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PREFACE TO THE HANDBOOK

As conceived by the founders of the Econometric Society, econometrics is a field that
uses economic theory and statistical methods to address empirical problems in eco-
nomics. It is a tool for empirical discovery and policy analysis. The chapters in this
volume embody this vision and either implement it directly or provide the tools for do-
ing so. This vision is not shared by those who view econometrics as a branch of statistics
rather than as a distinct field of knowledge that designs methods of inference from data
based on models of human choice behavior and social interactions. All of the essays in
this volume offer guidance to the practitioner on how to apply the methods they discuss
to interpret economic data. The authors of the chapters are all leading scholars in the
fields they survey and extend.

Auction theory and empirical finance are two of the most exciting areas of empirical
economics where theory and data combine to produce important practical knowledge.
These fields are well represented in this Handbook by Susan Athey and Philip Haile
(auctions) and Lars Hansen, John Heaton, Nikolai Roussanov and Junghoon Lee (fi-
nance). Both papers present state of the art knowledge of their respective fields and
discuss economic models for the pricing of goods and risk. These papers feature agent
response to uncertainty as an integral part of the analysis. Work on the pricing of labor
services lies at the core of empirical labor economics. Thomas MaCurdy surveys empir-
ical methods for estimating wage equations from panel data in a way that is accessible
to practitioners.

The econometrics of industrial organization (IO) is another vibrant area of applied
econometrics. Scholars in the field of IO have embraced econometrics. The resulting
symbiosis between theory and practice is a paragon for econometric research. Modern
developments in game theory have been incorporated in econometric models that enrich
both theory and empirical analysis. These developments are well-represented in this vol-
ume by the essays of Daniel Ackerberg, Lanier Benkard, Steven Berry, and Ariel Pakes
and of Peter Reiss and Frank Wolak. Stephen Bond and John van Reenen summarize
the related literature on modeling the dynamics of investment and employment, which
is an integral part of macroeconomics and modern IO.

The essay by Erwin Diewert and Alice Nakamura surveys methods for measuring
national productivity. They exposit a literature that provides the tools for comparing the
economic performance of policies and of nations. The authors survey the methods that
underlie this important field of economics. Edward Leamer’s essay stresses the interplay
between data and theory in the analysis of international trade patterns. In an increasingly
global market, the measurement of trade flows and the study of the impact of trade on
economic welfare is important for understanding recent economic trends.

xv
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Modern economics has come to recognize heterogeneity and diversity among eco-
nomic agents. It is now widely acknowledged that the representative agent paradigm is
an inaccurate and misleading description of modern economies. The essay by Richard
Blundell and Thomas Stoker summarizes and synthesizes a large body of work on the
aggregation of measurements across agents to produce reliable aggregate statistics and
the pitfalls in the use of aggregates.

Consumer theory, including the theory of labor supply, is at the heart of empirical
economics. The essay by Richard Blundell, Thomas MaCurdy, and Costas Meghir sur-
veys a vast literature with an ancient lineage that has been at the core of empirical
economics for over 100 years. They develop empirical models of consumer demand
and labor supply in an integrated framework.

The evaluation of economic and social programs is a central activity in economics. It
is the topic of three essays in this Handbook. James Heckman and Edward Vytlacil
contribute two chapters. The first chapter moves the literature on program evalua-
tion outside of the framework of conventional statistics to consider economic policy
questions of interest, to incorporate agent choice behavior and the consequences of un-
certainty, and to relate the recent work on policy evaluation in statistics to older and
deeper frameworks developed in econometrics. Issues of causality and the construction
of counterfactuals are addressed within the choice-theoretic framework of economics.

Their second chapter uses the marginal treatment effect to unify a diverse and dis-
jointed literature on treatment effects and estimators of treatment effects. The marginal
treatment effect can be interpreted as a willingness to pay parameter. This chapter
focuses on mean treatment effects in static environments without explicit analysis of
uncertainty.

The essay by Jaap Abbring and James Heckman surveys new methods for identifying
distributions of treatment effects under uncertainty. It surveys and develops methods for
the analysis of dynamic treatment effects, linking the statistical literature on dynamic
sequential randomization to the econometric literature on dynamic discrete choices.
It also surveys recent approaches to the general equilibrium evaluation of social pro-
grams.

One of the most important contributions of econometric theory to empirical knowl-
edge is the analysis of the identifiability of econometric models – determining under
what conditions a unique model describes the data being used in an empirical analy-
sis. Cowles Commission analysts formalized these ideas, focusing largely on linear
systems [Tjalling Koopmans, Herman Rubin, and Roy Leipnik (1950)]. Later work
by Franklin Fisher (1966) extended the Cowles analysis to nonlinear, but parametric
systems. Rosa Matzkin’s contribution to this Handbook synthesizes and substantially
extends these analyses to consider a large body of work on the identification of non-
parametric models. The methods she surveys and extends underlie a large literature in
applied economics.

Hidehiko Ichimura and Petra Todd present a guide to the recent literature on non-
parametric and semiparametric estimators in econometrics that has been developed in
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the past 20 years. They conduct the reader through the labyrinth of modern nonpara-
metric econometrics to offer both practical and theoretical guides to this literature.

Robert Moffitt and Geert Ridder address the important problem of how to combine di-
verse data sets to identify models and improve the precision of estimation of any model.
This topic is of great importance because many data sets in many areas of economics
contain valuable information on subsets of variables which, if they were combined in
a single data set, would identify important empirical relationships. Moffitt and Ridder
present the state of the art in combining data to address interesting economic questions.

Xiaohong Chen presents a detailed, informative survey of sieve estimation of semi-
parametric models. The sieve principle organizes many different approaches to non-
parametric and semiparametric estimation within a common analytical framework. Her
analysis clarifies an extensive and widely used literature. Marine Carrasco, Jean-Pierre
Florens, and Eric Renault survey the literature on nonparametric and semiparametric
econometrics that is based on inverse operators. Their analysis subsumes recent research
on nonparametric instrumental variable methods as well as research on deconvolution
of distributions. They present both theoretical and practical guides to this frontier area
of econometrics.
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Abstract

This chapter relates the literature on the econometric evaluation of social programs to
the literature in statistics on “causal inference”. In it, we develop a general evaluation
framework that addresses well-posed economic questions and analyzes agent choice
rules and subjective evaluations of outcomes as well as the standard objective evalua-
tions of outcomes. The framework recognizes uncertainty faced by agents and ex ante
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and ex post evaluations of programs. It also considers distributions of treatment effects.
These features are absent from the statistical literature on causal inference. A prototyp-
ical model of agent choice and outcomes is used to illustrate the main ideas.

We formally develop models for counterfactuals and causality that build on Cowles
Commission econometrics. These models anticipate and extend the literature on causal
inference in statistics. The distinction between fixing and conditioning that has recently
entered the statistical literature was first developed by Cowles economists. Models of
simultaneous causality were also developed by the Cowles group, as were notions of
invariance to policy interventions. These basic notions are updated to nonlinear and
nonparametric frameworks for policy evaluation more general than anything in the cur-
rent statistical literature on “causal inference”. A formal discussion of identification is
presented and applied to clearly formulated choice models used to evaluate social pro-
grams.

Keywords

causal models, counterfactuals, policy evaluation, policy invariance, structural models,
identification

JEL classification: C10, C50
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1. Introduction

Evaluating policy is a central problem in economics.1 Evaluations entail comparisons
of outcomes produced from alternative policies using different valuation criteria. Such
comparisons often require constructing estimates of outcomes for policies that have
never been implemented. They require that the economist construct counterfactuals.2

Counterfactuals are required to forecast the effects of policies that have been tried in
one environment but are proposed to be applied in new environments and to forecast the
effects of new policies.

This chapter surveys recent approaches to the empirical construction of economic
counterfactuals. The traditional approach to constructing policy counterfactuals in
econometrics, first developed in the 1930s, builds econometric models using data,
economic theory and statistical methods. The early econometric pioneers developed
macroeconomic general equilibrium models and estimated them on aggregate time se-
ries data. Later on, economists used newly available microdata on families, individuals
and firms to build microstructural models. This approach unites economics, statistics
and microdata to build models to evaluate policies, to forecast the effects of extending
the policies to new environments and to forecast the effects of new policies. It is exem-
plified in the chapters by Reiss and Wolak (Chapter 64); Ackerberg, Benkard, Berry and
Pakes (Chapter 63); Athey and Haile (Chapter 60); Bond and Van Reenen (Chapter 65);
Blundell, MaCurdy and Meghir (Chapter 69); and Blundell and Stoker (Chapter 68) of
this Handbook.

More recently, some economists have adapted statistical “treatment effect” ap-
proaches that apply methods developed in statistics, educational research, epidemiology
and biostatistics to the problem of evaluating economic policy. This approach takes
the randomized trial as an ideal. It is much less explicit about the role of economic
theory (or any theory) in interpreting evidence or in guiding empirical analyses. The
goal of this chapter is to exposit, interpret and unite the best features of these two ap-
proaches.

The topics of econometric policy evaluation and policy forecasting are vast, and no
chapter within the page limits of a Handbook chapter can cover all aspects of it. In this
chapter we focus on microeconomic policy evaluation and policy forecasting.

We focus our discussion on the analysis of a class of latent variable (or “index”) mod-
els that form the core of modern microeconometrics. Discrete choice theory [McFadden
(1974, 1981, 1984, 1985, 2001)] and models of joint discrete and continuous variables
[Heckman (1974, 1979, 2001), Heckman and MaCurdy (1986)] are based on latent vari-
able models.3 Such models provide a framework for integrating economic theory and
statistical analysis. They are also frameworks for constructing policy counterfactuals.

1 We use the term “policy” in a very general sense. It includes alternative actions which might be undertaken
by organizations such as private businesses, governments or by family members.
2 Counterfactuals are not necessarily contrary to fact. They are not directly observed.
3 These models have their origins in mathematical psychology [Thurstone (1927), Bock and Jones (1968)].

http://dx.doi.org/10.1016/S1573-4412(07)06064-3
http://dx.doi.org/10.1016/S1573-4412(07)06063-1
http://dx.doi.org/10.1016/S1573-4412(07)06060-6
http://dx.doi.org/10.1016/S1573-4412(07)06065-5
http://dx.doi.org/10.1016/S1573-4412(07)06069-2
http://dx.doi.org/10.1016/S1573-4412(07)06068-0
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Useful surveys of the econometrics of these models include Maddala (1983), Amemiya
(1985), Ruud (2000) and Wooldridge (2002).

Microstructural models can be used to construct a wide variety of policy counterfac-
tuals. They can also be used to evaluate existing policies and to forecast the effects of
new policies. Embedded in general equilibrium models, they can also be used to eval-
uate the effects of changing the scale of existing policies or introducing new policies
with substantial coverage [see, e.g., Heckman, Lochner and Taber (1998), Blundell et
al. (2004)].

Applications of these models are legion. So are criticisms of this approach. Crit-
ics grant the interpretability of the economic frameworks and the parameters derived
from them. At the same time, they question the strong functional form, exogeneity,
support and exclusion assumptions used in classical versions of this literature, and the
lack of robustness of empirical results obtained from them [see Goldberger (1983),
Arabmazar and Schmidt (1982), Ruud (1981), Lewis (1986), Angrist and Krueger
(1999) among many others].4 While there have been substantial theoretical advances
in weakening the parametric structure used to secure identification of the models used
in the early work [see, e.g., Manski (1975, 1988), Heckman and Honoré (1990), Matzkin
(1992, 1993, 1994, 2003, 2007), Powell (1994), and Chen (1999)], progress in imple-
menting these procedures in practical empirical problems has been slow and empirical
applications of semi-parametric methods have been plagued by issues of sensitivity of
estimates to choices of smoothing parameters, trimming parameters, bandwidths and the
like [see Chapter 74 (Ichimura and Todd); Chapter 76 (Chen); and Chapter 77 (Carrasco,
Florens and Renault) of this Handbook]. The arbitrariness in the choice of parametric
models that motivates recent work in semiparametric and nonparametric econometrics
has its counterpart in the choice of nonparametric and semiparametric estimation pa-
rameters. Often, parametric structural models are computationally cumbersome [see
Geweke and Keane (2001)] and identification in dynamic recursive models is often dif-
ficult to establish [see Rust (1994), Magnac and Thesmar (2002)], although progress has
been made [see Taber (2001), Aguirregabiria (2004), Heckman and Navarro (2007)].
The curse of dimensionality and the complexity of computational methods plague high
dimensional parametric models and nonparametric models alike. These considerations
motivate pursuit of simpler, more transparent and more easily computed and replicable
methods for analyzing economic data and for econometric policy analysis.

The recent literature on treatment effects emphasizes nonparametric identification of
certain parameters, robustness, and simplicity (or transparency of identification) as its

4 We note that most of this literature is based on Monte Carlo analysis or worst case analyses on artifi-
cial samples. The empirical evidence on nonrobustness of conventional parametric models is mixed. [See
Heckman (2001)]. It remains to be established on a systematic basis that classical normality assumptions
invariably produce biased estimates. The evidence in Heckman and Sedlacek (1985) and Blundell, Reed and
Stoker (2003) shows that normality is an accurate approximation to log earnings data in economic models of
self-selection. The analysis of Todd (1996) shows that parametric probit analysis is accurate for even extreme
departures from normality.

http://dx.doi.org/10.1016/S1573-4412(07)06074-6
http://dx.doi.org/10.1016/S1573-4412(07)06076-X
http://dx.doi.org/10.1016/S1573-4412(07)06077-1
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main goals. In addition, it recognizes certain forms of heterogeneity in responses to
treatment. These are major advances over the traditional structural literature. By focus-
ing on one parameter instead of many, this approach can identify that parameter under
weaker conditions than are required for structural parameters that answer many ques-
tions. At the same time, this literature is often unclear in stating what economic question
the estimated parameters answer. Simplicity in estimation is often accompanied by ob-
scurity in interpretation. The literature also ignores the problems of applying estimated
“effects” to new environments or estimating the “effects” of new programs never previ-
ously implemented. A new language of counterfactuals and causality has been created.
This chapter exposits the treatment effect models and relates them to more explicitly
formulated structural econometric models.

Estimators for “causal effects” in the recent treatment effect literature make implicit
behavioral assumptions that are rarely exposited. Many papers in the modern treatment
effect literature, especially those advocating instrumental variables or natural exper-
iments, proceed by picking an instrument or a natural experiment and defining the
parameter of interest as the estimand corresponding to the instrument.5 Economists us-
ing matching make the strong implicit assumption that the information acted on by the
agents being studied is as good as that available to the analyst-economist. The literature
is often unclear as to what variables to include in conditioning sets and what variables
to exclude and the conditions under which an estimator identifies an economically in-
teresting parameter.

The goal of this chapter and Chapter 71 of this Handbook is to integrate the treatment
effect literature with the literature on micro-structural econometrics based on index
models and latent variable models to create an economically interpretable econometric
framework for policy evaluation and cost-benefit analysis that possesses the best fea-
tures of the modern treatment effect literature: a clear statement of conditions required
to secure identification, as well as robustness and transparency. “Causal effects” or
“treatment parameters” are defined in terms of economically interpretable parameters.
Counterfactuals and causality are interpreted within the framework of choice-theoretic
economic models.

1.1. The relationship of this chapter to the literature on causal inference in statistics

The existing literature on “causal inference” in statistics is the source of inspiration for
the recent econometric treatment effect literature and we examine it in detail. The liter-
ature in statistics on causal inference confuses three distinct problems that are carefully
distinguished in this chapter and in the literature in economics:

5 An estimand is the parameter defined by the estimator. It is the large sample limit of the estimator, assuming
it exists.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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Table 1
Three distinct tasks arising in the analysis of causal models

Task Description Requirements

1 Defining the set of hypotheticals or counterfactuals A scientific theory
2 Identifying parameters (causal or otherwise) from

hypothetical population data
Mathematical analysis of point or
set identification

3 Identifying parameters from real data Estimation and testing theory

• Definitions of counterfactuals.
• Identification of causal models from idealized data of population distributions (in-

finite samples without any sampling variation). The hypothetical populations may
be subject to selection bias, attrition and the like. However, all issues of sampling
variability are irrelevant for this problem.

• Identification of causal models from actual data, where sampling variability is
an issue. This analysis recognizes the difference between empirical distributions
based on sampled data and population distributions generating the data.

Table 1 delineates the three distinct problems.
The first problem is a matter of science, logic and imagination. It is also partly a

matter of convention. A model of counterfactuals is more widely accepted, the more
widely accepted are its ingredients:

• the rules used to derive a model including whether or not the rules of logic and
mathematics are followed;

• its agreement with other theories; and
• its agreement with the evidence.

Models are descriptions of hypothetical worlds obtained by varying – hypothetically
– the factors determining outcomes. Models are not empirical statements or descrip-
tions of actual worlds. However, they are often used to make predictions about actual
worlds.

The second problem is one of inference in very large samples. Can one recover coun-
terfactuals (or means or distributions of counterfactuals) from data that are free of any
sampling variation problems? This is the identification problem. Two distinct issues
that are central to policy evaluation are (1) solving the problem of selection bias and
(2) constructing counterfactual states from large samples of data.

The third problem is one of inference in practice. Can one recover a given model
or the desired counterfactual from a given set of data? Solutions to this problem entail
issues of inference and testing in real world samples. This is the problem most familiar
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to statisticians and empirical social scientists.6 The boundary between problems two
and three is permeable depending on how “the data” are defined.

This chapter focuses on the first two problems. Many applied economists would be
unwilling to stop at step 2 and would seek estimators with desirable small sample prop-
erties. For a valuable guide to methods of estimation, we direct readers to Chapter 74
(Ichimura and Todd) of this Handbook.

Some of the controversy surrounding construction of counterfactuals and causal mod-
els is partly a consequence of analysts being unclear about these three distinct problems
and often confusing them. Particular methods of estimation (e.g., matching or instru-
mental variable estimation) have become associated with “causal inference” and even
the definition of certain “causal parameters” because issues of definition, identification
and estimation have been confused in the recent literature.

The econometric approach to policy evaluation separates these problems and em-
phasizes the conditional nature of causal knowledge. Human knowledge advances by
developing counterfactuals and theoretical models and testing them against data. The
models used are inevitably provisional and conditional on a priori assumptions.7 Blind
empiricism leads nowhere. Economists have economic theory to draw on but recent
developments in the econometric treatment effect literature often ignore it.

Current widely used “causal models” in epidemiology and statistics are incomplete
guides to interpreting data or for suggesting estimators for particular problems. Rooted
in biostatistics, they are motivated by the experiment as an ideal. They do not clearly
specify the mechanisms determining how hypothetical counterfactuals are realized or
how hypothetical interventions are implemented except to compare “randomized” with
“nonrandomized” interventions. They focus only on outcomes, leaving the model for se-
lecting outcomes only implicitly specified. The construction of counterfactual outcomes
is based on appeals to intuition and not on formal models. Extreme versions of this ap-
proach deny causal status to any intervention that cannot in principle be implemented
by a practical, real world experiment.

Because the mechanisms determining outcome selection are not modeled in the sta-
tistical approach, the metaphor of “random selection” is often adopted. This emphasis

6 Identification in small samples requires establishing the sampling distribution of estimators, and adopting
bias as the criterion for identifiability. This approach is conventional in classical statistics but has fallen out
of favor in semiparametric and nonparametric econometrics [see, e.g., Manski (2003)].
7 See Quine (1951). Thus to quote Quine, “The totality of our so-called knowledge or beliefs, from the most

casual matters of geography or history to the profoundest laws of atomic physics . . . is a man made fabric
which impinges on experience only at the edges . . . total science is like a field of force whose boundary condi-
tions are experience . . . A conflict with experience on the periphery occasions readjustments in the interior of
the field. Reevaluation of some statements require reevaluation of others, because of their logical interconnec-
tions . . . But the total field is so underdetermined by its boundary conditions, experience, that there is much
latitude of choice as to what statements to re-evaluate in the light of any single contrary experience.” [Quine
(1951)]. We thank Steve Durlauf for suggesting this quote which suggests the awareness of the conditional
nature of all knowledge, including causal knowledge, by a leading philosopher.

http://dx.doi.org/10.1016/S1573-4412(07)06074-6
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on randomization – or its surrogates like matching – rules out a variety of alternative
channels of identification of counterfactuals from population or sample data. This em-
phasis has practical consequences because of the conflation of step one with steps two
and three in Table 1. Since randomization is used to define the parameters of interest,
this practice sometimes leads to the confusion that randomization is the only way – or
at least the best way – to identify causal parameters from real data. In truth, this is not
always so, as we show in this chapter.

One reason why epidemiological and statistical models are incomplete is that they
do not specify the sources of randomness generating variability among agents, i.e., they
do not specify why observationally identical people make different choices and have
different outcomes given the same choice. They do not distinguish what is in the agent’s
information set from what is in the observing statistician’s information set, although
the distinction is fundamental in justifying the properties of any estimator for solving
selection and evaluation problems. They do not distinguish uncertainty from the point
of view of the agent whose behavior is being analyzed from variability as analyzed by
the observing economist.

They are also incomplete because they are recursive. They do not allow for simul-
taneity in choices of outcomes of treatment that are at the heart of game theory and
models of social interactions [see, e.g., Brock and Durlauf (2001), Tamer (2003)].

Economists since Haavelmo (1943, 1944) have recognized the value of precise mod-
els for constructing counterfactuals, for answering “causal” questions and addressing
more general policy evaluation questions. The econometric framework is explicit about
how models of counterfactuals are generated, the sources of the interventions (the rules
of assigning “treatment”), and the sources of unobservables in treatment allocations
and outcomes and their relationship. Rather than leaving the rules governing selection
of treatment implicit, the econometric approach uses relationships between the unob-
servables in outcome and selection mechanisms to identify causal models from data
and to clarify the nature of identifying assumptions.

The goal of the econometric literature, like the goal of all science, is to model phe-
nomena at a deeper level, to understand the causes producing the effects so that one
can use empirical versions of the models to forecast the effects of interventions never
previously experienced, to calculate a variety of policy counterfactuals, and to use eco-
nomic theory to guide the choices of estimators and the interpretation of the evidence.
These activities require development of a more elaborate theory than is envisioned in
the current literature on causal inference in epidemiology and statistics.

The recent literature sometimes contrasts structural and causal models.8 The contrast
is not sharp because the term “structural model” is often not precisely defined. There
are multiple meanings for this term, which we clarify in this chapter. The essential
contrast between causal models and explicit economic models as currently formulated is
in the range of questions that they are designed to answer. Causal models as formulated

8 See, e.g., Angrist and Imbens (1995) and Angrist, Imbens and Rubin (1996).
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in statistics and in the econometric treatment effect literature are typically black-box
devices designed to investigate the impact of “treatments” – which are often complex
packages of interventions – on some observed set of outcomes in a given environment.
Unbundling the components of complex treatments is rarely done. Explicit economic
models go into the black box to explore the mechanism(s) producing the effects. In the
terminology of Holland (1986), the distinction is between understanding the “effects
of causes” (the goal of the treatment effect literature) and understanding the “causes of
effects” (the goal of the literature building explicit economic models).

By focusing on one narrow black-box question, the treatment effect and natural ex-
periment literatures can avoid many of the problems confronted in the econometrics
literature that builds explicit economic models. This is its great virtue. At the same time,
it produces parameters that are more limited in application. The parameters defined by
instruments or “natural experiments” are often hard to interpret within any economic
model. Without further assumptions, these parameters do not lend themselves to ex-
trapolation out of sample or to accurate forecasts of impacts of other policies besides
the ones being empirically investigated. By not being explicit about the contents of the
blackbox (understanding the causes of effects), it ties its hands in using information
about basic behavioral parameters obtained from other studies, as well as economic in-
tuition to supplement available information in the data in hand. It lacks the ability to
provide explanations for estimated “effects” grounded in economics or to conduct wel-
fare economics. When the components of treatments vary across studies, knowledge
does not cumulate across treatment effect studies whereas it accumulates across studies
estimating common behavioral or technological parameters [see, e.g., the studies of la-
bor supply in Killingsworth (1985), or the parameters of labor demand in Hamermesh
(1993), or basic preference and income variability parameters as in Browning, Hansen
and Heckman (1999)] which use explicit economic models to collate and synthesize
evidence across apparently disparate studies. When the treatment effect literature is
modified to address such problems, it becomes a nonparametric version of the literature
that builds explicit economic models.

1.2. The plan of this chapter and our other contributions

Our contribution to this Handbook is presented in three chapters. Part I, Section 2,
discusses core policy evaluation questions as a backdrop against which to compare al-
ternative approaches to causal inference. A notation is developed and both individual
level and population level causal effects are defined. Uncertainty at the individual level
is introduced to account for one source of variation across agents in terms of outcomes
and choices. We consider alternative criteria used to evaluate policies. We consider a
wide variety of parameters of interest that arise in cost benefit analyses and more gen-
eral analyses of the distribution of policy impacts. This section sets the stage for the rest
of the chapter by defining the objects of interest that we study in this chapter.

Section 3 presents some prototypical econometric models that serve as benchmarks
and reference points for the discussion throughout all three parts of this chapter. We
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review the normal theory model because it is familiar and still widely used and is the
point of departure for both the treatment effect and “structural” literatures.

Section 4 defines and discusses causal models, treatment effects, structural models
and policy invariant parameters, and analyzes both subjective and objective evaluations
of interventions. We also discuss the Neyman (1923)–Rubin (1978) model of causal
effects that is influential in statistics and epidemiology.

We review the conventional “structural” (i.e., explicit economic modelling) ap-
proach based on latent variable models and recent nonparametric extensions. We define
“structural” models and policy-invariant structural parameters using the framework of
Hurwicz (1962). A definition of causal models with simultaneous outcomes is pre-
sented. The Neyman (1923)–Rubin (1978) model advocated in statistics is compared
to explicit econometric models. We discuss how econometric models can be used to
construct counterfactuals and answer the range of policy questions discussed in Sec-
tion 2. We discuss the strengths and limitations of this approach and review recent
semiparametric advances in this literature that are relevant to constructing robust policy
counterfactuals.

We introduce Marschak’s Maxim, implicitly presented in his seminal 1953 paper on
policy evaluation.9 The goal of explicitly formulated econometric models is to iden-
tify policy-invariant or intervention-invariant parameters that can be used to answer
classes of policy evaluation questions [see Marschak (1953), Hurwicz (1962), Hansen
and Sargent (1980), Lucas and Sargent (1981)].10 Policy invariance is defined for a
class of policy interventions. Policy invariant economic parameters may or may not be
interpretable economic parameters. The treatment-effect literature also seeks to identify
intervention-invariant parameters for a class of interventions. In this sense the structural
and treatment effect literatures share common objectives.

Marschak implicitly invoked a decision-theoretic approach to policy evaluation in
noting that for many decisions (policy problems), only combinations of explicit eco-
nomic parameters are required – no single economic parameter need be identified.
Hurwicz (1962) refined this idea by noting that to be useful in forecasting policy, the
combinations must be invariant to policy variation with respect to the policies being
evaluated.

Following Marschak’s Maxim, we postulate specific economic questions that are in-
teresting to address and ask what combinations of underlying economic parameters or
functionals are required to answer them. Answering one question well usually requires
fewer assumptions, and places less demands on the data, than answering a wide array of
questions – the original goal of structural econometrics. Our approach differs from the
approach commonly pursued in the treatment effect and natural experiment literatures

9 Marschak was a member of the Cowles Commission that developed the first econometric models of policy
evaluation. The Cowles Commission approached the policy evaluation problem by constructing models of the
economy and then using them to forecast and evaluate policies. This approach is still used today.
10 The terms “policy invariant” and “structural” are defined precisely in Section 4.8.
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by defining a parameter of interest in terms of what economic question it answers rather
than as the estimand of a favored estimator or instrument.

Section 5 discusses the problem of identification, i.e., the problem of determining
models from data. This is task 2 in Table 1. Section 6 exposits identification conditions
for the normal model as presented in Section 3.3. It also discusses the recent literature
that generalizes the normal model to address concerns raised about nonrobustness and
functional form dependence yet preserves the benefits of a structural approach.

Part II of our contribution (Chapter 71 of this Handbook) extends the index function
framework, which underlies the modern theory of microeconometrics, to unify the lit-
erature on instrumental variables, regression discontinuity methods, matching, control
functions and more general selection estimators. Our approach is explicitly nonparamet-
ric. We present identifying conditions for each estimator relative to a well-defined set
of economic parameters. We initially focus on a two outcome model and then present
results for models with multiple outcomes. Bounds are developed for models that are
not point identified. We show how these models can be used to address a range of policy
problems. We also discuss randomized social experiments. Randomization is an instru-
mental variable. The focus of Chapter 71 is on mean treatment effects.

Part III, coauthored by Abbring and Heckman (Chapter 72 of this Handbook), consid-
ers recent analyses for identifying the distributions of treatment effects. It also discusses
new issues that arise in dynamic frameworks when agents are making choices under
various information sets that are revealed over time. This takes us into the analysis of
dynamic discrete choice models and models for dynamic treatment effects. This section
also discusses recent micro-based general equilibrium evaluation frameworks and deals
with the important problems raised by social interactions among agents in both market
and nonmarket settings.

2. Economic policy evaluation questions and criteria of interest

This section first presents the three central policy evaluation questions discussed in this
chapter. We then introduce our notation and define individual level treatment effects.
The evaluation problem is discussed in general terms. Population level mean treatment
parameters are then defined. Criteria for evaluating distributions of outcomes are pre-
sented along with option values. We explicitly account for private and social uncertainty.
We discuss, in general terms, the type of data needed to construct the evaluation criteria.
Throughout this section we present concrete examples of general points.

2.1. Policy evaluation problems considered in this chapter

Three broad classes of policy evaluation questions are considered in this chapter. Policy
evaluation question one is:

P-1 Evaluating the impact of historical interventions on outcomes including their im-
pact in terms of welfare.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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By historical, we mean interventions actually experienced and documented. A variety
of outcomes and welfare criteria might be used to form these evaluations. It is useful
to distinguish objective or public outcomes from “subjective” outcomes. Objective out-
comes are intrinsically ex post in nature. Subjective outcomes can be ex ante or ex post.
Thus the outcome of a medical trial produces both a cure rate and the pain and suffer-
ing of the patient. Ex ante expected pain and suffering may be different from ex post
pain and suffering. Agents may also have ex ante evaluations of the objective outcomes
that may differ from their ex post evaluations. By impact, we mean constructing either
individual level or population level counterfactuals and their valuations. By welfare, we
mean the valuations of the outcomes obtained from the intervention of the agents being
analyzed or some other party (e.g., the parents of the agent or “society” at large). The
welfare evaluations may be ex ante or ex post.

P-1 is the problem of internal validity. It is the problem of identifying a given treat-
ment parameter or a set of treatment parameters in a given environment.11 Focusing
exclusively on objective outcomes, this is the problem addressed in the epidemiological
and statistical literature on causal inference. A drug trial for a particular patient popu-
lation is a prototypical problem in the literature. The econometric approach emphasizes
valuation of the objective outcome of the trial (e.g., health status) as well as subjective
evaluation of outcomes (patient’s welfare), and the latter may be ex post or ex ante.

Most policy evaluation is designed with an eye toward the future and towards inform-
ing decisions about new policies and application of old policies to new environments.
We distinguish a second task of policy analysis.

P-2 Forecasting the impacts (constructing counterfactual states) of interventions im-
plemented in one environment in other environments, including their impacts in terms
of welfare.

Included in these interventions are policies described by generic characteristics (e.g.,
tax or benefit rates, etc.) that are applied to different groups of people or in different
time periods from those studied in implementations of the policies on which data are
available. This is the problem of external validity: taking a treatment parameter or a set
of parameters estimated in one environment to another environment.12 The environment
includes the characteristics of individuals and of the treatments.

Finally, the most ambitious problem is forecasting the effect of a new policy, never
previously experienced.

P-3 Forecasting the impacts of interventions (constructing counterfactual states as-
sociated with interventions) never historically experienced to various environments,
including their impacts in terms of welfare.

11 The terminology originates with Campbell and Stanley (1963).
12 Again, this term is due to Campbell and Stanley (1963).
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This problem requires that we use past history to forecast the consequences of new
policies. It is a fundamental problem in knowledge. Knight (1921, p. 313) succinctly
states the problem:

“The existence of a problem in knowledge depends on the future being different
from the past, while the possibility of a solution of the problem depends on the
future being like the past.”

P-3 is a problem that economic policy analysts have to solve daily. Appendix A shows
the value of precisely formulated economic models in addressing problems P-2 and
P-3. We now present a framework within which analysts can address these problems in
a systematic fashion. It is also a framework that can be used for causal inference.

2.2. Notation and definition of individual level treatment effects13

To evaluate is to value and to compare values among possible outcomes. These are two
distinct tasks, which we distinguish in this chapter. We define outcomes corresponding
to state (policy, treatment) s for agent ω as Y(s, ω), ω ∈ Ω . The agent can be a house-
hold, a firm, or a country. One can think of Ω as a universe of agents with element ω.14

The ω encompasses all features of agents that affect Y outcomes. Y(·,·) may be gener-
ated from a scientific or economic theory. It may be vector valued. The components of
Y(s, ω) may be discrete, continuous or mixed discrete-continuous random variables.

The Y(s, ω) are outcomes realized after treatments are chosen. In advance of treat-
ment, agents may not know the Y(s, ω) but may make forecasts about them. These
forecasts may influence their decisions to participate in the program or may influence
the agents who make decisions about whether or not an individual participates in the
program. Selection into the program based on actual or anticipated components of out-
comes gives rise to the selection problem in the evaluation literature.

Let S be the set of possible treatments with elements denoted by s. For simplicity of
exposition, we assume that this set is the same for all ω.15 For each ω, we obtain a col-
lection of possible outcomes given by {Y(s, ω)}s∈S . The set S may be finite (e.g., there
may be J states), countable, or may be defined on the continuum (e.g., S = [0, 1]). For
example, if S = {0, 1}, there are two treatments, one of which may be a no-treatment
state (e.g., Y(0, ω) is the outcome for an agent ω not getting a treatment like a drug,
schooling or access to a new technology, while Y(1, ω) is the outcome in treatment

13 Comments from Jaap Abbring were especially helpful in revising this section.
14 Assume that Ω = [0, 1]. We define random vectors Y (ω) for ω ∈ Ω . We can break out observed and
unobserved values X(ω) and U(ω), for example.
15 At the cost of more cumbersome notation, the S sets can be ω specific. This creates some measure-theoretic
problems, and we do not take this more general approach in this chapter. Abbring and Heckman (Chapter 72)
relax this assumption when they consider dynamic models and allow for person- and time-period-specific
information sets.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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state 1 for agent ω getting the drug, schooling or access). A two treatment environ-
ment receives the most attention in the theoretical literature, but the multiple treatment
environment is the one most frequently encountered in practice.

Each “state” (treatment) may consist of a compound of subcomponent states. In this
case, one can define s itself as a vector (e.g., s = (s1, s2, . . . , sK) for K components)
corresponding to the different components that comprise treatment. Thus a job training
program typically consists of a package of treatments. We might be interested in the
package of one (or more) of its components. Thus s1 may be months of vocational
education, s2 the quality of training and so forth.

The outcomes may be time subscripted as well, Yt (s, ω) corresponding to outcomes
of treatment measured at different times. The index set for t may be the integers, corre-
sponding to discrete time, or an interval, corresponding to continuous time. In principle,
one could index S by t , which may be defined on the integers, corresponding to dis-
crete time, or an interval corresponding to continuous time. The Yt (s, ω) are realized or
ex post (after treatment) outcomes. When choosing treatment, these values may not be
known. Gill and Robins (2001), Abbring and Van den Berg (2003), Abbring and Heck-
man (2007, Chapter 72), Lechner (2004) and Heckman and Navarro (2007) develop
models for dynamic counterfactuals, where time-subscripted and ω-subscripted S arise
as information accrues.

Under this assumption, the individual treatment effect for agent ω comparing ob-
jective outcomes of treatment s with objective outcomes of treatment s′ is

(2.1)Y(s, ω) − Y(s′, ω), s �= s′,

where we pick two elements s, s′ ∈ S. This is also called an individual level causal
effect. This may be a nondegenerate random variable or a degenerate random variable.
The causal effect is the Marshallian (1890) ceteris paribus change of outcomes for an
agent across states s and s′. Only s and s′ are varied.

Other comparisons are of interest in assessing a program. Economists are interested
in the welfare of participants as well as the objective outcomes [see Heckman and Smith
(1998)]. Although statisticians reason in terms of assignment mechanisms, economists
recognize that agent preferences often govern actual choices. Comparisons across out-
comes can be made in terms of utilities (personal, R(Y (s, ω), ω), or in terms of planner
preferences, RG, or both types of comparisons might be made for the same outcome
and their agreement or conflict evaluated). To simplify the notation, and at the same
time allow for more general possibilities for arguments of the valuation function, we
usually write R(Y (s, ω), ω) as R(s, ω), suppressing the explicit dependence of R on
Y(s, ω). In this notation, one can ask if R(s, ω) > R(s′, ω) or not (is the agent better
off as a result of treatment s compared to treatment s′?). The difference in subjective
outcomes is [R(s, ω) − R(s′, ω)], and is another possible treatment effect. Holding ω

fixed holds all features of the agent fixed except the treatment assigned, s. Since the
units of R(s, ω) are arbitrary, one could instead record for each s and ω an indicator if
the outcome in s is greater or less than the outcome in s′, i.e. R(s, ω) > R(s′, ω) or not.
This is also a type of treatment effect.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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These definitions of treatment effects embody Marshall’s (1890) notion of ceteris
paribus comparisons but now in utility space. A central feature of the econometric
approach to program evaluation is the evaluation of subjective evaluations as per-
ceived by decision makers and not just the objective evaluations focused on by sta-
tisticians.

The term “treatment” is used in multiple ways in this literature and this ambiguity
is sometimes a source of confusion. In its most common usage, a treatment assignment
mechanism is a rule τ : Ω → S which assigns treatment to each ω. The consequences
of the assignment are the outcomes Y(s, ω), s ∈ S, ω ∈ Ω . The collection of these
possible assignment rules is T where τ ∈ T . There are two aspects of a policy under
this definition. The policy selects who gets what. More precisely, it selects individuals
ω ∈ Ω and specifies the treatment s ∈ S received.

In this chapter, we offer a more nuanced definition of treatment assignment that ex-
plicitly recognizes the element of choice by agent ω in producing the treatment assign-
ment rule. Treatment can include participation in activities such as schooling, training,
adoption of a particular technology, and the like. Participation in treatment is usually
a choice made by agents. Under a more comprehensive definition of treatment, agents
are assigned incentives like taxes, subsidies, endowments and eligibility that affect their
choices, but the agent chooses the treatment selected. Agent preferences, program de-
livery systems, aggregate production technologies, market structures, and the like might
all affect the choice of treatment. The treatment choice mechanism may involve multi-
ple actors and multiple decisions that result in an assignment of ω to s. For example, s

can be schooling while Y(s, ω) is earnings given schooling for agent ω. A policy may
be a set of payments that encourage schooling, as in the Progressa program in Mexico,
and the treatment in that case is choice of schooling with its consequences for earn-
ings.

Our description of treatment assignment recognizes individual choices and con-
straints and is more suitable for policy evaluation by economists. We specify assignment
rules a ∈ A which map individuals ω ∈ Ω into constraints (benefits) b ∈ B under dif-
ferent mechanisms. In this notation, a constraint assignment mechanism a is a map

a : Ω → B

defined over the space of agents. The constraints may include endowments, eligibility,
taxes, subsidies and the like that affect agent choices of treatment.16 The map a defines
the rule used to assign b ∈ B. It can include deterministic rules which give schedules
mapping ω into B, such as tax schedules or eligibility schedules. It can also include
random assignment mechanisms that assign ω to an element of B. Random assignment

16 Elements of b can be parameters of tax and benefit schedules that affect individual incentives. A more
general setup is possible where ω-specific schedules are assigned to person ω. The cost of this generality is
more complicated notation. For simplicity we confine attention to a fixed – but possibly very large – set of
parameters defined for all agents.
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mechanisms add additional elements of randomness to the environment.17 Abusing no-
tation, when randomization is used, we will redefine Ω to include this new source of
randomness.

Some policies may have the same overall effect on the aggregate distribution of b,
but may treat given individuals differently. Under an anonymity postulate, some would
judge such policies as equivalent in terms of the constraints (benefits) offered, even
though associated outcomes for individuals may be different. Another definition of
equivalent policies is in terms of the distribution of aggregate outcomes associated with
the treatments. In this chapter, we characterize policies at the individual level, recogniz-
ing that sets of A that are characterized by some aggregate distribution over elements
of b ∈ B may be what others mean by a policy.18

Given b ∈ B allocated by constraint assignment mechanism a ∈ A, agents pick
treatments. We define treatment assignment mechanism τ : Ω × A × B → S as a map
taking agent ω ∈ Ω facing constraints b ∈ B assigned by mechanism a ∈ A into a
treatment s ∈ S.19 In settings with choice, τ is the choice rule used by agents where
τ ∈ T , a set of possible choice rules. It is conventional to assume a unique τ ∈ T is
selected by the relevant decision makers, although that is not required in our definition.
A policy regime p ∈ P is a pair (a, τ ) ∈ A × T that maps agents denoted by ω into
elements of s. In this notation, P = A × T .

Incorporating choice into the analysis of treatment effects is an essential and distinc-
tive ingredient of the econometric approach to the evaluation of social programs. The
traditional treatment-control analysis in statistics equates mechanisms a and τ . An as-
signment in that literature is an assignment to treatment, not an assignment of incentives
and eligibility for treatment with the agent making treatment choices. In this notation,
the traditional approach has only one assignment mechanism and treats noncompliance
with it as a problem rather than as a source of information on agent preferences, as in
the econometric approach.20

Policy invariance is a key assumption for the study of policy evaluation. It allows
analysts to characterize outcomes without specifying how those outcomes are obtained.
In our notation, policy invariance has two aspects. The first aspect is that, for a given
b ∈ B (incentive schedule), the mechanism a ∈ A by which ω is assigned a b (e.g.,
random assignment, coercion at the point of a gun, etc.) and the incentive b ∈ B are
assumed to be irrelevant for the values of realized outcomes for each s that is selected.
Second, for a given s for agent ω, the mechanism τ by which s is assigned to the agent

17 Formally, the probability system for the model without randomization is (Ω, σ(Ω),F) where Ω is the
probability space, σ(Ω) is the σ -algebra associated with Ω and F is the measure on the space. When we
account for randomization we need to extend Ω to Ω ′ = Ω × Ψ , where Ψ is the new probability space
induced by the randomization, and we define a system (Ω ′, σ (Ω ′),F ′).
18 Anonymity is a central assumption in the modern income inequality literature. See Foster and Sen (1997).
19 Note that including B in the domain of definition of τ is redundant since the map a : Ω → B selects an
element b ∈ B. We make b explicit to remind the reader that agents are making choices under constraints.
20 Thus, under full compliance, a : Ω → S and a = τ , where B = S.
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under assignment mechanism a ∈ A is irrelevant for the values assumed by realized
outcomes. Both assumptions define what we mean by policy invariance.

Policy invariance allows us to describe outcomes by Y(s, ω) and ignore features of
the policy and choice environment in defining outcomes. If we have to account for
the effects of incentives and assignment mechanisms on outcomes, we must work with
Y(s, ω, a, b, τ ) instead of Y(s, ω). The more complex description is the outcome asso-
ciated with treatment state s for person ω, assigned incentive package b by mechanism a

which are arguments of assignment rule τ . The following policy invariance assumptions
justify collapsing these arguments of Y(·) down to Y(s, ω).

(PI-1) For any two constraint assignment mechanisms a, a′ ∈ A and incentives
b, b′ ∈ B, with a(ω) = b and a′(ω) = b′, and for all ω ∈ Ω , Y(s, ω, a, b, τ ) =
Y(s, ω, a′, b′, τ ), for all s ∈ Sτ(a,b)(ω) ∩ Sτ(a′,b′)(ω) for assignment rule τ where
Sτ(a,b)(ω) is the image set for τ(a, b). For simplicity we assume Sτ(a,b)(ω) = Sτ(a,b)

for all ω ∈ Ω .21

This assumption says that for the same treatment s and agent ω, different constraint as-
signment mechanisms a and a′ and associated constraint assignments b and b′ produce
the same outcome. For example, this assumption rules out the possibility that the act
of randomization or the act of pointing a gun at the agent to secure cooperation with
planner intentions has an effect on outcomes, given that the agent ends up in s. (PI-1) is
a strong assumption and we discuss evidence against it in Chapter 71.

A second invariance assumption invoked in the literature is that for a fixed a and b,
the outcomes are the same independent of the treatment assignment mechanism:

(PI-2) For each constraint assignment a ∈ A, b ∈ B and all ω ∈ Ω , Y(s, ω, a, b, τ ) =
Y(s, ω, a, b, τ ′) for all τ and τ ′ ∈ T with s ∈ Sτ(a,b) ∩ Sτ ′(a,b), where Sτ(a,b) is the
image set of τ for a given pair (a, b).

Again, we exclude the possibility of ω-specific image sets Sτ(a,b) and Sτ ′(a,b). In prin-
ciple, not all agents ω may be able to attain s for all (a, b) pairs. We invoke this
assumption to simplify the analysis and to avoid excess notational and mathematical
complexity. Assumption (PI-2) states that the actual mechanism used to assign treat-
ment does not affect the outcomes. It rules out, among other things, social interactions
and general equilibrium effects. Abbring and Heckman (Chapter 72) discuss evidence
against this assumption.

These invariance postulates are best discussed in the context of specific economic
models. We restate these conditions, which are closely related to the invariance con-
ditions of Hurwicz (1962), when we discuss his treatment of policy invariance in Sec-
tion 4.6 below, after we have specific economic models in hand.

21 This final assumption can be easily relaxed, but at a major notational cost.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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If treatment effects based on subjective evaluations are also considered, we need to
broaden invariance assumptions (PI-1) and (PI-2) to produce invariance in rewards for
certain policies and assignment mechanisms. It would be unreasonable to claim that
utilities R(·) do not respond to incentives. Suppose, instead, that we examine subsets
of constraint assignment mechanisms a ∈ A that give the same incentives (elements
b ∈ B) to agents, but are conferred by different delivery systems, a. For each ω ∈ Ω ,
define the set of mechanisms delivering the same incentive or constraint b as Ab(ω):

Ab(ω) = {
a

∣∣ a ∈ A, a(ω) = b
}
, ω ∈ Ω.

We allow for the possibility that the set of delivery mechanisms that deliver b may vary
among the ω. Let R(s, ω, a, b, τ ) represent the reward to agent ω from a treatment s

with incentive b allocated by mechanism a with an assignment to treatment mecha-
nism τ . To account for invariance with respect to the delivery system, we assume (PI-1)
and additional conditions:

(PI-3) For any two constraint assignment mechanisms a, a′ ∈ A and incentives
b, b′ ∈ B with a(ω) = b and a′(ω) = b′, and for all ω ∈ Ω , Y(s, ω, a, b, τ ) =
Y(s, ω, a′, b′, τ ) for all s ∈ Sτ(a,b)(ω) ∩ Sτ(a′,b′)(ω) for assignment rule τ , where
Sτ(a,b)(ω) is the image set of τ(a, b) and for simplicity we assume that Sτ(a,b)(ω) =
Sτ(a,b) for all ω ∈ Ω . In addition, for any mechanisms a, a′ ∈ Ab(ω), producing the
same b ∈ B under the same conditions postulated in the preceding sentence, and for all
ω, R(s, ω, a, b, τ ) = R(s, ω, a′, b, τ ).

This assumption says, for example, that utilities are not affected by randomization or the
mechanism of assignment of constraints. We present evidence against this assumption
in Chapter 71.

Corresponding to (PI-2) we have a policy invariance assumption for the utilities with
respect to the mechanism of assignment:

(PI-4) For each pair (a, b) and all ω ∈ Ω ,

Y(s, ω, a, b, τ ) = Y(s, ω, a, b, τ ′),
R(s, ω, a, b, τ ) = R(s, ω, a, b, τ ′)

for all τ, τ ′ ∈ T and s ∈ Sτ(a,b) ∩ Sτ ′(a,b).

This assumption rules out general equilibrium effects, social externalities in consump-
tion, etc. in both subjective and objective outcomes. Observe that it is possible to satisfy
(PI-1) and (PI-2) but not (PI-3) and (PI-4). For example, randomization may affect sub-
jective evaluations through its effect of adding uncertainty into the decision process but
it may not affect objective valuations. We discuss this possibility in Chapter 71 and
show that it is empirically important.22

22 We do not develop the third possible case when the roles of R and Y are reversed so that R is invariant and
Y is not.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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2.2.1. More general criteria

One might compare outcomes in different sets that are ordered. Thus if Y(s, ω) is scalar
income and we compare outcomes for s ∈ SA with outcomes for s′ ∈ SB , where
SA ∩ SB = ∅, then one might compare YsA to YsB , where

sA = argmaxs∈SA

{
Y(s, ω)

}
and sB = argmaxs∈SB

{
Y(s, ω)

}
,

where we suppress the dependence of sA and sB on ω. This compares the best in one
choice set with the best in the other.23 Another contrast compares the best choice with
the next best choice. To do so, define s′ = argmaxs∈S{Y(s, ω)} and SB = S \ {s′} and
define the treatment effect as Ys′ − YsB . This is the comparison of the highest outcome
over S with the next best outcome. In principle, many different individual level com-
parisons might be constructed, and they may be computed using personal preferences,
R(ω), using the preferences of the planner, RG, or using the preferences of the planner
over the preferences of agents.

Social welfare theory constructs aggregates over Ω or nonempty, nonsingleton sub-
sets of Ω [see Sen (1999)]. Let sp(ω) denote the s ∈ Sp that ω receives under policy p.
This is a shorthand notation for the element in Sτ determined by the map p = (a, τ )

assigned to agent ω under policy p. A comparison of two policy outcomes {sp(ω)}ω∈Ω

and {sp′(ω)}ω∈Ω , where p �= p′ for some ω ∈ Ω , using the social welfare function
defined over outcomes RG({Y(s, ω), ω}ω∈Ω) can be expressed as

RG

({
Y(sp(ω), ω)

}
ω∈Ω

) − RG

({
Y(sp′(ω), ω)

}
ω∈Ω

)
.

A special case of this analysis is cost-benefit analysis where willingness to pay
measures W(sp(ω), ω) are associated with each agent using some compensating or
equivalent variation measure for general preferences. The cost-benefit comparison of
two policies p and p′ is

Cost Benefit:

CBp,p′ =
∫

Ω

W
(
Y(sp(ω), ω)

)
dμ(ω) −

∫
Ω

W
(
Y(sp′(ω), ω)

)
dμ(ω),

where p, p′ are two different policies and p′ may correspond to a benchmark of
no policy and μ(ω) is the distribution of ω.24 The Benthamite criterion replaces
W(Y(s(ω), ω)) with R(Y (s(ω), ω)) in the preceding expressions and integrates utili-
ties across agents.

Benthamite:

Bp,p′ =
∫

Ω

R
(
Y(sp(ω), ω)

)
dμ(ω) −

∫
Ω

R
(
Y(sp′(ω), ω)

)
dμ(ω).

23 This analysis could be done for vector Y (s, ω) provided that {Y (s, ω)}s∈S is an ordered set.
24 These willingness-to-pay measures are standard in the social welfare evaluation literature. See, e.g.,
Boadway and Bruce (1984).
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We now discuss the problems that arise in constructing these and other evaluation cri-
teria. This takes us into the problem of causal inference, the second problem delineated
in Table 1. We are discussing inference in a population and not in a sample so no issues
of sampling variability arise.

2.3. The evaluation problem

Operating purely within the domain of theory, we have assumed a well defined set of
individuals ω ∈ Ω and a universe of counterfactuals or hypotheticals for each agent
Y(s, ω), s ∈ S. Different policies p ∈ P give different incentives by assignment mech-
anism a to agents who are allocated to treatment by a rule τ ∈ T . In the absence of
a theory, there are no well defined rules for constructing counterfactual or hypothetical
states or constructing the assignment to treatment rules.25 Economic theories provide
algorithms for generating the universe of internally consistent, theory-consistent coun-
terfactual states.

These hypothetical states are possible worlds. They are products of a purely mental
activity. No empirical problem arises in constructing these theoretically possible worlds.
Indeed, in forecasting new policies, or projecting the effects of old policies to new en-
vironments, some of the Y(s, ω) may have never been observed for anyone. Different
theories produce different Y(s, ω) and different assignment mechanisms.

The evaluation problem, in contrast with the model construction problem, is an iden-
tification problem that arises in constructing the counterfactual states and treatment
assignment rules produced by these abstract models using data. This is the second prob-
lem presented in Table 1.

This problem is not precisely stated until the data available to the analyst are pre-
cisely defined. Different subfields in economics assume access to different types of
data. They also make different assumptions about the underlying models generating the
counterfactuals and mechanisms for selecting which counterfactuals are actually ob-
served.

For each policy regime, at any point in time we observe agent ω in some state but
not in any of the other states. Thus we do not observe Y(s′, ω) for agent ω if we ob-
serve Y(s, ω), s �= s′. Let Dp(s, ω) = 1 if we observe agent ω in state s under policy
regime p. Keeping the policy regime p implicit simplifies the notation so henceforth
we work with D(s, ω) recognizing that it should always be understood as implicitly
p subscripted with a constraint assignment mechanism (a) and a treatment assignment
mechanism (τ ). In this notation, D(s, ω) = 1 implies that D(s′, ω) = 0 for s �= s′.

25 Efforts like those of Lewis (1974) to define admissible counterfactual states without an articulated theory
as “closest possible worlds” founder on the lack of any meaningful metric or topology to measure “closeness”
among possible worlds.
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We observe Y(s, ω) if D(s, ω) = 1 but we do not observe Y(s′, ω), for s �= s′. We
keep the p implicit. We can define observed Y(ω) for a finite or countable S as

(2.2)Y(ω) =
∑
s∈S

D(s, ω)Y (s, ω).26

Without further assumptions, constructing an empirical counterpart to the individual
level causal effect (2.1) is impossible from the data on (Y (ω),D(ω)), ω ∈ Ω . This
formulation of the evaluation problem is known as Quandt’s switching regression model
[Quandt (1958, 1974)] and is attributed in statistics to Neyman (1923), Cox (1958) and
Rubin (1978). A version of it is formulated in a linear equations context for a continuum
of treatments by Haavelmo (1943). The Roy model (1951) is another version of this
framework with two possible treatment outcomes (S = {0, 1}) and a scalar outcome
measure and a particular assignment mechanism τ which is that D(1, ω) = 1[Y(1, ω) �
Y(0, ω)].27 The mechanism of selection depends on the potential outcomes. Agents
choose the sector with the highest income so the actual selection mechanism is not a
randomization.

The evaluation literature in macroeconomics analyzes policies with universal cover-
age at a point in time (e.g., a tax policy or social security) so that D(s, ω) = 1 for some s

and all ω. It uses time series data to evaluate the impacts of policies in different periods
and typically uses mean outcomes (or mean utilities as in a Benthamite criterion) to
evaluate policies.28

Social experiments attempt to create treatment assignment rules so that D(s, ω) is
random with respect to {Y(s, ω)}s∈S (i.e., so that receipt of treatment is independent
of the outcome of treatment). When agents self-select into treatment, rather than are
randomly assigned to it, in general the D(s, ω) are not independent of {Y(s, ω)}s∈S .
Such selection arises in the Roy model example. This selection rule creates the potential
for self-selection bias in inference.

The problem of self selection is an essential aspect of the evaluation problem when
data are generated by the choices of agents. The agents making choices may be different
from the agents receiving treatment (e.g., parents making choices for children). Such
choices can include compliance with the protocols of a social experiment as well as
ordinary choices about outcomes that people make in everyday life. As a consequence of
self-selection, the distribution of the Y(s, ω) observed are not the population distribution
of randomly sampled Y(s, ω).

Observe that in the Roy model, the choice of treatment (including the decisions not
to attrite from the program) is informative on the relative evaluation of Y(s, ω). This

26 In the general case, Y (ω) = ∫
S D(s, ω)Y (s, ω) ds where D(s, ω) is a Dirac function.

27 Thus τ(ω) = 1 for ω satisfying Y (1, ω) � Y (0, ω) and τ(ω) = 0 for ω satisfying Y (1, ω) < Y(0, ω).
28 One might argue that even a universal policy p like social security has different benefits b ∈ B (tax-benefit
rates) for persons with different characteristics, so that there is not universal coverage in the sense that we
have used it here.
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point is more general and receives considerable emphasis in the econometrics litera-
ture.29 Choices by agents provide information on subjective evaluations which are of
independent interest.

A central problem analyzed in this chapter is the absence of information on outcomes
for agent ω other than the outcome that is observed. Even a perfectly implemented social
experiment does not solve this problem [Heckman (1992)]. Randomization identifies
only one component of {Y(s, ω)}s∈S for any agent. In addition, even with large samples
and a valid randomization, some of the s ∈ S may not be observed if one is seeking to
evaluate new policies never experienced.

There are two main avenues of escape from this problem and we investigate both
in this chapter. The first avenue, featured in explicitly formulated econometric mod-
els, often called “structural econometric analysis,” is to model Y(s, ω) in terms of its
determinants as specified by theory. This entails describing the random variables char-
acterizing ω and carefully distinguishing what agents know and what the analyst knows.
This approach also models D(s, ω) and the dependence between Y(s, ω) and D(s, ω)

produced from variables common to Y(s, ω) and D(s, ω). The Roy framework models
this dependence.30 Like all scientific models, this approach stresses understanding the
factors underlying outcomes and the choice of outcome equations and their dependence.
Empirical models based on economic theory pursue this avenue of investigation.31

Some statisticians call this the “scientific approach” and are surprisingly hostile to it
[see Holland (1986)].

A second avenue of escape, and the one pursued in the recent treatment effect lit-
erature, redirects attention away from estimating the determinants of Y(s, ω) toward
estimating some population version of (2.1), most often a mean, without modeling what
factors give rise to the outcome or the relationship between the outcomes and the mech-
anism selecting outcomes. Agent valuations of outcomes are ignored. The treatment
effect literature focuses exclusively on policy problem P-1 for the subset of outcomes
that is observed. It ignores the problem of forecasting a new policy in a new environment
(problem P-2), or a policy never previously experienced (problem P-3). Forecasting the
effects of new policies is a central task of science, ignored in the treatment effect litera-
ture.

2.4. Population level treatment parameters

Constructing (2.1) or any of the other individual level parameters defined in Section 2.2
for a given agent is a difficult task because we rarely observe the same agent ω in distinct

29 See, e.g., Heckman and Smith (1998).
30 See Heckman and Honoré (1990) and Heckman (2001) for a discussion of this model.
31 We include in this approach methods based on panel data or more generally the method of paired compar-
isons as applications of the scientific approach. Under special conditions discussed in Heckman and Smith
(1998), we can observe the same agent in states s and s′ in different time periods, and can construct (2.1) for
all ω.
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states s. In addition, some of the states in S may not be experienced by anyone. The con-
ventional approach in the treatment effect literature is to reformulate the parameter of
interest to be some summary measure of the population distribution of treatment effects
like a mean or the distribution itself rather than attempting to identify individual treat-
ment effects. It confines attention to subsets of S that are observed in a particular data
set. Thus, the objects of interest are redefined to be distributions of (Y (j, ω) − Y(k, ω))

over ω or certain means (or quantiles) of the distribution of (Y (j, ω) − Y(k, ω)) over ω

conditional on ω lying in a set {ω: X(ω) = x}, i.e., conditioning on X(ω) [Heckman,
Smith and Clements (1997)]. They may instead consist of distributions of Y(j, ω) and
Y(k, ω) separately [Abadie, Angrist and Imbens (2002), Chernozhukov and Hansen
(2005)]. Depending on the conditioning sets used, different summary measures of the
population distribution of treatment effects are produced. In addition, the standard im-
plicit assumption in the treatment literature is that all states in S are observed and that
assumptions (PI-1) and (PI-2) hold [Holland (1986), Rubin (1986)].

The conventional parameter of interest, and the focus of many investigations in
economics and statistics is the average treatment effect or ATE. For program (state,
treatment) j compared to program (state, treatment) k, it is

(2.3a)ATE(j, k) = E
(
Y(j, ω) − Y(k, ω)

)
,

where expectations are taken with respect to the distribution of ω. Conditioning on
covariates X, which are associated with the observed components of ω, this parameter is

(2.3b)ATE(j, k | x) = E
(
Y(j, ω) − Y(k, ω) | X = x

)
.

It is the effect of assigning an agent to a treatment – taking someone from the overall
population (2.3a) or a subpopulation conditional on X (2.3b) – and determining the
mean gain of the move from base state k, averaging over the factors that determine
Y but are not captured by X. This parameter is also the effect of moving the economy
from a universal policy (characterized by policy k) and moving to a universal policy of j

(e.g., from no social security to full population coverage). Such a policy would likely
induce social interactions and general equilibrium effects which are assumed away in
the treatment effect literature and which, if present, fundamentally alter the economic
interpretation placed on the parameter.

A second conventional parameter in this literature is the average effect of treatment
on the treated. Letting D(j, ω) = 1 denote receipt of treatment j , the conventional
parameter is

(2.4a)TT(j, k) = E
(
Y(j, ω) − Y(k, ω) | D(j, ω) = 1

)
.

For a population conditional on X = x it is

(2.4b)TT(j, k | x) = E
(
Y(j, ω) − Y(k, ω) | D(j, ω) = 1, X(ω) = x

)
.

We present precise models for decision rules below.
These parameters are the mean impact of moving agents from k to j for those peo-

ple who get treatment, unconditional and conditional on X. It is the benefit part of the
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information needed to conduct a cost-benefit evaluation for an existing program. Un-
der certain conditions, it is useful in making “up or out” decisions about an existing
program – whether or not the program should be kept or terminated.32

A parallel pair of parameters for nonparticipants is treatment on the untreated, where
D(j, ω) = 0 denotes no treatment at level j :

(2.5a)TUT(j, k) = E
(
Y(j, ω) − Y(k, ω) | D(j, ω) = 0

)
,

(2.5b)TUT(j, k | x) = E
(
Y(j, ω) − Y(k, ω) | D(j, ω) = 0, X(ω) = x

)
.

These parameters answer the question of how extension of a given program to nonpar-
ticipants as a group would affect their outcomes (unconditional and conditional on X,
respectively).

The ATE parameter does not condition on a choice. It is policy invariant under con-
ditions (PI-1) and (PI-2). The TT and TUT parameters condition on individual choices
and are policy invariant only under the stronger conditions (PI-3) and (PI-4).

Analogous to the pairwise comparisons, we can define setwise comparisons for or-
dered sets. Thus, in the notation of Section 2.2, we can define the population mean
version of the best in SA compared with the best in SB by

E
(
YsA(ω) − YsB (ω)

)
,

where

sA(ω) = argmaxs∈SA

{
Y(s, ω)

}
and sB(ω) = argmaxs∈SB

{
Y(s, ω)

}
,

or we can compare the mean best in the choice set with the mean second best,
E(Ys′(ω) − YsB (ω)), where s′ = argmaxs∈S{Y(s, ω)} and SB = S \ {s′}. These pa-
rameters can be defined conditional on X.

The population treatment parameters just discussed are average effects: how the
average in one treatment group compares to the average in another. The distinction
between the marginal and average return is a central concept in economics. It is often
of interest to evaluate the impact of marginal extensions (or contractions) of a pro-
gram. Incremental cost-benefit analysis is conducted in terms of marginal gains and
benefits. Let R(Y (k, ω), C(k, ω), ω) be the utility of person ω with outcome Y(k, ω)

and cost C(k, ω). The effect of treatment for people at the margin of indifference
(EOTM) between j and k, given that these are the best two choices available is, with
respect to personal preferences, and with respect to choice-specific costs C(j, ω),

EOTMR(j, k)

(2.6)

= E

⎛
⎜⎝Y(j, ω) − Y(k, ω)

R(Y (j, ω), C(j, ω), ω) = R(Y (k, ω), C(k, ω), ω);
R(Y (j, ω), C(j, ω), ω)

R(Y (k, ω), C(k, ω), ω)

}
� R(Y (l, ω), C(l, ω), ω)

l �= j, k

⎞
⎟⎠ .

32 See, e.g., Heckman and Smith (1998).
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This is the mean gain to agents indifferent between j and k, given that these are the
best two options available. In a parallel fashion, we can define EOTMRG(Y (j, ω) −
Y(k, ω)) using the preferences of another agent (e.g., the parent of a child; a paternalistic
bureaucrat, etc.).

An analogous parameter can be defined for mean setwise comparisons. Thus we can
define two versions of EOTM:

EOTMR(sA, sB) = E

(
YsA − YsB

∣∣∣ R(Y (sA, ω), C(sA, ω), ω)

= R(Y (sB, ω), C(sB, ω), ω)

)
,

where sA and sB are distinct elements and A ∩ B = ∅, and

EOTMR
({s′},S \ {s′}) = E

(
Ys′ − YsB

∣∣∣ R(Y (s′, ω), C(s′, ω), ω)

= R(Y (sB, ω), C(sB, ω), ω)

)
,

where sB is the optimal choice in the set of S \ {s′}. Again, these parameters can be
defined conditional on X = x. Other setwise comparisons can be constructed. A gen-
eralization of this parameter called the marginal treatment effect, introduced into the
evaluation literature by Björklund and Moffitt (1987), further developed in Heckman
and Vytlacil (1999, 2000, 2005) and defined precisely in Chapter 71 of this Handbook,
plays a central role in organizing and interpreting a wide variety of econometric estima-
tors in this chapter.33

Many other mean treatment parameters can be defined depending on the choice of
the conditioning set. Analogous definitions can be given for median and other quantile
versions of these parameters [see Heckman, Smith and Clements (1997), Abadie, An-
grist and Imbens (2002)]. Although means are conventional, distributions of treatment
parameters are also of considerable interest. We consider distributional parameters in
the next subsection.

Of special interest in policy analysis is the policy relevant treatment effect. It is
the effect on aggregate outcomes of one policy regime p ∈ P compared to the effect
of another policy regime. For it to be an interesting parameter, we assume (PI-1) and
(PI-2) but not necessarily (PI-3) and (PI-4).

PRTE: Ep

(
Y(s, ω)

) − Ep′
(
Y(s, ω)

)
, where p, p′ ∈ P,

where the expectations are taken over different spaces of policy assignment rules. This
parameter is a version of a Benthamite policy criterion.

Mean treatment effects play a special role in the statistical approach to causality. They
are the centerpiece of the Holland (1986)–Rubin (1978) model and in many other studies
in statistics and epidemiology. Social experiments with full compliance and no disrup-
tion can identify these means because of a special mathematical property of means.
If we can identify the mean of Y(j, ω) and the mean of Y(k, ω) from an experiment

33 There are technical measure theoretic issues regarding whether EOTM is uniquely defined. They are dis-
cussed in Chapter 71.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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where j is the treatment and k is the baseline, we can form the average treatment effect
for j compared to k (2.3a). These can be formed over two different groups of agents.
By a similar argument, we can form the treatment on the treated parameter (TT) (2.4a)
or (TUT) (2.5a) by randomizing over particular subsets of the population (those who
would select treatment and those who would not select treatment respectively), assum-
ing full compliance and no Hawthorne effects or randomization (disruption) bias. See
Heckman (1992) and the discussion in Chapter 71.

The case for randomization is weaker if the analyst is interested in other summary
measures of the distribution or the distribution itself. In general, randomization is not
an effective procedure for identifying median gains, or the distribution of gains or many
other key economic parameters. The elevation of population means as the central popu-
lation level “causal” parameters promotes randomization as an ideal estimation method.
This focus on means converts a metaphor for outcome selection – randomization – into
an ideal. We next turn to a discussion of distributions of counterfactuals.

2.5. Criteria of interest besides the mean: Distributions of counterfactuals

Although means are traditional, the answers to many interesting evaluation questions
require knowledge of features of the distribution of program gains other than some
mean. Thus modern political economy [Persson and Tabellini (2000)] seeks to know
the proportion of agents who benefit from policy regime p compared with p′. Let sp be
shorthand notation for assignment of ω to outcome s under policy p and the associated
set of treatment assignment mechanisms. For any two regimes p and p′ the proportion
who benefit is

Pr
(
Y

(
sp(ω), ω

)
� Y

(
sp′(ω), ω

))
.

This is called the voting criterion. For particular treatments within a policy regime p,
it is also of interest to determine the proportion who benefit from j compared to k as

Pr
(
Y(j, ω) � Y(k, ω)

)
.

Under (PI-1) and (PI-2) this is the same across all policy regimes.34 We might be in-
terested in the quantiles of Y(sp(ω), ω) − Y(sp′(ω), ω) or of Y(j, ω) − Y(k, ω) for
sp(ω) = j and sp(ω) = k or the percentage who gain from participating in j (compared
to k) under policy p. More comprehensive analyses would include costs and benefits.
Distributional criteria are especially salient if program benefits are not transferrable or
if restrictions on feasible social redistributions prevent distributional objectives from
being attained.

The traditional literature on program evaluation focuses its attention on mean im-
pacts. When the outcomes are in value units, these can be used to measure the effect of

34 See Abbring and Heckman (Chapter 72). General equilibrium effects invalidate assumptions (PI-1) and
(PI-2).

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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a program on total social output and are the basis of efficiency analyses. The implicit as-
sumption of the traditional cost-benefit literature is that “a dollar is a dollar,” regardless
of who receives it.35

An emphasis on efficiency to the exclusion of distribution is not universally ac-
cepted.36 An emphasis on efficiency is premised on the assumption that distributional
issues are either irrelevant or that they are settled by some external redistribution mech-
anism using a family or a social welfare function.

Outcomes from many activities like health programs, educational subsidies and train-
ing programs are not transferrable. Moreover, even if all program outputs can be mon-
etized, the assumption that a family or social welfare function automatically settles
distributional questions in an optimal way is questionable. Many programs designed
to supply publicly provided goods are properly evaluated by considering the incidence
of their receipt and not the aggregate of the receipts. Hence counterfactual distributions
are required. Distributions of counterfactuals are also required in computing option val-
ues of social programs, which we discuss next.

2.6. Option values

Voluntary social programs confer options, and these options can change threat points
and bargaining power, even if they are not exercised.37 It is, therefore, of interest
to assess these option values. The most interesting versions of option values require
knowledge of the joint distribution of potential outcomes. We consider the analysis of
treatments offered within a policy regime. Persons offered a subsidized job may take
it or opt for their best unsubsidized alternative. The option of having a subsidized
alternative job will in general convey value. The option may be conferred simply by
eligibility for a program or it may be conferred only on participants. The program cre-
ates an option for participants, if prior to participating in it, their only available option
comes from the distribution of Y(k, ω), say Fk . Following or during participation in
the program, the individual has a second option Z(ω) drawn from distribution FZ .
If both options are known prior to choosing between them, and agents are outcome
maximizers, then the observed outcome Y(j, ω) is the maximum of the two options,
Y(j, ω) = max(Y (k, ω), Z(ω)). The option Z(ω) may be available only during the
period of program participation, as in a wage subsidy program, or it may become a
permanent feature of the choice set as when a marketable skill is acquired. It is useful
to distinguish the case where the program offers a distribution FZ from which new of-
fers are received each period from the case where a permanent Z(ω) value is created.
Much of the literature on program evaluation implicitly equates Z(ω) with Y(j, ω).
This is valid only if treatment is an irreversible condition that supplants Y(k, ω) or else

35 See Harberger (1971).
36 See Little and Mirrlees (1974).
37 See, e.g., Osborne (2004).
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Z(ω) � Y(k, ω) for all ω so that agents who take the treatment use the skills conferred
by it. In either case, agents offered Z(ω) always choose Z(ω) over Y(k, ω) or are in-
different, so Y(j, ω) ≡ Z(ω) and the estimated distribution of Y(j, ω) is equivalent to
the estimated distribution of Z(ω). In general it is useful to determine what a program
offers to potential participants, what the offer is worth to them, and to distinguish the
offered option from the realized choice.

The expected value of having a new option Z(ω) in addition to Y(k, ω) is

(OP-1) E(max(Y (k, ω), Z(ω))) − E(Y(k, ω)),

assuming that potential participants in a program can choose freely between Y(k, ω)

and Z(ω). This is the difference in expected outcomes between a two-option world and
a one-option world, assuming that both are known at the time the choice between them
is made. It is useful to distinguish the opportunities created from the program, Z(ω),
from the options selected. The program extends opportunities to potential participants.
Providing a new opportunity that may be rejected may improve the average outcome
among agents who choose Y(k, ω) over Z(ω) through affecting the distribution of the
Y(k, ω) offered to the agents.

For example, the outside option can improve bargaining power. If a housewife re-
ceives an outside job offer, her bargaining power at home may increase. If a program
gives participants a second distribution from which they receive a new draw each period,
and if realizations of the pair (Y (k, ω), Z(ω)) in each future period are independently
and identically distributed, then the addition to future wealth of having access to a sec-
ond option in every period is

1

r

[
E

(
max

(
Y(k, ω), Z(ω)

)) − E
(
Y(k, ω)

)]
,

where r is the interest rate. If Z is available only for a limited time period, as would
be the case for a job subsidy, (OP-1) is discounted over that period and the expression
should be appropriately modified to adjust for the finite life.

If the realizations (Y (k, ω), Z(ω)) are not known at the time when decisions to exer-
cise the option are made, (OP-1) is modified to

(OP-2) max(E(Y (k, ω) | Iω), E(Y (j, ω) | Iω)) − E(Y(k, ω) | Iω),

where these expectations are computed against agent ω’s information set Iω.38 Con-
structing these option values in general requires knowing the joint distribution of Z(ω)

and Y(k, ω), and cannot be obtained from means or from social experiments which
only identify marginal distributions. We now turn to a systematic accounting of uncer-
tainty.

38 A third definition of option value recognizes the value of having uncertainty resolved at the time decisions
to choose between Z(ω) and Y (k, ω) are made. That definition is

(OP-3) E(max(Z(ω), Y (k, ω))) − max(E(Z(ω) | Iω), E(Y (k, ω) | Iω)) = (OP-1)–(OP-2).
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2.7. Accounting for private and social uncertainty

Systematically accounting for uncertainty introduces additional considerations that are
central to economic analysis but that are ignored in the treatment effect literature as
currently formulated. Persons do not know the outcomes associated with possible states
not yet experienced. If some potential outcomes are not known at the time treatment
decisions are made, the best that agents can do is to forecast them with some rule.
Even if, ex post, agents know their outcome in a benchmark state, they may not know it
ex ante, and they may always be uncertain about what they would have experienced in
an alternative state. This creates a further distinction: that between ex post and ex ante
evaluations of both subjective and objective outcomes. The economically motivated lit-
erature on policy evaluation makes this distinction. The treatment effect literature does
not.

In the literature on welfare economics and social choice, one form of decision-making
under uncertainty plays a central role. The “Veil of Ignorance” of Vickrey (1945, 1961)
and Harsanyi (1955, 1975) postulates that agents are completely uncertain about the
positions of individuals in the distribution of outcomes under each policy, or should
act as if they are completely uncertain, and they should use expected utility criteria
(Vickrey–Harsanyi) or a maximin strategy [Rawls (1971)] to evaluate welfare under al-
ternative policies. Central to this viewpoint is the anonymity postulate that claims the
irrelevance of any particular agent’s outcome to the overall evaluation of social welfare.
This form of ignorance is sometimes justified as an ethically correct position that cap-
tures how an objectively detached observer should evaluate alternative policies, even
if actual participants in the political process use other criteria. An approach based on
the Veil of Ignorance is widely used in applied work in evaluating different income dis-
tributions [see Foster and Sen (1997)]. It is empirically easy to implement because it
only requires information about the marginal distributions of outcomes produced un-
der different policies. If the outcome is income, policy j is preferred to policy k if
the income distribution under j stochastically dominates the income distribution un-
der k.39

An alternative criterion is required if agents act in their own self-interest, or in the
interest of certain other groups (e.g., the poor, the less able) and have at least partial
knowledge about how they (or the groups they are interested in) will fare under dif-
ferent policies. The outcomes in different regimes may be dependent, so that agents
who benefit under one policy may also benefit under another [see Carneiro, Hansen and
Heckman (2001, 2003), Cunha, Heckman and Navarro (2005, 2006)].

Because agents typically do not possess perfect information, the simple voting crite-
rion that assumes perfect foresight over policy outcomes that is discussed in Section 2.5
may not accurately characterize choices. It requires modification. Let Iω denote the in-
formation set available to agent ω. He or she evaluates policy j against k using that

39 See Foster and Sen (1997) for a definition of stochastic dominance.
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information. Under an expected utility criterion, agent ω prefers policy j over policy k

if

E
(
R

(
Y(j, ω), ω

) | Iω

)
� E

(
R

(
Y(k, ω), ω

) | Iω

)
.

The proportion of people who prefer j is

(2.7)

PB(j | j, k) =
∫

1
[
E

[
R

(
Y(j, ω), ω

) | Iω

]
� E

[
R

(
Y(k, ω), ω

) | Iω

]]
dμ(Iω),

where μ(ω) is the distribution of ω in the population whose preferences over outcomes
are being studied.40,41 The voting criterion presented in Section 2.5 is the special case
where the information set Iω contains (Y (j, ω), Y (k, ω)), so there is no uncertainty
about Y(j) and Y(k). Abbring and Heckman (Chapter 72) offer an example of the ap-
plication of this criterion.

Accounting for uncertainty in the analysis makes it essential to distinguish between
ex ante and ex post evaluations. Ex post, part of the uncertainty about policy outcomes
is resolved although agents do not, in general, have full information about what their
potential outcomes would have been in policy regimes they have not experienced and
may have only incomplete information about the policy they have experienced (e.g., the
policy may have long run consequences extending after the point of evaluation). It is
useful to index the information set Iω by t , Iω,t , to recognize that information about
the outcomes of policies may accrue over time. Ex ante and ex post assessments of a
voluntary program need not agree.

Ex post assessments of a program through surveys administered to agents who have
completed it [Katz et al. (1975), Hensher, Louviere and Swait (1999)], may disagree
with ex ante assessments of the program. Both may reflect honest valuations of the
program. They are reported when agents have different information about it or have their
preferences altered by participating in the program. Before participating in a program,
agents may be uncertain about the consequences of participation. An agent who has
completed program j may know Y(j, ω) but can only guess at the alternative outcome
Y(k, ω) which is not experienced. In this case, ex post “satisfaction” with j relative to
k for agent ω who only participates in k is synonymous with the following inequality,

(2.8)R
(
Y(j, ω), ω

)
� E

(
R

(
Y(k, ω), ω

) | Iω

)
,

where the information is post-treatment. Survey questionnaires about “client” satisfac-
tion with a program may capture subjective elements of program experience not cap-
tured by “objective” measures of outcomes that usually exclude psychic costs and bene-
fits. Heckman, Smith and Clements (1997) present evidence on this question. Carneiro,

40 Agents would not necessarily vote “honestly”, although in a binary choice setting they do and there is no
scope for strategic manipulation of votes. See Moulin (1983). PB is simply a measure of relative satisfaction
and need not describe a voting outcome when other factors come into play.
41 See Cunha, Heckman and Navarro (2006) for computations regarding both types of joint distributions.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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Hansen and Heckman (2001, 2003), Cunha, Heckman and Navarro (2005, 2006) and
Heckman and Navarro (2007) develop econometric methods for distinguishing ex ante
from ex post evaluations of social programs, which are surveyed in Abbring and Heck-
man (Chapter 72).

2.8. The data needed to construct the criteria

Four ingredients are required to implement the criteria discussed in this section: (a) pri-
vate preferences, including preferences over outcomes by the decision maker; (b) social
preferences, as exemplified by the social welfare function; (c) distributions of outcomes
in alternative states, and for some criteria, such as the voting criterion, joint distribu-
tions of outcomes across policy states; and (d) ex ante and ex post information about
outcomes. Cost benefit analysis only requires information about means of measured
outcomes and for that reason is easier to implement. The statistical treatment effect lit-
erature largely focuses on ex post means, but recent work in econometrics focuses on
both ex ante and ex post distributions [see Carneiro, Hansen and Heckman (2001, 2003),
Cunha, Heckman and Navarro (2005, 2006), Heckman, Smith and Clements (1997)].
This chapter focuses on methods for producing ingredients (c) and (d). There is a large
literature on recovering private preferences [see, e.g., Chapter 67 (Blundell, MaCurdy
and Meghir) of this Handbook] and on recovering technology parameters [see, e.g.,
Chapter 62 (Reiss and Wolak); and Chapter 61 (Ackerberg, Benkard, Berry and Pakes)
of this Handbook]. The rich set of questions addressed in this section contrasts sharply
with the focus on mean outcomes in epidemiology and statistics which ignores private
and social preferences and distributions of outcomes. Carneiro, Hansen and Heckman
(2001, 2003), Cunha, Heckman and Navarro (2005, 2006) and Heckman and Navarro
(2007) present methods for extracting private information on outcomes and their evo-
lution over time. We now present some examples of explicit economic models drawing
on core elements of modern econometrics. We build on these examples throughout our
chapter.

3. Roy and generalized Roy examples

To make the discussion more specific and to introduce a parametric version of the
framework for discrete choice with associated outcomes that motivates the analysis in
this chapter, we introduce versions of the Roy (1951) and generalized Roy models,
define various treatment effects and introduce uncertainty into the analysis. We show
how the Roy model and its extensions solve policy problems P-1–P-3 that are the focus
of this chapter. We first develop the generalized Roy framework for a setting of per-
fect certainty, specialize it to the two-outcome case, and then introduce uncertainty. We
produce some normal theory examples because normality is conventional and easy to
link to standard regression theory. The analyses reported in Section 6, Appendix B and
Chapter 71 relax the normality assumption.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06067-9
http://dx.doi.org/10.1016/S1573-4412(07)06062-X
http://dx.doi.org/10.1016/S1573-4412(07)06061-8
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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3.1. A generalized Roy model under perfect certainty

Suppose that there are S̄ states associated with different levels of schooling, or some
other outcome such as residence in a region, or choice of technology. Associated with
each choice s is a valuation of the outcome of the choice R(s), where R is the valuation
function and s is the state. Define Z as individual variables that affect choices. Each
state may be characterized by a bundle of attributes, characteristics or qualities Q(s)

that fully characterize the state. If Q(s) fully describes the state, R(s) = R(Q(s)). To
simplify the notation, we do not use the ω notation in this section, but keep it implicit.

Suppose that R(s) can be written in additively separable form in terms of determinis-
tic and random components. We assume that the Z is observed. Let ν denote unobserved
components as perceived by the econometrician. In this notation,

(3.1)R(s) = μR(s, Z) + η(s, Z, ν),

where μR(s, Z) is the deterministic component of the utility function expressed in terms
of observed variables Z and η(s, Z, ν) represents unobservables from the point of view
of the econometrician (recall that we assume that there is no uncertainty facing the
agent).42 McFadden (1981) describes a large class of discrete choice models that can be
represented in this form. Additive separability is convenient but not essential [Matzkin
(1992, 1993, 1994)]. An example of these models is a random coefficient choice model
where R(s) = γ ′

s z = γ̄ ′
s z + ν′

sz, where γ̄s is the mean of γs and νs is the deviation of
γs from its mean. In the McFadden (1974) model, μR(s, z) = γ̄ ′

s z + νs , where νs is
independent of Z and also independent of s. In this abstract notation, the characteristics
of choice s are embedded in the definition of γs . A more explicit version would write
γs = γ (Q(s)), where Q(s) are the characteristics of choice s. To simplify notation we
write η(s, Z, ν) as η(s).

Associated with each choice is outcome Y(s) which may be vector valued. These
outcomes can depend on X. For simplicity and familiarity we work with the scalar case.
Following Carneiro, Hansen and Heckman (2003) and Heckman and Navarro (2007),
we can accommodate the case where Y(s) is a vector of continuous, discrete and mixed
discrete-continuous outcomes. Again, for simplicity we drop “ω” and assume an addi-
tively separable case where μY (s,X) is a deterministic function expressed in terms of
observables and U(s,X, ε), s = 1, . . . , S̄, are unobservables:

Y(s) = μY (s,X) + U(s,X, ε).

We leave the details of constructing the random variables η(s, Z, γ ) and U(s,X, ε)

for a later section of this chapter. For now one could work with the shorthand notation
U(s,X, ε) = U(s) and η(s, Z, γ ) = η(s).

42 One definition of μR(s, Z) is μR(s, Z) = E
[
R(s) | Z

]
, but other definitions are possible. The “structural”

approach derives μR(s, Z) from economic theory.
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This framework serves as a benchmark index model against which we can measure
the recent contributions and limitations of the treatment effect literature. The chapters
in the Handbook series by McFadden (1984), Heckman and MaCurdy (1986), Matzkin
(1994), Blundell, MaCurdy and Meghir (2007), Reiss and Wolak (2007), Ackerberg et
al. (2007), and Athey and Haile (2007) exposit detailed econometric analyses of spe-
cific economic models that are based on versions of this structure and extensions of it.
Economically well-posed econometric models make explicit the assumptions used by
analysts regarding preferences, technology, the information available to agents, the con-
straints under which they operate and the rules of interaction among agents in market
and social settings. These explicit features make these models, like all scientific models,
useful vehicles for interpreting empirical evidence using economic theory, for collating
and synthesizing evidence across studies using economic theory, for measuring the wel-
fare effects of policies, and for forecasting the welfare and direct effects of previously
implemented policies in new environments and the effects of new policies.

The set of possible treatments S is {1, . . . , S̄}, the set of state labels. The set of coun-
terfactual outcomes is {Y(s,X)}s∈S . The treatment assignment mechanism is produced
by utility maximization:

(3.2)D(j) = 1 if argmaxs∈S
{
R(s)

} = j,

where in the event of ties, choices are made by a flip of a coin. Thus agents self se-
lect into treatment and the probabilities of selection which are defined at the individual
level are either zero or one for each agent (agents choose outcomes with certainty).
Appendix B presents a proof of nonparametric identification of this generic model.

Other mechanisms for selection into sector s could be entertained. In the background,
policy “p”, under which choices are made, is kept implicit. Policies can operate to
change Z,X, and the distributions η(s, Z, ν), U(s,X, ε). Section 5 presents a more
detailed analysis of policy regimes. Operating within a policy regime, and a particular
treatment selection rule, we do not have to take a position on assumptions (PI-3) and
(PI-4), which are assumptions about outcomes across policy regimes and across assign-
ment rules within policy regimes. We next present examples of these models. We also
introduce examples of models with uncertainty.

3.1.1. Examples of models that can be fit into this framework

Scalar income The original static Roy model (1951) writes Y(j) as scalar income
in sector j . For instance, sectors can be regions, industries [Heckman and Sedlacek
(1985)], schooling levels [Willis and Rosen (1979), Carneiro, Hansen and Heckman
(2003)] or union status [Lee (1978)]. See Heckman (2001) for a survey of these appli-
cations.

In the original setup, R(j) ≡ Y(j), Z = X and Y(j) is scalar income in sector j

so agents are income maximizers. In extensions of this model, there are sector-specific
costs C(j) which may depend on Z = (X,W), R(j) = Y(j) − C(j). This allows
for nonpecuniary components as in Heckman and Sedlacek (1985), Carneiro, Hansen
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and Heckman (2003), Cunha, Heckman and Navarro (2005, 2006) and others, or tuition
costs as in Willis and Rosen (1979). Policies may operate on costs or returns. Agents
may be uncertain about future income when they make their choices so the decision
rule is to go to the sector if E(Y(1) − C(1) − Y(0) | I) � 0. Ex post returns are
(Y (1)−C(1)−Y(0)). See Carneiro, Hansen and Heckman (2003), and Cunha, Heckman
and Navarro (2005, 2006).

Choice of technology In this application, the profit-maximizing firm faces J technolo-
gies. Y(j) is output. Fj : X → Y(j) maps inputs into outputs for technology j , assumed
to be strictly concave and twice differentiable. There is a cost of inputs, C(j), possibly
including fixed cost components. As before, let Z = (X,W). Assume that profit, R(j),
is maximized for each technology so R(j) = maxX{Fj (X) − C(j,X,W)}, and

D(j) = 1 if argmax�

{
R(�)

} = j.

The potential outcome vector is (Y (j), R(j),X(j), C(j)) where X(j) is the input vec-
tor chosen if j is chosen. In this example, utility, R(j), is profit and firms are assumed
to pick the technology with the highest profit. Policies operate on costs, profit taxes, and
on returns [see Pitt and Rosenzweig (1989)].

Dynamic education choices Following Eckstein and Wolpin (1989, 1999), Keane
and Wolpin (1997) and Heckman and Navarro (2007), we may explicitly account
for information updating at attained schooling level s. We introduce uncertainty. Let
E(R(s, s + 1) | Is) be the value of continuing on to the next schooling level given that
an agent has already attained s and possesses information set Is . This value includes
the options opened up by taking s. Ds,s+1(Is) = 1 if an agent continues from level
s to level s + 1. Ds,s+1(Is) = 1[E(R(s, s + 1) | Is) � 0] and equals 0 otherwise.
Associated with each outcome is a payoff stream of future income and option values
associated with the choice Ys+1. Abbring and Heckman (Chapter 72) discuss dynamic
counterfactuals and dynamic discrete choice.

Many other examples could be given. The literature on estimation and identifi-
cation in structural models is active [see Rust (1994), Geweke and Keane (2001),
Aguirregabiria (2004), Heckman and Navarro (2007)]. The unifying theme underly-
ing all of these models is that latent variables (the utilities or value functions) generate
observed outcomes. Since outcomes (or agent-predicted outcomes) affect choices, there
is selection bias. To make the discussion specific and have a model in hand, we exposit
a normal theory generalized Roy model in Section 3.3. First we use this framework to
define treatment effects.

3.2. Treatment effects and evaluation parameters

The individual level treatment effect (2.1) for objective outcomes is

(3.3)Y(s) − Y(s′) = μY (s,X) − μY (s′, X) + U(s) − U(s′).

http://dx.doi.org/10.1016/S1573-4412(07)06072-2


4814 J.J. Heckman and E.J. Vytlacil

The subjective evaluation individual treatment effect of program s compared to pro-
gram s′ is

R(s) − R(s′) = μR(s, Z) − μR(s′, Z) + η(s) − η(s′)

in the metric of the valuation function. An alternative measure of the relative subjective
evaluation of the program is

D(s, s′, Z) = 1
[
R(s) � R(s′)

]
.

If D(s, s′) = 1, the agent (weakly) prefers s over s′.
As in Section 2, one can define set-wise comparisons of treatment effects. Thus one

can compare the outcome of the best with the outcome of the next best as in Dahl (2002),
defining

s′ = argmaxs∈S
{
Y(s)

}
and SB = S \ {s′}

so that the treatment effect comparing the best to the next best is

Y(s′) − Y(sB).

Other comparisons can be made. Instead of private preferences, there may be social
preferences of the “planner” defined over the choices of the individuals. Cost benefit
criteria would be defined in a corresponding fashion.

The evaluation problem in this model is that we only observe each agent in one
of S̄ possible states. We do not know the outcome of the agent in other states and hence
cannot directly form individual level treatment effects.

The selection problem arises because we only observe certain agents in any state.
Thus we observe Y(s) only for agents for whom D(s) = 1. In general, the outcomes of
agents found in S = s are not representative of what the outcomes of agents would be
if they were randomly assigned to s.

We now define the population treatment parameters using this framework. Compar-
ing s with s′, ATE(s, s′ | X) = μY (s,X) − μY (s′, X). Treatment on the treated for
those choosing between s and s′ given X,Z is

E
(
Y(s) − Y(s′) | X,Z,D(s) = 1

)
= TT(s, s′ | X,Z)

= μY (s,X) − μY (s′, X) + E
[
U(s) − U(s′) | X,Z,D(s) = 1

]
,

where the final term is the sorting gain that arises from agents selecting into the treat-
ment. ATE and TT can be defined for the best compared to the next best.

ATE(s, sB | X,Z) = μY (s,X) − E
[

max
j∈S\{s}

{
Y(j)

} | X,Z
]
,

TT(s, sB | X,Z) = μY (s,X) + E
(
U(s) | D(s) = 1, X,Z

)
− E

[
max

j∈S\{s}
{
Y(j)

} | D(s) = 1, X,Z
]
.
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The effect of treatment given X for agents at the margin of participation between s

and s′ (EOTM) using the analysis of Section 2.4 is

EOTM(s, s′) = μY (s,X) − μY (s′, X) + E
[
U(s) − U(s′) | R(s) = R(s′)

]
,

where R(s), R(s′) � R(k), s, s′ �= k. We can define setwise versions of this parameter
as well. Using the model, we can also compute the distributional criteria introduced
in Section 2.5, e.g., the proportion of people who benefit from being in s compared
to s′:

Pr
(
R(s) � R(s′) | Z = z

)
.

We can form quantiles of the outcome distribution and evaluate the quantile treat-
ment effects [e.g., Chernozhukov and Hansen (2005)]. Letting qs(ν) be the νth quan-
tile of the Y(s) distribution, the quantile treatment effects for a lth quantile are
qs(l) − qs′

(l). From the agent preferences, and the outcome distributions we can form
all of the treatment effects discussed in Section 2 for environments of perfect cer-
tainty.

For a known model, we can answer policy question P-1 within the sample used to fit
the model. Thus we can solve the problem of internal validity by fitting the model (3.1)
and (3.2). Policy question P-2 involves extrapolating the model to new regions of X,Z.
This can be solved using parametric functional forms (e.g., μY (s,X) = Xβs and
μR(s, Z) = Zγs). If U(s) and η(s) are independent of X,Z, the task is simplified.
If they are not independent, then it is necessary to model the dependence of U(s), η(s)

on (X,Z) over the new support of (X,Z).
Policy problem P-3 entails the evaluation of new outcome states never previously

experienced, for example a new element s. As suggested by the quotation from Frank
Knight cited in Section 2, one avenue of solution is to characterize βs and γs as func-
tions of baseline characteristics that describe all programs βs = β(Q(s)), γs = γ (Q(s))

and to characterize the dependence of U(s), η(s) on Q(s). Provided that we can de-
fine a new program s′ as a combination of the characteristics of previous programs,
and β(Q(s)), γ (Q(s)) (and the distributions of U(s), η(s)) are defined over supports
that include Q(s), we can solve P-3. We provide a specific example of this approach in
the next subsection.

3.3. A two-outcome normal example under perfect certainty

To make the discussion concrete, it is helpful to exposit a prototypical model of choice
and associated outcomes. The Roy model (1951) and its extensions [Gronau (1974),
Heckman (1974), Willis and Rosen (1979), Heckman (1990), Carneiro, Hansen and
Heckman (2003)] are at the core of microeconometrics.

Consider the following simple version of the Roy model. Persons start off in sec-
tor “0” (e.g., primary schooling). To simplify expressions, we write Y(s) as Ys in this
section, and in other places where it is convenient to do so. We create parallel notation
for U(s) = Us . The variables Y1 and Y0 can be interpreted as the outcomes from being
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in sectors 1 and 0, respectively. We model these as

(3.4a)Y1 = Xβ1 + U1,

(3.4b)Y0 = Xβ0 + U0,

and associated costs (prices) as a function of W ,

(3.4c)C = WβC + UC.

In a schooling example, tuition and distance to school would be candidates for inclusion
in W . The valuation of “1” relative to “0” is R = Y1 −Y0 −C. Substituting from (3.4a)–
(3.4c) into the expression for R, we obtain the relative evaluation of outcome “1” versus
outcome “0” as

R = X(β1 − β0) − WβC + U1 − U0 − UC.43

Sectoral choice is indicated by D, where D = 1 if the agent selects 1, D = 0 otherwise:

D = 1[R � 0].
We define υ = (U1 −U0 −UC), Z = (X,W) and γ = (β ′

1 −β ′
0,−β ′

C) so we can write
R = Zγ + υ. The generalized Roy model assumes that (recalling Z = (X,W))

(i) Z ⊥⊥ (U0, U1, UC) (independence),
(ii) (U0, U1, UC) ∼ N (0,ΣGR) (normality),

where N (0,ΣGR) is normal with mean zero and variance–covariance matrix ΣGR and
“GR” stands for the generalized Roy model.

From its definition, E(υ) = 0. The Roy model is the special case where βC = 0 and
UC = 0, so choices are made solely on the basis of income, R = Y1 −Y0. The extended
Roy model sets βC �= 0, but UC = 0 so choices are made on net income subtracting
costs but the determinants of the cost components (W) are observed by the analysts.

For the generalized Roy model, the probability of selecting treatment (outcome) 1
is

Pr(R � 0 | Z = z) = Pr(υ � −zγ ) = Pr

(
υ

συ

� −zγ

συ

)
= Φ

(
zγ

συ

)
,

where Φ is the cumulative distribution function of the standard normal distribution and
the last result follows from the symmetry of standard normal variables around zero. The
choice probability is sometimes called the “propensity score” by statisticians. Higher
values of the index lead to higher values of the probability of participation; zγ is the
mean scale utility function. Higher values of zγ correspond to higher values of net
utility from choosing treatment 1 over treatment 0.

43 This use of R as a relative evaluation is a slight abuse of notation. Before we used R as absolute level
of utility. However, choice valuations are always relative to some benchmark, so there is little possibility of
confusion in this usage.
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The variance–covariance matrix of (U0, U1, υ) is

Συ =
⎛
⎝ σ 2

0 σ01 σ0υ

σ01 σ 2
1 σ1υ

σ0υ σ1υ σ 2
υ

⎞
⎠ ,

where σij is the covariance between outcomes i and j .
In this model, the average treatment effect given X = x is

ATE(x) = E(Y1 − Y0 | X = x)

= x(β1 − β0).

Treatment on the treated is

TT(x, z) = E(Y1 − Y0 | X = x,Z = z,D = 1)

= x(β1 − β0) + E(U1 − U0 | υ � −Zγ, Z = z)

= x(β1 − β0) + E(U1 − U0 | υ � −zγ ),

where the third equality follows from independence assumption (i). The local average
treatment effect (LATE) of Imbens and Angrist (1994) is the average gain to program
participation for those induced to receive treatment through a change in Z[= (X,W)]
by a component of W not in X. Such a change affects choices but not potential out-
comes. Let D(z) be the random variable D when we fix W = w and let D(z′) be the
random variable when we fix W = w′. The LATE parameter as defined by Heckman
and Vytlacil (1999) is

LATE(z, z′, x) = E(Y1 − Y0 | D(z) = 0,D(z′) = 1, X = x)

= x(β1 − β0) + E
(
U1 − U0 | R(z) < 0, R(z′) � 0, X = x

)
= x(β1 − β0) + E(U1 − U0 | −z′γ � υ < −zγ ),

using independence assumption (i) and the index structure to obtain the final result.
A definition of LATE introduced by Heckman and Vytlacil (1999, 2000, 2005) can

be made independent of the existence of any instrument. Imbens and Angrist (1994)
define LATE by invoking an instrument and thereby apparently conflate tasks 1 and 2
in Table 1 (the tasks of definition and identification). We can define LATE as the mean
return for agents with values of υ ∈ [υ, ῡ]. Instruments W may not exist, yet LATE can
still be defined as

LATE
(
x, υ ∈ [υ, ῡ]) = x(β1 − β0) + E(U1 − U0 | υ � υ < ῡ).

With this definition, we can separate task 1 of Table 1 from task 2. If υ = −z′γ and
ῡ = −zγ , we obtain the instrument-dependent version of LATE in the Roy model.

The marginal treatment effect (MTE) is defined conditional on X, Z, and υ = υ∗:

E(Y1 − Y0 | υ = υ∗, X = x, Z = z) = x(β1 − β0) + E(U1 − U0 | υ = υ∗).
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This parameter is a generalization of a parameter introduced into the evaluation litera-
ture by Björklund and Moffitt (1987). It is the mean return for agents for whom X = x,
Z = z, and υ = υ∗. It is defined independently of any instrument. At a special point of
evaluation where R = 0 (i.e. zγ + υ = 0), the MTE is a willingness to pay measure
that informs us how much an agent at the margin of participation (in the indifference
set) would be willing to pay to move from “0” to “1”. This particular point of evaluation
for the marginal treatment effect is what we called “EOTM” (the effect of treatment for
agents at the margin of indifference) in Section 2.4.

Under regularity conditions satisfied by the normal distribution and expressing it in
instrument-dependent form, EOTM can be defined as the limit form of LATE,

lim
zγ→z′γ

LATE(z, z′, x)

= x(β1 − β0) + lim
zγ→z′γ

E(U1 − U0 | −z′γ � υ < −zγ )

= x(β1 − β0) + E(U1 − U0 | υ = −z′γ ).44

LATE, as interpreted by Heckman and Vytlacil (1999, 2000, 2005), is the average
return for agents with υ ∈ [−z′γ,−zγ ]. This parameter expresses the outcome of ma-
nipulating the values at which we set υ by manipulation of the mean scale utility zγ ,
but holding X fixed. The relative preferences for state 1 compared to state 0, but not the
outcomes Y1, Y0, are affected by such changes because we fix X. An example of such a
change in Z is a change in tuition but not a change in variables directly affecting Y1, Y0
(the X).

In the special case of the Roy model, C = 0, R = Y1 − Y0 and υ = U1 − U0, the
MTE is

E(Y1 − Y0 | U1 − U0 = u1 − u0, X = x) = x(β1 − β0) + (u1 − u0).

In the special case where R = 0, x(β1 − β0) = −(u1 − u0) and MTE at this point of
evaluation is zero (i.e. EOTM is zero).

We can work with Zγ or with the propensity score P(Z) interchangeably. Under
our normality assumptions, ATE is defined as before. Treatment on the Treated can
be defined using the standard selection formulae. We have already defined Φ as the
distribution function for a standard unit normal random variable; φ(ψ) = Φ ′(ψ) is the
density of this variable evaluated at ψ . Using results on the truncated normal surveyed in
Heckman and Honoré (1990), and summarized in Appendix C, we can express treatment
on the treated given Z, normalizing the variance of υ to 1 to simplify the notation,

TT(x, z) = E(Y1 − Y0 | X = x,Z = z, υ � −zγ )

= x(β1 − β0) + Cov(U1 − U0, υ)λ(zγ ),

44 The regularity conditions apply to families of distributions that are more general than the normal ones.
[These are discussed further in Chapter 71.]

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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where

λ(zγ ) = φ(zγ )

Φ(zγ )
.

λ is monotone decreasing in zγ and limzγ→∞ λ(zγ ) = 0 and limzγ→−∞ λ(zγ ) =
∞. These and other properties of truncated normal random variables are presented in
Appendix C.45

As noted by Heckman (1980) and Heckman and Robb (1985), because Φ(ψ) is
monotone increasing in ψ , zγ = Φ−1(Pr(D(Z) = 1 | Z = z)), and we can substi-
tute everywhere for zγ by P(z) = Pr(D(Z) = 1 | Z = z), the propensity score, to
reach

TT(x, z) = TT
(
x, P (z)

)
= x(β1 − β0) + Cov(U1 − U0, υ)K

(
P(z)

)
.46

Observe that if Cov(U1 − U0, υ) = 0, ATE = TT. If Cov(U1 − U0, υ) > 0, TT > ATE
because of purposive sorting into sector 1. A positive covariance is guaranteed by the
Roy model because υ = U1 − U0. As zγ increases, more agents with low values of υ

are drawn in to sector 1. If υ is positively correlated with U1 −U0, we lower the average
quality of participants (agents for whom R > 0) as we increase zγ .

As zγ → ∞, P(z) → 1, and the distance between ATE and TT goes to zero.
Agents with high values of the probability of participation are a random sample of the
U1 but obviously not a random sample of the zγ . Limit set arguments of the type that
set P(z) to one or zero play a crucial role in versions of semiparametric identification
of economic choice models and in the entire treatment effect literature that seeks to
identify ATE by the method of instrumental variables.

The LATE parameter for the generalized Roy model can be derived using the fact that
if (y, r) ∼ N(μy, μr, σy, σr , ρ) and b > a, then

E(y | a � r < b) = μy + ρσy

(
φ(α) − φ(β)

Φ(β) − Φ(α)

)
,

where α = (a − μr)/σr , β = (b − μr)/σr . Using an instrument dependent definition
of LATE and normalizing Var(υ) = 1,

LATE(z, z′, x) = E(Y1 − Y0 | x,−z′γ � υ < −zγ )

(3.5)= x(β1 − β0) + Cov(U1 − U0, υ)

[
φ(zγ ) − φ(z′γ )

Φ(z′γ ) − Φ(zγ )

]
,

where the final result uses the symmetry of the normal density. The Marginal Treatment
Effect (MTE) corresponds to the expected outcome gain for those agents who are just
indifferent to the receipt of treatment at the given value of the unobservable υ. Formally,
recalling that we normalize Var(υ) = 1,

45 Notice that d = −zγ in the notation of Appendix C.
46 K(P (Z)) = φ(Φ−1(P (z)))

P (z)
.
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MTE(x,−zγ ) = x(β1 − β0) + E(U1 − U0|υ = −zγ )

(3.6)= x(β1 − β0) + Cov(U1 − U0, υ)[−zγ ].47

In terms of the propensity score, we can write MTE(x, 1 − P(z)) = x(β1 − β0) +
(ρ1σ1 − ρ0σ0)Φ

−1(1 − P(z)). As long as Cov(U1 − U0, υ) > 0, those with high
values of P(z) (high values of zγ ) have the lowest mean returns to participation. Eval-
uating MTE when zγ is large corresponds to the case where the average outcome gain
is evaluated for those agents with unobservables making them on average less likely
to participate. Higher mean scale utilities draw in those agents with unobservables that
make them less likely to participate. When υ = 0, MTE = ATE as a consequence of
the symmetry of the normal distribution.

The other evaluation criteria discussed in Section 2 can be formed using the normal
model. The proportion of agents who benefit from the program in subjective terms is the
propensity score P(Z). In the special case of the Roy model where C ≡ 0, this is also
the proportion of agents who benefit in “objective” terms (Pr(Y1 � Y0)). The policy
relevant treatment effect depends on the exact specification of policies. We develop
versions of the policy relevant treatment effect in Chapter 71. Given the ingredients of
the discrete choice model (3.1) with associated outcomes (3.3), we can generate all of
the treatment effects and counterfactual distributions discussed in Section 2.

The linearity, exogeneity, separability and normality assumptions invoked in this
section make it possible to solve policy problems P-1–P-3. We can solve policy prob-
lem P-2 (the extrapolation problem) using this model evaluated at new values of (X,Z).
By construction the (U1, U0, υ) are independent of (X,Z), and given the functional
forms all the mean treatment parameters can be generated for all (X,Z).

By parameterizing the βi to depend only on measured characteristics, it is possible to
forecast the demand for new goods and solve policy problem P-3. For example, suppose
that β1, β0 and γ only depend on the characteristics of the policies. A special case
would be

(3.7a)β1(Q1) = ΛQ′
1,

(3.7b)β0(Q0) = ΛQ′
0,

where Q1 and Q0 are 1 × J vectors of characteristics of programs, and X is a 1 × K

vector of agent-specific characteristics, and Λ is a K × J matrix. Z is a 1 × M vector

47 Note that using L’Hôpital’s Rule, MTE can be regarded as the limit form of LATE. Setting συ = 1, we
obtain

MTE(x, −zγ ) = x(β1 − β0) + Cov(U1 − U0, υ) lim
t→−zγ

[
φ(−zγ ) − φ(t)

Φ(t) − Φ(−zγ )

]

= x(β1 − β0) + Cov(U1 − U0, υ) lim
t→−zγ

[
(φ(−zγ ) − φ(t))/(−zγ − t)

(Φ(t) − Φ(−zγ ))/(−zγ − t)

]
= x(β1 − β0) + Cov(U1 − U0, υ)[−zγ ].

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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and Γ is a M × J matrix of characteristics such that

γ (Q1) − γ (Q0) = Γ
[
Q′

1 − Q′
0

]
.

Under this assumption, all programs can be put on a common basis in terms of the
characteristics they offer. The characteristics of agents are (X,Z). For a new program,
generated by a new bundle of fixed characteristics, we can solve P-3 if we can also
characterize the distributions of υ(s) and U(s) in terms of the Q(s). One special case
is where the υ(s) and U(s) do not depend on s, as in Quandt and Baumol (1966) or
McFadden (1974). Then all effects of the new program come through the β and γ . We
now consider some examples of the Roy model. It defines the economic choice frame-
work used throughout this Handbook chapter, so it is useful to gain intuition about it.

3.3.1. Examples of Roy models

Figure 1, adapted from Heckman, Urzua and Vytlacil (2006), displays the distribution
of gross gains (Y1 −Y0) from adopting a treatment. The generating model is an extended
Roy model with parameters given at the base of the table. The model builds in positive
sorting on unobservables because υ = U1 − U0 so Cov(U1 − U0, υ) > 0. All agents
face the same cost of treatment adoption C. The return to the treatment for the randomly
selected agent is ATE (= 0.2). Given C = 1.5, the return to the agent at the margin
is 1.5. The average return for the adopting agents is TT (= 2.666). Thus the agents
adopting the treatment are the ones who benefit from it. This is a source of evaluation
bias in evaluating programs.

Figure 2 plots the parameters ATE(p), TT(p), MTE(p) and TUT(p) (treatment on
the untreated) that underlie the model used to generate Figure 1. Table 2 presents the
formulae for the treatment parameters as a function of p. Here “p” denotes a value
of P(Z) and not a policy as in the previous sections. The declining MTE(p) is the
prototypical pattern of diminishing returns that accompanies an expansion of treatment
(MTE declines in UD = uD = p). Agents with low levels of Zγ (P(Z)) that adopt
the treatment must do so because their unobservables make them more likely to. They
have high values of υ (R = Zγ + υ) that compensate for the low values of Zγ . Since
υ is positively correlated with U1 − U0 and Z does not enter μ1(X) − μ0(X), the
MTE is high for the low p agents at the margin of indifference. As cost C falls, more
agents are drawn in to adopt treatment and the return falls. The pattern for treatment
on the treated (TT(p)) is explained by similar considerations. As participation becomes
less selective, the selected agent outcomes converge to the population average. As more
agents participate, the stragglers are, on average, less effective adopters of the treatment.
This explains the pattern for TUT(p). Observe that the slopes of these curves would
reverse if there is negative sorting on unobservables (Cov(U1 − U0, υ) < 0). In this
case, participants in the program would be those with below-average unobservables.
Figure 3 plots the trade-off in Zγ and υ that make agents indifferent and the two regions
demarcated by the line of indifference. Agents with (Zγ, υ) traits to the right of the line
have D = 1. Agents with traits below the line have D = 0.
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U1 − U0 ⊥⊥� D

ϕ = Y1 − Y0

TT = 2.666, TUT = −0.632
Return to marginal agent = C = 1.5

ATE = μ1 − μ0 = ϕ̄ = 0.2

The model

Outcomes Choice model

Y1 = μ1 + U1 = α + ϕ̄ + U1 D =
{

1 if R � 0

0 if R < 0
Y0 = μ0 + U0 = α + U0

General case

(U1 − U0) ⊥�⊥ D

ATE �= TT �= TUT

The researcher observes (Y, D,C)
Y = α + ϕD + U0 where ϕ = Y1 − Y0

Parameterization
α = 0.67 (U1, U0) ∼ N(0, Σ) μZ = (2, −2) R = Y1 − Y0 − C

ϕ̄ = 0.2 Σ =
[

1 −0.9
−0.9 1

]
ΣZ =

[
9 −2

−2 9

]
C = 1.5

Figure 1. Distribution of gains. The extended Roy economy. Adapted from Heckman, Urzua and Vytlacil
(2006).
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Figure 2. Treatment parameters as a function of P(Z) = p. Adapted from Heckman, Urzua and Vytlacil
(2006).

Table 2
Treatment parameters evaluated at P(Z) = p

Parameter Definition Under assumptions (model below)

Marginal treatment effect E[Y1 − Y0|R = 0, UD = p] ϕ̄ + σU1−U0Φ−1(1 − p)

Average treatment effect E[Y1 − Y0|P(Z) = p] ϕ

Treatment on the treated E[Y1 − Y0|R > 0, P (Z) = p] ϕ̄ + σU1−U0
φ(Φ−1(p))

p

Treatment on the untreated E[Y1 − Y0|R � 0, P (Z) = p] ϕ̄ − σU1−U0
φ(Φ−1(p))

p

Note. Φ(·) and φ(·) represent the cdf and pdf of a standard normal distribution, respectively. Φ−1(·) represents
the inverse of Φ(·).

This example shows how the extended Roy model can be used to define the distribu-
tion of treatment effects. Mean treatment parameters are derived from it. The Roy model
and its extensions are examples of economic models that can be used to define counter-
factuals (in this case Y0 and Y1). They are purely theoretical constructs. We discuss iden-
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Figure 3. Partitions of Zγ and υ into D = 0 and D = 1. The boundary (Zγ + υ = 0) is the margin of
indifference.

tification of this model and its extensions in Section 6.1. In Chapter 71 and in Abbring
and Heckman (Chapter 72), we consider how alternative evaluation estimators identify,
or do not identify, the parameters of this basic economic model, and its extensions.

3.4. Adding uncertainty

Because it does not rely on explicitly formulated economic models, the treatment effect
literature is not clear about the sources of variability and uncertainty that character-
ize choices and outcomes and their relationship. The econometric approach to program
evaluation is very clear about the sources of uncertainty and variability in the econo-
metric model.

In devising estimators and interpreting estimated parameters, it is helpful to dis-
tinguish the information available to the agent from the information available to the
observing econometrician. In advance of choosing an activity, agents may be uncertain
about the outcomes that will actually occur. They may also be uncertain about the full
costs they bear. In general the agent’s information is not the same as the econometri-
cian’s, and they may not be nested. The agent may know things in advance that the

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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econometrician may never discover. On the other hand, the econometrician, benefitting
from hindsight, may know some information that the agent does not know when he is
making his choices.

Let Iea be the information set confronting the agent at the time choices are made and
before outcomes are realized. Agents may only imperfectly estimate consequences of
their choices. In place of (3.1), we can write, using somewhat nonstandard notation,

R(s, Iea) = μR(s, Iea) + υ(s, Iea)

reflecting that ex ante valuations are made on the basis of ex ante information where
μR(s, Iea) is determined by variables that are known to the econometrician and
υ(s, Iea) are components known to the agent but not the econometrician. Ex post eval-
uations can also be made using a different information set Iep reflecting the arrival of
information after the choice is realized. It is possible that

argmaxs∈S
{
R(s, Iea)

} �= argmaxs∈S
{
R(s, Iep)

}
in which case there maybe ex post regret or elation about the choice made.

Determining agent information sets is a major research topic in structural economet-
rics [see Abbring and Campbell (2005), Miller (1984), Pakes (1986), Chan and Hamil-
ton (2003), Carneiro, Hansen and Heckman (2003), Cunha, Heckman and Navarro
(2005)]. The ex ante vs. ex post distinction is essential for understanding behavior. In
environments of uncertainty, agent choices are made in terms of ex ante calculations.
Yet the treatment effect literature largely reports ex post returns.48 In this chapter, we
analyze both ex ante and ex post objective outcomes and subjective valuations. Abbring
and Heckman (Chapter 72) show how to implement these distinctions.

In the context of the simple two-outcome model developed in Section 3.3, we can
define R(Iea) as

R(Iea) = E(Y1 − Y0 − C | Iea).

Under perfect foresight, the agent knows Y1, Y0 and C as in the classical generalized
Roy model; Iea ⊇ {Y1, Y0, C}. More generally, the choice equation is generated by
D(Iea) = 1[R(Iea) � 0]. Ex post, different choices might be made. Ex ante, agents
may be uncertain about aspects of the choices that they made. For different specifica-
tions of the information set we obtain different choices.

The econometrician may possess yet a different information set Ie. Choice probabili-
ties computed against one information set are not generally the same as those computed
against another information set. Operating with hindsight, the econometrician may be
privy to some information not available to agents when they make their choices. Ab-
bring and Heckman (Chapter 72) survey models with uncertainty.

48 As Hicks (1946, p. 179) puts it, “Ex post calculations of capital accumulation have their place in economic
and statistical history; they are useful measure for economic progress; but they are of no use to theoretical
economists who are trying to find out how the system works, because they have no significance for conduct.”

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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We consider identifiability of the generalized Roy model under certainty in Section 6.
The recent literature on semiparametric econometric models surveyed in Chapter 73
(Matzkin) of this Handbook enables economists to relax the normality, separability and
functional form assumptions developed in the early literature on structural estimation
while at the same time preserving the economic content of the structural literature.

Before developing this topic, we clarify the distinction between structural models and
causal models and we relate the statistical treatment effect literature to the literature on
structural economic models.

4. Counterfactuals, causality and structural econometric models

The literature on policy evaluation in economics sometimes compares “structural” ap-
proaches with “treatment effect” or “causal” models.49 These terms are used loosely.
This section formally defines “structural” models and uses them as devices for gener-
ating counterfactuals. We consider both outcome and treatment choice equations. We
compare the econometric model for generating counterfactuals and causal effects with
the Neyman (1923)–Rubin (1978) model of causality and compare “causal” parame-
ters with “structural” parameters. We compare and evaluate the structural equations
approach and the treatment effects approach. We restore the “ω” notation introduced in
Section 2 because it clarifies our discussion.

4.1. Generating counterfactuals

The treatment effect approach and the explicitly economic approach differ in the detail
with which they specify both observed and counterfactual outcomes Y(s, ω), for differ-
ent treatments denoted by “s”. The econometric approach models counterfactuals much
more explicitly than is common in the application of the treatment effect approach. This
difference in detail corresponds to the differing objectives of the two approaches. This
greater attention to detail in the structural approach facilitates the application of theory
to provide interpretation of counterfactuals and comparison of counterfactuals across
data sets using the basic parameters of economic theory. These models also suggest
strategies for identifying parameters (task 2 in Table 1). Models for counterfactuals are
the basis for extending historically experienced policies to new environments and for
forecasting the effects of new policies never previously experienced. These are policy
questions P-2 and P-3 stated in Section 2. Comparisons are made across treatments to
define the individual level (ω) causal effect of s relative to s′ as in (2.1).

Models for counterfactuals are in the mind. They are internally consistent frame-
works derived from theory. Verification and identification of these models are logically
distinct tasks that should be carefully distinguished from the purely theoretical act of

49 See, e.g., Angrist and Imbens (1995) and Angrist, Imbens and Rubin (1996).
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constructing internally consistent models. No issue of sampling, inference or selection
bias is entailed in constructing theoretical models for counterfactuals.

The traditional model of econometrics is the “all causes” model. It writes outcomes
as a deterministic mapping of inputs to outputs:

(4.1)y(s) = gs(x, us),

where x and us are fixed variables specified by the relevant economic theory. This no-
tation allows for different unobservables us to affect different outcomes.50 D is the
domain of the mapping gs :D → Ry , where Ry is the range of y. There may be
multiple outcome variables. All outcomes are explained in a functional sense by the
arguments of gs in (4.1). If we model the ex post realizations of outcomes, it is entirely
reasonable to invoke an all causes model. Ex post, all uncertainty has been resolved.
Implicit in the definition of a function is the requirement that gs be “stable” or “invari-
ant” to changes in x and us . The gs function remains stable as its arguments are varied.
Invariance is a key property of a causal model.

Equation (4.1) is a production function relating inputs (factors) to outputs. The no-
tation x and us anticipates the practical econometric problem that some arguments of
functional relationship (4.1) are observed while other arguments may be unobserved by
the econometrician. In the analysis of this section, their roles are symmetric. gs maps
(x, us) into the range of y or image of D under gs , where the domain of definition D
may differ from the empirical support.51 Thus, Equation (4.1) maps admissible inputs
into possible ex post outcomes. Our notation allows for different unobservables from a
common list u to appear in different outcome equations.

A “deep structural” version of (4.1), discussed in Sections 3.2 and 3.3, models the
variation of the gs in terms of s as a map constructed from generating characteristics qs ,
x and us into outcomes:

(4.2)y(s) = g(qs, x, us),

where now the domain of g, D, is defined for qs , x, us so that we have g :D → Ry .52

The components qs provide the basis for generating the counterfactuals across treat-
ments from a base set of characteristics. g maps (qs, s, us) into the range of y,
g : (qs, x, us) → Ry , where the domain of definition D of g may differ from the
empirical support. In this specification, different treatments s are characterized by dif-
ferent bundles of a set of characteristics common across all treatments. This framework
provides the basis for solving policy problem P-3 since new policies (treatments) are
generated from common characteristics, and all policies are put on a common basis.

50 An alternative notation would use a common u and lets gs select out s-specific components.
51 The support is the region of the domain of definition where we have data on the function. Thus if Dx is
the domain of x, the support of x is the region Supp(x) ⊂ Dx such that the data density f (x) satisfies the
condition f (x) > 0 for x ∈ Supp(x).
52 An example is given by Equations (3.7a) and (3.7b).
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If a new policy is characterized by known transformations of (qs, x, us) that lie in the
domain of definition of g, policy forecasting problem P-3 can be solved. The argument
of the maps gs and g are part of the a priori specification of a causal model. Analysts
may disagree about appropriate arguments to include in these maps.

One benefit of the statistical approach that focuses on problem P-1 is that it works
solely with outcomes rather than inputs. However, it is silent on how to solve prob-
lems P-2 and P-3 and provides no basis for interpreting the population level treatment
effects.

Consider alternative models of schooling outcomes of pupils where s indexes
the schooling type (e.g., regular public, charter public, private secular and private
parochial). The qs are the observed characteristics of schools of type s. The x are the
observed characteristics of the pupil. us are the unobserved characteristics of both the
schools and the pupil. If we can characterize a proposed new type of school as a new
package of different levels of the same ingredients x, qs , and us and we can identify
(4.2) over the domain of the function defined by the new package, we can solve prob-
lem P-3. If the same schooling input (same qs) is applied to different students (those
with different x) and we can identify (4.1) or (4.2) over the new domain of definition,
we solve problem P-2. By digging deeper into the “causes of the effects” we can do
more than just compare the effects of treatments in place with each other. In addition,
as we show in Chapter 71, modeling the us and its relationship with the corresponding
unobservables in the treatment choice equation, is highly informative on the choice of
appropriate identification strategies.

Another example from the theory of labor supply writes hours of work h as a func-
tion of the before tax wage w, where s is the tax rate that is assumed common across
all agents, and other characteristics are denoted us . Treatment in this example is the
proportional tax rate s. We may write hours of work in tax regime s, for a person with
wage w and characteristics x as

hs = h
(
w(1 − s), x, us

)
as the labor supply for proportional tax rate s for an agent with characteristics (x, us).53

This may be a factual (observed) quantity or a counterfactual quantity. Different
tax rates (policies) produce different counterfactuals which are generated by a com-
mon function. We return to this example on several occasions throughout this chap-
ter.

Our analysis in Section 3.3 provides a deep structural generalized Roy model ex-
ample of causal functions. The outcome equations parameterized by (3.7a) and (3.7b)
are examples of models with deep structural parameters that can be used to solve P-2
and P-3.

53 This notation permits the unobservable to differ across tax regimes.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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Equations (4.1) and (4.2) are sometimes called Marshallian causal functions [see
Heckman (2000)]. Assuming that the components of (x, us) or (qs, x, us) are variation-
free,54 a feature that may or may not be produced by the relevant theory, we may vary
each argument of these functions to get a ceteris paribus causal effect of the argument
on the outcome. Some components may be variation free while others are not. These
thought experiments are conducted for hypothetical variations. Recall that the a priori
theory specifies the arguments in the causal functions and the list of things held fixed
when a variable is manipulated. Equations (3.4a)–(3.4b) are examples of Marshallian
causal functions where (X,U) are the observed and unobserved variables.

Changing one coordinate while fixing the others produces a Marshallian ceteris
paribus causal effect of a change in that coordinate on the outcome variables. Varying
qs fixes different treatment levels. Variations in us among agents explain why people
with the same x characteristics respond differently to the same treatment s.

The ceteris paribus variation need not be for a single variable of the function. A treat-
ment generally consists of a package of characteristics and if we vary the package from
qs to qs′ we get different treatment effects.

We use the convention that lower case values are used to define fixed values and
upper case notation denotes random variables. In defining (4.1) and (4.2), we have ex-
plicitly worked with fixed variables that are manipulated in a hypothetical way as in
the algebra of elementary physics. In a purely deterministic world, agents act on these
nonstochastic variables. If uncertainty is a feature of the environment, (4.1) and (4.2)
can be interpreted as ex post realizations of the counterfactual. Even if the world is un-
certain, ex post, after the realization of uncertainty, the outcomes of uncertain inputs are
deterministic. Some components of us may be random shocks realized after decisions
about treatment are made.

Thus if uncertainty is a feature of the environment, (4.1) and (4.2) can be interpreted
as ex post realizations of the counterfactual as uncertainty is resolved. Ex ante versions
may be different. From the point of view of agent ω with information set Iω, the ex ante
expected value of Y(s, ω) is

(4.3)E
(
Y(s, ω) | Iω

) = E
(
g
(
Q(s, ω),X(ω),U(s, ω)

) | Iω

)
, 55

where Q(s, ω), X(ω), U(s, ω) are random variables generated from a distribution that
depends on the agent’s information set indexed by Iω. This distribution may differ from
the distribution produced by “reality” or nature if agent expectations are different from
objective reality.56 In the presence of intrinsic uncertainty, the relevant decision maker

54 More precisely, if X ,U or Q,X ,U are the domains of (4.1) and (4.2), D = (X ,U) = X1 × · · · ×XN ×
U1 × · · · × UM or (Q,X ,U) = Q1 × · · · × QK × X1 × · · · × XN × U1 × · · · × UM where we assume K

components in Q, N components in X , and M components in U .
55 The expectation might be computed using the information sets of the relevant decision maker (e.g., the
parents in the case of the outcomes of the child) who might not be the agent whose outcomes are measured.
These random variables are drawn from agent ω’s subjective distribution.
56 Thus agents do not necessarily use rational expectations, so the distribution used by the agent to make
decisions need not be the same as the distribution generating the data.
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acts on (4.3) but the ex post counterfactual is

(4.4)Y(s, ω) = E
(
Y(s, ω) | Iω

) + ν(s, ω),

where ν(s, ω) satisfies E(ν(s, ω) | Iω) = 0. In this interpretation, the information set
of agent ω is part of the model specification but the realizations come from a probabil-
ity distribution, and the information set includes the technology g. This representation
clarifies the distinction between deterministic ex post outcomes and intrinsically random
ex ante outcomes. Abbring and Heckman (Chapter 72) present Roy model examples of
models accounting for uncertainty.

This statement of the basic deterministic model reconciles the all causes model (4.1)
and (4.2) with the intrinsic uncertainty model favored by some statisticians [see, e.g.,
Dawid (2000) and the discussion following his paper]. Ex ante, there is uncertainty
at the agent (ω) level but ex post there is not. The realizations of ν(s, ω) are in-
gredients of the ex post all causes model, but not part of the subjective ex ante all
causes model. The probability law used by the agent to compute the expectations
of g(Q(s, ω),X(ω),Us(ω)) may differ from the objective distribution that generates
the observed data, so no assumption of rational expectations is necessarily imposed. In
the ex ante all causes model, manipulations of Iω define the ex ante causal effects.

Thus from the point of view of the agent we can vary elements in Iω to produce
Marshallian ex ante causal response functions. The ex ante treatment effect from the
point of view of the agent for treatment s and s′ is

(4.5)E
(
Y(s, ω) | Iω

) − E
(
Y(s′, ω) | Iω

)
.

However, agents may not act in terms of these ex ante effects if they have decision cri-
teria (utility functions) that are not linear in the outcomes but may form expectations of
nonlinear functions of Y(s, ω), s = 1, . . . , S̄. We discuss ex ante valuations of outcomes
in the next section.

The value of the scientific (or explicitly structural) approach to the construction of
counterfactuals is that it models the unobservables and the sources of variability among
observationally identical people. Since it is the unobservables that give rise to selection
bias and problems of inference that are central to empirically rigorous causal analysis,
economists using the scientific approach can draw on economic theory to design and
justify methods to control for selection bias. This avenue is not available to adherents of
the statistical approach. Statistical approaches that are not explicit about the sources of
the unobservables make strong implicit assumptions which, when carefully exposited,
are often unattractive. We exposit these assumptions in Chapter 71 when we discuss
specific policy evaluation estimators.

The models for counterfactuals (4.1) and (4.2) are based on theory. The arguments
of these functions are varied by hypothetical manipulations. These are thought ex-
periments. When analysts attempt to construct counterfactuals empirically, they must
carefully distinguish between these theoretical relationships and the empirical relation-
ships determined by conditioning only on the observables.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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The data used to determine these functions may be limited in its support. In this case
analysts cannot fully identify the theoretical relationships over hypothetical domains of
definition. In addition, in the support, the components of X,U(s) and Iω may not be
variation free even if they are variation free in the hypothetical domain of definition of
the function. A good example is the problem of multicollinearity. If the X in a sample
are functionally dependent, it is not possible to identify the Marshallian causal function
with respect to all variations in x over the available support even if one can imagine hy-
pothetically varying the components of x over the domains of definition of the functions
(4.1) or (4.2).

We next turn to an important distinction between fixing and conditioning on factors
that gets to the heart of the distinction between causal models and correlational rela-
tionships. This point is independent of any problem with the supports of the samples
compared to the domains of definition of the functions.

4.2. Fixing vs. conditioning

The distinction between fixing and conditioning on inputs is central to distinguishing
true causal effects from spurious causal effects. In an important paper, Haavelmo (1943)
made this distinction in linear equation models. Haavelmo’s distinction is the basis for
Pearl’s (2000) book on causality that generalizes Haavelmo’s analysis to nonlinear set-
tings. Pearl defines an operator “do” to represent the mental act of fixing a variable to
distinguish it from the action of conditioning which is a statistical operation. If the con-
ditioning set is sufficiently rich, fixing and conditioning are the same in an ex post all
causes model.57 Pearl suggests a particular physical mechanism for fixing variables and
operationalizing causality, but it is not central to his or any other definition of causal-
ity.

The distinction between fixing and conditioning is most easily illustrated in the linear
regression model analyzed by Haavelmo (1943). Let y = xβ + u. While y and u are
scalars, x may be a vector. The linear equation maps every pair (x, u) into a scalar
y ∈ R. Suppose that the support of random variable (X,U) in the data is the same as
the domain of (x, u) that are fixed in the hypothetical thought experiment and that the
(x, u) are variation-free (i.e., can be independently varied coordinate by coordinate).
We thus abstract from the problem of limited support that is discussed in the preceding
section. We may write (dropping the “ω” notation for random variables, as we did in
Section 3)

Y = Xβ + U.

Here “nature” or the “real world” picks (X,U) to determine Y . X is observed by the
analyst and U is not observed, and (X,U) are random variables. This is an all causes

57 Florens and Heckman (2003) distinguish conditioning from fixing, and generalize Pearl’s analysis to both
static and dynamic settings.
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model in which (X,U) determine Y . The variation generated by the hypothetical model
varies one coordinate of (X,U), fixing all other coordinates to produce the effect of
the variation on the outcome Y . Nature (as opposed to the model) may not permit such
variation.

Formally, we can write this model formulated at the population level as a conditional
expectation,

E(Y | X = x,U = u) = xβ + u.

Since we condition on both X and U , there is no further source of variation in Y . This
is a deterministic model that coincides with the all causes model. Thus on the support,
which is also assumed to be the domain of definition of the function, this model is
the same model as the deterministic, hypothetical model, y = xβ + u. Fixing X at
different values corresponds to doing different thought experiments with the X. Fixing
and conditioning are the same in this case.

If, however, we only condition on X, we obtain

(4.6)E(Y | X = x) = xβ + E(U | X = x).58

This relationship does not generate U -constant (Y,X) relationships. It generates only
an X-constant relationship. Unless we condition on all of the “causes” (the right-hand
side variables), the empirical relationship (4.6) does not identify causal effects of X

on Y . The variation in X also moves the conditional mean of U given X.
This analysis can be generalized to a nonlinear model y = g(q, x, u). A model spec-

ified in terms of random variables Q,X,U with the same support as q, x, u has as
its conditional expectation g(Q,X,U) under general conditions. Conditioning only on
Q,X does not in principle identify g(q, x, u).

Conditioning and fixing on the arguments of g or gs are the same operations in an
“all causes” model if all causes are accounted for. In general, they are not the same. This
analysis can be generalized to account for the temporal resolution of uncertainty if we
include ν(s, ω) as an argument in the ex post causal model. The outcomes can include
both objective outcomes Y(s, ω) and subjective outcomes R(Y (s, ω), ω).

Statisticians and epidemiologists often do not distinguish between fixing and condi-
tioning because they typically define the models that they analyze in terms of some type
of conditioning on observed random variables. However, thought experiments in models
of hypotheticals that vary factors are distinct from variations in conditioning variables.
The latter conflate the effects of variation in X, holding U fixed, with the effects of X in
predicting the unobserved factors (the U ) in the outcome equations. This is the crucial
distinction introduced in Haavelmo’s fundamental 1943 paper.

58 We assume that the mean of U is finite.
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4.3. Modeling the choice of treatment

Parallel to causal models for outcomes are causal models for the choice of treatment.
Consider ex ante personal valuations of outcomes based on expectations of gains from
receiving treatment s:

E
(
R

(
Y(s, ω), C(s, ω),Q(s, ω), ω

) | Iω

)
, s ∈ S,

where, as before, C(s, ω) is the price or cost agent ω must pay for participation in
treatment s. We decompose C(s, ω) into observables and unobservables. We thus write
C(s, ω) = K(W(s, ω), η(s, ω)). We allow utility R to be defined over the characteris-
tics that generate the treatment outcome (e.g., quality of teachers in a schooling choice
model) as well as attributes of the agent. In parallel with the gs function generating the
Y(s, ω), we write

R
(
Y(s, ω), C(s, ω),Q(s, ω), ω

) = f
(
Y(s, ω),W(s, ω),Q(s, ω), η(s, ω), ω

)
.

Parallel to the analysis of outcomes, we may keep Q(s, ω) implicit and use fs functions
instead of f . In the Roy model of Section 3.3, R = Y1 −Y0 −C is the agent’s subjective
evaluation of treatment.

Our analysis includes both measured and unmeasured attributes as perceived by the
econometrician. The agent computes expectations against his/her subjective distribution
of information. We allow for imperfect information by postulating an ω-specific infor-
mation set. If agents know all components of future outcomes, the upper case letters
become lower case variables which are known constants. The Iω are the causal factors
for agent ω. In a utility maximizing framework, choice ŝ is made if ŝ is maximal in the
set of valuations of potential outcomes{

E
(
R

(
Y(s, ω), C(s, ω),Q(s, ω), ω

) | Iω

)
, s ∈ S

}
.

In this interpretation, the information set plays a key role in specifying agent prefer-
ences. Actual realizations may not be known at the time decisions are made. Accounting
for uncertainty and subjective valuations of outcomes (e.g., pain and suffering for
a medical treatment) is a major contribution of the econometric approach [see e.g.,
Carneiro, Hansen and Heckman (2003), Chan and Hamilton (2003), Heckman and
Navarro (2007)]. The factors that lead an agent to participate in treatment s may be de-
pendent on the factors affecting outcomes. Modeling this dependence is a major source
of information used in the econometric approach to construct counterfactuals from real
data as we demonstrate in Chapter 71. A parallel analysis can be made if the decision
maker is not the same as the agent whose objective outcomes are being evaluated.

4.4. The econometric model vs. the Neyman–Rubin model

Many statisticians and social scientists invoke a model of counterfactuals and causality
attributed to Donald Rubin by Paul Holland (1986) but which is actually due to Neyman

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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(1923).59 This model arises from the statistical literature on the design of experiments.60

It draws on hypothetical experiments to define causality and thereby creates the impres-
sion in the minds of many of its users that random assignment is the most convincing
way to identify causal models. Some would say it is the only way to identify causal
models.

Neyman and Rubin postulate counterfactuals {Y(s, ω)}s∈S without modeling the
factors determining the Y(s, ω) as we have done in Equations (4.1)–(4.4), using the
econometric or “structural” approach. Rubin and Neyman offer no model of the choice
of which outcome is selected. Thus there is no “lower case”, all causes model explicitly
specified in this approach nor is there any discussion of the social science or theory
producing the outcomes studied.

In our notation, Rubin assumes (PI-1) and (PI-2) as presented in Section 2.61 Since
he does not develop choice equations or subjective evaluations, he does not consider
the more general invariance conditions (PI-3) and (PI-4) for both objective and subjec-
tive evaluations developed in Section 2.2. Assumptions (PI-1) and (PI-2) are versions
of familiar invariance assumptions developed in Cowles Commission econometrics and
formalized in Hurwicz (1962) but applied only to outcome equations and not to treat-
ment choice equations. Assumption (PI-1) says that the objective outcomes are the same
irrespective of the policy or assignment mechanism that implements it within a pol-
icy regime. (PI-2) assumes no general equilibrium effects or social interactions among
agents for objective outcomes. Thus the outcomes for an agent are the same whether
one agent receives treatment or many receive treatment.

More formally, the Rubin model assumes

(R-1) {Y(s, ω)}s∈S , a set of counterfactuals defined for ex post outcomes. It does not
analyze agent valuations of outcomes nor does it explicitly specify treatment
selection rules, except for contrasting randomization with nonrandomization;

(R-2) (PI-1): Invariance of counterfactuals for objective outcomes to the mechanism
of assignment within a policy regime;

(R-3) (PI-2): No social interactions or general equilibrium effects for objective out-
comes;

and

(R-4) There is no simultaneity in causal effects, i.e., outcomes cannot cause each
other reciprocally.

59 The framework attributed to Rubin was developed in statistics by Neyman (1923), Cox (1958) and oth-
ers. Parallel frameworks were independently developed in psychometrics [Thurstone (1927)] and economics
[Haavelmo (1943), Roy (1951), Quandt (1958, 1972)].
60 See Cox (1958) for a classic treatment of this subject.
61 Rubin (1986) calls these assumptions “SUTVA” for Stable Unit Treatment Value Assumption.
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Two further implicit assumptions in the application of the model are that P-1 is the
only evaluation problem of interest and that mean causal effects are the only objects of
interest.

The econometric approach is richer and deeper than the statistical treatment effect
approach. Its signature features are:

1. Development of an explicit framework for outcomes Y(s, ω), s ∈ S, measure-
ments and the choice of outcomes where the role of unobservables (“missing
variables”) in creating selection problems and justifying estimators is explicitly
developed.

2. The analysis of subjective evaluations of outcomes R(s, ω), s ∈ S, and the use of
choice data to infer them.

3. The analysis of ex ante and ex post realizations and evaluations of treatments. This
analysis enables analysts to model and identify regret and anticipation by agents.
Points 2 and 3 introduce agent decision making into the treatment effect literature.

4. Development of models for identifying entire distributions of treatment effects
(ex ante and ex post) rather than just the traditional mean parameters focused on by
many statisticians. These distributions enable analysts to determine the proportion
of people who benefit from treatment, something not attempted in the statistical
literature on treatment effects.

5. Development and identification of distributional criteria allowing for analysis of
alternative social welfare functions for outcome distributions comparing different
treatment states.

6. Models for simultaneous causality.
7. Definitions of parameters made without appeals to hypothetical experimental ma-

nipulations.
8. Clarification of the need for invariance of parameters with respect to classes of

manipulations to answer classes of questions.62

We now amplify these points.
Selection models defined for potential outcomes with explicit treatment assignment

mechanisms were developed by Gronau (1974) and Heckman (1974, 1976, 1978, 1979)
in the economics literature before the Neyman–Rubin model was popularized in sta-
tistics. The econometric discrete choice literature [McFadden (1974, 1981)] uses coun-
terfactual utilities or subjective evaluations as did its parent literature in mathematical
psychology [Thurstone (1927, 1959)]. Unlike the Neyman–Rubin model, these models
do not start with the experiment as an ideal but start with well-posed, clearly articu-
lated models for outcomes and treatment choice where the unobservables that underlie
the selection and evaluation problem are made explicit. The hypothetical manipulations

62 This notion is featured in the early Cowles Commission work. See Marschak (1953) and Koopmans, Rubin
and Leipnik (1950). It is formalized in Hurwicz (1962) as discussed below in Section 4.6. Rubin’s “SUTVA”
as embodied in (R-2) and (R-3) is a special case of the invariance condition formalized by Hurwicz and
discussed in Section 4.6 below.
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discussed in Section 3 define the causal parameters of the model. Randomization is a
metaphor and not an ideal or “gold standard”.

In contrast to the econometric model, the Holland (1986)–Rubin (1978) definition of
causal effects is based on randomization. The analysis in Rubin’s 1976 and 1978 pa-
pers is a dichotomy between randomization (“ignorability”) and nonrandomization, and
not an explicit treatment of particular selection mechanisms in the nonrandomized case
as developed in the econometrics literature. Even under ideal conditions, randomiza-
tion cannot answer some very basic questions such as what proportion of a population
benefits from a program.63 And in practice, contamination and cross-over effects make
randomization a far from sure-fire solution even for constructing ATE.64

Statisticians sometimes conflate the three tasks delineated in Table 1. This problem
is especially acute among the “causal analysts.” The analysis of Holland (1986, 1988)
illustrates this point and the central role of the randomized trial to the Holland–Rubin
analysis. After explicating the “Rubin model”, Holland gives a very revealing illustra-
tion that conflates the first two tasks of Table 1. He claims that there can be no causal
effect of gender on earnings because analysts cannot randomly assign gender. This state-
ment confuses the act of defining a causal effect (a purely mental act) with empirical
difficulties in estimating it. These are tasks 1 and 2 in Table 1.

As another example of the same point, Rubin (1978, p. 39) denies that it is possible to
define a causal effect of sex on intelligence because a randomization cannot in principle
be performed.65 In this and many other passages in the statistics literature, a causal
effect is defined by a randomization. Issues of definition and identification are confused.
This confusion continues to flourish in the literature in applied statistics. For example,
Berk, Li and Hickman (2005) echo Rubin and Holland in insisting that if an experiment
cannot “in principle” be performed, a causal effect cannot be defined.66

The act of definition is logically separate from the acts of identification and infer-
ence. A purely mental act can define a causal effect of gender. That is a separate
task from identifying the causal effect. The claim that causality can only be deter-
mined by randomization glorifies randomization as the “gold standard” of causal in-
ference.

63 This point is made in Heckman (1992). See also Carneiro, Hansen and Heckman (2001, 2003), where this
proportion is identified using choice data and/or supplementary proxy measures. See also Cunha, Heckman
and Navarro (2005, 2006). Abbring and Heckman (Chapter 72) discuss this work.
64 See the evidence on disruption bias and contamination bias arising in randomized trials that is presented in
Heckman, LaLonde and Smith (1999), Heckman et al. (2000) and the discussion in Section 9 of Chapter 71.
65 “Without treatment definitions that specify actions to be performed on experimental units, we cannot un-
ambiguously discuss causal effects of treatments” [Rubin (1978, p. 39)].
66 The LATE parameter of Imbens and Angrist (1994) is defined by an instrument and conflates task 1 and
2 (definition and identification). In Section 3.3 and in Chapter 71, we define the LATE parameter abstractly
and separate issues of definition of parameters from issues of identification. Imbens and Angrist (1994) use
instrumental variables as surrogates for randomization.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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In the Neyman–Rubin model, the sources of variability generating Y(s, ω) as a ran-
dom variable are not specified. The “causal effect” of s compared to s′ is defined as the
treatment effect (2.1). Holland (1986, 1988) argues that it is an advantage of the Ru-
bin model that it is not explicit about the sources of variability among observationally
identical agents, or about the factors that generate Y(s, ω). Holland and Rubin focus on
mean treatment effects as the interesting causal parameters.

The econometric approach to causal inference supplements the model of counterfac-
tuals with models of the choice of counterfactuals {D(s, ω)}s∈S and the relationship
between choice equations and the counterfactuals. It moves beyond the dichotomy
“missing at random” or “not missing at random”. The D(s, ω) are explicitly modeled
as generated by the collection of random variables (Q(s, ω), C(s, ω), Y (s, ω) | Iω),
s ∈ S, where Q(s, ω) is the vector of characteristics of treatment s for agent ω, C(s, ω)

are costs and {Y(s, ω)}s∈S are the outcomes and the “|” denotes that these variables
are defined conditional on Iω (the agent’s information set).67 The variables determining
choices are analyzed. Along with the ex ante valuations that generate D(s, ω) are the
ex post valuations discussed in Section 2.6.68,69

Knowledge of the relationship between choices and counterfactuals suggests appro-
priate methods for solving selection problems. By analyzing the relationship of the
unobservables in the outcome equation, and the unobservables in the treatment choice
equation, the analyst can use a priori theory to devise appropriate estimators to identify
causal effects.

The econometric approach, unlike the Neyman–Rubin model, emphasizes the welfare
of the agents being studied (through RG or R(Y (s, ω), ω) or R = Y1 − Y0 − C in the
Roy model) – the “subjective evaluations” – as well as the objective evaluations. The
econometric approach also distinguishes ex ante from ex post subjective evaluations, so
it can measure both agent satisfaction and regret.70

In addition, modeling Y(s, ω) in terms of the characteristics of treatment, and of the
treated, facilitates comparisons of counterfactuals and derived causal effects across stud-
ies where the composition of programs and treatment group members may vary. It also
facilitates the construction of counterfactuals on new populations and the construction
of counterfactuals for new policies. The Neyman–Rubin framework focuses exclusively
on population level mean “causal effects” or treatment effects for policies actually ex-
perienced and provides no framework for extrapolation of findings to new environments

67 If other agents make the treatment assignment decisions, then the determinants of D(s, ω) are modified
according to what is in their information set.
68 Corresponding to these random variables are the deterministic all causes counterparts d(s), qs , c(s),

{y(s)}, i, where the ({c(s)}s∈S , {qs }s∈S , {y(s)}s∈S , i) generate the d(s) = 1 if ({c(s)}s∈S , {qs }s∈S ,

{y(s)}s∈S ) ∈ Ψ , a subset of the domain of the generators of d(s). Again the domain of definition of d(s) is
not necessarily the support of c(s, ω), qs (ω), {Y (s, ω)}s∈S and Iω .
69 Random utility models generating D(s, ω) originate in the work of Thurstone (1927) and McFadden (1974,
1981).
70 See Cunha, Heckman and Navarro (2005, 2006) for estimates of subjective evaluations and regret in
schooling choices. Abbring and Heckman (Chapter 72) review their work.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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or for forecasting new policies (problems P-2 and P-3). Its focus on population mean
treatment effects elevates randomization and matching to the status of preferred estima-
tors. Such methods cannot identify distributions of treatment effects or general quantiles
of treatment effects.71

One major limitation of the Neyman–Rubin model is that it is recursive. It does not
model causal effects of outcomes that occur simultaneously. We now present a model of
simultaneous causality based on conventional simultaneous equations techniques that
illustrate the power of the econometric approach. This analysis also illustrates one ver-
sion of a “structural” economic model – the Cowles Commission model.

4.5. Nonrecursive (simultaneous) models of causality

A system of linear simultaneous equations captures interdependence among out-
comes Y . For simplicity, we focus on ex post outcomes so in this subsection, we ignore
revelation of information over time and we keep “ω” implicit. To focus the issue on non-
recursive causal models, in this subsection we also assume that the domain of definition
of the model is the same as the support of the population data. Thus the model for values
of upper-case variables has the same support as the domain of definition for the model
in terms of lower-case variables.72 The model developed in this section is rich enough
to model interactions among agents. For simplicity we work with linear equations. We
write this model in terms of parameters (Γ, B), observables (Y,X) and unobservables
U as

(4.7)Γ Y + BX = U, E(U) = 0,

where Y is now a vector of endogenous and interdependent variables, X is exogenous
(E(U | X) = 0), and Γ is a full rank matrix. Equation systems like (4.7) are sometimes
called “structural equations”. A better nomenclature, suggested by Leamer (1985), is
that the Y are internal variables determined by the model and the X are external vari-
ables specified outside the model.73 This definition distinguishes two issues: (a) defining
variables (Y ) that are determined from inputs outside the model (the X) and (b) deter-
mining the relationship between observables and unobservables.74 When the model is

71 Angrist, Imbens and Rubin (1996) contrast structural models with causal models. The structural models
they consider are the linear structural simultaneous equations models which we discuss as a special case of
our analysis of nonrecursive models in Section 4.5. The appropriate comparison would be with nonseparable
structural outcome models with correlated coefficients which is discussed in Heckman and Vytlacil (2001,
2005) and in Chapter 71. Angrist, Imbens and Rubin fail to note the recursive nature of Rubin model and the
fundamentally nonrecursive nature of general structural models.
72 This approach merges tasks 1 and 2 in Table 1. We do this in this section because the familiarity of the
simultaneous equations model as a statistical model makes the all causes, fixed variable, ex post version
confusing to many readers familiar with this model.
73 This formulation is static. In a dynamic framework, Yt would be the internal variables and the lagged Y ,
Yt−k, k > 0, would be external to period t and be included in the Xt . Thus we could work with lagged
dependent variables. The system would be Γ Yt + BXt = Ut , E(Ut ) = 0.
74 In a time series model, the internal variables are Yt determined in period t .

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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of full rank (Γ −1 exists), it is said to be “complete”. A complete model produces a
unique Y from a given (X,U). A complete model is said to be in reduced form when
structural equation (4.7) is multiplied by Γ −1. The reduced form is Y = ΠX+E where
Π = −Γ −1B and E = Γ −1U .75 This is a linear-in-the-parameters “all causes” model
for vector Y , where the causes are X and E . The “structure” is (Γ, B), ΣU , where ΣU is
the variance–covariance matrix of U . In the Cowles Commission analysis it is assumed
that Γ,B,ΣU are invariant to general changes in X and translations of U . We discuss
invariance of structural parameters further in the next subsection.

Π is assumed to be invariant. This is implied by the invariance of the structure but
is a weaker requirement. The reduced form slope coefficients are Π , and ΣE is the
variance–covariance matrix of E .76 In the population generating (4.7), least squares
recovers Π provided ΣX, the variance of X, is nonsingular (no multicollinearity). In
this linear-in-parameters equation setting, the full rank condition for ΣX is a variation-
free condition on the external variables. The reduced form solves out the Y to produce
the net effect of X on Y . The linear-in-parameters model is traditional.77 Nonlinear
versions are available [Fisher (1966), Matzkin (2004, Chapter 73)]. For simplicity, we
stick to the linear version, developing the nonlinear version in footnotes.78

The structural form (4.7) is an all causes model that relates in a deterministic way out-
comes (internal variables) to other outcomes (internal variables) and external variables
(the X and U ). Without some restrictions, ceteris paribus manipulations associated with
the effect of some components of Y on other components of Y are not possible within
the model. We now demonstrate this point.

For specificity, consider a two-agent model of social interactions. Y1 is the outcome
for agent 1; Y2 is the outcome for agent 2. This could be a model of interdependent
consumption where the consumption of agent 1 depends on the consumption of agent 2
and other agent-1-specific variables (and possibly other agent-2-specific variables). It
could also be a model of test scores. We can imagine populations of data generated
from sampling the same two-agent interaction over time or sampling different two-agent
couplings at a point in time.

Assuming that the preferences are interdependent, we may write the equations in
structural form as

(4.8a)Y1 = α1 + γ12Y2 + β11X1 + β12X2 + U1,

75 In this section only, Π refers to the reduced form coefficient matrix and not the family of probabilities of
treatment assignment Πp , as in earlier sections.
76 The original formulations of this model assumed normality so that only means and variances were needed
to describe the joint distributions of (Y, X).
77 The underlying all causes model writes Γy + Bx = u, y = Πx + ε, Π = −Γ −1B, ε = Γ −1u. Recall
that we assume that the domain of the all causes model is the same as the support of (X,U). Thus there is a
close correspondence between these two models.
78 Thus we can postulate a system of equations G(Y,X,U) = 0 and develop conditions for unique solution
of reduced forms Y = K(X,U) requiring that certain Jacobian terms be nonvanishing. See the contribution
by Matzkin (Chapter 73) in this Handbook.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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(4.8b)Y2 = α2 + γ21Y1 + β21X1 + β22X2 + U2.

This model is sufficiently flexible to capture the notion that the consumption of 1 (Y1)

depends on the consumption of 2 if γ12 �= 0, as well as 1’s value of X if β11 �= 0, X1
(assumed to be observed), 2’s value of X, X2 if β12 �= 0 and unobservable factors that
affect 1 (U1). The determinants of 2’s consumption are defined symmetrically. We allow
U1 and U2 to be freely correlated. We assume that U1 and U2 are mean independent
of (X1, X2) so

(4.9a)E(U1 | X1, X2) = 0

and

(4.9b)E(U2 | X1, X2) = 0.

Completeness guarantees that (4.8a) and (4.8b) have a determinate solution for (Y1, Y2).
Applying Haavelmo’s (1943) analysis to (4.8a) and (4.8b), the causal effect of Y2

on Y1 is γ12. This is the effect on Y1 of fixing Y2 at different values, holding constant
the other variables in the equation. Symmetrically, the causal effect of Y1 on Y2 is γ21.
Conditioning, i.e., using least squares, in general, fails to identify these causal effects
because U1 and U2 are correlated with Y1 and Y2. This is a traditional argument. It
is based on the correlation between Y2 and U1. But even if U1 = 0 and U2 = 0,
so that there are no unobservables, least squares breaks down because Y2 is perfectly
predictable by X1 and X2. We cannot simultaneously vary Y2, X1 and X2. To see why,
we derive the reduced form of this model.

Assuming completeness, the reduced form outcomes of the model after social inter-
actions are solved out can be written as

(4.10a)Y1 = π10 + π11X1 + π12X2 + E1,

(4.10b)Y2 = π20 + π21X1 + π22X2 + E2.

Least squares can identify the ceteris paribus effects of X1 and X2 on Y1 and Y2 because
E(E1 | X1, X2) = 0 and E(E2 | X1, X2) = 0. Simple algebra informs us that

π11 = β11 + γ12β21

1 − γ12γ21
, π12 = β12 + γ12β22

1 − γ12γ21
,

(4.11)π21 = γ21β11 + β21

1 − γ12γ21
, π22 = γ21β12 + β22

1 − γ12γ21
,

and

E1 = U1 + γ12U2

1 − γ12γ21
, E2 = γ21U1 + U2

1 − γ12γ21
.

Observe that because E2 depends on both U1 and U2 in the general case, Y2 is corre-
lated with U1 through the direct channel of U1 and through the correlation between U1
and U2. Without any further information on the variances of (U1, U2) and their rela-
tionship to the causal parameters, we cannot isolate the causal effects γ12 and γ21 from
the reduced form regression coefficients. This is so because holding X1, X2, U1 and U2
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fixed in (4.8a) or (4.8b), it is not in principle possible to vary Y2 or Y1, respectively,
because they are exact functions of X1, X2, U1 and U2.

This exact dependence holds true even if U1 = 0 and U2 = 0 so that there are no un-
observables.79 In this case, which is thought to be the most favorable to the application
of least squares to (4.8a) and (4.8b), it is evident from (4.10a) and (4.10b) that when
E1 = 0 and E2 = 0, Y1 and Y2 are exact functions of X1 and X2. There is no mechanism
yet specified within the model to independently vary the right hand sides of equations
(4.8a) and (4.8b).80 The X effects on Y1 and Y2, identified through the reduced forms,
combine the direct effects (through βij ) and the indirect effects (as they operate through
Y1 and Y2, respectively).

If we assume exclusions (β12 = 0) or (β21 = 0) or both, we can identify the ceteris
paribus causal effects of Y2 on Y1 and of Y1 on Y2, respectively, if β22 �= 0 or β11 �= 0,
respectively. Thus if β12 = 0, from the reduced form

π12

π22
= γ12.

If β21 = 0, we obtain
π21

π11
= γ21.

81

Alternatively, we could assume β11 = β22 = 0 and β12 �= 0, β21 �= 0 to identify γ12
and γ21. These exclusions say that the social interactions only operate through the Y ’s.

79 See Fisher (1966).
80 Some readers of an earlier draft of this chapter suggested that the mere fact that we can write (4.8a) and
(4.8b) means that we “can imagine” independent variation. By the same token, we “can imagine” a model

Y = ϕ0 + ϕ1X1 + ϕ2X2,

but if part of the model is (∗)X1 = X2, no causal effect of X1 holding X2 constant is possible in principle
within the rules of the model. If we break restriction (∗) and permit independent variation in X1 and X2, we
can define the causal effect of X1 holding X2 constant.
81 In a general nonlinear model,

Y1 = g1(Y2, X1, X2, U1),

Y2 = g2(Y1, X1, X2, U2),

exclusion is defined as ∂g1
∂X1

= 0 for all (Y2, X1, X2, U1) and ∂g2
∂X2

= 0 for all (Y1, X1, X2, U2). Assuming
the existence of local solutions, we can solve these equations to obtain

Y1 = ϕ1(X1, X2, U1, U2),

Y2 = ϕ2(X1, X2, U1, U2)

(which requires satisfaction of a local implicit function theorem). By the chain rule we can write

∂g1

∂Y2
= ∂Y1

∂X1

/ ∂Y2

∂X1
= ∂ϕ1

∂X1

/ ∂ϕ2

∂X1
.

We may define causal effects for Y1 on Y2 using partials with respect to X2 in an analogous fashion.
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Agent 1’s consumption depends only on agent 2’s consumption and not on his value
of X2. Agent 2 is modeled symmetrically versus agent 1. Observe that we have not
ruled out correlation between U1 and U2. When the procedure for identifying causal
effects is applied to samples, it is called indirect least squares. The method traces back
to Tinbergen (1930).82

The intuition for these results is that if β12 = 0, we can vary Y2 in Equation (4.8a) by
varying the X2. Since X2 does not appear in the equation, under exclusion, we can keep
U1, X1 fixed and vary Y2 using X2 in (4.10b) if β22 �= 0.83 Symmetrically, by excluding
X1 from (4.8b), we can vary Y1, holding X2 and U2 constant. These results are more
clearly seen when U1 = 0 and U2 = 0.

Observe that in the model under consideration, where the domain of definition and
the supports of the variables coincide, the causal effects of simultaneous interactions are
defined if the parameters are identified in the sense of the traditional Cowles definition
of identification [see, e.g., Ruud (2000), for a modern discussion of these identification
conditions]. A hypothetical thought experiment justifies these exclusions. If agents do
not know or act on the other agent’s X, these exclusions are plausible.

An implicit assumption in using (4.8a) and (4.8b) for causal analysis is invariance of
the parameters (Γ, β,ΣU) to manipulations of the external variables. This invariance
embodies the key idea in assumptions (PI-1)–(PI-4), which are versions of Hurwicz’s
invariance condition discussed in Section 4.6. Invariance of the coefficients of equa-
tions to classes of manipulation of the variables is an essential part of the definition of
structural models which we develop more formally below.

This definition of causal effects in an interdependent system generalizes the recursive
definitions of causality featured in the statistical treatment effect literature [Holland
(1988), and Pearl (2000)]. The key to this definition is manipulation of external inputs
and exclusion, not randomization or matching.84 We can use the population simultane-
ous equations model to define the class of admissible variations and address problems
of definitions (task 1 of Table 1). If for a given model, the parameters of (4.8a) or (4.8b)
shift when external variables are manipulated, or if external variables cannot be indepen-
dently manipulated, causal effects of one internal variable on another cannot be defined
within that model. If agents were randomly assigned to pair with their neighbors, and
the parameters of (4.8a) were not affected by the randomization, then Y2 would be ex-

82 The analysis for social interactions in this section is of independent interest. It can be generalized to the
analysis of N person interactions if the outcomes are continuous variables. For binary outcomes variables,
the same analysis goes through for the special case analyzed by Heckman and MaCurdy (1986). However, in
the general case, for discrete outcomes generated by latent variables, it is necessary to modify the system to
obtain a coherent probability model. See Heckman (1978).
83 Notice that we could also use U2 as a source of variation in (4.10b) to shift Y2. The roles of U2 and X2
are symmetric. However, if U1 and U2 are correlated, shifting U2 shifts U1 unless we control for it. The
component of U2 uncorrelated with U1 plays the role of X2.
84 Indeed matching or, equivalently, OLS in this context, using the right-hand side variables of (4.8a) and
(4.8b), does not identify causal effects as Haavelmo (1943) established long ago.
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ogenous in Equation (4.8b) and one could identify causal effects by least squares.85

At issue is whether such a randomization would recover γ12. It might fundamentally
alter agent 1’s response to Y2 if that agent is randomly assigned as opposed to being se-
lected by the agent. Judging the suitability of an invariance assumption entails a thought
experiment – a purely mental act.

4.5.1. Relationship to Pearl’s analysis

Controlled variation in external forcing variables is the key to defining causal effects
in nonrecursive models. It is of some interest to readers of Pearl’s influential book on
causality (2000) to compare our use of the standard simultaneous equations model of
econometrics in defining causal parameters to his. In the context of Equations (4.8a)
and (4.8b), Pearl defines a causal effect by “shutting one equation down” or performing
“surgery”.

He implicitly assumes that “surgery”, or shutting down an equation in a system of
simultaneous equations, uniquely fixes one outcome or internal variable (the consump-
tion of the other agent in our example). In general, it does not. Putting a constraint on
one equation places a restriction on the entire set of internal variables. In general, no
single equation in a system of simultaneous equations uniquely determines any single
outcome variable. Shutting down one equation might also affect the parameters of the
other equations in the system and violate the requirements of parameter stability.

A clearer manipulation that can justify Pearl’s approach but shows its special charac-
ter is to assume that it is possible to fix Y2 by assuming that it is possible to set γ21 = 0.
Assume that U1 and U2 are uncorrelated.86 This together with γ21 = 0 makes the model
recursive.87 It assumes that agent 1 is unaffected by the consumption of agent 2. Under
these assumptions, one can regress Y1 on Y2, X1, and X2 in the population and recover
all of the causal parameters of (4.8a). Variation in U2 breaks the perfect collinearity
among Y2, X1, and X2. In general, as we discuss in the next subsection, it is often not
possible to freely set some parameters without affecting the rest of the parameters of a
model.

Shutting down an equation or fiddling with the parameters in Γ is not required to
define causality in an interdependent, nonrecursive system or to identify causal para-
meters. The more basic idea is exclusion of different external variables from different
equations which, when manipulated, allow the analyst to construct the desired causal
quantities.

One can move from the problem of definition (task 1 of Table 1) to identification
(task 2) by using population analog estimation methods – in this case the method of

85 Note that we are breaking the rules we set out in Section 2 in this example and elsewhere in this section
by discussing tasks 1 and tasks 2 interchangeably.
86 Alternatively, one can assume that it is possible to measure U1 and control for it.
87 For a discussion of recursive systems as devices for defining causality, see Wold (1956).
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indirect least squares.88 There are many ways other than through exclusions of variables
to identify this and more general systems. Fisher (1966) presents a general analysis
of identification in both linear and nonlinear simultaneous equations systems. Matzkin
(2004, Chapter 73) substantially extends this literature.

4.5.2. The multiplicity of causal effects that can be defined from a simultaneous
equations system

In the context of the basic nonrecursive model, there are many possible causal varia-
tions, richer than what can be obtained from the reduced form. Using the reduced form
(Y = XΠ + E), one can define causal effects as ceteris paribus effects of variables
in X or E on Y . This definition solves out for all of the intermediate effects of the in-
ternal variables on each other. Using the structure (4.7), one can define the effect of
one internal variable on another holding constant the remaining internal variables and
(X,U). We have established that such causal effects may not be defined within the rules
specified for a particular structural model. Exclusions and other restrictions discussed
in Fisher (1966) make definitions of causal effects possible under certain conditions.

One can, in general, solve out from the general system of equations for a subset of
the Y (e.g., Y ∗ where Y = (Y ∗, Y ∗∗)), using the reduced form of the model, and use
quasi-structural models to define a variety of causal effects that solve out for some but
not all of the possible causal effects of Y on each other. These quasi-structural models
may be written as

Γ ∗∗Y ∗∗ = Π∗∗X + U∗∗.

This expression is obtained by using the reduced form for component Y ∗: Y ∗ =
Π∗X+E∗ and substituting for Y ∗ in (4.7). U∗∗ is the error term associated with this rep-
resentation. There are many possible quasi-structural models. Causal effects of internal
variables may or may not be defined within them, depending on the assumed a priori
information.

The causal effect of one component of Y ∗∗ on another does not fix Y ∗ but allows the
Y ∗ components to adjust as the components of Y ∗∗ and the X are varied. Thus the Y ∗
are not being held fixed when X and/or components of the Y ∗∗ are varied. Viewed in
this way, the reduced form and the entire class of quasi-structural models do not define
any ceteris paribus causal effect relative to all of the variables (internal and external) in
the original system since they do not fix the levels of the other Y (in the case of reduced
forms) or Y ∗ (in the case of the quasi-structural models). Nonetheless, the reduced form
may provide a good guide to predicting the effects of certain interventions that affect the
external variables. The quasi-structural models may also provide a useful guide for pre-
dicting certain interventions, where components of Y ∗∗ are fixed by policy. The reduced

88 Two-stage least squares would work as well.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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form defines a net causal effect of variations in X as they affect the internal variables.
There are many quasi-structural models and corresponding thought experiments.

This discussion demonstrates another reason why causal knowledge is provisional in
addition to the a priori specification of the internal and external variables in this system.
Different analysts may choose different subsystems of equations derived from (4.7) to
work with and define different causal effects within the different possible subsystems.
Some of these causal effects may not be identified, while others may be. Systems smaller
or larger than (4.7) can be imagined. The role of a priori theory is to limit the class of
models and the resulting class of counterfactuals and to define which ones are interest-
ing. Ceteris paribus manipulations of one variable are meaningfully defined only if we
specify the variables being manipulated and the variables being held constant. This is
the position we have taken in Section 4.1.

In this section, we have exposited the Cowles Commission definition of structure. We
now present a basic definition of structure in terms of invariance of equations to classes
of interventions. Invariance is a central idea in causal analysis and policy analysis.

4.6. Structure as invariance to a class of modifications

A basic definition of a system of structural relationships is that it is a system of equations
invariant to a class of modifications or interventions. In the context of policy analysis,
this means a class of policy modifications. This is the definition proposed by Hurwicz
(1962). It is implicit in Marschak (1953) and it is explicitly utilized by Sims (1977),
Lucas and Sargent (1981) and Leamer (1985), among others. This definition requires
a precise definition of a policy, a class of policy modifications and specification of a
mechanism through which policy operates.

The mechanisms generating counterfactuals and the choices of counterfactuals have
already been characterized in Sections 4.1 and 4.3. Policies can act on preferences and
the arguments of preferences (and hence choices), on outcomes Y(s, ω) and the deter-
minants affecting outcomes or on the information facing agents. Recall that gs , s ∈ S,
generates outcomes while fs , s ∈ S, generates subjective evaluations.89 Specifically,

(i) Policies can shift the distributions of the determinants of outcomes and
choices (Q,Z,X,U, η), where Q = {Q(s, ω)}s∈S , Z = {Z(s, ω)}s∈S , X =
{X(s, ω)}s∈S , η = {η(s, ω)}s∈S and U = {Us(ω)}s∈S in the population. This
may entail defining the gs and fs over new domains. Let X = (Q,Z,X,U, η)

be sets of arguments of the determinants of outcomes. Policies shifting the dis-
tributions of these variables are characterized by maps Tχ : χ �→ χ ′.

(ii) Policies can select new f , g or {fs, gs}s∈S functions. In particular, new argu-
ments (e.g., amenities or characteristics of programs) may be introduced as a
result of policy actions creating new attributes. Policies shifting functions map

89 By fs , we mean s-specific valuation functions.
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f, g or {fs, gs}s∈S into new functions Tf : fs �→ f ′
s ; Tg : gs �→ g′

s . This may
entail changes in functional forms with a stable set of arguments as well as
changes in arguments of functions.

(iii) Policies may affect individual information sets (Iω)ω∈Ω . TIω
: Iω �→ I ′

ω.

Clearly, any particular policy may incorporate elements of all three types of policy
shifts.

Parameters of a model or parameters derived from a model are said to be policy
invariant with respect to a class of policies if they are not changed (are invariant) when
policies within the class are implemented. We have explicitly introduced such invariance
in our discussion of the Cowles version of the structural model with respect to policies
that change X, but not for policies that change the distribution of U . This notion is
partially embodied in assumptions (PI-1) and (PI-2), which are defined solely in terms
of ex post outcomes. More generally, policy invariance for f, g or {fs, gs}s∈S requires
for a class of policies PA ⊆ P ,

(PI-5) The functions f, g or {fs, gs}s∈S are the same for all values of the arguments in
their domain of definition no matter how their arguments are determined, for all policies
in PA.

This definition is a version of (PI-3) and (PI-4) for the specific notation of the choice
model developed in this chapter and for specific types of policies. This definition can
be made separately for f , g, fs , gs or any function derived from them. It requires that
when we change an argument of a function its value is the same for the same change of
input irrespective of how we change it. It is defined relative to a class of policies and
not necessarily for all policies.

In the econometric approach to policy evaluation, the analyst attempts to model
how a policy shift affects outcomes without reestimating any model. Thus, for the tax
and labor supply example presented in Section 4.1, with labor supply function hs =
h(w(1 − s), x, us), it is assumed that we can shift tax rate s without affecting the
functional relationship mapping (w(1 − s), x, us) into hs . If, in addition, the support
of w(1 − s) under one policy is the same as the support determined by the available
economic history, for a class of policy modifications (tax changes), the labor supply
function can be used to accurately predict the outcomes for that class of tax policies.
It would not be able to accurately forecast policies that extend the support of hs to a
new domain or if it shifts preferences in a way never previously experienced (e.g., by
appealing to patriotism in time of war). In such cases, the domains of f and g would
have to be extended to accurately forecast policy changes, and additional assumptions
would have to be made. We discuss such assumptions in Chater 71 of our contribution
to this Handbook.

In the simultaneous equations model analyzed in the last subsection, invariance re-
quires stability of Γ , B and ΣU to interventions. Such models can be used to accurately
forecast the effects of policies that can be cast as variations in the inputs to that model

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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that keep the parameters invariant. Policy invariant parameters are not necessarily causal
parameters as we noted in our analysis of reduced forms in the preceding section. Thus,
in the simultaneous equations model, depending on the a priori information available,
it may happen that no causal effect of one internal variable on another may be defined
but if Π is invariant to modifications in X, the reduced form is policy invariant for
those modifications. The class of policy invariant parameters is thus distinct from the
class of causal parameters, but invariance is an essential attribute of a causal model.
For counterfactuals Y(s, ω), if assumption (PI-1) is not postulated for a class of poli-
cies PA, all of the treatment effects defined in Section 2 would be affected by policy
shifts.

Rubin’s SUTVA assumptions (R-2) and (R-3) are versions of Hurwicz’s (1962) in-
variance assumptions for the functions generating objective outcomes. Thus Rubin’s
assumption (R-3) postulates that Y(s, ω) is invariant to all policies that change f but
does not cover policies that change g or the support of Q. Within the treatment effects
framework, a policy that adds a new treatment to S is not policy invariant for treatment
parameters comparing the new treatment to any other treatment unless the analyst can
model all policies in terms of a generating set of common characteristics specified at
different levels, as in formulation (4.2) or our example in Section 3.3. The lack of pol-
icy invariance makes it potentially misleading to forecast the effects of new policies
using treatment effect models.

“Deep structural” parameters generating the f and g are invariant to policy modifica-
tions that affect technology, constraints and information sets except when the policies
extend the historical supports. Invariance can only be defined relative to a class of mod-
ifications and a postulated set of preferences, technology, constraints and information
sets. Thus causal parameters can only be precisely identified within a class of modifica-
tions.

4.7. Alternative definitions of “structure”

The terms “structural equation” or “structure” are used differently by different analysts
and are a major source of confusion in the policy analysis literature. In this section, we
briefly distinguish three other definitions of structure besides our version of Hurwicz
(1962). The traditional Cowles Commission structural model of econometrics was pre-
sented in Section 4.5. It is a nonrecursive model for defining and estimating causal
parameters. It is a useful vehicle for distinguishing effects that can be defined in prin-
ciple (through a priori theory) from effects that are identifiable from data. This is the
contrast between tasks 1 and 2 of Table 1. The framework arose as a model to analyze
the economic phenomenon of supply and demand in markets, and to analyze policies
that affected price and quantity determination.

A second definition of structure, currently the most popular in the applied economics
literature, defines an equation as structural if it is derived from an explicitly formulated
economic theory. Consider a consumer demand problem where a consumer ω chooses
among goods X(ω) given money income M(ω) and prices P , P ′X(ω) � M(ω). Pref-
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erences of ω, R(X(ω), ω), are quasiconcave in X(ω) and twice differentiable. Many
economists would say that R(X(ω), ω) is structural because it describes the preferences
of agent ω. There would be similar agreement that technology parameters are structural
parameters.

When we solve for the demand functions, under standard conditions, we obtain
X(ω) = X( P

M(ω)
, ω). These are sometimes called “reduced form” expressions by

analogy with the Cowles Commission simultaneous equations literature exposited in
Section 4.5, assuming that prices normalized by income are exogenous. While any
convention is admissible, this one is confusing since we can recover the preferences
(up to a monotonic function) given the demand function under standard regularity
conditions [see, e.g., Varian (1978)]. Is the indirect utility function R̃∗(ω, P

M(ω)
) =

R(X( P
M(ω)

), ω) = R∗( P
M(ω)

, ω) structural or reduced form?
While the notion of structure in this widely applied usage is intuitively clear, it is not

the same notion of structure as used in Cowles Commission econometrics as defined in
Section 4.5. It is structural in the sense that the internal variables (the X in this example)
are substituted out for externally specified (to the consumer) P and M . At the market
level, this distinction is not clear cut since X and P are jointly determined. The notion
of a “reduced form” is not clearly specified until the statistical properties of X, P or
M have been specified. Recall that the Cowles Commission definition of reduced form
(a) solves out the X in terms of P and M and (b) assumes that P and M are “exogenous”
relative to the unobserved variables. In current popular usage, a reduced form makes
both assumptions.

A third definition of a structural model is as a finite parameter model. Structural in this
sense means low dimensional and is not related to the endogeneity of any variable or the
economic interpretation placed on the equations. Clearly the Cowles Commission model
is finite dimensional if the dimensions of Y and X are finite. Nonlinear finite parameter
versions of the Cowles Commission models as in Fisher (1966) are also structural in
these systems. Systems that are structural in this sense are useful for extrapolation of
functions out of their empirical supports.

A more basic definition of a system of structural equations, and the one featured in
this chapter, is a system of equations invariant to a class of modifications. Without such
invariance one cannot trust the models to forecast policies or make causal inferences.
Invariance to modifications requires a precise definition of a policy, a class of policy
modifications and specification of a mechanism through which policy operates. It makes
clear that “structure” is a concept that is relative to the potential policy changes studied
by the analyst. A system structural for one class of policy modifications may not be
structural for another.

4.8. Marschak’s Maxim and the relationship between the structural literature and the
statistical treatment effect literature

The absence of explicit models of outcomes and choice is a prominent feature of the
statistical treatment effect literature. A major goal of this chapter and our other chap-



Ch. 70: Econometric Evaluation of Social Programs, Part I 4849

ter in this Handbook is to infuse economics into the treatment effect literature and to
understand its achievements and implicit identifying assumptions in economic terms.
Economically well-posed models make explicit the assumptions used by analysts re-
garding preferences, technology, the information available to agents, the constraints
under which they operate, and the rules of interaction among agents in market and so-
cial settings and the sources of variability among agents. These explicit features make
these models, like all scientific models, useful vehicles (a) for interpreting empirical
evidence using theory; (b) for collating and synthesizing evidence across studies using
economic theory; (c) for measuring the welfare effects of policies; (d) for forecasting
the welfare and direct effects of previously implemented policies in new environments
and the effects of new policies.

These features are absent from the modern treatment effect literature. At the same
time, this literature makes fewer statistical assumptions in terms of exogeneity, func-
tional form, exclusion and distributional assumptions than the standard structural esti-
mation literature in econometrics. These are the attractive features of this approach.

In reconciling these two literatures, we reach back to a neglected but important paper
by Marschak (1953). Marschak noted that for many questions of policy analysis, it is
not necessary to identify fully specified economic models that are invariant to classes
of policy modifications. All that may be required for any policy analysis are combina-
tions of subsets of the structural parameters, corresponding to the parameters required
to forecast particular policy modifications, which are often much easier to identify (i.e.,
require fewer and weaker assumptions). Thus in the simultaneous equations system ex-
ample presented in Section 4.5, policies that only affect X may be forecasted using
reduced forms, not knowing the full structure, provided that the reduced forms are in-
variant to the modifications being considered.90 Forecasting other policies may only
require partial knowledge of the full simultaneous equations system.

We call this principle Marschak’s Maxim in honor of this insight. The modern sta-
tistical treatment effect literature implements Marschak’s Maxim where the policies
analyzed are the treatments available under a particular policy regime and the goal of
policy analysis is restricted to evaluating policies in place (problem P-1) and not in fore-
casting the effects of new policies or the effects of old policies on new environments.
What is often missing from the literature on treatment effects is a clear discussion of
the economic question being addressed by the particular treatment effect being identi-
fied. When the treatment effect literature does not clearly specify the economic question
being addressed, it does not implement Marschak’s Maxim.

Population mean treatment parameters are often identified under weaker conditions
than are traditionally assumed in structural econometric analysis. Thus to identify the
average treatment effect for s and s′ we only require E(Y(s, ω) | X = x)−E(Y(s′, ω) |
X = x). Under (PI-1) and (PI-2), this parameter answers the policy question of deter-
mining the average effect on outcomes of moving an agent from s′ to s. The parameter

90 Thus we require that the reduced form Π defined in Section 4.5 does not change when we change the X.
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is not designed to evaluate a whole host of other policies. We do not have to know the
functional form of the generating gs functions nor does X have to be exogenous. We
do not have to invoke the stronger conditions (PI-3) and (PI-4) about invariance of the
choice equations.

However, if we seek to identify E(Y(s, ω) | X = x, D(s, ω) = 1) − E(Y(s′, ω) |
X = x,D(s, ω) = 1), we need to invoke versions of (PI-3) and (PI-4) because we
condition on a choice. We do not condition on a choice in defining the average treatment
effects.

Explicitly formulated economic models or low dimensional economic or statistical
models may or may not be structural in the sense defined in this chapter. They may be
invariant to some policy modifications but not to others.

Causal models are defined independently of any particular policy manipulation. But
if the variations in the arguments of the causal (Marshallian) functions correspond to
variations in some policy, causal models as we have defined them, are structural since by
definition, causal functions are invariant to variations in the arguments of the functions
that generate them.

Treatment effects are causal effects for particular policies that move agents from
s ∈ S to s′ ∈ S, s′ �= s, keeping all other features of the agent and environment the
same. These effects are designed to answer policy question P-1.

Invariant, explicitly formulated, economic models are useful for addressing policy
problems P-2 and P-3: extrapolation and predicting the effects of new policies, respec-
tively. Invariant low dimensional models are sometimes useful for solving extrapolation
problem P-2.

If the goal of an analysis is to predict outcomes, and the environment is stable, then
accurate predictions can be made without causal or structural parameters. Consider
Haavelmo’s analysis of fixing vs. conditioning discussed in Section 4.2. Recall that
he analyzed the linear regression model Y = Xβ + U and defined the causal effect
of X on Y as the U -constant effect of variations in X. If the goal of an analysis is to
predict the effect of X on Y , and if the environment is stable so that the historical data
have the same distribution as the data in the forecast sample, least squares projections
are optimal predictors under mean square error criteria.91 We do not need to separate
out the causal effect of X on Y , β, from the effect of X on the unobservables operating
through E(U | X).

Viewed in this light, the treatment effect literature that compares the outcome asso-
ciated with s ∈ S with the outcome associated with s′ ∈ S seeks to recover a causal
effect of s relative to s′. It is a particular causal effect for a particular set of policy inter-
ventions. It seeks effects that hold all other factors, observed and unobserved, constant.

Marschak’s Maxim urges analysts to formulate the problem being addressed clearly
and to use the minimal ingredients required to solve it. The treatment effect literature
addresses the problem of comparing treatments under a particular policy regime for a

91 See, e.g., Goldberger (1964).
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particular environment. The original econometric pioneers considered treatments under
different policy regimes and with different environments. As analysts ask more difficult
questions, it is necessary to specify more features of the models being used to address
the questions.

Marschak’s Maxim is an application of Occam’s Razor to policy evaluation. For cer-
tain classes of policy interventions, designed to answer problem P-1, the treatment effect
approach may be very powerful and more convincing than explicit economic models
which require more assumptions.

Considerable progress has been made in relaxing the parametric structure assumed
in the early explicitly economic models [see Matzkin (1994), and Chapter 73 of this
Handbook]. As the treatment effect literature is extended to address the more general
set of policy forecasting problems entertained in the explicitly economic literature, the
distinction between the two approaches will vanish although it is currently very sharp.
This chapter, Heckman and Vytlacil (2005) and Heckman (2007) are attempts to bridge
this gulf.

