all models with autoregressive errors.

Perhaps the greatest non sequitur in the history of econometrics is the assumption that autocorrelated residuals imply
autoregressive errors, as is entailed in ‘correcting
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serial correlation using Cochrane–Orcutt’. Dozens of mis-specifications in time-series data will induce residual
autocorrelation without corresponding to common factors in the lag polynomials of the underlying general model
(19.3). Indeed, the entire order of testing is incorrect: to estimate any models like (19.8) first necessitates establishing
the validity of (19.3), then showing that a(L) and b(L) have common factors and finally testing H0: ρ = 0. Showing that
ρ ≠ 0 in equations like (19.8) does not prove that there are valid common factor restrictions. PC-GIVE offers
algorithms for testing common factor restrictions in equations like (19.4) on the basis of the results in Sargan (1980a)
and using his Wald approach. If such restrictions are accepted, generalizations of (19.8) are estimable using the RALS
estimator described in Hendry (1989).

Two points of importance from (19.8) are that

1 it imposes a zero mean lag irrespective of the actual lag latencies since the short-run and long-run responses
are forced to be equal by the choice of model type, and

2 growth-rate models can be interpreted as imposing a common factor and setting ρ to unity.

Error Correction Mechanisms
The issue of appropriate reparameterizations of θ has arisen on several occasions above and many alternatives are
conceivable. One natural choice is as follows: from (19.7)

(19.9)

where K = (β0 + β1)/(1 − α1) is the long-run response in (19.6) above. The new parameters in f(θ) = ψ = (β0, (1 − α1), K)′
correspond to the impact effect, the feedback effect and the long-run response: note that no restrictions are imposed
in this transformation. The term (y − Kx)t − 1 was called an error correction mechanism (ECM) in chapter 8 since it
reflects the deviation from the long-run equilibrium outcome, with agents removing 1 − α1 of the resulting
disequilibrium each period. Sargan (1964a) provides a real-wage example and in chapter 3 some non-unit ECMs were
considered. The special case K = 1 is of considerable interest in econometrics as it corresponds to long-run
proportionality (or homogeneity in log-linear models), but ECMs are well defined for K ≠ 1, although usually K will
then need to be estimated. Indeed, as chapter 4 notes, logistic formulations or more general functions may be
necessary to model agents' behaviour if they adjust more or less rapidly depending on the extent of disequilibrium (see
Escribano, 1985).

Engle and Granger (1987) establish an isomorphism between ECMs and cointegrated processes: if yt and xt are each
I(1) and are cointegrated, then there exists an ECM of the form y − Kx, and conversely. The former does not entail
that the ECM necessarily enters the yt equation rather than the xt equation, and it may enter both which would violate
weak exogeneity (see Hendry and Mizon (1991) for an example).
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In our simple typology, the only ECM case to impose any restrictions on (19.9) is K = 1 or α1 + β0 + β1 = 1, revealing
that all long-run proportionality theories can be reproduced in static equilibrium by an appropriate ECM. Here, this
restriction yields

(19.10)

Thus another interpretation of the growth-rate model is revealed, namely that it corresponds to imposing long-run
homogeneity (α1 + β0 + β1 = 1) and the absence of feedback from the level 1 − α1 = 0, which jointly entail a unit root.
Consequently, small values of γ0 are compatible with long-run proportionality. Further, partial adjustment (see above)
now corresponds to imposing γ0 = − γ1.

The parameterization in (19.10) has several advantages beyond being more interpretable: the regressors Δ xt and (y −
x)t − 1 will not usually be highly correlated, and proportionality is easily tested by adding xt − 1 as a (relatively non-
collinear) regressor. Further, a less strong lag shape is being imposed, since the mean lag is (1 − γ0)/γ1 which depends
on both parameters and hence can be small even if 1 − γ1 is around 0.9, whereas the median lag is zero for and is
− log [2(1 − γ0)]/log γ1 for .

Note that β1 < 0 in (19.7) need not entail any negative weights {wi} in the solved representation . Thus,
do not delete lagged xs because their coefficients appear to have ‘wrong signs’, since on a reparameterization they may
have the correct sign.

Finally, ECMs can be confused with COMFAC models despite their very different implications for lag responses. This
arises because COMFAC is an ECM with the restriction that long-run and short-run responses are equal, as can be
seen by rewriting (19.8) in the form yt = β0xt + ρ (yt − 1 − β0xt − 1) + εt or

(19.11)

Thus, the degree of mis-specification of (19.11) for (19.9) depends on (α1 − 1) × (K − β0) ≠ 0 which could be small
even if K = 1 and, for example, β0 = 0.4. Nevertheless, despite (19.9) and (19.11) having similar goodness of fit, the
mean lag in (19.9) when K = 1 could be large at the same time as (19.11) imposes it at zero.

Dead-Start Models
The main consideration arising for dead-start models is the exclusion of contemporaneous information. This could be
because

(19.12)

is structural, and hence is a partial adjustment type. Alternatively, (19.12) could be a derived form, from which xt has
been eliminated, as with a VAR, in which case (19.12) is unlikely to be autonomous, and its parameters would be
susceptible to alteration with changes in the behaviour of the xt process. In this second case, the coefficients are not
interpretable since they are (unknown) functions of the correlations between xt and (yt − 1, xt − 1).

Care is obviously required in selecting an appropriate type of model to characterize
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both a given theory and the associated data: some of the methodological considerations discussed below help clarify
that choice.

2.3 Dynamic Systems
When and are vectors, expressions like (19.3) constitute dynamic linear systems. More formally, the system can be
written as

(19.13)

where , and is weakly exogenous for the parameters of interest in the system.5 Identity
equations can be included, corresponding to singularities in Ω. In (19.13), it is assumed that (the unit matrix)
and that πj(1) ≠ 0 (j = 0, 1) so that y and z are cointegrated. In conventional parlance, (19.13) is a ‘reduced form’, but
since no structural model has been specified from which it can have been reduced, we shall refer to (19.13) as the system
(see Hendry et al., 1988). If is deterministic, (19.13) is ‘closed’ and is a VAR. However, at least conceptually, one
could imagine extending the system to endogenize and make a bigger VAR, and so if π10 = 0 (19.13) is simply part of
a VAR (cut across equations), and if π10 ≠ 0 it is a VAR conditional on .

A model of the system is created by pre-multiplying (19.13) by a matrix of full row rank:

(19.14)

or

(19.15)

with εt ∼ IN(0, Σ). The system is said to be complete if is non-singular. Let A be the matrix of all the coefficients
and the column vector of all the variables ; then (19.15)

can be written neatly as

A must be restricted if the are to be unique: otherwise, a further non-singular multiplication of (19.14) would
produce a different model, yet one which looked exactly like (19.15), thereby destroying uniqueness. The usual rank
and order conditions apply, and both are fully implemented in PCFIML: consult, for example, Judge et al. (1980). All
the model types of section 2.2 could occur within (19.15), and, if A is over-identified, the imposed restrictions are
testable.

When developing a model of a system, it seems sensible to commence from the unrestricted representation (19.13),
test its validity and then reduce the system to the model. All the attributes needed for congruency (see section 4) can be
tested, but care is required in modelling integrated data. As a first step, cointegration tests can be conducted to
establish the dimension of the cointegrating space, and the relevant set of cointegration restrictions and differences can
be imposed to reduce the data to I(0). This order will facilitate later testing since conventional limiting distributions
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can be used: see Phillips (1990) and Hendry and Mizon (1991) for discussions of modelling cointegrated processes,
Johansen (1988) and Johansen and Juselius (1990) for analyses of the maximum likelihood estimator, and Hendry et al.
(1988) for an approach to structural system modelling in I(0) processes. Such a methodology implements the general-
to-simple notion in the system context and contrasts with the alternative of specifying a structural model at the outset
and testing its restrictions against the (derived) reduced form. Since the latter may be invalid, it provides an unreliable
benchmark for any tests. Techniques for estimating systems and associated models, as well as general derivations of
standard errors etc., are considered in section 7 below.

Since (19.13) is a model of itself, and there are likely to be valid parsimonious representations of the system (19.13), the
critique in Sims (1980) lacks force. Specifying a model in structural form merely corresponds to imposing non-linear
restrictions across functions of the πs in (19.13), and one cannot a priori exclude such restrictions being valid. For
example, if the response of y to x in (19.7) is very rapid compared with that of x to y in a second equation, a structural
model of their joint representation can impose valid restrictions on the VAR. The concept of encompassing discussed
in section 4 will clarify this issue further.

3 Model Evaluation
While it is easy to specify and analyse (19.3), (19.4) or (19.15) (or any generalizations thereof) when they are regarded as
mathematical formulations, it is far harder to develop useful empirical relationships for a given time series on a set of
variables. In particular, the orders of the lag lengths of every polynomial (a(L), b(L) etc.) must be established, as must
the presence or absence of any given x, the constancy of the entities called parameters, and the properties of the error
term. Indeed, this description begs the very issue of what defines the ‘usefulness’ of an econometric relationship. At a
general level, the utility of anything clearly depends on the purposes for which it is being developed. Hence if a
completely specified loss function existed for judging a particular modelling exercise, it would seem natural to develop
a model to optimize that criterion. Two problems arise, however, neither of which can be sidestepped. First, it is very
rare in econometrics to be able to specify the loss function fully. Models are wanted for prediction, for scenario or
policy analyses, for testing economics hypotheses and for understanding how the economy functions. Empirically,
there often exist conflicts in criteria for selecting models to achieve such multiple objectives. For example, a model
which predicts well historically may yield no insight into how a market will behave under some change in regulations,
the implementation of which will cause the model to mispredict. Second, even assuming that a fully specified loss
function did exist and that the optimal model could be selected, there remains the difficulty of establishing how ‘good’
that best model is. For example, the best model that could be found may still suffer from non-constant parameters and
hence yield a low level of utility; worse still, by not knowing this weakness, serious losses may accrue in the future.
Thus, whatever the basis on which a model has been formulated or developed, there is an issue of assessment or
evaluation.
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To use the program PC-GIVE easily and efficiently, it is essential that this aspect be understood. Since we do not know
how the economy works, we do not know the best way of studying it. Consequently, any model might correspond to
reality, however unlikely its mode of creation; or unfortunately it might transpire to be invalid, however clever and
thorough its development. Nevertheless, conditional on taking a model as stated by its proprietor, a vast range of states
of the world will be excluded by that model and thus it is open to evaluation against the available information (see
Hendry (1987) for a more extensive analysis). For example, because its residual process is white noise, a particular
model may claim to explain a given data set adequately; yet the residuals may not be an innovation process, and so
testing the latter hypothesis might reveal an important model weakness (as in the COMFAC procedure discussed in
section 2 above). This is the destructive testing aspect of PC-GIVE and accounts for its wide range of pre-
programmed statistics for model evaluation.

Testing concentrates on the empirical validity of assertions about a given model. Tests are statistics with a known
distribution under a null hypothesis and some power against a specific alternative. The tests below are designed to have
central t, F or χ2 distributions under the null, and corresponding non-central distributions against some alternative.
Usually, they are invariant to the direction of the departure from the null for a given class of alternatives and only
depend on the distance (this holds for t2, F and χ2 statistics). However, most tests also have some power to detect other
alternatives, and so rejecting the null does not entail accepting the alternative, and in many instances accepting the
alternative would be a non sequitur. Rejection reveals model invalidity, albeit with some chance of a type I error of
incorrectly rejecting a valid null.

First, however, we need to delineate the relevant class of null hypotheses, and then derive associated test statistics for
reasonable alternatives. The former task is considered in section 4 in terms of a taxonomy of available information and
the latter in section 5 where the main test principles are briefly described.