Up to this point in the chapter, everything that has been discussed precisely is purely
conceptual although we have alluded to empirical problems and problems of identi-
fication going from data of various forms to conceptual models. We now discuss the
identification problem, which must be solved if causal models are to be empirically
operational.

5. Identification problems: Determining models from data

Unobserved counterfactuals are the source of the problems considered in this chapter.
For an agent ω in state s, we observe Y(s, ω) but not Y(s′, ω), s′ �= s. A central problem
in the literature on causal inference is how to identify counterfactuals and the derived
treatment parameters. Unobservables, including missing data, are at the heart of the
identification problem for causal inference. As we have seen, counterfactuals play a key
role in structural policy analysis.

Different evaluation estimators differ in the amount of knowledge they assume that
the analyst has relative to what the agents being studied have when making their pro-
gram enrollment decisions (or their decisions are made for them as a parent for a child).
This distinction is a matter of the quality of the available data. Unless the analyst has ac-
cess to all of the relevant information that produces the dependence between outcomes
and treatment rules (i.e., that produces selection bias), he/she must devise methods
to control for the unobserved components of relevant information. We define relevant
information precisely in Chapter 71. Loosely speaking, relevant information is the infor-
mation which, if available to the analyst and conditioned on, would eliminate selection
bias.

There may be information known to the agent but not known to the observing analyst
that does not give rise to the dependence between outcomes and choices. It is the infor-

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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mation that gives rise to the dependence between outcomes and treatment choices that
matters for eliminating selection bias, and this is the relevant information.

A priori one might think that the analyst knows a lot less than the agent whose behav-
ior is being analyzed. At issue is whether the analyst knows less relevant information,
which is not so obvious, if only because the analyst can observe the outcomes of deci-
sions in a way that agents making decisions cannot. This access to ex post information
can sometimes give the analyst a leg up on the information available to the agent.

Policy forecasting problems P-2 and P-3 raise the additional issue that the support
over which treatment parameters and counterfactuals are identified may not correspond
to the support that is required to construct a particular policy counterfactual. Common
to all scientific models, there is the additional issue of how to select (X,Z), the condi-
tioning variables, and how to deal with them if they are endogenous. Finally, there is the
problem of lack of knowledge of functional forms of the models. Different econometric
methods solve these problems in different ways. We first present a precise discussion
of identification before we turn to a discussion of these issues and how they affect the
properties of different evaluation estimators.

5.1. The identification problem

The identification problem asks whether theoretical constructs have any empirical con-
tent in a hypothetical population or in real samples. By empirical content, we mean
whether the model is uniquely determined by the available data. This formulation con-
siders tasks two and three in Table 1 together, although some analysts like to separate
these issues, focusing solely on task two (identification in large samples). The identifi-
cation problem considers what particular models within a broader class of models are
consistent with a given set of data or facts. Specifically, consider a model space M .
This is the set of admissible models that are produced by some theory for generating
counterfactuals. Elements m ∈ M are admissible theoretical models.

We may only be interested in some features of a model. For example, we may have a
rich model of counterfactuals {Y(s, ω)}s∈S , but we may only be interested in the average
treatment effect E[Y(s, ω) − Y(s′, ω)]. Let the objects of interest be t ∈ T , where “t”
stands for the target – the goal of the analysis. The target space T may be the whole
model space M or something derived from it, a more limited objective.

Define map g : M → T . This maps an element m ∈ M into an element t ∈ T . In
the example in the preceding paragraph, T is the space of all average treatment effects
produced by the models of counterfactuals. We assume that g is onto.92 Associated with
each model is an element t derived from the model, which could be the entire model
itself. Many models may map into the same t so the inverse map (g−1), mapping T

92 By this, we mean that for every t ∈ T , there is an element m ∈ M such that g sends m to t , i.e., the image
of M by g is the entire set T . Of course, g may send many elements of M to a single element of T . Note that
g as used here is not necessarily the same g as used in Section 4.
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Figure 4. Schematic of model (M), data (I ) and target (T ) parameter spaces.

to M , may not be well defined. Thus many different models may produce the same
average treatment effect.

Let the class of possible information or data be I . Define a map h : M → I . For
an element i ∈ I , which is a given set of data, there may be one or more models
m consistent with i. If i can only be mapped into a single m, the model is exactly
identified.93 If there are multiple m’s, consistent with i, these models are not identified.
Thus, in Figure 4, many models (elements of M) may be consistent with the same data
(single element of I ).

Let Mh(i) be the set of models consistent with i. Mh(i) = h−1({i}) = {m ∈ M:
h(m) = i}. The data i reject the other models M \ Mh(i), but are consistent with
all models in Mh(i). If Mh(i) contains more than one element, the data produce set-
valued instead of point-valued identification. If Mh(i) = ∅, the empty set, no model is

93 Associated with each data set i is a collection of random variables Q(i), which may be a vector. Let
FQ(q | m) be the distribution of Q under model m. To establish identification on nonnegligible sets, one
needs that, for some true model m∗,

Pr
(∣∣FQ(q | m∗) − FQ(q | m)

∣∣ > ε
)

> 0

for some ε > 0 for all m �= m∗. This guarantees that there are observable differences between the data
generating process for Q given m and for Q given m∗. We can also define this for FQ(q | t∗) and FQ(q | t).
Note that Q is an abstract random variable and not necessarily the specific attributes defined in Section 4.
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consistent with the data. By placing restrictions on models, we can sometimes reduce
the number of elements in Mh(i) if it has multiple members. Let RE ⊂ M be a set
of restricted models. Thus it is sometimes possible by imposing restrictions to reduce
the number of models consistent with the data. Recall that in the two-agent model of
social interactions, if β12 = 0 and β21 = 0, we could uniquely identify the remaining
parameters under the other conditions maintained in Section 4.5. Thus RE ∩ Mh(i)

may contain only a single element. Another way to solve this identification problem is
to pick another data source i′ ∈ I , which may produce more restrictions on the class
of admissible models. More information provides more hoops for the model to jump
through.

Going after a more limited class of objects such as features of a model (t ∈ T )
rather than the full model (m ∈ M) is another way to secure unique identification. Let
Mg(t) = g−1({t}) = {m ∈ M: g(m) = t}. Necessary and sufficient conditions for the
existence of a unique map f : I → T with the property f ◦h = g are (a) h must map M

onto I and (b) for all i ∈ I , there exists t ∈ T such that Mh(i) ⊆ Mg(t). Condition (b)
means that even though one element i ∈ I may be consistent with many elements in M ,
so that Mh(i) consists of more than one element, it may be that all elements in Mh(i)

are mapped by g into a single element of T . The map f is onto since g = f ◦ h and
g is onto by assumption. In order for the map f to be one-to-one, it is necessary and
sufficient to have equality of Mh(i) and Mg(t) instead of simply inclusion.

If we follow Marschak’s Maxim and focus on a smaller target space T , it is possible
that g maps the admissible models into a smaller space. Thus the map f described above
may produce a single element even if there are multiple models m consistent with the
data source i that would be required to answer broader questions. This could arise, for
example, if for a given set of data i, we could only estimate the mean μ1 of Y1 up to
a constant q and the mean μ2 of Y2 up to the same constant q. But we could uniquely
identify the element μ1 − μ2 ∈ T .94 In general, identifying elements of T is easier
than identifying elements of M . Thus, in Figure 4, even though many models (elements
of M) may be consistent with the same i ∈ I , only one element of T may be consistent
with that i. We now turn to empirical causal inference and illustrate the provisional
nature of causal inference.

5.2. The sources of nonidentifiability

The principle source of identification problems for policy problems P-1–P-3 is the ab-
sence of data on outcomes other than the one observed for the agent. Thus if agent ω is
observed in state s we observe Y(s, ω) but not Y(s′, ω), s′ ∈ S, s �= s′. If we had data

94 Most modern analyses of identification assume that sample sizes are infinite, so that enlarging the sam-
ple size is not informative. However, in any applied problem this distinction is not helpful. Having a small
sample (e.g., fewer observations than regressors) can produce an identification problem. Our definition of
identification addresses task two and task three together if we assume that samples are finite.
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on the outcomes for agents in all states in S, we could form ex post counterfactuals and
solve P-1. We still need to value these counterfactuals (i.e., construct R(Y (s, ω))).

Even with such ideal data, it is necessary to extend {Y(s, ω)}s∈S and the appropriate
valuation functions to new supports to answer policy questions P-2 and P-3. For many
econometric estimators, it is necessary to account for the limited supports available
in many empirical samples. One can only meaningfully compare comparable agents.
A nonparametric approach to estimation guarantees that this condition is satisfied. Re-
specting empirical support conditions restricts the class of identified parameters, even
considering only problem P-1. As we will discuss below, failure of support conditions
plagues different estimators and estimation strategies.

Another source of identification problems is the uncertainty regarding the choice of
the conditioning variables (the X, W and Z) in any application. This problem is intrinsic
to all estimation problems. It affects some estimators more than others, as we note in
Chapter 71. For some estimators and for some policy problems, the endogeneity of the
regressors is a major concern. We delineate these problems for each estimator and each
policy problem. Closely related is the asymmetry in the information available to ana-
lysts and the agents they study which we previously discussed. This entails the problem
of specifying the information on which agents condition their actions, distinguishing
them from the information available to the econometrician and accounting for any in-
formation shortfalls. For example, the method of matching makes strong assumptions
about the information available to analysts which cannot be verified but which drive the
interpretation of the results.

There is also the problem of functional forms. Many traditional approaches to the
construction of structural models and econometric counterfactuals make assumptions
about the functional forms of outcome equations and choice equations and the distrib-
utions of the unobservables. Methods differ in their reliance on these functional forms.
Lack of knowledge of the required functional forms is a source of identification prob-
lems.

Table 3
Sources of identification problems considered in this chapter

(i) Absence of data on Y (s′, ω) for s′ ∈ S\{s} where s is the state selected (the evaluation problem).
(ii) Nonrandom selection of observations on states (the selection problem).

(iii) Support conditions may fail (outcome distributions for F(Ys | X = x) may be defined on only
a limited support of X so F(X | Ds = 1) and F(X | Ds′ = 1) have different X supports or
limited overlap in their supports).

(iv) Functional forms of outcome equations and distributions of unobservables may be unknown. To
extend some function Y = G(X) to a new support requires functional structure: It cannot be
extended outside of sample support by a purely nonparametric procedure.

(v) Determining the (X,Z, W) conditioning variables.
(vi) Different information sets for the agent making selection Ia and the econometrician trying to

identify the model Ie where Ia �= Ie .

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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Table 3 lists the major sources of identification problems. We discuss the sensitiv-
ity of alternative evaluation methods to this array of problems in Chapter 71. We next
present an identification analysis of our prototypical economic model of choice and out-
comes which serves as a benchmark model against which we can formulate the implicit
assumptions made in alternative econometric approaches to policy evaluation.

6. Identification of explicit economic models

For the Roy model developed in Section 3, Heckman and Honoré (1990), show that un-
der the conditions they specify it is possible to identify the distribution of treatment
outcomes (Y1 − Y0) without invoking functional form assumptions. Randomization
can only identify the marginal distributions of Y0 and of Y1 and not the joint distrib-
ution of (Y1 − Y0) or the quantiles of (Y1 − Y0) [see Heckman (1992)]. Thus, under its
assumptions, the Roy model is more powerful than randomization in producing the dis-
tributional counterfactuals discussed in Abbring and Heckman (Chapter 72).95 The role
of the choice equation is to motivate and justify the choice of an evaluation method.96

This is a central feature of the econometric approach that is missing from the statistical
and epidemiological literature on treatment effects.

Considerable progress has been made in relaxing the parametric structure assumed
in the early structural models. As the treatment effect literature is extended to address
the more general set of policy forecasting problems entertained in the structural litera-
ture (especially problems P-2 and P-3), the distinction between the two literatures will
vanish. This section presents some examples of traditional structural models, how they
can be used to construct treatment effects, and how treatment effects can be generated
under much weaker conditions.

6.1. Using parametric assumptions to generate population level treatment parameters

We now present a brief analysis of identification of the extended Roy model and the
generalized Roy model analyzed in Section 3.3. This framework provides a convenient
platform from which to summarize the power and limitations of the current literature in
structural economics. Matzkin (Chapter 73 of this Handbook) provides a comprehen-
sive discussion of identification. Write a two-sector model with outcomes Y1, Y0 under
perfect certainty as

(6.1a)Y1 = μ1(X,U1),

(6.1b)Y0 = μ0(X,U0)

95 The same analysis applies to matching, which cannot identify the distribution of (Y1 − Y0) or derived
quantiles.
96 See Heckman and Robb (1985, 1986).
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and costs

(6.1c)C = μC(W,UC).

Agents choose sector 1 if R = Y1 − Y0 − C � 0. Otherwise they choose sector 0.
We have shown in Section 3 how this model can be used to generate the common
treatment effects discussed in Section 2. At issue in this section is how to identify the
parameters of Equations (6.1a)–(6.1c) from data where only one outcome (Y1 or Y0)
is observed. Recent advances in microeconometrics allow nonparametric identification
of these equations and the distributions of (U0, U1, UC) under conditions we specify
below.

First consider identification of the two-outcome generalized Roy model for normal
error terms developed in Section 3.3. Suppose that we observe Y1 when D = 1 and Y0
when D = 0. Observed Y may be written in switching regression form as in Quandt
(1958, 1972):

Y = DY1 + (1 − D)Y0.

We assume that the analyst observes (Z,X, Y,D), where Z = (X,W). In addition to
assumptions (i)–(ii) given in Section 3.3 and Equations (3.4a)–(3.4c), we assume that
the model is of full rank.

One traditional approach to econometric identification [see Heckman and Robb
(1985, 1986)] is to solve the selection problem for Y1 and Y0 and then to use the para-
meters of the model to solve the evaluation problem. Solutions to the selection problem
are developed in Heckman (1976, 1979, 1990), Heckman and Honoré (1990) and are
popularized in numerous surveys [see, e.g., Maddala (1983)]. Summarizing known re-
sults, assuming Y1 = μ1(x) + U1 and Y0 = μ0(x) + U0, C = Wϕ + UC , and defining
υ = U1 − U0 − UC , and normalizing Var(υ) = 1,

E(Y1 | D = 1, X = x, Z = z) = xβ1 + Cov(U1, υ)λ(zγ ),

E(Y0 | D = 0, X = x, Z = z) = xβ0 + Cov(U0, υ)λ̃(zγ ),

where λ(zγ ) = ϕ(zγ )/Φ(zγ ) and λ̃(zγ ) = −ϕ(zγ )/Φ(−zγ ). We can identify γ

from a first stage discrete choice analysis (a probit analysis with D as the dependent
variable and Z as the regressor) if the Z are of full rank. Under additional rank condi-
tions on the X, we can form λ(zγ ) and λ̃(zγ ) and use linear regression to recover β1,
Cov(U1, υ), β0, Cov(U0, υ) from the conditional means of Y1 and Y0. As first proved
by Heckman (1976, 1979), we can use the residuals from the regression equations to
identify σ 2

0 and σ 2
1 . We can also identify the covariances σ1υ and σ0υ from the coeffi-

cients on λ(zγ ) and λ̃(zγ ) respectively. Without further information, we cannot recover
σ01 and hence the joint distribution of (Y0, Y1). Thus the model is not fully identified,
although the marginal distributions are uniquely identified.97

97 Vijverberg (1993) uses a sensitivity or bounding analysis to determine what classes of joint distributions
are consistent with the data.



4858 J.J. Heckman and E.J. Vytlacil

The lack of identification of the joint distribution does not preclude identification of
the mean treatment parameters introduced in Sections 2 and 3. Note further that it is
possible that there is selection bias for Y1 (Cov(U1, υ) �= 0) and selection bias for Y0
(Cov(U0, υ) �= 0) but no selection on gains Cov(U1 − U0, υ) = 0.

Using the analysis of Section 3.3 from the parameters that are identified from se-
lection models, we can identify ATE(x), TT(x, z), MTE(x) from cross section data.
Without further information, we cannot identify the joint distribution of the counterfac-
tuals F(y1 − y0 | X) nor can we determine the proportion of agents who benefit from
treatment not accounting for costs Pr(Y1 � Y0 | Z). We can identify the proportion of
agents who benefit accounting for their costs using choice or revealed preference data:

Pr(Y1 − Y0 − C � 0 | Z = z) = Φ(zγ ).

In the special case of the Roy model, where υ = U1 − U0, because we can identify
the variance of U1 and U0, from the coefficients on λ(zγ ) and λ̃(zγ ), we can identify
Cov(U1, U1 − U0) and Cov(U0, U1 − U0) and hence we can identify σ01. Thus we
can identify the proportion of agents who benefit from treatment, not including costs,
because there are no costs and it is the same as Φ(zγ ) = Pr(Y1 − Y0 � 0 | Z = z).98

By using choice data, the Roy model, under its assumptions, produces more information
than randomization which only identifies the marginal distributions of Y0 and Y1 and not
the joint distribution.

Without additional information, one cannot surmount the fundamental evaluation
problem that one does not observe both Y0 and Y1 for the same agents. The Roy model
overcomes this problem using choice data assuming that there are no costs of partici-
pation. If it is assumed that UC = 0 but there are observed costs, one can identify γ

as before, and identify the covariance σ01 because no new random variable enters the
cost equation that is not in the outcome equation. This framework is what we call the
extended Roy model. For this version of the generalized Roy model one can form all
of the distributional treatment effects using the preceding analysis. In general, however,
one cannot identify the joint distribution of (Y1, Y0) but one can identify the distributions
of (Y1, R) in the notation of Section 3 (or (U1, υ)) and (Y0, R) (or (U0, υ)).

Normality assumptions are traditional and convenient. The linearity, exogeneity,
separability and normality assumptions make it possible to solve policy forecasting
problems P-1–P-3. By parameterizing the βi to depend on Qi as in Equations (3.7a)–
(3.7b), it is possible to forecast the demand for new goods. The support problems that
plague nonparametric estimators are absent. Heckman, Tobias and Vytlacil (2001, 2003)
extend the normal model using alternative distributional assumptions. The normal se-
lection model extends standard normal regression theory intuitions in a natural way. But

98 If we only observe Y1 or Y0 but not both in the same sample, we can identify the covariance of (U1, U0)

provided we normalize a mean (e.g., the mean of the missing Y ). Thus if Y1 is the market wage and Y0 is the
reservation wage, we rarely directly observe Y0 but we observe Y1. See Heckman (1974) and Heckman and
Honoré (1990).
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they are controversial. A huge effort in econometrics in the past 20 years has gone into
relaxing these assumptions.99

6.2. Two paths toward relaxing distributional, functional form and exogeneity
assumptions

At issue in this Handbook is whether the strong exogeneity, linearity and normality
assumptions in the conventional literature in econometrics are required to form treat-
ment effects and to evaluate policy. They are not. After this point of agreement, the
recent literature on policy evaluation divides. The literature in microeconometric struc-
tural estimation focuses on relaxing the linearity, separability, normality and exogeneity
conditions invoked in the early literature in order to identify (6.1a)–(6.1c) under much
weaker conditions.

Recent advances in econometric theory greatly weaken the distributional and func-
tional form assumptions maintained in the early econometric literature on selection bias.
For example, Cosslett (1983), Manski (1988), and Matzkin (1992, 1993, 1994, 2003)
relax the distributional assumptions required to identify the discrete choice model.
Matzkin (1993) develops multivariate extensions. She surveys this literature in her
1994 Handbook Chapter. Heckman (1980, 1990), Heckman and Robb (1985, 1986),
Heckman and Honoré (1990), Ahn and Powell (1993), Heckman and Smith (1998)
and Carneiro, Hansen and Heckman (2003) present conditions for nonparametric and
semiparametric identification of the selection model. Powell (1994) presents a useful
survey for developments up to the early 1990s. Developments by Chen (1999) extend
this analysis. Heckman (1990), Heckman and Smith (1998) and Carneiro, Hansen and
Heckman (2003) show how to identify all of the mean treatment parameters as well as
the distributional treatment parameters. We review the work on estimating distributions
of treatment effects in Abbring and Heckman (Chapter 72).

Appendix B presents a formal nonparametric analysis of identification of the proto-
typical model of choice and outcomes developed in Section 3.1. From this and other
explicitly economic models, the mean treatment effects and many distributional treat-
ment effects discussed in Section 2 can be identified. For reasons discussed in the pre-
ceding subsection, one cannot form the joint distribution of outcomes across treatment
states without some additional information such as the special Roy structure. Abbring
and Heckman (Chapter 72) show how restrictions on the dimensionality of the unob-
servables and extra information can also produce identification of the joint distribution
of Y1 − Y0. Matzkin (Chapter 73) provides a guide to the recent literature on nonpara-
metric identification in explicitly economic models. The goal of this line of work is to

99 The motivation for this research is largely based on Monte Carlo examples by Goldberger (1983),
Arabmazar and Schmidt (1982) and others. In the study of earnings models with truncation and censoring,
log normality is a good assumption [see Heckman and Sedlacek (1985)]. In the study of labor supply, it is a
very poor assumption [see Killingsworth (1983), and the articles in the special issue of the Journal of Human
Resources on labor supply and taxation, 1990]. See the evidence summarized in Heckman (2001).

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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preserve the economic content of the original Roy and generalized Roy models to col-
late evidence across studies in order to interpret evidence using economics, as well as
to forecast the effects of new policies.

The recent literature on treatment effects identifies population level treatment effects
under weaker conditions than are invoked in the traditional normal model. It does not
aim to recover the structural parameters generating (6.1a)–(6.1c) but rather just certain
derived objects, such as the mean treatment effects. These are taken as the invariant
structural parameters. The class of modifications considered is the set of treatments in
place.

Consider identification of ATE. It is not necessary to assume that X is exogenous
if one conditions policy analysis on X and does not seek to identify the effect of
changing X. The model of outcomes does not have to be separable in observables and
unobservables. We can nonetheless identify ATE under very general conditions.

One transparent way is by randomization, discussed in Chapter 71. If agents of given
X are randomized into sectors 1 and 0, and there is compliance with the randomization
protocols, we can identify ATE by comparing the mean outcomes of agents randomized
into sector 1 with the outcomes of those randomized into sector 0:

ATE(x) = E(Y1 | X) − E(Y0 | X).

Matching, discussed in Chapter 71, also identifies ATE without making any assump-
tions about the distributions of (U1, U0, UC) or the functional forms of the relationships
generating outcomes and choices (6.1a)–(6.1c) but assuming that conditioning on X ran-
domizes choices and produces the same data as are generated from an experiment. By
focusing on one treatment parameter, in this case ATE, and the questions ATE answers,
we can proceed under weaker conditions than were used to develop the selection model
although finding a common support for X when D = 1 and X when D = 0 may be a
serious practical issue [see Heckman, Ichimura and Todd (1998)]. In general, matching
or randomization do not identify TT or MTE.

ATE answers only one of the many evaluation questions that are potentially interest-
ing to answer. But we can identify ATE under weaker assumptions than are required
to identify the full generalized Roy model. Our analysis of ATE is an application of
Marschak’s Maxim. Doing one thing well has both its advantages and disadvantages.
Many of the estimators proposed in the evaluation literature identify some parameters,
and not others.

Our strategy in Chapter 71 of this Handbook is to survey the existing literature that
relaxes normality assumptions in conducting policy evaluation but that preserves the
index structure motivated by economic theory that is at the core of the generalized Roy
model and its extensions. The goal is to present a unified analysis of the available models
of treatment choice and treatment outcomes, and to unify the analysis of alternative
estimation strategies using a nonparametric index model framework. This limits the
generality of our survey. At the same time, it links the treatment literature to economic
choice theory and so bridges the structural and treatment effect approaches.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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Thus, in Chapter 71, we present an economically motivated framework that allows
us to integrate the treatment effect literature with the literature on “structural” (eco-
nomically motivated) econometric methods. We organize the alternative estimators of
instrumental variables, matching, regression discontinuity design methods and the like
within a common framework developed by Heckman and Vytlacil (1999, 2000, 2005).

Appendix A: The value of precisely formulated economic models in making
policy forecasts

Explicitly formulated economic models are useful for three different purposes. First,
the derivatives of such functions or finite changes generate the comparative statics ce-
teris paribus variations produced by economic theory. For example, tests of economic
theory and measurements of economic parameters (price elasticities, measurements of
consumer surplus, etc.) are based on structural equations.

Second, under invariance assumptions, structural equations can be used to forecast
the effects of policies evaluated in one population in other populations, provided that
the parameters are invariant across populations, and support conditions are satisfied.
However, a purely nonparametric structural equation determined on one support cannot
be extrapolated to other populations with different supports. Third, Marshallian causal
functions and structural equations are one ingredient required to forecast the effect of a
new policy, never previously implemented.

The problem of forecasting the effects of a policy evaluated on one population but
applied to another population can be formulated in the following way. Let Y(ω) =
ϕ(X(ω),U(ω)), where ϕ :D → Y , D ⊆ RJ , where D is the domain of the function,
and Y ⊆ R. ϕ is a structural equation determining outcome Y , and we assume that it
is known only over Supp(X(ω),U(ω)) = X × U . X(ω) and U(ω) are random input
variables. The mean outcome conditional on X(ω) = x is

EH (Y | X = x) =
∫
U

ϕ(X = x, u) dFH (u | X = x),

where FH (u | X) is the distribution of U in the historical data. We seek to forecast
the outcome in a target population which may have a different support. The average
outcome in the target population (T ) is

ET (Y | X = x) =
∫
UT

ϕ(X = x, u) dFT (u | X = x),

where UT is the support of U in the target population. Provided that the support
of (X,U) is the same in the source and the target populations, from knowledge of FT

it is possible to produce a correct value of ET (Y | X = x) for the target popula-
tion. Otherwise, it is possible to evaluate this expectation only over the intersection set
SuppT (X) ∩ SuppH (X), where SuppA(X) is the support of X in the source population.
In order to extrapolate over the whole set SuppT (X), it is necessary to adopt some form

http://dx.doi.org/10.1016/S1573-4412(07)06071-0


4862 J.J. Heckman and E.J. Vytlacil

of parametric or functional structure. Additive separability in ϕ simplifies the extrapo-
lation problem. If ϕ is additively separable

Y = ϕ(X) + U,

ϕ(X) applies to all populations for which we can condition on X. However, some struc-
ture may have to be imposed to extrapolate from SuppH (X) to SuppT (X) if ϕ(X) on T

is not determined nonparametrically from H .
The problem of forecasting the effect of a new policy, never previously experienced,

is similar in character to the policy forecasting problem just discussed. It shares many
elements in common with the problem of forecasting the demand for a new good, never
previously consumed.100 Without imposing some structure on this problem, it is impos-
sible to solve. The literature in structural econometrics associated with the work of the
Cowles Commission adopts the following five step approach to this problem.

1. Structural functions are determined (e.g., ϕ(X)).
2. The new policy is characterized by an invertible mapping from observed random

variables to the characteristics associated with the policy: Q = q(X), where Q

is the set of characteristics associated with the policy and q, q : RJ → RJ , is a
known invertible mapping.

3. X = q−1(Q) is solved to associate characteristics that in principle can be observed
with the policy. This places the characteristics of the new policy on the same
footing as those of the old.

4. It is assumed that, in the historical data, Supp(q−1(Q)) ⊆ Supp(X). This ensures
that the support of the new characteristics mapped into X space is contained in
the support of X. If this condition is not met, some functional structure must be
used to forecast the effects of the new policy, to extend it beyond the support of
the source population.

5. The forecast effect of the policy on Y is Y(Q) = ϕ(q−1(Q)).

The leading example of this approach is Lancaster’s method for estimating the de-
mand for a new good [Lancaster (1971)]. New goods are viewed as bundles of old char-
acteristics. McFadden’s conditional logit scheme [1974] is based on a similar idea.101

Marschak’s analysis of the effect of a new commodity tax is another example. Let
P(ω) be the random variable denoting the price facing consumer ω. The tax changes

100 Quandt and Baumol (1966), Lancaster (1971), Gorman (1980), McFadden (1974) and Domencich and
McFadden (1975) consider the problem of forecasting the demand for a new good. Marschak (1953) is the
classic reference for evaluating the effect of a new policy. See Heckman (2001) for a survey and synthesis of
this literature.
101 McFadden’s stochastic specification is different from Lancaster’s specification. See Heckman and Snyder
(1997) for a comparison of these two approaches. Lancaster assumes that the U(ω) are the same for each
consumer in all choice settings (they are preference parameters in his setting). McFadden allows for U(ω) to
be different for the same consumer across different choice settings but assumes that the U(ω) in each choice
setting are draws from a common distribution that can be determined from the demand for old goods.
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the product price from P(ω) to P(ω)(1 + t), where t is the tax. With sufficient price
variation so that the assumption in Step 4 is satisfied (so the support of the price after
tax, Supppost tax(P (ω)(1 + t)) ⊆ Supppretax(P (ω)), it is possible to use reduced form
demand functions fit on a pretax sample to forecast the effect of a tax never previously
put in place. Marschak uses a linear structural equation to solve the problem of limited
support. From linearity, determination of the structural equations over a small region
determines it everywhere.

Marshallian or structural causal functions are an essential ingredient in constructing
such forecasts because they explicitly model the relationship between U and X. The
treatment effect approach does not explicitly model this relationship so that treatment
parameters cannot be extrapolated in this fashion, unless the dependence of potential
outcomes on U and X is specified, and the required support conditions are satisfied.
The Rubin (1978)–Holland (1986) model does not specify the required relationships.
We discuss a specific way to implement this program in Chapter 71 of this contribution.

Appendix B: Nonparametric identification of counterfactual outcomes for
a multinomial discrete choice model with state-contingent outcomes

Let outcomes in s be Y(s) = μY (s,X)+U(s), s = 1, . . . , S̄, where there are S̄ discrete
states. Let R(s) = μR(s, Z) − V (s). The U(s) and V (s), s = 1, . . . , S̄, are assumed to
be absolutely continuous and variation free as a collection of random variables. Thus the
realization of one random variable does not restrict the realizations of the other random
variables. State s is selected if

s = argmaxj

{
R(j)

}S̄

j=1

and Y(s) is observed. If s is observed, D(s) = 1. Otherwise D(s) = 0.
∑S̄

s=1 D(s) = 1.
Define

μs
R(Z) = (

μR(s, Z) − μR(1, Z), . . . , μR(s, Z) − μR(S̄, Z)
)
,

V s = (
V (s) − V (1), . . . , V (s) − V (S̄)

)
,

μR(Z) = (
μR(1, Z), . . . , μR(S̄, Z)

)
,

μY (X) = (
μY (1, X), . . . , μY (S̄, X)

)
,

FV = (FV (1), . . . , FV (S̄)),

D(s) = 1(μs
R(Z) � V s).

Let FU(s),V s be a candidate joint distribution of (U(s), V s), s = 1, . . . , S̄, with the
true distribution being F ∗

U(s),V s . The true marginal distribution of V s is F ∗
V s . The true

marginal distribution of U(s) is F ∗
U(s). Let μ∗

Y (X) denote the true value of μY (X);
μ∗

R(Z) is the true value of μR(Z). Define MY as the space of candidate conditional
mean functions for Y : μY ∈ MY . Define MR as the space of candidate condi-
tional mean functions for the discrete indices: μR ∈ MR . Let M = MY × MR .

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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In this notation, (μY , μR) ∈ M. Define HV as the space of candidate distribution
functions for V , FV ∈ HV ; HU,V is the space of candidate distribution functions for
((U(1), V (1)), . . . , (U(S̄), V (S̄))), FU,V ∈ HU,V .

Let Ms
Y ,Ms

R denote the spaces in which μs
Y , μs

R reside, (μs
Y , μs

R) ∈ Ms
Y × Ms

R .
Let Hs

U,V ⊆ HU,V denote the space in which candidate distributions FU(s),V s reside,
FU(s),V s ∈ Hs

U,V . Hs
U and Hs

V are defined in a corresponding fashion.
Matzkin (1993) considers identification of polychotomous discrete choice models

under the conditions of Theorem 1 below. We extend her analysis to allow for counter-
factual outcomes adjoined to each choice. We can identify μY (s,X), s = 1, . . . , S̄, over
the support of X; μR(s, Z), up to scale over the support of Z and the joint distributions
of (U(s), V (s)−V (1), . . . , V (s)−V (s −1), V (s)−V (s +1), . . . , V (s)−V (S̄)) with
the contrasts V (s) − V (�), � �= s, up to a scale that we present below in our discussion
of Theorem 1.

THEOREM 1. Assume
(i) μR : Supp(Z) → RS̄ is continuous for all μR ∈ MR .

(ii) (U(s), V s), s = 1, . . . , S̄, are absolutely continuous random variables so that
FU(s),V s ∈ Hs

U,V is continuous. E(U(s)) = 0.

(iii) Supp(V s) = RS̄−1, s = 1, . . . , S̄.
(iv) (U(s), V s)⊥⊥ (X,Z), s = 1, . . . , S̄.
(v) There exists a Z̃ ⊆ Supp(Z) such that for all μR, μ̂R ∈ MR

(a) μ1(Z̃) = RS̄−1.
(b) μ1

R(z) = μ̂1
R(z) for all z ∈ Z̃.

(vi) Supp(μs
R(Z),X) = Supp(μs

R(Z)) × Supp(X).
(vii) For all μR, μ̂R ∈ M and z ∈ Supp(Z), μR(1, z) = μ̂R(1, z).

Then μ∗
Y (s,X), μ

∗,s
R (Z) and F ∗

U(s),V s , s = 1, . . . , S̄, are identified.102

PROOF. This theorem is a straightforward extension of Matzkin (1993, Theorem 2).
The proof of identifiability of the μ

∗,s
R (Z) and F ∗

V s , s = 1, . . . , S̄, follows directly from
her analysis.

Thus, suppose that (FV s , μs
R) are observationally identical to (F ∗

V s , μ
∗,s
R ) where both

reside in the space Hs
V × Ms

R . For all s,

FV s

(
μs

R(z)
) = F ∗

V s

(
μ

∗,s
R (z)

)
for all z ∈ Supp(Z). For arbitrary v ∈ RS̄−1, there exists zv ∈ Z̄ such that μ1

R(zv) =
μ

1,∗
R (zv) = v so that

FV 1(v) = FV 1

(
μ1

R(zv)
) = F ∗

V 1

(
μ

∗,1
R (zv)

) = F ∗
V 1(v)

102 Assuming that μR(s, Z) = Zγs , s = 1, . . . , S̄, simplifies the proof greatly and relies on more familiar
conditions. See Heckman (1990), Heckman and Smith (1998) or Carneiro, Hansen and Heckman (2003).
Matzkin (1993) presents alternative sets of conditions for identifiability of the choice model, all of which
apply here.
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for v ∈ RS̄−1. Because V s is a known linear transformation of V 1, this identifies F ∗
V s ,

s = 1, . . . , S̄. Given this distribution, following Matzkin, we can invert the choice
probabilities to obtain μ

∗,s
R (z), s = 1, . . . , S̄.

Armed with these results, we can find limit set Z(x), such that

lim
Z→Z(x)

Pr
(
D(s) = 1 | Z = z,X = x

) = 1

and thus limZ→Z(x) E(Y | D(s) = 1, Z = z,X = x) = μ∗
y(s, x) + E(U(s)). Using

E(U(s)) = 0, we can identify the μ∗
Y (s,X) in those limit sets. We can vary y(s) and

trace out the marginal distribution of U(s), s = 1, . . . , S̄, since limZ→Z(x) Pr(Y (s) −
μ∗

y(s, x) � t | D(s) = 1, Z = z,X = x) = Pr[U(s) � t]. From the joint distribu-

tion of Y(s),D(s) given X,Z, we can identify F ∗
U(s),V s , s = 1, . . . , S̄, by tracing out

different values of y(s), given X = x, and μ
∗,s
R (z). �

From this model, we can identify the marginal treatment effect [Carneiro, Hansen
and Heckman (2003, p. 368, equation (71))] and all pairwise average treatment effects
by forming suitable limit sets. We can also identify all pairwise mean treatment on the
treated and treatment on the untreated effects.

In the general case, we can identify the densities of U(s), V (s) − V (1), . . . ,

V (s) − V (S̄), s = 1, . . . , S̄, where U(s) may be a vector and the contrasts are iden-
tified. Set V (S̄) ≡ 0 (this is only one possible normalization). Then from the choice
equation for S̄ (Pr(D(S̄) = 1 | Z = z)) we can identify the pairwise correlations
ρi,j = Correl(V (i), V (j)), i, j = 1, . . . , S̄ − 1. We assume −1 � ρi,j < 1. If ρi,j = 1
for some i, j , the choice of a normalization is not innocuous. Under our conditions we
can identify Var(V (s) − V (�)) = 2(1 − ρs,�). This is the scale for contrast s, �. Define
τs,� = [Var(V (s) − V (�))]1/2 where positive square roots are used.

Consider constructing the distribution of Y(�) given D(s) = 1, X,Z. If � �= s, this
is a counterfactual distribution. From this distribution we can construct, among many
possible counterfactual parameters, E(Y(s) − Y(�) | D(s) = 1, X = x, Z = z),
a treatment on the treated parameter.

To form the distribution of (U(�),
V (s)−V (1)

τs,1
, . . . ,

V (s)−V (S̄)
τs,S̄

) for any � �= s from the

objects produced from Theorem 1, we use the normalized versions of V (s) − V (1),

. . . , V (s) − V (S̄): V (s)−V (1)
τs,1

, . . . ,
V (s)−V (S̄)

τs,S̄
. From the density of U(�), V (�)−V (1)

τ�,1
,

. . . ,
V (�)−V (S̄)

τ�,S̄
which we identify from Theorem 1, we can transform the contrast vari-

ables in the following way.
Define q(�, s) = V (�)−V (s)

τ�,s
. From the definitions, q(s, j) = V (s)−V (j)

τs,j
=

q(�,j)τ�,j −q(�,s)τ�,s

τs,j
, for all j = 1, 2, . . . , S̄. Substitute

q(�,j)τ�,j −q(�,s)τ�,s

τs,j
, for V (s)−V (j)

τs,j
,

j = 1, 2, . . . , S̄, j �= �, in the density of (U(�),
V (�)−V (s)

τ�,s
, . . . ,

V (�)−V (S̄)
τ�,S̄

) and use the

Jacobian of transformation
∏

j=1,...,S̄, j �=� |τ�,j | to obtain the desired density where
“| |” denotes determinant. This produces the desired counterfactual density for all
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s = 1, . . . , S̄. Provided that the Jacobians are nonzero (which rules out perfect depen-
dence), we preserve all of the information and can construct the marginal distribution
of any U(�) for any desired pattern of latent indices. Thus we can construct the desired
counterfactuals.

Appendix C: Normal selection model results

The properties of the normal selection model are generated by the properties of a trun-
cated normal model which we now establish. See Heckman and Honoré (1990). Let

Z be a standard normal random variable and let λ(d)
def≡ E[Z | Z � d]. For all

d ∈ (−∞,∞), we prove the following results:

(N-1) λ(d) =
1√
2π

exp{− d2

2 }
Φ(−d)

> max{0, d},

(N-2) 0 <
∂λ(d)

∂d
= λ′(d) = λ(d)

(
λ(d) − d

)
< 1,

(N-3)
∂2λ(d)

∂d2
> 0,

(N-4) 0 < Var[Z | Z � d] = 1 + λ(d)d − [λ(d)]2 < 1,

(N-5)
∂ Var[Z | Z � d]

∂d
< 0,

(N-6) E
[(

Z − λ(d)
)3 | Z � d

] = λ(d)
(
2[λ(d)]2 − 3dλ(d) + d2 − 1

)
= ∂2λ(d)

∂d2
,

(N-7) E[Z | Z � d] � mode[Z | Z � d],
(N-8) lim

d→−∞ λ(d) = 0, lim
d→∞ λ(d) = ∞,

(N-9) lim
d→−∞

∂λ(d)

∂d
= 0, lim

d→∞
∂λ(d)

∂d
= 1,

(N-10) lim
d→−∞ Var[Z | Z � d] = 1, lim

d→∞ Var[Z | Z � d] = 0.

Results (N-2), (N-4) and (N-5) are implications of log concavity. (N-7) is an impli-
cation of symmetry and log concavity. (N-1) and (N-3) are consequences of normality.
The left-hand side limits of (N-8) and (N-10) are true for any distribution with zero mean
and unit variance. So is the right-hand limit of (N-8) provided that the support of Z is
not bounded on the right. The right-hand limits of (N-9) and (N-10) are consequences
of normality.
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C.1. Proofs of results (N-1) to (N-10)

The moment generating function for a truncated normal distribution with truncation
point d is:

mgf(β) = eβ/2

∫ ∞
d−β

1√
2π

exp(− 1
2u2) du∫ ∞

d
1√
2π

exp(− 1
2u2) du

.

The equality in (N-1) follows from:

λ(d) = E[Z | Z � d] = ∂ mgf

∂β

∣∣∣∣
β=0

.

The inequality is obvious.
By direct calculation, λ′(d) = λ(d)(λ(d) − d). Now note that

E
[
Z2 | Z � d

] = ∂2 mgf

∂β2

∣∣∣∣
β=0

= 1 + λ(d)d.

Therefore:

Var[Z | Z � d] = 1 − ∂λ(d)

∂d
.

As Var[Z | Z � d] > 0 and λ(d)(λ(d) − d) > 0 by (N-1), this proves (N-2) and (N-4).
To prove (N-3) notice that Var[Z | Z � d] = 1 − ∂λ(d)

∂d
, and therefore:

∂2λ(d)

∂d2
= −∂ Var[Z | Z � d]

∂d
> 0,

where the inequality follows from Proposition 1 in Heckman and Honoré (1990).
(N-5) also follows from Proposition 1, whereas (N-6) follows by direct calculation from
the expression for E[(Z − λ(d))3 | Z > d]. (N-7) is trivial. (N-8) is obvious. The first
part of (N-9) follows directly from L’Hôpital’s rule. (N-2) and (N-3) imply that ∂λ(d)

∂d
is

increasing and bounded by 1. Therefore limd→∞ ∂λ(d)
∂d

exists and does not exceed 1. If

limd→∞ ∂λ(d)
∂d

< 1 then λ(d) would eventually be less than d , contradicting (N-1). This
proves the second part of (N-9). (N-9) and (N-4) imply (N-10).

References

Abadie, A., Angrist, J.D., Imbens, G. (2002). “Instrumental variables estimates of the effect of subsidized
training on the quantiles of trainee earnings”. Econometrica 70 (1), 91–117 (January).

Abbring, J.H., Campbell, J.R. (2005). “A firm’s first year”. Technical Report TI 05-046/3, Tinbergen Institute
Discussion Paper, May.

Abbring, J.H., Heckman, J.J. (2007). “Econometric evaluation of social programs, Part III: Distributional
treatment effects, dynamic treatment effects, dynamic discrete choice, and general equilibrium policy
evaluation”. In: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 6B. Elsevier. Chap-
ter 72.



4868 J.J. Heckman and E.J. Vytlacil

Abbring, J.H., Van den Berg, G.J. (2003). “The nonparametric identification of treatment effects in duration
models”. Econometrica 71 (5), 1491–1517 (September).

Ackerberg, D., Benkard, C.L., Berry, S., Pakes, A. (2007). “Econometric tools for analyzing market out-
comes”. In: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 6A. Elsevier. Chapter 63.

Aguirregabiria, V. (2004). “Pseudo maximum likelihood estimation of structural models involving fixed-point
problems”. Economics Letters 84 (3), 335–340 (September).

Ahn, H., Powell, J. (1993). “Semiparametric estimation of censored selection models with a nonparametric
selection mechanism”. Journal of Econometrics 58 (1–2), 3–29 (July).

Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge, MA.
Angrist, J.D., Imbens, G.W. (1995). “Two-stage least squares estimation of average causal effects in models

with variable treatment intensity”. Journal of the American Statistical Association 90 (430), 431–442
(June).

Angrist, J.D., Krueger, A.B. (1999). “Empirical strategies in labor economics”. In: Ashenfelter, O., Card, D.
(Eds.), Handbook of Labor Economics, vol. 3A. Elsevier, New York, pp. 1277–1366.

Angrist, J.D., Imbens, G.W., Rubin, D. (1996). “Identification of causal effects using instrumental variables”.
Journal of the American Statistical Association 91 (434), 444–455.

Arabmazar, A., Schmidt, P. (1982). “An investigation of the robustness of the Tobit estimator to non-
normality”. Econometrica 50 (4), 1055–1063 (July).

Athey, S., Haile, P. (2007). “Nonparametric approaches to auctions”. In: Heckman, J.J., Leamer, E. (Eds.),
Handbook of Econometrics, vol. 6A. Elsevier, Amsterdam. Chapter 60.

Berk, R., Li, A., Hickman, L.J. (2005). “Statistical difficulties in determining the role of race in capital cases:
A re-analysis of data from the state of Maryland”. Journal of Quantitative Criminology 21 (4), 365–390
(December).

Björklund, A., Moffitt, R. (1987). “The estimation of wage gains and welfare gains in self-selection”. Review
of Economics and Statistics 69 (1), 42–49 (February).

Blundell, R., Stoker, T. (2007). “Models of aggregate economic relationships that account for heterogene-
ity”. In: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 6A. Elsevier, Amsterdam.
Chapter 68.

Blundell, R., Reed, H., Stoker, T. (2003). “Interpreting aggregate wage growth: The role of labor market
participation”. American Economic Review 93 (4), 1114–1131 (September).

Blundell, R., Costa Dias, M., Meghir, C., Van Reenen, J. (2004). “Evaluating the employment effects
of a mandatory job search program”. Journal of the European Economic Association 2 (4), 569–606
(June).

Blundell, R., MaCurdy, T., Meghir, C. (2007). “Labor supply models: Unobserved heterogeneity, nonpar-
ticipation and dynamics”. In: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 6A.
Elsevier, Amsterdam. Chapter 69.

Boadway, R.W., Bruce, N. (1984). Welfare Economics. B. Blackwell, New York.
Bock, R.D., Jones, L.V. (1968). The Measurement and Prediction of Judgment and Choice. Holden-Day, San

Francisco.
Bond, S., Van Reenen, J. (2007). “Microeconometric models of investment and employment”. In: Heckman,

J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 6A. Elsevier, Amsterdam. Chapter 65.
Brock, W.A., Durlauf, S.N. (2001). “Interactions-based models”. In: Heckman, J.J., Leamer, E. (Eds.),

Handbook of Econometrics, vol. 5. North-Holland, New York, pp. 3463–3568.
Browning, M., Hansen, L.P., Heckman, J.J. (1999). “Micro data and general equilibrium models”. In: Taylor,

J.B., Woodford, M. (Eds.), Handbook of Macroeconomics, vol. 1A. Elsevier, pp. 543–633. Chapter 8.
Campbell, D.T., Stanley, J.C. (1963). Experimental and Quasi-Experimental Designs for Research. Rand

McNally, Chicago. Originally appeared in Gage, N.L. (Ed.), Handbook of Research on Teaching.
Carneiro, P., Hansen, K., Heckman, J.J. (2001). “Removing the veil of ignorance in assessing the distributional

impacts of social policies”. Swedish Economic Policy Review 8 (2), 273–301 (Fall).
Carneiro, P., Hansen, K., Heckman, J.J. (2003). “Estimating distributions of treatment effects with an

application to the returns to schooling and measurement of the effects of uncertainty on college choice”.
International Economic Review 44 (2), 361–422 (May).



Ch. 70: Econometric Evaluation of Social Programs, Part I 4869

Carrasco, M., Florens, J.–P., Renault, E. (2007). “Linear inverse problems in structural econometrics
estimation based on spectral decomposition and regularization”. In: Heckman, J.J., Leamer, E. (Eds.),
Handbook of Econometrics, vol. 6B. Elsevier, Amsterdam. Chapter 77.

Chan, T.Y., Hamilton, B.H. (2003, July). “Learning, private information and the economic evaluation of
randomized experiments”. Working paper. Olin School of Business, Washington University, St. Louis.

Chen, S. (1999). “Distribution-free estimation of the random coefficient dummy endogenous variable model”.
Journal of Econometrics 91 (1), 171–199 (July).

Chen, X. (2007). “Large sample sieve estimation of semi-nonparametric models”. In: Heckman, J.J., Leamer,
E. (Eds.), Handbook of Econometrics, vol. 6B. Elsevier, Amsterdam. Chapter 76.

Chernozhukov, V., Hansen, C. (2005). “An IV model of quantile treatment effects”. Econometrica 73 (1),
245–261 (January).

Cosslett, S.R. (1983). “Distribution-free maximum likelihood estimator of the binary choice model”.
Econometrica 51 (3), 765–782 (May).

Cox, D.R. (1958). Planning of Experiments. Wiley, New York.
Cunha, F., Heckman, J.J., Navarro, S. (2005). “Separating uncertainty from heterogeneity in life cycle

earnings, the 2004 Hicks lecture”. Oxford Economic Papers 57 (2), 191–261 (April).
Cunha, F., Heckman, J.J., Navarro, S. (2006). “Counterfactual analysis of inequality and social mobility”.

In: Morgan, S.L., Grusky, D.B., Fields, G.S. (Eds.), Mobility and Inequality: Frontiers of Research in
Sociology and Economics. Stanford University Press, Stanford, CA, pp. 290–348. Chapter 4.

Dahl, G.B. (2002). “Mobility and the return to education: Testing a Roy model with multiple markets”.
Econometrica 70 (6), 2367–2420 (November).

Dawid, A. (2000). “Causal inference without counterfactuals”. Journal of the American Statistical Associa-
tion 95 (450), 407–424 (June).

Domencich, T., McFadden, D.L. (1975). Urban Travel Demand: A Behavioral Analysis. North-Holland,
Amsterdam. Reprinted 1996.

Eckstein, Z., Wolpin, K.I. (1989). “The specification and estimation of dynamic stochastic discrete choice
models: A survey”. Journal of Human Resources 24 (4), 562–598 (Fall).

Eckstein, Z., Wolpin, K.I. (1999). “Why youths drop out of high school: The impact of preferences,
opportunities and abilities”. Econometrica 67 (6), 1295–1339 (November).

Fisher, R.A. (1966). The Design of Experiments. Hafner Publishing, New York.
Florens, J.-P., Heckman, J.J. (2003). “Causality and econometrics”. Unpublished working paper, University

of Chicago, Department of Economics.
Foster, J.E., Sen, A.K. (1997). On Economic Inequality. Oxford University Press, New York.
Geweke, J., Keane, M. (2001). “Computationally intensive methods for integration in econometrics”.

In: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 5. North-Holland, New York,
pp. 3463–3568.

Gill, R.D., Robins, J.M. (2001). “Causal inference for complex longitudinal data: The continuous case”. The
Annals of Statistics 29 (6), 1785–1811 (December).

Goldberger, A.S. (1964). Econometric Theory. Wiley, New York.
Goldberger, A.S. (1983). “Abnormal selection bias”. In: Karlin, S., Amemiya, T., Goodman, L.A. (Eds.),

Studies in Econometrics, Time Series, and Multivariate Statistics. Academic Press, New York, pp. 67–84.
Gorman, W.M. (1980). “A possible procedure for analysing quality differentials in the egg market”. Review

of Economic Studies 47 (5), 843–856 (October).
Gronau, R. (1974). “Wage comparisons – a selectivity bias”. Journal of Political Economy 82 (6), 1119–1143

(November–December).
Haavelmo, T. (1943). “The statistical implications of a system of simultaneous equations”. Econometrica 11

(1), 1–12 (January).
Haavelmo, T. (1944). “The probability approach in econometrics”. Econometrica 12 (Suppl.), iii–vi and

1–115.
Hamermesh, D.S. (1993). Labor Demand. Princeton University Press, Princeton, NJ.
Hansen, L.P., Sargent, T.J. (1980). “Formulating and estimating dynamic linear rational expectations

models”. Journal of Economic Dynamics and Control 2 (1), 7–46 (February).



4870 J.J. Heckman and E.J. Vytlacil

Harberger, A.C. (1971). “Three basic postulates for applied welfare economics: An interpretive essay”.
Journal of Economic Literature 9 (3), 785–797 (September).

Harsanyi, J.C. (1955). “Cardinal welfare, individualistic ethics and interpersonal comparisons of utility”.
Journal of Political Economy 63 (4), 309–321 (August).

Harsanyi, J.C. (1975). “Can the maximin principle serve as a basis for morality? A critique of John Rawls’s
theory”. American Political Science Review 69 (2), 594–606 (June).

Heckman, J.J. (1974). “Shadow prices, market wages and labor supply”. Econometrica 42 (4), 679–694 (July).
Heckman, J.J. (1976). “The common structure of statistical models of truncation, sample selection and

limited dependent variables and a simple estimator for such models”. Annals of Economic and Social
Measurement 5 (4), 475–492 (December).

Heckman, J.J. (1978). “Dummy endogenous variables in a simultaneous equation system”. Econometrica 46
(4), 931–959 (July).

Heckman, J.J. (1979). “Sample selection bias as a specification error”. Econometrica 47 (1), 153–162
(January).

Heckman, J.J. (1980). “Addendum to sample selection bias as a specification error”. In: Stromsdorfer, E.,
Farkas, G. (Eds.), In: Evaluation Studies Review Annual, vol. 5. Sage Publications, Beverly Hills.

Heckman, J.J. (1990). “Varieties of selection bias”. American Economic Review 80 (2), 313–318 (May).
Heckman, J.J. (1992). “Randomization and social policy evaluation”. In: Manski, C., Garfinkel, I. (Eds.),

Evaluating Welfare and Training Programs. Harvard University Press, Cambridge, MA, pp. 201–230.
Heckman, J.J. (2000). “Policies to foster human capital”. Research in Economics 54 (1), 3–56 (March). With

discussion.
Heckman, J.J. (2001). “Micro, data, heterogeneity and the evaluation of public policy: Nobel lecture”. Journal

of Political Economy 109 (4), 673–748 (August).
Heckman, J.J. (2005). “The scientific model of causality”. Sociological Methodology 35 (1), 1–97 (August).
Heckman, J.J. (2007). Evaluating Economic Policy. Unpublished manuscript. University of Chicago.
Heckman, J.J., Honoré, B.E. (1990). “The empirical content of the Roy model”. Econometrica 58 (5),

1121–1149 (September).
Heckman, J.J., MaCurdy, T.E. (1986). “Labor econometrics”. In: Griliches, Z., Intriligator, M. (Eds.),

Handbook of Econometrics, vol. 3. North-Holland, New York, pp. 1917–1977.
Heckman, J.J., Navarro, S. (2007). “Dynamic discrete choice and dynamic treatment effects”. Journal of

Econometrics 136 (2), 341–396 (February).
Heckman, J.J., Robb, R. (1985). “Alternative methods for evaluating the impact of interventions”. In:

Heckman, J.J., Singer, B. (Eds.), Longitudinal Analysis of Labor Market Data, vol. 10. Cambridge
University Press, New York, pp. 156–245.

Heckman, J.J., Robb, R. (1986). “Alternative methods for solving the problem of selection bias in evaluating
the impact of treatments on outcomes”. In: Wainer, H. (Ed.), Drawing Inferences from Self-Selected
Samples. Springer-Verlag, New York, pp. 63–107. Reprinted in 2000, Lawrence Erlbaum Associates,
Mahwah, NJ.

Heckman, J.J., Sedlacek, G.L. (1985). “Heterogeneity, aggregation and market wage functions: An empirical
model of self-selection in the labor market”. Journal of Political Economy 93 (6), 1077–1125 (December).

Heckman, J.J., Smith, J.A. (1998). “Evaluating the welfare state”. In: Strom, S. (Ed.), Econometrics and
Economic Theory in the Twentieth Century: The Ragnar Frisch Centennial Symposium. Cambridge
University Press, New York, pp. 241–318.

Heckman, J.J., Snyder, J.M. (1997). “Linear probability models of the demand for attributes with an empirical
application to estimating the preferences of legislators”. RAND Journal of Economics 28, S142 (Special
Issue).

Heckman, J.J., Vytlacil, E.J. (1999). “Local instrumental variables and latent variable models for identifying
and bounding treatment effects”. Proceedings of the National Academy of Sciences 96, 4730–4734
(April).

Heckman, J.J., Vytlacil, E.J. (2000). “The relationship between treatment parameters within a latent variable
framework”. Economics Letters 66 (1), 33–39 (January).



Ch. 70: Econometric Evaluation of Social Programs, Part I 4871

Heckman, J.J., Vytlacil, E.J. (2001). “Local instrumental variables”. In: Hsiao, C., Morimune, K., Powell,
J.L. (Eds.), Nonlinear Statistical Modeling: Proceedings of the Thirteenth International Symposium in
Economic Theory and Econometrics: Essays in Honor of Takeshi Amemiya. Cambridge University
Press, New York, pp. 1–46.

Heckman, J.J., Vytlacil, E.J. (2005). “Structural equations, treatment effects and econometric policy
evaluation”. Econometrica 73 (3), 669–738 (May).

Heckman, J.J., Smith, J.A., Clements, N. (1997). “Making the most out of programme evaluations and social
experiments: Accounting for heterogeneity in programme impacts”. Review of Economic Studies 64
(221), 487–536 (October).

Heckman, J.J., Ichimura, H., Todd, P.E. (1998). “Matching as an econometric evaluation estimator”. Review
of Economic Studies 65 (223), 261–294 (April).

Heckman, J.J., Lochner, L.J., Taber, C. (1998). “General-equilibrium treatment effects: A study of tuition
policy”. American Economic Review 88 (2), 381–386 (May).

Heckman, J.J., LaLonde, R.J., Smith, J.A. (1999). “The economics and econometrics of active labor market
programs”. In: Ashenfelter, O., Card, D. (Eds.), Handbook of Labor Economics, vol. 3A. North-Holland,
New York, pp. 1865–2097. Chapter 31.

Heckman, J.J., Hohmann, N., Smith, J., Khoo, M. (2000). “Substitution and dropout bias in social experi-
ments: A study of an influential social experiment”. Quarterly Journal of Economics 115 (2), 651–694
(May).

Heckman, J.J., Tobias, J.L., Vytlacil, E.J. (2001). “Four parameters of interest in the evaluation of social
programs”. Southern Economic Journal 68 (2), 210–223 (October).

Heckman, J.J., Tobias, J.L., Vytlacil, E.J. (2003). “Simple estimators for treatment parameters in a latent
variable framework”. Review of Economics and Statistics 85 (3), 748–754 (August).

Heckman, J.J., Urzua, S., Vytlacil, E.J. (2006). “Understanding instrumental variables in models with
essential heterogeneity”. Review of Economics Statistics 88 (3), 389–432.

Hensher, D., Louviere, J., Swait, J. (1999). “Combining sources of preference data”. Journal of Economet-
rics 89 (1–2), 197–221 (March–April).

Hicks, J.R. (1946). Value and Capital: An Inquiry into Some Fundamental Principles of Economic Theory,
second ed. Clarendon Press, Oxford.

Holland, P.W. (1986). “Statistics and causal inference”. Journal of the American Statistical Association 81
(396), 945–960 (December).

Holland, P.W. (1988). “Causal inference, path analysis and recursive structural equation models”. In: Clogg,
C., Arminger, G. (Eds.), Sociological Methodology. American Sociological Association, Washington,
DC, pp. 449–484.

Hurwicz, L. (1962). “On the structural form of interdependent systems”. In: Nagel, E., Suppes, P., Tarski, A.
(Eds.), Logic, Methodology and Philosophy of Science. Stanford University Press, pp. 232–239.

Ichimura, H., Todd, P.E. (2007). “Implementing nonparametric and semiparametric estimators”. In: Heckman,
J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 6B. Elsevier, Amsterdam. Chapter 74.

Imbens, G.W., Angrist, J.D. (1994). “Identification and estimation of local average treatment effects”.
Econometrica 62 (2), 467–475 (March).

Journal of Human Resources (1990, Summer). Special Issue on Taxation and Labor Supply in Industrial
Countries, Volume 25.

Katz, D., Gutek, A., Kahn, R., Barton, E. (1975). Bureaucratic Encounters: A Pilot Study in the Evaluation
of Government Services. Survey Research Center Institute for Social Research, University of Michigan,
Ann Arbor.

Keane, M.P., Wolpin, K.I. (1997). “The career decisions of young men”. Journal of Political Economy 105
(3), 473–522 (June).

Killingsworth, M.R. (1983). Labor Supply. Cambridge University Press, Cambridge.
Killingsworth, M.R. (1985). “Substitution and output effects on labor demand: Theory and policy applica-

tions”. Journal of Human Resources 20 (1), 142–152 (Winter).
Knight, F. (1921). Risk, Uncertainty and Profit. Houghton Mifflin Company, New York.



4872 J.J. Heckman and E.J. Vytlacil

Koopmans, T.C., Rubin, H., Leipnik, R.B. (1950). “Measuring the equation systems of dynamic economics”.
In: Koopmans, T.C. (Ed.), Statistical Inference in Dynamic Economic Models. In: Cowles Commission
Monograph, vol. 10. John Wiley & Sons, New York, pp. 53–237. Chapter 2.

Lancaster, K.J. (1971). Consumer Demand: A New Approach. Columbia University Press, New York.
Leamer, E.E. (1985). “Vector autoregressions for causal inference?”. Carnegie–Rochester Conference Series

on Public Policy 22, 255–303 (Spring).
Lechner, M. (2004). “Sequential matching estimation of dynamic causal models”. Technical Report 2004,

IZA Discussion Paper.
Lee, L.-F. (1978). “Unionism and wage rates: A simultaneous equations model with qualitative and limited

dependent variables”. International Economic Review 19 (2), 415–433 (June).
Lewis, H.G. (1974). “Comments on selectivity biases in wage comparisons”. Journal of Political Economy 82

(6), 1145–1155 (November–December).
Lewis, H.G. (1986). Union Relative Wage Effects: A Survey. University of Chicago Press, Chicago.
Little, I.M., Mirrlees, J.A. (1974). Project Appraisal and Planning for Developing Countries. Basic Books,

New York.
Lucas, R.E., Sargent, T.J. (1981). Rational Expectations and Econometric Practice. University of Minnesota

Press, Minneapolis.
Maddala, G. (1983). Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University

Press, New York.
Magnac, T., Thesmar, D. (2002). “Identifying dynamic discrete decision processes”. Econometrica 70 (2),

801–816 (March).
Manski, C.F. (1975). “Maximum score estimation of the stochastic utility model of choice”. Journal of

Econometrics 3 (3), 205–228 (August).
Manski, C.F. (1988). “Identification of binary response models”. Journal of the American Statistical

Association 83 (403), 729–738 (September).
Manski, C.F. (2003). Partial Identification of Probability Distributions. Springer-Verlag, New York.
Marschak, J. (1953). “Economic measurements for policy and prediction”. In: Hood, W., Koopmans, T.

(Eds.), Studies in Econometric Method. Wiley, New York, pp. 1–26.
Marshall, D.A. (1890). Principles of Economics. Macmillan and Company, New York.
Matzkin, R.L. (1992). “Nonparametric and distribution-free estimation of the binary threshold crossing and

the binary choice models”. Econometrica 60 (2), 239–270 (March).
Matzkin, R.L. (1993). “Nonparametric identification and estimation of polychotomous choice models”.

Journal of Econometrics 58 (1–2), 137–168 (July).
Matzkin, R.L. (1994). “Restrictions of economic theory in nonparametric methods”. In: Engle, R., McFadden,

D. (Eds.), Handbook of Econometrics, vol. 4. North-Holland, New York, pp. 2523–2558.
Matzkin, R.L. (2003). “Nonparametric estimation of nonadditive random functions”. Econometrica 71 (5),

1339–1375 (September).
Matzkin, R.L. (2004). “Unobserved instruments”. Unpublished manuscript. Northwestern University,

Department of Economics.
Matzkin, R.L. (2007). “Nonparametric identification”. In: Heckman, J.J., Leamer, E. (Eds.), Handbook of

Econometrics, vol. 6B. Elsevier Science. Chapter 73.
McFadden, D. (1974). “Conditional logit analysis of qualitative choice behavior”. In: Zarembka, P. (Ed.),

Frontiers in Econometrics. Academic Press, New York.
McFadden, D. (1981). “Econometric models of probabilistic choice”. In: Manski, C., McFadden, D. (Eds.),

Structural Analysis of Discrete Data with Econometric Applications. MIT Press, Cambridge, MA.
McFadden, D. (1984). “Econometric analysis of qualitative response models”. In: Griliches, Z., Intriligator,

M. (Eds.), Handbook of Econometrics, vol. 2. North-Holland, New York, pp. 1396–1457.
McFadden, D. (1985). “Technical problems in social experimentation: Cost versus ease of analysis: Com-

ment”. In: Hausman, J.A., Wise, D.A. (Eds.), Social Experimentation, National Bureau of Economic
Research Conference Report. University of Chicago Press, Chicago, pp. 214–218.



Ch. 70: Econometric Evaluation of Social Programs, Part I 4873

McFadden, D. (2001). “On selecting regression variables to maximize their significance”. In: Hsiao,
C., Morimune, K., Powell, J. (Eds.), Nonlinear Statistical Modeling: Proceedings of the Thirteenth
International Symposium in Economic Theory and Econometrics: Essays in Honor of Takeshi Amemiya.
Cambridge University Press, New York, pp. 259–280.

Miller, R.A. (1984). “Job matching and occupational choice”. Journal of Political Economy 92 (6),
1086–1120 (December).

Moulin, H. (1983). The Strategy of Social Choice. North-Holland, New York.
Neyman, J. (1923). “Statistical problems in agricultural experiments”. Journal of the Royal Statistical

Society II (Suppl. (2)), 107–180.
Osborne, M.J. (2004). An Introduction to Game Theory. Oxford University Press, New York.
Pakes, A. (1986). “Patents as options: Some estimates of the value of holding European patent stocks”.

Econometrica 54 (4), 755–784 (July).
Pearl, J. (2000). Causality. Cambridge University Press, Cambridge, England.
Persson, T., Tabellini, G.E. (2000). Political Economics: Explaining Economic Policy. MIT Press, Cambridge,

MA.
Pitt, M., Rosenzweig, M. (1989). “The selectivity of fertility and the determinants of human capital invest-

ments: Parametric and semi-parametric estimates”. Living Standards Measurement 119, World Bank.
Powell, J.L. (1994). “Estimation of semiparametric models”. In: Engle, R., McFadden, D. (Eds.), Handbook

of Econometrics, vol. 4. Elsevier, Amsterdam, pp. 2443–2521.
Quandt, R.E. (1958). “The estimation of the parameters of a linear regression system obeying two separate

regimes”. Journal of the American Statistical Association 53 (284), 873–880 (December).
Quandt, R.E. (1972). “A new approach to estimating switching regressions”. Journal of the American

Statistical Association 67 (338), 306–310 (June).
Quandt, R.E. (1974). “A comparison of methods for testing nonnested hypotheses”. Review of Economics

and Statistics 56 (1), 92–99 (February).
Quandt, R.E., Baumol, W. (1966). “The demand for abstract transport modes: Theory measurement”. Journal

of Regional Science 6, 13–26.
Quine, W.V.O. (1951). “Main trends in recent philosophy: Two dogmas of empiricism”. The Philosophical

Review 60 (1), 20–43 (January).
Rawls, J. (1971). “A Theory of Justice”. Belknap Press of Harvard University Press, Cambridge, MA.
Reiss, P., Wolak, F. (2007). “Structural econometric modeling: Rationales and examples from industrial

organization”. In: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 6A. Elsevier
Science. Chapter 64.

Roy, A. (1951). “ Some thoughts on the distribution of earnings”. Oxford Economic Papers 3 (2), 135–146
(June).

Rubin, D.B. (1976). “Inference and missing data”. Biometrika 63 (3), 581–592 (December).
Rubin, D.B. (1978). “Bayesian inference for causal effects: The role of randomization”. Annals of Statistics 6

(1), 34–58 (January).
Rubin, D.B. (1986). “Statistics and causal inference: Comment: Which ifs have causal answers”. Journal of

the American Statistical Association 81 (396), 961–962.
Rust, J. (1994). “Structural estimation of Markov decision processes”. In: Engle, R., McFadden, D. (Eds.),

Handbook of Econometrics. North-Holland, New York, pp. 3081–3143.
Ruud, P.A. (1981). “Misspecification in Limited Dependent Variable Models”. PhD thesis. Massachusetts

Institute of Technology.
Ruud, P.A. (2000). An Introduction to Classical Econometric Theory. Oxford University Press, New York.
Sen, A.K. (1999). “The possibility of social choice”. American Economic Review 89 (3), 349–378 (June).
Sims, C.A. (1977). “Exogeneity and causal orderings in macroeconomic models”. In: New Methods in

Business Cycle Research. Federal Reserve Bank of Minneapolis, Minneapolis, MN, pp. 23–43.
Taber, C.R. (2001). “The rising college premium in the eighties: Return to college or return to unobserved

ability?”. Review of Economic Studies 68 (3), 665–691 (July).
Tamer, E. (2003). “Incomplete simultaneous discrete response model with multiple equilibria”. Review of

Economic Studies 70 (1), 147–165 (January).



4874 J.J. Heckman and E.J. Vytlacil

Thurstone, L.L. (1927). “A law of comparative judgement”. Psychological Review 34, 273–286.
Thurstone, L.L. (1959). The Measurement of Values. University of Chicago Press, Chicago.
Tinbergen, J. (1930). “Bestimmung und Deutung von Angebotskurven”. Zeitschrift für Nationalökonomie 1

(1), 669–679 (March).
Todd, P.E. (1996). “Essays on empirical methods for evaluating the impact of policy interventions in

education and training”. PhD dissertation. University of Chicago, Chicago.
Varian, H.R. (1978). Microeconomic Analysis. Norton, New York.
Vickrey, W. (1945). “Measuring marginal utility by reactions to risk”. Econometrica 13 (4), 319–333

(October).
Vickrey, W. (1961). “Utility, strategy and social decision rules: Reply”. Quarterly Journal of Economics 75

(3), 496–497 (August).
Vijverberg, W.P.M. (1993). “Measuring the unidentified parameter of the extended Roy model of selectivity”.

Journal of Econometrics 57 (1–3), 69–89 (May–June).
Willis, R.J., Rosen, S. (1979). “Education and self-selection”. Journal of Political Economy 87 (5, Part 2),

S7–S36 (October).
Wold, H.O.A. (1956). “Causal inference from observational data: A review of end and means”. Journal of

the Royal Statistical Society. Series A (General) 119 (1), 28–61.
Wooldridge, J.M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge,

MA.



Chapter 71

ECONOMETRIC EVALUATION OF SOCIAL PROGRAMS,
PART II: USING THE MARGINAL TREATMENT EFFECT
TO ORGANIZE ALTERNATIVE ECONOMETRIC ESTIMATORS
TO EVALUATE SOCIAL PROGRAMS, AND TO FORECAST
THEIR EFFECTS IN NEW ENVIRONMENTS*

JAMES J. HECKMAN

The University of Chicago, USA

American Bar Foundation, USA

University College Dublin, Ireland

EDWARD J. VYTLACIL

Columbia University, USA

Contents

Abstract 4878
Keywords 4878
1. Introduction 4879
2. The basic principles underlying the identification of the major economet-

ric evaluation estimators 4880
2.1. A prototypical policy evaluation problem 4890

3. An index model of choice and treatment effects: Definitions and unifying
principles 4894

3.1. Definitions of treatment effects in the two outcome model 4897
3.2. Policy relevant treatment parameters 4903

4. Instrumental variables 4907
4.1. IV in choice models 4913
4.2. Instrumental variables and local instrumental variables 4914

4.2.1. Conditions on the MTE that justify the application of conventional in-

strumental variables 4915

* This research was supported by NSF: 97-09-873, 00-99195, and SES-0241858 and NICHD: R01-
HD32058-03. We have benefited from comments received from Thierry Magnac and Costas Meghir at the
Handbook of Econometrics Conference, December 1998; general comments at the 2001 Chicago Confer-
ence; and specific and very helpful comments from Jaap Abbring, Thomas Amorde, Hugo Garduño, Seong
Moon, Rodrigo Pinto, Heleno Pioner, Jean-Marc Robin, Peter Saveleyev, G. Adam Savvas, Daniel Schmierer,
John Trujillo, Semih Tumen, Sergio Urzua and Jordan Weil. Parts of this document draw on joint work with
Sergio Urzua.

Handbook of Econometrics, Volume 6B
Copyright © 2007 Elsevier B.V. All rights reserved
DOI: 10.1016/S1573-4412(07)06071-0

http://dx.doi.org/10.1016/S1573-4412(07)06071-0


4876 J.J. Heckman and E.J. Vytlacil

4.2.2. Estimating the MTE using local instrumental variables 4917
4.3. What does linear IV estimate? 4920

4.3.1. Further properties of the IV weights 4924
4.3.2. Constructing the weights from data 4925
4.3.3. Discrete instruments 4925
4.3.4. Identifying margins of choice associated with each instrument and unify-

ing diverse instruments within a common framework 4926
4.3.5. Yitzhaki’s derivation of the weights 4927

4.4. The central role of the propensity score 4928
4.5. Monotonicity, uniformity and conditional instruments 4928
4.6. Treatment effects vs. policy effects 4930
4.7. Some examples of weights in the generalized Roy model and the extended Roy model 4931

4.7.1. Further examples within the extended Roy model 4934
4.7.2. Discrete instruments and weights for LATE 4934
4.7.3. Continuous instruments 4939

4.8. Comparing selection and IV models 4950
4.9. Empirical examples: “The effect” of high school graduation on wages and using IV

to estimate “the effect” of the GED 4953
4.9.1. Empirical example based on LATE: Using IV to estimate “the effect” of

high school graduation on wages 4953
4.9.2. Effect of the GED on wages 4953

4.10. Monotonicity, uniformity, nonseparability, independence and policy invariance: The

limits of instrumental variables 4959
4.10.1. Implications of nonseparability 4961
4.10.2. Implications of dependence 4963
4.10.3. The limits of instrumental variable estimators 4964

5. Regression discontinuity estimators and LATE 4964
6. Policy evaluation, out-of-sample policy forecasting, forecasting the ef-

fects of new policies and structural models based on the MTE 4967
6.1. Econometric cost benefit analysis based on the MTE 4967
6.2. Constructing the PRTE in new environments 4971

6.2.1. Constructing weights for new policies in a common environment 4972
6.2.2. Forecasting the effects of policies in new environments 4976
6.2.3. A comparison of three approaches to policy evaluation 4976

7. Extension of MTE to the analysis of more than two treatments and asso-
ciated outcomes 4978

7.1. Background for our analysis of the ordered choice model 4978
7.2. Analysis of an ordered choice model 4980

7.2.1. The policy relevant treatment effect for the ordered choice model 4984
7.2.2. What do instruments identify in the ordered choice model? 4984
7.2.3. Some theoretical examples of the weights in the ordered choice model 4986
7.2.4. Some numerical examples of the IV weights 4988

7.3. Extension to multiple treatments that are unordered 4998



Ch. 71: Econometric Evaluation of Social Programs, Part II 4877

7.3.1. Model and assumptions 5002
7.3.2. Definition of treatment effects and treatment parameters 5006
7.3.3. Heterogeneity in treatment effects 5009
7.3.4. LIV and nonparametric Wald estimands for one choice vs. the best alternative 5010
7.3.5. Identification: Effect of best option in K versus best option not in K 5015
7.3.6. Identification: Effect of one fixed choice versus another 5017
7.3.7. Summarizing the results for the unordered model 5020

7.4. Continuous treatment 5021
8. Matching 5026

8.1. Matching assumption (M-1) implies a flat MTE 5029
8.2. Matching and MTE using mean independence conditions 5031
8.3. Implementing the method of matching 5033

8.3.1. Comparing matching and control functions approaches 5036
8.4. Comparing matching and classical control function methods for a generalized Roy

model 5042
8.5. The informational requirements of matching and the bias when they are not satisfied 5043

8.5.1. The economist uses the minimal relevant information: σ(IR) ⊆ σ(IE) 5046
8.5.2. The economist does not use all of the minimal relevant information 5048
8.5.3. Adding information to the econometrician’s information set IE : Using

some but not all the information from the minimal relevant information

set IR 5048
8.5.4. Adding information to the econometrician’s information set: Using prox-

ies for the relevant information 5052
8.5.5. The case of a discrete outcome variable 5053
8.5.6. On the use of model selection criteria to choose matching variables 5056

9. Randomized evaluations 5057
9.1. Randomization as an instrumental variable 5060
9.2. What does randomization identify? 5063
9.3. Randomization bias 5066
9.4. Compliance 5067
9.5. The dynamics of dropout and program participation 5068
9.6. Evidence on randomization bias 5076
9.7. Evidence on dropping out and substitution bias 5078

10. Bounding and sensitivity analysis 5081
10.1. Outcome is bounded 5083
10.2. Latent index model: Roy model 5084
10.3. Bounds that exploit an instrument 5086

10.3.1. Instrumental variables: Mean independence condition 5086
10.3.2. Instrumental variables: Statistical independence condition 5088
10.3.3. Instrumental variables: Nonparametric selection model/LATE conditions 5089

10.4. Combining comparative advantage and instrumental variables 5091
11. Control functions, replacement functions, and proxy variables 5094
12. Summary 5098



4878 J.J. Heckman and E.J. Vytlacil

Appendix A: Relationships among parameters using the index structure 5098
Appendix B: Relaxing additive separability and independence 5102
Appendix C: Derivation of PRTE and implications of noninvariance for PRTE 5111
Appendix D: Deriving the IV weights on MTE 5112

D.1. Yitzhaki’s Theorem and the IV weights [Yitzhaki (1989)] 5114
D.2. Relationship of our weights to the Yitzhaki weights 5116

Appendix E: Derivation of the weights for the mixture of normals example 5117
Appendix F: Local instrumental variables for the random coefficient model 5120
Appendix G: Generalized ordered choice model with stochastic thresholds 5122
Appendix H: Derivation of PRTE weights for the ordered choice model 5124
Appendix I: Derivation of the weights for IV in the ordered choice model 5125
Appendix J: Proof of Theorem 6 5127
Appendix K: Flat MTE within a general nonseparable matching framework 5129
Appendix L: The relationship between exclusion conditions in IV and exclu-
sion conditions in matching 5130
Appendix M: Selection formulae for the matching examples 5133
References 5134

Abstract

This chapter uses the marginal treatment effect (MTE) to unify and organize the econo-
metric literature on the evaluation of social programs. The marginal treatment effect
is a choice-theoretic parameter that can be interpreted as a willingness to pay parame-
ter for persons at a margin of indifference between participating in an activity or not.
All of the conventional treatment parameters as well as the more economically moti-
vated treatment effects can be generated from a baseline marginal treatment effect. All
of the estimation methods used in the applied evaluation literature, such as matching,
instrumental variables, regression discontinuity methods, selection and control function
methods, make assumptions about the marginal treatment effect which we exposit. Mod-
els for multiple outcomes are developed. Empirical examples of the leading methods are
presented. Methods are presented for bounding treatment effects in partially identified
models, when the marginal treatment effect is known only over a limited support. We
show how to use the marginal treatment in econometric cost benefit analysis, in defining
limits of policy experiments, in constructing the average marginal treatment effect, and
in forecasting the effects of programs in new environments.

Keywords

marginal treatment effect, policy evaluation, instrumental variables, forecasting new
policies, econometric cost benefit analysis, regression discontinuity, matching, bounds

JEL classification: C10, C13, C50



Ch. 71: Econometric Evaluation of Social Programs, Part II 4879

1. Introduction

This part of our contribution to this Handbook reviews and extends the economet-
ric literature on the evaluation of social policy. We organize our discussion around
choice-theoretic models for objective and subjective outcomes of the sort discussed in
Chapter 70. Specifically, we organize our discussion of the literature around the con-
cept of the marginal treatment effect (MTE) that was introduced in Chapter 70. Using
the marginal treatment effect, we define a variety of treatment effects and show how
they can be generated by a single economic functional, the MTE. We then show what
various econometric methods assume about the MTE.

In this part, we focus exclusively on microeconomic partial equilibrium evaluation
methods, deferring analysis of general equilibrium issues to Abbring and Heckman
(Chapter 72). Thus throughout this chapter, except when we discuss randomized eval-
uation of social programs, we assume that potential outcomes are not affected by in-
terventions but choices among the potential outcomes are affected. Thus, we invoke
policy invariance assumptions (PI-3) and (PI-4) of Chapter 70. We also focus primar-
ily on mean responses, leaving analysis of distributions of responses for Abbring and
Heckman, Chapter 72.

The plan of this chapter is as follows. In Section 2, we present some basic principles
that underlie conventional econometric evaluation estimators. In Section 3, we define
the marginal treatment effect in a two potential outcome model that is a semiparamet-
ric version of the generalized Roy model. We then show how treatment parameters can
be generated as weighted averages of the MTE. We carefully distinguish the defini-
tion of parameters from issues of identification. Section 4 considers how instrumental
variable methods that supplement the classical instrumental variable assumptions of
econometrics can be used to identify treatment parameters. We discuss the crucial role
of monotonicity assumptions in the recent IV literature.

They impart an asymmetry to the admissible forms of agent heterogeneity. Outcomes
are permitted to be heterogeneous in a general way but responses of choices to external
inputs are not. When heterogeneity in choices and outcomes is allowed, the IV enter-
prise breaks down. Treatment parameters can still be defined but IV does not identify
them.

Section 5 extends our analysis to consider regression discontinuity estimators intro-
duced in Campbell (1969) and adapted to modern econometrics in Hahn, Todd and Van
der Klaauw (2001). We interpret the regression discontinuity estimator within the MTE
framework, as a special type of IV estimator. In Section 6, we show how the output of the
IV analysis of Section 4 can be used to extend parameters identified in one population to
other populations and to forecast the effects of new programs. These are questions P-2
and P-3 introduced in Chapter 70. Sections 2–5 focus solely on the problem of internal
validity, which is the problem defined as P-1. We also develop a cost benefit analysis
based on the MTE and we analyze marginal policy changes. In Section 7, we generalize
the analysis of instrumental variables to consider models with multiple outcomes. We

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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develop both unordered and ordered choice models linking them to an explicit choice-
theoretic literature.

In Section 8, we consider matching as a special case of our framework. Matching
applied to estimating conditional means is a version of nonparametric least squares. It
assumes that marginal and average returns are the same whereas our general framework
allows us to distinguish marginal from average returns and to identify both. Matching
is more robust than IV to violations of conventional monotonicity assumptions but the
price for this robustness is steep in terms of its economic content. In Section 9, we
develop randomization as an instrumental variable. We consider problems with com-
pliance induced by agent self-selection decisions. In Section 10, we consider how to
bound the various treatment parameters when models are not identified. Section 11 de-
velops alternative methods for controlling for selection: control functions, replacement
functions and proxy variables. Section 12 concludes.

2. The basic principles underlying the identification of the major econometric
evaluation estimators

In this section, we review the main principles underlying the major evaluation estimators
used in the econometric literature. We assume two potential outcomes (Y0, Y1). Models
for multiple outcomes are developed in later sections of this chapter. As in Chapter 70,
D = 1 if Y1 is observed, and D = 0 corresponds to Y0 being observed. The observed
objective outcome is

(2.1)Y = DY1 + (1 − D)Y0.

To briefly recapitulate the lessons of Chapter 70, we distinguish two distinct econo-
metric problems. For simplicity, we focus our discussion on identification of objective
outcomes. A parallel analysis can be made for subjective outcomes.

The evaluation problem arises because for each person we observe either Y0 or Y1
but not both. Thus, in general, it is not possible to identify the individual level treatment
effect Y1 − Y0 for any person. The typical solution to this problem is to reformulate
the problem at the population level rather than at the individual level and to identify
certain mean outcomes or quantile outcomes or various distributions of outcomes as
described in Chapter 70. For example, a common approach is to focus attention on
average treatment effects, such as ATE = E(Y1 − Y0).

If treatment is assigned or chosen on the basis of potential outcomes, so

(Y0, Y1)⊥�⊥ D,

where ⊥�⊥ denotes “is not independent” and “ ⊥⊥ ” denotes independent, we encounter
the problem of selection bias. Suppose that we observe people in each treatment
state D = 0 and D = 1. If Yj ⊥�⊥D, then the observed Yj will be selectively dif-
ferent from randomly assigned Yj , j = 0, 1. Thus E(Y0 | D = 0) �= E(Y0) and
E(Y1 | D = 1) �= E(Y1). Using unadjusted data to construct E(Y1 − Y0) will produce

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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selection bias:

E(Y1 | D = 1) − E(Y0 | D = 0) �= E(Y1 − Y0).

The selection problem is a key aspect of the problem of evaluating social programs.
Many methods have been proposed to solve both problems. This chapter unifies these
methods using the concept of the marginal treatment effect (MTE) introduced in
Chapter 70 of this Handbook.

The method with the greatest intuitive appeal, which is sometimes called the “gold
standard” in evaluation analysis, is the method of random assignment. Nonexperimental
methods can be organized by how they attempt to approximate what can be obtained by
an ideal random assignment. If treatment is chosen at random with respect to (Y0, Y1),
or if treatments are randomly assigned and there is full compliance with the treatment
assignment,

(R-1) (Y0, Y1)⊥⊥ D.

It is useful to distinguish several cases where (R-1) will be satisfied. The first is that
agents (decision makers whose choices are being investigated) pick outcomes that are
random with respect to (Y0, Y1). Thus agents may not know (Y0, Y1) at the time they
make their choices to participate in treatment or at least do not act on (Y0, Y1), so that
Pr(D = 1 | X, Y0, Y1) = Pr(D = 1 | X) for all X. Matching assumes a version of (R-1)
conditional on matching variables X: (Y0, Y1)⊥⊥ D | X.

A second case arises when individuals are randomly assigned to treatment status even
if they would choose to self-select into no-treatment status, and they comply with the
randomization protocols. Let ξ be randomized assignment status. With full compliance,
ξ = 1 implies that Y1 is observed and ξ = 0 implies that Y0 is observed. Then, under
randomized assignment,

(R-2) (Y0, Y1)⊥⊥ ξ ,

even if in a regime of self-selection, (Y0, Y1)⊥�⊥ D. If randomization is performed con-
ditional on X, we obtain (Y0, Y1)⊥⊥ ξ | X.

Let A denote actual treatment status. If the randomization has full compliance among
participants, ξ = 1 ⇒ A = 1; ξ = 0 ⇒ A = 0. This is entirely consistent with a
regime in which a person would choose D = 1 in the absence of randomization, but
would have no treatment (A = 0) if suitably randomized, even though the agent might
desire treatment.

If treatment status is chosen by self-selection, D = 1 ⇒ A = 1 and D = 0 ⇒
A = 0. If there is imperfect compliance with randomization, ξ = 1 � A = 1 because
of agent choices. In general, A = ξD so that A = 1 only if ξ = 1 and D = 1. This
assumes that persons randomized out of the program cannot participate in it. If treatment
status is randomly assigned, either through randomization or randomized self-selection,

(R-3) (Y0, Y1)⊥⊥ A.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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This version of randomization can also be defined conditional on X. Under (R-1), (R-2)
or (R-3), the average treatment effect (ATE) is the same as the marginal treatment effect
and the parameters treatment on the treated (TT) and treatment on the untreated (TUT)
as defined in Chapter 70:

TT = MTE = TUT = ATE = E(Y1 − Y0) = E(Y1) − E(Y0).

Observe that even with random assignment of treatment status and full compliance,
we cannot, in general, identify the distribution of the treatment effects (Y1 − Y0), al-
though we can identify the marginal distributions F1(Y1 | A = 1, X = x) = F1(Y1 |
X = x) and F0(Y0 | A = 0, X = x) = F0(Y0 | X = x). One special assumption,
common in the conventional econometrics literature, is that Y1 − Y0 = �(x), a con-
stant given x. Since �(x) can be identified from E(Y1 | A = 1, X = x) − E(Y0 |
A = 0, X = x) because A is allocated by randomization, the analyst can identify
the joint distribution of (Y0, Y1).1 However, this approach assumes that (Y0, Y1) have
the same distribution up to a parameter � (Y0 and Y1 are perfectly dependent). One
can make other assumptions about the dependence across ranks from perfect positive
or negative ranking to independence.2 In general, the joint distribution of (Y0, Y1) or
of (Y1 − Y0) is not identified unless the analyst can pin down the dependence across
(Y0, Y1). Thus, even with data from a randomized trial one cannot, without further as-
sumptions, identify the proportion of people who benefit from treatment in the sense of
gross gain (Pr(Y1 � Y0)). This problem plagues all evaluation methods. Abbring and
Heckman discuss methods for identifying joint distributions of outcomes in Chapter 72.

Assumption (R-1) is very strong. In many cases, it is thought that there is selection
bias with respect to Y0, Y1, so persons who select into status 1 or 0 are selectively
different from randomly sampled persons in the population.

The assumption most commonly made to circumvent problems with (R-1) is that
even though D is not random with respect to potential outcomes, the analyst has access
to control variables X that effectively produce a randomization of D with respect to
(Y0, Y1) given X. This is the method of matching, which is based on the following
conditional independence assumption:

(M-1) (Y0, Y1)⊥⊥ D | X.

Conditioning on X randomizes D with respect to (Y0, Y1). (M-1) assumes that any
selective sampling of (Y0, Y1) can be adjusted by conditioning on observed variables.
(R-1) and (M-1) are different assumptions and neither implies the other. In a linear
equations model, assumption (M-1) that D is independent from (Y0, Y1) given X jus-
tifies application of least squares on D to eliminate selection bias in mean outcome

1 Heckman (1992), Heckman, Smith and Clements (1997).
2 Heckman, Smith and Clements (1997).

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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parameters. For means, matching is just nonparametric regression.3 In order to be able
to compare X-comparable people, we must assume

(M-2) 0 < Pr(D = 1 | X = x) < 1.

Assumptions (M-1) and (M-2) justify matching. Assumption (M-2) is required for any
evaluation estimator that compares treated and untreated persons. It is produced by
random assignment if the randomization is conducted for all X = x and there is full
compliance.

Observe that from (M-1) and (M-2), it is possible to identify F1(Y1 | X = x) from
the observed data F1(Y1 | D = 1, X = x) since we observe the left-hand side of

F1(Y1 | D = 1, X = x) = F1(Y1 | X = x)

= F1(Y1 | D = 0, X = x).

The first equality is a consequence of conditional independence assumption (M-1). The
second equality comes from (M-1) and (M-2). By a similar argument, we observe the
left-hand side of

F0(Y0 | D = 0, X = x) = F0(Y0 | X = x)

= F0(Y0 | D = 1, X = x),

and the equalities are a consequence of (M-1) and (M-2). Since the pair of outcomes
(Y0, Y1) is not identified for anyone, as in the case of data from randomized trials, the
joint distributions of (Y0, Y1) given X or of Y1 − Y0 given X are not identified without
further information.

From the data on Y1 given X and D = 1 and the data on Y0 given X and D = 0,
since E(Y1 | D = 1, X = x) = E(Y1 | X = x) = E(Y1 | D = 0, X = x) and
E(Y0 | D = 0, X = x) = E(Y0 | X = x) = E(Y0 | D = 1, X = x), we obtain

E(Y1 − Y0 | X = x) = E(Y1 − Y0 | D = 1, X = x)

= E(Y1 − Y0 | D = 0, X = x).

Effectively, we have a randomization for the subset of the support of X satisfying (M-2).
At values of X that fail to satisfy (M-2), there is no variation in D given X. We can

define the residual variation in D not accounted for by X as

E(x) = D − E(D | X = x) = D − Pr(D = 1 | X = x).

If the variance of E(x) is zero, it is not possible to construct contrasts in outcomes by
treatment status for those X values and (M-2) is violated. To see the consequences of
this violation in a regression setting, use Y = Y0 + D(Y1 − Y0) and take conditional

3 See the discussion in Section 8. Barnow, Cain and Goldberger (1980) present one application of matching
in a regression setting.
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expectations, under (M-1), to obtain

E(Y | X,D) = E(Y0 | X) + D
[
E(Y1 − Y0 | X)

]
.4

If Var(E(x)) > 0 for all x in the support of X, one can use nonparametric least
squares to identify E(Y1 − Y0 | X = x) = ATE(x) by regressing Y on D and X.
The function identified from the coefficient on D is the average treatment effect.5 If
Var(E(x)) = 0, ATE(x) is not identified at that x value because there is no variation in
D that is not fully explained by X. A special case of matching is linear least squares
where we write

Y0 = Xα + U, Y1 = Xα + β + U,

U0 = U1 = U and hence under (M-1),

E(Y | X,D) = Xα + Dβ + E(U | X).

If D is perfectly predictable by X, we cannot identify β because of a multicollinear-
ity problem. (M-2) rules out perfect collinearity.6 Matching is a nonparametric version
of least squares that does not impose functional form assumptions on outcome equa-
tions, and that imposes support condition (M-2). However, matching does not assume
exogeneity of X.

Conventional econometric choice models make a distinction between variables that
appear in outcome equations (X) and variables that appear in choice equations (Z). The
same variables may be in (X) and (Z), but more typically there are some variables not
in common. For example, the instrumental variable estimator is based on variables that
are not in X but that are in Z. Matching makes no distinction between the X and the Z.7

It does not rely on exclusion restrictions. The conditioning variables used to achieve
conditional independence can in principle be a set of variables Q distinct from the X

variables (covariates for outcomes) or the Z variables (covariates for choices). We use X

solely to simplify the notation. The key identifying assumption is the assumed existence
of a random variable X with the properties satisfying (M-1) and (M-2).

Conditioning on a larger vector (X augmented with additional variables) or a smaller
vector (X with some components removed) may or may not produce suitably modified

4 This follows because E(Y | X,D) = E(Y0 | X,D) + DE(Y1 − Y0 | X,D), but from (M-1), E(Y0 |
X,D) = E(Y0 | X) and E(Y1 − Y0 | X,D) = E(Y1 − Y0 | X).
5 Under the conditional independence assumption (M-1), it is also the effect of treatment on the treated

E(Y1 − Y0 | X,D = 1).
6 Clearly (M-1) and (M-2) are sufficient but not necessary conditions. For the special case of OLS, as a con-

sequence of the assumed linearity in the functional form of the estimating equation, we achieve identification
of β if Cov(X,U) = 0, Cov(D, U) = 0 and (D, X) are not perfectly collinear. Observe that (M-1) does not
imply that E(U | X) = 0. Thus, we can identify β but not necessarily α.
7 Heckman et al. (1998) distinguish X and Z in matching.They consider a case where conditioning on X

may lead to failure of (M-1) and (M-2) but conditioning on (X,Z) satisfies a suitably modified version of this
condition.
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versions of (M-1) and (M-2). Without invoking further assumptions, there is no objec-
tive principle for determining what conditioning variables produce (M-1).

Assumption (M-1) is strong. Many economists do not have enough faith in their data
to invoke it. Assumption (M-2) is testable and requires no act of faith. To justify (M-1),
it is necessary to appeal to the quality of the data.

Using economic theory can help guide the choice of an evaluation estimator. A crucial
distinction is the one between the information available to the analyst and the informa-
tion available to the agent whose outcomes are being studied. Assumptions made about
these information sets drive the properties of econometric estimators. Analysts using
matching make strong informational assumptions in terms of the data available to them.
In fact, all econometric estimators make assumptions about the presence or absence of
informational asymmetries, and we exposit them in this chapter.

To analyze the informational assumptions invoked in matching, and other econo-
metric evaluation strategies, it is helpful to introduce five distinct information sets and
establish some relationships among them.8 (1) An information set σ(IR∗) with an as-
sociated random variable that satisfies conditional independence (M-1) is defined as a
relevant information set; (2) the minimal information set σ(IR) with associated random
variable needed to satisfy conditional independence (M-1), the minimal relevant infor-
mation set; (3) the information set σ(IA) available to the agent at the time decisions
to participate are made; (4) the information available to the economist, σ(IE∗); and
(5) the information σ(IE) used by the economist in conducting an empirical analysis.
We will denote the random variables generated by these sets as IR∗ , IR, IA, IE∗ , and IE ,
respectively.9

DEFINITION 1. We say that σ(IR∗) is a relevant information set if the information set
is generated by the random variable IR∗ , possibly vector-valued, and satisfies condi-
tion (M-1), so that

(Y0, Y1)⊥⊥ D | IR∗ .

DEFINITION 2. We say that σ(IR) is a minimal relevant information set if it is the
intersection of all sets σ(IR∗) and satisfies (Y0, Y1)⊥⊥ D | IR . The associated random
variable IR is a minimum amount of information that guarantees that condition (M-1)
is satisfied. There may be no such set.10

8 See the discussion in Barros (1987), Gerfin and Lechner (2002), and Heckman and Navarro (2004).
9 We start with a primitive probability space (Ω, σ, P ) with associated random variables I . We assume

minimal σ -algebras and assume that the random variables I are measurable with respect to these σ -algebras.
Obviously, strictly monotonic or affine transformations of the I preserve the information and can substitute
for the I .
10 Observe that the intersection of all sets σ(IR∗ ) may be empty and hence may not be characterized by a
(possibly vector-valued) random variable IR that guarantees (Y0, Y1) ⊥⊥D | IR . If the information sets that
produce conditional independence are nested, then the intersection of all sets σ(IR∗ ) producing conditional
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If we define a relevant information set as one that produces conditional independence,
it may not be unique. If the set σ(IR∗) satisfies the conditional independence condition,
then the set σ(IR∗ ,Q) such that Q⊥⊥ (Y0, Y1) | IR∗ would also guarantee conditional
independence. For this reason, when possible, it is desirable to use the minimal relevant
information set.

DEFINITION 3. The agent’s information set, σ(IA), is defined by the information IA

used by the agent when choosing among treatments. Accordingly, we call IA the agent’s
information.

By the agent we mean the person making the treatment decision, not necessarily the
person whose outcomes are being studied (e.g., the agent may be the parent; the person
being studied may be a child).

DEFINITION 4. The econometrician’s full information set, σ(IE∗), is defined as all of
the information available to the econometrician, IE∗ .

DEFINITION 5. The econometrician’s information set, σ(IE), is defined by the infor-
mation used by the econometrician when analyzing the agent’s choice of treatment, IE ,
in conducting an analysis.

For the case where a unique minimal relevant information set exists, only three re-
strictions are implied by the structure of these sets: σ(IR) ⊆ σ(IR∗), σ(IR) ⊆ σ(IA),
and σ(IE) ⊆ σ(IE∗).11 We have already discussed the first restriction. The second
restriction requires that the minimal relevant information set must be part of the in-
formation the agent uses when deciding which treatment to take or assign. It is the
information in σ(IA) that gives rise to the selection problem.

The third restriction requires that the information used by the econometrician must
be part of the information that the econometrician observes. Aside from these orderings,
the econometrician’s information set may be different from the agent’s or the relevant
information set. The econometrician may know something the agent does not know,
for typically he is observing events after the decision is made. At the same time, there
may be private information known to the agent but not the econometrician. Assum-
ing a minimal relevant information set exists, matching assumption (M-1) implies that

independence is well defined and has an associated random variable IR with the required property, although it
may not be unique (e.g., strictly monotonic transformations and affine transformations of IR also preserve the
property). In the more general case of nonnested information sets with the required property, it is possible that
no uniquely defined minimal relevant set exists. Among collections of nested sets that possess the required
property, there is a minimal set defined by intersection but there may be multiple minimal sets corresponding
to each collection.
11 This formulation assumes that the agent makes the treatment decision. The extension to the case where the
decision maker and the agent are distinct is straightforward. The requirement σ(IR) ⊆ σ(IR∗ ) is satisfied by
nested sets.
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σ(IR) ⊆ σ(IE), so that the econometrician uses at least the minimal relevant informa-
tion set, but of course he or she may use more. However, using more information is not
guaranteed to produce a model with conditional independence property (M-1) satisfied
for the augmented model. Thus an analyst can “overdo” it. We present examples of the
consequences of the asymmetry in agent and analyst information sets in Section 8.

The possibility of asymmetry in information between the agent making participation
decisions and the observing economist creates the potential for a major identification
problem that is ruled out by assumption (M-1). The methods of control functions and
instrumental variables estimators (and closely related regression discontinuity design
methods) address this problem in different ways. Accounting for this possibility is a
more conservative approach to the selection problem than the one taken by advocates
of matching. Those advocates assume that they know the X that produces a relevant in-
formation set. Heckman and Navarro (2004) show the biases that can result in matching
when standard econometric model selection criteria are applied to pick the X that are
used to satisfy (M-1) and we summarize their analysis in Section 8. Conditional inde-
pendence condition (M-1) cannot be tested without maintaining other assumptions.12

As noted in Chapter 70, choosing the appropriate conditioning variables is a problem
that plagues all econometric estimators.

The methods of control functions, replacement functions, proxy variables and in-
strumental variables recognize the possibility of asymmetry in information between
the agent being studied and the econometrician and further recognize that even af-
ter conditioning on X (variables in the outcome equation) and Z (variables affecting
treatment choices, which may include the X), analysts may fail to satisfy conditional
independence condition (M-1).13 These methods postulate the existence of some unob-
servables θ , which may be vector-valued, with the property that

(U-1) (Y0, Y1)⊥⊥ D | X,Z, θ ,

but allow for the possibility that

(U-2) (Y0, Y1)⊥�⊥ D | X,Z.

In the event (U-2) holds, these approaches model the relationship of the unobservable
θ with (Y0, Y1) and D in various ways. The content in the control function principle is
to specify the exact nature of the dependence on the relationship between observables
and unobservables in a nontrivial fashion that is consistent with economic theory. We
present examples of models that satisfy (U-1) but not (U-2) in Section 8.

12 We discuss the required “exogeneity” conditions in our discussion of matching in Section 8. Thus ran-
domization of assignment of treatment status might be used to test (M-1) but this requires that there be full
compliance and that the randomization be valid (no anticipation effects or general equilibrium effects). Ab-
bring and Heckman (Chapter 72) discuss this case.
13 The term and concept of control function is due to Heckman and Robb (1985a, 1985b, 1986a, 1986b). See
Blundell and Powell (2003) who call the Heckman–Robb replacement functions control functions. A more
recent nomenclature is “control variate”. Matzkin (2007) (Chapter 73 in this Handbook) provides a compre-
hensive discussion of identification principles for these, and other, econometric estimators.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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The early literature focused on mean outcomes conditional on covariates [Heckman
and Robb (1985a, 1985b, 1986a, 1986b)] and assumes a weaker version of (U-1) based
on conditional mean independence rather than full conditional independence. More
recent work analyzes distributions of outcomes [e.g., Aakvik, Heckman and Vytlacil
(2005), Carneiro, Hansen and Heckman (2003)]. Abbring and Heckman review this
work in Chapter 72.

The normal Roy model discussed in Chapter 70 makes distributional assumptions
and identifies the joint distribution of outcomes. (Recall the discussion in Section 6.1
of Chapter 70.) A large literature surveyed in Chapter 73 (Matzkin) of this Handbook
makes alternative assumptions to satisfy (U-1) in nonparametric settings. Replacement
functions [Heckman and Robb (1985a)] are methods that proxy θ . They substitute
out for θ using observables.14 Aakvik, Heckman and Vytlacil (1999, 2005), Carneiro,
Hansen and Heckman (2001, 2003), Cunha, Heckman and Navarro (2005), and Cunha,
Heckman and Schennach (2006b, 2007) develop methods that integrate out θ from
the model assuming θ ⊥⊥ (X,Z), or invoking weaker mean independence assump-
tions, and assuming access to proxy measurements for θ . They also consider methods
for estimating the distributions of treatment effects. These methods are discussed in
Chapter 72.

The normal selection model discussed in Section 6.1 of Chapter 70 produces partial
identification of a generalized Roy model and full identification of a Roy model under
separability and normality. It models the conditional expectation of U0 and U1 given
X,Z, and D. In terms of (U-1), it models the conditional mean dependence of Y0, Y1

on D and θ given X and Z. Powell (1994) and Chapter 73 (Matzkin) of this Handbook
survey methods for identifying semiparametric versions of these models. Appendix B
of Chapter 70 presents a prototypical identification proof for a general selection model
that implements (U-1) by estimating the distribution of θ , assuming θ ⊥⊥ (X,Z), and
invoking support conditions on (X,Z).

Central to both the selection approach and the instrumental variable approach for a
model with heterogenous responses is the probability of selection. Let Z denote vari-
ables in the choice equation. Fixing Z at different values (denoted z), we define D(z)

as an indicator function that is “1” when treatment is selected at the fixed value of z and
that is “0” otherwise. In terms of the separable index model introduced in Chapter 70,
for a fixed value of z,

D(z) = 1
(
μD(z) � V

)
,

where Z ⊥⊥ V | X. Thus fixing Z = z, values of z do not affect the realizations of V for
any value of X. An alternative way of representing the independence between Z and V

given X, due to Imbens and Angrist (1994), writes that D(z)⊥⊥ Z | X for all z ∈ Z ,

14 This is the “control variate” of Blundell and Powell (2003). Heckman and Robb (1985a) and Olley and
Pakes (1996) use a similar idea. Chapter 73 (Matzkin) of this Handbook discusses replacement functions.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06073-4


Ch. 71: Econometric Evaluation of Social Programs, Part II 4889

where Z is the support of Z. The Imbens–Angrist independence condition for IV is{
D(z)

}
z∈Z ⊥⊥ Z | X.

Thus the probabilities that D(z) = 1, z ∈ Z , are independent of Z.
The method of instrumental variables (IV) postulates that

(IV-1) (Y0, Y1, {D(z)}z∈Z )⊥⊥ Z | X (Independence).

One consequence of this assumption is that E(D | Z) = P(Z), the propensity score, is
random with respect to potential outcomes. Thus (Y0, Y1)⊥⊥ P(Z) | X. So are all other
functions of Z given X. The method of instrumental variables also assumes that

(IV-2) E(D | X,Z) = P(X,Z) is a nondegenerate function of Z given X (Rank
condition).

Alternatively, we can write that Var(E(D | X,Z)) �= Var(E(D | X)).
Comparing (IV-1) to (M-1), in the method of instrumental variables, Z is independent

of (Y0, Y1) given X whereas in matching, D is independent of (Y0, Y1) given X. So
in (IV-1), Z plays the role of D in matching condition (M-1). Comparing (IV-2) with
(M-2), in the method of IV, the choice probability Pr(D = 1 | X,Z) is assumed to vary
conditional on X whereas in matching, D varies conditional on X. Unlike the method
of control functions, no explicit model of the relationship between D and (Y0, Y1) is
required in applying IV. We exposit the implicit model of the relationship between D

and (Y0, Y1) used in instrumental variables in this chapter.
(IV-2) is a rank condition and can be empirically verified. (IV-1) is not testable as

it involves assumptions about counterfactuals. In a conventional common coefficient
regression model

Y = α + βD + U,

where β is a constant and where we allow for Cov(D,U) �= 0, (IV-1) and (IV-2)
identify β.15 When β varies in the population and is correlated with D, additional
assumptions must be invoked for IV to identify interpretable parameters. We discuss
these conditions in Section 4 of this chapter, drawing on and extending the analy-
sis of Heckman and Vytlacil (1999, 2001b, 2005) and Heckman, Urzua and Vytlacil
(2006).

Assumptions (IV-1) and (IV-2), with additional assumptions in the case where β

varies in the population which we discuss in this chapter, can be used to identify mean
treatment parameters. Replacing Y1 with 1(Y1 � t) and Y0 with 1(Y0 � t), where t is
a constant, the IV approach allows us to identify marginal distributions F1(y1 | X) or
F0(y0 | X).

In matching, the variation in D that arises after conditioning on X provides the source
of randomness that switches people across treatment status. Nature is assumed to pro-

15 β = Cov(Z,Y )
Cov(Z,D)

.
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vide an experimental manipulation conditional on X that replaces the randomization
assumed in (R-1)–(R-3). When D is perfectly predictable by X, there is no variation
in it conditional on X, and the randomization by nature breaks down. Heuristically,
matching assumes a residual E(X) = D − E(D | X) that is nondegenerate and is one
manifestation of the randomness that causes persons to switch status.16

In the IV method, it is the choice probability E(D | X,Z) = P(X,Z) that is random
with respect to (Y0, Y1), not components of D not predictable by (X,Z). Variation in
Z for a fixed X provides the required variation in D that switches treatment status and
still produces the required conditional independence:

(Y0, Y1)⊥⊥ P(X,Z) | X.

Variation in P(X,Z) produces variations in D that switch treatment status. Components
of variation in D not predictable by (X,Z) do not produce the required independence.
Instead, the predicted component provides the required independence. It is just the op-
posite in matching. Versions of the method of control functions use measurements to
proxy θ in (U-1) and (U-2) and remove spurious dependence that gives rise to selection
problems. These are called replacement functions [see Heckman and Robb (1985a)] or
control variates [see Blundell and Powell (2003)].

Table 1 summarizes some of the main lessons of this section. We stress that the stated
conditions are necessary conditions. There are many versions of the IV and control func-
tions principle and extensions of these ideas which refine these basic postulates more
fully and we exposit them in this Handbook. We start with the method of instrumental
variables and analyze the general case where responses to treatment are heterogeneous
and persons select into treatment status in response to the heterogeneity in treatment
response.

Our strategy in this chapter is to anchor all of our analysis around the economic
theory of choice as embodied in discrete choice theory and versions of the generalized
Roy model developed in Chapter 70. We next show how recent developments allow
analysts to define treatment parameters within a well-posed economic framework but
without the strong assumptions maintained in the early literature on selection models.
To focus our discussion, we first consider the analysis of a prototypical policy evaluation
program.

2.1. A prototypical policy evaluation problem

To motivate our discussion in this chapter, consider the following prototypical policy
problem. Suppose a policy is proposed for adoption in a country. It has been tried in
other countries and we know outcomes there. We also know outcomes in countries

16 It is heuristically illuminating, but technically incorrect to replace E(X) with D in (R-1) or ξ in (R-2) or
A in (R-3). In general, E(X) is not independent of X even if it is mean independent.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Table 1
Identifying assumptions under commonly used methods

Identifying assumptions Identifies
marginal
distributions?

Exclusion
condition
needed?

Random
assignment

(Y0, Y1) ⊥⊥ ξ ,
ξ = 1 ⇒ A = 1, ξ = 0 ⇒ A = 0 (full compliance).
Alternatively, if self-selection is random with
respect to outcomes, (Y0, Y1) ⊥⊥D.
Assignment can be conditional on X.

Yes No

Matching (Y0, Y1) ⊥�⊥D, but (Y0, Y1) ⊥⊥ D | X,
0 < Pr(D = 1 | X) < 1 for all X.
So D conditional on X is a nondegenerate random variable.

Yes No

Control
functions
and
extensions

(Y0, Y1) ⊥�⊥D | X,Z, but (Y0, Y1)⊥⊥ D | X,Z, θ .
The method models dependence induced by θ

or else proxies θ (replacement function).
Version (i). Replacement functions
(substitute out θ by observables)
[Blundell and Powell (2003), Heckman and Robb (1985a),
Olley and Pakes (1996)].
Factor models [Carneiro, Hansen and Heckman (2003)]
allow for measurement error in the proxies.
Version (ii). Integrate out θ assuming θ ⊥⊥ (X,Z)

[Aakvik, Heckman and Vytlacil (2005),
Carneiro, Hansen and Heckman (2003)].
Version (iii). For separable models for mean response
expect out θ conditional on X, Z, D

as in standard selection models
(control functions in the same sense of Heckman and Robb).

Yes Yes
(for semiparam-
etric models)
No (under
some parametric
assumptions)

IV (Y0, Y1) ⊥�⊥D | X,Z, but (Y1, Y0)⊥⊥ Z | X,
Pr(D = 1 | Z) is a nondegenerate function of Z.

Yes Yes

Notes: (Y0, Y1) are potential outcomes that depend on X;

D =
{

1 if assigned (or choose) status 1,

0 otherwise;
Z are determinants of D, θ is a vector of unobservables. For random assignments, A is a vector of actual
treatment status. A = 1 if treated; A = 0 if not; ξ = 1 if a person is randomized to treatment status; ξ = 0
otherwise.

where it was not adopted. From the historical record, what can we conclude about the
likely effectiveness of the policy in countries that have not implemented it?

To answer questions of this sort, economists build models of counterfactuals. Con-
sider the following model. Let Y0 be the outcome of a country (e.g., GDP) under a
no-policy regime. Y1 is the outcome if the policy is implemented. (Y1 − Y0) is the
“treatment effect” of the policy. It may vary among countries. We observe characteris-
tics X of various countries (e.g., level of democracy, level of population literacy, etc.).
It is convenient to decompose Y1 into its mean given X, μ1(X), and deviation from
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mean U1. We can make a similar decomposition for Y0:

Y1 = μ1(X) + U1,

(2.2)Y0 = μ0(X) + U0.

We do not need to assume additive separability but it is convenient and we initially adopt
it to simplify the exposition and establish a parallel regression notation that serves to link
the statistical literature on treatment effects with the economic literature. We develop
more general nonseparable models in later sections of this chapter.

It may happen that controlling for the X, Y1 −Y0 is the same for all countries. This is
the case of homogeneous treatment effects given X. More likely, countries vary in their
responses to the policy even after controlling for X.

Figure 1 plots the distribution of Y1 − Y0 for a benchmark X. It also displays the
various treatment parameters introduced in Chapter 70. We use a special form of the
generalized Roy model with constant cost C of adopting the policy. This is called the
“extended Roy model”. We use this model because it is simple and intuitive. (The pre-
cise parameterization of the extended Roy model used to generate the figure and the
treatment effects is given at the base of Figure 1.) The special case of homogeneity in
Y1 − Y0 arises when the distribution collapses to its mean. It would be ideal if we could
estimate the distribution of Y1 −Y0 given X and there is research that does this. Abbring
and Heckman survey methods for doing so in Chapter 72.

More often, economists focus on some mean of the distribution displayed in Figure 1
and use a regression framework to interpret the data. To turn (2.2) into a regression
model, it is conventional to use the switching regression framework.17 Define D = 1
if a country adopts a policy; D = 0 if it does not. The observed outcome Y is the
switching regression model (2.1). Substituting (2.2) into this expression, and keeping
all X implicit, we obtain

Y = Y0 + (Y1 − Y0)D

(2.3)= μ0 + (μ1 − μ0 + U1 − U0)D + U0.

Using conventional regression notation,

(2.4)Y = α + βD + ε,

where α = μ0, β = (Y1 − Y0) = μ1 − μ0 + U1 − U0 and ε = U0. We will also use
the notation that η = U1 − U0, letting β̄ = μ1 − μ0 and β = β̄ + η. Throughout this
section we use treatment effect and regression notation interchangeably. The coefficient
on D is the treatment effect. The case where β is the same for every country is the case
conventionally assumed. More elaborate versions assume that β depends on X (β(X))

17 Statisticians sometimes attribute this representation to Rubin (1974, 1978), but it is due to Quandt (1958,
1972). It is implicit in the Roy (1951) model. See our discussion of this basic model of counterfactuals in
Chapter 70.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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U1 − U0 ⊥�⊥D

TT = 2.666, TUT = −0.632
Return to marginal agent = C = 1.5

ATE = μ1 − μ0 = β̄ = 0.2

The model

Outcomes Choice model

Y1 = μ1 + U1 = α + β̄ + U1 D =
{

1 if D∗ � 0,

0 if D∗ < 0
Y0 = μ0 + U0 = α + U0

General case

(U1 − U0) ⊥�⊥D

ATE �= TT �= TUT

The researcher observes (Y, D,C).
Y = α + βD + U0 where β = Y1 − Y0.

Parameterization

α = 0.67, (U1, U0) ∼ N(0, Σ), D∗ = Y1 − Y0 − C

β̄ = 0.2, Σ =
[

1 −0.9
−0.9 1

]
, C = 1.5

Figure 1. Distribution of gains in the Roy economy. Source: Heckman, Urzua and Vytlacil (2006).

and estimates interactions of D with X. The case where β varies even after accounting
for X is called the “random coefficient” or “heterogenous treatment effect” case. The
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case where η = U1 − U0 depends on D is the case of essential heterogeneity analyzed
by Heckman, Urzua and Vytlacil (2006). This case arises when treatment choices de-
pend at least in part on the idiosyncratic return to treatment. A great deal of attention
has been focused on this case in recent decades and we develop the implications of this
model in this chapter.

3. An index model of choice and treatment effects: Definitions and unifying
principles

We now present the model of treatment effects developed in Heckman and Vytlacil
(1999, 2001b, 2005) and Heckman, Urzua and Vytlacil (2006), which relaxes the nor-
mality, separability and exogeneity assumptions invoked in the traditional economic
selection models. It is rich enough to generate all of the treatment effects displayed in
Figure 1 as well as many other policy parameters. It does not require separability. It is
a nonparametric generalized Roy model with testable restrictions that can be used to
unify the treatment effect literature, identify different treatment effects, link the liter-
ature on treatment effects to the literature in structural econometrics and interpret the
implicit economic assumptions underlying instrumental variables, regression disconti-
nuity design methods, control functions and matching methods. We follow Heckman
and Vytlacil (1999, 2005) and Heckman, Urzua and Vytlacil (2006) in considering
binary treatments. We analyze multiple treatments in Section 7. Florens et al. (2002)
develop a model with a continuum of treatments and we briefly survey that work at the
end of Section 7.

Y is the measured outcome variable. It is produced from the switching regression
model (2.1). Outcomes are general nonlinear, nonseparable functions of observables
and unobservables:

(3.1)Y1 = μ1(X,U1),

(3.2)Y0 = μ0(X,U0).

Examples of models that can be written in this form include conventional latent variable
models for discrete choice that are generated by a latent variable crossing a threshold:
Yi = 1(Y ∗

i � 0), where Y ∗
i = μi(X) + Ui , i = 0, 1. Notice that in the general case,

μi(X,Ui) − E(Yi | X) �= Ui , i = 0, 1.
As defined in Chapter 70, the individual treatment effect associated with moving an

otherwise identical person from “0” to “1” is Y1 − Y0 = � and is defined as the causal
effect on Y of a ceteris paribus move from “0” to “1”. To link this framework to the
literature on economic choice models, we characterize the decision rule for program
participation by an index model:

(3.3)D∗ = μD(Z) − V, D = 1 if D∗ � 0, D = 0 otherwise,

where, from the point of view of the econometrician, (Z,X) is observed and
(U0, U1, V ) is unobserved. The random variable V may be a function of (U0, U1). For

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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example, in the original Roy model, μ1 and μ0 are additively separable in U1 and U0,
respectively, and V = −[U1 − U0]. In the original formulations of the generalized Roy
model, outcome equations are separable and V = −[U1 − U0 − UC], where UC arises
from the cost function (recall the discussion in Section 3.3 of Chapter 70). Without loss
of generality, we define Z so that it includes all of the elements of X as well as any
additional variables unique to the choice equation.

We invoke the following assumptions that are weaker than those used in the conven-
tional literature on structural econometrics or the recent literature on semiparametric
selection models and at the same time can be used both to define and to identify differ-
ent treatment parameters.18 The assumptions are:

(A-1) (U0, U1, V ) are independent of Z conditional on X (Independence);
(A-2) μD(Z) is a nondegenerate random variable conditional on X (Rank condi-

tion);
(A-3) the distribution of V is continuous19;
(A-4) the values of E(|Y1|) and E(|Y0|) are finite (Finite means);
(A-5) 0 < Pr(D = 1 | X) < 1.

(A-1) assumes that V is independent of Z given X, and is used below to generate
counterfactuals. For the definition of treatment effects, we do not need either (A-1)
or (A-2). Our definitions of treatment effects and their unification through MTE do
not require any elements of Z that are not elements of X or independence assump-
tions. However, our analysis of instrumental variables requires that Z contain at least
one element not in X. Assumptions (A-1) or (A-2) justify application of instrumen-
tal variables methods and nonparametric selection or control function methods. Some
parameters in the recent IV literature are defined by an instrument so we make assump-
tions about instruments up front, noting where they are not needed. Assumption (A-4) is
needed to satisfy standard integration conditions. It guarantees that the mean treatment
parameters are well defined. Assumption (A-5) is the assumption in the population of
both a treatment and a control group for each X. Observe that there are no exogeneity
requirements for X. This is in contrast with the assumptions commonly made in the
conventional structural literature and the semiparametric selection literature [see, e.g.,
Powell (1994)].

A counterfactual “no feedback” condition facilitates interpretability so that condi-
tioning on X does not mask the effects of D. Letting Xd denote a value of X if D is set
to d , a sufficient condition that rules out feedback from D to X is:

(A-6) Let X0 denote the counterfactual value of X that would be observed if D is
set to 0. X1 is defined analogously. Assume Xd = X for d = 0, 1. (The XD

are invariant to counterfactual manipulations.)

18 A much weaker set of conditions is required to define the parameters than is required to identify them. See
the discussion in Appendix B. As noted in Section 6, stronger conditions are required for policy forecasting.
19 Absolutely continuous with respect to Lebesgue measure.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Condition (A-6) is not strictly required to formulate an evaluation model, but it enables
an analyst who conditions on X to capture the “total” or “full effect” of D on Y [see
Pearl (2000)]. This assumption imposes the requirement that X is an external variable
determined outside the model and is not affected by counterfactual manipulations of D.
However, the assumption allows for X to be freely correlated with U1, U0 and V so
it can be endogenous. Until we discuss the problems of external validity and policy
forecasting in Section 6, we analyze treatment effects conditional on X, and maintain
assumption (A-6).

In this notation, P(Z) is the probability of receiving treatment given Z, or the
“propensity score” P(Z) ≡ Pr(D = 1 | Z) = FV |X(μD(Z)), where FV |X(·) denotes
the distribution of V conditional on X.20 We sometimes denote P(Z) by P , suppressing
the Z argument. We also work with UD , a uniform random variable (UD ∼ Unif[0, 1])
defined by UD = FV |X(V ).21 The separability between V and μD(Z) or D(Z) and UD

is conventional. It plays a crucial role in justifying instrumental variable estimators in
the general models analyzed in this chapter.

Vytlacil (2002) establishes that assumptions (A-1)–(A-5) for selection model (2.1)
and (3.1)–(3.3) are equivalent to the assumptions used to generate the LATE model
of Imbens and Angrist (1994) which are developed below in Section 4. Thus the non-
parametric selection model for treatment effects developed by Heckman and Vytlacil
is implied by the assumptions of the Imbens–Angrist instrumental variable model for
treatment effects. Our approach links the IV literature to the literature on economic
choice models exposited in Chapter 70. Our latent variable model is a version of the
standard sample selection bias model. We weave together two strands of the literature
often thought to be distinct [see, e.g., Angrist and Krueger (1999)].

The model of Equations (3.1)–(3.3) and assumptions (A-1)–(A-5) impose two test-
able restrictions on the distribution of (Y,D,Z,X). First, it imposes an index suffi-
ciency restriction: for any set A and for j = 0, 1,

Pr(Yj ∈ A | X,Z,D = j) = Pr
(
Yj ∈ A

∣∣ X,P (Z),D = j
)
.

Z (given X) enters the model only through the propensity score P(Z).22 This restriction
has empirical content when Z contains two or more variables not in X. Second, the
model also imposes monotonicity in p for E(YD | X = x, P = p) and E(Y(1 − D) |

20 Throughout this chapter, we will refer to the cumulative distribution function of a random vector A by
FA(·) and to the cumulative distribution function of a random vector A conditional on random vector B by
FA|B(·). We will write the cumulative distribution function of A conditional on B = b by FA|B(· | b).
21 This representation is valid whether or not (A-1) is true. However, (A-1) imposes restrictions on counter-
factual choices. For example, if a change in government policy changes the distribution of Z by an external
manipulation, under (A-1) the model can be used to generate the choice probability from P(Z) evaluated at
the new arguments, i.e., the model is invariant with respect to the distribution Z.
22 The set A is assumed to be measurable.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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X = x, P = p). Heckman and Vytlacil (2005, Appendix A) develop this condition
further, and show that it is testable.

Even though the model of treatment effects we exposit is not the most general pos-
sible model, it has testable implications and hence empirical content. It unites various
literatures and produces a nonparametric version of the selection model, and links the
treatment literature to economic choice theory. We compare the assumptions used to
identify IV with the assumptions used in matching in Section 8.

3.1. Definitions of treatment effects in the two outcome model

As developed in Chapter 70, the difficulty of observing the same individual in both
treated and untreated states leads to the use of various population level treatment
effects widely used in the biostatistics literature and often applied in economics.23

The most commonly invoked treatment effect is the average treatment effect (ATE):
�ATE(x) ≡ E(� | X = x) where � = Y1 − Y0. This is the effect of assigning treat-
ment randomly to everyone of type X assuming full compliance, and ignoring general
equilibrium effects.24 The average impact of treatment on persons who actually take the
treatment is treatment on the treated (TT): �TT(x) ≡ E(� | X = x,D = 1). This pa-
rameter can also be defined conditional on P(Z): �TT(x, p) ≡ E(� | X = x, P (Z) =
p,D = 1).25

The mean effect of treatment on those for whom X = x and UD = uD , the marginal
treatment effect (MTE), plays a fundamental role in the analysis of this chapter:

(3.4)�MTE(x, uD) ≡ E(� | X = x,UD = uD).

This parameter is defined independently of any instrument. We separate the definition
of parameters from their identification. The MTE is the expected effect of treatment
conditional on observed characteristics X and conditional on UD , the unobservables
from the first stage decision rule. For uD evaluation points close to zero, �MTE(x, uD)

is the expected effect of treatment on individuals with the value of unobservables that
make them most likely to participate in treatment and who would participate even if
the mean scale utility μD(Z) is small. If UD is large, μD(Z) would have to be large to
induce people to participate.

One can also interpret E(� | X = x,UD = uD) as the mean gain in terms of Y1 −Y0
for persons with observed characteristics X who would be indifferent between treatment
or not if they were randomly assigned a value of Z, say z, such that μD(z) = uD . When
Y0 and Y1 are value outcomes, MTE is a mean willingness-to-pay measure. MTE is a

23 Heckman, LaLonde and Smith (1999) discuss panel data cases where it is possible to observe both Y0 and
Y1 for the same person.
24 See, e.g., Imbens (2004).
25 These two definitions of treatment on the treated are related by integrating out the conditioning p variable:

�TT(x) = ∫ 1
0 �TT(x, p) dFP(Z)|X,D(p | x, 1) where FP(Z)|X,D(· | x, 1) is the distribution of P(Z) given

X = x and D = 1.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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choice-theoretic building block that unites the treatment effect, selection, matching and
control function literatures.

A third interpretation is that MTE conditions on X and the residual defined by
subtracting the expectation of D∗ from D∗: ŨD = D∗ − E(D∗ | Z,X). This is a
“replacement function” interpretation in the sense of Heckman and Robb (1985a) and
Chapter 73 (Matzkin) of this Handbook, or “control function” interpretation in the sense
of Blundell and Powell (2003). These three interpretations are equivalent under separa-
bility in D∗, i.e., when (3.3) characterizes the choice equation, but lead to three different
definitions of MTE when a more general nonseparable model is developed. This point is
developed in Section 4.10 where we discuss a general nonseparable model. The additive
separability of Equation (3.3) in terms of observables and unobservables plays a crucial
role in the justification of instrumental variable methods.

The LATE parameter of Imbens and Angrist (1994) is a version of MTE. We present
their full conditions for identification in Section 4. Here we define it in the notation used
in this chapter. LATE is defined by an instrument in their analysis. As in Chapter 70, we
define LATE independently of any instrument after first presenting the Imbens–Angrist
definition. Define D(z) as a counterfactual choice variable, with D(z) = 1 if state 1
(D = 1) would have been chosen if Z had been set to z, and D(z) = 0 otherwise.
Let Z(x) denote the support of the distribution of Z conditional on X = x. For any
(z, z′) ∈ Z(x) × Z(x) such that P(z) > P (z′), LATE is E(� | X = x,D(z) =
1,D(z′) = 0) = E(Y1 − Y0 | X = x,D(z) = 1,D(z′) = 0), the mean gain to
persons who would be induced to switch from D = 0 to D = 1 if Z were manipulated
externally from z′ to z. In an example of the returns to education, z′ could be the base
level of tuition and z a reduced tuition level. Using the latent index model, developed in
Chapter 70 and defined in the introduction to this section, Heckman and Vytlacil (1999,
2005) show that LATE can be written as

E
(
Y1 − Y0

∣∣ X = x, D(z) = 1, D(z′) = 0
)

= E
(
Y1 − Y0

∣∣ X = x, u′
D < UD � uD

) = �LATE(x, uD, u′
D

)
for uD = Pr(D(z) = 1) = P(z), u′

D = Pr(D(z′) = 1) = P(z′), where assumption
(A-1) implies that Pr(D(z) = 1) = Pr(D = 1 | Z = z) and Pr(D(z′) = 1) =
Pr(D = 1 | Z = z′).

Imbens and Angrist define the LATE parameter as the probability limit of an esti-
mator. Their analysis conflates issues of definition of parameters with issues of iden-
tification. Our representation of LATE allows us to separate these two conceptually
distinct matters and to define the LATE parameter more generally. One can, in prin-
ciple, evaluate the right-hand side of the preceding equation at any uD , u′

D points
in the unit interval and not only at points in the support of the distribution of the
propensity score P(Z) conditional on X = x where it is identified. From assump-

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Table 2A
Treatment effects and estimands as weighted averages of the marginal treatment effect

ATE(x) = E(Y1 − Y0 | X = x) = ∫ 1
0 �MTE(x, uD) duD

TT(x) = E(Y1 − Y0 | X = x,D = 1) = ∫ 1
0 �MTE(x, uD)ωTT(x, uD) duD

TUT(x) = E(Y1 − Y0 | X = x,D = 0) = ∫ 1
0 �MTE(x, uD)ωTUT(x, uD) duD

Policy relevant treatment effect: PRTE(x) = E(Ya′ | X = x) − E(Ya | X = x) =∫ 1
0 �MTE(x, uD)ωPRTE(x, uD) duD for two policies a and a′ that affect the Z

but not the X

IVJ (x) = ∫ 1
0 �MTE(x, uD)ωJ

IV(x, uD) duD , given instrument J

OLS(x) = ∫ 1
0 �MTE(x, uD)ωOLS(x, uD) duD

Source: Heckman and Vytlacil (2005).

tions (A-1), (A-3), and (A-4), �LATE(x, uD, u′
D) is continuous in uD and u′

D and
limu′

D↑uD
�LATE(x, uD, u′

D) = �MTE(x, uD).26

Heckman and Vytlacil (1999) use assumptions (A-1)–(A-5) and the latent index
structure to develop the relationship between MTE and the various treatment effect
parameters shown in the first three lines of Table 2A. Appendix A presents the formal
derivation of the parameters and associated weights and graphically illustrates the rela-
tionship between ATE and TT. There we establish that all treatment parameters may be
expressed as weighted averages of the MTE:

Treatment parameter (j) =
∫ 1

0
�MTE(x, uD)ωj (x, uD) duD,

where ωj (x, uD) is the weighting function for the MTE and the integral is defined over
the full support of uD . Except for the OLS weights, the weights in the table all integrate
to one, although in some cases the weights for IV may be negative. We analyze how
negative weights for IV might arise in Section 4.

In Table 2A, �TT(x) is shown as a weighted average of �MTE:

�TT(x) =
∫ 1

0
�MTE(x, uD)ωTT(x, uD) duD,

where

(3.5)ωTT(x, uD) = 1 − FP |X(uD | x)∫ 1
0 (1 − FP |X(t | x)) dt

= SP |X(uD | x)

E(P (Z) | X = x)
,

26 This follows from Lebesgue’s theorem for the derivative of an integral and holds almost everywhere with
respect to Lebesgue measure. The ideas of the marginal treatment effect and the limit form of LATE were first
introduced in the context of a parametric normal generalized Roy model by Björklund and Moffitt (1987),
and were analyzed more generally in Heckman (1997). Angrist, Graddy and Imbens (2000) also define and
develop a limit form of LATE.
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Table 2B
Weights

ωATE(x, uD) = 1

ωTT(x, uD) = [∫ 1
uD

fP |X(p | X = x) dp
] 1
E(P |X=x)

ωTUT(x, uD) = [∫ uD
0 fP |X(p | X = x) dp

] 1
E((1−P)|X=x)

ωPRTE(x, uD) =
[FP

a′ |X(uD |x)−FPa |X(uD |x)

�P(x)

]
, where

�P(x) = E(Pa | X = x) − E(Pa′ | X = x)

ωJ
IV(x, uD) = [∫ 1

uD
(J (Z) − E(J (Z) | X = x))fJ,P |X(j, t | X = x) dt dj

] 1
Cov(J (Z),D|X=x)

ωOLS(x, uD) = 1 + E(U1|X=x,UD=uD)ω1(x,uD)−E(U0|X=x,UD=uD)ω0(x,uD)

�MTE(x,uD)

ω1(x, uD) = [∫ 1
uD

fP |X(p | X = x) dp
] 1
E(P |X=x)

ω0(x, uD) = [∫ uD
0 fP |X(p | X = x) dp

] 1
E((1−P)|X=x)

Source: Heckman and Vytlacil (2005).

and SP |X(uD | x) is Pr(P (Z) > uD | X = x) and ωTT(x, uD) is a weighted distribu-
tion. The parameter �TT(x) oversamples �MTE(x, uD) for those individuals with low
values of uD that make them more likely to participate in the program being evaluated.
Treatment on the untreated (TUT) is defined symmetrically with TT and oversamples
those least likely to participate. The various weights are displayed in Table 2B. The other
weights, treatment effects and estimands shown in this table are discussed later. A cen-
tral theme of this chapter is that under our assumptions all estimators and estimands can
be written as weighted averages of MTE. This allows us to unify the treatment effect
literature using a common functional �MTE(x, uD).

Observe that if E(Y1 − Y0 | X = x,UD = uD) = E(Y1 − Y0 | X = x), so
� = Y1 − Y0 is mean independent of UD given X = x, then �MTE = �ATE = �TT =
�LATE. Therefore, in cases where there is no heterogeneity in terms of unobservables
in MTE (� constant conditional on X = x) or agents do not act on it so that UD drops
out of the conditioning set, marginal treatment effects are average treatment effects, so
that all of the evaluation parameters are the same. Otherwise, they are different. Only
in the case where the marginal treatment effect is the average treatment effect will the
“effect” of treatment be uniquely defined.

Figure 2A plots weights for a parametric normal generalized Roy model generated
from the parameters shown at the base of Figure 2B. This is an instance of the general
model developed in Chapter 70, Section 5. The model allows for costs to vary in the
population and is more general than the extended Roy model. We discuss the weights for
IV depicted in Figure 2B in Section 4 and the weights for OLS in Section 8. A high uD

is associated with higher cost, relative to return, and less likelihood of choosing D = 1.
The decline of MTE in terms of higher values of uD means that people with higher uD

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Figure 2A. Weights for the marginal treatment effect for different parameters. Source: Heckman and Vytlacil
(2005).

have lower gross returns. TT overweights low values of uD (i.e., it oversamples UD that
make it likely to have D = 1). ATE samples UD uniformly. Treatment on the untreated
(E(Y1 − Y0 | X = x,D = 0)), or TUT, oversamples the values of UD which make it
unlikely to have D = 1.

Table 3 shows the treatment parameters produced from the different weighting
schemes for the model used to generate the weights in Figures 2A and 2B. Given the
decline of the MTE in uD , it is not surprising that TT > ATE > TUT. This is the
generalized Roy version of the principle of diminishing returns. Those most likely to
self-select into the program benefit the most from it. The difference between TT and
ATE is a sorting gain: E(Y1 − Y0 | X,D = 1) − E(Y1 − Y0 | X), the average gain
experienced by people who sort into treatment compared to what the average person
would experience. Purposive selection on the basis of gains should lead to positive sort-
ing gains of the kind found in the table. If there is negative sorting on the gains, then
TUT � ATE � TT. Later in this chapter, we return to this table to discuss the other
numbers in it.

Table 4 reproduced from Heckman (2001) presents evidence on the nonconstancy of
the MTE in UD drawn from a variety of studies of schooling, job training, migration and
unionism. Most of the evidence is obtained using parametric normal selection models or
variants of such models. With the exception of studies of unionism, a common finding
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Y1 = α + β̄ + U1 U1 = σ1τ α = 0.67 σ1 = 0.012
Y0 = α + U0 U0 = σ0τ β̄ = 0.2 σ0 = −0.050
D = 1 if Z − V � 0 V = σV τ τ ∼ N(0, 1) σV = −1.000

UD = Φ( V
σV στ

) Z ∼ N(−0.0026, 0.2700)

Figure 2B. Marginal treatment effect vs. linear instrumental variables and ordinary least squares weights.
Source: Heckman and Vytlacil (2005).

in the empirical literature is the nonconstancy of MTE given X.27 The evidence from
the literature suggests that different treatment parameters measure different effects, and
persons participate in programs based on heterogeneity in responses to the program
being studied. The phenomenon of nonconstancy of the MTE that we analyze in this
chapter is of substantial empirical interest.

The additively separable latent index model for D [Equation (3.3)] and assump-
tions (A-1)–(A-5) are far stronger than what is required to define the parameters in
terms of the MTE. The representations of treatment effects defined in Table 2A remain
valid even if Z is not independent of UD , if there are no variables in Z that are not
also contained in X, or if a more general nonseparable choice model generates D [so
D∗ = μD(Z,UD)]. An important advantage of our approach over other approaches to
the analysis of instrumental variables in the recent literature is that no instrument Z is

27 However, most of the empirical evidence is based on parametric selection models.
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Table 3
Treatment parameters and estimands in the generalized Roy example

Treatment on the treated 0.2353
Treatment on the untreated 0.1574
Average treatment effect 0.2000
Sorting gaina 0.0353
Policy relevant treatment effect (PRTE) 0.1549
Selection biasb −0.0628
Linear instrumental variablesc 0.2013
Ordinary least squares 0.1725

Source: Heckman and Vytlacil (2005).
Note: The model used to create Table 3 is the same as those used to
create Figures 2A and 2B. The PRTE is computed using a policy t

characterized as follows:
– If Z > 0 then D = 1 if Z(1 + t) − V � 0.
– If Z � t then D = 1 if Z − V � 0.

For this example t is set equal to 0.2.
aTT − ATE = E(Y1 − Y0 | D = 1) − E(Y1 − Y0).
bOLS − TT = E(Y0 | D = 1) − E(Y0 | D = 0).
cUsing propensity score P(Z) as the instrument.

needed to define the parameters. We separate the tasks of definition and identification of
parameters as discussed in Table 1 of Chapter 70, and present an analysis more closely
rooted in economics. Appendices A and B define the treatment parameters for both sep-
arable (Appendix A) and nonseparable choice equations (Appendix B). We show that
the treatment parameters can be defined even if there is no instrument or if instrumental
variables methods break down as they do in nonseparable models.

As noted in Chapter 70, the literature on structural econometrics is clear about the
basic parameters of interest although it is not always clear about the exact combinations
of parameters needed to answer specific policy problems. The literature on treatment
effects offers a variety of evaluation parameters. Missing from that literature is an algo-
rithm for defining treatment effects that answer precisely formulated economic policy
questions. The MTE provides a framework for developing such an algorithm. In the
next section, we present one well defined policy parameter that can be used to generate
Benthamite policy evaluations as discussed in Section 5 of Chapter 70.

3.2. Policy relevant treatment parameters

The conventional treatment parameters do not always answer economically interesting
questions. Their link to cost-benefit analysis and interpretable economic frameworks
is sometimes obscure. Each answers a different question. Many investigators estimate
a treatment effect and hope that it answers an interesting question. A more promising
approach for defining parameters is to postulate a policy question or decision problem

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Table 4
Evidence on selection on unobservables and constancy of the MTE for separable models

Study Method Finding on the hypothesis
of constancy of the MTE

Unionism

Lee (1978)
Normal selection model σ1V = σ0V

(H0: σ1V = σ0V ) Do not reject

Farber (1983)
Normal selection model σ1V = σ0V

(H0: σ1V = σ0V ) Do not reject
Duncan and Leigh
(1985)
Robinson (1989)

Normal selection model σ1V = σ0V
(H0: σ1V = σ0V ) Do not reject
Normal selection model σ1V �= σ0V
(μ1 − μ0)IV = (μ1 − μ0)normal Do not reject

Schooling
(college vs. high school)

Willis and Rosen (1979)
Heckman, Tobias and
Vytlacil (2003)

Normal selection model σ1V �= σ0V
(H0: σ1V = σ0V ) Reject
Normal selection model σ1V �= σ0V
(H0: σ1V = σ0V ) Reject

Job training

Björklund and Moffitt
(1987)
Heckman et al. (1998;
Suppl.)

Normal selection model σ1V �= σ0V
(H0: σ1V = σ0V ) Reject
E(U1 − U0 | D = 1, Z, X)

= E(U1 − U0 | D = 1, X)

Reject selection on
unobservables

Sectoral choice

Heckman and
Sedlacek (1990)

Normal selection model σ1V �= σ0V
(H0: σ1V = σ0V ) Reject

Migration

Pessino (1991)
Normal selection model σ1V �= σ0V

(H0: σ1V = σ0V ) Reject

Tunali (2000)
H0: E(U1 − U0 | D = 1) = 0 Cannot reject

(estimated using robust selection)

Source: Heckman (2001).
Notes: Y = DY1 + (1 − D)Y0
Y1 = μ1(X) + U1
Y0 = μ0(X) + U0
Z ⊥⊥ (U0, U1), Z ⊥�⊥D

D = 1(μD(Z) − V � 0), where μD(Z) − V is the index determining selection into “1” or “0”
Hypothesis: No selection on unobservables (constancy of the MTE)
H0: E(U1 − U0 | D = 1, Z, X) does not depend on D where Cov(U1, UV ) = σ1V ,
Cov(U0, UV ) = σ0V (in normal model, the null hypothesis is σ1V = σ0V ).
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of interest and to derive the treatment parameter that answers it. Taking this approach
does not in general produce the conventional treatment parameters or the estimands
produced from instrumental variables.

Consider a class of policies that affect P , the probability of participation in a pro-
gram, but do not affect �MTE. The policies analyzed in the treatment effect literature
that change the Z not in X are more restrictive than the general policies that shift X

and Z analyzed in the structural literature. An example from the schooling literature
would be policies that change tuition or distance to school but do not directly affect the
gross returns to schooling [Card (2001)]. Since we ignore general equilibrium effects in
this chapter, the effects on (Y0, Y1) from changes in the overall level of education are
assumed to be negligible.

Let p and p′ denote two potential policies and let Dp and Dp′ denote the choices
that would be made under policies p and p′. When we discuss the policy relevant treat-
ment effect, we use “p” to denote the policy and distinguish it from the realized value
of P(Z). Under our assumptions, the policies affect the Z given X, but not the potential
outcomes. Let the corresponding decision rules be Dp = 1[Pp(Zp) � UD], Dp′ =
1[Pp′(Zp′) � UD], where Pp(Zp) = Pr(Dp = 1 | Zp) and Pp′(Zp′) = Pr(Dp′ = 1 |
Zp′). To simplify the exposition, we will suppress the arguments of these functions and
write Pp and Pp′ for Pp(Zp) and Pp′(Zp′). Define (Y0,p, Y1,p, UD,p) as (Y0, Y1, UD)

under policy p, and define (Y0,p′ , Y1,p′ , UD,p′) correspondingly under policy p′. We
assume that Zp and Zp′ are independent of (Y0,p, Y1,p, UD,p) and (Y0,p′ , Y1,p′ , UD,p′),
respectively, conditional on Xp and Xp′ . Let Yp = DpY1,p + (1 − Dp)Y0,p and
Yp′ = Dp′Y1,p′ + (1 − Dp′)Y0,p′ denote the outcomes that would be observed under
policies p and p′, respectively.

�MTE is policy invariant in the sense of Hurwicz as defined in Chapter 70 if

E(Y1,p | UD,p = uD,Xp = x) and E(Y0,p | UD,p = uD,Xp = x) are invariant to
the choice of policy p (Policy invariance for the marginal treatment effect).

Policy invariance can be justified by the strong assumption that the policy being inves-
tigated does not change the counterfactual outcomes, covariates, or unobservables, i.e.,
(Y0,p, Y1,p, Xp,UD,p) = (Y0,p′ , Y1,p′ , Xp′ , UD,p′). However, �MTE is policy invariant
if this assumption is relaxed to the weaker assumption that the policy change does not
affect the distribution of these variables conditional on X:

(A-7) The distribution of (Y0,p, Y1,p, UD,p) conditional on Xp = x is the same
as the distribution of (Y0,p′ , Y1,p′ , UD,p′) conditional on Xp′ = x (policy
invariance for distribution).

Assumption (A-7) guarantees that manipulations of the distribution of Z do not affect
anything in the model except the choice of outcomes. These are specialized versions of
(PI-3) and (PI-4) invoked in Chapter 70.

For the widely used Benthamite social welfare criterion Υ (Y ), where Υ is a utility
function, comparing policies using mean utilities of outcomes and considering the effect

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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for individuals with a given level of X = x we obtain the policy relevant treatment
effect, PRTE, denoted �PRTE(x):

E
(
Υ (Yp)

∣∣ X = x
)− E

(
Υ (Yp′)

∣∣ X = x
)

(3.6)=
∫ 1

0
�MTE

Υ (x, uD)
{
FPp′ |X(uD | x) − FPp |X(uD | x)

}
duD,

where FPp |X(· | x) and FPp′ |X(· | x) are the distributions of Pp and Pp′ conditional

on X = x, respectively, defined for the different policy regimes and �MTE
Υ (x, uD) =

E(Υ (Y1,p)−Υ (Y0,p) | UD,p = uD,Xp = x).28,29 The weights in expression (3.6) are
derived in Appendix C under the assumption that the policy does not change the joint
distribution of outcomes. To simplify the notation, throughout the rest of this chapter
when we discuss PRTE, we assume that Υ (Y ) = Y . Modifications of our analysis for
the more general case are straightforward. We also discuss the implications of nonin-
variance for the definition and interpretation of the PRTE in Appendix C.

Define �P̄ (x) = E(Pp | X = x) − E(Pp′ | X = x), the change in the proportion of
people induced into the program due to the intervention. Assuming �P̄ (x) is positive,
we may define per person affected weights as

ωPRTE(x, uD) = FPp′ |X(uD | x) − FPp |X(uD | x)

�P̄ (x)
.

These weights are displayed in Table 2B. As demonstrated in the next section, in gen-
eral, conventional IV weights the MTE differently than either the conventional treatment
parameters (�ATE or �TT) or the policy relevant parameter, and so does not recover
these parameters.

Instead of hoping that conventional treatment parameters or favorite estimators an-
swer interesting economic questions, the approach developed by Heckman and Vytlacil
(1999, 2001a, 2001b, 2005) is to estimate the MTE and weight it by the appropriate
weight determined by how the policy changes the distribution of P to construct �PRTE.
In Heckman and Vytlacil (2005), we also develop an alternative approach that produces
a policy weighted instrument to identify �PRTE by standard instrumental variables. We
elaborate our discussion of policy analysis based in the MTE and develop other policy

28 We could define policy invariance for �MTE in terms of expectations of Υ (Y1,p) and Υ (Y0,p).
29 If we assume that the marginal distribution of Xp and Xp′ are the same as the marginal distribution of
a benchmark X, the weights can be integrated against the distribution of X to obtain the total effect of the
policy in the population:

E
(
Υ (Yp)

)− E
(
Υ (Yp′ )

)
= EX

[
E
(
Υ (Yp)

∣∣ X
)− E

(
Υ (Yp′ )

∣∣ X
)]

=
∫ [ ∫ 1

0
�MTE

Υ (x, uD)
{
FPp′ |X(uD | x) − FPp |X(uD | x)

}
duD

]
dFX(x).
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parameters for local and global perturbations of policy in Section 6 after developing the
instrumental variable estimator and the related regression discontinuity estimator. The
analyses of Sections 4 and 5 give us tools to make specific the discussion of alternative
approaches to policy evaluation.

4. Instrumental variables

The method of instrumental variables (IV) is currently the most widely used method in
economics for estimating economic models when unobservables are present that violate
the matching assumption (M-1).30 We first present an intuitive exposition of the method
and then present a more formal development. We analyze a model with two outcomes.
We generalize the analysis to multiple outcomes in Section 7.

Return to the policy adoption example presented at the end of Section 2. The distri-
bution of returns to adoption is depicted in Figure 1. First, consider the method of IV,
where β (given X), which is the same as Y1 −Y0 given X, is the same for every country.
This is the familiar case and we develop it first. The model is

(4.1)Y = α + βD + ε,

where conditioning on X is implicit. A simple least squares regression of Y on D (equiv-
alently a mean difference in outcomes between countries with D = 1 and countries with
D = 0) is possibly subject to a selection bias on Y0. Countries that adopt the policy may
be atypical in terms of their Y0 (= α + ε). Thus if countries that would have done well
in terms of unobservable ε (= U0) even in the absence of the policy are the ones that
adopt the policy, β estimated from OLS (or its semiparametric version – matching) is
upward biased because Cov(D, ε) > 0.

If there is an instrument Z, with the properties that

(4.2)Cov(Z,D) �= 0,

(4.3)Cov(Z, ε) = 0,

then standard IV identifies β, at least in large samples,

plim β̂IV = Cov(Z, Y )

Cov(Z,D)
= β.31

If other instruments exist, each identifies β. Z produces a controlled variation in D rela-
tive to ε. Randomization of assignment with full compliance to experimental protocols

30 More precisely, IV is the most widely used alternative to OLS. OLS is a version of matching that imposes
linearity of the functional form of outcome equations and assumes exogeneity of the regressors. See our
discussion of matching in Section 8.
31 The proof is straightforward. Under general conditions [see, e.g., White (1984)],

plim β̂IV = β + Cov(Z, ε)

Cov(Z, D)
and Cov(Z, ε) = 0,

so the second term on the right-hand side vanishes.
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is an example of an instrument. From the instrumental variable estimators, we can iden-
tify the effect of adopting the policy in any country since all countries respond to the
policy in the same way controlling for their X.

If β (= Y1 − Y0) varies in the population even after controlling for X, there is a
distribution of responses that cannot in general be summarized by a single number. Even
if we are interested in the mean of the distribution, a new phenomenon distinct from
selection bias might arise. This is a problem of sorting on the gain, which is distinct
from sorting on levels. If β varies, even after controlling for X, there may be sorting on
the gain (Cov(β,D) �= 0). This is the model of essential heterogeneity as defined by
Heckman, Urzua and Vytlacil (2006). It is also called a correlated random coefficient
model [Heckman and Vytlacil (1998)].

The application of instrumental variables to this case is more problematic. Suppose
that we augment the standard instrumental variable assumptions (4.2) and (4.3) by the
following assumption:

(4.4)Cov(Z, β) = 0.

Can we identify the mean of (Y1 − Y0) using IV? In general we cannot.32

To see why, let β̄ = (μ1 − μ0) be the mean treatment effect (the mean of the distrib-
ution in Figure 1). β = β̄ + η, where U1 − U0 = η and β̄ = μ1 − μ0 and we keep the
conditioning on X implicit. Write Equation (4.1) in terms of these parameters:

Y = α + β̄D + [ε + ηD].
The error term of this equation (ε + ηD) contains two components. By assumption,
Z is uncorrelated with ε and η. But to identify β̄, we need IV to be uncorrelated with
[ε + ηD]. That requires Z to be uncorrelated with ηD.

If policy adoption is made without knowledge of η (= U1 − U0), the idiosyncratic
gain to policy adoption after controlling for the observables, then η and D are statis-
tically independent and hence uncorrelated, and IV identifies β̄.33 If, however, policy
adoption is made with partial or full knowledge of η, IV does not identify β̄ because
E(ηD | Z) = E(η | D = 1, Z) Pr(D = 1 | Z) and if there is sorting on the unobserved
gain η, the first term is not zero. Similar calculations show that IV does not identify
the mean gain to the countries that adopt the policy (E(β | D = 1)) and many other
summary treatment parameters.34 Whether η (= U1 −U0) is correlated with D depends
on the quality of the data available to the empirical economist and cannot be settled

32 This point was made by Heckman and Robb (1985a, 1986a). See also Heckman (1997).
33 The proof is straightforward:

plim β̂IV = β̄ + Cov(Z, ε + ηD)

Var(D,Z)
.

But Cov(Z, ε + ηD) = Cov(Z, ε) + Cov(Z, ηD) and Cov(Z, ηD) = E(ZηD)−E(Z)E(ηD), E(ηD) = 0
by the assumed independence. E(ZηD) = E[E(ηDZ | Z)] = E[E(ηD | Z)Z] = 0 since E(ηD | Z) = 0.
34 See Heckman and Robb (1985a, 1986a), Heckman (1997) or Heckman and Vytlacil (1999).
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a priori. The conservative position is to allow for such a correlation. However, this rules
out IV as an interesting econometric strategy for identifying any of the familiar mean
treatment parameters.

In light of the negative conclusions about IV in the literature preceding their paper,
it is remarkable that Imbens and Angrist (1994) establish that under certain conditions,
in the model with essential heterogeneity, IV can identify an interpretable parameter.
The parameter they identify is a discrete approximation to the marginal gain parameter
introduced by Björklund and Moffitt (1987). The Björklund–Moffitt parameter is a ver-
sion of MTE for a parametric normal selection model. We derive their parameter from a
selection model in Section 4.8. Björklund and Moffitt (1987) demonstrate how to use a
selection model to identify the marginal gain to persons induced into a treatment status
by a marginal change in the cost of treatment. Imbens and Angrist (1994) show how to
estimate a discrete approximation to the Björklund–Moffitt parameter using instrumen-
tal variables.

Imbens and Angrist (1994) assume the existence of an instrument Z that takes two or
more distinct values. This is implicit in (4.2). If Z assumes only one value, the covari-
ance in (4.2) would be zero. Strengthening the covariance conditions of Equations (4.3)
and (4.4), they assume (IV-1) and (IV-2) (independence and rank, respectively) and that
Z is independent of β = (Y1 − Y0) and Y0. Recall that we denote by D(z) the random
variable indicating receipt of treatment when Z is set to z. (D(z) = 1 if treatment is re-
ceived; D(z) = 0 otherwise.) The Imbens–Angrist independence and rank assumptions
are (IV-1) and (IV-2).

They supplement the standard IV assumptions with what they call a “monotonicity”
assumption. It is a condition across persons. The assumption maintains that if Z is fixed
first at one and then at the other of two distinct values, say Z = z and Z = z′, then
all persons respond in their choice of D to the change in Z in the same way. In our
policy adoption example, this condition states that a movement from z to z′, causes all
countries to move toward (or against) adoption of the public policy being studied. If
some adopt, others do not drop the policy in response to the same change.

More formally, letting Di(z) be the indicator (= 1 if adopted; = 0 if not) for adoption
of a policy if Z = z for country i, then for any distinct values z and z′ Imbens and
Angrist (1994) assume:

(IV-3) Di(z) � Di(z
′) for all i, or Di(z) � Di(z

′) for all i = 1, . . . , I (Monotonic-
ity or uniformity).

The content in this assumption is not in the order for any person. Rather, the responses
have to be uniform across people for a given choice of z and z′. One possibility al-
lowed under (IV-3) is the existence of three values of z < z′ < z′′ such that for all i,
Di(z) � Di(z

′) but Di(z
′) � Di(z

′′). The standard usage of the term monotonicity rules
out this possibility by requiring that one of the following hold for all i: (a) z < z′ compo-
nentwise implies Di(z) � Di(z

′) or (b) z < z′ componentwise implies Di(z) � Di(z
′).

Of course, if the Di(z) are monotonic in Z in the same direction for all i, they are
monotonic in the sense of Imbens and Angrist.
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For any value of z′ in the domain of definition of Z, from (IV-1) and (IV-2) and
the definition of D(z), (Y0, Y1,D(z′)) is independent of Z. For any two values of the
instrument Z = z and Z = z′, we may write

E(Y | Z = z) − E(Y | Z = z′)
= E

(
Y1D + Y0(1 − D)

∣∣ Z = z
)− E

(
Y1D + Y0(1 − D)

∣∣ Z = z′)
= E

(
Y0 + D(Y1 − Y0)

∣∣ Z = z
)− E

(
Y0 + D(Y1 − Y0)

∣∣ Z = z′).
From the independence condition (IV-1) and the definition of D(z) and D(z′), we may
write this expression as E[(Y1 − Y0)(D(z) − D(z′))]. Using the law of iterated expec-
tations,

E(Y | Z = z) − E(Y | Z = z′)
= E

(
Y1 − Y0

∣∣ D(z) − D(z′) = 1
)

Pr
(
D(z) − D(z′) = 1

)
(4.5)− E

(
Y1 − Y0

∣∣ D(z) − D(z′) = −1
)

Pr
(
D(z) − D(z′) = −1

)
.

By the monotonicity condition (IV-3), we eliminate one or the other term in the final
expression. Suppose that Pr(D(z) − D(z′) = −1) = 0, then

E(Y | Z = z) − E(Y | Z = z′)
= E

(
Y1 − Y0

∣∣ D(z) − D(z′) = 1
)

Pr
(
D(z) − D(z′) = 1

)
.

Observe that, by monotonicity, Pr(D(z) − D(z′) = 1) = Pr(D = 1 | Z = z) −
Pr(D = 1 | Z = z′). For values of z and z′ that produce distinct propensity scores
Pr(D = 1 | Z = z), using monotonicity once more, we obtain LATE:

LATE = E(Y | Z = z) − E(Y | Z = z′)
Pr(D = 1 | Z = z) − Pr(D = 1 | Z = z′)

(4.6)= E
(
Y1 − Y0

∣∣ D(z) − D(z′) = 1
)
.35

This is the mean gain to those induced to switch from “0” to “1” by a change in Z from
z′ to z.

This is not the mean of Y1 −Y0 (average treatment effect) unless the Z assume values
(z, z′) such that Pr(D(z) = 1) = 1 and Pr(D(z′) = 1) = 0.36 It is also not the effect of
treatment on the treated (E(Y1 − Y0 | D = 1) = E(β | D = 1)) unless the analyst has
access to one or more values of Z such that Pr(D(z) = 1) = 1.

The LATE parameter is defined by a hypothetical manipulation of instruments. It
depends on the particular instrument used.37 If monotonicity (uniformity) is violated,

35 Pr(D(z)−D(z′) = 1) = Pr(D(z = 1)∧D(z′ = 0)) = Pr(D(z) = 1)−Pr(D(z′) = 1) from monotonicity.
36 Such values produce “identification at infinity” or more accurately limit points where P(z) = 1 and
P(z′) = 0.
37 Dependence of the estimands on the choices of IV used to estimate models with essential heterogeneity
was first noted in Heckman and Robb (1985a, 1986a).
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IV estimates an average response of those induced to switch into the program and those
induced to switch out of the program by the change in the instrument because both terms
in (4.5) are present.38

In an application to wage equations, Card (1999, 2001) interprets the LATE estimator
as identifying returns to marginal persons. Heckman (1996) notes that the actual margin
of choice selected by the IV estimator is not identified by the instrument. It is unclear
as to which segment of the population the return estimated by LATE applies.

If the analyst is interested in knowing the average response
(
β̄
)
, the effect of the

policy on the outcomes of countries that adopt it (E(β | D = 1)) or the effect of the
policy if a particular country adopts it, there is no guarantee that the IV estimator comes
any closer to the desired target than the OLS estimator and indeed it may be more biased
than OLS. Because different instruments define different parameters, having a wealth
of different strong instruments does not improve the precision of the estimate of any
particular parameter. This is in stark contrast with the traditional model with β ⊥⊥ D. In
that case, all valid instruments identify β̄. The Durbin (1954) – Wu (1973) – Hausman
(1978) test for the validity of extra instruments applies to the traditional model. In the
more general case with essential heterogeneity, because different instruments estimate
different parameters, no clear inference emerges from such specification tests.

When there are more than two distinct values of Z, Imbens and Angrist draw on
the analysis of Yitzhaki (1989), which was refined in Yitzhaki (1996) and Yitzhaki
and Schechtman (2004), to produce a weighted average of pairwise LATE parameters
where the scalars Z are ordered to define the LATE parameter. In this case, IV is a
weighted average of LATE parameters with nonnegative weights.39 Imbens and Angrist
generalize this result to the case of vector Z assuming that instruments are monotonic
functions of the probability of selection.

Heckman and Vytlacil (1999, 2001b, 2005), Heckman, Urzua and Vytlacil (2006)
and Carneiro, Heckman and Vytlacil (2006) generalize the analysis of Imbens and
Angrist (1994) in several ways and we report their results in this chapter. Using a choice-
theoretic parameter (the marginal treatment effect or MTE) introduced into the literature
on selection models by Björklund and Moffitt (1987), they relate the parameters esti-
mated by IV to well formulated choice models. This allows treatment parameters to be
defined independent of any values assumed by instruments. It is possible to generate all
treatment effects as different weighted averages of the MTE. IV can also be interpreted

38 Angrist, Imbens and Rubin (1996) consider the case of two way flows for the special case of a scalar
instrument when the monotonicity assumption is violated. Their analysis is a version of Yitzhaki’s (1989,
1996) analysis, which we summarize in Appendix D. He analyzes the net effect whereas they break the net
effect into two components corresponding to the two gross flows that produce the two way flows.
39 Yitzhaki (1989) shows for a scalar instrument that two stage least squares estimators of Y on P(Z) =
E(D | Z) identify weighted averages of terms like the second terms in (4.6) with positive weights. See also
Yitzhaki (1996) and Yitzhaki and Schechtman (2004). We discuss this work in greater detail in Section 4.3.1,
and we derive his weights in Appendix D. The original Yitzhaki (1989) paper is posted at the website of
Heckman, Urzua and Vytlacil (2006).
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as a weighted average of MTE. Different instruments weight different segments of the
MTE differently. Using the nonparametric generalized Roy model, MTE is a limit form
of LATE. Using MTE, we overcome a problem that plagues the LATE literature. LATE
estimates marginal returns at an unidentified margin (or intervals of margins). We show
how to use the MTE to unify diverse instrumental variables estimates and to determine
what margins (or intervals of margins) they identify. Instead of reporting a marginal
return for unidentified persons, we show how to report marginal returns for all persons
identified by their location on the scale of a latent variable that arises from a well de-
fined choice model and is related to the propensity of persons to make the choice being
studied. We can interpret the margins of choice identified by various instruments and
place diverse instruments on a common interpretive footing.

Heckman and Vytlacil (1999, 2005) establish the central role of the propensity score
(Pr(D = 1 | Z = z) = P(z)) in both selection and IV models.40 They show that with
vector Z and a scalar instrument J (Z) constructed from vector Z, the weights on LATE
and MTE that are implicit in standard IV are not guaranteed to be nonnegative. Thus IV
can be negative even though all pairwise LATEs and pointwise MTEs are positive. Thus
the treatment effects for any pair of (z, z′) can be positive but the IV can be negative.
We present examples below. Certain instruments produce positive weights and avoid
this particular interpretive problem. Our analysis generalizes the analyses of weights on
treatment effects by Yitzhaki and Imbens–Angrist, who analyze a special case where all
weights are positive.

We establish the special status of P(z) as an instrument. It always produces non-
negative weights for MTE and LATE. It enables analysts to identify MTE or LATE.
With knowledge of P(z), and the MTE or LATE, we can decompose any IV estimate
into identifiable MTEs (at points) or LATEs (over intervals) and identifiable weights
on MTE (or LATE) where the weights can be constructed from data. The ability to de-
compose IV into interpretable components allows analysts to determine the response to
treatment of persons at different levels of unobserved factors that determine treatment
status.

We present a simple test for essential heterogeneity (β dependent on D) that allows
analysts to determine whether or not they can avoid the complexities of the more gen-
eral model with heterogeneity in response to treatments. In Section 7, we generalize the
analysis of IV in the two-outcome model to a multiple outcome model, analyzing both
ordered and unordered choice cases.41 We also demonstrate the fundamental asymme-
try in the recent IV literature for models with heterogeneous outcomes. Responses to
treatment are permitted to be heterogeneous in a general way. Responses of choices to
instruments are not. When heterogeneity in choice is allowed for in a general way, IV
and local IV do not estimate parameters that can be interpreted as weighted averages of
MTEs or LATEs. We now turn to an analysis of the two-outcome model.

40 Rosenbaum and Rubin (1983) establish the control role of the propensity score in matching models.
41 Angrist and Imbens (1995) consider an ordered choice case with instruments common across all choices.
Heckman, Urzua and Vytlacil (2006) consider both common and choice-specific instruments for both ordered
and unordered cases.
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4.1. IV in choice models

A key contribution of the analysis of Heckman and Vytlacil is to adjoin choice equa-
tion (3.3) to the outcome equations (2.1), (3.1) and (3.2). A standard binary threshold
cross model for D is D = 1(D∗ � 0), where 1(·) is an indicator (1(A) = 1 if A is true,
0 otherwise). A familiar version of (3.3) sets μD(Z) = Zγ and writes

(4.7)D∗ = Zγ − V,

where (V ⊥⊥ Z) | X. (V is independent of Z given X.) In this notation, the propensity
score or choice probability is

P(z) = Pr(D = 1 | Z = z) = Pr(Zγ � V ) = FV (Zγ ),

where FV is the distribution of V which is assumed to be continuous. In terms of the
generalized Roy model where C is the cost of participation in sector 1, D = 1[Y1 −
Y0 − C > 0]. For a separable model in outcomes and in costs,

C = μD(W) + UC,

we have Z = (X,W), μD(Z) = μ1(X)−μ0(X)−μD(W), and V = −(U1−U0−UC).
In constructing many of our examples, we work with a special version where UC = 0.
We call this version the extended Roy model.42 It is the model used to produce Figure 1.
Our analysis, however, applies to more general models, and we also offer examples of
generalized Roy models, as we have in Figure 2 and Table 3.

In the case where β (given X) is a constant, under (IV-1) and (IV-2) it is not neces-
sary to specify the choice model to identify β. In a general model with heterogenous
responses, the specification of P(z) and its relationship with the instrument play crucial
roles. To see this, study the covariance between Z and ηD discussed in the introduction
to this section.43 By the law of iterated expectations, letting Z̄ denote the mean of Z,

Cov(Z, ηD) = E
(
(Z − Z̄)Dη

)
= E

(
(Z − Z̄)η

∣∣ D = 1
)

Pr(D = 1)

= E
(
(Z − Z̄)η

∣∣ Zγ > V
)

Pr(Zγ � V ).

Thus, even if Z and η are independent, they are not independent conditional on
D = 1[Zγ � V ] if η = (U1 − U0) is dependent on V (i.e., if the decision maker
has partial knowledge of η and acts on it). Selection models allow for this dependence
[see Heckman and Robb (1985a, 1986a), Ahn and Powell (1993), and Powell (1994)].
Keeping X implicit, assuming that

(4.8)(U1, U0, V )⊥⊥ Z

42 Recall that the generalized Roy model has UC �≡ 0, whereas the extended Roy model sets UC = 0.
43 Recall that η = U1 − U0.
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(alternatively, assuming that (ε, η)⊥⊥ Z), we obtain

E(Y | D = 0, Z = z) = E(Y0 | D = 0, Z = z)

= α + E(U0 | zγ < V ),

where α and possibly E(U0 | zγ < V ) depend on X, which can be written as

E(Y | D = 0, Z = z) = α + K0
(
P(z)

)
,

where the functional form of K0 is produced from the distribution of (U0, V ).44 Fo-
cusing on means, the conventional selection approach models the conditional mean
dependence between (U0, U1) and V .

Similarly,

E(Y | D = 1, Z = z) = E(Y1 | D = 1, Z = z)

= α + β̄ + E(U1 | zγ � V )

= α + β̄ + K1
(
P(z)

)
,

where α, β̄ and K1(P (z)) may depend on X. K0(P (z)) and K1(P (z)) are control func-
tions in the sense of Heckman and Robb (1985a, 1986a). The control functions expect
out the unobservables θ that give rise to selection bias (see (U-1)). Under standard
conditions developed in the literature, analysts can identify β̄. Powell (1994) discusses
semiparametric identification. Because we condition on Z = z (or P(z)), correct
specification of the Z plays an important role in econometric selection methods. This
sensitivity to the full set of instruments in Z appears to be absent from the IV method.

If β is a constant (given X), or if η (= β − β̄) is independent of V , only one in-
strument from vector Z needs to be used to identify the parameter. Missing or unused
instruments play no role in identifying mean responses but may affect the efficiency of
the IV estimators. In a model where β is variable and not independent of V , misspeci-
fication of Z plays an important role in interpreting what IV estimates analogous to its
role in selection models. Misspecification of Z affects both approaches to identification.
This is a new phenomenon in models with heterogenous β. We now review results from
the recent literature on instrumental variables in the model with essential heterogeneity.

4.2. Instrumental variables and local instrumental variables

In this section, we use �MTE defined in Section 3 for a general nonseparable model
(3.1)–(3.3) to organize the literature on econometric evaluation estimators. In terms of
our simple regression model,

�MTE(x, uD) = E(� | X = x,UD = uD)

44 This representation is derived in Heckman (1980), Heckman and Robb (1985a, 1986a), Ahn and Powell
(1993) and Powell (1994).
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= E
(
β
∣∣ X = x, V = F−1

V (uD)
)

= β̄(x) + E(η | X = x, V = v),

where v = F−1
V (uD). We assume policy invariance in the sense of Hurwicz for mean

parameters (assumption (A-7)). For simplicity, we suppress the a and a′ subscripts that
indicate specific policies. We focus primarily on instrumental variable estimators and
review the method of local instrumental variables. Section 4.1 demonstrated in a simple
but familiar case that well established intuitions about instrumental variable identifica-
tion strategies break down when �MTE is nonconstant in uD given X (β ⊥�⊥D | X). We
acquire the probability of selection P(z) as a determinant of the IV covariance relation-
ships.

Two sets of instrumental variable conditions are presented in the current literature
for this more general case: those associated with conventional instrumental variable
assumptions, which are implied by the assumption of “no selection on heterogenous
gains”, (β ⊥⊥ D | X) and those which permit selection on heterogeneous gains. Neither
set of assumptions implies the other, nor does either identify the policy relevant treat-
ment effect or other economically interpretable parameters in the general case. Each set
of conditions identifies different treatment parameters.

In place of standard instrumental variables methods, Heckman and Vytlacil (1999,
2001b, 2005) advocate a new approach to estimating policy impacts by estimating
�MTE using local instrumental variables (LIV) to identify all of the treatment pa-
rameters from a generator �MTE that can be weighted in different ways to answer
different policy questions. For certain classes of policy interventions covered by as-
sumption (A-7) and analyzed in Section 6, �MTE possesses an invariance property
analogous to the invariant parameters of traditional structural econometrics.

4.2.1. Conditions on the MTE that justify the application of conventional instrumental
variables

In the general case where �MTE(x, uD) is nonconstant in uD (E(β | X = x, V = v)

depends on v), IV does not in general estimate any of the treatment effects defined in
Section 3. We consider a scalar instrument J (Z) constructed from Z which may be
vector-valued. We sometimes denote J (Z) by J , leaving implicit that J is a function
of Z. If Z is a vector, J (Z) can be one coordinate of Z, say Z1. We develop this partic-
ular case in presenting our examples.

The notation is sufficiently general to make J (Z) a general function of Z. The
standard conditions J (Z)⊥⊥ (U0, U1) | X and Cov(J (Z),D | X) �= 0 correspond-
ing to (IV-1) and (IV-2), respectively, do not, by themselves, imply that instrumental
variables using J (Z) as the instrument will identify conventional or policy relevant
treatment effects. When responses to treatment are heterogenous, we must supplement
the standard conditions to identify interpretable parameters. To link our analysis to
conventional analyses of IV, we continue to invoke familiar-looking representations of
additive separability of outcomes in terms of (U0, U1) so we invoke (2.2). This is not
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required. All derivations and results in this subsection hold without assuming additive
separability if μ1(x) and μ0(x) are replaced by E(Y1 | X = x) and E(Y0 | X = x),
respectively, and U1 and U0 are replaced by Y1 −E(Y1 | X) and Y0 −E(Y0 | X), respec-
tively. This highlights the point that all of our analysis of IV is conditional on X and X

need not be exogenous with respect to (U0, U1) to identify the MTE conditional on X.
To simplify the notation, we keep the conditioning on X implicit unless it is useful to
break it out separately.

Two distinct sets of instrumental variable conditions in the literature are those due
to Heckman and Robb (1985a, 1986a) and Heckman (1997), and those due to Imbens
and Angrist (1994) which we previously discussed. We review the conditions of Heck-
man and Robb (1985a, 1986a) and Heckman (1997) in Appendix L, which is presented
in the context of our discussion of matching in Section 8, where we compare IV and
matching. In the case where �MTE is nonconstant in uD , standard IV estimates dif-
ferent parameters depending on which assumptions are maintained. We have already
shown that when responses to treatment are heterogeneous, and choices are made on
the basis of this heterogeneity, standard IV does not identify μ1 − μ0 = β̄.

There are two important cases of the variable response model. The first case arises
when responses are heterogeneous, but conditional on X, people do not base their par-
ticipation on these responses. In this case, keeping the conditioning on X implicit,

(C-1) D ⊥⊥ � ⇒ E(� | UD) = E(�), �MTE(uD) is constant in uD and
�MTE = �ATE = �TT = �LATE, i.e., E(β | D = 1) = E(β), because
β ⊥⊥D.

In this case, all mean treatment parameters are the same. The second case arises when
selection into treatment depends on β:

(C-2) D ⊥�⊥� and E(� | UD) �= E(�) (i.e., β ⊥�⊥D).

In this case, �MTE is nonconstant, and in general, the treatment parameters differ among
each other. In this case (IV-1) and (IV-2) for general instruments do not identify β̄ (as
shown in Section 4.1) or E(β | D = 1).

A sufficient condition that generates (C-1) is the information condition that decisions
to participate in the program are not made on the basis of U1 −U0 (= η) (in the notation
of Section 4.1):

(I-1) Pr(D = 1 | Z,U1 − U0) = Pr(D = 1 | Z)

(i.e., Pr(D = 1 | Z, β) = Pr(D = 1 | Z)).45

45 Given the assumption that U1 − U0 is independent of Z (given X), (I-1) implies
E(U1 − U0 | Z,X,D = 1) = E(U1 − U0 | X) so that the weaker mean independence condition is certainly
satisfied:

(I-2) E(U1 − U0 | Z, X,D = 1) = E(U1 − U0 | X,D = 1),

which is generically necessary and sufficient for linear IV to identify �TT and �ATE.
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Before we investigate what standard instrumental variables estimators identify, we
first present the local instrumental variables estimator which directly estimates the
MTE. It is a limit form of LATE.

4.2.2. Estimating the MTE using local instrumental variables

Heckman and Vytlacil (1999, 2001b, 2005) develop the local instrumental variable
(LIV) estimator to recover �MTE pointwise. LIV is the derivative of the conditional
expectation of Y with respect to P(Z) = p. This is defined as

(4.9)�LIV(p) ≡ ∂E(Y | P(Z) = p)

∂p
.

It is the population mean response to a policy change embodied in changes in P(Z) an-
alyzed by Björklund and Moffitt (1987). E(Y | P(Z)) is well defined as a consequence
of assumption (A-4), and E(Y | P(Z)) can be recovered over the support of P(Z).46

Under our assumptions, LIV identifies MTE at all points of continuity in P(Z) (con-
ditional on X). This expression does not require additive separability of μ1(X,U1) or
μ0(X,U0).47

Under standard regularity conditions, a variety of nonparametric methods can be used
to estimate the derivative of E(Y | P(Z)) and thus to estimate �MTE. With �MTE in
hand, if the support of the distribution of P(Z) conditional on X is the full unit interval,
one can generate all the treatment parameters defined in Section 3 as well as the policy
relevant treatment parameter presented in Section 3.2 as weighted versions of �MTE.
When the support of the distribution of P(Z) conditional on X is not full, it is still pos-
sible to identify some parameters. Heckman and Vytlacil (2001b) show that to identify
ATE under assumptions (A-1)–(A-5), it is necessary and sufficient that the support of
the distribution of P(Z) include 0 and 1. Thus, identification of ATE does not require
that the distribution of P(Z) be the full unit interval or that the distribution of P(Z) be
continuous. But the support must include {0, 1}. Sharp bounds on the treatment para-
meters can be constructed under the same assumptions imposed in this chapter without
imposing full support conditions. The resulting bounds are simple and easy to apply

46 Assumptions (A-1), (A-3) and (A-4) jointly allow one to use Lebesgue’s theorem for the derivative of an

integral to show that E(Y | P(Z) = p) is differentiable in p. Thus we can recover ∂
∂p

E(Y | P(Z) = p)

for almost all p that are limit points of the support of the distribution of P(Z) (conditional on X = x).
For example, if the distribution of P(Z) conditional on X has a density with respect to Lebesgue measure,
then all points in the support of the distribution of P(Z) are limit points of that support and we can identify

�LIV(p) = ∂E(Y |P(Z)=p)
∂p

for p (almost everywhere).
47 Note, however, that it does require the assumption of additive separability between UD and Z in the latent
index for selection into treatment. Specifically, for LIV to identify MTE, we require additive separability in
the choice equation. See our discussion in Section 4.10.
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compared with those presented in the previous literature. We discuss these and other
bounds in Section 10.

To establish the relationship between LIV and ordinary IV based on P(Z) and to
motivate how LIV identifies �MTE, notice that from the definition of Y , the conditional
expectation of Y given P(Z) is, recalling that � = Y1 − Y0,

E
(
Y
∣∣ P(Z) = p

) = E
(
Y0
∣∣ P(Z) = p

)+ E
(
�
∣∣ P(Z) = p,D = 1

)
p,

where we keep the conditioning on X implicit. Our model and conditional independence
assumption (A-1) imply

E
(
Y
∣∣ P(Z) = p

) = E(Y0) + E(� | p � UD)p.

Applying the IV (Wald) estimator for two different values of P(Z), p and p′, for p �=
p′, we obtain:

E(Y | P(Z) = p) − E(Y | P(Z) = p′)
p − p′

(4.10)= �ATE + E(U1 − U0 | p � UD)p − E(U1 − U0 | p′ � UD)p′

p − p′ ,

where this particular expression is obtained under the assumption of additive separabil-
ity in the outcomes.48,49 Exactly the same equation holds without additive separability
if one replaces U1 and U0 with Y1 − E(Y1 | X) and Y0 − E(Y0 | X).

When U1 ≡ U0 or (U1 − U0)⊥⊥ UD (case (C-1)), IV based on P(Z) estimates �ATE

because the second term on the right-hand side of the expression (4.10) vanishes. Other-
wise, IV estimates a combination of MTE parameters which we analyze further below.

Assuming additive separability of the outcome equations, another representation of
E(Y | P(Z) = p) reveals the index structure. It writes (keeping the conditioning on X

implicit) that

E
(
Y
∣∣ P(Z) = p

)
(4.11)= E(Y0) + �ATEp +

∫ p

0
E(U1 − U0 | UD = uD) duD.

48 The Wald estimator is IV for two values of the instrument.
49 Observe that

E
(
Y
∣∣ P(z) = p

) = E
(
Y0 + D(Y1 − Y0)

∣∣ P(z) = p
)

= μ0 + E(Y1 − Y0 | P(z) = p,D = 1) Pr(D = 1 | Z)

= μ0 + (μ1 − μ0)p + E(U1 − U0 | p � UD)p.
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We can differentiate with respect to p and use LIV to identify �MTE:

�MTE(p) = ∂E(Y | P(Z) = p)

∂p
= �ATE + E(U1 − U0 | UD = p).50

Notice that IV estimates �ATE when E(Y | P(Z) = p) is a linear function of p so
the third term on the right-hand side of (4.11) vanishes. Thus a test of the linearity of
E(Y | P(Z) = p) in p is a test of the validity of linear IV for �ATE, i.e., it is a test
of whether or not the data are consistent with a correlated random coefficient model
(β ⊥�⊥D). The nonlinearity of E(Y | P(Z) = p) in p provides a way to distinguish
whether case (C-1) or case (C-2) describes the data. It is also a test of whether or not
agents can at least partially anticipate future unobserved (by the econometrician) gains
(the Y1 −Y0 given X) at the time they make their participation decisions. The levels and
derivatives of E(Y | P(Z) = p) and standard errors can be estimated using a variety
of semiparametric methods. Heckman, Urzua and Vytlacil (2006) present an algorithm
for estimating �MTE using local linear regression.51

This analysis generalizes to the nonseparable outcomes case. We use separability
in outcomes only to simplify the exposition and link to more traditional models. In
particular, exactly the same expression holds with exactly the same derivation for the
nonseparable case if we replace U1 and U0 with Y1 − E(Y1 | X) and Y0 − E(Y0 | X),
respectively. This simple test for the absence of general heterogeneity based on linearity
of E(Y | Z) in P(Z) applies to the case of LATE for any pair of instruments. An
equivalent way is to check that all pairwise LATEs are the same over the sample support
of Z.52

Figure 3A plots two cases of E(Y | P(Z) = p) based on the generalized Roy model
used to generate the example in Figures 2A and 2B. Recall that in this model, there
are unobserved components of cost. When �MTE (= E(β | X = x, V = v)) does
not depend on uD (or v) the expectation is a straight line. This is case (C-1). Fig-
ure 3B plots the derivatives of the two curves in Figure 3A. When �MTE depends
on uD (or v) (case (C-2)), people sort into the program being studied positively on
the basis of gains from the program, and one obtains the curved line depicted in Fig-
ure 3A.

50 Making the conditioning on X explicit, we obtain that E(Y | X = x, P (Z) = p) = E(Y0 | X = x) +
�ATE(x)p + ∫ p

0 E(U1 − U0 | X = x,UD = uD) duD , with derivative with respect to p given by

�MTE(x, p).
51 Thus, one can apply any one of the large number of available tests for a parametric null versus a non-
parametric alternative [see, e.g., Ellison and Ellison (1999), Zheng (1996)]. With regressors, the null is
nonparametric leaving E(Y | X = x, P (Z) = p) unspecified except for restrictions on the partial deriv-
atives with respect to p. In this case, the formal test is that of a nonparametric null versus a nonparametric
alternative, and a formal test of the null hypothesis can be implemented using the methodology of Chen and
Fan (1999).
52 Note that it is possible that E(Y | Z) is linear in P(Z) only over certain intervals of UD , so there can be
local dependence and local independence of (U0, U1, UD).
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Figure 3A. Plot of the E(Y | P(Z) = p). Source: Heckman and Vytlacil (2005).

4.3. What does linear IV estimate?

It is instructive to determine what linear IV estimates when �MTE is nonconstant and
conditions (A-1)–(A-5) hold. We analyze the general nonseparable case. We consider
instrumental variables conditional on X = x using a general function of Z as an instru-
ment. We then specialize our result using P(Z) as the instrument. As before, let J (Z)

be any function of Z such that Cov(J (Z),D) �= 0. Define the IV estimator:

βIV(J ) ≡ Cov(J (Z), Y )

Cov(J (Z),D)
,

where to simplify the notation we keep the conditioning on X implicit. Appendix D
derives a representation of this expression in terms of weighted averages of the MTE
displayed in Table 2B. We exposit this expression in this section.

In Appendix D, we establish that

Cov
(
J (Z), Y

)

(4.12)

=
∫ 1

0
�MTE(uD)E

(
J (Z) − E

(
J (Z)

) ∣∣ P(Z) � uD

)
Pr
(
P(Z) � uD

)
duD.
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Figure 3B. Plot of the identified marginal treatment effect from Figure 3A (the derivative). Source: Heckman
and Vytlacil (2005). Note: Parameters for the general heterogeneous case are the same as those used in Fig-

ures 2A and 2B. For the homogeneous case we impose U1 = U0 (σ1 = σ2 = 0.012).

By the law of iterated expectations, Cov(J (Z),D) = Cov(J (Z), P (Z)). Thus

βIV(J ) =
∫ 1

0
�MTE(uD)ωIV(uD | J ) duD,

where

(4.13)ωIV(uD | J ) = E(J (Z) − E(J (Z)) | P(Z) � uD) Pr(P (Z) � uD)

Cov(J (Z), P (Z))
,

assuming the standard rank condition (IV-2) holds: Cov(J (Z), P (Z)) �= 0. The weights
integrate to one,

∫ 1

0
ωIV(uD | J ) duD = 1,
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Figure 4A. MTE vs. linear instrumental variables, ordinary least squares, and policy relevant treatment effect
weights: when P(Z) is the instrument. The policy is given at the base of Table 3. The model parameters are

given at the base of Figure 2. Source: Heckman and Vytlacil (2005).

and can be constructed from the data on P(Z), J (Z) and D. Assumptions about the
properties of the weights are testable.53

We discuss additional properties of the weights for the special case where the propen-
sity score is the instrument J (Z) = P(Z). We then analyze the properties of the weights
for a general instrument J (Z). When J (Z) = P(Z), Equation (4.13) specializes to

ωIV
(
uD

∣∣ P(Z)
) = [E(P (Z) | P(Z) � uD) − E(P (Z))] Pr(P (Z) � uD)

Var(P (Z))
.

Figure 4A plots the IV weight for J (Z) = P(Z) and the MTE for our generalized
Roy model example developed in Figures 2 and 3 and Table 3. The weights are positive
and peak at the mean of P . Figure 4A also plots the OLS weight given in Table 2 and
the weight for a policy exercise described below Table 3 and discussed further below.

53 Expressions for IV and OLS as weighted averages of marginal response functions, and the properties and
construction of the weights, were first derived by Yitzhaki in 1989 in a paper that was eventually published
in 1996 [see Yitzhaki (1996)]. Under monotonicity (IV-3), his expression is a weighted average of MTEs or
LATEs. We present Yitzhaki’s derivation in Appendix D.
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Let pMin and pMax denote the minimum and maximum points in the support of the
distribution of P(Z) (conditional on X = x). The weights on MTE when P(Z) is
the instrument are nonnegative for all evaluation points, are strictly positive for uD ∈
(pMin, pMax) and are zero for uD < pMin and for uD > pMax.54

The properties of the weights for general J (Z) depend on the conditional relationship
between J (Z) and P(Z). From the general expression for (4.13), it is clear that the IV
estimator with J (Z) as an instrument satisfies the following properties:

(i) Two instruments J and J ∗ weight MTE equally at all values of uD if and only
if they have the same (centered) conditional expectation of J given P , i.e.,
E(J | P(Z) = p) − E(J ) = E(J ∗ | P(Z) = p) − E(J ∗) for all p in the
support of the distribution of P(Z).

(ii) The support of ωIV(uD | J ) is contained in [pMin, pMax] the minimum and
maximum value of p in the population (given x). Therefore ωIV(t | J ) = 0
for t < pMin and for t > pMax. Using any instrument other than P(Z) leads to
nonzero weights only on a subset of [pMin, pMax], and using the propensity score
as an instrument leads to nonnegative weights on a larger range of evaluation
points than using any other instrument.

(iii) ωIV(uD | J ) is nonnegative for all uD if E(J | P(Z) � p) is weakly monotonic
in p. Using J as an instrument yields nonnegative weights on �MTE if
E(J | P(Z) � p) is weakly monotonic in p. This condition is satisfied when
J (Z) = P(Z). More generally, if J is a monotonic function of P(Z), then us-
ing J as the instrument will lead to nonnegative weights on �MTE. There is no
guarantee that the weights for a general J (Z) will be nonnegative for all uD , al-
though the weights integrate to unity and thus must be positive over some range
of evaluation points. We produce examples below where the instrument leads to
negative weights for some evaluation points. Imbens and Angrist (1994) assume
that J (Z) is monotonic in P(Z) and thus produce positive weights. Our analysis
is more general.

54 For uD evaluation points between pMin and pMax, uD ∈ (pMin, pMax), we have that

E
(
P(Z)

∣∣ P(Z) � uD

)
> E

(
P(Z)

)
and Pr

(
P(Z) � uD

)
> 0,

so that ωIV(uD | P(Z)) > 0 for any uD ∈ (pMin, pMax). For uD < pMin,

E
(
P(Z)

∣∣ P(Z) � uD

) = E
(
P(Z)

)
.

For any uD > pMax, Pr(P (Z) � uD) = 0. Thus, ωIV(uD | P(Z)) = 0 for any uD < pMin and for any
uD > pMax. ωIV(uD | P(Z)) is strictly positive for uD ∈ (pMin, pMax), and is zero for all uD < pMin

and all uD > pMax. Whether the weights are nonzero at the endpoints depends on the distribution of P(Z).
However, since the weights are defined for integration with respect to Lebesgue measure, the value taken by
the weights at pMin and pMax does not affect the value of the integral.
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The propensity score plays a central role in determining the properties of the weights.
The IV weighting formula critically depends on the conditional mean dependence be-
tween instrument J (Z) and the propensity score.

The interpretation placed on the IV estimand depends on the specification of P(Z)

even if only Z1 (e.g., the first coordinate of Z) is used as the instrument. This drives
home the point about the difference between IV in the traditional model and IV in
the more general model with heterogeneous responses analyzed in this chapter. In the
traditional model, the choice of any valid instrument and the specification of instru-
ments in P(Z) not used to construct a particular IV estimator does not affect the IV
estimand. In the more general model, these choices matter. Two economists, using the
same J (Z) = Z1, will obtain the same IV point estimate, but the interpretation placed
on that estimate will depend on the specification of the Z in P(Z) even if P(Z) is not
used as an instrument. The weights can be positive for one instrument and negative for
another. We show some examples after developing the properties of the IV weights.

4.3.1. Further properties of the IV weights

Expression (4.13) for the weights does not impose any support conditions on the distri-
bution of P(Z), and thus does not require either that P(Z) be continuous or discrete.
To demonstrate this, consider two extreme special cases: (i) when P(Z) is a continuous
random variable, and (ii) when P(Z) is a discrete random variable.

To simplify the exposition, initially assume that J (Z) and P(Z) are jointly continu-
ous random variables. This assumption plays no essential role in any of the results of
this chapter and we develop the discrete case after developing the continuous case. The
weights defined in Equation (4.13) can be written as

(4.14)ωIV(uD) =
∫
(j − E(J (Z)))

∫ 1
uD

fJ,P (j, t) dt dj

Cov(J (Z),D)
,

where fJ,P is the joint density of J (Z) and P(Z) and we implicitly condition on X.
The weights can be negative or positive. Observe that ω(0) = 0 and ω(1) = 0. The
weights integrate to 1 because as shown in Appendix D,∫∫ (

j − E
(
J (Z)

)) ∫ 1

uD

fJ,P (j, t) dt dj duD = Cov
(
J (Z),D

)
,

so even if the weight is negative over some intervals, it must be positive over other
intervals. Observe that when there is one instrument (Z is a scalar), and assumptions
(A-1)–(A-5) are satisfied, the weights are always positive provided J (Z) is a monotonic
function of the scalar Z. In this case, which is covered by (4.13) but excluded in deriving
(4.14), J (Z) and P(Z) have the same distribution and fJ,P (j, t) collapses to a univari-
ate distribution. The possibility of negative weights arises when J (Z) is not a monotonic
function of P(Z). It also arises when there are two or more instruments, and the analyst
computes estimates with only one instrument or a combination of the Z instruments that
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is not a monotonic function of P(Z) so that J (Z) and P(Z) are not perfectly dependent.
If the instrument is P(Z) (so J (Z) = P(Z)) then the weights are everywhere nonneg-
ative because from (4.14), E(P (Z) | P(Z) > uD) − E(P (Z)) � 0. In this case, the
density of (P(Z), J (Z)) collapses to the density of P(Z). For any scalar Z, we can de-
fine J (Z) and P(Z) so that they are perfectly dependent, provided that J (Z) and P(Z)

are monotonic in Z. Generally, the weight (4.13) is positive if E(J (Z) | P(Z) > uD)

is weakly monotonic in uD . Nonmonotonicity of this expression can produce negative
weights.55

4.3.2. Constructing the weights from data

Observe that the weights can be constructed from data on (J, P,D). Data on
(J (Z), P (Z)) pairs and (J (Z),D) pairs (for each X value) are all that is required.
We can use a smoothed sample frequency to estimate the joint density fJ,P . Thus,
given our maintained assumptions, any property of the weight, including its positivity
at any point (x, uD), can be examined with data. We present examples of this approach
below.

As is evident from Tables 2A and 2B and Figures 2A and 2B, the weights on
�MTE(uD) generating �IV are different from the weights on �MTE(uD) that generate
the average treatment effect which is widely regarded as an important policy parame-
ter [see, e.g., Imbens (2004)] or from the weights associated with the policy relevant
treatment parameter which answers well-posed policy questions [Heckman and Vytlacil
(2001b, 2005)]. It is not obvious why the weighted average of �MTE(uD) produced by
IV is of any economic interest. Since the weights can be negative for some values of
uD , �MTE(uD) can be positive everywhere in uD but IV can be negative. Thus, IV may
not estimate a treatment effect for any person. We present some examples of IV models
with negative weights below. A basic question is why estimate the model with IV at all
given the lack of any clear economic interpretation of the IV estimator in the general
case.

4.3.3. Discrete instruments

The representation (4.13) can be specialized to cover discrete instruments, J (Z). Con-
sider the case where the distribution of P(Z) (conditional on X) is discrete. The support
of the distribution of P(Z) contains a finite number of values p1 < p2 < · · · < pK

and the support of the instrument J (Z) is also discrete taking I distinct values where
I and K may be distinct. E(J (Z) | P(Z) � uD) is constant in uD , for uD within any
(p�, p�+1) interval, and Pr(P (Z) � uD) is constant in uD , for uD within any (p�, p�+1)

interval, and thus ωJ
IV(uD) is constant in uD over any (p�, p�+1) interval. Let λ� denote

55 If it is weakly monotonically increasing, the claim is evident from (4.13). If it is decreasing, the sign of the
numerator and the denominator are both negative so the weight is nonnegative.
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the weight on LATE for the interval (�, � + 1). In this notation,

�IV
J =

∫
E(Y1 − Y0 | UD = uD)ωJ

IV(uD) duD

=
K−1∑
�=1

λ�

∫ p�+1

p�

E(Y1 − Y0 | UD = uD)
1

(p�+1 − p�)
duD

(4.15)=
K−1∑
�=1

�LATE(p�, p�+1)λ�.

Let ji be the ith smallest value of the support of J (Z). The discrete version of Equa-
tion (4.13) is

(4.16)λ� =
∑I

i=1(ji − E(J (Z)))
∑K

t>�(f (ji, pt ))

Cov(J (Z),D)
(p�+1 − p�),

where f is the probability frequency of (ji, pt ): the probability that J (Z) = ji and
P(Z) = pt . There is no presumption that high values of J (Z) are associated with high
values of P(Z). J (Z) can be one coordinate of Z that may be positively or negatively
dependent on P(Z), which depends on the full vector. In the case of scalar Z, as long
as J (Z) and P(Z) are monotonic in Z there is perfect dependence between J (Z) and
P(Z). In this case, the joint probability density collapses to a univariate density and the
weights have to be positive, exactly as in the case for continuous instruments previously
discussed. Our expression for the weight on LATE generalizes the expression presented
by Imbens and Angrist (1994) who in their analysis of the case of vector Z only consider
the case where J (Z) and P(Z) are perfectly dependent because J (Z) is a monotonic
function of P(Z).56 More generally, the weights can be positive or negative for any �

but they must sum to 1 over all �.
Monotonicity or uniformity is a property needed with just two values of Z, Z = z1

and Z = z2, to guarantee that IV estimates a treatment effect. With more than two
values of Z, we need to weight the LATEs and MTEs. If the instrument J (Z) shifts
P(Z) in the same way for everyone, it shifts D in the same way for everyone since
D = 1[P(Z) � UD] and Z is independent of UD . If J (Z) is not monotonic in P(Z), it
may shift P(Z) in different ways for different people. Negative weights are a tip-off of
two-way flows. We present examples below.

4.3.4. Identifying margins of choice associated with each instrument and unifying
diverse instruments within a common framework

We have just established that different instruments weight the MTE differently. Using
P(Z) in the local IV estimator, we can identify the MTE. We can construct the weights

56 In their case, I = K and f (ji , pt ) = 0, ∀i �= t .
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associated with each instrument from the joint distribution of (J (Z), P (Z)) given X.
By plotting the weights for each instrument, we can determine the margins identified
by the different instruments. Using P(Z) as the instrument enables us to extend the
support associated with any single instrument, and to determine which segment of the
MTE is identified by any particular instrument. As before, we keep conditioning on X

implicit.

4.3.5. Yitzhaki’s derivation of the weights

An alternative and in some ways more illuminating way to derive the weights used in
IV is to follow Yitzhaki (1989, 1996) and Yitzhaki and Schechtman (2004) who prove
for a general regression function E(Y | P(Z) = p) that a linear regression of Y on P

estimates

βY,P =
∫ 1

0

[
∂E(Y | P(Z) = p)

∂p

]
ω(p) dp,

where

ω(p) =
∫ 1
p
(t − E(P )) dFP (t)

Var(P )
,

which is exactly the weight (4.13) when P is the instrument. Thus we can interpret
(4.13) as the weight on ∂E(Y |P(Z)=p)

∂p
when two-stage least squares (2SLS) based on

P(Z) is used to estimate the “causal effect” of D on Y . Under uniformity,

∂E(Y | P(Z) = p)

∂p

∣∣∣∣
p=uD

= E(Y1 − Y0 | UD = uD) = �MTE(uD).57

Our analysis is more general than that of Yitzhaki (1989) or Imbens and Angrist (1994)
because we allow for instruments that are not monotonic functions of P(Z), whereas
the Yitzhaki weighting formula only applies to instruments that are monotonic func-
tions of P(Z).58 The analysis of Yitzhaki (1989) is more general than that of Imbens
and Angrist (1994), because he does not impose uniformity (monotonicity). We present
some further examples of these weights after discussing the role of P(Z) and the role
of monotonicity and uniformity. We present Yitzhaki’s Theorem and the relationship of
our analysis to Yitzhaki’s analysis in Appendices D.1 and D.2.

57 Yitzhaki’s weights are used by Angrist and Imbens (1995) to interpret what 2SLS estimates in the model
of Equation (4.1) with heterogeneous β. Yitzhaki (1989) derives the finite sample weights used by Imbens
and Angrist. See the refinement in Yitzhaki and Schechtman (2004).
58 Heckman and Vytlacil (2001b) generalize the Yitzhaki analysis of the IV weights by relaxing separability
(monotonicity).
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4.4. The central role of the propensity score

Observe that both (4.13) and (4.14) (and their counterparts for LATE (4.15) and (4.16))
contain expressions involving the propensity score P(Z), the probability of selection
into treatment. Under our assumptions, it is a monotonic function of the mean utility of
treatment, μD(Z). The propensity score plays a central role in selection models as a de-
terminant of control functions in selection models [Heckman and Robb (1985a, 1986a)]
as noted in Section 4.1. In matching models, it provides a computationally convenient
way to condition on Z [see, e.g., Rosenbaum and Rubin (1983), Heckman and Navarro
(2004), and the discussion in Section 8]. For the IV weight to be correctly constructed
and interpreted, we need to know the correct model for P(Z), i.e., we need to know
exactly which Z determine P(Z). As previously noted, this feature is not required in
the traditional model for instrumental variables based on response heterogeneity. In that
simpler framework, any instrument will identify μ1(X)−μ0(X) and the choice of a par-
ticular instrument affects efficiency but not identifiability. One can be casual about the
choice model in the traditional setup, but not in the model of choice of treatment with
essential heterogeneity. Thus, unlike the application of IV to traditional models under
condition (C-1), IV applied in the model of essential heterogeneity depends on (a) the
choice of the instrument J (Z), (b) its dependence with P(Z), the true propensity score
or choice probability, and (c) the specification of the propensity score (i.e., what vari-
ables go into Z). Using the propensity score one can identify LIV and LATE and the
marginal returns at values of the unobserved UD . From the MTE identified by P(Z) and
the weights that can be constructed from the joint distribution of (J (Z), P (Z)) given X,
we can identify the segment of the MTE identified by any IV.

4.5. Monotonicity, uniformity and conditional instruments

Monotonicity, or uniformity condition (IV-3), is a condition on a collection of coun-
terfactuals for each person and hence is not testable, since we know only one element
of the collection for any person. It rules out general heterogeneous responses to treat-
ment choices in response to changes in vector Z. The recent literature on instrumental
variables with heterogeneous responses is thus asymmetric. Outcome equations can be
heterogeneous in a general way while choice equations cannot be. If μD(Z) = Zγ ,
where γ is a common coefficient shared by everyone, the choice model satisfies the
uniformity property. On the other hand, if γ is a random coefficient (i.e., has a nonde-
generate distribution) that can take both negative and positive values, and there are two
or more variables in Z with nondegenerate γ coefficients, uniformity can be violated.
Different people can respond to changes in Z differently, so there can be nonuniformity.
The uniformity condition can be violated even when all components of γ are of the
same sign if Z is a vector and γ is a nondegenerate random variable.59

59 Thus if γ > 0 for each component and some components of Z are positive and others are negative, changes
from z′ to z can increase γZ for some and decrease γZ for others since the γ are different among persons.
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Changing one coordinate of Z, holding the other coordinates at different values across
people is not the experiment that defines monotonicity or uniformity. Changing one
component of Z, allowing the other coordinates of Z to vary across people, does not
necessarily produce uniform flows toward or against participation in the treatment sta-
tus. For example, let μD(z) = γ0 + γ1z1 + γ2z2 + γ3z1z2, where γ0, γ1, γ2 and γ3 are
constants, and consider changing z1 from a common base state while holding z2 fixed
at different values across people. If γ3 < 0, then μD(z) does not necessarily satisfy the
uniformity condition. If we move (z1, z2) as a pair from the same base values to the
same destination values z′, uniformity is satisfied even if γ3 < 0, although μD(z) is not
a monotonic function of z.60

Positive weights and uniformity are distinct issues.61 Under uniformity, and assump-
tions (A-1)–(A-5), the weights on MTE for any particular instrument may be positive or
negative. The weights for MTE using P(Z) must be positive as we have shown so the
propensity score has a special status as an instrument. Negative weights associated with
the use of J (Z) as an instrument do not necessarily imply failure of uniformity in Z.
Even if uniformity is satisfied for Z, it is not necessarily satisfied for J (Z). Condition
(IV-3) is an assumption about a vector. Fixing one combination of Z (when J is a func-
tion of Z) or one coordinate of Z does not guarantee uniformity in J even if there is
uniformity in Z. The flow created by changing one coordinate of Z can be reversed by
the flow created by the other components of Z if there is negative dependence among
components even if ceteris paribus all components of Z affect D in the same direction.
We present some examples below.

The issues of positive weights and the existence of one way flows in response to an
intervention are conceptually distinct. Even with two values for a scalar Z, flows may
be two way [see Equation (4.5)]. If we satisfy (IV-3) for a vector, so uniformity applies,
weights for a particular instrument may be negative for certain intervals of UD (i.e., for
some of the LATE parameters).

60 Associated with Z = z is the counterfactual random variable D(z). Associated with the scalar ran-
dom variable J (Z) constructed from Z is a counterfactual random variable D(j (z)) which is in general
different from D(z). The random variable D(z) is constructed from (3.3) using 1[μD(z) � V ]. In this ex-
pression, V assumes individual specific values which remain fixed as we set different z values. From (A-1),
Pr(D(z) = 1) = Pr(D = 1 | Z = z). The random variable D(j) is defined by the following thought exper-
iment. For each possible realization j of J (Z), define D(j) by setting D(j) = D(Z(j)) where Z(j) is a
random draw from the distribution of Z conditional on J (Z) = j . Set D(j) equal to the choice that would be
made given that draw of Z(j). Thus D(j) is a function of (Z(j), uD). As long as we draw Z(j) randomly (so
independent of Z), we have that (Z(j), UD) ⊥⊥ Z so D(j)⊥⊥Z. There are other possible constructions of the
counterfactual D(j) since there are different possible distributions from which Z can be drawn, apart from
the actual distribution of Z. The advantage of this construction is that it equates the counterfactual probability
that D(j) = 1 given J (Z) = j with the population probability. If the Z were uncertain to the agent, this
would be a rational expectations assumption. At their website, Heckman, Urzua and Vytlacil (2006) discuss
this assumption further.
61 When they analyze the vector case, Imbens and Angrist (1994) analyze instruments that are monotonic
functions of P(Z). Our analysis is more general and recognizes that, in the vector case, IV weights may be
negative or positive.
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If we condition on Z2 = z2, . . . , ZK = zK using Z1 as an instrument, then a
uniform flow condition is satisfied. We call this conditional uniformity. By conditioning,
we effectively convert the problem back to that of a scalar instrument where the weights
must be positive. If uniformity holds for Z1, fixing the other Z at common values, then
one-dimensional LATE/MTE analysis applies. Clearly, the weights have to be defined
conditionally.

The concept of conditioning on other instruments to produce positive weights for the
selected instrument is a new idea, not yet appreciated in the empirical IV literature and
has no counterpart in the traditional IV model. In the conventional model, the choice of
a valid instrument affects efficiency but not the definition of the parameters as it does in
the more general case.62

In summary, nothing in the economics of choice guarantees that if Z is changed
from z to z′, that people respond in the same direction to the change. See the general
expression (4.5). The condition that people respond to choices in the same direction
for the same change in Z does not imply that D(z) is monotonic in z for any person
in the usual mathematical usage of the term monotonicity. If D(z) is monotonic in the
usual usage of this term and responses are in the same direction for all people, then
“monotonicity” or better “uniformity” condition (IV-3) would be satisfied.

If responses to a common change of Z are heterogenous in a general way, we ob-
tain (4.5) as the general case. Vytlacil’s 2002 Theorem breaks down and IV cannot be
expressed in terms of a weighted average of MTE terms. Nonetheless, Yitzhaki’s char-
acterization of IV, derived in Appendix D, remains valid and the weights on ∂E(Y |P=p)

∂p
are positive and of the same form as the weights obtained for MTE (or LATE) when
the monotonicity condition holds. IV can still be written as a weighted average of LIV
terms, even though LIV does not identify the MTE.

4.6. Treatment effects vs. policy effects

Even if uniformity condition (IV-3) fails, IV may answer relevant policy questions.
By Yitzhaki’s analysis, summarized in Section 4.3.5, IV or 2SLS estimates a weighted
average of marginal responses which may be pointwise positive or negative. Policies
may induce some people to switch into and others to switch out of choices, as is evident
from Equation (4.5). These net effects are of interest in many policy analyses. Thus,
subsidized housing in a region supported by higher taxes may attract some to migrate to
the region and cause others to leave. The net effect from the policy is all that is required
to perform cost benefit calculations of the policy on outcomes. If the housing subsidy is
the instrument, and the net effect of the subsidy is the parameter of interest, the issue of
monotonicity is a red herring. If the subsidy is exogenously imposed, IV estimates the

62 In the conventional model, with homogenous responses, a linear probability approximation to P(Z) used
as an instrument would identify the same parameter as P(Z). In the general model, replacing P(Z) by a linear
probability approximation of it (e.g., E(D | Z) = πZ = J (Z)) is not guaranteed to produce positive weights
for �MTE(x, uD) or �LATE(x, u′

D
, uD), or to replicate the weights based on the correctly specified P(Z).
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net effect of the policy on mean outcomes. Only if the effect of migration on outcomes
induced by the subsidy on outcomes is the question of interest, and not the effect of the
subsidy, does uniformity emerge as an interesting condition.

4.7. Some examples of weights in the generalized Roy model and the extended Roy
model

It is useful to develop intuition about the properties of the IV estimator and the structure
of the weights for two prototypical choice models. We develop the weights for a gener-
alized Roy model where unobserved cost components are present and an extended Roy
model where cost components are observed but there are no unobserved cost compo-
nents. The extended Roy model is used to generate Figure 1 and was introduced at the
end of Section 2.

Table 3 presents the IV estimand for the generalized Roy model used to generate Fig-
ures 2A and 2B using P(Z) as the instrument. The model generating D = 1[Zγ � V ]
is given at the base of Figure 2B (Z is a scalar, γ is 1, V is normal, UD = Φ( V

σV
)). We

compare the IV estimand with the policy relevant treatment effect for a policy precisely
defined at the base of Table 3. This policy has the structure that if Z > 0, persons get a
bonus Zt for participation in the program, where t > 0. The decision rule for program
participation for Z > 0 is D = 1[Z(1+t) � V ]. People are not forced into participation
in the program but are rather induced into it by the bonus. Given the assumed distribu-
tion of Z, and the other parameters of the model, we obtain the policy relevant treatment
parameter weight ωPRTE(uD) as plotted in Figures 4A–4C (the scales of the ordinates
differ across the graphs, but the weight is the same). We use the per capita PRTE and
consider three instruments. Table 5 presents estimands for the three instruments shown
in the table for the generalized Roy model in three environments.

The first instrument we consider for this example is P(Z), which assumes that there
is no policy in place (t = 0). It is identified (estimated) on a sample with no pol-
icy in place but otherwise the model is the same as the one with the policy in place.
The weight on this instrument is plotted in Figure 4A. That figure also displays the
OLS weight as well as the MTE that is being weighted to generate the estimate. It also
shows the weight used to generate PRTE. The IV weights for P(Z) and the weights
for �PRTE differ. This is as it should be because �PRTE is making a comparison across
regimes but the IV in this case makes comparisons within a no policy regime. Given
the shape of �MTE(uD), it is not surprising that the estimand for IV based on P(Z) is
so much above the �PRTE which weights a lower-valued segment of �MTE(uD) more
heavily.63

The second instrument we consider exploits the variation induced by the policy in
place and fits it on samples where the policy is in place (i.e., the t is the same as that

63 Heckman and Vytlacil (2005) show how to construct the proper instrument for such policies using a pre-
policy sample.
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Figure 4B. MTE vs. linear IV with P(Z(1 + t (1[Z > 0]))) = P̃ (z, t) as an instrument, and policy relevant
treatment effect weights for the policy defined at the base of Table 3. The model parameters are given at the

base of Figure 2. Source: Heckman and Vytlacil (2005).

used to generate the PRTE). On intuitive grounds, this instrument might be thought to
work well in identifying the PRTE, but in fact it does not. The instrument is P̃ (Z, t) =
P(Z(1 + t1[Z > 0])) which jumps in value when Z switches from Z < 0 to Z > 0.
This is the choice probability in the regime with the policy in place. Figure 4B plots the
weight for this IV along with the weight for P(Z) as an IV and the weight for PRTE
(repeated from Figure 4A).64 While this weight looks a bit more like the weight for
�PRTE than the previous instrument, it is clearly different.

Figure 4C plots the weight for an ideal instrument for PRTE: a randomization of
eligibility. This compares the outcomes in one population where the policy is in place
with outcomes in a regime where the policy is not in place. Thus we use an instrument
B such that

B =
{

1 if a person is eligible to participate in the program,

0 otherwise.
Persons for whom B = 1, make their participation choices under the policy with a
jump in Z, t1(Z > 0), in their choice sets.65 If B = 0, persons are embargoed from

64 Remember that the scales are different across the two graphs.
65 Recall that, in this example, we set γ = 1.
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Figure 4C. MTE vs. IV policy and policy relevant treatment effect weights for the policy defined at the base
of Table 3. Source: Heckman and Vytlacil (2005).

the policy and cannot receive a bonus. The B = 0 case is a prepolicy regime. We
assume Pr[B = 1 | Y0, Y1, V , Z] = Pr[B = 1] = 0.5, so all persons are equally likely
to receive or not receive eligibility for the bonus and assignment does not depend on
model unobservables in the outcome equation.

The Wald estimator in this case is

E(Y | B = 1) − E(Y | B = 0)

Pr(D = 1 | B = 1) − Pr(D = 1 | B = 0)
.

Table 5
Linear instrumental variable estimands and the policy relevant treatment effect

Using propensity score P(Z) as the instrument 0.2013
Using propensity score P(Z(1 + t (1[Z > 0]))) as the instrument 0.1859
Using a dummy B as an instrumenta 0.1549
Policy relevant treatment effect (PRTE) 0.1549

Source: Heckman and Vytlacil (2005).
aThe dummy B is such that B = 1 if an individual belongs to a randomly assigned
eligible population, 0 otherwise.
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The IV weight for this estimator is a special case of Equation (4.13):

ωIV(uD | B) = E(B − E(B) | P̂ (Z) � uD) Pr(P̂ (Z) � uD)

Cov(B, P̂ (Z))
,

where P̂ (Z) = P(Z(1+t1[Z > 0]))BP (Z)(1−B). Here, the IV is eligibility for a policy
and IV is equivalent to a social experiment that identifies the mean gain per participant
who switches to participation in the program. It is to be expected that this IV weight
and ωPRTE are identical.

4.7.1. Further examples within the extended Roy model

To gain a further understanding of how to construct the weights, and to understand how
negative weights can arise, it is useful to return to the policy adoption model presented at
the end of Section 2. The only unobservables in this model are in the outcome equations.
To simplify the analysis, we use an extended Roy model where the only unobservables
are the unmeasured gains.

In this framework, the cost C of adopting the policy is the same across all countries.
Countries choose to adopt the policy if D∗ > 0 where D∗ is the net benefit of adoption:
D∗ = (Y1 − Y0 − C) and ATE = E(β) = E(Y1 − Y0) = μ1 − μ0, while treatment on
the treated is E(β | D = 1) = E(Y1 −Y0 | D = 1) = μ1 −μ0 +E(U1 −U0 | D = 1).

In this setting, the gross return to the country at the margin is C, i.e., E(Y1 − Y0 |
D∗ = 0) = E(Y1 − Y0 | Y1 − Y0 = C) = C. Recall that Figure 1 presents the standard
treatment parameters for the values of the choice parameter presented at the base of
the figure. Countries that adopt the policy are above average. In a model where the
cost varies (the generalized Roy model with UC �= 0), and C is negatively correlated
with the gain, adopting countries could be below average.66 We consider cases with
discrete instruments and cases with continuous instruments. We first turn to the discrete
case.

4.7.2. Discrete instruments and weights for LATE

Consider what instrumental variables identify in the model of country policy adoption
presented below Figure 5. That figure presents three cases that we analyze in this sec-
tion. Let cost C = Zγ where instrument Z = (Z1, Z2). Higher values of Z reduce the
probability of adopting the policy if γ � 0, component by component.

Consider the “standard” case depicted in Figure 5A. Increasing both components of
discrete-valued Z raises costs and hence raises the benefit observed for the country at the
margin by eliminating adoption in low return countries. It also reduces the probability
that countries adopt the policy. In general a different country is at the margin when
different instruments are used.

66 See, e.g., Heckman (1976a, 1976c) and Willis and Rosen (1979).
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Figure 5. Monotonicity: The extended Roy economy. Source: Heckman, Urzua and Vytlacil (2006).



4936 J.J. Heckman and E.J. Vytlacil

Outcomes Choice model
Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ � 0,

0 if Y1 − Y0 − γZ < 0

with γZ = γ1Z1 + γ2Z2

Y0 = α + U0

Parameterization

(U1, U0) ∼ N(0, Σ), Σ =
[

1 −0.9
−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}
A. Standard case B. Changing Z1 without

controlling for Z2

C. Random coefficient case

z → z′ z → z′ or z → z′′ z → z′
z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and

z′′ = (1, −1)

z = (0, 1) and z′ = (1, 1)

γ is a random vector
γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γ z) � D(γ z′) D(γ z) � D(γ z′) or
D(γ z) < D(γ z′′)

D( ˜̃γ z) � D( ˜̃γ z′) and D(γ̃ z) < D(γ̃ z′)

For all individuals Depending on the value
of z′ or z′′

Depending on value of γ

Figure 5. (Continued)

Figure 6A plots the weights and Figure 6B plots the components of the weights for
the LATE values using P(Z) as an instrument for the distribution of discrete Z values
shown at the base of the figure. Figure 6C presents the LATE parameter derived using
P(Z) as an instrument. The weights are positive as predicted from Equation (4.5) when
J (Z) = P(Z). Thus, the monotonicity condition for the weights in terms of uD is
satisfied. The outcome and choice parameters are the same as those used to generate
Figures 1 and 5. The LATE parameters for each interval of P values are presented in a
table just below the figures. There are four LATE parameters corresponding to the five
distinct values of the propensity score for that value. The LATE parameters exhibit the
declining pattern with uD predicted by the Roy model.

A case producing negative weights is depicted in Figure 5B. In that graph, the same
Z is used to generate the choices as is used to generate Figure 1B. However, in this
case, the analyst uses Z1 as the instrument. Z1 and Z2 are negatively dependent and
E(Z1 | P(Z) > uD) is not monotonic in uD . This nonmonotonicity is evident in
Figure 7B. It produces the pattern of negative weights shown in Figure 7A. These are
associated with two way flows. Increasing Z1 controlling for Z2 reduces the probability
of country policy adoption. However, we do not condition on Z2 in constructing this
figure. Z2 is floating. Two way flows are induced by uncontrolled variation in Z2. For
some units, the strength of the associated variation in Z2 offsets the increase in Z1 and
for other units it does not. Observe that the LATE parameters defined using P(Z) are
the same in both examples. They are just weighted differently. We discuss the random
coefficient choice model generating Figure 5C in Section 4.10.
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Figure 6. IV weights and its components under discrete instruments when P(Z) is the instrument, the ex-
tended Roy economy. Source: Heckman, Urzua and Vytlacil (2006).

The IV estimator does not identify ATE, TT or TUT (given at the bottom of Fig-
ure 6C). Conditioning on Z2 produces positive weights. This is illustrated in the weights
shown in Table 6 that condition on Z2 using the same model that generated Figure 6.
Conditioning on Z2 effectively converts the problem back into one with a scalar instru-
ment and the weights are positive for that case.

From Yitzhaki’s analysis, for any sample size, a regression of Y on P identifies a
weighted average of slopes based on ordered regressors:

E(Y� | p�) − E(Y�−1 | p�−1)

p� − p�−1
,
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The model is the same as the one presented below Figure 5.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and �IV
P(Z)

=
K−1∑
�=1

�LATE(p�, p�+1)λ� = −0.09

�LATE(p�, p�+1) = E(Y | P(Z) = p�+1) − E(Y | P(Z) = p�)

p�+1 − p�

= β̄(p�+1 − p�) + σU1−U0 (φ(Φ−1(1 − p�+1)) − φ(Φ−1(1 − p�)))

p�+1 − p�

λ� = (p�+1 − p�)

∑K
i=1(pi − E(P (Z)))

∑K
t>� f (pi , pt )

Cov(Z1, D)

= (p�+1 − p�)

∑K
t>�(pt − E(P (Z)))f (pt )

Cov(Z1,D)

Joint probability distribution of (Z1, Z2) and the propensity score (joint probabilities in ordinary type
(Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr(D = 1 | Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1

−1 0.02 0.02 0.36
0.7309 0.6402 0.5409

0 0.3 0.01 0.03
0.6402 0.5409 0.4388

1 0.2 0.05 0.01
0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468

Figure 6. (Continued)

where p� > p�−1 and the weights are the positive Yitzhaki–Imbens–Angrist weights
derived in Yitzhaki (1989, 1996) or in Yitzhaki and Schechtman (2004). The weights
are positive whether or not monotonicity condition (IV-3) holds. If monotonicity holds,
IV is a weighted average of LATEs. Otherwise it is just a weighted average of ordered
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Table 6
The conditional instrumental variable estimator (�IV

Z1|Z2=z2
) and conditional

local average treatment effect (�LATE(p�, p�+1 | Z2 = z2)) when Z1 is the
instrument (given Z2 = z2)

The extended Roy economy

Z2 = −1 Z2 = 0 Z2 = 1

P(−1, Z2) = p3 0.7309 0.6402 0.5409
P(0, Z2) = p2 0.6402 0.5409 0.4388
P(1, Z2) = p1 0.5409 0.4388 0.3408

λ1 0.8418 0.5384 0.2860
λ2 0.1582 0.4616 0.7140

�LATE(p1, p2) −0.2475 0.2497 0.7470
�LATE(p2, p3) −0.7448 −0.2475 0.2497

�IV
Z1|Z2=z2

−0.3262 0.0202 0.3920

The model is the same as the one presented below Figure 2.

�IV
Z1|Z2=z2

=
I−1∑
�=1

�LATE(p�, p�+1 | Z2 = z2)λ�|Z2=z2 =
I−1∑
�=1

�LATE(p�, p�+1 | Z2 = z2)λ�|Z2=z2

�LATE(p�, p�+1 | Z2 = z2) = E(Y | P(Z) = p�+1, Z2 = z2) − E(Y | P(Z) = p�,Z2 = z2)

p�+1 − p�

λ�|Z2=z2 = (p�+1 − p�)

∑I
i=1(z1,i − E(Z1 | Z2 = z2))

∑I
t>� f (z1,i , pt | Z2 = z2)

Cov(Z1, D)

= (p�+1 − p�)

∑I
t>�(z1,t − E(Z1 | Z2 = z2))f (z1,t , pt | Z2 = z2)

Cov(Z1,D)

Probability distribution of Z1 conditional on Z2 (Pr(Z1 = z1 | Z2 = z2))

z1 Pr(Z1 = z1 | Z2 = −1) Pr(Z1 = z1 | Z2 = 0) Pr(Z1 = z1 | Z2 = 1)

−1 0.0385 0.25 0.9
0 0.5769 0.125 0.075
1 0.3846 0.625 0.025

Source: Heckman, Urzua and Vytlacil (2006).

(by p�) estimators consistent with two-way flows. We next discuss continuous instru-
ments.

4.7.3. Continuous instruments

For the case of continuous Z, we present a parallel analysis for the weights associated
with the MTE. Figure 8 plots E(Y | P(Z)) and MTE for the extended Roy models
generated by the parameters displayed at the base of the figure. In cases I and II, β ⊥⊥D,
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The model is the same as the one presented below Figure 5. The values of the treatment parameters are the
same as the ones presented below Figure 6.

Figure 7. IV weights and its components under discrete instruments when Z1 is the instrument, the extended
Roy economy. Source: Heckman, Urzua and Vytlacil (2006).

so �MTE(uD) is constant in uD . In case I, this is trivial since β is a constant. In case II, β
is random but selection into D does not depend on β. Case III is the model with essential
heterogeneity (β ⊥�⊥D). The graph (Figure 8A) depicts E(Y | P(Z)) in the three cases.
Cases I and II make E(Y | P(Z)) linear in P(Z). Case III is nonlinear in P(Z). This
arises when β ⊥�⊥D. The derivative of E(Y | P(Z)) is presented in Figure 8B. It is
a constant for cases I and II (flat MTE) but declining in UD = P(Z) for the case
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�IV
Z1

=
K−1∑
�=1

�LATE(p�, p�+1)λ� = 0.1833

λ� = (p�+1 − p�)

∑I
i=1(z1,i − E(Z1))

∑K
t>� f (z1,i , pt )

Cov(Z1,D)

Joint probability distribution of (Z1, Z2) and the propensity score (joint probabilities in ordinary type
(Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr(D = 1 | Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1

−1 0.02 0.02 0.36
0.7309 0.6402 0.5409

0 0.3 0.01 0.03
0.6402 0.5409 0.4388

1 0.2 0.05 0.01
0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468

Figure 7. (Continued)

with selection on the gain. A simple test for linearity in P(Z) in the outcome equation
reveals whether or not the analyst is in cases I and II (β ⊥⊥ D) or case III (β ⊥�⊥D).67

These cases are the extended Roy counterparts to E(Y | P(Z) = p) and MTE shown
for the generalized Roy model in Figures 3A and 3B.

MTE gives the mean marginal return for persons who have utility P(Z) = uD . Thus,
P(Z) = uD is the margin of indifference. Those with low uD values have high returns.
Those with high uD values have low returns. Figure 8 highlights that, in the general case,
MTE (and LATE) identify average returns for persons at the margin of indifference at
different levels of the mean utility function (P(Z)).

Figure 9 plots MTE and LATE for different intervals of uD using the model gener-
ating Figure 8. LATE is the chord of E(Y | P(Z)) evaluated at different points. The
relationship between LATE and MTE is depicted in Figure 9B. LATE is the integral
under the MTE curve divided by the difference between the upper and lower limits.

The treatment parameters associated with case III are plotted in Figure 10. The MTE
is the same as that presented in Figure 8. ATE has the same value for all p. The effect
of treatment on the treated for P(Z) = p, �TT(p) = E(Y1 − Y0 | D = 1, P (Z) = p)

declines in p (equivalently it declines in uD). Treatment on the untreated given p,
TUT(p) = �TUT(p) = E(Y1 − Y0 | D = 0, P (Z) = p) also declines in p,

LATE(p, p′) = �TT(p′)p′ − �TT(p)p

p′ − p
, p′ �= p,

MTE = ∂[�TT(p)p]
∂p

.

67 Recall that we keep the conditioning on X implicit.
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Figure 8. Conditional expectation of Y on P(Z) and the MTE, the extended Roy economy. Source: Heckman,
Urzua and Vytlacil (2006).

We can generate all of the treatment parameters from �TT(p).
Matching on P = p (which is equivalent to nonparametric regression given P = p)

produces a biased estimator of TT(p). Matching assumes a flat MTE (average return
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Outcomes Choice model

Y1 = α + β̄ + U1 D =
{

1 if D∗ � 0,

0 if D∗ < 0
Y0 = α + U0

Case I Case II Case III

U1 = U0 U1 − U0 ⊥⊥ D U1 − U0 ⊥�⊥D

β̄ = ATE = TT = TUT = IV β̄ = ATE = TT = TUT = IV β̄ = ATE �= TT �= TUT �= IV

Parameterization

Cases I, II and III Cases II and III Case III

α = 0.67 (U1, U0) ∼ N(0, Σ)

with Σ =
[

1 −0.9
−0.9 1

] D∗ = Y1 − Y0 − γZ

β̄ = 0.2 Z ∼ N(μZ,ΣZ)

μZ = (2,−2) and ΣZ =
[

9 −2
−2 9

]
γ = (0.5, 0.5)

Figure 8. (Continued)

equals marginal return).68 Therefore it is systematically biased for �TT(p) in a model
with essential heterogeneity. Making observables alike makes the unobservables dis-
similar. Holding p constant across treatment and control groups understates TT(p) for
low values of p and overstates it for high values of p. We develop this point further
when we discuss matching in Section 8.

Figure 11 plots the MTE (as a function of uD where uD = FV (v)), the weights for
ATE, TT and TUT and the IV weights using Z1 as the instrument for the model used
to generate Figure 9. The distribution of the Z is assumed to be normal with generating
parameters given at the base of Figure 9. The IV weight for normal Z is always non-
negative even if we use only one coordinate of vector Z. This is a consequence of the
monotonicity of E(Zj | P(Z) � uD) in uD for any component of vector Z, which is a
property of normal selection models.69

Panel A of Figure 11 plots the treatment weights derived by Heckman and Vytlacil
(1999, 2001b) and the IV weight (4.14), along with the MTE. The ATE = �ATE weight
is flat (= 1). TT oversamples the low uD agents (those more likely to adopt the policies).
TUT oversamples the high uD agents. The IV weight is positive as it must be when the
Z are normally distributed. IV is far from any of the standard treatment parameters.
Panel B decomposes the weight into its numerator components E(Z1 | P(Z) � uD)

and E(Z1), and the weight itself. The difference E(Z1 | P(Z) � uD) − E(Z1)

multiplied by Pr(P (Z) � uD) and normalized by Cov(Z1,D) is the weight (see Equa-
tion (4.13)). The weight is plotted as the dotted line in Figure 9B.

68 See Heckman and Vytlacil (2005) and Section 8.
69 See Heckman and Honoré (1990). In a broad class of models [see, e.g., Heckman, Tobias and Vytlacil
(2003)] E(R | S > c) is monotonic in c for vector R. The normal model is one member of this family.
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�LATE(p�, p�+1) = E(Y |P(Z)=p�+1)−E(Y |P(Z)=p�)
p�+1−p�

=
∫ p�+1
p�

�MTE(uD) duD

p�+1−p�

�LATE(0.6, 0.9)=−1.17

�LATE(0.1, 0.35)=1.719

Outcomes Choice model
Y1 = α + β̄ + U1 D =

{
1 if D∗ � 0,

0 if D∗ < 0
with D∗ = Y1 − Y0 − γZ

Y0 = α + U0

Figure 9. The local average treatment effect, the extended Roy economy. Source: Heckman, Urzua and Vyt-
lacil (2006).
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Parameterization

(U1, U0) ∼ N(0,Σ) and Z ∼ N(μZ,ΣZ)

Σ =
[

1 −0.9
−0.9 1

]
, μZ = (2, −2) and ΣZ =

[
9 −2

−2 9

]
α = 0.67, β̄ = 0.2, γ = (0.5, 0.5)

Figure 9. (Continued)

Parameter Definition Under assumptions (*)

Marginal
treatment effect

E[Y1 − Y0 | D∗ = 0, P (Z) = p] β̄ + σU1−U0Φ−1(1 − p)

Average treatment
effect

E[Y1 − Y0 | P(Z) = p] β̄

Treatment on the
treated

E[Y1 − Y0 | D∗ � 0, P (Z) = p] β̄ + σU1−U0
φ(Φ−1(1−p))

p

Treatment on the
untreated

E[Y1 − Y0 | D∗ < 0, P (Z) = p] β̄ − σU1−U0
φ(Φ−1(1−p))

1−p

OLS/Matching on
P(Z)

E[Y1 | D∗ � 0, P (Z) = p]
− E[Y0 | D∗ < 0, P (Z) = p]

β̄ +
(

σ2
U1

−σU1,U0√
σU1−U0

)(
1−2p

p(1−p)

)
φ(Φ−1(1 − p))

(*): The model in this case is the same as the one presented below Figure 9.
Note: Φ(·) and φ(·) represent the cdf and pdf of a standard normal distribution, respectively.
Φ−1(·) represents the inverse of Φ(·).

Figure 10. Treatment parameters and OLS/Matching as a function of P(Z) = p.
Source: Heckman, Urzua and Vytlacil (2006).
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Parameter Under assumptions (*)

ATE 0.2
TT 1.1878
TUT −0.9132
IVZ1 0.0924

(*) The model in this case is the same as the one
presented below Figure 9.

Figure 11. Treatment weights, IV weights using Z1 as the instrument and the MTE.
Source: Heckman, Urzua and Vytlacil (2004).
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Suppose that instead of assuming normality for the regressors, instrument Z is as-
sumed to be a random vector with a distribution function given by a mixture of two
normals:

Z ∼ P1N(κ1,Σ1) + P2N(κ2,Σ2),

where P1 is the proportion in population 1, P2 is the proportion in population 2,
and P1 + P2 = 1. This produces a model with continuous instruments, where
E(J̃ (Z) | P(Z) � uD) need not be monotonic in uD where J̃ (Z) = J (Z) − E(J (Z)).
Such a data generating process for the instrument could arise from an ecological model
in which two different populations are mixed (e.g., rural and urban populations).70

Appendix E derives the instrumental variable weights on �MTE when Z1 (the first
element of Z) is used as the instrument, i.e., J (Z) = Z1. For simplicity, we assume that
there are no X regressors. The probability of selection is generated using μD(Z) = Zγ .
The joint distribution of (Z1, Zγ ) is normal within each group.

In our example, the dependence between Z1 and Zγ (= FV (Zγ ) = P(Z)) is
negative in one population and positive in another. Thus in one population, as Z1 in-
creases P(Z) increases. In the other population, as Z1 increases P(Z) decreases. If
this second population is sufficiently big (P1 is small) or the negative correlation in
the second population is sufficiently big, the weights can become negative because
E(J̃ (Z) | P(Z) � uD) is not monotonic in uD .

We present examples for a conventional normal outcome selection model generated
by the parameters presented at the base of Figure 12. The discrete choice equation is a
conventional probit: Pr(D = 1 | Z = z) = Φ(

zγ
σV

). The outcome equations are linear

normal equations. Thus �MTE(v) = E(Y1 − Y0 | V = v), is linear in v:

E(Y1 − Y0 | V = v) = μ1 − μ0 + Cov(U1 − U0, V )

Var(V )
v.

At the base of the figure, we define β̄ = μ1 − μ0 and α = μ0. The average treatment
effects are the same for all different distributions of the Z.

In each of the following examples, we show results for models with vector Z that
satisfies (IV-1) and (IV-2) and with γ > 0 componentwise where γ is the coefficient
of Z in the cost equation. We vary the weights and means of the instruments. Ceteris
paribus, an increase in each component of Z increases Pr(D = 1 | Z = z). Table 7
presents the parameters treatment on the treated (E(Y1 − Y0 | D = 1)), treatment on
the untreated (E(Y1 − Y0 | D = 0)), and the average treatment effect (E(Y1 − Y0))
produced by our model for different distributions of the regressors.

In standard IV analysis, under assumptions (IV-1) and (IV-2) the distribution of Z

does not affect the probability limit of the IV estimator. It only affects its sampling
distribution. Figure 12A shows three weights corresponding to the perturbations of the
variances of the instruments in the second component population Σ2 and the means

70 Observe that E(Z) = P1κ1 + P2κ2.
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Figure 12. MTE and IV weights using Z1 as the instrument when Z = (Z1, Z2) ∼ p1N(κ1,Σ1) +
p2N(κ2,Σ2) for different values of Σ2.

Source: Heckman, Urzua and Vytlacil (2006).

(κ1, κ2) shown at the table at the base of the figure. The �MTE
V used in all of our exam-

ples are plotted in Figure 12B. The MTE has the familiar shape, reported in Heckman
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Outcomes Choice model

Y1 = α + β̄ + U1 D =
{

1 if D∗ � 0,

0 if D∗ < 0
Y0 = α + U0 D∗ = Y1 − Y0 − γZ and V = −(U1 − U0)

Parameterization

(U1, U0) ∼ N(0, Σ), Σ =
[

1 −0.9
−0.9 1

]
, α = 0.67, β̄ = 0.2

Z = (Z1, Z2) ∼ p1N(κ1, Σ1) + p2N(κ2, Σ2)

p1 = 0.45, p2 = 0.55; Σ1 =
[

1.4 0.5
0.5 1.4

]
Cov(Z1, γZ) = γΣ1

1 = 0.98; γ = (0.2, 1.4)

Figure 12. (Continued)

Table 7
The IV estimator and Cov(Z2, γZ) associated with each value of Σ2

Weights Σ2 κ1 κ2 IV ATE TT TUT Cov(Z2, γZ) = γΣ1
2

ω1

[
0.6 −0.5

−0.5 0.6

]
[0 0] [0 0] 0.434 0.2 1.401 −1.175 −0.58

ω2

[
0.6 0.1
0.1 0.6

]
[0 0] [0 0] 0.078 0.2 1.378 −1.145 0.26

ω3

[
0.6 −0.3

−0.3 0.6

]
[0 −1] [0 1] −2.261 0.2 1.310 −0.859 −0.30

Source: Heckman, Urzua and Vytlacil (2006).

(2001) and Heckman, Tobias and Vytlacil (2003) that returns are highest for those with
values of v that make them more likely to get treatment (i.e., low values of v).

The weights ω1 and ω3 plotted in Figure 12A correspond to the case where
E(Z1 − E(Z1) | P(Z) � uD) is not monotonic in uD . In these cases, the sign of the
covariance between Z1 and Zγ (i.e., P(Z)) is not the same in the two subpopulations.
The IV estimates reported in the table at the base of the figure range all over the place
even though the parameters of the outcome and choice model are the same.71

Different distributions of Z critically affect the probability limit of the IV estimator
in the model of essential heterogeneity. The model of outcomes and choices is the same
across all of these examples. The MTE and ATE parameters are the same. Only the
distribution of the instrument differs. The instrumental variable estimand is sometimes
positive and sometimes negative, and oscillates wildly in magnitude depending on the
distribution of the instruments. The estimated “effect” is often way off the mark for any

71 Since TT and TUT depend on the distribution of P(Z), they are not invariant to changes in the distribution
of the Z.
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desired treatment parameter. These examples show how uniformity in Z does not trans-
late into uniformity in J (Z) (Z1 in this example). This sensitivity is a phenomenon that
does not appear in the conventional homogeneous response model but is a central feature
of a model with essential heterogeneity.72 We now compare selection and IV models.

4.8. Comparing selection and IV models

We now show that local IV identifies the derivatives of a selection model. Making the
X explicit, in the standard selection model, U1 and U0 are scalar random variables
that are additively separable in the outcome equations, Y1 = μ1(X) + U1 and Y0 =
μ0(X) + U0. The control function approach conditions on Z and D. As a consequence
of index sufficiency, this is equivalent to conditioning on P(Z) and D:

E(Y | X,D,Z) = μ0(X) + [
μ1(X) − μ0(X)

]
D

+ K1
(
P(Z),X

)
D + K0

(
P(Z),X

)
(1 − D),

where the control functions are

K1
(
P(Z),X

) = E
(
U1
∣∣ D = 1, X, P (Z)

)
,

K0
(
P(Z),X

) = E
(
U0
∣∣ D = 0, X, P (Z)

)
.

The IV approach does not condition on D. It works with

E(Y | X,Z) = μ0(X) + [
μ1(X) − μ0(X)

]
P(Z) + K1

(
P(Z),X

)
P(Z)

(4.17)+ K0
(
P(Z),X

)(
1 − P(Z)

)
,

the population mean outcome given X,Z.
From index sufficiency, E(Y | X,Z) = E(Y | X,P (Z)). The MTE is the derivative

of this expression with respect to P(Z), which we have defined as LIV:

∂E(Y | X,P (Z))

∂P (Z)

∣∣∣∣
P(Z)=p

= LIV(X, p) = MTE(X, p).73

The distribution of P(Z) and the relationship between J (Z) and P(Z) determine the
weight on MTE.74 Under assumptions (A-1)–(A-5), along with rank and limit condi-
tions [Heckman and Robb (1985a), Heckman (1990)], one can identify μ1(X), μ0(X),
K1(P (Z),X), and K0(P (Z),X).

72 We note parenthetically that if we assume P1 = 0 (or P2 = 0), the weights are positive even if we only
use Z1 as an instrument and Z1 and Z2 are negatively correlated. This follows from the monotonicity of
E(R | S > c) in c for vector R. See Heckman and Honoré (1990). This case is illustrated in Figure 11.
73 Björklund and Moffitt (1987) analyze this marginal effect for a parametric generalized Roy model.
74 Because LIV does not condition on D, it discards information. Lost in taking derivatives are the constants
in the model that do not interact with P(Z) in Equation (4.17).
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The selection (control function) estimator identifies the conditional means

(4.18a)E
(
Y1
∣∣ X,P (Z),D = 1

) = μ1(X) + K1
(
X,P (Z)

)
and

(4.18b)E
(
Y0
∣∣ X,P (Z),D = 0

) = μ0(X) + K0
(
X,P (Z)

)
.

These can be identified from nonparametric regressions of Y1 and Y0 on X,Z in each
population. To decompose these means and separate μ1(X) from K1(X, P (Z)) without
invoking functional form or curvature assumptions, it is necessary to have an exclu-
sion (a Z not in X).75 In addition, there must exist a limit set for Z given X such that
K1(X, P (Z)) = 0 for Z in that limit set. Otherwise, without functional form or cur-
vature assumptions, it is not possible to disentangle μ1(X) from K1(X, P (Z)) which
may contain constants and functions of X that do not interact with P(Z) [see Heckman
(1990)]. A parallel argument for Y0 shows that we require a limit set for Z given X

such that K0(X, P (Z)) = 0. Selection models operate by identifying the components
of (4.18a) and (4.18b) and generating the treatment parameters from these components.
Thus they work with levels of the Y .

The local IV method works with derivatives of (4.17) and not levels and cannot di-
rectly recover the constant terms in (4.18a) and (4.18b). Using our analysis of LIV but
applied to YD = Y1D and Y(1 − D) = Y0(1 − D), it is straightforward to use LIV to
estimate the components of the MTE separately. Thus we can identify

μ1(X) + E(U1 | X,UD = uD)

and

μ0(X) + E(U0 | X,UD = uD)

separately. This corresponds to what is estimated from taking the derivatives of expres-
sions (4.18a) and (4.18b) multiplied by P(Z) and (1 − P(Z)), respectively:76

P(Z)E(Y1 | X,Z,D = 1) = P(Z)μ1(X) + P(Z)K1
(
X,P (Z)

)
and (

1 − P(Z)
)
E(Y0 | X,Z,D = 0)

= (
1 − P(Z)

)
μ0(X) + (

1 − P(Z)
)
K0
(
X,P (Z)

)
.

Thus the control function method works with levels, whereas the LIV approach works
with slopes of combinations of the same basic functions. Constants that do not depend

75 See Heckman and Navarro (2007) for use of semiparametric curvature restrictions in identification analysis
that do not require functional form assumptions.
76 Björklund and Moffitt (1987) use the derivative of a selection model in levels to define the marginal treat-
ment effect.
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on P(Z) disappear from the estimates of the model. The level parameters are obtained
by integration using the formulae in Table 2B.

Misspecification of P(Z) (either its functional form or its arguments) and hence of
K1(P (Z),X) and K0(P (Z),X), in general, produces biased estimates of the parame-
ters of the model under the control function approach even if semiparametric methods
are used to estimate μ0, μ1,K0 and K1. To implement the method, we need to know all
of the arguments of Z. The terms K1(P (Z),X) and K0(P (Z),X) can be nonparamet-
rically estimated so it is only necessary to know P(Z) up to a monotonic transforma-
tion.77 The distributions of U0, U1 and V do not need to be specified to estimate control
function models [see Powell (1994)].

These problems with control function models have their counterparts in IV models.
If we use a misspecified P(Z) to identify the MTE or its components, in general, we do
not identify MTE or its components. Misspecification of P(Z) plagues both approaches.

One common criticism of selection models is that without invoking functional form
assumptions, identification of μ1(X) and μ0(X) requires that P(Z) → 1 and P(Z) →
0 in limit sets.78 Identification in limit sets is sometimes called “identification at in-
finity”. In order to identify ATE = E(Y1 − Y0 | X), IV methods also require that
P(Z) → 1 and P(Z) → 0 in limit sets, so an identification at infinity argument is
implicit when IV is used to identify this parameter.79 The LATE parameter avoids this
problem by moving the goal posts and redefining the parameter of interest away from
a level parameter like ATE or TT to a slope parameter like LATE which differences
out the unidentified constants. Alternatively, if we define the parameter of interest to
be LATE or MTE, we can use the selection model without invoking identification at
infinity.

The IV estimator is model dependent, just like the selection estimator, but in appli-
cation, the model does not have to be fully specified to obtain �IV using Z (or J (Z)).
However, the distribution of P(Z) and the relationship between P(Z) and J (Z) gener-
ates the weights. The interpretation placed on �IV in terms of weights on �MTE depends
crucially on the specification of P(Z). In both control function and IV approaches for
the general model of heterogeneous responses, P(Z) plays a central role.

Two economists using the same instrument will obtain the same point estimate using
the same data. Their interpretation of that estimate will differ depending on how they
specify the arguments in P(Z), even if neither uses P(Z) as an instrument. By condi-
tioning on P(Z), the control function approach makes the dependence of estimates on
the specification of P(Z) explicit. The IV approach is less explicit and masks the as-
sumptions required to economically interpret the empirical output of an IV estimation.
We now turn to some empirical examples of LIV.

77 See Heckman et al. (1998).
78 See Imbens and Angrist (1994). Heckman (1990) establishes the identification in the limit argument for
ATE in selection models. See Heckman and Navarro (2007) for a generalization to multiple outcome models.
79 Thus if the support of P(Z) is not full, we cannot identify treatment on the treated or the average treatment
effect. We can construct bounds. See Heckman and Vytlacil (1999, 2001a, 2001b).
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4.9. Empirical examples: “The effect” of high school graduation on wages and using
IV to estimate “the effect” of the GED

The previous examples illustrate logical possibilities. This subsection shows that these
logical possibilities arise in real data. We analyze two examples: (a) the effect of grad-
uating high school on wages, and (b) the effect of obtaining a GED on wages. We first
analyze the effect of graduating high school on wages.

4.9.1. Empirical example based on LATE: Using IV to estimate “the effect” of high
school graduation on wages

We first study the effects of graduating from high school on wages using data from the
National Longitudinal Survey of Youth 1979 (NLSY79). This survey gathers informa-
tion at multiple points in time on the labor market activities for men and women born
in the years 1957–1964. We estimate LATE using log hourly wages at age 30 as the
outcome measure. Following a large body of research [see Mare (1980)], we use the
number of siblings and residence in the south at age 14 as instruments.

Figure 13 plots the weights on LATE using the estimated P(Z). The procedure used
to derive the estimates is explained in Heckman, Urzua and Vytlacil (2006). The weights
are derived from Equation (4.16). The LATE parameters are both positive and negative.
The weights using siblings as an instrument are both positive and negative. The weights
using P(Z) as an instrument are positive, as they must be following the analysis of
Yitzhaki (1989). The two IV estimates differ from each other because the weights are
different. The overall IV estimate is a crude summary of the underlying component
LATEs that are both large and positive and large and negative. We next turn to analysis
of the GED.

4.9.2. Effect of the GED on wages

The GED test is used to certify high school dropouts as high school equivalents. Nu-
merous studies document that the economic return to the GED is low [see Cameron and
Heckman (1993), Heckman and LaFontaine (2007)]. It is estimated by the method de-
scribed in Heckman, Urzua and Vytlacil (2006). In this example, we study the effect of
the GED on the wages of recipients compared to wages of dropouts. We use data from
the National Longitudinal Survey of Youth 1979 (NLSY79) which gathers information
at multiple points in time on the labor market activities for men and women born in the
years 1957–1964.

We estimate the MTE for the GED and also consider the IV weights for various
instruments for a sample of males at age 25. Figure 14 shows the sample support of
P(Z) for both GEDs and high school dropouts. It is not possible to estimate the MTE
over its full support. Thus the average treatment effect (ATE) and treatment on the
treated (TT) cannot be estimated from these data. The list of Z variables is presented in
Table 8 along with IV estimates. The IV estimates fluctuate from positive to negative.
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Figure 13. IV weights – the effect of graduating from high school – sample of high school dropouts and high
school graduates. Source: Heckman, Urzua and Vytlacil (2006).

Using P(Z) as an instrument, the GED effect on log wages is in general negative.80 For
other instruments, the signs and magnitudes vary.

80 In this example, we use the log of the average nonmissing hourly wages reported between ages 24 and 26.
Using the hourly wage reported at age 25 leads to roughly the same results (negative IV weights, and positive
and negative IV estimates), but an increase in the standard errors.
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Y = Log per-hour wage at age 30, Z1 = number of siblings in 1979, Z2 = mother is a high school graduate

D =
{

1 if high school graduate,
0 if high school dropout

IV estimates
(bootstrap std. errors in parentheses – 100 replications)

Instrument Value

Number of siblings in 1979 0.115
(0.695)

Propensity score 0.316
(0.110)

Joint probability distribution of (Z1, Z2) and the propensity score
(joint probabilities Pr(Z1 = z1, Z2 = z2) in ordinary type;
propensity score Pr(D = 1 | Z1 = z1, Z2 = z2) in italics)

Z2\Z1 0 1 2 3 4

0 0.07 0.03 0.47 0.121 0.06
1.0 0.54 0.86 0.72 0.61

1 0.039 0.139 0.165 0.266 0.121
0.94 0.89 0.90 0.85 0.93

Cov(Z1, Z2) = −0.066, number of observations = 1,702

Figure 13. (Continued)

Figure 15 plots the estimated MTE. Details of the nonparametric estimation proce-
dure used to produce these estimates are shown in an appendix in Heckman, Urzua
and Vytlacil (2006). Local linear regression is used to estimate the MTE implementing
Equation (4.9). While the standard error band is large, the estimated �MTE is in general
negative, suggesting a negative marginal treatment effect for most participants. How-
ever, we observe that for small values of uD the point estimates of the marginal effect
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Table 8
Instrumental variables estimatesa: Sample of GED and dropouts – males at age 25b

Instruments IV–MTE

Father’s highest grade completed 0.146
(0.251)

Mother’s highest grade completed −0.052
(0.179)

Number of siblings −0.052
(0.160)

GED cost −0.053
(0.156)

Family income in 1979 −0.047
(0.177)

Dropout’s local wage at age 17 −0.013
(0.218)

High school graduate’s local wage at age 17 −0.049
(0.182)

Dropout’s local unemployment rate at age 17 0.443
(1.051)

High school graduate’s local unemployment rate at age 17 −0.563
(0.577)

Propensity scorec −0.058
(0.164)

Notes:
aThe IV estimates are computed by taking the weighted sum of the MTE. The standard
deviations (in parentheses) are computed using bootstrapping (50 draws).
bWe excluded the oversample of poor whites and the military sample. The cost of the GED
corresponds to the average testing fee per GED battery by state between 1993 and 2000.
(Source: GED Statistical Report.) Average local wage for dropouts and high school grad-
uates correspond to the average in the place of residence for each group, respectively, and
local unemployment rate corresponds to the unemployment rate in the place of residence.
Average local wages, local unemployment rates, mother’s and father’s education refer to
the level at age 17.
cThe propensity score (P(D = 1 | Z = z)) is computed using as controls the instruments
presented in the table, as well as two dummy variables controlling for the place of residence
at age 14 (south and urban), and a set of dummy variables controlling for the year of birth
(1957–1963).
Source: Heckman, Urzua and Vytlacil (2004).

are positive. This analysis indicates that, for people who are more likely to take the
GED exam in terms of their unobservables (i.e., for people at the margin of indifference
associated with a small uD), the marginal effect is in fact positive.

It is instructive to examine the various IV estimates using the one instrument at a
time strategy favored by many applied economists who like to do sensitivity analysis.81

81 See, e.g., Card (2001).
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Note: The propensity score (P(D = 1 | Z)) is computed using as controls (Z): Father’s highest grade completed, mother’s highest grade completed, number of
siblings, GED testing fee by state between 1993 and 2000, family income in 1979, dropout’s local wage at age 17, and high school graduate’s local
unemployment at age 17. We also include two dummy variables controlling for the place of residence at age 14 (south and urban), and a set of dummies
controlling for the year of birth (1957–1963).

Figure 14. Frequency of the propensity score by final schooling decision: Dropouts and GEDs, NLSY males at age 25. Source: Heckman, Urzua and Vytlacil
(2004).
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Note: The dependent variable in the outcome equation is the log of the average hourly wage reported
between ages 24 and 26. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), Hispanic (dummy), marital status, and years of schooling. Let D = 0
denote dropout status and D = 1 denote GED status. The model for D (choice model) includes as controls
the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17,
local GED costs, broken home at age 14, average local wage at age 17 for dropouts and high school
graduates, local unemployment rate at age 17 for dropouts and high school graduates, the dummy variables
for black and Hispanic, and a set of dummy variables controlling for year of birth. We also include two
dummy variables controlling for the place of residence at age 14 (south and urban). The choice model is
estimated using a probit model. In computing the MTE, the bandwidths are selected using the “leave one
out” cross-validation method. We use biweight kernel functions. The confidence interval is computed from
bootstrapping using 50 draws.

Figure 15. MTE of the GED with confidence interval: Dropouts and GEDs, males of the NLSY at the age 25.
Source: Heckman, Urzua and Vytlacil (2004).

Many of the variables used in the analysis are determined by age 17. Both father’s high-
est grade completed and local unemployment rate among high school dropouts produce
positive (if not precisely determined) IV estimates. A negative MTE weighted by neg-
ative IV weights produces a positive IV. A naive application of IV could produce the
wrong causal inference, i.e., that GED certification raises wages. Our estimates show
that our theoretical examples have real world counterparts.82

Carneiro, Heckman and Vytlacil (2006) present an extensive empirical analysis of
the wage returns to college attendance. They show how to unify and interpret diverse
instruments within a common framework using the MTE and the weights derived in
Heckman and Vytlacil (1999, 2001a, 2005). They show negative weights on the MTE
for commonly used instruments. Basu et al. (2007) use the MTE and the derived weights
to identify the ranges of the MTE identified by different instruments in their analysis of
the costs of breast cancer. We next discuss the implications of relaxing separability in
the choice equations.

82 We discuss the GED further in Section 7.
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4.10. Monotonicity, uniformity, nonseparability, independence and policy invariance:
The limits of instrumental variables

The analysis of this section and the entire recent literature on instrumental variables
estimators for models with heterogeneous responses (i.e., models with outcomes of the
forms (3.1) and (3.2)) relies critically on the assumption that the treatment choice equa-
tion has a representation in the additively separable form (3.3). From Vytlacil (2002),
we know that under assumptions (A-1)–(A-5), separability is equivalent to the assump-
tion of monotonicity or uniformity, (IV-3).

This uniformity condition imparts an asymmetry to the entire instrumental variable
enterprise. Responses are permitted to be heterogeneous in a general way, but choices
of treatment are not. In this section, we relax the assumption of additive separability
in (3.3). We establish that in the absence of additive separability or uniformity, the
entire instrumental variable identification strategy in this section and the entire recent
literature collapses. Parameters can be defined as weighted averages of an MTE. MTE
and the derived parameters cannot be identified using any instrumental variable strat-
egy. Appendix B presents a comprehensive discussion, which we summarize in this
subsection.

One natural benchmark nonseparable model is a random coefficient model of choice
D = 1[Zγ � 0], where γ is a random coefficient vector and γ ⊥⊥ (Z,U0, U1). If γ is
a random coefficient with a nondegenerate distribution and with components that take
both positive and negative values, uniformity is clearly violated. However, it can be
violated even when all components of γ are of the same sign if Z is a vector.83

Relax the additive separability assumption of Equation (3.3) to consider a more gen-
eral case

(4.19a)D∗ = μD(Z, V ),

where μD(Z, V ) is not necessarily additively separable in Z and V , and V is not nec-
essarily a scalar.84 In the random coefficient example, V = γ and μD = zγ .

(4.19b)D = 1
[
D∗ � 0

]
.

We maintain assumptions (A-1)–(A-5) and (A-7).
In special cases, (4.19a) can be expressed in an additively separable form. For exam-

ple, if D∗ is weakly separable in Z and V , D∗ = μD(θ(Z), V ) for any V where θ(Z) is
a scalar function, μD is increasing in θ(Z), and V is a scalar, then we can write (4.19b)
in the same form as (3.3):

D = 1
[
θ(Z) � Ṽ

]
,

83 Thus, if γ is a vector with positive components, a change from Z = z to Z = z′ can produce different
effects on choice if γ varies in the population and if components of Z are of different signs.
84 The additively separable latent index model is more general than it may at first appear. It is shown in
Vytlacil (2006a) that a wide class of threshold crossing models without the additive structure on the latent
index will have a representation with the additively separable structure on the latent index.
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where Ṽ = μ−1
D (0; V ) and Ṽ ⊥⊥Z | X, and the inverse function is expressed with re-

spect to the first argument [see Vytlacil (2006a)]. Vytlacil (2002) shows that any model
that does not satisfy uniformity (or “monotonicity”) will not have a representation in
this form.85

In the additively separable case, the MTE (3.4) has three equivalent interpretations.
(i) UD = FV (V ) is the only unobservable in the first stage decision rule, and MTE is
the average effect of treatment given the unobserved characteristics in the decision rule
(V = v). (ii) A person with V = v would be indifferent between treatment or not if
P(Z) = uD , where P(Z) is a mean scale utility function. Thus, the MTE is the average
effect of treatment given that the individual would be indifferent between treatment or
not if P(Z) = uD . (iii) One can also view the additively separable form (3.3) as intrinsic
in the way we are defining the parameter and interpret the MTE (Equation (3.4)) as an
average effect conditional on the additive error term from the first stage choice model.
Under all interpretations of the MTE and under the assumptions used in the preceding
sections of this chapter, MTE can be identified by LIV; the MTE does not depend on
Z and hence it is policy invariant and the MTE integrates up to generate all treatment
effects, policy effects and all IV estimands.

The three definitions are not the same in the general nonseparable case (4.19a).
Heckman and Vytlacil (2001b) extend MTE in the nonseparable case using interpre-
tation (i). MTE defined this way is policy invariant to changes in Z. Appendix B, which
summarizes their work, shows that LIV is a weighted average of the MTE with possibly
negative weights and does not identify MTE. If uniformity does not hold, the defini-
tion of MTE allows one to integrate MTE to obtain all of the treatment effects, but the
instrumental variables estimator breaks down.

Alternatively, one could define MTE based on (ii):

�MTE
ii (z) = E

(
Y1 − Y0

∣∣ V ∈ {v: μD(z, v) = 0
})

.

This is the average treatment effect for individuals who would be indifferent between
treatment or not at a given value of z (recall that we keep the conditioning on X implicit).
Heckman and Vytlacil (2001b) show that in the nonseparable case LIV does not identify
this MTE and that MTE does not change when the distribution of Z changes, provided
that the support of MTE does not change.86 In general, this definition of MTE does not
allow one to integrate up MTE to obtain the treatment parameters.

A third possibility is to force the index rule into an additive form by taking μ∗
D(Z) =

E(μD(Z, V ) | Z), defining V ∗ = μD(Z, V ) − E(μD(Z, V ) | Z) and define MTE as
E(Y1 −Y0 | V ∗ = v∗). Note that V ∗ is not independent of Z, is not policy invariant and
is not structural. LIV does not estimate this MTE. With this definition of the MTE it is
not possible, in general, to integrate up MTE to obtain the various treatment effects.

85 In the random coefficient case where Z = (1, Z1) where Z1 is a scalar, and γ = (γ0, γ1) if γ1 > 0 for all

realizations, we can write the choice rule in the form of (3.3): Z1γ1 � −γ0 ⇒ Z1 � − γ0
γ1

and Ṽ = − γ0
γ1

.
This trick does not work in the general case.
86 If the support of Z changes, then the MTE must be extended to a new support.
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For any version of the nonseparable model, except those that can be transformed to
separability, index sufficiency fails. To see this, assume that μD(Z, V ) is continuous.87

Define Ω(z) = {v: μD(z, v) � 0}. In the additively separable case, P(z) ≡ Pr(D =
1 | Z = z) = Pr(UD ∈ Ω(z)), P(z) = P(z′) ⇔ Ω(z) = Ω(z′). This produces index
sufficiency. In the more general case of (4.19a), it is possible to have (z, z′) such that
P(z) = P(z′) and Ω(z) �= Ω(z′) so index sufficiency does not hold.

4.10.1. Implications of nonseparability

This section develops generalization (i), leaving development of the other interpreta-
tions for later research. We focus on an analysis of PRTE, comparing two policies
p, p′ ∈ P . Here “p” denotes a policy and not a realization of P(Z) as in the previ-
ous sections. This is our convention when we discuss PRTE. The analysis of the other
treatment parameters follows by parallel arguments.

For any v in the support of the distribution of V , define Ω = {z: μD(z, v) � 0}.
For example, in the random coefficient case, with V ≡ γ and D = 1[Zγ � 0], we
have Ωg = {z: zg � 0}, where g is a realization of γ . Define 1A(t) to be the indicator
function for the event t ∈ A. Then, making the X explicit, Appendix B derives the result
that

E(Yp) − E(Yp′)

= E
[
E(Yp | X) − E(Yp′

∣∣ X)
]

=
∫ [ ∫

E(�MTE | X = x, V = v)

(4.20)

× (
Pr[Zp ∈ Ω | X = x] − Pr[Zp′ ∈ Ω | X = x]) dFV |X(v | x)

]
dFX(x).

Thus, without additive separability, we can still derive an expression for PRTE and by
similar reasoning the other treatment parameters. However, to evaluate the expression
requires knowledge of MTE, of Pr[Zp ∈ Ω | X = x] and Pr[Zp′ ∈ Ω | X = x] for
every (v, x) in the support of the distribution of (V ,X), and of the distribution of V . In
general, if no structure is placed on the μD function, one can normalize V to be unit
uniform (or a vector of unit uniform random variables) so that FV |X will be known.

However, in this case, the Ω = {z: μD(z, v) � 0} sets will not in general be iden-
tified. If structure is placed on the μD function, one might be able to identify the
Ω = {z: μD(z, v) � 0} sets but then one needs to identify the distribution of V

(conditional on X). If structure is placed on μD , one cannot in general normalize the
distribution of V to be unit uniform without undoing the structure being imposed on μD .

In particular, consider the random coefficient model D = 1[Zγ � 0] where V = γ is
a random vector, so that Ωγ = {z: zγ � 0}. In this case, if all of the other assumptions

87 Absolutely continuous with respect to Lebesgue measure.
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hold, including Z ⊥⊥ γ | X, and the policy change does not affect (Y1, Y0, X, γ ), the
PRTE is given by

E(Yp) − E(Yp′) = E
[
E(Yp | X) − E(Yp′ | X)

]
=
∫ [ ∫

E(�MTE | X = x, γ = g)
(
Pr[Zp ∈ Ωg | X = x]

− Pr[Zp′ ∈ Ωg | X = x]) dFγ |X(g | x)

]
dFX(x).

Because structure has been placed on the μD(Z, γ ) function, the sets Ωγ are known.
However, evaluating the function requires knowledge of the distribution of γ which will
not in general be identified without further assumptions.88 Normalizing the distribution
of γ to be a vector of unit uniform random variables produces the distribution of γ but
eliminates the assumed linear index structure on μD and results in Ωγ sets that are not
identified.

Even if the weights are identified, Heckman and Vytlacil (2001b) show that it is not
possible to use LIV to identify MTE without additive separability between Z and V

in the selection rule index. Appendix F develops this point for the random coefficient
model. Without additive separability in the latent index for the selection rule, we can
still create an expression for PRTE (and the other treatment parameters) but both the
weights and the MTE function are no longer identified using instrumental variables.

One superficially plausible way to avoid these problems would be to define μ̃D(Z) =
E(μD(Z, V ) | Z) and Ṽ = μD(Z, V ) − E(μD(Z, V ) | Z), producing the model
D = 1[μ̃D(Z) + Ṽ � 0]. We keep the conditioning on X implicit. One could re-
define MTE using Ṽ and proceed as if the true model possessed additive separability
between observables and unobservables in the latent index. This is the method pursued
in approach (iii).

For two reasons, this approach does not solve the problem of providing an adequate
generalization of MTE. First, with this definition, Ṽ is a function of (Z, V ), and a policy
that changes Z will then also change Ṽ . Thus, policy invariance of the MTE no longer
holds. Second, this approach generates a Ṽ that is no longer statistically independent
of Z so that assumption (A-1) no longer holds when Ṽ is substituted for V even when
(A-1) is true for V . Lack of independence between observables and unobservables in
the latent index both invalidates our expression for PRTE (and the expressions for the
other treatment effects) and causes LIV to no longer identify MTE.

The nonseparable model can also restrict the support of P(Z). For example, consider
a standard normal random coefficient model with a scalar regressor (Z = (1, Z1)).
Assume γ0 ∼ N(0, σ 2

0 ), γ1 ∼ N(γ̄1, σ
2
1 ), and γ0 ⊥⊥ γ1. Then

P(z1) = Φ

(
γ̄1z1√

σ 2
0 + σ 2

1 z2
1

)
,

88 See, e.g., Ichimura and Thompson (1998) for conditions for identifying the distribution of γ in a random
coefficient discrete choice model when Z ⊥⊥ γ .
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where Φ is the standard cumulative normal distribution. If the support of z1 is R, then
in the standard additive model, σ 2

1 = 0 and P(z1) has support [0, 1]. When σ 2
1 > 0,

the support is strictly within the unit interval.89 In the special case when σ 2
0 = 0, the

support is one point (P (z) = Φ(
γ̄1
σ1

)). We cannot, in general, identify ATE, TT or any
treatment effect requiring the endpoints 0 or 1.

Thus the general models of nonuniformity presented in this section do not satisfy
the index sufficiency property, and the support of the treatment effects and estimators
is, in general, less than full. The random coefficient model for choice may explain the
empirical support problems for P(Z) found in Heckman et al. (1998) and many other
evaluation studies.

4.10.2. Implications of dependence

We next consider relaxing the independence assumption (A-1) to allow Z ⊥�⊥ V | X

while maintaining the assumption that Z ⊥⊥ (Y0, Y1) | (X, V ). We maintain the other
assumptions, including additive separability between Z and V in the latent index for the
selection rule (Equation (3.3)) and the assumption that the policy changes Z but does
not change (V , Y0, Y1, X). Thus we assume that the policy shift does not change the
MTE function (policy invariance). Given these assumptions, we derive in Appendix C
the following expression for PRTE in the nonindependent case for policies p, p′ ∈ P:

E(Yp) − E(Yp′)

= E
[
E(Yp | X) − E(Yp′ | X)

]
=
∫ [ ∫

E(�MTE | X = x, V = v)
(
Pr
[
μD(Zp′) < v

∣∣ X = x, V = v
]

(4.21)− Pr
[
μD(Zp) < v

∣∣ X = x, V = v
])

dFV |X(v | x)

]
dFX(x).

Notice that “p” denotes a policy and not a realized value of P(Z). Although we can
derive an expression for PRTE without requiring independence between Z and V , to
evaluate this expression requires knowledge of MTE and of Pr[μD(Zp′) < v | X = x,

V = v] and of Pr[μD(Zp) < v | X = x, V = v] for every (x, v) in the support of
the distribution of (X, V ). This requirement is stronger than what is needed in the case
of independence since the weights no longer depend only on the distribution of Pp(Zp)

and Pp′(Zp′) conditional on X. To evaluate these weights requires knowledge of the
function μD and of the joint distribution of (V , Zp) and (V , Zp′) conditional on X, and
these will in general not be identified without further assumptions.

Even if the weights are identified, Heckman and Vytlacil (2001b) show that it is not
possible to use LIV to identify MTE without independence between Z and V condi-
tional on X. Thus, without conditional independence between Z and V in the latent

89 The interval is [Φ(
−|γ̄1|
σ1

),Φ(
|γ̄1|
σ1

)].
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index for the decision rule, we can still create an expression for PRTE but both the
weights and the MTE function are no longer identified without invoking further as-
sumptions.

One superficially appealing way to avoid these problems is to define Ṽ = FV |X,Z(V )

and μ̃D(Z) = FV |X,Z(μD(Z)), so D = 1[μD(Z) − V � 0] = 1[μ̃D(Z) − Ṽ � 0]
with Ṽ ∼ Unif[0, 1] conditional on X and Z and so Ṽ is independent of X and Z.
It might seem that the previous analysis would carry over. However, by defining Ṽ =
FV |X,Z(V ), we have defined Ṽ in a way that depends functionally on Z and X, and
hence we violate invariance of the MTE with respect to the shifts in the distribution
of Z given X.

4.10.3. The limits of instrumental variable estimators

The treatment effect literature focuses on a class of policies that move treatment choices
in the same direction for everyone. General instruments do not have universally positive
weights on �MTE. They are not guaranteed to shift everyone in the same direction. They
do not necessarily estimate gross treatment effects. However, the effect of treatment
is not always the parameter of policy interest. Thus, in the housing subsidy example
developed in Section 4.6, migration is the vehicle through which the policy operates.
One might be interested in the effect of migration (the treatment effect) or the effect
of the policy (the housing subsidy). These are separate issues unless the policy is the
treatment.

Generalizing the MTE to the case of a nonseparable choice equation that violates
the monotonicity condition, we can define but cannot identify the policy parameters
of interest using ordinary instrumental variables or our extension LIV. If we make the
model symmetrically heterogeneous in outcome and choice equations, the method of
instrumental variables and our extensions of it break down in terms of estimating eco-
nomically interpretable parameters. Vytlacil and Yildiz (2006) and Vytlacil, Santos and
Shaikh (2005) restore symmetry in the IV analysis of treatment choice and outcome
equations by imposing uniformity on both outcome and choice equations. The general
case of heterogeneity in both treatment and choice equations is beyond the outer limits
of the entire IV literature, although it captures intuitively plausible phenomena. More
general structural methods are required.90

5. Regression discontinuity estimators and LATE

Campbell (1969) developed the regression discontinuity design which is now widely
used. [See an early discussion of this estimator in econometrics by Barnow, Cain and

90 The framework of Carneiro, Hansen and Heckman (2003) can be generalized to allow for random coeffi-
cient models in choice equations, and lack of policy invariance in the sense of assumption (A-7). However,
a fully semiparametric analysis of treatment and choice equations with random coefficients remains to be
developed.
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Goldberger (1980).] Hahn, Todd and Van der Klaauw (2001) present an exposition of
the regression discontinuity estimator within a LATE framework. This section exposits
the regression discontinuity method within our MTE framework.

Suppose assumptions (A-1)–(A-5) hold except that we relax independence assump-
tion (A-1) to assume that (Y1 − Y0, UD) is independent of Z conditional on X. We do
not impose the condition that Y0 is independent of Z conditional on X. Relaxing the
assumption that Y0 is independent of Z conditional on X causes the standard LIV esti-
mand to differ from the MTE. We show that the LIV estimand in this case equals MTE
plus a bias term that depends on ∂

∂p
E(Y0 | X = x, P (Z) = p). Likewise, we show that

the discrete-difference IV formula will no longer correspond to LATE, but will now
correspond to LATE plus a bias term.

A regression discontinuity design allows analysts to recover a LATE parameter at
a particular value of Z. If E(Y0 | X = x,Z = z) is continuous in z, while P(z)

is discontinuous in z at a particular point, then it will be possible to use a regression
discontinuity design to recover a LATE parameter. While the regression discontinuity
design does have the advantage of allowing Y0 to depend on Z conditional on X, it only
recovers a LATE parameter at a particular value of Z and cannot in general be used
to recover either other treatment parameters such as the average treatment effect or the
answers to policy questions such as the PRTE. The following discussion is motivated
by the analysis of Hahn, Todd and Van der Klaauw (2001).

For simplicity, assume that Z is a scalar random variable. First, consider LIV while
relaxing independence assumption (A-1) to assume that (Y1 − Y0, UD) is independent
of Z conditional on X but without imposing that Y0 is independent of Z conditional
on X. In order to make the comparison with the regression discontinuity design easier,
we will condition on Z instead of P(Z). Using Y = Y0 + D(Y1 − Y0), we obtain

E(Y | X = x,Z = z)

= E(Y0 | X = x,Z = z) + E
(
D(Y1 − Y0)

∣∣ X = x,Z = z
)

= E(Y0 | X = x,Z = z) +
∫ P(z)

0
E(Y1 − Y0 | X = x,UD = uD) duD.

So

∂
∂z

E(Y | X = x,Z = z)

∂
∂z

P (z)
=

∂
∂z

E(Y0 | X = x,Z = z)

∂
∂z

P (z)

+ E
(
Y1 − Y0

∣∣ X = x,UD = P(z)
)

where we have assumed that ∂
∂z

P (z) �= 0 and that E(Y0 | X = x,Z = z)

is differentiable in z. Notice that under our stronger independence condition (A-1),
∂
∂z

E(Y0 | X = x,Z = z) = 0 so that we identify MTE as before. With Y0 possibly
dependent on Z conditional on X, we now get MTE plus the bias term that depends
on ∂

∂z
E(Y0 | X = x,Z = z). Likewise, if we consider the discrete change form
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of IV:

E(Y | X = x,Z = z) − E(Y | X = x,Z = z′)
P (z) − P(z′)

= E(Y0 | X = x,Z = z) − E(Y0 | X = x,Z = z′)
P (z) − P(z′)︸ ︷︷ ︸

Bias for LATE

+ E
(
Y1 − Y0

∣∣ X = x, P (z) > UD > P(z′)
)

︸ ︷︷ ︸
LATE

so that we now recover LATE plus a bias term.
Now consider a regression discontinuity design. Suppose that there exists an

evaluation point z0 for Z such that P(·) is discontinuous at z0, and suppose that
E(Y0 | X = x,Z = z) is continuous at z0. Suppose that P(·) is increasing in a neigh-
borhood of z0. Let

P(z0−) = lim
ε↓0

P(z0 − ε),

P (z0+) = lim
ε↓0

P(z0 + ε),

and note that the conditions that P(·) is increasing in a neighborhood of z0 and discon-
tinuous at z0 imply that P(z0+) > P (z0−). Let

μ(x, z0−) = lim
ε↓0

E(Y | X = x,Z = z0 − ε),

μ(x, z0+) = lim
ε↓0

E(Y | X = x,Z = z0 + ε),

and note that

μ(x, z0−) = E(Y0 | X = x,Z = z0)

+
∫ P(z0−)

0
E(Y1 − Y0 | X = x,UD = uD) duD

and

μ(x, z0+) = E(Y0 | X = x,Z = z0)

+
∫ P(z0+)

0
E(Y1 − Y0 | X = x,UD = uD) duD,

where we use the fact that E(Y0 | X = x,Z = z) is continuous at z0. Thus,

μ(x, z0+) − μ(x, z0−) =
∫ P(z0+)

P (z0−)

E(Y1 − Y0 | X = x,UD = uD) duD

⇒ μ(x, z0+) − μ(x, z0−)

P (z0+) − P(z0−)
= E

(
Y1 − Y0

∣∣ X = x, P (z0+) � UD > P(z0−)
)
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so that we now recover a LATE parameter for a particular point of evaluation. Note that
if P(z) is only discontinuous at z0, then we only identify E(Y1−Y0 | X = x, P (z0+) �
UD > P(z0−)) and not any LATE or MTE at any other evaluation points. While this
discussion assumes that Z is a scalar, it is straightforward to generalize the discussion
to allow for Z to be a vector. For more discussion of the regression discontinuity design
estimator and an example, see Hahn, Todd and Van der Klaauw (2001).

6. Policy evaluation, out-of-sample policy forecasting, forecasting the effects of
new policies and structural models based on the MTE

We have thus far focused on policy problem P-1, the problem of “internal validity”. We
have shown how to identify a variety of parameters but have not put them to use in eval-
uating policies. This section discusses policy evaluation and out-of-sample forecasting.
We discuss two distinct evaluation and forecasting problems. The first problem uses the
MTE to develop a cost benefit analysis. Corresponding to the gross benefit parameters
analyzed in Sections 3–4, there is a parallel set of cost parameters that emerge from the
economics of the generalized Roy model. This part of our analysis works in the domain
of problem P-1 to construct a cost-benefit analysis for programs in place. However,
these tools can be extended to new environments using the other results established in
this section.

The second topic is the problem of constructing the PRTE in new environments in
a more general way. This addresses policy problems P-2 and P-3 and considers large
scale changes in policies and forecasts of new policies.

6.1. Econometric cost benefit analysis based on the MTE

This section complements the analysis of Section 3. There we developed gross out-
come measures for a generalized Roy model. Here we define a parallel set of treatment
parameters for the generalized Roy model corresponding to the average cost of partici-
pating in a program. The central feature of the generalized Roy model is that the agent
chooses treatment if the benefit exceeds the subjective cost perceived by the agent. This
creates a simple relationship between the cost and benefit parameters that can be ex-
ploited for identifying or bounding the cost parameters by adapting the results of the
previous sections. The main result of this section is that cost parameters in the general-
ized Roy model can be identified or bounded without direct information on the costs of
treatment. Our analysis complements and extends the analysis of Björklund and Moffitt
(1987) who first noted this duality.

Assume the outcomes (Y0, Y1) are generated by the additively separable system (2.2).
Let C denote the individual-specific subjective cost of selecting into treatment. We as-
sume that C is generated by: C = μC(W)+UC , where W is a (possibly vector-valued)
observed random variable and UC is an unobserved random variable. We assume that
the agent selects into treatment if the benefit exceeds the cost, using the structure of
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the generalized Roy model where D = 1[Y1 − Y0 � C] and C = μC(W) + UC ,
where μC(W) is nondegenerate and integrable; UC is continuous and Z = (W,X) is
independent of (UC,U0, U1).91

We do not assume any particular functional form for the functions μ0, μ1 and μC ,
and we do not assume that the distribution of U0, U1, or UC is known.92 Let V ≡
UC − (U1 − U0) and let FV denote the distribution function of V . As before, we use
the convention that UD is the probability integral transformation of the latent variable
generating choices so that UD = FV (V ). Let P(z) ≡ Pr(D = 1 | Z = z) so that
P(z) = FV (μ1(x) − μ0(x) − μC(w)). For convenience, we will assume that FV is
strictly increasing so that FV will be invertible, though this assumption is not required.
We work with UD = FV (V ) instead of working directly with V to link our analysis
to that in Section 3. In this section we make explicit the conditioning on X, Z, and W

because it plays an important role in the analysis.
Corresponding to the treatment parameters defined in Section 2 and Tables 2A and

2B, we can define analogous cost parameters. We define the marginal cost of treatment
for a person with characteristics W = w and UD = uD as

CMTE(w, uD) ≡ E(C | W = w,UD = uD).

This is a cost version of the marginal treatment effect. Likewise, we have an analogue
average cost:

CATE(w) ≡ E(C | W = w)

(6.1)=
∫ 1

0
E(C | W = w,UD = uD) duD,

recalling that dFUD
(uD) = duD because UD is uniform. This is the mean subjective

cost of treatment as perceived by the average agent. We next consider

CTT(w,P (z)
) ≡ E

(
C
∣∣ W = w,P (Z) = P(z),D = 1

)
= 1

P(z)

∫ P(z)

0
E(C | W = w,UD = uD) duD.

This is the mean subjective cost of treatment as perceived by the treated with a given
value of P(z). Removing the conditioning on P(z),

CTT(w) ≡ E(C | W = w,D = 1)

=
∫ 1

0
E(C | W = w,UD = uD)gw(uD) duD,

91 We require that UC be absolutely continuous with respect to Lebesgue measure.
92 Recall that the original Roy model (1951) assumes that UC = 0, that there are no observed X and W re-
gressors, that (U0, U1) ∼ N(0, Σ) and that only Y = DY1 +(1−D)Y0 is observed, but not both components
of the sum at the same time.



Ch. 71: Econometric Evaluation of Social Programs, Part II 4969

where gw(uD) = 1−FP(Z)|W=w(uD)∫
(1−FP(Z)|W=w(t)) dt

and FP(Z)|W=w denotes the distribution of P(Z)

conditional on W = w. This is the mean subjective cost of treatment for the treated.
Finally, we can derive a LATE version of the cost:

CLATE(w,P (z), P (z′)
) ≡ 1

P(z) − P(z′)

∫ P(z)

P (z′)
E(C | W = w,UD = uD) duD.

This is the mean subjective cost of switching states for those induced to switch status
by a change in the instrument.

The generalized Roy model makes a tight link between the cost of treatment and the
benefit of treatment. Thus one might expect a relationship between the gross benefit and
cost parameters. We show that the benefit and cost parameters coincide for MTE. This
relationship can be used to infer information on the subjective cost of treatment by the
use of local instrumental variables.

Define �LIV(x, P (z)) as in Equation (4.9):

�LIV(x, P (z)
) ≡ ∂E(Y | X = x, P (Z) = P(z))

∂P (z)
.

Under assumptions (A-1)–(A-5), LIV identifies MTE:

�LIV(x, P (z)
) = �MTE(x, P (z)

)
.

Note that

�MTE(x, P (z)
) = E

(
�
∣∣ X = x,UD = P(z)

)
= E

(
�
∣∣ X = x,�(x) = C(w)

)
(6.2)= E

(
�(x)

∣∣ �(x) = C(w)
)
,

where �(x) = μ1(x) − μ0(x) + U1 − U0, and C(w) = μC(w) + UC . (�(x) and C(w)

are, respectively, the benefit and cost for the agent if the X and W are externally set to
x and w without changing (U1, U0, UD) values.) We thus obtain

E
(
�(x)

∣∣ �(x) = C(w)
) = E

(
C(w)

∣∣ �(x) = C(w)
)

= E
(
C(w)

∣∣ W = w,UD = P(z)
)

(6.3)= CMTE(w,P (z)
)
.

Thus,

(6.4)�LIV(x, P (z)
) = �MTE(x, P (z)

) = CMTE(w,P (z)
)
,

where �LIV(w, P (z)) is �LIV(x, P (z)) defined for the support where �(x) = C(w).
The benefit and cost parameters coincide for the MTE parameter because at the margin,
the marginal cost should equal the marginal benefit. The benefit to treatment for an
agent indifferent between treatment and no treatment is equal to the cost of treatment,
and thus the two parameters coincide.
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Suppose that one has access to a large sample of (Y,D,X,W) observations.
Since �LIV(x, P (z)) = ∂E(Y |X=x,P (Z)=P(z))

∂P (z)
, �LIV(x, P (z)) can be identified for any

(x, P (z)) in the support of (X, P (Z)), and thus the corresponding �MTE(x, P (z)) and
CMTE(w, P (z)) parameters can also be identified.93 One can thus identify the marginal
cost parameter without direct information on the cost of treatment by using the structure
of the Roy model and by identifying the marginal benefit parameter.

Heckman and Vytlacil (1999) establish conditions under which �LIV can be used to
identify �ATE and �TT given large support conditions, and to bound those parameters
without large support conditions if the outcome variables are bounded. We review their
results on bounds in Section 10. We surveyed their results on identification of �ATE

and �TT in Sections 3 and 4. From (6.1) and (6.4), we can use the same arguments
to use CMTE to identify or bound CATE and CTT. Thus, CMTE can be used to identify
CATE(w) if the support of P(Z) conditional on W = w is the full unit interval. If the
support of P(Z) conditional on W = w is a proper subset of the full unit interval,
then CMTE can be used to bound CATE(x) if C is bounded. One can thus identify or
bound the average cost of treatment or the cost of treatment on the treated without
direct information on the cost of treatment.

We next consider what information is available on the underlying benefit functions
μ0 and μ1 and the underlying cost function μC(w). From the definitions,

�MTE(x, P (z)
) = E

(
�
∣∣ X = x,UD = P(z)

)
(6.5)= μ1(x) − μ0(x) + Υ

(
P(z)

)
with Υ (P (z)) = E(U1 − U0 | UD = P(z)). Likewise,

CMTE(w,P (z)
) = E

(
C
∣∣ W = w,UD = P(z)

)
(6.6)= μC(w) + Γ

(
P(z)

)
,

with Γ (P (z)) = E(UC | UD = P(z)). Let �LIV(z) = �LIV(x, P (z)), and recall from
the preceding analysis that �LIV(z) = �MTE(x, P (z)) = CMTE(w, P (z)). Consider
two points of evaluation (z, z′) such that P(z) = P(z′). Using Equation (6.4), we obtain

�LIV(z) − �LIV(z′) = (
μ1(x) − μ0(x)

)− (
μ1(x

′) − μ0(x
′)
)

= μC(w) − μC(w′).

Assuming that X and W each have at least one component not in the other, we can
identify μC(w) up to constants within the support of W conditional on P(Z) = P(z)

using �LIV(z). Shifting z while conditioning on P(z) shifts (μ1(x)−μ0(x)) and μC(w)

along the line (μ1(x)−μ0(x))−μC(w) = F−1
V (p). Thus, conditional on P(z), a shift in

the benefit, μ1(X)−μ0(X), is associated with the same shift in the cost, μC(w). For any
p ∈ (0, 1), let Ωp = {z: P(z) = p} = {(w, x): (μ1(x)−μ0(x))−μC(w) = F−1

V (p)}.

93 Formally, these parameters are identified in the limit points of the set.
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As we vary z within the set Ωp, we trace out changes in μC(w) and μ1(x) − μ0(x),
where the changes in μC(w) equal the changes in μ1(x) − μ0(x).

For the special case of the generalized Roy model where UC is degenerate, �LIV(z) =
μC(w). Thus, in the case of a deterministic cost function, LIV identifies μC(w). We plot
this case in Figures 5A–5C for the country policy adoption example where the cost C is
a constant across all countries.

In the case where UC is nondegenerate but U1−U0 is degenerate, Y1−Y0 = μ1(X)−
μ0(X) (β = β̄ in the context of the model of Section 2), and there is no variation
in the gross benefit from participating in the program conditional on X. In that case,
�LIV(z) = μ1(x) − μ0(x) = β̄, where we keep the conditioning on X implicit in
defining �LIV(z). Thus, in the case of a deterministic benefit from participation, LIV
identifies the benefit function. If UD and U1 − U0 are both degenerate, then �LIV(z) is
not well defined.94

In summary, the generalized Roy model structure can be exploited to identify cost
parameters without direct information on the cost of treatment. The MTE parameter for
cost is immediately identified within the proper support, and can be used to identify or
bound the average cost of treatment and the cost of treatment on the treated. In addition,
the MTE parameter allows one to infer how the cost function shifts in response to a
change in observed covariates, and to completely identify the cost function if the cost of
treatment is deterministic conditional on observable covariates. Thus we can compute
the costs and benefits of alternative programs for various population averages. Heckman
and Vytlacil (2007) develop this analysis to consider marginal extensions of the policy
relevant treatment effect (PRTE).

6.2. Constructing the PRTE in new environments

In this section, we present conditions for constructing PRTE for new environments and
for new programs using historical data for general changes in policies and environments.
We consider general changes in the environment and policies and not just the mar-
ginal perturbations of the P(Z) considered in the previous section. We address policy
problems P-2, forecasting the effects of existing policies to new environments and P-3,
forecasting the effects of new policies, never previously implemented.

Let p ∈ P denote a policy characterized by random vector Zp. The usage of “p”
in this section is to be distinguished from a realized value of P(Z) as in most other
sections in this chapter. Let e ∈ E denote an environment characterized by random
vector Xe. A history, H, is a collection of policy–environment (p, e) pairs that have
been experienced and documented. We assume that the environment is autonomous so

94 In this case, E(Y1 −Y0 | Z = z,D = 0) is well defined for z = (w, x) such that μ1(x)−μ0(x) � μC(w),
in which case E(Y1 −Y0 | Z = z,D = 0) = μ1(x)−μ0(x) � μC(w). Likewise E(Y1 −Y0 | Z = z,D = 1)

is well defined for z = (w, x) such that μ1(x) − μ0(x) � μC(w), in which case E(Y1 − Y0 | Z = z,

D = 1) = μ1(x) − μ0(x) � μC(w).
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the choice of p does not affect Xe. Letting Xe,p denote the value of Xe under policy p,
autonomy requires that

(A-8) Xe,p = Xe, ∀p, e (Autonomy).

Autonomy is a more general notion than the no-feedback assumption introduced
in (A-6). They are the same when the policy is a treatment. General equilibrium feed-
back effects can cause a failure of autonomy. In this section, we will assume autonomy,
in accordance with the partial equilibrium tradition in the treatment effect literature.95

Autonomy is a version of Hurwicz’s policy invariance postulate but for a random vari-
able and not a function.

Evaluating a particular policy p′ in environment e′ is straightforward if (p′, e′) ∈ H.
One simply looks at the associated outcomes and treatment effects formed in that policy
environment and applies the methods previously discussed to obtain internally valid es-
timates. The challenge comes in forecasting the impacts of policies (p′) in environments
(e′) for (p′, e′) not in H.

We show how �MTE plays the role of a policy-invariant functional that aids in cre-
ating counterfactual states never previously experienced. We focus on the problem of
constructing the policy relevant treatment effect �PRTE but our discussion applies more
generally to the other treatment parameters.

Given the assumptions invoked in Section 3, �MTE can be used to evaluate a whole
menu of policies characterized by different conditional distributions of Pp′ . In addition,
given our assumptions, we can focus on how policy p′, which is characterized by Zp′ ,
produces the distribution FPp′ |X which weights an invariant �MTE without having to

conduct a new investigation of (Y,X,Z) relationships for each proposed policy.96

6.2.1. Constructing weights for new policies in a common environment

The problem of constructing �PRTE for policy p′ (compared to baseline policy p̄)
in environment e when (p′, e) /∈ H entails constructing E(Υ (Yp′)). We maintain
the assumption that the baseline policy is observed, so (p̄, e) ∈ H. We also postu-
late instrumental variable assumptions (A-1)–(A-5), presented in Section 3, and the
policy invariance assumption (A-7), presented in Section 3.2 and embedded in assump-
tion (A-8). We use separable choice Equation (3.3) to characterize choices. The policy
is assumed not to change the distribution of (Y0, Y1, UD) conditional on X. Under these
conditions, Equation (3.6) is a valid expression for PRTE and constructing PRTE only
requires identification of �MTE and constructing FPp′ |Xe from the policy histories He,
defined as the elements of H for a particular environment e, He = {p: (p, e) ∈ H}.

95 See Heckman, Lochner and Taber (1998) for an example of a nonautonomous treatment model.
96 Ichimura and Taber (2002) present a discussion of local policy analysis in a more general framework with-
out the MTE structure, using a framework developed by Hurwicz (1962). We review the Hurwicz framework
in Chapter 70.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Associated with the policy histories p ∈ He is a collection of policy variables
{Zp: p ∈ He}. Suppose that a new policy p′ can be written as Zp′ = Tp′,j (Zj ) for
some j ∈ He, where Tp′,j is a known deterministic transformation and Zp′ has the
same list of variables as Zj . Examples of policies that can be characterized in this way
are tax and subsidy policies on wages, prices and incomes that affect unit costs (wages
or prices) and transfers. Tuition might be shifted upward for everyone by the same
amount, or tuition might be shifted according to a nonlinear function of current tuition,
parents’ income, and other observable characteristics in Zj .

Constructing FPp′ |Xe from data in the policy history entails two distinct steps. From
the definitions,

Pr(Pp′ � t | Xe) = Pr
({

Zp′ : Pr(Dp′ = 1
∣∣ Zp′ , Xe) � t

} | Xe

)
.

If (i) we know the distribution of Zp′ , and (ii) we know the function Pr(Dp′ = 1 |
Zp′ = z,Xe = x) over the appropriate support, we can then recover the distribution of
Pp′ conditional on Xe. Given that Zp′ = Tp′,j (Zj ) for a known function Tp′,j (·), step
(i) is straightforward since we recover the distribution of Zp′ from the distribution of Zj

by using the fact that Pr(Zp′ � t | Xe) = Pr({Zj : Tp′,j (Zj ) � t} | Xe). Alternatively,
part of the specification of the policy p′ might be the distribution Pr(Zp′ � t | Xe). We
now turn to the second step, recovering the function Pr(Dp′ = 1 | Zp′ = z,Xe = x)

over the appropriate support.
If Zp′ and Zj contain the same elements though possibly with different distributions,

then a natural approach to forecasting the new policy is to postulate that

(6.7)Pj (z) = Pr(Dj = 1 | Zj = z,Xe)

(6.8)= Pr(Dp′ = 1 | Zp′ = z,Xe) = Pp′(z),

i.e., that over a common support for Zj and Zp′ the known conditional probability
function and the desired conditional probability function agree. Condition (6.7) will
hold, for example, if Dj = 1[μD(Zj )−V � 0], Dp′ = 1[μD(Zp′)−V � 0], Zj ⊥⊥ V |
Xe, and Zp′ ⊥⊥UD | Xe, recalling that UD = FV |X(V ). Even if condition (6.7) is
satisfied on a common support, the support of Zj and Zp′ may not be the same. If
the support of the distribution of Zp′ is not contained in the support of the distribution
of Zj , then some form of extrapolation is needed. Alternatively, if we strengthen our
assumptions so that (6.7) holds for all j ∈ He, we can identify Pp′(z) for all z in⋃

j∈He
Supp(Zj ). However, there is no guarantee that the support of the distribution

of Zp′ will be contained in
⋃

j∈He
Supp(Zj ), in which case some form of extrapolation

is needed.
If extrapolation is required, one approach is to assume a parametric functional form

for Pj (·). Given a parametric functional form, one can use the joint distribution of
(Dj , Zj ) to identify the unknown parameters of Pj (·) and then extrapolate the para-
metric functional form to evaluate Pj (·) for all evaluation points in the support of Zp′ .
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Alternatively, if there is overlap between the support of Zp′ and Zj ,97 so there is some
overlap in the historical and policy p′ supports of Z, we may use nonparametric meth-
ods presented in Matzkin (1994) and extended by her in Chapter 73 (Matzkin) of this
Handbook, based on functional restrictions (e.g., homogeneity) to construct the desired
probabilities on new supports or to bound them. Under the appropriate conditions, we
may use analytic continuation to extend Pr(Dj = 1 | Zj = z,Xe = x) to a new support
for each Xe = x [Rudin (1974)].

The approach just presented is based on the assumption stated in Equation (6.7). That
assumption is quite natural when Zp′ and Zj both contain the same elements, say they
both contain tuition and parent’s income. However, in some cases Zp′ might contain
additional elements not contained in Zj . As an example, Zp′ might include new user
fees while Zj consists of taxes and subsidies but does not include user fees. In this case,
the assumption stated in Equation (6.7) is not expected to hold and is not even well
defined if Zp′ and Zj contain a different number of elements.

A more basic approach analyzes a class of policies that operate on constraints, prices
and endowments arrayed in vector Q. Given the preferences and technology of the
agent, a given Q = q, however arrived at, generates the same choices for the agent.
Thus a wage tax offset by a wage subsidy of the same amount produces a wage that has
the same effect on choices as a no-policy wage. Policy j affects Q (e.g., it affects prices
paid, endowments and constraints). Define a map Φj : Zj → Qj which maps a pol-
icy j , described by Zj , into its consequences (Qj ) for the baseline, fixed-dimensional
vector Q. A new policy p′, characterized by Zp′ , produces Qp′ that is possibly different
from Qj for all previous policies j ∈ He.

To construct the random variable Pp′ = Pr(Dp′ = 1 | Zp′, Xe), we postulate that

Pr
(
Dj = 1

∣∣ Zj ∈ Φ−1
j (q),Xe = x

) = Pr(Dj = 1 | Qj = q,Xe = x)

= Pr(Dp′ = 1 | Qp′ = q,Xe = x)

= Pr
(
Dp′ = 1

∣∣ Zp′ ∈ Φ−1
p′ (q),Xe = x

)
,

where Φ−1
j (q) = {z: Φj(z) = q} and Φ−1

p′ (q) = {z: Φp′(z) = q}. Given these
assumptions, our ability to recover Pr(Dp′ = 1 | Zp′ = z,Xe = x) for all (z, x) in
the support of (Zp′ , Xe) depends on what Φj functions have been historically observed
and the richness of the histories of Qj , j ∈ He. For each zp′ evaluation point in the
support of the distribution of Zp′ , there is a corresponding q = Φp′(zp′) evaluation
point in the support of the distribution of Qj = Φj(Zj ). If, in the policy histories, there
is at least one j ∈ He such that Φj(zj ) = q for a zj with (zj , x) in the support of the
distribution of (Zj ,Xe), then we can construct the probability of the new policy from
data in the policy histories. The methods used to extrapolate Pp′(·) over new regions,
discussed previously, apply here. If the distribution of Qp′ (or Φp′ and the distribution

97 If we strengthen condition (6.7) to hold for all j ∈ He , then the condition becomes that Supp(Zp′ ) ∩⋃
j∈He

Supp(Zj ) is not empty.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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of Zp′ ) is known as part of the specification of the proposed policy, the distribution of
FPp′ |Xe can be constructed using the constructed Pp′ . Alternatively, if we can relate Qp′
to Qj by Qp′ = Ψp′,j (Qj ) for a known function Ψp′,j or if we can relate Zp′ to Zj

by Zp′ = Tp′,j (Zj ) for a known function Tp′,j , and the distributions of Qj and/or Zj

are known for some j ∈ He, we can apply the method previously discussed to derive
FPp′ |Xe and hence the policy weights for the new policy.

This approach assumes that a new policy acts on components of Q like a policy
in He, so it is possible to forecast the effect of a policy with nominally new aspects. The
essential idea is to recast the new aspects of policy in terms of old aspects previously
measured. Thus in a model of schooling, let D = 1[Y1 − Y0 − B � 0] where Y1 − Y0

is the discounted gain in earnings from going to school and B is the tuition cost. In this
example, a decrease in a unit of cost (B) has the same effect on choice as an increase in
return (Y1 − Y0). Historically, we might only observe variation in Y1 − Y0 (say tuition
has never previously been charged). But B is on the same footing (has the same effect
on choice, except for sign) as Y1 − Y0. The identified historical variation in Y1 − Y0

can be used to nonparametrically forecast the effect of introducing B, provided that
the support of Pp′ is in the historical support generated by the policy histories in He.
Otherwise, some functional structure (parametric or semiparametric) must be imposed
to solve the support problem for Pp′ . We used this basic principle in constructing our
econometric cost benefit analysis in Section 6.1.

As another example, following Marschak (1953), consider the introduction of wage
taxes in a world where there has never before been a tax. This example is analyzed in
Heckman (2001). Let Zj be the wage without taxes. We seek to forecast a post-tax net
wage Zp′ = (1 − τ)Zj + b where τ is the tax rate and b is a constant shifter. Thus
Zp′ is a known linear transformation of policy Zj . We can construct Zp′ from Zj . We
can forecast under (A-1) using Pr(Dj = 1 | Zj = z) = Pr(Dp′ = 1 | Zp′ = z). This
assumes that the response to after tax wages is the same as the response to wages at
the after tax level. The issue is whether Pp′|Xe

lies in the historical support, or whether
extrapolation is needed. Nonlinear versions of this example can be constructed.

As a final example, environmental economists use variation in one component of cost
(e.g., travel cost) to estimate the effect of a new cost (e.g., a park registration fee). See
Smith and Banzhaf (2004). Relating the costs and characteristics of new policies to
the costs and characteristics of old policies is a standard, but sometimes controversial,
method for forecasting the effects of new policies.

In the context of our model, extrapolation and forecasting are confined to construct-
ing Pp′ and its distribution. If policy p′, characterized by vector Zp′ , consists of new
components that cannot be related to Zj , j ∈ He, or a base set of characteristics whose
variation cannot be identified, the problem is intractable. Then Pp′ and its distribution
cannot be formed using econometric methods applied to historical data.

When it can be applied, our approach allows us to simplify the policy forecasting
problem and concentrate our attention on forecasting choice probabilities and their dis-
tribution in solving the policy forecasting problem. We can use choice theory and choice
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data to construct these objects to forecast the impacts of new policies, by relating new
policies to previously experienced policies.

6.2.2. Forecasting the effects of policies in new environments

When the effects of policy p are forecast for a new environment e′ from baseline en-
vironment e, and Xe �= Xe′ , in general both �MTE(x, uD) and FPp |Xe will change.
In general, neither object is environment invariant.98 The new Xe′ may have a differ-
ent support than Xe or any other environment in H. In addition, the new (Xe′ , UD)

stochastic relationship may be different from the historical (Xe, UD) stochastic rela-
tionship. Constructing FPp |Xe′ from FPp |Xe and FZp |Xe′ from FZp |Xe can be done using
(i) functional form (including semiparametric functional restrictions) or (ii) analytic
continuation methods. Notice that the maps Tp,j and Φp may depend on Xe and so the
induced changes in these transformations must also be modeled. There is a parallel dis-
cussion for �MTE(x, uD). The stochastic dependence between Xe′ and (U0, U1, UD)

may be different from the stochastic dependence between Xe and (U0, U1, UD). We
suppress the dependence of U0 and U1 on e and p only for convenience of exposition
and make it explicit in the next paragraph.

Forecasting new stochastic relationships between Xe′ and (U1, U0, UD) is a difficult
task. Some of the difficulty can be avoided if we invoke the traditional exogeneity as-
sumptions of classical econometrics:

(A-9) (U0,e,p, U1,e,p, UD,e,p)⊥⊥ (Xe, Zp) ∀e, p.

Under (A-9), we only encounter the support problems for �MTE and the distribution of
Pr(Dp = 1 | Zp,Xe) in constructing policy counterfactuals.

Conditions (A-7)–(A-9) are unnecessary if the only goal of the analysis is to estab-
lish internal validity, the standard objective of the treatment effect literature. This is
problem P-1. Autonomy and exogeneity conditions become important issues if we seek
external validity. An important lesson from this analysis is that as we try to make the
treatment effect literature do the tasks of structural econometrics (i.e., make out-of-
sample forecasts), common assumptions are invoked in the two literatures.

6.2.3. A comparison of three approaches to policy evaluation

Table 9 compares the strengths and limitations of the three approaches to policy evalua-
tion that we have discussed in this Handbook chapter and our contribution in Chapter 70:
the structural approach, the conventional treatment effect approach, and the approach to
treatment effects based on the MTE function developed by Heckman and Vytlacil (1999,
2001b, 2005).

98 We suppress the dependence of UD on p for notational convenience.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Table 9
Comparison of alternative approaches to program evaluation

Structural econometric
approach

Treatment effect
approach

Approach based on MTE

Interpretability Well defined economic
parameters and welfare
comparisons

Link to economics and
welfare comparisons
obscure

Interpretable in terms of
willingness to pay;
weighted averages of the MTE
answer well-posed economic
questions

Range of
questions
addressed

Answers many
counterfactual questions

Focuses on one
treatment effect or
narrow range of effects

With support conditions,
generates all
treatment parameters

Extrapolation to
new
environments

Provides ingredients for
extrapolation

Evaluates one program
in one environment

Can be partially extrapolated;
extrapolates to new policy
environments with different
distributions of the probability of
participation due solely to
differences in distributions of Z

Comparability
across studies

Policy invariant
parameters comparable
across studies

Not generally
comparable

Partially comparable; comparable
across environments with
different distributions of the
probability of participation due
solely to differences in
distributions of Z

Key econometric
problems

Exogeneity, policy
invariance and selection
bias

Selection bias Selection bias: Exogeneity and
policy invariance if used for
forecasting

Range of policies
that can be
evaluated

Programs with either
partial or universal
coverage, depending on
variation in data
(prices/endowments)

Programs with partial
coverage (treatment and
control groups)

Programs with partial coverage
(treatment and control groups)

Extension to
general
equilibrium
evaluation

Need to link to time
series data; parameters
compatible with general
equilibrium theory

Difficult because link to
economics is not
precisely specified

Can be linked to nonparametric
general equilibrium models under
exogeneity and policy invariance

Source: Heckman and Vytlacil (2005).

The approach based on the MTE function and the structural approach share inter-
pretability of parameters. Like the structural approach, it addresses a range of policy
evaluation questions. The MTE parameter is less comparable and less easily extrapo-
lated across environments than are structural parameters, unless nonparametric versions
of invariance and exogeneity assumptions are made. However, �MTE is comparable
across populations with different distributions of P (conditional on Xe) and results from
one population can be applied to another population under the conditions presented in
this section. Analysts can use �MTE to forecast a variety of policies. This invariance
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property is shared with conventional structural parameters. Our framework solves the
problem of external validity, which is ignored in the standard treatment effect approach.
The price of these advantages of the structural approach is the greater range of econo-
metric problems that must be solved. They are avoided in the conventional treatment
approach at the cost of producing parameters that cannot be linked to well-posed eco-
nomic models and hence do not provide building blocks for an empirically motivated
general equilibrium analysis or for investigation of the impacts of new public policies.
�MTE estimates the preferences of the agents being studied and provides a basis for
integration with well posed economic models. If the goal of a study is to examine one
policy in place (the problem of internal validity), the stronger assumptions invoked in
this section of the chapter, and in structural econometrics, are unnecessary. Even if this
is the only goal of the analysis however, our approach allows the analyst to generate all
treatment effects and IV estimands from a common parameter and provides a basis for
unification of the treatment effect literature.

7. Extension of MTE to the analysis of more than two treatments and associated
outcomes

We have thus far analyzed models with two potential outcomes associated with receipt
of binary treatments (D = 0 or D = 1). Focusing on this simple case allows us to
develop main ideas. However, models with more than two outcomes are common in
empirical work. Angrist and Imbens (1995) analyze an ordered choice model with a
single instrument that shifts people across all margins. We generalize their analysis in
several ways. We consider vectors of instruments, some of which may affect choices at
all margins and some of which affect choices only at certain margins. We then analyze
a general unordered choice model.

7.1. Background for our analysis of the ordered choice model

Angrist and Imbens (1995) extend their analysis of LATE to an ordered choice model
with outcomes generated by a scalar instrument that can assume multiple values. From
their analysis of the effect of schooling on earnings, it is unclear even under a strength-
ened “monotonicity” condition whether IV estimates the effect of a change of schooling
on earnings for a well defined margin of choice.

To summarize their analysis, let S̄ be the number of possible outcome states with
associated outcomes Ys and choice indicators Ds , s = 1, . . . , S̄. The s, in their analysis,
correspond to different levels of schooling. For any two instrument values Z = zi and
Z = zj with zi > zj , we can define associated indicators {Ds(zi)}S̄s=1 and {Ds(zj )}S̄s=1,
where Ds(zi) = 1 if a person assigned instrument value zi chooses state s. As in the
two-outcome model, the instrument Z is assumed to be independent of the potential
outcomes {Ys}S̄s=1 as well as the associated indicator functions defined by fixing Z at zi
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and zj . Observed schooling for instrument zj is S(zj ) = ∑S̄
s=1 sDs(zj ). Observed

outcomes with this instrument are Y(zj ) = ∑S̄
s=1 YsDs(zj ).

Angrist and Imbens show that IV (with Z = zi and Z = zj ) applied to S in a two
stage least squares regression of Y on S identifies a “causal parameter”

(7.1)

�IV =
S̄∑

s=2

{
E
(
Ys − Ys−1

∣∣ S(zi) � s > S(zj )
)} Pr(S(zi) � s > S(zj ))∑S̄

s=2 Pr(S(zi) � s > S(zj ))
.

This “causal parameter” is a weighted average of the gross returns from going from s−1
to s for persons induced by the change in the instrument to move from any schooling
level below s to any schooling level s or above. Thus the conditioning set defining the
sth component of IV includes people who have schooling below s − 1 at instrument
value Z = zj and people who have schooling above level s at instrument value Z =
zi . In expression (7.1), the average return experienced by some of the people in the
conditioning set for each component conditional expectation does not correspond to the
average outcome corresponding to the gain in the argument of the expectation. In the
case where S̄ = 2, agents face only two choices and the margin of choice is well defined.
Agents in each conditioning set are at different margins of choice. The weights are
positive but, as noted by Angrist and Imbens (1995), persons can be counted multiple
times in forming the weights. When they generalize their analysis to multiple-valued
instruments, they use the Yitzhaki (1989) weights.

Whereas the weights in Equation (7.1) can be constructed empirically using nonpara-
metric discrete choice theory (see, e.g., our analysis in Appendix B of Chapter 70 or
the contribution of Matzkin to this Handbook), the terms in braces cannot be identified
by any standard IV procedure.99 We present decompositions with components that are
recoverable, whose weights can be estimated from the data and that are economically
interpretable.

In this section, we generalize LATE to a multiple outcome case where we can iden-
tify agents at different well-defined margins of choice. Specifically, we (1) analyze both
ordered and unordered choice models; (2) analyze outcomes associated with choices at
various well-defined margins; and (3) develop models with multiple instruments that
can affect different margins of choice differently. With our methods, we can define and
estimate a variety of economically interpretable parameters. In contrast, the Angrist–
Imbens analysis produces a single “causal parameter” (7.1) that does not answer any
well-defined policy question such as that posed by the PRTE. We first consider an
explicit ordered choice model and decompose the IV into policy-useful (identifiable)
components.

99 It can be identified by a structural model using the methods surveyed in Chapter 72.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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7.2. Analysis of an ordered choice model

Ordered choice models arise in many settings. In schooling models, there are multiple
grades. One has to complete grade s − 1 to proceed to grade s. The ordered choice
model has been widely used to fit data on schooling transitions [Harmon and Walker
(1999), Cameron and Heckman (1998)]. Its nonparametric identifiability has been stud-
ied [Carneiro, Hansen and Heckman (2003), Cunha, Heckman and Navarro (2007)].
It can also be used as a duration model for dynamic treatment effects with associated
outcomes as in Cunha, Heckman and Navarro (2007). It also represents the “vertical”
model of the choice of product quality [Prescott and Visscher (1977), Shaked and Sutton
(1982), Bresnahan (1987)].100

Our analysis generalizes the analysis for the binary model in a parallel way. Write
potential outcomes as

Ys = μs(X,Us), s = 1, . . . , S̄.

The S̄ could be different schooling levels or product qualities. We define latent variables

D∗
S = μD(Z) − V where

Ds = 1
[
Cs−1(Ws−1) < μD(Z) − V � Cs(Ws)

]
, s = 1, . . . , S̄,

and the cutoff values satisfy

Cs−1(Ws−1) � Cs(Ws), C0(W0) = −∞ and CS̄(WS̄) = ∞.

The cutoffs used to define the intervals are allowed to depend on observed (by the

economist) regressors Ws . In Appendix G we extend the analysis presented in the text
to allow the cutoffs to depend on unobserved regressors as well, following structural
analysis along these lines by Carneiro, Hansen and Heckman (2003) and Cunha, Heck-

man and Navarro (2007). Observed outcomes are: Y = ∑S̄
s=1 YsDs . The Z shift the

index generally; the Ws affect s-specific transitions. Thus, in a schooling example, Z

could include family background variables while Ws could include college tuition or op-
portunity wages for unskilled labor.101 Collect the Ws into W = (W1, . . . ,WS̄), and the
Us into U = (U1, . . . , US̄). Larger values of Cs(Ws) make it more likely that Ds = 1.
The inequality restrictions on the Cs(Ws) functions play a critical role in defining the
model and producing its statistical implications.

100 Cunha, Heckman and Navarro (2007) analyze a dynamic discrete choice setting with sequential revelation
of information.
101 Many of the instruments studied by Harmon and Walker (1999) and Card (2001) are transition-specific.
Card’s model of schooling is not sufficiently rich to make a distinction between the Z and the W . See Heckman
and Navarro (2007) and Cunha, Heckman and Navarro (2007) for more general models of schooling that make
these distinctions explicit.



Ch. 71: Econometric Evaluation of Social Programs, Part II 4981

Analogous to the assumptions made for the binary outcome model, we assume

(OC-1) (Us, V )⊥⊥ (Z,W) | X, s = 1, . . . , S̄ (Conditional independence of the in-
struments);

(OC-2) μD(Z) is a nondegenerate random variable conditional on X and W (Rank
condition);

(OC-3) the distribution of V is continuous102;
(OC-4) E(|Ys |) < ∞, s = 1, . . . , S̄ (Finite means);
(OC-5) 0 < Pr(Ds = 1 | X) < 1 for s = 1, . . . , S̄, for all X (In large samples, there

are some persons in each treatment state);
(OC-6) for s = 1, . . . , S̄−1, the distribution of Cs(Ws) conditional on X, Z and the

other Cj (Wj ), j = 1, . . . , S̄, j �= s, is nondegenerate and continuous.103

Assumptions (OC-1)–(OC-5) play roles analogous to their counterparts in the two-
outcome model, (A-1)–(A-5). (OC-6) is a new condition that is key to identification
of the �MTE defined below for each transition. It assumes that we can vary the choice
sets of agents at different margins of schooling choice without affecting other margins
of choice. A necessary condition for (OC-6) to hold is that at least one element of Ws is
nondegenerate and continuous conditional on X,Z and Cj (Wj ) for j �= s. Intuitively,
one needs an instrument (or source of variability) for each transition. The continuity of
the regressor allows us to differentiate with respect to Cs(Ws), like we differentiated
with respect to P(Z) to estimate the MTE in the analysis of the two-outcome model.

The analysis of Angrist and Imbens (1995) discussed in the introduction to this sec-
tion makes independence and monotonicity assumptions that generalize their earlier
work. They do not consider estimation of transition-specific parameters as we do, or
even transition-specific LATE. We present a different decomposition of the IV estima-
tor where each component can be recovered from the data, and where the transition-
specific MTEs answer well-defined and economically interpretable policy evaluation
questions.104

The probability of Ds = 1 given X,Z and W is generated by an ordered choice
model:

Pr(Ds = 1 | Z,W,X) ≡ Ps(Z,W,X)

= Pr
(
Cs−1(Ws−1) < μD(Z) − V � Cs(Ws)

∣∣ X
)
.

Analogous to the binary case, we can define UD = FV |X(V ) so UD ∼ Unif[0, 1]
under our assumption that the distribution of V is absolutely continuous with re-
spect to Lebesgue measure. The probability integral transformation used extensively

102 Absolutely continuous with respect to Lebesgue measure.
103 Absolutely continuous with respect to Lebesgue measure.
104 Vytlacil (2006b) shows that their monotonicity and independence conditions imply (and are implied by)
a more general version of the ordered choice model with stochastic thresholds, which appears in Heckman,
LaLonde and Smith (1999), Carneiro, Hansen and Heckman (2003), and Cunha, Heckman and Navarro
(2007), and is analyzed in Appendix G.
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in the binary choice model is somewhat less useful for analyzing ordered choices,
so we work with both UD and V in this section of the chapter. Monotonic trans-
formations of V induce monotonic transformations of μD(Z) − Cs(Ws), but one is
not free to form arbitrary monotonic transformations of μD(Z) and Cs(Ws) sepa-
rately. Using the probability integral transformation, the expression for choice s is
Ds = 1[FV |X(μD(Z) − Cs−1(Ws−1)) > UD � FV |X(μD(Z) − Cs(Ws))]. Keeping
the conditioning on X implicit, we define Ps(Z,W) = FV (μD(Z) − Cs−1(Ws−1)) −
FV (μD(Z) − Cs(Ws)). It is convenient to work with the probability that S > s,

πs(Z,Ws) = FV (μD(Z) − Cs(Ws)) = Pr(
∑S̄

j=s+1 Dj = 1 | Z,Ws), πS̄(Z,WS̄) = 0,
π0(Z,W0) = 1 and Ps(Z,W) = πs−1(Z,Ws−1) − πs(Z,Ws).

The transition-specific �MTE for the transition from s to s + 1 is defined in terms
of UD:

�MTE
s,s+1(x, uD) = E(Ys+1 − Ys | X = x,UD = uD), s = 1, . . . , S̄ − 1.

Alternatively, one can condition on V . Analogous to the analysis of the earlier sections
of this chapter, when we set uD = πs(Z,Ws), we obtain the mean return to persons
indifferent between s and s + 1 at mean level of utility πs(Z,Ws).

In this notation, keeping X implicit, the mean outcome Y , conditional on (Z,W), is
the sum of the mean outcomes conditional on each state weighted by the probability of
being in each state summed over all states:

E(Y | Z,W) =
S̄∑

s=1

E(Ys | Ds = 1, Z,W) Pr(Ds = 1 | Z,W)

(7.2)=
S̄∑

s=1

∫ πs−1(Z,Ws−1)

πs (Z,Ws)

E(Ys | UD = uD) duD,

where we use conditional independence assumption (OC-1) to obtain the final ex-
pression. Analogous to the result for the binary outcome model, we obtain the in-
dex sufficiency restriction E(Y | Z,W) = E(Y | π(Z,W)), where π(Z,W) =
[π1(Z,W1), . . . , πS̄−1(Z,WS̄−1)]. The choice probabilities encode all of the influence
of (Z,W) on outcomes.

We can identify πs(z,ws) for (z, ws) in the support of the distribution of (Z,Ws)

from the relationship πs(z,ws) = Pr(
∑S̄

j=s+1 Dj = 1 | Z = z,Ws = ws). Thus
E(Y | π(Z,W) = π) is identified for all π in the support of π(Z,W). Assumptions
(OC-1), (OC-3), and (OC-4) imply that E(Y | π(Z,W) = π) is differentiable in π . So
∂

∂π
E(Y | π(Z,W) = π) is well defined.105 Thus analogous to the result obtained in

105 For almost all π that are limit points of the support of distribution of π(Z,W), we use the Lebesgue
theorem for the derivative of an integral. Under assumption (OC-6), all points in the support of the distribution
of π(Z,W) will be limit points of that support, and we thus have that ∂

∂π
E(Y | π(Z,W) = π) is well defined

and is identified for (a.e.) π .
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the binary case

∂E(Y | π(Z,W) = π)

∂πs

= �MTE
s,s+1(UD = πs)

(7.3)= E(Ys+1 − Ys | UD = πs).

Equation (7.3) is the basis for identification of the transition-specific MTE from data on
(Y, Z,X).

From index sufficiency, we can express (7.2) as

E
(
Y
∣∣ π(Z,W) = π

) =
S̄∑

s=1

E(Ys | πs � UD < πs−1)(πs−1 − πs)

=
S̄−1∑
s=1

[
E(Ys+1 | πs+1 � UD < πs)

− E(Ys | πs � UD < πs−1)
]
πs

+ E(Y1 | π1 � UD < 1)

=
S̄−1∑
s=1

{
ms+1(πs+1, πs) − ms(πs, πs−1)

}
πs

(7.4)+ E(Y1 | π1 � UD < 1),

where ms(πs, πs−1) = E[Ys | πs � UD < πs−1]. In general, this expression is a non-
linear function of (πs, πs−1). This model has a testable restriction of index sufficiency
in the general case: E(Y | π(Z,W) = π) is a nonlinear function that is additive in
functions of (πs, πs−1) so there are no interactions between πs and πs′ if |s − s′| > 1,
i.e.,

∂2E(Y | π(Z,W) = π)

∂πs∂πs′
= 0 if |s − s′| > 1.

Observe that if UD ⊥⊥ Us for s = 1, . . . , S̄,

E
(
Y
∣∣ π(Z,W) = π

) =
S̄∑

s=1

E(Ys)(πs−1 − πs)

=
S̄−1∑
s=1

[
E(Ys+1) − E(Ys)

]
πs + E(Y1).

Defining E(Ys+1) − E(Ys) = �ATE
s,s+1, E(Y | π(Z,W) = π) = ∑S̄−1

s=1 �ATE
s,s+1πs +

E(Y1). Thus, under full independence, we obtain linearity of the conditional mean of Y

in the πs , s = 1, . . . , S̄. This result generalizes the test for the presence of essential
heterogeneity presented in Section 4 to the ordered case. We can ignore the complexity
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induced by the model of essential heterogeneity if E(Y | π(Z,W) = π) is linear in the
πs and can use conventional IV estimators to identify well-defined treatment effects.106

7.2.1. The policy relevant treatment effect for the ordered choice model

The policy relevant treatment effect compares the mean outcome under one policy
regime p with the mean outcome under policy regime p′. It is defined analogously
to the way it is defined in the binary case in Section 3.2 and in Heckman and Vytlacil
(2001c, 2005). Policies (p, p′) are assumed to induce different distributions of (Z,W),
Fp(Z,W). Forming Ep(Y ) = ∫

E(Y | Z = z,W = w) dF
p
Z,W (z,w) for each pol-

icy p, the policy relevant treatment effect is Ep′(Y ) − Ep(Y ).
We can represent the PRTE as a weighted average of pairwise MTE:

(7.5)�PRTE
p,p′ = Ep′(Y ) − Ep(Y ) =

S̄−1∑
s=1

∫
E(Ys+1 − Ys | V = v)ωp,p′(v) dF (v).

The weights are known functions of the data. See Appendix H for a derivation of the
weights and expression (7.5). Using the probability integral transform, we can alterna-
tively express this in terms of UD = FV |X(V ).

7.2.2. What do instruments identify in the ordered choice model?

We now characterize what scalar instrument J (Z,W) identifies. When Y is log earn-
ings, it is common practice to regress Y on S where S is completed years of schooling
and call the coefficient on S a rate of return.107 We seek an expression for the instru-
mental variables estimator of the effect of S on Y in the ordered choice model:

(7.6)
Cov(J (Z,W), Y )

Cov(J (Z,W),D)
,

where S = ∑S̄
s=1 sDs is the number of years of schooling attainment. We keep the

conditioning on X implicit. We now analyze the weights for IV. Their full derivation is
presented in Appendix I.

Define Ks(v) = E(J̃ (Z,W) | μD(Z) − Cs(Ws) > v) Pr(μD(Z) − Cs(Ws) > v),
where J̃ (Z,W) = J (Z,W) − E(J (Z,W)). Thus,

�IV
J = Cov(J, Y )

Cov(J, S)

(7.7)=
S̄−1∑
s=1

∫
E(Ys+1 − Ys | V = v)ω(s, v)fV (v) dv,

106 Notice that if UD ⊥�⊥Us for some s, then we obtain an expression with nonlinearities in (πs , πs−1) in
expression (7.4).
107 Heckman, Lochner and Todd (2006) present conditions under which this economic interpretation is valid.
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where

ω(s, v) = Ks(v)∑S̄
s=1s

∫ [Ks−1(v) − Ks(v)]fV (v) dv

= Ks(v)∑S̄−1
s=1

∫
Ks(v)fV (v) dv

,

and clearly
∑S̄−1

s=1

∫
ω(s, v)fV (v) dv = 1, ω(0, v) = 0, and ω(S̄, v) = 0. We can

rewrite this result in terms of the MTE, expressed in terms of uD

�MTE
s,s+1(uD) = E(Ys+1 − Ys | UD = uD)

so that

Cov(J, Y )

Cov(J, S)
=

S̄−1∑
s=1

∫ 1

0
�MTE

s,s+1(uD)ω̃(s, uD) duD,

where

ω̃(s, uD) = K̃s(uD)∑S̄
s=1s

∫ 1
0 [K̃s−1(uD) − K̃s(uD)] duD

(7.8)= K̃s(uD)∑S̄−1
s=1

∫ 1
0 K̃s(uD) duD

and

(7.9)K̃s(uD) = E
(
J̃ (Z,W)

∣∣ πs(Z,Ws) � uD

)
Pr
(
πs(Z,Ws) � uD

)
.

Compare Equations (7.8) and (7.9) for the ordered choice model to Equations (4.13)
and (4.14) for the binary choice model. The numerator of the weights for the �MTE

in the ordered choice model for a particular transition is exactly the numerator of the
weights for the binary choice model, substituting πs(Z,Ws) = Pr(S > s | Z,Ws) for
P(Z) = Pr(D = 1 | Z). The numerator for the weights for IV in the binary choice
model is driven by the connection between the instrument and P(Z). The numerator for
the weights for IV in the ordered choice model for a particular transition is driven by
the connection between the instrument and πs(Z,Ws). The denominator of the weights
is the covariance between the instrument and D (or S) for the binary (or ordered) case,
respectively. However, in the binary case the covariance between the instrument and D

is completely determined by the covariance between the instrument and P(Z), while
in the ordered choice case the covariance with S depends on the relationship between
the instrument and the full vector [π1(Z,W1), . . . , πS̄−1(Z,WS̄−1)]. Comparing our
decomposition of �IV to decomposition (7.1), ours corresponds to weighting up mar-
ginal outcomes across well-defined and adjacent boundary values experienced by agents
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having their instruments manipulated whereas the Angrist–Imbens decomposition cor-
responds to outcomes not experienced by some of the persons whose instruments are
being manipulated.

From Equation (7.9), the IV estimator using J (Z,W) as an instrument satisfies the
following properties. (a) The numerator of the weights on �MTE

s,s+1(uD) is nonnegative
for all uD if E(J (Z,Ws) | πs(Z,Ws) � πs) is weakly monotonic in πs . For example,
if Cov(πs(Z,Ws), S) > 0, setting J (Z,W) = πs(Z,Ws) will lead to nonnegative
weights on �MTE

s,s+1(uD), though it may lead to negative weights on other transitions.

A second property (b) is that the support of the weights on �MTE
s,s+1 using πs(Z,Ws) as

the instrument is (πMin
s , πMax

s ) where πMin
s and πMax

s are the minimum and maximum
values in the support of πs(Z,Ws), respectively, and the support of the weights on
�MTE

s,s+1 using any other instrument is a subset of (πMin
s , πMax

s ). A third property (c) is

that the weights on �MTE
s,s+1 implied by using J (Z,W) as an instrument are the same as

the weights on �MTE
s,s+1 implied by using E(J (Z,W) | πs(Z,Ws)) as the instrument.

Our analysis generalizes that of Imbens and Angrist (1994) and Angrist and Imbens
(1995) by considering multiple instruments and by introducing both transition-specific
instruments (W ) and general instruments (Z) across all transitions. In general, the
method of linear instrumental variables applied to S does not estimate anything that
is economically interpretable. It is not guaranteed to estimate a positive number even if
the MTE is everywhere positive since the weights can be negative. In contrast, we can
use our generalization of LIV presented in Equation (7.3) under conditions (OC-1)–
(OC-6) to apply LIV to identify �MTE for each transition, which can be used to build
up �PRTE using weights that can be estimated.

7.2.3. Some theoretical examples of the weights in the ordered choice model

Suppose that the distributions of Ws , s = 1, . . . , S̄, are degenerate so that the Cs are
constants satisfying C1 < · · · < CS̄−1. This is the classical ordered choice model. In
this case, πs(Z,Ws) = FV (μD(Z) − Cs) for any s = 1, . . . , S̄. For this special case,
using J as an instrument will lead to nonnegative weights on all transitions if J (Z,W)

is a monotonic function of μD(Z). For example, note that μD(Z) − Cs > v can be
written as μD(Z) > Cs + F−1

V (uD). Using μD(Z) as the instrument leads to weights
on �MTE

s,s+1(uD) of the form specified above with K̃s(uD) = [E(μD(Z) | μD(Z) >

F−1
V (uD)+Cs)−E(μD(Z))] Pr(μD(Z) > F−1

V (uD)+Cs). Clearly, these weights will
be nonnegative for all points of evaluation and will be strictly positive for any evaluation
point uD such that 1 > Pr(μD(Z) > F−1

V (uD) + Cs) > 0.
Next consider the case where Cs(Ws) = Ws , a scalar, for s = 1, . . . , S̄ − 1, and

where μD(Z) = 0. Consider J (Z,W) = Ws , a purely transition-specific instrument. In
this case, the weight on �MTE

s,s+1(uD) is of the form given above, with

K̃s(uD) = [
E
(
Ws

∣∣ Ws > F−1
V (uD)

)− E(Ws)
]

Pr
(
Ws > F−1

V (uD)
)
,
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which will be nonnegative for all evaluation points and strictly positive for any evalua-
tion point such that 1 > Pr(Ws > F−1

V (uD)) > 0.
What are the implied weights on �MTE

s′,s′+1(uD) for s′ �= s? First, consider the case
where Ws is independent of Ws′ for s �= s′. This independence of Ws and Ws′ is not in
conflict with the requirement Ws > Ws′ for s > s′ if the supports do not overlap for any
s′ �= s. In this case, the weight on �MTE

s′,s′+1(uD) for s′ �= s is of the form given above
with

K̃s′(uD) = [
E
(
Ws

∣∣ Ws′ > F−1
V (uD)

)− E(Ws)
]

Pr
(
Ws′ > F−1

V (uD)
) = 0.

Thus, in this case, the instrument only weights the �MTE for the s to s + 1 transition.
Note that this result relies critically on the assumption that Ws is independent of Ws′ for
s′ �= s.

Consider another version of this example where Cs(Ws) = Ws , s = 1, . . . , S̄ − 1,
with Ws a scalar, but now allow μD(Z) to have a nondegenerate distribution and allow
there to be dependence across the Ws . In particular, consider the case where W =
(W1, . . . ,WS̄−1) is a continuous random vector with a density given by∏S̄−1

i=1 fi(wi)1[w1 < w2 < · · · < wS̄−1]∫ · · · ∫ [1[w1 < w2 < · · · < wS̄−1]
∏S̄−1

i=1 fi(wi)] dw1 · · · dwS̄−1

for some marginal density functions f1(w1), f2(w2), . . . , fS̄−1(wS̄−1). In this case, us-
ing Wj as the instrument, we have

ω(s, v) =
( ∫

· · ·
∫

−∞<w1<···<wS̄−1<∞

(
wj − E(wj )

)(
1 − FμD(Z)(ws + v)

)

× f1(w1) · · · fS̄−1(wS̄−1) dw1 · · · dwS̄−1 fV (v) dv

)

×
(

S̄−1∑
s=1

∫ ∫
· · ·
∫

−∞<w1<···<wS̄−1<∞

(
wj − E(wj )

)(
1 − FμD(Z)(ws + v)

)

× f1(w1) · · · fS̄−1(wS̄−1) dw1 · · · dwS̄−1 fV (v) dv

)−1

.

In the special case where μD(Z) ∼ Unif(−K,K), with Z ⊥⊥ Ws for s = 1, . . . , S̄−1,
assuming −K < ws + v < K for all ws , v in the support of Ws and V , respectively, the
numerator is∫

· · ·
∫

−∞<w1<···<wS̄−1<∞

(
wj − E(wj )

)

× (ws + v + K)

2K
f1(w1) · · · fS̄−1(wS̄−1) dw1 · · · dwS̄−1 fV (v) dv
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= 1

2K
Cov(Wj ,Ws | W1 < · · · < WS̄−1).

Observe that when the latent Wj,Ws are independently distributed for all j, s, by
Bickel’s Theorem (1967), we know that this expression is positive. (This is trivial when
j = s.) The ordering W1 < · · · < WS̄−1 implies that Wl is stochastically increasing in
Wj for l < j (the lower boundary is shifted to the right). Hence, because of the order
on the W implied by the ordered discrete choice model, a positive weighting is pro-
duced. This result can be overturned when F(w) has a general structure. The positive
dependence induced by the order on the components of W can be reversed by negative
dependence in the structure of F(w). We present examples of these phenomena in our
discussions in Figures 19 and 20 below.

7.2.4. Some numerical examples of the IV weights

Figures 16–18 plot the transition-specific MTEs and the IV weights for the models
and distributions of the weights at the base of each of the figures. We consider a three
outcome (S̄ = 3) model with common instruments (Z) and transition-specific (Ws)
instruments. The Z and Ws , s = 1, . . . , S̄, are assumed to be independent. The ex-
act specification is given in the notes below Figure 16. In this example, Ds can be
interpreted as an indicator of schooling. Y1 is the potential earnings of the person as a
dropout, Y2 is the potential earnings of the person as a high school graduate, and Y3 is the
potential earnings of the person as a college graduate. There are two transitions: 1 → 2
and 2 → 3. The IV estimates using Z1 and W1 as instruments are reported transition by
transition and overall decomposing IV representation (7.7) into its transition-specific
components. The IV weights are defined by Equations (7.8) and (7.9). In particular,
when the first element of Z, Z1, is used as the instrument, we can decompose IVZ1 as

IVZ1 =
2∑

s=1

∫
E(Ys+1 − Ys | V = v)ωZ1(s, v)fV (v) dv

=
∫

�MTE
12 (v)ωZ1(1, v)fV (v) dv +

∫
�MTE

23 (v)ωZ1(2, v)fV (v) dv

= IVZ1
21 + IVZ1

32 .

The same logic applies for the decomposition of IVP which uses P(Z) as an instrument.
These decompositions show in this case that an important component of the total values
of IVZ and IVW 1 comes from the 2 → 3 transition. The bottom table presents the
transition-specific treatment parameters. In Figure 16, the shape of the IV weights for
Z1 and W1 are nearly identical. The IV estimates reflect this. The bottom table reveals
that the IV estimates are far from standard treatment parameters.

In Figure 17, the IV weights for the Z1 and W1 are very different. So, correspond-
ingly, are the IV estimates produced from each instrument, which are far off the mark
of the standard treatment parameters shown in the bottom of the table. Observe that
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Outcomes Choice model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws ],

s = 1, 2, 3Y2 = α + β2 + U2
Y3 = α + β3 + U3

Figure 16. Treatment parameters and IV – the generalized ordered choice Roy model under normality
(Z, W1). Source: Heckman, Urzua and Vytlacil (2004).

the IV weight for W1 in the second transition is negative for an interval of values. This
accounts for the dramatically lower IV estimate based on W1 as the instrument. Fig-
ure 18 shows a different configuration of (Z1,W1,W2). This produces negative weights
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Parameterization

(U1, U2, U3, V ) ∼ N(0, ΣUV ), (Z, W1,W2) ∼ N(μZW , ΣZW ) and W0 = −∞; W3 = ∞

ΣUV =
⎡
⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4

−0.3 −0.32 −0.4 1

⎤
⎥⎦, μZW = (−0.6, −1.08, 0.08)

and ΣZW =
[ 0.1 0 0

0 0.1 0.09
0 0.09 0.25

]

Cov(U2 − U1, V ) = −0.02, Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV estimates and their components∗

Parameter Value

�IVZ 0.1487

�
IVZ
12 0.0120

�
IVZ
23 0.1367

�
IVW1 0.1406

�
IVW1
12 0.0126

�
IVW1
23 0.1280

∗IVZ is decomposed as
IVZ=∫ E(Y2 − Y1 | V = v)ωZ(1, v)fV (v) dv

+ ∫
E(Y3 − Y2 | V = v)ωZ(2, v)fV (v) dv

=IVZ
21 + IVZ

32.

An analogous decomposition applies to IVW1 .

Treatment parameters and their values

Parameter Value

ATE12 = E(Y2 − Y1) 0.025
ATE23 = E(Y3 − Y2) 0.275
TT12 = E(Y2 − Y1 | D2 = 1) 0.0282
TT23 = E(Y3 − Y2 | D3 = 1) 0.1908
TUT12 = E(Y2 − Y1 | D1 = 1) 0.0060
TUT23 = E(Y3 − Y2 | D2 = 1) 0.2956

Figure 16. (Continued)

for Z1 for both transitions and a negative weight for W1 in the second transition. For
both instruments, IV is negative even though both MTEs are positive throughout most
of their range. IV provides a misleading summary of the underlying marginal treatment
effects.

Comparing Figures 16–18, it is important to recall that all are based on the same
structural model. All have the same MTE and average treatment effects. But the IV es-
timates are very different solely as a consequence of the differences in the distributions
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Outcomes Choice model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws ],

s = 1, 2, 3Y2 = α + β2 + U2
Y3 = α + β3 + U3

Figure 17. Treatment parameters and IV – the generalized ordered choice Roy model under normal-
ity (Z, W1), Case I. Source: Heckman, Urzua and Vytlacil (2006).

of instruments across the examples. An alternative way to benchmark what IV estimates
in the ordered choice model is to compare IV estimates to the PRTE for well-defined
policy experiments. We consider two such experiments, corresponding to proportional
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Parameterization

(U1, U2, U3, V ) ∼ N(0, ΣUV ), (Z, W1,W2) ∼ N(μZW , ΣZW ) and W0 = −∞; W3 = ∞

ΣUV =
⎡
⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4

−0.3 −0.32 −0.4 1

⎤
⎥⎦, μZW = (−0.6, −1.08, 0.08)

and ΣZW =
[ 0.1 0 0

0 0.1 −0.09
0 −0.09 0.25

]

Cov(U2 − U1, V ) = −0.02, Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV estimates and their components∗

Parameter Value

�IVZ 0.1489

�
IVZ
12 0.0117

�
IVZ
23 0.1372

�
IVW1 0.0017

�
IVW1
12 0.0325

�
IVW1
23 −0.0308

∗�IVZ is decomposed as

�IVZ =∫ E(Y2 − Y1 | V = v)ωZ(1, v)fV (v) dv

+ ∫
E(Y3 − Y2 | V = v)ωZ(2, v)fV (v) dv

=�
IVZ
12 + �

IVZ
23 .

An analogous decomposition applies to �
IVW1 .

Treatment parameters and their values

Parameter Value

ATE12 = E(Y2 − Y1) 0.025
ATE23 = E(Y3 − Y2) 0.275
TT12 = E(Y2 − Y1 | D2 = 1) 0.0271
TT23 = E(Y3 − Y2 | D3 = 1) 0.1871
TUT12 = E(Y2 − Y1 | D1 = 1) 0.0047
TUT23 = E(Y3 − Y2 | D2 = 1) 0.2854

Figure 17. (Continued)

and fixed subsidies for attending different levels of schooling. We use the definition
of the PRTE given in Equation (7.5). The baseline model is the one used to generate
Figure 17. The weights can be constructed from data and are derived in Appendix H.
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Outcomes Choice model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws ],

s = 1, 2, 3Y2 = α + β2 + U2
Y3 = α + β3 + U3

Figure 18. Treatment parameters and IV – the generalized ordered choice Roy model under normal-
ity (Z, W1), Case II. Source: Heckman, Urzua and Vytlacil (2006).

Figure 19 plots the weights for the PRTE for each transition for a policy experiment.
We change the economy from the benchmark economy that generates Figure 17 to an
economy where W2 is subsidized by a proportional amount τ . The PRTE weights for
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Parameterization

(U1, U2, U3, V ) ∼ N(0, ΣUV ), (Z, W1,W2) ∼ N(μZW , ΣZW ) and W0 = −∞; W3 = ∞

ΣUV =
⎡
⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4

−0.3 −0.32 −0.4 1

⎤
⎥⎦, μZW = (−0.6, −1.08, 0.08)

and ΣZW =
[ 0.1 0.092 −0.036

0.092 0.1 −0.09
−0.036 −0.09 0.25

]

Cov(U2 − U1, V ) = −0.02, Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV estimates and their components∗

Parameter Value

�IVZ −1.8091

�
IVZ
12 0.2866

�
IVZ
23 −2.0957

�
IVW1 −0.4284

�
IVW1
12 0.0909

�
IVW1
23 −0.5193

∗See the footnote below Figure 16 for details of the

decomposition of �IVZ and �
IVW1 .

Treatment parameters and their values

Parameter Value

ATE12 = E(Y2 − Y1) 0.025
ATE23 = E(Y3 − Y2) 0.275
TT12 = E(Y2 − Y1 | D2 = 1) 0.0283
TT23 = E(Y3 − Y2 | D3 = 1) 0.1754
TUT12 = E(Y2 − Y1 | D1 = 1) 0.0025
TUT23 = E(Y3 − Y2 | D2 = 1) 0.2898

Figure 18. (Continued)

each transition are negative over certain intervals. The overall PRTE is close to zero and
can be decomposed into two components corresponding to a negative component on the
second transition. The IV for the benchmark regime (p) and new regime (p′) are given
in the bottom table. The IV based on Z are far from the PRTE parameter. In general, the
IV estimands are far off the mark from the PRTEs.

We next present a comparison between what IV estimates and the PRTE for a pol-
icy that consists of changing W2 to W2 − t (t = 1.2 in the simulations). This can be
thought of as a college tuition reduction policy. We compare the weights on PRTE with
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Outcomes Choice model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws ],

s = 1, 2, 3Y2 = α + β2 + U2
Y3 = α + β3 + U3

Parameterization
The benchmark model (regime p) is the same as the one presented below Figure 17.

Under the new regime (regime p′) we define W
p′
1 = W

p
1 (1− τ) with τ = 0.5. Thus, under regime p we have

μ
p′
ZW

= (−0.6, −0.54, 0.08) and Σ
p
ZW

=
[ 0.1 0 0

0 0.025 −0.045
0 −0.045 0.25

]

The other parameters remain at the values set under the regime p

PRTE estimates and their components1

Parameter Value

PRTEp′,p 0.0076

PRTEp′,p
21 −0.0032

PRTEp′,p
32 0.0109

1PRTEp′, p is decomposed as

PRTEp′,p=∫ E(Y2 − Y1 | V = v)ωp′,p(1, v)fV (v) dv

+ ∫
E(Y3 − Y2 | V = v)ωp′,p(2, v)fV (v) dv

=PRTEp′,p
21 + PRTEp′,p

32 .

Figure 19. The policy relevant treatment effect weights – the generalized ordered choice Roy model under
normality. Source: Heckman, Urzua and Vytlacil (2004).

the weights on IV using W1 (Figure 20) and Z (Figure 21) as instruments. The case
using W2 as an instrument is similar and for the sake of brevity is not discussed. In
Figure 20A, we plot the transition-specific MTE for the values of the model presented
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IV estimates and treatment parameters under different regimes2

Parameter Regime p Regime p′

IVZ 0.1489 0.1521
IVZ

12 0.0117 0.0174

IVZ
23 0.1372 0.1347

IVW1 0.0017 0.0804

IV
W1
12 0.0325 0.0358

IV
W1
23 −0.0308 0.0446

ATE12 0.0250 0.0250
ATE23 0.2750 0.2750

TT12 0.0271 0.0327
TT23 0.1871 0.1789

TUT12 0.0047 0.0103
TUT23 0.2854 0.3067

2See footnote below Figure 16 for details of the decompositions
of IVZ and IVW1 .

Figure 19. (Continued)

at the base of the table. These are identical to the transition-specific MTE plotted in
Figure 21A. Both of the �MTE parameters have the typical shape of declining returns
for people less likely to make the transition, i.e., those who have a higher V = v. Even
though the levels are higher for outcomes 2 and 3, the marginal returns are higher for the
transition 1 → 2. Figure 20B plots the policy weights for the two transitions for a pol-
icy that lowers W2 (“reduces tuition”).108 It also plots the IV weights for the two �MTE

functions for the case where W1 is the instrument. The correlation pattern for (W1,W2)

is positive with specific values given below the figure. The policy studied in Figure 20B
shifts 42.8% of the D1 = 1 people into the category D3 = 1 and 92.4% of D2 peo-
ple into D3. In this simulation, the IV weights are positive. The IV weights and �PRTE

weights are distinctly different and the IV estimate is 0.201 vs. �PRTE of 0.166.
When we change the correlation structure between W1 and W2 so that they are nega-

tively correlated (Figure 20C), the IV weight for �MTE
2,3 becomes negative while that for

�MTE
1,2 remains positive. The contrast in these figures between negative and positive IV

weights depends on the correlation structure between W1 and W2. The stochastic order
(W2 > W1) is a force toward positive weights, which can be undone when the depen-
dence induced by the density (f (w1, w2)) is sufficiently negative. The discord between
the IV and �PRTE weights is substantial and is reflected in the estimates (�PRTE = 0.159
vs. �IV = 0.296). As Figure 20D illustrates, the weights on �PRTE are not guaranteed

108 Notice that, for clarity, of exposition we change the notation for the weights in Figures 20 and 21 to
distinguish IV from PRTE weights.
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Y3 = α + β3 + U3;D3 = 1 if W2 < I < ∞; U3 = σ3τ ; σ3 = 0.02, σ2 = 0.012, σ1 = −0.05, σV = −1
Y2 = α + β2 + U2;D2 = 1 if W1 < I � W2; U2 = σ2τ ; α = 0.67, β2 = 0.25, β3 = 0.4
Y1 = α + U1; D1 = 1 if −∞ < I � W1;U1 = σ1τ ; Z ∼ N(−0.0026, 0.27) and Z ⊥⊥ V

I = Z − V V = σV τ ; τ ∼ N(0, 1)

UD = FV (V )

Sample size = 1500

Figure 20A. W2 − t where t = 1.2 and W1 is the instrument: Marginal treatment effects by transition.

to be positive either. Thus neither the IV weights nor the weights on �PRTE are guaran-
teed to be positive or negative and the relationship between the two sets of weights can
be quite weak.

Figures 21A–21D present a parallel set of simulations when Z is used as an in-
strument. Changes in Z shift persons across all transitions whereas W1 is a transition-
specific shifter. Figure 21 reproduces the policy invariant �MTE parameters from Fig-
ure 20A. Figure 21B shows that the IV weights for �MTE

1,2 assume both positive and neg-

ative values. The IV weights for �MTE
2,3 are positive but not monotonic. In Figure 21C,

where there is negative dependence between W1 and W2, both sets of IV weights as-
sume both positive and negative values. In the case where f (w1, w2) = f1(w1)f2(w2),
the weights on �MTE

1,2 for �PRTE are negative.
These simulations show a rich variety of shapes and signs for the weights. They il-

lustrate a main point of this chapter – that standard IV methods are not guaranteed to
weight marginal treatment effects positively or to produce estimates close to policy rel-
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(W1,W2) ∼ N

([
0
0

]
,

[
1 0.8

0.8 1

])
�PRTE = 0.166, IV = 0.201

Proportion induced to change from D1 = 1 to D3 = 1 = 42.8%
Proportion induced to change from D2 = 1 to D3 = 1 = 92.4%

Figure 20B. W2 − t where t = 1.2 and W1 is the instrument: Policy relevant treatment effect vs. instrumental
variables weights by transition.

evant treatment effects or even to produce any gross treatment effect. Estimators based
on LIV and its extension to the ordered model (7.3) identify �MTE for each transition
and answer policy relevant questions. We now turn to an analysis of a general unordered
model.

7.3. Extension to multiple treatments that are unordered

The previous section analyzes a multiple treatment model where the treatment choice
equation is an ordered choice model. In this section, we develop a framework for
the analysis of multiple treatments when the choice equation is a nonparametric
version of the classical multinomial choice model with no order imposed. Appen-
dix B of Chapter 70, and Chapter 73 (Matzkin) analyze nonparametric and semi-
parametric identification of discrete choice models. With this framework, treatment
effects can be defined as the difference in the counterfactual outcomes that would
have been observed if the agent faced different general choice sets, i.e., the ef-

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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(W1,W2) ∼ N

([
0
0

]
,

[
1 −0.8

−0.8 1

])

�PRTE = 0.159, IV = 0.296
Proportion induced to change from D1 = 1 to D3 = 1 = 32.1%
Proportion induced to change from D2 = 1 to D3 = 1 = 64.7%

Figure 20C. W2 − t where t = 1.2 and W1 is the instrument: Policy relevant treatment effect vs. instrumental
variables weights by transition.

fect of the individual being forced to choose from one choice set instead of an-
other. We define treatment parameters for a general multiple treatment problem
and present conditions for the application of instrumental variables for identify-
ing a variety of new treatment parameters. Our identification conditions are weaker
than the ones used in Appendix B of Chapter 70, which establishes conditions un-
der which it is possible to nonparametrically identify a full multinomial selection
model.

Our use of choice theory is a unique aspect of our approach to the analysis of treat-
ment effects. One particularly helpful result we draw on is the representation of the
multinomial choices in terms of the choice between a particular choice and the best op-
tion among all other choices. This representation is crucial for understanding why LIV
allows one to identify the MTE for the effect of one choice versus the best alternative
option. The representation was introduced in Domencich and McFadden (1975), and
has been used in the analysis of parametric multinomial selection models by Lee (1983)

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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(W1,W2) ∼ N

([
0
0

]
,

[
1 0
0 1

])

�PRTE = 0.110, IV = 0.210
Proportion induced to change from D1 = 1 to D3 = 1 = 27.5%
Proportion induced to change from D2 = 1 to D3 = 1 = 76.8%

Figure 20D. W2 − t where t = 1.2 and W1 is the instrument: Policy relevant treatment effect vs. instrumental
variables weights by transition.

and Dahl (2002). Unlike those authors, we systematically explore treatment effect het-
erogeneity, consider nonparametric identification, and examine the application of the
LIV methodology to such models.

Our analysis proceeds as follows. We first introduce our nonparametric, multinomial
selection model and state our assumptions in Section 7.3.1. In Section 7.3.2, we define
treatment effects in a general unordered model as the differences in the counterfactual
outcomes that would have been observed if the agent faced different choice sets, i.e.,
the effects observed if individuals are forced to choose from one choice set instead
of another. We also define the corresponding treatment parameters. Treatment effects
in this context exhibit a form of treatment effect heterogeneity not present in the binary
treatment case. The new form of heterogeneity arises from agents facing different choice
sets, which we discuss in Section 7.3.3.

Section 7.3.4 establishes that LIV and the nonparametric Wald-IV estimand produce
identification of the MTE/LATE versions of the effect of one choice versus the best
alternative option without requiring knowledge of the latent index functions generat-
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Y3 = α + β3 + U3; D3 = 1 if W2 < I < ∞; U3 = σ3τ ; σ3 = 0.02, σ2 = 0.012, σ1 = −0.05, σV = −1
Y2 = α + β2 + U2; D2 = 1 if W1 < I � W2; U2 = σ2τ ; α = 0.67, β2 = 0.25, β3 = 0.4
Y1 = α + U1; D1 = 1 if −∞ < I � W1; U1 = σ1τ ; Z ∼ N(−0.0026, 0.27) and Z ⊥⊥ V

I = Z − V V = σV τ ; τ ∼ N(0, 1)

Sample size = 1500

Figure 21A. W2 − t where t = 1.2 and Z is the instrument: Marginal treatment effects by transition.

ing choices or large support assumptions. Mean treatment effects comparing one option
versus the best alternative are the easiest treatment effects to study using instrumental
variable methods because we effectively collapse a multiple outcome model to a se-
ries of two-outcome models, picking one outcome relative to the rest. In Section 7.3.5,
we consider a more general case and state conditions for identifying the mean effect
of the outcome associated with the best option in one choice set to the mean effect of
the best option not in that choice set. We show that identification of the corresponding
MTE/LATE parameters requires knowledge of the latent index functions of the multino-
mial choice model. Thus, to identify the parameters by using IV or LIV requires the
formulation and estimation of an explicit choice model. In Section 7.3.6, we analyze the
identification of treatment parameters corresponding to the mean effect of one specified
choice versus another specified choice. Identification of marginal treatment parameters
in this case requires the use of identification at infinity arguments relying on large sup-
port assumptions, but does not require knowledge of the latent index functions of the
multinomial choice problem. This use of large support assumptions is closely related to
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(W1, W2) ∼ N

([
0
0

]
,

[
1 0.8

0.8 1

])
�PRTE = 0.166, IV = 0.247

Proportion induced to change from D1 = 1 to D3 = 1 = 42.8%
Proportion induced to change from D2 = 1 to D3 = 1 = 92.4%

Figure 21B. W2 − t where t = 1.2 and Z is the instrument: Policy relevant treatment effect vs. instrumental
variables weights by transition.

the need for large support assumptions to identify the full model developed in Appen-
dix B of Chapter 70 of this Handbook. We summarize our analysis in Section 7.3.7.

7.3.1. Model and assumptions

Consider the following model with multiple choices and multiple outcome states for a
general unordered model. Let J denote the agent’s choice set, where J contains a finite
number of elements. The value to the agent of choosing option j ∈ J is

(7.10)Rj (Zj ) = ϑj (Zj ) − Vj ,

where Zj are the agent’s observed characteristics that affect the utility from choosing
choice j , and Vj is the unobserved shock to the agent’s utility from choice j . We will
sometimes suppress the argument and write Rj for Rj (Zj ). Let Z denote the random
vector containing all unique elements of {Zj }j∈J , i.e., Z = ⋃

j∈J {Zj }j∈J . We will
also sometimes write Rj (Z) for Rj (Zj ), leaving implicit that Rj(·) only depends on

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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(W1,W2) ∼ N

([
0
0

]
,

[
1 −0.8

−0.8 1

])
�PRTE = 0.159, IV = 0.346

Proportion induced to change from D1 = 1 to D3 = 1 = 32.1%
Proportion induced to change from D2 = 1 to D3 = 1 = 64.7%

Figure 21C. W2 − t where t = 1.2 and Z is the instrument: Policy relevant treatment effect vs. instrumental
variables weights by transition.

those elements of Z that are contained in Zj . Let DJ ,j be an indicator variable for
whether the agent would choose option j if confronted with choice set J 109:

DJ ,j =
{

1 if Rj � Rk, ∀k ∈ J ,

0 otherwise.
Let IJ denote the choice that would be made by the agent if confronted with choice
set J :

IJ = j ⇐⇒ DJ ,j = 1.

Let YJ be the outcome variable that would be observed if the agent faced choice set J ,
determined by

YJ =
∑
j∈J

DJ ,j Yj ,

109 We will impose conditions such that ties, Rj = Rk for j �= k, occur with probability zero.
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(W1,W2) ∼ N

([
0
0

]
,

[
1 0
0 1

])
�PRTE = 0.104, IV = 0.215

Proportion induced to change from D1 = 1 to D3 = 1 = 27.3%
Proportion induced to change from D2 = 1 to D3 = 1 = 69.3%

Figure 21D. W2 − t where t = 1.2 and Z is the instrument: Policy relevant treatment effect vs. instrumental
variables weights by transition.

where Yj is the potential outcome, observed only if option j is chosen. Yj is determined
by

Yj = μj (Xj ,Uj ),

where Xj is a vector of the agent’s observed characteristics and Uj is an unobserved ran-
dom vector. Let X denote the random vector containing all unique elements of {Xj }j∈J ,
i.e., X = ⋃

j∈J {Xj }j∈J . (Z,X, IJ , YJ ) is assumed to be observed. Define RJ as the
maximum obtainable value given choice set J :

RJ = max
j∈J

{Rj } =
∑
j∈J

DJ ,jRj .

We thus obtain the traditional representation of the decision process that choice j being
optimal implies that choice j is better than the “next best” option:

IJ = j ⇐⇒ Rj � RJ \j .
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More generally, a choice from K being optimal is equivalent to the highest value obtain-
able from choices in K being higher than the highest value that can be obtained from
choices outside that set,

IJ ∈ K ⇐⇒ RK � RJ \K.

As we will show, this simple representation is the key intuition for understanding how
nonparametric instrumental variables estimate the effect of a given choice versus the
“next best” alternative.

Analogous to our definition of RJ , we define RJ (z) to be the maximum obtainable
value given choice set J when instruments are fixed at Z = z,

RJ (z) = max
j∈J

{
Rj(z)

}
.

Thus, for example, a choice from K is optimal when instruments are fixed at Z = z if
RK(z) � RJ \K(z).

We make the following assumptions, which generalize assumptions (A-1)–(A-5) in-
voked in Heckman and Vytlacil (2001b) and later used in Heckman and Vytlacil (2005),
as developed in Section 2. We present the assumptions in a fashion parallel to (A-1)–
(A-5) and (OC-1)–(OC-6). For that reason, we present the second assumption, which
requires special attention, out of order.

(B-1) {(Vj , Uj )}j∈J is independent of Z conditional on X.
(B-3) The distribution of ({Vj }j∈J ) is continuous.110

(B-4) E(|Yj |) < ∞ for all j ∈ J .
(B-5) Pr(IJ = j | X) > 0 for all j ∈ J .

Assumption (B-1) and (B-3) imply that Rj �= Rk w.p.1 for j �= k, so that argmax{Rj }
is unique w.p.1. Assumption (B-4) is required for the mean treatment parameters to be
well defined. It allows us to integrate to the limit, which will be a crucial step for all
identification analysis. Assumption (B-5) requires that at least some individuals partic-
ipate in each program for all X.

Our definition and analysis of the treatment parameters only require assump-
tions (B-1) and (B-3)–(B-5). However, we will also impose an exclusion restriction for
our identification analysis. Let Z[j ] denote the j th components of Z that are in Zj but
not in Zk , k �= j . Let Z[−j ] denote all elements of Z except for the components in Z[j ].
We work with two alternative assumptions for the exclusion restriction.111 Consider

110 Absolutely continuous with respect to Lebesgue measure on
∏

j∈J R.
111 We work here with exclusion restrictions in part for ease of exposition. By adapting the analysis of
Cameron and Heckman (1998) and Heckman and Navarro (2007), one can modify our analysis for the case
of no exclusion restrictions if Z contains a sufficient number of continuous variables and there is sufficient
variation in the ϑk function across k.
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(B-2a) for each j ∈ J , there exists at least one element of Z, say Z[j ], such that
Z[j ] is not an element of Zk , k �= j , and such that the distribution of ϑj (Zj )

conditional on (X,Z[−j ]) is nondegenerate,

or

(B-2b) for each j ∈ J , there exists at least one element of Z, say Z[j ], such that
Z[j ] is not an element of Zk , k �= j , and such that the distribution of ϑj (Zj )

conditional on (X,Z[−j ]) is continuous.112

Assumption (B-2a) imposes the requirement that the analyst be able to independently
vary the index for the given value function. This produces variation that affects only
the value of the j th value function and causes people to enter or exit sector j . It im-
poses an exclusion restriction, that for any j ∈ J , Z contains an element such that
(i) it is contained in Zj ; (ii) it is not contained in any Zk for k �= j and (iii) ϑj (·) is
a nontrivial function of that element conditional on all other regressors. Assumption
(B-2b) strengthens (B-2a) by adding a smoothness assumption. A necessary condition
for (B-2b) is for the excluded variable to have a density with respect to Lebesgue mea-
sure conditional on all other regressors and for ϑj (·) to be a continuous and nontrivial
function of the excluded variable.113 Assumption (B-2a) will be used to identify a gener-
alization of the LATE parameter. Assumption (B-2b) will be used to identify a general-
ization of the MTE parameter. For certain portions of the analysis, we strengthen (B-2b)
to a large support condition, though the large support assumption will not be required
for most of our analysis. Assumptions (B-2a) and (B-2b) mirror (A-2) for the binary
choice model and are analogous to (OC-2) and (OC-6) in an ordered choice model.

7.3.2. Definition of treatment effects and treatment parameters

Treatment effects are defined as the difference in the counterfactual outcomes that would
have been observed if the agent faced different choice sets. For any two choice sets,
K,L ⊂ J , define

�K,L = YK − YL.

This is the effect of the individual being forced to choose from choice set K versus
choice set L. The conventional treatment effect is defined as the difference in potential
outcomes between two specified states,

�k,l = Yk − Yl,

112 Absolutely continuous with respect to Lebesgue measure.
113 (B-2b) can be easily relaxed to the weaker assumption that the support of ϑj (Zj ) conditional on

(X,Z[−j ]) contains an open interval, or further weakened to the assumption that the conditional support
contains at least one limit point. In these cases, the analysis of this section goes through without change for
analysis for points within the open interval or more generally for any limit point.
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which is nested within this framework by taking K = {k}, L = {l}. It is the effect for
the individual of having no choice except to choose state l.

�K,L will be zero for agents who make the same choice when confronted with choice
set K and choice set L. Thus, IK = IL implies �K,L = 0, and we have

(7.11)�K,L = 1(IL �= IK)�K\L,L

(7.12)= 1(IL �= IK)

( ∑
j∈K\L

DK,j�j,L

)
.

Two examples will be of particular importance for our analysis. First, consider choice
set K = {k} versus choice set L = J \ {k}. In this case, �k,J \k is the difference
between the agent’s potential outcome in state k versus the outcome that would have
been observed if he or she had not been allowed to choose state k. If IJ = k, then
�k,J \k is the difference between the outcome in the agent’s preferred state and the
outcome in the agent’s “next-best” state. Second, consider the set K = J versus choice
set L = J \{k}. In this case, �J ,J \k is the difference between the agent’s best outcome
and what his or her outcome would have been if state k had not been available. Note that

�J ,J \k = DJ ,k�k,J \k.

Thus, there is a trivial connection between the two parameters, �J ,J \k and �k,J \k .
We will focus on �k,J \k , the effect of being forced to choose option k versus being
denied option k. However, one can use Equation (7.11) to use the results for �k,J \k to
obtain results for �J ,J \k .

To fix ideas regarding these alternative definitions of treatment effects, consider the
following example concerning GED certification. The GED is an exam that certifies that
high school dropouts who pass the test are the equivalents of high school graduates.

EXAMPLE (GED certification). Consider studying the effect of GED certification
on later wages. Consider the case where J = {{GED}, {HS Degree}, {Permanent
Dropout}}. Let j = {GED}, k = {HS Degree}, and l = {Permanent Dropout}. Sup-
pose one wishes to study the effect of the GED. Then possible definitions of the effect
of the GED include:

• �j,k is the individual’s outcome if he or she received the GED versus if he or she
had graduated from high school;

• �j,l is the individual’s outcome if he or she received the GED versus if he or she
had been a permanent dropout;

• �j,J \j is the individual’s outcome if he or she had received the GED versus what
the outcome would have been if he or she had not had the option of receiving the
GED;

• �J ,J \j is the individual’s outcome if he or she had the option of receiving the
GED versus the outcome if he or she did not have the option of receiving the GED.
Notice that �J ,J \j is a version of an option value treatment effect.
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We now define treatment parameters for a general unordered model.

Treatment parameters The conventional definition of the average treatment effect
(ATE) is

�ATE
k,l (x, z) = E(�k,l | X = x,Z = z),

which immediately generalizes to the class of parameters discussed in this section as

�ATE
K,L(x, z) = E(�K,L | X = x,Z = z).

Notice that the treatment parameters now depend on the value of Z. We explain the
source of this dependence below. The conventional definition of the treatment on the
treated (TT) parameter is

�TT
k,l (x, z) = E(�k,l | X = x,Z = z, IJ = k),

which we generalize to

�TT
K,L(x, z) = E(�K,L | X = x,Z = z, IJ ∈ K).

We also generalize the marginal treatment effect (MTE) and local average treatment
effect (LATE) parameters considered in Heckman and Vytlacil (2001b). We generalize
the MTE parameter to be the average effect conditional on being indifferent between
the best option among choice set K versus the best option among choice set L at some
fixed value of the instruments, Z = z:

(7.13)�MTE
K,L (x, z) = E

(
�K,L

∣∣ X = x,Z = z, RK(z) = RL(z)
)
.

We generalize the LATE parameter to be the average effect for someone for whom the
optimal choice in choice set K is preferred to the optimal choice in choice set L at
Z = z̃, but who prefers the optimal choice in choice set L to the optimal choice in
choice set K at Z = z:

(7.14)

�LATE
K,L (x, z, z̃) = E

(
�K,L

∣∣ X = x,Z = z, RK(z̃) � RL(z̃), RL(z) � RK(z)
)
.

An important special case of this parameter arises when z = z̃ except for elements that
enter the index functions only for choices in K and not for any choice in L. In that
special case, Equation (7.14) simplifies to

�LATE
K,L (x, z, z̃) = E

(
�K,L

∣∣ X = x,Z = z, RK(z̃) � RL(z) � RK(z)
)
,

since RL(z) = RL(z̃) in this special case.
We have defined each of these parameters as conditional not only on X but also on

the “instruments” Z. In general, the parameters depend on the Z evaluation point. For
example, �ATE

K,L(x, z) generally depends on the z evaluation point. To see this, note that
YK = ∑

k∈K DK,kYk , and YL = ∑
l∈L DL,lYl . By conditional independence assump-

tion (B-1), Z ⊥⊥ {Yj }j∈J | X, but DK,k and DL,l depend on Z conditional on X and
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thus YK − YL, in general, is dependent on Z conditional on X.114 In other words, even
though Z is conditionally independent of each individual potential outcome, it is corre-
lated with the indicator for the choice that is optimal within the sets K and L and thus
is related to YK − YL.

7.3.3. Heterogeneity in treatment effects

Consider heterogeneity in the pairwise treatment effect �j,k (with (j, k) ∈ J ) defined
as

�j,k = Yj − Yk = μj (Xj ,Uj ) − μk(Xk,Uk),

which in general will vary with both observables (X) and unobservables (Uj , Uk). Since
we have not assumed that the error terms are additively separable, the treatment effect
will in general vary with unobservables even if Uj = Uk .

The mean treatment parameters for �j,k will differ if the effect of treatment is hetero-
geneous and agents base participation decisions, in part, on their idiosyncratic treatment
effect. In general, the ATE, TT, and the marginal treatment parameters for �j,k will dif-
fer as long as there is dependence between (Uj , Uk) and the decision rule, i.e., if there
is dependence between (Uj , Uk) and ({Vl}l∈J ). If we impose that ({Vl}l∈J ) is indepen-
dent of (Uj , Uk), then the treatment effect will still be heterogeneous, but the average
treatment effect, average effect of treatment on the treated, and the marginal average
treatment effects will all coincide.