4 An Information Taxonomy
In the case of (19.3), the data set of observations on {yt} and {xt} can be denoted by where .
Thus, yields the trichotomy of the (past: present: future) relative to t. In addition, we must allow for
theory information, measurement information and the information in rival models (see chapters 16 and 17 and Gilbert
(1986) for expositions). Statistical tests can be constructed to evaluate a model against each element of this taxonomy.
Such tests require both formulation of the appropriate null hypothesis for the relevant information set and devising of
a reasonable class of alternatives against which the test should have power. The taxonomy clarifies the relevant null
hypotheses, and generally points up interesting alternatives against which to test model validity. The six major
information sets for model evaluation are discussed in the next six sub-sections and are drawn together in the theory
of reduction in section 4.7.
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4.1 The Relative Past
The residuals should be white noise (unpredictable from their own past) and hence should not be significantly
autocorrelated. If they are autocorrelated, a better fitting model can be developed by ‘removing’ the autocorrelation
(although this is not a recommended practice since it may impose invalid common factors). PC-GIVE provides valid
tests and diagnostic information for residual autocorrelation, including Lagrange multiplier tests for a wide range of
orders of autoregressive errors, as well as residual correlograms and autoregressions.

Further, the errors should not be explainable from the information set being used. Alternatively expressed, the errors
should be an innovation process which is unpredictable from lagged functions of the available data; being white noise
is a necessary, but not sufficient, condition for being an innovation. As noted, a good example arises when ‘removing’
autocorrelation by fitting, say, autoregressive error processes, since that automatically ensures the former but may
impose invalid common factor restrictions and hence does not entail the latter (see Sargan, 1964a, 1980b). This
problem can be avoided by beginning with a general specification like (19.4) and testing for valid common factors prior
to imposing them. In PC-GIVE, the COMFAC tests to check such restrictions are based on Sargan's algorithms.

More formally, denote the process generating by where are the initial conditions and are the
‘parameters’ of the process, which may depend on the historical time (hence indexing by 1, . . . , T). Since

, the data density D(·) can be sequentially factorized as which is the product of each
time period's density.6 Assume θt = θ ∀ t (constancy is the topic of section 4.3 to follow) and let include the initial
conditions so that D(·) at every t is . Then

If we let , then by construction {νt} is a mean innovation process precisely because .
Moreover, since lagged νs can be derived from (by lagging their definition), they are also white noise. Thus, the
DGP can be expressed without loss in an innovation-error representation. A well-known example is provided by the
stationary first-order autoregressive process yt = μ yt−1 + et, when {et} is jointly normal and . Then,

is the multivariate normal density where Ω is a T × T symmetric matrix with (i, j)th
element μ| i−j|/(1 − μ2). The factorization of the joint density of (y1 . . . yT) into yields a product of
individual densities involving terms like and

is indeed the innovation (see for example Judge et al., 1980, ch. 8).

Neither white noise errors nor innovations need be homoscedastic, and so the standard errors of OLS estimators in
PC-GIVE also allow for residual heteroscedasticity (see White, 1980b; MacKinnon and White, 1985). Tests of both
ARCH
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(Engle, 1982a) and unconditional heteroscedasticity are provided. Similarly, tests for normality are included to check
on the distributional assumptions underlying finite sample inference.

To summarize these aspects relating to the (relative) past of the process, namely , a reasonable null is that the
unexplained component of a behavioural model should be a homoscedastic innovation.

4.2 The Relative Present
All current-dated regressors to be conditioned on should be at least weakly exogenous (see chapter 15) to sustain valid
and efficient inferences. Using the factorization in section 4.1, if yt is to be conditioned on xt we need

where φ1 and φ2 are variation free (i.e. impose no restrictions on each other) and all of the parameters of interest can be
obtained from φ1alone. If so, xt is said to be weakly exogenous for those parameters of interest and only the conditional
model needs to be estimated, since the marginal model contains no information about the
parameters of interest.

While weak exogeneity is not easy to test directly, tests based on Engle (1984) can be calculated from stored regression
predictions. However, valid conditioning in conjunction with other hypotheses may entail many testable hypotheses:
for example, parameter constancy in a structural equation, despite non-constancy in a reduced form or marginal
process, strongly supports weak exogeneity (see Favero and Hendry, 1989). Note that lagged variables are
predetermined once the errors are innovations. Conversely, parameters of current endogenous variables (other than
the dependent variable) should be estimated using instrumental variables or full information maximum likelihood
techniques. Moreover, any instruments chosen must themselves be weakly exogenous for the parameters of interest.

Thus, for the (relative) present, namely above, the crucial null hypothesis is that the conditioning variables
(regressors or instruments) are valid.

4.3 The Relative Future
The ‘parameters’ should be constant over time, where such parameters are those entities which are anticipated on a
priori grounds to be the basic invariants of the model. Here, an invariant is a parameter which remains constant over a
range of interventions or regime shifts in policy or marginal variables. If xt in (19.7) is weakly exogenous for θ, and θ is
invariant to changes in the distribution of {xt}, then xt is super exogenous for θ. In this formulation, constancy is
necessary for invariance.

Much of the power of PC-GIVE resides in its recursive procedures. These are a vital tool for investigating issues of
invariance and super exogeneity by showing that the behaviour of the xt process did actually alter without changing the
parameters of interest. This is one way of testing assertions that parameters are liable to suffer from the Lucas critique
(see Hendry, 1988b).
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To understand the basis of recursive estimation, we adopt a notation similar to that in textbook treatments. Denote the
specified equation by

where β is asserted to be constant, and if t = s and is zero otherwise). Let the
complete sample period be (1, . . . , T) and consider the least squares outcome on a subsample up to t (for t > k when
there are k regressors in ): with and . If the sample were increased by
one observation, then

However, given , one does not need to invert to calculate . Rather

where . Thus, the inverse can be sequentially updated and follows directly. A similar updating
formula is available for updating the residual sum of squares (RSS) from the innovations given by

where . Hence equation and parameter standard errors are readily calculated:

and

Finally, from the sequence of {RSSt}, sequences of tests (e.g. for parameter constancy) can be calculated, based on
Chow (1960).

If instrumental variables estimators are used, the recursive formulae are similar but more cumbersome (see Hendry
and Neale, 1987). For both types of recursive estimator, a large volume of output is generated which can be analysed
graphically, e.g. plotting {RSSt} against t and so on. The systems estimator is again similar in structure except that yt
becomes a vector of endogenous variables at time t.

Thus, in this group of tests about the (relative) future, denoted above by , the crucial null is parameter constancy.

4.4 Theory Information
Econometrics is essentially concerned with the mutual interplay of economic theory and empirical evidence. Neither
has precedence, and both are essential. It is difficult to characterize this information source in the abstract, partly
because it is so
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pervasive and partly because it is itself under scrutiny. The role which theory information plays depends on the precise
context, as is easily seen by contrasting exercises modelling the demand for cheese with either modelling the supply of
money or the determination of an international exchange rate. Through national income accounts concepts, economics
affects the measurement of the data variables, and theory-models influence the choice of the data to examine and the
classes of models and functional forms to use, as well as suggesting what parameterization is of interest. Conversely, a
major objective of a study in economics may be to test the validity of some theoretical propositions.

Not all theories are equal, and indeed theories differ greatly in their ‘level’, some being very low level and well
established (e.g. those concerned with measuring the output of apples or the volume of visible imports), some being
medium level and widely used but potentially open to revision as knowledge improves (e.g. price indices or concepts of
the capital stock) and yet others being high level and under test (e.g. a rational expectations intertemporal substitution
theory of labour supply, or a surplus-rent theory of house price determination). Thus, that all observations are theory
laden does not entail that data-based studies are impossible or even misguided; rather, the respective roles of evidence
and theory will vary with the reliability of each in the given context (for a more extensive discussion, see Hendry, 1992).

To test any theory requires a baseline, and so first one must determine the extent to which that baseline satisfies the
evaluation criteria. Thus, we are led to distinguish between the statistical model and the econometric model, where the
former is the baseline and is judged on statistical criteria, and the latter is interpreted in the light of the economic
theory but tested against the former (see for example Spanos, 1986). This distinction is at its clearest for the system
and the model thereof in the PCFIML module, where a test of over-identifying restrictions is automatically calculated
to check the coherence between the two.

Overall, one can do little better than state the need for an econometric model to be theory consistent.

4.5 Measurement Information
This too is not open to a general discussion, but relates to the issue of data admissibility: could a given model logically
have generated the observed and future potential data? For example, the unemployment rate must lie between zero
and unity; a logit transformation ensures that, but a linear model could generate negative unemployment (see White
(1990) for a critique). The relevance of such considerations depends on the problem under study, but since (for
example) cointegration between the logarithms of any given set of I(1) variables need not entail cointegration between
the levels, choosing the appropriate functional form can be vitally important.

4.6 Rival Models
The final necessary condition to ensure that a model is in the set of useful contenders is that it is not dominated (in
some sense) by another model. More stringently, one
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might desire that no other model (M2 say) explained features of the data which one's own model (M1) could not. This
idea is formalized in the notion of encompassing other models, to test whether they capture any specific information
not embodied in a given model (see chapter 8; Mizon, 1984; Mizon and Richard, 1986; Hendry and Richard, 1989).
Thus, any contending model should encompass (i.e. account for) previous empirical findings claimed to explain the
given dependent variable(s). Encompassing is denoted by E; thus if the relevant models areM1 andM2,M1E M2 reads
as ‘M1 encompasses M2’.

The ease of handling general models allows embedding approaches to be almost automatic in PC-GIVE.
Encompassing and non-nested hypotheses tests are offered for OLS and instrumental variables, based on Cox (1961),
Pesaran (1974) and Ericsson (1983), that allow pairs of single-equation models to be tested directly. As argued in
Hendry and Richard (1989), encompassing essentially requires a simple model to explain a more general one within
which it is nested (often the union of the simple model with its rivals); this notion is called parsimonious encompassing
and is denoted by Ep.

A crucial property of parsimonious encompassing is its transitivity in the population (degrees of freedom changes in a
sample, as always, can induce reversals). Let ⊂ denote nesting and consider M1 ⊂ M2 ⊂ M3. If M1EpM2 and M2EpM3,
thenM1EpM3. This follows because whenM1EpM2 and M2E M1 (by virtue of nesting it), thenM1 represents a limit to
which M2 can be validly reduced (although further reduction may be feasible as is entailed, for example, by the
sequenceM3 → M2 → M1). SinceM2 is a valid reduction ofM3 by hypothesis, thenM1 must also be a valid reduction
ofM3. Indeed, despite encompassing initially arising as a distinct concept in a different research area, it is an intimate
component of the theory of reduction discussed in section 4.7 and a further major reason for adopting a general-to-
specific methodology.

LetMm be the minimal nesting model of two non-nested modelsM1 andM4 (so that neitherM1 norM4 is a special case
of the other). Mm may be hard to synthesize, and may not be unique without arbitrary restrictions, but this difficulty
actually reflects the inherent problems of any specific-to-general approach and is not a difficulty for encompassing per
se: the relevant issue of interest here is whenM1 does or does not encompass M4, not the route by which the problem
arose. IfM1EpMm, thenM4 can contain no specific information not already embodied inM1 (since otherwiseMm would
reflect that information and M1 could not be a valid reduction). Conversely, ifM1E M4 thenM1EpMm. Thus, it should
not matter whether M1 is tested against M4, M1 ∪ M4 = Mm or any combination thereof (including the orthogonal
complement of Mm relative to M1). Tests which are invariant to such common variables consequently seem essential,
and the F test has that property for linear models.

In the multi-equation context, the econometric model should encompass the statistical system (usually a VAR or
unrestricted reduced form) and this is the test for over-identifying restrictions noted above (see Hendry and Mizon,
1991).

Consequently, the crucial null hypothesis in this information set is that the econometric model should parsimoniously
encompass the statistical system.
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4.7 The Theory of Reduction
We now draw together the elements of the taxonomy. The key concept underpinning the above analysis is that models
are reductions of the DGP, obtained by transforming the initial variables to those which are to be investigated;
marginalizing with respect to the many variables deemed irrelevant (but perhaps incorrectly treated as such);
sequentially factorizing as in subsection (1); and conditioning on other variables deemed to be weakly exogenous (as in
subsection (2)): see chapter 17 and Hendry (1987). Every reduction induces a transformation of the original
parameters of the DGP; consequently, invalid reductions may result in the coefficients of the selected model not
being constant or invariant or even interpretable (as in so-called ‘wrong signs’). Thus, implicitly the analysis really
begins with a far bigger set of variables (say) than the set considered by the current group of investigators, so
for example U includes all the disaggregated variables which were eliminated when only aggregate time series were
retained for analysis. The process of elimination or reduction then transforms into the used above, although
nothing guarantees that itself is constant.

The taxonomy of information sets (1)–(6) arises naturally when considering each possible reduction step, so that
reduction theory is invaluable in the context of model evaluation for delineating null hypotheses and in the context of
discovery for specifying the relevant design criteria. It also offers insights into many of the central concepts of
econometrics in terms of whether a reduction does or does not involve a loss of information. Thus, we can consider
the reverse of the taxonomy by relating extant concepts to associated reduction steps.

1 The theory of sufficient statistics concerns when reduction by marginalizing with respect to a subset of
observations retains all the information relevant to the parameters of interest, which is of key interest in
aggregation.

2 The concept of Granger non-causality concerns when there is no loss of information from marginalizing with
respect to the entire history of a subset of variables (e.g. the elements of which are not included in ):
this concept is germane to marginalizing and not to conditioning (contrast Sims (1980) with chapter 15).

3 The concept of an innovation concerns when there is no information remaining in lagged data: as shown
above, all models can be expressed with innovation errors via sequential factorization; thus, all forms of
autocorrelated error representation are at best ‘convenient simplifications’.

4 The concept of weak exogeneity concerns when there is no loss from ignoring information in the marginal
distributions of the conditioning variables.

5 The concept of invariance or autonomy concerns when the reduction sequence has successfully isolated ‘basic
parameters’ of the DGP.

6 The concept of encompassing concerns when alternative models contain no additional information about the
variables being modelled, so that an encompassing model represents a limit (though not necessarily the final
limit) to the set of feasible reductions.
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The theory of reduction also clarifies and extends the theory of encompassing by revealing that all models are
comparable via the DGP. Indeed, the concept of reduction points up that model design is endemic, but because all
models must arise as reductions of the DGP the pertinent issue is their validity, not how they were designed. Some
designs are inadvertent (as when ‘residual autocorrelation is removed’) whereas others are deliberate (as in general to
specific). Thus, reduction theory even explains why the ‘problems’ approach to econometric modelling arises: overly
reduced empirical representations of the DGP will usually manifest all sorts of symptoms of mis-specification.
However, badly designed models will often result from sequentially ‘correcting’ these symptoms by adopting the
alternative hypothesis corresponding to every null hypothesis that is rejected (see Hendry, 1979a).

Models that are satisfactory against all six of the above information sets are called congruent (with the available
information). Succinctly, PC-GIVE is designed for efficiently developing congruent models and for evaluating existing
models for potential departures from congruency.

5 Test Types
Various test principles are commonly used in econometrics and the three main ones are Wald, Lagrange multiplier
(LM) and likelihood ratio (LR) tests (see Breusch and Pagan, 1980; Engle, 1984). For example, the Chow (1960) test
for parameter constancy is derivable from all three principles, whereas the test of over-identifying restrictions is LR, the
portmanteau tests for autocorrelation in OLS are based on LM and the COMFAC tests are Wald tests. In each
instance, the choice of test type tends to reflect computational ease. Under the relevant null hypothesis and for local
alternatives, the three test types are asymptotically equivalent; however, if equations are mis-specified in other ways
than that under test, or the sample size is small, different inferences can result.

Although LM tests conventionally come in the form TR2 where T is the sample size and is the squared multiple
correlation (TR2 is distributed as χ2), recent research indicates that F forms have more appropriate significance levels
and that χ2 versions reject acceptable models too often (see Kiviet, 1986b).7 Thus, PC-GIVE tends to report F forms
when possible. Pagan (1984) exposits testing in terms of residual diagnostic procedures. Further details on econometric
testing can be found in Harvey (1981a), Spanos (1986) or relevant chapters of The Handbook of Econometrics (Griliches
and Intriligator, 1984).

While a basic feature of PC-GIVE is that most of the test statistics are calculated by a simple choice from a menu,
others are inbuilt (e.g. parameter constancy tests are undertaken if the user initially specifies some post-sample
observations). Similar considerations apply to tests for the validity of any given choice of instrumental variables, and to
the significance of lagged variables in VAR or unrestricted reduced form representations, as well as tests of over-
identifying restrictions in systems.

POSTSCRIPT: ECONOMETRICS OF PC-GIVE 463



6 Modelling Strategies
Turning now to constructive aspects, since the DGP is unknown, any method of discovery might produce a Nobel-
prize winning model, as illustrated by the apocryphal tale of Archimedes' ‘Eureka’ or Poincaré's memoirs.
Nevertheless, different research strategies are likely to have different efficiencies. If one needs to estimate ‘literally
hundreds of regressions’ to develop a single linear relationship between four or five variables, that strategy would seem
to have a low level of efficiency relative to an approach which could locate at least as ‘good’ a model in a couple of
steps. This is the second aspect of PC-GIVE, whereby it facilitates ‘general-to-specific’ model simplification
approaches (see for example Mizon, 1977a; and chapter 6). Unsurprisingly, these mimic the theory of reduction in
section 4.7. Thus, PC-GIVE provides easy ways of formulating polynomials like a(L); solves for a(1), b(1) etc. (where n
might be 8 for quarterly data) for both single equations and vector processes and provides associated standard errors;
and tests for whether (xt−m . . . xt−n) as a group contribute to the model's explanatory power. For single equations,
common factor (COMFAC) simplifications are checked and long-run coefficients such as K in (19.6) are derived
together with standard errors. Finally, all the necessary conditions for model validity which were discussed in section 4
above can be checked.

Naturally, a premium rests on a sensible specification of the initial general model and here is where both economic
theory and previous studies (to be encompassed in due course) play a major guiding role. Economic theories are
powerful at specifying long-run equilibria (such as (19.6) above) which delineate the menu of variables, and earlier
work often indicates at least minimal lag length requirements. Once formulated, the general model should be
tranformed to an interpretable (probably orthogonal) parameterization and then simplified before rigorous testing.
More detailed discussions are provided in Hendry (1986a, 1987, 1992).

7 Model Estimation
Like many of the other aspects considered above, appropriate estimation is a necessary rather than a sufficient
condition for developing useful models. Given a particular model form and a distributional assumption about the data,
the log-likelihood function can be formulated and is denoted where is the vector of unknown parameters of
interest. Maximum likelihood estimators (MLEs) solve for , although that system of first-order conditions
may be non-linear and require iterative solution methods. In large samples, for correctly specified problems, MLEs
have many excellent statistical properties. Moreover, for simultaneous equations models linear in both variables and
parameters, almost all other estimation methods can be obtained as approximate solutions of , based on
choosing different initial values and selecting different numbers of iterative steps in alternative numerical methods.
Thus, estimation within PC-GIVE is encapsulated in a simple formula called the estimator generating equation (EGE:
see chapters 13 and 17 and Hendry et al., 1988). Here we note that OLS and instrumental variables
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estimation are special cases of the EGE when an individual equation is being studied (even if that equation is implicitly
part of a system).

The standard errors of are usually calculated from the inverse of the Hessian

although that formula assumes a correctly specified error (i.e. a homoscedastic innovation). In PC-GIVE,
heteroscedastic consistent standard errors can be computed for OLS.

The distributional assumptions for implicit in the inference of PC-GIVE are that, conditional on having a congruent
representation,

where T is the sample size, the probability limit of is θ (the invariant parameter of interest) and such that
. This assumes that variables are transformed to I(0) and that all the components of congruency are valid.

Naturally, these assumptions should be rigorously evaluated in order to sustain such a conditioning claim since ‘the
three golden rules of econometrics are test, test and test’ (see chapter 1). If a function of θ is of interest, say ,
the standard errors of are derived from the Taylor series approximation

(19.16)

where is the Jacobian of the transformation, and hence

(19.17)

J can usually be derived analytically for cases of interest, but otherwise can be calculated by numerical differentiation.

The preceding analysis of estimation (and implicitly also of testing) sidesteps an important issue which textbook
notation also tends to camouflage, namely that estimation methods and associated tests are applied to the whole
sample directly rather than recursively (adding observations one at a time). As stressed above, PC-GIVE incorporates
a variety of recursive estimators including recursive least squares and recursive instrumental variables and the
generalization of the former to a system of equations with common regressors. Such recursive estimators can yield
evaluation information in a powerful way, yet for least squares are not computationally burden-some relative to direct
methods (see Hendry and Neale, 1987).

8 Conclusion
We have completed our journey through the development of a methodology for empirical modelling of economic time
series. The approach arose from my failures in applying pre-existing methods, described in part I, and the apparent
lack of progressivity in empirical knowledge in the profession. It then gradually evolved through a series of applied
studies which resolved some difficulties but at the cost of creating others. That aspect is traced in part II, which
concluded at a stage where the various
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successful themes could be integrated into a formal structure. The process of formalization was described in part III
which showed how each idea led to others in a mutually supporting sequence. Finally, part IV exposited the
formalization in terms of the empirical problem which figured most prominently in the book and updated the analysis
to the present. The primary aim of the book was to clarify the current status of the methodology by reviewing its
evolution, since the reasons for excluding certain approaches help account for the adoption of others.

I also hope that the book has managed to capture the intellectual excitement engendered by developments wherein a
clarification or new concept in one area resolves a major stumbling block in another, such that a comprehensive
framework emerges from the shadows as an integrated network of ideas, concepts, tools and practices founded on
successful empirical studies. If it has done so, it will have achieved its second main objective.

Notes
1 The actual roots of a(L) = 0 are the inverse of the {λi}, and the term root here is a shorthand for eigenroot, where
a(L) is viewed as a scalar matrix polynomial, for consistency with eigenroots of dynamic systems below.

2 See for example Nelson (1972) and more recently the vector analogues in Doan et al. (1984).
3 The latter anyway seems suspect since few consumers appear to suffer great adjustment costs in response to

increases in their expenditure when income has risen.
4 Lags would arise naturally if y and x were not the levels the economist selects.
5 xt in (19.3) may well be ‘endogenous’ in the sytem context (19.13) even though it is not jointly determined with yt in

(19.3). Also, nj in (19.13) may differ between yt and zt as well as between variables within that partition.
6 This exploits the fact that if P(a) denotes the probability of an event a, then P(ab) = P(a | b) P(b), and this can be

repeated starting at T, T − 1, . . . , 1.
7 Incidentally, Kiviet's results also show that the Chow test and LM tests for autocorrelated residuals are

approximately independently distributed.
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20 Epilogue: The Success of General-To-Specic
Model Selection

Preamble
Throughout this book, we have emphasized the essential roles of methodology in the development of sound
econometric models and of computers in making that econometrics operational. The former study has led to the
theory of reduction as a basis for general-to-specific modelling procedures to build congruent empirical models.
Equally, software packages for data management, graphics, estimation, testing and simulation have underpinned many
of the great strides in the discipline. During the preparation of the present edition, a new generation of computer
programs has appeared which bids fair both to resolve many of the methodological issues about model selection that
have been the subject of debate – by demonstrating that general-to-specific works – and greatly to reduce the burdens
of empirical modelling. This epilogue explains these important developments and discusses their implications.

1 Introduction
Although many aspects of econometric methodology remain in dispute, there is actually a surprising dearth of
evidence on the performance of any approaches. Recent developments seem set to resolve several of the central
problems. To investigate how well general-to-specific (Gets) model selection performs in practice, Hoover and Perez
(1999) simulate an operational algorithm and demonstrate that it does well for linear, dynamic regression models in
many cases, despite excessive initial over-parameterization.