The literature on treatment effects often imposes additive separability in outcomes
between observables and unobservables. In particular, it is commonly assumed that Uj

and Uk are scalar random variables and that Yj = μj (Xj ) + Uj , Yk = μk(Xk) +
Uk . In that case, a common treatment effect model is produced if the additive error
term does not vary with the treatment state: Uj = Uk .115 Thus, in the special case of
additive separability, the treatment parameters for �j,k will be the same even if there is
dependence between {Vl}l∈J and (Uj , Uk) as long as Uj = Uk .116

There is an additional source of treatment heterogeneity in the more general case
of �K,L arising from heterogeneity in which states are being compared. Consider, for

114 An exception is if K = {k}, L = {l}, i.e., both sets are singletons.
115 More generally, if Uj , Uk are vector-valued, then additive separability is Yj = μ1j (Xj ) + μ2j (Uj ),
Yk = μ1k(Xk)+μ2k(Uk), and the standard result is that a common treatment effect is produced if μ2j (Uj ) =
μ2k(Uk).
116 Because the literature often assumes additive separability in outcome equations, questions about the exis-
tence of a common treatment effect hinge on whether the additively separable error terms differ by treatment
state. If the error terms differ by treatment state, there will be differences in the treatment parameters accord-
ing to whether the differences in the error terms are stochastically dependent on the participation decision.
Aakvik, Heckman and Vytlacil (1999) examine the case where the outcome variable is binary so that an
additive separability assumption is not appropriate and Heckman and Vytlacil (2001b, 2005) consider cases
without additive separability. Vytlacil, Santos and Shaikh (2005) and Vytlacil and Yildiz (2006) develop the
case where Uj = Uk , but the model is not additively separable.
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example, �j,J \j . We have that

�j,J \j =
∑

k∈J \j
DJ \j,k�j,k,

which will vary over individuals even if each individual has the same �j,k treatment
effect. Consider the corresponding ATE and TT parameters:

�ATE
j,J \j (x, z)

= E(�j,J \j | X = x,Z = z)

=
∑

k∈J \j
Pr(IJ \j = k | X = x,Z = z)E(�j,k | X = x,Z = z, IJ \j = k)

and

�TT
j,J \j (x, z)

= E(�j,J \j | X = x,Z = z, IJ = j)

=
∑

k∈J \j
Pr(IJ \j = k | X = x,Z = z, IJ = j)

× E(�j,k | X = x,Z = z, IJ = j, IJ \j = k).

Even in the case where {Uj }j∈J is independent of {Vj }j∈J , so that E(�j,k | X = x,

Z = z, IJ \j = k) = E(�j,k | X = x,Z = z, IJ = j, IJ \j = k), it
will still in general be the case that �ATE

j,J \j (x, z) �= �TT
j,J \j (x, z) since in general

Pr(IJ \j = k | X = x,Z = z) �= Pr(IJ \j = k | X = x,Z = z, IJ = j). Thus,
the ATE and TT parameters will differ in part because they place different weights on
the alternative pairwise treatment effects, and thus will differ even in the case where the
pairwise (j versus k) treatment effects are common across all individuals.

In summary, �j,k will be heterogeneous depending on the functional form of the
μj (·) and μk(·) equations and on the pairwise dependence between the Uj and Uk

terms. The �j,k mean treatment parameters will also vary depending on the dependence
between {Vl}l∈J and (Uj , Uk). For �j,J \j , there is an additional source of heterogene-
ity arising from variability in the optimal option in the set J \ j . Even if there is no
heterogeneity in the pairwise �j,k terms, there will still be heterogeneity in �j,J \j ,
and heterogeneity in the corresponding mean treatment parameters.

7.3.4. LIV and nonparametric Wald estimands for one choice vs. the best alternative

We first consider identification of treatment parameters corresponding to averages of
�j,J \j , the effect of choosing option j versus the preferred option in J if j is not
available. We analyze both a discrete change (Wald form for the instrumental variables
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estimand) and the local instrumental variables (LIV) estimand.117 Using a concise no-
tation, define Z[j ] as the vector of elements in Zj that do not enter any other choice
index, and that Z[−j ] is a vector of elements of Z not in Z[j ]. The Z[j ] thus act as
shifters attracting people into or out of state j but not affecting the valuations in the
arguments of the other choice functions. For this case, we can develop an analysis of
IV parallel to that given for the binary case or the ordered choice case if we condition
on Z[−j ]. We obtain monotonicity or uniformity in this model if the movements among
states induced by Z[j ] are the same for all persons conditional on Z[−j ] = z[−j ] and
X = x. For example, ceteris paribus if Z[j ] = z[j ] increases, Rj(Zj ) increases but the
Rk(Zk) are not affected, so the flow is toward state j .

Let DJ ,j be an indicator variable denoting whether option j is selected:

DJ ,j = 1
(
Rj (Zj ) � max

��=j

{
R�(Z�)

})
= 1

(
ϑj (Zj ) � Vj + max

��=j

{
R�(Z�)

})
(7.15)= 1

(
ϑj (Zj ) � Ṽj

)
,

where Ṽj = Vj + max��=j {R�(Z�)}. Thus we obtain DJ ,j = 1(Pj (Zj ) � UDj
), where

UDj
= F

ṼJ |Z[−j ](Vj + max��=j {R�(Z�)} | Z[−j ] = z[−j ]), where F
ṼJ |Z[−j ] is the cdf of

Ṽj given Z[−j ] = z[−j ]. In a format parallel to the binary model, we write

(7.16)Y = DJ ,j Yj + (1 − DJ ,j )YJ \j ,

where YJ \j is the outcome that would be observed if option j were not available. This
case is just a version of the binary case developed in previous sections of the paper.
There is one crucial difference, however, and that is that the distributions of the Ṽj now
depend on the excluded Z = z. Thus instruments and parameters have to be defined
conditionally on Z = z. We can define MTE as

E
(
Yj − YJ \j

∣∣ X = x,Z = z, ϑj (zj ) − Vj = RJ \j (z)
)
.

We have to condition on Z = z because the choice sets are defined over the max of
elements in J \ j (see Equation (7.15)).

We now show that our identification strategies presented in the preceding part of
this paper extend naturally to the identification of treatment parameters for �j,J \j .
In particular, it is possible to recover LATE and MTE parameters for �j,J \j by use
of discrete change IV methods and local instrumental variable methods, respectively.
Averages of the effect of option j versus the next best alternative are the easiest effects
to study using instrumental variable methods and are natural generalizations of our two-
outcome analysis.

117 An estimand is the population version of the estimator.
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The discrete change instrumental variables estimand will allow us to recover a version
of the local average treatment effect (LATE) parameter.118 Invoke assumption (B-2a).
Assume only one excluded variable Z[j ] in Zj . If there are more, pick any one that
satisfies (B-2a). Let Z[−j ] denote the excluded variable for option j with properties
assumed in (B-2a). We let Z = [Z[−j ], Z[j ]] and Z̃ = [Z̃[−j ], Z̃[j ]] be two values
where we only manipulate scalar Z[j ].

�Wald
j

(
x, z[−j ], z[j ], z̃[j ])

= E(Y | X = x,Z = z̃) − E(Y | X = x,Z = z)

Pr(DJ ,j = 1 | X = x,Z = z̃) − Pr(DJ ,j = 1 | X = x,Z = z)
,

where for notational convenience we are assuming that Z[j ] is the last element of Z.
Note that all components of z and z̃ are the same except for the j th component. Without
loss of generality, we assume that ϑj (z̃) > ϑj (z).

If there were no X regressors, and if Z were a scalar, binary random variable, then
�Wald

j (x, z[−j ], z[j ], z̃[j ]) would be the probability limit of the Wald form of two-stage
least squares regression (2SLS). With X regressors, and with Z a vector possibly in-
cluding continuous components, it no longer corresponds to a Wald/2SLS, but rather
to a nonparametric version of the Wald estimator where the analyst nonparametrically
conditions on X and on Z taking one of two specified values.

The local instrumental variables estimator (LIV) estimand introduced in Heckman
(1997), and developed further in Heckman and Vytlacil (1999, 2000, 2005) and Florens
et al. (2002), will allow us to recover a version of the marginal treatment effect (MTE)
parameter. Impose (B-2b), and let Z[j ] denote the excluded variable for option j with
properties assumed in (B-2b). Because of the index structure, the LIV estimand will be
invariant to which particular variable in Z[j ] satisfying (B-2b) is used if there is more
than one variable with the property assumed in (B-2b). The effects are not invariant to
variables in Z[−j ]. Define

�LIV
j (x, z) ≡ ∂

∂z[j ] E(Y | X = x,Z = z)
/ ∂

∂z[j ] Pr(DJ ,j = 1 | X = x,Z = z).

�LIV
j (x, z) is thus the limit form of �Wald

j (x, z[−j ], z[j ], z̃[j ]) as z̃[j ] approaches z[j ].
Given our previous assumptions, one can easily show that this limit exists w.p.1. LIV
corresponds to a nonparametric, local version of indirect least squares. It is a function
of the distribution of the observable data, and it can be consistently estimated using any
nonparametric estimator of the derivative of a conditional expectation.

Given these definitions, we have the following identification theorem.

118 We are using the Z directly in the following manipulations instead of directly manipulating the
{ϑl(Zl)}l∈J indices. One can modify the following analysis to directly use {ϑl(Zl)}l∈J , with the disad-
vantage of requiring identification of {ϑl(Zl)}l∈J (e.g., by an identification at infinity argument) but with the
advantage of being able to follow the analysis of Heckman and Navarro (2007) in not requiring an exclusion
restriction if Z contains a sufficient number of continuous variables and there is sufficient variation in the ϑk

functions across k.
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THEOREM 6.
1. Assume (B-1), (B-3)–(B-5), and (B-2a). Then

�Wald
j

(
x, z[−j ], z[j ], z̃[j ]) = �LATE

j,J \j (x, z, z̃),

where z̃ = (z[−j ], z̃[j ]).
2. Assume (B-1), (B-3)–(B-5), and (B-2b). Then

�LIV
j (x, z) = �MTE

j,J \j (x, z).

PROOF. See Appendix J. �

The intuition underlying the proof is simple. Under (B-1), (B-3)–(B-5), and (B-2a), we
can convert the problem of comparing the outcome under j with the outcome under the
next best option. This is an IV version of the selection modeling of Dahl (2002).

�LATE
j,J \j (x, z, z̃) is the average effect of switching to state j from state IJ \j for indi-

viduals who would choose IJ \j at Z = z but would choose j at Z = z̃. �MTE
j,J \j (x, z)

is the average effect of switching to state j from state IJ \j (the best option besides
state j ) for individuals who are indifferent between state j and IJ \j at the given values
of the selection indices (at Z = z, i.e., at {ϑk(Zk) = ϑk(zk)}k∈J ).

The mean effect of state j versus state IJ \j (the next best option) is a weighted
average over k ∈ J \ j of the effect of state j versus state k, conditional on k being the
next best option, weighted by the probability that k is the next best option. For example,
for the LATE parameter,

�LATE
j,J \j (x, z, z̃)

= E
(
�j,J \j

∣∣ X = x,Z = z, Rj (z̃) � RJ \j (z) � Rj (z)
)

=
∑

k∈J \j

[
Pr
(
IJ \j = k

∣∣ Z ∈ {z, z̃}, X = x,Rj (z̃) � RJ \j (z) � Rj (z)
)

× E
(
�j,k

∣∣ X = x,Z ∈ {z, z̃}, Rj (z̃) � RJ \j (z) � Rj (z), IJ \j = k
)]

,

where we use the result that RJ \j (z) = RJ \j (z̃) since z = z̃ except for one component
that only enters the index for the j th option. The higher ϑk(zk), holding the other indices
constant, the larger the weight given to k as the base state. Thus, how heavily each
option is weighted in this average depends on the switching probability Pr(IJ \j = k |
Z = z,X = x,Rj (z̃j ) � Rk(zk) � Rj (zj )), which in turn depends on {ϑk(zk)}k∈J \j .

The LIV and Wald estimands depend on the z evaluation point. Alternatively, one
can define averaged versions of the LIV and Wald estimands that will recover averaged
versions of the MTE and LATE parameters,∫

�Wald
j

(
x, z[−j ], z[j ], z̃[j ]) dFZ[−j ]

(
z[−j ])

=
∫

�LATE
j,J \j (x, z, z̃) dFZ[−j ]

(
z[−j ])
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= E
(
�j,J \j

∣∣ X = x,Rj

(
Z[−j ], z̃[j ]) � RJ \j

(
Z[−j ]) � Rj

(
Z[−j ], z[j ]))

and ∫
�LIV

j (x, z) dFZ(z) =
∫

�MTE
j,J \j (x, z) dFZ(z)

= E
(
�j,J \j

∣∣ X = x,Rj (Z) = RJ \j (Z)
)
.119

Thus far we have only considered identification of marginal treatment effect para-
meters, LATE and MTE, and not of the more standard treatment parameters like ATE
and TT. However, following Heckman and Vytlacil (1999, 2001b), LATE can approx-
imate ATE or TT arbitrarily well given the appropriate support conditions. Theorem 6
shows that we can use Wald estimands to identify LATE for �j,J \j , and we can thus
adapt the analysis of Heckman and Vytlacil (2001b, 2005), as reviewed in Section 4,
to identify ATE or TT for �j,J \j . Suppose that Z[j ] denotes the excluded variable
for option j with properties assumed in (B-2a), and suppose that: (i) the support of
the distribution of Z[j ] conditional on all other elements of Z is the full real line;
(ii) ϑj (zj ) → ∞ as z[j ] → ∞, and ϑj (zj ) → −∞ as z[j ] → −∞. Then �ATE

j,J \j (x, z)

and �LATE
j (x, z[−j ], z[j ], z̃[j ]) are arbitrarily close when evaluated at a sufficiently large

value of z̃[j ] and a sufficiently small value of z[j ]. Following Heckman and Vytlacil
(1999), �TT

j,J \j (x, z) and �LATE
j (x, z[−j ], z[j ], z̃[j ]) are arbitrarily close for sufficiently

small z[j ]. Using Theorem 6, we can use Wald estimands to identify the LATE para-
meters, and thus can use the Wald estimand to identify the ATE and TT parameters
provided that there is sufficient support for the Z. While this discussion has used the
Wald estimands, alternatively we could also follow Heckman and Vytlacil (1999), as
summarized in Section 3, in expressing ATE and TT as integrated versions of MTE.
By Theorem 6, we can use LIV to identify MTE and can thus express ATE and TT as
integrated versions of the LIV estimand.

For a general instrument J (Z[j ], Z[−j ]) constructed from (Z[j ], Z[−j ]), which we
denote as J [j ], we can obtain a parallel construction to the characterization of standard
IV given in Section 4.3:

(7.17)�IV
J [j ] =

∫ 1

0
�MTE(x, z, uDj

)ωJ [j ]
IV (uDj

) duDj
,

where

(7.18)

ωJ [j ]
IV (uDj

) = E[J [j ] − E(J [j ]) | Pj (Z) � uDj
] Pr(Pj (Z) � uDj

| Z[−j ] = z[−j ])
Cov(Z[j ],DJ ,j )

,

119 We assume that the support of Z[−j ] conditional on Z[j ] is the same as the support of Z[−j ] conditional

on Z̃[j ].
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where uDj
is defined at the beginning of this subsection and where we keep the condi-

tioning on X = x implicit.
Note that from Theorem 6, we obtain that

∂
∂z[j ] E[Y | X = x,Z = z]

∂Pj (z)

∂z[j ]

= ∂E[Y | X = x,Z = z]
∂Pj (z)

= E
[
Yj − YJ \j

∣∣ X = x,Z = z, ϑj (Zj ) − Vj = RJ \j (Z)
]

so LIV identifies MTE and linear IV is a weighted average of LIV with the weights
summing to one. These results mirror the results established in the binary case.

In the literature on the effects of schooling (S = ∑
j∈J jDJ ,j ) on earnings (YJ ),

it is conventional to instrument S. The website of Heckman, Urzua and Vytlacil (2006)
presents an analysis of this case. For the general unordered case,

�IV
J [j ] = Cov(J [j ], YJ )

Cov(J [j ], S)

can be decomposed into economically interpretable components where the weights can
be identified but the objects being weighted cannot be identified using local instru-
mental variables or LATE without making large support assumptions. However, the
components can be identified using a structural model.

The trick we have used in this subsection comparing outcomes in j to the next best
option converts a general unordered multiple outcome model into a two-outcome setup.
This effectively partitions YJ into two components, as in (7.16). Thus we write

YJ = DJ ,j Yj + (1 − DJ ,j )YJ \j ,
where

YJ \j =
∑
��=j
�∈J

DJ ,�

1 − DJ ,j

Y� · 1(DJ ,j �= 1).

In the more general unordered case with three or more choices, to analyze IV estimates
of the effect of S on YJ , we must work with YJ = ∑

k∈J DJ ,kYk and make mul-
tiple comparisons across potential outcomes. This requires us to move outside of the
LATE/LIV framework, which is inherently based on binary comparisons. We turn to
that analysis next.

7.3.5. Identification: Effect of best option in K versus best option not in K

We just presented an analysis of identification for treatment parameters defined as av-
erages of �j,J \j , the effect of choosing option j versus the preferred option in J if j

were not available. We now consider identification of �K,J \K, the effect of choosing
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the preferred choice among set K versus the preferred choice among J if no option
in K were available. This is an effect where we compare sets of options, and not just a
single option compared to the rest.

We first start with an analysis that varies the {ϑk(·)}k∈J indices directly. This analysis
would be useful if one first identifies the index function, e.g., through an identification at
infinity argument using the analysis in Matzkin (1993), as in Appendix B of Chapter 70
or Chapter 73 (Matzkin) in this Handbook. We then perform an analysis shifting Z

directly. We show that it is possible to identify MTE and LATE averages of the �K,J \K
effect if one has knowledge of the {ϑk(·)}k∈J index functions but is not possible using
shifts in Z without knowledge of the index functions. The one exception to this result is
the special case already considered, when K = k, i.e., the set only contains one element,
in which case it is possible to identify the marginal parameters using shifts in Z directly
without knowledge of the index functions.

Let ϑJ (Z) denote a random vector stacking the indices,

ϑJ (Z) =
⋃
k∈J

{
ϑk(Z): k ∈ J

}
.

Let ϑJ be a vector denoting a potential evaluation point of ϑJ (Z), ϑJ = {ϑk: k ∈ J },
so that ϑJ (Z) = ϑJ denotes the event {ϑk(Z) = ϑk: k ∈ J }.120 Let ϑJ + h denote
{ϑk +h: k ∈ J }, where h ∈ R. We now define a version of the Wald estimand that uses
the indices directly as instruments instead of using Z as instruments,

�̃Wald
K (x, ϑJ , h)

≡ [
E
(
Y
∣∣ X = x, ϑK(Z) = ϑK + h, ϑJ \K(Z) = ϑJ \K

)
− E

(
Y
∣∣ X = x, ϑJ (Z) = ϑJ

)]
× [

Pr
(
IJ ∈ K

∣∣ X = x, ϑK(Z) = ϑK + h, ϑJ \K(Z) = ϑJ \K
)

− Pr
(
IJ ∈ K

∣∣ X = x, ϑJ (Z) = ϑJ
)]−1

.

�̃Wald
K (x, ϑJ , h) corresponds to the effect of a shift in each index in K upward by h

while holding each index in J \ K constant. Using indices, we define a version of the
LIV estimand using indices �̃LIV

K (x, ϑJ ) through a limit expression

�̃LIV
K (x, ϑJ ) = lim

h→0
�̃Wald

K (x, ϑJ , h).

Likewise, we define versions of the LATE and MTE parameters that are functions of
the ϑ indices instead of functions of z evaluation points,

�̃LATE
K,L (x, ϑJ , h)

= E
(
�K,L

∣∣ X = x, ϑJ (Z) = ϑJ , RK(Z) + h � RL(Z) � RK(Z)
)
,

120 Note that in our notation, RJ = max{Rk}k∈J is a scalar, while ϑJ (Z) = {ϑk(Z): k ∈ J } is a vector.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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�̃MTE
K,L (x, ϑJ ) = E

(
�K,L

∣∣ X = x, ϑJ (Z) = ϑJ , RK(Z) = RL(Z)
)
.

We state the following identification theorem:

THEOREM 7.
1. Assume (B-1), (B-3)–(B-5), and (B-2a). Then

�̃Wald
K (x, ϑJ , h) = �̃LATE

K,J \K(x, ϑJ , h).

2. Assume (B-1), (B-3)–(B-5), and (B-2b). Then

�̃LIV
K (x, ϑJ ) = �̃MTE

K,J \K(x, ϑJ ).

PROOF. Follows with trivial modifications from the proof of Theorem 6. �

Now consider the same analysis shifting Z directly instead of shifting the indices.
First consider LATE. If one knew what shifts in Z corresponded to shifting each in-
dex in K upward by the same amount while holding each index in J \ K constant,
then one could immediately follow the preceding analysis to recover E(�K,J \K |
X = x, ϑJ (Z) = ϑJ , RK(Z) + h � RJ \K(Z) � RK(Z)). However, unless K is
a singleton, without knowledge of the index functions one does not know what shifts
in Z will have this property. One possible approach would be to only shift elements of Z

that are elements of Zj for j ∈ K but are excluded from Zj for j ∈ J \ K. However,
unless the shifts move the indices for choices in K all by the same amount, the shift in
Z will result in movement not only from the set J \K to the set K but also cause move-
ment between choices within K. Thus, one can use shifts in Z to recover a LATE-type
parameter for �K,J \K only if either (i) the index functions are known, or (ii) K = {k},
i.e., the set K contains only one element. Our analysis establishes a fundamental role
for choice theory in recovering the indices needed to perform IV analysis.

Thus far, we have only considered identification of marginal treatment effect para-
meters for �K,J \K and not of the more standard treatment parameters ATE and TT for
�K,J \K. As in the immediately preceding section, we can follow Heckman and Vyt-
lacil (1999) in expressing ATE and TT as integrated versions of MTE or show that ATE
and TT can be approximated arbitrarily well by LATE parameters. Given appropriate
support conditions, we can again identify MTE over the appropriate range or identify the
appropriate LATE parameters and thus identify ATE and TT given the required support
conditions.

7.3.6. Identification: Effect of one fixed choice versus another

Consider evaluating the effect of fixed option j versus fixed option k, �j,k , i.e., the
effect for the individual of having no choice except to choose state j versus no choice
except to choose state k. We show that it is possible to identify averages of �j,k if one
has sufficient support conditions. These conditions supplement the standard IV con-
ditions developed for the binary case [Heckman, Urzua and Vytlacil (2006)] with the
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conditions more commonly used in semiparametric estimation. We start by considering
the analysis if one knows the ϑ index functions, say from a semiparametric analysis of
discrete choice, and then show that knowledge of the ϑ index functions is not necessary.

For notational purposes, for any j, k ∈ J , define Uj,k = Uj − Uk , and let
ϑj,k(Z) = ϑj (Zj ) − ϑk(Zk). One might try to follow our previous strategy to iden-
tify treatment parameters for �j,k if one could shift ϑj − ϑk = ϑj,k while holding
constant {ϑl,m}(l,m)∈J×J \{j,k}, i.e., while holding all other utility contrasts fixed.121

However, given the structure of the latent variable model determining choices, these are
incompatible conditions. To see this, note that ϑj,k = ϑl,k −ϑl,j for any l, and thus ϑj,k

cannot be shifted while holding ϑl,j and ϑl,k constant.122

To bypass this problem, we develop a limit strategy to make the consequences of
shifting ϑj,k negligible. Our strategy relies on an identification at infinity argument.
For example, consider the case where J = {1, 2, 3}, and consider identification of
the MTE parameter for option 3 versus option 1. Recall that DJ \3,l is an indicator
variable for whether option l would be chosen if option 3 were not available, so that
DJ \3,l�3,J \3 = DJ \3,l�3,l . Since 1 and 2 are the only options if 3 is not available, it
follows that �3,J \3 = DJ \3,1�3,1 + DJ \3,2�3,2, and we have that

E
(
�3,J \3

∣∣ X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ \3(Z)
)

= E
(
DJ \3,1�3,1

∣∣ X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ \3(Z)
)

+ E
(
DJ \3,2�3,2

∣∣ X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ \3(Z)
)
.

The smaller ϑ2 is (holding ϑ1 and ϑ3 fixed), the larger the probability that the “next best
option” is 1 and not 2. Note that E(�3,1 | X = x, ϑJ (Z) = ϑJ , R3(Z) = R1(Z))

does not depend on the ϑ2 evaluation point given independence assumption (B-1), so
that

E
(
�3,1

∣∣ X = x, ϑJ (Z) = ϑJ , R3(Z) = R1(Z)
)

= E
(
�3,1

∣∣ X = x, ϑJ \2(Z) = ϑJ \2, R3(Z) = R1(Z)
)
.

121 Alternatively, one can allow ϑl,m(z) �= ϑl,m(z′) if Pr(Ul,m ∈ [ϑl,m(z), ϑl,m(z′)]) = 0. Such a possibility
would be ruled out except “at the limit” by the standard assumption that the support of Ul,m is connected.
(We discuss this below.) Even without such an assumption, such a possibility occurring simultaneously for
all (l,m) ∈ J × J \ {j, k} for a particular (z, z′) seems extremely implausible, and we will therefore not
consider this possibility further.
122 This suggests a nonparametric test of the latent variable model. If there exists (z, z′) such that
Pr(IJ = j | Z = z) �= Pr(IJ = j | Z = z′), and Pr(IJ = k | Z = z) �= Pr(IJ = k | Z = z′),
but Pr(IJ = l | Z = z) = Pr(IJ = l | Z = z′) for all l ∈ J \ {j, k}, then the latent variable model is
rejected. However, shifts in only two indices are possible for sequential models since unexpected innovations
in agent information sets will act to shift the current decision without affecting previous decisions. Consider
the following sequential model of GED certification. In the first period, the agent chooses to graduate from
high school or to dropout of high school. If the agent drops out of high school in the first period, he or she has
the option in the second period of attaining GED certification or staying a permanent dropout. An unexpected
shock in the second period to the relative value of GED certification versus permanent dropout status will
shift the GED/permanent dropout choice without changing the probability of high school graduation.
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Thus, by assumptions (B-1) and (B-3) and the Dominated Convergence Theorem, we
have that

lim
ϑ2→−∞ E

(
DJ \3,1�3,1

∣∣ X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ \3(Z)
)

= E
(
�3,1

∣∣ X = x, ϑJ \2(Z) = ϑJ \2, R3(Z) = R1(Z)
)

while

lim
ϑ2→−∞ E

(
DJ \3,2�3,2

∣∣ X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ \3(Z)
) = 0,

so that

lim
ϑ2→−∞ E

(
�3,J \3

∣∣ X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ \3(Z)
)

= E
(
�3,1

∣∣ X = x, ϑJ \2(Z) = ϑJ \2, R3(Z) = R1(Z)
)
.

In other words, as the value of option 2 becomes arbitrarily small, the probability of the
“next best option” being 1 becomes arbitrarily close to one. Thus the MTE parameter
for option 3 versus the next best option becomes arbitrarily close to the MTE parameter
for option 3 versus option 1.

We can identify the MTE parameter for option 3 versus the next best option using
the LIV estimand as in Theorem 6, and thus conditioning on ϑ2 arbitrarily small we
have that the LIV estimand is arbitrarily close to the MTE parameter for option 3 versus
option 1. This analysis requires the appropriate support conditions in order for the limit
operations to be well defined. The following theorem formalizes this idea, and is for the
more general case where J is a general finite set.

THEOREM 8. Assume (B-1), (B-3)–(B-5), and (B-2b). Assume that, for any t ∈ R,

Pr
(
ϑl(Zl) � t

∣∣ ϑj (Zj ), ϑk(Zk)
)

� 0 ∀l ∈ J \ {j, k}.
Then

lim
maxl∈J \{j,k}{ϑl}→−∞ �̃LIV

j (x, ϑJ )

= E
(
�j,k

∣∣ X = x, ϑj,k(Z) = ϑj,k, Rj (Z) = Rk(Z)
)

for any

x ∈ lim
t→−∞ Supp

(
X
∣∣ ϑj (Zj ) = ϑj , ϑk(Zk) = ϑk, max

l∈J \{j,k}
{
ϑl(Z)

}
� t
)
.

PROOF. By a trivial modification to the proof of Theorem 6, we have that

�̃LIV
j (x, ϑJ ) = E

(
�j,J \j

∣∣ X = x, ϑJ (Z) = ϑJ , Rj (Z) = RJ \j (Z)
)
.

The remainder of the proof follows from an immediate extension of the 3-option case
just analyzed. �
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Thus, for x values in the appropriate limit support, we can approximate E(�j,k | X = x,

ϑ{j,k}(Z) = ϑ{j,k}, Rj (z) = Rk(z)) arbitrarily well by �LIV
j (x, ϑJ ) for an arbitrarily

small maxl∈J \{j,k}{ϑl}.
This analysis uses the ϑ index functions directly, but the results can be restated with-

out using the ϑ functions directly. Again consider the three-choice example. The central
aspect of the identification strategy is to “zero-out” the second choice by making ϑ2

arbitrarily small, allowing one to then use the LIV estimand to identify the MTE para-
meter for the first option versus the third as if the second choice were not an option. If
we do not know the ϑ2 function, we cannot condition on it. However, if we know that
ϑ2 is decreasing in a particular element of Z, say Z[j ′], where Z[j ′] does not enter the
index function for choices 1 and 3 and where ϑ2(z2) → 0 as z[j ′] → −∞, then we can
follow the same strategy as if we knew the ϑ2 index except we condition on Z[j ′] being
small instead of conditioning on ϑ2 being small. The idea naturally extends to the case
of more than three options.

We can follow Heckman and Vytlacil (1999) in following a two-step identification
strategy for ATE and TT parameters of �j,k . We first identify the appropriate MTE
or LATE parameters and then use them to identify ATE and TT given the appropriate
support conditions. Notice that the required support conditions are now stronger than
those required for the ATE and TT parameters of �j,J \j . For identification of the ATE
and TT parameters of �j,J \j , we require a large support assumption only on the j th
index. In particular, we require that it be possible to condition on Z values that make
ϑj arbitrarily small or arbitrarily large while holding the remaining indices fixed. In
contrast, for identification of the ATE and TT parameters of �j,k , we require a large
support assumption on each index. We require that for each index we can condition
on Z values that make the index arbitrarily small or arbitrarily large while holding the
remaining indices fixed. The reason for this stronger condition is that for identification
of �j,k we need to use an identification at infinity strategy on all but the j and k indices
to even obtain the marginal parameters. We then need an additional identification at
infinity step to use the marginal parameters to recover the ATE and TT parameters.

7.3.7. Summarizing the results for the unordered model

We have obtained the following results on the unordered choice model in this section:

• E(�j,J \j | X = x,Z = z, Rj (z) = RJ \j (z)) and E(�j,J \j | X = x,Z =
z, Rj (z̃) � RJ \j (z̃) � Rj (z)) can be identified without a limit argument.

• E(�j,k | X = x, {ϑk}k∈J , Rj (z) = Rk(z)) and E(�j,k | X = x, {ϑk}k∈J ,

Rj (z̃) � Rk(z̃) � Rj (z)) can be identified with a limit argument on each index in
J \ {j, k}.

• �ATE
j,J \j (x, z) and �TT

j,J \j (x, z) can be identified with a limit argument using the
ϑj index.

• �ATE
j,k (x, z) and �TT

j,k(x, z) can be identified with a limit argument using each index.
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These results establish the central role of choice theory (via {ϑk}k∈J ) and identifica-
tion at infinity in using an IV strategy to identify a variety of treatment parameters and
their extensions to a general multiple choice model. Our analysis extends the analysis of
ordered outcome models developed in the preceding section to a general unordered case.
Local instrumental variables identify the marginal treatment effect corresponding to the
effect of one option versus the best alternative option without requiring large support
assumptions or knowledge of the parameters of the choice model. This result preserves
the spirit of the Imbens and Angrist (1994) LATE analysis and the analysis of Heckman
and Vytlacil (1999, 2001b, 2005). More generally, LIV can provide identification of the
marginal treatment effect corresponding to the effect of choosing between one choice set
versus not having that choice set available. However, identification of the more general
parameters requires knowledge (identification) of the structural, latent index functions
of the multinomial choice model. LIV can also provide identification of the effect of one
specified choice versus another, requiring large support assumptions but not knowledge
of the latent index functions. In order to identify some treatment parameters, we require
identification of the latent index functions generating the multinomial choice model or
else having large support assumptions. This connects the LIV analysis in this paper to
the more ambitious but demanding identification conditions for the full multinomial se-
lection model developed in Heckman and Navarro (2007), Chapter 73 (Matzkin) of this
Handbook, and Appendix B of Chapter 70. We next develop the case of the continuum
of outcomes.

7.4. Continuous treatment

Thus far we have considered the case of a treatment variable taking a finite number of
values. Now consider the case where the treatment variable D can take a continuum of
values. Suppose that

Y = μ(D,X,U),

D = ϑ(Z, V ),

with D a continuous random variable. We do not in general need to restrict U or V to
be scalar random variables. We can rewrite this model in potential outcome notation by
defining

Yd ≡ μd(X,U) ≡ μ(d,X,U).

For ease of exposition, we will assume that X is exogenous in addition to Z being
exogenous, so that (X,Z)⊥⊥ (U, V ).

We assume that μ(d, x, u) is continuous in its first argument. Equivalently, we as-
sume that {Yd} is continuous in d for any realization. Implicit in the continuity assump-
tion is an ordering, that two treatments that are close to one another have associated
outcomes that are close to one another. The restriction is qualitatively different from any

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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restriction we have considered thus far. In the previous sections, there are no restrictions
connecting Yd to Yd ′ . Equivalently, there are no restrictions connecting μd(X,U) and
μd ′(X,U). In the case of a continuum of treatments, we now tightly link counterfactual
values that correspond to treatments that are close to one another.

The literature analyzing continuous endogenous regressors often defines the object of
interest not as a treatment effect but instead as the “average structural function” (ASF).
Following Blundell and Powell (2004), the ASF is defined as

μ(d, x) = E(Yd | X = x) =
∫

μ(d, x, u) dFU(u).

In other words, the ASF is defined as the average value of Y that would result from
assigning treatment d to all individuals with X = x. If D is endogenous, the ASF does
not in general equal the conditional expected value of Y in the data, E(Yd | X = x) �=
E(Y | D = d,X = x), since

∫
μ(d, x, u) dFU(u) �= ∫

μ(d, x, u) dFU |X,D(u | x, d).
This is just a version of the distinction between fixing and conditioning introduced in
Haavelmo (1943) and discussed in Chapter 70.

Instead of working with the ASF, we can follow the lead of Florens et al. (2002) and
define treatment effect parameters for a continuous treatment. Suppose that μ(d, x, u)

is differentiable in d for any (x, u). We can define the average treatment effect as

�ATE
d (x) = E

(
∂

∂d
Yd

∣∣∣ X = x

)
=
∫

∂

∂d
μ(d, x, u) dFU(u),

which is the average effect of a marginal increase in the treatment if individuals were
randomly assigned treatment level d . Note that in this expression the average treatment
effect depends on the base treatment level, d , and for any of the continuum of possible
base treatment levels we have a different average treatment effect. The average treatment
effect is the derivative of the Blundell and Powell ASF:

�ATE
d (x) = ∂

∂d
μ(d, x).

Florens et al. (2002) define treatment on the treated as

�TT
d (x) = E

(
∂

∂d1
Yd1

∣∣∣ D = d2, X = x

)∣∣∣∣
d=d1=d2

=
∫ [

∂

∂d1
μ(d1, x, u)

∣∣∣∣
d=d1

]
dFU |X,D(u | x, d),

which is the average effect among those currently choosing treatment level d of an
incremental increase in the treatment while leaving their unobservables fixed. Likewise,
define the marginal treatment effect as

�MTE
d (x, v) = E

(
∂

∂d
Yd

∣∣∣ V = v,X = x

)
=
∫

∂

∂d
μ(d, x, u) dFU |V (u | v).

http://dx.doi.org/10.1016/S1573-4412(07)06070-9


Ch. 71: Econometric Evaluation of Social Programs, Part II 5023

To illustrate these definitions, suppose D is schooling level measured as a continuous
variable, and suppose Y is wages. Then, e.g., Y12 would be the potential wage corre-
sponding to receiving exactly 12 years of schooling and μ12 = E(Y12) is the average
wage if individuals were exogenously assigned exactly 12 years of schooling. �ATE

12 is
the average effect on wages of being assigned marginally more than 12 years of school-
ing versus being assigned exactly 12 years of schooling, and �TT

12 would be the average
effect of obtaining marginally more schooling for those who self-select to obtain exactly
12 years of schooling.

One approach to identification of the treatment parameters is to impose more struc-
ture on the outcome equation while allowing the treatment selection equation to be
unspecified. The nonparametric instrumental variable approach of Darolles, Florens and
Renault (2002), Hall and Horowitz (2005), and Newey and Powell (2003) requires that
the unobservables in the outcome equation (U ) be a scalar random variable and that the
outcome be an additive function of the unobservables – Chapter 73 (Matzkin) of this
Handbook surveys this literature. Their additivity assumption imposes the restriction of
no treatment effect heterogeneity (conditional on X), so that all treatment effect para-
meters coincide. In exchange for this restriction on the outcome equation, they do not
require any structure on the first stage equation so that D does not need to be increas-
ing in V and V is not required to be a scalar random variable. Furthermore, they only
require that U be mean independent of (X,Z), not that (U, V ) be fully independent
of (X,Z).

The additive error term assumption is relaxed by Chernozhukov, Imbens, and Newey
(2007), who impose the stronger requirement that the outcome is a strictly increasing
function of the error term (i.e., μ(x, d, u) strictly increasing in u),123 while strength-
ening the required independence property to be (Z,X)⊥⊥ U . The restriction of a scalar
error term with the outcome strictly increasing in this error term is again a strong re-
striction on the forms of treatment effect heterogeneity that are possible in the model.124

Suppress X for ease of exposition. Under their restriction, if μ(d, u) > μ(d, u′) at
some treatment level d , then μ(d̃, u) > μ(d̃, u′) for all treatment levels d̃. In other
words, if individual one has a higher potential outcome at some value of the treatment
than a second individual, than that first individual has a higher potential outcome for
any value of the treatment than the second individual. Under this restriction, treatment
cannot change the rank ordering of outcomes across individuals. These restrictions are
in contrast with the Roy model and generalized Roy model, where one individual may
have a higher with-treatment potential outcome but a lower without-treatment potential
outcome compared to a second individual.

123 More generally, that μ is a weakly separable function of U , so that μ can be rewritten as a function of a
scalar aggregator of U .
124 See also Chernozhukov and Hansen (2005), who allow for richer treatment effect heterogeneity but im-
pose a “rank similarity” restriction that requires agents not to act upon their own individual effects. This can be
shown to eliminate the general form of heterogeneous responses analyzed by the generalized Roy model. For
a discussion of the analysis of Chernozhukov and Hansen (2005), see Chapter 73 (Matzkin) of this Handbook.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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In contrast to these approaches, control variate approaches impose more structure on
the selection equation, imposing that the unobservables in the treatment selection equa-
tion (V ) be a scalar random variable,125 and that the treatment is an additive function of
the unobservables or more generally a strictly increasing function of the unobservables.
Such approaches thus impose strong restrictions on the heterogeneity in the treatment
selection equation. In exchange for these restrictions, such approaches do not require Y

to be increasing in U and do not require U to be a scalar random variable. Imbens and
Newey (2002) consider identification and estimation of the average structural function
in a nonparametric model using the control variate approach, building on the work of
Blundell and Powell (2004) and Altonji and Matzkin (2005). Their approach does not
impose any further restrictions on the outcome equation, but does require a large sup-
port assumption. Another recent contribution to the control function literature is Florens
et al. (2006), who restrict Y to be determined by a stochastic polynomial in D but do
not require a large support assumption. We now further discuss both approaches.

Imbens and Newey (2002) proceed as follows. They assume that ϑ(z, v) is strictly
monotonic in v. Suppose that (U, V )⊥⊥ (X,Z), and without loss of generality normal-
ize V to be unit uniform. Then V is immediately identified (up to the normalization)
from V = F(Y | X,Z). Given identification of V , they can identify E(Y | D,X, V ).
Their independence assumptions imply that U ⊥⊥ D | (X, V ), so that

E(Y | D = d,X = x, V = v) = E(Yd | X = x, V = v).

E(Yd | X = x, V = v) corresponds to the marginal treatment effect except that it is the
conditional expectation in level instead of the derivative of the conditional expectation.
Then, in parallel to the way Heckman and Vytlacil (1999) integrate up the MTE to
recover the ATE, Imbens and Newey integrate up E(Yd | X = x, V = v) to obtain the
ASF:

E(Yd | X = x) =
∫

E(Yd | X = x, V = v) dFV (v)

=
∫

E(Y | D = d,X = x, V = v) dFV (v).

Imbens and Newey do not explicitly consider the ATE, TT, or MTE, but we can adapt
the Heckman and Vytlacil (1999) weighting analysis summarized in Section 3 to ob-
tain these parameters as a slight modification of the Imbens and Newey analysis. First
consider the MTE. We have that

∂

∂d
E(Y | D = d,X = x, V = v) = E

(
∂

∂d
Yd

∣∣∣ X = x, V = v

)
,

125 More generally, that ϑ is a weakly separable function of V , so that ϑ can be rewritten as a function of a
scalar aggregator of V .
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so that the MTE is identified. Integrating up the MTE we obtain ATE

E

(
∂

∂d
Yd

∣∣∣ X = x

)
=
∫

E

(
∂

∂d
Yd

∣∣∣ X = x, V = v

)
dFV (v)

=
∫

∂

∂d
E(Y | D = d,X = x, V = v) dFV (v)

and TT

E

(
∂

∂d1
Yd1

∣∣∣ D = d2, X = x

)∣∣∣∣
d=d1=d2

=
∫

E

(
∂

∂d
Yd

∣∣∣ X = x, V = v

)
dFV |D=d2,X(v | x)

=
∫

∂

∂d
E(Y | D = d,X = x, V = v) dFV |D=d2,X(v | x).

Note the strong connection between the control variate approach and the LIV/MTE
approach of Heckman and Vytlacil (1999). They both proceed by identifying an ex-
pectation conditional on the first stage error term, and then integrating that expectation
up to obtain the parameter of interest. The primary distinction is that, in the control
variate approach with a continuous endogenous treatment, it is possible to assume that
the treatment is a strictly increasing function of an error term that is independent of
the instruments, to identify this error term, and then to explicitly include the identi-
fied first-stage error term as a regressor in the second stage regression for the outcome.
In contrast, with a discrete endogenous treatment, it is not possible to characterize the
treatment as a strictly increasing function of an error term that is independent of the
instruments. It is thus not possible to identify the first-stage error term, and thus not
possible to explicitly include an identified first-stage error term in the second stage. The
LIV strategy is the approach in the discrete case that by-passes the need to explicitly
identify the first stage error term.

In order to be able to integrate E(Y | D = d,X = x, V = v) = E(Yd | X = x, V =
v) up to obtain the ASF (or to integrate MTE to obtain ATE), it is necessary to evaluate
E(Y | D = d,X = x, V = v) at all values of v in the support of the distribution of V

conditional on X. This is a nontrivial requirement. To show this, suppress X for ease of
exposition. One can only evaluate E(Y | D = d, V = v) at values of v in the support of
the distribution of V conditional on D = d , so that the requirement is that the support
of the distribution of V conditional on D = d equal the support of the unconditional
distribution. This requires, in turn, a large support assumption on an element of Z. For
example, suppose that ϑ(Z, V ) = P(Z)+V , so that D = P(Z)+V . Let P denote the
support of the distribution of P(Z). Then

Supp(V | D = d) = Supp
(
V
∣∣ P(Z) + V = d

)
= Supp

(
V
∣∣ V = d − P(Z)

) = {d − p: p ∈ P},



5026 J.J. Heckman and E.J. Vytlacil

where the last equality uses Z ⊥⊥ V . For example, if P = [a, b], then {d − p: p ∈
[a, b]} = [d − b, d − a] which does not depend on d if and only if a = −∞ and
b = ∞, i.e., if and only if P = R. For standard models, this requirement in turn ne-
cessitates a regressor with unbounded support, analogous to the identification at infinity
requirement in selection models shown by Heckman (1990). We have noted the central
role played by identification at infinity assumptions in many different settings through-
out this Handbook.

Next consider the analysis of Florens et al. (2002). They assume that (U, V )⊥⊥ (X,Z).
They impose additional structure on the outcome equation, in particular that the out-
come equation can be expressed by a finite order stochastic polynomial in the treatment
variable:

Y = μ(D,X) +
K∑

j=0

DjUj

so that

Yd = μd(X) +
K∑

j=0

djUj .

This specification can be seen as a nonparametric extension of the random coefficient
models of Heckman and Vytlacil (1998) and Wooldridge (1997, 2003). As a conse-
quence of the structure on the outcome equation, Florens et al. (2006) are able to identify
the ATE without requiring the large support assumption of Imbens and Newey (2002).
Instead of a large support assumption, they require measurable separability of D and V

conditional on X.
Measurable separability is the requirement that any function of D and X that almost

surely equals a function of V and X must be a function of X only. This assumption can
be shown to be equivalent to requiring that D not lie in a subset of its support if and only
if V lies in a subset of its support (conditional on X). As shown by Florens et al. (2006),
measurable separability between D and V follows from the independence assumption
(U, V )⊥⊥ (X,Z) along with mild regularity conditions. Thus the Florens, Heckman,
Meghir, and Vytlacil approach allows for identification of the average treatment effect
with continuous endogenous regressors without requiring large support assumptions in
exchange for requiring a finite-order, stochastic polynomial assumption on the outcome
equation. We next consider the method of matching, which is based on the assumption
of conditional independence that is assumed to characterize data structures.

8. Matching

The method of matching assumes selection of treatment based on potential outcomes

(Y0, Y1)⊥�⊥ D,
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so Pr(D = 1 | Y0, Y1) depends on Y0, Y1. It assumes access to variables Q such that
conditioning on Q removes the dependence:

(Q-1) (Y0, Y1)⊥⊥ D | Q.

Thus,

Pr(D = 1 | Q,Y0, Y1) = Pr(D = 1 | Q).

Comparisons between treated and untreated can be made at all points in the support of
Q such that

(Q-2) 0 < Pr(D = 1 | Q) < 1.

The method does not explicitly model choices of treatment or the subjective evaluations
of participants, nor is there any distinction between the variables in the outcome equa-
tions (X) and the variables in the choice equations (Z) that is central to the IV method
and the method of control functions. In principle, condition (Q-1) can be satisfied us-
ing a set of variables Q distinct from all or some of the components of X and Z. The
conditioning variables do not have to be exogenous.

From condition (Q-1), we recover the distributions of Y0 and Y1 given Q, Pr(Y0 � y0 |
Q = q) = F0(y0 | Q = q) and Pr(Y1 � y1 | Q = q) = F1(y1 | Q = q) – but not
the joint distribution F(y0, y1 | Q = q), because we do not observe the same persons
in the treated and untreated states. This is a standard evaluation problem common to all
econometric estimators. Methods for determining which variables belong in Q rely on
untested exogeneity assumptions which we discuss in this section.

OLS is a special case of matching that focuses on the identification of certain condi-
tional means. In OLS, linear functional forms are maintained as exact representations
or valid approximations. Considering a common coefficient model, OLS writes

(Q-3) Y = Qα + Dβ + U ,

where α is the treatment effect and

(Q-4) E(U | Q,D) = 0.

The assumption is made that the variance–covariance matrix of (Q,D) is of full rank:

(Q-5) Var(Q,D) full rank.

Under these conditions, we can identify β even though D and U are dependent: D ⊥�⊥ U .
Controlling for the observable Q eliminates any spurious mean dependence between D

and U : E(U | D) �= 0 but E(U | D,Q) = 0. (Q-4) is the linear regression counterpart
to (Q-1). (Q-5) is the linear regression counterpart to (Q-2). Failure of (Q-5) would
mean that using a nonparametric estimator, we might perfectly predict D given Q, and
that Pr(D = 1 | Q = q) = 1 or 0.126

126 This condition might be met only at certain values of Q = q. For certain parameterizations (e.g., the
linear probability model), we may obtain predicted probabilities outside the unit interval.
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(Q-5)′ If the goal of the analysis is only to identify β, in place of (Q-4) we can get
by with

(Q-4)′: E(U | Q,D) = E(U | Q).

Assuming Var(D | Q) > 0, we can identify β even if we cannot separate αQ

from E(U | Q).

Matching can be implemented as a nonparametric method. When this is done, the pro-
cedure does not require specification of the functional form of the outcome equations.
It enforces the requirement that (Q-2) be satisfied by estimating functions pointwise in
the support of Q. To link our notation in this section to that in the rest of the chapter, we
assume that Q = (X,Z) and that X and Z are the same except where otherwise noted.
Thus we invoke assumptions (M-1) and (M-2) presented in Section 2, even though in
principle we can use a more general conditioning set.

Assumptions (M-1) and (M-2) introduced in Section 2 or (Q-1) and (Q-2) rule out the
possibility that after conditioning on X (or Q), agents possess more information about
their choices than econometricians, and that the unobserved information helps to predict
the potential outcomes. Put another way, the method allows for potential outcomes to
affect choices but only through the observed variables, Q, that predict outcomes. This
is the reason why Heckman and Robb (1985a, 1986b) call the method selection on
observables.

This section establishes the following points. (1) Matching assumptions (M-1) and
(M-2) generically imply a flat MTE in uD , i.e., they assume that E(Y1 − Y0 | X = x,

UD = uD) does not depend on uD . Thus the unobservables central to the Roy model
and its extensions and the unobservables central to the modern IV literature are as-
sumed to be absent once the analyst conditions on X. (M-1) implies that all mean
treatment parameters are the same. (2) Even if we weaken (M-1) and (M-2) to mean
independence instead of full independence, generically the MTE is flat in uD under the
assumptions of the nonparametric generalized Roy model developed in Section 3, so
again all mean treatment parameters are the same. (3) We show that IV and matching
make distinct identifying assumptions even though they both invoke conditional inde-
pendence assumptions. (4) We compare matching with IV and control function (sample
selection) methods. Matching assumes that conditioning on observables eliminates the
dependence between (Y0, Y1) and D. The control function principle models the depen-
dence. (5) We present some examples that demonstrate that if the assumptions of the
method of matching are violated, the method can produce substantially biased estima-
tors of the parameters of interest. (6) We show that standard methods for selecting the
conditioning variables used in matching assume exogeneity. This is a property shared
with many econometric estimators, as noted in Chapter 70, Section 5.2. Violations of
the exogeneity assumption can produce biased estimators.

Nonparametric versions of matching embodying (M-2) avoid the problem of making
inferences outside the support of the data. This problem is implicit in any application of
least squares. Figure 22 shows the support problem that can arise in linear least squares

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Figure 22. The least squares extrapolation problem avoided by using nonparametric regression or matching.

when the linearity of the regression is used to extrapolate estimates determined in one
empirical support to new supports. Careful attention to support problems is a virtue
of any nonparametric method, including, but not unique to, nonparametric matching.
Heckman et al. (1998) show that the bias from neglecting the problem of limited support
can be substantial. See also the discussion in Heckman, LaLonde and Smith (1999).

We now show that matching implies that conditional on X, the marginal return is
assumed to be the same as the average return (marginal = average). This is a strong be-
havioral assumption implicit in statistical conditional independence assumption (M-1).
It says that the marginal participant has the same return as the average participant.

8.1. Matching assumption (M-1) implies a flat MTE

An immediate consequence of (M-1) is that the MTE does not depend on UD . This is
so because (Y0, Y1)⊥⊥ D | X implies that (Y0, Y1)⊥⊥ UD | X and hence that

(8.1)�MTE(x, uD) = E(Y1 − Y0 | X = x,UD = uD) = E(Y1 − Y0 | X = x).

This, in turn, implies that �MTE conditional on X is flat in uD , so that matching invokes
assumption (C-1) invoked in Section 4.2.1. Under our assumptions for the generalized
Roy model, it assumes that E(Y | P(Z) = p) is linear in p. Thus the method of
matching assumes that mean marginal returns and average returns are the same and
all mean treatment effects are the same given X. However, one can still distinguish
marginal from average effects of the observables (X) using matching. See Carneiro
(2002).

It is sometimes said that the matching assumptions are “for free” [see, e.g., Gill and
Robins (2001)] because one can always replace unobserved F1(Y1 | X = x,D = 0)

with observed F1(Y1 | X = x,D = 1) and unobserved F0(Y0 | X = x,D = 1) with
observed F0(Y0 | X = x,D = 0). Such substitutions do not contradict any observed
data.
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While the claim is true, it ignores the counterfactual states generated under the match-
ing assumptions. The assumed absence of selection on unobservables is not a “for free”
assumption, and produces fundamentally different counterfactual states for the same
model under matching and selection assumptions. To explore these issues in depth,
consider a nonparametric regression model more general than the linear regression
model (Q-3).

Without assumption (M-1), a nonparametric regression of Y on D conditional on X

identifies a nonparametric mean difference

�OLS(X) = E(Y1 | X,D = 1) − E(Y0 | X,D = 0)

= E(Y1 − Y0 | X,D = 1)

(8.2)+ {
E(Y0 | X,D = 1) − E(Y0 | X,D = 0)

}
.

The term in braces in the second expression arises from selection on pre-treatment levels
of the outcome. OLS identifies the parameter treatment on the treated (the first term in
the second line of (8.2)) plus a bias term in braces corresponding to selection on the
levels.

The OLS estimator can be represented as a weighted average of �MTE. The weight is
given in Table 2B where U1 and U0 for the OLS model are defined as deviations from
conditional expectations, U1 = Y1 − E(Y1 | X), U0 = Y0 − E(Y0 | X). Unlike the
weights for �TT and �ATE, the OLS weights do not necessarily integrate to one and
they are not necessarily nonnegative. Application of IV eliminates the contribution of
the second term of Equation (8.2). The weights for the first term are the same as the
weights for �TT and hence they integrate to one.

The OLS weights for our generalized Roy model example are plotted in Figure 2B.
The negative component of the OLS weight leads to a smaller OLS treatment estimate
compared to the other treatment effects in Table 3. This table shows the estimated OLS
treatment effect for the generalized Roy example. The large negative selection bias in
this example is consistent with comparative advantage as emphasized by Roy (1951)
and detected empirically by Willis and Rosen (1979) and Cunha, Heckman and Navarro
(2005). People who are good in sector 1 (i.e., receive treatment) may be very poor in
sector 0 (those who receive no treatment). Hence the bias in OLS for the parameter
treatment on the treated may be negative (E(Y0 | X,D = 1) − E(Y0 | X,D = 0) < 0).
The differences among the policy relevant treatment effects, the conventional treatment
effects and the OLS estimand are illustrated in Figure 4A and Table 3 for the gener-
alized Roy model example. As is evident from Table 3, it is not at all clear that the
instrumental variable estimator, with instruments that satisfy classical properties, per-
forms better than nonparametric OLS in identifying the policy relevant treatment effect
in this example. While IV eliminates the term in braces in (8.2), it reweights the MTE
differently from what might be desired for many policy analyses.

If there is no selection on unobserved variables conditional on covariates, UD ⊥⊥
(Y0, Y1) | X, then E(U1 | X,UD) = E(U1 | X) = 0 and E(U0 | X,UD) = E(U0 |
X) = 0 so that the OLS weights are unity and OLS identifies both ATE and the pa-
rameter treatment on the treated (TT), which are the same under this assumption. This
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condition is an implication of matching condition (M-1). Given the assumed condi-
tional independence in terms of X, we can identify ATE and TT without use of any
instrument Z satisfying assumptions (A-1)–(A.2). If there is such a Z, the conditional
independence condition implies under (A-1)–(A-5) that E(Y | X,P (Z) = p) is linear
in p. The conditional independence assumption invoked in the method of matching has
come into widespread use for much the same reason that OLS has come into widespread
use. It is easy to implement with modern software and makes little demands of the data
because it assumes the existence of X variables that satisfy the conditional indepen-
dence assumptions. The crucial conditional independence assumption is not testable.
As we note below, additional assumptions on the X are required to test the validity of
the matching assumptions.

If the sole interest is to identify treatment on the treated, �TT, it is apparent from
representation (8.2) that we can weaken (M-1) to

(M-1)′ Y0 ⊥⊥ D | X.

This is possible because E(Y1 | X,D = 1) is known from data on outcomes of the
treated and only need to construct E(Y0 | X,D = 1). In this case, MTE is not restricted
to be flat in uD and all treatment parameters are not the same. A straightforward im-
plication of (M-1)′ in the Roy model, where selection is made solely on the gain, is
that persons must sort into treatment status positively in terms of levels of Y1. We now
consider more generally the implications of assuming mean independence of the errors
rather than full independence.

8.2. Matching and MTE using mean independence conditions

To identify all mean treatment parameters, one can weaken the assumption (M-1) to
the condition that Y0 and Y1 are mean independent of D conditional on X. However,
(Y0, Y1) will be mean independent of D conditional on X without UD being independent
of Y0, Y1 conditional on X only if fortuitous balancing occurs, with regions of positive
dependence of (Y0, Y1) on UD and regions of negative dependence of (Y0, Y1) on UD

just exactly offsetting each other. Such a balancing is not generic in the Roy model and
in the generalized Roy model.

In particular, assume that Yj = μj (X) + Uj for j = 0, 1 and further assume that
D = 1[Y1−Y0 � C(Z)+UC]. Let V = UC−(U1−U0). Assume (U0, U1, V )⊥⊥ (X,Z).
Then if V ⊥⊥ (U1 −U0), and UC has a log concave density, then E(Y1 −Y0 | X,V = v)

is decreasing in v, �TT(x) > �ATE(x), and the matching conditions do not hold. If
V ⊥⊥ (U1 − U0) but V does not have a log concave density, then it is still the case that
(U1 − U0, V ) is negative quadrant dependent. One can show that (U1 − U0, V ) being
negative quadrant dependent implies that �TT(x) > �ATE(x), and thus again that the
matching conditions cannot hold. We now develop a more general analysis.

Suppose that we assume selection model (3.3) so that D = 1[P(Z) � UD],
where Z is independent of (Y0, Y1) conditional on X, where UD = FV |X(V ) and



5032 J.J. Heckman and E.J. Vytlacil

P(Z) = FV |X(μD(Z)). Consider the weaker mean independence assumptions in place
of assumption (M-1):

(M-3) E(Y1 | X,D) = E(Y1 | X), E(Y0 | X,D) = E(Y0 | X).

This assumption is all that is needed to identify the mean treatment parameters because
under it

E(Y | X = x,Z = z,D = 1) = E(Y1 | X = x,Z = z,D = 1) = E(Y1 | X = x)

and

E(Y | X = x,Z = z,D = 0) = E(Y0 | X = x,Z = z,D = 0) = E(Y0 | X = x).

Thus we can identify all the mean treatment parameters over the support that satis-
fies (M-2).

Recalling that � = Y1 − Y0, (M-3) implies in terms of UD that

E
(
�
∣∣ X = x,Z = z, UD � P(z)

) = E(� | X = x)

⇐⇒ E
(
�MTE(X,UD)

∣∣ X = x,UD � P(z)
) = E(� | X = x),

and hence

E
(
�MTE(X,UD)

∣∣ X = x,UD � P(z)
)

= E
(
�MTE(X,UD)

∣∣ X = x,UD > P(z)
)
.

If the support of P(Z) is the full unit interval conditional on X = x, then
�MTE(X,UD) = E(� | X = x) for all UD . If the support of P(Z) is a proper sub-
set of the full unit interval, then generically (M-3) will hold only if �MTE(X,UD) =
E(� | X = x) for all UD , though positive and negative parts could balance out for any
particular value of X.

To see this, note that

EZ

(
E
(
�MTE(X,UD)

∣∣ X = x,UD � P(z)
) ∣∣ X = x,D = 1

)
= EZ

(
E
(
�MTE(X,UD)

∣∣ X = x,UD > P(z)
) ∣∣ X = x,D = 0

)
.

Working with V = F−1
V |X(UD), suppose that D = 1[μD(Z, V ) � 0]. Let Ω(z) =

{v: μD(z, v) � 0}. Then (M-3) implies that

E
(
�MTE(X, V )

∣∣ X = x, V ∈ Ω(z)
) = E

(
�MTE(X, V )

∣∣ X = x, V ∈ (Ω(z)
)c)

so we expect that generically under assumption (M-3) we obtain a flat MTE in terms of
V = F−1

V |X(UD). We conduct a parallel analysis for the nonseparable choice model in
Appendix K and obtain similar conditions. Matching assumes a flat MTE, i.e., that mar-
ginal returns conditional on X and V do not depend on V (alternatively, that marginal
returns do not depend on UD given X).

We already noted in Section 2 that IV and matching invoke very different assump-
tions. Matching requires no exclusion restrictions whereas IV is based on the existence
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of exclusion restrictions. Superficially, we can bridge these literatures by invoking
matching with an exclusion condition: (Y0, Y1)⊥�⊥ D | X but (Y0, Y1)⊥⊥ D | X,Z.
This looks like an IV condition, but it is not.

We explore the relationship between matching with exclusion and IV in Appendix L,
and demonstrate a fundamental contradiction between the two identifying conditions.
For an additively separable representation of the outcome equations U1 = Y1 − E(Y1 |
X) and U0 = Y0 − E(Y0 | X), we establish that if (U0, U1) is mean independent of D

conditional on (X,Z), as required by IV, but (U0, U1) is not mean independent of D

conditional on X alone, then U0 is dependent on Z conditional on X, contrary to all
assumptions used to justify instrumental variables. We next consider how to implement
matching.

8.3. Implementing the method of matching

We draw on Heckman et al. (1998) and Heckman, LaLonde and Smith (1999) to de-
scribe the mechanics of matching. Todd (2007, 2008) presents a comprehensive treat-
ment of the main issues and a guide to software.

To operationalize the method of matching, we assume two samples: “t” for treatment
and “c” for comparison group. Treatment group members have D = 1 and control
group members have D = 0. Unless otherwise noted, we assume that observations are
statistically independent within and across groups. Simple matching methods are based
on the following idea. For each person i in the treatment group, we find some group of
“comparable” persons. The same individual may be in both treated and control groups
if that person is treated at one time and untreated at another. We denote outcomes for
person i in the treatment group by Y t

i and we match these outcomes to the outcomes
of a subsample of persons in the comparison group to estimate a treatment effect. In
principle, we can use a different subsample as a comparison group for each person.

In practice, we can construct matches on the basis of a neighborhood ξ(Xi), where
Xi is a vector of characteristics for person i. Neighbors to treated person i are persons in
the comparison sample whose characteristics are in neighborhood ξ(Xi). Suppose that
there are Nc persons in the comparison sample and Nt in the treatment sample. Thus
the persons in the comparison sample who are neighbors to i, are persons j for whom
Xj ∈ ξ(Xi), i.e., the set of persons Ai = {j | Xj ∈ ξ(Xi)}. Let W(i, j) be the weight
placed on observation j in forming a comparison with observation i and further assume
that the weights sum to one,

∑Nc

j=1 W(i, j) = 1, and that 0 � W(i, j) � 1. Form a
weighted comparison group mean for person i, given by

(8.3)Ȳ c
i =

Nc∑
j=1

W(i, j)Y c
j .

The estimated treatment effect for person i is Yi − Ȳ c
i . This selects a set of comparison

group members associated with i and the mean of their outcomes. Unlike IV or the
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control function approach, the method of matching identifies counterfactuals for each
treated member.

Heckman, Ichimura and Todd (1997) and Heckman, LaLonde and Smith (1999) sur-
vey a variety of alternative matching schemes proposed in the literature. Todd (2007,
2008) provides a comprehensive survey. In this chapter, we briefly consider two widely-
used methods. The nearest neighbor matching estimator defines Ai such that only one j

is selected so that it is closest to Xi in some metric:

Ai =
{
j | min

j∈{1,...,Nc}
‖Xi − Xj‖

}
,

where “‖ ‖” is a metric measuring distance in the X characteristics space. The Ma-
halanobis metric is one widely used metric for implementing the nearest neighbor
matching estimator. This metric defines neighborhoods for i as

‖ ‖ = (Xi − Xj)
′Σ−1

c (Xi − Xj),

where Σc is the covariance matrix in the comparison sample. The weighting scheme for
the nearest neighbor matching estimator is

W(i, j) =
{

1 if j ∈ Ai ,

0 otherwise.
The nearest neighbor in the metric “‖ · ‖” is used in the match. A version of near-
est neighbor matching, called “caliper” matching [Cochran and Rubin (1973)], makes
matches to person i only if

‖Xi − Xj‖ < ε,

where ε is a pre-specified tolerance. Otherwise, person i is bypassed and no match is
made to him or her.

Kernel matching uses the entire comparison sample, so that Ai = {1, . . . , Nc}, and
sets

W(i, j) = K(Xj − Xi)∑Nc

j=1 K(Xj − Xi)
,

where K is a kernel.127 Kernel matching is a smooth method that reuses and weights
the comparison group sample observations differently for each person i in the treatment
group with a different Xi . Kernel matching can be defined pointwise at each sample
point Xi or for broader intervals.

For example, the impact of treatment on the treated can be estimated by forming the
mean difference across the i:

(8.4)�̂TT = 1

Nt

Nt∑
i=1

(
Y t

i − Ȳ c
i

) = 1

Nt

Nt∑
i=1

(
Y t

i −
Nc∑
j=1

W(i, j)Y c
j

)
.

127 See, e.g., Härdle (1990) or Ichimura and Todd (2007) (Chapter 74 of this Handbook) for a discussion of
kernels and choices of bandwidths.

http://dx.doi.org/10.1016/S1573-4412(07)06074-6
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We can define this mean for various subsets of the treatment sample defined in various
ways. More efficient estimators weight the observations accounting for the variance
[Heckman, Ichimura and Todd (1997, 1998), Heckman (1998), Hirano, Imbens and
Ridder (2003), Abadie and Imbens (2006)].128

Matching assumes that conditioning on X eliminates selection bias. The method re-
quires no functional form assumptions for outcome equations. If, however, a functional
form assumption is maintained, as in the econometric procedure proposed by Barnow,
Cain and Goldberger (1980), it is possible to implement the matching assumption us-
ing standard regression analysis. Suppose, for example, that Y0 is linearly related to
observables X and an unobservable U0, so that

E(Y0 | X,D = 0) = Xα + E(U0 | X,D = 0),

and

E(U0 | X,D = 0) = E(U0 | X)

is linear in X (E(U | X) = ϕX). Under these assumptions, controlling for X via linear
regression allows one to identify E(Y0 | X,D = 1) from the data on nonparticipants.
Under assumption (Q-4)′, setting X = Q, this approach justifies OLS equation (Q-3) for
identifying treatment effects.129 Such functional form assumptions are not strictly re-
quired to implement the method of matching. Moreover, in practice, users of the method
of Barnow, Cain and Goldberger (1980) do not impose the common support condi-
tion (M-2) for the distribution of X when generating estimates of the treatment effect.
The distribution of X may be very different in the treatment group (D = 1) and com-
parison group (D = 0) samples, so that comparability is only achieved by imposing
linearity in the parameters and extrapolating over different regions.

One advantage of the method of Barnow, Cain and Goldberger (1980) is that it uses
data parsimoniously. If the X are high-dimensional, the number of observations in each
cell when matching can get very small.

Another solution to this problem that reduces the dimension of the matching problem
without imposing arbitrary linearity assumptions is based on the probability of partic-
ipation or the “propensity score”, P(X) = Pr(D = 1 | X). Rosenbaum and Rubin
(1983) demonstrate that under assumptions (M-1) and (M-2),

(8.5)(Y0, Y1)⊥⊥ D | P(X) for X ∈ χc,

for some set χc, where it is assumed that (M-2) holds in the set. Conditioning either on
P(X) or on X produces conditional independence.130

128 Regression-adjusted matching, proposed by Rubin (1979) and clarified in Heckman, Ichimura and Todd
(1997, 1998), uses regression-adjusted Yi , denoted by τ(Yi ) = Yi − Xiα, in place of Yi in the preceding
calculations. See the cited papers for the econometric details of the procedure.
129 In Equation (Q-3), this approach shows that α combines the effect of Q on U0 with the causal effect of Q

on Y .
130 Their analysis is generalized to a multiple treatment setting in Lechner (2001) and Imbens (2003).
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Conditioning on P(X) reduces the dimension of the matching problem down to
matching on the scalar P(X). The analysis of Rosenbaum and Rubin (1983) assumes
that P(X) is known rather than estimated. Heckman, Ichimura and Todd (1998), Hahn
(1998), and Hirano, Imbens and Ridder (2003) present the asymptotic distribution the-
ory for the kernel matching estimator in the cases in which P(X) is known and in which
it is estimated both parametrically and nonparametrically.

Conditioning on P identifies all treatment parameters but as we have seen, it im-
poses the assumption of a flat MTE. Marginal returns and average returns are the same.
A consequence of (8.5) is that

E
(
Y1
∣∣ D = 0, P (X)

) = E
(
Y1
∣∣ D = 1, P (X)

) = E
(
Y1
∣∣ P(X)

)
,

E
(
Y0
∣∣ D = 1, P (X)

) = E
(
Y0
∣∣ D = 0, P (X)

) = E
(
Y0
∣∣ P(X)

)
.

Support condition (M-2) has the unattractive feature that if the analyst has too much
information about the decision of who takes treatment, so that P(X) = 1 or 0, the
method breaks down at such values of X because people cannot be compared at a
common X. The method of matching assumes that, given X, some unspecified ran-
domization in the economic environment allocates people to treatment. This justifies
assumption (Q-5) in the OLS example. The fact that the cases P(X) = 1 and P(X) = 0
must be eliminated suggests that methods for choosing X based on the fit of the model
to data on D are potentially problematic, as we discuss below.

Offsetting these disadvantages, the method of matching with a known conditioning
set that produces condition (M-2) does not require separability of outcome or choice
equations, exogeneity of conditioning variables, exclusion restrictions, or adoption of
specific functional forms of outcome equations. Such features are commonly used in
conventional selection (control function) methods and conventional applications of IV
although as we have demonstrated in Section 4, recent work in semiparametric estima-
tion relaxes these assumptions. As noted in Section 8.2, the method of matching does
not strictly require (M-1). One can get by with weaker mean independence assump-
tions (M-3) in the place of the stronger conditions (M-1). However, if (M-3) is invoked,
the assumption that one can replace X by P(X) does not follow from the analysis of
Rosenbaum and Rubin (1983), and is an additional new assumption.

Methods for implementing matching are provided in Heckman et al. (1998) and are
discussed extensively in Heckman, LaLonde and Smith (1999). See Todd (1999, 2007,
2008) for software and extensive discussion of the mechanics of matching. We now
contrast the identifying assumptions used in the method of control functions with those
used in matching.

8.3.1. Comparing matching and control functions approaches

The method of matching eliminates the dependence between (Y0, Y1) and D, (Y0, Y1)⊥�⊥
D, by assuming access to conditioning variables X such that (M-1) is satisfied:
(Y0, Y1)⊥⊥ D | X. By conditioning on observables, one can identify the distributions
of Y0 and Y1 over the support of X satisfying (M-2).
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Other methods model the dependence that gives rise to the spurious relationship and
in this way attempt to eliminate it. IV involves exclusion and a different type of condi-
tional independence, (Y0, Y1)⊥⊥ Z | X, as well as a rank condition (Pr(D = 1 | X,Z)

depends on Z). The instrument Z plays the role of the implicit randomization used
in matching by allocating people to treatment status in a way that does not depend on
(Y0, Y1). We have already established that matching and IV make very different assump-
tions. Thus, in general, a matching assumption that (Y0, Y1)⊥⊥ D | X,Z neither implies
nor is implied by (Y0, Y1)⊥⊥ Z | X. One special case where they are equivalent is when
treatment status is assigned by randomization with full compliance (letting ξ = 1 de-
note assignment to treatment, ξ = 1 ⇒ A = 1 and ξ = 0 ⇒ A = 0) and Z = ξ , so
that the instrument is the assignment mechanism. A = 1 if the person actually receives
treatment, and A = 0 otherwise.

The method of control functions explicitly models the dependence between (Y0, Y1)

and D and attempts to eliminate it. Chapter 73 (Matzkin) of this Handbook provides
a comprehensive review of these methods. In Section 11, we present a summary of
some of the general principles underlying the method of control functions, the method
of control variates, replacement functions, and proxy approaches as they apply to the
selection problem. All of these methods attempt to eliminate the θ in (U-1) that produces
the dependence captured in (U-2).

In this section, we relate matching to the form of the control function introduced in
Heckman (1980) and Heckman and Robb (1985a, 1986a). This version was used in our
analysis of local instrumental variables (LIV) in Section 4, where we compare LIV with
control function approaches and show that LIV and LATE estimate derivatives of the
control functions. We analyze conditional means because of their familiarity. Using the
fact that E(1(Y � y) | X) = F(y | X), the analysis applies to marginal distributions as
well.

Thus we work with conditional expectations of (Y0, Y1) given (X,Z,D), where Z

is assumed to include at least one variable not in X. Conventional applications of the
control function method assume additive separability, which is not required in match-
ing. Strictly speaking, additive separability is not required in the application of control
functions either.131 What is required is a model relating the outcome unobservables
to the observables and the unobservables in the choice of treatment equation. Various
assumptions give operational content to (U-1) defined in Section 2.

For the additively separable case (2.2), the control function for mean outcomes mod-
els the conditional expectations of Y1 and Y0 given X, Z, and D as

E(Y1 | Z,X,D = 1) = μ1(X) + E(U1 | Z,X,D = 1),

E(Y0 | Z,X,D = 0) = μ0(X) + E(U0 | Z,X,D = 0).

131 Examples of nonseparable selection models are found in Cameron and Heckman (1998). See also Altonji
and Matzkin (2005) and Chapter 73 (Matzkin) of this Handbook.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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In the traditional method of control functions, the analyst models E(U1 | Z,X,

D = 1) and E(U0 | Z,X,D = 0). If these functions can be independently varied
against μ1(X) and μ0(X), respectively, one can identify μ1(X) and μ0(X) up to con-
stant terms.132 It is not required that X or Z be stochastically independent of U1 or U0,
although conventional methods often assume this.

Assume that (U0, U1, V )⊥⊥ (X,Z) and adopt Equation (3.3) as the treatment choice
model augmented so that X and Z are determinants of treatment choice, using V as the
latent variable that generates D given X,Z: D = 1(μD(Z) � 0). Let UD = FV |X(V )

and P(Z) = FV |X(μD(Z)). In this notation, the control functions are

E(U1 | Z,D = 1) = E
(
U1
∣∣ μD(Z) � V

)
= E

(
U1
∣∣ P(Z) � UD

) = K1
(
P(Z)

)
and

E(U0 | Z,D = 0) = E
(
U0
∣∣ μD(Z) < V

)
= E

(
U0
∣∣ P(Z) < UD

) = K0
(
P(Z)

)
,

so the control function only depends on the propensity score P(Z). The key assumption
needed to represent the control function solely as a function of P(Z) is

(CF-1) (U0, U1, V )⊥⊥ X,Z.

This assumption is not strictly required but it is traditional and useful in relating LIV
and selection models (as in Section 4) and selection models and matching (this section).
Under this condition

E(Y1 | Z,X,D = 1) = μ1(X) + K1
(
P(Z)

)
,

E(Y0 | Z,X,D = 0) = μ0(X) + K0
(
P(Z)

)
,

with limP→1 K1(P ) = 0 and limP→0 K0(P ) = 0. It is assumed that Z can be inde-
pendently varied for all X, and the limits are obtained by changing Z while holding X

fixed.133 These limit results state that when the values of X,Z are such that the prob-
ability of being in a sample (D = 1 or D = 0, respectively) is 1, there is no selection
bias and one can separate out μ1(X) from K1(P (Z)) and μ0(X) from K0(P (Z)). This
is the same identification at infinity condition that is required to identify ATE and TT in
IV for models with heterogeneous responses.134,135

132 Heckman and Robb (1985a, 1986a) introduce this general formulation of control functions. The iden-
tifiability requires that the members of the pairs (μ1(X),E(U1 | X,Z,D = 1)) and (μ0(X),E(U0 |
X,Z, D = 0)) be variation-free so that they can be independently varied against each other.
133 More precisely, we assume that Supp(Z | X) = Supp(Z) and that limit sets of Z, Z0, and Z1 exist so
that as Z → Z0, P(Z, X) → 0, and as Z → Z1, P(Z, X) → 1.
134 As noted in our discussion in Section 4, we need identification at infinity to obtain ATE and TT. This is a
feature of any evaluation model with general heterogeneity.
135 One can approximate the K1(P ) and K0(P ) terms by polynomials in P [see Heckman (1980), Heckman
and Robb (1985a, 1986a), Heckman and Hotz (1989)]. Ahn and Powell (1993) and Powell (1994) develop
methods for eliminating K1(P (Z)) and K0(P (Z)) by differencing.
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As noted in Section 4, unlike the method of matching based on (M-1), the method of
control functions allows the marginal treatment effect to be different from the average
treatment effect and from the conditional effect of treatment on the treated. Although
conventional practice has been to derive the functional forms of K0(P ) and K1(P ) by
making distributional assumptions about (U0, U1, V ) such as normality or other con-
ventional distributional assumptions, this is not an intrinsic feature of the method and
there are many nonnormal and semiparametric versions of this method. See Powell
(1994) for a survey.

In its semiparametric implementation, the method of control functions requires an ex-
clusion restriction (a variable in Z not in X) to achieve nonparametric identification.136

Without any functional form assumptions one cannot rule out a worst case analysis
where, for example, if X = Z, then K1(P (X)) = τμ(X) where τ is a scalar. In this
situation, there is perfect collinearity between the control function and the conditional
mean of the outcome equation, and it is impossible to separately identify either.137 Even
though this case is not generic, it is possible. The method of matching does not re-
quire an exclusion restriction, but at the cost of ruling out essential heterogeneity. In
the general case, the method of control functions requires that in certain limit sets of Z,
P(Z) = 1 and P(Z) = 0 in order to achieve full nonparametric identification.138 The
conventional method of matching does not invoke such limit set arguments.

All methods of evaluation, including matching and control functions, require that
treatment parameters be defined on a common support that is the intersection of the
supports of X given D = 1 and X given D = 0: Supp(X | D = 1)∩ Supp(X | D = 0).
This is the requirement for any estimator that seeks to identify treatment effects by
comparing samples of treated persons with samples of untreated persons.

In this version of the method of control functions, P(Z) is a conditioning variable
used to predict U1 conditional on D and U0 conditional on D. In the method of match-
ing, it is used as a conditioning variable to eliminate the stochastic dependence between
(U0, U1) and D. In the method of LATE or LIV, P(Z) is used as an instrument. In the
method of control functions, as conventionally applied, (U0, U1)⊥⊥ (X,Z), but this as-
sumption is not intrinsic to the method.139 This assumption plays no role in matching if
the correct conditioning set is known.140 However, as noted below, exogeneity plays a
key role in devising algorithms to select the conditioning variables. In addition, as noted
in Section 6, exogeneity is helpful in making out-of-sample forecasts. The method of
control functions does not require that (U0, U1)⊥⊥ D | (X,Z), which is a central re-
quirement of matching. Equivalently, the method of control functions does not require

(U0, U1)⊥⊥ V | (X,Z), or that (U0, U1)⊥⊥ V | X,

136 No exclusion is required for many common functional forms for the distributions of unobservables.
137 Clearly K1(P (X)) and μ(X) cannot be independently varied in this case.
138 Symmetry of the errors can be used in place of the appeal to limit sets that put P(Z) = 0 or P(Z) = 1.
See Chen (1999).
139 Relaxing it, however, requires that the analyst model the dependence of the unobservables on the observ-
ables and that certain variation-free conditions are satisfied. [See Heckman and Robb (1985a).]
140 That is, a conditioning set that satisfies (M-1) and (M-2).
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whereas matching does and typically equates X and Z. Thus matching assumes access
to a richer set of conditioning variables than is assumed in the method of control func-
tions.

The method of control functions allows for outcome unobservables to be dependent
on D even after conditioning on (X,Z), and it models this dependence. The method of
matching assumes no such D dependence. Thus in this regard, and maintaining all of
the assumptions invoked for control functions in this section, matching is a special case
of the method of control functions141 in which under assumptions (M-1) and (M-2),

E(U1 | X,D = 1) = E(U1 | X),

E(U0 | X,D = 0) = E(U0 | X).

In the method of control functions, in the case where (X,Z)⊥⊥ (U0, U1, V ), where
the Z can include some or all of the elements of X, the conditional expectation of Y

given X,Z,D is

E(Y | X,Z,D) = E(Y1 | X,Z,D = 1)D + E(Y0 | X,Z,D = 0)(1 − D)

= μ0(X) + [
μ1(X) − μ0(X)

]
D

+ E
(
U1
∣∣ P(Z),D = 1

)
D + E

(
U0
∣∣ P(Z),D = 0

)
(1 − D)

= μ0(X) + K0
(
P(Z)

)
(8.6)+ [

μ1(X) − μ0(X) + K1
(
P(Z)

)− K0
(
P(Z)

)]
D.

The coefficient on D in the final equation combines μ1(X) − μ0(X) with K1(P (Z)) −
K0(P (Z)). It does not correspond to any treatment effect. To identify μ1(X) − μ0(X),
one must isolate it from K1(P (Z)) − K0(P (Z)).

Under assumptions (M-1) and (M-2) of the method of matching, the conditional ex-
pectation of Y conditional on P(X) and D is

E
(
Y
∣∣ P(X),D

) = μ0
(
P(X)

)+ E
(
U0
∣∣ P(X)

)
+ [(

μ1
(
P(X)

)− μ0
(
P(X)

))
(8.7)+ E

(
U1
∣∣ P(X)

)− E
(
U0
∣∣ P(X)

)]
D.

The coefficient on D in this expression is now interpretable and is the average treatment
effect. If we assume that (U0, U1)⊥⊥ X, which is not strictly required, we reach a more
familiar representation

(8.8)E
(
Y
∣∣ P(X),D

) = μ0
(
P(X)

)+ [
μ1
(
P(X)

)− μ0
(
P(X)

)]
D,

141 See Aakvik, Heckman and Vytlacil (2005), Carneiro, Hansen and Heckman (2003) and Cunha, Heckman
and Navarro (2005) for a generalization of matching that allows for selection on unobservables by imposing
a factor structure on the errors and estimating the distribution of the unobserved factors. These methods are
discussed in Abbring and Heckman (Chapter 72).

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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since E(U1 | P(X)) = E(U0 | P(X)) = 0. A parallel derivation can be made condi-
tioning on X instead of P(X).

Under the assumptions that justify matching, treatment effects ATE or TT (con-
ditional on P(X)) are identified from the coefficient on D in either (8.7) or (8.8).
Condition (M-2) guarantees that D is not perfectly predictable by X (or P(X)), so
the variation in D identifies the treatment parameter.

The coefficient on D in Equation (8.6) for the more general control function model
does not correspond to any treatment parameter, whereas the coefficients on D in Equa-
tions (8.7) and (8.8) correspond to treatment parameters under the assumptions of the
matching model. Under assumption (CF-1), μ1(P (X)) − μ0(P (X)) = ATE and ATE
= TT = MTE, so the method of matching identifies all of the (conditional on P(X))
mean treatment parameters.142

Under the assumptions justifying matching, when means of Y1 and Y0 are the pa-
rameters of interest, and X satisfies (M-1) and (M-2), the bias terms vanish. They do
not vanish in the more general case considered by the method of control functions.
This is the mathematical counterpart of the randomization implicit in matching: condi-
tional on X or P(X), (U0, U1) are random with respect to D. The method of control
functions allows these error terms to be nonrandom with respect to D and models the
dependence. In the absence of functional form assumptions, it requires an exclusion re-
striction (a variable in Z not in X) to separate out K0(P (Z)) from the coefficient on D.
Matching produces identification without exclusion restrictions whereas identification
with exclusion restrictions is a central feature of the control function method in the
absence of functional form assumptions.

The fact that the control function approach allows for more general dependencies
among the unobservables and the conditioning variables than the matching approach
allows is implicitly recognized in the work of Rosenbaum (1995) and Robins (1997).
Their “sensitivity analyses” for matching when there are unobserved conditioning vari-
ables are, in their essence, sensitivity analyses using control functions.143 Aakvik,
Heckman and Vytlacil (2005), Carneiro, Hansen and Heckman (2003) and Cunha,
Heckman and Navarro (2005) explicitly model the relationship between matching and
selection models using factor structure models, treating the omitted conditioning vari-
ables as unobserved factors and estimating their distribution. Abbring and Heckman
discuss this work in Chapter 72.

142 This result also holds even if (CF-1) is not satisfied because (U0, U1) ⊥�⊥X. In this case, the treatment
effects include the term

E
(
U1

∣∣ P(X)
)− E

(
U0

∣∣ P(X)
)
.

143 See also Vijverberg (1993) who does such a sensitivity analysis in a parametric selection model with an
unidentified parameter.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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8.4. Comparing matching and classical control function methods for a generalized
Roy model

Figure 10, developed in connection with our discussion of instrumental variables, shows
the contrast between the shape of the MTE and the OLS matching estimand as a func-
tion of p for the extended Roy model developed in Section 4. The MTE(p) shows its
typical declining shape associated with diminishing returns, and the assumptions justi-
fying matching are violated. Matching attempts to impose a flat MTE(p) and therefore
flattens the estimated MTE(p) compared to its true value. It understates marginal re-
turns at low levels of p (associated with unobservables that make it likely to participate
in treatment) and overstates marginal returns at high levels of p.

To further illustrate the bias in matching and how the control function eliminates it,
we perform sensitivity analyses under different assumptions about the parameters of the
underlying selection model. In particular, we assume that the data are generated by the
model of Equations (3.1) and (3.2), where μD(Z) = Zγ , μ0(X) = μ0, μ1(X) = μ1,
and

(U0, U1, V )′ ∼ N(0,Σ),

corr(Uj , V ) = ρjV ,

Var(Uj ) = σ 2
j , j = {0, 1}.

We assume in this section that D = 1[μD(Z) + V � 0], in conformity with the
examples presented in Heckman and Navarro (2004), from which we draw. This refor-
mulation of choice model (3.3) simply entails a change in the sign of V . We assume that
Z ⊥⊥ (U0, U1, V ). Using the selection formulae derived in Appendix M, we can write
the biases conditional on P(Z) = p using propensity score matching in a generalized
Roy model as

Bias TT(Z = z) = Bias TT
(
P(Z) = p

) = σ0ρ0V M(p),

Bias ATE(Z = z) = Bias ATE
(
P(Z) = p

) = M(p)
[
σ1ρ1V (1 − p) + σ0ρ0V p

]
,

where M(p) = φ(Φ−1(1−p))
p(1−p)

, φ(·) and Φ(·) are the pdf and cdf of a standard normal
random variable and the propensity score P(z) is evaluated at P(z) = p. We assume
that μ1 = μ0 so that the true average treatment effect is zero.

We simulate the mean bias for TT (Table 10) and ATE (Table 11) for different val-
ues of the ρjV and σj . The results in the tables show that, as we let the variances of
the outcome equations grow, the value of the mean bias that we obtain can become
substantial. With larger correlations between the outcomes and the unobservables gener-
ating choices, come larger biases. These tables demonstrate the greater generality of the
control function approach, which models the bias rather than assuming it away by condi-
tioning. Even if the correlation between the observables and the unobservables (ρjV ) is
small, so that one might think that selection on unobservables is relatively unimportant,
we still obtain substantial biases if we do not control for relevant omitted condition-
ing variables. Only for special values of the parameters do we avoid bias by matching.
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Table 10
Mean bias for treatment on the treated

ρ0V Average bias (σ0 = 1) Average bias (σ0 = 2)

−1.00 −1.7920 −3.5839
−0.75 −1.3440 −2.6879
−0.50 −0.8960 −1.7920
−0.25 −0.4480 −0.8960

0.00 0.0000 0.0000
0.25 0.4480 0.8960
0.50 0.8960 1.7920
0.75 1.3440 2.6879
1.00 1.7920 3.5839

Bias TT = ρ0V ∗ σ0 ∗ M(p).

M(p) = φ(Φ−1(1−p))
p(1−p)

.

Source: Heckman and Navarro (2004).

These examples also demonstrate that sensitivity analyses can be conducted for analysis
based on control function methods even when they are not fully identified. Vijverberg
(1993) provides an example.

8.5. The informational requirements of matching and the bias when they are not
satisfied

In this section, we present some examples of when matching “works” and when it breaks
down. This section is based on Heckman and Navarro (2004). In particular, we show
how matching on some of the relevant information but not all can make the bias using
matching worse for standard treatment parameters. These examples also introduce fac-
tor models that play a key role in the analysis of Abbring and Heckman in Chapter 72.

Section 2 of this chapter discussed informational asymmetries between the econo-
metrician and the agents whose behavior they are analyzing. The method of matching
assumes that the econometrician has access to and uses all of the relevant information
in the precise sense defined there. That means that the X that guarantees conditional
independence (M-1) is available and is used. The concept of relevant information is a
delicate one and it is difficult to find the true conditioning set.

Assume that the economic model generating the data is a generalized Roy model of
the form

D∗ = Zγ + V, where

Z ⊥⊥V and

V = αV 1f1 + αV 2f2 + εV ,

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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Table 11
Mean bias for average treatment effect

(σ0 = 1)

ρ0V −1.00 −0.75 −0.50 −0.25 0 0.25 0.50 0.75 1.00

ρ1V (σ1 = 1)

−1.00 −1.7920 −1.5680 −1.3440 −1.1200 −0.8960 −0.6720 −0.4480 −0.2240 0
−0.75 −1.5680 −1.3440 −1.1200 −0.8960 −0.6720 −0.4480 −0.2240 0 0.2240
−0.50 −1.3440 −1.1200 −0.8960 −0.6720 −0.4480 −0.2240 0 0.2240 0.4480
−0.25 −1.1200 −0.8960 −0.6720 −0.4480 −0.2240 0 0.2240 0.4480 0.6720

0 −0.8960 −0.6720 −0.4480 −0.2240 0 0.2240 0.4480 0.6720 0.8960
0.25 −0.6720 −0.4480 −0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200
0.50 −0.4480 −0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440
0.75 −0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440 1.5680
1.00 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440 1.5680 1.7920

ρ1V (σ1 = 2)

−1.00 −2.6879 −2.2399 −1.7920 −1.3440 −0.8960 −0.4480 0 0.4480 0.8960
−0.75 −2.4639 −2.0159 −1.5680 −1.1200 −0.6720 −0.2240 0.2240 0.6720 1.1200
−0.50 −2.2399 −1.7920 −1.3440 −0.8960 −0.4480 0 0.4480 0.8960 1.3440
−0.25 −2.0159 −1.5680 −1.1200 −0.6720 −0.2240 0.2240 0.6720 1.1200 1.5680

0 −1.7920 −1.3440 −0.8960 −0.4480 0 0.4480 0.8960 1.3440 1.7920
0.25 −1.5680 −1.1200 −0.6720 −0.2240 0.2240 0.6720 1.1200 1.5680 2.0159
0.50 −1.3440 −0.8960 −0.4480 0 0.4480 0.8960 1.3440 1.7920 2.2399
0.75 −1.1200 −0.6720 −0.2240 0.2240 0.6720 1.1200 1.5680 2.0159 2.4639
1.00 −0.8960 −0.4480 0 0.4480 0.8960 1.3440 1.7920 2.2399 2.6879

BIAS ATE = ρ1V ∗ σ1 ∗ M1(p) − ρ0V ∗ σ0 ∗ M0(p).

M1(p) = φ(Φ−1(1−p))
p .

M0(p) = −φ(Φ−1(1−p))
(1−p)

.

Source: Heckman and Navarro (2004).

D =
{

1 if D∗ � 0,

0 otherwise,

and

Y1 = μ1 + U1, where U1 = α11f1 + α12f2 + ε1,

Y0 = μ0 + U0, where U0 = α01f1 + α02f2 + ε0.

We remind the reader that contrary to the analysis throughout the rest of this chapter we
add V and do not subtract it in the decision equation. This is the familiar representation.
By a change in sign in V , we can go back and forth between the specification used in
this section and the specification used in other sections of the chapter.
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In this specification, (f1, f2, εV , ε1, ε0) are assumed to be mean zero random vari-
ables that are mutually independent of each other and Z so that all the correlation among
the elements of (U0, U1, V ) is captured by f = (f1, f2). Models that take this form are
known as factor models and have been applied in the context of selection models by
Aakvik, Heckman and Vytlacil (2005), Carneiro, Hansen and Heckman (2001, 2003),
and Hansen, Heckman and Mullen (2004), among others. We keep implicit any depen-
dence on X which may be general.

Generically, the minimal relevant information for this model when the factor loadings
are not zero (αij �= 0) is, for general values of the factor loadings,

IR = {f1, f2}.144

Recall that we assume independence between Z and all error terms. If the econome-
trician has access to IR and uses it, (M-1) is satisfied conditional on IR . Note that IR

plays the role of θ in (U-1). In the case where the economist knows IR , the economist’s
information set σ(IE) contains the relevant information (σ(IE) ⊇ σ(IR)).

The agent’s information set may include different variables. If we assume that ε0, ε1
are shocks to outcomes not known to the agent at the time treatment decisions are made,
but the agent knows all other aspects of the model, the agent’s information is

IA = {f1, f2, Z, εV }.
Under perfect certainty, the agent’s information set includes ε1 and ε0:

IA = {f1, f2, Z, εV , ε1, ε0}.
In either case, all of the information available to the agent is not required to satisfy
conditional independence (M-1). All three information sets guarantee conditional inde-
pendence, but only the first is minimal relevant.

In the notation of Section 2, the observing economist may know some variables not
in IA, IR∗ or IR but may not know all of the variables in IR . In the following subsec-
tions, we study what happens when the matching assumption that σ(IE) ⊇ σ(IR) does
not hold. That is, we analyze what happens to the bias from matching as the amount
of information used by the econometrician is changed. In order to get closed form ex-
pressions for the biases of the treatment parameters, we make the additional assumption
that

(f1, f2, εV , ε1, ε0) ∼ N(0,Σ),

where Σ is a matrix with (σ 2
f1

, σ 2
f2

, σ 2
εV

, σ 2
ε1

, σ 2
ε0

) on the diagonal and zero in all the
nondiagonal elements. This assumption links matching models to conventional normal
selection models of the sort developed in Chapter 70 and further analyzed in Section 2 of
this chapter. However, the examples based on this specification illustrate more general
principles. We now analyze various commonly encountered cases.

144 Notice that for a fixed set of αij , the minimal information set is (α11 − α01)f1 + (α12 − α02)f2, which
captures the dependence between D and (Y0, Y1).

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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8.5.1. The economist uses the minimal relevant information: σ(IR) ⊆ σ(IE)

We begin by analyzing the case in which the information used by the economist is
IE = {Z, f1, f2}, so that the econometrician has access to a relevant information set and
it is larger than the minimal relevant information set. In this case, it is straightforward
to show that matching identifies all of the mean treatment parameters with no bias. The
matching estimator has population mean

E(Y1 | D = 1, IE) − E(Y0 | D = 0, IE)

= μ1 − μ0 + (α11 − α01)f1 + (α12 − α02)f2,

and all of the mean treatment parameters collapse to this same expression since, condi-
tional on knowing f1 and f2, there is no selection because (ε0, ε1)⊥⊥ V . Recall that for
arbitrary choices of α11, α01, α12, and α02, IR = {f1, f2} and the economist needs less
information to achieve (M-1) than is contained in IE .

In this case, the analysis of Rosenbaum and Rubin (1983) tells us that knowledge of
(Z, f1, f2) and knowledge of P(Z, f1, f2) are equally useful in identifying all of the
treatment parameters conditional on P . If we write the propensity score as

P(IE) = Pr

(
εV

σεV

>
−Zγ − αV 1f1 − αV 2f2

σεV

)

= 1 − Φ

(−Zγ − αV 1f1 − αV 2f2

σεV

)
= p,

the event (D∗ � 0, given f = f̃ and Z = z) can be written as εV

σεV
� Φ−1(1−P(z, f̃ )),

where Φ is the cdf of a standard normal random variable and f = (f1, f2). We abuse
notation slightly by using z as the realized fixed value of Z and f̃ as the realized value
of f . The population matching condition (M-1) implies that

E
(
Y1
∣∣ D = 1, P (IE) = P(z, f̃ )

)− E
(
Y0
∣∣ D = 0, P (IE) = P(z, f̃ )

)
= μ1 − μ0 + E

(
U1
∣∣ D = 1, P (IE) = P(z, f̃ )

)
− E

(
U0
∣∣ D = 0, P (IE) = P(z, f̃ )

)
= μ1 − μ0 + E

(
U1

∣∣∣ εV

σεV

> Φ−1(1 − P(z, f̃ )
))

− E

(
U0

∣∣∣ εV

σεV

� Φ−1(1 − P(z, f̃ )
))

= μ1 − μ0.

This expression is equal to all of the treatment parameters discussed in this chapter,
since

E

(
U1

∣∣∣ εV

σεV

> Φ−1(1 − P(z, f̃ )
)) = Cov(U1, εV )

σεV

M1
(
P(z, f̃ )

)
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and

E

(
U0

∣∣∣ εV

σεV

� Φ−1(1 − P(z, f̃ )
)) = Cov(U0, εV )

σεV

M0
(
P(z, f̃ )

)
,

where

M1
(
P(z, f̃ )

) = φ(Φ−1(1 − P(z, f̃ )))

P (z, f̃ )
,

M0
(
P(z, f̃ )

) = −φ(Φ−1(1 − P(z, f̃ )))

1 − P(z, f̃ )
,

where φ is the density of a standard normal random variable. As a consequence of the
assumptions about mutual independence of the errors

Cov(Ui, εV ) = Cov(αi1f1 + αi2f2 + εi, εV ) = 0, i = 0, 1.

In the context of the generalized Roy model, the case considered in this subsection
is the one matching is designed to solve. Even though a selection model generates the
data, the fact that the information used by the econometrician includes the minimal rel-
evant information makes matching a correct solution to the selection problem. We can
estimate the treatment parameters with no bias since, as a consequence of our assump-
tions, (U0, U1)⊥⊥ D | (f, Z), which is exactly what matching requires. The minimal
relevant information set is even smaller. For arbitrary factor loadings, we only need to
know (f1, f2) to secure conditional independence. We can define the propensity score
solely in terms of f1 and f2, and the Rosenbaum–Rubin result still goes through. Our
analysis in this section focuses on treatment parameters conditional on particular values
of P(Z, f ) = P(z, f̃ ), i.e., for fixed values of p, but we could condition more finely.
Conditioning on P(z, f̃ ) defines the treatment parameters more coarsely. We can use
either fine or coarse conditioning to construct the unconditional treatment effects.

In this example, using more information than what is in the relevant information set
(i.e., using Z) is harmless. But this is not generally true. If Z ⊥�⊥ (U0, U1, V ), adding Z

to the conditioning set can violate conditional independence assumption (M-1):

(Y0, Y1)⊥⊥ D | (f1, f2),

but

(Y0, Y1)⊥�⊥ D | (f1, f2, Z).

Adding extra variables can destroy the crucial conditional independence property of
matching. We present an example of this point below. We first consider a case where
Z ⊥⊥ (U0, U1, V ) but the analyst conditions on Z and not (f1, f2). In this case, there is
selection on the unobservables that are not conditioned on.
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8.5.2. The economist does not use all of the minimal relevant information

Next, suppose that the information used by the econometrician is

IE = {Z},
and there is selection on the unobservable (to the analyst) f1 and f2, i.e., the factor
loadings αij are all nonzero. Recall that we assume that Z and the f are independent.
In this case, the event (D∗ � 0, Z = z) is characterized by

αV 1f1 + αV 2f2 + εV√
α2

V 1σ
2
f1

+ α2
V 2σ

2
f2

+ σ 2
εV

� Φ−1(1 − P(z)
)
.

Using the analysis presented in Appendix M, the bias for the different treatment para-
meters is given by

(8.9)Bias TT(Z = z) = Bias TT
(
P(Z) = P(z)

) = η0M
(
P(z)

)
,

where M(P(z)) = M1(P (z)) − M0(P (z)).

Bias ATE(Z = z) = Bias ATE
(
P(Z) = P(z)

)
(8.10)= M

(
P(z)

){
η1
[
1 − P(z)

]+ η0P(z)
}
,

where

η1 = αV 1α11σ
2
f1

+ αV 2α12σ
2
f2√

α2
V 1σ

2
f1

+ α2
V 2σ

2
f2

+ σ 2
εV

,

η0 = αV 1α01σ
2
f1

+ αV 2α02σ
2
f2√

α2
V 1σ

2
f1

+ α2
V 2σ

2
f2

+ σ 2
εV

.

It is not surprising that matching on sets of variables that exclude the relevant condi-
tioning variables produces bias for the conditional (on P(z)) treatment parameters. The
advantage of working with a closed form expression for the bias is that it allows us to
answer questions about the magnitude of this bias under different assumptions about the
information available to the analyst, and to present some simple examples. We next use
expressions (8.9) and (8.10) as benchmarks against which to compare the relative size
of the bias when we enlarge the econometrician’s information set beyond Z.

8.5.3. Adding information to the econometrician’s information set IE: Using some but
not all the information from the minimal relevant information set IR

Suppose that the econometrician uses more information but not all of the information
in the minimal relevant information set. He still reports values of the parameters condi-
tional on specific p values but now the model for p has different conditioning variables.
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For example, the data set assumed in the preceding section might be augmented or
else the econometrician decides to use information previously available. In particular,
assume that the econometrician’s information set is

I ′
E = {Z, f2},

and that he uses this information set. Under Conditions 1 and 2 presented below, the
biases for the treatment parameters conditional on values of P = p are reduced in
absolute value relative to their values in Section 8.5.2 by changing the conditioning
set in this way. But these conditions are not generally satisfied, so that adding extra
information does not necessarily reduce bias and may actually increase it. To show how
this happens in our model, we define expressions comparable to η1 and η0 for this case:

η′
1 = αV 1α11σ

2
f1√

α2
V 1σ

2
f1

+ σ 2
εV

,

η′
0 = αV 1α01σ

2
f1√

α2
V 1σ

2
f1

+ σ 2
εV

.

We compare the biases under the two cases using formulae (8.9)–(8.10), suitably mod-
ified, but keeping p fixed at a specific value even though this implies different condi-
tioning sets in terms of (z, f̃ ).

CONDITION 1. The bias produced by using matching to estimate TT is smaller in ab-
solute value for any given p when the new information set σ(I ′

E) is used if

|η0| >
∣∣η′

0

∣∣.
There is a similar result for ATE:

CONDITION 2. The bias produced by using matching to estimate ATE is smaller in
absolute value for any given p when the new information set σ(I ′

E) is used if∣∣η1(1 − p) + η0p
∣∣ >

∣∣η′
1(1 − p) + η′

0p
∣∣.

PROOF OF CONDITIONS 1 AND 2. These conditions are a direct consequence of for-
mulae (8.9) and (8.10), modified to allow for the different covariance structure pro-
duced by the information structure assumed in this section (replacing η0 with η′

0, η1
with η′

1). �

It is important to notice that we condition on the same value of p in deriving these
expressions although the variables in P are different across different specifications of
the model. Propensity-score matching defines them conditional on P = p, so we are
being faithful to that method.
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These conditions do not always hold. In general, whether or not the bias will be
reduced by adding additional conditioning variables depends on the relative importance
of the additional information in both the outcome equations and on the signs of the
terms inside the absolute value.

Consider whether Condition 1 is satisfied in general. Assume η0 > 0 for all α02, αV 2.
Then η0 > η′

0 if

η0 = αV 1α01σ
2
f1

+ (α2
V 2)(

α02
αV 2

)σ 2
f2√

α2
V 1σ

2
f1

+ α2
V 2σ

2
f2

+ σ 2
εV

>
αV 1α11σ

2
f1√

α2
V 1σ

2
f1

+ σ 2
εV

= η′
0.

When α02
αV 2

= 0, clearly η0 < η′
0. Adding information to the conditioning set increases

bias. We can vary (
α02
αV 2

) holding all of the other parameters constant and hence can make

the left-hand side arbitrarily large.145 As α02 increases, there is some critical value α∗
02

beyond which η0 > η′
0. If we assumed that η0 < 0, however, the opposite conclusion

would hold, and the conditions for reduction in bias would be harder to meet, as the
relative importance of the new information is increased. Similar expressions can be
derived for ATE and MTE, in which the direction of the effect depends on the signs of
the terms in the absolute value.

Figures 23A and 23B illustrate the point that adding some but not all information
from the minimal relevant set might increase the point-wise bias and the uncondi-
tional or average bias for ATE and TT, respectively.146 Values of the parameters of
the model are presented at the base of the figures. In these figures, we compare condi-
tioning on P(z), which in general is not guaranteed to eliminate bias, with conditioning
on P(z) and f2 but not f1. Adding f2 to the conditioning increases bias.

The fact that the point-wise (and overall) bias might increase when adding some
but not all information from IR is a feature that is not shared by the method of control
functions. Because the method of control functions models the stochastic dependence of
the unobservables in the outcome equations on the observables, changing the variables
observed by the econometrician to include f2 does not generate bias. It only changes
the control function used. That is, by adding f2 we change the control function from

K1
(
P(Z) = P(z)

) = η1M1
(
P(z)

)
,

K0
(
P(Z) = P(z)

) = η0M0
(
P(z)

)
to

K ′
1

(
P(Z, f2) = P(z, f̃2)

) = η′
1M1

(
P(z, f̃2)

)
,

145 A direct computation shows that

∂η0

∂(
α02
αV 2

)
=

α2
V 2σ 2

f2√
α2

V 1σ 2
f1

+ α2
V 2σ 2

f2
+ σ 2

εV

> 0.

146 Heckman and Navarro (2004) show comparable plots for MTE.
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Figure 23A. Bias for treatment on the treated. Source: Heckman and Navarro (2004).

Note: Using proxy Z̃ for f2 increases the bias. Correlation (Z̃, f2) = 0.5.
Model:
V = Z + f1 + f2 + εV ; Y1 = 2f1 + 0.1f2 + ε1; Y0 = f1 + 0.1f2 + ε0
εV ∼ N(0, 1); ε1 ∼ N(0, 1); ε0 ∼ N(0, 1)

f1 ∼ N(0, 1); f2 ∼ N(0, 1)

Figure 23B. Bias for average treatment effect. Source: Heckman and Navarro (2004).
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K ′
0

(
P(Z, f2) = P(z, f̃2)

) = η′
0M0

(
P(z, f̃2)

)
but do not generate any bias in using the control function estimator. This is a major
advantage of this method.

It controls for the bias of the omitted conditioning variables by modeling it. Of
course, if the model for the bias term is not valid, neither is the correction for the
bias. Semiparametric selection estimators are designed to protect the analyst against
model misspecification. [See, e.g., Powell (1994).] Matching evades this problem by
assuming that the analyst always knows the correct conditioning variables and that they
satisfy (M-1). In actual empirical settings, agents rarely know the relevant information
set. Instead they use proxies.

8.5.4. Adding information to the econometrician’s information set: Using proxies for
the relevant information

Suppose that instead of knowing some part of the minimal relevant information set,
such as f2, the analyst has access to a proxy for it.147 In particular, assume that he has
access to a variable Z̃ that is correlated with f2 but that is not the full minimal relevant
information set. That is, define the econometrician’s information to be

ĨE = {Z, Z̃},
and suppose that he uses it so IE = ĨE . In order to obtain closed-form expressions for
the biases we assume that

Z̃ ∼ N
(
0, σ 2

Z̃

)
,

corr(Z̃, f2) = ρ, and Z̃ ⊥⊥ (ε0, ε1, εV , f1).

We define expressions comparable to η and η′:

η̃1 = α11αV 1σ
2
f1

+ α12αV 2(1 − ρ2)σ 2
f2√

α2
V 1σ

2
f1

+ α2
V 2σ

2
f2

(1 − ρ2) + σ 2
εV

,

η̃0 = α01αV 1σ
2
f1

+ α02αV 2(1 − ρ2)σ 2
f2√

α2
V 1σ

2
f1

+ α2
V 2σ

2
f2

(1 − ρ2) + σ 2
εV

.

By substituting for I ′
E by ĨE and η′

j by η̃j (j = 0, 1) in Conditions 1 and 2 of

Section 8.5.3, we can obtain results for the bias in this case. Whether ĨE will be bias-
reducing depends on how well it spans IR and on the signs of the terms in the absolute
values in those conditions in Section 8.5.3.

147 For example, the returns-to-schooling literature often uses different test scores, like AFQT or IQ, to proxy
for missing ability variables. We discuss these proxy, replacement function, methods in Section 11. See also
Abbring and Heckman (Chapter 72).

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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In this case, however, there is another parameter to consider: the correlation ρ be-
tween Z̃ and f2, ρ. If |ρ| = 1 we are back to the case of ĨE = I ′

E because Z̃ is a perfect
proxy for f2. If ρ = 0, we are essentially back to the case analyzed in Section 8.5.3. Be-
cause we know that the bias at a particular value of p might either increase or decrease
when f2 is used as a conditioning variable but f1 is not, we know that it is not possi-
ble to determine whether the bias increases or decreases as we change the correlation
between f2 and Z̃. That is, we know that going from ρ = 0 to |ρ| = 1 might change
the bias in any direction. Use of a better proxy in this correlational sense may produce
a more biased estimate.

From the analysis of Section 8.5.3, it is straightforward to derive conditions under
which the bias generated when the econometrician’s information is ĨE is smaller than
when it is I ′

E . That is, it can be the case that knowing the proxy variable Z̃ is better than
knowing the actual variable f2. Returning to the analysis of treatment on the treated
as an example (i.e., Condition 1), the bias in absolute value (at a fixed value of p) is
reduced when Z̃ is used instead of f2 if

∣∣∣∣ α01αV 1σ
2
f1

+ α02αV 2(1 − ρ2)σ 2
f2√

α2
V 1σ

2
f1

+ α2
V 2σ

2
f2

(1 − ρ2) + σ 2
εV

∣∣∣∣ <

∣∣∣∣ α01αV 1σ
2
f1√

α2
V 1σ

2
f1

+ σ 2
εV

∣∣∣∣.
Figures 24A and 24B, use the same true model as used in the previous section to illus-
trate the two points being made here. Namely, using a proxy for an unobserved relevant
variable might increase the bias. On the other hand, it might be better in terms of bias to
use a proxy than to use the actual variable, f2. However, as Figures 25A and 25B show,
by changing α02 from 0.1 to 1, using a proxy might increase the bias versus using the
actual variable f2. Notice that the bias need not be universally negative or positive but
depends on p.

The point of these examples is that matching makes very knife-edge assumptions. If
the analyst gets the right conditioning set, (M-1) is satisfied and there is no bias. But
determining the correct information set is not a trivial task, as we note in Section 8.5.6.
Having good proxies in the standard usage of that term can create substantial bias in
estimating treatment effects. Half a loaf may be worse than none.

8.5.5. The case of a discrete outcome variable

Heckman and Navarro (2004) construct parallel examples for cases including discrete
dependent variables. In particular, they consider nonnormal, nonseparable equations
for odds ratios and probabilities. The proposition that matching identifies the correct
treatment parameter if the econometrician’s information set includes all the minimal
relevant information is true more generally, provided that any additional extraneous
information used is exogenous in a sense to be defined precisely in the next section.
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Figure 24A. Bias for treatment on the treated. Source: Heckman and Navarro (2004).

Note: Using proxy Z̃ for f2 increases the bias. Correlation (Z̃, f2) = 0.5.
Model:
V = Z + f1 + f2 + εV ; Y1 = 2f1 + 0.1f2 + ε1; Y0 = f1 + 0.1f2 + ε0
εV ∼ N(0, 1); ε1 ∼ N(0, 1); ε0 ∼ N(0, 1)

f1 ∼ N(0, 1); f2 ∼ N(0, 1)

Figure 24B. Bias for average treatment effect. Source: Heckman and Navarro (2004).
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Figure 25A. Bias for treatment on the treated. Source: Heckman and Navarro (2004).

Note: Using proxy Z̃ for f2 increases the bias. Correlation (Z̃, f2) = 0.5.
Model:
V = Z + f1 + f2 + εV ; Y1 = 2f1 + 0.1f2 + ε1; Y0 = f1 + f2 + ε0
εV ∼ N(0, 1); ε1 ∼ N(0, 1); ε0 ∼ N(0, 1)

f1 ∼ N(0, 1); f2 ∼ N(0, 1)

Figure 25B. Bias for average treatment effect. Source: Heckman and Navarro (2004).
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8.5.6. On the use of model selection criteria to choose matching variables

We have already shown by way of example that adding more variables from a minimal
relevant information set, but not all variables in it, may increase bias. By a parallel
argument, adding additional variables to the relevant conditioning set may make the bias
worse. Although we have used our prototypical Roy model as our point of departure,
the point is more general.

There is no rigorous rule for choosing the conditioning variables that produce (M-1).
Adding variables that are statistically significant in the treatment choice equation is
not guaranteed to select a set of conditioning variables that satisfies condition (M-1).
This is demonstrated by the analysis of Section 8.5.3 that shows that adding f2 when it
determines D may increase bias at any selected value of p.

The existing literature [e.g., Heckman et al. (1998)] proposes criteria based on se-
lecting a set of conditioning variables based on a goodness of fit criterion (λ), where a
higher λ means a better fit in the equation predicting D. The intuition behind such crite-
ria is that by using some measure of goodness of fit as a guiding principle one is using
information relevant to the decision process. In the example of Section 8.5.3, using f2
improves goodness of fit of the model for D, but increases bias for the parameters. In
general, such a rule is deficient if f1 is not known or is not used.

An implicit assumption underlying such procedures is that the added conditioning
variables X are exogenous in the following sense:

(E-1) (Y0, Y1)⊥⊥ D | Iint,X ,

where Iint is interpreted as the variables initially used as conditioning variables before X
is added. Failure of exogeneity is a failure of (M-1) for the augmented conditioning set,
and matching estimators based on the augmented information set (Iint,X ) are biased
when the condition is not satisfied.

Exogeneity assumption (E-1) is not usually invoked in the matching literature, which
largely focuses on problem P-1, evaluating a program in place, rather than extrapolat-
ing to new environments (P-2). Indeed, the robustness of matching to such exogeneity
assumptions is trumpeted as one of the virtues of the method. In this section, we show
some examples that illustrate the general point that standard model selection criteria
fail to produce correctly specified conditioning sets unless some version of exogeneity
condition (E-1) is satisfied.

In the literature, the use of model selection criteria is justified in two different ways.
Sometimes it is claimed that they provide a relative guide. Sets of variables with better
goodness of fit in predicting D (a higher λ in the notation of Table 12) are alleged
to be better than sets of variables with lower λ in the sense that they generate lower
biases. However, we have already shown that this is not true. We know that enlarging
the analyst’s information from Iint = {Z} to I ′

int = {Z, f2} will improve fit since f2 is
also in IA and IR . But, going from Iint to I ′

int might increase the bias. So it is not true
that combinations of variables that increase some measure of fit λ necessarily reduce
the bias. Table 12 illustrates this point using our normal example. Going from row 1 to
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Table 12

Variables in probit Goodness of fit statistics λ Average bias

Correct in-sample prediction rate Pseudo-R2 TT ATE

Z 66.88% 0.1284 1.1380 1.6553
Z, f2 75.02% 0.2791 1.2671 1.9007
Z, f1, f2 83.45% 0.4844 0.0000 0.0000
Z, S1 77.38% 0.3282 0.9612 1.3981
Z, S2 92.25% 0.7498 0.9997 1.4541

Model: V = Z+f1 +f2 +εV ; εV ∼ N(0, 1); Y1 = 2f1 +0.1f2 +ε1; ε1 ∼ N(0, 1); Y0 = f1 +0.1f2 +ε0;
ε0 ∼ N(0, 1); S1 = V + U1; U1 ∼ N(0, 4); S2 = V + U2; U2 ∼ N(0, 0.25); f1 ∼ N(0, 1); f2 ∼ N(0, 1).

row 2 (adding f2) improves goodness of fit and increases the unconditional or overall
bias for all three treatment parameters, because (E-1) is violated.

The following rule of thumb argument is sometimes invoked as an absolute standard
against which to compare alternative models. In versions of the argument, the analyst
asserts that there is a combination of variables I ′′ that satisfy (M-1) and hence produces
zero bias and a value of λ = λ′′ larger than that of any other I . In our examples, con-
ditioning on {Z, f1, f2} generates zero bias. We can exclude Z and still obtain zero
bias. Because Z is a determinant of D, this shows immediately that the best fitting
model does not necessarily identify the minimal relevant information set. In this exam-
ple including Z is innocuous because there is still zero bias and the added conditioning
variables satisfy (E-1) where Iint = (f1, f2). In general, such a rule is not innocuous if
Z is not exogenous. If goodness of fit is used as a rule to choose variables on which to
match, there is no guarantee it produces a desirable conditioning set. If we include in
the conditioning set variables X that violate (E-1), they may improve the fit of predicted
probabilities but worsen the bias.

Heckman and Navarro (2004) produce a series of examples that have the following
feature. Variables S (shown at the base of Table 12) are added to the information set that
improve the prediction of D but are correlated with (U0, U1). Their particular examples
use imperfect proxies (S1, S2) for (f1, f2). The point is more general. The S variables
fail exogeneity and produce greater bias for TT and ATE but they improve the prediction
of D as measured by the correct in-sample prediction rate and the pseudo-R2. See the
bottom two rows of Table 12.

We next turn to the method of randomization, which is frequently held up to be an
ideal approach for evaluating social programs. Randomization attempts to use a random
assignment to achieve the conditional independence assumed in matching.

9. Randomized evaluations

This section analyzes randomized social experiments as tools for evaluating social pro-
grams. In the introduction to this chapter, we discussed an ideal randomization where
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treatment status is randomly assigned. In this section, we discuss actual social experi-
ments, where self-selection decisions often intrude on the randomization decisions of
experimenters.

Two cases have been made for the application of social experimentation. One case is
a classical argument in experimental design. Inducing variation in regressors increases
precision of estimates and the power of tests. The other case focuses on solving endo-
geneity and self-selection problems. Randomization is an instrumental variable.148 The
two cases are mutually compatible, but involve different emphases.

Both cases can be motivated within a linear regression model for outcome Y with
treatment indicator D and covariates X:

(9.1)Y = Xα + Dβ + U,

where U is an unobservable. β may be the same for all observations (conditional on X)
as in the common coefficient setup, or it may be a variable coefficient of the type ex-
tensively discussed in this chapter. D (and the X) may be statistically dependent on U .
We also entertain the possibility that when β is random it is dependent on D, as in the
generalized Roy model.

Both cases for social experimentation seek to secure identification of some para-
meters of (9.1) or parameters that can be generated from (9.1). Analysts advocating
the first case for experimentation typically assume a common coefficient model for α

and β. They address the problem that variation in (X,D) may be insufficient to iden-
tify or precisely estimate (α, β). Manipulating (X,D) through randomization, or more
generally, through controlled variation, can secure identification. It is typically assumed
that (X,D) is independent of U or at least mean independent. This is the traditional
case analyzed in a large literature on experimental design in statistics.149

Good examples in economics of experimentation designed to increase the variation
in the regressors are studies by Conlisk (1973), Conlisk and Watts (1969), and Aigner
(1979a, 1979b, 1985). The papers by Conlisk show how experimental manipulation can
solve a multicollinearity problem. In analyzing the effects of taxes on labor supply, it is
necessary to isolate the effect of wages (the substitution effect) from the effect of pure
asset income (the income effect) on labor supply. In observational data, empirical mea-
sures of wages and asset income are highly intercorrelated. In addition, asset income is
often poorly measured. By experimentally assigning these variables as in the negative
income tax experiments, it is possible to identify both income and substitution effects in
labor supply equations [see Cain and Watts (1973)]. Aigner (1979b) shows how varia-
tion in the prices paid for electricity across the day can identify price effects that cannot
be identified in regimes with uniform prices across all hours of the day.150

Random assignment is not essential to this approach. Any regressor assignment rule
based on variables Q that are stochastically independent of U will suffice, although the

148 See Heckman (1996).
149 See, e.g., Silvey (1970).
150 Zellner and Rossi (1987) present a comprehensive discussion of this literature.
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efficiency of the estimates will depend on the choice of Q and care must be taken to
avoid inducing multicollinearity by the choice of an assignment rule.

The second case for social experiments and the one that receives the most attention
in applied work in economics and in this chapter focuses on the dependence between
(X,D) and U that invalidates least squares as an estimator of the causal effect of X and
D on Y . This is the problem of least squares bias raised by Haavelmo (1943) and ex-
tensively discussed in Chapter 70. In the second case, experimental variation in (X,D)

is sought to make it “exogenous” or “external” to U . A popular argument in favor of
experiments is that they produce simple, transparent estimates of the effects of the pro-
grams being evaluated in the presence of such biases. A quotation from Banerjee (2006)
is apt:

The beauty of randomized evaluations is that the results are what they are: we
compare the outcome in the treatment [group] with the outcome in the control
group, see whether they are different, and if so by how much. Interpreting quasi-
experiments sometimes requires statistical legerdemain, which makes them less
attractive . . .

This argument assumes that interesting evaluation questions can be answered by the
marginal distributions produced from experiments. It also assumes that no economic
model is needed to interpret evidence, contrary to a main theme of this chapter.

Randomization is an instrument. As such, it shares all of the assets and liabilities
of IV already discussed. In particular, randomization applied to a correlated random
coefficient (or a model of essential heterogeneity) raises the same issues about the mul-
tiplicity of parameters identified by different randomizations as were discussed there in
connection with the multiplicity of parameters identified by different instruments.

The two popular arguments for social experimentation are closely related. Exoge-
nous variation in (X,D) can, if judiciously administered, solve collinearity, precision,
and endogeneity problems. Applying the terminology of Chapter 70 to the analysis of
model (9.1), randomization can identify a model that can solve all three policy evalua-
tion problems: P-1, the problem of internal validity; P-2, the problem of extrapolation
to new environments (by virtue of the linearity of (9.1)); and P-3, the problem of fore-
casting new policies that can be described by identifiable functions of (X,D) and any
external variables.

As noted in the concluding section of Chapter 70, the modern literature tends to reject
functional form assumptions such as those embodied in Equation (9.1). It has evolved
towards a more focused attempt to solve problem P-1 to protect against endogeneity
of D with respect to U . Sometimes the parameter being identified is not clearly speci-
fied. When it is, this focus implements Marschak’s Maxim of doing one thing well, as
discussed in Chapter 70.

Common to the literature on IV estimation, proponents of randomization often ignore
the consequences of heterogeneity in β and dependence of β on D – the problem of es-
sential heterogeneity. Our discussion in the previous sections applies with full force to
randomization as an instrument. Only if the randomization (instrument) corresponds ex-

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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actly to the policy that is sought to be evaluated will the IV (randomization) identify the
parameters of economic interest.151 This section considers the case for randomization
as an instrumental variable to solve endogeneity problems.

9.1. Randomization as an instrumental variable

The argument justifying randomization as an instrument assumes that randomization
(or more generally the treatment assignment rule) does not alter subjective or objective
potential outcomes. This is covered by assumption (PI-3) presented in Chapter 70. We
also maintain absence of general equilibrium effects (PI-4) throughout this section. We
discuss violations of (PI-3) when we discuss randomization bias.152,153

To be explicit about particular randomization mechanisms, we return to our touch-
stone generalized Roy model. Potential outcomes are (Y0, Y1) and cost of participation
is C. Assume perfect certainty in the absence of randomization. Under self-selection,
the treatment choice is governed by

D = 1(Y1 − Y0 − C � 0).

This model of program participation abstracts from the important practical feature of
many social programs that multiple agents contribute to decisions about program par-
ticipation. We consider a more general framework in Section 9.5. We assume additive
separability between the observables (X,W) and the unobservables (U0, U1, UC) for
convenience:

Y1 = μ1(X) + U1, Y0 = μ0(X) + U0,

C = μC(W) + UC, V = U1 − U0 − UC,

μI (X,W) = μ1(X) − μ0(X) − μC(W), Z = (X,W).

Only some components of X and/or W may be randomized. Randomization can be
performed unconditionally or conditional on strata, Q, where the strata may or may
not include components of (X,W) that are not randomized. Specifically, it can be
performed conditional on X, just as in our analysis of IV. Parameters can be defined
conditional on X.154 Examples of treatments randomly assigned include the tax/benefit
plans of the negative income tax programs; the price of electricity over the course of the
day; variable tolls and bonuses; textbooks to pupils; reducing class size. Under invari-
ance condition (PI-3), the functions μ0(X), μ1(X), μC(W) (and hence μI (X,W)) are

151 The exchange between Banerjee (2006) and Deaton (2006) raises this point.
152 We maintain the absence of general equilibrium or spill over effects, assumption (PI-2). Such effects are
discussed in Abbring and Heckman (Chapter 72).
153 For evaluation of distributional and mean parameters, assumption (PI-3) can be weakened as in our invo-
cation of policy invariance for the MTE to say that randomization does not alter the distributions of outcomes
or certain means or conditional means (recall assumption (A-7)).
154 In Equation (9.1), if X is endogenous and we randomize treatment D conditional on X with respect to U ,
we cannot identify α, but we can identify β.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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invariant to such modifications. The intervention is assumed to change the arguments
of functions without shifting the functions themselves. Thus for the intervention of ran-
domization, the functions are assumed to be structural in the sense of Hurwicz (1962).
The distributions of (U0, U1, UC) conditional on X, and hence the distribution of V

conditional on X, are also invariant. Under full compliance, the manipulated Z are the
same as the Z facing the agent. We formalize this assumption:

(R-4) The Z assigned agent ω conditional on X are the Z realized and acted on by
the agent conditional on X.155

In terms of the generalized Roy model, this assumption states that the Z assigned ω

given X is the W that appears in the cost function and the derived decision rule.
Some randomizations alter the environments facing agents in a more fundamental

way by introducing new random variables into the model instead of modifying the vari-
ables that would be present in a pre-experimental environment. Comparisons of these
randomizations involve an implicit dynamics, better exposited using the dynamic mod-
els presented in Abbring and Heckman (Chapter 72). For simplicity and to present some
main ideas, we initially invoke an implicit dynamics suitable to the generalized Roy
model. We develop a more explicit dynamic model of randomized evaluation in Sec-
tion 9.5.

The most commonly used randomizations restrict eligibility either in advance of
agent decisions about participation in a program or after agent decisions are made, but
before actual participation begins. Unlike statistical discussions of randomization, we
build agent choice front and center into our analysis. Agents choose and experimenters
can only manipulate choice sets.

Let ξ = 1 if an agent is eligible to participate in the program; ξ = 0 otherwise.
ξ̃ = {0, 1} is the set of possible values of ξ . Let D indicate participation under ordinary
conditions. In the absence of randomization, D is an indicator of whether the agent
actually participates in the program. Let actual participation be A. By construction,
under invariance condition (PI-3) presented in Chapter 70,

(9.2)A = Dξ.

This assumes that eligibility is strictly enforced.
There is a distinction between desired participation by the agent (D) and actual

participation (A). This distinction is conceptually distinct from the ex-ante, ex-post dis-
tinction. At all stages of the application and enrollment process, agents may be perfectly
informed about their value of ξ and desire to participate (D), but may not be allowed to
participate. On the other hand, the agent may be surprised by ξ after applying to the pro-
gram. In this case, there is revelation of information and there is a distinction between
ex ante expectations and ex post realizations. Our analysis covers both cases.

We consider two types of randomization of eligibility.

155 Assumptions (R-1)–(R-3) are presented in Section 2.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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RANDOMIZATION OF TYPE 1. A random mechanism (possibly conditional on (X,Z))
is used to determine ξ . The probability of eligibility is Pr(ξ = 1 | X,Z).

For this type of randomization, in the context of the generalized Roy model, it is
assumed that

(e-1a) ξ ⊥⊥ (U0, U1, UC) | X,Z (Randomization of eligibility)

and

(e-1b) Pr(A = 1 | X,Z, ξ) depends on ξ .

This randomization affects the eligibility of the agent for the program but because agents
still self-select, there is no assurance that eligible agents will participate in the program.
This condition does not impose exogeneity on X,Z.156 Thus Z can fail as an instrument
but ξ remains a valid instrument. Alternatively, (e-1a) and (e-1b) may be formulated
according to the notation of Imbens and Angrist (1994). Define A(z, e) to be the value
of A when we set Z = z and ξ = e. Define Z as the set of admissible Z and ξ̃ as the
set of admissible ξ . In this notation, we may rewrite assumptions (e-1a) and (e-1b) as

(e-1a)′ ξ ⊥⊥ (Y0, Y1, {A(z, e)}(z,e)∈Z×ξ̃ ) | X,Z

and

(e-1b)′ Pr(A = 1 | X,Z, ξ) depends on ξ .157

A second type of randomization conditions on individuals manifesting a desire to par-
ticipate through their decision to apply to the program. This type of randomization is
widely used.

RANDOMIZATION OF TYPE 2. Eligibility may be a function of D (conditionally on
some or all components of X,Z,Q or unconditionally). It is common to deny entry into
programs among people who applied and were accepted into the program (D = 1) so
the probability of eligibility is Pr(ξ = 1 | X,Z,Q,D = 1). This assumes (PI-3) stated
in Chapter 70.

For this type of randomization of eligibility, it is assumed that

(e-2a) ξ ⊥⊥ (U0, U1) | X,Z,Q,D = 1

and

156 In place of the randomization, one might assign treatment on the basis of external variables Q includ-
ing variables in addition to X and Z. Care must be taken to avoid inducing collinearity problems. Random
assignment is simpler. It produces through randomization the independent variation assumed in matching.
157 When ξ is deterministic, (e-1a)′ is trivially satisfied.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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(e-2b) Pr(A = 1 | X,Z,D = 1, ξ = 1) = 1; Pr(A = 1 | X,Z,D = 1, ξ = 0) = 0.

Agent failure to comply with the eligibility rules or protocols of experiments can lead
to violations of (e-1) and/or (e-2).

An equivalent way to formulate (e-2a) and (e-2b) uses the Imbens–Angrist notation
for IV:

(e-2a)′ ξ ⊥⊥ (Y0, Y1) | X,Z,Q,D = 1

and

(e-2b)′ Pr(A = 1 | X,Z,D = 1, ξ = 1) = 1; Pr(A = 1 | X,Z,D = 1, ξ = 0) = 0.

Both randomizations are instruments as defined in Section 4. Under the stated condi-
tions, both satisfy (IV-1) and (IV-2), suitably redefined for eligibility randomizations,
replacing D by A.

A variety of conditioning variables is permitted by these definitions. Thus, (e-1) and
(e-2) allow for the possibility that the conventional instruments Z fail (IV-1) and (IV-2),
but nonetheless the randomization generates a valid instrument ξ . The simplest random-
izations do not condition on any variables.158 We next consider what these instruments
identify.

9.2. What does randomization identify?159

Under invariance assumption (PI-3) and under one set of randomization assumptions
just presented, IV is an instrument that identifies some treatment effect for an ongoing
program. The question is: which treatment effect? Following our discussion of IV with
essential heterogeneity presented in Section 4, different randomizations (or instruments)
identify different parameters unless there is a common coefficient model (Y1 − Y0 =
β(X) is the same for everyone given X) or unless there is no dependence between the
treatment effect (Y1 − Y0) and the indicator D of the agents’ desire to participate in
the treatment. In these two special cases, all mean treatment parameters are the same.
Using IV, we can identify the marginal distributions F0(y0 | X) and F1(y1 | X).160

In a model with essential heterogeneity, the instruments generated by randomization
can identify parameters that are far from the parameters of economic interest. Random-
ization of components of W (or Z given X) under (R-4) and conditions (IV-1) and
(IV-2) from Section 2 produces instruments with the same problems and possibilities
as analyzed in our discussion of instrumental variables. Using W as an instrument may
lead to negative weights on the underlying LATEs or MTEs.161 Thus, unless we condi-

158 We do not discuss optimal randomized experiments and the best choice of a randomization mechanism.
159 This subsection is based on Heckman (1992).
160 We can also identify F0(y0 | X,Z) and F1(y1 | X,Z) if Z does not satisfy the conditions required for it
to be an instrument but experimental variation provides new instruments.
161 In the special case where randomization of some components of W makes them fully independent of the
other components of W , under monotonicity for the randomized component irrespective of the values of the
other components, the IV weights must be nonnegative.
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tion on the other instruments, the IV defined by randomization can be negative even if
all of the underlying treatment effects or LATEs and MTEs generating choice behavior
are positive. The weighted average of the MTE generated by the instrument may be far
from the policy relevant treatment effect.

Under (PI-3) and (e-1), or equivalently (e-1)′, the first type of eligibility random-
ization identifies Pr(D = 1 | X,Z) (the choice probability) and hence relative sub-
jective evaluations, and the marginal outcome distributions F0(y0 | X,D = 0) and
F1(y1 | X,D = 1) for the eligible population (ξ = 1). Agents made eligible for the pro-
gram self-select as usual. For those deemed ineligible (ξ = 0), under our assumptions,
we would identify the distribution of Y0, which can be partitioned into components for
those who would have participated in the program had it not been for the randomization
and components for those who would not have participated if offered the opportunity to
do so:

F0(y0 | X) = F0(y0 | X,D = 0) Pr(D = 0 | X)

+ F0(y0 | X,D = 1) Pr(D = 1 | X).

Since we know F0(y0 | X,D = 0) and Pr(D = 1 | X) from the eligible population,
we can identify F0(y0 | X,D = 1). This is the new piece of information produced
by the randomization compared to what can be obtained from standard observational
data. In particular, we can identify the parameter TT, E(Y1 − Y0 | X,D = 1), but
without further assumptions, we cannot identify the other treatment parameters ATE
(= E(Y1 − Y0 | X)) or the joint distributions F(y0, y1 | X) or F(y0, y1 | X,D = 1).

To show that ξ is a valid instrument for A, form the Wald estimand,

(9.3)IV(e-1) = E(Y | ξ = 1, Z,X) − E(Y | ξ = 0, Z,X)

Pr(A = 1 | ξ = 1, Z,X) − Pr(A = 1 | ξ = 0, Z,X)
.

Under invariance assumption (PI-3), Pr(D = 1 | Z,X) is the same in the presence or
absence of randomization.162 Assuming full compliance so that agents randomized to
ineligibility do not show up in the program,

Pr(A = 1 | ξ = 0, Z,X) = 0,

and

E(Y | ξ = 0, Z,X) = E(Y0 | Z,X)

= E(Y0 | D = 1, X,Z) Pr(D = 1 | X,Z)

+ E(Y0 | D = 0, X,Z) Pr(D = 0 | X,Z).

If Z also satisfies the requirement (IV-1) that it is an instrument, then E(Y0 | Z,X) =
E(Y0 | X). Under (e-1) or (e-1)′ we do not have to assume that Z is a valid instru-
ment.163 Using (e-1) and assumption (PI-3), the first term in the numerator of (9.3) can

162 Pr(D = 1 | Z, X, ξ = 0) = Pr(D = 1 | Z, X, ξ = 1).
163 If Z fails to be an instrument, absorb Z into X.
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be written as

E(Y | ξ = 1, Z,X) = E(Y1 | D = 1, Z,X) Pr(D = 1 | Z,X)

+ E(Y0 | D = 0, Z,X) Pr(D = 0 | Z,X).

Substituting this expression into the numerator of Equation (9.3) and collecting terms,
IV(e-1) identifies the parameter treatment on the treated:

IV(e-1) = E(Y1 − Y0 | D = 1, Z,X).

It does not identify the other mean treatment effects, such as LATE or the average treat-
ment effect ATE, unless the common coefficient model governs the data or (Y1 − Y0)

is mean independent of D. Using the result that F(y | X) = E(1(Y � y) | X),
IV(e-1) also identifies F0(y0 | X,D = 1), since we can compute conditional means of
1(Y � y) for all y. The distribution F1(y1 | X,D = 1) can be identified from observa-
tional data. Thus we can identify the outcome distributions for Y0 and for Y1 separately,
conditional on D = 1, X,Z, but without additional assumptions we cannot identify the
joint distribution of outcomes or the other treatment parameters.

Randomization not conditional on (X,Z) (ξ ⊥⊥ (X,Z)) creates an instrument ξ that
satisfies the monotonicity or uniformity conditions. If the randomization is performed
on (X,Z) strata, then the IV must be used conditional on the strata variables to ensure
monotonicity is satisfied.

The second type of eligibility randomization proceeds conditionally on D = 1.
Accordingly, data generated from such experiments do not identify choice probabil-
ities (Pr(D = 1 | X,Z)) and hence do not identify the subjective evaluations of
agents [Heckman (1992), Moffitt (1992)]. Under (PI-3) and (e-2) (or equivalent con-
ditions (e-2)′) randomization identifies F0(y0 | D = 1, X,Z) from the data on the
randomized-out participants. This conditional distribution cannot be constructed from
ordinary observational data unless additional assumptions are invoked. From the data
for the eligible (ξ = 1) population, we identify F1(y1 | D = 1, X,Z).

The Wald estimator for mean outcomes in this case is

IV(e-2) = E(Y | D = 1, ξ = 1, X,Z) − E(Y | D = 1, ξ = 0, X,Z)

Pr(A = 1 | D = 1, ξ = 1, X,Z) − Pr(A = 1 | D = 1, ξ = 0, X,Z)
.

Under (e-2)/(e-2)′,

Pr(A = 1 | D = 1, ξ = 1, X,Z) = 1,

Pr(A = 1 | D = 1, ξ = 0, X,Z) = 0,

E(Y | A = 0,D = 1, ξ = 0, X,Z) = E(Y0 | D = 1, X,Z) and

E(Y | A = 1,D = 1, ξ = 1, X,Z) = E(Y1 | D = 1, X,Z).

Thus,

IV(e-2) = E(Y1 − Y0 | D = 1, X,Z).
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In the general model with essential heterogeneity, randomized trials with full com-
pliance that do not disturb the activity being evaluated answer a limited set of questions,
and do not in general identify the policy relevant treatment effect (PRTE). Randomiza-
tions have to be carefully chosen to make sure that they answer interesting economic
questions. Their analysis has to be supplemented with the methods previously analyzed
to answer the full range of policy questions addressed there.

Thus far we have assumed that the randomizations do not violate the invariance as-
sumption (PI-3). Yet many randomizations alter the environment they are studying and
inject what may be unwelcome sources of uncertainty into agent decision making. We
now examine the consequences of violations of invariance.

9.3. Randomization bias

If randomization alters the program being evaluated, the outcomes of a randomized trial
may bear little resemblance to the outcomes generated by an ongoing version of the
program that has not been subject to randomization. In this case, assumption (PI-3) is
violated. Such violations are termed “Hawthorne effects” and are called “randomization
bias” in the economics literature.164 The process of randomization may affect objective
outcomes, subjective outcomes or both.

Even if (PI-3) is violated, randomization may still be a valid instrument for the altered
program. Although the program studied may be changed, under the assumptions made
in Section 9.2, randomization can produce “internally valid” treatment effects for the
altered program. Thus randomization can answer policy question P-1 for a program
changed by randomization, but not for the program as it would operate in the absence
of randomization.

As noted repeatedly, a distinctive feature of the econometric approach to social pro-
gram evaluation is its emphasis on choice and agent subjective evaluations of programs.
This feature accounts for the distinction between the statistician’s invariance assump-
tion (PI-1) and the economist’s invariance assumption (PI-3). (These are presented in
Chapter 70.) It is instructive to consider the case where assumption (PI-1) is valid but
assumption (PI-3) is not. This case might arise when randomization alters risk-averse
agent decision behavior but has no effects on potential outcomes. Thus the R(s, ω) are
affected, but not the Y(s, ω).

In this case, the parameter ATE(X) = E(Y1 − Y0 | X) is the same in the ongoing
program as in the population generated by the randomized trial. However, treatment
parameters conditional on choices such as

TT(X) = E(Y1 − Y0 | X,D = 1),

TUT(X) = E(Y1 − Y0 | X,D = 0)

164 See Campbell and Stanley (1963) for a discussion of Hawthorne effects and evidence of their prevalence
in educational interventions. See Heckman (1992) for a discussion of randomization bias in economics.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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are not, in general, invariant. If the subjective valuations are altered, so are the parame-
ters based on choices produced by the subjective valuations. Different random variables
generate the conditioning sets in the randomized and nonrandomized regimes and, in
general, they will have a different dependence structure with the outcomes Y(s, ω). This
arises because randomization alters the composition of participants in the conditioning
set that defines the treatment parameter.

This analysis applies with full force to LATE. LATE based on P(Z) for two distinct
values of Z (Z = z and Z = z′) is E(Y1 − Y0 | X,P (z′) � UD � P(z)). In the
randomized trial, violation of (PI-3) because of lack of invariance of R(s, ω) changes
UD and the values of P(Z) for the same Z = z. In general, this alters LATE.165

The case where (PI-1) holds, but (PI-3) does not, generates invariant conditional (on
choice) parameters if there is no treatment effect heterogeneity or if there is such het-
erogeneity that is independent of D. These are the familiar conditions: (a) Y1 − Y0 is
the same for all people with the same X = x or (b) Y1 − Y0 is (mean) independent of D

given X = x. In these cases, the MTE is flat in UD .
In general, in a model with essential heterogeneity, even if the Rubin invariance con-

ditions (PI-1) and (PI-2) are satisfied, but conditions (PI-3) and (PI-4) are not, treatment
parameters defined conditional on choices are not invariant to the choice of randomiza-
tion.166 This insight shows the gain in clarity in interpreting what experiments identify
from adopting a choice-theoretic, econometric approach to the evaluation of social pro-
grams, as opposed to the conventional approach adopted by statisticians. We now show
another advantage of the economic approach in an analysis of noncompliance and its
implications for interpreting experimental evidence.

9.4. Compliance

The statistical treatment effect literature extensively analyzes the problem of noncom-
pliance.167 Persons assigned to a treatment may not accept it. In the notation of Equa-
tion (9.3), let ξ = 1 if a person is assigned to treatment, ξ = 0 otherwise. Compliance
is said to be perfect when ξ = 1 ⇒ A = 1 and ξ = 0 ⇒ A = 0. In the presence
of self-selection by agents, these conditions do not, in general, hold. People assigned
to treatment may not comply (ξ = 1 but D = 0). This is also called the “dropout”
problem [Mallar, Kerachsky and Thorton (1980), Bloom (1984)]. In its formulation of
this problem, the literature assumes that outcomes are measured for each participant but
that outcomes realized are not always those intended by the randomizers.168 In addition,

165 Technically, for identifying MTE or LATE, we can get by with weaker conditions than (PI-3) and (PI-4).
All we need is invariance of the conditional mean of Y1 − Y0 with respect to UD . Recall our discussion of
policy invariance surrounding our discussion of assumption (A-7).
166 Rubin combines (PI-1) and (PI-2) in his “SUTVA” condition.
167 See, e.g., Bloom (1984), Manski (1996), and Hotz, Mullin and Sanders (1997).
168 The problem of missing data is called the attrition problem. Thus we assume no attrition from the data-
base, but we allow for the possibility that people assigned to a treatment do not receive it.
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people denied treatment may find substitutes for the treatment outside of the program.
This is the problem of substitution bias. Since self-selection is an integral part of choice
models, noncompliance, as the term is used by the statisticians, is a feature of most
social experiments.

The econometric approach builds in the possibility of self-selection as an integral part
of model specification. As emphasized in the econometric literature since the work of
Gronau (1974), Heckman (1974a, 1974b, 1976b), and McFadden (1974), agent deci-
sions to participate are informative about their subjective evaluations of the program. In
the dynamic setting discussed in Section 3 of Chapter 72 of this Handbook, agent deci-
sions to attrite from a program are informative about their update of information about
the program [Heckman and Smith (1998), Chan and Hamilton (2006), Smith, Whalley
and Wilcox (2006) and Heckman and Navarro (2007)]. Noncompliance is a source of
information about subjective evaluations of programs.

Noncompliance is a problem if the goal of the social experiment is to estimate
ATE(X) = E(Y1 − Y0 | X) without using the econometric methods previously dis-
cussed. We established in Section 9.3 that in the presence of self-selection, in a general
case with essential heterogeneity, experiments under assumptions (PI-3) and (PI-4) and
(e-1) or (e-2) identify E(Y1 − Y0 | X,D = 1) instead of ATE(X).

Concerns about noncompliance often arise from adoption of the Neyman–Cox–Rubin
“causal model” discussed in Chapter 70, Section 4.4. Experiments are conceived as
tools for direct allocation of agricultural treatments. For that reason, that literature el-
evates ATE to pre-eminence as the parameter of interest because it is thought that this
parameter can be produced by experiments. In social experiments, it is rare that the ex-
perimenter can force anyone to do anything. As the old adage goes, “you can lead a
horse to water but you cannot make it drink”. Agent choice behavior intervenes. Thus it
is no accident that if they are not compromised, the two randomizations most commonly
implemented directly identify parameters conditional on choices.169

There is a more general version of the noncompliance problem which requires a dy-
namic formulation. Agents are assigned to treatment (ξ = 1) and some accept (D = 1)
but drop out of the program at a later stage. We need to modify the formulation in this
section to cover this case. We now turn to that modification.

9.5. The dynamics of dropout and program participation

Actual programs are more dynamic in character than the stylized program just ana-
lyzed. Multiple actors are involved, such as the agents being studied and the groups
administering the programs. People apply, are accepted, enroll, and complete the pro-
gram. A fully dynamic analysis, along the lines of the models developed by Abbring

169 Randomizations of treatment to entire geographically segmented regions can produce ATE assuming
homogeneity in background conditions across regions. This is the logic behind the Progressa experiment [see
Behrman, Sengupta and Todd (2005)].

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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and Heckman in Chapter 72, analyzes each of these decisions, accounting for the updat-
ing of agent and program administrators’ information.170 This section briefly discusses
some new issues that arise in a more dynamic formulation of the dropout problem.
Heckman (1992), Heckman, Smith and Taber (1998), Hotz, Mullin and Sanders (1997),
and Manski (1996, 2003) discuss these issues in greater depth.

In this subsection, we analyze the effects of dropouts on inferences from social ex-
periments and assume no attrition. Our analysis of this case is of interest both in its own
right and as a demonstration of the power of our approach.

Consider a stylized multiple stage program. In stage “0”, the agent (possibly in
conjunction with program officials) decides to participate or not to participate in the
program. This is an enrollment phase prior to treatment. Let D0 = 1 denote that the
agent does not choose to participate. D0 = 0 denotes that the agent participates and re-
ceives some treatment among J possible program levels beyond the no treatment state.
The outcome associated with state “0” is Y0. This assumes that acts of inquiry about
a program or registration in it have no effect on outcomes.171 One could disaggregate
stage “0” into recruitment, application, and acceptance stages, but for expositional sim-
plicity we collapse these into one stage.

If the J possible treatment stages are ordered, say, by the intensity of treatment, then
“1” is the least amount of treatment and “J ” is the greatest amount. A more general
model would allow people to transit to stage j but not complete it. The J distinct stages
can be interpreted quite generally. If a person no longer participates in the program after
stage j , j = 1, . . . , J , we set indicator Dj = 1. The person is assumed to receive stage
j treatment. DJ = 1 corresponds to completion of the program in all J stages of its
treatment phase. Note that, by construction,

∑J
j=0 Dj = 1. The sequential updating

model developed by Abbring and Heckman in Chapter 72 can be used to formalize
these decisions and their associated outcomes. We can also use the simple multinomial
choice model developed and analyzed in Appendix B of Chapter 70.

Let {Dj(z)}z∈Z be the set of potential treatment choices for choice j associated with
setting Z = z. For each Z = z,

∑J
j=0 Dj(z) = 1. Using the methods exposited in

Abbring and Heckman (Chapter 72), we could update the information sets at each stage.
We keep this updating implicit. Different components of Z may determine different
choice indicators. Array the collections of choice indicators evaluated at each Z = z

into a vector

D(z) = ({
D1(z)

}
z∈Z , . . . ,

{
DJ (z)

}
z∈Z

)
.

The potential outcomes associated with each of the J + 1 states are

Yj = μj (X,Uj ), j = 0, . . . , J.

170 Heckman and Smith (1999) analyze the determinants of program participation for a job training program.
171 Merely being interested in a program, such as an HIV treatment program, may signal information that
affects certain outcomes prior to receiving any treatment. We ignore these effects, but can easily accommodate
them by making application a stage of the program.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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Y0 is the no treatment state, and the Yj , j � 1, correspond to outcomes associated with
dropping out at various stages of the program. In the absence of randomization, the
observed Y is

Y =
J∑

j=0

DjYj ,

the Roy–Quandt switching regime model. Let Ỹ = (Y0, . . . , YJ ) denote the vector of
potential outcomes associated with all phases of the program. Through selection, the Yj

for persons with Dj = 1 may be different from the Yj for persons with Dj = 0.
Appendix B of Chapter 70 gives conditions under which the distributions of the Yj

and the subjective evaluations Rj , j = 0, . . . , J , that generate choices Dj are identified.
Using the tools for multiple outcome models developed in Section 7, we can use IV and
our extensions of IV to identify the treatment parameters discussed there.

In this subsection, we consider what randomizations at various stages identify. We
assume that the randomizations do not disturb the program. Thus we invoke assump-
tion (PI-3). Recall that we also assume absence of general equilibrium effects (PI-4).
Let ξj = 1 denote whether the person is eligible to move beyond stage j . ξj = 0 means
the person is randomized out of the program after completing stage j . A randomization
at stage j with ξj = 1 means the person is allowed to continue on to stage j + 1, al-
though the agent may still choose not to. We set ξJ ≡ 1 to simplify the notation. The ξj

are ordered in a natural way: ξj = 1 only if ξ� = 1, � = 0, . . . , j − 1. Array the ξj into
a vector ξ and denote its support by ξ̃ .

Because of agent self-selection, a person who does not choose to participate at stage
j cannot be forced to do so. For a person who would choose k (Dk = 1) in a nonex-
perimental environment, Yk is observed if

∏k−1
�=0 ξ� = 1. Otherwise, if ξk−1 = 0 but,

say,
∏k′−1

�=0 ξ� = 1 and
∏k′

�=0 ξ� = 0 for k′ < k, we observe Yk′ for the agent. From an
experiment with randomization administered at different stages, we observe

Y =
J∑

j=0

Dj

(
j∑

k=0

(
k−1∏
�=0

ξ�

)
(1 − ξk)Yk

)
.

To understand this formula, consider a program with three stages (J = 3) after the initial
participation stage. For a person who would like to complete the program (D3 = 1), but
is stopped by randomization after stage 2, we observe Y2 instead of Y3. If the person is
randomized out after stage 1, we observe Y1 instead of Y3.172

172 A more descriptively accurate but notationally cumbersome framework would disaggregate the participa-
tion decision and would also recognize that enrolling in a program stage is different from completing it. Thus,
let DR = 1 if a person is recruited, DR = 0 if not; DA = 1 if a person applies, DA = 0 if not; DAcc = 1 if
a person is accepted, DAcc = 0 if not; D1e = 1 if a person enrolls in stage 1, D1e = 0 if not; D1c = 1 if a
person completes stage 1, D1c = 0 if not; and so forth up to DJ e = 1 or 0; DJ c = 1 or 0. Associated with
completing stage � but no later stage is Y�, � ∈ {R, A, Acc, 1e, 1c, . . . , J e, J c}. Information can be revealed

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Let Ak be the indicator that we observe the agent with a stage k outcome. This can
happen if a person would have chosen to stop at stage k (Dk = 1) and survives random-
ization through k (

∏k−1
�=0 ξ� = 1), or if a person would have chosen to stop at a stage

later than k but was thwarted from doing so by the randomization and settles for the best
attainable state given the constraint imposed by the randomization. We can express Ak

as

Ak = Dk

k−1∏
�=0

ξ� +
∑
j�k

Dj

(
k−1∏
�=0

ξ�

)
(1 − ξk), k = 1, . . . , J.

If a person who chooses Dk = 1 survives all stages of randomization through k − 1 and
hence is allowed to transit to k, we observe Yk for that person. For persons who would
choose Dj = 1, j > k, but get randomized out at k, i.e., (

∏k−1
�=0 ξ�)(1 − ξk) = 1, we

also observe Yk .173

We now state the conditions under which sequential randomizations are instrumental
variables for the Aj . Let Ai(z, ei) be the value of Ai when Z = z and ξi = ei . Array
the Ai , i = 1, . . . , J , into a vector

A(z, e) = (
A1(z, e1), A2(z, e2), . . . , AJ (z, eJ )

)
.

A variety of randomization mechanisms are possible in which randomization depends
on the information known to the randomizer at each stage of the program.

IV conditions for ξ are satisfied under the following sequential randomization as-
sumptions. They parallel the sequential randomization conditions developed in the
dynamic models analyzed by Abbring and Heckman (Chapter 72) of our contribution:

(e-3a) ξi ⊥⊥ (Ỹ , {A(z, e)}(z,e)∈Z×ξ̃ ) | X,Z,D� = 1 for � < i,
∏i−1

�=0 ξ� = 1), for

i = 1, . . . , J ,174

and

(e-3b) Pr(Ai = 1 | X,Z,D� = 1 for � < i, ξi,
∏i−1

�=0 ξ� = 1) depends on ξi , for
i = 1, . . . , J .

at stage �. Observed Y is

Y =
∑

�∈{R,A,Acc,1e,1c,...,J e,J c}
D� Y�.

Randomization can be administered at any stage. We write ξ� = 0 if
∏�−1

j=1 ξj = 1 and a person is randomized
out at stage �.
173 Assumption (PI-3) is crucial in justifying this formula. If randomization alters agent choice behavior,
persons who would choose j but get randomized out at k, k < j , might change their valuations and decision
rule (i.e., there may be randomization bias).
174 The special case where ξJ ≡ 1 satisfies (e-3a), because in that case ξi is a constant.

http://dx.doi.org/10.1016/S1573-4412(07)06072-2
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These expressions assume that the components of Ỹ = (Y0, . . . , YJ ) that are realized
are known to the randomizer after the dropout decision is made, and thus cannot enter
the conditioning set for the sequential randomizations.

To fix ideas, consider a randomization of eligibility ξ0, setting ξ1 = · · · = ξJ = 1.
This is a randomization that makes people eligible for participation at all stages of
the program. We investigate what this randomization identifies, assuming invariance
conditions (PI-3) and (PI-4) hold. For those declared eligible,

(9.4)E(Y | ξ0 = 1) =
J∑

j=0

E(Yj | Dj = 1) Pr(Dj = 1).

For those declared ineligible,

(9.5)E(Y | ξ0 = 0) =
J∑

j=0

E(Y0 | Dj = 1) Pr(Dj = 1),

since agents cannot participate in any stage of the program and are all in the state “0”
with outcome Y0. From observed choice behavior, we can identify each of the compo-
nents of (9.4). We observe Pr(Dj = 1) from observed choices of treatment, and we
observe E(Yj | Dj = 1) from observed outcomes for each treatment choice. Except for
the choice probabilities (Pr(Dj = 1), j = 0, . . . , J ) and E(Y0 | D0 = 1), we cannot
identify individual components of (9.5) for J > 1. When J = 1, we can identify all
of the components of (9.5). The individual components of (9.5) cannot, without further
assumptions, be identified by the experiment, although the sum can be. Comparing the
treatment group with the control group, we obtain the “intention to treat” parameter
with respect to the randomization of ξ0 alone, setting ξ1 = · · · = ξJ = 1 for anyone for
whom ξ0 = 1,

(9.6)E(Y | ξ0 = 1) − E(Y | ξ0 = 0) =
J∑

j=1

E(Yj − Y0 | Dj = 1) Pr(Dj = 1).

For J > 1, this simple experimental estimator does not identify the effect of full
participation in the program for those who participate (E(YJ − Y0 | DJ = 1)) unless
additional assumptions are invoked, such as the assumption that partial participation has
the same mean effect as full participation for persons who drop out at the early stages,
i.e., E(Yj − Y0 | Dj = 1) = E(YJ − Y0 | Dj = 1) for all j . This assumption might be
appropriate if just getting into the program is all that matters – a pure signaling effect.

A second set of conditions for identification of this parameter is that E(Yj − Y0 |
Dj = 1) = 0 for all j < J . Under those conditions, if we divide the mean difference
by Pr(DJ = 1), we obtain the “Bloom” estimator [Mallar, Kerachsky and Thorton
(1980), Bloom (1984)]

IVBloom = E(Y | ξ0 = 1) − E(Y | ξ0 = 0)

Pr(DJ = 1)
,
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assuming Pr(DJ = 1) �= 0. This is an IV estimator using ξ0 as the instrument for AJ .
In general, the mean difference between the treated and the controlled identifies only
the composite term shown in (9.6). In this case, the simple randomization estimator
identifies a not-so-simple or easily interpreted parameter.

More generally, if we randomize persons out after completing stage k ([∏k−1
�=0 ξ�](1−

ξk) = 1) and for another group establish full eligibility at all stages (
∏J

�=0 ξ� = 1), we
obtain

E

[
Y

∣∣∣ J∏
�=0

ξ� = 1

]
− E

[
Y

∣∣∣
(

k−1∏
�=0

ξ�

)
(1 − ξk) = 1

]

=
J∑

j=k

E(Yj − Yk | Dj = 1) Pr(Dj = 1),

and hence, since we know E(Yk | Dk = 1) and Pr(Dk = 1) from observational data,
we can identify the combination of parameters

(9.7)
J∑

j=k+1

E(Yk | Dj = 1) Pr(Dj = 1),

for each randomization that stops persons from advancing beyond level k, k = 0, . . . ,

J − 1.
Observe that a randomization of eligibility that prevents people from going to stage

J − 1 but not to stage J ([∏J−2
�=0 ξ�](1 − ξJ−1) = 1) identifies E(YJ −YJ−1 | DJ = 1):

E(Y | ξ0 = 1, . . . , ξJ−2 = 1, ξJ−1 = 0)

=
[

J−1∑
j=0

E(Yj | Dj = 1) Pr(Dj = 1)

]
+ E(YJ−1 | DJ = 1) Pr(DJ = 1).

Thus,

E(Y | ξ0 = 1, . . . , ξJ = 1) − E(Y | ξ0 = 1, . . . , ξJ−1 = 1, ξJ = 0)

= E(YJ − YJ−1 | DJ = 1) Pr(DJ = 1).

Since Pr(DJ = 1) is observed from choice data, as is E(YJ | DJ = 1), we can identify
E(YJ−1 | DJ = 1) from the experiment.

In the general case under assumptions (PI-3) and (PI-4), a randomization that prevents
agents from moving beyond stage � (ξ0 = 1, . . . , ξ�−1 = 1, ξ� = 0) directly identifies

E(Y | ξ0 = 1, . . . , ξ�−1 = 1, ξ� = 0)

=
�∑

j=0

E(Yj | Dj = 1) Pr(Dj = 1)

︸ ︷︷ ︸
all components known from observational data
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+
J∑

j=�+1

E(Y� | Dj = 1) Pr(Dj = 1)

︸ ︷︷ ︸
sum and probability weights known, but not individual E(Y�|Dj =1)

.

All of the components of the first set of terms on the right-hand side are known from
observational data. The probabilities in the second set of terms are known, but the in-
dividual conditional expectations E(Y� | Dj = 1), j = � + 1, . . . , J , are not known
without further assumptions.

Randomization at stage � is an IV. To show this, decompose the observed outcome
Y into components associated with each value of Aj , the indicator associated with ob-
serving a stage j outcome:

Y =
J∑

j=0

AjYj .

We can interpret ξ� as an instrument for A�. Keeping the conditioning on X,Z implicit,
we obtain

IVξ�
= E[Y | ξ� = 0] − E[Y | ξ� = 1]

Pr(A� = 1 | ξ� = 0) − Pr(A� = 1 | ξ� = 1)

=
∑J

j=�+1 E[Y� − Yj | Dj = 1] Pr(Dj = 1)∑J
j=�+1 Pr(Dj = 1)

, � = 0, . . . , J − 1.

By the preceding analysis, we know the numerator term but not the individual com-
ponents. We know the denominator from choices measured in observational data and
invariance assumption (PI-3). The IV formalism is less helpful in the general case.

Table 13 summarizes the parameters or combinations of parameters that can be iden-
tified from randomizations performed at different stages. It presents the array of factual
and counterfactual conditional mean outcomes E(Yj | D� = 1), j = 0, . . . , J and
� = 0, . . . , J . The conditional mean outcomes obtained from observational data are on
the diagonal of the table (E(Yj | Dj = 1), j = 0, . . . , J ). Because of choices of agents,
experiments do not directly identify the elements in the table that are above the diago-
nal. Under assumptions (PI-3) and (PI-4), experiments described at the base of the table
identify the combinations of the parameters below the diagonal. Recall that if ξ� = 0,
the agent cannot advance beyond stage �.175 If we randomly deny eligibility to move
to J (ξJ−1 = 0), we point identify E(YJ−1 | DJ = 1), as well as the parameters that can
be obtained from observational data. In general, we can only identify the combinations
of parameters shown at the base of the table. Following Balke and Pearl (1997), Manski
(1989, 1990, 1996, 2003), and Robins (1989), we can use the identified combinations

175 This definition of ξ� assumes that ξ0 = · · · = ξ�−1 = 1.
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Table 13
Parameters and combinations of parameters that can be identified by different randomizations

Choice
probabilities
(known)

Choice Outcome

Y0 Y1 · · · Yj · · · YJ−1 YJ

Pr(D0 = 1) D0 E(Y0 | D0 = 1) E(Y1 | D0 = 1) · · · E(Yj | D0 = 1) · · · E(YJ−1 | D0 = 1) E(YJ | D0 = 1)

Pr(D1 = 1) D1 E(Y0 | D1 = 1) E(Y1 | D1 = 1) · · · E(Yj | D1 = 1) · · · E(YJ−1 | D1 = 1) E(YJ | D1 = 1)

Pr(D2 = 1) D2 E(Y0 | D2 = 1) E(Y1 | D2 = 1) · · · E(Yj | D2 = 1) · · · E(YJ−1 | D2 = 1) E(YJ | D2 = 1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pr(Dj = 1) Dj E(Y0 | Dj = 1) E(Y1 | Dj = 1) · · · E(Yj | Dj = 1) · · · E(YJ−1 | Dj = 1) E(YJ | Dj = 1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pr(DJ−1 = 1) DJ−1 E(Y0 | DJ−1 = 1) E(Y1 | DJ−1 = 1) · · · E(Yj | DJ−1 = 1) · · · E(YJ−1 | DJ−1 = 1) E(YJ | DJ−1 = 1)

Pr(DJ = 1) DJ E(Y0 | DJ = 1) E(Y1 | DJ = 1) · · · E(Yj | DJ = 1) · · · E(YJ−1 | DJ = 1) E(YJ | DJ = 1)

Randomization ξ0 = 0 ξ1 = 0 · · · ξj = 0 · · · ξJ−1 = 0 ξJ = 0

New identified
combinations of
parameters

∑J
�=1{E(Y0 | D� = 1)

× Pr(D� = 1)}
∑J

�=2{E(Y1 | D� = 1)

× Pr(D� = 1)}
· · · ∑J

�=j+1{E(Yj | D� = 1)

× Pr(D� = 1)}
· · · E(YJ−1 | DJ = 1)
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from different randomizations to bound the admissible values of counterfactuals below
the diagonal of Table 13.

Heckman, Smith and Taber (1998) present a test for a strengthened version of the
identifying assumptions made by Bloom.176 They perform a sensitivity analysis to
analyze departures from the assumption that dropouts have the same outcomes as non-
participants. Hotz, Mullin and Sanders (1997) apply the Manski bounds in carefully
executed empirical examples and show the difficulties involved in using the Bloom es-
timator in experiments with multiple outcomes. We next turn to some evidence on the
importance of randomization bias.

9.6. Evidence on randomization bias

Violations of assumption (PI-3) in the general case with essential heterogeneity affect
the interpretation of the outputs of social experiments. They are manifestations of a more
general problem termed “Hawthorne effects” that arise from observing any population
[see Campbell and Stanley (1963), Cook and Campbell (1979)]. How important is this
theoretical possibility in practice? Surprisingly, very little is known about the answer to
this question for the social experiments conducted in economics. This is so because ran-
domized social experimentation has usually only been implemented on “pilot projects”
or “demonstration projects” designed to evaluate new programs never previously es-
timated. Disruption by randomization cannot be confirmed or denied using data from
these experiments. In one ongoing program evaluated by randomization by the Man-
power Demonstration Research Corporation (MDRC), participation was compulsory
for the target population [Doolittle and Traeger (1990)]. Hence randomization did not
affect applicant pools or assessments of applicant eligibility by program administrators.

There is some information on the importance of randomization, although it is indirect.
In the 1980s, the US Department of Labor financed a large-scale experimental evalua-
tion of the ongoing, large-scale manpower training program authorized under the Job
Training Partnership Act (JTPA). A study by Doolittle and Traeger (1990) gives some
indirect information from which it is possible to determine whether randomization bias
was present in an ongoing program.177 Job training in the United States is organized
through geographically decentralized centers. These centers receive incentive payments
for placing unemployed persons and persons on welfare in “high-paying” jobs. The par-
ticipation of centers in the experiment was not compulsory. Funds were set aside to
compensate job centers for the administrative costs of participating in the experiment.
The funds set aside range from 5 percent to 10 percent of the total operating costs of the
centers.

In attempting to enroll geographically dispersed sites, MDRC experienced a training
center refusal rate in excess of 90 percent. The reasons for refusal to participate are

176 They show how to test Bloom’s identifying assumption when it is made for distributions rather than just
means.
177 Hotz (1992) summarizes and extends their discussion.
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Table 14
Percentage of local JTPA agencies citing specific concerns about participating in the experiment

Concern Percentage of training centers
citing the concern

1. Ethical and public relations implications of:
a. Random assignment in social programs 61.8
b. Denial of services to controls 54.4

2. Potential negative effect of creation of a control group on achievement
of client recruitment goals

47.8

3. Potential negative impact on performance standards 25.4
4. Implementation of the study when service providers do intake 21.1
5. Objections of service providers to the study 17.5
6. Potential staff administrative burden 16.2
7. Possible lack of support by elected officials 15.8
8. Legality of random assignment and possible grievances 14.5
9. Procedures for providing controls with referrals to other services 14.0

10. Special recruitment problems for out-of-school youth 10.5
Sample size: 228

Notes: Concerns noted by fewer than 5 percent of the training centers are not listed. Percentages add up to
more than 100.0 because training centers could raise more than one concern.
Source: Based on responses of 228 local JTPA agencies contacted about possible participation in the National
JTPA Study.
Source: Heckman (1992), based on Doolittle and Traeger (1990).

given in Table 14. (The reasons stated there are not mutually exclusive.) Leading the
list are ethical and public relations objections to randomization. Major fears (items 2
and 3) were expressed about the effects of randomization on the quality of applicant
pool, which would impede the profitability of the training centers. By randomizing,
the centers had to widen the available pool of persons deemed eligible, and there was
great concern about the effects of this widening on applicant quality – precisely the
behavior ruled out by assumptions (PI-3) and (PI-4). In attempting to entice centers to
participate, MDRC had to reduce the randomized rejection probability from 1

2 to as low
as 1

6 for certain centers. The resulting reduction in the size of the control group impairs
the power of statistical tests designed to test the null hypothesis of no program effect.
Compensation for participation was expanded sevenfold in order to get any centers to
participate in the experiment. The MDRC analysts conclude:

Implementing a complex random assignment research design in an ongoing pro-
gram providing a variety of services does inevitably change its operation in some
ways. The most likely difference arising from a random assignment field study of
program impacts is a change in the mix of clients served. Expanded recruitment
efforts, needed to generate the control group, draw in additional applicants who
are not identical to the people previously served. A second likely change is that the
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treatment categories may somewhat restrict program staff’s flexibility to change
service recommendations [Doolittle and Traeger (1990), p. 121].

These authors go on to note that

Some [training centers] because of severe recruitment problems or up-front ser-
vices cannot implement the type of random assignment model needed to answer
the various impact questions without major changes in procedures [Doolittle and
Traeger (1990), p. 123].

This indirect evidence is hardly decisive even about the JTPA experiment, much less
all experiments. Training centers may offer these arguments only as a means of avoid-
ing administrative scrutiny, and there may be no “real” effect of randomization. During
the JTPA experiment conducted at Corpus Christi, Texas, center administrators success-
fully petitioned the government of Texas for a waiver of its performance standards on
the ground that the experiment disrupted center operations. Self-selection likely guar-
antees that participant sites are the least likely sites to suffer disruption. Such a selective
participation in the experiment calls into question the validity of experimental estimates
as a statement about the JTPA system as a whole, as it clearly poses a threat to exter-
nal validity – problem P-2 as defined in Chapter 70. Torp et al. (1993) report similar
problems in a randomized evaluation of a job training program in Norway.

Kramer and Shapiro (1984) note that subjects in drug trials were less likely to partic-
ipate in randomized trials than in nonexperimental studies. They discuss one study of
drugs administered to children afflicted with a disease. The study had two components.
The nonexperimental phase of the study had a 4 percent refusal rate, while 34 percent
of a subsample of the same parents refused to participate in a randomized subtrial, al-
though the treatments were equally nonthreatening.

These authors cite further evidence suggesting that refusal to participate in random-
ization schemes is selective. In a study of treatment of adults with cirrhosis, no effect
of the treatment was found for participants in a randomized trial. But the death rates for
those randomized out of the treatment were substantially lower than among those indi-
viduals who refused to participate in the experiment, despite the fact that both groups
were administered the same alternative treatment. Part of any convincing identification
strategy by randomization requires that the agent document the absence of random-
ization bias. We next consider some evidence on the importance of dropping out and
noncompliance with experimental protocols.

9.7. Evidence on dropping out and substitution bias

Dropouts are a feature of all social programs. Randomization may raise dropout rates,
but the evidence for such effects is weak.178 In addition, most social programs have good
substitutes, so that the estimated effect of a program as typically estimated has to be

178 See Heckman, LaLonde and Smith (1999).

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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defined relative to the full range of substitute activities in which nonparticipants engage.
Experiments exacerbate this problem by creating a pool of persons who attempt to take
training who then flock to substitute programs when they are placed in an experimental
control group (ξ = 0 in the simple randomization analyzed in Sections 9.1–9.4).

Table 15 [reproduced from Heckman et al. (2000)] demonstrates the practical im-
portance of both dropout and substitution bias in experimental evaluations. It reports
the rates of treatment group dropout and control group substitution from a variety of
social experiments. It reveals that the fraction of treatment group members receiving
program services is often less than 0.7, and sometimes less than 0.5. Furthermore, the
observed characteristics of the treatment group members who drop out often differ from
those who remain and receive the program services.179 With regard to substitution bias,
Table 15 shows that as many as 40% of the controls in some experiments received sub-
stitute services elsewhere. In a simple one treatment experiment with full compliance
(ξ = 1 ⇒ A = 1 and ξ = 0 ⇒ A = 0), all individuals assigned to the treatment group
receive the treatment and there is no control group substitution, so that the difference
between the fraction of treatments and controls that receive the treatment equals 1.0. In
practice, this difference is often well below 1.0. Randomization reduced and delayed re-
ceipt of training in the experimental control group but by no means eliminated it. Many
of the treatment group members received no treatment.

The extent of both substitution and dropout depends on the characteristics of the treat-
ment being evaluated and the local program environment. In the NSW study, where the
treatment was relatively unique and of high enough quality to be clearly perceived as
valuable by participants, dropout and substitution rates were low enough to approximate
the ideal case. In contrast, for the NJS and for other programs that provide low cost ser-
vices widely available from other sources, substitution and dropout rates are high. In
the NJS, the substitution problem is accentuated by the fact that the program relied on
outside vendors to provide most of its training. Many of these vendors, such as com-
munity colleges, provided the same training to the general public, often with subsidies
from other government programs such as Pell Grants. In addition, in order to help in
recruiting sites to participate in the NJS, evaluators allowed them to provide control
group members with a list of alternative training providers in the community. Of the 16
sites in the NJS, 14 took advantage of this opportunity to alert control group members
to substitute training opportunities.

There are counterpart findings in the application of randomized clinical trials. For
example, Palca (1989) notes that AIDS patients denied potentially life-saving drugs
took steps to undo random assignment. Patients had the pills they were taking tested
to see if they were getting a placebo or an unsatisfactory treatment, and were likely to
drop out of the experiment in either case or to seek more effective medication, or both.
In the MDRC experiment, in some sites qualified trainees found alternative avenues for
securing exactly the same training presented by the same subcontractors by using other

179 For the NSW shown in this table, see LaLonde (1984). For the NJS data, see Smith (1992).
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Table 15
Fraction of experimental treatment and control groups receiving services in experimental evaluations of em-

ployment and training programs

Study Authors/time period Target group(s) Fraction of
treatments
receiving
services

Fraction of
controls
receiving
services

1. NSW Hollister et al. (1984) Long-term AFDC women 0.95 0.11
(9 months after RA) Ex-addicts NA 0.03

17–20 year old high
school dropouts

NA 0.04

2. SWIM Friedlander and
Hamilton (1993)

AFDC women: applicants
and recipients

(Time period not
reported)

a. Job search assistance 0.54 0.01
b. Work experience 0.21 0.01
c. Classroom training/OJT 0.39 0.21
d. Any activity 0.69 0.30
AFDC-U unemployed
fathers
a. Job search assistance 0.60 0.01
b. Work experience 0.21 0.01
c. Classroom training/OJT 0.34 0.22
d. Any activity 0.70 0.23

3. JOBSTART Cave et al. (1993) Youth high school
dropouts(12 months after RA)
Classroom training/OJT 0.90 0.26

4. Project
Independence

Kemple et al. (1995) AFDC women: applicants
and recipients(24 months after RA)
a. Job search assistance 0.43 0.19
b. Classroom training/OJT 0.42 0.31
c. Any activity 0.64 0.40

5. New chance Quint et al. (1994) Teenage single mothers
(18 months after RA) Any education services 0.82 0.48

Any training services 0.26 0.15
Any education or training 0.87 0.55

6. National JTPA Study Heckman and Smith
(1998)

Self-reported from survey
data

(18 months after RA) Adult males 0.38 0.24
Adult females 0.51 0.33
Male youth 0.50 0.32
Female youth 0.81 0.42

Combined Administrative Survey Data

Adult males 0.74 0.25
Adult females 0.78 0.34
Male youth 0.81 0.34
Female youth 0.81 0.42

(Continued on next page)
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Table 15
(Continued)

Notes: RA = random assignment. H.S. = high school. AFDC = Aid to Families with Dependent Children.
OJT=On the Job Training.
Service receipt includes any employment and training services. The services received by the controls in the
NSW study are CETA and WIN jobs. For the Long Term AFDC Women, this measure also includes regular
public sector employment during the period.
Sources for data: Maynard and Brown (1980), p. 169, Table A14; Masters and Maynard (1981), p. 148,
Table A.15; Friedlander and Hamilton (1993), p. 22, Table 3.1; Cave et al. (1993), p. 95, Table 4.1; Quint
et al. (1994), p. 110, Table 4.9; and Kemple et al. (1995), p. 58, Table 3.5; Heckman and Smith (1998) and
calculations by the authors.
Source: Heckman, LaLonde and Smith (1999) and Heckman et al. (2000).

methods of financial support. Heckman, LaLonde and Smith (1999) discuss a variety of
other problems that sometimes plague social experiments.

Our discussion up to this point has focused on point identification of parameters
over the empirical supports. A large and emerging literature produces bounds on the
parameters and distributions when point identification is not possible. We now consider
bounds on the parameters within the framework of economic models of choice and the
MTE.

10. Bounding and sensitivity analysis

Thus far we have assumed full support conditions and have presented conditions for
identification over those supports. We now consider partial identification in the con-
text of the MTE framework. We return to the two-outcome model to develop the basic
approach in a simpler setting.

The central evaluation problem is that we observe the distribution of (Y,D,X,Z) =
(DY1+(1−D)Y0,D,X,Z), but do not observe the distribution of all of the components
that comprise it (Y1, Y0,D,X,Z). Let η denote a distribution for (Y1, Y0,D,X,Z),
and let it be known that η belongs to the class H ⊂ F , where F is the space of all
probability distributions on (Y1, Y0,D,X,Z). Let Pη denote the resulting distribution
of (DY1 + (1 − D)Y0,D,X,Z) if η is the distribution for (Y1, Y0,D,X,Z). Let η0

and Pη0 denote the corresponding true distributions. Knowledge of the distribution of
(DY1 + (1−D)Y0,D,X,Z) allows us to infer that η lies in the set {η ∈ H: Pη = Pη0}.
All elements of {η ∈ H: Pη = Pη0} are consistent with the true distribution of the
observed data.

Let H0 = {η ∈ H: Pη = Pη0}. Let Eη denote expectation with respect to the
measure η, i.e., Eη(A) = ∫

Adη, so that E(A) = Eη0(A). Consider inference for ATE,
E(Y1 − Y0). Knowledge of the distribution of the observed variables allows us to infer
that

E(Y1 − Y0) ∈ {Eη(Y1 − Y0): η ∈ H0}.
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The identification analyses of the previous sections proceed by imposing sufficient re-
strictions on H such that {Eη(Y1 − Y0): η ∈ H0} contains only one element and
thus E(Y1 − Y0) is point identified. Bounding analysis proceeds by finding a set B
such that B ⊇ {Eη(Y1 − Y0): η ∈ H0}.180 One goal of bounding analysis is to con-
struct B such that B = {Eη(Y1 − Y0): η ∈ H0} in which case the bounds are said
to be sharp. If the bounds are sharp, then the bounds exploit all information and no
smaller bounds can be constructed without imposing additional structure. In contrast, if
{Eη(Y1 −Y0): η ∈ H0} is a proper subset of B, then smaller bounds can be constructed.
In every example we consider, the set {Eη(Y1 − Y0): η ∈ H0} is a closed interval, so
that {Eη(Y1 − Y0): η ∈ H0} = [infη∈H0 Eη(Y1 − Y0), supη∈H0 Eη(Y1 − Y0)].

Sensitivity analysis is a commonly used procedure. It varies the parameters fixed in
a model and determines the sensitivity of estimates to the perturbations of the parame-
ter. Sensitivity analysis is formally equivalent to bounding. In particular, in sensitivity
analysis, one parameterizes η and then constructs bounds based on letting the parame-
ters vary over some set.181 Parameterize η as η(θ) for some parameter vector θ ∈ Θ , and
let θ0 be the “true” parameter value so that η0 = η(θ0). θ is typically finite-dimensional,
though it need not be. Let Θ0 = {θ ∈ Θ: Pη(θ) = Pη(θ0)}. If θ is point identified given
the observed variables, then Θ0 will contain only one element, but if not all parame-
ters are identified given the observed data then Θ will contain more than one element.
Consider{

Eη(θ)(Y1 − Y0): θ ∈ Θ0}.
This can trivially be seen as a special case of bounding analysis by taking H =
{η(θ): θ ∈ Θ} and H0 = {η(θ): θ ∈ Θ0}. Likewise, by taking a proper parame-
terization, any bounding analysis can be seen as a special case of sensitivity analysis.

We consider bounds on ATE. The corresponding bounds on treatment on the treated
follow with trivial modifications.182 We focus on bounds that exploit instrumental vari-
able type assumptions or latent index assumptions, and we do not attempt to survey
the entire literature on bounds.183 We begin by describing the bounds that only assume
that the outcome variables are bounded. We then consider imposing additional assump-
tions. We consider imposing the assumption of comparative advantage in the decision

180 Examples of bounding analysis include Balke and Pearl (1997), Heckman, Smith and Clements (1997),
Manski (1989, 1990, 1997, 2003) and Robins (1989).
181 Examples of sensitivity analysis include Glynn, Laird and Rubin (1986), Smith and Welch (1986), and
Rosenbaum (1995).
182 We do not consider bounds on the joint distribution of (Y1, Y0). Identification of the joint distribution
of (Y1, Y0) is substantially more difficult than identification of the ATE or treatment on the treated (TT).
For example, even a perfect randomized experiment does not point identify the joint distribution of (Y1, Y0)

without further assumptions. See Heckman and Smith (1993), Heckman, Smith and Clements (1997), and
Heckman, LaLonde and Smith (1999) for an analysis of this problem.
183 Surveys of the bounding approach include Manski (1995, 2003). Heckman, LaLonde and Smith (1999)
includes an alternative survey of the bounding approach.
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rule, then consider instead imposing an instrumental variables type assumption, and
conclude by considering the combination of comparative advantage and instrumental
variables assumptions. We examine the relative power of these alternative assumptions
to narrow the very wide bounds that result from only imposing that the outcome vari-
ables are bounded.

10.1. Outcome is bounded

We first consider bounds on E(Y1 −Y0) that only assume that the outcomes be bounded.
We consider this case as a point of contrast for the later bounds that exploit instrumen-
tal variable conditions, and also for the pedagogical purpose of showing the bounding
methodology in a simple context. We impose that the outcomes are bounded with prob-
ability 1.