Building on their approach of searching many reduction paths, Krolzig and Hendry (2000) have automated Gets in a
program called PcGets, embodying the principles discussed in earlier chapters.1 First, the initial general statistical model
is tested for congruence, which is maintained throughout the selection process by diagnostic checks, thereby ensuring a
congruent final model. Next, statistically insignificant variables are eliminated by selection tests, both in blocks and
individually. Many



reduction paths are searched, to prevent the algorithm from becoming stuck in a sequence that inadvertently eliminates
a variable that matters and thereby retains other variables as proxies. If several models are selected, encompassing tests
resolve the choice; and if more than one congruent, mutually encompassing choice remains, model-selection criteria
are the final arbiter. Lastly, sub-sample significance helps identify ‘spuriously significant’ regressors.

PcGets, therefore, implements all of the methodological prerequisites argued for in this book. To give an analogy, PcGets
works like a series of sieves. After testing that the initial model is congruent, it first removes the completely irrelevant
variables subject to retaining congruence, then checks all initially feasible reduction paths to remove less obviously
irrelevant variables, before testing between the contending selections by encompassing. The chosen congruent and
encompassing model is then examined by checking the significance of variables in sub-samples to see if any ‘fools gold’
remains. In Monte Carlo experiments, PcGets recovers the data-generation process (DGP) with an accuracy close to
what one would expect if the DGP specification were known, but nevertheless coefficient tests were conducted.
Empirically, on the DHSY and UK M1 data sets discussed extensively above, PcGets selects (in seconds!) models at
least as good as those developed over several years by their authors. Thus, an operational version of the Gets
methodology confirms its power.

Computer automation of model selection is in its infancy, and already considerable progress has been achieved. The
exceptional progress to date merely sets a lower bound on performance. Moreover, there is a burgeoning symbiosis
between the implementation and the theory – developments in either stimulate advances in the other. This additional
chapter explains the background to the Gets approach, the theory that sustains it, its achievements to date, how PcGets
functions, and why it can perform so well despite the apparent statistical problems. It also shows PcGets in action on
the two main empirical studies in chapters 8–10 and 11–12 respectively, and outlines the exciting prospects offered by
extensions of computer automation to model selection based on sound methodology.

The structure of the chapter is as follows. In section 2 we first review, then refute, most of the potential criticisms of
general-to-specific methods. Section 3 describes the main methodological innovations that have opened the door to
computer automation of general-to-specific model selection procedures. Then section 4 explains how PcGets
implements the methodology of reduction, discriminating between the costs of inference and the costs of search, and
describes the steps in the algorithm. Section 5 discusses the factors affecting the probability of selecting relevant
variables, and section 6 considers the determinants of the probability of deleting irrelevant variables. Putting these
together in section 7 enables us to explain why PcGets performs so well. Section 8 reports the outcome of applying
PcGets to the two problems most studied above, namely the DHSY and UK M1 models. Section 9 concludes.

2 Potential Criticisms
Critics of general-to-specific methods (henceforth denoted Gets) have pointed to a number of potential difficulties,
including the problems of ‘lack of identification’,
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‘measurement without theory’, ‘data mining’, ‘pre-test biases’, ‘ignoring selection effects’, ‘repeated testing’, and the
potential ‘path dependence’ of any selection: see inter alia Faust and Whiteman (1997), Koopmans (1947), Lovell
(1983), Judge and Bock (1978), Leamer (1978), Hendry, Leamer and Poirier (1990), and Pagan (1987). Koopmans'
critique followed up the earlier attack by Keynes (1939, 1940) on Tinbergen (1940a, 1940b) (discussed in chapter 1)
and set the scene for doubting all econometric analyses that failed to commence from pre-specified models. Lovell's
study of trying to select a small relation (zero to five regressors) hidden in a large database (forty variables) found a low
success rate, thereby suggesting that search procedures had high costs and supporting an adverse view of data-based
model selection. The fourth criticism concerned applying significance tests to select variables, arguing that the resulting
‘estimator’ was biased in general by being a weighted average of zero (when the variable was excluded) and an unbiased
coefficient (on inclusion). The fifth concerned biases in reported coefficient standard errors from treating the selected
model as if there was no uncertainty in the choice. The next argued that the probability of retaining variables that
should not enter a relationship would be high because a multitude of tests on irrelevant variables must deliver some
‘significant’ outcomes. The sixth suggested that how a model was selected affected its ‘credibility’: at its extreme, we
find the claim in Leamer (1983) that ‘the mapping is the message’, emphasizing the selection process over the
properties of the final choice. In the face of this barrage of criticism, many economists came to doubt the value of
empirical evidence, even to the extent of referring to it as a ‘scientific illusion’ (Summers, 1991). Nevertheless, all of
these criticisms are refutable, as the following sections demonstrate, although it is convenient to analyse them in the
reverse order.

2.1 ‘Path Dependence’
The problem of ‘path dependence’ is whether the results obtained in a modelling exercise depend on the simplification
sequence adopted, or are unique from any given starting-point. Since the ‘quality’ of a model is intrinsic to it, and
progressive research induces a sequence of mutually encompassing congruent models, proponents of Gets consider
that the path adopted is unlikely to matter. As Hendry and Mizon (1990) expressed the matter: ‘the model is the
message’. Nevertheless, it must be true that some simplifications lead to poorer representations than others. Hoover
and Perez (1999) turned this problem on its head by proposing to search many feasible reduction paths. Since different
outcomes might eventuate from different paths searched, this suggestion initially leads to a proliferation of choices.
However, all of these are congruent models, so encompassing tests can be used to select the dominant equation.
Consequently, a unique outcome does result, with the property that it is congruent and undominated, resolving any
‘path dependence’ critique. Moreover, to quote from their paper (p. 189):

The searched specification may, nevertheless, possess epistemic virtues not open to the one-shot test: since the
correct specification necessarily encompasses all incorrect specifications, the fact that the searched specification is
naturally nested within a very general specification, which nests a wide class of alternative specifications in its turn,
strengthens the searched specification as a contender for the place of model-most-congruent-to-the-truth.
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The evidence of strength is not found in the t-statistics, but in the fact of the Darwinian survival of the searched
specification against alternatives and in its natural relationship to the general specification.

Their re-run of Lovell's Monte Carlo certainly resulted in greatly improved performance – yet it is feasible to
considerably improve upon that, as we will see.

2.2 ‘Repeated Testing’
The theory of repeated testing is easily understood: conducting twenty independent tests at a 5 per cent significance
level (i.e. a one-in-twenty risk) when the null is valid should on average lead to one ‘significant’ rejection by chance.
Since model selection entails conducting many tests, it may seem that spurious results will surely be obtained with high
probability. In fact, the probability p that none of the tests rejects at 5 per cent is:

Viewed as a type-I error, 1 − p0.05 = 0.64 is large, but even with so many irrelevant tests, on more than a third of the
occasions that twenty are conducted, none will reject. Most of that 0.64 probability is concentrated on one test rejecting
(0.38) with a 19 per cent chance of two, and a 6 per cent chance of three rejects. However, it is difficult to obtain
spurious t-test values much in excess of three despite repeated testing: as Sargan (1981) pointed out, the t-distribution
is ‘thin tailed’, so even the 0.5 per cent critical value is less than three for fifty degrees of freedom. One solution,
therefore, is to use larger critical values. When forty tests of correct null hypotheses are conducted, p0.05 ≃ 0.13, whereas
p0.005 ≃ 0.89. Unfortunately, more stringent criteria for avoiding rejections when the null is true lower the power of
rejection when it is false.

The logic of repeated testing seems impeccable, and indeed is accurate as a description of the statistical properties of
mis-specification testing: conducting four independent diagnostic tests at 5 per cent will lead to about 19 per cent false
rejections. Nevertheless, even in that context, there are possible solutions – such as using a single combined test –
which can substantially lower the size without too great a power loss (see e.g. Godfrey and Veale, 1999). It is much less
clear that the analysis is a valid characterization of selection procedures in general. The ideas in Hoover and Perez
(1999) not only make computer automation of model selection practical, they also reveal a hidden assumption in
previous analyses thereof, namely that just one path is searched. Searching just one path is generally detrimental,
because there is no ‘error correction’ for wrong reductions – an early inappropriate decision can lead to an overly large,
yet mis-specified final selection. That difficulty may well explain the poor characteristics of ‘step-wise’ regression,
which Leamer (1983) parodies as ‘unwise’. Searching all the feasible paths increases the chances that some will retain
the variables which matter, while eliminating those which do not. In the smaller set that remains, the importance of the
relevant variables should be clearer. In fact, the resulting theory dramatically alters our understanding of the model-
selection problem: the serious practical difficulty is not one of avoiding
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‘spuriously significant’ regressors because of ‘repeated testing’ when so many hypotheses are tested – multiplied many-
fold by all the paths searched; it is one of retaining all the variables that genuinely matter. In general, our models will be
too small, omitting relevant factors that happen not to be ‘significant’ in the given sample, rather than too large by
retaining adventitiously significant variables (see section 5).

2.3 ‘Selection Effects’
If a wide variety of models would be reported when applying any given selection procedure to different samples from a
common DGP, then the results using a single sample must apparently understate the ‘true’ uncertainty. Coefficient
standard errors only reflect sampling variation conditional on a fixed specification, with no additional terms from
changes in that specification (see e.g. Chatfield, 1995). Thus, it may be felt, one should ‘inflate’ reported uncertainty to
reflect the fact that models were selected from data evidence. To understand this criticism – and its rebuttal – two
concepts are involved: that of a ‘local DGP’ and that of ‘collinearity’, so we consider these aspects in turn.

From the theory of reduction, there always exists a unique ‘local DGP’ (denoted LDGP) of the variables being
modelled, formally derived from the actual DGP by reduction (see inter alia Hendry, 1995a; Mizon, 1995; Bontemps
and Mizon, 1996). Any economy under study may comprise billions of decisions and millions of recorded variables,
generated by the DGP of agents' behaviour and the recording procedures. The LDGP is the corresponding
representation for the subset of variables under analysis such that, were the LDGP known, the outcomes could be
predicted up to an innovation error. Thus, computer-generated data from the LDGP would differ only randomly from
the actual values, and would do so in the same way as equivalent data generated from the DGP itself. No assumptions
about ‘constant parameters’ or stationary data are needed in justifying this analysis, although highly non-constant
coefficients in any resulting econometric model would render it useless. The implication is that selection must be
judged against the LDGP.

Reported empirical estimates and associated measures of uncertainty can only be judged conditional on accepting the
resulting equation as a good approximation to the LDGP. Undominated (i.e. encompassing) congruent models have a
strong claim to provide such an approximation, and conditional on that, their reported uncertainty is indeed a good
measure of the uncertainty inherent in such a specification for the relevant LDGP. Notice that their ‘closeness’ to the
actual DGP does not matter for this argument, albeit that it is crucial in general if econometric models are to be of
practical value. Consequently, the remaining question concerns the reliability with which the same selection will be
made in repeated samples. Surprisingly, this is difficult to determine. To understand which aspects of selection
genuinely increase uncertainty and which are artefacts, we must re-consider ‘collinearity’.

Perfect collinearity denotes an exact linear dependence between variables; perfect orthogonality denotes no linear
dependencies. However, any state in between these is harder both to define and to measure as it depends on which
‘version’ of a model is inspected. Most econometric models contain subsets of variables that are invariant to linear
transformations, whereas measures of collinearity are not invariant: if two
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standardized variables x and z are nearly perfectly correlated, each can act as a close proxy for the other, yet x + z and
x − z are almost uncorrelated. Moreover, observed correlation matrices are not reliable indicators of potential
problems in determining whether either or both variables should enter a model – the source of their correlation
matters. For example, inter-variable correlations of 0.9999 easily arise in systems with unit roots and drift, but there is
no difficulty determining the relevance of variables. Conversely, in the simple bivariate normal

(20.1)

where we are interested in the DGP

(20.2)

(for ‘well-behaved’ εt, say), when ρ = 0.9999 there would be almost no hope of determining which variables mattered
in (20.2), even if the DGP formulation were known. In economic time series, however, the former case is common,
whereas (20.1) is almost irrelevant (although it might occur when trying to let estimation determine which of several
possible measures of a variable is ‘best’). Transforming the variables to a ‘near-orthogonal’ representation before
modelling would substantially resolve this problem; otherwise, eliminating one of the two variables seems inevitable.
Of course, which is dropped depends on the vagaries of sampling, and that might be thought to induce considerable
‘unmeasured uncertainty’ as the chosen model oscillates between retaining xt or zt. However, either variable individually
is a near-perfect proxy for the dependence of yt on β xt + γ zt, and so long as the entire system remains constant,
selecting either, or the appropriate sum, does not actually increase the uncertainty greatly. That remains true even when
one of the variables is irrelevant, although then the multiple-path search is highly likely to select the correct equation.
And if the system is not constant, the ‘collinearity’ will be broken.

Nevertheless, the outcome of a Monte Carlo model-selection study of (20.2) given (20.1) when ρ = 0.9999 might
suggest that ‘model uncertainty’ was large – and coefficient estimates badly biased – simply because different variables
were retained in different replications. The appropriate metric is to see how well β xt + γ zt is captured. In some cases,
models are estimated to facilitate economic policy, and in such a ‘collinear’ setting changing only one variable will not
have the anticipated outcome – although it will end the ‘collinearity’ and so allow precise estimates of the separate
effects. The transformation of the variables to a ‘near-orthogonal’ representation before modelling is assumed to have
occurred in the remainder of this chapter. By having a high probability of selecting the LDGP in such an orthogonal
setting, the reported uncertainties (such as estimated coefficient standard errors) in PcGets are not much distorted by
selection effects.

2.4 ‘Pre-Test Problems’
To understand the ‘pre-test’ problem, we must briefly distinguish between the costs of inference and the costs of
search, discussed more fully in section 4.1. Statistical tests are designed to have non-degenerate null distributions, and
hence have non-zero
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size and (generally) non-unit power. Consequently, even when the LDGP is known a priori from economic theory, if an
investigator does not know that the resulting model is in fact ‘true’, but seeks to test conventional null hypotheses on
its coefficients, then in general inferential mistakes must occur. These will vary as a function of the characteristics of
the LDGP and of the particular data sample drawn, but for many parameter values the selected model will differ from
the LDGP, and hence have biased coefficients. This is the ‘pre-test’ problem and the associated costs are those of
inference, since no ‘search’ is involved, in the sense that the model is the LDGP and no simplification is required.

The costs of search are the additional mistakes introduced by commencing from an initial model that is much larger
than the LDGP. Thus, search costs comprise retaining any irrelevant variables significant by chance, as well as omitting
relevant variables, more often than an investigator who began from the LDGP.

The definition of ‘success’ implicit in this analysis is ‘exactly locating the LDGP’. In economics, this does not seem a
sensible measure, so to judge the ‘success’ of Gets, a different metric is proposed, namely the additional costs of
commencing from an overly large model rather than from the LDGP. This measure does not resolve the ‘pre-test’
problem, but it clarifies how much worse empirical research will be by having to search for the relevant variables in a
morass of potential – but actually irrelevant – candidates. Surprisingly, these additional costs are small, as shown in
section 7: PcGets retains relevant variables with probabilities close to those achieved when testing the LDGP, and omits
irrelevant variables most of the time. Of course, such an outcome does not remove the costs of inference, but it does
argue for commencing from a general specification that nests the likely LDGP, since doing so has low costs, whereas
the converse of commencing from too simple a specification precludes ever locating the LDGP.

2.5 ‘Data Mining’
This pejorative term has many possible meanings, some of which correspond to activities unlikely to be productive of
useful results, and some of which are actually excellent modelling procedures (see e.g. Leamer, 1978; Sargan, 1973;
Hendry, 1995a; Campos and Ericsson, 1999, who distinguish four senses and propose remedies for each). Searching
through ‘literally hundreds of regressions’ (as in Friedman and Schwartz, 1982) for a result that corroborates a prior
theory is a procedure with unknown size and power, but seems almost certain to produce spurious findings. We call
such an approach, and related activities, ‘weak data mining’. ‘Strong data mining’ occurs when conflicting evidence is
deliberately hidden, ignored, or not reported, so is clearly unscientific. Fortunately, both forms are open to adversarial
scrutiny by checking how well the resulting model encompasses rival studies using the same data set. Strong data
mining fails immediately as conflicting evidence already exists by definition; weak fails when rival models cannot be
encompassed – and if they can, then an undominated model was selected despite the inappropriate procedure. Thus,
stringent critical evaluation renders this criticism otiose. Gilbert (1986) suggests separating the output of any empirical
study into two groups, where the first contains only redundant results (those parsimoniously encompassed by the
finally selected
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model), and the second contains all other findings. If the second group is not null, then there has been data mining. On
such a characterization, Gets cannot involve data mining, despite depending heavily on data-basing.

We have already disposed of the repeated testing’ objection (which argues that simply conducting multiple tests will
induce significant outcomes by chance), of the ‘selection’ problem (that the uncertainty in the reported results may not
reflect the true uncertainty in the study), and of the ‘collinearity’ problem (selecting variables that chance to be
correlated with the relevant factors).

On the positive side, productive data mining requires a procedure that has a high probability of locating the LDGP. In
Monte Carlo, such an attribute can be checked, since the DGP itself is known: methods which do badly in such a
setting seem unlikely to do well in empirical research. Structured searches, such as those embodied in PcGets, can have
low search costs and perform well in simulation experiments, suggesting that ‘data mining’ may end up being a
compliment.

2.6 ‘Measurement Without Theory’
‘Measurement without theory’ has long been an insult capable of virtually dismissing empirical work from serious
consideration. There are two main strands, deriving respectively from the criticisms by Keynes (1939, 1940) of
Tinbergen (1940a, 1940b), and from those by Koopmans (1947) of Burns and Mitchell (1946).

In chapter 1, I expressed the worry that the criticisms of Tinbergen by Keynes remained unrebutted. Keynes had
claimed a number of ‘preconditions’ for the validity of inference from data, including a complete prior theoretical
analysis, with all relevant phenomena measurable, explanatory variables which represented independent influences,
pre-selected lag length, choice of variables and trend, and time homogeneity (or parameter constancy). In Keynes's
view, Tinbergen's work did not satisfy such preconditions, so he scornfully dismissed it (see the many quotes in chapter
1). In retrospect, we can see that Keynes held to an extreme form of the ‘axiom of correct specification’ (see Leamer,
1978), namely that statistical work in economics is impossible without knowledge of everything in advance. If partial
explanations were devoid of use, and if empirically we could discover nothing not already known, then no science
could have progressed. This is clearly refuted by the historical record. Given my discussion in the Preamble to chapter
2, I am surprised it took me so long to understand the fallacy in Keynes's argument: since theoretical models are
incomplete, and possibly incorrect, an econometrics that was forced to use such theories as the only permissible
starting-point for data analysis could contribute no useful knowledge, except perhaps rejecting the theories. When
invariant features of reality exist, progressive research can discover them in part without prior knowledge of the whole.
Thus, Keynes's requirement of a complete theoretical specification prior to data analysis is not necessary (see Hendry,
1995b). Indeed, a sequence of mutually encompassing LDGPs can be visualized, each of which is a valid
representation of the phenomena under analysis. Should no invariant features of reality exist, neither theories nor
econometric models would be of much practical value, even if the former could still produce abstract generalities of
the form commended by Robbins (1932).

A similar analysis applies to the attack by Koopmans on the study by Burns and
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Mitchell. To rationalize Koopmans' belief that economics was already at a ‘Newtonian stage’, we require the (unstated)
assumption that only one sort of economic theory is applicable, that it is correct, and that it is immutable (see Hendry
and Morgan, 1995). Yet economic theory was progressing rapidly at the time (and still is), radically altering its views,
while being the subject of considerable dissension (as now). Koopmans correctly stressed that structural relations were
hidden behind observed regularities and needed to be prised out, requiring strong assumptions. But he then concluded
that ‘without resort to theory, in the sense indicated, conclusions relevant to the guidance of economic policies cannot
be drawn’. Such an argument may seem reasonable when backed by physics analogies, but is not sustainable in general.
Drawing on biochemistry for a counterexample, aspirin is perhaps the most common scientific intervention in
everyday life as a painkiller. The initial use of aspirin (acetylsalicylic acid) arose as a folklore remedy for hangovers,
based on brewing willow-tree bark – of which it is a natural constituent; but until recently there was no rigorous theory
as to how aspirin cured headaches (see Weissmann, 1991). That did not stop it from working: policy-relevant
conclusions were easily drawn despite the absence of theory. More recently, and still without theoretical foundations,
aspirin has also come to be used to reduce heart problems.

Theories may be distinguished in terms of their levels: low-level theories are well established and widely accepted (e.g.
the optical theory of telescopes), whereas high-level theories assume the validity of lower levels and are subject to
doubt (as in theories of the accelerating expansion of the universe). Facts are items of empirical information which
depend only on low-level theories and measurements, and can be reliably replicated. All empirical evidence is theory-
laden to some degree, so ‘measurement without theory’ is impossible and must relate to the level of the theories used.
Thus, the appropriate blend of theory and empirical evidence is an issue of research efficiency, not validity.

2.7 ‘Lack of Identication’
As so often in debates, confusion is enhanced by imprecise definitions and concepts. ‘Identification’ has several
possible attributes (as discussed in Hendry, 1997), namely ‘uniqueness’, ‘satisfying the required interpretation’, and
‘correspondence to the desired entity’. First, a non-unique result is clearly not identified, so the first attribute is
necessary, as the discussion by Koopmans, Rubin and Leipnik (1950) of conditions for the uniqueness of coefficients
in simultaneous systems makes clear. However, it is insufficient, since uniqueness can be achieved by arbitrary
restrictions (criticized by Sims, 1980, inter alia). Secondly, there may exist a unique combination of several relationships
that is certain to be found in a given context, but then be incorrectly interpreted as one of those equations: for
example, a mix of supply and demand forces in a reduced form that has a positive price effect, but is wrongly
interpreted as a supply relation. Finally, a unique, interpretable model of a money-demand relation may in fact
correspond to a Central Bank's supply schedule, and this too is sometimes called ‘a failure to identify the demand
relation’.

Because the economy is highly interdependent, simultaneity was long believed to be a serious problem, inducing
spurious relations unless an a priori theory clarified
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in advance what connections should exist. Higher frequencies of observation have attenuated, but not eliminated, such
a uniqueness problem. However, simultaneity is not invariant under linear transformations – although linear systems
are – and is easily avoided by eschewing contemporaneous regressors until weak exogeneity is established.
Conditioning ensures a unique outcome, but it cannot guarantee that the resulting model corresponds to the
underlying reality.

A substantial role for ‘rational expectations’ might also pose problems when no expectations data are available, but its
extreme informational and processing assumptions suggest it has little empirical relevance (see e.g. Pesaran, 1987;
Hendry, 2000). Fortunately, the regular occurrence of structural breaks highlights mis-matches between models and
their corresponding LDGPs, so progressive research helps ensure their convergence.

2.8 Implications
The upshot of these attacks on empirical research was that almost all econometric studies had to commence from pre-
specified models (or pretend they did). Summers (1991) failed to notice that this was the source of his claimed
‘scientific illusion’: econometric evidence had become theory-dependent, with little value added, and a strong
propensity to be discarded when fashions in theory changed. Much empirical evidence depends only on low-level
theories which are part of the background knowledge base – not subject to scrutiny in the current analysis – so a data-
based approach to studying the economy is feasible. Since theory dependence has at least as many drawbacks as
sample dependence, data-modelling procedures are essential (see Hendry, 1995a).