ASSUMPTION B (Outcome is Bounded). For j = 0, 1,

Pr
(
yl � Yj � yu

) = 1.184

In our notation, this corresponds to

H = {
η ∈ F : η

[
yl � Y1 � yu

] = 1, η
[
yl � Y0 � yu

] = 1
}
.

For example, if Y is an indicator variable, then the bounds are yl = 0 and yu = 1.

Following Manski (1989) and Robins (1989), use the law of iterated expectations to
obtain

E(Y1) = Pr[D = 1]E(Y1 | D = 1) + (
1 − Pr[D = 1])E(Y1 | D = 0),

E(Y0) = Pr[D = 1]E(Y0 | D = 1) + (
1 − Pr[D = 1])E(Y0 | D = 0).

Pr[D = 1], E(Y1 | D = 1), and E(Y0 | D = 0) are identified, while E(Y0 | D = 1)

and E(Y1 | D = 0) are bounded by yl and yu, so that

Pr[D = 1]E(Y1 | D = 1) + (
1 − Pr[D = 1])yl

� E(Y1) � Pr[D = 1]E(Y1 | D = 1) + (
1 − Pr[D = 1])yu,

Pr[D = 1]yl + (
1 − Pr[D = 1])E(Y0 | D = 0)

� E(Y0) � Pr[D = 1]yu + (
1 − Pr[D = 1])E(Y0 | D = 0)

184 We assume that Y1 and Y0 have the same bounds for ease of exposition. The modifications required to
analyze the more general case are straightforward.
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and thus

B = [
BL,BU

]
,

with

BL = (
Pr[D = 1]E(Y | D = 1) + (

1 − Pr[D = 1])yl
)

− (
Pr[D = 1]yu + (

1 − Pr[D = 1])E(Y | D = 0)
)
,

BU = (
Pr[D = 1]E(Y | D = 1) + (

1 − Pr[D = 1])yu
)

− (
Pr[D = 1]yl + (

1 − Pr[D = 1])E(Y | D = 0)
)

with the width of these bounds given by

BU − BL = yu − yl.

For example, if Y = 0, 1, then the width of the bounds equals 1, BU − BL = 1.
These bounds are sharp. To show this, for any M ∈ [BL,BU ], one can trivially

construct a distribution η of (Y0, Y1,D) which is consistent with the observed data,
consistent with the restriction that the outcomes are bounded, and for which Eη(Y1 −
Y0) = M , thus showing that M ∈ [BL,BU ]. Since this is true for any M ∈ [BL,BU ],
it follows that [BL,BU ] ⊆ {Eη(Y1 − Y0): η ∈ H0}. Since we have already shown that
[BL,BU ] are valid bounds, [BL,BU ] ⊇ {Eη(Y1 − Y0): η ∈ H0}, we conclude that
[BL,BU ] = {Eη(Y1 −Y0): η ∈ H0} and thus that the bounds are sharp. This illustrates
a common technique towards the construction of sharp bounds: in a first step, construct
a natural set of bounds, and in a second step, use a proof by construction to show that
the bounds are sharp.

Note the following features of these bounds. First, as noted by Manski (1990), these
bounds always include zero. Thus, bounds that only exploit that the outcomes are
bounded can never reject the null of zero average treatment effect. The bounds them-
selves depend on the data, but the width of the bounds, BU−BL = yu−yl , is completely
driven by the assumed bounds on Y1, Y0. For example, if Y1 and Y0 are binary, the width
of the bounds is always 1.

10.2. Latent index model: Roy model

The bounds that only impose that the outcomes are bounded are typically very wide,
never provide point identification, and can never reject the null of zero average treatment
effect. This lack of identifying power raises the question of whether one can impose ad-
ditional structure to narrow the bounds. The central issue with bounding analysis is to
explore the trade-off between assumptions and width of the resulting bounds. In this
section, we discuss bounds that follow from maintaining Assumption B, that the out-
comes are bounded, but also add the assumption of a Roy model for selection into
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treatment.185 Such an assumption substantially narrows the width of the bounds com-
pared to only imposing that the outcomes themselves are bounded, but does not provide
point identification.

Again impose Assumption B: the outcomes are bounded. In addition, assume a model
of comparative advantage, in particular,

ASSUMPTION RM (Roy Model).

(10.1)D = 1[Y1 � Y0].

Restriction RM imposes a special case of a latent index model, D = 1[Y ∗ � 0] with
Y ∗ = Y1 − Y0. Using the assumption of a Roy model while maintaining the assumption
that the outcomes are bounded, we can narrow the bounds compared to the case where
we only imposed that the outcomes are bounded. Peterson (1976) constructs the sharp
bounds for the competing risks model, which is formally equivalent to a Roy model.
Manski (1995) constructs the same bounds for the Roy model.

Following Peterson (1976) and Manski (1995), we have that

E[Y1 | D = 1] = E[Y1 | Y0 � Y1]
� E[Y0 | Y0 � Y1]
= E[Y0 | D = 1]

and by a parallel argument, E[Y0 | D = 0] � E[Y1 | D = 0]. We thus have upper
bounds on E(Y0 | D = 1) and E(Y1 | D = 0). The lower bounds on E[Y0 | D = 1]
and E[Y1 | D = 0] are the same as for the bounds that only imposed that the outcomes
are bounded. We then have

E(Y1 − Y0) ∈ B ≡ [
BL,BU

]
,

with

BL = (
Pr[D = 1]E(Y | D = 1) + (

1 − Pr[D = 1])yl
)

− (
Pr[D = 1]E(Y | D = 1) + (

1 − Pr[D = 1])E(Y | D = 0)
)
,

BU = (
Pr[D = 1]E(Y | D = 1) + (

1 − Pr[D = 1])E(Y | D = 0)
)

− (
Pr[D = 1]yl + (

1 − Pr[D = 1])E(Y | D = 0)
)
,

185 In contrast to the comparative advantage Roy model, one could instead impose an absolute advantage
model as in the bounding analysis of Smith and Welch (1986). They assume that those with D = 1 have
an absolute advantage over those with D = 0 in terms of their Y1 outcomes: 1

2 E(Y1 | D = 1) � E(Y1 |
D = 0) � E(Y1 | D = 1), and use this assumption to bound E(Y1). In their application, Y1 is the wage
and D is an indicator variable for working, so that there is not a well defined Y0 variable. However, if one
were to adapt their idea of absolute advantage to the treatment effect literature, one could assume, e.g., that
E(Y0 | D = 0) � E(Y0 | D = 1) � 3

2 E(Y0 | D = 0) with the bounds on ATE following immediately from
these assumptions.
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and we can rewrite these bounds as

BL = (
1 − Pr[D = 1])(yl − E(Y | D = 0)

)
,

BU = Pr[D = 1](E(Y | D = 1) − yl
)
,

with the width of the bounds given by

BU − BL = E(Y) − yl.

For example, if Y = 0, 1, then the width of the bounds is given by BU −BL = Pr(Y =
1). Following an argument similar to that presented in the previous section, one can
show that these bounds are sharp.

Note the following features of these bounds. First, the bounds do not involve yu, and
actually the same bounds will hold if we were to weaken the maintained assumption
that Pr[yl � Yj � yu] = 1 for j = 0, 1, to instead only require that Pr[yl � Yj ] = 1.
The width of the bounds imposing comparative advantage are E(Y) − yl , so that the
bounds will never provide point identification (as long as E(Y) > yl). For example, if Y

is binary, the width of the bounds is Pr[Y = 1], the bounds will not provide point iden-
tification unless all individuals have Y = 0. However, the bounds will always improve
upon the bounds that impose only that the outcome is bounded – imposing comparative
advantage shrinks the width of the bounds from yu −yl to E(Y)−yl , thus shrinking the
bounds by an amount equal to yu − E(Y). For example, if Y is binary, then imposing
the bounds shrinks the width of the bounds from 1 to Pr[Y = 1]. Finally, note that the
bounds will always include zero, so that imposing comparative advantage does not by
itself allow one to ever reject the null of zero average treatment effect.

10.3. Bounds that exploit an instrument

The previous section considered bounds that exploit knowledge of the selection process,
in particular that selection is determined by a Roy model. An alternative way to narrow
the bounds over simply imposing that the outcome is bounded is to assume access to
an instrument. We now discuss bounds with various types of instrumental variables
assumptions. We begin with the Manski (1990) analysis for bounds that exploit a mean-
independence condition, then consider the Balke and Pearl (1997) analysis for bounds
that exploit a full statistical independence condition, and finally conclude with a discus-
sion of Heckman and Vytlacil (1999) who combine an instrumental variable assumption
with a nonparametric selection model.

10.3.1. Instrumental variables: Mean independence condition

Again impose Assumption B so that the outcomes are bounded. In addition, following
Manski (1990), impose a mean-independence assumption:



Ch. 71: Econometric Evaluation of Social Programs, Part II 5087

ASSUMPTION IV.

E(Y1 | Z = z) = E(Y1),

E(Y0 | Z = z) = E(Y0)

for z ∈ Z where Z denotes the support of the distribution of Z.

For any z ∈ Z , following the exact same series of steps as for the bounds that only
imposed Assumption B, we have that

E(DY | Z = z) + (
1 − P(z)

)
yl � E(Y1 | Z = z)

� E(DY | Z = z) + (
1 − P(z)

)
yu.

By the IV assumption, we have E(Y1 | Z = z) = E(Y1). Since these bounds hold for
any z ∈ Z , we have

sup
z∈Z

{
E(DY | Z = z) + (

1 − P(z)
)
yl
}

� E(Y1) � inf
z∈Z

{
E(DY | Z = z) + (

1 − P(z)
)
yu
}
.

Applying the same analysis for E(Y0), we have

E(Y1 − Y0) ∈ B = [
BL,BU

]
,

with

BL = sup
z∈Z

{
E(DY | Z = z) + (

1 − P(z)
)
yl
}

− inf
z∈Z

{
E
(
(1 − D)Y

∣∣ Z = z
)+ P(z)yu

}
,

BU = inf
z∈Z

{
E(DY | Z = z) + (

1 − P(z)
)
yu
}

− sup
z∈Z

{
E
(
(1 − D)Y

∣∣ Z = z
)+ P(z)yl

}
.

As discussed by Manski (1994), these bounds are sharp under the mean-independence
condition.186 As noted by Manski (1990), these bounds do not necessarily include zero,
so that it may be possible to use the bounds to test the null of zero average treatment
effect. Let pu = supz∈Z Pr[D = 1 | Z = z], pl = infz∈Z Pr[D = 1 | Z = z]. A trivial
modification to Corollaries 1 and 2 of Proposition 6 of Manski (1994) shows that

(1) pu � 1
2 and pl � 1

2 is a necessary condition for BL = BU , i.e., for point
identification from the mean independence condition.

186 See Manski and Pepper (2000) for extensions of these bounds.
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(2) If Y1, Y0 are independent of D, then the width of the IV-bounds is
((1 − pu) + pl)(yu − yl). Thus, if Y1, Y0 are independent of D, the bounds
will collapse to point identification if and only if pu = 1, pl = 0.

Note that it is neither necessary nor sufficient for P(z) to be a nontrivial function
of z for these bounds to improve upon the bounds that only imposed that the outcome
is bounded. Likewise, comparing these bounds to the comparative advantage bounds
shows that neither set of bounds will in general be narrower than the other. Finally, note
that these bounds are relatively complicated, and to evaluate the bounds and the width
of the bounds requires use of P(z), E(YD | Z = z), and E(Y(1 − D) | Z = z) for all
z ∈ Z .

10.3.2. Instrumental variables: Statistical independence condition

While Manski constructs sharp bounds for mean-independence conditions, Balke and
Pearl (1997) construct sharp bounds for the statistical independence condition for the
case where Y and Z are binary. Balke and Pearl impose the same independence condi-
tion as the Imbens and Angrist (1994) LATE independence condition. In particular, let
D0, D1 denote the counterfactual choices that would have been made had Z been set
exogenously to 0 and 1, respectively, and impose the following assumption.

ASSUMPTION IV-BP.

(Y0, Y1,D0,D1)⊥⊥ Z.

Note that this strengthens the Manski conditions not only in imposing that potential
outcomes are statistically independent of Z instead of mean-independent of Z, but also
imposing that the counterfactual choices are independent of Z.

For the case of Z and Y binary, Balke and Pearl manage to transform the problem
of constructing sharp bounds into a linear programming problem. Assuming that the
identified set is a closed interval, the sharp bounds are by definition [BL,BU ] with

BL = inf
η∈H0

Eη(Y1 − Y0),

BU = sup
η∈H0

Eη(Y1 − Y0).

In general, the constrained set of distributions, η ∈ H0, may be high-dimensional and
nonconvex. Using the assumption that Z and Y are binary, they transform the problem
into the minimization of a linear function over a finite-dimensional vector space subject
to a set of linear constraints. The resulting bounds are somewhat complex. For some dis-
tributions of the observed data, they will coincide with the Manski mean-independence
bounds, but for other distributions of the observed data they will be narrower than the
Manski mean-independence bounds. Thus, imposing statistical independence does nar-
row the bounds over the mean independence bounds.
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It is not immediately clear how to generalize the Balke and Pearl analysis to distri-
butions with continuous Z or Y , or how to construct sharp bounds under the statistical
independence condition for Z or Y continuous. The appropriate generalization of Balke
and Pearl’s analysis to a more general setting remains an open question.

10.3.3. Instrumental variables: Nonparametric selection model/LATE conditions

We started with the mean independence version of the instrumental variables condition,
and then discussed strengthening the instrumental variables condition to full indepen-
dence in the special case where Y and Z are binary. The result of shifting from mean
independence to full independence is to sometimes reduce the width of the result-
ing bounds but also to have an even more complicated form for the bounds. We now
consider further strengthening the instrumental variables either by imposing a non-
parametric selection model for the first stage as in Heckman and Vytlacil (1999) or
by imposing instrumental variable conditions of the form considered by Imbens and
Angrist (1994). The sharp bounds corresponding to these strengthened versions of in-
strumental variables do not reduce the bounds compared to imposing a weaker form of
the instrumental variables assumption but produces a much simpler form for the bounds.

Let D(z) denote the counterfactual choices that would have been made had Z been set
exogenously to z. Consider the LATE independence, rank, and monotonicity conditions
(IV-1), (IV-2), (IV-3), respectively, of Imbens and Angrist (1994) presented in Sections 2
and 4.

Note that the LATE monotonicity assumption (IV-3) strengthens assumption [IV-BP].
The LATE independence assumption (IV-1) is exactly the same as assumption [IV-BP]
except that the assumption is stated here without requiring Z to be binary. In their
context of binary Z and Y , Balke and Pearl discuss the LATE monotonicity con-
dition and show that the LATE monotonicity condition imposes constraints on the
observed data which imply that the Balke and Pearl (1997) bounds and the Manski
mean-independence bounds will coincide.187

Consider the nonparametric selection model of Heckman and Vytlacil (1999):

NONPARAMETRIC SELECTION MODEL S. D = 1[μ(Z) � U ] and Z ⊥⊥ (Y0, Y1, U).
This is a consequence of Equations (3.3) and assumptions (A-1)–(A-5) presented in
Section 4.

From Vytlacil (2002), we have that the Imbens and Angrist conditions (IV-1)–(IV-3)
are equivalent to imposing a nonparametric selection model of the form S. Thus, the
bounds derived under one set of assumptions will be valid under the alternative set of
assumptions, and bounds that are sharp under one set will be sharp under the alternative

187 Robins (1989) constructs the same bounds under the LATE condition for the case of Z and Y binary,
though he does not prove that the bounds are sharp.
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set of assumptions. This equivalence implies that the Balke and Pearl result also holds
for the selection model: if Z and Y are binary, then the sharp bounds under the nonpara-
metric selection model coincide with the sharp bounds under mean independence IV.

We now consider the more general case where neither Z nor Y need be binary.
Heckman and Vytlacil (1999) derived bounds on the average treatment effect under
the assumptions that the outcomes are generated from a bounded outcome nonparamet-
ric selection model for treatment without requiring that Z or Y be binary or any other
restrictions on the support of the distributions of Z and Y beyond the assumption that
the outcomes are bounded (Assumption B). In particular, they derived the following
bounds on the average treatment effect:

BL � E(Y1 − Y0) � BU,

with

BU = E
(
DY

∣∣ P(Z) = pu
)+ (

1 − pu
)
yu

− E
(
(1 − D)Y

∣∣ P(Z) = pl
)− plyl,

BL = E
(
DY

∣∣ P(Z) = pu
)+ (

1 − pu
)
yl − E

(
(1 − D)Y

∣∣ P(Z) = pl
)− plyu.

Note that these bounds do not necessarily include zero. The width of the bounds is

BU − BL = ((
1 − pu

)+ pl
)(

yu − yl
)
.

For example, if Y is binary then the width of the bounds is simply BU − BL = ((1 −
pu) + pl). Trivially, pu = 1 and pl = 0 is necessary and sufficient for the bounds
to collapse to point identification, with the width of the bounds linearly related to the
distance between pu and 1 and the distance between pl and 0. Note that it is necessary
and sufficient for P(z) to be a nontrivial function of z for these bounds to improve upon
the bounds that only imposed that the outcomes are bounded. Evaluating the width of
the bounds only requires pu, pl . The only additional information required to evaluate
the bounds themselves is E(DY | P(Z) = pu) and E((1 − D)Y | P(Z) = pl).

Heckman and Vytlacil (2001a) analyze how these bounds compare to the Manski
(1990) mean independence bounds, and analyze whether these bounds are sharp. They
show that the selection model imposes restrictions on the observed data such that the
Manski (1990) mean independence bounds collapse to the simpler Heckman and Vyt-
lacil (2001a) bounds. In particular, given assumption S, they show that

inf
z∈Z

{
E(DY | Z = z) + (

1 − P(z)
)
yu
} = E

(
DY

∣∣ P(Z) = pu
)+ (

1 − pu
)
yu,

sup
z∈Z

{
E
(
(1 − D)Y

∣∣ Z = z
)+ P(z)yl

} = E
(
(1 − D)Y

∣∣ P(Z) = pl
)− plyl

and thus the Manski (1990) upper bound collapses to the Heckman and Vytlacil (1999)
upper bound under assumption S. The parallel result holds for the lower bounds. Fur-
thermore, Heckman and Vytlacil (2001a) establish that the Heckman and Vytlacil
(1999) bounds are sharp given Assumptions B and S. Thus, somewhat surprisingly,



Ch. 71: Econometric Evaluation of Social Programs, Part II 5091

imposing the stronger assumption of the existence of an instrument in a nonparametric
selection model does not narrow the bounds compared to the case of imposing only the
weaker assumption of mean independence, but does impose structure on the data which
substantially simplifies the form of the mean-independence bounds. By the Vytlacil
(2002) equivalence result, the same conclusion holds for the LATE assumptions – im-
posing the LATE assumptions does not narrow the bounds compared to only imposing
the weaker assumption of mean independence, but does impose restrictions on the data
that substantially simplify the form of the bounds. Vytlacil, Santos and Shaikh (2005)
extend these bounds.

10.4. Combining comparative advantage and instrumental variables

We have thus far examined bounds that impose a comparative advantage model, and
bounds that exploit an instrumental variables assumption. In general, neither restriction
has more identifying power than the other. We now consider combining both types of
assumptions.

Assume D = 1[Y1 − Y0 � C(Z)], with Z observed and Z ⊥⊥ (Y0, Y1). This is a Roy
model with a cost C(Z) of treatment, with the cost of treatment a function of an “instru-
ment” Z. For ease of exposition, assume that Z is a continuous scalar random variable
and that (Y0, Y1) are continuous random variables.188 Also for ease of exposition, as-
sume that Z (the support of the distribution Z) is compact and that C(·) is a continuous
function. These assumptions are only imposed for ease of exposition.

The model is a special case of the nonparametric selection model considered by
Heckman and Vytlacil (2001a), but with more structure that we can now exploit. Be-
gin by following steps similar to Heckman and Vytlacil (2001a). Using the fact that
D = 1[Y1 − Y0 � C(Z)] and that Z ⊥⊥ (Y0, Y1), we have

P(Z) = 1 − FY1−Y0

(
C(Z)

)
,

where FY1−Y0 is the distribution function of Y1 − Y0. Given our assumptions, we have
that there will exist zu and zl such that

C
(
zu
) = sup

{
C(z): z ∈ Z

}
,

P
(
zu
) = 1 − FY1−Y0

(
C
(
zu
)) = inf

{
P(Z): z ∈ Z

}
,

C
(
zl
) = inf

{
C(z): z ∈ Z

}
,

P
(
zl
) = 1 − FY1−Y0

(
C
(
zl
)) = sup

{
P(Z): z ∈ Z

}
.

In other words, Z = zu is associated with the highest possible cost of treatment and
thus the lowest possible conditional probability of D = 1, while Z = zl is associated
with the lowest possible cost of treatment and thus the highest possible conditional

188 More formally, impose that the distribution of Z has a density with respect to Lebesgue measure on R,

and assume that (Y1, Y0) has a density with respect to Lebesgue measure on R2.
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probability of D = 1. Since P(·) for z ∈ Z is identified, we have that zu and zl are
identified.

Consider identification of C(z). Using the model and the independence assumptions,
we have

∂

∂z
E(Y | Z = z)

= ∂

∂z
E(YD | Z = z) + ∂

∂z
E
(
Y(1 − D)

∣∣ Z = z
)

= ∂

∂z

∫ ∞

C(z)

E(Y1 | Y1 − Y0 = t) dFY1−Y0(t)

+ ∂

∂z

∫ C(z)

−∞
E(Y0 | Y1 − Y0 = t) dFY1−Y0(t)

= −[E(Y1
∣∣ Y1 − Y0 = C(z)

)− E
(
Y0
∣∣ Y1 − Y0 = C(z)

)]
fY1−Y0

(
C(z)

)
C′(z)

= −C(z)C′(z)fY1−Y0

(
C(z)

)
and

∂

∂z
P (z) = ∂

∂z

∫ ∞

C(z)

dFY1−Y0(t)

= −C′(z)fY1−Y0

(
C(z)

)
and thus[

∂

∂z
E(Y | Z = z)

/ ∂

∂z
P (z)

]
= C(z)

for any z ∈ Z such that ∂
∂z

P (z) �= 0, i.e., for any z ∈ Z such that C′(z) �= 0 and
FY1−Y0(C(z)) �= 0. We thus conclude that C(z) is identified for z ∈ Z .

Our goal is to identify E(Y1 − Y0). For any z ∈ Z , we have by the law of iterated
expectations that

E(Yj ) =
∫

E(Yj | Y1 − Y0 = t) dFY1−Y0(t)

=
∫ C(z)

−∞
E(Yj | Y1 − Y0 = t) dFY1−Y0(t)

+
∫ ∞

C(z)

E(Yj | Y1 − Y0 = t) dFY1−Y0(t)

for j = 0, 1. Using the model for D and the assumption that Z ⊥⊥ (Y0, Y1), we have

(10.2)
∫ ∞

C(z)

E(Y1 | Y1 − Y0 = t) dFY1−Y0(t) = E(DY | Z = z),

(10.3)
∫ C(z)

−∞
E(Y0 | Y1 − Y0 = t) dFY1−Y0(t) = E

(
(1 − D)Y

∣∣ Z = z
)
.
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We identify the right-hand sides of these equations for any z ∈ Z , and thus identify
the left-hand sides for any z ∈ Z . In particular, consider evaluating Equation (10.2) at
z = zl and Equation (10.3) at z = zu. Then, to bound E(Y1 − Y0), we need to bound∫ C(zl)

−∞ E(Y1 | Y1 − Y0 = t) dFY1−Y0(t) and
∫∞
C(zu)

E(Y0 | Y1 − Y0 = t) dFY1−Y0(t).
We have∫ C(zl)

−∞
E(Y1 | Y1 − Y0 = t) dFY1−Y0(t)

= (
1 − P

(
zl
))

E
[
Y1
∣∣ Z = zl, Y1 � Y0 + C

(
zl
)]

�
(
1 − P

(
zl
))

E
[
Y0 + C

(
zl
) ∣∣ Z = zl, Y1 � Y0 + C

(
zl
)]

= E
[
(1 − D)Y

∣∣ Z = zl
]+ (

1 − P
(
zl
))

C
(
zl
)

= E
[
(1 − D)Y

∣∣ Z = zl
]−

[
∂

∂z
E(Y | Z = z)

/ ∂

∂z
ln
(
1 − P(z)

)]∣∣∣∣
z=zl

,

where the inequality arises from the conditioning Y1 � Y0 +C(zl). The final expression
follows from our derivation of C(z). Since Pr[yl � Y1 � yu] = 1 by assumption, we
have (

1 − P
(
zl
))

yl

�
∫ C(zl)

−∞
E(Y1 | Y1 − Y0 = t) dFY1−Y0(t)

� E
[
(1 − D)Y

∣∣ Z = zl
]−

[
∂

∂z
E(Y | Z = z)

/ ∂

∂z
ln
(
1 − P(z)

)]∣∣∣∣
z=zl

.

By a parallel argument, we have

P
(
zu
)
yl �

∫ ∞

C(zu)

E(Y0 | Y1 − Y0 = t) dFY1−Y0(t)

� E
[
DY

∣∣ Z = zu
]+

[
∂

∂z
E(Y | Z = z)

/ ∂

∂z
ln P(z)

]∣∣∣∣
z=zu

.

We thus have the bounds

BL � E(Y1 − Y0) � BU,

with

BU = E
(
Y
∣∣ Z = zl

)
−
[

∂

∂z
E(Y | Z = z)

/ ∂

∂z
ln
(
1 − P(z)

)]∣∣∣∣
z=zl

− E
(
(1 − D)Y

∣∣ Z = zu
)− P

(
zu
)
yl,
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BL = E
(
DY

∣∣ Z = zl
)+ [

1 − P
(
zl
)]

yl − E
(
Y
∣∣ Z = zu

)
−
[

∂

∂z
E(Y | Z = z)

/ ∂

∂z
ln P(z)

]∣∣∣∣
z=zu

.

The last two terms in BU come from the lower bound for E(Y0) and the first two terms
come from the upper bound for E(Y1) just derived. The terms for BL are decomposed
in an analogous fashion, reversing the roles of the upper and lower bounds for E(Y1)

and E(Y0). These bounds improve over the bounds that only impose a nonparametric
selection model (Assumption S) without imposing the Roy model structure. We next
consider some alternative approaches to the solution of selection and hence evaluation
problems developed in the literature using replacement functions, proxy functions, and
other conditions.

11. Control functions, replacement functions, and proxy variables

This chapter analyzes the main tools used to evaluate social programs in the presence
of selection bias in observational data. Yet many other tools have not been analyzed.
We briefly summarize these approaches. Chapter 73 (Matzkin) of this Handbook estab-
lishes conditions under which some of the methods we discuss produce identification of
econometric models. Abbring and Heckman (Chapter 72) use some of these tools.

The methods of replacement functions and proxy variables all start from characteri-
zations (U-1) and (U-2) which we repeat for convenience:

(U-1) (Y0, Y1)⊥⊥ D | X,Z, θ ,

but
(U-2) (Y0, Y1)⊥�⊥ D | X,Z,

where θ is not observed by the analyst and (Y0, Y1) are not observed directly but Y is
observed as are the X,Z:

Y = DY1 + (1 − D)Y0.

Missing variables θ produce selection bias which creates a problem with using obser-
vational data to evaluate social programs. From (U-1), if we condition on θ , we would
satisfy the condition (M-1) for matching, and hence could identify the parameters and
distributions that can be identified if the conditions required for matching are satisfied.

The most direct approach to controlling for θ is to assume access to a function
τ(X,Z,Q) that perfectly proxies θ :

(11.1)θ = τ(X,Z,Q).

This approach based on a perfect proxy is called the method of replacement functions by
Heckman and Robb (1985a). In (U-1), we can substitute for θ in terms of observables

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06072-2


Ch. 71: Econometric Evaluation of Social Programs, Part II 5095

(X,Z,Q). Then

(Y0, Y1)⊥⊥ D | X,Z,Q.

We can condition nonparametrically on (X,Z,Q) and do not have to know the exact
functional form of τ , although knowledge of τ might reduce the dimensionality of the
matching problem, θ can be a vector and τ can be a vector of functions. This method has
been used in the economics of education for decades [see the references in Heckman
and Robb (1985a)]. If θ is ability and τ is a test score, it is sometimes assumed that
the test score is a perfect proxy (or replacement function) for θ and τ is entered into
the regressions of earnings on schooling to escape the problem of ability bias, typically
assuming a linear relationship between τ and θ .189 Heckman and Robb (1985a) discuss
the literature that uses replacement functions in this way. Olley and Pakes (1996) apply
this method and consider nonparametric identification of the τ function. Chapter 73
(Matzkin) of this Handbook provides a rigorous proof of identification for this approach
in a general nonparametric setting.

The method of replacement functions assumes that (11.1) is a perfect proxy. In many
applications, this assumption is far too strong. More often, we measure θ with error. This
produces a factor model or measurement error model [Aigner et al. (1984)]. Chapter 73
(Matzkin) of this Handbook surveys this method. We can represent the factor model in
a general way by a system of equations:

(11.2)Yj = gj (X,Z,Q, θ, εj ), j = 1, . . . , J.

A linear factor model separable in the unobservables writes

(11.3)Yj = gj (X,Z,Q) + λj θ + εj , j = 1, . . . , J,

where

(11.4)(X,Z,Q) ⊥⊥ (θ, εj ), εj ⊥⊥ θ, j = 1, . . . , J,

and the εj are mutually independent. Observe that under (11.2) and (11.3), Yj con-
trolling for X,Z,Q only imperfectly proxies θ because of the presence of εj . The θ

are called factors, λj factor loadings and the εj “uniquenesses” [see, e.g., Aigner et al.
(1984)].

A large literature, partially reviewed in Abbring and Heckman (Chapter 72), Sec-
tion 1, and in Chapter 73 (Matzkin) of this Handbook, shows how to establish iden-
tification of econometric models under factor structure assumptions. Cunha, Heckman

189 Thus if τ = α0 + α1X + α2Q + α3Z + θ , we can write

θ = τ − α0 − α1X − α2Q − α3Z,

and use this as the proxy function. Controlling for τ,X,Q, Z controls for θ . Notice that we do not need to
know the coefficients (α0, α1, α2, α3) to implement the method. We can condition on X,Q, Z.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06072-2
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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and Matzkin (2003), Schennach (2004) and Hu and Schennach (2006) establish identi-
fication in nonlinear models of the form (11.2).190 The key to identification is multiple,
but imperfect (because of εj ), measurements on θ from the Yj , j = 1, . . . , J , and
X,Z,Q, and possibly other measurement systems that depend on θ . Carneiro, Hansen
and Heckman (2003), Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heck-
man (2008, 2007) apply and develop these methods. Under assumption (11.4), they
show how to nonparametrically identify the econometric model and the distributions of
the unobservables Fθ(θ) and Fεj

(εj ). In the context of classical simultaneous equations
models, identification is secured by using covariance restrictions across equations ex-
ploiting the low dimensionality of vector θ compared to the high-dimensional vector of
(imperfect) measurements on it. The recent literature [Cunha, Heckman and Matzkin
(2003), Hu and Schennach (2006), Cunha, Heckman and Schennach (2006b)] extends
the linear model to a nonlinear setting.

The recent econometric literature applies in special cases the idea of the control func-
tion principle introduced in Heckman and Robb (1985a). This principle, versions of
which can be traced back to Telser (1964), partitions θ in (U-1) into two or more com-
ponents, θ = (θ1, θ2), where only one component of θ is the source of bias. Thus it is
assumed that (U-1) is true, and (U-1)′ is also true:

(U-1)′ (Y0, Y1)⊥⊥ D | X,Z, θ1,

and (U-2) holds. For example, in the normal selection model analyzed in Chapter 70,
Section 9, we broke U1, the error term associated with Y1, into two components:

U1 = E(U1 | V ) + ε,

where V plays the role of θ1 and arises from the choice equation. Under normality, ε is
independent of E(U1 | V ). Further,

(11.5)E(U1 | V ) = Cov(U1, V )

Var(V )
V,

assuming E(U1) = 0 and E(V ) = 0. In that section, we show how to construct a control
function in the context of the choice model

D = 1
[
μD(Z) � V

]
.

Controlling for V controls for the component of θ1 in (U-1)′ that gives rise to the spu-
rious dependence. The Blundell and Powell (2003, 2004) application of the control
function principle assumes functional form (11.5) but assumes that V can be perfectly
proxied by a first stage equation. Thus they use a replacement function in their first
stage. Their method does not work when one can only condition on D rather than on

190 Cunha, Heckman and Schennach (2007, 2006b) apply and extend this approach to a dynamic factor
setting where the θt are time-dependent.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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D∗ = μD(Z) − V .191 In the sample selection model, it is not necessary to use V . As
developed in Chapter 70 and reviewed in Sections 4.8 and 8.3.1 of this chapter, under
additive separability for the outcome equation for Y1, we can write

E(Y1 | X,Z,D = 1) = μ1(X) + E
(
U1
∣∣ μD(Z) � V

)
︸ ︷︷ ︸

control function

so we “expect out” rather than solve out the effect of the component of V on U1 and thus
control for selection bias under our maintained assumptions. In terms of the propensity
score, under the conditions specified in Chapter 70, we may write the preceding expres-
sion in terms of P(Z):

E(Y1 | X,Z,D = 1) = μ1(X) + K1
(
P(Z)

)
,

where K1(P (Z)) = E(U1 | X,Z,D = 1). It is not necessary to know V or be able
to estimate it. The Blundell and Powell (2003, 2004) application of the control function
principle assumes that the analyst can condition on and estimate V .

The Blundell–Powell method and the method of Imbens and Newey (2002) build
heavily on (11.5) and implicitly make strong distributional and functional form assump-
tions that are not intrinsic to the method of control functions. As just noted, their method
uses a replacement function to obtain E(U1 | V ) in the first step of their procedures. The
general control function method does not require a replacement function approach. The
literature has begun to distinguish between the more general control function approach
and the control variate approach that uses a first stage replacement function.

Matzkin (2003) develops the method of unobservable instruments which is a version
of the replacement function approach applied to nonlinear models. Her unobservable
instruments play the role of covariance restrictions used to identify classical simultane-
ous equations models [see Fisher (1966)]. Her approach is distinct from and therefore
complementary with linear factor models. Instead of assuming (X,Z,Q) ⊥⊥ (θ, εj ),
she assumes in a two equation system that (θ, ε1)⊥⊥ Y2 | Y1, X,Z. See the discussion
in Chapter 73 (Matzkin) of this Handbook.

We have not discussed panel data methods in this chapter. The most commonly
used panel data method is difference-in-differences as discussed in Heckman and Robb
(1985a), Blundell, Duncan and Meghir (1998), Heckman, LaLonde and Smith (1999),
and Bertrand, Duflo and Mullainathan (2004), to cite only a few key papers. Most of
the estimators we have discussed can be adapted to a panel data setting. Heckman et
al. (1998) develop difference-in-differences matching estimators. Abadie (2002) ex-
tends this work.192 Separability between errors and observables is a key feature of the
panel data approach in its standard application. Altonji and Matzkin (2005) and Matzkin
(2003) present analyses of nonseparable panel data methods.

191 Imbens and Newey (2002) extend their approach. See the discussion in Chapter 73 (Matzkin) of this
Handbook.
192 There is related work by Athey and Imbens (2006).

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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12. Summary

This chapter summarizes the main methods used to identify mean treatment effect
parameters under semiparametric and nonparametric assumptions. We have used the
marginal treatment effect as the unifying parameter to straddle a diverse econometric
literature summarized in Table 1 of this chapter. For each estimator, we establish what
it identifies, the economic content of the estimand and the identifying assumptions of
the method.

Appendix A: Relationships among parameters using the index structure

Given the index structure, a simple relationship exists among the parameters. It is im-
mediate from the definitions D = 1(UD � P(z)) and � = Y1 − Y0 that

(A.1)�TT(x, P (z)
) = E

(
�
∣∣ X = x,UD � P(z)

)
.

Next consider �LATE(x, P (z), P (z′)). Note that

E
(
Y
∣∣ X = x, P (Z) = P(z)

)
= P(z)

[
E
(
Y1
∣∣ X = x, P (Z) = P(z),D = 1

)]
+ (

1 − P(z)
)[

E
(
Y0
∣∣ X = x, P (Z) = P(z),D = 0

)]
=
∫ P(z)

0
E(Y1 | X = x,UD = uD) duD

+
∫ 1

P(z)

E(Y0 | X = x,UD = uD) duD,

so that

E
(
Y
∣∣ X = x, P (Z) = P(z)

)− E
(
Y
∣∣ X = x, P (Z) = P(z′)

)
=
∫ P(z)

P (z′)
E(Y1 | X = x,UD = uD) duD

−
∫ P(z)

P (z′)
E(Y0 | X = x,UD = uD) duD,

and thus

�LATE(x, P (z), P (z′)
) = E

(
�
∣∣ X = x, P (z′) � UD � P(z)

)
.

Notice that this expression could be taken as an alternative definition of LATE. Note
that, in this expression, we could replace P(z) and P(z′) with uD and u′

D . No instrument
needs to be available to define LATE.

We can rewrite these relationships in succinct form in the following way:

�MTE(x, uD) = E(� | X = x,UD = uD),
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�ATE(x) =
∫ 1

0
E(� | X = x,UD = uD) duD,

P (z)
[
�TT(x, P (z)

)] =
∫ P(z)

0
E(� | X = x,UD = uD) duD,

(
P(z) − P(z′)

)[
�LATE(x, P (z), P (z′)

)]
(A.2)=

∫ P(z)

P (z′)
E(� | X = x,UD = uD) duD.

We stress that everywhere in these expressions we can replace P(z) with uD and P(z′)
with u′

D . Each parameter is an average value of MTE, E(� | X = x,UD = uD),
but for values of UD lying in different intervals and with different weighting func-
tions. MTE defines the treatment effect more finely than do LATE, ATE, or TT. The
relationship between MTE and LATE or TT conditional on P(z) is analogous to the re-
lationship between a probability density function and a cumulative distribution function.
The probability density function and the cumulative distribution function represent the
same information, but for some purposes the density function is more easily interpreted.
Likewise, knowledge of TT for all P(z) evaluation points is equivalent to knowledge of
the MTE for all uD evaluation points, so it is not the case that knowledge of one pro-
vides more information than knowledge of the other. However, in many choice-theoretic
contexts it is often easier to interpret MTE than the TT or LATE parameters. It has the
interpretation as a measure of willingness to pay on the part of people on a specified
margin of participation in the program.

�MTE(x, uD) is the average effect for people who are just indifferent between par-
ticipation in the program (D = 1) or not (D = 0) if the instrument is externally set
so that P(Z) = uD . For values of uD close to zero, �MTE(x, uD) is the average effect
for individuals with unobservable characteristics that make them the most inclined to
participate in the program (D = 1), and for values of uD close to one it is the average
treatment effect for individuals with unobserved (by the econometrician) characteristics
that make them the least inclined to participate. ATE integrates �MTE(x, uD) over the
entire support of UD (from uD = 0 to uD = 1). It is the average effect for an individual
chosen at random from the entire population. �TT(x, P (z)) is the average treatment
effect for persons who chose to participate at the given value of P(Z) = P(z); it in-
tegrates �MTE(x, uD) up to uD = P(z). As a result, it is primarily determined by the
MTE parameter for individuals whose unobserved characteristics make them the most
inclined to participate in the program. LATE is the average treatment effect for some-
one who would not participate if P(Z) � P(z′) and would participate if P(Z) � P(z).
The parameter �LATE(x, P (z), P (z′)) integrates �MTE(x, uD) from uD = P(z′) to
uD = P(z).

Using the third expression in Equation (A.2) to substitute into Equation (A.1), we
obtain an alternative expression for the TT parameter as a weighted average of MTE
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parameters:

�TT(x)

=
∫ 1

0

1

p

[ ∫ p

0
E(� | X = x,UD = uD) duD

]
dFP(Z)|X,D(p|x,D = 1).

Using Bayes’ rule, it follows that

dFP(Z)|X,D(p | x, 1) = Pr(D = 1 | X = x, P (Z) = p)

Pr(D = 1 | X = x)
dFP(Z)|X(p|x).

Since Pr(D = 1 | X = x, P (Z) = p) = p, it follows that

�TT(x) = 1

Pr(D = 1 | X = x)

(A.3)×
∫ 1

0

(∫ p

0
E(� | X = x,UD = uD) duD

)
dFP(Z)|X(p|x).

Note further that since Pr(D = 1 | X = x) = E(P (Z) | X = x) = ∫ 1
0 (1 −

FP(Z)|X(t |x)) dt , we can reinterpret (A.3) as a weighted average of local IV parame-
ters where the weighting is similar to that obtained from a length-biased, size-biased, or
P -biased sample:

�TT(x) = 1

Pr(D = 1 | X = x)

×
∫ 1

0

(∫ 1

0
1(uD � p)E(� | X = x,UD = uD) duD

)
dFP(Z)|X(p|x)

= 1∫
(1 − FP(Z)|X(t |x)) dt

×
∫ 1

0

(∫ 1

0
E(� | X = x,UD = uD)1(uD � p) dFP(Z)|X(p|x)

)
duD

=
∫ 1

0
E(� | X = x,UD = uD)

(
1 − FP(Z)|X(uD|x)∫
(1 − FP(Z)|X(t |x)) dt

)
duD

=
∫ 1

0
E(� | X = x,UD = uD)gx(uD) duD,

where

gx(uD) = 1 − FP(Z)|X(uD|x)∫
(1 − FP(Z)|X(t |x)) dt

.

Thus gx(uD) is a weighted distribution [Rao (1985)]. Since gx(uD) is a nonincreasing
function of uD , we have that drawings from gx(uD) oversample persons with low val-
ues of UD , i.e., values of unobserved characteristics that make them the most likely to
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Figure A.1. MTE integrates to ATE and TT under full support (for dichotomous outcome). Source: Heckman
and Vytlacil (2000).

participate in the program no matter what their value of P(Z). Since

�MTE(x, uD) = E(� | X = x,UD = uD)

it follows that

�TT(x) =
∫ 1

0
�MTE(x, uD)gx(uD) duD.

The TT parameter is thus a weighted version of MTE, where �MTE(x, uD) is given the
largest weight for low uD values and is given zero weight for uD � pmax

x , where pmax
x

is the maximum value in the support of P(Z) conditional on X = x.
Figure A.1 graphs the relationship between �MTE(uD), �ATE and �TT(P (z)), as-

suming that the gains are the greatest for those with the lowest UD values and that the
gains decline as UD increases. The curve is the MTE parameter as a function of uD , and
is drawn for the special case where the outcome variable is binary so that MTE para-
meter is bounded between −1 and 1. The ATE parameter averages �MTE(uD) over the
full unit interval (i.e., is the area under A minus the area under B and C in the figure).
�TT(P (z)) averages �MTE(uD) up to the point P(z) (is the area under A minus the
area under B in the figure). Because �MTE(uD) is assumed to be declining in uD , the
TT parameter for any given P(z) evaluation point is larger then the ATE parameter.

Equation (A.2) relates each of the other parameters to the MTE parameter. One can
also relate each of the other parameters to the LATE parameter. This relationship turns
out to be useful later on in this chapter when we encounter conditions where LATE can
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be identified but MTE cannot. MTE is the limit form of LATE:

�MTE(x, p) = lim
p′→p

�LATE(x, p, p′).

Direct relationships between LATE and the other parameters are easily derived. The
relationship between LATE and ATE is immediate:

�ATE(x) = �LATE(x, 0, 1).

Using Bayes’ rule, the relationship between LATE and TT is

(A.4)�TT(x) =
∫ 1

0
�LATE(x, 0, p)

p

Pr(D = 1 | X = x)
dFP(Z)|X(p|x).

Appendix B: Relaxing additive separability and independence

There are two central assumptions that underlie the latent index representation used in
this chapter: that V is independent of Z, and that V and Z are additively separable in the
index.193 The latent index model with these two restrictions implies the independence
and monotonicity assumptions of Imbens and Angrist (1994) and the latent index model
implied by those assumptions implies a latent index model with a representation that
satisfies both the independence and the monotonicity assumptions. In this appendix, we
consider the sensitivity of the analysis presented in the text to relaxation of either of
these assumptions.

First, consider allowing V and Z to be nonseparable in the treatment index:

D∗ = μD(Z, V ),

D =
{

1 if D∗ � 0,

0 otherwise,

while maintaining the assumption that Z is independent of (V ,U1, U0). We do not
impose any restrictions on the cross partials of μD . The monotonicity condition of
Imbens and Angrist (1994) is that for any (z, z′) pair, μD(z, v) � μD(z′, v) for all v,
or μD(z, v) � μD(z′, v) for all v.194 Vytlacil (2002) shows that monotonicity always
implies one representation of μD as μD(z, v) = μD(z) + v. We now reconsider the
analysis in the text without imposing the monotonicity condition by considering the
latent index model without additive separability. Since we have imposed no structure
on the μD(z, v) index, one can easily show that this model is equivalent to impos-
ing the independence condition of Imbens and Angrist (1994) without imposing their

193 Recall that UD = FV |X(V ).
194 Note that the monotonicity condition is a restriction across v. For a given fixed v, it will always trivially
have to be the case that either μD(z, v) � μD(z′, v) or μD(z, v) � μD(z′, v).
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monotonicity condition. A random coefficient discrete choice model with μD = Zγ +ε

where γ and ε are random, and γ can assume positive or negative values is an example
of this case, i.e., V = (γ, ε).

We impose the regularity condition that, for any z ∈ Supp(Z), μD(z, V ) is absolutely
continuous with respect to Lebesgue measure.195 Let

Ω(z) = {
v: μD(z, v) � 0

}
,

so that

P(z) ≡ Pr(D = 1 | Z = z) = Pr
(
V ∈ Ω(z)

)
.

Under additive separability, P(z) = P(z′) ⇔ Ω(z) = Ω(z′). This equivalence enables
us to define the parameters in terms of the P(z) index instead of the full z vector. In
the more general case without additive separability, it is possible to have (z, z′) such
that P(z) = P(z′) and Ω(z) �= Ω(z′). We present a random coefficient choice model
example of this case in Section 4.10.1 in the text. In this case, we can no longer replace
Z = z with P(Z) = P(z) in the conditioning sets.

Define, using � = Y1 − Y0,

�MTE(x, v) = E(� | X = x, V = v).

For ATE, we obtain the same expression as before:

�ATE(x) =
∫ ∞

−∞
E(� | X = x, V = v) dFV |X(v).

For TT, we obtain a similar but slightly more complicated expression:

�TT(x, z) ≡ E(� | X = x,Z = z,D = 1)

= E
(
�
∣∣ X = x, V ∈ Ω(z)

)
= 1

P(z)

∫
Ω(z)

E(� | X = x, V = v) dFV |X(v).

Because it is no longer the case that we can define the parameter solely in terms of
P(z) instead of z, it is possible to have (z, z′) such that P(z) = P(z′) but �TT(x, z) �=
�TT(x, z′).

Following the same derivation as used in the text for the TT parameter not conditional
on Z,

�TT(x)

≡ E(� | X = x,D = 1)

=
∫

E(� | X = x,Z = z,D = 1) dFZ|X,D(z|x, 1)

195 We impose this condition to ensure that Pr(μD(z, V ) = 0) = 0 for any z ∈ Supp(Z).
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= 1

Pr(D = 1 | X = x)

×
∫ [ ∫ ∞

−∞
1
[
v ∈ Ω(z)

]
E(� | X = x, V = v) dFV |X(v)

]
dFZ|X(z|x)

= 1

Pr(D = 1 | X = x)

×
∫ ∞

−∞

[ ∫
1
[
v ∈ Ω(z)

]
E(� | X = x, V = v) dFZ|X(z|x)

]
dFV |X(v)

=
∫ ∞

−∞
E(� | X = x, V = v)gx(v) dv,

where

gx(v) =
∫

1[v ∈ Ω(z)] dFZ|X(z|x)

Pr(D = 1 | X = x)
= Pr(D = 1 | V = v,X = x)

Pr(D = 1 | X = x)
.

Thus the definitions of the parameters and the relationships among them that are de-
veloped in the main text of this chapter generalize in a straightforward way to the
nonseparable case. Separability allows us to define the parameters in terms of P(z) in-
stead of z and allows for slightly simpler expressions, but is not crucial for the definition
of parameters or the relationship among them.

Separability is, however, crucial to the form of LATE when we allow V and Z to be
additively nonseparable in the treatment index. For simplicity, we will keep the condi-
tioning on X implicit. Define the following sets

A(z, z′) = {
v: μD(z, v) � 0, μD(z′, v) � 0

}
,

B(z, z′) = {
v: μD(z, v) � 0, μD(z′, v) < 0

}
,

C(z, z′) = {
v: μD(z, v) < 0, μD(z′, v) < 0

}
,

D(z, z′) = {
v: μD(z, v) < 0, μD(z′, v) � 0

}
.

Monotonicity implies that either B(z, z′) or D(z, z′) is empty. Suppressing the z, z′
arguments, we have

E(Y | Z = z) = Pr(A ∪ B)E(Y1 | A ∪ B) + Pr(C ∪ D)E(Y0 | C ∪ D),

E(Y | Z = z′) = Pr(A ∪ D)E(Y1 | A ∪ D) + Pr(B ∪ C)E(Y0 | B ∪ C)

so that

E(Y | Z = z) − E(Y | Z = z′)
Pr(D = 1 | Z = z) − Pr(D = 1 | Z = z′)

= E(Y | Z = z) − E(Y | Z = z′)
Pr(A ∪ B) − Pr(A ∪ D)
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= Pr(B)E(Y1 − Y0 | B) − Pr(D)E(Y1 − Y0 | D)

Pr(B) − Pr(D)

= wBE(� | B) − wDE(� | D)

with

wB = Pr(B | B ∪ D)

Pr(B | B ∪ D) − Pr(D | B ∪ D)
,

wD = Pr(D | B ∪ D)

Pr(B | B ∪ D) − Pr(D | B ∪ D)
.

Under monotonicity, either Pr(B) = 0 and LATE identifies E(� | D) or Pr(D) = 0 and
LATE identifies E(� | B). Without monotonicity, the IV estimator used as the sample
analogue to LATE converges to the above weighted difference in the two terms, and the
relationship between LATE and the other treatment parameters presented in the text no
longer holds.

Consider what would happen if we could condition on a given v. For v ∈ A ∪ C, the
denominator is zero and the parameter is not well defined. For v ∈ B, the parameter
is E(� | V = v), for v ∈ D, the parameter is E(� | V = v). If we could restrict
conditioning to v ∈ B (or v ∈ D), we would obtain monotonicity within the restricted
sample.

Now consider LIV. For simplicity, assume z is a scalar. Assume μD(z, v) is continu-
ously differentiable in (z, v), with μj (z, v) denoting the partial derivative with respect
to the j th argument. Assume that μD(Z, V ) is absolutely continuous with respect to
Lebesgue measure. Fix some evaluation point, z0. One can show that there may be at
most a countable number of v points such that μD(z0, v) = 0. Let j ∈ J = {1, . . . , L}
index the set of v evaluation points such that μD(z0, v) = 0, where L may be infinity,
and thus write: μD(z0, vj ) = 0 for all j ∈ J . (Both the number of such evalua-
tion points and the evaluation points themselves depend on the evaluation point, z0,
but we suppress this dependence for notational convenience.) Assume that there ex-

ists {Bk}k∈J ,
∑

k∈J Bk < ∞ such that |μ1(z,vk)

μ2(z,vk)
| � Bk for k ∈ J and all z in some

neighborhood of z0. One can show that

∂

∂z

[
E(Y | Z = z)

]∣∣
z=z0

=
L∑

k=1

μ1(z0, vk)

|μ2(z0, vk)|E(� | V = vk)

and

∂

∂z

[
Pr(D = 1 | Z = z)

]∣∣
z=z0

=
L∑

k=1

μ1(z0, vk)

|μ2(z0, vk)| .

LIV is the ratio of these two terms, and does not in general equal the MTE. Thus, the
relationship between LIV and MTE breaks down in the nonseparable case.



5106 J.J. Heckman and E.J. Vytlacil

As an example, take the case where L is finite and μ1(z0,vk)

|μ2(z0,vk)| does not vary with k.
For this case,

�LIV(z0) = Pr
(
μ1(z0, V ) > 0

∣∣ μ(z0, V ) = 0
)

· E
(
�
∣∣ μD(z0, V ) = 0, μ1(z0, V ) > 0

)
− Pr

(
μ1(z0, V ) < 0

∣∣ μ(z0, V ) = 0
)

· E
(
�
∣∣ μD(z0, V ) = 0, μ1(z0, V ) < 0

)
.

Thus, while the definition of the parameters and the relationship among them does not
depend crucially on the additive separability assumption, the connection between the
LATE or LIV estimators and the underlying parameters crucially depends on the addi-
tive separability assumption.

Next consider the assumption that V and Z are separable in the treatment index while
allowing them to be stochastically dependent:

D∗ = μD(Z) − V,

D =
{

1 if D∗ � 0,

0 otherwise,

with Z independent of (U0, U1), but allowing Z and V to be stochastically dependent.
The analysis of Vytlacil (2002) can be easily adapted to show that the latent index
model with separability but without imposing independence is equivalent to imposing
the monotonicity assumption of Imbens and Angrist without imposing their indepen-
dence assumption.196

We have

Ω(z) = {
v: μD(z) � v

}
and

P(z) ≡ Pr(D = 1 | Z = z) = Pr
(
V ∈ Ω(z)

∣∣ Z = z
)
.

Note that Ω(z) = Ω(z′) ⇒ μD(z) = μD(z′), but Ω(z) = Ω(z′) does not imply
P(z) = P(z′) since the distribution of V conditional on Z = z need not equal the
distribution of V conditional on Z = z′. Likewise, P(z) = P(z′) does not imply
Ω(z) = Ω(z′). As occurred in the nonseparable case, we can no longer replace Z = z

with P(Z) = P(z) in the conditioning sets.197

196 To show that the monotonicity assumption implies a separable latent index model, one can follow the
proofs of Vytlacil (2002) with the sole modification of replacing P(z) = Pr(D = 1 | Z = z) with
Pr(D(z) = 1), where D(z) is the indicator variable for whether the agent would have received treatment
if Z had been externally set to z.
197 However, we again have equivalence between the alternative conditioning sets if we assume index suffi-
ciency, i.e., that FV |Z(v|z) = FV |P(Z)(v|P(z)).
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Consider the definition of the parameters and the relationship among them. The defin-
ition of MTE and ATE in no way involves Z, nor does the relationship between them, so
that both their definition and their relationship remains unchanged by allowing Z and V

to be dependent. Now consider the TT parameter where now we make the dependence
of X explicit:

�TT(x, z) = E
(
�
∣∣ X = x,Z = z, V � μD(z)

)
= 1

P(z)

∫ μD(z)

−∞
E(� | X = x, V = v) dFV |Z,X(v|z, x)

= 1

P(z)

∫ μD(z)

−∞
E(� | X = x, V = v)

fZ|V,X(z|v, x)

fZ|X(z|x)
dFV |X(v|x),

where fZ|X and fZ|V,X denote the densities corresponding to FZ|X and FZ|V,X with
respect to the appropriate dominating measure. We thus obtain

�TT(x) = E
(
�
∣∣ X = x, V � μD(Z)

)
= 1

Pr(D = 1 | X = x)

∫ [ ∫ μD(z)

−∞
E(� | X = x, V = v)

× fZ|U,X(z|v, x)

fZ|X(z|x)
dFV |X(v|x)

]
dFZ|X(z|x)

= 1

Pr(D = 1 | X = x)

∫ ∞

−∞

[ ∫
1
[
v � μD(z)

]
E(� | X = x, V = v)

× fZ|U,X(z|v, x)

fZ|X(z|x)
dFZ|X(z|x)

]
dFV |X(v|x)

= 1

Pr(D = 1 | X = x)

×
∫ ∞

−∞

[∫
1
[
v � μD(z)

]
× E(� | X = x, V = v) dFZ|V,X(z|v, x)

]
dFV |X(v|x)

=
∫ ∞

−∞
E(� | X = x, V = v)gx(v) dv,

where

gx(v) = Pr(D = 1 | V = v,X = x)

Pr(D = 1 | X = x)
.

Thus the definitions of parameters and the relationships among the parameters that are
developed in the text generalize naturally to the case where Z and V are stochastically
dependent. Independence (combined with the additive separability assumption) allows
us to define the parameters in terms of P(z) instead of z and allows for slightly simpler
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expressions, but is not crucial for the definition of parameters or the relationship among
them.

We next investigate LATE when we allow V and Z to be stochastically dependent.
We have

E(Y | X = x,Z = z)

= P(z)
[
E(Y1 | X = x,Z = z,D = 1)

]
+ (

1 − P(z)
)[

E(Y0 | X = x,Z = z,D = 0)
]

=
∫ μD(z)

−∞
E(Y1 | X = x, V = v) dFV |X,Z(v|x, z)

+
∫ ∞

μD(z)

E(Y0 | X = x, V = v) dFV |X,Z(v|x, z).

For simplicity, take the case where μD(z) > μD(z′). Then

E(Y | X = x,Z = z) − E(Y | X = x,Z = z′)

=
[ ∫ μD(z)

μD(z′)
E(Y1 | X = x, V = v) dFV |X,Z(v|x, z)

−
∫ μD(z)

μD(z′)
E(Y0 | X = x, V = v) dFV |X,Z(v|x, z′)

]

+
∫ μD(z′)

−∞
E(Y1 | X = x, V = v)

(
dFV |X,Z(v|x, z) − dFV |X,Z(v|x, z′)

)
+
∫ ∞

μD(z)

E(Y0 | X = x, V = v)
(
dFV |X,Z(v|x, z) − dFV |X,Z(v|x, z′)

)
and thus

�LATE(x, z, z′)
= δ0(z)E

(
Y1
∣∣ X = x,Z = z, μD(z′) � V � μD(z)

)
− δ0(z

′)E
(
Y0
∣∣ X = x,Z = z′, μD(z′) � V � μD(z)

)
+ [

δ1(z)E
(
Y1
∣∣ X = x,Z = z, V � μD(z′)

)
− δ1(z

′)E
(
Y1 | X = x,Z = z′, V � μD(z′)

)]
+ [

δ2(z)E
(
Y0
∣∣ X = x,Z = z, V > μD(z)

)
− δ2(z

′)E
(
Y0
∣∣ X = x,Z = z′, V > μD(z)

)]
,

with

δ0(t) = Pr(μD(z′) � V � μD(z) | Z = t)

Pr(V � μD(z) | Z = z,X = x) − Pr(V � μD(z′) | Z = z′, X = x)
,

δ1(t) = Pr(V � μD(z′) | Z = t)

Pr(V � μD(z) | Z = z,X = x) − Pr(V � μD(z′) | Z = z′, X = x)
,
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δ2(t) = Pr(V > μD(z) | Z = t)

Pr(V � μD(z) | Z = z,X = x) − Pr(V � μD(z′) | Z = z′, X = x)
.

Note that δ0(z) = δ0(z
′) = 1 and the two terms in brackets are zero in the case where

Z and V are independent. In the more general case, δ0 may be bigger or smaller than 1,
and the terms in brackets are of unknown sign. In general, LATE may be negative even
when � is positive for all individuals.

Now consider LIV. For simplicity, take the case where Z is a continuous scalar r.v. Let
fV |Z(v|z) denote the density of V conditional on Z = z, and assume that this density is
differentiable in z. Then we obtain

∂E(Y | X = x,Z = z)

∂z

= E
(
�
∣∣ X = x, V = μD(z)

)
μ′

D(z)fV |Z,X

(
v
∣∣ x, μD(z)

)
+
[∫ μD(z)

−∞
E(Y1 | X = x, V = v)

∂fV |Z,X(v|z, x)

∂z
dv

+
∫ ∞

μD(z)

E(Y0 | X = x, V = v)
∂fV |Z,X(v|z, x)

∂z
dv

]
,

and

∂ Pr(D = 1 | Z = z)

∂z
= fV |Z,X

(
v | x, μD(z)

)
μ′

D(z)

+
∫ μD(z)

−∞
∂fV |Z,X(v|z, x)

∂z
dv.

LIV is the ratio of the two terms. Thus, without the independence condition, the rela-
tionship between LIV and the MTE breaks down.

PROOF OF EQUATION (4.20).

E(Yp | X)

=
∫

E(Yp | X,V = v, Zp = z) dFV,Zp |X(v, z)

=
∫ (

1Ω(z)E(Y1 | X,V = v, Zp = z)

+ 1Ωc(z)E(Y0 | X,V = v, Zp = z)
)
dFV,Zp |X(v, z)

=
∫ (

1Ω(z)E(Y1 | X,V = v) + 1Ωc(z)E(Y0 | X,V = v)
)
dFV,Zp |X(v, z)

=
∫ [ ∫ (

1Ω(z)E(Y1 | X,V = v)

+ 1Ωc(z)E(Y0 | X,V = v)
)
dFZp |X(z)

]
dFV |X(v)
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=
∫ [

Pr[Zp ∈ Ω | X]E(Y1 | X,V = v)

+ (
1 − Pr[Zp ∈ Ω(z) | X])E(Y0 | X,V = v)

]
dFV |X(v),

where Ωc(z) denotes the complement of Ω(z) and where the first equality follows
from the law of iterated expectations; the second equality follows by plugging in
our threshold crossing model for D; the third equality follows from independence
Z ⊥⊥ (Y1, Y0, V ) | X; the fourth and fifth equalities follow by an application of Fu-
bini’s Theorem and a rearrangement of terms. Fubini’s Theorem may be applied by
assumption (A-4). Thus comparing policy p to policy p′, we obtain (4.20):

E(Yp | X) − E(Yp′ | X)

=
∫

E(� | X,V = v)
(
Pr[Zp ∈ Ω | X] − Pr[Zp′ ∈ Ω | X]) dFV |X(v).

�

PROOF OF EQUATION (4.21).

E(Yp | X)

=
∫

E(Yp | X,V = v, Zp = z) dFV,Zp |X(v, z)

=
∫ [

1[−∞,μD(z)](v)E(Y1 | X,Z = z, V = v)

+ 1(μD(z),∞](v)E(Y0 | X,Z = z, V = v)
]
dFV,Zp |X(v, z)

=
∫ [

1[−∞,μD(z)](v)E(Y1 | X,V = v)

+ 1(μD(z),∞](v)E(Y0 | X,V = v)
]
dFV,Zp |X(v, z)

=
∫ [∫ (

1[−∞,μD(z)](v)E(Y1 | X,V = v)

+ 1(μD(z),∞](v)E(Y0 | X,V = v)
)
dFZp |V (z|v)

]
dFV |X(v)

=
∫ [(

1 − Pr
[
μD(Zp) < v

∣∣ V = v
])

E(Y1 | X,V = v)

+ Pr
[
μD(Zp) < v

∣∣ V = v
]
E(Y0 | X,V = v)

]
dFV |X(v),

where the first equality follows from the law of iterated expectations; the second equality
follows by plugging in our model for D; the third equality follows from independence
Z ⊥⊥ (Y1, Y0) | X,V ; the fourth equality follows by an application of Fubini’s Theorem;
and the final equality follows immediately. Thus comparing policy p to policy p′, we
obtain (4.21) in the text. �
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Appendix C: Derivation of PRTE and implications of noninvariance for PRTE

PROOF OF EQUATION (3.6). To simplify the notation, assume that Υ (Y ) = Y . Modifi-
cations required for the more general case are obvious. Define 1P (t) to be the indicator
function for the event t ∈ P . Then

E(Yp | X)

=
∫ 1

0
E
(
Yp

∣∣ X,Pp(Zp) = t
)
dFPp |X(t)

=
∫ 1

0

[∫ 1

0

[
1[0,t](uD)E(Y1,p | X,UD = uD)

+ 1(t,1](uD)E(Y0,p | X,UD = uD)
]
duD

]
dFPp |X(t)

=
∫ 1

0

[∫ 1

0

[
1[uD,1](t)E(Y1,p | X,UD = uD)

+ 1(0,uD](t)E(Y0,p | X,UD = uD)
]
dFPp |X(t)

]
duD

=
∫ 1

0

[(
1 − FPp |X(uD)

)
E(Y1,p | X,UD = uD)

+ FPp |X(uD)E(Y0,p | X,UD = uD)
]
duD.198

This derivation involves changing the order of integration. Note that from (A-4),

E
∣∣1[0,t](uD)E(Y1,p | X,UD = uD)

+ 1(t,1](uD)E(Y0,p | X,UD = uD)
∣∣ � E

(|Y1| + |Y0|
)

< ∞,

so the change in the order of integration is valid by Fubini’s Theorem. Comparing pol-
icy p to policy p′,

E(Yp | X) − E(Yp′ | X)

=
∫ 1

0
E(� | X,UD = uD)

(
FPp′ |X(uD) − FPp |X(uD)

)
duD,

which gives the required weights. (Recall � = Y1 −Y0 and from (A-7) we can drop the
p, p′ subscripts on outcomes and errors.) �

198 Recall that p denotes the policy in this section and t is a value assumed by P(Z).
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RELAXING A-7 (Implications of noninvariance for PRTE). Suppose that all of the
assumptions invoked up through Section 3.2 are satisfied, including additive sepa-
rability in the latent index choice equation (3.3) (equivalently, the monotonicity or
uniformity condition). Impose the normalization that the distribution of UD is unit
uniform (UD = FV |X(V | X)). Suppose however, contrary to (A-7), that the dis-
tribution of (Y1, Y0, UD,X) is different under the two regimes p and p′. Thus, let
(Y1,p, Y0,p, UD,p,Xp) and (Y1,p′ , Y0,p′ , UD,p′ , Xp′) denote the random vectors under
regimes p and p′, respectively. Following the same analysis as used to derive Equa-
tion (3.6), the PRTE conditional on X is given by

E(Yp | Xp = x) − E(Yp′ | Xp′ = x)

=
∫ 1

0
E(Y1,p − Y0,p | Xp = x,UD,p = u)

(I)× [
FPp′ |Xp′ (u|x) − FPp |Xp(u|x)

]
du

(II)+
∫ 1

0

[
E(Y0,p | Xp = x,UD,p = u) − E(Y0,p′ | Xp′ = x,UD,p′ = u)

]
du

+
∫ 1

0

[(
1 − FPp′ |Xp′ (u|x)

)(
E(Y1,p − Y0,p | Xp = x,UD,p = u)

(III)− E(Y1,p′ − Y0,p′ | Xp′ = x,UD,p′ = u)
)]

du.

Thus, when the policy affects the distribution of (Y1, Y0, UD,X), the PRTE is given by
the sum of three terms: (I) the value of PRTE if the policy did not affect (Y1, Y0, X,UD);
(II) the weighted effect of the policy change on E(Y0 | X,UD); and (III) the weighted
effect of the policy change on MTE. Evaluating the PRTE requires knowledge of the
MTE function in both regimes, knowledge of E(Y0 | X = x,UD = u) in both
regimes, as well as knowledge of the distribution of P(Z) in both regimes. Note,
however, that if we assume that the distribution of (Y1,p, Y0,p, UD,p) conditional on
Xp = x equals the distribution of (Y1,p′ , Y0,p′ , UD,p′) conditional on Xp′ = x, then
E(Y1,p | UD,p = u,Xp = x) = E(Y1,p′ | UD,p′ = u,Xp′ = x), E(Y0,p |
UD,p = u,Xp = x) = E(Y0,p′ | UD,p′ = u,Xp′ = x), and thus the last two terms
vanish and the expression for PRTE simplifies to the expression of Equation (3.6).

Appendix D: Deriving the IV weights on MTE

We consider instrumental variables conditional on X = x using a general function of
Z as an instrument. To simplify the notation, we keep the conditioning on X implicit.
Let J (Z) be any function of Z such that Cov(J (Z),D) �= 0. Consider the population
analogue of the IV estimator,

Cov(J (Z), Y )

Cov(J (Z),D)
.
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First consider the numerator of this expression,

Cov
(
J (Z), Y

) = E
([

J (Z) − E
(
J (Z)

)]
Y
)

= E
((

J (Z) − E
(
J (Z)

))(
Y0 + D(Y1 − Y0)

))
= E

((
J (Z) − E

(
J (Z)

))
D(Y1 − Y0)

)
,

where the second equality comes from substituting in the definition of Y and the third
equality follows from conditional independence assumption (A-1). Define J̃ (Z) ≡
J (Z) − E(J (Z)). Then

Cov
(
J (Z), Y

)
= E

(
J̃ (Z)1

[
UD � P(Z)

]
(Y1 − Y0)

)
= E

(
J̃ (Z)1

[
UD � P(Z)

]
E(Y1 − Y0 | Z,UD)

)
= E

(
J̃ (Z)1

[
UD � P(Z)

]
E(Y1 − Y0 | UD)

)
= EUD

(
EZ

[
J̃ (Z)1

[
UD � P(Z)

] ∣∣ UD

]
E(Y1 − Y0 | UD)

)
=
∫ 1

0

{
E
(
J̃ (Z)

∣∣ P(Z) � uD

)
Pr
(
P(Z) � uD

)
E(Y1 − Y0 | UD = uD)

}
duD

=
∫ 1

0
�MTE(x, uD)E

(
J̃ (Z)

∣∣ P(Z) � uD

)
Pr
(
P(Z) � uD

)
duD,

where the first equality follows from plugging in the model for D; the second equal-
ity follows from the law of iterated expectations with the inside expectation condi-
tional on (Z,UD); the third equality follows from conditional independence assump-
tion (A-1); the fourth equality follows from Fubini’s Theorem and the law of iterated
expectations with the inside expectation conditional on (UD = uD) (and implicitly
on X); this allows to reverse the order of integration in a multiple integral; the fifth
equality follows from the normalization that UD is distributed unit uniform conditional
on X; and the final equality follows from plugging in the definition of �MTE. Next
consider the denominator of the IV estimand. Observe that by iterated expectations

Cov
(
J (Z),D

) = Cov
(
J (Z), P (Z)

)
.

Thus, the population analogue of the IV estimator is given by

(D.1)
∫ 1

0
�MTE(uD)ω(uD) duD,

where

(D.2)ω(uD) = E(J̃ (Z) | P(Z) � uD) Pr(P (Z) � uD)

Cov(J (Z), P (Z))
,

where by assumption Cov(J (Z), P (Z)) �= 0.
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If J (Z) and P(Z) are continuous random variables, then an interpretation of the
weight can be derived from (D.2) by noting that∫ (

j − E
(
J (Z)

)) ∫ 1

uD

fP,J (t, j) dt dj

=
∫ (

j − E
(
J (Z)

))
fJ (j)

∫ 1

uD

fP |J
(
t
∣∣ J (Z) = j

)
dt dj.

Write∫ 1

uD

fP |J
(
t
∣∣ J (Z) = j

)
dt = 1 − FP |J

(
uD

∣∣ J (Z) = j
)

= SP |J
(
uD

∣∣ J (Z) = j
)
,

where SP |J (uD | J (Z) = j) is the probability of (P (Z) � uD) given J (Z) = j (and
implicitly X = x). Likewise, Pr[P(Z) > UD | J (Z)] = SP |J (UD | J (Z)). Using these
results, we may write the weight as

ω(uD) = Cov(J (Z), SP |J (uD | J (Z)))

Cov(J (Z), SP |J (UD | J (Z)))
.

For fixed uD and x evaluation points, SP |J (uD | J (Z)) is a function of the random vari-
able J (Z). The numerator of the preceding expression is the covariance between J (Z)

and the probability that the random variable P(Z) is greater than the evaluation point
uD conditional on J (Z).

SP |J (UD | J (Z)) is a function of the random variables UD and J (Z). The denomi-
nator of the above expression is the covariance between J (Z) and the probability that
the random variable P(Z) is greater than the random variable UD conditional on J (Z).
Thus, it is clear that if the covariance between J (Z) and the conditional probability
that (P (Z) > uD) given J (Z) is positive for all uD , then the weights are positive. The
conditioning is trivially satisfied if J (Z) = P(Z), so the weights are positive and IV
estimates a gross treatment effect. If the J (Z) and P(Z) are discrete-valued, we obtain
expressions and (4.15) and (4.16) in the text.

D.1. Yitzhaki’s Theorem and the IV weights [Yitzhaki (1989)]

THEOREM. Assume (Y,X) i.i.d., E(|Y |) < ∞, E(|X|) < ∞, g(X) = E(Y | X),
g′(X) exists and E(|g′(x)|) < ∞. Let μY = E(Y) and μX = E(X). Then,

Cov(Y,X)

Var(X)
=
∫ ∞

−∞
g′(t)ω(t) dt,

where

ω(t) = 1

Var(X)

∫ ∞

t

(x − μX)fX(x) dx
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= 1

Var(X)
E(X − μX | X > t) Pr(X > t).

PROOF.

Cov(Y,X) = Cov
(
E(Y | X),X

) = Cov
(
g(X),X

)
=
∫ ∞

−∞
g(t)(t − μX) fX(t) dt.

Integration by parts implies that

= g(t)

∫ t

−∞
(x − μX)fX(x) dx

∣∣∣∣∞−∞

−
∫ ∞

−∞
g′(t)

∫ t

−∞
(x − μX) fX(x) dx dt

=
∫ ∞

−∞
g′(t)

∫ ∞

t

(x − μX) fX(x) dx dt,

since E(X − μX) = 0 and the first term in the first expression vanishes.
Therefore,

Cov(Y,X) =
∫ ∞

−∞
g′(t)E(X − μX | X > t) Pr(X > t) dt,

so

ω(t) = 1

Var(X)
E(X − μX | X > t) Pr(X > t).

�

Notice that:

(i) The weights are nonnegative (ω(t) � 0).
(ii) They integrate to one (use an integration by parts formula).

(iii) ω(t) → 0 when t → −∞, and ω(t) → 0 when t → ∞.

We get the formula in the text when we use P(Z), with a suitably defined domain, in
place of X. We apply Yitzhaki’s result to the treatment effect model:

Y = α + βD + ε,

E
(
Y
∣∣ P(Z)

) = α + E
(
β
∣∣ D = 1, P (Z)

)
P(Z)

= α + E
(
β
∣∣ P(Z) > uD, P (Z)

)
P(Z)

= g
(
P(Z)

)
.
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By the law of iterated expectations, we eliminate the conditioning on D = 0. Using our
previous results for OLS,

IV = Cov(Y, P (Z))

Cov(D, P (Z))
=
∫

g′(t)ω(t) dt,

g′(t) = ∂[E(β | D = 1, P (Z))]P(Z)

∂P (Z)

∣∣∣∣
P(Z)=t

,

ω(t) =
∫ 1
t
[ϕ − E(P (Z))]fP (ϕ) dϕ

Cov(P (Z),D)
.

Under (A-1) to (A-5) and separability, g′(t) = �MTE(t) but g′(t) = LIV, for P(Z) as
an instrument.

D.2. Relationship of our weights to the Yitzhaki weights199

Under our assumptions the Yitzhaki weights and ours are equivalent. Using (4.12),

Cov
(
J (Z), Y

) = E(Y · J̃ ) = E
(
E(Y | Z) · J̃ (Z)

)
= E

(
E
(
Y
∣∣ P(Z)

) · J̃ (Z)
) = E

(
g
(
P(Z)

) · J̃ (Z)
)
.

The third equality follows from index sufficiency and J̃ = J (Z) − E(J (Z) |
P(Z) � uD), where E(Y | P(Z)) = g(P (Z)). Writing out the expectation and as-
suming that J (Z) and P(Z) are continuous random variables with joint density fP,J

and that J (Z) has support [ J , J̄ ],

Cov
(
J (Z), Y

) =
∫ 1

0

∫ J̄

J

g(uD)j̃fP,J (uD, j) dj duD

=
∫ 1

0
g(uD)

∫ J̄

J

j̃fP,J (uD, j) dj duD.

Using an integration by parts argument as in Yitzhaki (1989) and as summarized in
Heckman, Urzua and Vytlacil (2006), we obtain

Cov
(
J (Z), Y

) = g(uD)

∫ uD

0

∫ J̄

J

j̃fP,J (p, j) dj dp

∣∣∣∣1
0

−
∫ 1

0
g′(uD)

∫ uD

0

∫ J̄

J

j̃fP,J (p, j) dj dp duD

=
∫ 1

0
g′(uD)

∫ 1

uD

∫ J̄

J

j̃fP,J (p, j) dj dp duD

199 We thank Benjamin Moll for the derivation presented in this subsection.
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=
∫ 1

0
g′(uD)E

(
J̃ (Z)

∣∣ P(Z) � uD

)
Pr
(
P(Z) � uD

)
duD,

which is then exactly the expression given in (4.12), where

g′(uD) = ∂E(Y | P(Z) = p)

∂P (Z)

∣∣∣∣
p=uD

= �MTE(uD).

Appendix E: Derivation of the weights for the mixture of normals example

Writing E1 as the expectation for group 1, letting μ1 be the mean of Z for population 1
and μ11 be the mean of the first component of Z,

E1(Z1 | γ ′Z > v)

= μ11 + γ ′Σ1
1

γ ′Σ1γ
E1(Z1 − μ1 | γ ′Z > v)

= μ11 + γ ′Σ1
1

(γ ′Σ1γ )1/2
E1

(
γ ′(Z − μ1)

(γ ′Σ1γ )1/2

∣∣∣ γ ′(Z − μ1)

(γ ′Σ1γ )1/2
>

(v − γ ′μ1)

(γ ′Σ1γ )1/2

)

= μ11 + γ ′Σ1
1

(γ ′Σ1γ )1/2
λ

(
(v − γ ′μ1)

(γ ′Σ1γ )1/2

)
,

where

λ(c) = 1√
2π

e−c2/2

Φ(−c)
,

where Φ(·) is the unit normal cumulative distribution function.
By the same logic, in the second group:

E2(Z1 | γ ′Z > v) = μ21 + γ ′Σ1
2

(γ ′Σ2γ )1/2
λ

(
(v − γ ′μ2)

(γ ′Σ2γ )1/2

)
.

Therefore for the overall population we obtain

E
(
Z1 − E(Z1)

∣∣ γ ′Z > v
)

Pr(γ ′Z > v)

= (P1μ11 + P2μ21) Pr(γ ′Z > v)

+ P1γΣ1
1

(γ ′Σ1γ )1/2
√

2π
exp

[
−1

2

(
v − γ ′μ1

(γ ′Σ1γ )1/2

)2]

+ P2γΣ1
2

(γ ′Σ2γ )1/2
√

2π
exp

[
−1

2

(
v − γ ′μ2

(γ ′Σ2γ )1/2

)2]
− (P1μ11 + P2μ21) Pr(γ ′Z > v)

= P1γΣ1
1

(γ ′Σ1γ )1/2
√

2π
exp

[
−1

2

(
v − γ ′μ1

(γ ′Σ1γ )1/2

)2]
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+ P2γΣ1
2

(γ ′Σ2γ )1/2
√

2π
exp

[
−1

2

(
v − γ ′μ2

(γ ′Σ2γ )1/2

)2]
.

We need Cov(D,Z1). To obtain it, observe that

D = 1[γ ′Z − V > 0],
E(Z1D) = E

(
Z11(γ ′Z − V � 0)

)
.

Let E1 denote the expectation for group 1, and let E2 denote the expectation for group 2.

E(Z1D) =
{
P1

[
μ11 + γ ′Σ1

1

γ ′Σ1γ + σ 2
V

E1(Z1 − μ11 | γ ′Z − V � 0)

]

+ P2

[
μ21 + γ ′Σ1

2

γ ′Σ2γ + σ 2
V

E2(Z1 − μ21 | γ ′Z − V � 0)

]}

× Pr
[
(γ ′Z − V ) > 0

]
= (P1μ11 + P2μ21) Pr(γ ′Z − V � 0)

+ P1γ
′Σ1

1

(γ ′Σ1γ + σ 2
V )1/2

√
2π

exp

[
−
( −γ ′μ1

(γ ′Σ1γ + σ 2
V )1/2

)2]

+ P2γ
′Σ1

2

(γ ′Σ2γ + σ 2
V )1/2

√
2π

exp

[
−
( −γ ′μ2

(γ ′Σ2γ + σ 2
V )1/2

)2]
.

Because

E(D)E(Z1) = Pr(γ ′Z − V � 0)(P1μ11 + P2μ21)

and

Cov(D,Z1) = E(Z1D) − E(Z1)E(D)

∴ Cov(D,Z1) = P1γ
′Σ1

1

(γ ′Σ1γ + σ 2
V )1/2

√
2π

exp

[
−
( −γ ′μ1

(γ ′Σ1γ + σ 2
V )1/2

)2]

+ P2γ
′Σ1

2

(γ ′Σ2γ + σ 2
V )1/2

√
2π

exp

[
−
( −γ ′μ2

(γ ′Σ2γ + σ 2
V )1/2

)2]
.

Thus the IV weights for this set-up are

ω̃IV(v) =
{[

P1γ
′Σ1

1

(γ ′Σ1γ )1/2
exp

[
−1

2

(
v − γ ′μ1

(γ ′Σ1γ )1/2

)2]

+ P2γ
′Σ1

2

(γ ′Σ2γ )1/2
exp

[
−1

2

(
v − γ ′μ2

(γ ′Σ2γ )1/2

)2]]
fV (v)

}
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×
{

P1γ
′Σ1

1

(γ ′Σ1γ + σ 2
V )1/2

exp

[
−
( −γ ′μ1

(γ ′Σ1γ + σ 2
V )1/2

)2]

+ P2γ
′Σ1

2

(γ ′Σ2γ + σ 2
V )1/2

exp

[
−
( −γ ′μ2

(γ ′Σ2γ + σ 2
V )1/2

)2]}−1

,

where σ 2
V represents the variance of V . Clearly, ω̃IV(−∞) = 0, ω̃IV(∞) = 0 and the

weights integrate to one over the support of V = (−∞,∞). Observe that the weights
must be positive if P2 = 0. Thus the structure of the covariances of the instrument
with the choice index γ ′Z is a key determinant of the positivity of the weights for any
instrument. It has nothing to do with the ceteris paribus effect of Z1 on γ ′Z or P(Z) in
the general case.

A necessary condition for ωIV < 0 over some values of v is that sign(γ ′Σ1
1 ) =

− sign(γ ′Σ1
2 ), i.e., that the covariance between Z1 and γ ′Z be of opposite signs in the

two subpopulations so Z1 and P(Z) have different relationships in the two component
populations. Without loss of generality, assume that γ ′Σ1

1 > 0. If it equals zero, we fail
the rank condition in the first population and we are back to a one subpopulation model
with positive weights. The numerator of the expression for ωIV(v) switches signs if for
some values of v,

P1γ
′Σ1

1

(γ ′Σ1γ )1/2
exp

[
−1

2

(
v − γ ′μ1

(γ ′Σ1γ )1/2

)2]

< − P2γ
′Σ1

2

(γ ′Σ2γ )1/2
exp

[
−1

2

(
v − γ ′μ2

(γ ′Σ2γ )1/2

)2]
,

while for other values the inequality is reversed. (Observe that the denominator is
a constant.) Rewriting and taking logarithms, we obtain under the assumption that
sign(γ ′Σ1

1 ) = − sign(γ ′Σ1
2 ), the following expression:

1

2

[
(v − γ ′μ2)

2

γ ′Σ2γ
− (v − γ ′μ1)

2

γ ′Σ1γ

]
< ln

(
1 − P1

P1

)
+ ln

[−γ ′Σ1
2

γ ′Σ1
1

]
+ ln

[
γ ′Σ1γ

γ ′Σ2γ

]
,

where we assume 0 < P1 < 1. Observe that 1−P1
P1

can be made as large or as small
a non-negative number as we like by varying P1. Varying (μ1, μ2) does not affect the
right-hand side. For μ1 = μ2 = 0, the inequality becomes

1

2
v2
[

1

γ ′Σ2γ
− 1

γ ′Σ1γ

]
< ln

(
1 − P1

P1

)
+ ln

[−γ ′Σ1
2

γ ′Σ1
1

]
+ ln

[
γ ′Σ1γ

γ ′Σ2γ

]
.

Suppose that γ ′Σ2γ < γ ′Σ1γ . Then the left-hand side is positive except when
v = 0. For any fixed γ,Σ1,Σ2 we can find a value of P1 sufficiently small so that
right-hand side of the equation is positive and for any such value of P1 there will be
a v sufficiently small for the inequality to be satisfied. There is also a value of v that
reverses the inequality.
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The inequality is satisfied for some v∗ � 0. But with v arbitrarily large, the inequality
can be reversed so that the weight will switch signs at some value of v. The key nec-
essary condition is that Cov(Z1, γ

′Z) be of opposite signs in the two subpopulations.
Using Z1 as an IV, but not conditioning or controlling for the other components of Z,
produces sometimes negative and sometimes positive movements in the components of
Z2, . . . , Zk which can offset the ceteris paribus (Z2 = z2, . . . , Zk = zk) movements
of Z1.

Appendix F: Local instrumental variables for the random coefficient model

Consider the model:

D = 1[Zγ � 0],
where γ is a random variable. For ease of exposition, we leave implicit the conditioning
on X covariates. Assume that (Y0, Y1, γ )⊥⊥ Z. Assume that γ has a density that is
absolutely continuous with respect to Lebesgue measure on RK . We have

E(Y | Z = z) = E(DY1 | Z = z) + E
(
(1 − D)Y0

∣∣ Z = z
)
.

To simplify the exposition, consider the first term, E(DY1 | Z = z). In this proof, let
Z[K] denote the Kth element of Z and Z[−K] denote all other elements of Z, and write
Z = (Z[−K], Z[K]). Using the model, the independence assumption, and the law of
iterated expectations, we have

E(DY | Z = z) = E
(
1[zγ � 0]Y1

) = E
(
1[zγ � 0]E(Y1 | γ )

)
= E

(
1
{
z[K]γ [K] � −z[−K]γ [−K]} E(Y1 | γ )

)
,

where the final outer expectation is over γ . Consider taking the derivative with re-
spect to the Kth element of Z assumed to be continuous. Partition z, γ , and g as
z = (z[−K], z[K]), γ = (γ [−K], γ [K]), and g = (g[−K], g[K]), where z is a realiza-
tion of Z and g is a realization of γ . For simplicity, suppose that the Kth element of z

is positive, z[K] > 0. We obtain

E(DY | Z = z) = E
[
E
(
1
{
z[K]γ [K] � −z[−K]γ [−K]}E(Y1 | γ )

∣∣ γ [−K])]
= E

[
E

(
1
{
γ [K] � −z[−K]γ [−K]

z[K]

}
E(Y1 | γ )

∣∣∣ γ [−K]
)]

,

where the inside expectation is over γ [K] conditional on γ [−K], i.e., is over the Kth
element of γ conditional on all other components of γ . Computing the derivative with
respect to z[K], we obtain

∂

∂z[K] E(DY | Z = z) =
∫

E
(
Y1
∣∣ γ = M

(
g[−K]))w̃(g[−K]) dg[−K],
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where

M
(
g[−K]) =

((
g[−K])′, −z[−K]g[−K]

z[K]

)′
and

w̃
(
g[−K]) = z[−K]g[−K]

(z[K])2
f

(
g[−K], −z[−K]g[−K]

z[K]

)
,

with f (·) the density of γ (with respect to Lebesgue measure), and where for notational
simplicity we suppress the dependence of the function M(·) and the weights w̃(·) on the
z evaluation point. In this expression, we are averaging over E(Y1 | γ = g), but only
over g evaluation points such that zg = 0. In particular, the expression averages over the
K−1 space of g[−K], while for each potential realization of g[−K] it is filling in the value
of g[K] such that z[K]g[K] = −z[−K]g[−K] so that z[K]g[K]+z[−K]g[−K] = 0. Note that

the weights w̃(g[−K]) will be zero for any g[−K] such that f (g[−K], −z[−K]g[−K]
z[K] ) = 0,

i.e., the weights will be zero for any g[−K] such that there does not exist g[K] in the
conditional support of γ [K] with z[K]g[K] = −z[−K]g[−K].

Following the same logic for E((1 − D)Y0 | Z = z), we obtain

∂

∂z[K] E
(
(1 − D)Y

∣∣ Z = z
) = −

∫
E
(
Y0
∣∣ γ = M

(
g[−K]))w̃(g[−K]) dg[−K]

and likewise have

∂

∂z[K] Pr(D = 1 | Z = z) =
∫

w̃
(
g[−K]) dg[−K]

so that

∂
∂z[K] E(Y | Z = z)

∂
∂z[K] Pr(D = 1 | Z = z)

=
∫

E
(
Y1 − Y0

∣∣ γ = M
(
g[−K]))w(g[−K]) dg[−K],

where

w
(
g[−K]) = w̃

(
g[−K])/ ∫ w̃

(
g[−K]) dg[−K].

Now consider the question of whether this expression will have both positive and

negative weights. Recall that w̃(g[−K]) = z[−K]g[−K]
(z[K])2 f (g[−K], −z[−K]g[−K]

z[K] ). Thus,

w̃
(
g[−K]) � 0 if z[−K]g[−K] > 0, w̃

(
g[−K]) � 0 if z[−K]g[−K] < 0,

and will be nonzero if z[−K]g[−K] �= 0 and there exists g[K] in the conditional support
of γ [K] with z[K]g[K] = z[−K]g[−K], i.e., with zg = 0. We thus have that there will be
both positive and negative weights on the MTE if there exist values of g in the support
of γ with both z[−K]g[−K] > 0 and zg = 0, and there exist other values of g in the
support of γ with z[−K]g[−K] < 0 and zg = 0.
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Appendix G: Generalized ordered choice model with stochastic thresholds

The ordered choice model presented in the text with parameterized, but nonstochastic,
thresholds is analyzed in Cameron and Heckman (1998) who establish its nonparamet-
ric identifiability under the conditions they specify. Treating the Ws (or components
of it) as unobservables, we obtain the generalized ordered choice model analyzed in
Carneiro, Hansen and Heckman (2003) and Cunha, Heckman and Navarro (2007). In
this appendix, we present the main properties of this more general model.

The thresholds are now written as Qs + Cs(Ws) in place of Cs(Ws), where Qs is a
random variable. In addition to the order on the Cs(Ws) in the text, we impose the order
Qs + Cs(Ws) � Qs−1 + Cs−1(Ws−1), s = 2, . . . , S̄ − 1. We impose the requirement
that QS̄ = ∞ and Q0 = −∞. The latent index D∗

s is as defined in the text, but now

Ds = 1
[
Cs−1(Ws−1) + Qs−1 < μD(Z) − V � Cs(Ws) + Qs

]
= 1

[
ls−1(Z,Ws−1) − Qs−1 > V � ls(Z,Ws) − Qs

]
,

where ls = μD(Z) − Cs(Ws). Using the fact that ls(Z,Ws) − Qs < ls−1(Z,Ws−1) −
Qs−1, we obtain

1
[
ls−1(Z,Ws−1) − Qs−1 > V � ls(Z,Ws) − Qs

]
= 1

[
V + Qs−1 < ls−1(Z,Ws−1)

]− 1
[
V + Qs � ls(Z,Ws)

]
.

The nonparametric identifiability of this choice model is established in Carneiro,
Hansen and Heckman (2003) and Cunha, Heckman and Navarro (2007). We retain as-
sumptions (OC-2)–(OC-6), but alter (OC-1) to

(OC-1)′ (Qs, Us, V )⊥⊥ (Z,W) | X, s = 1, . . . , S̄.

Vytlacil (2006b) shows that this model with no transition specific instruments
(with Ws degenerate for each s) implies and is implied by the independence and
monotonicity conditions of Angrist and Imbens (1995) for an ordered model. Define
Q = (Q1, . . . , QS̄). Redefine πs(Z,Ws) = FV +Qs (μD(Z) + Cs(Ws)) and define
π(Z,W) = [π1(Z,W1), . . . , πS̄−1(Z,WS̄−1)]. Redefine UD,s = FV +Qs (V + Qs). We
have that

E(Y | Z,W)

= E

(
S̄∑

s=1

1
[
ls−1(Z,Ws−1) − Qs−1 > V � ls(Z,Ws) − Qs

]
Ys

∣∣∣ Z,W

)

=
S̄∑

s=1

(
E
(
1
[
V + Qs−1 < ls−1(Z,Ws−1)

]
Ys

∣∣ Z,W
)

− E
(
1
[
V + Qs � ls(Z,Ws)

]
Ys

∣∣ Z,W
))
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=
S̄∑

s=1

(∫ ls−1(Z,Ws−1)

−∞
E(Ys | V + Qs−1 = t) dFV +Qs−1(t)

−
∫ ls (Z,Ws)

−∞
E(Ys | V + Qs = t) dFV +Qs (t)

)

=
S̄∑

s=1

(∫ πs−1(Z,Ws−1)

0
E(Ys | UD,s−1 = t) dt

−
∫ πs(Z,Ws)

0
E(Ys | UD,s = t) dt

)
.

We thus have the index sufficiency restriction that E(Y | Z,W) = E(Y | π(Z,W)),
and in the general case ∂

∂πs
E(Y | π(Z,W) = π) = E(Ys+1 − Ys | UD,s = πs).

Also, notice that we have the restriction that ∂2

∂πs∂πs′
E(Y | π(Z,W) = π) = 0 if

|s − s′| > 1. Under full independence between Us and V + Qs , s = 1, . . . , S̄, we
can test full independence for the more general choice model by testing for linearity of
E(Y | π(Z,W) = π) in π .

Define

�MTE
s+1,s(x, u) = E(Ys+1 − Ys | X = x,UD,s = u),

so that our result above can be rewritten as

∂

∂πs

E
(
Y
∣∣ π(Z,W) = π

) = �MTE
s+1,s(x, πs).

Since πs(Z,Ws) can be nonparametrically identified from

πs(Z,Ws) = Pr

(
S̄∑

j=s+1

Dj = 1
∣∣∣ Z,Ws

)
,

we have identification of MTE for all evaluation points within the appropriate support.
The policy relevant treatment effect is defined analogously. H

p
s is defined as the cu-

mulative distribution function of μD(Z) − Cs(Ws). We have that

Ep(Yp)

= Ep

(
E(Y | V,Q,Z,W)

)
= Ep

(
S̄∑

s=1

1
[
ls−1(Z,Ws−1) − Qs−1 > V � ls(Z,Ws) − Qs

]

× E(Ys | V,Q,Z,W)

)
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= Ep

(
S̄∑

s=1

1
[
ls−1(Z,Ws−1) − Qs−1 > V � ls(Z,Ws) − Qs

]
E(Ys | V,Q)

)

=
S̄∑

s=1

Ep

(
E(Ys | V,Q)

{
H

p
s (V + Qs) − H

p

s−1(V + Qs−1)
})

=
S̄∑

s=1

∫ (
E(Ys | V = v,Q = q)

{
H

p
s (v + qs)

− H
p

s−1(v + qs−1)
})

dFV,Q(v, q)

=
S̄∑

s=1

(∫
E(Ys | V + Qs = t)H

p
s (t) dFV +Qs (t)

−
∫

E(Ys | V + Qs−1 = t)H
p

s−1(t) dFV +Qs−1(t)

)
,

where V , Qs enter additively, and

�PRTE
p,p′ = Ep′(Y ) − Ep(Y )

=
S̄−1∑
s=1

∫ (
E(Ys+1 − Ys | V + Qs = t)

{
H

p
s (t) − H

p′
s (t)

})
dFV +Qs (t).

Alternatively, we can express this result in terms of MTE,

Ep(Yp) =
S̄∑

s=1

(∫
E(Ys | UD,s = t)H̃

p
s (t) dt

−
∫

E(Ys | UD,s−1 = t)H̃
p

s−1(t) dt

)
so that

�PRTE
p,p′ = Ep′(Y ) − Ep(Y )

=
S̄−1∑
s=1

∫ (
E(Ys+1 − Ys | UD,s = t)

{
H̃

p
s (t) − H̃

p′
s (t)

})
dt,

where H̃
p
s is the cumulative distribution function of the random variable

FUD,s
(μD(Z) − Cs(Ws)).

Appendix H: Derivation of PRTE weights for the ordered choice model

To derive the ωp,p′ weights used in expression (7.5), let ls(Z,Ws) = μD(Z)−Cs(Ws),
and let H

p
s (·) denote the cumulative distribution function of ls(Z,Ws) under regime p,
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H
p
s (t) = ∫

1[μD(z) − Cs(ws) � t] dF
p
Z,W (z,w). Because C0(W0) = −∞ and

CS̄(WS̄) = ∞, l0(Z,W0) = ∞ and lS̄ (Z,WS̄) = −∞, H
p

0 (t) = 0 and H
p

S̄
(t) = 1

for any policy p and for all evaluation points. Since ls−1(Z,Ws−1) is always larger than
ls(Z,Ws), we obtain

1
[
ls(Z,Ws) � V < ls−1(Z,Ws−1)

]
= 1

[
V < ls−1(Z,Ws−1)

]− 1
[
V � ls(Z,Ws)

]
,

so that under assumption (OC-1),

Ep

(
1
[
ls(Z,Ws) � V < ls−1(Z,Ws−1)

] ∣∣ V
) = H

p
s (V ) − H

p

s−1(V ).

Collecting these results we obtain

Ep(Y ) = Ep

[
E(Y | V,Z,W)

]
=

S̄∑
s=1

∫ [
E(Ys | V = v)

{
H

p
s (v) − H

p

s−1(v)
}]

fV (v) dv.200

Comparing two policies under p and p′, the policy relevant treatment effect is �PRTE
p,p′ =

Ep′(Y ) − Ep(Y ) = ∑S̄−1
s=1

∫
E(Ys+1 − Ys | V = v)[Hp

s (v) − H
p′
s (v)]fV (v) dv. Alter-

natively, we can express this in terms of �MTE: �PRTE
p,p′ = ∑S̄−1

s=1

∫
�MTE

s,s+1(u)[H̃ p
s (u) −

H̃
p′
s (u)] du where H̃

p
s (t) is the cumulative distribution function of FV (μD(Z) −

Cs(Ws)) under policy p, H̃
p
s (t) = ∫

1[FV (μD(z) − Cs(ws)) � t] dF
p
Z,Ws

(z, ws).

Appendix I: Derivation of the weights for IV in the ordered choice model

We first derive Cov(J (Z,W), Y ). Its derivation is typical of the other terms needed to
form (7.6) in the text. Defining J̃ (Z,W) = J (Z,W) − E(J (Z,W)), we obtain, since
Cov(J (Z,W), Y ) = E(J̃ (Z,W)Y ),

200 The full derivation is Ep(Y ) = Ep[E(Y |V, Z,W)] = Ep[∑S̄
s=11[ls (Z, Ws) � V < ls−1(Z, Ws−1)]×

E(Ys |V,Z,W)] = ∑S̄
s=1Ep[1[ls (Z, Ws) � V < ls−1(Z,Ws−1)]E(Ys |V )] = ∑S̄

s=1 Ep[E(Ys |V )×
{Hp

s (V ) − H
p
s−1(V )}] = ∑S̄

s=1
∫ [E(Ys |V = v){Hp

s (v) − H
p
s−1(v)}]fV (v) dv. The first equality is from

the law of iterated expectations; the second equality comes from the definition of Y ; the third equality
follows from linearity of expectations and independence assumption (OC-1); the fourth equality applies
the law of iterated expectations; and the final equality rewrites the expectation explicitly as an integral
over the distribution of V . Recalling that H

p
0 (v) = 0 and H

p

S̄
(v) = 1, we may rewrite this result as

Ep(Y ) = ∑S̄−1
s=1

∫
E(Ys − Ys+1 | V = v)H

p
s (v)fV (v) dv + ∫

E(YS̄ | V = v)fV (v) dv, where the
last term is E(YS̄).
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E
(
J̃ (Z,W)Y

)
= E

[
J̃ (Z,W)

S̄∑
s=1

1
[
ls(Z,Ws) � V < ls−1(Z,Ws−1)

]
E(Ys | V,Z,W)

]

=
S̄∑

s=1

E
[
J̃ (Z,W)1

[
ls(Z,Ws) � V < ls−1(Z,Ws−1)

]
E(Ys | V )

]
,

where the first equality comes from the definition of Y and the law of iterated expecta-
tions, and the second equality follows from linearity of expectations and independence
assumption (OC-1). Let Hs(·) equal H

p
s (·) for p equal to the policy that characterizes

the observed data, i.e., Hs(·) is the cumulative distribution function of ls(Z,Ws),

H
p
s (t) = Pr

(
ls(Z,Ws) � t

) = Pr
(
μD(Z) − Cs(Ws) � t

)
.

Using the law of iterated expectations, we obtain

E
(
J̃ (Z,W)Y

) =
S̄∑

s=1

E
[
E
(
J̃ (Z,W)

{
1
[
V < ls−1(Z,Ws−1)

]
− 1

[
V � ls(Z,Ws)

]} ∣∣ V
)
E(Ys | V )

]
=

S̄∑
s=1

∫ [
E(Ys | V = v)

{
Ks−1(v) − Ks(v)

}]
fV (v) dv

=
S̄−1∑
s=1

∫ [
E(Ys+1 − Ys | V = v)Ks(v)

]
fV (v) dv,

where Ks(v) = E(J̃ (Z,W) | ls(Z,Ws) > v)(1 − Hs(v)) and we use the fact that
KS̄(v) = K0(v) = 0. Now consider the denominator of the IV estimand,

E
(
SJ̃ (Z,W)

)
= E

[
J̃ (Z,W)

S̄∑
s=1

s1
[
ls(Z,Ws) � V < ls−1(Z,Ws−1)

]]

=
S̄∑

s=1

sE
[
J̃ (Z,W)1

[
ls(Z,Ws) � V < ls−1(Z,Ws−1)

]]

=
S̄∑

s=1

sEV

[
E
(
J̃ (Z,W)

{
1
[
V < ls−1(Z,Ws−1)

]− 1
[
V � ls(Z,Ws)

]} ∣∣ V
)]

=
S̄∑

s=1

s

∫ [
Ks−1(v) − Ks(v)

]
fV (v) dv =

S̄−1∑
s=1

∫
Ks(v)fV (v) dv.
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Collecting results, we obtain an expression for the IV estimand (7.6):

Cov(J, Y )

Cov(J, S)
=

S̄−1∑
s=1

∫
E(Ys+1 − Ys | V = v)ω(s, v)fV (v) dv,

where

ω(s, v) = Ks(v)∑S̄
s=1s

∫ [Ks−1(v) − Ks(v)]fV (v) dv
= Ks(v)∑S̄−1

s=1

∫
Ks(v)fV (v) dv

and clearly

S̄−1∑
s=1

∫
ω(s, v)fV (v) dv = 1, ω(0, v) = 0, and ω(S̄, v) = 0.

Appendix J: Proof of Theorem 6

We now prove Theorem 6.

PROOF. The basic idea is that we can bring the model back to a two choice set up
of j versus the “next best” option. We prove the result for the second assertion, that
�LIV

j (x, z) recovers the marginal treatment effect parameter. The first assertion, that

�Wald
j (x, z[−j ], z[j ], z̃[j ]) recovers a LATE parameter, follows from a trivial modifi-

cation to the same proof strategy. Recall that RJ \j (z) = maxi∈J \j {Ri(z)} and that
IJ \j = argmaxi∈J \j (Ri(Z)). We may write Y = YIJ \j + DJ ,j (Yj − YIJ \j ). We have

Pr(DJ ,j = 1 | X = x,Z = z)

= Pr
(
Rj(zj ) � RJ \j (z)

∣∣ X = x,Z = z
)

= Pr
(
ϑj (zj ) � RJ \j (z) + Vj

∣∣ X = x,Z = z
)
.

Using independence assumption (B-1), RJ \j (z) − Vj is independent of Z conditional

on X, so that

Pr(DJ ,j = 1 | X = x,Z = z) = Pr
(
ϑj (zj ) � RJ \j (z) + Vj

∣∣ X = x
)
.

ϑk(·) does not depend on z[j ] for k �= j by assumption (B-2b), and thus RJ \j (z) does

not depend on z[j ], and we will therefore (with an abuse of notation) write RJ \j (z[−j ])
for RJ \j (z). Write FX|Z[−j ](·; X = x,Z[−j ] = z[−j ]) for the distribution function of
RJ \j (z[−j ]) + Vj conditional on X = x. Then

Pr(DJ ,j = 1 | X = x,Z = z) = F
(
ϑj (zj ); x, z[−j ]),
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and
∂

∂z[j ] Pr(DJ ,j = 1 | X = x,Z = z)

=
[

∂

∂z[j ] ϑj (zj )

]
fX|Z[−j ]

(
ϑj (zj ); X = x,Z[−j ] = z[−j ]),

where fX|Z[−j ](·; X = x,Z[−j ] = z[−j ]) is the density of RJ \j (z[−j ])−Vj conditional
on X = x. Consider

E(Y | X = x,Z = z) = E(YIJ \j | X = x,Z = z)

+ E
(
DJ ,j (Yj − YIJ \j )

∣∣ X = x,Z = z
)
.

As a consequence of (B-1), (B-3)–(B-5), and (B-2b), we have that E(YIJ \j | X = x,

Z = z) does not depend on z[j ]. Using the assumptions and the law of iterated expecta-
tions, we may write

E
(
DJ ,j (Yj − YIJ \j )

∣∣ X = x,Z = z
)

=
∫ ϑj (z)

−∞
E
(
Yj − YIJ \j

∣∣ X = x,Z = z, RJ \j
(
z[−j ])+ Vj = t

)
× fX|Z[−j ]

(
t; X = x,Z[−j ] = z[−j ]) dt

=
∫ ϑj (z)

−∞
E
(
Yj − YIJ \j

∣∣ X = x,Z[−j ] = z[−j ], RJ \j
(
z[−j ])+ Vj = t

)
× fX|Z[−j ]

(
t; X = x,Z[−j ] = z[−j ]) dt.

Thus,

∂

∂z[j ] E(Y | X = x,Z = z)

= E
(
Yj − YIJ \j

∣∣ X = x,Z[−j ] = z[−j ], Rj (z) = RJ \j (z)
)

×
[

∂

∂z[j ] ϑj (zj )

]
fX|Z[−j ]

(
ϑj (zj ) | X = x,Z[−j ] = z[−j ]).

Combining results, we have

∂

∂z[j ] E(Y | X = x,Z = z)
/ ∂

∂z[j ] Pr(DJ ,j = 1 | X = x,Z = z)

= E
(
Yj − YIJ \j

∣∣ X = x,Z[−j ] = z[−j ], Rj (z) = RJ \j (z)
)
.

Finally, noting that

E
(
Yj − YIJ \j

∣∣ X = x,Z[−j ] = z[−j ], Rj (z) = RJ \j (z)
)

= E
(
Yj − YIJ \j

∣∣ X = x,Z = z, Rj (z) = RJ \j (z)
)

provides the stated result. The proof for the LATE result follows from the parallel argu-
ment using discrete changes in the instrument. �
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Appendix K: Flat MTE within a general nonseparable matching framework

The result in the text that conditional mean independence of Y0 and Y1 in terms of D

given X implies a flat MTE holds in a more general nonseparable model. We establish
this claim and also establish some additional restrictions implied by an IV assump-
tion.

Assume a nonseparable selection model, D = 1[μD(X,Z, V ) � 0], with Z indepen-
dent of (Y0, Y1, V ) conditional on X. Let Ω(x, z) = {v: μD(x, z, v) � 0}. Let Ω(x, z)c

denote the complement of Ω(x, z). Consider the mean independence assumption

(M-3) E(Y1 | X,D) = E(Y1 | X), E(Y0 | X,D) = E(Y0 | X).

(M-3) implies that for � = Y1 − Y0

E
(
�
∣∣ X = x, V ∈ Ω(X,Z)

) = E
(
�
∣∣ X = x, V ∈ Ω(X,Z)c

)
,

where c here denotes “complement”. Thus,

EZ|X
(
E
(
�MTE(x, V )

∣∣ X = x, V ∈ Ω(x,Z)
) ∣∣ X = x

)
= EZ|X

(
E
(
�MTE(x, V )

∣∣ X = x, V ∈ Ω(x,Z)c
) ∣∣ X = x

)
for all x in the support of X. (We assume 0 < Pr(D = 1 | X) < 1.) This establishes
that the MTE is flat.

Now suppose that (M-3) holds, but suppose that there is an instrument Z such that

(M-3)′ E(Y1 | X,Z,D) �= E(Y1 | X), E(Y0 | X,Z,D) �= E(Y0 | X).

(Note: E(Yj | X,Z) = E(Yj | X) by assumption.) In this case, (M-3) implies that

EZ|X
(
E
(
�MTE(X, V )

∣∣ X = x, V ∈ Ω(x,Z)
) ∣∣ X = x

)
= EZ|X

(
E
(
�MTE(X, V )

∣∣ X = x, V ∈ (Ω(x,Z)
)c) ∣∣ X = x

)
,

but (M-3)′ implies that there exists z in the support of Z conditional on X such that

E
(
�MTE(X, V )

∣∣ X = x, V ∈ Ω(x, z)
) �= E

(
�MTE(X, V )

∣∣ X = x
)

and

E
(
�MTE(X, V )

∣∣ X = x, V ∈ Ω(x, z)c
) �= E

(
�MTE(X, V )

∣∣ X = x
)

so that �MTE(X, V ) is not constant in V . Note that, if E(Y1 | X,Z = z,D = 1) �=
E(Y1 | X,Z = z′,D = 1) for any z, z′ evaluation points in the support of Z conditional
on X, then E(Y1 | X,Z,D) �= E(Y1 | X). Thus, (M-3)′ is testable, given the maintained
assumption that Z is a proper exclusion restriction. Note that (M-3)′ implies (M-3), so
it is a stronger condition.
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Now assume

(M-1)′ E(Y1 | X,Z,D) = E(Y1 | X), E(Y0 | X,Z,D) = E(Y0 | X).

In this case, we get a stronger restriction on MTE than is produced from (M-3). We
obtain

E
(
�MTE(X, V )

∣∣ X = x, V ∈ Ω(x, z)
) = E

(
�MTE(X, V )

∣∣ X = x
)

and

E
(
�MTE(X, V )

∣∣ X = x, V ∈ Ω(x, z)c
) = E

(
�MTE(X, V )

∣∣ X = x
)

for all (x, z) in the proper support. Again, the MTE is not flat.

Appendix L: The relationship between exclusion conditions in IV and exclusion
conditions in matching

We now investigate the relationship between IV and matching identification conditions.
They are very distinct. We analyze mean treatment parameters. We define (U0, U1) by
U0 = Y0 − E(Y0 | X) and U1 = Y1 − E(Y1 | X). We consider standard IV as a form
of matching where matching does not hold conditional on X but does hold conditional
on (X,Z), where Z is the instrument. Consider the following two matching conditions
based on an exclusion restriction Z:

(M-4) (U0, U1) are mean independent of D conditional on (X,Z). (E(U0|X,

Z,D) = E(U0 | X,Z) and E(U1 | X,Z,D) = E(U1 | X,Z).)
(M-5) (U0, U1) are not mean independent of D conditional on X. (E(U0 | X,D) �=

E(U0 | X) and E(U1 | X,D) �= E(U1 | X).)

(M-4) says that the matching conditions hold conditional on (X,Z). However, (M-5)
says that the matching conditions do not hold if one only conditions on X. By the
definitions of U0, U1, these conditions are equivalent to stating that Y0, Y1 are mean
independent of D conditional on (X,Z) but not mean independent of D conditional
on X. These look like instrumental variable conditions. We now consider whether these
assumptions are compatible with standard IV conditions as used by Heckman and Robb
(1985a, 1986a) and Heckman (1997) to use IV to identify treatment parameters when
responses are heterogenous (the model of essential heterogeneity). For ATE, they show
that standard IV identifies ATE if:

(ATE-1) U0 is mean independent of Z conditional on X.
(ATE-2) D(U1 − U0) is mean independent of Z conditional on X.201

201 When Y = Y0 + D(Y1 − Y0), assuming separability so that Y0 = μ0(X) + U0, Y1 = μ1(X) + U1,
and Y = μ0(X) + D(μ1(X) − μ0(X) + U1 − U0) + U0, identification of ATE by IV requires the rank
condition (IV-2) plus E(U0 +D(U1 −U0) | X,Z) = E(U0 +D(U1 −U0) | X), which is implied by (ATE-1)
and (ATE-2).
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They show that standard IV identifies TT if:

(TT-1) U0 is mean independent of Z conditional on X.
(TT-2) U1 − U0 is mean independent of Z conditional on D = 1 and on X.202

The conventional assumption in means is that

(IV-1)′ (U0, U1) are mean independent of Z conditional on X.
(IV-2) Rank condition (IV-2) is still required: Pr(D = 1 | Z,X) is a nondegenerate

function of Z.

Condition (IV-1)′ is a commonly invoked instrumental variable condition, even
though Heckman and Robb (1986a) and Heckman (1997) show it is neither necessary
nor sufficient to identify ATE or TT by linear IV. In Section 4, we used the stronger
condition (IV-1): (U0, U1)⊥⊥ Z | X along with the rank conditions. Clearly, (IV-1) im-
plies (IV-1)′.

We now show that assumptions (M-4) and (M-5) are inconsistent with any of the sets
of IV assumptions. In particular, we show that assuming (M-4) and that U0 is mean
independent of Z conditional on X jointly imply that U0 is mean independent of D

conditional on X. If (M-4) and (M-5) hold, then Z cannot satisfy condition (IV-1)′ (or
stronger condition (IV-1)), (ATE-1) or (TT-1). Thus matching based on an exclusion re-
striction and IV are distinct conditions. We show this by establishing a series of claims.

CLAIM 1. Conditions (M-4) and (IV-1)′ jointly imply U0 is mean independent of D

conditional on X. Thus, (M-4) and [(IV-1)′ or (ATE-1) or (TT-1)] jointly imply
that (M-5) cannot hold.

PROOF. Assume (M-4) and (IV-1)′. We have

E(U0 | D,X,Z) = E(U0 | X,Z)

= E(U0 | X),

202 In the separable model,

Y = μ0(X) + D
( �TT(X)︷ ︸︸ ︷
μ1(X) − μ0(X) + E(U1 − U0 | X,D = 1)

)
+ U0 + D

(
U1 − U0 − E(U1 − U0 | X,D = 1)

)
.

Identification requires that

E
(
U0 + D

(
U1 − U0 − E(U1 − U0 | X,D = 1)

) ∣∣ X,Z
)

= E
(
U0 + D

(
U1 − U0 − E(U1 − U0 | X,D = 1)

) ∣∣ X
)
,

which is implied by (TT-1) and (TT-2).
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where the first equality follows from (M-4) and the second equality follows from (IV-1)′.
Thus,

E(U0 | D,X) = EZ

[
E(U0 | D,X,Z)

∣∣ D,X
]

= EZ

[
E(U0 | X)

∣∣ D,X
]

= E(U0 | X).

�

Thus (M-4) and (M-5) are inconsistent with any of the sets of IV assumptions that we
have considered. However, this analysis raises the question of whether it is still possible
to invoke (M-5) and the assumption that U1 is not mean independent of D conditional
on X. The following results show that it is not possible.

CLAIM 2. (M-4) and (IV-1)′ imply U1 is mean independent of D conditional on X.

PROOF. Follows with trivial modification from the proof to Claim 1. �

A similar claim can be shown for (TT-1) and (TT-2).

CLAIM 3. (M-4) and (TT-1), (TT-2) imply U1 is mean independent of D conditional
on X.

PROOF. Assume (M-4) and (TT-1), (TT-2). We have

(N-1) E(U0 | X,Z,D) = E(U0 | X,Z) = E(U0 | X),

where the first equality follows from (M-4) and the second equality follows from (TT-1).
Using the result from the proof of Claim 1, we obtain

(N-2) E(U0 | X,Z,D) = E(U0 | X,D).

By (TT-2), we have

E(U1 | X,Z,D = 1) − E(U1 | X,D = 1)

= E(U0 | X,Z,D = 1) − E(U0 | X,D = 1).

By equation (N-2), the right-hand side of the preceding expression is zero, and we thus
have

(N-3) E(U1 | X,Z,D = 1) = E(U1 | X,D = 1).

By (M-4), we have

(N-4) E(U1 | X,Z,D = 1) = E(U1 | X,Z).
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Combining equations (N-3) and (N-4), we obtain

E(U1 | X,Z) = E(U1 | X,D = 1).

Integrating both sides of this expression against the distribution of Z conditional on X,
we obtain

E(U1 | X) = E(U1 | X,D = 1).

�

It is straightforward to show that (M-4) and (ATE-1), (ATE-2) jointly imply that U1
is mean independent of D conditional on X.

In summary, (U0, U1) mean independent of D conditional on (X,Z) but not condi-
tional on X implies that U0 is dependent on Z conditional on X in contradiction to all
of the assumptions used to justify instrumental variables. Thus (U0, U1) mean indepen-
dent of D conditional on (X,Z) but not conditional on X implies that none of the three
sets of IV conditions will hold. In addition, if we weaken these conditions to only con-
sider U1, so that we assume that U1 is mean independent of D conditional on (X,Z) but
not conditional on X, we obtain that U1 is dependent on Z conditional on X. We have
shown that this implies that (IV-1) does not hold, and implies that (TT-1), (TT-2) will
not hold. A similar line of argument shows that (ATE-1), (ATE-2) will not hold. Thus,
the exclusion conditioning in matching is not the same as the exclusion conditioning
in IV.

Appendix M: Selection formulae for the matching examples

Consider a generalized Roy model of the form Y1 = μ1 + U1; Y0 = μ0 + U0; D∗ =
μD(Z) + V ; D = 1 if D∗ � 0, = 0 otherwise; and Y = DY1 + (1 − D)Y0, where

(U0, U1, V )′ ∼ N(0,Σ), Var(Ui) = σ 2
i , i = 0, 1,

Var(V ) = σ 2
V , Cov(U1, U0) = σ10,

Cov(U1, V ) = σ1V , Cov(U0, V ) = σ0V .

Assume Z ⊥⊥ (U0, U1, V ). Let φ(·) and Φ(·) be the pdf and the cdf of a standard normal
random variable. Then, the propensity score for this model for Z = z is given by

Pr(D∗ > 0 | Z = z) = Pr
(
V > −μD(z)

) = P(z) = Φ

(
μD(z)

σV

)
.

Thus μD(z)
σV

= Φ−1(P (z)), and

−μD(z)

σV

= Φ−1(1 − P(z)
)
.
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The event (V � 0, Z = z) can be written as V
σV

� −μD(z)
σV

⇔ V
σV

� Φ−1(1 − P(z)).
We can write the conditional expectations required to get the biases for the treatment
parameters as a function of P(z) = p. For U1:

E(U1 | D∗ � 0, Z = z) = σ1V

σV

E

(
V

σV

∣∣∣ V

σV

� −μD(z)

σV

)

= σ1V

σV

E

(
V

σV

∣∣∣ V

σV

� Φ−1(1 − P(z)
))

= η1M1
(
P(z)

)
,

where

η1 = σ1V

σV

.

Similarly for U0

E(U0 | D∗ > 0, Z = z) = η0M1
(
P(z)

)
,

E(U0 | D∗ < 0, Z = z) = η0M0
(
P(z)

)
,

where η0 = σ0V

σV
and

M1(P (z)) = φ(Φ−1(1 − P(z)))

P (z)
and M0(P (z)) = −φ(Φ−1(1 − P(z)))

1 − P(z)

are inverse Mills ratio terms.
Substituting these into the expressions for the biases for the treatment parameters

conditional on z we obtain

Bias TT
(
P(z)

) = η0M1
(
P(z)

)− η0M0
(
P(z)

)
= η0M

(
P(z)

)
,

Bias ATE
(
P(z)

) = η1M1
(
P(z)

)− η0M0
(
P(z)

)
= M

(
P(z)

)(
η1
(
1 − P(z)

)+ η0P(z)
)
.
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Abstract

This chapter develops three topics. (1) Identification of the distributions of treatment ef-
fects and the distributions of agent subjective evaluations of treatment effects. Methods
for identifying ex ante and ex post distributions are presented and empirical examples
are given. (2) Identification of dynamic treatment effects. The relationship between the
statistical literature on dynamic causal inference based on sequential-randomization and
the dynamic discrete-choice literature is exposited. The value of well posed economic
choice models for decision making under uncertainty in analyzing and interpreting
dynamic intervention studies is developed. A survey of the dynamic discrete-choice
literature is presented. (3) The key ideas and papers in the recent literature on general
equilibrium evaluations of social programs are summarized.

Keywords

distributions of treatment effects, dynamic treatment effects, dynamic discrete choice,
general equilibrium policy evaluation
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1. Introduction

Part I of this Handbook contribution by Heckman and Vytlacil (Chapter 70) presents
a general framework for policy evaluation. Three distinct policy problems are ana-
lyzed: P-1 (Internal Validity)—evaluating the effects of a policy in place; P-2 (External
Validity)—forecasting the effect of a policy in place in a new environment, and P-3—
forecasting the effect of new policies never previously implemented. Among other
topics, Part I considers the analysis of distributions of treatment effects and distinguishes
private (subjective) valuations of programs from objective valuations. It also discusses
the dynamic revelation of information and the uncertainty facing agents. It makes a dis-
tinction between ex ante expectations of subjective and objective treatment effects and
ex post realizations of subjective and objective treatment effects. It presents a framework
for defining the option value of participating in social programs. The analysis there is
largely microeconomic in focus and does not consider the full general equilibrium im-
pacts of policies.

Part II by Heckman and Vytlacil (Chapter 71) focuses primarily on methods for con-
ducting ex post evaluations of policies in place (problem P-1), organizing our discussion
around the marginal treatment effect (MTE). Mean treatment effect parameters receive
the most attention. The methods exposited there can be used to identify marginal im-
pact distributions for Y0 and Y1 separately. We show how to use the marginal treatment
effect to solve problems P-2 and P-3 in constructing ex post evaluations but we do not
consider general equilibrium policy analysis.

This chapter presents methods that implement the most innovative aspects of Part I.
It is organized in three sections. The first section analyzes methods for the identification
of distributions of treatment effects (Y1 − Y0) and not just the distribution of marginal
outcome distributions (or their means) for Y0 and Y1 separately. We first analyze ex post
realized distributions. A different way to say this is that we initially ignore uncertainty.
We then present methods for identifying ex ante distributions of treatment effects and
the information that agents act on when they make their treatment choices prior to the
realization of outcomes. Agent ex ante expectations are one form of subjective valu-
ation. We present empirical examples based on the research of Carneiro, Hansen and
Heckman (2001, 2003), Cunha, Heckman and Navarro (2005, 2006) and Cunha and
Heckman (2007b, 2007c, 2008). This part of the chapter helps move the evaluation liter-
ature out of statistics and into economics. It presents methods for developing subjective
and objective distributions of outcomes.

In the second portion of this contribution, we build on the analysis in the first por-
tion to consider dynamic treatment effects, where sequential revelation of information
plays a prominent role. We consider dynamic matching models introduced by Robins
(1997), Gill and Robins (2001) and Lok (2007), and applied in economics by Lechner
and Miquel (2002) and Fitzenberger, Osikominu and Völter (2006). We then consider
more economically motivated models based on continuous-time duration analysis [see
Abbring and Van den Berg (2003b)] and dynamic generalizations of the Roy model
[Heckman and Navarro (2007)]. We consider identification of mean treatment effects

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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and joint distributions of both objective and subjective outcomes. In the third section of
the paper, we briefly consider general equilibrium policy evaluation for distributions of
outcomes. We now turn to identification of the distributions of treatment effects.

2. Identifying distributions of treatment effects

The fundamental problem of policy evaluation is that we cannot observe agents in more
than one possible state. Chapter 71 focused on various methods for identifying mean
outcomes and marginal distributions. Methods useful for identifying means apply in
a straightforward way to identification of quantiles of marginal distributions as well
as the full marginal distributions. In a two potential outcome world, we can identify
Pr(Y1 � y | X) = E(1[Y1 � y] | X) and Pr(Y0 � y | X) = E(1[Y0 � y] | X)

using the variety of methods summarized in that chapter. One can compare outcomes
at one quantile of Y1 with outcomes at a quantile of Y0. See, e.g., Heckman, Smith and
Clements (1997) or Abadie, Angrist and Imbens (2002). However, these methods do not
in general identify the quantiles of the distribution of Y1 − Y0.

The research reported here is based on work by Aakvik, Heckman and Vytlacil
(2005), Heckman and Smith (1998), Heckman, Smith and Clements (1997), Carneiro,
Hansen and Heckman (2001, 2003), Cunha, Heckman and Navarro (2005, 2006), and
Cunha and Heckman (2007b, 2007c, 2008). It moves beyond means as descriptions of
policy outcomes and considers joint counterfactual distributions of outcomes (for ex-
ample, F(y1, y0), gains, F(y1 − y0) or outcomes for participants F(y1, y0 | D = 1)).
These are the ex post distributions realized after treatment is received. We also analyze
ex ante distributions, inferring the information available to agents when they make their
choices. From knowledge of the ex post joint distributions of counterfactual outcomes,
it is possible to determine the proportion of people who benefit or lose from treatment,
and hence ex post regret, the origin and destination outcomes of those who change status
because of treatment and the amount of gain (or loss) from various policies targeted to
persons at different deciles of an initial pre-policy income distribution.1 Using the joint
distribution of counterfactuals, it is possible to develop a more nuanced understanding
of the distributional impacts of public policies, and to move beyond comparisons of ag-
gregate distributions induced by different policies to consider how people in different
portions of an initial distribution are affected by public policy.

Except in special cases, which we discuss in this portion of the chapter, the methods
discussed in Chapter 71 do not solve the fundamental problem of identifying the distri-
bution of treatment effects, i.e., constructing the joint distribution of (Y0, Y1) and of the
treatment effects Y1 − Y0. This part of the Handbook reviews methods for constructing
or bounding these distributions. We now state precisely the problem analyzed in this
section.

1 It is also possible to generate all mean, median or other quantile gains to treatment, to identify all pair-
wise treatment effects in a multi-outcome setting, and to determine how much of the variability in returns
across persons comes from variability in the distributions of the outcome selected and how much comes from
variability in distributions for alternative opportunities.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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2.1. The problem

Consider a two-outcome model. The methods surveyed apply in a straightforward way
to models with more than two outcomes, as we demonstrate after analyzing the two-
outcome case. For expositional convenience, we focus on scalar outcomes unless ex-
plicitly stated otherwise. We do not usually observe (Y0, Y1) as a pair, but rather only
one coordinate and that subject to a selection bias. Thus the problem of recovering joint
distributions from cross-section data has two aspects. The first is the selection prob-
lem. From data on outcomes, F1(y1 | D = 1, X), F0(y0 | D = 0, X), under what
conditions can one recover F1(y1 | X) and F0(y0 | X), respectively? The second prob-
lem is how to construct the joint distribution of F(y0, y1 | X) from the two marginal
distributions. We assume in this section that one of the methods for dealing with the se-
lection problem discussed in Chapters 70 and 71 has been applied and the analyst knows
Pr(Y0 � y0 | X) = F0(y0 | X) and Pr(Y1 � y1 | X) = F1(y1 | X). The problem is to
construct Pr(Y0 � y0, Y1 � y1 | X) = F(y0, y1 | X). A related problem is how to con-
struct the joint distribution of (Y0, Y1,D): F(y0, y1, d | X). We also consider methods
for bounding joint distributions. But first we answer the question, “Why bother”?

2.2. Why bother identifying joint distributions?

Given the intrinsic difficulty in identifying joint distributions of counterfactual out-
comes, it is natural to ask, “why not settle for the marginals F0(y0 | X) and F1(y1 | X)?”
The methods surveyed in Chapter 71 afford identification of the marginal distributions.
Any method that can identify means or quantiles of distributions can be modified to
identify marginal distributions since E[1(Yj � yj ) | X] = Fj (yj | X), j = 0, 1.2

The literature on the measurement of economic inequality as surveyed by Foster and
Sen (1997) focuses on marginal distributions across different policy states. Invoking
the anonymity postulate, it does not keep track of individual fortunes across different
policy states. It does not decompose overall outcomes in each policy state, Y = DY1 +
(1 − D)Y0, into their component parts Y1, Y0, attributable to treatment, and D due
to choice or assignment mechanisms. Thus, in comparing policies p and p′ ∈ P , it
compares the marginal distributions of

Yp = DpY
p

1 + (1 − Dp
)
Y

p

0 ,

where Dp is the treatment choice indicator under policy p, and

Yp′ = Dp′
Y

p′
1 + (1 − Dp′)

Y
p′
0

without seeking information on the subjective valuations of the policy change or the
components of the treatment distributions under each policy (Yp

0 and Y
p

1 ; Y
p′
0 and Y

p′
1 ).

2 Quantile methods [Chesher (2003), Koenker and Xiao (2002), Koenker (2005)] and many of the methods
surveyed in Chapter 73 (Matzkin) of this Handbook also recover these marginal distributions under appropri-
ate assumptions.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06073-4


5152 J.H. Abbring and J.J. Heckman

It compares FYp(yp | X) and F
Yp′ (yp′ | X) in making comparisons of welfare and

does not worry about the component distributions, subjective valuations of agents, or
any issues of self-selection.

Distinguishing the contributions of the component outcome distributions F0(y0) and
F1(y1) and the choice mechanisms is essential for understanding the channels through
which different policies operate [Carneiro, Hansen and Heckman (2001, 2003), and
Cunha and Heckman (2008)]. Throughout this section, we assume policy invariance for
outcomes, (PI-1) and (PI-2), in the notation of Chapter 70, unless otherwise noted.

Heckman, Smith and Clements (1997) and Heckman (1998) apply the concepts of
first and second order stochastic dominance used in the conventional inequality mea-
surement literature to compare outcome distributions across treatment states within a
policy regime.3 The same methods can be used to compare treatment outcome distribu-
tions across policy states.4

Some economists appeal to classical welfare economics and classical decision theory
to argue that marginal distributions of treatment outcomes are all that is required to
implement the criteria used by these approaches. The argument is that under expected
utility maximization with information set I, the agent should be assigned to (choose)
treatment 1 if

E
(
Υ (Y1) − Υ (Y0) | I) � 0,

where Υ is the preference function and I is the appropriate information set (that of
the social planner or the agent). To compute this expectation it is only necessary to
know F1(y1 | I) and F0(y0 | I), and not the full joint distribution F(y0, y1 | I). For
many other criteria used in classical decision theory, marginal distributions are all that
is required.

As noted in Section 2.5 of Chapter 70, if one seeks to know the proportion of people
who benefit in terms of income from the program in gross terms (Pr(Y1 � Y0 | I)), one
needs to know the joint distribution of (Y0, Y1) given the appropriate information set.
Thus if one seeks to determine the proportion of agents who benefit from 1 compared
to 0, it is necessary to determine the joint distribution of (Y0, Y1) unless information set
I is known to the econometrician and the agent uses the Roy model to make choices.
For the Roy model,

D = 1[Y1 � Y0],
the probability of selecting treatment given the econometrician’s information set IE is

Pr(D = 1 | IE) = Pr(Y1 � Y0 | IE).

3 Abadie (2002) develops standard errors for this method and presents additional references.
4 Under the conventional microeconometric partial equilibrium approach to policy evaluation surveyed in

Chapter 70, the marginal distributions of (Y0, Y1) are invariant to the choice of the policy regime. This as-
sumption is relaxed in our analysis of general equilibrium effects in Section 4.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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If there are no direct costs of participation, and agents participate in the program based
on self-selection under perfect certainty, and IE is both the econometrician’s and the
agent’s information set, then data on choices identify this proportion without need for
any further econometric analysis. See the discussion in Section 2.6 below. More gener-
ally, agents may use the generalized Roy model presented in Chapter 70, or some other
model, to make decisions, but the analyst seeks to know the proportion who gain ex post,
conditioning on a different information set. Individual choice data will not reveal this
probability if (a) agents do not use a Roy model formulated in ex post outcomes, (b) they
use a more general decision rule, or (c) the information set of the agent is different from
that of the econometrician. In these cases, further econometric analysis is required to
identify Pr(Y1 � Y0 | I) for any particular information set.

Clearly the joint distribution of (Y0, Y1) given I is required to compute the gain in
gross outcomes in general terms. In analyzing the option values of social programs and
the distribution of returns to schooling (e.g., (Y1 −Y0)), in identifying dynamic discrete-
choice models (reviewed in Section 3), and in determining ex post regret, knowledge of
the full joint distribution of outcomes is required.

Section 2.10 presents examples of the richer, more nuanced, approach to policy eval-
uation that is possible when the analyst has access to the joint distribution of outcomes
across counterfactual states. We show how the tools presented in this section allow
economists to move beyond the limitations of the anonymity postulate to consider who
benefits and who loses from policy reforms. We present estimates of the proportion of
people who have ex post regret about their schooling choices and estimates of the ex
ante and ex post distributions of returns to schooling (

Y1−Y0
Y0

) which inherently require
knowledge of the joint distribution of outcomes across states. We now turn to methods
for identifying or bounding joint distributions.

2.3. Solutions

There are two basic approaches in the literature to solving the problem of identifying
F(y0, y1 | X): (A) solutions that postulate assumptions about dependence between
Y0 and Y1 and (B) solutions based on information from agent participation rules and
additional data on choice. Recently developed methods build on these two basic ap-
proaches and combine choice theory with supplementary data and assumptions about
the structure of dependence among model unobservables. We survey all of these meth-
ods. In addition to methods for exact identification, Fréchet bounds can be placed on
the joint distributions from knowledge of the marginals [see, e.g., Heckman and Smith
(1993, 1995), Heckman, Smith and Clements (1997), Manski (1997)]. We first consider
these bounds.

2.4. Bounds from classical probability inequalities

The problem of bounding an unknown joint distribution from known marginal distrib-
utions is a classical problem in mathematical statistics. Hoeffding (1940) and Fréchet

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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(1951) demonstrate that the joint distribution is bounded by two functions of the mar-
ginal distributions. Their inequalities state that

max
[
F0(y0 | X) + F1(y1 | X) − 1, 0

]
� F(y0, y1 | X)

� min
[
F0(y0 | X), F1(y1 | X)

]
.5

To simplify the notation, we keep conditioning on X implicit in the remainder of this
section. Rüschendorf (1981) establishes that these bounds are tight.6 Mardia (1970)
establishes that both the lower bound and the upper bound are proper probability dis-
tributions. At the upper bound, Y1 = F−1

1 (F0(Y0)) is a non-decreasing deterministic
function of Y0. At the lower bound, Y1 is a non-increasing deterministic function of Y0:
Y1 = F−1

1 (1 − F0(Y0)).
By a theorem of Cambanis, Simons and Stout (1976), if k(y1, y0) is superadditive

(or subadditive), then extreme values of E(k(Y1, Y0)) are obtained from the upper and
lower bounding distributions.7,8 Since k(y1, y0) = (y1 − E(Y1))(y0 − E(Y0)) is super-
additive, the maximum attainable product-moment correlation rY0Y1 is obtained from
the upper bound distribution while the minimum attainable product moment correlation
is obtained at the lower bound distribution. Let � = Y1 − Y0. It is possible to bound
Var(�) = (Var(Y1) + Var(Y0) − 2rY0Y1[Var(Y1) Var(Y0)]1/2) with the minimum ob-
tained from the Fréchet–Hoeffding upper bound.9 Checking whether the lower bound
of Var(�) is statistically significantly different from zero provides a test of whether or
not the data are consistent with the common effect model. For example, if Y1 −Y0 = β,
a constant, Var(�) = 0.

Tchen (1980) establishes that Kendall’s τ and Spearman’s ρ also attain their ex-
treme values at the bounding distributions. The upper and lower bounding distributions
produce the cases of perfect positive dependence and perfect negative dependence, re-
spectively. Often the bounds on the quantiles of the � distribution obtained from the
Fréchet–Hoeffding bounds are very wide.10 Table 1 presents the range of values of rY0Y1 ,

5 King (1997) applies these inequalities to solve the problem of ecological correlation. These inequalities
are used in the missing data literature for contingency tables [see, e.g., Bishop, Fienberg and Holland (1975)].
6 An upper bound is “tight” if it is the smallest possible upper bound. A lower bound is tight if it is the

largest lower bound.
7 k is assumed to be Borel-measurable and right-continuous. k is strictly superadditive if y1 > y′

1 and
y0 > y′

0 imply that k(y1, y0) + k(y′
1, y′

0) > k(y1, y′
0) + k(y′

1, y0). k is strictly subadditive if the final
inequality is reversed.
8 An interesting application of the analysis of Cambanis, Simons and Stout (1976) is to the assignment

problem studied by Koopmans and Beckmann (1957) and Becker (1974). If total output of a match k(y0, y1)

is superadditive, as it is in the Cobb–Douglas model (k(y0, y1) = y0y1), then the optimal sorting rule is
obtained by the upper bound of the Fréchet distribution.
9 Note that the maximum value of rY0Y1 is obtained at the upper bound and that all other components of

the variance of � are obtained from the marginal distributions. Thus the minimum variance of � is obtained
from the Fréchet–Hoeffding upper bound distribution.
10 See the examples in Heckman and Smith (1993).
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Table 1
Characteristics of the distribution of impacts on earnings in the 18 months after random assignment
at the Fréchet–Hoeffding bounds (National JTPA Study 18 month impact sample: adult females)

Statistic From lower
bound distribution

From upper
bound distribution

Impact standard deviation 14968.76 674.50
(211.08) (137.53)

Outcome correlation −0.760 0.998
(0.013) (0.001)

Spearman’s ρ −0.9776 0.9867
(0.0016) (0.0013)

Notes: 1. These estimates were obtained using the empirical c.d.f.s calculated at 100 dollar earnings
intervals rather than using the percentiles of the two c.d.f.s.
2. Bootstrap standard errors in parentheses.
Source: Heckman, Smith and Clements (1997).

Spearman’s ρ and [Var(�)]1/2 for the Job Training Partnership Act (JTPA) data ana-
lyzed in Heckman, Smith and Clements (1997).11 The ranges are rather wide, but it is
interesting to observe that the bounds rule out the common effect model, as Var(�) is
bounded away from zero.

The Fréchet–Hoeffding bounds apply to all joint distributions.12 The outcome vari-
ables may be discrete, continuous or both discrete and continuous. It is fruitful to
consider the bounds for this model with binary outcomes to establish the variability
in the distribution of impacts for a discrete variable such as employment. For speci-
ficity, we analyze the employment data from the JTPA experiment reported in Heckman,
Smith and Clements (1997). The data are multinomial.13 Let (E,E) denote the event
“employed with treatment” and “employed without treatment” and let (E,N) be the
event “employed with treatment, not employed without treatment.” Similarly, (N,E)

and (N,N) refer respectively to cases where a person would not be employed if treated
but would be employed if not treated, and where a person would not be employed in
either case. The probabilities associated with these events are PEE , PEN , PNE and
PNN , respectively. This model can be written in the form of a contingency table. The
columns refer to employment and nonemployment in the untreated state. The rows refer
to employment and nonemployment in the treated state.

11 Heckman, Smith and Clements (1997) discuss the properties of the estimates of the standard errors reported
in Table 1. JTPA was a job training program in place in the US in the 1980s and 1990s.
12 Formulae for multivariate bounds are given in Tchen (1980) and Rüschendorf (1981).
13 The following formulation owes a lot to the missing cell literature in contingency table analysis. See, e.g.,
Bishop, Fienberg and Holland (1975).
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Untreated

Treated

E N

E PEE PEN PE·
N PNE PNN PN ·

P·E P·N

If we observed the same person in both the treated and untreated states, we could fill
in the table and estimate the full distribution. With experimental data or data corrected
for selection using the methods discussed in Chapter 71, one can estimate the marginals
of the table parameters:

(2.1a)PE· = PEE + PEN (employment proportion among the treated),

(2.1b)P·E = PEE + PNE (employment proportion among the untreated).

The treatment effect is usually defined as

(2.2)� = PEN − PNE.

This is the proportion of people who would switch from being nonemployed to being
employed as a result of treatment minus the proportion of persons who would switch
from being employed to not being employed as a result of treatment. Using (2.1a) and
(2.1b), we obtain the treatment effect as

(2.3)� = PE· − P·E,

so that � is identified by subtracting the proportion employed in the control group (P̂·E)
from the proportion employed in the treatment group (P̂E·).

If we wish to decompose � into its two components, experimental data or selection-
corrected data do not in general give an exact answer. In terms of the contingency table
presented above, we know the row and column marginals but not the individual elements
in the table. The case in the 2 × 2 table corresponding to the common effect model for
continuous outcomes restricts the effect of the program on employment to be always
positive or always negative, so that either PEN or PNE = 0, respectively. Under such
assumptions, the model is fully identified. This is analogous to the continuous case
in which the common effect assumption, or more generally, an assumption of perfect
positive dependence, identifies the joint distribution of outcomes.

More generally, the Fréchet–Hoeffding bounds restrict the range of admissible values
for the cell probabilities. Their application in this case produces:

max[PE· + P·E − 1, 0] � PEE � min[PE·, P·E],
max[PE· − P·E, 0] � PEN � min[PE·, 1 − P·E],
max[−PE· + P·E, 0] � PNE � min[1 − PE·, P·E],
max[1 − PE· − P·E, 0] � PNN � min[1 − PE·, 1 − P·E].

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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Table 2
Fraction employed in the 16th, 17th or 18th month after random assignment and
Fréchet–Hoeffding bounds on the probabilities PNE and PEN (National JTPA

study 18 month impact sample: adult females)

Parameter Estimate

Fraction employed in the treatment group 0.64
(0.01)

Fraction employed in the control group 0.61
(0.01)

Bounds on PEN [0.03, 0.39]
(0.01), (0.01)

Bounds on PNE [0.00, 0.36]
(0.00), (0.01)

Notes: 1. Employment percentages are based on self-reported employment in
months 16, 17 and 18 after random assignment. A person is coded as em-
ployed if the sum of their self-reported earnings over these three months is
positive.
2. Pij is the probability of having employment status i in the treated state and
employment status j in the untreated state, where i and j take on the values E

for employed and N for not employed. The Fréchet–Hoeffding bounds are given
in the text.
3. Standard errors are discussed in Heckman, Smith and Clements (1997).
Source: Heckman, Smith and Clements (1997).

Table 2, taken from the analysis of Heckman, Smith and Clements (1997), presents the
Fréchet–Hoeffding bounds for PNE and PEN from the national JTPA experiment—the
source of data for Table 1. The outcome variable is whether or not a person is employed
in the 16th, 17th or 18th month after random assignment. The bounds are very wide.
Even without taking into account sampling error, the experimental evidence for adult
females is consistent with a value of PNE ranging from 0.00 to 0.36. The range for
PEN is equally large. Thus as many as 39% and as few as 3% of adult females may
have had their employment status improved by participating in the training program.
As many as 36% and as few as 0% may have had their employment status harmed by
participating in the program. From (2.2), we know that the net difference PEN −PNE =
�, so that high values of PEN are associated with high values of PNE . As few as 25%
[(0.64−0.39)×100%] and as many as 61% of the women would have worked whether
or not they entered the program (PEE ∈ [0.25, 0.61]).

From the evidence presented in Table 2, one cannot distinguish two different sto-
ries. The first story is that the JTPA program benefits many people by facilitating their
employment but it also harms many people who would have worked if they had not
participated in the program. The second story is that the program benefits and harms
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few people.14 Heckman, Smith and Clements (1997) and Manski (1997, 2003) develop
these bounds further. We next consider methods to point identify the joint distributions
of outcomes. All entail using some auxiliary information.

2.5. Solutions based on dependence assumptions

A variety of approaches solve the problem of identifying the joint distribution of po-
tential outcomes by making dependence assumptions connecting Y0 and Y1. We review
some of the major approaches.

2.5.1. Solutions based on conditional independence or matching

An approach based on matching postulates access to variables Q that have the property
that conditional on Q, F0(y0 | D = 0, X,Q) = F0(y0 | X,Q) and F1(y1 | D = 1,

X,Q) = F1(y1 | X,Q). As discussed in Section 9 of Chapter 71, matching assumes
that conditional on observed variables, Q, there is no selection problem: (Y0 ⊥⊥ D |
X,Q) and (Y1 ⊥⊥ D | X,Q). If it is further assumed that all of the dependence between
(Y0, Y1) given X comes through Q, it follows that

F(y1, y0 | X,Q) = F1(y1 | X,Q)F0(y0 | X,Q).

Using these results, it is possible to identify the joint distribution F(y0, y1 | X) because

F(y0, y1 | X) =
∫

F0(y0 | X,Q)F1(y1 | X,Q) dμ(Q | X),

where μ(Q | X) is the conditional distribution of Q given X. Under the assumption
that we observe X and Q, this conditional distribution can be constructed from data.
We obtain F0(y0 | X,Q), F1(y1 | X,Q) by matching. Thus we can construct the right-
hand side of the preceding expression. As noted in Chapter 71, matching makes the
strong assumption that conditional on (Q,X) the marginal return to treatment is the
same as the average return, although returns may differ by the level of Q and X.

2.5.2. The common coefficient approach

The traditional approach in economics to identifying joint distributions is to assume
that the joint distribution F(y0, y1 | X) is a degenerate, one dimensional distribution.
Conditional on X, Y0 and Y1 are assumed to be deterministically related:

(2.4)Y1 − Y0 = �,

14 Heckman, Smith and Clements (1997) show that conditioning on other background variables does not
reduce the intrinsic uncertainty in the data. Thus in both the discrete and continuous cases, the data from the
JTPA experiment are consistent with a wide variety of impact distributions.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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where � is a constant given X. It is the difference in means between Y1 and Y0 for
the selection corrected distribution.15 This approach assumes that treatment has the
same effect on everyone (with the same X), and that the effect is �. Because (2.4)
implies a perfect ranking across quantiles of the outcome distributions Y0 and Y1,
� can be identified from the difference in the quantiles between Y0 and Y1 for any
quantile. Even if the means do not exist, one can still identify �. From knowledge
of F0(y0 | X) and F1(y1 | X), one can identify the means and quantiles. Hence one can
identify �.

2.5.3. More general dependence assumptions

Heckman, Smith and Clements (1997) and Heckman and Smith (1998) relax the com-
mon coefficient assumption by postulating perfect ranking in the positions of individuals
in the F1(y1 | X) and F0(y0 | X) distributions. The best in one distribution is the best
in the other. Assuming continuous and strictly increasing marginal distributions, they
postulate that quantiles are perfectly ranked so Y1 = F−1

1 (F0(Y0)). This is the tight up-
per bound of the Fréchet bounds. An alternative assumption is that people are perfectly
inversely ranked so the best in one distribution is the worst in the other:

Y1 = F−1
1

(
1 − F0(Y0)

)
.

This is the tight Fréchet lower bound.
One can associate quantiles across the marginal distributions more generally.

Heckman, Smith and Clements (1997) use Markov transition kernels that stochasti-
cally map quantiles of one distribution into quantiles of another. They define a pair of
Markov kernels M(y1, y0 | X) and M̃(y0, y1 | X) with the property that they map
marginals into marginals:

F1(y1 | X) =
∫

M(y1, y0 | X) dF0(y0 | X),

F0(y0 | X) =
∫

M̃(y0, y1 | X) dF1(y1 | X).

Allowing these kernels to be degenerate produces a variety of deterministic trans-
formations, including the two previously presented, as special cases of a general
mapping. Different (M, M̃) pairs produce different joint distributions. These trans-
formations supply the missing information needed to construct the joint distribu-
tions.16

15 � may be a function of X.
16 For given marginal distributions F0 and F1, we cannot independently pick M and M̃ . Consistency requires
that ∫ y0

−∞
M(y1, y | X) dF0(y | X) =

∫ y1

−∞
M̃(y0, y | X) dF1(y | X),

for all y0, y1.
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A perfect ranking (or perfect inverse ranking) assumption generalizes the perfect
ranking, constant-shift assumptions implicit in the conventional literature. It allows an-
alysts to apply conditional quantile methods to estimate the distributions of gains.17

However, it imposes a strong and arbitrary dependence across distributions. Lehmann
and D’Abrera (1975), Robins (1989, 1997), Koenker and Xiao (2002), and many others
maintain this assumption under the rubric of “rank invariance” in order to identify the
distribution of treatment effects.

Table 3 shows the percentiles of the earnings impact distribution (F�(y1 − y0)) for
females in the National JTPA experiment under various assumptions about dependence

Table 3
Percentiles of the impact distribution as ranking across distributions (τ ) varies based on random samples of

50 permutations with each value of τ (National JTPA study 18 month impact sample: adult females)

Measure of rank
correlation τ

Minimum 5th
percentile

25th
percentile

50th
percentile

75th
percentile

95th
percentile

Maximum

1.00 0.00 0.00 572.00 864.00 966.00 2003.00 18550.00
(703.64) (47.50) (232.90) (269.26) (305.74) (543.03) (5280.67)

0.95 −14504.00 0.00 125.50 616.00 867.00 1415.50 48543.50
(1150.01) (360.18) (124.60) (280.19) (272.60) (391.51) (8836.49)

0.90 −18817.00 −1168.00 0.00 487.00 876.50 2319.50 49262.00
(1454.74) (577.84) (29.00) (265.71) (282.77) (410.27) (6227.38)

0.70 −25255.00 −8089.50 −136.00 236.50 982.50 12158.50 55169.50
(1279.50) (818.25) (260.00) (227.38) (255.78) (614.45) (5819.28)

0.50 −28641.50 −12037.00 −1635.50 0.00 1362.50 16530.00 58472.00
(1149.22) (650.31) (314.39) (83.16) (249.29) (329.44) (5538.14)

0.30 −32621.00 −14855.50 −3172.50 0.00 4215.50 16889.00 54381.00
(1843.48) (548.48) (304.62) (37.96) (244.67) (423.05) (5592.86)

0.00 −44175.00 −18098.50 −6043.00 0.00 7388.50 19413.25 60599.00
(2372.05) (630.73) (300.47) (163.17) (263.25) (423.63) (5401.02)

−0.30 −48606.00 −20566.00 −8918.50 779.50 9735.50 21093.25 65675.00
(1281.80) (545.99) (286.92) (268.02) (300.59) (462.13) (5381.91)

−0.50 −48606.00 −21348.00 −9757.50 859.00 10550.50 22268.00 67156.00
(1059.06) (632.55) (351.55) (315.37) (255.28) (435.78) (5309.90)

−0.70 −48606.00 −22350.00 −10625.00 581.50 11804.50 23351.00 67156.00
(1059.06) (550.00) (371.38) (309.84) (246.58) (520.93) (5309.90)

−0.90 −48606.00 −22350.00 −11381.00 580.00 12545.00 23351.00 67156.00
(1059.06) (547.17) (403.30) (346.12) (251.07) (341.41) (5309.90)

−0.95 −48606.00 −22350.00 −11559.00 580.00 12682.00 23351.00 67156.00
(1059.06) (547.17) (404.67) (366.37) (255.97) (341.41) (5309.90)

−1.00 −48606.00 −22350.00 −11755.00 580.00 12791.00 23351.00 67156.00
(1059.06) (547.17) (411.83) (389.51) (253.18) (341.41) (5309.90)

(continued on next page)

17 See, e.g., Heckman, Smith and Clements (1997).
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Table 3
(continued)

Notes: 1. This table shows selected percentiles of the empirical distribution of Y1 − Y0 under different as-
sumptions about the dependence of Y1 and Y0. The empirical distribution of Y1 − Y0 for each indicated value
of Kendall’s rank correlation τ is constructed by pairing the percentiles of the empirical distributions of Y0
and Y1 in a way consistent with the value of τ . There are J ! ways of pairing the J = 100 percentiles of both
marginal distributions, each corresponding to lining up the Y0 percentiles to one of the J ! permutations of the
Y1 percentiles. First, consider the two extreme cases, τ = 1 and τ = −1. If the percentiles of Y0 are assigned
to the corresponding percentile of Y1, then the rank correlation τ between the percentiles among the resulting
J pairs equals 1. The difference between the percentile of Y1 and the associated percentile of Y0 in each pair
is the impact for that pair. Taken together, the J pairs’ impacts form the distribution of impacts for τ = 1. It
is the minimum, maximum and percentiles of this impact distribution that are reported in the first row of the
table. If the percentile comparisons are based on pairing the biggest in one distribution with the smallest in
the other distribution, then τ = −1. Computations for τ = −1 are reported in the table’s last row.
Intermediate values of τ are obtained by considering pairings of percentiles with a specified number of in-
versions in the ranks. An inversion is said to arise if, among two pairs of quantiles, a lower Y0 quantile is
matched with a higher Y1 quantile. For a given pairing of percentiles (permutation of the Y1 percentiles) the
total number of inversions is

η =
∑
j

∑
i<j

hij , hij =
{

1, Y
(i)
1 > Y

(j)
1 ,

0

where Y
(j)
1 is the percentile of Y1 associated with the j th percentile of Y0. The value of η ranges from 0

(corresponding to perfect positive rank correlation) to 1
2 J (J −1) (perfect negative rank correlation). Kendall’s

rank correlation measure τ is

τ = 1 − 4η

J (J − 1)
, where τ ∈ [−1, 1].

There are multiple pairings of percentiles consistent with each intermediate value of τ (number of inver-
sions η), unlike in the cases of τ = 1 and τ = −1. Therefore, for intermediate values of τ the table reports
the mean of the indicated parameters of the impact distribution over a random sample of 50 pairings having
the indicated value of τ .
2. Bootstrap standard errors in parentheses.
Source: Heckman, Smith and Clements (1997).

between Y1 and Y0. The experiment identified F1(y1) and F0(y0) separately. The table
reports selected percentiles of the estimated impact distributions for different assumed
levels of dependence, τ (Kendall’s rank correlation). As shown in the first footnote to
the table, τ = 1 corresponds to the Fréchet upper bound. τ = −1 corresponds to
the Fréchet lower bound. Since without further information in hand, the joint distri-
bution is not identified, the data are consistent with all values of τ and so each row
of the table is a possible outcome distribution. Notice that the medians (50th per-
centile) are reasonable, but many percentiles are not. Heckman, Smith and Clements
(1997) suggest that prior information about plausible outcomes, possibly formalized
by a Bayesian analysis, can be used to pick reasonable values of τ . We next consider
alternative deconvolution assumptions that can be used to point identify the joint distri-
butions.
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2.5.4. Constructing distributions from assuming independence of the gain from the
base

An alternative assumption about the dependence across outcomes is that Y1 = Y0 + �,
where �, the treatment effect, is a random variable stochastically independent of Y0
given X, i.e.,

(CON-1) Y0 ⊥⊥� | X.

This assumption states that the gain from participating in the program is independent of
the base Y0. If we assume

(M-1) (Y0, Y1)⊥⊥ D | X,

and (CON-1), we can identify F(y0, y1 | X) from the cross-section outcome distrib-
utions of participants and nonparticipants and estimate the joint distribution by using
deconvolution.18 Methods for using this information are presented in Appendix A.

Horowitz and Markatou (1996) develop the asymptotic properties of convolution esti-
mators with regression building on the work of Stefanski and Carroll (1991). Heckman,
Smith and Clements (1997) and Heckman and Smith (1998) use deconvolution to an-
alyze the distribution of gains from the JTPA data. Neither (CON-1) nor (M-1) is an
attractive assumption from the point of view of economic choice models. (M-1) implies
that marginal entrants into a social program have the same return as average participants.
The assumption (CON-1) is not a prediction of general choice models.

2.5.5. Random coefficient regression approaches

In a regression setting in which means and variances are assumed to capture all of
the relevant information about the distributions of outcomes and treatment effects, the
convolution approach discussed in the preceding section is equivalent to the traditional
normal random coefficient model. Letting

Y1 = μ1(X) + U1, E(U1 | X) = 0,

Y0 = μ0(X) + U0, E(U0 | X) = 0,

this version of the model may be written as

Y = μ0(X) + (μ1(X) − μ0(X) + U1 − U0
)

︸ ︷︷ ︸
β(X)

D + U0

18 Barros (1987) uses this assumption in the context of an analysis of selection bias.



Ch. 72: Econometric Evaluation of Social Programs, Part III 5163

= μ0(X) + (μ1(X) − μ0(X)
)
D + (U1 − U0)D + U0

(2.5)= μ0(X) + β̄(X)D + υD + U0,

where in the notation of Chapter 71, β(X) is the treatment effect (= �), β̄(X) =
μ1(X) − μ0(X), and υ = U1 − U0. From (M-1), (U0, U1)⊥⊥ D | X.

Nonparametric regression methods may be used to recover μ0(X) and μ1(X) −
μ0(X) or one may use ordinary parametric regression methods if one assumes that
μ1(X) = Xβ1 and μ0(X) = Xβ0. Equation (2.5) is a components-of-variance model
and a test of (CON-1) given (M-1) is that

Var(Y | D = 1, X) = Var(Y0 + � | D = 1, X)

= Var(Y0 | X) + Var(� | X)

� Var(Y | D = 0, X) = Var(Y0 | X).

Under standard conditions, each component of variance is identified and estimable from
the residuals obtained from the nonparametric regression of Y on D and X. Thus one
can jointly test a prediction of (CON-1) and (M-1) by checking these inequalities.

2.6. Information from revealed preference

An alternative approach, rooted more deeply in economics, uses information on agent
choices to recover the joint population distribution of potential outcomes.19 Unlike the
method of matching or the methods based on particular assumptions about dependence
between Y0 and Y1, the method based on revealed preference capitalizes on a close
relationship between (Y0, Y1) and decisions about program participation. Participation
includes voluntary entry into a program or attrition from it.

The prototypical framework is the Roy (1951) model extensively utilized in
Chapters 70 and 71. In that setup, as previously noted in Section 2.2,

(2.6)D = 1[Y1 � Y0].
If we postulate that the outcome equations can be written in a separable form, so that

Y1 = μ1(X) + U1, E(U1 | X) = 0,

Y0 = μ0(X) + U0, E(U0 | X) = 0,

then Pr(D = 1 | X) = Pr(Y1 − Y0 � 0 | X) = Pr(U1 − U0 � −(μ1(X) − μ0(X))).
Heckman and Honoré (1990) demonstrate that if X ⊥⊥ (U0, U1), Var(U0) < ∞ and
Var(U1) < ∞, and (U0, U1) are normal, the full model F(y0, y1,D | X) is identi-
fied even if we only observe Y0 or Y1 for any person and there are no regressors and

19 Heckman (1974a, 1974b) demonstrates how access to censored samples on hours of work, wages for
workers, and employment choices identifies the joint distribution of the value of nonmarket time and potential
market wages under a normality assumption. Heckman and Honoré (1990) consider nonparametric versions
of this model without labor supply.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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no exclusion restrictions. If instead of assuming normality, it is assumed that the sup-
port of (μ0(X), μ1(X)) contains the support of (U0, U1), (μ0(X), μ1(X)) and the joint
distribution of (U0, U1) are nonparametrically identified up to location normalizations.
The proof of this theorem due to Heckman and Honoré (1990) is a special case of the
general theorem proved in Appendix B of Chapter 70.

A crucial feature of the Roy model is that the decision to participate in the program
is made solely in terms of potential outcomes. No new unobserved variables enter the
model that do not also appear in the outcome equations (Y0, Y1). We could augment
decision rule (2.6) to be D = 1[Y1 − Y0 − μC(Z) � 0], where μC(Z) is the cost
of participation in the program and Z is observed, and still preserve the identifiability
of the Roy model. Provided that we measure Z and condition on it, and provided that
(U0, U1)⊥⊥ (X,Z), the model remains nonparametrically identified. The crucial prop-
erty of the identification result is that no new unobservable enters the model through the
participation equation. However, if we add components of cost based on observables,
subjective valuations of gain (Y1 − Y0 − μC(Z)) no longer equal “objective” measures
(Y1 − Y0). This is the distinction between the generalized Roy model and the extended
Roy model extensively discussed in Chapter 71.

In the case of the Roy model, information about who participates in the program also
informs the analyst about the distribution of the value of the program to participants
F�(y1 − y0 | Y1 � Y0, X). Thus, we acquire the distribution of implicit values of
the program for participants. In the Roy model, “objective” and “subjective” outcomes
coincide and agent’s choices are informative on the outcome not chosen.

For more general decision rules with additional sources of unobservables apart from
those arising from (Y0, Y1), it is not generally possible to identify F(y0, y1) from infor-
mation on (Y,D,X,Z) without invoking additional assumptions. For the generalized
Roy model,

D = 1[Y1 − Y0 − C � 0],
where, for example,

C = μC(Z) + UC.

Let UI = U1 −U0 −UC , I = Y1 −Y0 −C and μI (X,Z) = μ1(X)−μ0(X)−μC(Z).
Define P(X,Z) = Pr(D = 1 | X,Z). If UC is not perfectly predicted by (U0, U1), then
we cannot, in general, estimate the joint distribution of (Y0, Y1, C) given (X,Z) or the
distribution of (U0, U1, UC) from data on Y , D, X and Z.

However, under the conditions in Appendix B of Chapter 70, we can identify up to
an unknown scale for I , FY0,I (y0, i | X,Z) and FY1,I (y1, i | X,Z).20 The following
intuition motivates the conditions under which FY0,I (y0, i | X,Z) is identified. A paral-
lel argument holds for FY1,I (y1, i | X,Z). First, under the conditions given in Cosslett
(1983), Manski (1988), Matzkin (1992) and Appendix B of Chapter 70, we can identify

20 In our application of that theorem, there are only two choices so S̄ = 2 in the notation of that theorem.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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μI (X,Z)
σUI

from Pr(D = 1 | X,Z) = Pr(μI (X,Z) + UI � 0 | X,Z). σ 2
UI

is the variance

of UI . We can also identify the distribution of UI

σUI
. Second, from this information and

F0(y0 | D = 0, X,Z) = Pr(Y0 � y0 | μI (X,Z) + UI < 0, X,Z), we can form

F0(y0 | D = 0, X,Z) Pr(D = 0 | X,Z) = Pr(Y0 � y0, I < 0 | X,Z).

The left-hand side of this expression is known (we observe Y0 when D = 0 and we
know the probability that D = 0 given X,Z). The right-hand side can be written as

Pr

(
Y0 � y0,

UI

σUI

< −μI (X,Z)

σUI

∣∣∣ X,Z

)
.

In particular if μI (X,Z) can be made arbitrarily small (μI (X,Z) → −∞), for a
given X, we can recover the marginal distribution Y0 from which we can recover μ0(X),
and hence the distribution of U0.

From the definition of Y0, U0 = Y0 −μ0(X). We may write the preceding probability
as

Pr

(
U0 � y0 − μ0(X),

UI

σUI

<
−μI (X,Z)

σUI

∣∣∣ X,Z

)
.

Note that the X and Z can be varied and y0 is a number. Thus, by varying the known y0

and μI (X,Z)
σUI

, we can trace out the joint distribution of (U0,
UI

σUI
). Thus we can recover

the joint distribution of

(Y0, I ) =
(

μ0(X) + U0,
μI (X,Z) + UI

σUI

)
.

Notice the three key ingredients required to recover the joint distribution:

(a) The independence between (U0, UI ) and (X,Z).
(b) The assumption that we can make μI (X,Z)

σUI
arbitrarily small for a given X (so we

get the marginal distribution of Y0 and hence μ0(X)). As noted in Chapter 71, this
type of identification-at-infinity assumption plays a key role in the entire selection
and evaluation literature for identifying many important evaluation parameters,
such as the average treatment effect and treatment on the treated.

(c) The assumption that μI (X,Z)
σUI

can be varied independently of μ0(X). This enables

us to trace out the joint distribution of (U0,
UI

σUI
).21

21 Another way to see how identification works is to note that from Cosslett (1983), Manski (1988), Matzkin
(1992) and ingredients (a) and (b), we can express

F0(y0 | D = 0, X,Z) Pr(D = 0 | X,Z)

as a function of μ0(X) and μI (X,Z)
σUI

. The dependence on X and Z operating only through the indices

μ0(X) and μI (X,Z)
σUI

is called index sufficiency. Varying the μ0(X) and μI (X,Z)
σUI

traces out the distribution

of (U0,
UI
σUI

).

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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A parallel argument establishes identification of the distribution of (Y1, I ) given X

and Z.
Identification of the Roy model follows from this analysis. Recall that the model as-

sumes that UI = U1 − U0 so σ 2
UI

= Var(U1 − U0). From the distributions of (Y0, I )

and (Y1, I ), given X and Z, we can recover the joint distributions of (U0,
U1−U0

σUI
) and

(U1,
U1−U0

σUI
) and hence the joint distribution of (U0, U1). We can recover the joint dis-

tribution of U1 − U0 even if μI (X,Z) �= μ1(X) − μ0(X) as long as UC ≡ 0.

2.7. Using additional information

We have established that data from social experiments or observational data corrected
for selection do not in general identify joint distributions of potential outcomes. In the
special case of the Roy model, choice data supplemented with outcome data will iden-
tify the joint distribution. But this result is fragile. For more general choice criteria, we
cannot without further assumptions identify the joint distribution of potential outcomes.
Recent approaches build on these results to supplement choice models with dependence
assumptions to identify the joint distribution of (U0, U1).

Aakvik, Heckman and Vytlacil (2005), Carneiro, Hansen and Heckman (2001, 2003),
Cunha, Heckman and Navarro (2005, 2006), and Cunha and Heckman (2007b, 2008)
use factor models to capture the dependence across the unobservables (U0, U1, UI )

and to supplement the information used in order to construct the joint distribution
of counterfactuals. Their approach is a version of the proxy/replacement function ap-
proach developed in Heckman and Robb (1985, 1986) that is discussed in Section 10
of Chapter 71 and in Chapter 73 (Matzkin) of this Handbook. It extends factor models
developed by Jöreskog and Goldberger (1975) and Jöreskog (1977) to restrict the de-
pendence among the (U0, U1, UI ). A low dimensional set of random variables generates
the dependence across the outcome unobservables. Such dimension reduction coupled
with the use of choice data and additional measurements that proxy or replace the fac-
tors can provide enough information to identify the joint distributions of (Y0, Y1) and
(Y0, Y1,D).

The factor models are built around a conditional-independence assumption. Condi-
tional on the factors, outcomes and choice equations are independent. Thus the factor
models have a close affinity with matching except that they do not assume that the
analyst observes the factors and must instead integrate them out and identify their dis-
tribution.

To demonstrate how this approach works, assume separability between observables
and unobservables:

Y1 = μ1(X) + U1,

Y0 = μ0(X) + U0.

Denote I as the latent variable generating treatment choices:

I = μI (Z) + UI ,

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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D = 1[I � 0].
Allow any X to be in Z so the notation is general.

To understand this approach, it is convenient but not essential to assume that
(U0, U1, UI ) is normally distributed with mean zero and covariance matrix Σ . Normal-
ity plays no essential role in the analysis of this section. The key role is played by the
factor structure assumption introduced below. Assume access to data on (Y,D,X,Z).
We can identify F0(y0 | D = 0, X,Z), F1(y1 | D = 1, X,Z) and Pr(D = 1 | X,Z).
Under certain conditions presented in Appendix B, Chapter 70 and the preceding sec-
tion, we can identify the distributions of (U0,

UI

σUI
) and (U1,

UI

σUI
) nonparametrically. We

can sometimes identify the scale on UI .
To restrict the dependence across the unobservables, we adopt a factor structure

model for the U0, U1, UI . Other restrictions across the unobservables are possible.
Models for a single factor are extensively developed by Jöreskog and Goldberger
(1975). Aakvik, Heckman and Vytlacil (2005) and Carneiro, Hansen and Heckman
(2001, 2003) extend their analysis to generate distributions of counterfactuals.

Initially assume a one-factor model where θ is a scalar factor (say unmeasured abil-
ity) that generates dependence across the unobservables assumed to be independent of
(X,Z):

U0 = α0θ + ε0,

U1 = α1θ + ε1,

UI = αUI
θ + εUI

,

θ ⊥⊥ (ε0, ε1, εUI
), (ε0, ε1, εUI

) are mutually independent.

We discuss methods for multiple factors in the next section. Assume that E(U0) = 0,
E(U1) = 0 and E(UI ) = 0. In addition, E(θ) = 0. Thus E(ε0) = 0, E(ε1) = 0 and
E(εUI

) = 0. To set the scale of the unobserved factor, normalize one “loading” (coef-
ficient on θ ) to 1. Note that all the dependence in the unobservables across equations
arises from θ .

From the joint distributions of (U0,
UI

σUI
) and (U1,

UI

σUI
) we can identify

Cov

(
U0,

UI

σUI

)
= α0αUI

σUI

σ 2
θ ,

Cov

(
U1,

UI

σUI

)
= α1αUI

σUI

σ 2
θ ,

assuming that the covariances on the left-hand side exist. From the ratio of the second
covariance to the first we obtain α1

α0
. Thus we obtain the sign of the dependence between

U0, U1 because

Cov(U0, U1) = α0α1σ
2
θ .

From the ratio, we obtain α1 if we normalize α0 = 1. Without further information, we
cannot identify the variance of UI , σ 2

UI
. We normalize it to 1. (Alternatively, we could

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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normalize the variance of εUI
to 1.) Below, we present a condition that sets the scale

of UI .
With additional information, one can identify the full joint distribution of (U0, U1, UI )

and hence can construct the joint distribution of potential outcomes. In this section, we
show this by a series of examples for a normal model. In a normal model, the joint
distribution of (Y0, Y1) is determined (given X) if one can identify the variances of Y0
and Y1 and their covariance. We then show that normality plays no essential role in this
analysis. We first consider what can be identified from access to a proxy M for θ (e.g.,
a test score).

2.7.1. Some examples

EXAMPLE 1 (Access to a single proxy measure (e.g., a test score)). Assume access to
data on Y0 given D = 0, X, Z; to data on Y1 given D = 1, X, Z; and to data on D

given X, Z. Suppose that the analyst also has access to a proxy for θ . Denote the proxy
measure by M . In a schooling example, it could be a test score:

M = μM(X) + UM,

where

UM = αMθ + εM,

so

M = μM(X) + αMθ + εM,

where εM is independent of ε0, ε1, εUI
and θ , as well as (X,Z) (εM ⊥⊥ (ε0, ε1, εUI

, θ,

X,Z)). We can identify the mean μM(X) from observations on M and X. From this
additional information, we acquire three additional covariance terms, conditional on
X,Z, where we keep the conditioning implicit and define I as normalized by σUI

:

Cov(Y1,M) = α1αMσ 2
θ ,

Cov(Y0,M) = α0αMσ 2
θ ,

Cov(I,M) = αUI

σUI

αMσ 2
θ .22

Suppose that we normalize the loading on the proxy (or test score) to one (αM = 1). It
is no longer necessary to normalize α0 = 1 as in the preceding section. From the ratio
of the covariance of Y1 with I with the covariance of I with M , we obtain the right-hand

22 Conditioning on X,Z, we can remove the dependence of Y1, Y0,M and I on these variables and effectively
work with the residuals Y0 −μ0(X) = U0, Y1 −μ1(X) = U1, M −μM(X) = UM , I −μI (Z) = UI , where
we keep the scale on I implicit.
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side of

Cov(Y1, I )

Cov(I,M)
= α1αUI

σ 2
θ

αUI
αMσ 2

θ

= α1,

because αM = 1 (normalization). From the discussion in the preceding section where
no proxy is assumed, we obtain α0 since

Cov(Y1, I )

Cov(Y0, I )
= α1αUI

σ 2
θ

α0αUI
σ 2

θ

= α1

α0
.

From knowledge of α1 and α0 and the normalization for αM , we obtain σ 2
θ from

Cov(Y1,M) or Cov(Y0,M). We obtain αUI
(up to scale σUI

) from Cov(I,M) =
αUI

αMσ 2
θ

σUI
since we know αM (= 1) and σ 2

θ . The model is overidentified. We can identify

the scale of σUI
by a standard argument from the discrete-choice literature. We review

this argument below.
Observe that if we write out the decision rule in terms of costs, we can characterize

the latent variable determining choices as:

I = Y1 − Y0 − C,

where C = μC(Z) + UC and UC = αCθ + εC , where εC is independent of θ and the
other ε’s. E(UC) = 0 and UC is independent of (X,Z). Then, UI = U1 −U0 −UC and

αUI
= α1 − α0 − αC,

εUI
= ε1 − ε0 − εC,

Var(εUI
) = Var(ε1) + Var(ε0) + Var(εC).

Identification of α0, α1 and αUI
implies identification of αC . Identification of the vari-

ance of εUI
implies identification of the variance of εC since the variances of ε1 and ε0

are known.
Observe further that the scale σUI

is identified if there are variables in X but not
in Z [see Heckman (1976, 1979), Heckman and Robb (1985, 1986), Willis and Rosen
(1979)].23 From the variance of M given X, we obtain Var(εM) since we know Var(M)

(conditional on X) and we know α2
Mσ 2

θ :

Var(M) − α2
Mσ 2

θ = σ 2
εM

.

(Recall that we keep the conditioning on X implicit.) By similar reasoning, it is pos-
sible to identify Var(ε0), Var(ε1) and the fraction of Var(UI ) due to εUI

. We can thus

23 The easiest case to understand is one where μC(Z) = Zγ , μ1(X) = Xβ1, μ0(X) = Xβ0 and μI (Z,X) =
X(β1 − β0) − Zγ . We identify the coefficients of the index μI (Z,X) up to scale σUI

, but we know β1 − β0
from the earnings functions. Thus if one X is not in Z and its associated coefficient is not zero, we can
identify σUI

. See, e.g., Heckman (1976).
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construct the joint distribution of (Y0, Y1, C) and hence the joint distribution of (Y0, Y1)

since we identified μC(Z) and all of the factor loadings. Thus we can identify the ob-
jective outcome distribution for (Y0,Y1) and the subjective distribution for C as well as
their joint distribution (Y0, Y1, C).

We have assumed normality because it is convenient to do so. Carneiro, Hansen and
Heckman (2003), Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heckman
(2008) show that it is possible to nonparametrically identify the distributions of θ , ε0,
ε1, εUI

and εM so our results do not hinge on arbitrary distributional assumptions as we
establish in the next section.

We next show by way of example that choice data are not strictly required to secure
identification of the joint distributions of counterfactuals. It is the extra information
joined with the factor restriction on the dependence that allows us to identify the joint
distribution of outcomes.

EXAMPLE 2 (Identification without choice data). This example builds on Example 1.
Let M be two dimensional so M = (M1,M2), and M1, M2 are indicators that depend
on θ and assume that they are both observed. In place of I from choice theory as in the
preceding section, we can work with a second indicator of θ , i.e., a second measure-
ment M2. Suppose that either by limit operations (P(X,Z) → 0 or P(X,Z) → 1
along certain sequences in its support) or some randomization we observe triplets
(Y0,M1,M2), (Y1,M1,M2) but not Y0 and Y1 together. We can still identify the joint
distribution of (Y0, Y1).

Example 1 applies to this case with only trivial modifications. We can identify all
of the variances and covariances of the factor model as well as the factor loadings up
to one normalization. Thus we can identify the joint distribution of (Y0, Y1). Since the
(M1,M2) are assumed to be observed and their scale is known, we can identify the
variances of M1 and M2 directly. In this example, we do not need to use any of the
apparatus of discrete-choice theory except to govern the limit operations that control
for selection.

There are other ways to construct the joint distributions that do not require a proxy
M that may be extended to the model. Access to panel data on earnings affords identi-
fication. One way, that motivates our analysis of ex ante vs. ex post returns developed
later, is given next.

EXAMPLE 3 (Two (or more) periods of panel data on outcomes). Suppose that for each
person we have two periods of outcome data in one counterfactual state or the other.
Thus we observe (Y0,1, Y0,2) or (Y1,1, Y1,2) but never both pairs of vectors together for
the same person. We also observe choices. We assume that Yj,t = μj,t (X) + Uj,t ,
j = 0, 1, t = 1, 2, and write

U1,t = α1,t θ + ε1,t and U0,t = α0,t θ + ε0,t

to obtain

Y1,t = μ1,t (X) + α1,t θ + ε1,t , t = 1, 2,
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Y0,t = μ0,t (X) + α0,t θ + ε0,t , t = 1, 2.

In the context of a schooling choice model as analyzed by Carneiro, Hansen and Heck-
man (2001, 2003) and Cunha, Heckman and Navarro (2005, 2006), if we assume that
the interest rate is zero and that agents maximize the present value of their income, the
index generating choices is

I = (Y1,2 + Y1,1) − (Y0,2 + Y0,1) − C,

D = 1[I � 0],
where C was defined previously, and

I = μ1,1(X) + μ1,2(X) − μ0,1(X) − μ0,2(X) − μC(Z) + U1,1 + U1,2

− U0,1 − U0,2 − UC.

We assume no proxy—just two periods of panel data. The multiple periods of earnings
serve as the proxy.

Under normality, application of the standard normal selection model allows us to
identify μ1,t (X) for t = 1, 2; μ0,t (X) for t = 1, 2 and μ1,1(X)+μ1,2(X)−μ0,1(X)−
μ0,2(X) − μC(Z), the latter up to a scalar σUI

where

UI = U1,1 + U1,2 − U0,1 − U0,2 − UC.

Following our discussion of Example 1, we can recover the scale σUI
if there are vari-

ables in X that are not in Z such that (μ1,1(X) + μ1,2(X) − (μ0,1(X) + μ0,2(X)))
can be varied independently from μC(Z). To simplify the analysis, we assume that this
condition holds.24

From normality, we can recover the joint distributions of (I, Y1,1, Y1,2) and
(I, Y0,1, Y0,2) but not directly the joint distribution of (I, Y1,1, Y1,2, Y0,1, Y0,2). Thus,
conditioning on X and Z, we can recover the joint distribution of (UI , U0,1, U0,2) and
(UI , U1,1, U1,2) but apparently not that of (UI , U0,1, U0,2, U1,1, U1,2). However, under
our factor structure assumptions, this joint distribution can be recovered as we next
show.

From the available data, we can identify the following covariances:

Cov(UI , U1,2) = (α1,2 + α1,1 − α0,2 − α0,1 − αC)α1,2σ
2
θ ,

Cov(UI , U1,1) = (α1,2 + α1,1 − α0,2 − α0,1 − αC)α1,1σ
2
θ ,

Cov(UI , U0,1) = (α1,2 + α1,1 − α0,2 − α0,1 − αC)α0,1σ
2
θ ,

Cov(UI , U0,2) = (α1,2 + α1,1 − α0,2 − α0,1 − αC)α0,2σ
2
θ ,

Cov(U1,1, U1,2) = α1,1α1,2σ
2
θ ,

Cov(U0,1, U0,2) = α0,1α0,2σ
2
θ .

24 If not, then μC(Z), σ 2
εC

and αC are only identified up to normalizations.
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If we normalize α0,1 = 1 (recall that one normalization is needed to set the scale
of θ ), we can form the ratios

Cov(UI , U1,2)

Cov(UI , U0,1)
= α1,2,

Cov(UI , U1,1)

Cov(UI , U0,1)
= α1,1,

Cov(UI , U0,2)

Cov(UI , U0,1)
= α0,2.

From these coefficients and the remaining covariances, using Cov(U1,1, U1,2) and/or
Cov(U0,1, U0,2), we identify σ 2

θ . Thus if the factor loadings are nonzero, we can identify
σ 2

θ from two relationships, both of which are identified:

Cov(U1,1, U1,2)

α1,1α1,2
= σ 2

θ

and

Cov(U0,1, U0,2)

α0,1α0,2
= σ 2

θ .

Since we know α1,1α2,2 and α0,1α0,2, we can recover σ 2
θ from Cov(U1,1, U1,2) and

Cov(U0,1, U0,2). We can also recover αC since we know σ 2
θ , α1,2 +α1,1 −α0,2 −α0,1 −

αC , and α1,1, α1,2, α0,1, α0,2. We can form (conditional on X)

Cov(Y1,1, Y0,1) = α1,1α0,1σ
2
θ ; Cov(Y1,2, Y0,1) = α1,2α0,1σ

2
θ ;

Cov(Y1,1, Y0,2) = α1,1α0,2σ
2
θ and Cov(Y1,2, Y0,2) = α1,2α0,2σ

2
θ .

We can identify μC(Z) from the schooling choice equation since we know μ0,1(X),
μ0,2(X), μ1,1(X), μ1,2(X) and we have assumed that there are some Z not in X so that
σUI

is identified. Thus we can identify the joint distribution of (Y0,1, Y0,2, Y1,1, Y1,2, C).

These examples extend to nonnormal and nonparametric models. The key idea to
constructing joint distributions of counterfactuals using the analysis of Cunha and Heck-
man (2008) and Cunha, Heckman and Navarro (2005, 2006) is not the factor structure
for unobservables although it is convenient. The crucial idea is the assumption that a
low dimensional set of random variables generates the dependence across outcomes.
Other low dimensional representations such as the ARMA model or the dynamic factor
structure model [see Sargent and Sims (1977)] can also be used. Cunha and Heck-
man (2007a) and Cunha, Heckman and Schennach (2007) extend factor models to more
general frameworks where the θ evolve over time as in state space models. The factor
structure model presented in this section is easy to exposit and has been used to estimate
joint distributions of counterfactuals. We present some examples in a later subsection.
That subsection reviews recent work that generalizes the analysis of this section to de-
rive ex ante and ex post outcome distributions, and measure the fundamental uncertainty
facing agents in the labor market. With these methods it is possible to compute the dis-
tributions of both ex ante and ex post returns to treatments. Before presenting a more
general analysis, we relate factor models to matching models.
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2.7.2. Relationship to matching

If the analyst knew θ and could condition on it, the analyst would obtain the conditional-
independence assumption of matching, (M-1), in Chapter 71:

(U-1) (Y0, Y1)⊥⊥ D | X,Z, θ .