We conclude that every criticism of Gets can be refuted. At the theoretical level, White (1990) showed that, with
sufficiently rigorous testing, the selected model will converge to the DGP. Thus, ‘overfitting’ (and mis-specification)
problems are primarily finite sample. Moreover, Mayo (1981) emphasized that diagnostic test information is effectively
independent of the sufficient statistics from which parameter estimates are derived. Thus, there is theoretical support
for a Gets approach. We will now consider some of the main developments that sustain this more positive view that
Gets will also accurately locate a congruent encompassing approximation to the LDGP, commencing with the
developments in Hoover and Perez (1999).

3 Methodological Innovations
In the course of their evaluation of general-to-specific methods, Hoover and Perez (1999) introduce five important
innovations potentially relevant to every empirical modelling approach. These developments arose from the exigencies
of programming Gets in order to conduct Monte Carlo simulations of its properties. Nevertheless, their applicability
extends well beyond ensuring that the algorithm is operational.2

Their first innovation is to search many different reduction paths from the general unrestricted model (GUM), not just
the path given by eliminating variables in order from the smallest t-value upwards. Each search path is terminated
either when there
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are no further feasible reductions (e.g. all remaining variables satisfy the simplification criterion, perhaps | t| > 2) or
when a deletion induces a significant diagnostic test outcome. The models resulting from each search path are stored
for later analysis. The advantage of this development is that any single choice could get ‘stuck’ in a path that initially
deleted a variable that really mattered in the DGP, thereby retaining many other variables as proxies, and hence ending
with non-parsimonious, incorrect, selections. Other paths help avoid that ‘mistake’; so when combined, they produce
selections which are both more parsimonious and less mis-specified.

The second innovation is simply to ensure that the algorithm undertakes only reductions which leave diagnostic tests
insignificant. This is essential to retain congruence and is always an integral part of the recommended approach, but
many search procedures fail to implement such a check. Moreover, Hoover and Perez are then able to investigate the
interaction of variable selection and diagnostic testing. This has eluded most attempts at theoretical analysis, and
although Monte Carlo is always problem-dependent, their findings cohere with what theory exists. Since the null is
true, any diagnostic checking acts as a constraint on reduction, so must increase the overall ‘size’ of the selection
process (in terms of retaining spurious variables). Thus, the choice of which – and how many – diagnostic tests to
compute is important if a search is to progress towards simplification. It is also essential to ensure that the selected
tests have the correct size, with a relatively small size for each (e.g. 1 per cent when tests for residual autocorrelation,
non-normality, non-constancy, and heteroscedasticity are all used) to keep the overall null-rejection frequency low.
Present approaches to diagnostic testing emphasize power to detect mis-specification, so may veer towards over-
selection. Conversely, by checking diagnostically at every stage, false deletions can be detected, so the final selection of
the relevant variables could end closer to the DGP. Moreover, by ensuring congruence, the conventional standard
errors used at every step are consistent estimators, and so valid inferences are sustained.

Of course, by searching several paths, a number of distinct (non-nested) models might be found. This leads to their
third innovation: the suggestion of using encompassing tests to select between the contenders generated by alternative
paths from a common initial model. (Hoover and Perez actually select the best-fitting model in their recorded
outcomes, but they cite the encompassing principle.) As a result, either there will be a unique encompassing selection,
or if several mutually encompassing models remain, one can be selected by an information criterion. Consequently,
despite there being many searches, a unique outcome is guaranteed; and by conducting diagnostic tests at every search
stage, with a path terminated only if every feasible deletion induces an insignificant diagnostic test value, the final
selection is bound to be congruent, and hence must parsimoniously encompass the initial model. This role of
encompassing in selecting between models resulting from different search paths has not been studied previously:
despite working on both the Gets approach and encompassing for many years, it is also an idea that I completely
missed, even though rival models could easily be construed in that way. With hindsight, encompassing is probably an
important aspect in ‘controlling’ the overall size of a Gets selection process given the many paths searched, entailing
perhaps hundreds of tests.

The fourth innovation of Hoover and Perez is the use of sub-samples to refine the
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selection of variables (as distinct from testing constancy). Of course, recursive estimation has long been in the core of
the Gets research programme; but it was oriented towards checking constancy, whereas their insight is to use the same
information to determine overall significance. Since a central t-test wanders around the origin, the probability is low
that an effect which is significant only by chance in the full sample will also be significant in two independent sub-
samples. Conversely, a non-central t-test diverges, so should be significant in both sub-samples, perhaps at a lower level
of significance to reflect the use of smaller samples. Hoover and Perez use over-lapping samples, but the logic
generalizes, and an appropriate probability analysis is presented in Hendry and Krolzig (2000). The idea works well in
their Monte Carlo, and suggests the possibility of reducing ‘overfitting’ relative to their original algorithm: it should be a
particularly powerful strategy for model selection when breaks occur in some of the marginal relations over either of
the sub-samples.

Fifthly, Hoover and Perez clarify various categories of ‘success’ and ‘failure’ in addition to the success of precisely
locating the DGP. This is an important refinement relative to Lovell, and helps reveal which models are selected when
‘incorrect’ choices are made. They sensibly refer to the algorithm failing (rather than the methodology): improvements
in the algorithm could alter the simulation outcomes without changing the methodology, and do so in Hendry and
Krolzig (1999b). Some investigators might regard their category 2 (retaining the DGP variables plus some others) as
the worst kind of failure, by spurious overfitting; whereas others would condemn the inability of the search procedure
to detect effects that might be of policy significance. Neither type of error is inherent in the methodology per se, or the
algorithm, but can be selected by the choices of critical values at the many stages involved in the search process. In our
re-run of these experiments, lowering the significance levels of the diagnostic tests from (say) 0.05 to 0.01 reduced the
overall selection size noticeably (owing to the difference in powering up 0.95 and 0.99 repeatedly), without greatly
affecting the power of the model-selection procedure. However, it must be remembered that the diagnostics simply
acted as constraints on simplification in such experiments, since the errors were well behaved, and there must be
corresponding power losses in detecting error mis-specifications. Increasing the significance levels of the selection t-
tests also reduces the empirical size, but lowers the power more noticeably for variables with population t-values
smaller than 3. This trade-off is therefore selectable by an investigator. Consequently, whether or not the ‘LSE’
approach over- or under-selects is not intrinsic to it, but depends on how it is used. The advocacy of smaller
significance levels (1 per cent versus 5 per cent) for diagnostic tests probably has much to commend it; section 7
comments on selection-test significance levels.

To investigate how well such an algorithm worked, Hoover and Perez re-ran the experiments in Lovell (1983), who
had sought to evaluate the ability of some ‘model-selection methods’ to locate a single conditional equation (with from
zero to five regressors) from a large macroeconomic database (containing up to forty variables once lags were
included). As noted above, Lovell found that none of the methods worked very well, inducing a belief in the
economics profession that ‘data mining’ was best avoided. Although the Lovell database implicitly embodies many
‘hidden’ relations between variables as in real economies, and is of a scale and complexity
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that can occur in empirical macroeconomics, beginning with forty regressors and hoping to select precisely the correct
subset of causal variables by statistical criteria is incredibly optimistic. Moreover, it is far from what was advised in this
book, as such an approach completely ignores the information available from economic analysis and fails to transform
to a near-orthogonal parameterization. Finally, none of the methods simulated by Lovell approaches the structured
nature of Gets, and hence earlier poor findings have no implications for how well Gets might perform when embodied
in an algorithm that fully implements the methodology.

We next dispose of a potential criticism of their simulation procedure (not of their algorithm). Hoover and Perez start
with highly over-parameterized models which nest the DGP, and conduct mis-specification tests for their congruence:
since the null hypotheses are correct, all rejections are chance. However, some rejections will occur, leading to the
initial model (and the DGP) being rejected. This must also be a feature of empirical studies, unless an investigator
knew the truth, and knew that she knew it, so no mis-specification tests were needed. Such samples are aberrant, but in
a non-replicable world one would tentatively conclude that their features were aspects of the DGP. Thus, either the test
size must be reduced – so the decision becomes one of not rejecting – or the starting-point re-specified to remove the
problem (Hoover and Perez omit samples where several diagnostic test rejections occur). In Monte Carlo, the former
seems the feasible solution; empirically the latter will usually occur, so a study of the consequences of doing so needs to
be undertaken.

In these experiments, one variable (yt) is generated by simulation as a function of the observed values (xi,t, i = 1, . . . , k)
of a few other database variables (k = 0, . . . , 5) with parameter vector β, plus a set of random numbers {εt}:

(20.3)

Since all the {xi,t} are held fixed across replications, and the error processes are mutually and serially independent, they
are strongly exogenous for β (see Engle, Hendry and Richard, 1983). Then the generated {yt} is regressed on all the
database variables plus their lags, commencing from the GUM:

(20.4)

The ‘methodology’ is tested by seeing how often (20.3) is found when commencing from (20.4). In most experiments
it performed admirably – and where it did less well, refinements to the algorithm are feasible to improve its behaviour,
without changing the methodology, as we now discuss.

4 Improving the Algorithm
The most important long-run contribution of Hoover and Perez (1999) may be that it also opened the door to a range
of important enhancements to their ‘baseline’ algorithm. We first refine the important distinction between the costs of
inference
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and the costs of search, and then consider some feasible improvements to the search process.

4.1 Costs of Inference and Costs of Search
The distinction between the costs of inference and those of search is essential to clarify the notion of the ‘success’ of a
search algorithm as discussed in section 2.4. Judging a search procedure by whether or not it exactly locates the DGP
implicitly entails a baseline where the truth is known, and the investigator is certain that it is the truth. Rather, to isolate
the costs of selection, we judge its retention and deletion probabilities against the same procedures applied to testing
the DGP. For example, in each replication of a Monte Carlo simulation experiment, both the correct DGP model and
the GUM are fitted, and the same selection criteria applied: one then evaluates the selection rates for the causal
variables when commencing from the GUM with the selection rates when no search is needed (i.e. inference is
conducted once for each causal variable in the DGP), and adds any additional (non-causal) variables that are retained.

Let denote the probability of retaining the ith variable when commencing from the DGP using a selection test
sequence with significance level α. Then is the cost of inference. Let denote the probability of retaining the
ith variable when commencing from the GUM, also using significance level α. Then pure search costs are .
For irrelevant variables, , so the whole cost of retaining adventitiously significant variables is attributed to search,
plus any additional costs for failing to retain relevant variables. The former can be lowered by increasing the
significance levels of selection tests, but at the cost of reducing the latter. However, it is feasible to lower size and raise
power simultaneously by an improved search algorithm.

4.2 Improvements Embodied in PcGets
First, PcGets undertakes ‘pre-search’ simplification F-tests to exclude variables from the GUM, after which the GUM is
reformulated. Since variables found to be irrelevant on such tests are excluded from later analyses, this step uses a
loose significance level (such as 75 per cent or 50 per cent). Such a high value might seem surprising given the
argument that selection leads to over-parameterization, but it confirms that such claims are not sustainable. We return
to this issue in section 7 below.

Secondly, diagnostic tests of the GUM will be significant by chance with an average frequency determined by the pre-
selected level under the null. Empirical investigators would undoubtedly re-specify the GUM in such a case, since they
cannot discriminate between rejection due to high power and to type-I errors. In the absence of such re-specification,
to proceed down any reduction path our algorithm must raise the required significance level of diagnostic tests which
reject, and so terminates search paths only when that new level is violated (Hoover and Perez drop such tests from the
checking set, so an ever-increasing problem of that type could lurk undetected).

Block tests also constitute feasible search paths, in addition to individual-coefficient
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tests. Both theory and practical experience to date suggest that block tests produce more parsimonious final selections
yet have a higher probability of retaining relevant variables.

Thirdly, after the initial selection of simplified models from the GUM, formal encompassing tests between the
contenders eliminate those which are dominated but do not dominate any other model. If a unique choice does not
result, then we form the union of the resulting models, which becomes a new starting-point for path searches. The
algorithm repeats until the union is unchanged between successive rounds. The final model, if it is not already unique,
is selected by an information criterion (such as BIC: see Schwarz, 1978).

Fourthly, for that unique final model, the sub-sample reliability of its coefficients is evaluated by the proposal in
Hoover and Perez for overlapping split-sample checks. The algorithm then concludes that some variables are definitely
excluded (those not in the final model); some are definitely included (these satisfy the selection criterion in the final
model and both sub-samples); and some have an uncertain role, varying from a reliability of zero (e.g. included in the
final model, but insignificant – probably because deleting it induces a significant diagnostic – and insignificant in both
sub-samples), through to an upper bound pre-set by the user (significant overall and in one sub-sample). Investigators
are at liberty to interpret such evidence as they see fit, noting that further simplification of the selected congruent
model will induce some violations of congruence or encompassing.

4.3 Integrated Variables
To date, PcGets conducts all inferences as if the data were not integrated (denoted |(0)). Almost all selection tests
remain valid even when the data are integrated of order one (|(1)), since only t- or F-tests for an effect that
corresponds to a unit root require non-standard critical values (see Sims, Stock and Watson, 1990). The empirical
examples on |(1) data provided in section 8 below do not reveal any problems, but in principle it might be useful to
implement cointegration tests and appropriate differencing transformations as initial reductions. Further, Wooldridge
(1999) proves that mis-specification tests of the GUM are valid even for integrated time series, and we presume that
this also holds for simplifications thereof.

4.4 Specifying the GUM
The starting-point for Gets model selection is the general unrestricted model, so the key issues concern its specification
and congruence. The larger the initial regressor set, the more likely it is that adventitious effects will be retained; but
the smaller the GUM, the more likely that key variables will be omitted. Further, the less orthogonality between
variables, the more ‘confusion’ the algorithm faces, leading to a proliferation of mutually encompassing models, where
final choices may differ only marginally (e.g. lag 2 versus 1). Finally, the initial specification must be congruent, with no
mis-specification tests failed at the outset. Empirically, the GUM would be revised if such tests rejected, and little is
known about the consequences of doing so (although PcGets will enable such studies in the near future). As noted, in
Monte
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Carlo experiments, the program automatically changes the significance levels of diagnostic tests following rejections on
the GUM.

Davidson and Hendry (1981: 257) mentioned four main problems in the general-to-specific methodology: (i) the
chosen ‘general’ model can be inadequate, comprising too special a case of the LDGP; (ii) data limitations may
preclude specifying the desired relation; (iii) the non-existence of an optimal sequence for simplification leaves open the
choice of reduction path; and (iv) potentially large type-II error probabilities of the individual tests may be needed to
avoid a high type-I error of the overall sequence. By adopting the ‘multiple path’ development of Hoover and Perez
(1999) and implementing a range of important improvements, PcGets overcomes the problems associated with points
(iii) and (iv). However, the empirical success of PcGets must depend crucially on the creativity of each researcher in
specifying the general model, and the feasibility of estimating it from the available data – aspects beyond the capabilities
of the program, other than the diagnostic tests serving their usual role of revealing model mis-specification.

There is a central role for economic theory in the modelling process in ‘prior specification’, ‘prior simplification’, and
suggesting admissible data transforms. The first of these relates to the inclusion of potentially relevant variables, the
second to the exclusion of irrelevant effects, and the third to the appropriate formulations in which the influences to be
included are entered, such as log or ratio transforms etc., differences and cointegration vectors, and any likely linear
transformations that might enhance orthogonality between regressors. The ‘LSE approach’ argued for a close link of
theory and model, and explicitly opposed ‘running regressions on every variable in the database’ as in Lovell (1983)
(see e.g. Hendry and Ericsson, 1991a). Unfortunately, economic theory often provides no basis for specifying the lag
lengths in empirical macro-models: even when a theoretical model is dynamic, a ‘time period’ is usually not well
defined. In practice, lags are chosen either for analytical convenience (e.g. first-order differential equation systems) or
to allow for some desirable features (as in the choice of a linear, second-order difference equation to replicate cycles).
Therefore, we adopt the approach of starting with an unrestricted autoregressive-distributed lag model with a maximal
lag length set according to available evidence (e.g. as four or five for quarterly time series, to allow for seasonal
dynamics). Prior analysis remains essential for appropriate parameterizations, functional forms, choice of variables, lag
lengths, and indicator variables (including seasonals, special events, etc.). Orthogonalization helps notably in selecting a
unique representation, as does validly reducing the initial GUM. It is to be hoped that automating the reduction
process will enable researchers to concentrate their efforts on designing the GUM, which could significantly improve
the empirical success of the algorithm.

4.5 Stages of PcGets
Building on the developments just described, the ‘testimation’ process of PcGets depends on the choice of:

• the n diagnostic checks in the test battery;
• the parameters of these diagnostic tests;
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• the significance levels η of the n diagnostics;
• pre-search F-test simplifications;
• the significance levels δ of such tests;
• the simplification tests (t and/or F);
• the significance levels α of the simplification tests;
• the significance levels γ of the encompassing tests;
• the sub-sample split;
• the significance levels κ of the sub-sample tests.

PcGets allows users to set as options: the choices of diagnostic and selection tests, the significance levels for diagnostic
tests, pre-selection tests, block F-tests, t-test selections, encompassing tests, and split-sample tests, as well as the final-
model selection criterion, and the percentage overlap in the sub-sample split. Then PcGets simply implements all the
principles discussed in earlier chapters: given a congruent general dynamic statistical model, selection tests eliminate
statistically insignificant variables, diagnostic checks ensure a congruent final model, encompassing resolves model
choice, and sub-sample tests help eliminate ‘spuriously significant’ regressors. Both its Monte Carlo success in locating
the DGP and its empirical behaviour for the DHSY and UK M1 data sets confirm the power of this operational
version of the methodology.

Each of the above stages is susceptible to analysis conditional on reaching that stage; and some combinations of steps
can be formalized (e.g. one round of selection together with diagnostic testing); but the complex interactions between
all the stages have eluded analysis to date. Moreover, forced search paths can be implemented, so an investigator can
study the best model which can be selected subject to ensuring the presence of a subset of the variables, perhaps of
major interest theoretically. The next two sections consider the probabilities of selecting relevant, and deleting
irrelevant, variables, respectively. Using the ‘conventional’ approaches described above, the outlook seems bleak, but
section 7 suggests that substantial improvements are feasible.

5 Selection Probabilities
One might hardly expect a search algorithm to do better than the same principles of testing applied to the DGP. When
searching a large database for that DGP, an investigator could well retain the relevant regressors much less often than
when the correct specification is known, in addition to retaining irrelevant variables in the finally selected model. We
first examine the problem of retaining significant variables commencing from the DGP, then turn to any additional
power losses resulting from search.

For a regression coefficient βi, hypothesis tests of the null H0: βi = 0 will reject with a probability dependent on the non-
centrality parameter of the test. We consider the slightly more general setting where t-tests are used to check an
hypothesis, denoted t(n, ψ) for n degrees of freedom, when ψ is the non-centrality parameter, equal to zero under the
null. For a critical value cα, P(| t| ≥ cα | H0) = α, where H0 implies ψ = 0. The following table records some
approximate power calculations when one

EPILOGUE: THE SUCCESS OF GENERAL-TO-SPECIFIC 483



coefficient null hypothesis is tested and when four are tested, in each case, precisely once.

t-test powers
ψ n α P(| t| ≥ cα) P(| t| ≥ cα)4

1 100 0.05 0.16 0.001
2 50 0.05 0.50 0.063
2 100 0.01 0.26 0.005
3 50 0.01 0.64 0.168
4 50 0.05 0.98 0.902
4 50 0.01 0.91 0.686
6 50 0.01 1.00 0.997

Thus, there is little hope of retaining variables with ψ = 1, and only a 50:50 chance of retaining a single variable with a
theoretical | t| of 2 when the critical value is also 2, falling to 30:70 for a critical value of 2.6. When ψ = 3, the power
of detection is sharply higher, but still leads to more than 35 per cent mis-classifications. Finally, when ψ = 4, one such
variable will almost always be retained.

However, the final column shows that the probability of retaining all four relevant variables with the given non-
centrality is essentially negligible even when they are independent, except in the last few cases. Mixed cases (with
different values of ψ) can be calculated by multiplying the probabilities in the fourth column (e.g. for ψ = 2, 3, 4, 6 the
joint P(·) = 0.15 at α = 0.01). Such combined probabilities are highly nonlinear in ψ, since one is almost certain to
retain all four when ψ = 6, even at a 1 per cent significance level. The important conclusion is that, despite ‘knowing’
the DGP, low signal-noise variables will rarely be retained using t-tests when there is any need to test the null; and if
there are many relevant variables, it is unlikely that all of them will be retained even when they have quite large non-
centralities.

6 Deletion Probabilities
The most extreme case where low deletion probabilities might entail high search costs is when many variables are
included but none actually matters. PcGets systematically checks the reducibility of the GUM by testing simplifications
up to the empty model. A one-off F-test FG of the GUM against the null model using critical value cγ would have size
P(FG ≥ cγ) = γ under the null if it was the only test implemented. Consequently, path searches would commence only γ
per cent of the time, and some of these could also terminate at the null model. Let there be k regressors in the GUM,
of which n are retained when t-test selection is used should the null model be rejected. In general, when there are no
relevant variables, the probability of retaining no variables using t-tests with critical value cα is

(20.5)

Combining (20.5) with the FG-test, the null model will be selected with approximate probability

(20.6)
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where γ* ≤ γ is the probability of FG rejecting yet no regressors being retained (conditioning on FG ≥ cγ cannot decrease
the probability of at least one rejection). Since γ is set at quite a high value, such as 0.20, whereas α = 0.05 is more
usual, FG ≥ c0.20 can occur without any | ti| ≥ c0.05. Evaluating (20.6) for γ = 0.20, α = 0.05 and k = 20 yields pG ≃ 0.87;
whereas the re-run of the Hoover–Perez experiments with k = 40 reported by Hendry and Krolzig (1999b) using γ =
0.01 yielded 97.2 per cent in the Monte Carlo as against a theory prediction from (20.6) of 99 per cent. Alternatively,
when γ = 0.1 and α = 0.01, (20.6) has an upper bound of 96.7 per cent, falling to 91.3 per cent for α = 0.05. Clearly, it
is relatively easy to obtain a high probability of locating the null model even when forty irrelevant variables are
included, provided relatively tight significance levels are used, or a reasonable probability for looser significance levels.

We can also calculate how many spurious regressors will be retained when the null is falsely rejected. The probability
distribution of one or more null coefficients being significant in pure t-test selection at significance level α is given by
the k + 1 terms of the binomial expansion of

The following table illustrates by enumeration for k = 3:

Event Probability Number retained
P(| ti| < cα, ∀ i = 1, . . . , 3) (1 − α)3 0
P(| ti| ≥ cα | tj| < cα, ∀ j ≠ i) 3α(1 − α)2 1
P(| ti| < cα| |tj| ≥ cα, ∀ j ≠ i) 3(1 − α)α2 2
P(| ti| ≥ cα, ∀ i = 1, . . . , 3) α3 3

Thus, for k = 3, the average number of variables retained is

The result n = kα is general. When α = 0.05 and k = 40, n equals 2, falling to 0.4 for α = 0.01: so even if only t-tests are
used, few spurious variables will be retained. Following the event FG ≥ cγ when γ = 0.1 (so the null is incorrectly
rejected 10 percent of the time), and approximating by 0.5 variables retained when that occurs, the average ‘non-
deletion’ probability (i.e. the probability any given variable will be retained) is pr = γ n/k = 0.125 per cent, as against the
reported value of 0.19 per cent found by Hendry and Krolzig (1999b). Again, we find that these are very small
retention rates of spuriously significant variables.