This is also the general control function assumption (U-1) in Chapter 71.
The approach developed by Aakvik, Heckman and Vytlacil (2005), Carneiro, Hansen

and Heckman (2001, 2003), Cunha, Heckman and Navarro (2005, 2006), and Cunha
and Heckman (2007b, 2007c, 2008) extends matching and treats θ as an unobservable.
It uses proxies for θ and identifies the distribution of θ under the following assumption:

(U-2) θ ⊥⊥ X,Z.

Thus the factor approach is a version of matching on unobservables, where the unob-
served match variables are integrated out.

2.7.3. Nonparametric extensions

The analysis of the generalized Roy model developed in Appendix B of Chapter 70 es-
tablishes conditions under which it is possible to nonparametrically identify the joint
distribution of (Y0, I,M) given X,Z and the joint distribution of (Y1, I,M) given
X,Z, where we also allow the functions determining M to be nonparametrically deter-
mined.25 These conditions can be extended to provide identification of the distributions
of (Y0, I,M) and (Y1, I,M) where M is observed for all persons treated or not whereas
Y0 and Y1 are observed only if D = 0 or D = 1, respectively. The identification condi-
tions are also easily extended to account for vector Y0 and Y1 (e.g., Y0 = (Y0,1, Y0,2) and
Y1 = (Y1,1, Y1,2)) as our third example in Section 2.7.1 reveals. We present a general
theorem for the identification of state-contingent outcomes free of selection bias in the
next section and in Appendix B of this chapter. With the state-contingent distributions
nonparametrically identified, we can apply factor analysis to identify the factor load-
ings because we identify the required covariances as a by-product of our nonparametric
analysis.

With the αj (or αi,j ) in hand, we can nonparametrically identify the distribution of θ

and the εj (or εi,j ) for the different models assuming mutual independence between θ

and all of the components of εj (or εi,j ) using Kotlarski’s Theorem [Kotlarski (1967),
Prakasa-Rao (1992)]. That theorem states that, for any pair of random variables T1, T2
generated by a common random variable θ , we can nonparametrically identify the dis-
tribution of θ and the associated components of errors: ε1 and ε2. Stated precisely:

25 Recall that, depending on the assumptions discussed in Section 2.7.1, the scale of I may, or may not, be
identified.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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THEOREM 1. If

T1 = θ + ε1

and

T2 = θ + ε2

and (θ, ε1, ε2) are mutually independent, the means of all three generating random
variables are finite and are normalized to E(ε1) = E(ε2) = 0, and the ran-
dom variables possess nonvanishing (a.e.) characteristic functions, then the densities
of (θ, ε1, ε2), gθ (θ), g1(ε1), g2(ε2), respectively, are identified.

PROOF. See Kotlarski (1967). See also Prakasa-Rao (1992). �

Applied to our context, consider the first two equations of a vector of indicators M

which are stochastically dependent only through θ . We write

M1 = λ1θ + ε1, where λ1 = 1,

M2 = λ2θ + ε2, where λ2 �= 0.

By the preceding analysis, we can identify λ2 (subject to a normalization λ1 = 1) from
factor models. Thus we can rewrite these equations as

M1 = θ + ε1,

M2

λ2
= θ + ε∗

2,

where ε∗
2 = ε2/λ2. Applying Kotlarski’s Theorem, we can nonparametrically identify

the densities gθ (θ), g1(ε1) and g2(ε
∗
2). Since we know λ2, we can nonparametrically

identify g2(ε2). Schennach (2004), Hu and Schennach (2006), and Cunha, Heckman
and Schennach (2007) weaken many of the strong independence conditions to mean
independence assumptions. Carneiro, Hansen and Heckman (2003) extend the analysis
of this section to the case of vector θ .

2.8. General models

The analysis of Carneiro, Hansen and Heckman (2003), Cunha, Heckman and Navarro
(2005, 2006) and Cunha and Heckman (2007c, 2008) generalizes the analysis of the pre-
ceding sections to consider vectors of outcomes (Y0 and Y1), vectors of measurements
(M) and more general choice equations. We summarize that work here. This analy-
sis feeds directly into our analysis of dynamic treatment effects and dynamic discrete
choice presented in Section 3.

Our analysis has three components: (1) Identifying the choice of treatment equation
and hence evaluation of treatments as perceived by agents; (2) Identifying the joint
distributions of outcomes and measurements in each treatment state s, s = 1, . . . , S̄,
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where S̄ is the number of treatment states; and (3) Identifying the joint distribution of
outcomes across treatment states. Only the third step requires a factor structure. Step 1 is
conventional nonparametric discrete-choice analysis. Step 2 solves the selection prob-
lem using nonparametric methods. Step 3 solves the evaluation problem using factor
models.

Conditions for nonparametric identification of discrete-choice models are presented
in Matzkin (1992, 1993, 1994) and in her contribution to this Handbook (Chapter 73).
Appendix B of Chapter 70 presents a nonparametric proof of identification of choice
equations as part of a nonparametric analysis of choice and outcome equations for a
general static discrete-choice model. Carneiro, Hansen and Heckman (2003) present a
parallel analysis for an ordered choice model.26 Heckman and Navarro (2007) present
an identification analysis that is used in this section and in Section 3. We now establish
an extension of the theorem proved in Appendix B of Chapter 70 to account for vectors
of outcomes and for associated vectors of measurements. This provides a solution to the
selection problem.

2.8.1. Steps 1 and 2: Solving the selection problem within each treatment state

Associated with each treatment s, s = 1, . . . , S̄, is a vector of outcomes of length Ā,

Y
(
s,X,U(s)

) = (Y (1, s, X,U(1, s)
)
, . . . , Y

(
a, s,X,U(a, s)

)
, . . . ,

Y
(
Ā, s,X,U(Ā, s)

))
.

They depend on observables X and unobservables U(s) = (U(1, s), . . . , U(a, s), . . . ,

U(Ā, s)), where the observability distinction is made from the point of view of the
econometrician. The X may also have a- and s-specific subvectors, but for the sake of
notational simplicity we do not make this explicit. We can make the list of outcomes
s-dependent, but only at the cost of notational complexity. Elements of Y(s,X,U(s))

are outcomes associated with receiving treatment s. They are factual outcomes if treat-
ment s is actually selected, which we denote by D(s) = 1. Outcomes corresponding to
treatments s′ that are not selected—we denote this by D(s′) = 0—are counterfactuals.
The outcome variables are not necessarily what the agent thinks will happen when he
or she chooses treatment s, but rather what actually happens. The treatments s may be
associated with stages that are not necessarily identical with real time events, although
this framework can be used in our analysis of dynamic choices evolving in real time
that is presented in Section 3.

Henceforth, whenever we have random variables with multiple arguments R0(s,

Q0, . . .) or R1(a, s,Q0, . . .) where the argument list begins with treatment state s or
both age a and state s (perhaps followed by other arguments Q0, . . .), we will make
use of several condensed notations: (a) dropping the first argument as we collect the

26 Cunha, Heckman and Navarro (2007) present a nonparametric identification analysis of the ordered choice
model. They also establish that it imposes the absence of option values.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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components into vectors R0(Q0, . . .) or R1(s,Q0, . . .) of length S̄ or Ā, respectively,
and (b) going further in the case of R1, dropping the s argument as we collect the
vectors R1(s,Q0, . . .) into a single S̄ × Ā array R1(Q0, . . .), but also (c) suppress-
ing one or more of the other arguments and writing R1(a, s) or R1(a, s,Q0) instead
of R1(a, s,Q0,Q1, . . .), etc. This notation is sufficiently rich to represent the life cycle
of outcomes for persons who receive treatment s. We use this notation in the remainder
of this section and in Section 3.

Following Carneiro, Hansen and Heckman (2003), the variables in Y(a, s,X,U(a, s))

may include discrete, continuous or mixed discrete-continuous components. For the
discrete or mixed discrete-continuous cases, we assume that latent continuous variables
cross thresholds to generate the discrete components. Durations can be generated by
latent index models associated with each outcome crossing thresholds analogous to the
model we develop in Section 3 below, in the discussion surrounding Equation (3.11). In
this framework, we can model the effect of attaining s years of schooling on durations
of unemployment or durations of employment.

We decompose Y(a, s) into continuous and discrete components:

Y(a, s) =
[

Yc(a, s)

Yd(a, s)

]
.

Associated with the j th component of Yd(a, s), Yd,j (a, s) is a latent variable Y ∗
d,j (a, s).

We define

Yd,j (a, s) = 1
(
Y ∗

d,j (a, s) � 0
)
.27

From standard results in the discrete-choice literature, without additional information,
we can only know Y ∗

d,j (a, s) up to scale.
We assume an additively separable model for the continuous variables and latent

continuous indices. Making the X explicit, we write

Yc(a, s,X) = μc(a, s,X) + Uc(a, s),

Y ∗
d (a, s,X) = μd(a, s,X) − Ud(a, s),

1 � s � S̄, 1 � a � Ā.

We array the Yc(a, s,X) into a matrix Yc(s,X) and the Y ∗
d (a, s,X) into a matrix

Y ∗
d (s,X). We decompose these vectors into components corresponding to the means

μc(s,X), μd(s,X) and the unobservables Uc(s), Ud(s). Thus

Yc(s,X) = μc(s,X) + Uc(s),

Y ∗
d (s,X) = μd(s,X) − Ud(s).

27 Extensions to nonbinary discrete outcomes are straightforward. Thus we could entertain, at greater nota-
tional cost, a multinomial outcome model at each age a for each counterfactual state.
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Y ∗
d (s,X) generates Yd(s,X). Using our condensed notation, we write

Yc(X) = μc(X) + Uc,

Y ∗
d (X) = μd(X) − Ud.

Following Carneiro, Hansen and Heckman (2003), Cunha, Heckman and Navarro
(2005, 2006) and Cunha and Heckman (2007b, 2007c, 2008), we may also have a
system of measurements with both discrete and continuous components. The measure-
ments are not s-indexed. They are the same for each treatment state.28 We write the
equations for the measurements in an additively separable form, in a fashion compara-
ble to those of the outcomes. The equations for the continuous measurements and latent
indices producing discrete measurements are

Mc(a,X) = μc,M(a,X) + Uc,M(a),

M∗
d (a,X) = μd,M(a,X) − Ud,M(a),

where the discrete variable corresponding to the j th index in M∗
d (a,X) is

Md,j (a,X) = 1
(
M∗

d,j (a,X) � 0
)
.

The measurements play the role of indicators unaffected by the process being stud-
ied. We array Mc(a,X) and M∗

d (a,X) into matrices Mc(X) and M∗
d (X). We array

μc,M(a,X), μd,M(a,X) into matrices μc,M(X) and μd,M(X). We array the corre-
sponding unobservables into Uc,M and Ud,M . In this notation,

Mc(X) = μc,M(X) + Uc,M,

M∗
d (X) = μd,M(X) − Ud,M.

In the notation of Appendix B of Chapter 70, write the utility valuation of treatment
state s as

R(s, Z) = μR(s, Z) − V (s), s = 1, . . . , S̄.

Collect R(s, Z), s = 1, . . . , S̄, into a vector

R(Z) = (R(1, Z), . . . , R(S̄, Z)
)
.

Collect μR(s, Z), s = 1, . . . , S̄, into a vector

μR(Z) = (μR(1, Z), . . . , μR(S̄, Z)
)
.

Collect V (s), s = 1, . . . , S̄, into a vector

V = (V (1), . . . , V (S̄)
)
.

28 Thus measurements are not causally affected by treatment. Measurements that are causally affected by
treatment can be included in the model as outcomes using the analysis of Hansen, Heckman and Mullen
(2004).

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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D(s) = 1 (state s is selected) if

s = argmax
j=1,...,S̄

{
R(j, Z)

}
.

Otherwise D(s) = 0.

S̄∑
j=1

D(j) = 1.

Define

V s = (V (s) − V (1), . . . , V (s) − V (S̄)
)
,

μs
R(Z) = (μR(s, Z) − μR(1, Z), . . . , μR(s, Z) − μR(S̄, Z)

)
, s = 1, . . . , S̄.

These contrast vectors are standard in discrete-choice theory, where utilities in treatment
state s are compared with utilities in other treatment states. We assume that we have
access to a large i.i.d. sample from the distribution of (Yc, Yd,Mc,Md, {D(s)}S̄s=1).

29

We now state a basic theorem that solves the selection problem (Step 2) for the gen-
eral model of this section. We draw on the work of Matzkin (1992, 1993, 1994) and
Chapter 73 of this Handbook to provide a general characterization of nonparametric
functions and their identifiability. We define the Matzkin class of functions in Appen-
dix B and use it in the next proof. They include all of the familiar linear-in-parameters
functional forms for discrete choice as well as a variety of other classes of functions
that can be identified under conditions specified in her papers.

THEOREM 2. The joint distribution of (Uc(s), Ud(s), Uc,M,Ud,M, V s) is identified
along with the functions (μc(s,X), μd(s,X), μc,M(X), μd,M(X), μs

R(Z)) (the com-
ponents of μd(s,X) and μd,M(X) over the supports admitted by the supports of the
errors) if, for s = 1, . . . , S̄,

(i) E[Uc(s)] = E[Uc,M ] = 0. (Uc(s), Ud(s), Uc,M,Ud,M, V s) are continuous ran-
dom variables with support (U c(s), 
Uc(s))×(U d(s), 
Ud(s))×(U c,M, 
Uc,M)×
(U d,M, 
Ud,M) × Rs−1. These conditions are assumed to apply within each
component of each subvector. The joint system is thus variation free for each
component with respect to every other component.

(ii) (Uc(s), Ud(s), Uc,M,Ud,M, V s)⊥⊥ (X,Z).
(iii) Supp(μs

R(Z),X) = Supp(μs
R(Z)) × Supp(X).

(iv) Supp(μd(s,X), μd,M(X)) ⊇ Supp(Ud(s), Ud,M).
(v) μc(s,X), μc,M(X) and μR(Z) are continuous functions. The components of

the μd(s,X) and μd,M(X) belong to the Matzkin class of functions given in
Appendix B. μ1

R(z) is known for z ∈ Z̃ with Z̃ ⊆ Supp(Z) such that {μ1
R(z);

z ∈ Z̃} = RS̄−1. μR(1, Z) is known.

29 We can allow for dependence across individuals by invoking appropriate limit laws for dependent random
variables.

http://dx.doi.org/10.1016/S1573-4412(07)06073-4
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PROOF. See Appendix B.30 �

This proof presents conditions for producing a selection-bias free joint distribution
of (Yc(s,X), Yd(s,X), Mc(X), Md(X), V s), s = 1, . . . , S̄ conditionally on X which
are the inputs for our factor analysis to which we now turn.

2.8.2. Step 3: Constructing counterfactual distributions using factor models

The analysis of the preceding section presented conditions under which subjective rel-
ative evaluations of treatment outcomes from choice functions and objective outcome
distributions in state s, s = 1, . . . , S̄, can be identified. Missing is an analysis of identi-
fication of joint outcome distributions. In this subsection, we generalize the analysis of
Section 2.7 to present conditions under which joint distributions can be identified in a
multifactor setting.

Theorem 2 gives conditions under which the distributions of (Uc(s), Ud(s), Uc,M,

Ud,M, V s), s = 1, . . . , S̄, are identified. If we factor analyze these errors, we can iden-
tify the joint distributions of these vectors across treatment states. We write in the case
of vector θ ,

Uc(s) = α′
c,sθ + εc(s),

Ud(s) = α′
d,sθ + εd(s),

Uc,M = α′
c,Mθ + εc,M,

Ud,M = α′
d,Mθ + εd,M,

(2.7)V s = α′
V s θ + εV (s),

or more compactly, using the notation

U(s) = (Uc(s), Ud(s), Uc,M,Ud,M, V s
)
,

ε(s) = (εc(s), εd(s), εc,M, εd,M, εV (s)
)
,

we may write the preceding system as a system of equations:

(2.8)U(s) = Λ(s)θ + ε(s), s = 1, . . . , S̄,

where the components of ε = (ε(1), . . . , ε(S̄)) are mutually independent and ε ⊥⊥ θ .
The factor loadings may differ across treatment states. All of the dependence among
outcomes and measurements and the choice indicators {D(s)}S̄s=1 is generated by de-
pendence on common factors θ . The outcome, choice, and measurement equations all
contribute to the U(s) and are a source of information on the distribution of θ .

The same principles guide identifiability in this system of equations as in the one-
factor models analyzed in Section 2.7. With enough measurements, outcomes and

30 Matzkin (1993) presents alternative sets of conditions for identifiability of the choice model.
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choices relative to the dimensionality of θ , it is possible to identify the joint distrib-
ution of outcomes across counterfactual states.

Identification problems in factor analysis were first clearly stated by Anderson and
Rubin (1956). If, for example, there are L(s) components of U(s) and θ is K × 1,
ε(s) is L(s) × 1 and Λ(s) is L(s) × K . Even if the θi , i = 1, . . . , K , are mutu-
ally independent, the model of Equation (2.8) is underidentified. To see this, note that
Cov(U(s)) = Λ(s)ΣθΛ

′(s) + Dε(s), where Σθ is a matrix of the variances of the fac-
tors, assumed to be diagonal in this example, Dε(s) is a diagonal matrix of the variances
of the uniquenesses.31 We have identified Cov(U(s)), the discrete components up to
scale, but we do not directly observe θ or ε(s). Any orthogonal transformation applied
to Λ(s) is consistent with the same Cov(U(s)).

Without restrictions on Λ(s), and on the dependence structure among the compo-
nents of θ , identification of the model is not possible. Conventional factor-analytic
models make assumptions to identify parameters. The diagonals of Cov(U(s)) com-
bine elements of Dε(s) with parameters from the rest of the model. Once those other
parameters are determined, the diagonals identify Dε(s). Accordingly, one can only rely
on the L(s)(L(s) − 1)/2 non-diagonal elements to identify the K variances (assuming
θi ⊥⊥ θj , ∀i �= j ), and the L(s) × K factor loadings. Since the scale of each θi is ar-
bitrary, one factor loading devoted to each factor must be normalized to set the scale.
Typically the normalization is unity. Accordingly, we require as a necessary condition
for identification of the variances and parameters of (2.8) for a given s

L(s)(L(s) − 1)

2︸ ︷︷ ︸
Number of off-diagonal

covariance elements

�
((

L(s) × K
)− K
)

︸ ︷︷ ︸
Number of unrestricted Λ

+ K.︸︷︷︸
Variances of θ

(2.9)⇐⇒ L(s) � 2K + 1.

Anderson and Rubin (1956), Chamberlain (1975), Carneiro, Hansen and Heckman
(2003), Hansen, Heckman and Mullen (2004), Cunha, Heckman and Navarro (2005)
and Cunha, Heckman and Schennach (2007) present alternative normalizations and
identification assumptions for models with multiple factors. Carneiro, Hansen and
Heckman (2003) and Cunha, Heckman and Schennach (2006, 2007) use information
from higher moments to identify the model.32 Many of the identifying assumptions
in various empirical literatures such as the literature on earnings dynamics are moti-
vated by appeals to empirical conventions and to economic theory [see, e.g., Cunha
and Heckman (2007b, 2007c, 2008)]. Case-specific analyses are necessary to provide
economically interpretable identifying assumptions. Access to measurements facilitates
this task.

31 The uniquenesses are the ε(s) in Equation (2.8).
32 See also Bonhomme and Robin (2004). Note that restrictions across the s-systems facilitate identification.
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2.9. Distinguishing ex ante from ex post returns

The analysis of the preceding sections presents tools for estimating joint distributions of
outcomes and subjective valuations of outcomes across counterfactual states. It is silent
about the information that agents possess about expected returns at the time they make
their program participation decisions. Uncertainty and the dynamics of information rev-
elation are not systematically incorporated in the current literature on treatment effects.
As noted in Chapter 70 of this Handbook, anticipated (ex ante) returns may differ from
realized (ex post) returns and understanding these differences is important for comput-
ing the welfare gains to program participation, the regret that agents may experience
about participating or not participating in a program, and the option value of social pro-
grams. In addition, subjective evaluations are not a part of the literature on statistical
treatment effects.

In a medical trial [see, e.g., Chan and Hamilton (2006)], the patient will not only value
the medical treatment but he/she will also consider the medical benefits or costs (pain
and suffering) connected with the treatment. Agents may be pleasantly or unpleasantly
surprised by arrival of information during a course of therapy, and this information revi-
sion will affect choices of future treatment. Knowing agent preferences and perceptions
is helpful in determining compliance and patient welfare. In an analysis of job training
programs, agents may be disappointed, ex post about the treatment they have received
[Heckman and Smith (1998)].

Empirical analyses of the “returns to education” that have extensively used IV meth-
ods focus exclusively on the ex post returns to education rather than the ex ante returns
that motivate agent schooling decisions. As Hicks (1946, p. 179) puts it,

“Ex post calculations of capital accumulation have their place in economic and
statistical history; they are a useful measuring-rod for economic progress; but they
are of no use to theoretical economists who are trying to find out how the system
works, because they have no significance for conduct.”

This section presents some recent results on the identification of agent information
sets and ex ante and ex post distributions of outcomes. It builds on and synthesizes
work by Carneiro, Hansen and Heckman (2001, 2003), Cunha, Heckman and Navarro
(2005, 2006) and Cunha and Heckman (2007b, 2007c, 2008).

To motivate the main ideas underlying this approach, consider the problem of estimat-
ing the return to an activity. It could be schooling or the installation of a new technology.
The problem can be cast as a prototypical generalized Roy model with two sectors and
solutions to it apply to many related problems. Let D denote different choices. D = 0
denotes choice of sector 0 and D = 1 denotes choice of sector 1. In a schooling example
this could represent high school (D = 0) and college (D = 1). Each person chooses
to be in one or the other sector but cannot be in both. Let the two potential outcomes
be represented by the pair (Y0, Y1), only one of which is observed by the analyst for
any agent. Denote by C the direct cost of choosing sector 1. In a schooling example

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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these would include tuition and nonpecuniary costs of attending college expressed in
monetary values.

Y1 is the ex post present value of making the choice 1, discounted over horizon T̄ for
a person choosing at a fixed age, assumed for convenience to be one,

Y1 =
T̄∑

t=1

Y1,t

(1 + r)t−1
,

and Y0 is the ex post present value of making the choice 0 at age one,

Y0 =
T̄∑

t=1

Y0,t

(1 + r)t−1
,

where r is the one-period risk-free interest rate. Y1 and Y0 can be constructed from
time series of ex post potential outcome streams in the two states: (Y0,1, . . . , Y0,T̄ ) and
(Y1,1, . . . , Y1,T̄ ). A practical problem is that we only observe one or the other of these
streams for any person. This is the fundamental program evaluation problem. In addi-
tion, we observe these streams selectively, i.e., for those who chose D = 0 or D = 1,
respectively.

The variables Y1, Y0, and C are ex post realizations of returns and costs, respectively.
At the time agents make their choices, these random variables may only be partially
known to the agent. Using the information set notation introduced in Section 2.6 of
Chapter 70, let IA denote the information set of an agent at the time the choice is made,
which is time period t = 1 in our notation. Under a complete markets assumption with
all risks diversifiable (so that there is risk-neutral pricing) or under a perfect foresight
model with unrestricted borrowing or lending but full repayment, the decision rule gov-
erning sectoral choices at decision time 1 is

(2.10)D =
{

1, if E(Y1 − Y0 − C | IA) � 0,

0, otherwise.33

Under perfect foresight, the postulated information set would include Y1, Y0, and C.
Under either model of information, the decision rule is simple: one chooses sector 1 if
the expected gains from doing so are greater than or equal to the expected costs. Thus
under either set of assumptions, a separation theorem governs choices. Agents maximize
expected wealth independently of their consumption decisions over time.34

33 If there are aggregate sources of risk, full insurance would require a linear utility function.
34 The decision rule is more complicated in the absence of full risk diversifiability and depends on the curva-
ture of utility functions, the availability of markets to spread risk, and possibilities for storage. [See Heckman,
Lochner and Todd (2006) for a more extensive discussion.] In these more realistic economic settings, the
components of earnings and costs required to forecast the gain to the choice depend on higher moments than
the mean. In this section, we use a model with a simple market setting to motivate the identification analysis
of a more general environment analyzed elsewhere [Carneiro, Hansen and Heckman (2003)].

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Suppose that we seek to determine IA. This is a difficult task. Typically we can
only partially identify IA and generate a list of candidate variables that belong to the
information set. We can usually only estimate the distributions of the unobservables
in IA (from the standpoint of the econometrician) and not individual realizations of the
unobservables.

Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heckman (2007b, 2007c)
exploit covariances between choices and realized outcomes that arise under different in-
formation structures to test which information structure characterizes the data, building
on the analysis of Carneiro, Hansen and Heckman (2003). To see how the method works,
we simplify the exposition to a two-choice framework. In Section 3 of this contribution,
we extend this analysis to multiple choices in a dynamic setting.

Suppose, contrary to what is possible, that the analyst observes Y0, Y1, and C for each
person. Such information would come from an ideal data set in which the evaluation
problem is solved and we could observe two different lifetime outcome streams for the
same person as well as the costs they pay for choosing sector 1. From such information,
we could construct Y1 − Y0 − C. If we knew the information set IA of the agent that
governs choices, we could also construct E(Y1 −Y0 −C | IA). Under the correct model
of expectations, we could form the residual

ζIA
= (Y1 − Y0 − C) − E(Y1 − Y0 − C | IA),

and from the ex ante choice decision, we could determine whether D depends on ζIA
.

It should not if we have specified IA correctly.
A test for correct specification of candidate information set ĨA for an agent is a test

of whether D depends on ζĨA
, where

ζĨA
= (Y1 − Y0 − C) − E(Y1 − Y0 − C | ĨA).

More precisely, the information set is valid if D ⊥⊥ ζĨA
| ĨA. A test of misspecification

of ĨA is a test of whether the coefficient of ζĨA
in the choice equation is statistically

significantly different from zero.
More generally, ĨA is the correct information set if ζĨA

does not help to predict
schooling. One can search among candidate information sets ĨA to determine which
ones satisfy the requirement that the generated ζĨA

does not predict D and what compo-
nents of Y1−Y0−C (and Y1−Y0) are predictable at the age schooling decisions are made
for the specified information set. This procedure is motivated by a Sims (1972) version
of a Wiener–Granger causality test. There may be several information sets that satisfy
this property.35 For a properly specified ĨA, ζĨA

should not cause (predict) schooling
choices. The components of ζĨA

that are unpredictable are intrinsic components of un-
certainty at the date the choice represented by D is made.

35 Thus different combinations of variables may contain the same information. The issue of the existence of a
smallest information set is a technical one concerning a minimum σ -algebra that satisfies the conditions used
to define IA.
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It is difficult to determine the exact content of IA known to each agent. If we could,
we would perfectly predict D given our decision rule. More realistically, we might find
variables that proxy IA or their distribution. This strategy is pursued in Cunha, Heckman
and Navarro (2005, 2006) for a two-choice model, and is generalized by Cunha and
Heckman (2007b) and Heckman and Navarro (2007). We now present an example of
this approach. We consider identification of information sets as well as identification of
the psychic costs of treatment.

2.9.1. An approach based on factor structures

Consider the following model for T̄ periods. Write outcomes in each counterfactual
state as

Y0,t = μ0,t (Xt ) + U0,t ,

Y1,t = μ1,t (Xt ) + U1,t , t = 1, . . . , T̄ .

We let costs of picking sector 1 be defined as

C = μC(Z) + UC.

Assume that the horizon of the agent ends at period T̄ .
Suppose that there exists a vector of mutually independent factors

θ = (θ1, θ2, . . . , θK).

Under the factor assumption, the error term in outcomes in period t for an agent can be
represented in the following manner:

U0,t = α0,t θ + ε0,t ,

U1,t = α1,t θ + ε1,t ,

where α0,t and α1,t are now 1 × K vectors and θ is a K × 1 vector. The ε0,t , ε1,t , and
θ are mutually independent. We can also decompose the cost function C in a similar
fashion:

C = μC(Z) + αCθ + εC.

All of the statistical dependence across potential outcomes and costs is generated by
θ , X, and Z. Thus, if we could match on θ (as well as X and Z), we could use matching
to infer the distribution of counterfactuals and capture all of the dependence across the
counterfactual states through θ . Carneiro, Hansen and Heckman (2001, 2003), Cunha,
Heckman and Navarro (2005, 2006) and Cunha and Heckman (2007b, 2007c, 2008)
allow for the possibility that not all of the required elements of θ are observed.

The parameters αC and αs,t , for s = 0, 1, and t = 1, . . . , T̄ are the factor loadings.
εC is independent of the θ and the other ε components. In this notation, the choice
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equation can be written as:

D∗ = E

(
T̄∑

t=1

(μ1,t (Xt ) + α1,t θ + ε1,t ) − (μ0,t (Xt ) + α0,t θ + ε0,t )

(1 + r)t−1

− (μC(Z) + αCθ + εC

) ∣∣∣∣ IA

)
,

(2.11)D = 1 if D∗ � 0; D = 0 otherwise.

The first term in the summation inside the parentheses is discounted outcomes in state 1
minus discounted outcomes in state 0. The second term in the expression is the cost.

Equation (2.11) entails counterfactual comparisons. Even if the outcomes associated
with one choice are observed over the horizon using panel data, the outcomes in the
counterfactual state are not. After the choice is made, some components of the Xt ,
the θ , and the εt may be revealed (e.g., unemployment rates, macroshocks) to both the
observing economist and the agent, although different components may be revealed to
each and at different times.

Examining alternative information sets, one can determine which ones produce mod-
els for outcomes that fit the data best in terms of producing a model that predicts date
t = 1 choices and at the same time passes the test for misspecification of predicted
earnings and costs described in the previous subsection. Some components of the er-
ror terms of the outcome equations may be known or not known at the date schooling
choices are made. The unforecastable components are intrinsic uncertainty. The fore-
castable information is called heterogeneity.36

To formally characterize an empirical procedure to test for and measure the impor-
tance of uncertainty, it is useful to introduce some additional notation. Let � denote the
Hadamard product, a�b = (a1b1, . . . , aLbL), for vectors a and b of length L. This is a
componentwise multiplication of vectors to produce a vector. Let κXt , t = 1, . . . , T̄ ,
κZ , κθ , κεt , κεC

, denote coefficient vectors associated with the Xt , t = 1, . . . , T̄ ,
the Z, the θ , the ε1,t − ε0,t , and the εC , respectively. For a proposed information set
ĨA which may or may not be the true information set on which agents act, define the
proposed choice index D̃∗ in the following way. For simplicity write μ1,t (Xt ) = Xtβ1,t ,
μ0,t (Xt ) = Xtβ0,t , and μC(Z) = Zγ . Then

D̃∗ =
T̄∑

t=1

E(Xt | ĨA)

(1 + r)t−1
(β1,t − β0,t ) +

T̄∑
t=1

[Xt − E(Xt | ĨA)]
(1 + r)t−1

(β1,t − β0,t ) � κXt

+
[

T̄∑
t=1

(α1,t − α0,t )

(1 + r)t−1
− αC

]
E(θ | ĨA)

36 The term ‘heterogeneity’ is somewhat unfortunate. This term includes trends common across all people
(e.g., macrotrends). The real distinction they are making is between components of realized outcomes fore-
castable by agents at the time they make their choices vs. components that are not forecastable.
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+
{[

T̄∑
t=1

(α1,t − α0,t )

(1 + r)t−1
− αC

]
� κθ

}[
θ − E(θ | ĨA)

]

+
T̄∑

t=1

E(ε1,t − ε0,t | ĨA)

(1 + r)t−1
+

T̄∑
t=1

[(ε1,t − ε0,t ) − E(ε1,t − ε0,t | ĨA)]
(1 + r)t−1

κεt

− E(Z | ĨA)γ − [Z − E(Z | ĨA)
]
γ � κZ − E(εC | ĨA)

(2.12)− [εC − E(εC | ĨA)
]
κεC

.

Fit a choice model based on the proposed information set. Estimate the parameters
of the model including the κ parameters. The κ parameters will be estimated to be
nonzero in a choice equation if a proposed information set is not the actual information
set used by agents. This particular decomposition for D̃∗ assumes that agents know
the β, the γ , and the α.37 If this assumption is not correct, the presence of additional
unforecastable components due to unknown coefficients affects the interpretation of
the estimates. A test of no misspecification of information set ĨA is a joint test of the
hypothesis that the κ are all zero. That is, when ĨA = IA then the proposed choice
index D̃∗ = D∗. In a model with a correctly specified information set, the components
associated with zero κj are the unforecastable elements or the elements which, even if
known to the agent, are not acted on in making schooling choices.

To illustrate the method of Cunha, Heckman and Navarro (2005), assume that the Xt ,
the Z, the εC , the β1,t , β0,t , the α1,t , α0,t , and αC are known to the agent at the time
decisions about D are being made, and that the εj,t are unknown, and that the agents set
them at their mean values of zero. We can infer which components of the θ are known
and acted on in making decisions if we postulate that some components of θ are known
perfectly at date t = 1 while others are not known at all, and their forecast values have
mean zero given IA.

If there is an element of the vector θ , say θ2 (factor 2), that has nonzero loadings
(coefficients) in the choice equation and a nonzero loading on one or more potential
future outcomes, then one can say that at the time the choice is made, the agent knows
the unobservable captured by factor 2 that affects future outcomes. If θ2 does not enter
the choice equation but explains future outcomes, then θ2 is unknown (not predictable
by the agent) at the age decisions are made. An alternative interpretation is that the
second component of[

T̄∑
t=1

(α1,t − α0,t )

(1 + r)t−1
− αC

]

is zero, i.e., that even if the component is known, it is not acted on. Analysts can only
test for what the agent knows and acts on.

37 Cunha, Heckman and Navarro (2005) and Cunha and Heckman (2007b) relax this assumption.
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One plausible scenario is that εC is known to the agent, since costs are assumed to be
incurred up front, but that the future ε1,t and ε0,t are not and have mean zero. If there
are components of the εj,t that are predictable at age t = 1, they will induce additional
dependence between D and future outcomes that will pick up additional factors beyond
those initially specified. The procedure can be generalized to consider all components of
the outcome equations. Using this procedure, the analyst can test the predictive power
of each subset of the possible information set at the date the decision is being made. The
approach allows the analyst to determine which components of θ and {ε0,t , ε1,t }T̄t=1 are
known and acted on at the time decisions are made.

Statistical decompositions do not tell us which components of error variance are
known at the time agents make their decisions. A model of expectations and choices
is needed. If some of the components of {ε0,t , ε1,t }T̄t=1 are known to the agent at the
date decisions are made and enter decision equation (2.11), then additional depen-
dence between D and future Y1 − Y0 due to the {ε0,t , ε1,t }T̄t=1, beyond that due to θ ,
would be estimated. Our version of the Sims test can in principle detect these compo-
nents.

It is helpful to contrast the dependence between D and future Y0,t , Y1,t arising from
θ and the dependence between D and the {ε0,t , ε1,t }T̄t=1. Some of the θ in the ex post
outcomes equation may not appear in the choice equation. Under other information sets,
some additional dependence between D and {ε0,t , ε1,t }T̄t=1 may arise. The contrast be-
tween the sources generating realized outcomes and the sources generating dependence
between D and realized outcomes is the essential idea in inferring the information in
the agent’s information set when decisions are being made. The method can be general-
ized to deal with nonlinear preferences and imperfect market environments.38 We next
show how to operationalize this method and identify psychic costs and agent informa-
tion sets. This econometric analysis is followed by some empirical applications of this
methodology.

2.9.2. Operationalizing the method

In order to see how to operationalize the method, we draw on the work of Cunha and
Heckman (2007b). Assume normality to simplify the analysis. The normality assump-
tion plays no essential role in the analysis and is relaxed below. Our empirical examples
in fact show the estimated models to be highly nonnormal.

The key idea underlying this approach is to have more measurement, outcome and
choice equations than components in θ . These are the necessary conditions for identifi-
cation encapsulated in inequality (2.9). Here we assume that we have multiple periods
of data on outcomes associated with each treatment state s, s = 1, . . . , S̄, as well
as measurement equations. We assume a two-factor example and show how to test

38 See Carneiro, Hansen and Heckman (2003), Cunha and Heckman (2007c) and the survey in Heckman,
Lochner and Todd (2006).
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whether factors that predict post-treatment earnings appear in the choice equation. For
specificity, one can think of the choice as schooling (high school vs. college), and the
outcomes as earnings.

2.9.3. The estimation of the components in the information set

We show how we can determine the unobservable components of the information set IA

of the agent at the time of the choice by exploring the convenient structure provided by
the factor models. Assume that X, Z, εC , and the factor loadings and parameters of cost
equations and outcome equations are in the information set IA. We can test for what
is in agent’s decision sets using the Sims test described in Section 2.9.1. To conserve
on notation, we define factor loadings on each factor in (2.12) using the condensed
expression

(2.13)αk,D =
T̄∑

t=1

(
1

1 + r

)t−1

(αk,1,t − αk,0,t ) − αk,C for k = 1, . . . , K .

Suppose that for a two-factor (K = 2) model, θ1 and θ2 are in the agent’s information
set IA but εs,t is not. If the null hypothesis that θ1 and θ2 are in IA is true, we may write
the choice index D∗ as:

(2.14)D∗ = μD(X,Z) + α1,Dθ1 + α2,Dθ2 + εC.

The choice index is written in terms of structural parameters using (2.10). From our
analysis of Step 2, we can identify μD(X,Z) and βs,t for all s and t . Given observa-
tions on X and Z, we can obtain from data on outcomes, (Y,X,D,Z), the covariance
between the terms D∗ − μD(X,Z) and Y1,1 − Xβ1,1. Under the null hypothesis that θ1
and θ2 are both in the agents’ information sets, this covariance is equal to

(2.15)Cov
(
D∗ − μD(X,Z), Y1,1 − μ1,1(X)

) = α1,Dα1,1,1σ
2
θ1

+ α2,Dα2,1,1σ
2
θ2

.

We seek to test the null that θ1 and θ2 are in IA against alternative hypotheses. To
fix ideas, consider the alternative assumption that θ1 is in IA but θ2 is not, and maintain
that E[θ2 | IA] = 0. If the alternative is valid, the choice index (2.14) may be written
as

(2.16)D∗ = μD(X,Z) + α1,Dθ1 + εC.

In this case, the covariance between the terms D∗ − μD(X,Z) and Y1,1 − μ1,1(X)

satisfies

(2.17)Cov
(
D∗ − μD(X,Z), Y1,1 − μ1,1(X)

) = α1,Dα1,1,1σ
2
θ1

,

and the difference between the choice generated by the null and the alternative hypothe-
ses is the term α2,Dα2,1,1σ

2
θ2

that appears in (2.15) but not in (2.17). This insight allows
us to redefine the Sims test by generating parameters κθ1 and κθ2 to satisfy:
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Cov
(
D∗ − μD(X,Z), Y1,1 − μ1,1(X)

)− κθ1α1,Dα1,1,1σ
2
θ1

− κθ2α2,Dα2,1,1σ
2
θ2

= 0.

It is easy to see how we can rewrite the test in terms of κθ1 and κθ2 . We conclude that
agents know and act on the information contained in factors 1 and 2, so that θ1 and θ2
are in IA, if we reject both κθ1 = 0 and κθ2 = 0. Parallel tests can be conducted for
other components of realized earnings.

It remains to be shown that we can actually identify all of the parameters of the model,
in particular, the function μD(X,Z), the parameters β and α in the test and earnings
equations, the distribution of the factors, Fθ , as well as the distribution of idiosyncratic
components Fε in the measurement, outcomes and cost equations.

We start by analyzing the measurement equations which in the context of a schooling
choice problem could be test score equations. We assume that the measurement equa-
tions only depend on θ1 and not the other factors. In an analysis of college choices, test
scores are typically available for all agents before their decisions are made, and they
proxy ability. By assumption, there is no selection bias in observations on the measure-
ment equations. We can identify the mean outcome equations μM,n(X), n = 1, . . . , N ,
where N is the number of measurements.

Given knowledge of these parameters, we can construct differences Mn − μM,n(X)

and compute the covariances, as in the case of three measurements:

(2.18)Cov
(
M1 − μM,1(X),M2 − μM,2(X)

) = αM
1 αM

2 σ 2
θ1

,

(2.19)Cov
(
M1 − μM,1(X),M3 − μM,3(X)

) = αM
1 αM

3 σ 2
θ1

,

(2.20)Cov
(
M2 − μM,2(X),M3 − μM,3(X)

) = αM
2 αM

3 σ 2
θ1

.

The left-hand sides of (2.18), (2.19), and (2.20) can be computed from sample moments.
The right-hand sides of (2.18), (2.19), and (2.20) are implications of the factor model,
assuming measurements are dependent only through θ1. We need to normalize one of
the factor loadings. Let αM

1 = 1. If we take the ratio of (2.20) to (2.18), we identi-
fy αM

3 . Analogously, the ratio of (2.20) to (2.19) allows us to recover αM
2 . Given the

normalization of αM
1 = 1 and identification of αM

2 , we recover σ 2
θ1

from (2.18). Finally,
we can identify the variance of εM

k from the variance of Mk − μM,k . Because the factor
θ1 and uniquenesses εk are independently normally distributed random variables, we
have identified their distribution. Normality plays no crucial role here. Our analysis
in Section 2.7.3 shows how this analysis can be made fully nonparametric under the
conditions of Theorem 1.

2.9.4. Outcome and choice equations

Establishing the identification of the joint distribution of outcomes requires more work
because of the evaluation problem. We only observe one stream of outcomes for each
agent, corresponding to outcomes associated with treatment D. It is at this stage of the
analysis that focusing the discussion on normally distributed factors and uniquenesses
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becomes helpful for understanding how identification can be secured. We can use the
closed-form solutions developed in the traditional econometric literature to reduce the
identification problem to the identification of a few parameters. However, the analysis
does not require normality.

All of the dependence among U0,t , U1,t , and UC is captured through the factors θ1

and θ2. To establish identification most transparently, assume that they are normally
distributed with the following mean and covariance matrix:(

θ1
θ2

)
∼ N

((
0
0

)
,

[
σ 2

θ1
0

0 σ 2
θ2

])
.

Because of the loadings α1,s,t , α2,s,t , α1,C , and α2,C the factors θ can affect U0,t , U1,t ,
and UC differently. By adopting the factor structure representation, we are not imposing,
for example, perfect ranking in the sense that the best in the distribution of earnings in
sector s at period t is the best (or the worst) in the distribution of earnings in sector
s′ at period t ′ as in the models of rank invariance surveyed in Section 2.5. The joint
distribution of the earnings Y0,t , Y1,t conditional on X is:[

Y0,t

Y1,t

] ∣∣∣ X
(2.21)∼ N

([
μ0,t (X)

μ1,t (X)

]
,
[ α2

1,0,t σ
2
θ1

+α2
2,0,t σ

2
θ2

+σ 2
ε0,t

α1,0,t α1,1,t σ
2
θ1

+α2,0,t α2,1,t σ
2
θ2

α1,0,t α1,1,t σ
2
θ1

+α2,0,t α2,1,t σ
2
θ2

α2
1,1,t σ

2
θ1

+α2
2,1,t σ

2
θ2

+σ 2
ε1,t

])
.

The joint distribution of
[ Y0,t

Y1,t

]
and
[ Y0,t ′

Y1,t ′
]

is fully determined by the means of each

vector, the variance matrix of each vector, and the covariance matrix

Cov

([
Y0,t

Y1,t

]
,

[
Y0,t ′

Y1,t ′

] ∣∣∣ X)

(2.22)

=
[

α1,0,t α1,0,t ′σ 2
θ1

+ α2,0,t α2,0,t ′σ 2
θ2

α1,0,t α1,1,t ′σ 2
θ1

+ α2,0,tα2,1,t ′σ 2
θ2

α1,0,t α1,1,t ′σ 2
θ1

+ α2,0,t α2,1,t ′σ 2
θ2

α1,1,t α1,1,t ′σ 2
θ1

+ α2,1,tα2,1,t ′σ 2
θ2

]
,

for all t �= t ′. If we determine the means and the covariances across all of
the t , t ′ under a normality assumption, we fully specify the joint distributions
of (Y0,1, . . . , Y0,T̄ , Y1,1, . . . , Y1,T̄ ) and (Y0,1, . . . , Y0,T̄ , Y1,1, . . . , Y1,T̄ , D∗). As a re-
sult, identification of the joint distributions reduces to the identification of the functions
μ0,t (X), μ1,t (X), αk,s,t , αk,D, σεs,t , σεC

(possibly up to scale) and σ 2
θj

for s = 0, 1;
t = 1, . . . , T̄ and j = 1, 2, and k = 1, 2. This also entails identification of the distribu-
tions of θ1 and θ2 as well as the parameters associated with the choice equation. Using
the methods discussed in Sections 2.7 and 2.8, we can relax the normality assump-
tion. The factor structure is essential to model the dependence across observations. The
factors can be nonnormal. We now show an example of how to secure identification.
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From the observed data and the factor structure it follows that

E(Y1,t | X,Z,D = 1) = μ1,t (X) + α1,1,tE[θ1 | X,Z,D = 1]
+ α2,1,tE[θ2 | X,Z,D = 1]

(2.23)+ E[ε1,t | X,Z,D = 1].
The event D = 1 is the event D∗ = E(

∑T̄
t=1(

1
1+r

)t−1(Y1,t − Y0,t ) − C | IA) � 0.
For simplicity, assume that r is known by the analyst. It can be identified along with the
other parameters.39

It is important to distinguish the role played by the factors θ from the role played
by the uniquenesses εs,t . We assume in this example that the εs,t are unknown to the
agent at the time choices are made. If not, those components would fail the Sims test
for their exclusion from the choice equation, and would be in agent information sets.
By definition, the terms that affect the covariance between future outcomes and choices
are what is in the information set at the time choices are made. Under our assumptions
and initial specification of the information set,

E

(
T̄∑

t=1

(
1

1 + r

)t−1

(Y1,t − Y0,t ) − C

∣∣∣∣ IA

)

= μD(X,Z) + α1,Dθ1 + α2,Dθ2 − εC.

Let VD be the linear combination of the three independent normal random variables in
the decision rule:

VD = α1,Dθ1 + α2,Dθ2 − εC.

Then, VD ∼ N(0, σ 2
VD

), with σ 2
VD

= α2
1,Dσ 2

θ1
+ α2

2,Dσ 2
θ2

+ σ 2
εc

and

(2.24)D = 1 ⇔ VD � −μD(X,Z).

We now use standard normal sample selection arguments to establish identifiability. If
we use representation (2.24) in place of D = 1 in Equation (2.23) and use the fact that
εs,t is independent of X, Z, and VD , it follows that

E(Y1,t | X,Z,D = 1) = μ1,t (X) + α1,1,tE
[
θ1 | X,Z, VD � −μD(X,Z)

]
(2.25)+ α2,1,tE

[
θ2 | X,Z, VD � −μD(X,Z)

]
.

Second, because θ1, θ2 and VD are normal random variables, we can use the projection
property for normal random variables to break θj into statistically independent compo-
nents predictable by VD and components that are not predictable:

(2.26)θj = Cov(θj , VD)

Var(VD)
VD + νj for j = 1, 2,

39 See the discussion and references in Section 3.
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where νj is a mean zero, normal random variable independent of VD . Because
Cov(θ1, VD) = σ 2

θ1
α1,D and Cov(θ2, VD) = σ 2

θ2
α2,D , it follows that:

E
[
θ1 | X,Z, VD � −μD(X,Z)

] = σ 2
θ1

α1,D

σ 2
VD

E
[
VD | X,Z, VD � −μD(X,Z)

]
,

E
[
θ2 | X,Z, VD � −μD(X,Z)

] = σ 2
θ2

α2,D

σ 2
VD

E
[
VD | X,Z, VD � −μD(X,Z)

]
.

From the standard normal selection formulae presented in Appendix C of Chapter 70,

(2.27)E
(
Y1,t | X,Z, VD � −μD(X,Z)

) = μ1,t (X) + π1,t

φ
(

μD(X,Z)
σVD

)
Φ
(

μD(X,Z)
σVD

) ,
where φ is the density, Φ is the cdf of the unit normal, and

π1,t = Cov(U1,t , VD)

(Var(VD))
1
2

= α1,D α1,1,t σ 2
θ1

+ α2,D α2,1,t σ 2
θ2

σVD

.

Following the same steps, we can derive a similar expression for mean observed earn-
ings in sector “0”:

(2.28)E
(
Y0,t | X,Z, VD < −μD(X,Z)

) = μ0,t (X) − π0,t

φ
(

μD(X,Z)
σVD

)
Φ
(−μD(X,Z)

σVD

) .40

Standard arguments show that we can identify μ0,t (X), μ1,t (X), π0,t , and π1,t . Given
identification of βs,t for all s and t , we can construct the differences Ys,t − μs,t (X) and
compute the covariances:

(2.29)Cov
(
M1 − μM,1(X), Y0,t − μ0,t (X)

) = α1,0,t σ
2
θ1

,

(2.30)Cov
(
M1 − μM,1(X), Y1,t − μ1,t (X)

) = α1,1,t σ
2
θ1

.

The left-hand sides of (2.29) and (2.30) are identified from sample moments. The right-
hand sides are implied by the factor model and the assumption that the measurements
depend only on factor 1. We determined σ 2

θ1
from the analysis of the test scores. From

Equations (2.29) and (2.30) we can recover α1,0,t and α1,1,t for all t . Note that we can
also identify the α1,C

σVD
by computing the covariance:

Cov

(
M1 − μM,1(X),

D∗ − μD(X,Z)

σVD

)

(2.31)=
∑T̄

t=1(
1

1+r
)t−1(α1,1,t − α1,0,t ) − α1,C

σVD

σ 2
θ1

.

40 π0,t = (α1,Dα1,0,t σ
2
θ1

+ α2,Dα2,0,t σ
2
θ2

)/σVD
.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Using (2.29) and (2.30), we can identify α1,1,t and α1,0,t for all t . The only remaining
term to be identified is the ratio α1,C

σVD
, which we can obtain from the covariance equation

(2.31).
With enough panel data on outcomes, we can also identify the parameters related to

factor θ2, such as α2,s,t and σ 2
θ2

. To see this, first normalize α2,0,1 = 1 and compute the
covariances:

(2.32)Cov
(
Y0,1 − μ0,1(X), Y0,2 − μ0,2(X)

)− α1,0,1α1,0,2σ
2
θ1

= α2,0,2σ
2
θ2

,

Cov

(
Y0,1 − μ0,1(X),

D∗ − μD(X,Z)

σVD

)

− α1,0,1σ
2
θ1

∑T̄
t=1((

1
1+r

)t−1(α1,1,t − α1,0,t ) − α1,C)

σVD

(2.33)= σ 2
θ2

∑T̄
t=1((

1
1+r

)t−1(α2,1,t − α2,0,t ) − α2,C)

σVD

,

Cov

(
Y0,2 − μ0,2(X),

D∗ − μD(X,Z)

σVD

)

− α1,0,2σ
2
θ1

∑T̄
t=1((

1
1+r

)t−1(α1,1,t − α1,0,t ) − α1,C)

σVD

(2.34)= α2,0,2σ
2
θ2

∑T̄
t=1((

1
1+r

)t−1(α2,1,t − α2,0,t ) − α2,C)

σVD

.

The left-hand sides of (2.32), (2.33), and (2.34) are identified from sample moments.
If we compute the ratio of (2.34) to (2.33) we can recover α2,0,2. From (2.32), we can
recover σ 2

θ2
. From the covariances from the earnings associated with s = 1,

(2.35)Cov
(
Y1,1 − μ1,1(X), Y1,2 − μ1,2(X)

)− α1,1,1α1,1,2σ
2
θ1

= α2,1,1α2,1,2σ
2
θ2

,

Cov

(
Y1,1 − μ1,1(X),

D∗ − μD(X,Z)

σVD

)

− α1,1,1σ
2
θ1

∑T̄
t=1((

1
1+r

)t−1(α1,1,t − α1,0,t ) − α1,C)

σVD

(2.36)= α2,1,1σ
2
θ2

∑T̄
t=1((

1
1+r

)t−1(α2,1,t − α2,0,t ) − α2,C)

σVD

,
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Cov

(
Y1,2 − μ1,2(X),

D∗ − μD(X,Z)

σVD

)

− α1,1,2σ
2
θ1

∑T̄
t=1((

1
1+r

)t−1(α1,1,t − α1,0,t ) − α1,C)

σVD

(2.37)= α2,1,2σ
2
θ2

∑T̄
t=1((

1
1+r

)t−1(α2,1,t − α2,0,t ) − α2,C)

σVD

.

Taking the ratios of (2.37) to (2.35) and (2.36) to (2.35) and assuming nonzero de-
nominators, we obtain α2,1,2 and α2,1,1 respectively. Finally, we use the information in
Var(Y0,t | X,Z,D = 0) and Var(Y1,t | X,Z,D = 1) to compute σ 2

ε0,t
and σ 2

ε1,t
, respec-

tively. Thus we can identify all of the elements that characterize the joint distribution as
specified in (2.21) and can construct the counterfactual joint distributions. Using the fac-
tor loadings identified within each treatment group, we can form the covariance (2.22)
and identify the joint distribution of (Y0,1, . . . , Y0,T̄ , Y1,1, . . . , Y1,T̄ ), and, in a similar
fashion, the joint distribution of (Y0,1, . . . , Y0,T̄ , Y1,1, . . . , Y1,T̄ , D∗).

Our use of normality in this example is merely for expositional convenience. As
established in Section 2.7.3 and in Section 2.8, all we require is the factor structure
assumption (2.6). We can nonparametrically identify all means and distributions of un-
observables as a consequence of Theorem 2. The covariances are a by-product of a
general nonparametric identification analysis. We next consider two applications of the
method. In the context of an analysis of college choice and earnings, they show ex-
amples of how to use panel data to identify agent information sets, regret, intrinsic
uncertainty and ex ante and ex post distributions, and the psychic costs facing agents at
the time they make their schooling decisions.

2.10. Two empirical studies

This subsection presents two applications of the factor methodology exposited in this
section. We draw on work by Cunha and Heckman (2007b, 2008). The computational
algorithms used to compute the estimates are described in Carneiro, Hansen and Heck-
man (2003), Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heckman
(2007b, 2008). Geweke and Keane (2001) present relevant background on the Bayesian
computational methods used to produce the estimates reported here.

Using data from the National Longitudinal Sample of Youth (NLSY79) on lifetime
earnings, ability and college choices for white males, Cunha and Heckman (2007b)
estimate a six-factor model (K = 6). The θ are assumed to be mutually independent.
Agents are assumed to know εC , the coefficients of the factors and the regression coef-
ficients, but not the ε’s in the earnings equation. They can update their expectation of θ

after choices are made, as in the normal model presented in the preceding section. The
θ are estimated as mixtures of normals and there is strong evidence that most of the
components are nonnormal. Using the Sims testing procedure described in Section 2.9,
Cunha and Heckman conclude that three factors (θ1, θ2, θ3) are in agents’ information
sets at the age college going decisions are made.
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Table 4
Ex ante conditional distributions for the NLSY79 (college earnings Y1 conditional on high school earnings Y0)

High school College

1 2 3 4 5 6 7 8 9 10

1 0.2995 0.1685 0.1114 0.0789 0.0570 0.0413 0.0393 0.0431 0.0471 0.1137
2 0.2273 0.2119 0.1597 0.1271 0.0907 0.0678 0.0450 0.0288 0.0180 0.0236
3 0.1532 0.1840 0.1656 0.1472 0.1146 0.0914 0.0642 0.0434 0.0230 0.0132
4 0.1110 0.1368 0.1492 0.1474 0.1418 0.1184 0.0882 0.0588 0.0334 0.0148
5 0.0748 0.1100 0.1244 0.1413 0.1459 0.1403 0.1172 0.0836 0.0462 0.0162
6 0.0494 0.0866 0.1146 0.1204 0.1371 0.1399 0.1283 0.1242 0.0736 0.0258
7 0.0306 0.0582 0.0904 0.1094 0.1264 0.1436 0.1506 0.1430 0.1064 0.0414
8 0.0236 0.0348 0.0531 0.0769 0.0989 0.1252 0.1638 0.1799 0.1676 0.0761
9 0.0264 0.0262 0.0316 0.0459 0.0651 0.0929 0.1308 0.1784 0.2431 0.1594

10 0.0457 0.0182 0.0214 0.0216 0.0321 0.0446 0.0772 0.1176 0.2291 0.3925

Notes: Pr(di < Y1 < di+1 | dj < Y0 < dj+1,I) where di is the ith decile of the college lifetime ex ante
earnings distribution and dj is the j th decile of the high school ex ante lifetime earnings distribution. The
agent fixes unknown θ at their means. The information set includes {θ1, θ2, θ3}. Correlation (Y1, Y0) =
0.1666.
Source: Cunha and Heckman (2007b).

Table 4 presents the estimated ex ante conditional distributions of the college earnings
conditional on high school earnings in the overall population. They show a mild positive
correlation that is far from the perfect dependence across potential outcomes assumed
by the rank invariance approaches discussed in Section 2.5. Table 5 shows the ex post
joint distribution of college earnings after all components of θ and the ε are realized.41

The dependence across potential outcomes in the ex post distribution is stronger than
that in the ex ante distribution.

Table 6 documents that there are substantial unpredictable components in college Y1,
high school Y0 and the returns (Y1 − Y0) distributions after conditioning on X, Z at
the time agents make their schooling decisions. Figures 1–3 plot the distributions of
total residual and unforecastable components of Y1 −Y0, Y1 and Y0, respectively, where
forecasts are measured from the date college decisions are made (age 17). There are
substantial components of uncertainty that are distinct from variability observed in the
data. Ex post, many agents regret their choices (see Table 7). Only 3.1% of those who
attend college regret that decision, while 7.5% of those who do not proceed beyond high
school regret not attending college.42

41 It assumes that, ex post, agents perfectly observe all potential outcome streams. More realistically, agents
would only know one stream or the other.
42 This calculation is for a stationary environment and ignores the secular growth in the mean earning gap
between college and high school graduates that is documented by Katz and Autor (1999). Accounting for the
growth in this gap substantially reduces the regret of those going to college and raises the regret of those who
stopped at high school.
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Table 5
Ex post conditional distributions for the NLSY79 (college earnings Y1 conditional on high school earnings Y0)

High school College

1 2 3 4 5 6 7 8 9 10

1 0.2118 0.1614 0.1188 0.0932 0.0782 0.0654 0.0532 0.0554 0.0651 0.0974
2 0.1684 0.1777 0.1557 0.1213 0.1038 0.0862 0.0640 0.0516 0.0417 0.0296
3 0.1374 0.1676 0.1464 0.1390 0.1244 0.0954 0.0754 0.0577 0.0333 0.0234
4 0.1080 0.1336 0.1433 0.1378 0.1213 0.1115 0.0980 0.0746 0.0475 0.0243
5 0.0787 0.1105 0.1232 0.1335 0.1345 0.1291 0.1144 0.0862 0.0614 0.0286
6 0.0656 0.1028 0.1149 0.1201 0.1276 0.1330 0.1250 0.0998 0.0823 0.0288
7 0.0548 0.0779 0.0842 0.1097 0.1196 0.1224 0.1410 0.1331 0.1132 0.0441
8 0.0428 0.0507 0.0741 0.0880 0.0994 0.1224 0.1410 0.1585 0.1539 0.0693
9 0.0416 0.0436 0.0474 0.0577 0.0803 0.1001 0.1277 0.1728 0.1939 0.1348

10 0.0386 0.0204 0.0269 0.0292 0.0339 0.0520 0.0704 0.1155 0.1945 0.4186

Notes: Pr(di < Y1 < di+1 | dj < Y0 < dj+1,I) where di is the ith decile of the college lifetime
ex post earnings distribution and dj is the j th decile of the high school ex post lifetime earnings distribution.
Individual fixes unknown θ at their means. The information set includes {θ1, θ2, θ3, θ4, θ5, θ6}. Correlation
(Y1, Y0) = 0.2842.
Source: Cunha and Heckman (2007b).

Table 6
Uncertainty at age 17 about future returns

College High school Returns

Total residual variance∗ 709.7487 507.2910 906.0066
Variance of unforecastable components∗ 372.3509 272.3596 432.8733

Source: Cunha and Heckman (2007b).
∗After conditioning on X,Z.

Table 7
Percentage that regret schooling choices

Percentage of high school graduates who regret not graduating from college 0.0749
Percentage of college graduates who regret graduating from college 0.0311

Notes: Ex post people know their “luck” components (i.e., the uncertain εs,t for each schooling group s for
all ages t on their earnings equations) when making their schooling decisions. These calculations are for
a stationary environment and ignore the growth in the mean of college distribution experienced in recent
decades.
Source: Cunha and Heckman (2007b).
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Figure 1. The densities of total residual vs. unforecastable components. Returns to college vs. high school
(NLSY79). In this figure, we plot the density of the total residual (the solid curve) against the density
of unforecastable components (the dashed curve) for the present value of returns to college from ages 22
to 41. The present value of returns to college is calculated using a 5% interest rate.

Source: Cunha and Heckman (2007b).

Figure 2. The densities of total residual vs. unforecastable components in present value of high school
earnings. In this figure, we plot the density of the total residual (the solid curve) against the density of unfore-
castable components (the dashed curve) for the present value of high school earnings from ages 22 to 41. The

present value of earnings is calculated using a 5% interest rate. Source: Cunha and Heckman (2007b).
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Figure 3. The densities of total residual vs. unforecastable components in present value of college earnings.
In this figure, we plot the density of the total residual (the solid curve) against the density of unforecastable
components (the dashed curve) for the present value of college earnings from ages 22 to 41. The present value

of earnings is calculated using a 5% interest rate. Source: Cunha and Heckman (2007b).

Selection on the first three factors is illustrated in Figures 4–6. Factor one is as-
sociated with ability as measured by a test score (θ1 in the examples of the previous
sections). The factors sort on the basis of schooling choices. Cunha and Heckman
(2007b) show that accounting for nonnormality of the factors is empirically impor-
tant.

Table 8 presents the selection-corrected mean rates of return to 4 years of college. It
is close to 10% for college goers, 8.25% for those who choose to stop their education at
high school and 8.75% for those who are at the margin of indifference between attend-
ing high school and going to college. Matching assumption (M-1), which requires that
average returns equal marginal returns, is not supported by these estimates. For further
details on these estimates, see Cunha and Heckman (2007b).

To show the possibilities for a more nuanced approach to policy evaluation that is
possible, we draw on a second, earlier, paper by Cunha and Heckman (2008). While this
research is superceded by the richer empirical analysis in Cunha and Heckman (2007b),
it illustrates the potential of the method exposited in this chapter.43 They estimate a

43 Cunha and Heckman (2007b) use many more periods of panel data, have many more measurements and
estimate a six-factor model. Cunha and Heckman (2008) use many fewer periods, have a lower dimension
L(s) in the notation of condition (2.9) and determine that K = 2 fits the data they analyze.
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Figure 4. Densities of factor 1 by schooling level (NLSY79). The solid line plots the density of the factor for
high school graduates. The dashed line plots the density of the factor for college graduates. Source: Cunha

and Heckman (2007b).

Figure 5. Densities of factor 2 by schooling level (NLSY79). The solid line plots the density of the factor for
high school graduates. The dashed line plots the density of the factor for college graduates. Source: Cunha

and Heckman (2007b).
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Figure 6. Densities of factor 3 by schooling level (NLSY79). The solid line plots the density of the factor for
high school graduates. The dashed line plots the density of the factor for college graduates. Source: Cunha

and Heckman (2007b).

Table 8
Mean rates of return to college by schooling group (NLSY79)

Schooling group Mean returns Standard error

High school graduates 0.3095 0.0113
College graduates 0.3994 0.0129
Individuals at the margin 0.3511 0.0535

Source: Cunha and Heckman (2007b).

two-factor model. Figures 7 and 8 plot the densities of the present value of earnings and
the associated counterfactual distribution for college graduates (D = 1, Figure 7) and
high school graduates (D = 0, Figure 8). Gross rates of return (

Y1−Y0
Y0

) are plotted in
Figure 9 for both high school and college graduates.

The overlap in the factual and counterfactual distributions for each schooling level is
substantial. The returns to college for high school graduates are substantial. One rea-
son why such large monetary returns to college are not realized is shown in Figure 10
which plots the psychic costs (C) of attending college. Confirming earlier findings by
Carneiro, Hansen and Heckman (2003) and Cunha, Heckman and Navarro (2005), there
are substantial psychic costs of attending school for the high school graduates (see Fig-
ure 10).
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Figure 7. Density of present value of earnings in the college sector. Let Y1 denote present value of earnings
(discounted at a 3% interest rate) in the college sector. Let f1(y1) denote its density function. The dashed line
plots the predicted Y1 density conditioned on choosing college, that is, f1(y1 | D = 1), while the solid line
shows the counterfactual density function of Y0 for those agents that are actually college graduates, that is,

f0(y0 | D = 1). Source: Cunha and Heckman (2008).

Figure 8. Density of present value of earnings in the high school sector. Let Y0 denote present value of
earnings (discounted at a 3% interest rate) in the high school sector. Let f0(y0) denote its density function.
The solid curve plots the predicted Y0 density conditioned on choosing high school, that is, f0(y0 | D = 0),
while the dashed line shows the counterfactual density function of Y1 for those agents that are high-school

graduates, that is, f1(y1 | D = 0). Source: Cunha and Heckman (2008).
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Figure 9. Density of ex post returns to college by schooling level chosen. Let Y0, Y1 denote the present value
of earnings in high school and college sectors, respectively. Define ex post returns to college as the ratio
R = (Y1 − Y0)/Y0. Let f (r) denote the density function of random variable R. The solid line is the density
of ex post returns to college for high school graduates, that is, f (r | D = 0). The dashed line is the density of
ex post returns to college for college graduates, that is, f (r | D = 1). Source: Cunha and Heckman (2008).

Figure 10. Density of monetary value of psychic cost both overall and by schooling level. In this figure we plot
the monetary value of psychic costs, which we denote by C. It is defined as: C = Zγ +θ1α1,C +θ2α2,C +εC .
The contribution of ability to the costs of attending college, in monetary value, is θ1α1,C . Source: Cunha and

Heckman (2008).
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A comparison of Figures 9 and 10 is revealing. There are small differences in objec-
tive returns to college between those who go to college and those who do not. However,
the subjective returns (inclusive of psychic costs) are substantially different. This evi-
dence of large subjective costs highlights the value of the econometric approach to the
evaluation of social programs, and the importance of the distinction between objective
and subjective outcomes in interpreting choices and outcomes.

As an example of the power of these methods to evaluate the consequences of policy
on income inequality, Cunha and Heckman (2008) analyze a cross-subsidized tuition
policy indexed by family income level. The traditional approach to policy evaluation
compares overall income distributions before and after a policy change is implemented.
Although this approach can be justified by certain axiomatic approaches [see, e.g.,
Foster and Sen (1997), and Cowell (2000)], it does not present a very accurate sum-
mary of the true distributional consequences of policies.

Cunha and Heckman (2008) construct joint distributions of outcomes within policy
regimes (treatment and no treatment or schooling and no schooling) and joint distrib-
utions of outcomes (Y = DY1 + (1 − D)Y0) across policy regimes. The policy they
analyze is as follows. A prospective student whose family income at age 17 is below the
mean is allowed to attend college free of charge. The policy is self financing within each
schooling cohort. To pay for this policy, persons attending college with family income
above the mean pay a tuition charge equal to the amount required to cover the costs of
the students from lower income families as well as their own.

Total tuition raised covers the cost Q of educating each student. Thus if there are
NP poor students and NR rich students, total costs are (NP + NR)Q. For the proposed
policy, the poor pay nothing. So each rich person is charged a tuition

T = Q

(
1 + NP

NR

)
.

To determine T , notice that there is a unique tuition level T such that

T = Q

(
1 + NP (T )

NR(T )

)
,

with NP (T ) and NR(T ) the numbers of poor and rich people attending college if the
rich pay a fee T . They iterate to find the unique self-financing T . Notice that NP (T ),
the number of poor people who attend college when tuition is zero, is the same for all
values of T (NP (T ) = NP (0) for all T ). NR is sensitive to the tuition level charged.

Figure 11 shows that the marginal distributions of overall income in both the pre-
policy state and the post-policy state are essentially identical. Under the standard
anonymity postulate used to evaluate income distributions [see Foster and Sen (1997),
and Cowell (2000)], we would judge these two situations as equally good using Lorenz
measures or second order stochastic dominance. Cunha and Heckman (2008) move be-
yond anonymity and analyze the effect that the policy has on what Fields (2003) calls
“positional” mobility.
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Figure 11. Density of present value of lifetime earnings before and after implementing cross-subsidy policy.
Let YA, YB denote the observed present value of earnings pre and post policy, respectively. Define f (yA),
g(yB) as the marginal densities of present value of earnings pre and post policy. In this figure, we plot f (yA),

g(yB). Source: Cunha and Heckman (2007a).

Panel 1 of Table 9 presents this analysis by describing how the 9.2% of the people
who are affected by the policy move between deciles of the distribution of income.
These statistics describe movements from one income distribution in the initial regime
to another income distribution associated with the new regime. The policy affects more
people at the top deciles than at the lower deciles. Around half of the people affected
who start at the first decile remain at the first decile. People in the middle deciles
are spread both up and down and a large proportion of people in the upper deciles is
moved into a lower position (only sixteen percent of those starting on the top decile
(the first) remain there after the policy is implemented). Moving beyond the anonymity
postulate (which instructs us to examine only marginal distributions), we learn much
more about the effects of the policy on different groups by looking at joint distribu-
tions.

Thus far, we have focused on constructing and interpreting the joint distribution of
outcomes across the two policy regimes. If outcomes under both regimes are observed,
these comparisons could be made using panel data. No use of econometric analysis
would be necessary. However, the methods discussed by Cunha and Heckman (2007b)
will apply if either or both policy regimes are unobserved but are proposed. Taking
advantage of the fact that we can identify not only joint distributions of earnings over
policy regimes but also over counterfactual states within regimes we can learn a great
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Table 9
Mobility of people affected by cross-subsidizing tuition

Fraction by

decile of

origin

Deciles of

origin

Probability of moving to a different decile of the lifetime earnings distribution

1 2 3 4 5 6 7 8 9 10

Panel 1
Overall. Fraction of total population who switch schooling levels: 0.0923
0.0730 1 0.5680 0.2052 0.1245 0.0647 0.0288 0.0076 0.0012 0.0000 0.0000 0.0000
0.0869 2 0.2079 0.1712 0.1715 0.1690 0.1585 0.0870 0.0322 0.0025 0.0002 0.0000
0.0957 3 0.1148 0.1489 0.0935 0.1137 0.1573 0.1888 0.1387 0.0409 0.0034 0.0000
0.1001 4 0.0619 0.1557 0.0910 0.0534 0.0764 0.1615 0.2084 0.1557 0.0360 0.0000
0.1035 5 0.0296 0.1495 0.1387 0.0630 0.0304 0.0571 0.1411 0.2456 0.1396 0.0055
0.1053 6 0.0066 0.0959 0.1726 0.1471 0.0520 0.0142 0.0415 0.1671 0.2605 0.0425
0.1087 7 0.0006 0.0336 0.1411 0.1956 0.1269 0.0420 0.0082 0.0348 0.2346 0.1827
0.1092 8 0.0000 0.0046 0.0519 0.1765 0.2211 0.1495 0.0388 0.0034 0.0513 0.3029
0.1104 9 0.0000 0.0000 0.0055 0.0421 0.1570 0.2733 0.2302 0.0447 0.0014 0.2459
0.1071 10 0.0000 0.0000 0.0000 0.0002 0.0041 0.0517 0.2082 0.3242 0.2490 0.1626

Panel 2
High school. Fraction of total population who switch from high school to college due to the policy: 0.0450
0.1014 1 0.4049 0.2618 0.1817 0.0958 0.0427 0.0112 0.0018 0.0000 0.0000 0.0000
0.1282 2 0.0382 0.1220 0.2176 0.2325 0.2200 0.1210 0.0448 0.0035 0.0003 0.0000
0.1372 3 0.0023 0.0188 0.0692 0.1536 0.2244 0.2701 0.1984 0.0584 0.0049 0.0000
0.1370 4 0.0000 0.0016 0.0088 0.0368 0.1116 0.2417 0.3123 0.2332 0.0540 0.0000
0.1288 5 0.0000 0.0000 0.0007 0.0052 0.0277 0.0903 0.2324 0.4047 0.2300 0.0090
0.1125 6 0.0000 0.0000 0.0000 0.0004 0.0024 0.0151 0.0792 0.3209 0.5004 0.0816
0.1019 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0101 0.0761 0.5133 0.3997
0.0798 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0067 0.1440 0.8493
0.0559 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0032 0.9968
0.0173 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Panel 3
College. Fraction of total population who switch from college to high school due to the policy: 0.0473
0.0460 1 0.9066 0.0878 0.0056 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0477 2 0.6423 0.2972 0.0534 0.0062 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000
0.0562 3 0.3763 0.4510 0.1501 0.0211 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000
0.0649 4 0.1860 0.4648 0.2559 0.0868 0.0059 0.0007 0.0000 0.0000 0.0000 0.0000
0.0794 5 0.0753 0.3801 0.3518 0.1522 0.0347 0.0059 0.0000 0.0000 0.0000 0.0000
0.0985 6 0.0138 0.2001 0.3602 0.3064 0.1059 0.0133 0.0004 0.0000 0.0000 0.0000
0.1152 7 0.0011 0.0618 0.2598 0.3603 0.2337 0.0766 0.0066 0.0000 0.0000 0.0000
0.1371 8 0.0000 0.0071 0.0807 0.2744 0.3436 0.2323 0.0603 0.0015 0.0000 0.0000
0.1623 9 0.0000 0.0000 0.0073 0.0559 0.2084 0.3628 0.3056 0.0593 0.0008 0.0000
0.1926 10 0.0000 0.0000 0.0000 0.0002 0.0044 0.0561 0.2260 0.3519 0.2702 0.0911

Notes: Cross subsidy consists in making tuition zero for people with family income below average and making
the budget balance by raising tuition for college students with family income above the average. For example,
we read from the first panel row 1, column 1 that 7.3% of the people who switch schooling levels come from
the lowest decile. Out of those, 56.8% are still in the first decile after the policy while 2.88% jump to the fifth
decile. Panel 2 has the same interpretation but it only looks at people who switch from high school to college
while panel 3 looks at individuals who switch from college to high school.
Source: Cunha and Heckman (2008).
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Table 10
Mobility of people affected by cross-subsidizing tuition (extracted from Table 9)

Fraction of the total population who switch schooling levels: 0.0923
Pre-policy choice

Fraction of high school graduates

Do not switch Become college graduates

High school 0.9197 0.0803
Fraction of college graduates

Do not switch Become high school graduates

College 0.8923 0.1077

Note: Cross subsidy consists of making tuition zero for people with family income below average and making
the budget balance by raising tuition for college students with family income above the average.
Source: Cunha and Heckman (2008).

deal more about the effects of this policy, whether or not policy regimes are observed.44

In this way, one solves problems P-1, P-2, and P-3 stated in Chapter 70.
Panels 2 and 3 of Table 9 reveal that not only 9.2% of the population is affected by

the policy, but that actually about half of them moved from high school into college
(4.5% of the population) and half moved from college into high school (4.7% percent
of the population). This translates into saying that, of those affected by the policy, 92%
of the high school graduates stay in high school in the post-policy regime while only
89% of college graduates stay put. (See Table 10.) Thus the policy is slightly biased
against college attendance. We can form the joint distributions of lifetime earnings by
initial schooling level. Figure 12 breaks out some of the evidence implicit in Table 9.
Panels 2 and 3 of Table 9 show that the policy affects very few high school graduates
at the top end of the income distribution (only 1.7% of those affected come from the
10th percentile) and a lot of college graduates in the same situation (19% of college
graduates affected come from the top decile). We can also see that the policy tends to
move high school graduates up in the income distribution and moves college graduates
down.

As another example of the generality of our method and the new insight into income
mobility induced by policy that it provides, we can determine where people come from
and where they end up at in the counterfactual distributions of earnings. Table 11 shows
where in the pre-policy distribution of high school earnings persons induced to go to
college come from and where in the post-policy distribution of college earnings they go
to. Most people stay in their decile or move to closely adjacent ones. Given that some
people benefit from the policy while others lose, it is not clear whether society as a

44 It is implausible that analysts would have panel data on policy regimes where under one regime a person
goes to school and under another he does not.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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Figure 12. Fraction of people who switch schooling levels when tuition is cross subsidized by decile of origin from the lifetime earnings distribution. Cross
subsidy consists in making tuition zero for people with family income below average and making the budget balance by raising tuition for college students with

family income above the average. Source: Cunha and Heckman (2008).
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Table 11
Mobility of people affected by cross-subsidizing tuition across counterfactual distributions

Panel 1
High school. Fraction of total population who switch from high school to college due to the policy: 0.0450

Fraction by

decile of

origin in the

pre-policy

high school

distribution

Deciles of

origin

Probability of moving to a different decile of the post-policy college lifetime

earnings distribution

1 2 3 4 5 6 7 8 9 10

0.0668 1 0.8563 0.1272 0.0145 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0813 2 0.4046 0.4112 0.1491 0.0296 0.0055 0.0000 0.0000 0.0000 0.0000 0.0000
0.0910 3 0.1488 0.3544 0.3059 0.1419 0.0445 0.0039 0.0005 0.0000 0.0000 0.0000
0.1000 4 0.0401 0.2343 0.3096 0.2490 0.1234 0.0379 0.0053 0.0004 0.0000 0.0000
0.1049 5 0.0089 0.0713 0.2081 0.3053 0.2348 0.1282 0.0365 0.0068 0.0000 0.0000
0.1060 6 0.0004 0.0202 0.0950 0.2155 0.2761 0.2416 0.1273 0.0239 0.0000 0.0000
0.1064 7 0.0000 0.0033 0.0243 0.0896 0.1888 0.3026 0.2662 0.1155 0.0096 0.0000
0.1118 8 0.0000 0.0004 0.0016 0.0159 0.0630 0.1690 0.3220 0.3228 0.1024 0.0028
0.1140 9 0.0000 0.0000 0.0000 0.0016 0.0043 0.0293 0.1227 0.3271 0.4568 0.0582
0.1176 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0333 0.2626 0.7014

Panel 2
College. Fraction of total population who switch from college to high school due to the policy: 0.0473

Fraction by

decile of

origin in the

pre-policy

college

distribution

Deciles of

origin

Probability of moving to a different decile of the post-policy high school lifetime

earnings distribution

1 2 3 4 5 6 7 8 9 10

0.1098 1 0.5505 0.2962 0.1141 0.0318 0.0062 0.0012 0.0000 0.0000 0.0000 0.0000
0.1059 2 0.1076 0.3257 0.2937 0.1789 0.0716 0.0204 0.0016 0.0004 0.0000 0.0000
0.1039 3 0.0180 0.1473 0.2776 0.2657 0.1833 0.0857 0.0200 0.0024 0.0000 0.0000
0.1016 4 0.0004 0.0355 0.1535 0.2349 0.2866 0.1890 0.0847 0.0150 0.0004 0.0000
0.1016 5 0.0000 0.0050 0.0467 0.1503 0.2654 0.2705 0.1903 0.0668 0.0050 0.0000
0.0983 6 0.0000 0.0000 0.0091 0.0513 0.1678 0.2683 0.2972 0.1786 0.0276 0.0000
0.0980 7 0.0000 0.0000 0.0000 0.0087 0.0463 0.1609 0.3071 0.3387 0.1362 0.0022
0.0956 8 0.0000 0.0000 0.0000 0.0004 0.0044 0.0430 0.1560 0.4020 0.3617 0.0324
0.0967 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0127 0.1337 0.5355 0.3173
0.0885 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0034 0.0915 0.9051

Notes: Cross subsidy consists in making tuition zero for people with family income below average and making
the budget balance by raising tuition for college students with family income above the average. For example,
we read from the first panel row 1, column 1 that 6.68% of the people who switch from high school to college
come from the lowest decile of the pre-policy high school distribution. Out of those, 85.63% are still in the
first decile of the post-policy college earnings distribution after the policy is implemented while 1.45% “jump”
to the third decile. Panel 2 has the same interpretation but it only looks at people who switch from college to
high school.
Source: Cunha and Heckman (2008).
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Table 12
Voting outcome of proposing cross-subsidizing tuition

Fraction of the total population who switch schooling levels: 0.0923
Average pre-policy lifetime earnings∗ 920.55
Average post-policy lifetime earnings∗ 905.96
Fraction of the population who vote

Yes 0.0716
No 0.6152
Indifferent 0.3132

Note: Cross subsidy consists of making tuition zero for people with fam-
ily income below average and making the budget balance by raising
tuition for college students with family income above the average.
Source: Cunha and Heckman (2008).
∗In thousands of dollars.

whole values this policy positively or not. An advantage of examining the joint distribu-
tion of outcomes is that it allows us to calculate the effect that the policy has on welfare.
An individual’s relative utility is not only given by earnings but also by the monetary
value of psychic costs. We can predict how people would vote if the policy analyzed in
this section were proposed. Table 12 shows the result of such an exercise. The policy
lowers the mean earnings for people affected by it. Most people not indifferent to the
policy would vote against it.

We next turn to the development of models for the timing of treatment choice. The
models that distinguish ex ante from ex post outcomes discussed in this section of the
chapter have an implicit dynamics. Agents make decisions under one information set.
That information set is revised in light of subsequent flows of information. The out-
comes realized after the choice is made will differ in general from the outcomes that are
anticipated. However, in this section, choices are one shot. While this framework ad-
vances models that ignore uncertainty, it does not capture the rich dynamics that comes
from updating information in real time. We next consider models that analyze the choice
of the timing of treatment and the consequences of the choices. Analyses of decisions
about the timing of dropping out of school, the timing of initiating or terminating a
medical treatment, when to end a period of unemployment, and the consequences of
such decisions raise new issues to which we now turn.

3. Dynamic models45

We now develop econometric and statistical models for the choice of timing of treat-
ment and the consequences of alternative treatment times on subjective and objective

45 This section draws in part on Abbring and Heckman (2008) and the papers they cite.
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outcomes. The analysis presented in this section extends the analysis of multiple treat-
ments and treatment choices presented in Chapter 71 by explicitly considering dynamics
and information updating. We first develop some main ideas in a framework with gen-
eral dynamic treatments. We subsequently focus on the choice of the timing of a single
treatment which may have very different consequences when implemented in differ-
ent periods. The same treatments administered at different times can be thought of as
different treatments. Thus, dropping out of school at grade 11 may have different con-
sequences than dropping out at grade 10. Starting chemotherapy eight months after
diagnosis of the onset of cancer may have different consequences than chemotherapy
starting after one month. There is a close affinity between econometric models for
discrete choice and models for the analysis of the choice of treatment times which is
developed in this section.

The plan of this section is as follows. Section 3.1 briefly reviews the policy evaluation
problem extensively discussed by Heckman and Vytlacil in Chapter 70 and discusses
the treatment-effects approach to policy evaluation. It establishes the notation used in
the rest of this section. Section 3.2 reviews an approach to the analysis of dynamic treat-
ment effects developed in statistics based on a sequential randomization assumption that
is popular in biostatistics [Robins (1997), Gill and Robins (2001), Lok (2007)] and has
been applied in economics [see Fitzenberger, Osikominu and Völter (2006) and Lechner
and Miquel (2002)]. This is a dynamic version of matching. We relate the assump-
tions justifying this approach to the assumptions underlying the econometric dynamic
discrete-choice literature based on Rust’s (1987) conditional-independence condition
which, as discussed in Section 3.4.5 below, is frequently invoked in the structural econo-
metrics literature. We note the limitations of the dynamic matching treatment-effects
approach in accounting for dynamic information accumulation. In Sections 3.3 and 3.4,
we discuss two econometric approaches for the analysis of treatment times that allow for
nontrivial dynamic selection on unobservables. Section 3.3 discusses the continuous-
time event-history approach to policy evaluation developed by Abbring and Van den
Berg (2003b, 2005) and Abbring (2008). Section 3.4 introduces an approach that builds
on and extends the discrete-time dynamic discrete-choice literature. Like the analysis
of Abbring and Van den Berg, it does not rely on the conditional-independence as-
sumptions used in dynamic matching. This part of our survey is based on the work of
Heckman and Navarro (2007). The approach exposited in this section generalizes the
factor model approach exposited in Section 2 to a dynamic setting. The two comple-
mentary approaches surveyed in this section span the existing econometric literature on
dynamic treatment effects.

3.1. Policy evaluation and treatment effects

3.1.1. The evaluation problem

We review the evaluation problem discussed in Chapter 70 using a succinct notation
employed in the analysis of this section. Let Ω be the set of agent types. It is the sam-

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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ple space of a probability space (Ω, I, P), and all choices and outcomes are random
variables defined on this probability space. Each agent type ω ∈ Ω represents a single
agent in a particular state of nature. We could distinguish variation between agents from
within-agent randomness by taking Ω = J × Ω̃ , with J the set of agents and Ω̃ the
set of possible states of nature. However, we do not make this distinction explicit in this
section, and often simply refer to agents instead of agent types.46

Consider a policy that targets the allocation of each agent in Ω to a single treat-
ment from a set S. In the most basic binary version, S = {0, 1}, where “1” represents
“treatment”, such as a training program, and “0” some baseline, “control” program. Al-
ternatively, S could take a continuum of values, e.g., R+ = [0,∞), representing, e.g.,
unemployment benefit levels, or duration of time in a program.

A policy p = (a, τ ) ∈ A × T = P consists of a planner’s rule a : Ω → B for
allocating constraints and incentives to agents, and a rule τ : Ω × A → S that gener-
ates agent treatment choices for a given constraint allocation a. This framework allows
agent ω’s treatment choice to depend both on the constraint assignment mechanism a—
in particular, the distribution of the constraints in the population—and on the constraints
a(ω) ∈ B assigned to agent ω.47

The randomness in the planner’s constraint assignment a may reflect heterogeneity of
agents as observed by the planner, but it may also be due to explicit randomization. For
example, consider profiling on background characteristics of potential participants in
the assignment a to treatment eligibility. If the planner observes some background char-
acteristics on individuals in the population of interest, she could choose eligibility status
to be a deterministic function of those characteristics and, possibly, some other random
variable under her control by randomization. This includes the special case in which
the planner randomizes persons into eligibility. We denote the information set gener-
ated by the variables observed by the planner when she assigns constraints, including
those generated through deliberate randomization, by IP .48 The planner’s information
set IP determines how precisely she can target agents ω when assigning constraints.
The variables in the information set fully determine the constraints assignment a.

Subsequent to the planner’s constraints assignment a, each agent ω chooses treat-
ment τ(ω, a). We assume that agents know the constraint assignment mechanism a in
place. However, agents do not directly observe their types ω, but only observe real-
izations IA(ω) of some random variables IA. For given a ∈ A, agent ω’s treatment

46 For example, we could have Ω = [0, 1] indexing the population of agents, with P being Lebesgue measure

on [0, 1]. Alternatively, we could take Ω = [0, 1] × Ω̃ and have [0, 1] represent the population of agents and
Ω̃ states of nature.
47 In Chapter 70, the dependence of agent ω’s treatment choice τ on the constraints a(ω) was made explicit
by defining τ on Ω × A × B, and subsequently restricting τ to {(ω, a, b) ∈ Ω × A × B: a(ω) = b}.
Because the constraints b = a(ω) assigned are already encoded in a and ω, we can drop the constraints b

from τ assigned without loss of generality. In the dynamic context of this chapter, this convention simplifies
the discussion of dynamic information accumulation.
48 Formally, IP is a sub-σ -algebra of I and a is assumed to be IP -measurable.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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choice τ(ω, a) can only depend on ω through his observations IA(ω). Typically, IA(ω)

includes the variables used by the planner in determining a(ω), so that agents know
the constraints that they are facing. Other components of IA(ω) may be determinants
of preferences and outcomes. Variation in IA(ω) across ω may thus reflect preference
heterogeneity, heterogeneity in the assigned constraints, and heterogeneity in outcome
predictors. We use IA to denote the information set generated by IA.49 An agent’s in-
formation set IA determines how precisely the agent can tailor his treatment choice
to his type ω. For expositional convenience, we assume that agents know more when
choosing treatment than what the planner knows when assigning constraints, so that
IA ⊇ IP . One consequence is that agents observe the constraints a(ω) assigned to
them, as previously discussed. In turn, the econometrician may not have access to all of
the information that is used by the agents when they choose treatment.50 In this case,
IA �⊆ IE , where IE denotes the econometrician’s information set.

We define sp(ω) as the treatment selected by agent ω under policy p. With p =
(a, τ ), we have that sp(ω) = τ(ω, a). The random variable sp : Ω → S represents
the allocation of agents to treatments implied by policy p.51 Randomness in this al-
location reflects both heterogeneity in the planner’s assignment of constraints and the
agent’s heterogeneous responses to this assignment. One extreme case arises if the plan-
ner assigns agents to treatment groups and agents perfectly comply, so that B = S and
sp(ω) = τ(ω, a) = a(ω) for all ω ∈ Ω . In this case, all variation of sp is due to het-
erogeneity in the constraints a(ω) across agents ω. At the other extreme, agents do not
respond at all to the incentives assigned by mechanisms in A, and τ(a, ω) = τ(a′, ω)

for all a, a′ ∈ A and ω ∈ Ω . In general, there are policies that have a nontrivial (that
is, nondegenerate) constraint assignment a, where at least some agents respond to the
assigned constraints a in their treatment choice, τ(a, ω) �= τ(a′, ω) for some a, a′ ∈ A
and ω ∈ Ω .

We seek to evaluate a policy p in terms of some outcome Yp, for example, earnings.
For each p ∈ P , Yp is a random variable defined on the population Ω . We index
outcomes by a policy subscript in order to simplify the notation. To avoid notational
confusion, we will not use treatment subscripts in this section. The evaluation can focus

49 Formally, IA is a sub-σ -algebra of I – the σ -algebra generated by IA – and ω ∈ Ω �→ τ(ω, a) ∈ S
should be IA-measurable for all a ∈ A. The possibility that different agents have different information
sets is allowed for because a distinction between agents and states of nature is implicit. As suggested in the
introduction to this section, we can make it explicit by distinguishing a set J of agents and a set Ω̃ of states
of nature and writing Ω = J × Ω̃ . For expositional convenience, let J be finite. We can model that agents
observe their identity j by assuming that the random variable JA on Ω that reveals their identity, that is
JA(j, ω̃) = j , is in their information set IA. If agents, in addition, observe some other random variable V

on Ω , then the information set IA generated by (JA, V ) can be interpreted as providing each agent j ∈ J with
perfect information about his identity j and with the agent-j -specific information about the state of nature ω̃

encoded in the random variable ω̃ �→ V (j, ω̃) on Ω̃ .
50 See the discussion by Heckman and Vytlacil in Chapter 71, Sections 2 and 9, of their contribution to this
Handbook.
51 Formally, {sp}p∈A×T is a stochastic process indexed by p.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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on objective outcomes Yp, on the subjective valuation R(Yp) of Yp by the planner or
the agents, or on both types of outcomes. The evaluation can be performed relative
to a variety of information sets reflecting different actors (the agent, the planner and
the econometrician) and the arrival of information in different time periods. Thus, the
randomness of Yp may represent both (ex ante) heterogeneity among agents known to
the planner when constraints are assigned (that is, variables in IP ) and/or heterogeneity
known to the agents when they choose treatment (that is, information in IA), as well
as (ex post) shocks that are not foreseen by the policy maker or by the agents. An
information-feasible (ex ante) policy evaluation by the planner would be based on some
criterion using the distribution of Yp conditional on IP . The econometrician can assist
the planner in computing this evaluation if the planner shares her ex ante information
and IP ⊆ IE . We discussed ex ante and ex post evaluations in Section 2 in the context
of a one shot model. It is also discussed in Chapter 70 of this Handbook. In this section,
we discuss information revelation and ex ante and ex post evaluations in a dynamic
setting.

Suppose that we have data on outcomes Yp0 under policy p0 with corresponding
treatment assignment sp0 . Consider an intervention that changes the policy from the
actual p0 to some counterfactual p′ with associated treatments sp′ and outcomes Yp′ .
This could involve a change in the planner’s constraint assignment from a0 to a′ for
given τ0 = τ ′, a change in the agent choice rule from τ0 to τ ′ for given a0 = a′, or both.

The policy evaluation problem involves contrasting Yp′ and Yp0 or functions of these
outcomes. For example, if the outcome of interest is mean earnings, we might be in-
terested in some weighted average of E[Yp′ − Yp0 | IP ], such as E[Yp′ − Yp0 ]. The
special case where S = {0, 1} and sp′ = a′ = 0 generates the effect of abolishing the
program.52 Implementing such a policy requires that the planner be able to induce all
agents into the control group by assigning constraints a′ = 0. In particular, as discussed
in Chapter 71, Section 10, this assumes that there are no substitute programs available
to agents that are outside the planner’s control.

For notational convenience, write S = sp0 for treatment assignment under the actual
policy p0 in place. Cross-sectional microdata typically provide a random sample from
the joint distribution of (Yp0 , S).53 Clearly, without further assumptions, such data do
not identify the effects of the policy shift from p0 to p′. This identification problem
becomes even more difficult if we do not seek to compare the counterfactual policy p′
with the actual policy p0, but rather with another counterfactual policy p′′ that also has
never been observed. A leading example is the binary case in which 0 < Pr(S = 1) < 1,
but we seek to know the effects of sp′ = 0 (universal nonparticipation) and sp′′ = 1
(universal treatment), where neither policy has ever been observed in place. As we have

52 Such a widespread policy would likely have general equilibrium effects. In this section, we will abstract
from these by invoking invariance assumptions (PI-1)–(PI-4) discussed in Chapter 70. Section 4 discusses
general equilibrium effects.
53 Notice that a random sample of outcomes under a policy may entail nonrandom selection of treatments as
individual agents select individual treatments given τ and the constraints they face assigned by a.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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stressed repeatedly in Chapters 70 and 71 of this Handbook, determining the average
treatment effect (ATE) is often a difficult task.

The standard microeconometric approach to the policy evaluation problem assumes
that the (subjective and objective) outcomes for any individual agent are the same across
all policy regimes for any particular treatment assigned to the individual [see, e.g.,
Heckman, LaLonde and Smith (1999)]. The invariance assumptions (PI-1)–(PI-4) that
justify this practice are presented in Chapter 70. They simplify the task of evaluating
policy p to determining (i) the assignment sp of treatments under policy p and (ii) treat-
ment effects for individual outcomes. Even within this simplified framework, there are
still two difficult, and distinct, problems in identifying treatment effects on individual
outcomes:

(A) The Evaluation Problem: that we observe an agent in one treatment state and
seek to determine that agent’s outcomes in another state; and

(B) The Selection Problem: that the distributions of outcomes for the agents we ob-
serve in a given treatment state are not the marginal population distributions
that would be observed if agents were randomly assigned to the state.

The assignment mechanism sp of treatments under counterfactual policies p is straight-
forward in the case where the planner assigns agents to treatment groups and agents
fully comply, so that sp = a. More generally, an explicit model of agent treatment
choices is needed to derive sp for counterfactual policies p. An explicit model of agent
treatment choices can also be helpful in addressing the selection problem, and in iden-
tifying agent subjective valuations of outcomes. We now formalize the notation for the
treatment-effect approach that we will use in this section.

3.1.2. The treatment-effect approach

For each agent ω ∈ Ω , let y(s,X(ω),U(ω)) be the potential outcome when the agent
is assigned to treatment s ∈ S. Here, X and U are covariates that are not causally
affected by the treatment or the outcomes.54,55 In the language of Kalbfleisch and Pren-
tice (1980) and Leamer (1985), we say that such covariates are “external” to the causal
model. X is observed by the econometrician (that is, in IE) and U is not.

Recall that sp is the assignment of agents to treatments under policy p. For all poli-
cies p that we consider, the outcome Yp is linked to the potential outcomes by the

54 This is the “no feedback” condition (A-6) presented in Chapter 71. The condition requires that X and U

are the same fixing S = s for all s. See Haavelmo (1943), Pearl (2000), or the discussion in Chapter 70.
55 Note that this framework is rich enough to capture the case in which potential outcomes depend on
treatment-specific unobservables as in Sections 2 and 3.4, because these can be simply stacked in U and
subsequently selected by y. For example, in the case where S = {0, 1} we can write y(s,X, (U0, U1)) =
sy1(X,U1) + (1 − s)y0(X,U0) for some y0 and y1. A specification without treatment-dependent unob-
servables is more tractable in the case of continuous treatments in Section 3.2 and, in particular, continuous
treatment times in Section 3.3.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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consistency condition Yp = y(sp,X,U). This condition follows from the invariance
assumptions presented in Chapter 70. It embodies the assumption that an agent’s out-
come only depends on the treatment assigned to the agent and not separately on the
mechanism used to assign treatments. This excludes (strategic) interactions between
agents and equilibrium effects of the policy.56 It ensures that we can specify individ-
ual outcomes y from participating in programs in S independently of the policy p and
treatment assignment sp. Economists say that y is autonomous, or structurally invari-
ant with respect to the policy environment [see Frisch (1938), Hurwicz (1962), and our
discussion of structure and invariance in Chapter 70]. 57 With this notation in hand, we
now turn to the dynamic policy evaluation problem.

3.1.3. Dynamic policy evaluation

Interventions often have consequences that span over many periods. Policy interven-
tions at different points in time can be expected to affect not only current outcomes,
but also outcomes at other points in time. The same policy implemented at different
time periods may have different consequences. Moreover, policy assignment rules often
have nontrivial dynamics. The assignment of programs at any point in time can be con-
tingent on the available data on past program participation, intermediate outcomes and
covariates.

The dynamic policy evaluation problem can be formalized in a fashion similar to
the way we formalized the static problem in Chapter 70 and in Section 3.1.1. In this
subsection, we analyze a discrete-time finite-horizon model. We consider continuous-
time models in Section 3.3. The possible treatment assignment times are 1, . . . , T̄ . We
do not restrict the set S of treatments. We allow the same treatment to be assigned on
multiple occasions. In general, the set of available treatments at each time t may depend
on time t and on the history of treatments, outcomes, and covariates. For expositional
convenience, we will only make this explicit in Sections 3.3 and 3.4, where we focus on
the timing of a single treatment.

We define a dynamic policy p = (a, τ ) ∈ A × T = P as a dynamic constraint
assignment rule a = {at }T̄t=1 with a dynamic treatment choice rule τ = {τt }T̄t=1. At
each time t , the planner assigns constraints at (ω) to each agent ω ∈ Ω , using infor-
mation in the time-t policy-p information set IP (t, p) ⊆ I. The planner’s information
set IP (t, p) could be based on covariates and random variables under the planner’s
control, as well as past choices and realized outcomes. We denote the sequence of plan-
ner’s information sets by IP (p) = {IP (t, p)}T̄t=1. We assume that the planner does not

56 See Pearl (2000), Heckman (2005), or the discussion in Chapter 70.
57 See also Aldrich (1989) and Hendry and Morgan (1995). Rubin’s (1986) stable-unit-treatment-value as-
sumption is a version of the classical invariance assumptions of econometrics [see Abbring (2003), for
discussion of this point, and the discussion in Chapter 70].

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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forget any information she once had, so that her information improves over time and
IP (t, p) ⊆ IP (t + 1, p) for all t .58

Each agent ω chooses treatment τt (ω, a) given their information about ω at time t un-
der policy p and given the constraint assignment mechanism a ∈ A in place. We assume
that agents know the constraint assignment mechanism a in place. At time t , under pol-
icy p, agents infer their information about their type ω from random variables IA(t, p)

that may include preference components and determinants of constraints and future out-
comes. IA(t, p) denotes the time-t policy-p information set generated by IA(t, p) and
IA(p) = {IA(t, p)}T̄t=1. We assume that agents are increasingly informed as time goes
by, so that IA(t, p) ⊆ IA(t + 1, p).59 For expositional convenience, we also assume
that agents know more than the planner at each time t , so that IP (t, p) ⊆ IA(t, p).60

Because all determinants of past and current constraints are in the planner’s informa-
tion set IP (t, p), this implies that agents observe (a1(ω), . . . , at (ω)) at time t . Usually,
they do not observe all determinants of their future constraints (at+1(ω), . . . , aT̄ (ω)).61

Thus, the treatment choices of the agents may be contingent on past and current con-
straints, their preferences, and on their predictions of future outcomes and constraints
given their information IA(t, p) and given the constraint assignment mechanism a in
place.

Extending the notation for the static case, we denote the assignment of agents to
treatment τt at time t implied by a policy p by the random variable sp(t) defined so
that sp(ω, t) = τt (ω, a). We use the shorthand st

p for the vector (sp(1), . . . , sp(t)) of
treatments assigned up to and including time t under policy p, and write sp = sT̄

p . The
assumptions made so far about the arrival of information imply that treatment assign-
ment sp(t) can only depend on the information IA(t, p) available to agents at time t .62

Because past outcomes typically depend on the policy p, the planner’s information
IP (p) and the agents’ information IA(p) will generally depend on p as well. In the
treatment-effect framework that we develop in the next section, at each time t different
policies may have selected different elements in the set of potential outcomes in the past.
The different elements reveal different aspects of the unobservables underlying past and
future outcomes. We will make assumptions that limit the dependence of information
sets on policies in the context of the treatment-effects approach developed in the next
section.

Objective outcomes associated with policies p are expressed as a vector of time-
specific outcomes Yp = (Yp(1), . . . , Yp(T̄ )). The components of this vector may

58 Formally, the information IP (p) that accumulates for the planner under policy p is a filtration in I, and a

is a stochastic process that is adapted to IP (p).
59 Formally, the information IA(p) that accumulates for the agents is a filtration in I.
60 If agents are strictly better informed, and IP (t, p) ⊂ IA(t, p), it is unlikely that the planner catches up
and learns the agent’s information with a delay (e.g., IA(t, p) ⊆ IP (t + 1, p)) unless agent’s choices and
outcomes reveal all their private information.
61 Formally, a1, . . . , at are IA(t, p)-measurable, but at+1, . . . , aT̄ are not.
62 Formally, {sp(t)}T̄

t=1 is a stochastic process that is adapted to IA(p).
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also be vectors. We denote the outcomes from time 1 to time t under policy p by
Y t

p = (Yp(1), . . . , Yp(t)). We analyze both subjective and objective evaluations of poli-
cies in Section 3.4, where we consider more explicit economic models. Analogous to
our analysis of the static case, we cannot learn about the outcomes Yp′ that would arise
under a counterfactual policy p′ from data on outcomes Yp0 and treatments sp0 = S

under a policy p0 �= p′ without imposing further structure on the problem.63 We follow
the approach exposited for the static case and assume policy invariance of individual
outcomes under a given treatment. These are the invariance assumptions (PI-1)–(PI-4)
presented in Chapter 70. They reduce the evaluation of a dynamic policy p to identi-
fying (i) the dynamic assignment sp of treatments under policy p and (ii) the dynamic
treatment effects on individual outcomes. We focus our discussion on the fundamental
evaluation problem and the selection problem that haunt inference about treatment ef-
fects. In the remainder of the section, we review alternative approaches to identifying
dynamic treatment effects, and some approaches to modeling dynamic treatment choice.
We first analyze methods recently developed in statistics.

3.2. Dynamic treatment effects and sequential randomization

In a series of papers, Robins extends the static Neyman–Rubin model based on selection
on observables discussed in Chapter 71 to a dynamic setting [see, e.g., Robins (1997),
and the references therein]. He does not consider agent choice or subjective evalua-
tions. Here, we review his extension, discuss its relationship to dynamic choice models
in econometrics, and assess its merits as a framework for economic policy analysis.
We follow the exposition of Gill and Robins (2001), but add some additional structure
to their basic framework to exposit the connection of their approach to the dynamic
approach pursued in econometrics.

3.2.1. Dynamic treatment effects

3.2.1.1. Dynamic treatment and dynamic outcomes To simplify the exposition, sup-
pose that S is a finite discrete set.64 Recall that, at each time t and for given p,
treatment assignment sp(t) is a random variable that only depends on the agent’s infor-
mation IA(t, p), which includes personal knowledge of preferences and determinants
of constraints and outcomes. To make this dependence explicit, suppose that external
covariates Z, observed by the econometrician (that is, variables in IE), and unobserved
external covariates V1 that affect treatment assignment are revealed to the agents at
time 1. Then, at the start of each period t � 2, past outcomes Yp(t − 1) corresponding

63 If outcomes under different policy regimes are informative about the same technology and preferences,
for example, then the analyst and the agent could learn about the ingredients that produce counterfactual
outcomes in all outcome states.
64 All of the results presented in this subsection extend to the case of continuous treatments. We will give
references to the appropriate literature in subsequent footnotes.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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to the outcomes realized under treatment assignment sp and external unobserved covari-
ates Vt enter the agent’s information set.65 In this notation, IA(1, p) is the information
σ(Z, V1) conveyed to the agent by (Z, V1) and, for t � 2, IA(t, p) = σ(Y t−1

p , Z, V t ),
with V t = (V1, . . . , Vt ). In the notation of the previous subsection, IA(1, p) = (Z, V1)

and, for t � 2, IA(t, p) = (Y t−1
p , Z, V t ). Among the elements of IA(t, p) are the deter-

minants of the constraints faced by the agent up to t , which may or may not be observed
by the econometrician.

We attach ex post potential outcomes Y(t, s) = yt (s,X,Ut ), t = 1, . . . , T̄ , to each
treatment sequence s = (s(1), . . . , s(T̄ )). Here, X is a vector of observed (by the econo-
metrician) external covariates and Ut , t = 1, . . . , T̄ , are vectors of unobserved external
covariates. Some components of X and Ut may be in agent information sets. We denote
Y t (s) = (Y (1, s), . . . , Y (t, s)), Y(s) = Y T̄ (s), and U = (U1, . . . , UT̄ ). As in the static
case, potential outcomes y are assumed to be invariant across policies p, which ensures
that Yp(t) = yt (sp,X,Ut ). In the remainder of this section, we keep the dependence of
outcomes on observed covariates X implicit and suppress all conditioning on X.

We assume no causal dependence of outcomes on future treatment:66

(NA) For all t � 1, Y(t, s) = Y(t, s′) for all s, s′ such that st = (s′)t ,

where st = (s(1), . . . , s(t)) and (s′)t = (s′(1), . . . , s′(t)). Abbring and Van den Berg
(2003b) and Abbring (2003) define this as a “no-anticipation” condition. It requires
that outcomes at time t (and before) be the same across policies that allocate the same
treatment up to and including t , even if they allocate different treatments after t . In the
structural econometric models discussed in Sections 3.2.2 and 3.4 below, this condition
is trivially satisfied if all state variables relevant to outcomes at time t are included as
inputs in the outcome equations Y(t, s) = yt (s, Ut ), t = 1, . . . , T̄ .

Because Z and V1 are assumed to be externally determined, and therefore not af-
fected by the policy p, the initial agent information set IA(1, p) = σ(Z, V1) does not
depend on p. Agent ω has the same initial data (Z(ω), V1(ω)) about his type ω under
all policies p. Thus, IA(1, p) = IA(1, p′) is a natural benchmark information set for
an ex ante comparison of outcomes at time 1 among different policies. For t � 2, (NA)
implies that actual outcomes up to time t − 1 are equal between policies p and p′,
Y t−1

p = Y t−1
p′ , if the treatment histories coincide up to time t − 1 so that st−1

p = st−1
p′ .

Together with the assumption that Z and V t are externally determined, it follows that
agents have the same time-t information set structure about ω under policies p and p′,

65 Note that any observed covariates that are dynamically revealed to the agents can be subsumed in the
outcomes.
66 For statistical inference from data on the distribution of (Yp0 , S, Z), these equalities only need to hold on
events {ω ∈ Ω: St (ω) = st }, t � 1, respectively.
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IA(t, p) = σ(Y t−1
p , Z, V t ) = σ(Y t−1

p′ , Z, V t ) = IA(t, p′), if st−1
p = st−1

p′ .67,68 In
this context, IA(t, p) = IA(t, p′) is a natural information set for an ex ante compar-
ison of outcomes from time t onwards between any two policies p and p′ such that
st−1
p = st−1

p′ .
With this structure on the agent information sets in hand, it is instructive to review

the separate roles in determining treatment choice of information about ω and knowl-
edge about the constraint assignment rule a. First, agent ω’s time-t treatment choice
sp(ω, t) = τt (ω, a) may depend on distributional properties of a, for example the share
of agents assigned to particular treatment sequences, and on the past and current con-
straints (a1(ω), . . . , at (ω)) that were actually assigned to them. We have assumed both
to be known to the agent. Both may differ between policies, even if the agent informa-
tion about ω is fixed across the policies. Second, agent ω’s time-t treatment choice may
depend on agent ω’s predictions of future constraints and outcomes. A forward-looking
agent ω will use observations of his covariates Z(ω) and V t (ω) and past outcomes
Y t−1

p (ω) to infer his type ω and subsequently predict future external determinants
(Ut (ω), . . . , UT̄ (ω)) of his outcomes and (Vt+1(ω), . . . , VT̄ (ω)) of his constraints and
treatments. In turn, this information updating allows agent ω to predict his future poten-
tial outcomes (Y (t, s, ω), . . . , Y (T̄ , s, ω)) and, for a given policy regime p, his future
constraints (at+1(ω), . . . , aT̄ (ω)), treatments (sp(t +1, ω), . . . , sp(T̄ , ω)), and realized
outcomes (Yp(t, ω), . . . , Yp(T̄ , ω)). Under different policies, the agent may gather dif-
ferent information on his type ω and therefore come up with different predictions of
the external determinants of his future potential outcomes and constraints. In addition,
even if the agent has the same time-t predictions of the external determinants of future
constraints and potential outcomes, he may translate these into different predictions of
future constraints and outcomes under different policies.

Assumption (NA) requires that current potential outcomes are not affected by fu-
ture treatment. Justifying this assumption requires specification of agent information
about future treatment and agent behavior in response to that information. Such an in-
terpretation requires that we formalize how information accumulates for agents across
treatment sequences s and s′ such that st = (s′)t and (st+1, . . . , sT̄ ) �= (s′

t+1, . . . , s
′̄
T
).

To this end, consider policies p and p′ such that sp = s and sp′ = s′. These policies
produce the same treatment assignment up to time t , but are different in the future. We
have previously shown that, even though the time-t agent information about ω is the

67 If st−1
p (ω) = st−1

p′ (ω) only holds for ω in some subset Ωt−1 ⊂ Ω of agents, then Y t−1
p (ω) = Y t−1

p′ (ω)

only for ω ∈ Ωt−1, and information coincides between p and p′ only for agents in Ωt−1. Formally, let

Ωt−1 be the set {ω ∈ Ω: st−1
p (ω) = st−1

p′ (ω)} of agents that share the same treatment up to and including

time t − 1. Then, Ωt−1 is in the agent’s information set under both policies, Ωt−1 ∈ IA(t, p) ∩ IA(t, p′).
Moreover, the partitioning of Ωt−1 implied by IA(t, p) and IA(t, p′) is the same. To see this, note that the
collections of all sets in, respectively, IA(t, p) and IA(t, p′) that are weakly included in Ωt−1 are identical
σ -algebras on Ωt−1.
68 Notice that the realizations of the random variables Y t−1

p′ , Z, V t may differ among agents.
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same under both policies, IA(t, p) = IA(t, p′), agents may have different predictions
of future constraints, treatments and outcomes because the policies may differ in the fu-
ture and agents know this. The policy-invariance conditions (PI-1)–(PI-4) of Chapter 70
ensure that time-t potential outcomes are nevertheless the same under each policy. This
requires that potential outcomes be determined externally, and are not affected by agent
actions in response to different predictions of future constraints, treatments and out-
comes.

In general, different policies in P will produce different predictions of future con-
straints, treatment and outcomes. In the dynamic treatment-effects framework, this may
affect outcomes indirectly through agent treatment choices. If potential outcomes are
directly affected by agent’s forward-looking decisions, then the invariance conditions
(PI-1)–(PI-4) of Chapter 70 underlying the treatment-effects framework will be vio-
lated. Section 3.2.3 illustrates this issue, and the no-anticipation condition, with some
examples.

3.2.1.2. Identification of treatment effects Suppose that the econometrician has data
that allows her to estimate the joint distribution of (Yp0 , S, Z) of outcomes, treatments
and covariates under some policy p0, where again S = sp0 . These data are not enough
to identify dynamic treatment effects.

To secure identification, Gill and Robins (2001) invoke a dynamic version of the
matching assumption (conditional independence) which relies on sequential random-
ization:69

(M-2) For all treatment sequences s and all t ,

S(t)⊥⊥ (Y(t, s), . . . , Y (T̄ , s)
) | (Y t−1

p0
, St−1 = st−1, Z

)
,

where the conditioning set (Y 0
p0

, S0 = s0, Z) for t = 1 should be simply stated as Z.

Equivalently,

S(t)⊥⊥ (Ut , . . . , UT̄ ) | (Y t−1
p0

, St−1, Z
)

for all t without further restricting the data. Sequential randomization allows the Yp0(t)

to be “dynamic confounders”—variables that are affected by past treatment and that
affect future treatment assignment.

The sequence of conditioning information sets appearing in the sequential randomiza-
tion assumption, IE(1) = σ(Z) and, for t � 2, IE(t) = σ(Y t−1

p0
, St−1, Z), is a filtration

IE of the econometrician’s information set σ(Yp0 , S, Z). Note that IE(t) ⊆ IA(t, p0)

for each t . If treatment assignment is based on strictly more information than IE , so

69 Formally, we need to restrict attention to sequences s in the support of S. Throughout this section, we will
assume this and related support conditions hold.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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that agents know strictly more than the econometrician and act on their superior infor-
mation, (M-2) is likely to fail if that extra information also affects outcomes. This point
is made in a static setting in Chapter 71.

Together with the no-anticipation condition (NA), which is a condition on outcomes
and distinct from (M-2), the dynamic potential-outcome model set up so far is a nat-
ural dynamic extension of the Neyman–Rubin model for a static (stratified) randomized
experiment.

Under assumption (M-2) that the actual treatment assignment S is sequentially ran-
domized, we can sequentially identify the causal effects of treatment from the distribu-
tion of the data (Yp0 , S, Z) and construct the distribution of the potential outcomes Y(s)

for any treatment sequence s in the support of S.
Consider the case in which all variables are discrete. No-anticipation condition (NA)

ensures that potential outcomes for a treatment sequence s equal actual (under pol-
icy p0) outcomes up to time t − 1 for agents with treatment history st−1 up to time
t − 1. Formally, Y t−1(s) = Y t−1

p0
on the set {St−1 = st−1}. Using this, sequential ran-

domization assumption (M-2) can be rephrased in terms of potential outcomes: for all s

and t ,

S(t)⊥⊥ (Y(t, s), . . . , Y (T̄ , s)
) | (Y t−1(s), St−1 = st−1, Z

)
.

In turn, this implies that, for all s and t ,

Pr
(
Y(t, s) = y(t) | Y t−1(s) = yt−1, St = st , Z

)
(3.1)= Pr

(
Y(t, s) = y(t) | Y t−1(s) = yt−1, Z

)
,

where yt−1 = (y(1), . . . , y(t − 1)) and y = yT̄ . From Bayes’ rule and (3.1), it follows
that

Pr
(
Y(s) = y | Z

)
= Pr
(
Y(1, s) = y(1) | Z

) T̄∏
t=2

Pr
(
Y(t, s) = y(t) | Y t−1(s) = yt−1, Z

)
= Pr
(
Y(1, s) = y(1) | S(1) = s(1), Z

)
×

T̄∏
t=2

Pr
(
Y(t, s) = y(t) | Y t−1(s) = yt−1, St = st , Z

)
.

Invoking (NA), in particular Y(t, s) = Yp0(t) and Y t−1(s) = Y t−1
p0

on {St = st },
produces

Pr
(
Y(s) = y | Z

)
= Pr
(
Yp0(1) = y(1) | S(1) = s(1), Z

)
(3.2)×

T̄∏
t=2

Pr
(
Yp0(t) = y(t) | Y t−1

p0
= yt−1, St = st , Z

)
.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0


5222 J.H. Abbring and J.J. Heckman

This is a version of Robins’ (1997) “g-computation formula”.70,71 We can sequentially
identify each component on the left-hand side of the first expression, and hence iden-
tify the counterfactual distributions. This establishes identification of the distribution
of Y(s) by expressing it in terms of objects that can be identified from data. Identifica-
tion is exact (or “tight”) in the sense that the identifying assumptions, no anticipation
and sequential randomization, do not restrict the factual data and are therefore not
testable [Gill and Robins (2001, Section 6)].72

EXAMPLE 4. Consider a two-period (T̄ = 2) version of the model in which agents
take either “treatment” (1) or “control” (0) in each period. Then, S(1) and S(2) have
values in S = {0, 1}. The potential outcomes in period t are Y(t, (0, 0)), Y(t, (0, 1)),
Y(t, (1, 0)) and Y(t, (1, 1)). For example, Y(2, (0, 0)) is the outcome in period 2 in the
case that the agent is assigned to the control group in each of the two periods. Using
Bayes’ rule, it follows that

Pr
(
Y(s) = y | Z

)
(3.3)= Pr

(
Y(1, s) = y(1) | Z

)
Pr
(
Y(2, s) = y(2) | Y(1, s) = y(1), Z

)
.

The g-computation approach to constructing Pr(Y (s) = y | Z) from data replaces the
two probabilities in the right-hand side with probabilities of the observed (by the econo-
metrician) variables (Yp0 , S, Z). First, note that Pr(Y (1, s) = y(1) | Z) = Pr(Y (1, s) =
y(1) | S(1) = s(1), Z) by (M-2). Moreover, (NA) ensures that potential outcomes in
period 1 do not depend on the treatment status in period 2, so that

Pr
(
Y(1, s) = y(1) | Z

) = Pr
(
Yp0 = y(1) | S(1) = s(1), Z

)
.

70 Gill and Robins (2001) present versions of (NA) and (M-2) for the case with more general distributions
of treatments, and prove a version of the g-computation formula for the general case. For a random vector
X and a function f that is integrable with respect to the distribution of X, let

∫
x∈A f (x) Pr(X ∈ dx) =

E[f (X)1(X ∈ A)]. Then,

Pr
(
Y (s) ∈ A | Z

) = ∫
y∈A

Pr
(
Yp0 (T̄ ) ∈ dy(T̄ ) | Y T̄ −1

p0
= yT̄ −1, ST̄ = sT̄ , Z

)
.
.
.

× Pr
(
Yp0 (2) ∈ dy(2) | Yp0 (1) = y(1), S2 = s2, Z

)
× Pr
(
Yp0 (1) ∈ dy(1) | S(1) = s(1), Z

)
,

where A is a set of Y (s). The right-hand side of this expression is almost surely unique under regularity
conditions presented by Gill and Robins (2001).
71 An interesting special case arises if the outcomes are survival indicators, that is if Yp0 (t) = 1 if the agent
survives up to and including time t and Yp0 (t) = 0 otherwise, t � 1. Then, no anticipation (NA) requires
that treatment after death does not affect survival, and the g-computation formula simplifies considerably
[Abbring (2003)].
72 Gill and Robins’ (2001) analysis only involves causal inference on a final outcome (i.e., our Y (s, T̄ )) and
does not invoke the no-anticipation condition. However, their proof directly applies to the case studied in this
chapter.
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Similarly, subsequently invoking (NA) and (M-2), then (M-2), and then (NA), gives

Pr
(
Y(2, s) = y(2) | Y(1, s) = y(1), Z

)
= Pr
(
Y(2, s) = y(2) | Yp0(1), S(1) = s(1), Z

) (
by (NA) and (M-2)

)
= Pr
(
Y(2, s) = y(2) | Yp0(1), S = s, Z

) (
by (M-2)

)
= Pr
(
Yp0(2) = y(2) | Yp0(1), S = s, Z

)
.
(
by (NA)

)
Substituting these equations into the right-hand side of (3.3) gives the g-computation
formula,

Pr
(
Y(s) = y | Z

) = Pr
(
Yp0(1) = y(1) | S(1) = s(1), Z

)
× Pr
(
Yp0(2) = y(2) | Yp0(1) = y(1), S = s, Z

)
.

Note that the right-hand side does not generally reduce to Pr(Yp0 = y | S = s, Z). This
would require the stronger, static matching condition S ⊥⊥ Y(s) | Z, which we have not
assumed here.

Matching on pre-treatment covariates is a special case of the g-computation approach.
Suppose that the entire treatment path is assigned independently of potential outcomes
given pre-treatment covariates Z or, more precisely, S ⊥⊥ Y(s) | Z for all s. This implies
sequential randomization (M-2), and directly gives identification of the distributions
of Y(s) | Z and Y(s). The matching assumption imposes no restriction on the data since
Y(s) is only observed if S = s. The no-anticipation condition (NA) is not required for
identification in this special case because no conditioning on St is required. Matching
on pre-treatment covariates is equivalent to matching in a static model. The distribution
of Y(s) | Z is identified without (NA), and assuming it to be true would impose testable
restrictions on the data. In particular, it would imply that treatment assignment cannot
be dependent on past outcomes given Z. The static matching assumption is not likely
to hold in applications where treatment is dynamically assigned based on information
on intermediate outcomes. This motivates an analysis based on the more subtle sequen-
tial randomization assumption. An alternative approach, developed in Section 3.4, is to
explicitly model and identify the evolution of the unobservables.

Gill and Robins claim that their sequential randomization and no-anticipation as-
sumptions are “neutral”, “for free”, or “harmless”. As we will argue later, from an
economic perspective, some of the model assumptions, notably the no-anticipation as-
sumption, can be interpreted as substantial behavioral/informational assumptions. For
example, Heckman and Vytlacil (2005, and Chapter 70 of this Handbook) and Heckman
and Navarro (2004) show how matching imposes the condition that marginal and aver-
age returns are equal. Because of these strong assumptions, econometricians sometimes
phrase their “neutrality” result more negatively as a nonidentification result [Abbring
and Van den Berg (2003b)], since it is possible that (M-2) and/or (NA) may not hold.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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3.2.2. Policy evaluation and dynamic discrete-choice analysis

3.2.2.1. The effects of policies Consider a counterfactual policy p′ such that the cor-
responding allocation of treatments sp′ satisfies sequential randomization, as in (M-2):

(M-3) For all treatment sequences s and all t ,

sp′(t)⊥⊥ (Y(t, s), . . . , Y (T̄ , s)
) | (Y t−1

p′ , st−1
p′ = st−1, Z

)
.

The treatment assignment rule sp′ is equivalent to what Gill and Robins (2001) call a
“randomized plan”. The outcome distribution under such a rule cannot be constructed
by integrating the distributions of {Y(s)} with respect to the distribution of sp′ , because
there may be feedback from intermediate outcomes into treatment assignment. Instead,
under the assumptions of the previous subsection and a support condition, we can use
a version of the g-computation formula for randomized plans given by Gill and Robins
to compute the distribution of outcomes under the policy p′:73

Pr(Yp′ = y | Z) =
∑
s∈S

Pr
(
Yp0(1) = y(1) | S(1) = s(1), Z

)
× Pr
(
sp′(1) = s(1) | Z

)
×

T̄∏
t=2

[
Pr
(
Yp0(t) = y(t) | Y t−1

p0
= yt−1, St = st , Z

)
(3.4)× Pr

(
sp′(t) = s(t) | Y t−1

p′ = yt−1, st−1
p′ (1) = st−1, Z

)]
.

73 The corresponding formula for the case with general treatment distributions is

Pr(Yp′ ∈ A | Z) =
∫
y∈A

∫
s∈S

Pr
(
Yp0 (T̄ ) ∈ dy(T̄ ) | Y T̄ −1

p0
= yT̄ −1, ST̄ = sT̄ , Z

)
× Pr
(
sp′ (T̄ ) ∈ ds(T̄ ) | Y T̄ −1

p′ = yT̄ −1, sT̄ −1
p′ = sT̄ −1, Z

)
.
.
.

× Pr
(
Yp0 (2) ∈ dy(2) | Yp0 (1) = y(1), S(1) = s(1), Z

)
× Pr
(
sp′ (2) ∈ ds(2) | Yp′ (1) = y(1), sp′ (1) = s(1), Z

)
× Pr
(
Yp0 (1) ∈ dy(1) | S(1) = s(1), Z

)
Pr
(
sp′ (1) ∈ ds(1) | Z

)
.

The support condition on sp′ requires that, for each t , the distribution of sp′ (t) | (Y t−1
p′ = yt−1, st−1

p′ =
st−1, Z = z) is absolutely continuous with respect to the distribution of S(t) | (Y t−1

p0 = yt−1, St−1 =
st−1, Z = z) for almost all (yt−1, st−1, z) from the distribution of (Y t−1

p0 , St−1, Z).
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In the special case of static matching on Z, so that sp′ ⊥⊥ U | Z, this simplifies to
integrating the distribution of Yp0 | (S = s, Z) over the distribution of sp′ | Z:74

Pr(Yp′ = y | Z) =
∑
s∈S

Pr(Yp0 = y | S = s, Z) Pr(sp′ = s | Z).

3.2.2.2. Policy choice and optimal policies We now consider the problem of choosing
a policy p that is optimal according to some criterion. This problem is both of normative
interest and of descriptive interest if actual policies are chosen to be optimal. We could,
for example, study the optimal assignment a′ of constraints and incentives to agents.
Alternatively, we could assume that agents pick τ to maximize their utilities, and use
the methods discussed in this section to model τ .

Under the policy invariance assumptions that underlie the treatment-effects approach,
p only affects outcomes through its implied treatment allocation sp. Thus, the problem
of choosing an optimal policy boils down to choosing an optimal treatment allocation sp
under informational and other constraints specific to the problem at hand. For example,
suppose that the planner and the agents have the same information, IP (p) = IA(p), the
planner assigns eligibility to a program by a, and agents fully comply, so that B = S
and sp = a. Then, sp can be any rule from A and is adapted to IP (p) = IA(p).

For expositional convenience, we consider the optimal choice of a treatment assign-
ment sp adapted to the agent’s information IA(p) constructed earlier. We will use the
word “agents” to refer to the decision maker in this problem, even though it can also
apply to the planner’s decision problem. An econometric approach to this problem is to
estimate explicit dynamic choice models with explicit choice-outcome relationships.
One emphasis in the literature is on Markovian discrete-choice models that satisfy
Rust’s (1987) conditional-independence assumption [see Rust (1994)]. Other assump-
tions are made in the literature and we exposit them in Section 3.4.

Here, we explore the use of Rust’s (1987) model as a model of treatment choice
in a dynamic treatment-effects setting. In particular, we make explicit the additional
structure that Rust’s model, and in particular his conditional-independence assumption,
imposes on Robins’ dynamic potential-outcomes model. We follow Rust (1987) and
focus on a finite treatment (control) space S. In the notation of our model, payoffs are
determined by the outcomes Yp, treatment choices sp, the “cost shocks” V , and the
covariates Z. Rust (1987) assumes that {Yp(t − 1), Vt , Z} is a controlled first-order
Markov process, with initial condition Yp(0) ≡ 0 and control sp.75 As before, Vt and Z

74 In the general case this condition becomes

Pr(Yp′ ∈ A | Z) =
∫
s∈S

Pr(Yp0 ∈ A | S = s, Z) Pr(sp′ ∈ ds | Z).

75 Rust (1987) assumes an infinite-horizon, stationary environment. Here, we present a finite-horizon version
to facilitate a comparison with the dynamic potential-outcomes model and to link up with the analysis in
Section 3.4.
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are not causally affected by choices, but Yp(t) may causally depend on current and past
choices. The agents choose a treatment assignment rule sp that maximizes

(3.5)E

[
T̄∑

t=1

Υt

{
Yp(t − 1), Vt , sp(t), Z

}+ ΥT̄ +1

{
Yp(T̄ ), Z

} ∣∣∣∣ IA(1)

]
,

for some (net and discounted) utility functions Υt and IA(1) = IA(1, p), which is
independent of p. ΥT̄ +1{Yp(T̄ ), Z} is the terminal value. Under standard regularity
conditions on the utility functions, we can solve backward for the optimal policy sp.
Because of Rust’s Markov assumption, sp has a Markovian structure,

sp(t)⊥⊥ (Y t−2
p , V t−1) | [Yp(t − 1), Vt , Z

]
,

for t = 2, . . . , T̄ , and {Yp(t − 1), Vt , Z} is a first-order Markov process. Note that Z

enters the model as an observed (by the econometrician) factor that shifts net utility.
A key assumption embodied in the specification of (3.5) is time-separability of utility.
Rust (1987), in addition, imposes separability between observed and unobserved state
variables. This assumption plays no essential role in expositing the core ideas in Rust,
and we will not make it here.

Rust’s (1987) conditional-independence assumption imposes two key restrictions on
the decision problem. It is instructive to consider these restrictions in isolation from
Rust’s Markov restriction. We make the model’s causal structure explicit using the
potential-outcomes notation. Note that the model has a recursive causal structure—
the payoff-relevant state is controlled by current and past choices only—and satisfies
no-anticipation condition (NA). Setting Y(0, s) ≡ 0 for specificity, and ignoring the
Markov restriction, Rust’s conditional-independence assumption requires, in addition
to the assumption that there are no direct causal effects of choices on V , that

(3.6)Y(s, t)⊥⊥ V t | [Y t−1(s), Z
]
,

(3.7)Vt+1 ⊥⊥ V t | [Y t (s), Z
]

for all s and t . As noted by Rust (1987, p. 1011) condition (3.6) ensures that the ob-
served (by the econometrician) controlled state evolves independently of the unobserved
payoff-relevant variables. It is equivalent to [Florens and Mouchart (1982)]76

(M-4) [Y(s, t), . . . , Y (s, T̄ )]⊥⊥ V t | [Y t−1(s), Z] for all t and s.

In turn, (M-4) implies (M-2) and is equivalent to the assumption that (M-3) holds for
all sp′ .77

76 Note that (3.6) is a Granger (1969) noncausality condition stating that, for all s and conditional on Z, V

does not cause Y (s).
77 If V has redundant components, that is components that do not nontrivially enter any assignment rule sp ,
(M-4) imposes more structure, but structure that is irrelevant to the decision problem and its empirical analy-
sis.
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Condition (3.7) excludes serial dependence of the unobserved payoff-relevant vari-
ables conditional on past outcomes. In contrast, Robins’ g-computation framework
allows for such serial dependence, provided that sequential randomization holds if ser-
ial dependence is present. For example, if V ⊥⊥U | Z, then (M-2) and its variants hold
without further assumptions on the time series structure of Vt .

The first-order Markov assumption imposes additional restrictions on potential out-
comes. These restrictions are twofold. First, potential outcomes follow a first-order
Markov process. Second, s(t) only directly affects the Markov transition from Y(t, s) to
Y(t+1, s). This strengthens the no-anticipation assumption presented in Section 3.2.1.1.
The Markov assumption also requires that Vt+1 only depends on Y(s, t), and not on
Y t−1(s), given Y(s, t).

In applications, we may assume that actual treatment assignment S solves the
Markovian decision problem. Together with specifications of Υt , this further restricts
the dynamic choice-outcome model. Alternatively, one could make other assumptions
on S and use (3.5) to define and find an optimal, and typically counterfactual, assign-
ment rule sp′ .

Our analysis shows that the substantial econometric literature on the structural em-
pirical analysis of Markovian decision problems under conditional independence can be
applied to policy evaluation under sequential randomization. Conversely, methods de-
veloped for potential-outcomes models with sequential randomization can be applied to
learn about aspects of dynamic discrete-choice models. Murphy (2003) develops meth-
ods to estimate an optimal treatment assignment rule using Robins’ dynamic potential-
outcomes model with sequential randomization (M-3).

3.2.3. The information structure of policies

One concern about methods for policy evaluation based on the potential-outcomes
model is that potential outcomes are sometimes reduced form representations of dy-
namic models of agent’s choices. A policy maker choosing optimal policies typically
faces a population of agents who act on the available information, and their actions in
turn affect potential outcomes. For example, in terms of the model of Section 3.2.2,
a policy may change financial incentives—the b ∈ B assigned through a could enter the
net utilities Υt—and leave it to the agents to control outcomes by choosing treatment.
In econometric policy evaluation, it is therefore important to carefully model the infor-
mation IA that accumulates to the agents in different program states and under different
policies, separately from the policy maker’s information IP .

This can be contrasted with common practice in biostatistics. Statistical analyses of
the effects of drugs on health are usually concerned with the physician’s (planner’s)
information and decision problem. Gill and Robins’ (2001) sequential randomization
assumption, for example, is often justified by the assumption that physicians base their
treatment decisions on observable (by the analyst) information only. This literature,
however, often ignores the possibility that many variables known to the physician may
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not be known to the observing statistician and that the agents being given drugs alter the
protocols.

Potential outcomes will often depend on the agent’s information. Failure to correctly
model the information will often lead to violation of (NA) and failure of invariance. Po-
tential outcomes may therefore not be valid inputs in a policy evaluation study. A naive
specification of potential outcomes would only index treatments by actual participation
in, e.g., job search assistance or training programs. Such a naive specification is in-
complete in the context of economies inhabited by forward-looking agents who make
choices that affect outcomes. In specifying potential outcomes, we should not only con-
sider the effects of actual program participation, but also the effects of the information
available to agents about the program and policy. We now illustrate this point.

EXAMPLE 5. Black et al. (2003) analyze the effect of compulsory training and employ-
ment services provided to unemployment insurance (UI) claimants in Kentucky on the
exit rate from UI and earnings. In the program they study, letters are sent out to notify
agents some time ahead whether they are selected to participate in the program. This
information is recorded in a database and available to them. They can analyze the letter
as part of a program that consists of information provision and subsequent participation
in training. The main empirical finding of their paper is that the threat of future manda-
tory training conveyed by the letters is more effective in increasing the UI exit rate than
training itself.

The data used by Black et al. (2003) are atypical of many economic data sets, because
the data collectors carefully record the information provided to agents. This allows
Black et al. to analyze the effects of the provision of information along with the effects
of actual program participation. In many econometric applications, the information on
the program under study is less rich. Data sets may provide information on actual partic-
ipation in training programs and some background information on how the program is
administered. Typically, however, the data do not record all of the letters sent to agents
and do not record every phone conversation between administrators and agents. Then,
the econometrician needs to make assumptions on how this information accumulates
for agents. In many applications, knowledge of specific institutional mechanisms of as-
signment can be used to justify specific informational assumptions.

EXAMPLE 6. Abbring, Van den Berg and Van Ours (2005) analyze the effect of punitive
benefits reductions, or sanctions, on Dutch UI on re-employment rates. In the Nether-
lands, UI claimants have to comply with certain rules concerning search behavior and
registration. If a claimant violates these rules, a sanction may be applied. A sanction
is a punitive reduction in benefits for some period of time and may be accompanied
by increased levels of monitoring by the UI agency.78 Abbring, Van den Berg and Van

78 See Grubb (2000) for a review of sanction systems in the OECD.
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Ours (2005) use administrative data and know the re-employment duration, the dura-
tion at which a sanction is imposed if a sanction is imposed, and some background
characteristics for each UI case.

Without prior knowledge of the Dutch UI system, an analyst might make a variety of
informational assumptions. One extreme is that UI claimants know at the start of their
UI spells that their benefits will be reduced at some specific duration if they are still
claiming UI at that duration. This results in a UI system with entitlement periods that
are tailored to individual claimants and that are set and revealed at the start of the UI
spells. In this case, claimants will change their labor-market behavior from the start of
their UI spell in response to the future benefits reduction [e.g., Mortensen (1977)]. At
another extreme, claimants receive no prior signals of impending sanctions and there
are no anticipatory effects of actual benefits reductions. However, agents may still be
aware of the properties of the sanctions process and to some extent this will affect their
behavior. Abbring, Van den Berg and Van Ours (2005) analyze a search model with
these features. Abbring and Van den Berg (2003b) provide a structural example where
the data cannot distinguish between these two informational assumptions. We discuss
this example further in Section 3.3.1. Abbring, Van den Berg and Van Ours (2005)
use institutional background information to argue in favor of the second informational
assumption as the one that characterizes their data.

If data on information provision are not available and simplifying assumptions on
the program’s information structure cannot be justified, the analyst needs to model the
information that accumulates to agents as an unobserved determinant of outcomes. This
is the approach followed, and further discussed, in Section 3.4.

The information determining outcomes typically includes aspects of the policy. In Ex-
ample 5, the letter announcing future training will be interpreted differently in different
policy environments. If agents are forward looking, the letter will be more informative
under a policy that specifies a strong relation between the letter and mandatory training
in the population than under a policy that allocates letters and training independently.
In Example 6, the policy is a monitoring regime. Potential outcomes are UI durations
under different sanction times. A change in monitoring policy changes the value of un-
employment. In a job-search model with forward looking agents, agents will respond
by changing their search effort and reservation wage, and UI duration outcomes will
change. In either example, potential outcomes are not invariant to variation in the pol-
icy. In the terminology of Hurwicz (1962), the policy is not “structural” with regard
to potential outcomes and violates invariance assumptions (PI-1)–(PI-4) presented in
Chapter 70. One must control for the effects of agents’ information.

3.2.4. Selection on unobservables

In econometric program evaluations, (sequentially) randomized assignment is unlikely
to hold. We illustrate this in the models developed in Section 3.4. Observational data are
characterized by a lot of heterogeneity among agents, as documented by the empirical

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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examples in Section 2 and in Heckman, LaLonde and Smith (1999). This heterogeneity
is unlikely to be fully captured by the observed variables in most data sets. In a dynamic
context, such unmeasured heterogeneity leads to violations of the assumptions of Gill
and Robins (2001) and Rust (1987) that choices represent a sequential randomization.
This is true even if the unmeasured variables only affect the availability of slots in
programs but not outcomes directly. If agents are rational, forward-looking and observe
at least some of the unmeasured variables that the econometrician does not, they will
typically respond to these variables through their choice of treatment and through their
investment behavior. In this case, the sequential randomization condition fails.

For the same reason, identification based on instrumental variables is relatively hard
to justify in dynamic models [Hansen and Sargent (1980), Rosenzweig and Wolpin
(2000), Abbring and Van den Berg (2005)]. If the candidate instruments only vary
across persons but not over time for the same person, then they are not likely to be valid
instruments because they affect expectations and future choices and may affect current
potential outcomes. Instead of using instrumental variables that vary only across per-
sons, we require instruments based on unanticipated person-specific shocks that affect
treatment choices but not outcomes at each point in time. In the context of continuously
assigned treatments, the implied data requirements seem onerous. To achieve identi-
fication, Abbring and Van den Berg (2003b) focus on regressor variation rather than
exclusion restrictions in a sufficiently smooth model of continuous-time treatment ef-
fects. We discuss their analysis in Section 3.3. Heckman and Navarro (2007) show that
curvature conditions, not exclusion restrictions, that result in the same variables hav-
ing different effects on choices and outcomes in different periods, are motivated by
economic theory and can be exploited to identify dynamic treatment effects in discrete
time without literally excluding any variables. We discuss their analysis in Section 3.4.
We now consider a formulation of the analysis in continuous time.

3.3. The event-history approach to policy analysis

The discrete-time models just discussed in Section 3.2 have an obvious limitation. Time
is continuous and many events are best described by a continuous-time model. There
is a rich field of continuous-time event-history analysis that has been adapted to con-
duct policy evaluation analysis.79 For example, the effects of training and counseling
on unemployment durations and job stability have been analyzed by applying event-
history methods to data on individual labor-market and training histories [Ridder (1986),
Card and Sullivan (1988), Gritz (1993), Ham and LaLonde (1996), Eberwein, Ham and
LaLonde (1997), Bonnal, Fougère and Sérandon (1997)]. Similarly, the moral hazard
effects of unemployment insurance have been studied by analyzing the effects of time-
varying benefits on labor-market transitions [e.g., Meyer (1990), Abbring, Van den Berg

79 Abbring and Van den Berg (2004) discuss the relation between the event-history approach to program
evaluation and more standard latent-variable and panel-data methods, with a focus on identification issues.
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and Van Ours (2005), Van den Berg, Van der Klaauw and Van Ours (2004)]. In fields
like epidemiology, the use of event-history models to analyze treatment effects is wide-
spread [see, e.g., Andersen et al. (1993), Keiding (1999)].

The event-history approach to program evaluation is firmly rooted in the econo-
metric literature on state dependence (lagged dependent variables) and heterogeneity
[Heckman and Borjas (1980), and Heckman (1981a)]. Event-history models along the
lines of Heckman and Singer (1984, 1986) are used to jointly model transitions into pro-
grams and transitions into outcome states. Causal effects of programs are modelled as
the dependence of individual transition rates on the individual history of program partic-
ipation. Dynamic selection effects are modelled by allowing for dependent unobserved
heterogeneity in both the program and outcome transition rates.

Without restrictions on the class of models considered, true state dependence and
dynamic selection effects cannot be distinguished.80 Any history dependence of cur-
rent transition rates can be explained both as true state dependence and as the result
of unobserved heterogeneity that simultaneously affects the history and current transi-
tions. This is a dynamic manifestation of the problem of drawing causal inference from
observational data. In applied work, researchers avoid this problem by imposing addi-
tional structure. A typical, simple, example is a mixed semi-Markov model in which the
causal effects are restricted to program participation in the previous spell [e.g., Bonnal,
Fougère and Sérandon (1997), see Section 3.3.2]. There is a substantial literature on
the identifiability of state-dependence effects and heterogeneity in duration and event-
history models that exploit such additional structure [see Heckman and Taber (1994),
and Van den Berg (2001), for reviews]. Here, we provide discussion of some canonical
cases.

3.3.1. Treatment effects in duration models

3.3.1.1. Dynamically assigned binary treatments and duration outcomes We first con-
sider the simplest case of mutual dependence of events in continuous time, involving
only two binary events. This case is sufficiently rich to capture the effect of a dynam-
ically assigned binary treatment on a duration outcome. Binary events in continuous
time can be fully characterized by the time at which they occur and a structural model
for their joint determination is a simultaneous-equations model for durations. We de-
velop such a model along the lines of Abbring and Van den Berg (2003b). This model
is an extension, with general marginal distributions and general causal and spurious
dependence of the durations, of Freund’s (1961) bivariate exponential model.

Consider two continuously-distributed random durations Y and S. We refer to one of
the durations, S, as the time to treatment and to the other duration, Y , as the outcome
duration. Such an asymmetry arises naturally in many applications. For example, in
Abbring, Van den Berg and Van Ours’s (2005) study of unemployment insurance, the

80 See Heckman and Singer (1986).



5232 J.H. Abbring and J.J. Heckman

treatment is a punitive benefits reduction (sanction) and the outcome re-employment.
The re-employment process continues after imposition of a sanction, but the sanctions
process is terminated by re-employment. The current exposition, however, is symmetric
and unifies both cases. It applies to both the asymmetric setup of the sanctions example
and to applications in which both events may causally affect the other event.

Let Y(s) be the potential outcome duration that would prevail if the treatment time
is externally set to s. Similarly, let S(y) be the potential treatment time resulting from
setting the outcome duration to y. We assume that ex ante heterogeneity across agents
is fully captured by observed covariates X and unobserved covariates V , assumed to
be external and temporally invariant. Treatment causally affects the outcome duration
through its hazard rate. We denote the hazard rate of Y(s) at time t for an agent with
characteristics (X, V ) by θY (t | s,X, V ). Similarly, outcomes affect the treatment times
through its hazard θS(t | y,X, V ). Causal effects on hazard rates are produced by re-
cursive economic models driven by point processes, such as search models. We provide
an example below, and further discussion in Section 3.3.3.

Without loss of generality, we partition V into (VS, VY ) and assume that θY (t |
s,X, V ) = θY (t | s,X, VY ) and θS(t | y,X, V ) = θS(t | y,X, VS). Intuitively, VS and
VY are the unobservables affecting, respectively, treatment and outcome, and the joint
distribution of (VS, VY ) is unrestricted. In particular, VS and VY may have elements in
common.

The corresponding integrated hazard rates are defined by ΘY (t | s,X, VY ) =∫ t

0 θY (u | s,X, VY ) du and ΘS(t | y,X, VS) = ∫ t

0 θS(u | y,X, VS) du. For exposi-
tional convenience, we assume that these integrated hazards are strictly increasing in t .
We also assume that they diverge to ∞ as t → ∞, so that the duration distributions
are non-defective.81 Then, ΘY (Y (s) | s,X, VY ) and ΘS(S(y) | y,X, VS) are unit expo-
nential for all y, s ∈ R+.82 This implies the following model of potential outcomes and
treatments,83

Y(s) = y(s,X, VY , εY ) and S(y) = s(y,X, VS, εS),

for some unit exponential random variables εY and εS that are independent of (X, V ),
y = Θ−1

Y , and s = Θ−1
S .

81 Abbring and Van den Berg (2003b) allow for defective distributions, which often have structural interpre-
tations. For example, some women never have children and some workers will never leave a job. See Abbring
(2002) for discussion.
82 Let T | X be distributed with density f (t | X), non-defective cumulative distribution function F(t | X),
and hazard rate θ(t | X) = f (t | X)/[1 − F(t | X)]. Then,

∫ T
0 θ(t | X) dt = − ln[1 − F(T | X)] is a unit

exponential random variable that is independent of X.
83 The causal hazard model only implies that the distributions of εY and εS are invariant across assigned
treatments and outcomes, respectively; their realizations may not be. This is sufficient for the variation
of y(s, X, VY , εY ) with s and of s(y,X, VS, εS) with y to have a causal interpretation. The further restriction
that the random variables εY and εS are invariant is made for simplicity, and is empirically innocuous. See
Abbring and Van den Berg (2003b) for details and Freedman (2004) for discussion.
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The exponential errors εY and εS embody the ex post shocks that are inherent to the
individual hazard processes, that is the randomness in the transition process after condi-
tioning on covariates X and V and survival. We assume that εY ⊥⊥ εS , so that {Y(s)} and
{S(y)} are only dependent through the observed and unobserved covariates (X, V ). This
conditional-independence assumption is weaker than the conditional-independence as-
sumption underlying the analysis of Section 3.2 and used in matching, because it al-
lows for conditioning on the invariant unobservables V . It shares this feature with the
discrete-time models developed in Section 3.4 and is a version of matching on unob-
served variables discussed in Section 2.

We assume a version of the no-anticipation condition of Section 3.2.1: for all t ∈ R+,

θY (t | s,X, VY ) = θY (t | s′, X, VY ) and θS(t | y,X, VS) = θS(t | y′, X, VS)

for all s, s′, y, y′ ∈ [t,∞). This excludes effects of anticipation of the treatment on
the outcome. Similarly, there can be no anticipation effects of future outcomes on the
treatment hazard.

EXAMPLE 7. Consider a standard search model describing the job search behavior of
an unemployed individual [e.g., Mortensen (1986)] with characteristics (X, V ). Job of-
fers arrive at a rate λ > 0 and are random draws from a given distribution F . Both
λ and F may depend on (X, V ), but for notational simplicity we suppress all explicit
representations of conditioning on (X, V ) throughout this example. An offer is either
accepted or rejected. A rejected offer cannot be recalled at a later time. The individ-
ual initially receives a constant flow of unemployment-insurance benefits. However, the
individual faces the risk of a sanction—a permanent reduction of his benefits to some
lower, constant level—at some point during his unemployment spell. During the un-
employment spell, sanctions arrive independently of the job-offer process at a constant
rate μ > 0. The individual cannot foresee the exact time a sanction is imposed, but he
knows the distribution of these times.84 The individual chooses a job-acceptance rule as
to maximize his expected discounted lifetime income. Under standard conditions, this
is a reservation-wage rule: at time t , the individual accepts each wage of w(t) or higher.
The corresponding re-employment hazard rate is λ(1 − F(w(t))). Apart from the sanc-
tion, which is not foreseen and arrives at a constant rate during the unemployment spell,
the model is stationary. This implies that the reservation wage is constant, say equal
to w0, up to and including time s, jumps to some lower level w1 < w0 at time s and
stays constant at w1 for the remainder of the unemployment spell if benefits would be
reduced at time s.

The model is a version of the simultaneous-equations model for durations. To see this,
let Y be the re-employment duration and S the sanction time. The potential-outcome

84 This is a rudimentary version of the search model with punitive benefits reductions, or sanctions, of
Abbring, Van den Berg and Van Ours (2005). The main difference is that in the present version of the model
the sanctions process cannot be controlled by the agent.
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hazards are

θY (t | s) =
{

λ0 if 0 � t � s,

λ1 if t > s,

where λ0 = λ[1 − F(w0)] and λ1 = λ[1 − F(w1)], and clearly λ1 � λ0. Similarly,
the potential-treatment time hazards are θS(t | y) = μ if 0 � t � y, and 0 otherwise.
Note that the no-anticipation condition follows naturally from the recursive structure of
the economic decision problem in this case in which we have properly accounted for all
relevant components of agent information sets. Furthermore, the assumed independence
of the job offer and sanction processes at the individual level for given (X, V ) implies
that εY ⊥⊥ εS .

The actual outcome and treatment are related to the potential outcomes and treat-
ments by S = S(Y ) and Y = Y(S). The no-anticipation assumption ensures that this
system has a unique solution (Y, S) by imposing a recursive structure on the underlying
transition processes. Without anticipation effects, current treatment and outcome haz-
ards only depend on past outcome and treatment events, and the transition processes
evolve recursively [Abbring and Van den Berg (2003b)]. Together with a distribution
G(· | X) of V | X, this gives a nonparametric structural model of the distribution
of (Y, S) | X that embodies general simultaneous causal dependence of Y and S, depen-
dence of (Y,X) on observed covariates X, and general dependence of the unobserved
errors VY and VS .

There are two reasons for imposing further restrictions on this model. First, it is
not identified from data on (Y, S,X). Take a version of the model with selection on
unobservables (VY /⊥⊥ VS | X) and consider the distribution of (Y, S) | X generated by
this version of the model. Then, there exists an alternative version of the model that
satisfies both no-anticipation and VY ⊥⊥ VS | X, and that generates the same distribution
of (Y, S) | X [Abbring and Van den Berg (2003b, Proposition 1)]. In other words,
for each version of the model with selection on unobservables and anticipation effects,
there is an observationally-equivalent model version that satisfies no-anticipation and
conditional randomization. This is a version of the nonidentification result discussed in
Section 3.2.1.

Second, even if we ensure nonparametric identification by assuming no-anticipation
and conditional randomization, we cannot learn about the agent-level causal effects em-
bodied in y and s without imposing even further restrictions. At best, under regularity
conditions we can identify θY (t | s,X) = E[θY (t | s,X, VY ) | X, Y(s) � t] and
θS(t | y,X) = E[θS(t | y,X, VS) | X, S(y) � t] from standard hazard regressions
[e.g., Andersen et al. (1993), Fleming and Harrington (1991)]. Thus we can identify the
distributions of Y(s) | X and S(y) | X, and therefore solve the selection problem if we
are only interested in these distributions. However, if we are also interested in the causal
effects on the corresponding hazard rates for given X,V , we face an additional dynamic
selection problem. The hazards of the identified distributions of Y(s) | X and S(y) | X

only condition on observed covariates X, and not on unobserved covariates V , and are
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confounded with dynamic selection effects [Heckman and Borjas (1980), Heckman and
Singer (1986), Meyer (1996), Abbring and Van den Berg (2005)]. For example, the
difference between θY (t | s,X) and θY (t | s′, X) does not only reflect agent-level dif-
ferences between θY (t | s,X, VY ) and θY (t | s′, X, VY ), but also differences in the
subpopulations of survivors {X, Y(s) � t} and {X, Y(s′) � t} on which the hazards are
computed.

In the next two subsections, we discuss what can be learned about treatment effects
in duration models under additional model restrictions. We take the no-anticipation as-
sumption as fundamental. As explained in Section 3.2, this requires that we measure
and include in our model all relevant information needed to define potential outcomes.
However, we relax the randomization assumption. We first consider Abbring and Van
den Berg’s (2003b) analysis of identification without exclusion restrictions. They argue
that these results are useful, because exclusion restrictions are hard to justify in an inher-
ently dynamic setting with forward-looking agents. Abbring and Van den Berg (2005)
further clarify this issue by studying inference for treatment effects in duration models
using a social experiment. We discuss what can be learned from such experiments at the
end of this section.

3.3.1.2. Identifiability without exclusion restrictions Abbring and Van den Berg con-
sider an extension of the multivariate Mixed Proportional Hazard (MPH) model
[Lancaster (1979)] in which the hazard rates of Y(s) | (X, V ) and S(y) | (X, V ) are
given by

(3.8)θY (t | s,X, V ) =
{

λY (t)φY (X)VY if t � s,

λY (t)φY (X)δY (t, s,X)VY if t > s
and

(3.9)θS(t | y,X, V ) =
{

λS(t)φS(X)VS if t � y,

λS(t)φS(X)δS(t, y,X)VS if t > y,

respectively, and V = (VY , VS) is distributed independently of X. The baseline haz-
ards λY : R+ → (0,∞) and λS : R+ → (0,∞) capture duration dependence of the
individual transition rates. The integrated hazards are ΛY (t) = ∫ t

0 λY (τ) dτ < ∞ and
ΛS(t) = ∫ t

0 λS(τ) dτ < ∞ for all t ∈ R+. The regressor functions φY :X → (0,∞)

and φS :X → (0,∞) are assumed to be continuous, with X ⊂ Rq the support of X.
In empirical work, these functions are frequently specified as φY (x) = exp(x′βY ) and
φS(x) = exp(x′βS) for some parameter vectors βY and βS . We will not make such
parametric assumptions. Note that the fact that both regressor functions are defined on
the same domain X is not restrictive, because each function φY and φS can “select”
certain elements of X by being trivial functions of the other elements. In the paramet-
ric example, the vector βY would only have nonzero elements for those regressors that
matter to the outcome hazard. The functions δY and δS capture the causal effects. Note
that δY (t, s,X) only enters θY (t | s,X, V ) at durations t > s, so that the model satisfies
no anticipation of treatment. Similarly, it satisfies no anticipation of outcomes and has
a recursive causal structure as required by the no-anticipation assumption. If δY = 1,
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treatment is ineffective; if δY is larger than 1, it stochastically reduces the remaining
outcome duration.

Note that this model allows δY and δS to depend on elapsed duration t , past endoge-
nous events, and the observed covariates X, but not on V . Abbring and Van den Berg
also consider an alternative model that allows δY and δS to depend on unobservables in
a general way, but not on past endogenous events.

Abbring and Van den Berg show that these models are nonparametrically identified
from single-spell data under the conditions for the identification of competing risks
models based on the multivariate MPH model given by Abbring and Van den Berg
(2003a). Among other conditions are the requirements that there is some independent
local variation of the regressor effects in both hazard rates and a finite-mean restriction
on V , and are standard in the analysis of multivariate MPH models. With multiple-spell
data, most of these assumptions, and the MPH structure, can be relaxed [Abbring and
Van den Berg (2003b)].

The models can be parameterized in a flexible way and estimated by maximum like-
lihood. Typical parameterizations involve linear-index structures for the regressor and
causal effects, a discrete distribution G, and piecewise-constant baseline hazards λS

and λY . Abbring and Van den Berg (2003c) develop a simple graphical method for in-
ference on the sign of ln(δY ) in the absence of regressors. Abbring, Van den Berg and
Van Ours (2005) present an empirical application.

3.3.1.3. Inference based on instrumental variables The concerns expressed in Sec-
tion 3.2.4 about the validity of exclusion restrictions in dynamic settings carry over to
event-history models.

EXAMPLE 8. A good illustration of this point is offered by the analysis of Eberwein,
Ham and LaLonde (1997), who study the effects of a training program on labor-market
transitions. Their data are particularly nice, as potential participants are randomized
into treatment and control groups at some baseline point in time. This allows them to
estimate the effect of intention to treat (with training) on subsequent labor-market tran-
sitions. This is directly relevant to policy evaluation in the case that the policy involves
changing training enrollment through offers of treatment which may or may not be ac-
cepted by agents.

However, Eberwein et al. are also interested in the effect of actual participation in the
training program on post-program labor-market transitions. This is a distinct problem,
because compliance with the intention-to-treat protocol is imperfect. Some agents in the
control group are able to enroll in substitute programs, and some agents in the treatment
group choose never to enroll in a program at all. Moreover, actual enrollment does not
take place at the baseline time, but is dispersed over time. Those in the treatment group
are more likely to enroll earlier. This fact, coupled with the initial randomization, sug-
gests that the intention-to-treat indicator might be used as an instrument for identifying
the effect of program participation on employment and unemployment spells.
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The dynamic nature of enrollment into the training program, and the event-history
focus of the analysis complicate matters considerably. Standard instrumental-variables
methods cannot be directly applied. Instead, Eberwein et al. use a parametric duration
model for pre- and post-program outcomes that excludes the intention-to-treat indica-
tor from directly determining outcomes. They specify a duration model for training
enrollment that includes an intention-to-treat indicator as an explanatory variable, and
specify a model for labor-market transitions that excludes the intention-to-treat indica-
tor and imposes a no-anticipation condition on the effect of actual training participation
on labor-market transitions. Such a model is consistent with an environment in which
agents cannot perfectly foresee the actual training time they will be assigned and in
which they do not respond to information about this time revealed by their assign-
ment to an intention-to-treat group. This is a strong assumption. In a search model
with forward-looking agents, for example, such information would typically affect the
ex ante values of unemployment and employment. Then, it would affect the labor-
market transitions before actual training enrollment through changes in search efforts
and reservation wages, unless these are both assumed to be exogenous. An assumption
of perfect foresight on the part of the agents being studied only complicates matters
further.

Abbring and Van den Berg (2005) study what can be learned about dynamically as-
signed programs from social experiments if the intention-to-treat instrument cannot be
excluded from the outcome equation. They develop bounds, tests for unobserved het-
erogeneity, and point-identification results that extend those discussed in this section.85

3.3.2. Treatment effects in more general event-history models

It is instructive to place the causal duration models developed in Section 3.3.1 in the
more general setting of event-history models with state dependence and heterogeneity.
We do this following Abbring’s (2008) analysis of the mixed semi-Markov model.

3.3.2.1. The mixed semi-Markov event-history model The model is formulated in a
fashion analogous to the frameworks of Heckman and Singer (1986). The point of de-
parture is a continuous-time stochastic process assuming values in a finite set S at each
point in time. We will interpret realizations of this process as agents’ event histories of
transitions between states in the state space S.

Suppose that event histories start at real-valued random times T0 in an S-valued ran-
dom state S0, and that subsequent transitions occur at random times T1, T2, . . . such
that T0 < T1 < T2 < · · ·. Let Sl be the random destination state of the transition at Tl .
Taking the sample paths of the event-history process to be right-continuous, we have
that Sl is the state occupied in the interval [Tl, Tl+1).

85 In the special case that a static treatment, or treatment plan, is assigned at the start of the spell, standard
instrumental-variables methods may be applied. See Abbring and Van den Berg (2005).
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Suppose that heterogeneity among agents is captured by vectors of time-constant
observed covariates X and unobserved covariates V .86 In this case, state dependence
in the event-history process for given individual characteristics X, V has a causal in-
terpretation.87 We structure such state dependence by assuming that the event-history
process conditional on X, V is a time-homogeneous semi-Markov process. Conditional
on X, V the length of a spell in a state and the destination state of the transition
ending that spell depend only on the past through the current state. In our notation,
(�Tl, Sl)⊥⊥ {(Ti, Si), i = 0, . . . , l − 1} | Sl−1, X, V , where �Tl = Tl − Tl−1 is the
length of spell l. Also, the distribution of (�Tl, Sl) | Sl−1, X, V does not depend on l.
Note that, conditional on X, V , {Sl, l � 0} is a time-homogeneous Markov chain under
these assumptions.

Nontrivial dynamic selection effects arise because V is not observed. The event-
history process conditional on observed covariates X only is a mixed semi-Markov
process. If V affects the initial state S0, or transitions from there, subpopulations of
agents in different states at some time t typically have different distributions of the un-
observed characteristics V . Therefore, a comparison of the subsequent transitions in two
such subpopulations does not only reflect state dependence, but also sorting of agents
with different unobserved characteristics into the different states they occupy at time t .

We model {(�Tl, Sl), l � 1} | T0, S0, X, V as a repeated competing risks model.
Due to the mixed semi-Markov assumption, the latent durations corresponding to tran-
sitions into the possible destination states in the lth spell only depend on the past through
the current state Sl−1, conditional on X, V . This implies that we can fully specify the
repeated competing risks model by specifying a set of origin-destination-specific latent
durations, with corresponding transition rates. Let T l

jk denote the latent duration cor-
responding to the transition from state j to state k in spell l. We explicitly allow for
the possibility that transitions between certain (ordered) pairs of states may be impos-
sible. To this end, define the correspondence Q :S → σ(S) assigning to each s ∈ S
the set of all destination states to which transitions are made from s with positive prob-
ability.88 Here, σ(S) is the set of all subsets of S (the “power set” of S). Then, the
length of spell l is given by �Tl = mins∈Q(Sl−1) T l

Sl−1s
, and the destination state by

Sl = arg mins∈Q(Sl−1) T l
Sl−1s

.
We take the latent durations to be mutually independent, jointly independent from

T0, S0, and identically distributed across spells l, all conditional on X, V . This reflects

86 We restrict attention to time-invariant observed covariates for expositional convenience. The analysis can
easily be adapted to more general time-varying external covariates. Restricting attention to time-constant
regressors is a worst-case scenario for identification. External time variation in observed covariates aids iden-
tification [Heckman and Taber (1994)].
87 We could make this explicit by extending the potential-outcomes model of Section 3.3.1 to the general
event-history setup. However, this would add a lot of complexity, but little extra insight.
88 Throughout this section, we assume that Q is known. It is important to note, however, that Q can actually
be identified trivially in all cases considered.
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both the mixed semi-Markov assumption and the additional assumption that all depen-
dence between the latent durations corresponding to the competing risks in a given spell
l is captured by the observed regressors X and the unobservables V . This is a standard
assumption in econometric duration analysis, which, with the semi-Markov assumption,
allows us to characterize the distribution of {(�Tl, Sl), l � 1} | T0, S0, X, V by spec-
ifying origin-destination-specific hazards θjk(t | X,V ) for the marginal distributions
of T l

jk | X,V .
We assume that the hazards θjk(t | X,V ) are of the mixed proportional hazard (MPH)

type:89

(3.10)θjk(t | X,V ) =
{

λjk(t)φjk(X)Vjk if k ∈ Q(j),

0 otherwise.

The baseline hazards λjk : R+ → (0,∞) have integrated hazards Λjk(t) =∫ t

0 λjk(τ ) dτ < ∞ for all t ∈ R+. The regressor functions φjk :X → (0,∞) are
assumed to be continuous. Finally, the (0,∞)-valued random variable Vjk is the scalar
component of V that affects the transition from state j to state k. Note that we allow
for general dependence between the components of V . This way, we can capture, for
example, that agents with lower re-employment rates have higher training enrollment
rates.

This model fully characterizes the distribution of the transitions {(�Tl, Sl), l � 1}
conditional on the initial conditions T0, S0 and the agents’ characteristics X,V . A com-
plete model of the event histories {(Tl, Sl), l � 0} conditional on X,V would in
addition require a specification of the initial conditions T0, S0 for given X, V . It is impor-
tant to stress here that T0, S0 are the initial conditions of the event-history process itself,
and should not be confused with the initial conditions in a particular sample (which we
will discuss below). In empirical work, interest in the dependence between start times
T0 and characteristics X, V is often limited to the observation that the distribution of
agent’s characteristics may vary over cohorts indexed by T0. The choice of initial state
S0 may in general be of some interest, but is often trivial. For example, we could model
labor-market histories from the calendar time T0 at which agents turn 15 onwards. In
an economy with perfect compliance to a mandatory schooling up to age 15, the ini-
tial state S0 would be “(mandatory) schooling” for all. Therefore, we will not consider
a model of the event history’s initial conditions, but instead focus on the conditional
model of subsequent transition histories.

Because of the semi-Markov assumption, the distribution of {(�Tl, Sl), l � 1} |
T0, S0, X, V only depends on S0, and not T0. Thus, T0 only affects observed event his-
tories through cohort effects on the distribution of unobserved characteristics V . The
initial state S0, on the other hand, may both have causal effects on subsequent transi-
tions and be informative on the distribution of V . For expositional clarity, we assume

89 Proportionality can be relaxed if we have data on sufficiently long event-histories. See Honoré (1993) and
Abbring and Van den Berg (2003a, 2003b) for related arguments for various multi-spell duration models.
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that V ⊥⊥ (T0, S0, X). This is true, for example, if all agents start in the same state, so
that S0 is degenerate, and V is independent of the start date T0 and the observed covari-
ates X.

An econometric model for transition histories conditional on the observed covariates
X can be derived from the model of {(�Tl, Sl), l � 1} | S0, X, V by integrating out V .
The exact way this should be done depends on the sampling scheme used. Here, we
focus on sampling from the population of event-histories. We assume that we observe
the covariates X, the initial state S0, and the first L transitions from there. Then, we can
model these transitions for given S0, X by integrating the conditional model over the
distribution of V .

Abbring (2008) discusses more complex, and arguably more realistic, sampling
schemes. For example, when studying labor-market histories we may randomly sample
from the stock of the unemployed at a particular point in time. Because the unobserved
component V affects the probability of being unemployed at the sampling date, the dis-
tribution of V | X in the stock sample does not equal its population distribution. This is
again a dynamic version of the selection problem. Moreover, in this case we typically
do not observe an agent’s entire labor-market history from T0 onwards. Instead, we may
have data on the time spent in unemployment at the sampling date and on labor-market
transitions for some period after the sampling date. This “initial conditions problem”
complicates matters further [Heckman (1981b)].

In the next two subsections, we first discuss some examples of applications of the
model and then review a basic identification result for the simple sampling scheme
above.

3.3.2.2. Applications to program evaluation Several empirical papers study the effect
of a single treatment on some outcome duration or set of transitions. Two approaches
can be distinguished. In the first approach, the outcome and treatment processes are
explicitly and separately specified. The second approach distinguishes treatment as one
state within a single event-history model with state dependence.

The first approach is used in a variety of papers in labor economics. Eberwein, Ham
and LaLonde (1997) specify a model for labor-market transitions in which the transi-
tion intensities between various labor-market states (not including treatment) depend on
whether someone has been assigned to a training program in the past or not. Abbring,
Van den Berg and Van Ours (2005) and Van den Berg, Van der Klaauw and Van Ours
(2004) specify a model for re-employment durations in which the re-employment hazard
depends on whether a punitive benefits reduction has been imposed in the past. Simi-
larly, Van den Berg, Holm and Van Ours (2002) analyze the duration up to transition
into medical trainee positions and the effect of an intermediate transition into a medical
assistant position (a “stepping-stone job”) on this duration. In all of these papers, the
outcome model is complemented with a hazard model for treatment choice.

These models fit into the framework of Section 3.3.1 or a multi-state extension
thereof. We can rephrase the class of models discussed in Section 3.3.1 in terms of
a simple event-history model with state dependence as follows. Distinguish three states,
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untreated (O), treated (P ) and the exit state of interest (E), so that S = {O,P,E}.
All subjects start in O, so that S0 = O. Obviously, we do not want to allow for all
possible transitions between these three states. Instead, we restrict the correspondence
Q representing the possible transitions as follows:

Q(s) =
{ {P,E} s = O,

{E} if s = P,

∅ s = E.

State dependence of the transition rates into E captures treatment effects in the sense
of Section 3.3.1. Not all models in Abbring and Van den Berg (2003b) are included
in the semi-Markov setup discussed here. In particular, in this paper we do not allow
the transition rate from P to E to depend on the duration spent in O. This extension
with “lagged duration dependence” [Heckman and Borjas (1980)] would be required to
capture one variant of their model.

The model for transitions from “untreated” (O) is a competing risks model, with pro-
gram enrollment (transition to P ) and employment (E) competing to end the untreated
spell. If the unobservable factor VOE that determines transitions to employment and the
unobservable factor VOP affecting program enrollment are dependent, then program
enrollment is selective in the sense that the initial distribution of VOE—and also typi-
cally that of VPE—among those who enroll at a given point in time does not equal its
distribution among survivors in O up to that time.90

The second approach is used by Gritz (1993) and Bonnal, Fougère and Sérandon
(1997), among others. Consider the following simplified setup. Suppose workers are
either employed (E), unemployed (O), or engaged in a training program (P ). We can
now specify a transition process among these three labor-market states in which a causal
effect of training on unemployment and employment durations is modeled as depen-
dence of the various transition rates on the past occurrence of a training program in
the labor-market history. Bonnal, Fougère and Sérandon (1997) only have limited in-
formation on agents’ labor-market histories before the sample period. Partly to avoid
difficult initial conditions problems, they restrict attention to “first order lagged oc-
currence dependence” [Heckman and Borjas (1980)] by assuming that transition rates
only depend on the current and previous state occupied. Such a model is not di-
rectly covered by the semi-Markov model, but with a simple augmentation of the state
space it can be covered. In particular, we have to include lagged states in the state
space on which the transition process is defined. Because there is no lagged state in
the event-history’s first spell, initial states should be defined separately. So, instead
of just distinguishing states in S∗ = {E,O,P }, we distinguish augmented states in
S = {(s, s′) ∈ (S∗ ∪ {I }) × S∗: s �= s′}. Then, (I, s), s ∈ S∗, denote the initial
states, and (s, s′) ∈ S the augmented state of an agent who is currently in s′ and came
from s �= s′. In order to preserve the interpretation of the model as a model of lagged

90 Note that, in addition, the survivors in O themselves are a selected subpopulation. Because V affects
survival in O, the distribution of V among survivors in O is not equal to its population distribution.
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occurrence dependence, we have to exclude certain transitions by specifying

Q(s, s′) = {(s′, s′′), s′′ ∈ S∗ \ {s′}}.
This excludes transitions to augmented states that are labeled with a lagged state dif-
ferent from the origin state. Also, it ensures that agents never return to an initial state.
For example, from the augmented state (O, P )—previously unemployed and currently
enrolled in a program—only transitions to augmented states (P, s′′)—previously en-
rolled in a program and currently in s′′—are possible. Moreover, it is not possible to
be currently employed and transiting to initially unemployed, (I,O). Rather, an em-
ployed person who loses her job would transit to (E,O)—currently unemployed and
previously employed.

The effects of, for example, training are now modeled as simple state-dependence
effects. For example, the effect of training on the transition rate from unemployment to
employment is simply the contrast between the individual transition rate from (E,O)

to (O,E) and the transition rate from (P,O) to (O,E). Dynamic selection into the
augmented states (E,O) and (P,O), as specified by the transition model, confounds
the empirical analysis of these training effects. Note that due to the fact that we have
restricted attention to first-order lagged occurrence dependence, there are no longer-run
effects of training on transition rates from unemployment to employment.

3.3.2.3. Identification without exclusion restrictions In this section, we sketch a basic
identification result for the following sampling scheme. Suppose that the economist
randomly samples from the population of event-histories, and that we observe the first L̄

transitions (including destinations) for each sampled event-history, with the possibility
that L̄ = ∞.91 Thus, we observe a random sample of {(Tl, Sl), l ∈ {0, 1, . . . , L̄}},
and X.

First note that we can only identify the determinants of θjk for transitions (j, k) that
occur with positive probability among the first L̄ transitions. Moreover, without further
restrictions, we can only identify the joint distribution of a vector of unobservables
corresponding to (part of) a sequence of transitions that can be observed among the
first L̄ transitions.

With this qualification, identification can be proved by extending Abbring and Van
den Berg’s (2003a) analysis of the MPH competing risks model to the present setting.
This analysis assumes that transition rates have an MPH functional form. Identification
again requires specific moments of V to be finite, and independent local variation in the
regressor effects.

3.3.3. A structural perspective

Without further restrictions, the causal duration model of Section 3.3.1 is versatile. It
can be generated as the reduced form of a wide variety of continuous-time economic

91 Note that this assumes away econometric initial conditions problems of the type previously discussed.
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models driven by point processes. Leading examples are sequential job-search models
in which job-offer arrival rates, and other model parameters, depend on agent charac-
teristics (X, V ) and policy interventions [see, e.g., Mortensen (1986), and Example 7].

The MPH restriction on this model, however, is hard to justify from economic the-
ory. In particular, nonstationary job-search models often imply interactions between
duration and covariate effects; the MPH model only results under strong assumptions
[Heckman and Singer (1986), Van den Berg (2001)]. Similarly, an MPH structure is
hard to generate from models in which agents learn about their individual value of the
model’s structural parameters, that is about (X, V ), through Bayesian updating.

An alternative class of continuous-time models, not discussed in this chapter, spec-
ifies durations as the first time some Gaussian or more general process crosses a
threshold. Such models are closely related to a variety of dynamic economic models.
They have attracted recent attention in statistics [see, e.g., Aalen and Gjessing (2004)].
Abbring (2007) analyzes identifiability of “mixed hitting-time models”, continuous-
time threshold-crossing models in which the parameters depend on observed and unob-
served covariates, and discusses their link with optimizing models in economics. This
is a relatively new area of research, and a full development is beyond the scope of this
paper. It extends to a continuous-time framework the dynamic threshold-crossing model
developed in Heckman (1981a, 1981b) that is used in the next subsection of this chapter.

We now discuss a complementary discrete-time approach where it is possible to
make many important economic distinctions that are difficult to make in the setting of
continuous-time models and to avoid some difficult measure-theoretic problems. In the
structural version, it is possible to specify precisely agent information sets in a fashion
that is not possible in conventional duration models.

3.4. Dynamic discrete choice and dynamic treatment effects

Heckman and Navarro (2007) and Cunha, Heckman and Navarro (2007) present econo-
metric models for analyzing time to treatment and the consequences of the choice of
a particular treatment time. Treatment may be a medical intervention, stopping school-
ing, opening a store, conducting an advertising campaign at a given date or renewing a
patent. Associated with each treatment time, there can be multiple outcomes. They can
include a vector of health status indicators and biomarkers; lifetime employment and
earnings consequences of stopping at a particular grade of schooling; the sales revenue
and profit generated from opening a store at a certain time; the revenues generated and
market penetration gained from an advertising campaign; or the value of exercising an
option at a given time. Heckman and Navarro (2007) unite and contribute to the liter-
atures on dynamic discrete choice and dynamic treatment effects. For both classes of
models, they present semiparametric identification analyses. We summarize their work
in this section. It is a natural extension of the framework for counterfactual analysis
of multiple treatments developed in Section 2 to a dynamic setting. It is formulated in
discrete time, which facilitates the specification of richer unobserved and observed co-
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variate processes than those entertained in the continuous-time framework of Abbring
and Van den Berg (2003b).

Heckman and Navarro extend the literature on treatment effects to model choices
of treatment times and the consequences of choice and link the literature on treatment
effects to the literature on precisely formulated structural dynamic discrete-choice mod-
els generated from index models crossing thresholds. They show the value of precisely
formulated economic models in extracting the information sets of agents, in providing
model identification, in generating the standard treatment effects and in enforcing the
nonanticipating behavior condition (NA) discussed in Section 3.2.1.92

They establish the semiparametric identifiability of a class of dynamic discrete-choice
models for stopping times and associated outcomes in which agents sequentially update
the information on which they act. They also establish identifiability of a new class of
reduced form duration models that generalize conventional discrete-time duration mod-
els to produce frameworks with much richer time series properties for unobservables
and general time-varying observables and patterns of duration dependence than con-
ventional duration models. Their analysis of identification of these generalized models
requires richer variation driven by observables than is needed in the analysis of the
more restrictive conventional models. However, it does not require conventional period-
by-period exclusion restrictions, which are often difficult to justify. Instead, they rely
on curvature restrictions across the index functions generating the durations that can be
motivated by dynamic economic theory.93 Their methods can be applied to a variety of
outcome measures including durations.

The key to their ability to identify structural models is that they supplement infor-
mation on stopping times or time to treatment with additional information on measured
consequences of choices of time to treatment as well as measurements. The dynamic
discrete-choice literature surveyed in Rust (1994) and Magnac and Thesmar (2002) fo-
cuses on discrete-choice processes with general preferences and state vector evolution
equations, typically Markovian in nature. Rust’s (1994) paper contains negative re-
sults on nonparametric identification of discrete-choice processes. Magnac and Thesmar
(2002) present some positive results on nonparametric identification if certain parame-
ters or distributions of unobservables are assumed to be known. Heckman and Navarro
(2007) produce positive results on nonparametric identification of a class of dynamic
discrete-choice models based on expected income maximization developed in labor
economics by Flinn and Heckman (1982), Keane and Wolpin (1997) and Eckstein and
Wolpin (1999). These frameworks are dynamic versions of the Roy model. Heckman
and Navarro (2007) show how use of cross-equation restrictions joined with data on sup-
plementary measurement systems can undo Rust’s nonidentification result. We exposit

92 Aakvik, Heckman and Vytlacil (2005), Heckman, Tobias and Vytlacil (2001, 2003), Carneiro, Hansen
and Heckman (2001, 2003) and Heckman and Vytlacil (2005) show how standard treatment effects can be
generated from structural models.
93 See Heckman and Honoré (1989) for examples of such an identification strategy in duration models. See
also Cameron and Heckman (1998).
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their work and the related literature in this section. With their structural framework,
they can distinguish objective outcomes from subjective outcomes (valuations by the
decision maker) in a dynamic setting. Applying their analysis to health economics, they
can identify the causal effects on health of a medical treatment as well as the associated
subjective pain and suffering of a treatment regime for the patient.94 Attrition decisions
also convey information about agent preferences about treatment.95

They do not rely on the assumption of conditional independence of unobserv-
ables with outcomes, given observables, that is used throughout much of the dynamic
discrete-choice literature and the dynamic treatment literature surveyed in Section 3.2.96

As noted in Section 3.1, sequential conditional-independence assumptions underlie re-
cent work on reduced form dynamic treatment effects.97 The semiparametric analysis of
Heckman and Navarro (2007) based on factors generalizes matching to a dynamic set-
ting. In their paper, some of the variables that would produce conditional independence
and would justify matching if they were observed, are treated as unobserved match vari-
ables. They are integrated out and their distributions are identified.98 They consider two
classes of models. We review both.

3.4.1. Semiparametric duration models and counterfactuals

Heckman and Navarro (2007), henceforth HN, develop a semiparametric index model
for dynamic discrete choices that extends conventional discrete time duration analy-
sis. They separate out duration dependence from heterogeneity in a semiparametric
framework more general than conventional discrete-time duration models. They pro-
duce a new class of reduced form models for dynamic treatment effects by adjoining
time-to-treatment outcomes to the duration model. This analysis builds on Heckman
(1981a, 1981b, 1981c).

Their models are based on a latent variable for choice at time s,

I (s) = Ψ
(
s, Z(s)

)− η(s),

where the Z(s) are observables and η(s) are unobservables from the point of view of
the econometrician. Treatments at different times may have different outcome conse-
quences which they model after analyzing the time to treatment equation. Define D(s)

as an indicator of receipt of treatment at date s. Treatment is taken the first time I (s)

94 See Chan and Hamilton (2006) for a structural dynamic empirical analysis of this problem.
95 See Heckman and Smith (1998). Use of participation data to infer preferences about outcomes is developed
in Heckman (1974b).
96 See, e.g., Rust (1987), Manski (1993), Hotz and Miller (1993) and the papers cited in Rust (1994).
97 See, e.g., Gill and Robins (2001) and Lechner and Miquel (2002).
98 For estimates based on this idea see Carneiro, Hansen and Heckman (2003), Aakvik, Heckman and Vytlacil
(2005), Cunha and Heckman (2007b, 2008), Cunha, Heckman and Navarro (2005, 2006), and Heckman and
Navarro (2005).
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becomes positive. Thus,

D(s) = 1
[
I (s) � 0, I (s − 1) < 0, . . . , I (1) < 0

]
,

where the indicator function 1[·] takes the value of 1 if the term inside the braces is
true.99 They derive conditions for identifying a model with general forms of duration
dependence in the time to treatment equation using a large sample from the distribution
of (D,Z).