Thus, in contrast to the relatively high costs of inference discussed in the previous section, those of search arising from
retaining additional irrelevant variables are almost negligible. For a reasonable GUM with say forty variables where
twenty-five are irrelevant, even without the pre-selection and multiple path searches of PcGets, and using just t-tests at 5
per cent, roughly one spuriously significant variable will be retained by chance. Against that, from the previous section,
there is at most a 50 percent chance of retaining each of the variables that have non-centralities less than 2, and little
chance of keeping them all. It should now be clear than the difficult problem is retention of relevance, not elimination
of irrelevance. The only two solutions are better inference procedures and looser critical values; we will consider them
both.
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7 Improved Inference Procedures
An inference procedure involves a sequence of steps. As a simple example, consider a procedure comprising two F-
tests: the first is conducted at the 20 per cent level, the second at 5 per cent. The variables to be tested are first ordered
by their t-values in the GUM, such that , and the first F-test adds in variables from the smallest observed t-
values until a rejection would occur, with either F1 > cγ or an individual | t| > cα (say). All those variables except the last
are then deleted from the model, and a second F-test conducted of the null that all remaining variables are significant.
If that rejects, so F2 > cδ, all the remaining variables are retained, otherwise all are eliminated. We will now analyse the
probability properties of this two-step test when all k regressors are orthogonal for a regression model estimated from
T observations.

Once m variables are included in the first step, non-rejection requires that (a) m − 1 variables did not induce rejection,
(b) | tm| < cα and (c)

(20.7)

Clearly, any reduces the mean F1-statistic, and since P(| ti| < 1) = 0.68, when k = 40, approximately twenty-eight
variables fall in that group; and P(| ti| ≥ 1.65) = 0.1 so only four variables should chance to have a larger | ti|-value
on average. In the ‘conventional’ setting where α = 0.05 with P(| ti| < 2) ≃ 0.95, only two variables will chance to have
larger t-values, whereas slightly more than half will have or smaller. Since, for example, P(F1(20, 100) < 1| H0) ≃
0.53, a first step with γ = 0.5 would certainly eliminate all variables with , and some larger t-values as well – hence
the need to check that | tm| < cα (above we explained why collinearity between variables that matter and those that do
not would not jeopardize this step on our interpretation of the resulting model).

A crude approximation to the likely value of (20.7) under H0 is to treat all t-values within blocks as having a value equal
to the mid-point. We use the five ranges , and greater than 4, using the expected numbers falling in each of the
first four blocks, which yields

noting P(F1(38, 100) < 0.84| H0) ≃ 0.72 (setting all ts equal to the upper bound of each block yields an illustrative
upper bound of about 1.3 for F1). Thus, surprisingly large values of γ, such as 0.75, can be selected for this step yet
have a high probability of eliminating almost all the irrelevant variables. Indeed, using γ = 0.75 entails cγ ≃ 0.75 when m
= 20, since

or cγ ≃ 0.8 for m = 30.

The second F-test will falsely reject a null model somewhat more than δ per cent of the time since all small t-values
have already been eliminated, but the resulting model will still be small in comparison to the GUM. Conversely, this
procedure has
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a dramatically higher probability of retaining a block of relevant variables. For example, commencing with forty
regressors of which m = 35 (say) were correctly eliminated, should the five remaining variables all have expected t-
values of two – the really difficult case in section 5 – then

(20.8)

When δ = 0.05, cδ = 2.3 and

(using a non-central χ2(·) approximation to F2), thereby almost always retaining all five relevant variables. This is
obviously a stunning contrast with the near-zero probability of retaining all five variables using t-tests on the DGP in
section 5. Practical usage of PcGets suggests its operational characteristics are well described by this analysis.

In applications, the multi-path searches and the pre-selection procedures produce similar outcomes, so although we
cannot yet present a complete probability analysis of the former, it seems to behave almost as well in practice.

8 Applying PcGets
Simulation and empirical applications differ in the key feature that the model nests the DGP in the former, but the
relation between model and LDGP is unknown in the latter. Considerable Monte Carlo evidence on the behaviour of
PcGets is presented in Hendry and Krolzig (1999b) and Krolzig and Hendry (2000), so we focus here on the two
central modelling examples of this book, namely UK consumers' expenditure following Davidson, Hendry, Srba and
Yeo (1978) (denoted by the acronym DHSY) and UK narrow money demand. Although the ‘truth’ values of the
results cannot be established, a question of interest is whether the selected model matches, or even beats, that
developed by the earlier authors.

8.1DHSY Revisited
Given the earlier emphasis on modelling UK consumers' expenditure, we first apply the search algorithm to the model
reported in DHSY. The equation used as a baseline corresponds to the GUM:

(20.9)

where ct denotes real consumers' expenditures on non-durable goods and services, yt is real personal disposable income,
pt is the implicit deflator of ct (all in logs), Δ4pt−i = pt−i − pt−i−4, the St−i are centred seasonal dummies, and Dt is an indicator
for budget effects in 1968 and the introduction of VAT in 1973, equal to +1 in 1968(1) and 1973(1), and −1 in 1968(2)
and 1973(2) (see footnote 5 in Davidson et al., 1978). We want to see if PcGets recovers their model (8.45)**:
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(20.10)

The diagnostic tests implemented were fourth-order serial correlation ( : see Godfrey, 1978), fourth-order
autoregressive conditional heteroscedasticity ( : see Engle, 1982), parameter constancy (FChow: see Chow, 1960) for
sample splits at 1967(3) and 1974(2); and a chi-square test for normality ( : see Doornik and Hansen, 1994), all at 1
per cent. Also is the residual standard deviation, coefficient standard errors are shown in parentheses, and SC is the
Schwarz criterion.

GUMs in levels were used despite ignoring the integratedness of the variables, and the presence or absence of
seasonals had no impact on the selected model. Moreover, the selection results were identical whether or not pre-
selection F-tests were used at 75 per cent then 25 per cent, in both cases followed by multiple-path t-tests at 5 per cent.
The unique outcome for the sample period 1959(2)–1975(4) was

(20.11)

This is a level's version of essentially the same equation (all coefficients except Δ4pt−1 were 100 per cent reliable). The
resulting long-run solution (cointegrating vector) is

(20.12)

although cointegration is not strong (the unit-root t-test, tur = −2.8). Re-arranging (20.11) in differences and the
cointegrating vector from (20.12), we obtain:

as against the re-estimated values:

PcGets therefore selects the same model as that chosen by Davidson et al. (and different from earlier versions of the
program, following changes since Krolzig and Hendry, 2000).

When the GUM is expressed in terms of four lags of Δ4yt−i, Δ4ct−i, Δ4pt−i, with (c − y)t−4 and Δ4D, then one more variable is
retained and one lag selection switched; namely, Δ4ct−3 is added and Δ4pt−3 replaces Δ4pt−1. Now, and SC = −9.97:
no diagnostic test was significant, and all coefficients were 100 per cent reliable. At first sight, one might think the
change is induced by the differencing and cointegration
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transformations, but that is not the case. Implicitly, the lag lengths of ct and yt have been increased to eight, albeit in a
restricted parameterization; and if PcGets commences from the specification that nests such a model, it selects the
unrestricted variant thereof, namely extending (20.11) by the inclusion of ct−3 and ct−7 with equal magnitudes and
opposite signs, and replacing Δ4pt−1 by Δ4pt−3. Such a specification is more general than any considered by DHSY and
encompasses their model. Enforcing the same lag length, however, all roads lead to much the same final selection.

8.2UK Money Demand
We now reconsider the Hendry and Ericsson (1991b) model of narrow money demand in the UK. They commenced
from a GUM with two lags of m, x, p, and R, where lower-case denotes logs, and m is UK M1, x is real total final
expenditure in 1985 prices, p is its deflator, and R is the opportunity cost of holding money (measured by the three-
month local authority interest rate minus a learning-adjusted retail sight deposit rate). Hendry and Ericsson (1991b)
selected:

(20.13)

Two GUMs are again considered, both nesting (20.13). As before, the first is in levels with two lags of every variable,
whereas the second is in differences and equilibrium-correction form, but without imposing the homogeneity
restriction on Δ(m − p) and Δ x. Just one model survives the selection process in each case. From the levels GUM:

(20.14)

The selection in (20.14) corresponds to the model in (20.13) without imposing the unit long-run income restriction,
leaving a further valid reduction, but omitting Δ xt−1. Solving for the long run yields

(20.15)

so cointegration is well determined. The outcome in (20.15) is used in the second GUM. Commencing from four lags
of Δ(m − p), Δ x, Δ2p, Δ R all the variables in (20.13) (other than Δ xt−1) are retained, together with Δ(m − p)t−3 and Δ2pt−2

(see Hendry and Doornik, 1994). Also and no diagnostic tests were significant. In general, an ‘expert system’ is
required to understand the links between regressors to formulate appropriate terms. Nevertheless, PcGets does
remarkably well against the ‘experts’ on these empirical problems, although its performance clearly benefits from the
‘foreknowledge’ which the initial investigators took some time to acquire.

9 Conclusion
We have demonstrated that the performance of the first mechanized general-to-specific algorithms is excellent; yet
these represent early attempts at computer automation. Moving from the relatively poor performance of every method
considered by
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Lovell (1983), Hoover and Perez (1999) achieved significant progress towards a viable algorithm, and PcGets has
already shown that further improvements in design can induce markedly better selection behaviour. For example,
when the null model is true but the GUM includes more than forty variables, simplistic search procedures such as
step-wise regression will find it under 20 per cent of the time: yet re-running the Lovell simulation experiments,
Hoover and Perez (1999) found it in almost 80 per cent of trials at a 1 per cent significance level, as against 97 per cent
using the pre-release version of PcGets reported in Hendry and Krolzig (1999b). A bright future awaits.

The specification of a congruent general unrestricted model remains central to the performance of the search process,
but the low costs of search found here, and by Hoover and Perez, suggest adopting relatively generous
parameterizations in the GUM. The less the orthogonality between variables, the more ‘confusion’ the algorithm faces,
which can lead to a proliferation of mutually encompassing models, where the final choice may differ only marginally
(e.g. lag 2 versus 1). Careful prior analysis therefore remains essential, concerning the parameterization, functional
form, choice of variables, lag length, indicators and so on. By greatly reducing the effort needed to develop simplified
final selections, PcGets should allow much more ‘thinking’ time to relate the economic analysis to the data. Moreover,
the requirement to return to the GUM and not simply patch a model when an extension is required becomes much
less daunting when a few seconds' computation can deliver a viable reduction.

The thrust of the analysis to date has been for single-equation, conditional models precisely because even in that
context ‘data mining’ in the widest sense has been thought to be a serious problem. Applying the methodology
advocated in earlier chapters in a structured search procedure conclusively refutes that belief. Just as the original
approaches were first essayed on the simplest class of models before multi-variable extensions could be sensibly
developed, so too with search algorithms. Direct extensions to modelling cointegrated vector autoregressions are easily
envisaged, and selection procedures using instrumental variables rather than least squares are already operational. A
maximum likelihood generalization is also straightforward to imagine, though perhaps harder to implement, although
special cases such as limited dependent variables should not pose any great difficulties. Cross-section data can already
be handled, and panels will undoubtedly follow shortly.

The prospects for empirical econometric modelling are as exciting today as I have ever seen – the best imaginable note
on which to conclude this book.

Notes
1 PcGets is an Ox Package (see Doornik, 1999; Hendry and Krolzig, 1999a) designed for general-to-specific

modelling, currently focusing on reduction approaches for linear, dynamic, regression models.
2 Note that the DGP is always a special case of the initial general model, and that the role of orthogonalization is

hidden in their use of differences to ‘achieve stationarity’: as their table 2 shows, this transformation induces fairly
low correlations between the potential regressors other than their own lags. Thus, their Monte Carlo falls into the
category of appropriate designs to which search procedures could be applied.
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