3.4.1.1. Single spell duration model Individuals are assumed to start spells in a given
(exogenously determined) state and to exit the state at the beginning of time period S.100

S is thus a random variable representing total completed spell length. Let D(s) = 1 if
the individual exits at time s, S = s, and D(s) = 0 otherwise. In an analysis of drug
treatments, S is the discrete-time period in the course of an illness at the beginning
of which the drug is administered. Let S̄ (< ∞) be the upper limit on the time the
agent being studied can be at risk for a treatment. It is possible in this example that
D(1) = 0, . . . , D(S̄) = 0, so that a patient never receives treatment. In a schooling
example, “treatment” is not schooling, but rather dropping out of schooling.101 In this
case, S̄ is an upper limit to the number of years of schooling, and D(S̄) = 1 if D(1) = 0,

. . . , D(S̄ − 1) = 0.
The duration model can be specified recursively in terms of the threshold-crossing

behavior of the sequence of underlying latent indices I (s). Recall that I (s) =
Ψ (s, Z(s)) − η(s), with Z(s) being the regressors that are observed by the analyst.
The Z(s) can include expectations of future outcomes given current information in
the case of models with forward-looking behavior. For a given stopping time s, let
Ds = (D(1), . . . , D(s)) and designate by d(s) and ds values that D(s) and Ds assume.
Thus, d(s) can be zero or one and ds is a sequence of s zeros or a sequence containing
s − 1 zeros and a single one. Denote a sequence of all zeros by (0), regardless of its
length. Then,

D(1) = 1
[
I (1) � 0

]
and

(3.11)D(s) =
{

1[I (s) � 0] if Ds−1 = (0),

0 otherwise,
s = 2, . . . , S̄.

For s = 2, . . . , S̄, the indicator 1[I (s) � 0] is observed if and only if the agent is still at
risk of treatment, Ds−1 = (0). To identify period s parameters from period s outcomes,
one must condition on all past outcomes and control for any selection effects.

99 This framework captures the essential feature of any stopping time model. For example, in a search model
with one wage offer per period, I (s) is the gap between market wages and reservation wages at time s. See,
e.g., Flinn and Heckman (1982). This framework can also approximate the explicit dynamic discrete-choice
model analyzed in Section 3.4.2.
100 Thus we abstract from the initial conditions problem discussed in Heckman (1981b).
101 In the drug treatment example, S may designate the time a treatment regime is completed.
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Let Z = (Z(1), . . . , Z(S̄)), and let η = (η(1), . . . , η(S̄)).102 Assume that Z is sta-
tistically independent of η. Heckman and Navarro (2007) assume that Ψ (s, Z(s)) =
Z(s)γs . We deal with a more general case. Ψ (Z) = (Ψ (1, Z(1)), . . . , Ψ (S̄, Z(S̄))). We
let Ψ denote the abstract parameter. Depending on the values assumed by Ψ (s, Z(s)),
one can generate very general forms of duration dependence that depend on the values
assumed by the Z(s). HN allow for period-specific effects of regressors on the latent
indices generating choices.

This model is the reduced form of a general dynamic discrete-choice model. Like
many reduced form models, the link to choice theory is not clearly specified. It is not a
conventional multinomial choice model in a static (perfect certainty) setting with asso-
ciated outcomes.

3.4.1.2. Identification of duration models with general error structures and duration
dependence Heckman and Navarro (2007) establish semiparametric identification of
the model of Equation (3.11) assuming access to a large sample of i.i.d. (D,Z) obser-
vations. Let Zs = (Z(1), . . . , Z(s)). Data on (D,Z) directly identify the conditional
probability Pr(D(s) = d(s) | Zs,Ds−1 = (0)) a.e. FZs |Ds−1=(0) where FZs |Ds−1=(0)

is the distribution of Zs conditional on previous choices Ds−1 = (0). Assume that
(Ψ, Fη) ∈ Φ × H, where Fη is the distribution of η and Φ × H is the parame-
ter space. The goal is to establish conditions under which knowledge of Pr(D(s) =
d(s) | Z,Ds−1 = (0)) a.e. FZ|Ds−1=(0) allows the analyst to identify a unique ele-
ment of Φ ×H. They use a limit strategy that allows them to recover the parameters by
conditioning on large values of the indices of the preceding choices. This identification
strategy is widely used in the analysis of discrete choice.103

They establish sufficient conditions for the identification of model (3.11). We prove
the following more general result:

THEOREM 3. For the model defined by Equation (3.11), assume the following condi-
tions:

(i) η ⊥⊥ Z.
(ii) η is an absolutely continuous random variable on RS̄ with support∏S̄

s=1(η(s), η̄(s)), where −∞ � η(s) < η̄(s) � +∞ for all s = 1, . . . , S̄.
(iii) The Ψ (s, Z(s)) are members of the Matzkin class of functions defined in Appen-

dix B.1, s = 1, . . . , S̄.

102 A special case of the general model arises when η(s) has a factor model representation as analyzed in
Section 2. We will use such a representation when we adjoin outcomes to treatment times later in this section.
103 See, e.g., Manski (1988), Heckman (1990), Heckman and Honoré (1989, 1990), Matzkin (1992, 1993),
Taber (2000), and Carneiro, Hansen and Heckman (2003). A version of the strategy of this proof was first used
in psychology where agent choice sets are eliminated by experimenter manipulation. The limit set argument
effectively uses regressors to reduce the choice set confronting agents. See Falmagne (1985) for a discussion
of models of choice in psychology.
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(iv) Supp(Ψ s−1(Z), Z(s)) = Supp(Ψ s−1(Z)) × Supp(Z(s)), s = 2, . . . , S̄.
(v) Supp(Ψ (Z)) ⊇ Supp(η).

Then Fη and Ψ (Z) are identified, where the Ψ (s, Z(s)), s = 1, . . . , S̄, are identified
over the relevant support admitted by (ii).

PROOF. We sketch the proof for S̄ = 2. The result for general S̄ follows by a recursive
application of this argument. Consider the following three probabilities.

(a) Pr
(
D(1) = 1 | Z = z

) = ∫ Ψ (1,z(1))

η(1)

fη(1)(u) du.

(b) Pr
(
D(2) = 1,D(1) = 0 | Z = z

)
=
∫ Ψ (2,z(2))

η(2)

∫ η̄(1)

Ψ (1,z(1))

fη(1),η(2)(u1, u2) du1 du2.

(c) Pr
(
D(2) = 0,D(1) = 0 | Z = z

)
=
∫ η̄(2)

Ψ (2,z(2))

∫ η̄(1)

Ψ (1,z(1))

fη(1),η(2)(u1, u2) du1 du2.

The left-hand sides are observed from data on those who stop in period 1 (a); those
who stop in period 2 (b); and those who terminate in the “0” state in period 2 (c). From
Matzkin (1992), under our conditions on the class of functions Φ, which are stronger
than hers, we can identify Ψ (1, z(1)) and Fη(1) from (a). Using (b), we can fix z(2)

and vary Ψ (1, z(1)). From (iv) and (v) there exists a limit set Z̃1, possibly dependent
on z(2), such that limz(1)→Z̃1

Ψ (1, z(1)) = η(1). Thus we can construct

Pr
(
D(2) = 0 | Z = z

) = ∫ η̄(2)

Ψ (2,z(2))

fη(2)(u2) du2

and identify Ψ (2, z(2)) and Fη(2)(η(2)). Using the Ψ (1, z(1)), Ψ (2, z(2)), one can trace
out the joint distribution Fη(1),η(2) over its support. Under the Matzkin conditions, iden-
tification is achieved on a nonnegligible set. The proof generalizes in a straightforward
way to general S̄. �

Observe that if the η(s) are bounded by finite upper and lower limits, we can only
determine the Ψ (s, Z(s)) over the limits so defined. Consider the first step of the proof.
Under the Matzkin conditions, Fη(1) is known. From assumption (ii) we can determine

Ψ
(
1, z(1)

) = F−1
η(1)

(
Pr
(
D(1) = 1 | Z = z

))
,

but only over the support (η(1), η̄(1)). If the support of η(1) is R, we deter-
mine Ψ (1, z(1)) for all z(1). Heckman and Navarro (2007) analyze the special case
Ψ (s, Z(s)) = Z(s)γs and invoke sequential rank conditions to identify γs , even over
limited supports. They also establish that the limit sets are nonnegligible in this case so
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that standard definitions of identifiability [see, e.g., Matzkin (1992)] will be satisfied.104

Construction of the limit set Z̃s , s = 1, . . . , S̄, depends on the functional form speci-
fied for the Ψ (s, z(s)). For the linear-in-parameters case Ψ (s, z(s)) = Z(s)γs , they are
obtained by letting arguments get big or small. Matzkin (1992) shows how to establish
the limit sets for functions in her family of functions.

A version of Theorem 3 with Ψ (s, Z(s)) = Zsγs that allows dependence between
Z and ηs except for one component can be proved using the analysis of Lewbel (2000)
and Honoré and Lewbel (2002).105

The assumptions of Theorem 3 will be satisfied if there are transition-specific exclu-
sion restrictions for Z with the required properties. As noted in Section 3.3, in models
with many periods, this may be a demanding requirement. Very often, the Z variables
are time invariant and so cannot be used as exclusion restrictions. Corollary 1 in HN,
for the special case Ψ (s, Z(s)) = Z(s)γs , tells us that the HN version of the model
can be identified even if there are no conventional exclusion restrictions and the Z(s)

are the same across all time periods if sufficient structure is placed on how the γs vary
with s. Variations in the values of γs across time periods arise naturally in finite-horizon
dynamic discrete-choice models where a shrinking horizon produces different effects
of the same variable in different periods. For example, in Wolpin’s (1987) analysis of a
search model, the value function depends on time and the derived decision rules weight
the same invariant characteristics differently in different periods. In a schooling model,
parental background and resources may affect education continuation decisions differ-
ently at different stages of the schooling decision. The model generating equation (3.11)
can be semiparametrically identified without transition-specific exclusions if the dura-
tion dependence is sufficiently general. For a proof, see Corollary 1 in Heckman and
Navarro (2007).

The conditions of Theorem 3 are somewhat similar to the conditions on the regressor
effects needed for identification of the continuous-time event-history models in Sec-
tion 3.3. One difference is that the present analysis requires independent variation of
the regressor effects over the support of the distribution of the unobservables generat-
ing outcomes. The continuous-time analysis based on the functional form of the mixed
proportional hazard model (MPH) as analyzed by Abbring and Van den Berg (2003a)
only requires local independent variation.

Theorem 3 and Corollary 1 in HN have important consequences. The Ψ (s, Z(s)),
s = 1, . . . , S̄, can be interpreted as duration dependence parameters that are modified
by the Z(s) and that vary across the spell in a more general way than is permitted in

104 Heckman and Navarro (2007) prove their theorem for a model where D(s) = 1[I (s) � 0] if Ds−1 =
(0), s = 2, . . . , S̄. Our formulation of their result is consistent with the notation in this chapter.
105 HN discuss a version of such an extension at their website. Lewbel’s conditions are very strong. To ac-
count for general forms of dependence between Z and ηs requires modeling the exact form of the dependence.
Nonparametric solutions to this problem remain an open question in the literature on dynamic discrete choice.
One solution is to assume functional forms for the error terms, but in general, this is not enough to identify
the model without further restrictions imposed. See Heckman and Honoré (1990).
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mixed proportional hazards (MPH), generalized accelerated failure time (GAFT) mod-
els or standard discrete-time hazard models.106 Duration dependence in conventional
specifications of duration models is usually generated by variation in model intercepts.
The regressors are allowed to interact with the duration dependence parameters. In the
specifications justified by Theorem 3, the “heterogeneity” distribution Fη is identified
for a general model. No special “permanent-transitory” structure is required for the un-
observables although that specification is traditional in duration analysis. Their explicit
treatment of the stochastic structure of the duration model is what allows HN to link in a
general way the unobservables generating the duration model to the unobservables gen-
erating the outcome equations that are introduced in the next section. Such an explicit
link is not currently available in the literature on continuous-time duration models for
treatment effects surveyed in Section 3.3, and is useful for modelling selection effects
in outcomes across different treatment times. Their outcomes can be both discrete and
continuous and are not restricted to be durations.

Under conditions given in Corollary 1 of HN, no period-specific exclusion condi-
tions are required on the Z. Hansen and Sargent (1980) and Abbring and Van den Berg
(2003b) note that period-specific exclusions are not natural in reduced form duration
models designed to approximate forward-looking life cycle models. Agents make cur-
rent decisions in light of their forecasts of future constraints and opportunities, and
if they forecast some components well, and they affect current decisions, then they
are in Z(s) in period s. Corollary 1 in HN establishes identification without such ex-
clusions. HN adjoin a system of counterfactual outcomes to their model of time to
treatment to produce a model for dynamic counterfactuals. We summarize that work
next.

3.4.1.3. Reduced form dynamic treatment effects This section reviews a reduced form
approach to generating dynamic counterfactuals developed by HN. They apply and ex-
tend the analysis of Carneiro, Hansen and Heckman (2003) and Cunha, Heckman and
Navarro (2005, 2006) to generate ex post potential outcomes and their relationship with
the time to treatment indices I (s) analyzed in the preceding subsection. With reduced
form models, it is difficult to impose restrictions from economic theory or to make
distinctions between ex ante and ex post outcomes. In the structural model developed
below, these and other distinctions can be made easily.

The reduced form model’s specification closely follows the exposition of Sec-
tion 2.8.1. Associated with each treatment s, s = 1, . . . , S̄, is a vector of T̄ outcomes,

Y
(
s,X,U(s)

)
= (Y (1, s, X,U(1, s)

)
, . . . , Y

(
t, s, X,U(t, s)

)
, . . . , Y

(
T̄ , s, X,U(T̄ , s)

))
.

In this section, treatment time s is synonymous with treatment state s in Section 2.
Outcomes depend on covariates X and U(s) = (U(1, s), . . . , U(t, s), . . . , U(T̄ , s))

106 See Ridder (1990) for a discussion of these models.
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that are, respectively, observable and unobservable by the econometrician. Elements
of Y(s,X,U(s)) are outcomes associated with stopping or receiving treatment at the
beginning of period s. They are factual outcomes if treatment s is actually selected
(S = s and D(s) = 1). Outcomes corresponding to treatments s′ that are not selected
(D(s′) = 0) are counterfactuals. The outcomes associated with each treatment may be
different, and indeed the treatments administered at different times may be different.

The components Y(t, s,X,U(t, s)) of the vector Y(s,X,U(s)) can be interpreted
as the outcomes revealed at age t , t = 1, . . . , T̄ , and may themselves be vectors. The
reduced form approach presented in this section is not sufficiently rich to capture the no-
tion that agents revise their anticipations of components of Y(s,X,U(s)), s = 1, . . . , S̄,
as they acquire information over time. This notion is systematically developed using the
structural model discussed below in Section 3.4.2.

The treatment “times” may be stages that are not necessarily connected with real
times. Thus s may be a schooling level. The correspondence between stages and times is
exact if each stage takes one period to complete. Our notation is more flexible, and time
and periods can be defined more generally. Our notation in this section accommodates
both cases.

In this section of the chapter, we use the condensed notation introduced in Sec-
tion 2.8.1. This notation is sufficiently rich to represent the life cycle of outcomes for
persons who receive treatment at s. Thus, in a schooling example, the components of
this vector may include life cycle earnings, employment, and the like associated with a
person with characteristics X, U(s), s = 1, . . . , S̄, who completes s years of schooling
and then forever ceases schooling. It could include earnings while in school at some
level for persons who will eventually attain further schooling as well as post-school
earnings.

We measure age and treatment time on the same time scale, with origin 1, and let
T̄ � S̄. Then, the Y(t, s,X,U(t, s)) for t < s are outcomes realized while the person
is in school at age t (s is the time the person will leave school; t is the current age)
and before “treatment” (stopping schooling) has occurred. When t � s, these are post-
school outcomes for treatment with s years of schooling. In this case, t − s is years
of post-school experience. In the case of a drug trial, the Y(t, s,X,U(t, s)) for t < s

are measurements observed before the drug is taken at s and if t � s, they are the
post-treatment measurements.

Following Carneiro, Hansen and Heckman (2003) and our analysis in Section 2,
the variables in Y(t, s,X,U(t, s)) may include discrete, continuous or mixed discrete-
continuous components. For the discrete or mixed discrete-continuous cases, HN as-
sume that latent continuous variables cross thresholds to generate the discrete compo-
nents. Durations can be generated by latent index models associated with each outcome
crossing thresholds analogous to the model presented in Equation (3.11). In this frame-
work, for example, we can model the effect of attaining s years of schooling on durations
of unemployment or durations of employment.

The reduced form analysis in this section does not impose restrictions on the tem-
poral (age) structure of outcomes across treatment times in constructing outcomes and
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specifying identifying assumptions. Each treatment time can have its own age path of
outcomes pre and post treatment. Outcomes prior to treatment and outcomes after treat-
ment are treated symmetrically and both may be different for different treatment times.
In particular, HN can allow earnings at age t for people who receive treatment at some
future time s′ to differ from earnings at age t for people who receive treatment at some
future time s′′, min(s′, s′′) > t even after controlling for U and X.

This generality is in contrast with the analyses of Robins (1997) and Gill and Robins
(2001) discussed in Section 3.2 and the analysis of Abbring and Van den Berg (2003b)
discussed in Section 3.3. These analyses require exclusion of such anticipation effects
to secure identification, because their models attribute dependence of treatment on past
outcomes to selection effects. The sequential randomization assumption (M-2) under-
lying the work of Gill and Robins allows treatment decisions S(t) at time t to depend
on past outcomes Y t−1

p0
in a general way. Therefore, without additional restrictions, it is

not possible to also identify causal (anticipatory) effects of treatment S(t) on Y t−1
p0

. The
no-anticipation condition (NA) excludes such effects and secures identification in their
framework.107 It is essential for applying the conditional-independence assumptions in
deriving the g-computation formula.

HN’s very different approach to identification allows them to incorporate anticipa-
tion effects. As in their analysis of the duration model, they assume that there is an
exogenous source of independent variation of treatment decisions, independent of past
outcomes. Any variation in current outcomes with variation in future treatment deci-
sions induced by this exogenous source cannot be due to selection effects (since they
explicitly control for the unobservables) and is interpreted as anticipatory effects of
treatment in their framework. However, their structural analysis naturally excludes such
effects (see Section 3.4.2 below). Therefore, a natural interpretation of the ability of HN
to identify anticipatory effects is that they have overidentifying restrictions that allow
them to test their model and, if necessary, relax their assumptions.

In a model with uncertainty, agents act on and value ex ante outcomes. The model
developed below in Section 3.4.2 distinguishes ex ante from ex post outcomes. The

107 The role of the no-anticipation assumption in Abbring and Van den Berg (2003b) is similar. However,
their main analysis assumes an asymmetric treatment-outcome setup in which treatment is not observed if
it takes place after the outcome transition. In that case, the treatment time is censored at the outcome time.
In this asymmetric setup, anticipatory effects of treatment on outcomes cannot be identified because the
econometrician cannot observe variation of outcome transitions with future treatment times. This point may
appear to be unrelated to the present discussion, but it is not. As was pointed out by Abbring and Van den
Berg (2003b), and in Section 3.3, the asymmetric Abbring and Van den Berg (2003b) model can be extended
to a fully symmetric bivariate duration model in which treatment hazards may be causally affected by the
past occurrence of an outcome event just like outcomes may be affected by past treatment events. This model
could be used to analyze data in which both treatment and outcome times are fully observed. In this symmetric
setup, any dependence in the data of the time-to-treatment hazard on past outcome events is interpreted as an
effect of outcomes on future treatment decisions, and not an anticipatory effect of treatment on past outcomes.
If one does not restrict the effects of outcomes on future treatment, without further restrictions, the data on
treatments occurring after the outcome event carry no information on anticipatory effects of treatment on
outcomes and they face an identification problem similar to that in the asymmetric case.
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model developed in this section cannot because, within it, it is difficult to specify the
information sets on which agents act or the mechanism by which agents forecast and
act on Y(s,X,U(s)) when they are making choices.

One justification for not making an ex ante–ex post distinction is that the agents being
modeled operate under perfect foresight even though econometricians do not observe all
of the information available to the agents. In this framework, the U(s), s = 1, . . . , S̄, are
an ingredient of the econometric model that accounts for the asymmetry of information
between the agent and the econometrician studying the agent.

Without imposing assumptions about the functional structure of the outcome equa-
tions, it is not possible to nonparametrically identify counterfactual outcome states
Y(s,X,U(s)) that have never been observed. Thus, in a schooling example, HN assume
that analysts observe life cycle outcomes for some persons for each stopping time (level
of final grade completion) and our notation reflects this.108 However, analysts do not
observe Y(s,X,U(s)) for all s for anyone. A person can have only one stopping time
(one completed schooling level). This observational limitation creates the “fundamental
problem of causal inference”.109

In addition to this problem, there is the standard selection problem that the
Y(s,X,U(s)) are only observed for persons who stop at s and not for a random sam-
ple of the population. The selected distribution may not accurately characterize the
population distribution of Y(s,X,U(s)) for persons selected at random. Note also that
without further structure, we can only identify treatment responses within a given pol-
icy environment. In another policy environment, where the rules governing selection
into treatment and/or the outcomes from treatment may be different, the same time to
treatment may be associated with entirely different responses.110 We now turn to the
HN analysis of identification of outcome and treatment time distributions.

3.4.1.4. Identification of outcome and treatment time distributions We assume access
to a large i.i.d. sample from the distribution of (S, Y (S,X,U(S)),X,Z), where S is the
stopping time, X are the variables determining outcomes and Z are the variables deter-
mining choices. We also know Pr(S = s | Z = z) for s = 1, . . . , S̄, from the data. For
expositional convenience, we first consider the case of scalar outcomes Y(S,X,U(S)).
An analysis for vector Y(S,X,U(S)) is presented in HN and is discussed below.

Consider the analysis of continuous outcomes. HN analyze more general cases. Their
results extend the analyses of Heckman and Honoré (1990), Heckman (1990) and
Carneiro, Hansen and Heckman (2003) by considering choices generated by a stopping

108 In practice, analysts can only observe a portion of the life cycle after treatment. See the discussion on
pooling data across samples in Cunha, Heckman and Navarro (2005) to replace missing life cycle data.
109 See Holland (1986) or Gill and Robins (2001).
110 This is the problem of general equilibrium effects, and leads to violation of the policy invariance condi-
tions. See Heckman, Lochner and Taber (1998a), Heckman, LaLonde and Smith (1999) or Abbring and Van
den Berg (2003b) for discussion of this problem.
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time model. To simplify the notation in this section, assume that the scalar outcome as-
sociated with stopping at time s can be written as Y(s) = μ(s,X)+U(s), where Y(s) is
shorthand for Y(s,X,U(s)). Y(s) is observed only if D(s) = 1 where the D(s) are gen-
erated by the model analyzed in Theorem 3. Write I (s) = Ψ (s, Z(s)) − η(s). Assume
that the Ψ (s, Z(s)) belong to the Matzkin class of functions described in Appendix B.
We use the condensed representations I , Ψ (Z), η, Y , μ(X) and U as described in Sec-
tion 2.8.1, and in the previous subsection.

Heckman and Navarro permit general stochastic dependence within the components
of U , within the components of η and across the two vectors. They assume that (X,Z)

are independent of (U, η). Each component of (U, η) has a zero mean. The joint distri-
bution of (U, η) is assumed to be absolutely continuous.

With “sufficient variation” in the components of Ψ (Z), one can identify μ(s,X),
[Ψ (1, Z(1)), . . . , Ψ (s, Z(s))] and the joint distribution of U(s) and ηs . This enables
the analyst to identify average treatment effects across all stopping times, since one can
extract E(Y(s)−Y(s′) | X = x) from the marginal distributions of Y(s), s = 1, . . . , S̄.

THEOREM 4. Write Ψ s(Z) = (Ψ (1, Z(1), . . . , Ψ (s, Z(s))). Assume in addition to the
conditions in Theorem 3 that

(i) E[U(s)] = 0. (U(s), ηs) are continuous random variables with support
Supp(U(s)) × Supp(ηs) with upper and lower limits (
U(s), η̄s) and (U(s), ηs),

respectively, s = 1, . . . , S̄. These conditions hold for each component of each
subvector. The joint system is thus variation free for each component with re-
spect to every other component.

(ii) (U(s), ηs)⊥⊥ (X,Z), s = 1, . . . , S̄ (independence).
(iii) μ(s,X) is a continuous function, s = 1, . . . , S̄.
(iv) Supp(Ψ (Z),X) = Supp(Ψ (Z)) × Supp(X).

Then one can identify μ(s,X), Ψ s(Z) Fηs,U(s), s = 1, . . . , S̄, where Ψ (Z) is identified
over the support admitted by condition (ii) of Theorem 3.

PROOF. See Appendix C. �

Appendix D, which extends Heckman and Navarro (2007), states and proves the more
general Theorem D.1 for vector outcomes and both discrete and continuous variables
that is parallel to the proof of Theorem 2 for the static model.

Theorem 4 does not identify the joint distribution of Y(1), . . . , Y (S̄) because analysts
observe only one of these outcomes for any person. Observe that exclusion restrictions
in the arguments of the choice of treatment equation are not required to identify the
counterfactuals. What is required is independent variation of arguments which might be
achieved by exclusion conditions but can be obtained by other functional restrictions
(see HN, Corollary 1, for example). One can identify the μ(s,X) (up to constants)
without the limit set argument. Thus one can identify certain features of the model
without using the limit set argument. See HN.
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The proof of Theorem 4 in Appendix C covers the case of vector Y(s,X,U(s)) where
each component is a continuous random variable. The analysis in Appendix D allows
for age-specific outcomes Y(t, s,X,U(t, s)), t = 1, . . . , T̄ , where Y can be a vector
of outcomes. In particular, HN can identify age-specific earnings flows associated with
multiple sources of income.

As a by-product of Theorem 4, one can construct various counterfactual distributions
of Y(s) for agents with index crossing histories such that D(s) = 0 (that is, for whom
Y(s) is not observed). Define B(s) = 1[I (s) � 0], Bs = (B(1), . . . , B(s)), and let bs

denote a vector of possible values of Bs . D(s) was defined as B(s) if Bs−1 = (0) and
0 otherwise. Theorem 4 gives conditions under which the counterfactual distribution
of Y(s) for those with D(s′) = 1, s′ �= s, can be constructed. More generally, it can be
used to construct

Pr
(
Y(s) � y(s) | Bs′ = bs′

, X = x,Z = z
)

for all of the 2s′
possible sequences bs′

of Bs′
outcomes up to s′ � s. If bs′

equals a
sequence of s′ − 1 zeros followed by a one, then Bs′ = bs′

corresponds to D(s′) = 1.
The event Bs′ = (0) corresponds to Ds′ = (0), i.e., S > s′. For all other sequences
bs′

, Bs′ = bs′
defines a subpopulation of the agents with D(s′′) = 1 for some s′′ < s′

and multiple index crossings. For example, Bs′ = (0, 1, 0) corresponds to D(2) = 1
and I (3) < 0. This defines a subpopulation that takes treatment at time 2, but that
would not take treatment at time 3 if it would not have taken treatment at time 2.111

It is tempting to interpret such sequences with multiple crossings as corresponding to
multiple entry into and exit from treatment. However, this is inconsistent with the stop-
ping time model (3.11), and would require extension of the model to deal with recurrent
treatment. Whether a threshold-crossing model corresponds to a structural model of
treatment choice is yet another issue, which is taken up in the next section and is also
addressed in Cunha, Heckman and Navarro (2007).

The counterfactuals that are identified by fixing different D(s′) = 1 for different
treatment times s′ in the general model of HN have an asymmetric aspect. HN can
generate Y(s) distributions for persons who are treated at s or before. Without further
structure, they cannot generate the distributions of these random variables for people
who receive treatment at times after s.

The source of this asymmetry is the generality of duration model (3.11). At each
stopping time s, HN acquire a new random variable η(s) which can have arbitrary de-
pendence with Y(s) and Y(s′) for all s and s′. From Theorem 4, HN can identify the
dependence between η(s′) and Y(s) if s′ � s. They cannot identify the dependence
between η(s′) and Y(s) for s′ > s without imposing further structure on the unobserv-
ables.112 Thus one can identify the distribution of college outcomes for high school
graduates who do not go on to college and can compare these to outcomes for high

111 Cunha, Heckman and Navarro (2007) develop an ordered choice model with stochastic thresholds.
112 One possible structure is a factor model which is applied to this problem in the next section.
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school graduates, so they can identify the parameter “treatment on the untreated.” How-
ever, one cannot identify the distribution of high school outcomes for college graduates
(and hence treatment on the treated parameters) without imposing further structure.113

Since one can identify the marginal distributions under the conditions of Theorem 4,
one can identify pairwise average treatment effects for all s, s′.

It is interesting to contrast the model identified by Theorem 4 with a conventional sta-
tic multinomial discrete-choice model with an associated system of counterfactuals, as
presented in Appendix B of Chapter 70 and analyzed in Section 2 of this chapter. Using
standard tools, it is possible to establish semiparametric identification of the conven-
tional static model of discrete choice joined with counterfactuals and to identify all of
the standard mean counterfactuals. For that model there is a fixed set of unobservables
governing all choices of states. Thus the analyst does not acquire new unobservables
associated with each stopping time as occurs in a dynamic model. Selection effects for
Y(s) depend on the unobservables up to s but not later innovations. Selection effects
in a static discrete-choice model depend on a fixed set of unobservables for all out-
comes. With suitable normalizations, HN identify the joint distributions of choices and
associated outcomes without the difficulties, just noted, that appear in the reduced form
dynamic model. HN develop models for discrete outcomes including duration models.

3.4.1.5. Using factor models to identify joint distributions of counterfactuals From
Theorem 4 and its generalizations reported in HN, one can identify joint distributions
of outcomes for each treatment time s and the index generating treatment times. One
cannot identify the joint distributions of outcomes across treatment times. Moreover, as
just discussed, one cannot, in general, identify treatment on the treated parameters.

As reviewed in Section 2, Aakvik, Heckman and Vytlacil (2005) and Carneiro,
Hansen and Heckman (2003) show how to use factor models to identify the joint distri-
butions across treatment times and recover the standard treatment parameters. HN use
their approach to identify the joint distribution of Y = (Y (1), . . . , Y (S̄)).

The basic idea underlying this approach is to use joint distributions for outcomes
measured at each treatment time s along with the choice index to construct the joint
distribution of outcomes across treatment choices. To illustrate how to implement this
intuition, suppose that we augment Theorem 4 by appealing to Theorem 2 in Carneiro,
Hansen and Heckman (2003) or the extension of Theorem 4 proved in Appendix D to
identify the joint distribution of the vector of outcomes at each stopping time along with
I s = (I (1), . . . , I (s)) for each s. For each s, we may write

Y
(
t, s, X,U(t, s)

) = μ(t, s,X) + U(t, s), t = 1, . . . , T̄ ,

I (s) = Ψ
(
s, Z(s)

)− η(s).

113 In the schooling example, one can identify treatment on the treated for the final category S̄ since DS̄−1 =
(0) implies D(S̄) = 1. Thus at stage S̄ −1, one can identify the distribution of Y (S̄ −1) for persons for whom
D(0) = 0, . . . , D(S̄ − 1) = 0,D(S̄) = 1. Hence, if college is the terminal state, and high school the state
preceding college, one can identify the distribution of high school outcomes for college graduates.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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The scale of Ψ (s, Z(s)) is determined from the Matzkin (1994) conditions presented
in Appendix B. If we specify the Matzkin functions only up to scale, we determine the
functions up to scale and make a normalization. From Theorem 4, we can identify the
joint distribution of (η(1), . . . , η(s), U(1, s), . . . , U(T̄ , s)).

To review these concepts and their application to the model discussed in this section,
suppose that we adopt a one-factor model where θ is the factor. It has mean zero. The
errors can be represented by

η(s) = ϕsθ + εη(s),

U(t, s) = αt,sθ + εt,s , t = 1, . . . , T̄ , s = 1, . . . , S̄.

The θ are independent of all of the εη(s), εt,s and the ε’s are mutually independent
mean zero disturbances. The ϕs and αt,s are factor loadings. Since θ is an unobservable,
its scale is unknown. One can set the scale of θ by normalizing one-factor loading,
say αT̄ ,S̄ = 1. From the joint distribution of (ηs, U(s)), one can identify σ 2

θ , αt,s , ϕs ,
t = 1, . . . , T̄ , for s = 1, . . . , S̄, using the same argument as presented in Section 2.8.
A sufficient condition is T̄ � 3, but this ignores possible additional information from
cross-system restrictions. From this information, one can form for t �= t ′ or s �= s′′ or
both,

Cov
(
U(t, s), U(t ′, s′′)

) = αt,sαt ′,s′′σ 2
θ ,

even though the analyst does not observe outcomes for the same person at two dif-
ferent stopping times. In fact, one can construct the joint distribution of (U, η) =
(U(1), . . . , U(S̄), η). From this joint distribution, one can recover the standard mean
treatment effects as well as the joint distributions of the potential outcomes. One can
determine the percentage of participants at treatment time s who benefit from partic-
ipation compared to what their outcomes would be at other treatment times. One can
perform a parallel analysis for models for discrete outcomes and durations. The analy-
sis can be generalized to multiple factors in precisely the same way as described in
Section 2.8. Conventional factor analysis assumes that the unobservables are normally
distributed. Carneiro, Hansen and Heckman (2003) establish nonparametric identifia-
bility of the θ ’s and the ε’s and their analysis of nonparametric identifiability applies
here.

Theorem 4, strictly applied, actually produces only one scalar outcome along with
one or more choices for each stopping time, although the proof of the extended Theo-
rem 4 in Appendix D is for a vector-outcome model with both discrete and continuous
outcomes.114 If vector outcomes are not available, access to a measurement system M

that assumes the same values for each stopping time can substitute for the need for vec-
tor outcomes for Y . Let Mj be the j th component of this measurement system. Write

Mj = μj,M(X) + Uj,M, j = 1, . . . , J,

where Uj,M are mean zero and independent of X.

114 HN analyze the vector-outcome case.
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Suppose that the Uj,M have a one-factor structure so Uj,M = αj,Mθ + εj,M ,
j = 1, . . . , J , where the εj,M are mean zero, mutually independent random variables,
independent of the θ . Adjoining these measurements to the one outcome measure Y(s)

can substitute for the measurements of Y(t, s) used in the previous example. In an analy-
sis of schooling, the Mj can be test scores that depend on ability θ . Ability is assumed
to affect outcomes Y(s) and the choice of treatment times indices.

To extend a point made in Section 2 to the framework for dynamic treatment
effects, the factor models implement a matching on unobservables assumption,
{Y(s)}S̄s=1 ⊥⊥ S | X,Z, θ . HN allow for the θ to be unobserved variables and present
conditions under which their distributions can be identified.

3.4.1.6. Summary of the reduced form model A limitation of the reduced form ap-
proach pursued in this section is that, because the underlying model of choice is not
clearly specified, it is not possible without further structure to form, or even define, the
marginal treatment effect analyzed in Heckman and Vytlacil (1999, 2001, 2005, and
Chapters 70 and 71 in this Handbook) or Heckman, Urzua and Vytlacil (2006). The ab-
sence of well defined choice equations is problematic for the models analyzed thus far
in this section of our chapter, although it is typical of many statistical treatment effect
analyses.115 In this framework, it is not possible to distinguish objective outcomes from
subjective evaluations of outcomes, and to distinguish ex ante from ex post outcomes.
Another limitation of this analysis is its strong reliance on large support conditions on
the regressors coupled with independence assumptions. Independence can be relaxed
following Lewbel (2000) and Honoré and Lewbel (2002). The large support assumption
plays a fundamental role here and throughout the entire evaluation literature.

HN develop an explicit economic model for dynamic treatment effects that allows
analysts to make these and other distinctions. They extend the analysis presented in this
subsection to a more precisely formulated economic model. They explicitly allow for
agent updating of information sets. A well posed economic model enables economists to
evaluate policies in one environment and accurately project them to new environments
as well as to accurately forecast new policies never previously experienced. We now
turn to an analysis of a more fully articulated structural econometric model.

3.4.2. A sequential structural model with option values

This section analyzes the identifiability of a structural sequential optimal stopping time
model. HN use ingredients assembled in the previous sections to build an economi-
cally interpretable framework for analyzing dynamic treatment effects. For specificity,
Heckman and Navarro focus on a schooling model with associated earnings outcomes

115 Heckman (2005) and the analysis of Chapters 70 and 71 point out that one distinctive feature of the eco-
nomic approach to program evaluation is the use of choice theory to define parameters and evaluate alternative
estimators.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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that is motivated by the research of Keane and Wolpin (1997) and Eckstein and Wolpin
(1999). They explicitly model costs and build a dynamic version of a Roy model. We
briefly survey the literature on dynamic discrete choice in Section 3.4.5 below.

In the model of this section, it is possible to interpret the literature on dynamic treat-
ment effects within the context of an economic model; to allow for earnings while in
school as well as grade-specific tuition costs; to separately identify returns and costs;
to distinguish private evaluations from “objective” ex ante and ex post outcomes and to
identify persons at various margins of choice. In the context of medical economics, HN
consider how to identify the pain and suffering associated with a treatment as well as the
distribution of benefits from the intervention. They also model how anticipations about
potential future outcomes associated with various choices evolve over the life cycle as
sequential treatment choices are made.

In contrast to the analysis of Section 3.4.1, the identification proof for their dynamic
choice model works in reverse starting from the last period and sequentially proceeding
backward. This approach is required by the forward-looking nature of dynamic choice
analysis and makes an interesting contrast with the analysis of identification for the
reduced form models which proceeds forward from initial period values.

HN use limit set arguments to identify the parameters of outcome and measurement
systems for each stopping time s = 1, . . . , S̄, including means and joint distributions
of unobservables. These systems are identified without invoking any special assump-
tions about the structure of model unobservables. When they invoke factor structure
assumptions for the unobservables, they identify the factor loadings associated with
the measurements (as defined in Section 3.4.1) and outcomes. They also nonparamet-
rically identify the distributions of the factors and the distributions of the innovations
to the factors. With the joint distributions of outcomes and measurements in hand for
each treatment time, HN can identify cost (and preference) information from choice
equations that depend on outcomes and costs (preferences). HN can also identify joint
distributions of outcomes across stopping times. Thus they can identify the proportion
of people who benefit from treatment. Their analysis generalizes the one shot deci-
sion models of Cunha and Heckman (2007b, 2008), Cunha, Heckman and Navarro
(2005, 2006) to a sequential setting.

All agents start with one year of schooling at age 1 and then sequentially choose, at
each subsequent age, whether to continue for another year in school. New information
arrives at each age. One of the benefits of staying in school is the arrival of new infor-
mation about returns. Each year of schooling takes one year of age to complete. There is
no grade repetition. Once persons leave school, they never return.116 As a consequence,
an agent’s schooling level equals her age up to the time S � S̄ she leaves school. Af-
ter that, ageing continues up to age T̄ � S̄, but schooling does not. We again denote

116 It would be better to derive such stopping behavior as a feature of a more general model with possible re-
currence of states. Cunha, Heckman and Navarro (2007) develop general conditions under which it is optimal
to stop and never return.
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Figure 13. Evolution of grades and age.

D(s) = 1(S = s) for all s ∈ {1, . . . , S̄}. Let δ(t) = 1 if a person has left school at or
before age t ; δ(t) = 0 if a person is still in school. Figure 13 shows the evolution of age
and grades, and clarifies the notation used in this section.

A person’s earnings at age t depend on her current schooling level s and whether she
has left school on or before age t (δ(t) = 1) or not (δ(t) = 0). Thus,

(3.12)Y
(
t, s, δ(t), X

) = μ
(
t, s, δ(t), X

)+ U
(
t, s, δ(t)

)
.

Note that Y(t, s, 0, X) is only meaningfully defined if s = t , in which case it denotes
the earnings of a person as a student at age and schooling level s. More precisely,
Y(s, s, 0, X) denotes the earnings of an individual with characteristics X who is still
enrolled in school at age and schooling level s and goes on to complete at least s + 1
years of schooling. The fact that earnings in school depend only on the current schooling
level, and not on the final schooling level obtained, reflects the no-anticipation condition
(NA). U(t, s, δ(t)) is a mean zero shock that is unobserved by the econometrician but
may, or may not, be observed by the agent. Y(t, s, 1, X) is meaningfully defined only if
s � t , in which case it denotes the earnings at age t of an agent who has decided to stop
schooling at s.

The direct cost of remaining enrolled in school at age and schooling level s is

C
(
s,X,Z(s)

) = Φ
(
s,X,Z(s)

)+ W(s)

where X and Z(s) are vectors of observed characteristics (from the point of view of the
econometrician) that affect costs at schooling level s, and W(s) are mean zero shocks
that are unobserved by the econometrician that may or may not be observed by the
agent. Costs are paid in the period before schooling is undertaken. The agent is assumed
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to know the costs of making schooling decisions at each transition. The agent is also
assumed to know the X and Z = (Z(1), . . . , Z(S̄ − 1)) from age 1.117

The optimal schooling decision involves comparisons of the value of continuing in
school for another year and the value of leaving school forever at each age and schooling
level s ∈ {1, . . . , S̄ − 1}. We can solve for these values, and the optimal schooling
decision, by backward recursion.

The agent’s expected reward of stopping schooling forever at level and age s (i.e.,
receiving treatment s) is given by the expected present value of her remaining lifetime
earnings:

(3.13)R(s, Is) = E

(
T̄ −s∑
j=0

(
1

1 + r

)j

Y (s + j, s, 1, X)

∣∣∣∣ Is

)
,

where Is are the state variables generating the age-s-specific information set Is .118 They
include the schooling level attained at age s, the covariates X and Z, as well as all other
variables known to the agent and used in forecasting future variables. Assume a fixed,
nonstochastic, interest rate r .119 The continuation value at age and schooling level s

given information Is is denoted by K(s, Is).
At S̄−1, when an individual decides whether to stop or continue on to S̄, the expected

reward from remaining enrolled and continuing to S̄ (i.e., the continuation value) is the
earnings while in school less costs plus the expected discounted future return that arises
from completing S̄ years of schooling:

K(S̄ − 1, IS̄−1) = Y(S̄ − 1, S̄ − 1, 0, X) − C
(
S̄ − 1, X,Z(S̄ − 1)

)
+ 1

1 + r
E
(
R(S̄, IS̄) | IS̄−1

)
where C(S̄ − 1, X,Z(S̄ − 1)) is the direct cost of schooling for the transition to S̄. This
expression embodies the assumption that each year of school takes one year of age. IS̄−1
incorporates all of the information known to the agent.

The value of being in school just before deciding on continuation at age and schooling
level S̄ − 1 is the larger of the two expected rewards that arise from stopping at S̄ − 1
or continuing one more period to S̄:

V (S̄ − 1, IS̄−1) = max
{
R(S̄ − 1, IS̄−1),K(S̄ − 1, IS̄−1)

}
.

More generally, at age and schooling level s this value is

117 These assumptions can be relaxed and are made for convenience. See Carneiro, Hansen and Heckman
(2003), Cunha, Heckman and Navarro (2005) and Cunha and Heckman (2007b) for a discussion of selecting
variables in the agent’s information set.
118 We only consider the agent’s information set here, and drop the subscript A for notational convenience.
119 This assumption is relaxed in HN who present conditions under which r can be identified.
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V (s, Is) = max
{
R(s, Is),K(s, Is)

}
= max

{
R(s, Is),

(
Y(s, s, 0, X) − C(s,X,Z(s))

+ 1
1+r

E(V (s + 1, Is+1) | Is)

)}
.120

Following the exposition of the reduced form decision rule in Section 3.4.1, define the
decision rule in terms of a first passage of the “index” R(s, Is) − K(s, Is),

D(s) = 1
[
R(s, Is) − K(s, Is) � 0, R(s − 1, Is−1) − K(s − 1, Is−1) < 0, . . . ,

R(1, I1) − K(1, I1) < 0
]
.

An individual stops at the schooling level at the first age where this index becomes pos-
itive. From data on stopping times, one can nonparametrically identify the conditional
probability of stopping at s,

Pr(S = s | X,Z) = Pr

(
R(s, Is) − K(s, Is) � 0,

R(s − 1, Is−1) − K(s − 1, Is−1) < 0, . . . ,

R(1, I1) − K(1, I1) < 0

∣∣∣∣∣ X,Z

)
.

HN use factor structure models based on the θ introduced in Section 3.4.1 to define
the information updating structure. Agents learn about different components of θ as they
evolve through life. The HN assumptions allow for the possibility that agents may know
some or all the elements of θ at a given age t regardless of whether or not they determine
earnings at or before age t . Once known, they are not forgotten. As agents accumulate
information, they revise their forecasts of their future earnings prospects at subsequent
stages of the decision process. This affects their decision rules and subsequent choices.
Thus HN allow for learning which can affect both pre-treatment outcomes and post-
treatment outcomes.121,122 All dynamic discrete choice models make some assumptions

120 This model allows no recall and is clearly a simplification of a more general model of schooling with
option values. Instead of imposing the requirement that once a student drops out the student never returns, it
would be useful to derive this property as a feature of the economic environment and the characteristics of
individuals. Cunha, Heckman and Navarro (2007) develop such conditions. In a more general model, different
persons could drop out and return to school at different times as information sets are revised. This would create
further option value beyond the option value developed in the text that arises from the possibility that persons
who attain a given schooling level can attend the next schooling level in any future period. Implicit in this
analysis of option values is the additional assumption that persons must work at the highest level of education
for which they are trained. An alternative model allows individuals to work each period at the highest wage
across all levels of schooling that they have attained. Such a model may be too extreme because it ignores the
costs of switching jobs, especially at the higher educational levels where there may be a lot of job-specific
human capital for each schooling level. A model with these additional features is presented in Heckman,
Urzua and Yates (2007).
121 This type of learning about unobservables can be captured by HN’s reduced form model, but not by
Abbring and Van den Berg’s (2003b) single-spell mixed proportional hazards model. Their model does not
allow for time-varying unobservables. Abbring and Van den Berg develop a multiple-spell model that allows
for time-varying unobservables. Moreover, their nonparametric discussion of (NA) and randomization does
not exclude the sequential revelation to the agent of a general finite number of unobserved factors although
they do not systematically develop such a model.
122 It is fruitful to distinguish models with exogenous arrival of information (so that information arrives at
each age t independent of any actions taken by the agent) from information that arrives as a result of choices
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about the updating of information and any rigorous identification analysis of this class
of models must test among competing specifications of information updating.

Variables unknown to the agent are integrated out by the agent in forming expecta-
tions over future outcomes. Variables known to the agent are treated as constants by
the agents. They are integrated out by the econometrician to control for heterogeneity.
These are separate operations except for special cases. In general, the econometrician
knows less than what the agent knows. The econometrician seeks to identify the distri-
butions of the variables in the agent information sets that are used by the agents to form
their expectations as well as the distributions of variables known to the agent and treated
as certain quantities by the agent but not known by the econometrician. Determining
which elements belong in the agent’s information set can be done using the methods
exposited in Cunha, Heckman and Navarro (2005) and Cunha and Heckman (2007b)
who consider testing what components of X, Z, ε as well as θ are in the agent’s infor-
mation set (see Section 2). We briefly discuss this issue at the end of the next section.123

HN establish semiparametric identification of the model assuming a given information
structure. Determining the appropriate information structure facing the agent and its
evolution is an essential aspect of identifying any dynamic discrete-choice model.

Observe that agents with the same information variables It at age t have the same
expectations of future returns, and the same continuation and stopping values. They
make the same investment choices. Persons with the same ex ante reward, state and
preference variables have the same ex ante distributions of stopping times. Ex post,
stopping times may differ among agents with identical ex ante information. Controlling
for It , future realizations of stopping times do not affect past rewards. This rules out
the problem that the future can cause the past, which may happen in HN’s reduced
form model. It enforces the (NA) condition of Abbring and Van den Berg. Failure to
accurately model It produces failure of (NA).

HN establish semiparametric identification of their model without period-by-period
exclusion restrictions. Their analysis extends Theorems 3 and 4 to an explicit choice-
theoretic setting. They use limit set arguments to identify the joint distributions of
earnings (for each treatment time s across t) and any associated measurements that
do not depend on the stopping time chosen. For each stopping time, they construct the
means of earnings outcomes at each age and of the measurements and the joint distrib-
utions of the unobservables for earnings and measurements. Factor analyzing the joint
distributions of the unobservables, under conditions specified in Carneiro, Hansen and
Heckman (2003), they identify the factor loadings, and nonparametrically identify the
distributions of the factors and the independent components of the error terms in the
earnings and measurement equations. Armed with this knowledge, they use choice data

by the agent. The HN model is in the first class. The models of Miller (1984) or Pakes (1986) are in the second
class. See our discussion in Section 3.4.5.
123 The HN model of learning is clearly very barebones. Information arrives exogenously across ages. In the
factor model, all agents who advance to a stage get information about additional factors at that stage of their
life cycles but the realizations of the factors may differ across persons.
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to identify the distribution of the components of the cost functions that are not directly
observed. They construct the joint distributions of outcomes across stopping times. They
also present conditions under which the interest rate r is identified.

In their model, analysts can distinguish period by period ex ante expected returns
from ex post realizations by applying the analysis of Cunha, Heckman and Navarro
(2005). See the survey in Heckman, Lochner and Todd (2006) for a discussion of this
approach or recall our analysis in Section 2. Because they link choices to outcomes
through the factor structure assumption, they can also distinguish ex ante preference
or cost parameters from their ex post realizations. Ex ante, agents may not know some
components of θ . Ex post, they do. All of the information about future rewards and
returns is embodied in the information set It . Unless the time of treatment is known
with perfect certainty, it cannot cause outcomes prior to its realization.

The analysis of HN is predicated on specification of the agent’s information sets.
This information set should be carefully distinguished from that of the econometrician.
Cunha, Heckman and Navarro (2005) present methods for determining which compo-
nents of future outcomes are in the information sets of agents at each age, It . If there
are components unknown to the agent at age t , under rational expectations, agents form
their value functions used to make schooling choices by integrating out the unknown
components using the distributions of the variables in their information sets. Compo-
nents that are known to the agent are treated as constants by the individual in forming
the value function but as unknown variables by the econometrician and their distribution
is estimated. The true information set of the agent is determined from the set of possible
specifications of the information sets of agents by picking the specification that best fits
the data on choices and outcomes penalizing for parameter estimation. If neither the
agent nor the econometrician knows a variable, the econometrician identifies the deter-
minants of the distribution of the unknown variables that is used by the agent to form
expectations. If the agent knows some variables, but the econometrician does not, the
econometrician seeks to identify the distribution of the variables, but the agent treats the
variables as known constants.

HN can identify all of the treatment parameters including pairwise ATE, the marginal
treatment effect (MTE) for each transition (obtained by finding mean outcomes for indi-
viduals indifferent between transitions), all of the treatment on the treated and treatment
on the untreated parameters and the population distribution of treatment effects by ap-
plying the analysis of Carneiro, Hansen and Heckman (2003) and Cunha, Heckman and
Navarro (2005) to this model. Their analysis can be generalized to cover the case where
there are vectors of contemporaneous outcome measures for different stopping times.
See HN for proofs and details.124

124 The same limitations regarding independence assumptions between the regressors and errors discussed
in the analysis of reduced forms apply to the structural model.
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Figure 14. Sample distribution of schooling attainment probabilities for males from the National Longitudinal
Survey of Youth. Source: Heckman, Stixrud and Urzua (2006).

3.4.3. Identification at infinity

Heckman and Navarro (2007), and many other researchers, rely on identification at in-
finity to obtain their main identification results. As noted in Chapter 71, identification at
infinity is required to identify the average treatment effect (ATE) using IV and control
function methods and in the reduced form discrete-time models developed in the previ-
ous subsections. While this approach is controversial, it is also testable. In any sample,
one can plot the distributions of the probability of each state (exit time) to determine if
the identification conditions are satisfied in any sample. Figure 14, taken from Heckman,
Stixrud and Urzua (2006), shows such plots for a six-state static schooling model that
they estimate. To identify the marginal outcome distributions for each state, the support
of the state probabilities should be the full unit interval. The identification at infinity
condition is clearly not satisfied in their data.125 Only the empirical distribution of the
state probability of graduating from a four year college comes even close to covering
the full unit interval. Thus, their empirical results rely on parametric assumptions, and
ATE and the marginal distributions of outcomes are nonparametrically nonidentified in
their data without invoking additional structure.

125 One can always argue that they are satisfied in an infinite sample that has not yet been realized. That
statement has no empirical content.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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3.4.4. Comparing reduced form and structural models

The reduced form model analyzed in Section 3.4.1 is typical of many reduced form
statistical approaches within which it is difficult to make important conceptual distinc-
tions. Because agent choice equations are not modeled explicitly, it is hard to use such
frameworks to formally analyze the decision makers’ expectations, costs of treatment,
the arrival of information, the content of agent information sets and the consequences
of the arrival of information for decisions regarding time to treatment as well as out-
comes. Key behavioral assumptions are buried in statistical assumptions. It is difficult
to distinguish ex post from ex ante valuations of outcomes in the reduced form mod-
els. Cunha, Heckman and Navarro (2005), Carneiro, Hansen and Heckman (2003) and
Cunha and Heckman (2007b, 2008) present analyses that distinguish ex ante anticipa-
tions from ex post realizations.126 In reduced form models, it is difficult to make the
distinction between private evaluations and preferences (e.g., “costs” as defined in this
section) from objective outcomes (the Y variables).

Statistical and reduced form econometric approaches to analyzing dynamic counter-
factuals appeal to uncertainty to motivate the stochastic structure of models. They do
not explicitly characterize how agents respond to uncertainty or make treatment choices
based on the arrival of new information [see Robins (1989, 1997), Lok (2007), Gill
and Robins (2001), Abbring and Van den Berg (2003b), and Van der Laan and Robins
(2003)]. The structural approach surveyed in Section 3.4.2 and developed by HN allows
for a clear treatment of the arrival of information, agent expectations, and the effects of
new information on choice and its consequences. In an environment of imperfect cer-
tainty about the future, it rules out the possibility of the future causing the past once the
effects of agent information are controlled for.

The structural model developed by HN allows agents to learn about new factors
(components of θ ) as they proceed sequentially through their life cycles. It also allows
agents to learn about other components of the model [see Cunha, Heckman and Navarro
(2005)]. Agent anticipations of when they will stop and the consequences of alterna-
tive stopping times can be sequentially revised. Agent anticipated payoffs and stopping
times are sequentially revised as new information becomes available. The mechanism
by which agents revise their anticipations is modeled and identified. See Cunha, Heck-
man and Navarro (2005, 2006), Cunha and Heckman (2007b, 2008) and the discussion
in Section 2 for further discussion of these issues and Heckman, Lochner and Todd
(2006) for a partial survey of recent developments in the literature.

The clearest interpretation of the models in the statistical literature on dynamic treat-
ment effects is as ex post selection-corrected analyses of distributions of events that
have occurred. In a model of perfect certainty, where ex post and ex ante choices and
outcomes are identical, the reduced form approach can be interpreted as approximating
clearly specified choice models. In a more general analysis with information arrival and

126 See the summary of this literature in Heckman, Lochner and Todd (2006).



Ch. 72: Econometric Evaluation of Social Programs, Part III 5267

agent updating of information sets, the nature of the approximation is less clear cut.
Thus the current reduced form literature is unclear as to which agent decision-making
processes and information arrival assumptions justify the conditional sequential ran-
domization assumptions widely used in the dynamic treatment effect literature [see, e.g.,
Gill and Robins (2001), Lechner and Miquel (2002), Lok (2007), Robins (1989, 1997),
Van der Laan and Robins (2003)]. Section 3.2.2 provides some insight by highlight-
ing the connection to the conditional-independence assumption often employed in the
structural dynamic discrete-choice literature [see Rust (1987), and the survey in Rust
(1994)]. Reduced form approaches are not clear about the source of the unobservables
and their relationship with conditioning variables. It would be a valuable exercise to
exhibit which structural models are approximated by various reduced form models. In
the structural analysis, this specification emerges as part of the analysis, as our discus-
sion of the stochastic properties of the unobservables presented in the preceding section
makes clear.

The HN analysis of both structural and reduced form models relies heavily on limit
set arguments. They solve the selection problem in limit sets. The dynamic matching
models of Gill and Robins (2001) and Lok (2007) solve the selection problem by in-
voking recursive conditional-independence assumptions. In the context of the models of
HN, they assume that the econometrician knows the θ or can eliminate the effect of θ on
estimates of the model by conditioning on a suitable set of variables. The HN analysis
entertains the possibility that analysts know substantially less than the agents they study.
It allows for some of the variables that would make matching valid to be unobservable.
As we have noted in early subsections, versions of recursive conditional-independence
assumptions are also used in the dynamic discrete-choice literature [see the survey in
Rust (1994)]. The HN factor models allow analysts to construct the joint distribution of
outcomes across stopping times. This feature is missing from the statistical treatment
effect literature.

Both HN’s structural and reduced form models of treatment choice are stopping time
models. Neither model allows for multiple entry into and exit from treatment, even
though agents in these models would like to reverse their treatment decisions for some
realizations of their index if this was not too costly (or, in the case of the reduced form
model, if the index thresholds for returning would not be too low).127 Cunha, Heckman
and Navarro (2007) derive conditions on structural stopping models from a more basic
model that entertains the possibility of return from dropout states but which nonethe-
less exhibits the stopping time property. The HN identification strategy relies on the
nonrecurrent nature of treatment. Their identification strategy of using limit sets can be
applied to a recurrent model provided that analysts confine attention to subsets of (X,Z)

such that in those subsets the probability of recurrence is zero.

127 Recall that treatment occurs if the index turns positive. If there are costs to reversing this decision, agents
would only reverse their decision if the index falls below some negative threshold. The stopping time assump-
tion is equivalent to the assumption that the costs of reversal are prohibitively large, or that the corresponding
threshold is at the lower end of the support of the index.
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3.4.5. A short survey of dynamic discrete-choice models

Table 13 presents a brief summary of the models used to analyze dynamic discrete
choices. Rust (1994) presents a widely cited nonparametric nonidentification theorem
for dynamic discrete-choice models. It is important to note the restrictive nature of his
negative results. He analyzes a recurrent-state infinite-horizon model in a stationary
environment. He does not use any exclusion restrictions or cross outcome-choice re-
strictions. He uses a general utility function. He places no restrictions on period-specific
utility functions such as concavity or linearity nor does he specify restrictions con-
necting preferences and outcomes. One can break Rust’s nonidentification result with
additional information.

Magnac and Thesmar (2002) present an extended comment on Rust’s analysis includ-
ing positive results for identification when the econometrician knows the distributions
of unobservables, assumes that unobservables enter period-specific utility functions in
an additively separable way and is willing to specify functional forms of utility func-
tions or other ingredients of the model, as do Pakes (1986), Keane and Wolpin (1997),
Eckstein and Wolpin (1999), and Hotz and Miller (1988, 1993). Magnac and Thesmar
(2002) also consider the case where one state (choice) is absorbing [as do Hotz and
Miller (1993)] and where the value functions are known at the terminal age (T̄ ) [as do
Keane and Wolpin (1997) and Belzil and Hansen (2002)]. In HN, each treatment time is
an absorbing state. In a separate analysis, Magnac and Thesmar consider the case where
unobservables from the point of view of the econometrician are correlated over time (or
age t) and choices (s) under the assumption that the distribution of the unobservables is
known. They also consider the case where exclusion restrictions are available. Through-
out their analysis, they maintain that the distribution of the unobservables is known both
by the agent and the econometrician.

HN provide a semiparametric identification of a finite-horizon finite-state model
with an absorbing state with semiparametric specifications of reward and cost func-
tions.128 Given that rewards are in value units, the scale of their utility function is fixed.
Choices are not invariant to arbitrary affine transformations so that one source of non-
identifiability in Rust’s analysis is eliminated. They can identify the error distributions
nonparametrically given their factor structure. They do not have to assume either the
functional form of the unobservables or knowledge of the entire distribution of unob-
servables.

HN present a fully specified structural model of choices and outcomes motivated by,
but not identical to, the analyses of Keane and Wolpin (1994, 1997) and Eckstein and
Wolpin (1999). In their setups, outcome and cost functions are parametrically specified.
Their states are recurrent while those of HN are absorbing. In their model, once an
agent drops out of school, the agent does not return. In the Keane–Wolpin model, an

128 Although their main theorems are for additively separable reward and cost functions, it appears that
additive separability can be relaxed using the analysis of Matzkin (2003).
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Table 13
Comparisons among papers in the literature on dynamic discrete-choice models

Use outcomes

along with discrete

choices?

Finite or

infinite

horizon

Recurrent

states

Stationary

environment

Temporal correlation

of unobserved shocks

Information updating Nonparametric

or parametric

identification

Terminal

value

assumed

to be

known

Cross-

equation

restrictions?1

Flinn and Heckman

(1982)

Yes (wages) Infinite Yes Yes Temporal independence

given heterogeneity

Arrival of independent

shocks

Nonparametric No Yes

Miller (1984) Yes (wages) Infinite Yes Yes Bayesian normal

learning induces

dependence

Bayesian learning, arrival

of independent shocks

Parametric No Yes

Pakes (1986) No (use cost

data to identify

discrete choice)

Finite No No AR-1 dependence on

unobservables

Arrival of independent

shocks

Parametric2 Yes No

Wolpin (1984) No Finite Yes No Temporal independence Temporal independence Parametric Yes No

Wolpin (1987) Yes Finite No No Independent shocks Arrival of independent

shocks

Parametric No Yes

Wolpin (1992) Yes (wages) Finite Yes No Renewal process for

shocks; job-specific

shocks independent

across jobs

Arrival of independent

shocks (from new jobs)

Parametric Yes Yes

Rust (1987) Yes3 Infinite Yes Yes Shocks conditionally

independent given state

variables

Arrival of independent

shocks

Parametric No No

Hotz and Miller (1993) No Infinite Yes Yes Shocks conditionally

independent given state

variables

Synthetic cohort

assumption

Parametric Yes No

(continued on next page)
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Table 13
(continued)

Use outcomes

along with discrete

choices?

Finite or

infinite

horizon

Recurrent

states

Stationary

environment

Temporal correlation

of unobserved shocks

Information updating Nonparametric

or parametric

identification

Terminal

value

assumed

to be

known

Cross-

equation

restrictions?1

Manski (1993) No Infinite Yes Yes Shocks conditionally

independent given state

variables

Synthetic cohort

assumption

Nonparametric No No

Keane and Wolpin

(1997)

Yes Finite Yes No Shocks temporally

independent given initial

condition

Shocks temporally

independent

Parametric Yes Yes

Taber (2000) No Finite

(2 periods)

No No General dependence General dependence Nonparametric No No

Magnac and Thesmar

(2002)

Yes3 Both finite

and infinite

Yes Yes Conditional

independence given

state variables in main

case

Conditional dependence Conditional

nonparametric

No No

Heckman and Navarro

(2007)

Yes Finite No No General dependence

(updating)

Serially correlated

updating of states

Nonparametric No Yes

1Cross equation means restrictions used between outcome and choice equations.
2Pakes and Simpson (1989) sketch a nonparametric proof of this model.
3There is an associated state vector equation which can be interpreted as an outcome equation.
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agent who drops out can return. Keane and Wolpin do not establish identification of their
model whereas HN establish semiparametric identification of their model. They analyze
models with more general times series processes for unobservables. In both the HN and
Keane–Wolpin frameworks, agents learn about unobservables. In the Keane–Wolpin
framework, such learning is about temporally independent shocks that do not affect
agent expectations about returns relevant to possible future choices. The information
just affects the opportunity costs of current choices. In the HN framework, learning
affects agent expectations about future returns as well as opportunity costs.

The HN model extends previous work by Carneiro, Hansen and Heckman (2003)
and Cunha and Heckman (2007b, 2008), Cunha, Heckman and Navarro (2006, 2005)
by considering explicit multiperiod dynamic models with information updating. They
consider one-shot decision models with information updating and associated outcomes.

Their analysis is related to that of Taber (2000). Like Cameron and Heckman (1998),
both HN and Taber use identification-in-the-limit arguments.129 Taber considers identi-
fication of a two period model with a general utility function whereas in Section 3.4.2,
we discuss how HN consider identification of a specific form of the utility function (an
earnings function) for a multiperiod maximization problem. As in HN, Taber allows for
the sequential arrival of information. His analysis is based on conventional exclusion
restrictions, but the analysis of HN is not. They use outcome data in conjunction with
the discrete dynamic choice data to exploit cross-equation restrictions, whereas Taber
does not.

The HN treatment of serially correlated unobservables is more general than any dis-
cussion that appears in the current dynamic discrete choice and dynamic treatment
effect literature. They do not invoke the strong sequential conditional-independence as-
sumptions used in the dynamic treatment effect literature in statistics [Gill and Robins
(2001), Lechner and Miquel (2002), Lok (2007), Robins (1989, 1997)], nor the closely
related conditional temporal independence of unobserved state variables given observed
state variables invoked by Rust (1987), Hotz and Miller (1988, 1993), Manski (1993)
and Magnac and Thesmar (2002) (in the first part of their paper) or the independence
assumptions invoked by Wolpin (1984).130 HN allow for more general time series de-
pendence in the unobservables than is entertained by Pakes (1986), Keane and Wolpin
(1997) or Eckstein and Wolpin (1999).131

129 Pakes and Simpson (1989) sketch a proof of identification of a model of the option values of patents that
is based on limit sets for an option model.
130 Manski (1993) and Hotz and Miller (1993) use a synthetic cohort effect approach that assumes that young
agents will follow the transitions of contemporaneous older agents in making their life cycle decisions. The
synthetic cohort approach has been widely used in labor economics at least since Mincer (1974). Manski and
Hotz and Miller exclude any temporally dependent unobservables from their models. See Ghez and Becker
(1975), MaCurdy (1981) and Mincer (1974) for applications of the synthetic cohort approach. For empirical
evidence against the assumption that the earnings of older workers are a reliable guide to the earnings of
younger workers in models of earnings and schooling choices for recent cohorts of workers, see Heckman,
Lochner and Todd (2006).
131 Rust (1994) provides a clear statement of the stochastic assumptions underlying the dynamic discrete-
choice literature up to the date of his survey.
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Like Miller (1984) and Pakes (1986), HN explicitly model, identify and estimate
agent learning that affects expected future returns.132 Pakes and Miller assume func-
tional forms for the distributions of the error process and for the serial correlation
pattern about information updating and time series dependence. The HN analysis of
the unobservables is nonparametric and they estimate, rather than impose, the stochas-
tic structure of the information updating process.

Virtually all papers in the literature, including the HN analysis, invoke rational ex-
pectations. An exception is the analysis of Manski (1993) who replaces rational expec-
tations with a synthetic cohort assumption that choices and outcomes of one group can
be observed (and acted on) by a younger group. This assumption is more plausible in
stationary environments and excludes any temporal dependence in unobservables. In
recent work, Manski (2004) advocates use of elicited expectations as an alternative to
the synthetic cohort approach.

While HN use rational expectations, they estimate, rather than impose the structure
of agent information sets. Miller (1984), Pakes (1986), Keane and Wolpin (1997), and
Eckstein and Wolpin (1999) assume that they know the law governing the evolution of
agent information up to unknown parameters.133 Following the procedure presented in
Cunha and Heckman (2007b, 2008), Cunha, Heckman and Navarro (2005, 2006) and
Navarro (2005), HN can test for which factors (θ ) appear in agent information sets at
different stages of the life cycle and they identify the distributions of the unobservables
nonparametrically.

The HN analysis of dynamic treatment effects is comparable, in some aspects, to the
recent continuous-time event-history approach of Abbring and Van den Berg (2003b)
previously analyzed. Those authors build a continuous time model of counterfactu-
als for outcomes that are durations. They model treatment assignment times using a
continuous-time duration model.

The HN analysis is in discrete time and builds on previous work by Heckman
(1981a, 1981c) on heterogeneity and state dependence that identifies the causal effect
of employment (or unemployment) on future employment (or unemployment).134 They
model time to treatment and associated vectors of outcome equations that may be dis-
crete, continuous or mixed discrete-continuous. In a discrete-time setting, they are able
to generate a variety of distributions of counterfactuals and economically motivated pa-
rameters. They allow for heterogeneity in responses to treatment that has a general time
series structure.

As noted in Section 3.4.4, Abbring and Van den Berg (2003b) do not identify ex-
plicit agent information sets as HN do in their paper and as is done in Cunha, Heckman

132 As previously noted, the previous literature assumes learning only about current costs.
133 They specify a priori particular processes of information arrival as well as which components of the
unobservables agents know and act on, and which components they do not.
134 Heckman and Borjas (1980) investigate these issues in a continuous-time duration model. See also
Heckman and MaCurdy (1980).
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and Navarro (2005), and they do not model learning about future rewards. Their out-
comes are restricted to be continuous-time durations. The HN framework is formulated
in discrete time, which facilitates the specification of richer unobserved and observed
covariate processes than those entertained in the continuous-time framework of Abbring
and Van den Berg (2003b). It is straightforward to attach a vector of treatment outcomes
in the HN model that includes continuous outcomes, discrete outcomes and durations
expressed as binary strings.135 At a practical level, the approach often can produce
very fine-grained descriptions of continuous-time phenomena by using models with
many finite periods. Clearly a synthesis of the event-history approach with the HN ap-
proach would be highly desirable. That would entail taking continuous-time limits of
the discrete-time models. It is a task that awaits completion.

Flinn and Heckman (1982) utilize information on stopping times and associated
wages to derive cross-equation restrictions to partially identify an equilibrium job search
model for a stationary economic environment where agents have an infinite horizon.
They establish that the model is nonparametrically nonidentified. Their analysis shows
that use of outcome data in conjunction with data on stopping times is not sufficient
to secure nonparametric identification of a dynamic discrete-choice model, even when
the reward function is linear in outcomes unlike the reward functions in Rust (1987)
and Magnac and Thesmar (2002). Parametric restrictions can break their nonidenti-
fication result. Abbring and Campbell (2005) exploit such restrictions, together with
cross-equation restrictions on stopping times and noisy outcome measures, to prove
identification of an infinite-horizon model of firm survival and growth with entrepre-
neurial learning. Alternatively, nonstationarity arising from finite horizons can break
their nonidentification result [see Wolpin (1987)]. The HN analysis exploits the finite-
horizon backward-induction structure of our model in conjunction with outcome data to
secure identification and does not rely on arbitrary period by period exclusion restric-
tions. They substantially depart from the assumptions maintained in Rust’s nonidentifi-
cation theorem (1994). They achieve identification by using cross-equation restrictions,
linearity of preferences and additional measurements, and exploiting the structure of
their finite-horizon nonrecurrent model. Nonstationarity of regressors greatly facilitates
identification by producing both exclusion and curvature restrictions which can substi-
tute for standard exclusion restrictions.

3.5. Summary of the state of the art in analyzing dynamic treatment effects

This section has surveyed new methods for analyzing the dynamic effects of treat-
ment. We have compared and contrasted the statistical dynamic treatment approach
based on sequential conditional-independence assumptions that generalize matching to
a dynamic panel setting to approaches developed in econometrics. We compared and

135 Abbring (2008) considers nonparametric identification of mixed semi-Markov event-history models that
extends his work with Van den Berg. See Section 3.3.
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contrasted a continuous-time event-history approach developed by Abbring and Van
den Berg (2003b) to discrete time reduced form and structural models developed by
Heckman and Navarro (2007), and Cunha, Heckman and Navarro (2005).

4. Accounting for general equilibrium, social interactions, and spillover effects

The treatment-control paradigm motivates the modern treatment effect literature. Out-
comes of persons who are “treated” are compared to outcomes of those who are not.
The “untreated” are assumed to be completely unaffected by who else gets treatment.
This assumption is embodied in invariance assumptions (PI-2) and (PI-4) in Chapter 70.
In the “Rubin” model, (PI-2) is one component of his “SUTVA” assumption.136

In any social setting, this assumption is very strong, and many economists have built
models to account for various versions of social interactions and their consequences
for policy evaluation. The literature on general equilibrium policy analysis is vast and
the details of particular approaches are difficult to synthesize in a concise way. In this
section, we make a few general points and offer some examples where accounting for
general equilibrium effects has substantial consequences for the evaluation of public
policy. Note that there are also cases where accounting for general equilibrium has
little effect on policy evaluations. One cannot say that a full-fledged empirical general
equilibrium analysis is an essential component of every evaluation. However, ignoring
general equilibrium and social interactions can be perilous.

It is fruitful to distinguish interactions of agents through market mechanisms, cap-
tured by the literature on general equilibrium analysis, from social interactions. Social
interactions are a type of direct externality in which the actions of one agent directly
affect the actions (preferences, constraints, technology) of other agents.137 The for-
mer type of interaction is captured by general equilibrium models. The second type
of interaction is captured in the recent social interactions literature. Within the class of
equilibrium models where agents interact through markets, there is a full spectrum of
possible interactions from partial equilibrium models where agent interactions in some
markets are modeled, to full fledged general equilibrium models where all interactions
are modeled.

The social interactions literature is explicitly microeconomic in character, since it
focuses on the effects of individuals (or groups) on other individuals. The traditional
general equilibrium literature is macroeconomic in its focus and deals with aggregates.
A more recent version moves beyond the representative consumer paradigm and con-
siders heterogeneity and the impact of policy on individuals. We first turn to versions of
the empirical general equilibrium literature.

136 Recall the discussion in Chapter 70, Section 4.4.
137 This distinction is captured in neoclassical general equilibrium models by the contrast between pecuniary
and nonpecuniary externalities.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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4.1. General equilibrium policy evaluation

There is a large literature on empirical general equilibrium models applied to trade, pub-
lic finance, finance, macroeconomics, energy policy, industrial organization, and labor
economics. The essays in Kehoe, Srinivasan and Whalley (2005) present a rich collec-
tion of empirical general equilibrium models and references to a large body of related
work. Much of the traditional general equilibrium analysis analyzes representative mod-
els using aggregate data.

Lewis (1963) is an early study of the partial equilibrium spillover effects of unionism
on the wages of nonunion workers.138 Leading examples of empirical general equilib-
rium studies based on the representative consumer paradigm are Auerbach and Kotlikoff
(1987), Hansen and Sargent (1980), Huggett (1993), Jorgenson and Slesnick (1997),
Jorgenson and Yun (1990), Kehoe, Srinivasan and Whalley (2005), Krusell and Smith
(1998), Kydland and Prescott (1982), Shoven and Whalley (1977). There are many
other important studies and this list is intended to be illustrative, and not exhaustive.
Jorgenson and Slesnick (1997) give precise conditions for aggregation of microdata
into macro aggregates that can be used to identify clearly defined economic parameters
and policy criteria.

These models provide specific frameworks for analyzing policy interventions. Their
specificity is a source of controversy because so many components of the social system
need to be accounted for, and so often there is little professional consensus on these
components and their empirical importance. Being explicit has its virtues and stimulates
research promoting improved understanding of mechanisms and parameters. However,
rhetorically, this clarity can be counterproductive. By sweeping implicit assumptions
under the rug, the treatment effect literature appears to some to offer a universality and
generality that is absent from the general equilibrium approach, in which mechanisms
of causation and agent interaction are more clearly specified.

There is a large and often controversial literature about the sources of parameter
estimates for the representative agent models. The “calibration vs. estimation debate”
concerns the best way to secure parameters for these models [see Kydland and Prescott
(1996), Hansen and Heckman (1996), and Sims (1996)]. Dawkins, Srinivasan and Whal-
ley (2001) present a useful guide to this literature. Browning, Hansen and Heckman
(1999) discuss the sources of the estimates for a variety of prototypical general equi-
librium frameworks. In this section, we discuss the smaller body of literature that links
general equilibrium models to microdata to evaluate public policy.

4.2. General equilibrium approaches based on microdata

A recent example of general equilibrium analysis applied to policy problems is the study
of Heckman, Lochner and Taber (1998a, 1998b, 1998c), who consider the evaluation of

138 He does not consider the effect of unionism on product prices or other factor markets besides the labor
market.
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tuition subsidy programs in a general equilibrium model of human capital accumu-
lation with both schooling and on the job training, and with heterogeneous skills in
which prices are flexible. We first discuss their model and then turn to other frame-
works. Their model is an overlapping generations empirical general equilibrium model
with heterogeneous agents across and within generations which generalizes the analy-
sis of Auerbach and Kotlikoff (1987) by introducing human capital and by synthesizing
micro- and macrodata analysis.

The standard microeconomic evaluation of tuition policy on schooling choices es-
timates the response of college enrollment to tuition variation using geographically
dispersed cross-sections of individuals facing different tuition rates. These estimates
are then used to determine how subsidies to tuition will raise college enrollment. The
impact of tuition policies on earnings are evaluated using a schooling–earnings rela-
tionship fit on pre-intervention data and do not account for the enrollment effects of the
taxes raised to finance the tuition subsidy. Kane (1994), Dynarski (2000), and Cameron
and Heckman (1998, 2001) exemplify this approach. This approach is neither partial
equilibrium or general equilibrium in character. It entirely ignores market interactions.

The danger in this widely used practice is that what is true for policies affecting a
small number of individuals, as studied by social experiments or as studied in the mi-
croeconomic “treatment effect” literature, may not be true for policies that affect the
economy at large. A national tuition-reduction policy may stimulate substantial col-
lege enrollment and will also likely reduce skill prices. However, agents who account
for these changes will not enroll in school at the levels calculated from conventional
procedures which ignore the impact of the induced enrollment on skill prices. As a re-
sult, standard policy evaluation practices are likely to be misleading about the effects
of tuition policy on schooling attainment and wage inequality. The empirical ques-
tion is to determine the extent to which this is true. Heckman, Lochner and Taber
(1998a, 1998b, 1998c) show that conventional practices in the educational evaluation
literature lead to estimates of enrollment responses that are ten times larger than the
long-run general equilibrium effects, which account for the effect of policy on all factor
markets. They improve on current practice in the “treatment effects” literature by con-
sidering both the gross benefits of the program and the tax costs of financing the policy
as borne by different groups.

Evaluating the general equilibrium effects of a national tuition policy requires more
information than the tuition-enrollment parameter that is the centerpiece of the micro
policy analyses, which ignore any equilibrium effects. Policy proposals of all sorts
typically extrapolate well outside the range of known experience and ignore the ef-
fects of induced changes in skill quantities on skill prices. To improve on current
practice, Heckman, Lochner and Taber (1998a) use microdata to identify an empiri-
cally estimated rational expectations, perfect foresight overlapping-generations general
equilibrium framework for the pricing of heterogeneous skills and the adjustment of
capital. It is based on an empirically grounded theory of the supply of schooling and
post-school human capital, where different schooling levels represent different skills.
Individuals differ in their learning ability and in initial endowments of human capital.
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Household saving behavior generates the aggregate capital stock, and output is produced
by combining the stocks of different types of human capital with physical capital. Fac-
tor markets are competitive, and it is assumed that wages are set in flexible, competitive
markets. Their model explains the pattern of rising wage inequality experienced in the
United States in the past 30 years. They apply their framework to evaluate tuition poli-
cies that attempt to increase college enrollment.

They present two reasons why the “treatment effect” framework that ignores the gen-
eral equilibrium effects of tuition policy is inadequate. First, the conventional treatment
parameters depend on who in the economy is “treated” and who is not. Second, these
parameters do not measure the full impact of the program. For example, increasing tu-
ition subsidies may increase the earnings of uneducated individuals who do not take
advantage of the subsidy. They become more scarce after the policy is implemented.
The highly educated are taxed to pay for the subsidy, and depending on how taxes
are collected this may affect their investment behavior. In addition, more competitors
for educated workers enter the market as a result of the policy, and their earnings are
depressed. Conventional methods ignore the effect of the policy on nonparticipants op-
erating through changes in equilibrium skill prices and on taxes. In order to account for
these effects, it is necessary to conduct a general equilibrium analysis.

The analysis of Heckman, Lochner and Taber (1998a, 1998b, 1998c) has important
implications for the widely-used difference-in-differences estimator. If the tuition sub-
sidy changes the aggregate skill prices, the decisions of nonparticipants will be affected.
The “no treatment” benchmark group is affected by the policy and the difference-in-
differences estimator does not identify the effect of the policy for anyone compared to
a no treatment state.

Using their estimated model, Heckman, Lochner and Taber (1998c) simulate the ef-
fects of a revenue-neutral $500 increase in college tuition subsidy on top of existing
programs that is financed by a proportional tax, on enrollment in college and wage in-
equality. They start from a baseline economy that describes the US in the mid-1980s
and that produces wage growth profiles and schooling enrollment and capital stock data
that match micro- and macroevidence. The microeconomic treatment effect literature
predicts an increase in college attendance of 5.3 percent. This analysis holds college
and high school wage rates fixed. This is the standard approach in the microeconomic
“treatment effect” literature.

When the policy is evaluated in a general equilibrium setting, the estimated effect
falls to 0.46 percent. Because the college–high school wage ratio falls as more indi-
viduals attend college, the returns to college are less than when the wage ratio is held
fixed. Rational agents understand this effect of the tuition policy on skill prices and ad-
just their college-going behavior accordingly. Policy analysis of the type offered in the
“treatment effect” literature ignores equilibrium price adjustment and the responses of
rational agents to the policies being evaluated. Their analysis shows substantial attenu-
ation of the effects of tuition policy on capital and on the stocks of the different skills
in their model compared to a treatment effect model. They show that their results are
robust to a variety of specifications of the economic model.
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Table 14
Simulated effects of $5000 tuition subsidy on different groups. Steady state changes in present value of

lifetime wealth (in thousands of US dollars)

Group (proportion)1 After-tax
earnings using
base tax

After-tax
earnings

After-tax
earnings net of
tuition

Utility2

(1) (2) (3) (4)

High School–High School (0.528) 9.512 −0.024 −0.024 −0.024
High School–College (0.025) −4.231 −13.446 1.529 1.411
College–High School (0.003) −46.711 57.139 −53.019 −0.879
College–College (0.444) −7.654 −18.204 0.420 0.420

1The groups correspond to each possible counterfactual. For example, the “High School–High School” group
consists of individuals who would not attend college in either steady state, and the “High School–College”
group would not attend college in the first steady state, but would in the second, etc.
2Column (1) reports the after-tax present value of earnings in thousands of 1995 US dollars discounted using
the after-tax interest rate where the tax rate used for the second steady state is the base tax rate. Column (2)
adds the effect of taxes, column (3) adds the effect of tuition subsidies and column (4) includes the nonpecu-
niary costs of college in dollar terms.
Source: Heckman, Lochner and Taber (1998b).

They also analyze short run effects. When they simulate the model with rational ex-
pectations, the short-run college enrollment effects in response to the tuition policy
are also very small, as agents anticipate the effects of the policy on skill prices and
calculate that there is little gain from attending college at higher rates. Under myopic
expectations, the short-run enrollment effects are much closer to the estimated treat-
ment effects. With learning on the part of agents, but not perfect foresight, there is still a
substantial gap between treatment and general equilibrium estimates. The sensitivity of
policy estimates to model specification is a source of concern and a stimulus to research.
The treatment effect literature ignores these issues.

Heckman, Lochner and Taber (1998a, 1998b, 1998c) also consider the impact of a
policy change on discounted earnings and utility and decompose the total effects into
benefits and costs, including tax costs for each group. Table 14 compares outcomes in
two steady states: (a) the benchmark steady state and (b) the steady state associated with
the new tuition policy.139 The row “High School–High School” reports the change in
a variety of outcome measures for those persons who would be in high school under
either the benchmark or new policy regime; the “High School–College” row reports the
change in the same measures for high school students in the benchmark state who are
induced to attend college by the new policy; the “College–High School” outcomes refer

139 Given that the estimated schooling response to a $500 subsidy is small, Heckman, Lochner and Taber
instead use a $5000 subsidy for the purpose of exploring general equilibrium effects on earnings. Current
college tuition subsidy levels are this high or higher at many colleges in the US.
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to those persons in college in the benchmark economy who only attend high school
after the policy; and so forth. Because agents choose sectors, there is spillover from one
sector to another.

By the measure of the present value of earnings, some of those induced to change
are worse off. Contrary to the monotonicity assumption built into the LATE parameter
discussed in Chapters 70 and 71, and defined in this context as the effect of the tuition
subsidy on the earnings of those induced by it to go to college, Heckman, Lochner and
Taber find that the tuition policy produces a two-way flow. Some people who would
have attended college in the benchmark regime no longer do so. The rest of society is
also affected by the policy—again, contrary to the implicit assumption built into LATE
that only those who change status are affected by the policy. People who would have
gone to college without the policy and continue to do so after the policy are financially
worse off for two reasons: (a) the price of their skill is depressed and (b) they must pay
higher taxes to finance the policy. However, they now receive a tuition subsidy and for
this reason, on net, they are better off both financially and in terms of utility. Those
who abstain from attending college in both steady states are worse off. They pay higher
taxes, and do not get the benefits of a college education. Those induced to attend college
by the policy are better off in terms of utility. Note that neither category of non-changers
is a natural benchmark for a difference-in-differences estimator. The movement in their
wages before and after the policy is due to the policy and cannot be attributed to a
benchmark “trend” that is independent of the policy.

Table 15 presents the impact of a $5000 tuition policy on the log earnings of indi-
viduals with ten years of work experience for different definitions of treatment effects.
The treatment effect version given in the first column holds skill prices constant at ini-
tial steady state values. The general equilibrium version given in the second column
allows prices to adjust when college enrollment varies. Consider four parameters ini-
tially defined in a partial equilibrium context. The average treatment effect is defined
for a randomly selected person in the population in the benchmark economy and asks
how that person would gain in wages by moving from high school to college. The pa-
rameter treatment on the treated is defined as the average gain over their non-college
alternative of those who attend college in the benchmark state. The parameter treat-
ment on the untreated is defined as the average gain over their college wage received
by individuals who did not attend college in the benchmark state. The marginal treat-
ment effect is defined for individuals who are indifferent between going to college or
not. This parameter is a limit version of the LATE parameter under the assumptions
presented in Chapter 71. Column (2) presents the general equilibrium version of treat-
ment on the treated. It compares the earnings of college graduates in the benchmark
economy with what they would earn if no one went to college.140 The treatment on the

140 In the empirical general equilibrium model of Heckman, Lochner and Taber (1998a, 1998b, 1998c), the
Inada conditions for college and high school are not satisfied for the aggregate production function and the
marginal product of each skill group when none of it is utilized is a bounded number. If the Inada conditions
were satisfied, this counterfactual and the counterfactual treatment on the untreated would not be defined.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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Table 15
Treatment effect parameters: treatment effect and general equilibrium difference in log earnings, college grad-

uates vs. high school graduates at 10 years of work experience

Parameter Prices fixed1 Prices vary2 Fraction of sample3

(1) (2) (3)

Average treatment effect (ATE) 0.281 1.801 100%
Treatment on treated (TT) 0.294 3.364 44.7%
Treatment on untreated (TUT) 0.270 −1.225 55.3%
Marginal treatment effect (MTE) 0.259 0.259 –
LATE4 $5000 subsidy:

Partial equilibrium 0.255 – 23.6%
GE (H.S. to College) (LATE) 0.253 0.227 2.48%
GE (College to H.S.) (LATER) 0.393 0.365 0.34%
GE net (TLATE) – 0.244 2.82%

LATE4 $500 subsidy:
Partial equilibrium 0.254 – 2.37%
GE (H.S. to College) (LATE) 0.250 0.247 0.24%
GE (College to H.S.) (LATER) 0.393 0.390 0.03%
GE net (TLATE) – 0.264 0.27%

1In column (1), prices are held constant at their initial steady state levels when wage differences are calculated.
2In column (2), we allow prices to adjust in response to the change in schooling proportions when calculating
wage differences.
3For each row, column (3) presents the fraction of the sample over which the parameter is defined.
4The LATE group gives the effect on earnings for persons who would be induced to attend college by a tuition
change. In the case of GE, LATE measures the effect on individuals induced to attend college when skill prices
adjust in response to quantity movements among skill groups. The treatment effect LATE measures the effect
of the policy on those induced to attend college when skill prices are held at the benchmark level.
Source: Heckman, Lochner and Taber (1998b).

untreated parameter is defined analogously by comparing what high school graduates
in the benchmark economy would earn if everyone in the population were forced to go
to college. The average treatment effect compares the average earnings in a world in
which everyone attends college versus the earnings in a world in which nobody attends
college. Such dramatic policy shifts produce large estimated effects. In contrast, the
general equilibrium marginal treatment effect parameter considers the gain to attending
college for people on the margin of indifference between attending college and only
attending high school. In this case, as long as the mass of people in the indifference set
is negligible, the standard treatment effect and general equilibrium parameters are the
same.

The final set of parameters considered by Heckman, Lochner and Taber (1998b) are
versions of the LATE parameter. This parameter depends on the particular intervention
being studied and its magnitude. The standard version of LATE is defined on the out-
comes of individuals induced to attend college, assuming that skill prices do not change.
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The general equilibrium version is defined for the individuals induced to attend college
when prices adjust in response to the policy. In this general equilibrium model, the two
LATE parameters are quite close to each other and are also close to the marginal treat-
ment effect.141 General equilibrium effects change the group over which the parameter
is defined compared to the standard treatment effect case. For a $5000 subsidy, there are
substantial price effects and the standard treatment effect parameter differs substantially
from the general equilibrium version.

Heckman, Lochner and Taber (1998a, 1998b, 1998c) also present standard treat-
ment effect and general equilibrium estimates for two extensions of the LATE concept:
LATER (the effect of the policy on those induced to attend only high school rather than
go to college)—Reverse LATE—and TLATE (the effect of the policy on all of those in-
duced to change whichever direction they flow). LATER is larger than LATE, indicating
that those induced to drop out of college have larger gains from dropping out than those
induced to enter college have from entering. TLATE is a weighted average of LATE
and LATER with weights given by the relative proportion of people who switch in each
direction.

The general equilibrium impacts of tuition on college enrollment are an order of
magnitude smaller than those reported in the literature on microeconometric treatment
effects. The assumptions used to justify the LATE parameter in a microeconomic set-
ting do not carry over to a general equilibrium framework. Policy changes, in general,
induce two-way flows and violate the monotonicity—or one-way flow—assumption of
LATE. Heckman, Lochner and Taber (1998b) extend the LATE concept to allow for
the two-way flows induced by the policies. They present a more comprehensive ap-
proach to program evaluation by considering both the tax and benefit consequences of
the program being evaluated and placing the analysis in a market setting. Their analysis
demonstrates the possibilities of the general equilibrium approach and the limitations
of the microeconomic “treatment effect” approach to policy evaluation.

4.2.1. Subsequent research

Subsequent research by Blundell et al. (2004), Duflo (2004), Lee (2005), and Lee and
Wolpin (2006) estimate—or estimate and calibrate—general equilibrium models for the
effects of policies on labor markets. Lee (2005) assumes that occupational groups are
perfect substitutes and that people can costlessly switch between skill categories. These
assumptions neutralize any general equilibrium effects. They are relaxed and shown to
be inconsistent with data from US labor markets in Lee and Wolpin (2006).

Lee and Wolpin (2006) assume adaptive expectations rather than rational expec-
tations. Heckman, Lochner and Taber (1998a) establish the sensitivity of the policy
evaluations to specifications of expectations. Duflo (2004) demonstrates the importance

141 The latter is a consequence of the discrete-choice framework for schooling choices analyzed in the
Heckman, Lochner and Taber (1998b) model. See Chapter 71.

http://dx.doi.org/10.1016/S1573-4412(07)06071-0
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of general equilibrium effects on wages for the evaluation of a large scale schooling
program in Indonesia. However, accounting for general equilibrium does not affect her
estimates of the rate of return of schooling.

4.2.2. Equilibrium search approaches

Equilibrium search models are another framework for studying market level interac-
tions among agents. Search theory as developed by Mortensen and Pissarides (1994)
and Pissarides (2000) has begun to be tested on microdata [see Van den Berg (1999)]. It
accounts for direct and indirect effects without imposing full equilibrium price adjust-
ment. Some versions of search theory allow for wage flexibility through a bargaining
mechanism while other approaches assume rigid wages. Search theory produces an ex-
plicit theory of unemployment. Davidson and Woodbury (1993) consider direct and
indirect effects of a bonus scheme to encourage unemployed workers to find jobs more
quickly using a Mortensen–Pissarides (1994) search model in which prices are fixed.
Their model is one of displacement with fixed prices.

More recent studies of equilibrium search models in which wages are set through
bargaining that have been used for policy analysis include papers by Lise, Seitz and
Smith (2005a, 2005b) and Albrecht, Van den Berg and Vroman (2005). Lise, Seitz and
Smith (2005a) present a careful synthesis of experimental and nonexperimental data
combining estimation and calibration. They provide evidence on labor-market feedback
effects associated with job subsidy schemes. In their analysis, accounting for general
equilibrium feedback reverses the cost–benefit evaluations of a job subsidy program in
Canada. Albrecht, Van den Berg and Vroman (2005) demonstrate important equilibrium
effects of an adult education program on employment and job vacancies, showing a skill
bias of the programs.

4.3. Analyses of displacement

Newly trained workers from a job training program may displace previously trained
workers if wages are inflexible, as they are in many European countries. For some
training programs in Europe, substantial displacement effects have been estimated
[Organization for Economic Cooperation and Development (1993), Calmfors (1994)].
If wages are flexible, the arrival of new trained workers to the market tends to lower the
wages of previously trained workers but does not displace any worker.

Even if the effect of treatment on the treated is positive, nonparticipants may be worse
off as a result of the program compared to what they would have experienced in a no
program state. Nonparticipants who are good substitutes for the new trainees are es-
pecially adversely affected. Complementary factors benefit. These spillover effects can
have important consequences for the interpretation of traditional evaluation parameters.
The benchmark “no treatment” state is affected by the program and invariance assump-
tion (PI-2) presented in Chapter 70 is violated.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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To demonstrate these possibilities in a dramatic way, consider the effect of a wage
subsidy for employment in a labor market for low-skill workers. Assume that firms act
to minimize their costs of employment. Wage subsidies operate by taking nonemployed
persons and subsidizing their employment at firms. Firms who employ the workers re-
ceive the wage subsidy.

Many active labor-market policies have a substantial wage-subsidy component. Sup-
pose that the reason for nonemployment of low-skill workers is that minimum wages are
set too high. This is the traditional justification for wage subsidies.142 If the number of
subsidized workers is less than the number of workers employed at the minimum wage,
a wage subsidy financed from lump sum taxes has no effect on total employment in the
low wage sector because the price of labor for the marginal worker hired by firms is
the minimum wage. It is the same before and after the subsidy program is put in place.
Thus the marginal worker is unsubsidized both before and after the subsidy program is
put in place.

The effects of the program are dramatic on the individuals who participate in it. Per-
sons previously nonemployed become employed as firms seek workers who carry a
wage subsidy. Many previously-employed workers become nonemployed as their em-
ployment is not subsidized. There are no effects of the wage subsidy program on GDP
unless the taxes raised to finance the program have real effects on output. Yet there is
substantial redistribution of employment. Focusing solely on the effects of the program
on subsidized workers greatly overstates its beneficial impact on the economy at large.

In order to estimate the impact of the program on the overall economy, it is neces-
sary to look at outcomes for both participants and nonparticipants. Only if the benefits
accruing to previously-nonemployed participants are adopted as the appropriate evalu-
ation criterion would the effect of treatment on the treated be a parameter of interest.
Information on both participants and nonparticipants affected by the program is required
to estimate the net gain in earnings and employment resulting from the program.

In the case of a wage subsidy, comparing the earnings and employment of subsidized
participants during their subsidized period to their earnings and employment in the pre-
subsidized period can be a very misleading estimator of the total impact of the program.
So is a cross-section comparison of participants and nonparticipants. In the example
of a subsidy in the presence of a minimum wage, the before–after estimate of the gain
exceeds the cross-section estimate unless the subsidy is extended to a group of nonem-
ployed workers as large as the number employed at the minimum wage. For subsidy
coverage levels below this amount, some proportion of the unsubsidized employment is
paid the minimum wage. Under these circumstances, commonly-used evaluation esti-
mators produce seriously misleading estimates of program impacts.

The following example clarifies and extends these points to examine the effect of
displacement on conventional estimators. Let N be the number of participants in the
low-wage labor market. Let NE be the number of persons employed at the minimum

142 See, e.g., Johnson (1979), or Johnson and Layard (1986).
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wage M and let NS be the number of persons subsidized. Subsidization operates solely
on persons who would otherwise have been nonemployed and had no earnings. Assume
NE > NS . Therefore, the subsidy has no effect on total employment in the market,
because the marginal cost of labor to a firm is still the minimum wage. Workers with
the subsidy are worth more to the firm by the amount of the subsidy S. Firms would be
willing to pay up to S + M per subsidized worker to attract them.

The estimated wage gain using a before–after comparison for subsidized participants
is:

Before–After: ( S + M)︸ ︷︷ ︸
after

− (0)︸︷︷︸
before

= S + M,

because all subsidized persons earn a zero wage prior to the subsidy. For them, the pro-
gram is an unmixed blessing. The estimated wage gain using cross-section comparisons
of participants and nonparticipants is:

Cross-Section: S + M︸ ︷︷ ︸
participant’s wage

− M︸︷︷︸
nonparticipant’s

wage

×
(

NE − NS

N − NS

)

= S + M

(
N − NE

N − NS

)
︸ ︷︷ ︸

(<1)

< S + M.

Since NE > NS , the before–after estimator is larger than the cross-section estimator.
The widely used difference-in-differences estimator compares the before–after outcome
measure for participants to the before–after outcome measure for nonparticipants:

Difference-in-Differences: (S + M − 0) − M

(
NE − NS

N − NS

− NE

N − NS

)

= S + M

(
N

N − NS

)
> S + M.

The gain estimated from the difference-in-differences estimator exceeds the gain esti-
mated from the before–after estimator which in turn exceeds the gain estimated from the
cross-section estimator. The “no treatment” benchmark in the difference-in-differences
model is contaminated by treatment. The estimate of employment creation obtained
from the three estimators is obtained by setting M = 1 and S = 0 in the previous ex-
pressions. This converts those expressions into estimates of employment gains for the
different groups used in their definition.

None of these estimators produces a correct assessment of wage or employment gain
for the economy at large. Focusing only on direct participants causes analysts to lose
sight of overall program impacts. Only an aggregate analysis of the economy as a whole,
or random samples of the entire economy, would produce the correct assessment that
no wage increase or job creation is produced by the program. The problem of indirect
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effects poses a major challenge to conventional micro methods used in evaluation re-
search that focus on direct impacts instead of total impacts, and demonstrates the need
for program evaluations to utilize market-wide data and general equilibrium methods.

Calmfors (1994) presents a comprehensive review of the issues that arise in evalu-
ating active labor-market programs and an exhaustive list of references on theoretical
and empirical work on this topic. He distinguishes a number of indirect effects includ-
ing displacement effects (jobs created by one program at the expense of other jobs),
deadweight effects (subsidizing hiring that would have occurred in the absence of the
program), substitution effects (jobs created for a certain category of workers replace
jobs for other categories because relative wage costs have changed) and tax effects (the
effects of taxation required to finance the programs on the behavior of everyone in soci-
ety). A central conclusion of this literature is that the estimates of program impact from
the microeconomic treatment effect literature provide incomplete information about the
full impacts of active labor-market programs. The effect of a program on participants
may be a poor approximation to the total effect of the program, as our simple example
has shown. Blundell et al. (2004) present evidence on substitution and displacement for
an English active labor-market program.

4.4. Social interactions

There is a growing empirical literature on social interactions. Brock and Durlauf (2001)
and Durlauf and Fafchamps (2005) present comprehensive surveys of the methods and
evidence from this emerging field. Instead of being market mediated, as in search and
general equilibrium models, the social interactions considered in this literature are at
the individual or group level which can include family interactions through transfers.
Linkages through family and other social interactions undermine the sharp treatment-
control separation assumed in the microeconomic treatment effect literature.

A recent paper by Angelucci and De Giorgi (2006) illustrates this possibility. They
analyze the effect of the Progressa program in Mexico on both treated and untreated
families. Progressa paid families to send their children to school. They present evi-
dence that noneligible families received transfers from the eligible families and altered
their saving and consumption behavior. Thus, through the transfer mechanism, the “un-
treated” receive treatment. However, they show no general equilibrium effects of the
program on the product and labor markets that they study.

4.5. Summary of general equilibrium approaches

Many policies affect both “treatment” groups and indirectly affect “control” groups
through market and social interactions. Reliance on microeconomic treatment effect
approaches to evaluate such policies can produce potentially misleading estimates. The
analysis of Heckman, Lochner and Taber (1998a) and the later work by Albrecht, Van
den Berg and Vroman (2005), Blundell et al. (2004), Duflo (2004), Angelucci and De
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Giorgi (2006), Lee (2005), Lise, Seitz and Smith (2005a, 2005b), and Lee and Wolpin
(2006) indicate that ignoring indirect effects can produce misleading policy evaluations.

The cost of this enhanced knowledge is the difficulty in assembling all of the behav-
ioral parameters required to conduct a general equilibrium evaluation. From a long run
standpoint, these costs are worth incurring. Once a solid knowledge base is put in place,
a more trustworthy framework for policy evaluation will be available, one that will offer
an economically-justified framework for accumulating evidence across studies and will
motivate empirical research by microeconomists to provide better empirical foundations
for general equilibrium policy analyses.

5. Summary

This chapter extends the traditional static ex post literature on mean treatment effects
to consider the identification of distributions of treatment effects, the identification of
ex ante and ex post distributions of treatment effects, the measurement of uncertainty
facing agents and the analysis of subjective valuations of programs. We also survey
methods for identifying dynamic treatment effects with information updating by agents,
using both explicitly formulated economic models and less explicit approaches. We
discuss general equilibrium policy evaluation and evaluation of models with social in-
teractions.

Appendix A: Deconvolution

To see how to use (CON-1) and (M-1) to identify F(y0, y1 | X), note that

Y = Y0 + D�.

From FY (y | X,D = 0), we identify F0(y0 | X) as a consequence of matching assump-
tion (M-1). From FY (y | X,D = 1) we identify F1(y1 | X) = FY0+�(y0 + � | X). If
Y0 and Y1 have densities, then, as a consequence of (CON-1) and (M-1), the densities
satisfy

f1(y1 | X) = f�(� | X) ∗ f0(y0 | X)

where “∗” denotes convolution. The characteristic functions of Y0, Y1 and � are related
in the following way:

E
(
ei�Y1 | X

) = E
(
ei�� | X

)
E
(
ei�Y0 | X

)
.

Since we can identify F1(y1 | X), we know its characteristic function. By a similar
argument, we can recover E(ei�Y0 | X). Thus, from

E
(
ei�� | X

) = E(ei�Y1 | X)

E(ei�Y0 | X)
,
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and by the inversion theorem,143 we can recover the density f�(� | X). We know the
joint density

f�,Y0(�, y0 | X) = f�(� | X)f0(y0 | X).

From the definition of �, we obtain

f�(y1 − y0 | X)f0(y0 | X) = f (y1, y0 | X).

Thus we can recover the full joint distribution of outcomes and the distribution of gains.
Under assumption (M-1), assumption (CON-1) is testable. The ratio of two charac-

teristic functions is not necessarily a characteristic function. If it is not, the estimated
density f� recovered from the ratio of the characteristic functions need not be positive
and the estimated variance of � can be negative.144

Appendix B: Matzkin conditions and proof of Theorem 2

We prove Theorem 2. We first present a review of the conditions Matzkin (1992) im-
poses for identification of nonparametric discrete choice models which are used in this
proof.

B.1. The Matzkin conditions

Consider a binary choice model, D = 1[ϕ(Z) > V ], where Z is observed and V is
unobserved. Let ϕ∗ denote the true ϕ and let F ∗

V denote the true cdf of V . Let Z ⊆ RK

denote the support of Z. Let H denote the set of monotone increasing functions from R

into [0, 1]. Assume:

(i) ϕ ∈ Φ, where Φ is a set of real valued, continuous functions defined over Z ,
which is also assumed to be the domain of definition of ϕ, and the true function
is ϕ∗ ∈ Φ. There exists a subset Z̃ ⊆ Z such that (a) for all ϕ, ϕ′ ∈ Φ, and all
z ∈ Z̃ , ϕ(z) = ϕ′(z), and (b) for all ϕ ∈ Φ and all t in the range space of ϕ∗(z)
for z ∈ Z , there exists a z̃ ∈ Z̃ such that ϕ(z̃) = t . In addition, ϕ∗ is strictly
increasing in the Kth coordinate of Z.

(ii) Z ⊥⊥V .
(iii) The Kth component of Z possesses a Lebesgue density conditional on the other

components of Z.

143 See, e.g., Kendall and Stuart (1977).
144 For the ratio of characteristic functions, r(�), to be a characteristic function, it must satisfy the require-
ment that r(0) = 1, that r(�) is continuous in � and r(�) is nonnegative definite. This identifying assumption
can be tested using the procedures developed in Heckman, Robb and Walker (1990).
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(iv) F ∗
V is strictly increasing on the support of ϕ∗(Z). Matzkin (1992) notes that if

one assumes that V is absolutely continuous, and the other conditions hold, one
can relax the condition that ϕ∗ is strictly increasing in one coordinate (listed
in (i)) and the requirement in (iii).

Then (ϕ∗, F ∗
V ) is identified within Φ × H, where F ∗

V is identified on the support of
ϕ∗(Z).

Matzkin establishes identifiability for the following alternative representations of
functional forms that satisfy condition (i) for exact identification for ϕ(Z).

1. ϕ(Z) = Zγ , ‖γ ‖ = 1 or γ1 = 1.
2. ϕ(z) is homogeneous of degree one and attains a given value α at z = z∗ (e.g.,

cost functions).
3. The ϕ(Z) are least concave functions that attain common values at two points in

their domain.
4. The ϕ(Z) are additively separable functions:

(a) Functions additively separable into a continuous monotone increasing func-
tion and a continuous monotone increasing function which is concave and
homogeneous of degree one;

(b) Functions additively separable into the value of one variable and a continuous,
monotone increasing function of the remaining variables;

(c) A set of functions additively separable in each argument [see Matzkin (1992,
Example 5, p. 255)].

We now prove Theorem 2.

B.2. Proof of Theorem 2

PROOF. Proof of the identifiability of the joint distribution of V s and μs
R(Z) follows

from Matzkin (1993), Theorem 2. See also the proof presented in Chapter 70 (Ap-
pendix B) of this Handbook. We condition on the event D(s) = 1. From the data on
Yc(s,X), Yd(s,X), Mc(X), Md(X) for D(s) = 1, and the treatment selection probabil-
ities, we can construct the left-hand side of the following equation:

Pr

(
Yc(s,X) � yc, μd(s,X) � Ud(s),

Mc(X) � mc,μd,M(X) � Ud,M

∣∣∣∣ D(s) = 1, X = x,Z = z

)

× Pr
(
D(s) = 1 | X = x,Z = z

)
=
∫ yc−μc(s,x)

Uc(s)

∫ 
Ud(s)

μd(s,x)

∫ mc−μc,M(x)

Uc,M

∫ 
Ud,M

μd,M(x)

∫ μR(s,z)−μR(1,z)

V s(1)

· · ·
∫ μR(s,z)−μR(S̄,z)

V s(S̄)

fUc(s),Ud(s),Uc,M,Ud,M,V s

(
uc(s), ud(s), uc,M, ud,M,

v(s) − v(1), v(s) − v(S̄)
)

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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(B.1)· d(v(s) − v(S̄)
) · · · d(v(s) − v(1)

)
dud,M duc,M dud(s) duc(s).

Parallel expressions can be derived for the other possible values of Md(X) and Yd(s,X).
We obtain the selection-bias free distribution of Yc(s,X), Yd(s,X),Mc(X),Md(X)

given X, Pr(Yc(s,X) � yc, Yd(s,X) = yd,Mc(X) � mc,Md(X) = md | X), from
Pr(Yc(s,X) � yc, Yd(s,X) = yd,Mc(X) � mc,D(s) = 1 | X,Z = z) for z → Zs ,
a limit set, possibly dependent on X, such that limz→Zs

Pr(D(s) = 1 | X,Z = z) = 1.
This produces the μc(s,X), μc,M(X) directly and the μd(s,X), μd,M(X) using the
analysis of Matzkin (1992, 1993, 1994) for the class of Matzkin functions defined in
Appendix B.1. Varying the yc − μc(s,X), μd(s,X), mc − μc,M(X), μd,M(X), μs

R(Z),
under the conditions of the theorem we can trace out the joint distribution of (Uc(s),
Ud(s), Uc,M , Ud,M , V s) for each s = 1, . . . , S̄. �

As a consequence of (ii), we can identify μc(s,X), μc,M(X) directly from the means
of the limit outcome distributions. We can thus identify all pairwise average treatment
effects

E
(
Yc(s,X) | X = x

)− E
(
Yc(s

′, X) | X = x
)

for all s, s′ and any other linear functionals derived from the distributions of the contin-
uous variables defined at s and s′. Identification of the means and distributions of the
latent variables giving rise to the discrete outcomes is more subtle, but standard [see
Carneiro, Hansen and Heckman (2003)]. With one continuous regressor among the X,
one can identify the marginal distributions of the Ud(s) and the Ud,M . To identify the
joint distributions of Ud(s) and Ud,M one must use condition (iv) component by com-
ponent.

Thus for system s, suppose that there are Nd,s discrete outcome components with
associated means μd,j (s,X) and error terms Ud,j (s), j = 1, . . . , Nd,s . As a conse-
quence of condition (iv) of this theorem, Supp(μd(s,X)) ⊇ Supp(Ud(s)). We thus
can trace out the joint distribution of Ud(s) and identify it (up to scale if we spec-
ify the Matzkin class only up to scale). By a parallel argument for the measurements,
we can identify the joint distribution of Ud,M . Let Nd,M be the number of discrete
measurements. From condition (iv), we obtain Supp(μd,M(X)) ⊇ Supp(Ud,M). Un-
der these conditions, we can trace out the joint distribution of Ud,M and identify it (up
to scale for Matzkin class of functions specified up to scale) within the limit sets. In
the general case, we can vary each limit of the integral in (B.1) and similar integrals
for the other possible values of the discrete measurements and outcomes indepen-
dently and trace out the full joint distribution of (Uc(s), Ud(s), Uc,M,Ud,M, V s). For
further discussion, see the analysis in Carneiro, Hansen and Heckman (2003, Theo-
rem 3).
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Appendix C: Proof of Theorem 4

PROOF. From Theorem 3, we obtain identifiability of Ψ s(Z) and the joint distribution
of ηs . From the data on Y(s,X), for D(s) = 1, and from the time to treatment proba-
bilities, we can construct the left-hand side of the following equation:

Pr
(
Y(s,X) � y

∣∣ D(s) = 1, X = x,Z = z
)

× Pr
(
D(s) = 1 | X = x,Z = z

)
=
∫ y−μ(s,x)

U(s)

∫ Ψ (s,z(s))

η(s)

∫ η̄(s−1)

Ψ (s−1,z(s−1))

· · ·

(C.1)
∫ η̄(1)

Ψ (1,z(1))

fU(s),ηs

(
u(s), η(1), . . . , η(s)

)
dη(1) · · · dη(s) du(s).

Under assumption (iv), for all x ∈ Supp(X), we can vary the Ψ (j, Z(j)),
j = 1, . . . , s, and obtain a limit set Zs , possibly dependent on X, such that
limz→Zs

Pr(D(s) = 1 | X = x,Z = z) = 1. We can identify the joint distribution
of Y(s,X), free of selection bias in this limit set for all s = 1, . . . , S̄. We know the limit
sets given the functional forms in Matzkin (1992, 1993, 1994) with the leading case
being Ψ (s, Z(s)) = Z(s)γs . From the analysis of Theorem 3, we achieve identifiability
on nonnegligible sets.

As a consequence of (ii), we can identify μ(s,X) directly from the means of the
limit outcome distributions. We can thus identify all pairwise average treatment effects
E(Y(s,X) | X = x)−E(Y(s′, X) | X = x) for all s, s′ and any other linear functionals
derived from the distributions of the continuous variables defined at s and s′.

In the general case, we can vary each limit of the integral in (C.1) independently and
trace out the full joint distribution of (U(s), η(1), . . . , η(s)). For further discussion, see
the analysis in Carneiro, Hansen and Heckman (2003, Theorem 3). Note the close par-
allel to the proof of Theorem 2. The key difference between the two proofs is the choice
equation. In Theorem 2, the choice of treatment equation is a conventional multivariate
discrete-choice model. In Theorem 3, it is the reduced form dynamic model extensively
analyzed in Heckman and Navarro (2007). �

Appendix D: Proof of a more general version of Theorem 4

This appendix states and proves a more general version of Theorem 4. Use Y(t, s) as
shorthand for Y(t, s,X,U(t, s)). Ignore (for notational simplicity) the mixed discrete-
continuous outcome case. One can build that case from the continuous and discrete
cases and for the sake of brevity we do not analyze it here. We also do not analyze du-
ration outcomes although it is straightforward to do so. Decompose Y(t, s) into discrete
and continuous components:

Y(t, s) =
[

Yc(t, s)

Yd(t, s)

]
.
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Associated with the j th component of Yd(t, s), Yd,j (t, s), is a latent variable Y ∗
d,j (t, s).

Define, as in Theorem 2,

Yd,j (t, s) = 1
(
Y ∗

d,j (t, s) � 0
)
.145

From standard results in the discrete-choice literature, without additional information,
one can only identify Y ∗

d,j (t, s) up to scale.
Assume an additively separable model for the continuous variables and latent contin-

uous indices. Making the X explicit, we obtain

Yc(t, s,X) = μc(t, s,X) + Uc(t, s),

Y ∗
d (t, s, X) = μd(t, s,X) − Ud(t, s),

1 � s � S̄, 1 � t � T̄ .

Array the Yc(t, s,X) into a matrix Yc(s,X) and the Y ∗
d (t, s, X) into a matrix Y ∗

d (s,X).
Decompose these vectors into components corresponding to the means μc(s,X),
μd(s,X) and the unobservables Uc(s), Ud(s). Thus

Yc(s,X) = μc(s,X) + Uc(s),

Y ∗
d (s,X) = μd(s,X) − Ud(s).

Y ∗
d (s,X) generates Yd(s,X). To simplify the notation, make use of the condensed forms

Yc(X), Y ∗
d (X), μc(X), μd(X), Uc and Ud as described in the text. In this notation,

Yc(X) = μc(X) + Uc,

Y ∗
d (X) = μd(X) − Ud.

Following Carneiro, Hansen and Heckman (2003) and Cunha and Heckman (2007b,
2008), Cunha, Heckman and Navarro (2005, 2006), one may also have a system of
measurements with both discrete and continuous components. The measurements are
not s-indexed. They are the same for each stopping time. Write the equations for the
measurements in an additively separable form, in a fashion comparable to those of the
outcomes. The equations for the continuous measurements and latent indices producing
discrete measurements are

Mc(t,X) = μc,M(t,X) + Uc,M(t),

M∗
d (t, X) = μd,M(t,X) − Ud,M(t),

where the discrete variable corresponding to the j th index in M∗
d (t, X) is

Md,j (t, X) = 1
(
M∗

d,j (t, X) � 0
)
.

145 Extensions to nonbinary discrete outcomes are straightforward. Thus one could entertain, at greater nota-
tional cost, a multinomial outcome model at each age t for each counterfactual state, building on the analysis
of Appendix B in Chapter 70.

http://dx.doi.org/10.1016/S1573-4412(07)06070-9
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The measurements play the role of indicators unaffected by the process being stud-
ied. We array Mc(t,X) and M∗

d (t, X) into matrices Mc(X) and M∗
d (X). We array

μc,M(t,X), μd,M(t,X) into matrices μc,M(X) and μd,M(X). We array the correspond-
ing unobservables into Uc,M and Ud,M . Thus we write

Mc(X) = μc,M(X) + Uc,M,

M∗
d (X) = μd,M(X) − Ud,M.

We use the notation of Section 3.4.1 to write I (s) = Ψ (s, Z(s)) − η(s) and collect
I (s), Ψ (s, Z(s)) and η(s) into vectors I , Ψ (Z), η. We define ηs = (η(1), . . . , η(s)) and
Ψ s(Z) = (Ψ (1, Z(1)), . . . , Ψ (s, Z(s))). Using this notation, we extend the analysis of
Carneiro, Hansen and Heckman (2003) to identify our model assuming that we have a
large i.i.d. sample from the distribution of (Yc, Yd,Mc,Md, I ).

THEOREM D.1. Assuming the conditions of Theorem 3 hold, for s = 1, . . . , S̄, the joint
distribution of (Uc(s), Ud(s), Uc,M,Ud,M, ηs) is identified along with the mean func-
tions (μc(s,X), μd(s,X), μc,M(X), μd,M(X), Ψ s(Z)) (the components of μd(s,X)

and μd,M(X) over the supports admitted by the supports of the errors) if
(i) E[Uc(s)] = E[Uc,M ] = 0. (Uc(s), Ud(s), Uc,M,Ud,M, ηs) are continuous

random variables with support: Supp(Uc(s)) × Supp(Ud(s)) × Supp(Uc,M) ×
Supp(Ud,M) × Supp(ηs) with upper and lower limits (
Uc(s), 
Ud(s), 
Uc,M,

Ud,M, η̄s) and (Uc(s), Ud(s), Uc,M,Ud,M, ηs) respectively. These conditions
are assumed to apply within each component of each subvector. The joint system
is thus variation free for each component with respect to every other compo-
nent.

(ii) (Uc(s), Ud(s), Uc,M,Ud,M, ηs)⊥⊥ (X,Z).
(iii) Supp(Ψ (Z),X) = Supp(Ψ (Z)) × Supp(X).
(iv) Supp(μd(s,X), μd,M(X)) ⊇ Supp(Ud(s), Ud,M).
(v) μc(s,X) and μc,M(X) are continuous functions. The components of the

μd(s,X) and μd,M(X) satisfy the Matzkin conditions developed in Appen-
dix B.1.

PROOF. We use the proof of Theorem 3 to identify Ψ s(Z) and the distributions of ηs ,
s = 1, . . . , S̄. From the data on Yc(s,X), Yd(s,X), Mc(X), Md(X) for D(s) = 1,
and from the time to treatment probabilities, we can construct the left-hand side of the
following equation:

Pr

(
Yc(s,X) � yc, μd(s,X) � Ud(s),

Mc(X) � mc,μd,M(X) � Ud,M

∣∣∣∣ D(s) = 1, X = x,Z = z

)

× Pr
(
D(s) = 1 | X = x,Z = z

)
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=
∫ yc−μc(s,x)

Uc(s)

∫ 
Ud(s)

μd(s,x)

∫ mc−μc,M(x)

Uc,M

∫ 
Ud,M

μd,M(x)

∫ Ψ (s,z(s))

η(s)

∫ η̄(s−1)

Ψ (s−1,z(s−1))

· · ·
∫ η̄(1)

Ψ (1,z(1))

fUc(s),Ud(s),Uc,M,Ud,M,ηs

(
uc(s), ud(s), uc,M, ud,M, η(1), . . . , η(s)

)
(D.1)· dη(1) · · · dη(s) dud,M duc,M dud(s) duc(s).

We can construct distributions for the other configurations of conditioning events defin-
ing the discrete dependent variables (i.e., μd(s,X) > Ud(s), μd,M(X) > Ud,M ;
μd(s,X) > Ud(s), μd,M(X) < Ud,M ; μd(s,X) � Ud(s), μd,M(X) > Ud,M ).

Under assumption (iii), for all x ∈ Supp(X), we can vary the Ψ (j, z(j)),
j = 1, . . . , s, and obtain a limit set Zs , possibly dependent on X, such that
limz→Zs

Pr(D(s) = 1 | X = x,Z = z) = 1. We can use (D.1) and parallel dis-
tributions for the other configurations for the discrete dependent variables to identify
the joint distribution of Yc(s,X), Yd(s,X),Mc(X),Md(X) free of selection bias for all
s = 1, . . . , S̄ in these limit sets. We identify the parameters of Yd(s,X), s = 1, . . . , S̄,
and Md(X). We know the limit sets given the functional forms for the Ψ (s, Z(s)),
s = 1, . . . , S̄, presented in B.1 or in Matzkin (1992, 1993, 1994).

As a consequence of (ii), we can identify μc(s,X), μc,M(X) directly from the means
of the limit outcome distributions. We can thus identify all pairwise average treatment
effects

E
(
Yc(s,X) | X = x

)− E
(
Yc(s

′, X) | X = x
)

for all s, s′ and any other linear functionals derived from the distributions of the con-
tinuous variables defined at s and s′. Identification of the means and distributions of
the latent variables giving rise to the discrete outcomes is more subtle. The required
argument is standard. With one continuous regressor among the X, one can identify the
marginal distributions of the Ud(s) and the Ud,M (up to scale if the Matzkin functions
are only specified up to scale). To identify the joint distributions of Ud(s) and Ud,M ,
one can invoke (iv).

Thus for system s, suppose that there are Nd,s discrete outcome components with as-
sociated means μd,j (s,X) and error terms Ud,j (s), j = 1, . . . , Nd,s . As a consequence
of condition (iv) of this theorem, Supp(μd(s,X)) ⊇ Supp(Ud(s)). We thus can trace
out the joint distribution of Ud(s) and identify it (up to scale if we specify the Matzkin
class only up to scale). By a parallel argument for the measurements, we can identify
the joint distribution of Ud,M . Let Nd,M be the number of discrete measurements. From
condition (iv), we obtain Supp(μd,M(X)) ⊇ Supp(Ud,M). Under these conditions, we
can trace out the joint distribution of Ud,M and identify it (up to scale for the Matzkin
class of functions specified up to scale) within the limit sets. From assumption (v), we
obtain identification on nonnegligible sets.

We can vary each limit of the integral in (D.1) independently and trace out the full
joint distribution of (Uc(s), Ud(s), Uc,M,Ud,M, η(1), . . . , η(s)) using the parameters
determined from the marginals. For further discussion, see the analysis in Carneiro,
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Hansen and Heckman (2003, Theorem 3). We obtain identifiability on nonnegligible
sets by combining the conditions in Theorem 3 with those in condition (v).

�
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Abstract

When one wants to estimate a model without specifying the functions and distributions
parametrically, or when one wants to analyze the identification of a model indepen-
dently of any particular parametric specification, it is useful to perform a nonparametric
analysis of identification. This chapter presents some of the recent results on the iden-
tification of nonparametric econometric models. It considers identification in models
that are additive in unobservable random terms and in models that are nonadditive in
unobservable random terms. Single equation models as well as models with a system of
equations are studied. Among the latter, special attention is given to structural models
whose reduced forms are triangular in the unobservable random terms, and to simultane-
ous equations, where the reduced forms are functions of all the unobservable variables
in the system.

The chapter first presents some general identification results for single-equation mod-
els that are additive in unobservable random terms, single-equation models that are
nonadditive in unobservable random terms, single-equation models that possess and in-
dex structure, simultaneous equations nonadditive in unobservable random terms, and
discrete choice models. Then, particular ways of achieving identification are considered.
These include making use of conditional independence restrictions, marginal indepen-
dence restrictions, shape restrictions on functions, shape restrictions on distributions,
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and restrictions in both functions and distributions. The objective is to provide insight
into some of the recent techniques that have been developed recently, rather than on
presenting a complete survey of the literature.

Keywords

identification, nonparametric models, simultaneous equations, nonadditive models,
nonseparable models

JEL classification: C01, C14, C2, C3
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1. Introduction

This chapter presents some of the recent results on the identification of nonparamet-
ric econometric models, concentrating on nonadditive models. It complements many
current existent surveys that cover nonparametric identification, such as the books by
Horowitz (1998), Pagan and Ullah (1999), and Yatchew (2003), articles in recent vol-
umes of this Handbook by Härdle and Linton (1994), Matzkin (1994), Powell (1994),
and van den Berg (2001), recent survey articles on semiparametric and nonparametric
identification, such as Blundell and Powell (2003), Florens (2003), and Chesher (2007),
and other chapters in this volume, such as the ones by X. Chen, Heckman and Vytlacil,
and Ridder and Moffit. The objective of this chapter is to provide insight into some
recent techniques that have been developed to identify nonparametric models, rather
than on presenting a complete survey of the literature. As a consequence, many very
important related works have been left out of the presentation and the references.

When estimating an element in a model, it is necessary to determine first the iden-
tification of such an element. The study of identification in parametric econometric
models dates back to the works by Workings (1925, 1927), Tinbergen (1930), Frisch
(1934, 1938), Haavelmo (1943, 1944), Koopmans (1949), Hurwicz (1950), Koopmans
and Reiersol (1950), Koopmans, Rubin and Leipnik (1950), Wald (1950), Fisher
(1959, 1961, 1965, 1966), Wegge (1965), Rothenberg (1971), and Bowden (1973). [See
Hausman (1983) and Hsiao (1983) in Volume 1 of this Handbook, for early review
articles.]

Lately, the analysis of identification in econometric models has been developing in
several directions. One of these directions is the econometric analysis of systems of
equations that require few or no parametric assumptions on the functions and distri-
butions in the system. All the recent review articles mentioned above treat this topic.
Imposing parametric specifications for functions and distributions had been the standard
procedure in a world where large data sets were rarely available and computers could not
easily handle estimation methods that require complicated computational algorithms. In
such a world, estimating models with only a few parameters was part of the standard
procedure. As computers processing power became faster and cheaper and the avail-
ability to deal with large data sets increased, it became possible to consider estimation
of increasingly complicated functions, with increasing numbers of parameters. This,
in turn, drove attention to the analysis of identification of functions and distributions
that do not necessarily belong to parametric families. The emphasis was originally on
estimation of probability densities and conditional expectations, but, later, more com-
plicated models were considered. Rather than asking whether some parameters were
identified, the question of interest became whether a function or distribution was identi-
fied within a general set of functions or distributions. Establishing such a nonparametric
identification was recognized as an important first step in the econometric analysis of
even parametric models.

Establishing that a function or distribution is nonparametrically identified within a set
of nonparametric functions or distributions implies its identification within any subset
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of the set of nonparametric functions. In particular, if the subset is defined as the set
of functions that satisfy a parametric structure, such as being linear or quadratic, then
identification within these subsets is implied by identification within the larger set of
nonparametric functions that include linear, quadratic, and possibly many other para-
metric specifications. If, on the other hand, one does not know whether the function is
nonparametrically identified but one can establish its identification when a particular
specification is imposed on the function, then it is not clear how robust any estima-
tion results would be. When a function is nonparametrically identified, one can develop
tests for different parametric structures, by comparing the results obtained from a non-
parametric estimator for the function with those obtained from specific parametric
estimators [Wooldridge (1992), Hong and White (1995), and Fan and Li (1996) are
examples of such tests]. When a function is nonparametrically identified, one can allow
the function to possess local behavior that would not be possible under some parametric
specifications. [See, for example, the examples in Härdle (1991).] When a model or a
function within a model is not identified nonparametrically, one can consider imposing
sequentially stronger sets of restrictions in the model, up to the point where identifica-
tion is achieved. This provides a method for analyzing the trade-off between imposing
restrictions and achieving identification. [See, for example, Matzkin (1994) for such an
analysis.] This chapter will present several of the developments in the nonparametric
identification in economic models.

Another area of active research, specially in recent years, was in the development
of econometric models that were specified with properties closer to those of models
studied in economic theory. The analysis of identification in the past, which concen-
trated on models that were linear in variables and parameters and additive in unobserv-
able random terms, contrasted strongly with the standard practice in economic theory,
where functions were only specified to possess some properties, such as continuity or
monotonicity. On those times, economic theorists would work on models involving very
general functions and distributions. Econometricians, on the other side, would work on
models with well specified and typically quite restrictive functional forms and distribu-
tions. Even though the main goals of both groups were in many instances very similar,
the solutions as well as the languages used in each of them were very different. The
picture is drastically different nowadays. The development of nonparametric techniques
for the estimation and testing of economic models has been shortening the distance be-
tween those roads to the point where now some econometric models are specified with
no more restrictions than those that a theorist would impose.

The advances that have decreased the distance between economic theory and econo-
metrics have not concentrated only on the relaxation of parametric structures. Lately,
there has also been an increasing effort to relax the way in which the unobservable
random terms are treated. A practice that has been and still is commonly used when
specifying an econometric model proceeds by first using economic theory to specify a
relationship between a vector of observable explanatory variables and a vector of depen-
dent variables, and then adding unobservable random variables to the relationships, as
an after-thought. The seminal works by Heckman (1974), McFadden (1974), Heckman
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and Willis (1977), and Lancaster (1979) have shown that one can analyze econometric
models where the unobservable random terms have important economic interpretations.
They may represent, for example, heterogeneity parameters in utility functions, produc-
tivity shocks in production functions, or utility values for unobserved product attributes.
When interpreting the unobservables in this way, it is rarely the case that they enter in
additive ways into the models of interest. Several recent papers have considered the
identification and estimation of nonparametric models with nonadditive random terms.
Some of these will be reviewed in this chapter.

Ideally, one would like to be able to identify all the unknown functions and distribu-
tions in a model without imposing more restrictions than those implied by the theory of
the model. Restrictions derived from optimization, such as concavity and linear homo-
geneity, or equilibrium conditions, have been shown to be useful to identify functions
in models that had been thought in the past to be identified only under very restrictive
parametric assumptions. [See the survey chapter by Matzkin (1994) in Volume 4 of this
Handbook for several such examples.] Nevertheless, in some cases, the identification
of all functions and distributions in a model that imposes so few restrictions might not
be possible. In such cases, one may consider several options. One may try to determine
what can be identified without imposing any more restrictions on the model. One may
impose some additional restrictions on some of the functions or distributions, to achieve
identification. Or, one may consider enlarging the model, by augmenting the set of ob-
servable variables that can provide information about the functions or distributions of
interest in the model. In this chapter we discuss some of the recent related techniques
that have been developed.

While restrictions implied by economic theory may, in some cases, aid in achieving
identification, in some other cases, they may also hinder identification. This occurs when
restrictions such as agent’s optimization and equilibrium conditions generate interrela-
tionships among observable variables, X, and unobservable variables, ε, that affect a
common observable outcome variable, Y . In such cases, the joint distribution of (Y,X)

does not provide enough information to recover the causal effect of X on Y , since
changes in X do not leave the value of ε fixed. A typical example of this is when Y

denotes quantity demanded for a product, X denotes the price of the product, and ε

is an unobservable demand shifter. If the price that will make firms produce a certain
quantity increases with quantity, this change in ε will generate an increment in the
price X. Hence, the observable effect of a change in price in demanded quantity would
not correspond to the effect of changing the value of price when the value ε stays con-
stant. Another typical example arises when analyzing the effect of years of education on
wages. An unobservable variable, such as ability, affects wages but also years of educa-
tion. When an individual chooses years of education to maximize the discounted stream
of future income, he takes ability into account because it influences the productivity of
education. [See, for example, Card (2001).] As a result of this connection between abil-
ity and years of education, the distribution of ability, given years of education, changes
with the years of education. In this chapter, we will review some of the methods that
have been developed to identify causal effects in these situations.
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The outline of the chapter is as follows. In the next section, we describe several econo-
metric models. In Section 3, we analyze, in general terms, identification in those models.
In Section 4 we discuss some particular techniques that have been used to achieve iden-
tification. Section 5 concludes.

2. The econometric model

2.1. From the economic model to the econometric model

The description of an economic model typically starts out by describing the economic
agents involved, their objective functions, their information, and the interactions among
the agents. When an econometrician tries to fit an economic model to the available data,
he first needs to determine which of the variables in the model are observable and which
are unobservable. Another important division of the variables in the model is between
the variables that are determined outside of the model and those that are determined
inside the model. The variables in the latter set are functions of the variables in the
former set. In economic models, they are typically determined either by the choice of
some agents or by the interaction among several agents. We will denote by X the vec-
tor of variables that are determined outside the model and are observable, and by ε the
vector of variables that are determined outside the model and are unobservable. X and
ε are also called the observable and unobservable explanatory, or exogenous, variables.
We will denote the number of coordinates of X by K and the number of coordinates
of ε by L. The vectors of observable and unobservable variables that are determined
within the model will be denoted, respectively, by Y and Υ . These are observable and
unobservable outcome variables. We will denote the number of coordinates in the vec-
tor of observable variables, Y , determined within the model, by G, and the number of
coordinates in the vector of unobservable variables, Υ , determined within the model
by GΥ . Following the standard terminology, we will say that Y and Υ are vectors of,
respectively, observable and unobservable endogenous variables. The description of an
economic model contains, as well as a list of variables, a list of functions and distrib-
utions. Some of these functions and distributions are primitive, in the sense that they
are determined outside the model. Some are derived within the model. Let h denote the
list of all primitive functions and let F denote the list of all primitive distributions. We
will describe the interrelation between the primitive functions and distributions and the
observable and unobservable variables by a known vector function v and an equation

v(Y, Υ,X, ε; h, F ) = 0.

This equation can be used to derive the joint distribution of the vector of observable
variables, (Y,X), as a function of the primitives of the model, (h, F ).

To provide an example, consider a model of consumer demand for a consumption
good and a composite good. Let I denote the income that the consumer can spend on
these two goods. Let the price of the composite good be 1 and let p denote the price
of the consumption good. Let y and z denote the quantities chosen by the consumer of,
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respectively, the consumption good and the composite good. Suppose that the economic
model specifies that the individual has preferences over bundles (y, z), and chooses
the one that maximizes those preferences over the set of all bundles that cost no more
than I . Suppose, further, that the consumer preferences can be represented by a strictly
increasing, strictly concave, twice differentiable utility function, U , on (y, z), and that
such a utility function is different for different individuals in a population. In particular,
assume that the utility function depends on observable socioeconomic characteristics of
the individual, such as age and marital status, denoted by w, and on unobservable tastes
for (y, z), denoted by ε. Then, for an individual with characteristics w and ε, and with
observable income I , the observed choice (y, z) is defined as

(y, z) = arg max
(ỹ,z̃)

{
U(ỹ, z̃, w, ε)

∣∣ pỹ + z̃ � I
}
.

Since the monotonicity of U with respect to (ỹ, z̃) implies that all the available income
will be used, this is equivalent to

y = arg max
ỹ

{
U(ỹ, I − pỹ,w, ε)

}
,

z = I − py.

The differentiability, strict concavity, and strict monotonicity of U imply then that y

satisfies

Uỹ(y, I − py,w, ε) − pUz̃(y, I − py,w, ε) = 0.

In this model, the income, I , the vector of socioeconomic variables, w, and the price
p are observable variables determined outside the system. The unobservable taste, ε, is
also determined outside the system. The chosen quantity, y, of the commodity is ob-
served and determined within the system. The utility function U(·,·,·,·) is an unknown
primitive function; and the distribution of (p, I,w, ε) is an unknown primitive distrib-
ution function. Given any particular utility function U , satisfying the differentiability,
monotonicity and concavity restrictions imposed above, and given any distribution for
(p, I,w, ε), one can use the above equation to derive the joint distribution of the vector
of observable variables, (Y, p, I,w). This is derived from the equation

v(Y,X, ε) = v(Y, p, I,w, ε)

= Uy(Y, I − pY,w, ε) − Uz(Y, I − pY,w, ε)p

= 0.

Under our assumptions, the value of Y that satisfies this equation, for given values
of (p, I,w, ε), is unique. Let m denote the function that assigns the optimal value of Y

to (p, I,w, ε). Then, the demand function m(p, I,w, ε) satisfies the first order condi-
tions

Uy

(
m(p, I,w, ε), I − pm(p, I, ε), w, ε

)
− Uz

(
m(p, I,w, ε), I − pm(p, I, ε), w, ε

)
p = 0.
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The demand model

Y = m(p, I,w, ε)

is the reduced form model. The reduced form model maps the observable and un-
observable explanatory variables into the observable endogenous variables, without
necessarily specifying behavioral and equilibrium conditions from which the mapping
might have been derived. The reduced form model suffices to analyze many situations
where this underlying structure does not change. For example, as will be discussed in
more detail below, when m is strictly increasing in ε and ε is distributed independently
of (p, I,w), the reduced model above suffices to analyze the causal effect of (p, I,w)

on Y . This is the effect on demand from changing the value of (p, I,w), leaving the
value of ε unchanged.

The analysis of counterfactuals, on the other hand, would typically require knowledge
of the primitive function U . Suppose, for example, that we were interested in predicting
the behavior of a consumer that possesses preferences as in the model above, when
the price of the consumption good depends on the quantity chosen, instead of being a
fixed value, p, as considered above. Denote the price function as s(y). To predict the
choice of the consumer with utility function U(ỹ, z̃, w, ε) when his set of affordable
consumption bundles is{

(ỹ, z̃)
∣∣ s(ỹ)ỹ + z̃ = I

}
we would need to know the function U(ỹ, z̃, w, ε) to calculate the new optimal values

(y, z) = arg max
(ỹ,z̃)

{
U(ỹ, z̃, w, ε)

∣∣ s(ỹ)ỹ + z̃ = I
}
.

This would require analyzing the structural model of utility maximization described
earlier. The structural model uses behavioral and/or equilibrium conditions, to define a
mapping between the primitive functions and distributions, on one side, and the distri-
bution of the observable variables, on the other. Path diagrams [Pearl (2000)] are often
very useful to clarify the role of each variable and the ordering of the variables in terms
of cause and effect. Support conditions, which may allow one to identify only the lo-
cal behavior of some functions should also be taken into consideration. In the analysis
in this chapter, unless explicitly stated otherwise, it will be assumed that the support
conditions necessary to obtain the results are always satisfied.

2.1.1. Dependence between ε and X

In many cases, a model is not completely specified. Some of the unobservable explana-
tory variables in the model are themselves functions of observable variables, in a way
that is not described within the model. Consider, for example, the utility maximization
model described in the previous subsection. In that model, the income of the consumer,
I , was assumed to be determined outside of the model. The unobservable ε was as-
sumed to denote taste for consumption. In many cases, one could think of income as
being partially determined by ε. Individuals with a larger taste for consumption will
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typically make lifetime decisions, such as the choice of profession, that would generate
higher incomes. In particular, if we let r̃ denote a function and let δ denote additional
variables, which are determined outside the system and which affect income I , we could
specify that I = r̃(ε, δ). If this latter relationship were added to the specification of the
model, then, in the augmented model, the variables determined within the system would
be (Y, Z, I), and those determined outside the system would be (p, ε, δ). Suppose that
we wanted to infer the causal effect of income I on demand Y . This is the effect on Y of
changing I , when the value of (p,w, ε) stays fixed. If I is a function of ε, the total effect
will be different from this partial effect. A similar example occurs when variables are
determined jointly. Haavelmo (1943, 1944) argued that in these cases a joint probability
distribution is needed to analyze the data.

2.2. Definition of an econometric model

Following up on the model described in the beginning of Section 2, we define an econo-
metric model by a specification of variables that are observed and variables that are
unobserved, variables that are determined within the model and variables that are de-
termined outside of the model, functional relationships among all the variables, and
restrictions on the functions and distributions. We will denote by S the set of all vectors
of functions and distributions that satisfy the restrictions imposed by the model. We
assume that for any element ζ ∈ S, we can derive the distribution, FY,X(·; ζ ), of the
observable vector of variables that is generated by S. The observable distribution, FY,X,
corresponds to the true value ζ ∗ of ζ .

For example, in the consumer demand model described above, ε and (p, I,w)

are, respectively, the vectors of unobservable and observable explanatory variables
and Y is the vector of observable endogenous variables. The elements of S are pairs
ζ = (U, Fε,p,I,w), such that for all (w, ε), U(·, ·, w, ε) : R2 → R is strictly increasing,
strictly concave, and twice differentiable, and Fε,p,I,w is a distribution function. Given
ζ = (U, Fε,p,I,w) and X = (p, I,w), the distribution of Y given X is calculated by
the distribution of ε given (p, I,w) and the function U , using the first order conditions.
Note that since X is observable, the marginal distribution of X, FX, can be assumed to
be known. Hence, one of the restrictions that Fε,p,I,w would be required to satisfy is
that the marginal distribution of (p, I,w) coincides with Fp,I,w.

2.2.1. Examples

We next describe several models, whose identification will be discussed in Sections 3
and 4. We denote random variables with capital letters and their realizations with lower
case letters.

2.2.1.1. Additive models In additive models, the unobservable variables that are de-
termined outside the model affect the values of the variables that are determined within
the model in an additive way. A standard example of such a model is where Y denotes
an observable dependent variable, X denotes a vector of observable explanatory vari-
ables, ε denotes an unobservable explanatory variable, and the functional relationship
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between these variables is given by

Y = Xβ + ε

for some β. Allowing X to influence Y in a nonlinear, possibly unknown way, while
leaving the influence of ε additive, will also give rise to an additive model. In this latter
case

Y = g(X) + ε

for some function g. Typical restrictions that are imposed on such a model are that g is
continuous and that the distribution of ε given X has support R. Typically, one would
like to add the restriction that the distribution of (X, ε) is such that for all x in some
set, the conditional expectation of ε given X = x is 0. In such a case g(x) denotes
the conditional expectation of Y given X = x, which is an object of interest when
forecasting the value of Y conditional on X = x, under a squared-error loss function.
In other situations, one may want to add the restriction that the conditional median,
or other quantile of ε, given X = x is 0. Many methods exist to estimate conditional
means and conditional quantiles nonparametrically. Prakasa-Rao (1983), Härdle and
Linton (1994), Pagan and Ullah (1999), Matzkin (1994), Koenker (2005), and X. Chen
(2007), among others, survey parts of this literature.

2.2.1.2. Nonadditive models When the unobservable random terms in an economic
model have important interpretations such as being variables representing tastes of con-
sumers, or productivity shocks in production functions, it is rarely the case that these
unobservable random terms influence the dependent variables in the model in an ad-
ditive way. Nonadditive models allow the unobservable variables that are determined
outside the model to affect the values of the variables that are determined within the
model in nonadditive ways.

For a simple example, let Y denote an observable dependent variable, X denote a
vector of observable explanatory variables, and ε denote an unobservable explanatory
variable. We can specify the functional relationship between these variables as

Y = m(X, ε)

for some function m : RK × R → R. We may impose the restrictions that the function
m is strictly increasing in ε, for all values of X, and that the distribution, Fε,X, of (X, ε)

is strictly increasing over RK+1. We may add the restriction that m is differentiable,
or that X and ε are distributed independently of each other. When the latter restriction
is imposed, we will call such a model an independent nonadditive model. An example
of such a model could be when X denotes hours of work of an individual, ε denotes
the ability of the individual to perform some task, and Y is output of the individual.
Conditional on working the same quantity x of hours of work, output is higher when
ability is higher.

Nonparametric models of this type were studied in Roehrig (1988), Olley and Pakes
(1996), Brown and Matzkin (1998), Matzkin (1999, 2003), Altonji and Ichimura (2000),
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Altonji and Matzkin (2001), and Imbens and Newey (2003), among others. When the
distribution of ε is specified to be U(0, 1) and m is strictly increasing in ε, the function
m can be interpreted as a nonparametric conditional quantile function. See Chaudhuri
(1991) and Chaudhuri, Doksum and Samarov (1997), for nonparametric estimation, as
well as the references in Koenker (2005).

The additive model described in Section 2.2.1.1 can be interpreted as a different rep-
resentation of the nonadditive model. One can always express the model: Y = m(X, ε)

as Y = g(X) + η, where for each x, g(x) = E(Y |X = x). In such a case, the value of
the additive unobservable η has, by construction, conditional expectation equal 0, given
X = x. The distribution of η given X = x can be derived from the function m and
the distribution of ε given X = x, since by its definition, η = Y − E(Y |X = x) =
m(X, ε) − g(x).

2.2.1.3. Triangular nonadditive model When m and ε are multivalued, a particular
nonadditive model is the triangular nonadditive model. In this model, there are G en-
dogenous (outcome) variables, Y1, . . . , YG, and G unobservable variables, ε1, . . . , εG.
Given a vector of explanatory variables, X ∈ RK , the value of each Yg is determined
recursively from X, Y1, . . . , Yg−1, and εg:

Y1 = m1(X, ε1),

Y2 = m2(X, Y1, ε2),

Y3 = m3(X, Y1, Y2, ε3),

...

YG = mG(X, Y1, Y2, . . . , YG−1, εG).

This is a nonparametric nonadditive version of the triangular system in linear simulta-
neous equations [see Hausman (1983)], where for some lower triangular, G ×G matrix
A and some G × K matrix B,

ε = AY + BX

where ε is the G × 1 vector (ε1, . . . , εG)′, Y is the G × 1 vector (Y1, . . . , YG)′, and X

is the K × 1 vector (X1, . . . , XK)′.
Nonparametric identification in the nonparametric, nonadditive model has been stud-

ied recently by Chesher (2003) and Imbens and Newey (2003), among others. The
latter considers also nonparametric estimation. [Ma and Koenker (2006) compare the
approaches of those two papers. See also Matzkin (2004).] A typical example [see
Imbens and Newey (2003) and Chesher (2003)] is the model where Y2 denotes life-
time discounted income, Y1 denotes years of education, X is a variable denoting the
cost of education, ε1 is (unobserved) ability, and ε2 is another unobservable variable
that affects income. In this example, X is an argument of the function m1 but not of
the function m2. Many panel data models, where the unobservables incorporate fixed
effects, fall into this structure.
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By recursively substituting the endogenous variables, in the above system of the equa-
tions, one can obtain the system of reduced form equations, where each endogenous
variable is solely determined by observable and unobservable exogenous variables. This
system has the form

Y1 = h1(X, ε1),

Y2 = h2(X, ε1, ε2),

Y3 = h3(X, ε1, ε2, ε3),

...

YG = hG(X, ε1, ε2, . . . , εG)

where

h1(X, ε1) = m1(X, ε1),

h2(X, ε1, ε2) = m2(X, Y1, ε1, ε2) = m2(X, h1(X, ε1), ε1, ε2),

and so on. As can be seen from above, the reduced form of this model, which repre-
sents the G-dimensional vector of outcomes Y1, . . . , YG as G functions of the vector
of observable explanatory variables, X, and the vector of G unobservable variables
ε1, . . . , εG, is triangular in (ε1, . . . , εG), in the sense that for each g, Yg does not de-
pend on εg+1, . . . , εG.

2.2.1.4. Nonadditive index models In many situations in economics, we might be in-
terested in analyzing the effect that some vector of variables X has on a variable, Y ,
when the model establishing such a relationship between X and Y is either very com-
plicated or only vaguely known. If we could determine that the effect of X on Y is
weakly separable from the other variables, then we might be able to identify features of
the aggregator, or “index” function, h(X), even though we might not be able to infer all
the functions and distributions in the model.

A simple example of a nonadditive index model is where Y denotes an observable
dependent variable, X denotes a vector of observable explanatory variables, and ε de-
notes an unobservable explanatory variable. The functional relationship between these
variables is specified as

Y = m
(
h(X), ε

)
where m : R2 → R and h : RK → R. We may impose the restrictions that m is increas-
ing in each coordinate and h is continuous.

Stoker (1986), Han (1987), Powell, Stock and Stoker (1989), Ichimura (1993),
Horowitz (1996), Horowitz and Härdle (1996), Abrevaya (2000), and Das (2001) have
considered semiparametric estimation of single index linear models, where the function
h is specified as a linear-in-parameters function. Ichimura and Lee (1991) considered
identification and estimation of semiparametric, multiple linear index models. Matzkin
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(1991b) considered estimation of a nonparametric h. Matzkin and Newey (1993),
Horowitz (2001), and Lewbel and Linton (2007) considered estimation of h and the
distribution of ε nonparametrically. Heckman and Vytlacil (1999, 2000), and Vytlacil
and Yildiz (2004), among others, consider identification of average effects. Chesher
(2005) considers local identification when X is endogenous and ε is vector-valued.

If we impose the restriction that X and ε are independently distributed, we will call
it the independent nonadditive index model. Consider, for example, a duration model,
with a proportional hazard function, λ(t, x, ν), given by

λ(t, x, ν) = s
(
t, h(x)

)
eν

where x denotes the value of observable characteristics, X, ν denotes the value of an
unobservable characteristic, and t denotes the time, Y , at which the hazard is evaluated.
Suppose that r is an unknown positive function over R+, h is an unknown function over
the support of X, and ν is distributed independently of X. Such a model could describe a
situation where Y denotes the length of time that it takes an individual with observable
characteristics, X, and unobservable characteristic, ν, to find employment. When the
probability-density of finding employment at time t conditional on not having found
employment yet is given by the above specification for the hazard function, the model
that describes the relation between Y and X is

Y = m
(
h(X), η + ν

)
where η possesses an extreme value distribution, independent of (X, ν). Moreover, m is
strictly decreasing in η + ν.

Semiparametric and nonparametric identification of duration models, as well as cor-
responding estimation methods, were studied by Elbers and Ridder (1982), Heckman
(1991), Heckman and Singer (1984a, 1984b), Barros and Honoré (1988), Honoré
(1990), Ridder (1990), Horowitz (1999), van den Berg (2001), and Abbring and van
den Berg (2003). [See also the chapters on this topic in Lancaster (1990).]

2.2.1.5. Nonadditive simultaneous equations models In many economic models the
values of the dependent variables are determined simultaneously. A standard example
is the model of demand and supply. Let md denote an aggregate demand function, which
determines the aggregate quantity demanded of a product, Qd , as a function of the price
of the product, p, the income level of the consumers, I , and an unobservable varia-
ble εd . Let ms denote the aggregate supply function, which determines the aggregate
supplied output, Qs , as a function of the price of the product, P , input prices, W , and an
unobservable variable, εs . In equilibrium, Qd = Qs . The model can then be described
as

Qd = md
(
P, I, εd

)
,

Qs = ms
(
P,W, εs

)
,

Qd = Qs
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where the last equation denotes the equilibrium conditions that aggregate demand equals
aggregate supply. In this model, the equilibrium quantity, Q = Qd = Qs , and the equi-
librium price are determined simultaneously. In most multidimensional optimization
problems, such as those faced by a consumer maximizing a utility function or by a
multiproduct firm maximizing profits, the optimal choices are also determined simulta-
neously.

The analysis of simultaneous equations models is typically more complicated than
that of many other models because the unobservables that affect any one of the endoge-
nous variables affect, through the simultaneity, also the other endogenous variables.
This was made clear for linear models by Haavelmo (1943), who showed that least
squares was not the correct method to estimate models with endogenous variables.
Suppose, for example, that in the demand and supply example described above, md

is strictly increasing in εd and ms is strictly decreasing in εs . Then, the system can be
expressed as

εd = rd(Q, P, I),

εs = rs(Q, P,W)

where rd is the inverse function of md with respect to εd and rs is the inverse function
of ms with respect to εs . Assuming that, for any value of the vector of exogenous vari-
ables, (I,W, εd, εs), this system of structural equations possesses a unique solution for
(P,Q), one can derive the reduced form system of the model, which can be expressed
as

Q = h1(I,W, εd, εs
)
,

P = h2(I,W, εd, εs
)
.

When the structural equations in the simultaneous equations model above are linear in
the variables, as in the standard linear models for simultaneous equations, the reduced
form equations turn out to be linear in the unobservables. In such a case, to each reduced
form equation there corresponds a unique unobservable random term, which enters the
equation in an additive way. The value of each such unobservable is a function of εd, εs

and of the coefficients that appear in rd and rs . Identification in linear simultaneous
equations can be analyzed using the results in Koopmans (1949), Koopmans, Rubin
and Leipnik (1950), and Fisher (1966), among others. [See Hausman (1983) and Hsiao
(1983) for surveys of that literature.]

We will consider below the nonadditive simultaneous equations model described by

ε = r(Y,X)

where Y ∈ RG denote a vector of observable dependent variables, X ∈ RK denote a
vector of observable explanatory variables, and ε ∈ RL denote a vector of unobservable
explanatory variables. The function r : RG × RK → RL specifies the relationship be-
tween these vectors. In our analysis of this model, we will impose the restriction that r

is differentiable and is such that for all values of (X, ε), there is a unique Y satisfying
the above equation. We will also impose the restriction that X and ε are independently
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distributed with support RK × RG and that r is such that for each x, the density of Y

given X = x has support RG.
The identification of nonparametric simultaneous equations satisfying these proper-

ties was first analyzed by Roehrig (1988), following a technique developed by B. Brown
(1983) for parametric, nonlinear in variables, simultaneous equations models. Recently,
Benkard and Berry (2004) showed that Roehrig’s conditions may not guarantee identifi-
cation. Matzkin (2005b) proposed a different set of conditions. Manski (1983) proposed
a closest empirical distribution method for estimation of a semiparametric version of
these models, which did not require a parametric specification for the density of ε.
Brown and Matzkin (1998) developed a nonparametric closest empirical distribution
method, which did not require either the distribution of ε or the function r to be para-
metric. A seminonparametric maximum likelihood method, such as that developed in
Gallant and Nychka (1987), or a semiparametric maximum likelihood method, as in Ai
(1997) could also be used to estimate identified models.

When a structural function is additive in the unobservable random term, estimation
can proceed using the nonparametric instrumental variable methods of Newey and Pow-
ell (1989, 2003), Ai and Chen (2003), Darolles, Florens and Renault (2000), and Hall
and Horowitz (2005). When it is nonadditive, the methods of Chernozhukov and Hansen
(2005), or Chernozhukov, Imbens and Newey (2007) could be used.

2.2.1.6. Discrete choice models Discrete choice models are models typically used to
describe the situation where an individual has a finite number, 1, . . . ,G, of alterna-
tives to choose from. The individual has preferences defined over those alternatives and
chooses one that maximizes those preferences. It is assumed that the preference of the
individual for each alternative can be represented by a function, Vg , which depends on
observable and unobserved characteristics of the individual and of the alternative. Let
S denote a vector of observable socioeconomic characteristics of a typical individual.
Let Zg denote a vector of observable characteristics of alternative g. Let ε denote a
vector of unobservable variables. It is typically assumed that ε ∈ RJ where J � G. For
each g, let Y ∗

g = Vg(S, Zg, ε), and let Yg = 1 if the individual chooses alternative g and
Yg = 0 otherwise. Assume that the functions V1, . . . , VG and the distribution of ε are
such that there is zero probability that for some g �= k, Vg(S, Zg, ε) = Vk(S, Zk, ε). In
this model, the vector of unobserved endogenous variables is Y ∗ = (Y ∗

1 , . . . , Y ∗
G), and

the vector of observable endogenous variables is Y = (Y1, . . . , YG) where, for each g,

Yg =
{

1 if Vg(S, Zg, ε) > Vk(S, Zk, ε) for all k �= g,

0 otherwise.

The vector of observable explanatory variables is X = (S, Z1, . . . , ZG). The condi-
tional probability of Y given X is given by

Pr(Yg = 1|X) = Pr
({

ε
∣∣ Vg(S, Zg, ε) > Vk(S, Zk, ε) for all k ≡ j

})
.

Discrete choice models were originally developed by McFadden (1974) under the linear
additive specification that for all g
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Vg(S, Zg, ε) = αg + γgS + βgZg + εg

and ε = (ε1, . . . , εG). Initially, McFadden (1974) specified a parametric distributions
for ε. Subsequent work by Manski (1975, 1985), Cosslett (1983), Powell, Stock and
Stoker (1989), Horowitz (1992), Ichimura (1993), and Klein and Spady (1993), among
others, developed methods that did not require a parametric specification for ε. Matzkin
(1991a) considered identification when the distribution of ε = (ε1, . . . , εG) is specified
parametrically and for each g

Vg(S, Zg, ε) = vg(S, Zg) + εg

for some unknown functions vg . Matzkin (1992, 1993) extended these results to the case
where both the distribution of (ε1, . . . , εG) and the functions v1, . . . , vG are nonpara-
metric.

3. Identification

3.1. Definition of identification

Following the description of an econometric model in Section 2, we denote the set
of all vectors of functions and distributions that satisfy the restrictions imposed by a
model by S. We denote any element in S by ζ , and we denote the element of S cor-
responding to the vector of true functions and distributions by ζ ∗. For any element ζ

in S, we will denote by FY,X(·, ·; ζ ) the distribution of the observable variables gener-
ated by ζ . The distribution of the observable variables generated by ζ ∗ will be denoted
by FY,X(·, ·; ζ ∗) or simply by FY,X.

The analysis of identification deals with the mapping between the distribution of the
observable variables and the underlying elements in the model. Given a model, with an
associated vector of functions and distributions, ζ ∗, and a set S of vectors of functions
and distributions satisfying the same restrictions that ζ ∗ is assumed to satisfy, we can
ask what elements of ζ ∗ are uniquely determined from FY,X. More generally, we may
ask what features of ζ ∗ can be uniquely recovered from FY,X. By a feature of ζ , we
mean any function Ψ : S → Ω . This could be an element of ζ , or a property such as, for
example, the sign of the derivative of a particular function in ζ . We will let ψ∗ = Ψ (ζ ∗);
ψ∗ then denotes the true value of the feature of ζ ∗. Elements in the range, Ψ (S), of Ψ

will be denoted by ψ . Given ψ ∈ Ψ (S), we define ΓY,X(ψ, S) to be the set of all
probability distributions of (Y,X) that are consistent with ψ and S. Formally,

ΓY,X(ψ, S) = {
FY,X(·, ·; ζ )

∣∣ ζ ∈ S and Ψ (ζ ) = ψ
}
.

In other words, ΓY,X(ψ, S) is the set of all distributions of (Y,X) that are generated by
some vector of functions and distributions in S and whose value of the element that we
want to infer is ψ .

In the model of consumer demand, ψ∗ may denote, for example, the utility func-
tion U∗, the expected demand of a socioeconomic group at a particular budget
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E[m∗(p, I,w, ε)|p, I,w], or the expected infinitesimal effect in the demand of a
change in price, E[∂m∗(p, I,w, ε)/∂p|p, I,w].

A key concept when analyzing identification is the one of observational equivalence.
Two values ψ,ψ ′ ∈ Ω are observationally equivalent if there exist at least two vectors,
ζ, ζ ′ ∈ S with Ψ (ζ ) = ψ , Ψ (ζ ′) = ψ ′, and FY,X(·, ·; ζ ) = FY,X(·, ·; ζ ′):

DEFINITION 3.1. ψ,ψ ′ ∈ Ω are observationally equivalent in the model S if[
ΓY,X(ψ, S) ∩ ΓY,X(ψ ′, S)

] �= ∅.

The feature ψ∗ is identified if there is no ψ ∈ Ω such that ψ �= ψ∗ and ψ is
observationally equivalent to ψ∗:

DEFINITION 3.2. ψ∗ ∈ Ω is identified in model S if for any ψ ∈ Ω such that ψ �= ψ∗
[
ΓY,X(ψ, S) ∩ ΓY,X(ψ∗, S)

] = ∅.

The following characterization is often used to prove identification when it is easy
to show that ψ∗ can be recovered uniquely from any distribution in ΓY,X(ψ∗, S) in
particular models:

DEFINITION 3.3. ψ∗ ∈ Ω is identified in model S if for any ψ ∈ Ω([
ΓY,X(ψ, S) ∩ ΓY,X(ψ∗, S)

] �= ∅) ⇒ [ψ = ψ∗].

3.2. Identification in additive models

Consider the model

Y = g∗(X) + ε

where Y denotes an observable dependent variable, X ∈ RK denotes a vector of
observable explanatory variables, ε denotes an unobservable explanatory variable,
and g∗ : RK → R is an unknown, continuous function. Suppose that we were in-
terested in the value g∗(x̄) of the function g∗ at a particular value x̄ of X. For

any distribution F̃ε,X of (ε,X), let E[ε|X = x; F̃ε,X] denote the expectation of ε

conditional on X = x, calculated using F̃ε,X, and let f̃X denote the probability

density of the marginal distribution F̃X. Let S = {(g̃, F̃ε,X) | g̃ : RK → R is
continuous and F̃ε,X is a distribution on RK+1 such that (i) f̃X(x̄) > 0 and f̃X is
continuous at x̄, (ii) E[ε|X = x̄; F̃ε,X] = 0 and E[ε|X = x; F̃ε,X] is continuous in x

at x̄}. Let Ω denote the set of all possible values that ψ∗ = g∗(x̄) can attain. Then,

(3.a) ψ∗ = g∗(x̄) is identified.
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PROOF OF (3.a). Let E[Y |X = x; g̃, F̃ε,X] denote the conditional expectation
of Y given X = x, for the distribution generated by (g̃, F̃ε,X). Suppose that
(g∗, F ′

ε,X), (g̃, F̃ε,X) ∈ S and g̃(x̄) �= g∗(x̄). Then, since

E[Y |X = x̄; g̃, F̃ε,X] = g̃(x̄) + E[ε|X = x̄; F̃ε,X] = g̃(x̄),

E
[
Y

∣∣X = x̄; g∗, F ′
ε,X

] = g∗(x̄) + E
[
ε
∣∣X = x̄; F ′

ε,X

] = g∗(x̄)

and both functions are continuous at x̄, it follows by the properties of F ′
ε,X and F̃ε,X

that

FY,X

(·; g∗, F ′
ε,X

) �= FY,X(·; g̃, F̃ε,X).

Hence, ψ∗ is identified. �

When g∗ is identified, we can also identify F ∗
ε,X. Assume for simplicity that the

marginal distribution FX has an everywhere positive density. Let S = {(g̃, F̃ε,X) |
g̃ : RK → R is continuous and F̃ε,X is a distribution that has support RK+1 and is such
that E[ε|X = x; F̃ε,X] is continuous in x and it equals 0 at all values of x}. Let Ω

denote the set of all possible pairs of functions ψ = (g, Fε,X). Then,

(3.b) ψ∗ = (
g∗, F ∗

ε,X

)
is identified.

PROOF OF (3.b). Using the same arguments as in the proof of (3.a), we can show that,
for any x, g∗(x) is identified. To show that F ∗

ε,X is identified, note that

FY |X=x(y) = Pr(Y � y|X = x)

= Pr
(
g∗(X) + ε � y

∣∣X = x
)

= Pr
(
ε � y − g∗(x)

∣∣X = x
)

= F ∗
ε|X=x

(
y − g∗(x)

)
.

Since the marginal density, f ∗
X, of X is identified, it follows that F ∗

ε,X(x, e) is identi-
fied. �

The linear model is, of course, the most well-known case of an additive model. In
this case, for all x,

g∗(x) = α∗ + β∗x
for some α∗ ∈ R, β∗ ∈ RK . To identify ψ∗ = (α∗, β∗) within the set of all vectors
(α, β) ∈ R1+K , one needs a rank condition in addition to the location normalization.
Suppose that for K + 1 vectors x(1), . . . , x(K+1), g∗(x(k)) is identified and the rank of
the (K + 1) × (K + 1) matrix whose kth row is (1, x(k)) is K + 1. Then, the system
of K + 1 linear equations

α∗ + β∗x(k) = g∗(x(k)
)
, k = 1, . . . , K + 1,

has a unique solution. Hence, (α∗, β∗) is identified. �
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3.3. Identification in nonadditive models

Since the nonadditive model is more general than the additive model, it would not be
surprising to find out that stronger conditions are necessary for the identification of
the function m∗ and distribution F ∗

ε,X in the model where Y is an observable dependent
variable, X is a vector of observable explanatory variables, ε is an unobservable random
term explanatory variable, and

Y = m∗(X, ε).

In fact, Matzkin (2003, Lemma 1) establishes that even when m∗ is assumed to be
strictly increasing in ε and ε is distributed independently of X, one cannot identify m∗.
Assume that FX is known. Let Ξ denote the support of X, which will be assumed to
be RK . We will assume that F ∗

ε has support R and that ε is distributed independently
of X. Hence, we can characterize the model by pairs (m, Fε).

THEOREM 3.1. [See Matzkin (2003).] Let S = {(m̃, F̃ε) | m̃ : Ξ × R → R is contin-
uous on Ξ × R and strictly increasing in its last coordinate and F̃ε is continuous and
strictly increasing on R}. Let Ψ : S → Ω denote the first coordinate of ζ =
(m, Fε) ∈ S. Then, m, m̃ ∈ Ω are observationally equivalent iff for some continuous
and strictly increasing function s : R → R and all x ∈ Ξ , ε ∈ R

m̃
(
x, s(ε)

) = m(x, ε).

PROOF. Suppose m, m̃ ∈ Ω are observationally equivalent. Then, there exist continu-
ous and strictly increasing Fε, F̃ε such that for all x ∈ Ξ , y ∈ R

FY |X=x

(
y; (m, Fε)

) = FY |X=x

(
y; (m̃, F̃ε)

)
.

Let r(x, ·) and r̃(x, ·) denote, respectively, the inverses of m(x, ·) and m̃(x, ·). Since for
all y, x

FY |X=x

(
y; (m, Fε)

) = Pr
(
Y � y|X = x; (m, Fε)

) = Fε

(
r(y, x)

)
and

FY |X=x

(
y; (m̃, F̃ε)

) = Pr
(
Y � y|X = x; (m̃, F̃ε)

) = F̃ε

(
r̃(y, x)

)
it follows that for all y, x

Fε

(
r(y, x)

) = F̃ε

(
r̃(y, x)

)
.

Since Fε, F̃ε are strictly increasing and continuous, the function s(t) = F̃−1
ε (Fε(t)) is

strictly increasing and continuous and r̃(y, x) = s(r(y, x)). Let y = m(x, ε). Since r̃

is the inverse of m̃

y = m̃
(
x, r̃(y, x)

) = m̃
(
x, s

(
r(y, x)

)) = m̃
(
x, s(ε)

)
.
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Hence,

m(x, ε) = m̃
(
x, s(ε)

)
.

Conversely, suppose that m and m̃ are such that for a strictly increasing and continu-
ous function s, all x and ε

m(x, ε) = m̃
(
x, s(ε)

)
.

Let Fε denote any continuous and strictly increasing distribution on R. Let ε̃ = s(ε)

and let F̃ε denote the distribution of ε̃, which is derived from s and Fε. Let r and r̃

denote respectively the inverse functions of m with respect to ε and of m̃ with respect
to ε̃. Then, for all y, x

FY |X=x

(
y; (m, Fε)

) = Pr
(
Y � y

∣∣X = x; (m, Fε)
) = Fε

(
r(y, x)

)
and

FY |X=x

(
y; (m̃, F̃ε)

) = Pr
(
Y � y

∣∣X = x; (m̃, F̃ε)
) = F̃ε

(
r̃(y, x)

)
.

Hence, m and m̃ are observationally equivalent. �

An implication of the above result is that to identify m∗, one must restrict m∗ to be-
long to a set of functions such that for any two different continuous functions in the
set, their corresponding inverse functions are not continuous, strictly increasing trans-
formations of each other. Suppose, for example, that we impose the normalization that
for some x̄ for which fX(x̄) > 0, where fX, the marginal probability density of X, is
continuous at x̄, and for all ε, all m ∈ Ω satisfy

m(x̄, ε) = ε.

Then, all the inverse functions, r , must satisfy

r(ε, x̄) = ε.

Suppose r, r̃ are any two such functions and for a strictly increasing s, and all ε, x

r̃(ε, x) = s
(
r(ε, x)

)
.

Then, letting x = x̄, it follows that for any t

t = r̃(t, x̄) = s
(
r(t, x̄)

) = s(t).

Hence, s is the identity function.
Clearly, if m∗ is identified, so is F ∗

ε , since for all e and any x

F ∗
ε (e) = Pr(ε � e) = Pr(ε � e|X = x)

= Pr
(
m∗(X, ε) � m∗(x, e)

∣∣X = x
) = FY |X=x

(
m∗(x, e)

)
.
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In this expression, the first equality follows by the definition of F ∗
ε , the second by

the independence between ε and X, the third by the strict monotonicity of m∗ in its last
coordinate, and the last equality follows by the definition of Y and that of FY |X.

It is also clear that if F ∗
ε is specified, then m∗ is identified, since from the above

equation it follows that

m∗(x, e) = F−1
Y |X=x

(
F ∗

ε (e)
)
.

Imbens and Newey (2003) and Blundell and Powell (2003), for example, use a normal-
ization that amounts to specifying ε to be U(0, 1).

3.3.1. Identification of derivatives

Rather than normalizing the set of functions, as above, we may ask what features can
be identified without normalizations. It turns out that derivatives and discrete changes
are identified. For the first result, let x̄ and ȳ denote particular values of, respectively,
X and Y . Let ε̄ denote the value of ε at which ȳ = m∗(x̄, ε̄). Assume that ε and X

have differentiable densities, strictly positive at ε̄ and x̄, and that m∗ is differentiable at
(x̄, ε̄). Let Ω denote the set of all values that ∂m∗(x̄, ε̄)/∂x may attain. Then,

(3.c) ψ∗ = ∂m∗(x̄, ε̄)/∂x is identified.

PROOF OF (3.c). We follow closely Matzkin (1999) and Chesher (2003). By indepen-
dence between X and ε and the strict monotonicity of m,

F ∗
ε (ε̄) = F ∗

ε|X=x̄ (ε̄)

= Pr(ε � ε̄|X = x̄)

= Pr
(
m∗(X, ε) � m∗(x̄, ε̄)

∣∣X = x̄
)

= Pr
(
Y � m∗(x̄, ε̄)

∣∣X = x̄
)

= FY |X=x̄

(
m∗(x̄, ε̄)

)
.

Taking derivatives with respect to x, on both sides, we get that

0 = ∂FY |X=x̄ (t)

∂x

∣∣∣∣
t=m∗(x̄,ε̄)

+ ∂FY |X=x̄ (t)

∂t

∣∣∣∣
t=m∗(x̄,ε̄)

∂m∗(x̄, ε̄)

∂x
.

Hence, the derivative

∂m∗(x̄, ε̄)

∂x
= −

[
∂FY |X=x̄ (ȳ)

∂y

]−1
∂FY |X=x̄ (ȳ)

∂x

is uniquely derived from the distribution FY,X of the observable variables. �
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3.3.2. Identification of finite changes

Finite changes can also be identified. Fix again the value of (Y,X) at (ȳ, x̄), and let
again ε̄ be such that ȳ = m∗(x̄, ε̄). We are interested in the value of y′ − ȳ where
y′ = m∗(x′, ε̄). This is the causal effect on Y of changing the value of X from x̄ to x′,
while leaving the value of the unobservable variable, ε, unchanged. Assume that the
probability density f ∗

X has a continuous extension and is strictly positive at x̄ and x′,
and that the density of ε is strictly positive at ε̄. Let Ω denote the set of all values that
y′ − ȳ may attain. Then,

(3.d) ψ∗ = m∗(x′, ε̄) − m∗(x̄, ε̄) is identified.

PROOF OF (3.d). The independence between X and ε and the strict monotonicity of m

imply that

Fε(ε̄) = FY |X=x̄

(
m∗(x̄, ε̄)

)
and, similarly, that

Fε(ε̄) = FY |X=x′
(
m∗(x′, ε̄)

)
.

The strict monotonicity of FY |X=x′ then implies that

y′ − ȳ = m∗(x′, ε∗) − ȳ

= F−1
Y |X=x′

(
Fε(ε

∗)
) − ȳ

= F−1
Y |X=x′

(
FY |X=x̄

(
m∗(x̄, ε̄)

)) − ȳ

= F−1
Y |X=x′

(
FY |X=x̄ (ȳ)

) − ȳ.

Hence, the change in the value of Y when X is changed from x̄ to x′ is identified. �

3.3.3. Identification in triangular systems

In a model with a nonadditive, unobserved efficiency variable, Olley and Pakes (1996)
used the strict monotonicity between investment and the unobserved index variable,
conditional on observable age and capital stock of the firm, to express the unobserved
efficiency index in terms of the observables age, capital stock, and investment. In a simi-
lar spirit, Chesher (2003) derived expressions for unobserved variables from conditional
distributions, and used them to derive expressions for the derivatives of functions in a
triangular system of equations with nonadditive random terms. Chesher used a local in-
dependence assumption. We will analyze here a special case of Chesher’s model where
the independence restrictions are stronger.

To provide an example, suppose that the model of consumer demand is

Y = m(p, I, ε, η)
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where ε and η are unobservable variables and m is strictly increasing in η. Suppose that
I is determined by ε and an observable variable Z, according to a function r̃ , strictly
increasing in ε:

I = r̃(Z, ε).

Assume that Z is distributed independently of (ε, η). For simplicity, assume full support
for all variables and differentiability for all functions. Then,

(3.e)
∂m(p, I, ε, η)

∂I
can be identified.

PROOF OF (3.e). Letting r denote the inverse of r̃ with respect to ε and substituting in
the demand function, we have that

Y = m
(
p, I, r(Z, I ), η

)
.

Let

v(p, I, Z, η) = m
(
p, I, r(Z, I ), η

)
.

Note that

∂v(p, I, Z, η)

∂I
= ∂m(p, I, r(Z, I ), η)

∂I
+ ∂m(p, I, r(Z, I ), η)

∂ε

∂r(Z, I)

∂I

and

∂v(p, I, Z, η)

∂Z
= ∂m(p, I, r(Z, I ), η)

∂ε

∂r(Z, I)

∂Z
.

Hence,

∂m(p, I, ε, η)

∂I

∣∣∣∣
ε=r(Z,I )

= ∂v(p, I, Z, η)

∂I
− ∂v(p, I, Z, η)

∂Z

[ ∂r(Z,I)
∂I

∂r(Z,I )
∂Z

]
.

This implies that, if we know the functions v and r , we can identify the derivative
of m with respect to I , at particular values of ε and δ. But, the models

I = r̃(Z, ε)

and

Y = v(p, I, Z, η)

are just the independent nonadditive model, when ε and Z are independently distrib-
uted, (p, I, Z) and η are also independently distributed, and when v and r̃ are strictly
increasing, respectively, in η and ε. Hence, the derivatives of r̃ and of v are identified
from the distribution of, respectively, (I, Z) and (Y, p, I, Z). In particular, using the
results in the previous section, it immediately follows that

∂v(p, I, Z, η)

∂I
= −

[
∂FY |I,Z(y∗)

∂y

]−1
∂FY |I,Z(y∗)

∂I
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and

∂v(p, I, Z, η)

∂Z
= −

[
∂FY |I,Z(y∗)

∂y

]−1
∂FY |I,Z(y∗)

∂Z

at y∗ such that y∗ = m(I,Z, η). Differentiating the expression

Fε

(
r(Z, I )

) = FI |Z(I)

which can be shown to be equivalent to the expression

Fε(ε) = FI |Z
(
r̃(Z, ε)

)
we get, similarly, that

∂r(Z, I)

∂I
= −

[
∂Fε(ε)

∂ε

∣∣∣∣
ε=r(Z,I )

]−1
∂FI |Z(I)

∂I

and

∂r(Z, I)

∂Z
= −

[
∂Fε(ε)

∂ε

∣∣∣∣
ε=r(Z,I )

]−1
∂FI |Z(I)

∂Z
.

Hence,

∂m(p, I, ε, η)

∂I
=

[
∂FY |I,Z(y∗)

∂y

]−1[
∂FY |I,Z(y∗)

∂Z

[ ∂FI |Z(I)

∂I

∂FI |Z(I)

∂Z

]
− ∂FY |I,Z(y∗)

∂I

]

at ε = r(I, Z) and y∗ = m(p, I, ε, η).
Hence, using the variable Z we can identify the derivative of m with respect to I ,

leaving the value of ε fixed. �

3.4. Identification in nonadditive index models

Consider the model

Y = m∗(h∗(X), ε
)

where Y denotes an observable dependent variable, ε denotes an unobservable explana-
tory variable whose support is R, X denotes a vector of observable explanatory variables
that possesses support Ξ = RK , X is such that the last coordinate, XK , of X possesses
an everywhere positive density conditional on the other coordinates of X, ε is distrib-
uted independently of X, m∗ : R2 → R is increasing in each coordinate, nonconstant,
and satisfies that for all t, t ′,

t < t ′ ⇒ there exists ε such that m∗(t, ε) < m∗(t ′, ε)

and h∗ : Ξ → R is continuous on Ξ and strictly increasing in its last coordinate. As-
sume that FX is known. The model, S, is then characterized by the set of all triplets
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ζ = (h̃, F̃ε, m̃) such that h̃, F̃ε, and m̃ satisfy the assumptions that, respectively, h∗,
F ∗

ε , and m∗ are assumed to satisfy. Let Ω denote the set composed of all first coor-
dinates, h̃, of (h̃, F̃ε, m̃) ∈ S. Let ◦ denote the composition of two functions, so that
(g ◦ h̃)(t) = g(h̃(t)). The following theorem was stated in Matzkin (1994). Its proof
is a modification of the identification result in Han (1987) for semiparametric index
models.

THEOREM 3.2. In the model described above, two functions h, h̃ ∈ Ω are observa-
tionally equivalent if and only if there exists a continuous, strictly increasing function
g : R → R such that h̃ = g ◦ h.

PROOF. Suppose that for all x, h̃(x) = g(h(x)). Then, letting m̃(t, e) = m(g−1(t), e),
it follows that for all x, e

m̃
(
h̃(x), e

) = m
(
g−1(g(

h(x)
))

, e
)

= m
(
h(x), e

)
.

Hence, for any distribution, Fε, FY,X(·, ·; h, Fε,m) = FY,X(·, ·; h̃, Fε, m̃). It follows
that h and h̃ are observationally equivalent.

On the other hand, suppose that there exists no strictly increasing, continuous g such
that h̃ = g ◦ h, then, there must exist x′, x′′ ∈ Ξ such that

h(x′) < h(x′′) and h̃(x′) > h̃(x′′).

By the properties of any m̃, m, specified by the model, this implies that there exist ε, ε̃

such that

m
(
h(x ′), ε

)
< m

(
h(x′′), ε

)
and m̃

(
h̃(x′), ε̃

)
> m̃

(
h̃(x′′), ε̃

)
.

Let Fε, F̃ε be any distributions that have support R. By independence between X and ε,
the full support of ε, and the monotonicity of m and m̃, this implies that

Pr
{
(e′, e′′)

∣∣(m̃(
h̃(x′), e′) > m̃

(
h̃(x′′), e′′))}

> Pr
{
(e′, e′′)

∣∣(m̃(
h̃(x′), e′) < m̃

(
h̃(x′′), e′′))}

while

Pr
{
(e′, e′′)

∣∣(m(
h(x′), e′) > m

(
h(x′′), e′′))}

< Pr
{
(e′, e′′)

∣∣(m(
h(x′), e′) < m

(
h(x′′), e′′))}.

Hence, either

Pr
{
(e′, e′′)

∣∣(m̃(
h̃(x′), e′) < m̃

(
h̃(x′′), e′′))}

�= Pr
{
(e′, e′′)

∣∣(m(
h(x′), e′) < m

(
h(x′′), e′′))}
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or

Pr
{
(e′, e′′)

∣∣(m̃(
h̃(x′), e′) > m̃

(
h̃(x′′), e′′))}

�= Pr
{
(e′, e′′)

∣∣(m(
h(x′), e′) > m

(
h(x′′), e′′))}.

Let FY,X(·; h̃, F̃ε, m̃) and FY,X(·; h, Fε,m) denote the distributions generated by, re-

spectively, (h̃, F̃ε, m̃) and (h, Fε,m). Let Y ′ and Y ′′ denote the random variables
that have, respectively, distributions FY |X=x′ and FY |X=x′′ . If any of the two in-
equalities above are satisfied, the probability of the event Y ′ > Y ′′ calculated using
FY |X=x′(·, ·; m̃, h̃, F̃ε) and FY |X=x′′(·, ·; m̃, h̃, F̃ε) will be different from the probabil-
ity of the same event calculated using FY |X=x′(·, ·; m,h, Fε) and FY |X=x′′(·, ·; m,h, Fε).
By continuity of the functions, and the support conditions of X, this will still hold for
all x̃ ′ and x̃′′ in neighborhoods, respectively, of x′ and x′′, which have positive probabil-
ity. Hence, FY,X(·, ·; m̃, h̃, F̃ε) �= FY |X(·, ·; m,h, Fε). It follows that h and h̃ are not
observationally equivalent. �

This result implies that if one restricts h∗ to belong to a set of functions such that no
two functions in the set are strictly increasing transformations of each other, then in that
set h∗ is identified. Matzkin (1994) describes several such sets of functions. [See also
Section 4.4.]

3.5. Identification in simultaneous equations models

Consider the simultaneous equations model, described in Section 2.2.1.5, where
Y ∈ RG denotes a vector of observable dependent variables, X ∈ RK denotes a vector
of observable explanatory variables, ε ∈ RL denotes a vector of unobservable explana-
tory variables, and the relationship between these vectors is specified by a function
r∗ : RG × RK → RL such that

ε = r∗(Y,X).

The set S consisted of vectors of twice differentiable functions r : RG ×RK → RG and
twice differentiable, strictly increasing distributions Fε,X : RG × RK → R such that
(i) for all Fε,X, ε and X are distributed independently of each other, (ii) for all r and
all y, x, |∂r(y, x)/∂y| > 0, (iii) for all r and all x, ε, there exists a unique value of y

such that ε = r(y, x), and (iv) for all r , all Fε,X, and all x, the distribution of Y given
X = x, induced by r and Fε|X=x has support RG.

For any (r, Fε,X) ∈ S, condition (iii) implies that there exists a function h such that
for all ε,X,

Y = h(X, ε).

This is the reduced form system of the structural equations system determined by r . We
will let h∗ denote the reduced form function determined by r∗.
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A special case of this model is the linear system of simultaneous equations, where
for some invertible, G × G matrix A and some G × K matrix B,

ε = AY + BX.

Premultiplication by (A)−1 yields the reduced form system

Y = ΠX + ν

where Π = −(A)−1B and ν = (A)−1ε. The identification of the true values, A∗,
B∗, of the matrices A and B, and the distribution of ε has been the object of study
in the works by Koopmans (1949), Koopmans, Rubin and Leipnik (1950), and Fisher
(1966), among others, and it is treated in most econometrics textbooks. The chapters
by Hausman (1983) and Hsiao (1983) present the main known results. Assume that
E(ε) = 0, and Var(ε) = Σ∗, an unknown matrix. Let W denote the variance of ν.
Π and W can be identified from the distribution of the observable variables (Y,X).
The identification of any element of (A∗, B∗,Σ∗) is achieved when it can be uniquely
recovered from Π and Var(ν). A priori restrictions on A∗, B∗, and Σ∗ are typically
used to determine the existence of a unique solution for any element of (A∗, B∗,Σ∗).
[See Fisher (1966).]

In an analogous way, one can obtain necessary and sufficient conditions to uniquely
recover r∗ and F ∗

ε from the distribution of the observable variables (Y,X), when the sys-
tem of structural equations is nonparametric. The question of identification is whether
we can uniquely recover the density f ∗

ε and the function r∗ from the conditional densi-
ties fY |X=x .

Following the definition of observational equivalence, we can state that two functions
r , r̃ satisfying the assumptions of the model are observationally equivalent iff there exist
fε, f̃ε such that (fε, r), (f̃ε, r̃) ∈ S and for all y, x

(3.5.1)fε̃

(
r̃(y, x)

)∣∣∣∣∂r̃(y, x)

∂y

∣∣∣∣ = fε

(
r(y, x)

)∣∣∣∣∂r(y, x)

∂y

∣∣∣∣.
The function r̃ can be expressed as a transformation of (ε, x). To see this, define

g(ε, x) = r̃
(
h(x, ε), x

)
.

Since∣∣∣∣∂g(ε, x)

∂ε

∣∣∣∣ =
∣∣∣∣∂r̃(h(x, ε), x)

∂y

∣∣∣∣
∣∣∣∣∂h(x, ε)

∂ε

∣∣∣∣
it follows that |∂g(ε, x)/∂ε| > 0. Let ε̃ = r̃(y, x). Since, conditional on x, h is invert-
ible in ε and r̃ is invertible in y, it follows that g is invertible in ε. Substituting in (3.5.1),
we get that (r̃, fε̃) ∈ S is observationally equivalent to (r, fε) ∈ S iff for all ε, x

fε̃

(
g(ε, x)

)∣∣∣∣∂g(ε, x)

∂ε

∣∣∣∣ = fε(ε).

The following theorem provides conditions guaranteeing that a transformation g of ε

does not generate an observable equivalent pair (r̃, fε̃) ∈ S of a pair (r, fε) ∈ S.
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THEOREM 3.3. [See Matzkin (2005b).] Let (r, fε) ∈ S. Let g(ε, x) be such that
r̃(y, x) = g(r(y, x), x) and ε̃ = g(ε, x) are such that (r̃, fε̃) ∈ S, where fε̃ denotes the
marginal density of ε̃, If for some ε, x, the rank of the matrix⎛

⎝ (
∂g(ε,x)

∂ε
)′ ∂ log fε(u)

∂ε
− ∂ log | ∂g(ε,x)

∂ε
|

∂ε

(
∂g(ε,x)

∂x
)′ − ∂ log | ∂g(ε,x)

∂ε
|

∂x

⎞
⎠

is strictly larger than G, then, (r̃, fε̃) is not observationally equivalent to (r, fε).

Alternatively, we can express an identification theorem for the function r∗.

THEOREM 3.4. [See Matzkin (2005b).] Let M × Γ denote the set of pairs (r, fε) ∈ S.
The function r∗ is identified in M if r∗ ∈ M and for all fε ∈ Γ and all r̃ , r ∈ M such
that r̃ �= r , there exist y, x such that the rank of the matrix(

(
∂r̃(y,x)

∂y
)′ Δy(y, x; ∂r, ∂2r, ∂r̃, ∂2r̃) − ∂ log(fε(r(y,x)))

∂ε
∂r(y,x)

∂y

(
∂r̃(y,x)

∂x
)′ Δx(y, x; ∂r, ∂2r, ∂r̃, ∂2r̃) − ∂ log(fε(r(y,x)))

∂ε
∂r(y,x)

∂x

)

is strictly larger than G, where

Δy

(
y, x; ∂r, ∂2r, ∂r̃, ∂2r̃

) = ∂

∂y
log

∣∣∣∣∂r(y, x)

∂y

∣∣∣∣ − ∂

∂y
log

∣∣∣∣∂r̃(y, x)

∂y

∣∣∣∣,
Δx

(
y, x; ∂r, ∂2r, ∂r̃, ∂2r̃

) = ∂

∂x
log

∣∣∣∣∂r(y, x)

∂y

∣∣∣∣ − ∂

∂x
log

∣∣∣∣∂r̃(y, x)

∂y

∣∣∣∣.
EXAMPLE 3.1. As a very simple example, consider the simultaneous equations model,
analyzed in Matzkin (2007c), where for some unknown function, g∗, and some parame-
ter values β∗, γ ∗,

y1 = g∗(y2) + ε1,

y2 = β∗y1 + γ ∗x + ε2.

Assume that (ε1, ε2) has an everywhere positive, differentiable density f ∗
ε1,ε2

such that
for two, not necessarily known a priori, values (ε̄1, ε̄2) and (ε′′

1 , ε′′
2),

∂ log f ∗
ε1,ε2

(ε̄1, ε̄2)

∂ε1
�= ∂ log f ∗

ε1,ε2
(ε′′

1 , ε′′
2)

∂ε1

and
∂ log f ∗

ε1,ε2
(ε̄1, ε̄2)

∂ε2
= ∂ log f ∗

ε1,ε2
(ε′′

1 , ε′′
2)

∂ε2
= 0.

The observable exogenous variable x is assumed to be distributed independently
of (ε1, ε2) and to possess support R. In this model

ε1 = r∗
1 (y1, y2, x) = y1 − g∗(y2),

ε2 = r∗
2 (y1, y2, x) = −β∗y1 + y2 − γ ∗x.
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The Jacobian determinant is∣∣∣∣
(

1 − ∂g∗(y2)
∂y2

−β∗ 1

)∣∣∣∣ = 1 − β∗ ∂g∗(y2)

∂y2

which will be positive as long as 1 > β∗∂g∗(y2)/∂y2. Since the first element in
the diagonal is positive, it follows by Gale and Nikaido (1965) that the function r∗
is globally invertible if the condition 1 > β∗∂g∗(y2)/∂y2 holds for every y2. Let
r , r̃ be any two differentiable functions satisfying this condition and the other prop-
erties assumed about r∗. Suppose that at some y2, either ∂g̃(y2)/∂y2 �= ∂g(y2)/∂y2
or ∂ log(g̃(y2))/∂y2 �= ∂ log(g(y2))/∂y2. Assume also that γ �= 0 and γ̃ �= 0. Let
fε1,ε2 denote any density satisfying the same properties that f ∗

ε1,ε2
is assumed to satisfy.

Denote by (ε1, ε2) and (ε′
1, ε

′
2) the two points such that

∂ log fε1,ε2(ε1, ε2)

∂ε1
�= ∂ log fε1,ε2(ε

′
1, ε

′
2)

∂ε1

and

∂ log fε1,ε2(ε1, ε2)

∂ε2
= ∂ log fε1,ε2(ε

′
1, ε

′
2)

∂ε2
= 0.

Define

a1(y1, y2, x) = ∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε1

− β∗ ∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
,

a2(y1, y2, x) =
(

∂ log g̃(y2)

∂y2
− ∂ log g(y2)

∂y2

)

+
(

∂g(y2)

∂y2

)(
∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε1

)

− ∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε2

and

a3(y1, y2, x) = −γ
∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
.

By Theorem 3.4, r and r̃ will not be observationally equivalent if for all fε1,ε2 there
exists (y1, x) such that the rank of the matrix

A =
⎛
⎜⎝

1 −β̃ a1(y1, y2, x)

− ∂g̃(y2)
∂y2

1 a2(y1, y2, x)

0 −γ̃ a3(y1, y2, x)

⎞
⎟⎠
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is 3. Let

a′
1(y1, y2, x) = (β̃ − β)

∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
,

a′
2(y1, y2, x)

=
(

∂ log g̃(y2)

∂y2
− ∂ log g(y2)

∂y2

)

+
(

∂g̃(y2)

∂y2
− ∂g(y2)

∂y2

)(
∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε1

)
and

a′
3(y1, y2, x) = −γ

∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
.

Multiplying the first column of A by −∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 −
γ x)/∂ε1 and adding it to the third column, and multiplying the second column by
−∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)/∂ε2 and adding it to the third column,
we obtain the matrix⎛

⎜⎝
1 −β̃ a′

1(y1, y2, x)

− ∂g̃(y2)
∂y2

1 a′
2(y1, y2, x)

0 −γ̃ a′
3(y1, y2, x)

⎞
⎟⎠

which has the same rank as A. By assumption, either(
∂ log g̃(y2)

∂y2
− ∂ log g(y2)

∂y2

)
+

(
∂g̃(y2)

∂y2
− ∂g(y2)

∂y2

)(
∂ log fε1,ε2(ε1, ε2)

∂ε1

)
�= 0

or (
∂ log g̃(y2)

∂y2
− ∂ log g(y2)

∂y2

)
+

(
∂g̃(y2)

∂y2
− ∂g(y2)

∂y2

)(
∂ log fε1,ε2(ε

′
1, ε

′
2)

∂ε1

)
�= 0.

Suppose the latter. Let y1 = g(y2)+ε′
1 and let x = (−βy1 +y2 −ε′

2)/γ . It then follows
that

∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
= 0.

At such y1, x, the above matrix becomes the rank 3 matrix⎛
⎜⎝

1 −β̃ 0

− ∂g̃(y2)
∂y2

1 a′
2(y1, y2, x)

0 −γ̃ 0

⎞
⎟⎠ .

Hence, derivatives of g∗ and of the log of g∗ are identified.
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EXAMPLE 3.2. A similar example provides sufficient conditions for the identification
of a utility function and its distribution, in a multidimensional version of the utility
maximization problem described in Section 2. Let the utility function U∗ for products
1, . . . ,G + 1, for a consumer with unobservable tastes ε1, . . . , εG, be specified as

U∗(y1, . . . , yG+1, ε1, . . . , εG) = v∗(y1, . . . , yG) +
G∑

g=1

εgyg + yG+1

where v∗ is a strictly monotone, strictly concave, twice differentiable function and
where ε = (ε1, . . . , εG) is distributed independently of (p, I ) with a differentiable
density that has known convex support. [This utility specification was studied in Brown
and Calsamiglia (2004) in their development of tests for utility maximization; it is a
slight modification of the specification used in Brown and Matzkin (1998) to analyze
the identification of a distribution of utility functions from the distribution of demand.]
Normalize the price of the (G + 1)th commodity to equal 1. Maximization of U∗ with
respect to (y1, . . . , yG+1) subject to the budget constraint

∑G
g=1 pgyg + yG=1 = I

yields the first order conditions

εg = pg − ∂v∗(y1, . . . , yG)/∂yg, g = 1, . . . ,G,

yG+1 = I −
G∑

g=1

pgyg.

Let Dv∗(y) and D2v∗(y) denote, respectively, the gradient and Hessian of v∗ at
y = (y1, . . . , yG). The first set of G equations represent a system of simultane-
ous equations with observable endogenous variables (y1, . . . , yG) and observable ex-
ogenous variables (p1, . . . , pG). The strict concavity of v∗ guaranties that for any
(p1, . . . , pG) and (ε1, . . . , εG), a unique solution for (y1, . . . , yG) exists. Let W de-
note the set of functions v satisfying the same restrictions that v∗ is assumed to satisfy.
Let ε̄ denote a given value of the vector ε. Let Γ denote the set of all densities fε

of ε such that (i) fε is differentiable, (ii) fε(ε) > 0 on a neighborhood of radius δ

around ε̄, (iii) for all ε in the support of fε, ∂ log(fε(ε))∂ε = 0 iff ε = ε̄, (iv) for
all g, there exist two distinct values, ε′ and ε′′, in the δ-neighborhood of ε̄ such that
fε(ε

′), fε(ε
′′) > 0, 0 �= ∂ log(fε(ε

′))/∂εg �= ∂ log(fε(ε
′′))/∂εg �= 0, and for j �= g,

∂ log(fε(ε
′))/∂εj = ∂ log(fε(ε

′′))/∂εj = 0. Suppose that W and the support of p is
such for all y, for all v ∈ W , there exists a set of prices, Q, such that the density of p

is uniformly bounded away from zero on Q and the range of Dv(y) − p, when con-
sidered as a function of p over Q, is the δ neighborhood of ε̄. Then, if v, ṽ belong to
W and Dṽ �= Dv, there exist, for all fε ∈ Γ , values y, p such that the rank of the
corresponding matrix in Theorem 3.4 is larger than G. [See Matzkin (2007a).]

3.6. Identification in discrete choice models

Consider the discrete choice model described in Section 2.2.1.6, where a typical indi-
vidual has to choose between G + 1 alternatives. Let Vg(s, zg, ω) denote the utility for
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alternative g, where s denotes a vector of observable characteristics of the consumer,
zg denotes a vector of observable attributes of alternative g, and ω is an unobservable
random vector. The vector of observable dependent variables is y = (y1, . . . , yG+1)

defined by

yg =
{

1 if Vg(s, zg, ω) > Vk(s, zg, ω) for all k �= g,

0 otherwise.

Let z denote the vector (z1, . . . , zG+1). The conditional choice probability, for each
g = 1, . . . ,G + 1 is

Pr
({yg = 1|s, z}) = Pr

({
ω

∣∣ Vg(s, zg, ω) > Vk(s, zk, ω) for all k �= g
})

.

Since the choice probabilities of each alternative depend only on the differences be-
tween the utilities of the alternatives, only those differences can be identified. Hence,
for simplicity, we may specify VG+1(s, zG+1, ω) equal to 0 for all (s, zG+1, ω). Then,

Pr
({yG+1 = 1|s, z}) = Pr

({
ω

∣∣ 0 > Vk(s, zk, ω) for all k �= G + 1
})

.

[We assume that the probability of ties is zero.]

3.6.1. Subutilities additive in the unobservables

The simplest case to analyze is when ω = (ω1, . . . , ωG), each Vg depends only on one
coordinate, ωg of ω, and ωg is additive:

Vg(s, zg, ω) = vg(s, zg) + ωg

where vg is a nonparametric function. [Matzkin (1991a) studies identification in this
model when the distribution of ω is specified parametrically. Matzkin (1992, 1993,
1994) extends some of those results for the case of nonparametric distributions.] Un-
der the additivity assumption:

Pr
({yG+1 = 1|s, z}) = Fω1,...,ωG

(−v1(s, z1), . . . ,−vG(s, zG)
)

where Fω1,...,ωG
is the unknown distribution of (ω1, . . . , ωG). This is of the form of

a multiple index model, and it could therefore be analyzed using techniques for those
models.

Assume, for example, that each of the zg vectors includes a coordinate z
(1)
g which is

such that

vg

(
s, z(1)

g , z(2)
g

) = z(1)
g + mg

(
s, z(2)

g

)
where zg = (z

(1)
g , z

(2)
g ) and mg is a nonparametric function. Then,

Pr
({yG+1 = 1|s, z}) = Fω1,...,ωG

(−z
(1)
1 − m1

(
s, z

(2)
1

)
, . . . ,−z

(1)
G − mG

(
s, z

(2)
G

))
.

Assume that (ω1, . . . , ωG) is distributed independently of (s, z1, . . . , zG). Let
(s̄, z̄(2)) = (s̄, z̄

(2)
1 , . . . , z̄

(2)
G ) denote a particular value of (s, z(2)). Assume that
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z(1) = (z
(1)
1 , . . . , z

(1)
G ) ∈ RG possesses an everywhere positive density on RG, con-

ditional on (s̄, z̄(2)) = (s̄, z̄
(2)
1 , . . . , z̄

(2)
G ). Let αg ∈ R and specify that for g = 1, . . . ,G

mg

(
s̄, z̄(2)

g

) = αg.

Then,

Pr
({

yG+1 = 1
∣∣s̄, z(1), z̄(2)

}) = Fω1,...,ωG

(−z(1)
g − αg, . . . ,−z(1)

g − αG

)
,

which shows that Fω1,...,ωG
can be recovered from the choice probabilities, evaluated at

appropriate values of (s, z(1), z(2)).
In an influential paper, Lewbel (2000) shows that the requirement that (ω1, . . . , ωG)

be independent of (s, z) is not needed for identification of Fω1,...,ωG
. It suffices that

(ω1, . . . , ωG) be independent of z(1) conditional on (s, z(2)), in addition to the large
support condition on z(1). Since the work of Lewbel (2000), the vector z(1) has been
called a “special regressor”. Its identification force has been extended to many models
other than discrete choice models.

3.6.2. Subutilities nonadditive in the unobservables

Applying Lewbel’s special regressor technique, one can analyze models with nonaddi-
tive unobservables, as described in Matzkin (2005b). Suppose that each Vg is specified
as

Vg

(
s, z(1)

g , z(2)
g , ω

) = z(1)
g + vg

(
s, z(2)

g , ω
)

where vg is a nonparametric function. Assume that ω is distributed independently
of (s, z). Define Υg for each g by

Υg = vg

(
s, z(2)

g , ω
)
.

Since ω is distributed independently of (s, z), (Υ1, . . . , ΥG) is distributed independently
of z(1), conditional on (s, z(2)). Hence, using the arguments in Lewbel (2000), one can
recover the distribution of (Υ1, . . . , ΥG) given (s, z(2)). From this distribution, one can
identify the functions v1, . . . , vG and the distribution of (ω1, . . . , ωG) in the system

Υ1 = v1
(
s, z

(2)
1 , ω1, . . . , ωG

)
,

Υ2 = v2
(
s, z

(2)
2 , ω1, . . . , ωG

)
,

...

ΥG = vG

(
s, z

(2)
G , ω1, . . . , ωG

)
using the results in Matzkin (2005a, 2005b). In particular, assume that, given (s, z(2)),
the system of functions (v1, . . . , vG) is invertible in ω. Then, it can be equivalently
expressed as

ω = r
(
Υ, s, z(2)

)
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where ω is the vector (ω1, . . . , ωG)′ and Υ = (Υ1, . . . , ΥG). This has the same structure
as considered in the previous sections. [See Matzkin (2007a) for more detail.] Unob-
servable vectors of dimension larger than G can be dealt with making use of additional
functional restrictions and conditional independence assumptions. [See the Appendix in
Matzkin (2003).]

4. Ways of achieving identification

When a feature of interest is not identified, one may proceed in different ways to achieve
identification. One may augment the model, incorporating more observable variables.
One may impose further restrictions on either the functions, or the distributions, or both.
The analysis of observational equivalence together with economic theory can often be
used to determine appropriate restrictions. In this section, we describe examples of some
of the techniques that have been developed, following one or more of these approaches.
The emphasis will be in showing how one can recover particular features, once objects
such as conditional distributions and conditional expectations are identified.

4.1. Conditional independence

A common situation encountered in econometric models is where the unobservable
variables affecting the value of an outcome variable are not distributed independently
of the observed explanatory variables. Without additional information, identifying the
causal effect of the observable explanatory variables on the outcome variable is typically
not possible in such a situation. Usually, the additional information involves variables
and restrictions guaranteeing some exogenous variation on the value of the explanatory
variable. The leading procedures to achieve this are based on conditional independence
methods and instrumental variable methods. In the first set of procedures, independence
between the unobservable and observable explanatory variables in a model is achieved
after conditioning on some event, some function, or some value of an external vari-
able or function. The second set of procedures usually derives identification from an
independence condition between the unobservable and an external variable (an instru-
ment) or function. In this subsection, we will deal with conditional independence. In
Section 4.2, we will deal with instrumental variables.

4.1.1. Identification of functions and distributions in a nonadditive model using
conditional independence

Consider the nonadditive model

Y1 = m1(X, ε1)

where ε and X are not independently distributed and m is strictly increasing in ε. A stan-
dard example [see Chesher (2003) and Imbens and Newey (2003)] is where Y1 denotes
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earnings, X denotes years of education, and ε denotes the effect of unobservable ex-
planatory variables, which includes unobserved ability. Since X is determined as a
function of ε, these variables are not independently distributed. Suppose, however, that
some variable W is available, such that for some function m2 and some ε2,

X = m2(W, ε2).

Denoting X by Y2, the system of the two above equations is a triangular system. Imbens
and Newey (2003) developed identification results for this system when W is observable
and independent of (ε1, ε2). Chesher (2003) considered local independence conditions
for identification of local derivatives. Matzkin (2004) studied identification when ε1
and ε2 are independent, conditional on either a particular value or all possible values
of W . [A footnote in Chesher (2003) also discusses independence restrictions on the
unobservables as a source of identification.] When W is independent of (ε1, ε2), in-
dependence between ε1 and X can be determined conditional on the unobservable ε2.
When ε1 and ε2 are independent conditional on W , independence between ε1 and X

can be determined conditional on the observable W . The following theorem, in Matzkin
(2004), provides insight into the sources of identification.

THEOREM 4.1 (Equivalence Theorem). [See Matzkin (2004).] Consider the model
Y1 = m1(X, ε1). Suppose that m1 is strictly increasing in ε1, and that for all val-
ues w of W , the conditional distribution, FX,ε|W=w, of (X, ε) given W = w is strictly
increasing. Then, the following statements are equivalent:

(i) There exists a strictly increasing function m2(W, ·) and an unobservable random
term ε2 such that

X = m2(W, ε2) and

ε2 is independent of (W, ε1).

(ii) There exists a strictly increasing function r(W, ·) and an unobservable random
term δ such that

ε1 = r(W, δ),

δ is independent of (X,W).

(iii) ε1 is independent of X, conditional on W .

Consider the nonadditive model

Y1 = m1(X, ε1).

To be able to identify m1, we need to observe independent variation in each coordinate
of m. The theorem considers three different representations of the model:

Y = m1
(
m2(W, ε2), ε1

)
= m1

(
m2(W, ε2), r(W, δ)

)
= m1

(
X, r(W, δ)

)
.
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From the first expression, it follows that if ε1 and ε2 are independent conditional on at
least one value w̄ of W , then we will be able to observe events where, conditional on W ,
each coordinate of m1 achieves values independently of the other coordinates of m1.
From the third expression, it follows that if δ is independent of X conditional on at least
one value w̄ of W , then, again each coordinate of m1 will achieve values independently
of the other coordinates of m1, when conditioning on at least one value of W . The
second expression provides the same result, when we can establish that δ and ε2 are
independent, conditional on at least one value w̄ of W . The equivalence theorem above
states that as long as we show that the conditions for one of these representations are
satisfied, then the conditions for the other representations also hold. The above theorem
also holds when W is unobservable, ε2 is observable, and ε2 is distributed independently
of (ε1,W). In such a case, that (i) implies (iii) is shown in Imbens and Newey (2003)
as follows: The restriction that ε2 is independent of (W, ε1) implies that, conditional
on W , ε2 and ε1 are independent. Since conditional on W , X is a function of ε2, and ε2
is independent of ε1, if follows that conditional on W , X is independent of ε1.

The local condition, that conditional on W = w̄, ε1 and ε2 are independent, can
be shown to imply, under some additional assumptions, that m1 and the distribution
of (X, ε1) can both be identified, up to a normalization on the distribution of ε1 given
W = w̄. In particular, Matzkin (2004) shows that if m1 is strictly increasing in ε1,
Fε1,X|W=w̄ is strictly increasing in (ε1, X), for each x, Fε1|(X,W)=(x,w̄) is strictly in-
creasing in ε1, and if there exists a function m2 and an unobservable ε2 such that
X = m2(W, ε2), m2 is strictly increasing in ε2 when W = w̄, and ε1 is independent
of ε1 conditional on W = w̄, then for all x, e

(4.a) m(x, e) = F−1
Y |(X,W)=(x,w̄)

(
Fε1|W=w̄(e)

)
and

Fε1|X=x(e) = FY |X=x

(
F−1

Y |(X,W)=(x,w̄)

(
Fε1|W=w̄(e)

))
.

Matzkin (2004) describes several examples where economic theory implies the con-
ditional exogeneity of the unobservable ε2, for particular variables W .

PROOF OF (4.a). Let x be given and let e2 denote the value of ε2 such that x =
m2(w̄, e2). By conditional independence and strict monotonicity

Pr(ε1 � e|W = w̄) = Pr(ε1 � e|ε2 = e2, W = w̄)

= Pr
(
m1(X, ε1) � m1(x, e)

∣∣X = m1(w̄, e2), W = w̄
)

= FY1|X=x,W=w̄

(
m1(x, e)

)
.

Hence,

m1(x, e) = F−1
Y1|X=x,W=w̄

(
Fε1|W=w̄(e)

)
.

Since

Fε1|X=x = FY |X=x

(
m1(x, e)

)
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it follows that

Fε1|X=x = FY |X=x

(
F−1

Y1|X=x,W=w̄

(
Fε1|W=w̄(e)

))
.

�

As with the case where X and ε1 are independently distributed, identification of deriv-
atives of m1 with respect to X does not require additional normalizations. Altonji and
Matzkin (2001) present the following result [see also Altonji and Ichimura (2000)].

4.1.2. Identification of average derivatives in a nonadditive model using conditional
independence

Consider the nonseparable model

Y = m(X, ε1, . . . , εJ )

where no particular assumptions are made regarding monotonicity of m. Let ε =
(ε1, . . . , εJ ). Assume that m and the density fε|X are differentiable with respect to X in
a neighborhood of a value x of X, that fε|X is everywhere positive in ε and the marginal
density fX is strictly positive on a neighborhood of x. Assuming that the integral and
all the terms inside the integral exist, suppose that we wanted to recover the average
derivative

β(x) =
∫

∂m(x, ε)

∂x
fε|X=x(e) de

using a conditioning vector of variables W . Altonji and Matzkin (2001, 2005) show that
if ε is independent of X conditional on W , then

(4.b) β(x) can be recovered from the distribution of the observable variables.

PROOF OF (4.b). Since for all e, x,w,

fε|W=w,X=x(e) = fε|W=w(e)

one has that

∂fε|W=w,X=x(e)

∂x
= 0.

Let E[Y |W = w, X = x] denote the conditional expectation of Y given (W = w,

X = x). Then,∫
∂E[Y |W = w, X = x]

∂x
fW |X=x(w) dw

=
∫

∂

∂x

∫
m(x, ε)fε|W=w,X=x(ε)

fW,X(w, x)

fX(x)
dw

=
∫ [

∂

∂x

∫
m(x, ε)fε|W=w,X=x(ε) dε

]
fW,X(w, x)

fX(x)
dw
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=
∫ [∫

∂m(x, ε)

∂x
fε|W=w,X=x(ε) dε

+
∫

m(x, ε)
∂fε|W=w,X=x(ε)

∂x
dε

]
fW,X(w, x)

fX(x)
dw

=
∫ [∫

∂m(x, ε)

∂x
fε|W=w,X=x(ε) dε

]
fW,X(w, x)

fX(x)
dw

=
∫ ∫

∂m(x, ε)

∂x

fε,W,X(ε,w, x)

fW,X(w, x)

fW,X(w, x)

fX(x)
dε dw

=
∫ ∫

∂m(x, ε)

∂x

fε,W,X(ε,w, x)

fX(x)
dw dε

=
∫

∂m(x, ε)

∂x

fε,X(ε, x)

fX(x)
dε

=
∫

∂m(x, ε)

∂x
fε|X=x(ε) dε

= β(x).

Since E[Y |W = w, X = x] and fW |X can be recovered from the distribution of
(Y,W,X), β(x) can also be recovered from it. �

Many other functions, average derivatives, and other functions can be derived and
shown to be identified in the nonadditive model Y1 = m1(X, ε1). Blundell and Pow-
ell (2003) consider identification and estimation of the “average structural function”,
defined for X = x as

G(x) =
∫

m1(x, ε1)fε1(e) de.

Blundell and Powell (2003) assumed the existence of a random vector

ν = v(y, x,w)

which is identified and estimable, and it is such that the distribution of ε1 conditional on
(X,W) is the same as the distribution of ε1 conditional on (X, ν), which is the same as
the distribution of ε1 conditional on ν. The average structural function is then obtained
from the distribution of (Y,X, ν) as

G(x) =
∫

E(Y |X, ν)fν(ν) dν.

This follows because

G(x) =
∫

m1(x, ε1)fε1(e) de

=
∫ [ ∫

m1(x, ε1)fε1|ν(e) de

]
fν(ν) dν

=
∫ [

E(Y |X, ν)
]
fν(ν) dν.
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Imbens and Newey (2003) consider identification of the “quantile structural func-
tion”, defined for τ ∈ (0, 1) and all x as

m1
(
x, qε1(τ )

)
where qε1(τ ) is the τ -quantile of the distribution of ε1. Letting ν be such that ε1 is
independent of X conditional on ν, they obtain the following expression for the inverse
m−1

1 (x, y) of m1 with respect to qε1(τ ):

m−1
1 (x, y) = Pr

(
m1

(
x, qε1(τ )

)
� y

)
=

∫
Pr(Y � y|ν)fν(ν) dν

=
∫

Pr(Y � y|X = x, ν)fν(ν) dν.

For the average derivative, Imbens and Newey (2003) use the fact that, under conditional
independence

δ = E

[
∂m1(x, ε1)

∂x

]

= E

[ ∫
∂m1(x, ε1)

∂x
fε1|X=x,ν(ε1) dε1

]

= E

[ ∫
∂m1(x, ε1)

∂x
fε1|X=x,ν(ε1) dε1

]

= E

[
∂

∂x
E(Y |X = x, ν)

]
.

4.2. Marginal independence

In many situations, such as in models with simultaneity, establishing conditional in-
dependence between the unobservable and observable explanatory variables that deter-
mine the value of an outcome variable may require undesirable strong assumptions [see
Blundell and Matzkin (2007)]. A variable that is independent of the unobservable vari-
ables, and not independent of the observable variables may be used in such and other
situations. In the model

Y = m(X, ε)

where X is not distributed independently of ε, an instrument is a variable, Z, that is
distributed independently of ε and is not distributed independently of X.

4.2.1. Instrumental variables in nonadditive models

Chernozhukov and Hansen (2005), Chernozhukov, Imbens and Newey (2007), and
Matzkin (2004, 2005b) consider identification of nonadditive models using instruments.
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Chernozhukov, Imbens and Newey (2007)’s model is

Y = m(X,Z1, ε)

where X is a vector of observable variables that is not distributed independently of ε,
m is strictly increasing in ε, Z = (Z1, Z2) is an observable vector that is distributed
independently of ε, and the density of ε is everywhere positive. Since the distribution
of ε and m are not jointly identified, one may normalize the marginal distribution of ε

to be U(0, 1). Independence between ε and Z imply that for each τ ∈ (0, 1)

τ = E
[
1(ε < τ)

] = E
[
1(ε < τ)

∣∣Z]
= E

[
E

[
1(ε < τ)

∣∣W,Z
]∣∣Z]

= E
[
E

[
1
(
m(W, ε) < m(W, τ)

)∣∣W,Z
]∣∣Z]

= E
[
1
(
Y < m(W, τ)

)∣∣Z]
.

Define ρ(Y,W, τ,m) = 1(Y < m(W, τ)) − τ . Then, the above defines a conditional
moment restriction

E
[
ρ(Y,W, τ,m)

∣∣Z] = 0.

The following theorem provides sufficient conditions for local identification, in the
sense of Rothenberg (1971), of ρ(Y,W, τ,m).

THEOREM 4.2. [See Chernozhukov, Imbens and Newey (2007).] Suppose that Y is
continuously distributed conditional on X and Z with density f (y|x, z), and that there
exists C > 0 such that∣∣f (y|x, z) − f (ỹ|x, z)

∣∣ � C|y − ỹ|
and for D(V ) = f (m(W, τ)|W,Z), E[D(V )Δ(V )|Z] = 0 implies Δ(V ) = 0 then
m(W, τ) is locally identified.

In simultaneous equations, of the type considered in previous sections, an observed
or identified exogenous variable that is excluded from one equation may be used as an
instrument for that equation. Consider, for example, the simultaneous equation model

Y1 = m1(Y2, ε1),

Y2 = m2(Y1, X, ε2)

where X is distributed independently of (ε1, ε2). Matzkin (2007b) establishes restric-
tions on the functions m1 and m2 and on the distribution of (ε1, ε2, X) under which[

∂r1(y1, y2)

∂y2

]−1[
∂r1(y1, y2)

∂y1

]
can be expressed as a function of the values of fY1,Y2,X at (Y1, Y2) = (y1, y2) and
particular values of X.
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4.2.2. Unobservable instruments

Matzkin (2004) considers the use of unobservable instruments to identify nonadditive
models. These are variables that are known to be distributed independently of unob-
servable random terms in an equation of interest, but are themselves unobservable. This
is in the spirit of Fisher (1966), who developed an extensive set of conditions on the
unobservables in linear systems of simultaneous equations that provide identification.
The method is also related to the one in Hausman and Taylor (1983). Matzkin (2004)
considers the model

Y1 = m(Y2, X, ε)

with m strictly increasing in ε and ε distributed independently of X. She assumes that a
second equation,

Y2 = g(Y1, η)

is identified, and that the unobservables η and ε are independently distributed. The iden-
tification of the function g in general will require imposing additional restrictions. If,
for example, g were specified to be a linear function and one assumed that E[η|X] = 0,
then identification of g would follow by standard results. If g were nonparametric and
additive in η, then, under the assumption that E[η|X] = 0 one could identify it using
the methods in Newey and Powell (1989, 2003), Darolles, Florens and Renault (2000),
or Hall and Horowitz (2005). Suppose that g is identified. Matzkin (2004) proposes a
pointwise direct identification of the function m. The argument proceeds by using η to
estimate the reduced form equations

Y1 = r1(X, η, ε),

Y2 = r2(X, η, ε).

Under the assumption that ε is independent of (X, η), these equations are identified
using the arguments in 3.3. These equations are next used to identify m. To see this,
suppose that we wanted to identify the value of m at a particular value (y2, x, e). Let η∗
denote the value of η that solves the equation

y2 = r2(x, η∗, e).

Let y∗
1 = r1(x, η∗, e). If then follows by the definition of m and of the functions r1 and

r2 that

m(y2, x, e) = m
(
r2(x, η∗, e), x, e

)
= r1(x, η∗, e)
= y∗

1 .

Hence, one can recover the function m.
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4.2.3. Instrumental variables in additive models

In additive models, the requirement that Z = (Z1, Z2) be independent of ε1 may
be weakened to a conditional mean independence. Newey and Powell (1989, 2003),
Darolles, Florens and Renault (2000), Ai and Chen (2003), and Hall and Horowitz
(2005) considered the model

Y = m(X,Z1) + ε

where E[ε|X] �= 0. They assumed the existence of an instrument, Z, satisfying

E[ε|Z1, Z2] = 0.

Using the definition of ε, this yields the equation

E[Y |Z1 = z1, Z2 = z2] = E
[
m(X, z1)

∣∣Z1 = z1, Z2 = z2
]

=
∫

m(x, z1)fX|Z1=z1, Z2=z2(x) dx.

Since the “reduced form” E[Y |Z1, Z2] is identified from the distribution of (Y, Z1, Z2)

and fX|Z1=z1, Z2=z2(x) is identified from the distribution of (X,Z), the only unknown
in the above integral equation is m(x, z1). Newey and Powell (2003) provided condi-
tions characterizing the identification of the function m solely from the above integral
equation.

THEOREM 4.3. [See Newey and Powell (2003).] Suppose that Y = m(X,Z1) + ε and
E[ε|Z1, Z2] = 0. Then, m is identified if and only if for all functions δ(x, z1) with finite
expectation, E[δ(x, z1)|Z = z] = 0 implies that δ(x, z1) = 0.

Das (2004) and Newey and Powell (2003) considered identification of this model
when the endogenous variables are discrete. To state the result presented in Newey and
Powell (2003), assume that both X and Z2 are discrete. Denote the support of X and
Z2 by, respectively, {x1, . . . , xS} and {z21, . . . , z2T }. Let P(z1) denote the S ×T matrix
whose ij th element is Pr(X = xi |Z1 = z1, Z2 = z2j ).

THEOREM 4.4. [See Newey and Powell (2003).] Suppose that Y = m(X,Z1) + ε,
E[ε|Z1, Z2] = 0, and X and Z2 have finite support. Then, m(x, z1) is identified if and
only if Pr[rank(P (z1)) = s] = 1.

4.2.4. Instrumental variables in additive models with measurement error

A common situation where an observable explanatory variable is not independent of
the unobserved explanatory variable is when the observed explanatory variable is an
imperfect measurement of the true explanatory variable, which is unobserved. For this
situation, Schennach (2007) established identification of an additive model using instru-
mental variables. She considered the model
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Y = m(X∗) + ε,

X = X∗ + ηX,

X∗ = r(Z) + ηZ

where the nonparametric function m is the object of interest, X∗ is unobservable, Z,X,
and Y are observable, E(ε|Z, ηZ) = E(ηX|Z, ηZ, ε) = E(ηZ) = 0, and ηZ and Z are
independently distributed. Since, in this model,

X = r(Z) + ηX + ηZ

and E(ηX +ηZ|Z) = 0, the function r is identified from the joint distribution of (X,Z).
The model implies the two moment conditions

E(Y |Z = z) =
∫

m
(
r(Z) + ηZ

)
dF(ηZ),

E(YX|Z = z) =
∫ (

r(Z) + ηZ

)
m

(
r(Z) + ηz

)
dF(ηZ).

[These moment conditions were used in Newey (2001) to deal with a parametric version
of the model with measurement error.] Using the representation of these in terms of
characteristic functions, Schennach (2007) shows that m and the distribution of X∗ are
identified.

4.3. Shape restrictions on distributions

Particular shapes or some local conditions on the distributions can often be used to
provide identification. We provide two examples.

4.3.1. Exchangeability restrictions in the nonadditive model

Altonji and Matzkin (2005) considered the model

Y = m(X, ε)

where ε is not distributed independently of X, but for some observable variable Z, it is
the case that for all x there exists values z(x), z(x, x̄) of Z such that for all e

Fε|X=x,Z=z(x)(e) = Fε|X=x̄, Z=z(x,x̄)(e).

Their leading example is where X denotes the value of a variable for one member of a
group, Z denotes the value of the same variable for another member of the same group,
and ε, which incorporates the unobservable group effect, is such that its distribution is
exchangeable in X and Z, so that for all values t , t ′ and all e

Fε|X=t, Z=t ′(e) = Fε|X=t ′, Z=t (e).

In such a case, z(x) = x̄ and z(x, x̄) = x. Assume that for all x, z, Fε|X=x,Z=z is strictly
increasing. As with the case where ε is assumed to be independent of X, a normalization
is needed either on the function m or on the distribution. Assume that m(x̄, ε) = ε.



Ch. 73: Nonparametric identification 5351

Under these assumptions

(4.c) m and Fε|X=x can be recovered from (FY |X=x,Z=z(x), FY |X=x̄, Z=z(x,x̄)).

PROOF OF (4.c). Let x and e be given. By the strict monotonicity of m in ε,
Fε|X=x,Z=z(x)(e) = Fε|X=x̄, Z=z(x,x̄)(e) implies that

FY |X=x,Z=z(x)

(
m(x, e)

) = FY |X=x̄, Z=z(x,x̄)

(
m(x̄, e)

)
.

Hence, since m(x̄, e), it follows that

m(x, e) = F−1
Y |X=x,Z=z(x)

(
FY |X=x̄, Z=z(x,x̄)(e)

)
.

Next, since the strict monotonicity of m in ε implies that for all x and e

Fε|X=x(e) = FY |X=x

(
m(x, e)

)
it follows that

Fε|X=x(e) = FY |X=x

(
F−1

Y |X=x,Z=z(x)

(
FY |X=x̄, Z=z(x,x̄)(e)

))
.

�

Rather than imposing a normalization, one may ask what can be identified without
imposing any normalization. Suppose that the exchangeability condition considered in
Altonji and Matzkin (2005) is satisfied. Let m, e be given and let y∗ = m(x, e). Then,

m(x̄, e) = F−1
Y |X=x̄, Z=x

(
FY |X=x,Z=x̄ (y

∗)
)

and for any x′

m(x′, e) = F−1
Y |X=x′, Z=x̄

(
FY |X=x̄, Z=x′

(
m(x̄, e)

))
= F−1

Y |X=x′, Z=x̄

(
FY |X=x̄, Z=x′

(
F−1

Y |X=x̄, Z=x

(
FY |X=x,Z=x̄ (y

∗)
)))

.

Hence, the effect of changing X from x to x′ is

m(x′, e) − m(x, e)

= F−1
Y |X=x′, Z=x̄

(
FY |X=x̄, Z=x′

(
F−1

Y |X=x̄, Z=x

(
FY |X=x,Z=x̄ (y

∗)
))) − y∗.

4.3.2. Local independence restrictions in the nonadditive model

Chesher (2003) used a local insensitivity assumption to achieve local identification of
the partial derivatives of structural functions in a triangular system of equations. To
demonstrate a simple version of this restriction, consider a nonadditive model, specified
as

Y = m∗(X, ε)

where m is strictly increasing in ε. Suppose that we were interested in inferring the
partial derivative of m with respect to X. Following arguments analogous to those used
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in Section 3.3, one can show that for any x, ε

FY |X=x

(
m∗(x, ε)

) = F ∗
ε|X=x(ε).

Assuming that all the functions are differentiable, we get that

∂m∗(x̄, ε̄)

∂x
= ∂FY |X=x̄ (t)

∂t

∣∣∣∣
t=m∗(x̄,ε̄)

[
∂FY |X=x̄ (t)

∂x

∣∣∣∣
t=m∗(x̄,ε̄)

− ∂F ∗
ε|X=x̄ (ε̄)

∂x

]
.

The local insensitivity assumption can be stated as the restriction that at X = x̄ and
ε = ε

∂F ∗
ε|X=x̄ (ε̄)

∂x
= 0.

Assume that the value of m∗(x̄, ε̄) is known. It then follows that the derivative of m∗
with respect to x, evaluated at (x̄, ε̄), can be identified.

4.4. Shape restrictions on functions

One of the main parts in the specification of an econometric model is the set of restric-
tions on the functions and distributions of the model. We concentrate here on shape
restrictions. These may prove useful when a specification is such that a particular fea-
ture of interest is not identified. In such a situation, one may consider tightening the set
of restrictions by considering particular shapes. The analysis of observational equiva-
lence can often be used to determine the search for restrictions that, when added to the
model, help to determine identification. Economic theory can be used to choose among
the possible restrictions. We provide some examples.

4.4.1. Homogeneity restrictions

Homogeneous functions are often encountered in economic models. Profit and cost
functions of firms in perfectly competitive environments are homogeneous of degree
one. Production functions are often homogeneous. Given the ubiquity of this type of
functions, it is worthwhile considering how this restriction can aid in identifying fea-
tures of a model. We provide some examples.

4.4.1.1. Independent nonadditive model Consider the independent nonadditive model,
described in Section 2.2.1.2, where Y = m∗(X, ε), m∗ is strictly increasing in ε, and ε

and X are independently distributed. Suppose that we are interested in identifying m∗.
The analysis of identification in Section 3.3 showed that one can partition the set, Ω , of
possible functions m, into classes such that for any two functions, m and m̃ in a class,
there exists a strictly increasing g : R → R such that for all x, ε

m̃
(
x, g(ε)

) = m(x, ε).

Functions within each such class are observationally equivalent, while functions from
different classes are not. This suggests, then, that any restriction on the set of func-
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tions m, which guarantees that for any two different functions in the restricted set, no
such g exists, will be sufficient to guarantee identification of m∗ within that set.

Suppose that the function m∗ is the profit function of a firm in a perfectly competitive
environment, and suppose that (x, ε) is the vector of prices, assumed to possess support
RK+1+ . Economic theory implies that m∗ is continuous and homogenous of degree one
in (x, ε) ∈ RK+1+ . Let (x̄, ε̄) denote a specified value of (x, ε) and let α > 0 denote
a specified number. Let Ω denote the set of all functions m that are continuous and
homogeneous of degree one and satisfy m(x̄, ε̄) = α. Then,

(4.d) if m, m̃ ∈ Ω and for some strictly increasing g : R+ → R+
m̃

(
x, g(ε)

) = m(x, ε)

it must be that for all ε ∈ R+,

g(ε) = ε.

PROOF OF (4.d). [See Matzkin (2003).] Substituting x = x̄ and ε = ε̄, and us-
ing the homogeneity of degree one assumption and the assumption that m̃(x̄, ε̄) =
m(x̄, ε̄) = α, we get that for all λ > 0

m̃
(
λx̄, g(λε̄)

) = m(λx̄, λε̄) = λα = m̃(λx̄, λε̄).

Since m̃ is strictly increasing in its last coordinate

m̃
(
λx̄, g(λε̄)

) = m̃(λx̄, λε̄) implies that g(λε̄) = λε̄.

Since this holds for every λ > 0, the result follows. �

The implication of this result is that in the independent nonadditive model, if we
restrict the set to which m∗ belongs to be such that all functions, m, in that set are con-
tinuous, homogenous of degree one, and satisfy m(x̄, ε̄) = α, then m∗ will be identified
in that set.

4.4.1.2. Independent index model Consider the independent index model, 2.2.1.4,
where Y = m∗(h∗(X), ε), and ε and X are independently distributed. The analysis
of identification in Section 3.4 showed that one can partition the set, Ω , of possible
functions h into classes such that for any two functions, h and h̃, in a class, there exists
a strictly increasing g : R → R such that for all x

h̃(x) = g
(
h(x)

)
.

Functions within each such class are observationally equivalent, while functions from
different classes are not. Hence, any restriction which guarantees that any two func-
tion in the restricted set cannot be strictly increasing transformations of each other will
suffice to guarantee identification of h∗ within that set.

Let Ω denote the set of all functions h : X → R that satisfy the restrictions in the
independent index model described in 2.2.1.4 and, in addition, are homogeneous of
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degree one and satisfy h(x̄) = α. Assume h∗ ∈ Ω . Then,

(4.e) h∗ is identified in Ω.

PROOF OF (4.e). [See Matzkin (1991b, 1994).] Let h ∈ Ω . Suppose that h is obser-
vationally equivalent to h∗. Then, by the theorem in Section 3.4, there is some strictly
increasing g : R → R, such that

h(x) = g
(
h∗(x)

)
.

Since both h, h∗ ∈ Ω , for all λ

λ =
(

λ

α

)
α =

(
λ

α

)
h(x̄) = h

((
λ

α

)
x̄

)
= g

(
h∗

((
λ

α

)
x̄

))
.

The second equality follows by the definition of Ω , the third by the homogeneity of
degree one of h, the fourth because for all x, h(x) = g(h∗(x)). By the homogeneity of
degree one of h∗ and the specification that h∗(x̄) = α, it follows that

g

((
λ

α

)
h∗(x̄)

)
= g

((
λ

α

)
α

)
= g(λ).

Hence, for all λ, g(λ) = λ. Since for all x, h(x) = g(h∗(x)), this implies that h = h∗.
Hence, the only function in Ω that is observationally equivalent to h∗ is h∗. �

4.4.1.3. Discrete choice model Consider the discrete choice model described in
Section 2.2.1.6 with additive unobservables and with the normalization that
VJ (s, zJ , ω) = 0. Then

Pr(yJ = 0|s, x1, . . . , xJ ) = F ∗
ε1,...,εJ−1

(
V ∗

1 (s, x1), . . . , V
∗
J−1(s, xJ−1)

)
.

From the above analysis it is clear that homogeneity restrictions in each of the V ∗
j

functions can be used to identify F ∗
ε1,...,εJ−1

. To see this, suppose that the functions
V ∗

1 , . . . , V ∗
J−1 are such that for some s̄, and each j , there exist x̄j and αj such that for

all s and all λ such that λx̄j ∈ X, V ∗
j (s̄, x̄j ) = aj and V ∗

j (s̄, λx̄j ) = λaj . Then, for any
(t1, . . . , tJ−1),

F ∗
ε1,...,εJ−1

(t1, . . . , tJ−1)

= F ∗
ε1,...,εJ−1

((
t1

α1

)
α1, . . . ,

(
tJ−1

αJ−1

)
αJ−1

)

= F ∗
ε1,...,εJ−1

((
t1

α1

)
V ∗

1 (s̄, x̄1), . . . ,

(
tJ−1

αJ−1

)
V ∗

J−1(s̄, x̄J−1)

)

= F ∗
ε1,...,εJ−1

(
V ∗

1

(
s̄,

(
t1

α1

)
x̄1

)
, . . . , V ∗

J−1

(
s̄,

(
tJ−1

αJ−1

)
x̄J−1

))

= Pr

(
yJ = 0

∣∣∣s̄, x1 =
(

t1

α1

)
x̄1, . . . , xJ−1 =

(
tJ−1

αJ−1

)
x̄J−1

)
.
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Hence, F ∗
ε1,...,εJ−1

(t1, . . . , tJ−1) can be recovered from Pr(yJ = 0|s̄, x1 = ( t1
α1

)x̄1, . . . ,

xJ−1 = (
tJ−1
αJ−1

)x̄J−1) as long as this conditional probability is identified. When
F ∗

ε1,...,εJ−1
is identified, one can recover each V ∗

g function as in Matzkin (1991a). [See
Matzkin and Newey (1993) and Lewbel and Linton (2007) for the use of homogeneity
restrictions when J = 2.]

4.4.2. Additivity restrictions

As with homogeneous functions, additive functions also appear often in economic mod-
els. Aggregate demand is the sum of individual demands; cost functions are sums of
fixed cost and variable cost functions; total income is the sum of income from work and
income from other sources. We describe below two particular examples where additivity
can be used to identify nonparametric functions.

4.4.2.1. Additivity in conditional expectations Consider an additive model, where for
unknown functions m∗

1 and m∗
2,

E
(
Y

∣∣X = (x1, x2)
) = m∗

1(x1) + m∗
2(x2).

Following the arguments in Linton and Nielsen (1995), one can show that

(4.f) m∗
1 and m∗

2 can be recovered, up to at an additive constant,

from E
(
Y |X = (x1, x2)

)
.

PROOF OF (4.f). Note that∫
E

(
Y

∣∣X = (x1, x2)
)
f (x2) dx2 =

∫ (
m∗

1(x1) + m∗
2(x2)

)
f (x2) dx2

= m∗
1(x1) +

∫
m∗

2(x2)f (x2) dx2.

Hence, once one specifies a value for
∫

m∗
2(x2)f (x2) dx2, one can obtain m∗

1(x1) for
all x1. For each x2, the value of m∗(x2) can then be obtained by

m∗(x2) = E
(
Y

∣∣X = (x1, x2)
) − m∗(x1)

= E
(
Y

∣∣X = (x1, x2)
)

−
∫

E
(
Y

∣∣X = (x1, x2)
)
f (x2) dx2 +

∫
m∗

2(x2)f (x2) dx2

which depends on the same constant
∫

m∗
2(x2)f (x2) dx2. �

4.4.2.2. Additivity in a known function When a nonparametric function can only be
identified up to a strictly increasing transformation, a scale as well as a location normal-
ization will be necessary. An often convenient way of imposing these is to assume that
the nonparametric function is linearly additive in one of the coordinates, the coefficient
of that coordinate is known, and the value of the subfunction of the other coordinates is
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specified at one point. In other words, partition X into subvectors X1, . . . , XJ , so that
X1 ∈ R, and X = (X1, . . . , XJ ) ∈ RK . Suppose that for functions h∗

2, . . . , h
∗
J ,

h∗(X) = X1 +
J∑

j=2

h∗
j (Xj )

and that for some value (x̄2, . . . , x̄J ) of (X2, . . . , XJ ), the value of
∑J

j=2 h∗
j (x̄j ) is

specified, then,

(4.g) if h∗, h̄ are two functions satisfying these restrictions,

h∗, h̄ cannot be strictly increasing transformations of each other.

PROOF OF (4.g). Let g : R → R be a strictly increasing function. Suppose that for
all X, h∗(X) = g(h̃(X)). Then, letting X = (x1, x̄2, . . . , x̄J ), it follows that for all x1,

g(x1 + ∑J
j=2 h̃j (x̄j )) = x1 + ∑J

j=2 h∗
j (x̄j ). Since

∑J
j=2 h̃j (x̄j ) = ∑J

j=2 h∗
j (x̄j ), it

follows that g must be the identity function. �

This result can be used in the nonadditive model, the nonadditive index model, and
discrete choice models, using arguments similar to the ones used for the homogeneity
of degree one case.

4.5. Restrictions on functions and distributions

Often, a combination of restrictions on functions and distributions is used. We provide
some examples below.

4.5.1. Control functions

A control function is a function of observable variables such that conditioning on its
value purges any statistical dependence that may exist between the observable and un-
observable explanatory variables in an original model. The control function approach
was fully developed, and analyzed for parametric selection models, in Heckman and
Robb (1985). The method is commonly used for identification of models where the ex-
planatory observable variables, X, and the explanatory unobserved variables, ε, are not
independently distributed. In this method, the unobservable, ε, is modeled as a func-
tion of observed or identified variables, W , which have independent variation from the
endogenous explanatory variables, X. We provide an example.

4.5.1.1. A control function in an additive model Newey, Powell and Vella (1999) con-
sidered identification and estimation of the model

Y = m(X,Z1) + ε
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with the additional equation

X = π(Z) + u

and the restrictions

E[ε|u,Z] = E[ε|u] and E[u|Z] = 0

where Z1 is a subvector of Z. [See also Ng and Pinkse (1995) and Pinkse (2000).]
Since, in this model, E[ε|u] = E[ε|u,Z] = E[ε|u,X,Z], u can be used as a control
function to identify m. Since E[u|Z] = 0, the function π can be recovered from the
joint distribution of (X,Z). Hence, u = X − π(Z) can also be recovered. Moreover,
the structure of the model implies that for some g

E[Y |X,Z] = m(X,Z1) + E[ε|u]
= m(X,Z1) + g

(
X − π(Z)

)
.

The following identification result is established in Newey, Powell and Vella (1999):

THEOREM 4.5. [See Newey, Powell and Vella (1999).] Suppose that m(x, z1), g(u),
and π(Z) are differentiable, the boundary of the support of (Z, u) has zero probability,
and with probability one, rank(∂π(Z1, Z2)/∂Z2) = dX, where dX denotes the dimen-
sion of X. Then, m(X,Z1) is identified (up to constant).

As noted in Newey, Powell and Vella (1999), one can use the additive structure to
derive the derivatives of the functions m directly. Let h(X,Z1, Z2) = E[Y |X,Z1, Z2].
Then, since

h(X,Z1, Z2) = m(X,Z1) + g
(
X − π(Z)

)
it follows that

∂h(X,Z1, Z2)

∂X
= ∂m(X,Z1)

∂X
+ ∂g(u)

∂u

∣∣∣∣
u=X−π(Z)

,

∂h(X,Z1, Z2)

∂Z1
= ∂m(X,Z1)

∂Z1
−

(
∂π(Z1, Z2)

∂Z1

)′
∂g(u)

∂u

∣∣∣∣
u=X−π(Z)

,

∂h(X,Z1, Z2)

∂Z2
= −

(
∂π(Z1, Z2)

∂Z2

)′
∂g(u)

∂u

∣∣∣∣
u=X−π(Z)

.

Assume that rank(∂π(Z1, Z2)/∂Z2) = dX. Define

D(Z) =
[(

∂π(Z1, Z2)

∂Z2

)(
∂π(Z1, Z2)

∂Z2

)′]−1(
∂π(Z1, Z2)

∂Z2

)
.

Then, multiplying ∂h(X,Z1, Z2)/∂Z2 by D(Z) and solving gives

∂m(X,Z1)

∂X
= ∂h(X,Z1, Z2)

∂X
− D(Z)

∂h(X,Z1, Z2)

∂Z2
,
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∂m(X,Z1)

∂Z1
= ∂h(X,Z1, Z2)

∂Z1
+

(
∂π(Z1, Z2)

∂Z1

)′
D(Z)

∂h(X,Z1, Z2)

∂Z2
.

The above gives identification of m up to an additive constant. An additional restric-
tion is necessary to identify such a constant. Suppose, for example, that E[ε] = 0.
Then, as shown in Newey, Powell and Vella (1999), for any function τ(u) such that∫

τ(u) du = 1,∫
E[Y |X,Z1, u]τ(u) du − E

[ ∫
E[Y |X,Z1, u]τ(u) du

]
+ E[Y ]

= m(X,Z1) − E
[
m(X,Z1)

] + E[Y ]
= m(X,Z1).

Hence, the constant of m is identified.

4.5.2. Linear factor models

When the unobservable vector ε in a model is driven by factors that are common to
some equations, one might want to use a factor model. Factor models were introduced
into economics by Jöreskog and Goldberger (1972), Goldberger (1972), Chamberlain
and Griliches (1975), and Chamberlain (1977a, 1977b). [See Aigner et al. (1984) for an
in-depth review and analysis.] The standard situation analyzed in factor models is the
one where there are L measurements on K mutually independent factors arrayed in a
vector θ . Let G denote the vector of measurements. Then, the model is specified as

G = μ + Λθ + δ

where G is L × 1, θ is independent of δ, μ is an L × 1 vector of means, which may
depend on a vector of observable variables X, θ is K × 1, δ is L × 1, and Λ is L × K ,
the coordinates of δ = (δ1, . . . , δL) are assumed to be mutually independent, as well
as the coordinates of θ = (θ1, . . . , θK), and δ and θ are assumed to be independent.
Anderson and Rubin (1956) discuss the identification problem in factor models. More
recently, Carneiro, Hansen and Heckman (2003) have shown that factor models can be
identified when the matrix Λ has a particular structure. Bonhomme and Robin (2006)
analyze identification using the third and fourth moments of the distributions of the
measurements.

Carneiro, Hansen and Heckman (2003) consider a system of L measurements on K

factors,

M1 = m1(X) + β11θ1 + · · · + β1KθK + δ1,

M2 = m2(X) + β21θ1 + · · · + β2KθK + δ2,

...

ML = mL(X) + βL1θ1 + · · · + βLKθK + δ2
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where δ = (δ1, . . . , δL), E(δ) = 0, and where θ = (θ1, . . . , θK) is distributed inde-
pendently of δ. A special case that they consider is one where there are two or more
measurements devoted exclusively to factor θ1, and at least three measurements that
are generated by factor θ1, two of more further measurements that are devoted only to
factors θ1 and θ2, with at least three measurements on θ2, and so fourth, in blocks of at
least two. Order G under this assumption so that

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · 0 · · · 0

λ21 1 · 0 · · · 0

λ31 λ32 1 0 · · · 0

λ41 λ42 λ43 0 · · · 0

· · · · · · · · · 0 · · · 0

λL1 λL2 λL3 · · · · · · λLK

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Assuming nonzero covariances,

Cov(gj , gl) = λj1λl1σ
2
θ1

, l = 1, 2, j = 1, . . . , L, j �= l,

where G = (g1, . . . , gL). In particular,

Cov(g1, gl) = λl1σ
2
θ1

,

Cov(g2, gl) = λl1λ21σ
2
θ1

.

Hence, assuming that λl1 �= 0, one obtains

λ21 = Cov(g2, gl)

Cov(g1, gl)
.

It follows that from Cov(g1, gl) = λ21σ
2
θ1

, one can obtain σ 2
θ1

, and hence λl1,
l = 1, . . . , L. One can then proceed to the next set of two measurements and identify

Cov(gl, gj ) = λl1λj1σ
2
θ1

+ λl2λj2σ
2
θ2

, l = 3, 4, j � 3, j �= l.

Since we can know the first term on the right-hand side by the previous arguments,
we can proceed using Cov(gl, gj ) − λl1λj1σ

2
θ1

and identify the λj2, j = 1, . . . , L,
using similar arguments. Proceeding in this fashion, one can identify Λ and the variance
of θ , Σθ , subject to diagonal normalizations. Knowing Λ and Σθ , one can identify
the variance, Dδ , of δ. Next, using the mutual independence of the factors θi (i =
1, . . . , K), one can identify the densities of each θi .

To provide a simple case, developed in Carneiro, Hansen and Heckman (2003), sup-
pose that

G1 = λ11θ1 + δ1,

G2 = λ21θ1 + δ2
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where λ11 = 1 and λ21 �= 0. Subject to the normalization that λ11 = 1, λ21 is identified.
Thus, one can write these equations as

G1 = θ1 + δ1,

G2

λ21
= θ1 +

(
δ2

λ21

)
where θ1, δ1, and (δ2/λ21) are mutually independent. By Kotlarski (1967), one can non-
parametrically identify the densities of θ1, δ1, and (δ2/λ21). The next equations in the
system

G3 = λ31θ1 + θ2 + δ3,

G4 = λ41θ1 + λ42θ2 + δ4

can be written as

G3 − λ31θ1 = θ2 + δ3,

G4 − λ41θ1

λ42
= θ2 +

(
δ4

λ42

)
where θ2, δ3, and (δ4/λ42) are mutually independent. Again, one can apply Kotlarski’s
theorem. Proceeding in this fashion, all the densities are identified. From the knowledge
about the densities of θi and the factor loadings, one can apply standard deconvolution
methods to nonparametrically identify the δ terms in the model.

Cunha, Heckman and Matzkin (2004) extend this analysis to factor models of the
type

Yt = mt(X, βt θ + δt ), t = 1, . . . , T ,

where mt is strictly increasing in it last argument. Assuming that (θ, δ1, . . . , δT ) is
distributed independently of X and that at some specified value x̄t of X,

mt(x̄t , βt θ + δt ) = βtθ + δt

one can recover the distribution of ηt = βtθ +εt , and the function mt , since, by previous
arguments

Fηt (ηt ) = FYt |Xt=x̄t (ηt ) and mt(xt , ηt ) = F−1
Yt |Xt=xt

(
FYt |Xt=x̄t (ηt )

)
.

Let rt denote the inverse of mt with respect to ηt . Then, given yt , xt

ηt = rt (xt , yt ) = F−1
Yt |Xt=x̄t

(
FYt |Xt=xt (yt )

)
.

We can then analyze the identification of the factor model, as in Carneiro, Hansen and
Heckman (2003), from the system

ηt = βtθ + εt

where ηt is interpreted as a measurement on θ . One could also allow X to depend on ηt ,
using Matzkin (2004). Suppose that there exists Zt such that ηt is independent of Xt
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conditional on Zt . Then, one can obtain identification of mt and ηt . One way of guar-
anteeing that this condition is satisfied is by assuming that there exists an unobservable
φt and a function vt , such that

Xt = vt (Zt , φt )

and φt is independent of (θ, δt ) conditional on Zt .

4.5.3. Index models with fixed effects

Abrevaya (2000) established the identification of the coefficients of a linear index model
for panel data models with two observations. Abrevaya’s model was

Yit = D ◦ G(βXit , εi, ηit ), i = 1, . . . , N, t = 1, 2,

where for each εi , the function G is strictly increasing in βXit and ηit . The function
D is assumed to be monotone increasing and nonconstant, (ηi1, ηi2) is independent
of (Xi1, Xi2, εi) and has support R2, and one of the coordinates of Xit ∈ RK is contin-
uously distributed with support R, conditional on the other coordinates. The model is
then like the one studied in Han (1987) with the added fixed effect εi . In the same way
that Matzkin (1991b) modified the arguments in Han (1987) to show the identification
of a nonparametric index function, one can modify Abrevaya’s arguments to establish
the identification of the nonparametric function h∗ in the model

Yit = D ◦ G
(
h∗(Xit ), εi, ηit

)
, i = 1, . . . , N, t = 1, 2.

Assume that the function G is strictly increasing in its first and third arguments;
the function D is monotone increasing and nonconstant; (ηi1, ηi2) is independent
of (Xi1, Xi2, εi); conditional on εi , (Xi1, ηi1) is independent of (Xi2, ηi2); and
(Xi1, Xi2) has support R2K . Let h∗ belong to a set of continuous, homogeneous of
degree one functions, h : RK → R, that are strictly increasing in the last coordinate,
and satisfy h(x̄) = α. Then, within this set,

(4.h) h∗ is identified.

PROOF OF (4.h). Suppose that h belongs to the set of continuous, homogeneous of
degree one functions, that are strictly increasing in the last coordinate, and satisfy
h(x̄) = α, and that h �= h∗. Then, following the arguments in Matzkin (1991b), one
can show that there exist neighborhoods N1 and N2 such that for all x′′

1 ∈ N1 and
x′′

2 ∈ N2,

h∗(x′′
1

)
> h∗(x′′

2

)
and h

(
x′′

1

)
< h

(
x′′

2

)
.

For each εi , the model is as the one considered in Matzkin (1991b). Hence, by analogous
arguments, it follows by independence that, conditional on εi , sinceh∗(x′′

1 ) > h∗(x′′
2 )

Pr
[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 , εi; h∗]
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= Pr
{
(ηit , ηis)

∣∣D ◦ G
(
h∗(x′′

1

)
, εi, ηit

)
> D ◦ G

(
h∗(x′′

2

)
, εi, ηis

)}
< Pr

{
(ηit , ηis)

∣∣D ◦ G
(
h∗(x′′

1

)
, εi, ηit

)
< D ◦ G

(
h∗(x′′

2

)
, εi, ηis

)}
= Pr

[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 , εi; h∗]
and, since h(x′′

1 ) < h(x′′
2 ),

Pr
[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 , εi; h
]

= Pr
{
(ηit , ηis)

∣∣D ◦ G
(
h
(
x′′

1

)
, εi, ηit

)
> D ◦ G

(
h
(
x′′

2

)
, εi, ηis

)}
> Pr

{
(ηit , ηis)

∣∣D ◦ G
(
h
(
x′′

1

)
, εi, ηit

)
< D ◦ G

(
h
(
x′′

2

)
, εi, ηis

)}
= Pr

[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 , εi; h
]
.

Integrating over any two possible distributions for εi conditional on (x′′
1 , x′′

2 ), we get

Pr
[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 ; h∗] < Pr
[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 ; h∗]
and

Pr
[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 ; h
]

> Pr
[
Yit > Yis

∣∣Xit = x′′
1 , Xis = x′′

2 ; h
]
.

Hence, the distribution of the observable variables is different under h than under h∗.
It follows that h∗ is identified. �

Chesher (2005) considers a model with many unobservables.

4.5.4. Single equation models with multivariate unobservables

Matzkin (2003) considers the model

Y = m(X, ε1, . . . , εK)

where (ε1, . . . , εK) is independent of X and ε1, . . . , εK are mutually independent. Sup-
pose that X can be partitioned into (X1, . . . , XK) such that for some known r and
unknown functions m1, . . . , mK ,

Y = r
(
m1(X1, ε1),m2(X2, ε2), . . . , mK(XK, εK)

)
.

Suppose that r is strictly increasing in each coordinate and that for each k, there
exist for all coordinates j different from k, values x

(k)
j such that, when x =

(x
(k)
1 , . . . , x

(k)
k−1, xk, x

(k)
k+1, . . . , x

(k)
K ) the conditional distribution FY |X=x of Y given

X = (x
(k)
1 , . . . , x

(k)
K ) is strictly increasing and identified, and for all j �= k,

mj

(
x

(k)
j , εj

) = αj
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for a specified value αj . Then, for all xk and εk

F
Y |X=(x

(k)
1 ,...,x

(k)
k−1,xk,x

(k)
k+1,...,x

(k)
K )

(
r
(
α1, . . . , αk−1,mk(xk, εk), αk+1, . . . , αK

))
= Fεk

(εk).

In this expression, all functions and values are known except for mk(xk, εk) and Fεk
(εk).

A normalization on either of these, as described in Section 3.3, or a restriction on mk , as
described in Section 4.1.1, can be used to identify mk and Fεk

. A similar argument can
be used to show that under analogous conditions, all the functions mk and all the mar-
ginal distributions Fεk

can be identified. Since ε1, . . . , εK are assumed to be mutually
independent, the identification of the marginal distributions of each of the εk implies the
identification of Fε1,...,εK

. To provide an example, suppose that

Y =
K∑

k=1

mk(xk, εk)

where for each k, all εk , and for specified values α1, . . . , αK , x̃k and x̄k , mk(x̃k, εk) = αk

and mk(x̄k, εk) = εk . Then, letting x∗ = (x̃
(k)
1 , . . . , x̃

(k)
k−1, x̄k, x̃

(k)
k+1, . . . , x̃

(k)
K ), x∗∗ =

(x̃
(k)
1 , . . . , x̃

(k)
k−1, xk, x̃

(k)
k+1, . . . , x̃

(k)
K )

mk(xk, εk) = F−1
Y |X=x∗∗

(
FY |X=x∗

(
εk −

K∑
j=1, j �=k

αj

))
−

K∑
j=1, j �=k

αj .

Note that the linear random coefficients model, where Y = ∑K
k=1 βkxk , for unobserv-

able, mutually independent β1, . . . , βK , is an example of a model that satisfies the above
restrictions. In this case, x̃k = 0 and x̄k = 1.

5. Conclusions

This chapter has attempted to provide some insight into some of the results that have
been developed recently for nonparametric models, with emphasis on those with nonad-
ditive unobservable random terms. We first presented some general identification results
about nonparametric models with additive unobservables, nonadditive unobservables,
index models, simultaneous equations models, and discrete choice models. Next, we
discussed some techniques that have been used to achieve identification, such as im-
posing additional restrictions on the functions and/or distributions in the models, or
augmenting the data.
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Abstract

This chapter reviews recent advances in nonparametric and semiparametric estima-
tion, with an emphasis on applicability to empirical research and on resolving issues
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that arise in implementation. It considers techniques for estimating densities, condi-
tional mean functions, derivatives of functions and conditional quantiles in a flexible
way that imposes minimal functional form assumptions.

The chapter begins by illustrating how flexible modeling methods have been applied
in empirical research, drawing on recent examples of applications from labor eco-
nomics, consumer demand estimation and treatment effects models. Then, key concepts
in semiparametric and nonparametric modeling are introduced that do not have counter-
parts in parametric modeling, such as the so-called curse of dimensionality, the notion of
models with an infinite number of parameters, the criteria used to define optimal conver-
gence rates, and “dimension-free” estimators. After defining these new concepts, a large
literature on nonparametric estimation is reviewed and a unifying framework presented
for thinking about how different approaches relate to one another. Local polynomial es-
timators are discussed in detail and their distribution theory is developed. The chapter
then shows how nonparametric estimators form the building blocks for many semipara-
metric estimators, such as estimators for average derivatives, index models, partially
linear models, and additively separable models. Semiparametric methods offer a middle
ground between fully nonparametric and parametric approaches. Their main advantage
is that they typically achieve faster rates of convergence than fully nonparametric ap-
proaches. In many cases, they converge at the parametric rate.

The second part of the chapter considers in detail two issues that are central with
regard to implementing flexible modeling methods: how to select the values of smooth-
ing parameters in an optimal way and how to implement “trimming” procedures. It also
reviews newly developed techniques for deriving the distribution theory of semipara-
metric estimators. The chapter concludes with an overview of approximation methods
that speed up the computation of nonparametric estimates and make flexible estimation
feasible even in very large size samples.

Keywords

flexible modeling, nonparametric estimation, semiparametric estimation, local
polynomial estimators, smoothing parameter choice, convergence rates, asymptotic
distribution theory, additively separable models, index models, average derivative
estimator, maximum score estimator, least absolute deviations estimator,
semiparametric least squares estimator, trimming, binning algorithms

JEL classification: C1, C13, C14, C52
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1. Introduction

In the last two decades significant progress has been made in the study of nonpara-
metric and semiparametric models. This chapter describes recent advances with special
emphasis on their applicability to empirical research and on issues that arise in imple-
mentation. As the coverage of the chapter is broad, our discussion provides only an
overview. It covers mostly cross sectional analysis emphasizing methods which have
rigorous theoretical justifications, albeit in most cases only in first order asymptotic
forms from frequentists’ view point.1 Nevertheless, we hope the chapter captures the
basic motivations and ideas behind the developments and serves as a guide to using the
methods appropriately. We begin by briefly summarizing the nature of recent progress,
implications for empirical research, and some implementation issues.

1.1. The nature of recent progress

A major motivation for work on flexible models is the desire to avoid masking impor-
tant features of the data by use of parametric models.2 Recent progress has provided
many new ways of modeling and estimating different aspects of a conditional probabil-
ity distribution. For example, there are now a number of alternatives to linear regression
model for modeling and estimating the conditional mean function as well as methods
available for examining other features of distributions, such as conditional quantiles.
Another area of advance has been in the study of models with limited dependent vari-
ables. In the early eighties, the standard approach with such models was to specify the
error distribution parametrically and employ parametric maximum likelihood (ML) es-
timation. Recent research has shown that parametric specification of the error term is
often unnecessary for consistent estimation of slope parameters. Models with simultane-
ity problems can also now be analyzed under weaker functional form assumptions. In
these contexts and in others, model specification is beginning to be made more flexible.
These developments enable empirical work to be carried out under fewer restrictions
than was deemed possible twenty years ago.

Another important motivation for research on flexible models is the pursuit of a clas-
sical theme in econometrics: the study of the trade-off between efficiency and allowing
for less restrictive models. We often wish to identify a parameter within the broadest
class of models possible, but broadening a class sometimes comes at the expense of
less efficient estimation. Recent research has clarified the trade-offs in terms of conver-
gence rates and attainable efficiency bounds between specifying more or less restrictive
models.

1 For developments in studying panel data, see Arellano and Honoré (2001).
2 See McFadden (1985). For brevity, we refer to nonparametric and semiparametric models as flexible mod-

els.
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1.2. Benefits of flexible modeling approaches for empirical research

From an empirical perspective, the primary benefit of recent work in flexible modeling
is a provision of new estimation methods with a better understanding of the efficiency
loss associated with different modeling approaches. Another benefit is that the departure
from the traditional linear modeling framework decreases the tendency to focus on the
conditional mean function as the sole object of interest. Using flexible models provides
a natural way of considering other aspects of the probability distribution that may be of
interest, such as conditional quantiles.3 Research on limited dependent variable models
has shown that quantile restrictions provide sharper restrictions than conditional mean
restrictions for identifying model parameters.4

When we construct an econometric model of a dependent variable, either explicitly
or implicitly, we model the form of a conditional distribution function. Sometimes the
conditional distribution function is the parameter of interest, but more often we are in-
terested in particular aspects of it, such as the conditional mean function, conditional
quantile function, or derivatives of these functions, as we will see in the next section.
When data on the dependent variable given some conditioning variables are directly
observed for a random sample of the population, then the nonparametric methods dis-
cussed later in this chapter can be directly applied. However, often the application is not
straightforward, because the conditional distribution that is observed differs from the
conditional distribution in a random population. This can arise in variety of modeling
situations, such as with limited dependent variable models, with models with measure-
ment error, and with simultaneity. For example, a demand function can be represented
as a conditional distribution of demand given price, but the distribution of the observed
quantity-price data may differ from the conceptual conditional distribution we wish to
study, because the supply side can affect the observed quantity and price as well.

When the conditional distribution of interest differs from the conditional distribution
that can be measured directly from the data, there are two different approaches taken in
the literature. One is to search for a source of variation in the data that can be used to
identify the conceptual distribution of interest. This may require using data generated
from a randomized experiment or from a so-called “natural experiment”.5 When varia-
tion of this sort is available in the data, the methods described in this chapter can often be
directly applied. An alternative approach is to explicitly model the relationship between
the observed distribution and the conceptual distribution of interest and then try to iden-
tify some aspects of the distribution of interest from the observed distribution. Much
work has been done towards extending nonparametric methods to account for limited
dependent variables, sample selectivity, and simultaneity. Section 2.2.3 provides some
examples of applications of semiparametric selection models.

3 See e.g. Buchinsky (1995, 1998), Chamberlain (1995), Buchinsky and Hahn (1998).
4 Powell (1984), Manski (1985), Chamberlain (1986a), and Cosslett (1987).
5 See Rosenzweig and Wolpin (2000) for a discussion of the use of natural experiments in economics.
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An additional benefit of using flexible models is that they allow for a more direct
connection between the parameters of interest and the identification restrictions being
exploited in estimation. For example, consider the linear regression model with the con-
ditional mean restriction E(y|x) = x′β0. Here β0 represents a vector that defines the
conditional mean function and also a vector that defines the derivative of the conditional
mean function. Generally, in a restricted framework conceptually different parameters
may coincide and there can be a discrepancy between the parameter of interest and the
source of variation in the data used to estimate the parameter. Using flexible models
makes more transparent the source of variation in the data that should be used to es-
timate the parameter of interest. For example, it is natural to estimate β0 by ordinary
least squares when it represents a vector defining the conditional mean function and to
estimate it by an average derivative estimator, when it represents a vector defining the
derivative of the conditional mean function. Average derivative estimators are discussed
below in Section 5. Actual implementation may require using a more restricted model
for the curse of dimensionality problem we will discuss, however.

Finally, flexible models provide a systematic way of addressing concerns about model
specification. First, they require fewer modeling assumptions, which directly eliminates
the need for some specification testing. Second, they provide a formal framework for
conducting the specification search. In parametric models, searches often proceed piece-
meal, leaving the selection of which models to examine and the order in which to
examine them up to the researcher. The route by which a particular model is chosen
is often not made explicit, which makes it difficult to obtain general results about the
properties of the estimators. Another difficulty is that there is no formal language for
effectively communicating the domain of search, and the description of the domain is
usually left up to the researcher’s conscious effort. With nonparametric estimators, the
class of models for which the estimation is valid is a priori specified, so that the domain
is clear and the process by which a particular model is chosen is more transparent.

Careful researchers have always been aware of potential drawbacks of paramet-
ric models and have guarded against misspecification by examining the sensitivity of
empirical results to alternative specifications and using imaginative ways of checking
model restrictions.6 The recent progress in flexible modeling makes it easier for re-
searchers to address concerns about model specification and also to assess the variability
of estimation procedures. The progress represents an important step towards replacing
what has been characterized as the difficult art of model specification with a simpler,
more systematic approach.

1.3. Implementation issues

So far we have emphasized the benefits of using flexible models. To fully realize these
benefits, however, there are still some questions that need to be resolved regarding how

6 Various formal specification tests and model selection rules have been developed. See for example David-
son and MacKinnon (1982), Hansen (1982), Hausman (1978), Newey (1985, 1987), Tauchen (1985), White
(1980), and Wu (1974).
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to choose a model and an estimation method that is well suited to a particular application
and how to implement the chosen estimation method.

A key consideration in using a flexible model is that greater flexibility often comes at
a cost of a slower convergence rate. Thus, understanding the trade-off between flexibility
and efficiency is important to choosing an appropriate estimation strategy. A barrier to
implementing the new estimators is how to choose from a bewildering array of available
estimators. A first impression from studying nonparametric literature is the richness in
the variety of methods. In this chapter, we attempt to pick up some common threads
among different methods, to highlight differences and commonalities, and to discuss
how each method has been theoretically justified.

Another consideration is that there is a degree of arbitrariness in many of the available
estimation procedures that takes the form of unspecified parameters. The arbitrariness
is not problematic for certain theoretical questions of interest, such as the question of
whether a particular level of convergence rate is achievable. But the arbitrariness poses
a problem when we implement the method, because different ways of specifying these
parameters can greatly affect the estimates. For example, parameter estimates or asymp-
totic variance estimates can be highly sensitive to the choice of smoothing parameters
or to different ways of trimming the data.7 One focus of this chapter is on how to choose
the values of these unspecified parameters.

A third problem we address is how to assess the variability of nonparametric and
semiparametric estimators. In many empirical applications, the model used and meth-
ods applied deviate in some respects from the prototypical models and methods studied
in the theoretic literature. Hence, it is important for researchers to be able to modify
theories according to their needs and to derive the properties of modified versions of the
estimators. For models and estimators based on moment conditions with finite dimen-
sional parameters, Hansen (1982) and Pakes and Pollard (1989) provide results that are
sufficiently general to accommodate many different kinds of modifications. For semi-
parametric models, some progress has also been made along similar lines. See Andrews
(1994), and Newey and McFadden (1994), Ai and Chen (2003) and Chen, Linton and
Van Keilegom (2003), and Ichimura and Lee (2006) and Chen (2007) in this volume
(Chapter 76).

Finally, another obstacle in applying flexible estimators is that they can be compu-
tationally intensive, particularly for large data sets. Because of slower rates of con-
vergence, the methods are ideally suited for larger data sets. Yet it is precisely when
sample sizes are large, say on the order of 100,000, when the computational burden
of these methods can make them impractical. We discuss approximation methods that
speed up estimation and provide great gains in speed, making it feasible to analyze even
very large samples.

7 “Trimming” is the practice of excluding a fraction of observations in local nonparametric estimation.
Trimming is required when the density of the data is low at these observations and a nonparametric estimate
would be unreliable. See Section 6.

http://dx.doi.org/10.1016/S1573-4412(07)06076-X
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1.4. Overview of chapter

In Section 2, we illustrate through examples drawn from different empirical literatures
how flexible estimation methods have been used as an alternative or as a supplement to
more traditional estimation approaches. Section 3 describes some concepts in semipara-
metric and nonparametric modeling and makes precise how new developments in the
literature broaden the kinds of models and parameters of interest that can be considered
in empirical research.

Section 4 discusses nonparametric estimation of densities, conditional mean func-
tions, and derivatives of functions. Although fully nonparametric analysis are not often
practical because of slow rates of convergence, we begin with nonparametric estimators
because they serve as building blocks for many semiparametric estimators. We dis-
cuss how apparently different estimators are in some ways closely related and present
a unifying framework for thinking about nonparametric density and conditional mean
estimators.

Section 5 considers estimation of the same parameters of interest (densities, con-
ditional mean functions, and derivatives of functions) using semiparametric modeling
methods that overcome the problem of slow-convergence of fully nonparametric esti-
mators. We describe a variety of semiparametric approaches to estimating densities and
conditional mean functions. Although there are many estimators proposed for a variety
of semiparametric and nonparametric models in the literature, we only discuss a sub-
set of them. The models we cover are additively separable models, index models, and
partially linear models as well as nonparametric models.

Section 6 focuses on the question of how to choose smoothing parameters and
trimming methods in implementing nonparametric and semiparametric models. The
problem of choosing the values of these unspecified parameters is similar to a model
selection problem in a parametric context. For each estimator, we summarize existing
research on how to choose the values of these parameters and describe the evidence
on the effectiveness of various smoothing parameter selection methods, some of which
comes from our own Monte Carlo studies.

Section 7 discusses how to assess the variability of different estimation procedures.
Section 8 examines the problem of how to compute local nonparametric estimates in
large samples. We describe binning algorithms that speed up computation through ac-
curate approximation of nonparametric densities and conditional mean functions.

Section 9 concludes with a discussion of other issues left for future research.

1.5. Related literature

There are many useful surveys in the literature to which we will at times refer in this
chapter. For an excellent introduction to nonparametric literature in book form we
recommend Silverman (1986) and Fan and Gijbels (1996). Surveys by Blundell and
Duncan (1998), Härdle and Linton (1994), and Yatchew (1998) cover nonparametric
methods compactly. Useful surveys for semiparametric models are given by Arellano
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and Honoré (2001), Delgado and Robinson (1992), Linton (1995b), Matzkin (1994),
Newey and McFadden (1994), Powell (1994), and Robinson (1988).

Books by Bierens (1985), Härdle (1990), Prakasa-Rao (1983), and Scott (1992) cover
nonparametric density or regression function estimation methods. Books by Horowitz
(1998), Lee (1996), Pagan and Ullah (1999), Stoker (1991), Ullah and Vinod (1993), and
Yatchew (2003) cover both nonparametric and semiparametric methods. Deaton (1996)
describes how nonparametric and semiparametric models are used in substantively im-
portant applications related to household behavior and policy analysis in developing
countries.

Efficiency issues are dealt with concisely by Newey (1990, 1994a) and in detail by
Bickel et al. (1993). Most of the probabilistic techniques are explained by van der Vaart
(1998) and van der Vaart and Wellner (1996).

2. Applications of flexible modeling approaches in economics

We first illustrate through several examples how flexible models have been used in em-
pirical work, either as an alternative to more traditional estimation approaches or as a
supplement to them. The examples are drawn from the literatures on estimating con-
sumer demand functions, estimating the determinants of worker earnings, correcting
for sample selection bias, and evaluating the effects of social programs. Our examples
are chosen to highlight different kinds of parameters that may be of interest in empirical
studies, such as densities, conditional mean and quantile functions and averages of the
functions.

2.1. Density estimation

In many empirical studies, researchers are interested in analyzing the distribution of
some random variable. Nonparametric density estimators provide a straightforward way
of estimating densities. One nonparametric estimator that has already gained wide-
spread use is the histogram estimator, which estimates the density by the fraction of
observations falling within a specified bin divided by the bin width. In Section 4, we
discuss how the histogram relates to other nonparametric density estimators and how to
optimally choose the bin width. We also present alternatives to the histogram estimator
that have superior properties, such as the Nadaraya–Watson kernel density estimator for
particular choices of kernel functions, which can be viewed as a generalized version of
the histogram estimator.

An innovative empirical application of nonparametric density estimation methods is
given by DiNardo, Fortin and Lemiex (1996), which investigates the effects of insti-
tutional and labor market factors on changes in the US wage distribution over time.
DiNardo, Fortin and Lemiex (1996) write the overall wage density at time t , fw(w|t),
in terms of the conditional wage densities, where conditioning is on a set of labor market
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or institutional factors, z, whose effects on earnings they analyze:

fw(w|t) =
∫

Z

fw(w|z, t)fz(z|t) dz.

In their study, z includes variables indicating union status, industrial sector, and whether
the wage falls above or below the minimum wage. Counter-factual wage densities are
then constructed by replacing fz(z|t) by a different hypothetical conditional density,
gz(z|t), for the purpose of inferring the effect of changes in elements of z on the wage
distribution.

A traditional parametric approach to simulating wage distributions would specify a
parametric functional form for the w and z distributions, in which case inference would
only be valid within the class of models specified. The approach taken in DiNardo,
Fortin and Lemiex (1996) is to estimate the densities nonparametrically, using a non-
parametric kernel density estimator that will be discussed in Section 4 of this chapter.
Using a flexible modeling approach makes inference valid for a broader class of mod-
els and avoids the need to search for an appropriate parametric model specification for
fw(w|z, t) and fz(z|t).

2.2. Conditional mean and conditional quantile function estimation

2.2.1. Earnings function estimation

In addition to studying the shape of the earnings distribution, economists are often inter-
ested in examining how changes in individual characteristics, such as education or years
of labor market experience, affect some aspect of the distribution, such as the mean. An
earnings specification that is widely used in empirical labor research is that of Mincer
(1974), which writes log earnings as a linear function of years of schooling (s) and as a
quadratic in years of work experience (exp) and other control variables (z):

ln y = α0 + ρs + β1 exp +β2 exp2 +z′γ + ε.

This simple parametric specification captures several empirical regularities, such as con-
cavity of log earnings-age and experience profiles and steeper profiles for persons with
more years of education.8 However, Mincer’s model was derived under some strong as-
sumptions, so it is of interest to also consider more general specifications of the earnings
equation such as

ln y = g(s, exp, z) + ε,

where g is a function that is continuous in the continuous variable (experience). Usu-
ally the g function is interpreted as the conditional mean function. In Heckman, Lochner
and Todd (in press), nonparametric regression methods are applied to estimate the above

8 See Willis (1986) for a discussion of the use of the Mincer model in labor economics.
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Figure 1. Earnings–experience profiles by education level estimated nonparametrically by a local linear re-
gression estimator.

equation and to examine the empirical support for the parametric Mincer model. Their
study finds substantial support for the parametric specification in decennial Census data
from 1940–1960 but not in more recent decades.9 Figure 1 shows the nonparametri-
cally estimated log earnings–experience relationship for alternative schooling classes
for adult males from the 1960 US decennial census [the same data analyzed by Mincer
(1974)]. Nonparametric estimation was performed using local linear regression methods
that are described in Section 4 of this chapter.

One can also interpret the g function to be the conditional quantile function, in which
case the nonparametric or semiparametric quantile estimation methods [Koenker and
Basset (1978) and Koenker (2005)] can be applied. For example, Buchinsky (1994)
applies semiparametric conditional quantile estimation methods to study changes in the
US Wage Structure from 1963–1987, using data from the Current Population Survey.
He estimates a model of the form:

Y = Xβθ + uθ ,

where βθ is a parameter that characterizes the conditional quantile. The model is esti-
mated under the restriction that the θ th conditional quantile of Y given X = x is x′βθ .

The estimation yields a time series of the estimated returns to education and experi-
ence at different quantiles of the earnings distribution. Buchinsky (1994) finds that the

9 Data from the 1940, 1950, 1960 show support for the model, but data from 1970, 1980 and 1990 show im-
portant deviations from the model, which Heckman, Lochner and Todd (in press) attribute in part to changing
skill prices over recent decades, which violates an assumption of the traditional Mincer model.
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mean returns to education and experience and the returns at different quantiles generally
follow similar patterns. Analysis of the spreads of the distributions reveals large changes
in the 0.75–0.25 spread and that changes in inequality come mainly from longer tails at
both ends of the wage distribution.

2.2.2. Analysis of consumer demand

Several recent studies in consumer demand analysis have made use of flexible esti-
mation techniques in estimating Engel curves, which relate a consumer’s budget share
or expenditure on a good to total expenditure or income. Economic theory does not
place strong restrictions on functional forms for Engel curves, so earlier research ad-
dressed the question of model specification mainly by adopting flexible parametric
functional forms. Recent research by Banks, Blundell and Lewbel (1997), Blundell and
Duncan (1998), Deaton and Paxson (1998), Härdle, Hildenbrand and Jerison (1991),
Schmalensee and Stoker (1999), and Blundell, Browning and Crawford (2003) con-
sider nonparametric and semiparametric estimation of Engel curves. The basic modeling
framework is

y = g(x, z) + u,

where y is the budget share of a good, x is total expenditure or income, and z represents
other household or individual characteristics included as conditioning variables. Typi-
cally g(x, z) is assumed to be the conditional mean function of y given x and z so that
E(u|x, z) = 0.

The traditional approach to estimating conditional mean functions specifies the func-
tional form of g up to some finite number of parameters. In consumer demand analysis,
the Engel curve function is often assumed to be linear or quadratic in ln x and z and the
coefficients on the conditioning variables are estimated by ordinary least squares (OLS).
A nonparametric estimation approach places no restrictions on the g(x, z) relationship
other than assuming that the g(·) function lies within a class of smooth functions (such
as the class of twice continuously differentiable functions).

As discussed in Section 3, with a large number of regressors fully nonparametric
estimators converge at a rate that is too slow to be practical in conventional size sam-
ples. Semiparametric modeling approaches provide a more practical alternative. These
methods achieve a faster rate of convergence by allowing some aspects of the g(x, z) re-
lationship to be flexible while imposing some parametric restrictions. For example, the
approach taken in Banks, Blundell and Lewbel (1997), Blundell and Duncan (1998),
and Deaton and Paxon (1998) is to model the budget–share–log-income relationship
nonparametrically under the parametric restriction that other z covariates enter in a lin-
ear, additively separable way. This yields a partially linear model10:

y = g(x) + zγ + u.

10 Schmalensee and Stoker (1999) adopt a similar but slightly more general specification.
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Engle et al. (1986) considered electricity demand, x corresponds to the temperature and
z captures household characteristics. In this application, the parameter of interest was
g(x), how the electricity demand peaked as temperature varied. When z are discrete
variables, assuming that they enter in a linear fashion imposes only the assumption of
additive separability.11 Analogous to the Mincer example, the partially linear model
may also be regarded as a conditional quantile function. Blundell, Chen and Kristensen
(2003) have considered the consumer demand model allowing for endogeneity of in-
come variable.

A variety of semiparametric estimators that allow for flexibility in different model
components have been proposed in the econometrics and statistics literatures. Several
classes of estimators will be discussed in Section 5 of this chapter.

2.2.3. Analysis of sample selection

A leading area of application of flexible estimation methods in economics is to the
sample selection problem. In fact, several estimators for the partially linear model were
developed with the sample selection model in mind.12 In the sample selection problem,
an outcome is observed for a nonrandom subsample of the population and the goal is
to draw inferences that are valid for the full population. For example, in the analysis
of labor supply the outcome equation corresponds to the market wage, observed only
for workers, and the selection equation corresponds to the decision to participate in the
labor force. The wage model takes the form

w = w(x, θ1) + u

where x denotes individual characteristics, w is observed if the wage exceeds the in-
dividual’s reservation wage, wr , which is the minimum wage the individual would be
willing to accept.

Under sample selection, the above model leads to the wage model of the form:

w = w(x, θ1) + ϕ(x, z) + u

where ϕ(x, z) = E(u|w > wr, x) is the so-called control function that needs to be esti-
mated along with parameter θ1.13 Clearly, in the above equation the functions w(x, θ1)

and ϕ(x, z) could not be nonparametrically separately identified without some addi-
tional restrictions. Section 5 of this chapter considers alternative estimators for the
sample selection model under different kinds of restrictions.

11 In more recent work, Ai, Blundell and Chen (2000) consider the consumer demand model of the form

y = g(x + zγ ) + zγ + u

and show that including the term zγ both in the g(·) function and in the linear term is necessary to make the
Engel curve consistent with a consumer demand system.
12 The sample selection model is developed by Gronau (1973a, 1973b), Heckman (1976), and Lewis (1974).
13 See Heckman (1980).
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There have been numerous applications of the partially linear sample selection model.
For example, Newey, Powell and Walker (1990) and Buchinsky (1998) apply the model
to study female labor force participation. Stern (1996) uses it to study labor force partic-
ipation among disabled workers. Olley and Pakes (1996) use the partially linear model
to control for nonrandom firm exit decisions in a study of productivity in the telecom-
munications industry. Some additional applications are discussed in Section 5.

2.3. Averages of functions: Evaluating effects of treatments

A common problem that arises in economics as well as many other fields is that of
determining the impact of some intervention or treatment on some measured outcome
variables. For example, one may be interested in estimating the effect of a job training
program on earnings or employment outcomes.14 In evaluating social programs, the
average effect of the program for people participating in it (known as the mean impact
of treatment on the treated) is a key parameter of interest on which many studies focus.

Let (y1, y0) denote the outcomes for an individual in two hypothetical states of the
world corresponding to with and without receiving treatment. Let d be an indicator
variable that takes the value 1 if treatment is received and 0 otherwise. The outcome ob-
served for each individual can be written as y = dy1 +(1−d)y0. The mean effect of the
program for program participants with characteristic z is given byE(y1 − y0|d = 1, z).
The average of this parameter for the treated (d = 1) population is E(y1 − y0|d = 1).

Clearly the first parameter is more informative than the second. However, as discussed
in detail in the next section and in Section 6, the conditional on z parameter can be
estimated nonparametrically less accurately than the second parameter can be estimated
nonparametrically.

A variety of estimators have been put forth in the literature to estimate E(y1 −
y0|D = 1). One class of estimators are so-called matching estimators, which im-
pute no-treatment outcomes for treated persons by matching each treated person to
one or more observably similar untreated persons. Heckman, Ichimura and Todd
(1997, 1998a, 1998b) develop nonparametric matching estimators that use local polyno-
mial regression methods to construct matched outcomes. Local polynomial regression
estimators are discussed in Section 4. The application of these estimators in program
evaluation settings is considered in this handbook in the preceding chapters by Abbring
and Heckman (2007) and by Heckman and Vytlacil (2007a, 2007b). Other applications
include Stock (1991) and Ichimura and Taber (2000).

3. Convergence rates, asymptotic bias, and the curse of dimensionality

A key motivation for developing flexible models is to achieve a closer match between
the functional form restrictions suggested by economic theory, which are typically

14 See, e.g., Ashenfelter (1978), Bassi (1984), Ashenfelter and Card (1985), Fraker and Maynard (1987),
Heckman and Hotz (1989), Heckman and Smith (1995), Heckman et al. (1998), and Heckman, Ichimura and
Todd (1997, 1998b), and Smith and Todd (2001, 2005).
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weak, and the functional forms used in empirical work. To study aspects of the con-
ditional distribution functions, such as the conditional mean function and the condi-
tional quantile function, the linear in parameter model is traditionally used. Let the
conditioning finite dimensional random vector be X, and a known finite dimensional
vector-valued function evaluated at X = x be r(x). Then the linear in parameter model
specifies the conditional mean function or the conditional quantile function of a de-
pendent random variable Y by r(x)′θ for some unknown finite dimensional vector θ .
For example x = (x1, x2)

′ and r(x) = (1, x1, x
2
1 , x2, x

2
2 , x1 · x2)

′. The ordinary least
squares (OLS) estimator estimates the conditional mean function and the quantile re-
gression estimator estimates the conditional quantile function. Alternatively, the most
flexible model would specify θ(x) for some unknown function θ(·). The unknown func-
tion itself or its derivative could be the parameter of interest.

The specification of parametric models involves two difficulties: which variables to
include in the model and what functional form to use. Although nonparametric methods
do not resolve the first difficulty, they do resolve the second. Thus if θ(·) could be
estimated with the same accuracy as that for the finite dimensional case, then there
would be no reason to consider a finite dimensional parameter model. Unfortunately,
that is not the case.

Recall that under very general regularity conditions, including the random sampling,
most of the familiar estimators – the OLS estimator, the generalized method of moment
(GMM) estimator, and the maximum likelihood (ML) estimator – have the property that
n1/2(β̂ − β) converges in distribution to the mean zero random vector with some finite
variance–covariance matrix as the sample size n goes to infinity, where β̂ denotes the
estimator and β the target parameter. This implies not only that β̂ − β converges to 0
in probability, but that the difference is bounded with arbitrarily high probability (i.e.
stochastically bounded) even when it is blown up by the increasing sequence n1/2. In
this case, we say that the difference converges to 0 with rate n−1/2, that the estimator
is n1/2-consistent and that its convergence rate is n−1/2. More generally, if an estimator
has the property that rn(β̂ −β) is stochastically bounded, then the estimator is said to be
rn-consistent or to have convergence rate is 1/rn. If rn/n1/2 converges to zero, then the
rn-consistent estimator converges to β slower than the n1/2-consistent estimator does.
When two estimators of the same parameter have different convergence rates, the one
that approaches to the target faster is generally more desirable asymptotically.15

As discussed, there are estimators of the regression coefficient θ , such as the OLS
estimator, that converge with rate n−1/2, so that r(x)′θ can be estimated with the same
rate. But in the context of estimating the conditional mean function, Stone (1980, 1982)
showed that any estimator of the regression function θ(·) converges slower than n−1/2.

To state Stone’s results, we need to clarify two complications that arise because the
target parameter is a function rather than a point in a finite dimensional space Rd for

15 Note that this is an asymptotic statement and the finite sample performance may be different. Clearly, it
would also be desirable to have a better understanding about the sample size at which one estimator dominates
the other.
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some positive integer d . First, we need to define what we mean by an estimator to
converge to a function. If we consider a function at a point, then the convergence rate can
be considered in the same way discussed above. If we want to consider a convergence
of an estimator of a regression function as a whole to the target regression function,
then we need to define a measure of distance between two functions. There are different
ways we can define the distance between the functions and the discussion about the
convergence rate will generally depend on the distance measure used. Typically a norm
is used to define the distance.

To define a few examples of the norms used, let k = (k1, . . . , kd) where kj is a
nonnegative integer for each j = 1, . . . , d , and define Dkθ(x) = ∂k1+···+kd θ(x)/

∂x
k1
1 · · · ∂x

kd

d . Leading examples of the norms used are the Lq -norm for 1 � q < ∞
(‖·‖q), the sup-norm (‖·‖∞), and more generally the Sobolev norm (‖·‖α,q or ‖·‖α,∞):[ ∑

0�k1+···+kd�α

∫
X

∣∣Dk
(
θ̂n(x) − θ(x)

)∣∣q dμ(x)

]1/q

or

max
0�k1+···+kd�α

sup
x∈X

∣∣Dk
(
θ̂n(x) − θ(x)

)∣∣.
Note that ‖ · ‖0,q = ‖ · ‖q and ‖ · ‖0,∞ = ‖ · ‖∞.16

Once a norm is defined, then consistency and hence the rate of convergence concept
can be defined using one of the three standard consistency concepts, convergence in
probability, convergence almost surely, and the qth order moment convergence by how
fast the distance between the estimator and the target function converges to 0.17

Which norm is more appropriate will depend on how the estimator is going to be used.
For example if a function value at a point or its derivative is of interest, then Lq -norm is
not useful because there are many functions close to a function in Lq -sense, which does
not determine the value at that point, and the derivative values may be rather different.
For these type of applications, the sup-norm may be used.

For any two norms, ‖·‖1 and ‖·‖2 in a finite dimensional space Θ there exist positive
constants CH and CL such that for any θ and θ ′ ∈ Θ ,

CL‖θ − θ ′‖1 � ‖θ − θ ′‖2 � CH ‖θ − θ ′‖1.

Hence, consistency using one norm implies consistency using another norm on the same
space. For infinite dimensional spaces, this is no longer the case without any restriction
on the class of functions under consideration. Thus we need to be more explicit about
which norm is used to define consistency.18

16 Clearly we need to restrict the class of functions so that the objects are well defined.
17 More generally one can define a metric on a relevant space of functions, but that generality may not be
useful as we typically want the distance between m̂(x) and m(x) and that between m̂(x)+c(x) and m(x)+c(x)

for any c(x) to be the same.
18 One might wonder if a point-wise consistency concept can be regarded as a consistency concept using a
metric or a norm. Whether this is possible will depend on what the domain of m(x) is and what the set of
functions is. Without any restriction this is not possible.
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Next we need to define the class of functions under consideration. When the target
parameter is a point in Rd , the class to which the parameter belongs is well defined.
When the target parameter is a function, however, we need to be more specific about the
class of functions to which the target belongs.

Stone specified a set of differentiable functions restricting the highest order derivative
to be Hölder continuous. Let �p� denote the maximum integer that is strictly smaller
than p and Θp,C be a class of functions which are �p�-times continuously differentiable
with their �p�th derivative being Hölder continuous with exponent 0 < γ � 1: denoting
p = �p� + γ

Θp,C =
{
f ; max

k1+···+kd=�p�
∣∣Dkf (x) − Dkf (x′)

∣∣ � C · ‖x − x′‖γ
}

for some positive C.
Denote the distribution of the dependent variable Y conditional on X by

h(y|x, t)φ(dy), where φ is a measure on R and t is an unknown real-valued parameter
in an open interval J , and t is the mean of Y given X so that∫

yh(y|x, t)φ(dy) = t for x ∈ Rd and t ∈ J.

By the construction, t varies with x according to t = θ(x), where θ(x) ∈ Θ .
Stone (1980, 1982) considers a model with some regularity conditions which imply:

(1) t does not shift the support of h or some aspects of the conditional distribution other
than the mean, (2) the effect of a change in t on the log-density is smooth (3) h is
bounded away from 0 at relevant points and for the global case (4) h has at most an
exponential tail and (5) the region defining the Lq -norm is compact.

For the model which satisfies the regularity conditions, Stone shows that the optimal
convergence rate for estimating the mth order derivative of θ(·) point-wise or with Lq -
norm for any q with 0 < q < ∞ depends on the dimension of the number of continuous
conditioning variables d and the smoothness p (p > m) of θ(·). Let r = (p − m)/

(2p + d). In particular he shows that the optimal rate of convergence is n−r . For the
sup-norm, he shows that the optimal rate is (log n/n)r . Note that r < 1/2 so that Stone’s
results imply that the optimal rate for estimating a regression function within a very
general class of functions specified by Θp,C is slower than n−1/2. Stone also shows that
an analogous result holds for the estimation of Lebesgue densities.

If we specify a different class of functions in place of Θp,C , then the optimality result
may change. For example, the neural network literature considers a class of functions
ΘC representable by an inverse Fourier transform formula with finite absolute first mo-
ment:

ΘC =
{
θ; θ(x) =

∫
eiω·xF̃ (dω) for some complex measure F̃ with∫

Rd

|ω|∣∣dF̃ (ω)
∣∣ dω � C

}
.
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See, for example, Barron (1993). For this class of functions, Chen and White (1999)
construct an estimator which converges in mean square with rate

(n/ ln n)−(1+2/(d+1))/[4(1+1/(d+1))].

Whether this is the best rate for ΘC is an open question. This rate is better than the
Stone’s optimal rate when p < d/2 + d/(d + 1). This implies that not all functions
which are less smooth than d/2 + d/(d + 1) is in ΘC . Let [s] denote the largest integer
which is less or equal to s. Barron (1993) has shown that if the partial derivatives of θ(x)

of order [d/2] + 2 are continuous on Rd , then those functions can be considered to be
in ΘC .19

That the optimal rate may be slower than the regular n−1/2-rate may be intuitive.
Consider estimating the conditional mean function θ(x) = E(y|x) at a point x. If X

has a probability mass at x, then we can use data whose corresponding X equals x

and construct the conditional mean function estimator at point x. However, if X has
continuous distribution and if we do not wish to presume any particular functional form
in the conditional mean function, all we can make use of are data that lie close to x.
Let it be an ε-neighborhood of x. In general we will have sample size of order nεd if
the underlying density is bounded away from 0 and finite. This implies that the variance
of the sample mean will decrease with rate 1/(nεd) under i.i.d. sampling.20 If we are
to construct a consistent estimator for a large set of functions, we will have to make
ε smaller as sample size increases, because without making ε smaller we will not be
able to guarantee the estimator to be consistent for a broad class of functions specified
in the set. This consideration separates nonparametric estimators from more restricted
estimation. That ε converges to zero implies that the variance will decrease with rate
slower than n−1 which in turn implies the estimator to converge at rate slower than the
n−1/2-rate.

This intuition can be used to gain more insight to the formula obtained by Stone. As
we discussed, the variance of an estimator of the mean in an ε-neighborhood is of order
(nεd)−1. On the other hand, if θ(·) has smoothness p, then a parametric assumption of
polynomial of order �p� in the neighborhood will result in the bias of order εp if we are
to consider all functions in set Θp,C . Thus the mean square error to the first order is, for
some constants C1 and C2

C1

nεd
+ C2 · ε2p.

Minimizing this expression over ε yields r = p/(2p + d). If the target function is the
mth order derivative of θ(x), note that the bias changes to something of order εp−m. The
variance also changes because the target changes to the difference of means divided by

19 It will be useful to clarify the relationship between Θp,C and ΘC more completely.
20 An uncritical assertion we take for granted is that the mean of y whose corresponding regressors are in the
neighborhood is the best estimator of the θ(x0).
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something of order εm.21 Because the number of observations is still of order nεd , the
mean square error expression changes to

C1

nεd−2m
+ C2 · ε2(p−m).

Minimizing this expression with respect to ε yields r = (p − m)/(2p + d).
The result means that if we can only restrict ourselves to conditional functions with a

certain degree of smoothness, then we can estimate the function with a slower rate than
the n−1/2-rate which depends on three factors: the number of continuous regressors,
underlying smoothness of the target function, and the order of the derivative of the
target function itself. The result is in sharp contrast to the situation where we obtain the
convergence rate n−1/2 regardless of these factors in estimating regression function or
its derivatives under random sampling.

The above analysis makes clear the reason the convergence rate for the nonparametric
case is slower than for the parametric case. It is because we need to make ε converge
to zero to reduce the potential bias for a broad class of functions and the number of
data points in the shrinking ε-neighborhood grows slower than the sample size. The
sample size within an ε-neighborhood also grows more slowly when the dimension is
high. When the underlying function is smooth, ε can be shrunk less rapidly to reduce
the potential bias. The fact that the standard error decreases with the square root of the
relevant sample size (sample size within ε-neighborhood) does not change.

In the above discussion, we observed that the extent to which the small neighbor-
hood approximates the underlying function depends on the smoothness of the function
itself. Also, the function is only an approximation and thus there is an approxima-
tion error even in the neighborhood, which distinguishes nonparametric or semipara-
metric approach from the parametric approach. For example, consider estimating a
one-dimensional regression function. One flexible estimator that could be used is a non-
parametric power series expansion estimator (described in Section 5), which estimates
the regression function by a finite power series. For the estimator to be consistent, the
order of the polynomials must increase with the sample size to cover all potential mod-
els. But for any finite sample size, the number of polynomial terms used is fixed so
that superficially the estimator appears to be the same as a standard regression problem.
The key distinction between whether we have a parametric or a nonparametric model
in mind is whether the estimator is considered to have a negligible bias relative to the
rate of convergence or not. If we regard the estimator only as an approximation to the
true regression function, then the model is nonparametric and there is a bias that needs
to be taken into account in conducting inference which results in slower convergence
rate. Admitting the possibility of misspecification leads us to use a more conservative

21 For example

lim
ε→0

f (x + ε) − 2f (x) + f (x − ε)

ε2
= f ′′(x).
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standard error as the convergence rate is slower than the standard n−1/2 rate and the
form of variance will be different as well.

The dependence of the convergence rate on the dimension in particular is often re-
ferred to as the curse of dimensionality, which limits our ability to examine conditional
mean functions or Lebesgue densities in a completely flexible way. This limitation of
fully flexible models has motivated the development of semiparametric modeling meth-
ods, which offer a middle ground between fully parametric and fully nonparametric
approaches. For a clarifying discussion of the definition of semiparametric models we
refer the readers to Powell (1994, Section 1.2). Note that the discussion so far concen-
trated on the estimation of the conditional mean function but results would be analogous
for the estimation of the conditional quantile function.

Interestingly, not all nonparametric estimation of functions face the curse of di-
mensionality. A leading example is the cumulative distribution function. As it can be
expressed as the mean of a random variable defined using an indicator function, the
finite dimensional cumulative distribution can be estimated with n−1/2-rate nonparamet-
rically. We will briefly discuss a necessary condition for the n1/2-consistent estimability
of the parameter under consideration in the next subsection as a part of the discussion
of how the curse of dimensionality has been addressed in the literature.

3.1. Semiparametric approaches

The curse of dimensionality has been addressed using one of the following three ap-
proaches: by restricting the class of considered models, by changing the target parame-
ter, and by changing the stochastic assumption maintained. We shall see that all three
approaches can be understood within a single framework, but first we will discuss each
of the concrete approaches in turn.

3.1.1. Using semiparametric models

The first approach is to impose some restrictions on the underlying models. Leading
semiparametric models of the conditional functions are the additive separable model,
the partially linear model, and the single and the multiple index models. These models
provide ways to strike a balance between the flexibility and the curse of dimensionality.

The additive separable model is

θ(x) = φ1(x1) + · · · + φk(xk),

where φj (j = 1, . . . , k) are unknown functions and xj are sub-vectors of x with dif-
ferent dimension.

For the additive model for the conditional mean function, Linton and Nielsen (1995),
Linton (1997), and Huang (1998) constructed an estimator of φj (xj ) which converges
with the rate that depends only on the number of continuous regressors and smoothness
of φj (·). Thus the convergence rate for estimating θ(x) is driven by the maximum num-
ber of continuous regressors in {φj (·)} assuming the same degree of smoothness for
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each of the component functions. For the conditional quantile function, Horowitz and
Lee (2005) have constructed an estimator with analogous properties.

The partially linear model is

θ(x) = r(x0)
′β + φ(x1),

where r(·) is a known function, φ(·) is an unknown function and x0 and x1 are sub-
vectors of x. Robinson (1988) shows that when θ(x) is the conditional mean function,
β can be estimated with n−1/2-rate regardless of the number of regressors in x1 and
constructs an estimator of φ which performs as if β were known. Thus the convergence
rate for estimating θ(x) is driven by the number of continuous regressors in x1 and
smoothness of φ(·).

The multiple index model is

θ(x) = r0(x0)
′β0(θ) + φ

(
r1(x1)

′β1(θ), . . . , rk(xk)
′βk(θ)

)
,

where rj (j = 0, 1, . . . , k) are known functions and φ(·) is an unknown function.
Note that the multiple index model reduces to the partially linear model when βj (θ)

(j = 1, . . . , k) are known. Ichimura (1993) constructed an estimator of β1 in a single-
index model without β0. Using the same idea, Ichimura and Lee (1991) show that θ can
be estimated with n−1/2-rate regardless of the dimension of unknown function φ. It is
straightforward to show that the estimation of φ can be done as if βj (θ) for j = 0, . . . , k

are known. For the single index model, Blundell and Powell (2003) develop a method
to allow for an endogenous regressor and Ichimura and Lee (2006) study the asymp-
totic property of Ichimura’s estimator under general misspecification. Ichimura and Lee
(2006) also examine the single index model under a quantile restriction, rather than the
conditional mean restriction and shows that results analogous to the conditional mean
restriction case hold.

We will discuss these models and accompanying estimation methods in some detail
in Section 5. The advantage of using these models is clear. Because the parameters are
estimated without being subject to the curse of dimensionality and because these models
typically include the linear in parameter specification as a special case, they permit
examining the conditional mean and quantile functions under less stringent conditions
than previously thought possible.

There are at least two limitations in using semiparametric models. First, we do not
know which of these three or an alternative semiparametric model to use. Second, there
could be a discrepancy between the parameter we want to estimate and the variation we
would use to estimate the parameter. As Powell (1994) has emphasized, the defining
characteristic of a semiparametric model is that there are different ways to express the
same parameters. For example, consider the partially linear model with r(x0) = x0 and
assume that x0 and x1 do not have a common variable and that all relevant moments are
finite. In this case, β is the partial derivative of θ(x) with respect to x0. When θ(x) =
E(y|x), β is also a solution to minimizing E[Var(y − x′

0b|x1)] with respect to b and at
the same time β is a solution (corresponding to b) to minimizing E[(y −x ′

0b−f (x1))
2]
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with respect to b and a measurable function f .22 Thus one can estimate β using any of
the sample counterpart of these observations. Depending on how the estimator is going
to be used, we may want to use different estimation methods but using a semiparametric
model tends to mask this distinction. The second limitation can be overcome by care-
fully choosing the appropriate estimation method, but the first limitation seems harder
to resolve at this point.

3.1.2. Changing the parameter

The second approach to addressing the curse of dimensionality is to shift the fo-
cus of estimation to an aspect of θ(·) rather than θ(·) itself. This approach does
not restrict the class of functions we consider to a parametric or a semiparamet-
ric model. For example Schweder (1975), Ahmad (1976), Hasminskii and Ibrag-
imov (1979) studied estimation of

∫
θ(x)2 dx where θ(x) is a Lebesgue density

of a random variable. This object is of interest in studying rank estimation of
a location parameter and also studying optimal density estimation. The parame-
ter can be estimated at the n−1/2-rate and thus the curse of dimensionality can be
avoided.

Stoker (1986) considers average derivative of the form
∫ {∂θ(x)/∂x}w(x) dx where

w(x) is a given weight function. Even though ∂θ(x)/∂x itself cannot be estimated
point-wise at the n−1/2-rate, Powell, Stock and Stoker (1989) and Robinson (1989)
showed that this type of parameter can be estimated with n−1/2-rate regardless of the
dimension of x. By changing the weighting function w(x) appropriately, the average
derivative parameter can inform us about different aspects of ∂θ(x)/∂x. Altonji and
Ichimura (1998) have studied average derivative estimation when dependent data are
observed with censoring. We will discuss average derivative method in some detail in
Section 5.

As previously discussed, DiNardo, Fortin and Lemiex (1996) study a density f (x)

via conditional density θ(x, z) and the marginal distribution of z, Fz(z):

f (x) =
∫

Z

θ(x, z) dFz(z).

They study various hypothetical wage densities by replacing Fz(z) with hypothetical
marginal distributions. In their application z consists of discrete variables. Thus both
f (x) and θ(x, z) are estimated with the same rate. But if z contains a continuous vari-
able, then this is an example in which integration improves the rate of convergence. This
is also the case for Heckman et al. (1998). In their work θ(·) is the conditional mean
function and Fz(z) is replaced by a distribution which is estimated.

22 The latter two problems lead to the same solution for b even in a nonparametric setup.
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3.1.3. Specifying different stochastic assumptions within a semiparametric model

Even when the model is restricted to a semiparametric model which has a finite dimen-
sional parameter, such as β in the partially linear regression model, it is not always
possible to estimate the finite dimensional parameter with the standard n−1/2-rate. The
role that different stochastic assumptions can play in this regard is clarified in the con-
text of the censored regression model by Powell (1984) and Chamberlain (1986a) and
Cosslett (1987). An illustration of the results requires us to fully specify the probability
model.

A probability model is specified by a class of conditional or unconditional distribution
of a random variable z, say F . To distinguish conditional and unconditional models, we
write z = (y, x) where x represents conditioning variables. Let Fx denote a conditional
probability model. Sometimes F is specified indirectly as a known mapping, say h, from
another parameter space Θ into a space of distributions, F = {f : f (z) = h(z; θ),

θ ∈ Θ}. This is the conventional way the standard parametric model specifies F .
When the indirect specification of a probability model can be accomplished based on
a finite dimensional space Θ in some ‘smooth’ way, the model is called a parametric
model.23

Consider, for example, the censored linear regression model censored from below
at 0, with only an intercept term. In this case the model of the distribution of y is

F =
{
f ; f (y) = h(y − μ)1{y>0}

[ ∫ −μ

−∞
h(s) ds

]1{y=0}
, h ∈ Γ

}
,

where Γ is a class of densities with certain stochastic properties. The parameter space
is Θ = R × Γ . In the econometric literature in the past it was common to treat the
parameter space as R leaving the nonparametric component Γ implicit. Specifying the
probability model completely turned out to be an important step towards understanding
the convergence rate and efficiency bound of a semiparametric estimator.

As an illustration consider estimating μ semiparametrically under two alternative
stochastic restrictions on Γ under random sampling. One model restricts that h has
mean 0 and the other model restricts that h has median 0. We will argue that the first
stochastic assumption will not allow us to estimate μ with n−1/2 rate but the second
assumption will.

To see this, suppose h is known. Then under random sampling, the most efficient
estimator is the ML estimator and its asymptotic variance in this case is 1 over

h2(−μ)

H(−μ)
+
∫ ∞

−μ

[h′(s)]2

h2(s)
h(s) ds,

23 Without a smoothness restriction on the mapping from the finite dimensional parameter space to the space
of probability distributions, the definition of the parametric model is not meaningful. Without smoothness one
can ‘encode’ an infinite dimensional space into a finite dimensional space.
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where H(t) = ∫ t

−∞ h(s) ds. Note that the first term can be made arbitrarily small under
both models. Under the model with mean 0 restriction, the second term can be made
arbitrarily small also because only a small probability needs to be on [−μ,∞) to sat-
isfy the mean 0 restriction. However, with the median restriction, when μ > 0, and
H(−μ) < 1, for example, the second term is strictly positive. To see this, note that
the second term divided by 1 − H(−μ) corresponds to the inverse of the asymptotic
variance of the ML estimator of the mean when the random variable under considera-
tion is supported on [−μ,∞). Since we know that the mean can be estimated with rate
n−1/2 when the variance is restricted to be finite, the infimum of the second term cannot
be 0. Thus with the restrictions on Γ , the infimum over Γ of the second term should
be strictly positive so that the asymptotic variance is bounded above. Thus whether the
conditional mean or the conditional median, or more generally the conditional quantile
is restricted to zero makes a fundamental difference.

We intuitively argued that the bound on the asymptotic variance of any estimator
of μ could be obtained by considering the worst case among Γ after computing the
smallest asymptotic variance of a possible estimator of μ given a particular function
in Γ . This is the approach of Stein (1956) further developed by various researchers.
The work is summarized in Bickel et al. (1993). Newey (1990) provides a useful survey
of the literature as do van der Vaart and Wellner (1996) and van der Vaart (1998). It
has been shown that the bound thus computed provides a lower bound of the asymp-
totic variance of the n1/2-consistent “regular” estimators where regularity is defined to
exclude super-efficient estimators as well as estimators that use an unknown aspect of
the probability model under consideration. When the bound is infinite, then there is no
n1/2-consistent estimator. A finite bound does not imply that n1/2-consistent estimator
exists, because it may not be achievable. See Ritov and Bickel (1990) for examples.
On the other hand, when there is a regular estimator that achieves the bound, then it is
reasonable to call the estimator efficient.24 For the example considered above, the esti-
mator considered by Powell (1984) gives an example that achieves the n1/2-consistency
and Newey and Powell (1990) constructs an asymptotically efficient estimator for the
model.

To some extent, these developments partly solve the specification search problem that
was described in the introduction. For the censored regression model, for example, the
specification search for the error distribution has become completely redundant as the
slope parameters can be estimated at the parametric rate without specifying a functional
form for the error distribution. However, search problems still remain for the specifica-
tion of the systematic component of the model. For the average derivative example, the
specification search problem reduces to that of fully nonparametric models: the main
difficulty being which variables to use and not which functional form to adopt.

24 For an alternative formulation of an efficiency concept that does not restrict estimators to the regular
estimators, see van der Vaart (1998, Chapter 8).
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In a parametric setting, specification search often makes it difficult to assess the
variability of the resulting estimator. In contrast, there are now large classes of semi-
parametric and nonparametric models for which at least asymptotic assessment of the
variability of estimators is possible. Not only has consistency been proved for many
estimators, but the explicit form of the asymptotic bias and variance has also been ob-
tained.

4. Nonparametric estimation methods

While the above discussion of the curse of dimensionality may leave one with an im-
pression that nonparametric methods are useful only for a low dimensional cases, they
are nonetheless important to study, if only because they form the building blocks of
many semiparametric estimators.

Roughly speaking, there are two types of nonparametric estimation methods: local
and global. These two approaches reflect two different ways to reduce the prob-
lem of estimating a function into estimation of real numbers. Local approaches
consider a real valued function h(x) at a single point x = x0. The problem of
estimating a function becomes estimating a real number h(x0). If we are inter-
ested in evaluating the function in the neighborhood of the point x0, we can ap-
proximate the function by h(x0) or, if h(x) is continuously differentiable at x0,
then a better approximation might be h(x0) + h′(x0)(x − x0). Thus, the prob-
lem of estimating a function at a point may be thought of as estimating two
real numbers h(x0) and h′(x0), making use of observations in the neighborhood.
Either way, if we want to estimate the function over a wider range of x val-
ues, the same, point-wise problem can be solved at the different points of evalua-
tion.

Global approaches introduce a coordinate system in a space of functions, which re-
duces the problem of estimating a function into that of estimating a set of real numbers.
Recall that any element v in a d-dimensional vector space can be uniquely expressed
using a system of independent vectors {bj }dj=1 as v = ∑d

j=1 θj · bj , where one can

think of {bj }dj=1 as a system of coordinates and (θ1, . . . , θd)′ as the representation of v

using the coordinate system. Likewise, using an appropriate set of linearly independent
functions {φj (x)}∞j=1 as coordinates any square integrable real valued function can be
uniquely expressed by a set of coefficients. That is, given an appropriate set of linearly
independent functions {φj (x)}∞j=1, any square integrable function h(x) has unique co-
efficients {θj }∞j=1 such that

h(x) =
∞∑

j=1

θj · φj (x).

One can think of {φj (x)}∞j=1 as a system of coordinates and (θ1, θ2, . . .)
′ as the repre-

sentation of h(x) using the coordinate system. This observation allows us to translate
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the problem of estimating a function into a problem of estimating a sequence of real
numbers {θj }∞j=1.

Well-known bases are polynomial series and Fourier series. These bases are infinitely
differentiable everywhere. Other well-known bases are polynomial spline bases and
wavelet bases. One-dimensional linear spline bases are: for a given knot locations tj ,
j = 1, . . . , J ,

1, x, (x − tj )1{x � tj },
quadratic spline bases are:

1, x, x2, (x − tj )
21{x � tj },

and cubic spline bases are:

1, x, x2, x3, (x − tj )
31{x � tj }.

By making the knot locations denser, a larger class of functions can be approximated.
A function represented by a linear combination of the linear spline bases is contin-
uous, that represented by the quadratic spline is continuously differentiable, and that
represented by the cubic spline is twice continuously differentiable. Higher dimensional
functions can be approximated by an appropriate Tensor product of the one-dimensional
bases. Polynomial spline bases have an unpleasant feature that imposing higher order
of smoothness requires more parameters.

Wavelet bases are generated by a single function φ and written as

2k/2φ
(
2kx − �

)
where k is a nonnegative integer and � is any integer and φ satisfies certain conditions so
that {2k/2φ(2kx−�)}� is an orthonormal family in L2-space. Now many functions φ, in-
cluding an infinitely differentiable function, are known to define the orthonormal bases.
Since these functions themselves can be infinitely differentiable and yet can approx-
imate any function in L2-space, the bases are useful to examine functions without
a known degree of smoothness. See Fan and Gijbels (1996) for a concise discussion
of the wavelet analysis. For a fuller discussion see Chui (1992) and Daubechies (1992).

Below, we illustrate both local and global approaches to density and conditional mean
function estimation. We emphasize commonalities among estimation approaches that on
the surface may appear very different. While we believe it is useful to understand the
local and global nonparametric approaches, we shall see that even that distinction is not
as clear cut as it seems at first.

4.1. How do we estimate densities?

As with parametric estimation, nonparametric estimation of a density can be carried out
using either likelihood based estimation or a moment based estimation. Here we clas-
sify various density estimators, using the maximum likelihood vs method of moment
classification in addition to the local vs global classification.
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4.1.1. Moment based estimators

If there were a standard function δx(s), such that for any continuous function f∫ +∞

−∞
δx(s)f (s) ds = f (x),

then by regarding f as the Lebesgue density function of a random variable X, this
equality can be used as the moment condition

E
{
δx(X)

} = f (x)

to estimate the density. Unfortunately, it is well known that such function δx(s), called
the Dirac-delta function, does not exist as a standard function.25 However, it can be
expressed as a limit of a class of standard functions indexed by a positive real number
h, say δx(s, h).26 For example

δx(s, h) = 1

h
K

(
x − s

h

)

where
∫ +∞
−∞ K(u) du = 1 satisfies the requirement for a continuous Lebesgue density

f (x) if lim|u|→∞ |u|K(u) = 0.
Method-of-moment estimation based on this specification for δx(s, h) leads to the

so-called kernel density estimator of Rosenblatt (1956). See also Parzen (1962):

f̂h(x) = n−1
n∑

i=1

Kh(x − xi),

where Kh(s) = h−1K(s/h). When the function K(·) is a density function, the estimator
itself is a density function. Smoothness on estimated density function can be imposed
by choosing a smooth function K(·). See Silverman (1986) for a very useful discussion
of the estimator.27

Implementing this estimator requires specifying the function K(·), referred to as the
kernel function, and the parameter h, which is called the window-width, bandwidth, or
smoothing parameter.

When a symmetric kernel function with a finite variance is used, a calculation using
the change of variables formula and the Taylor’s series expansion under the assumption
that the density is twice continuously differentiable shows that the highest order of the
point-wise mean square error of the kernel density estimator is(

h2/2
∫

u2K(u) dsf ′′(x)

)2

+ 1

nh

∫
K2(u) duf (x).

25 See for example, Zemanian (1965, p. 10).
26 See Walter and Blum (1979).
27 Härdle and Linton (1994) summarize the asymptotic properties of this estimator in Chapter 38. See also
Scott (1992).
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The bandwidth that minimizes the leading terms of the mean squared error is

h∗ =
[ ∫

K2(u) duf (x)

(
∫

u2K(u) ds)2[f ′′(x)]2

]1/5

n−1/5.

The optimal bandwidth is larger when the density is high, because then the variance is
higher; the optimal bandwidth is larger when the second derivative is small, because
then the bias is smaller so that wider bandwidth can be tolerated. Because the optimal
bandwidth involves the unknown density itself and its second derivative, it is not feasi-
ble. However, there is a large literature that we review in Section 6 that studies methods
that use the data to come close to the optimal bandwidth.

With the optimal bandwidth, the highest order of the mean square error is

5

4

( ∫
K2(u) du

)4/5( ∫
u2K(u) du

)2/5

f 4/5(x)
[(

f ′′(x)
)2]1/5

n−4/5.

This shows three things: first, the convergence rate of the kernel density estimator
is n−4/5, which corresponds to the optimal rate Stone obtained for the estimation of
one-dimensional twice continuously differentiable densities. Second, regardless of the
unknowns, the optimal kernel function can be chosen by minimizing( ∫

K2(u) du

)( ∫
u2K(u) du

)1/2

,

under the restriction that the kernel function is symmetric and the second moment is fi-
nite and normalized to 1, Epanechnikov (1969) showed that the optimal kernel function
is

K(u) = 3

4 · 53/2

(
5 − u2)1{u2 � 5

}
.

This kernel function is usually referred to as the Epanechnikov kernel.28 The enve-
lope theorem implies that a slight deviation from the optimal kernel function would
not affect the asymptotic mean square error very much. In fact, Epanechnikov showed
numerically that the efficiency loss by using commonly used kernel functions such as
the normal kernel is about 5% and that by the uniform kernel is about 7%. This obser-
vation lead subsequent researches to concentrate more on how to choose the bandwidth
sequence. Note that the Epanechnikov kernel is not differentiable at the edges of its
support. If we impose three times continuous differentiability via the quartic kernel
function, sometimes called the biweight kernel,

K(u) = 15

16 · 75/2

(
7 − u2)21

{
u2 � 7

}
,

the efficiency loss to the first order is less than 1%.29

28 Sometimes the support is normalized between −1 and 1 rather than the variance being normalized to 1.
However, this normalization will make the comparison to the kernel function with unbounded support diffi-
cult.
29 See, for example, Scott (1992, Table 6.2).
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The histogram estimator can be viewed as a kernel density estimator which uses a
uniform kernel function Kh(s) = 1(|s| < h)/2. Although the simplicity of the his-
togram is appealing and it can be interpreted as an estimator of the cell probability
divided by twice the bandwidth for each finite observation, it has two disadvantages;
one is that density estimates generated by a histogram are discontinuous at bin end-
points, and the other is that there is about 7% efficiency loss discussed above. Figure 2
compares the density of earnings estimated by a histogram to that estimated using a
kernel density estimator.

Another density estimator which can be viewed as a kernel density estimator is the
nearest neighbor estimator. The estimator is based on the equality

∫ x0+Rn

x0−Rn
f (s) ds =

Figure 2. Comparison of earnings density estimated by a histogram and by a kernel density estimator.
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Pr{|X − x0| � Rn}, where f is the Lebesgue density of random variable X. Because
the left-hand side is approximately 2Rnf (x0) and the right-hand side can be estimated
by the fraction of observations which fall within the Rn distance from x0, by using
the distance Rn to the nearest kn observations from x0, the density at x = x0 can be
estimated by equating 2Rnf (x0) and kn/n; i.e. by kn/(2Rnn). This can be written as

n−1
n∑

i=1

KRn(x − xi)

where the kernel function is the uniform kernel function.30 Thus the nearest neighbor
estimator can be viewed as a histogram estimator for a particular way of choosing the
bandwidth. Note that the way bandwidth is selected does not consider the second deriv-
ative of the density at the point of estimation, so when the density is twice continuously
differentiable the nearest neighbor estimator cannot be optimal.

The estimators discussed so far are all local estimators. We next show that method
of moment based global estimators can be viewed also as a local estimator. As dis-
cussed earlier, let {φj (x)}∞j=1 be an orthonormal basis in the space of square integrable
functions and consider the class of Lebesgue densities in the same space. Then one can
write

f (x) =
∞∑

j=1

cjφj (x)

for some sequence {cj }∞j=1. The coefficients can be computed by∫
f (x)φk(x) dx =

∞∑
j=1

cj

∫
φj (x)φk(x) dx = ck,

where the last equality follows from the orthonormality of {φj (x)}∞j=1.
Thus a global method to estimate the Lebesgue density in L2 is to use the first

J elements of the series just discussed and estimating cj by the sample average
of φj (X) where X has the Lebesgue density f (x). In this case the estimator of cj is
ĉj = n−1 ∑n

i=1 φj (xi) so that the estimator of f (x) is

f̂ (x) = 1

n

n∑
i=1

J∑
j=1

φj (xi)φj (x).

This results in another example of δx(s, h). Denoting the number of series used by
J = 1/h:

δx(s, h) =
1/h∑
j=1

φj (s)φj (x).

30 See Moore and Yackel (1977a, 1977b).
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Figure 3. Implicit kernel function for the Fourier series density estimator.

This form of an approximation to the delta function is known as a reproducing kernel.
See Weinert (1982), Saitoh (1989), Wahba (1990), and Berlinet and Thomas-Agnan
(2003). For example, when we consider densities supported on [−π, π] and 0 at the
boundaries, we can use 1/(2π), cos(x)/π, sin(x)/π, cos(2x)/π, sin(2x)/π, . . . as the
orthonormal bases. In this case one can show that δx(s, 1/J ) is the Dirichlet kernel:

δx(s, 1/J ) = 1

2π

sin 2J+1
2 (s − x)

sin s−x
2

.

Figure 3 plots this function.
We are not advocating using the series estimator as discussed above. In fact this

simple version of the implementation has been shown to have undesirable features that
have been improved. For a discussion see Scott (1992).

A notable difference between the kernel density and series expansion estimators is
that kernel functions that correspond to orthogonal expansion methods have support
independent from the number of terms in the expansion, whereas standard kernel func-
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tions have a support that depends on the bandwidth choice if the kernel function is
supported on a finite interval.

For the general series estimators, the highest order of the bias and the variance
have not been characterized although the rate of convergence have been characterized.
For the wavelet based bases, however, the highest order of the bias and the variance
are computed by Hall and Patil (1995). See also Huang (1999) and Ochiai and Naito
(2003).

We have seen that moment based density estimators can be regarded as reflecting
different ways to approximate the delta function. A single parameter h in the approx-
imation δx(s, h) is used to construct a model of densities. If

∫
δx(s, h) dx = 1 and

δx(s) � 0, then an estimator itself is a valid density. As discussed, Epanechnikov (1969)
argued that among the kernel density estimators, the choice of bandwidth is more impor-
tant than the choice of kernel function. For the same reason, the above discussion may
indicate that among method-of-moment based methods the more important issue is how
to choose the smoothing parameter rather than which method of moment estimator to
use. This remains to be seen.

4.1.2. Likelihood-based approaches

Another natural way of estimating densities is a maximum likelihood (ML) approach;
however, a straightforward application of the likelihood method fails in nonparametric
density estimation. To see why consider the ML estimator

max
f ∈F

n∑
i=1

log f (xi)

where F is an a priori specified class of densities. If F is not restricted, then for each n

one can choose an f with spikes at xi and yet f can be a density. Thus the likelihood
can be made as high as desired regardless of the underlying density and the method
leads to an inconsistent estimator.

Many modifications have been proposed to resolve this failure by restricting F in
some way.31 Imposing smoothness alone does not correct the situation. To see this, first
observe that the likelihood value is only affected by values of f (x) on the data points
x1, . . . , xn. As one can construct a polynomial function that passes through any given
finite points that are a subset of the graph of log f (x), the likelihood value can be made
arbitrarily large. Stronger restrictions are needed.

As discussed below, some restrictions are needed regardless of whether one takes
a global or a local approach. The global method, such as that of Stone et al. (1997),
restricts the rate at which more complex functions are included in F as the sample size
increases. The local method attempts to approximate the density locally holding the
complexity of the functions fixed. The approach taken by Hjort and Jones (1996) and
Loader (1996) is to approximate a density locally by a parametric density.

31 See Prakasa-Rao (1983), Silverman (1982b), and Scott (1992).
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Global likelihood estimation The global likelihood-based approach restricts the rate
at which complex functions are included in F as the sample size increases. Here, we
describe a density estimation implementation of Stone’s extended linear modeling, as
exposited in Stone et al. (1997). Their starting point is to observe that the log-density
function can be written in the form

l(h,X) = h(X) − log
∫
X

exp h(x) dx

for any function h(x) ∈ H , where H is a linear space of real-valued functions on X .
The second term on the right-hand side ensures that exp[l(h,X)] is a proper density.

Stone et al. (1997) define the estimator of the log-density as the maximizer of the
log-likelihood function

n∑
i=1

h(Xi) − n log
∫
X

exp
[
h(x)

]
dx

over h in a finite dimensional linear subset of H , denoted G. With no restriction on H

to a smaller subset G, the problem pointed out earlier in relation to inconsistency of the
unrestricted ML estimator also arises here. By choosing h to have spikes at observation
points we can make

∑n
i=1 h(Xi) as large as we wish, while keeping the contribution to

n log
∫
X exp[h(x)] dx small. Also, for any constant value C, h(x) and h(x) + C give

rise to the same log-likelihood value so we need a normalization. Stone et al. (1997)
use the normalization E[h(X)] = 0, which guarantees a unique optimizer in G since
the log likelihood function is strictly concave. The implementation of the method de-
pends crucially on how G is chosen. The choice of G represents the finite dimensional
model used to approximate the unknown density. In their formulation of d-dimensional
functions, the first stage is the additive separable model. The second stage includes two-
dimensional function etc. In this way, the additive separable model could be embedded
in a series of less restrictive models.

Local likelihood estimation Loader (1996) and Hjort and Jones (1996) propose a lo-
calized likelihood based estimator. The local likelihood is defined as

L(f, x) =
n∑

i=1

Kh(x − Xi) log f (Xi) − n

∫
X

Kh(x − Xi)f (u) du.

Because the data are localized through the use of kernel weighting, we need only to
approximate the log-density locally. Loader considers polynomial approximation of the
log density, which is equivalent to using exponential models. Hjort and Jones consider
approximation by general parametric models. If we do not restrict the class of models to
a small subset like the ones considered in these papers, then the optimization problem
does not have a well-defined solution.

To gain insight into the form of the above objective function, we show that one can
view the objective function as an approximation to a likelihood for observing data only
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in an area within h of point x. When the density is f , the likelihood contribution if the
data falls within the interval is f (Xi) but if not, then it also contributes by computing
the probability of not observing in the interval. Thus we can write the likelihood as

n∑
i=1

Ii log f (Xi) + (1 − Ii) log

(
1 −

∫
X

I
{|x − u| � h

}
f (u) du

)
.

Using the approximation log(1 − ∫
X I {|x − u| � h}f (u) du) ≈ − ∫

X I {|x − u| �
h}f (u) du gives

n∑
i=1

Ii log f (Xi) − n

∫
X

I
{|x − u| � h

}
f (u) du

−
n∑

i=1

Ii

∫
X

I
{|x − u| � h

}
f (u) du,

where the leading two terms are of higher order. Approximating the indicator function
by the kernel function Kh(x − Xi) gives the objective function

n∑
i=1

Kh(x − Xi) log f (Xi) − n

∫
X

Kh(x − u)f (u) du,

which is the objective function studied by Loader (1996) and Hjort and Jones (1996).32

We have grouped density estimation methods into moment-based and likelihood-
based methods. Recent developments in empirical likelihood literature suggest a link
between the method of moment estimators and likelihood estimators, which still needs
to be clarified in this context.

4.2. How do we estimate conditional mean functions?

As with density estimation, there are both local and global approaches to estimating
the conditional mean function. Because the conditional mean function does not char-
acterize the conditional distribution, most of the methods analyzed extensively in the
literature are based on the method-of-moments approach rather than the likelihood
approach. Let M denote a class of functions in which the conditional mean function
m(x) = E(Y |X = x) lies. We can characterize the conditional mean function in two
ways: as the solution to

inf
g(·)∈M

E
{[

Y − g(X)
]2}

32 The local likelihood estimator is available as a supplement to the Splus statistical software package. In
Section 6, we present some Monte Carlo results on the performance of these estimators.
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or as the solution to

inf
g(·)∈M

E
{(

Y − g(X)
)2|X = x

}
.

The global method is based on the first characterization and the local method on the sec-
ond. Analogous to the ML-based density estimation, both global and local approaches
to estimating conditional mean functions require that the space M be restricted to avoid
over-fitting.

Below we discuss nonparametric estimators of the conditional mean function. Esti-
mators of the conditional quantile function can be constructed by replacing the quadratic
loss function with that of Koenker and Bassett (1978). Also, see Tsybakov (1982),
Härdle and Gasser (1984), and Chaudhuri (1991a, 1991b).

The global approach As described earlier, the global approach to nonparametric esti-
mation constructs a sequence of parametric models Mn such that approximation error
of m(·) by an element of Mn eventually goes down to zero as n → ∞. A well-known
sequence is a sequence of polynomial functions, a sequence of spline functions,33 or a
sequence of wavelets as discussed above. All sequences specify for each n some set of
functions {φnj (x)}Jn

j=1, and use them to define the sequence of models by

Mn = {
f ; f (x) = θ1φn1(x) + · · · + θJnφnJn(x) for some θ1, . . . , θJn ∈ R

}
.

Then, for each n the global estimator can be defined as m̂(x, Jn) = θ̂1φn1(x) + · · · +
θ̂JnφnJn(x), where θ̂1, . . . , θ̂Jn are obtained by the least squares minimization problem
of the following objective function:

n∑
i=1

[
yi − (

θ1φn1(xi) + · · · + θJnφnJn(xi)
)]2

.

As discussed before, for more than 1 regressor cases, appropriate Tensor products of a
one-dimensional bases are used to construct the base functions.

Different global methods can be viewed as different combinations of decisions about
how the class M is restricted and how the data are used in choosing the class M. Clearly
the properties of this estimator crucially depends on how we choose the base functions
{φnj (x)}Jn

j=1 and Jn. Typically the order in which different base functions are brought in
is given and the literature discusses how to choose Jn using a model selection criterion.
For example when the polynomial series are used base functions are ordered in terms of
the degree of polynomials. In the wavelet literature, there is an attempt to endogenize
the choice of the bases themselves so as to estimate the degree of smoothness.

Global approaches can be a convenient way of imposing global properties of under-
lying functions such as monotonicity, concavity, and additive separability. It is also easy

33 See Schoenberg (1964) and also Eubank (1999) and Green and Silverman (1994).
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to restrict a class of functions so that any function in the class goes through a certain
point.

For global estimation methods, there has been less progress in analyzing the form of
the first order bias in comparison to local methods. Although the rate of convergence is
known, the exact expression for the highest order term is known only for limited cases.
See Newey (1997) for the convergence rate results and see Zhou, Shen and Wolfe (1998)
and Huang (2003) for some results about the first order bias computations.

The local approach Let f (y, x) and f (x) denote the joint density of (Y,X) and the
marginal density of X, respectively. Using the Dirac-delta function, δx(s), as used pre-
viously in setting up the moment condition for the density estimation (Section 4.1), we
can write∫∫ [

y − g(s)
]2

f (y, s)δx(s) ds dy =
∫ [

y − g(x)
]2

f (y, x) dy

= E
{(

Y − g(X)
)2|X = x

}
f (x).

As the last term is proportional to E{(Y − g(X))2|X = x}, the solution to the infimum
problem is the same if f (x) > 0. Following the same logic as for the density estimation
case, one can construct a sample analog objective function using some approximation
to the Dirac-delta function.

If we do not restrict the class of functions (M) over which infimum is taken, then the
optimization problem does not have a well-defined solution. Different local estimation
methods can be viewed as different combinations of decisions about (1) how to approx-
imate the Dirac-delta function (2) how to restrict the class M and (3) how to use the
data in choosing the approximation and the class M.

For example, if we approximate the Dirac-delta function by

1

h
K

(
x − s

h

)
as we did in the density estimation case, and restrict M to the class of constant func-
tions, the left-hand side of the above expression has the sample analog:

1

n

n∑
i=1

(yi − β)2Kh(xi − x).

Minimizing this with respect to β we get the kernel regression estimator34:

m̂K(x) =
∑n

i=1 yiKh(xi − x)∑n
i=1 Kh(xi − x)

,

34 See Nadaraya (1964) and Watson (1964) and Härdle (1990).
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whenever the denominator is not zero. Writing

wK
ni(x) = Kh(xi − x)∑n

i=1 Kh(xi − x)

we see that m̂K(x) = ∑n
i=1 yiw

K
ni(x) and

∑n
i=1 wK

ni(x) = 1.
If function K(s) takes the form 1(|s| � 1) where |s| denotes a norm of s and the

smoothing parameter h is chosen to be the distance between x and the kth closest ob-
servation in {xi}ni=1, then the estimator is the kth-nearest neighbor estimator.

For the same Dirac-delta approximation, when M is replaced by a class of a fi-
nite dimensional polynomial function, we get the local polynomial regression estimator
of E(Y |X = x) at x = x0.35 It is defined as the solution corresponding to β(0) of the
following minimization problem:

min
β(0),β(1),...,β(p)

1

n

n∑
i=1

[
yi − β(0)

−
p∑

ν=1

∑
j1+···+jd=ν

1

j1! · · · jd !βν,j1,...,jd
(xi1 − x01)

j1 · · · (xid − x0d)jd

]2

× Kh(xi − x0),

where for ν = 1, . . . , p the length of vector β(ν) is (ν +d −1)!/((d −1)!ν!) and its ele-
ments are denoted by βν,j1,...,jd

where j1 +· · ·+ jd = ν and j1, . . . , jd are nonnegative
integers. For concreteness and for later purpose we order j = (j1, . . . , jd) lexicograph-
ically putting highest order to the first element, the next to the second element, etc.

To gain an understanding of the objective function, observe that

Y = m(X) + ε = m(x0) + [
m(X) − m(x0)

] + ε.

Consider the one-dimensional case and assume that K(·) is a symmetric, unimodal
density function supported on the interval [−1, 1]. In that case, observations whose
X = xi are close to x0 receive more weight than others and if an observation’s X = xi

is more than h apart from x0, it receives 0 weight. If function m(·) is continuous at
X = x0, then the approximation error [m(X) − m(x0)] is not very big so long as we
restrict attention to observations whose xi is close to x0. Thus ignoring the approxi-
mation error, minimizing the objective function for the kernel regression estimator is
justified.

To motivate the objective function of the higher order polynomial estimator, consider
a one-dimensional case and let m(ν)(x) denote the νth order derivative of function m(·).
Observe that

35 See Stone (1977) and Fan and Gijbels (1996, pp. 105–106).
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Y = m(X) + ε

= m(x0) + m(1)(x0)(X − x0) + · · · + m(p)(x0)(X − x0)
p/p!

+ {
m(X) − [

m(x0) + m(1)(x0)(X − x0) + · · · + m(p)(x0)(X − x0)
p/p!]}

+ ε,

where {m(X)−[m(x0)+m(1)(x0)(X −x0)+· · ·+m(p)(x0)(X −x0)
p/p!]} constitutes

the approximation error. The objective function is the weighted least squares objective
function ignoring the approximation error where the observations whose xi are closer
to x0 receive higher weights. Clearly, the solution corresponding to the constant term is
the estimator of the conditional mean function evaluated at x0 and the solution corre-
sponding to the coefficient of (xi − x0)

ν/ν! is the estimator of the νth order derivative
of the conditional mean function evaluated at x0. For higher dimensional problems, we
interpret m(ν)(x0), as a vector of partial derivatives of order ν and (X − x0)

(ν)/ν! as a
vector of elements (X1 − x01)

j1 · · · (Xd − x0d)jd /(j1! · · · jd !), where j1 +· · ·+ jd = ν.
For concreteness, we assume both are ordered in the lexicographical way as above.

Fan (1992) clarifies the theoretical reasons why we may prefer to use the local poly-
nomial regression estimator with p � 1 instead of the kernel regression estimator
(p = 0). The advantage is the ability of the estimator to control the bias in finite sam-
ple. As we have seen above, in finite sample the kernel regression estimator ignores
[m(X) − m(x0)], which is of order h in the neighborhood of x0 when the underlying
function is twice differentiable with bounded second derivative. If the local linear es-
timator is used, then under the same condition, the approximation error ignored is of
order h2 in the neighborhood of x0. If pth order polynomial is used and the underlying
function is at least r-times differentiable with bounded rth derivative where r � p + 1,
the approximation error is of order hp+1 in finite sample. This leads to practical and
theoretical advantages.

For the kernel regression estimator evaluated at the interior point of the support of
regressors, when the underlying function is twice differentiable and the second deriva-
tive is bounded, the first order asymptotic analysis shows that the asymptotic bias is of
order h2, which is the same order with the local linear estimator. However, note that this
is an asymptotic result and applicable to interior points. For the local linear estimator,
the bias is of order h2 in finite sample whenever the estimator is well defined. For the
local polynomial regression estimator of order p, so long as the estimator is defined and
the underlying function is sufficiently smooth, the bias is of order hp+1 in finite sample.
This is the practical advantage.

When a nonparametric estimator is used to construct a semiparametric estimator and
the asymptotic properties of the resulting semiparametric estimator is examined, as we
shall see later, typically the uniform convergence needs to be established with a cer-
tain convergence rate. Since the same convergence rate can be achieved without the
boundary consideration, the theoretical development simplifies. This is the theoretical
advantage.

We clarify above points in some detail as the results will be useful to under-
stand the asymptotic results discussed below and the bandwidth selection methods
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discussed later. Let j = (j1, . . . , jd) and denote |j | = j1 + · · · + jd . Also let
β = (β(0), β(1)′ , . . . , β(p) ′)′, Nu = (u + d − 1)!/((d − 1)!u!), N = ∑p

u=0 Nu, and
X(u) be an n × Nu matrix with the ith row being (xi − x0)

j /j ! for |j | = u, interpreted
as specified above, ιn be the vector of n ones, X = (ιnX

(1) · · · X(p)) (an n × N matrix),
y = (y1, . . . , yn)

′ and W be an n × n diagonal matrix with ith diagonal element being
Kh(xi − x0).

With these notations, the local polynomial objective function can be written as

(y − Xβ)′W(y − Xβ)

so that the local polynomial estimator is, when it exists, β̂ = (X′WX)−1X′Wy. The
local polynomial estimator of the conditional mean function is the first element of β̂ so
that it can be written as

∑n
i=1 wL

ni(x0)yi where(
wL

n1(x0), . . . , w
L
nn(x0)

) = e′
N(X′WX)−1X′W,

where eN is a vector of length N with first element being one and the rest of the elements
are zero. Observe that(

wL
n1(x0), . . . , w

L
nn(x0)

)
X = e′

N(X′WX)−1X′WX = e′
NIN .

Reading off the row, we observe that
∑n

i=1 wL
ni(x0) = 1,

∑n
i=1 wL

ni(x0)(xi − x0) = 0,
and generally

∑n
i=1 wL

ni(x0)(xi −x0)
(j)/j ! = 0 for any j with 1 � |j | � p. As we shall

see below, these orthogonality properties of the weight function are key to controlling
bias in finite sample.

The weights for the kernel regression estimator satisfy
∑n

i=1 wK
ni(x0) = 1, but satisfy

n∑
i=1

wK
ni(x0)(xi − x0) → 0

only asymptotically when x0 is at the interior point of the support of xi . The latter does
not hold asymptotically if x0 is on the boundary of the support of xi .

One might think that the limitation of the kernel regression estimator at the bound-
ary points is not so important practically, because there are many more interior points
than boundary points. However, two points need to be taken into account. First, the
comparable performance of the kernel regression estimator in interior points is obtained
asymptotically, not in the finite sample as for the local polynomial estimator. Second,
in finite sample, it is entirely plausible that the data are unevenly distributed, so that
there are many more data points lying on one side of the point of evaluation (x0) than
the other. This is even more likely to occur in higher dimensions. In these cases, the
asymptotic properties of the kernel regression estimator may not capture well the finite
sample behavior. In some sense, in finite sample, there are likely many points at which
the boundary behavior of the estimator may better represent its performance.

To see these points more clearly, define ε = (ε1, . . . , εn)
′, β

(ν)
0 = m(ν)(x0) for ν =

0, . . . , p and β0 to be the vector of length N constructed by stacking these sub-vectors.



5408 H. Ichimura and P.E. Todd

We can write

y = Xβ0 + r + ε

where r = (r1, . . . , rn)
′ = m − Xβ0 with m = (m(x1), . . . , m(xn))

′. Thus

β̂ = β0 + (X′WX)−1X′Wr + (X′WX)−1X′Wε.

The second term on the right-hand side is the bias term and the third, the variance term.
We examine the bias and the variance terms in turn.

Bias Let H be the diagonal matrix with Nu diagonal elements of 1/hu for u =
0, . . . , p, in this order. Then

β̂(0) = β
(0)
0 + e′

NH(HX′WXH)−1HX′Wr + e′
NH(HX′WXH)−1HX′Wε

= β
(0)
0 + e′

N(HX′WXH)−1HX′Wr + e′
N(HX′WXH)−1HX′Wε.

One can show that HX′WXH/(nhd) converges in probability to an invertible matrix,
under general conditions specified later. To see this, note that the typical element of the
matrix is, for vectors of nonnegative integers j and j ′,

1

nhd

n∑
i=1

(
(xi − x0)/h

)(j)(
(xi − x0)/h

)(j ′)
K
(
(xi − x0)/h

)
/(j !j ′!).

Applying the Taylor series expansion we obtain

ri = m(p+1)(x̄i )(xi − x0)
(p+1)/(p + 1)!,

where m(p+1)(x̄i ) is a row vector of length Np+1, consisting of m(j)(x̄i) with |j | =
p + 1 and x̄i lies on a line connecting xi and x0. Using this result, a typical element
of HX′Wr/(nhd) can be written as, using the same j and j ′ as above,

1

nhd

n∑
i=1

(
(xi − x0)/h

)(j)
(xi − x0)

(j ′)m(j ′)(x̄i )K
(
(xi − x0)/h

)
/(j !j ′!),

where here, |j ′| = p + 1. Since ‖(xi − x0)
(j ′)‖ = O(hp+1) when the kernel function

used has a bounded support, if the p+1st order derivative of m(x) at x = x0 is bounded,
then the bias term is of order hp+1.

Note that when the p + 1st derivative is Lipschitz continuous at x = x0, the leading
term of the bias can be expressed as

e′
N(HX′WXH)−1HX′WX(p+1)m(p+1)(x0).
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Variance Conditional variance of e′
N(X′WX)−1X′Wε is

e′
N(X′WX)−1X′WΣWX(X′WX)−1eN ,

where Σ is an n × n diagonal matrix with the ith diagonal element σ 2(xi) = E(ε2
i |xi).

This can be rewritten as

e′
NH(HX′WXH)−1HX′WΣWXH(HX′WXH)−1HeN

= e′
N(HX′WXH)−1HX′WΣWXH(HX′WXH)−1eN .

Combining the earlier calculation about HX′WXH/(nhd) with the observation that the
typical element of HX′WΣWXH/(nhd) can be written as

1

nhd

n∑
i=1

(
(xi − x0)/h

)(j)(
(xi − x0)/h

)(j ′)
σ 2(xi)K

2((xi − x0)/h
)
/(j !j ′!),

we see that the variance is of order 1/(nhd). Note that when the conditional variance
function is Lipschitz continuous at x0, the highest order term of the conditional variance
can be expressed as

e′
N(HX′WXH)−1HX′W 2XH(HX′WXH)−1eNσ 2(x0).

These finite sample expressions of the bias term and the conditional variance term will
later be used to approximate the mean squared error, which can be used to optimally
choose the bandwidth h.

The asymptotic properties of the local polynomial estimator has been developed by
many authors, but the following results due to Masry (1996a, 1996b) seem to be the most
comprehensive. We assume stationarity of {(Xt , Yt )}, and define the local polynomial
regression estimator of E(Yt+s |Xt = x) = m(x) and its derivatives at x = x0 where
x0 ∈ Rd .

Let f (x) denote the Lebesgue density of Xt , f (x, x′, �) denote the joint Lebesgue
density of Xt and Xt+�, j = (j1, . . . , jd),

Djm(x) = ∂ |j |m(x)

∂j1x1 · · · ∂jd xd

,

its local polynomial estimator of order p by β̂|j |,j (x), and define for (0, . . . , 0) ∈ Rd ,
β̂0,(0,...,0)(x) = β̂(0). Masry (1996b) establishes the conditions under which local poly-
nomial estimator converges uniformly over a compact set.

THEOREM 4.1. Let D be a compact subset of Rd . If
(1) the kernel function K(·) is bounded with compact support (there exists A > 0

such that K(u) = 0 for ‖u‖ > A) and there exists C > 0 such that for any
(j1, . . . , jd) such that 0 � j1 + · · · + jd � 2p + 1∣∣uj1

1 · · · ujd

d K(u) − v
j1
1 · · · vjd

d K(v)
∣∣ � C‖u − v‖,
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(2) the stationary process {(Xt , Yt )} is strongly mixing with the mixing coefficient
α(k) satisfying

∞∑
j=1

jaα(j)1−2/ν < ∞

for some ν > 2 and a > 1 − 2/ν,
(3) there exists C > 0 such that f (x) < C, f (x) is uniformly continuous on Rd , and

infx∈D f (x) > 0,
(4) there exists C > 0 such that f (u, v, �) < C,
(5) the conditional density fX0|Ys (x|y) of X0 given Ys exists and is uniformly

bounded,
(6) the conditional density f(X0,X�)|(Ys ,Ys+�)(x, x′|y, y′) of (X0, X�) given (Ys, Ys+�)

exists and is uniformly bounded for all � � 1,
(7) the p + 1st order of derivative of m(x) is uniformly bounded and the p + 1st

order derivative is Lipschitz continuous, and
(8) E(|Y |σ ) < ∞ for some σ > ν,

then

sup
x∈D

∣∣β̂|j |,j (x) − Djm(x)
∣∣ = O

((
ln n/

(
nhd+2|j |))1/2) + O

(
hp−|j |+1).

Point-wise variance goes down with rate 1/(nhd) as discussed above when |j | = 0.
The ln n factor is the penalty we need to pay for uniform convergence.

Masry (1996a) establishes the asymptotic normality of the local polynomial estima-
tor in an interior point of the support of Xt .36 Let M and Γ be N × N matrices with
Nu × Nv , sub-matrices Mu,v and Γu,v for u, v = 0, . . . , p, respectively, where the typ-

ical elements of Mu,v is
∫

x
j1+j ′

1
1 · · · xjd+j ′

d

d K(x) dx/(j !j ′!) with |j | = u and |j ′| = v

and the typical element of Γu,v is
∫

x
j1+j ′

1
1 · · · xjd+j ′

d

d K2(x) dx/(j !j ′!) with |j | = u

and |j ′| = v. Analogously define Mu,p+1 for u = 0, . . . , p and define the N × Np+1
matrix B as⎛

⎜⎜⎝
M0,p+1
M1,p+1

...

Mp,p+1

⎞
⎟⎟⎠

and recall that we write m(p+1)(x) to denote a vector of Djm(x) with |j | = p + 1 in
the lexicographic order discussed above.37

36 The following results imposes comparable conditions as those above, although Masry (1996a) establishes
results under somewhat weaker conditions on the kernel functions and results include cases under ρ-mixing
as well.
37 Our definition of M is different from that in the Masry’s paper by j !j ′! for each element of M and thus the
asymptotic bias and variance expressions differ as well reflecting only the difference in the notations.
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Note that matrices M , Γ , and B are the probability limits of HX′WXH/(nhd),
HX′W 2XH/(nhd

n), and HX′WX(p+1)/(nhd), respectively, when x0 is an interior point
of the support of Xt .

THEOREM 4.2. Suppose x0 is an interior point of the support of Xt . Let h =
O(n−1/(d+2p+2)) as n → ∞. If the conditional distribution and the conditional vari-
ance of Ys given X0 = x are continuous at x = x0, f (x) is continuous at x0, f (x0) > 0
and if

(1) the kernel function K(·) is bounded with compact support,
(2) the stationary process {(Xt , Yt )} is strongly mixing with the mixing coefficient

α(k) satisfying

∞∑
j=1

jaα(j)1−2/ν < ∞

for some ν > 2 and a > 1 − 2/ν, and there exists νn = o((nhd)1/2) such that
(n/hd)1/2α(νn) → 0 as n → ∞,

(3) there exists C > 0 such that f (x) < C,
(4) there exists C > 0 such that f (u, v, �) < C,
(5) the conditional density f(X0,X�)|(Ys ,Ys+�)(x, x′|y, y′) of (X0, X�) given (Ys, Ys+�)

exists and is uniformly bounded for all � � 1,
(6) the p + 1st order of derivative of m(x) is uniformly bounded and the p + 1st

order derivative is Lipschitz continuous, and
(7) E(|Y |ν) < ∞ for ν defined above,

then (
nhd+2|j |)1/2([

β̂|j |,j (x0) − Djm(x0)
] − (

M−1Bm(p+1)(x0)
)
i
hp+1−|j |)

converges in distribution to the zero mean random variable with variance

σ 2(x0)

f (x0)

(
M−1Γ M−1)

i,i

where i denotes the order in which j appear in matrix M .

The convergence rate coincides with the optimal rate computed by Stone (1982). The
theorem specifies the rate at which h should converge to 0, but does not specify how to
choose h. Section 6 discusses how to choose the smoothing parameter.

Note that the first order bias term(
M−1Bm(p+1)(x0)

)
i
hp+1−|j |

depends on the p + 1st order derivatives but does not, in general, depend on the distri-
bution of the conditioning variable, other than the fact that f (x0) > 0 has been used in
arriving at the formula. When the kernel function used is symmetric and p−|j | is even,
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then the bias term can be shown to be of order hp+2−|j | and involves the derivative of
regressor density.38 This corresponds to the case of the kernel regression estimator.39

The order of the variance depends on the dimension of the function being estimated
and the order of the derivative of the target function, but does not depend on the de-
gree of the polynomial used in estimation. However, the constant term in the variance
expression does depend on the degree of the polynomial used. It has been observed
that the constant term does not change when p moves from a lower even number to
the next odd number, for example from 0 to 1. It does go up when moving up from
an odd number to the next even number, for example from 1 to 2.40 Thus, moving up
by one from an even number to an odd number reduces the bias, but does not add to
the variance. So when there is a choice, we should choose p to be an odd number. In
particular, it is better to use a local linear estimator to estimate the conditional mean
function rather than a kernel regression estimator. Note that this is a result at interior
points and also when the underlying function is at least (p + 1)-times continuously
differentiable.

Another point to note about the form of the first order variance is that it is the same
regardless of whether the errors are allowed to be correlated or not. This is a standard but
an unpleasant result in nonparametric asymptotic analysis as pointed out by Robinson
(1983) for the case of kernel density estimation. It is unpleasant, because, for any finite
number of observations, the observations that fall in the fixed neighborhood of x0 would
be correlated especially in high frequency data analysis. See Conley, Hansen and Liu
(1997) for a bootstrap approach to assess the variability.41

Here, we have discussed local polynomial estimation of the conditional mean func-
tion. For a discussion of locally linear estimation of the conditional quantile function,
see Chaudhuri (1991a, 1991b) and Yu and Jones (1998).

5. Semiparametric estimation

We review some semiparametric estimation methods used in econometrics. As dis-
cussed in Section 2, the curse-of-dimensionality problem associated with nonparametric
density and conditional mean function estimators makes the methods impractical in ap-
plications with many regressors and modest size samples. Semiparametric modeling
approaches offer a middle ground between fully nonparametric and fully parametric ap-
proaches. They achieve faster rates of convergence for conditional mean functions or
other parameters of interest by employing one of the three approaches discussed ear-
lier: by imposing some parametric restrictions, by changing the target parameters, or

38 See Fan and Gijbels (1996, Theorem 3.1) for a discussion of a univariate case.
39 See Härdle and Linton (1994).
40 See Ruppert and Wand (1994) and Fan and Gijbels (1996, Section 3.3).
41 Another approach may be to compute the finite sample variance formula and estimate it analogously to the
Newey–West approach.
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by imposing quantile restrictions in the case of limited dependent variable models. The
nonparametric density and conditional mean function estimators described in the last
section form the building blocks of a variety of semiparametric estimators.

In Section 2, we considered one semiparametric model – the partially linear model
– and described its application to the problems of estimating consumer demand func-
tions and to controlling for sample selection. Here we consider that model in greater
detail as well as other classes of semiparametric models for conditional mean function
estimation, including additive separable models, index models, and average derivative
models with and without index restrictions. We also review the censored LAD estima-
tor of Powell (1984) and the Maximum Score estimator of Manski (1975, 1985) for
the limited dependent variable models as examples of exploiting quantile restrictions.
These methods embody distinct ideas that are applicable in other contexts. A detailed
discussion of techniques for deriving the distribution theory is left for Section 7.

5.1. Conditional mean function estimation with an additive structure

Suppose the relationship of interest is E(Y |X = x) = g(x), where X is a random
vector of length d and g is an unknown function from Rd into R. As described earlier,
we face the curse of dimensionality if the fully nonparametric estimator of g(x) were
to be used. Another problem is that nonparametrically estimated g functions become
difficult to interpret when the estimated surface can no longer be visualized and the ef-
fect of any regressor on the dependent variable depends on the values of all the other
regressors.

We consider three classes of semiparametric estimators for g(x) that impose differ-
ent kinds of modeling restrictions designed to overcome the curse-of-dimensionality
problem and to make estimates easier to interpret. The first class, additively separable
models, restricts g(x) to lie in the space of functions that can be written as an additively
separable function of the regressors. The second class, single index models, assumes that
X affects Y only through an index X′β. That is, g(x) = g(x′β). Multiple index models
allow the conditional mean of Y to depend on multiple indices. The third class, partially
linear models, assumes that the function g(x) can be decomposed into a linear compo-
nent and a nonparametric component, thereby extending the traditional linear modeling
framework to include a nonparametric term. Partially linear restrictions are often im-
posed in connection with index model restrictions, giving rise to partially linear, single
or multiple index models.

5.1.1. Additively separable models

An additively separable model restricts g(x) to be additively separable in the compo-
nents of the vector X:

E(Y |X = x) = α + g1(x1) + g2(x2) + g3(x3) + · · · + gd(xd),
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where the gj (xj ), j = 1, . . . , d , are assumed to be unknown and are nonparametrically
estimated. A key advantage of imposing additive separability is that the nonparamet-
ric estimators of the gj (xj ) functions as well as of the conditional mean function
E(Y |X = x) can be made to converge at the univariate nonparametric rate. Another
advantage is interpretive: the model allows for graphical depiction of the effect of xj on
y holding other regressors constant. The separability assumption is also not as restric-
tive as it may seem, because some regressors could be interactions of other regressors
(e.g. x3 = x1x2). However, for gi(xi) to be nonparametrically identified, it is neces-
sary to rule out general forms of collinearity between the regressors. That is, we could
not allow x1 = ψ(xk) for some ψ function, for example, and still separately identify
g1(x), . . . , gd(x).42

Estimation methods

Back-fitting algorithms As described in Hastie and Tibshirani (1990), additively sep-
arable models can be solved through an algorithm called back-fitting.

The algorithm involves three steps:

(i) Choose initial starting values for α and for gj . A good starting value might set
α0 = average(Y ) and g0

j equal to the values predicted by a linear in x least
squares regression of Y on a constant and all the regressors.

(ii) For each j = 1, . . . , d , define gj = Ê(y − α − ∑
k �=j g0

k (xk) |xj ), where g0
k is

the most recent estimate of gk(xk) (the starting value at the first iteration). The
conditional expectation is estimated by a smoothing method, such as kernel or
local linear regression, or series expansion or spline regression. At this stage, if
it is desired that a functional form restriction be imposed on the shape of one
or more of the gj functions, then the restriction can be imposed by setting, for
example, Ê(y − α − ∑

k �=j g0
k (xk) |xj ) = xjβj .

(iii) Repeat step (ii) until convergence is reached (when the estimated gj (xj ) func-
tions no longer change).43

Back-fitting can require many iterations to reach convergence, but it is relatively
easy to implement and is available in the software package Splus. Disadvantages of the
method are that consistency has not been shown when nonparametric smoothing meth-
ods are used in step (ii) and there is as of yet no general distribution theory available
that can be used to evaluate the variation of the estimators.

An estimator based on integration An alternative approach to estimating the additively
separable model, which is studied by Newey (1994b), Härdle and Linton (1996), Linton
et al. (1997) and others. Although it is more difficult to implement than the back-fitting

42 See the discussion of concurvity in Hastie and Tibshirani (1990).
43 Also see Hastie and Tibshirani (1990) for discussion of a modified back-fitting algorithm that, in some
circumstances, converges in fewer iterations.
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procedure, because it requires a pilot estimator of the nonparametric model g(x), the
integration approach has the advantage of having a distribution theory available.

For notational simplicity, consider the additively separable model with two regressors
Y = α + g1(X1) + g2(X2) + ε. Define the integrated parameter

g̃1(x1) =
∫

g(x1, x2) dFx2 .

Note that this is generally not equal to E(Y |X1 = x1) which would be

E(Y |X1 = x1) =
∫

g(x1, x2) dFx2|X1=x1 .

If X1 and X2 are independent, then the two parameters coincide. The integration esti-
mator is given by

ĝ1(x1) = n−1
n∑

i=1

ĝ(x1, x2i ).

If the model is additive, then ĝ1(x1) estimates g1(x1) up to an additive constant. Revers-
ing the roles of x1and x2 obtains an estimator for g2(x2), again up to scale.

In general, we do not really believe that the underlying function g(x1, x2) is additively
separable but that we use the model as a convenient way to summarize data. From this
perspective, the integration estimator proposes to examine the effect of one variable X1
on the dependent variable after integrating out the rest of the variables X2, . . . , Xd using
the marginal distribution of X2, . . . , Xd , which would be exactly the correct procedure
if the underlying function g is indeed additively separable between X1 and X2, . . . , Xd .

The back fitting algorithm seems to be an attempt to obtain the solution to the least
squares problem within the class of additively separable functions. These two sets of
functions should coincide up to an additive constant term, if underlying function g is
additively separable, if not, the two estimates in general would converge to different
functions.

Newey (1994b) shows that the estimator ĝ1(x1) converges at a one-dimension-
al nonparametric rate because of the averaging. As we have seen, the conver-
gence rate decreases in a higher dimension space because the rate at which we
obtain data decreases. Because there is no need to condition on X2, . . . , Xd for
examining g1(x1), the convergence rate corresponds to that for one-dimensional
cases.

As noted above, an advantage of estimating additive models through integration is
that the distribution theory for the estimators has been developed.44 A disadvantage of
the integration estimator is that it requires that the higher dimensional estimate of the
g(x) be calculated prior to averaging, and existing distribution theory for the estimator
requires that negative kernel functions be used for bias reduction.

44 See, for example, Härdle and Linton (1996).
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Generalized additive models The additive modeling framework has been generalized
to allow for known or unknown transformations of the dependent variable, Y . That is,
estimators are available for models of the form

θ(Y ) = α + g1(X1) + g2(X2) + · · · + gd(Xd) + ε,

where the link function θ may be a known transformation (such as the Box–Cox trans-
formation) or may be assumed to be unknown and nonparametrically estimated along
with the gj functions. Hastie and Tibshirani (1990) describe how to modify back-fitting
procedures to accommodate binary response data and survival data, when the link func-
tion is known. For the case of an unknown θ function, Breiman and Friedman (1985)
propose an estimation procedure called ACE (Alternating Conditional Expectation).45

Linton et al. (1997) describe an instrumental variables procedure for estimating the θ

function, which is based on the identifying assumption that the model is only additively
separable for the correct transformation so that misspecification in θ shows up as a
correlation between the error terms and the instruments. We are not aware of empiri-
cal applications of these methods in economics, although generalized additive models
(GAMs) and ACE seem potentially very useful ways for empirical researchers to gain
some flexibility in modeling the conditional mean function while at the same time avoid-
ing the curse-of-dimensionality.

5.1.2. Single index model

The single index model restricts the function g(x) under consideration to be

g(x) = φ(x′β0)

where φ is an unknown function. An estimator of the slope coefficients β0 in the single
index model that allows for discrete regressors and regressors which may be function-
ally related is studied by Ichimura (1993).

Consider the single index model in the conditional mean function:

E(Y |X = x) = φ(x′β0).

This model arises naturally in a variety of limited dependent variable models in which
the observed dependent variable Y is modeled as a transformation of X′β0 and an unob-
served variable which is independent of X. See Heckman and Robb (1985) and Stoker
(1986). Also, this model can be viewed simply as a generalization of the regression
function.

45 ACE is also discussed in Hastie and Tibshirani (1990). The ACE algorithm is available in the software
package Splus.



Ch. 74: Implementing Nonparametric and Semiparametric Estimators 5417

Observe that writing ε = Y − φ(x′β0),

mW(b) ≡ E
{[

Y − E(Y |X′b)
]2

W(X)
}

= E
{
ε2W(X)

} + E
{[

φ(X′β0) − E(Y |X′b)
]2

W(X)
}
.

The computation makes clear that, for any function W(x), the variation in Y has two
sources: the variation in X′β0 and that in ε. If we choose b to be proportional to β0, then
the contribution to the variation due to the variation in X′β0 becomes zero in function
mW(b) as E(Y |X′b) = φ(X′β0) in that case. This observation lead to defining an
estimator as

min
b

1

n

n∑
i=1

[
yi − E

(
yi |x′

ib
)]2

W(xi)

if we knew the conditional mean function E(Yi |X′
ib). As we do not know it, we need

to replace it with its estimate. But because the conditional mean function cannot be
estimated at points where the density of X′b is low, we need to introduce trimming, for
the other estimators we examine.

The trimming function in this case has a further complication. Even if the density
of X is bounded away from zero, the density of X′b is not, in general. This can be
understood by considering two variables that each has the uniform distribution on the
unit square and considering the density corresponding to the sum.

A simple way around this problem is to define the trimming function as follows:

Ii = 1{xi ∈ X },
where X denotes a fixed interior point of the support of Xi by at least certain distance.
Note that over this set X , by construction the density of x is bounded away from zero
and that the density of X′b is also bounded away from zero.

Another point to note is that for any constant value c �= 0, E(Y |X′b = x′b) =
E(Y |X′(cb) = x′(cb)) so that we cannot identify the length of β0. Thus we define
the estimator to be the minimizer of the following objective function after replacing
E(Yi |X′

ib) with a nonparametric estimator of it:

min
b∈{b: b1>0, b′b=1}

1

n

n∑
i=1

[
yi − Ê

(
yi |x′

ib
)]2

W(xi)Ii .

In implementation, two forms of normalization are used; in some cases β ′β = 1 is
imposed and in other cases one of the coefficient is set to 1.46 In either case, the Var–
Cov matrix of the estimator is V −ΩV −, where

V = E
{[

ϕ′(x′β0)
]2[

x̃ − E(x̃|x ′β0)
][

x̃ − E(x̃|x ′β0)
]′}

,

46 We consider W(x) = 1 for simplicity below. See Ichimura (1993) for the weighted case. In general we
need to modify the standard estimation of E(Y |X′b) to achieve efficiency by weighting.
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Ω = E
{
σ 2(X)

[
ϕ′(X′β0)

]2[
X̃ − E(X̃|X′β0)

][
X̃ − E(X̃|X′β0)

]′}
,

σ 2(X) = V (Y |X)

and all of the expectations are taken over a given set X over which the density of X′β0
is assumed to be bounded away from 0. When β ′β = 1, x̃ = x and when one of the
coefficients is set to 1, x̃ is the original regressors except the regressor whose coefficient
is set to 1. For the first normalization, note that Ωβ0 = 0 and Vβ0 = 0 hold so that V

and Ω are not invertible.
There are two sources of efficiency loss. One is that the variation in X̃−E(X̃|X′β0) is

used rather than the variation in X̃. The other is that heteroskedasticity is not accounted
for in the estimation. The first problem arises as φ is unknown, and hence is genuine
to the formulation of the problem. The second problem can be resolved by weighting
if the model is truly single index. Oftentimes, however, we use the single index model
as a convenient approximation to a more general function. Ichimura and Lee (2006)
shows that if the single index model is used when the underlying model is not single
index, the SLS estimator still is consistent to a vector which best approximates the con-
ditional mean function within the single index model, and it is asymptotically normal,
but its asymptotic variance contains an additional term. They discuss how to estimate
the asymptotic variance term including this additional term and hence how to make the
estimator robust to misspecification. Here the discussion used the linear single index,
but the same idea applies to the nonlinear index model and also to the case of multiple
indices. See Ichimura and Lee (1991).

When the dependent variable is discrete, the more natural objective function is like-
lihood based. Klein and Spady (1993) examine the case of binary choice models and
propose an estimator that is efficient among semiparametric estimators.

Blundell and Powell (2003) considers the single index model with an endogenous re-
gressor and Ichimura and Lee (2006) considers the estimation of the conditional quantile
function when the conditional quantile function is modeled as a single index function.

5.1.3. Partially linear regression model

The partially linear regression model extends the linear regression model to include a
nonparametric component and specifies:

Y = X′β0 + ϕ(Z) + ε

where X ∈ Rp and Z ∈ Rq do not have common variables. If they do, then the common
variables would be regarded as a part of Z but not X because the coefficients that cor-
respond to the common variables would be not identifiable. If there are no cross terms
of z among X’s, then the model presumes additive separability of ϕ(Z) and X, which
may be too restrictive in some applications.

This framework is convenient for a model with many regressors, where fully nonpara-
metric estimation is often impractical. It is also a good choice for a model that contains
discrete regressors along with a few continuous ones. As discussed in Section 2, this
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model has been broadly applied in economics, mainly to the problem of estimating En-
gel curves and to the problem of controlling for sample selection bias. Estimators for
the partially linear model are studied in Heckman (1980, 1990), Shiller (1984), Stock
(1991), Wahba (1984), Engle et al. (1986), Chamberlain (1986b), Powell (1987), Newey
(1988), Robinson (1988), Ichimura and Lee (1991), Andrews (1991), Cosslett (1991),
Choi (1992), Ahn and Powell (1993), Honoré and Powell (1994), Yatchew (1997),
Heckman et al. (1998), Heckman, Ichimura and Todd (1998b) and others.

As we saw, the nonparametric convergence rate would depend on the number of
continuous regressors in (X,Z). In the partially linear regression framework, the con-
vergence rate of the estimator of ϕ also depends on the number of continuous regressors
among z. Remarkably, the n1/2-consistent estimation of β can be carried out regardless
of the number of continuous regressors in (X,Z) provided there is enough smoothness
in underlying function, as shown by Robinson (1988).

To consider the estimator Robinson studied, observe that

E(Y |Z = z) = E(X′|Z = z)β0 + ϕ(z)

so that

Y − E(Y |Z = z) = (
X − E(X|Z = z)

)′
β0 + ε.

If we knew E(Y |Z = z) and E(X|Z = z) then one could estimate β0 by the ordinary
least squares method of Y −E(Y |Z = z) on X−E(X|Z = z). Because we do not know
them, we can estimate them by some nonparametric method. Call them Ê(Y |Z = z)

and Ê(X|Z = z), and estimate β0 by(
N∑

i=1

[
xi − Ê(xi |zi)

][
xi − Ê(xi |zi)

]′)−1 N∑
i=1

[
xi − Ê(xi |zi)

][
yi − Ê(yi |zi)

]
.

Since the conditional mean functions will not be estimated well where the density
of Z is low, Robinson makes use of a trimming function Îi = 1{f̂ (zi) > bn}, where
f̂ (z) is a kernel density estimator, for a given sequence of numbers {bn}.47 The estimator
is defined as

β̂ =
(

N∑
i=1

[
xi − Ê(xi |zi)

][
xi − Ê(xi |zi)

]′
Îi

)−1

×
N∑

i=1

[
xi − Ê(xi |zi)

][
yi − Ê(yi |zi)

]
Îi .

The estimation method is reminiscent of a double residual regression interpretation
of the OLS estimator: consider the OLS estimation of

Y = X′β0 + Z′γ + ε.

47 This trimming method is also used by Bickel (1982).
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As it is well known the OLS estimator of β0 is the OLS estimator of uy on ux where uy

is the OLS residual of running Y on Z and ux is the OLS residual of running X on Z.48

Here, the first stage is replaced by nonparametric regressions.
Let α and μ be nonnegative real numbers and m be the integer such that m − 1 �

μ � m. For such μ > 0, α
μ is the class of functions g: Rq → R satisfying: g is

(m−1)-times partially differentiable for all z; for some ρ > 0, supy∈{y; |y−z|<ρ} |g(y)−
g(z) − Qm−1(y, z)|/|y − z|μ � h(z), where Q0 = 0 and for m � 2, Qm−1(y, z) is
the (m − 1)th-degree homogeneous polynomial in y − z with coefficients the partial
derivatives of g at z of order 1 through m − 1; and g(z), its partial derivatives of order
(m − 1) and less, and h(z), all have αth moments.

Robinson uses kernel regression estimator with independent kernel functions. He in-
troduces the following notation: Kl , l � 1, is the class of even functions k : R → R

satisfying∫ ∞

−∞
uik(u) du =

{
1 if i = 0,

0 if i = 1, . . . , l − 1,

k(u) = O
((

1 + |u|l+1+δ
)−1)

, for some δ > 0.

In the statement below, k is the kernel function, a is the bandwidth for estimating
regression function and density, and b is the trimming value, q is the dimension of z.
Both a and b depend on N although the notation does not explicitly express it.

THEOREM 5.1 (Robinson). Let the following conditions hold:
(i) (Xi, Yi, Zi), i = 1, 2 . . . , are independent and distributed as (X, Y,Z);

(ii) the model specification is correct;
(iii) ε is independent of (X,Z);
(iv) E(ε2) = σ 2 < ∞;
(v) E(|X|4) < ∞;

(vi) Z admits a pdf f such that f ∈ ∞
λ , for some λ > 0;

(vii) E(X|Z = z) ∈ 2
μ, for some μ > 0;

(viii) ϕ(z) ∈ 4
ν , for some ν > 0;

(ix) as N → ∞, Na2qb4 → ∞, na2 min(λ+1,μ)+2 min(λ+1,ν)b−4 → 0,
amin(λ+1,2λ,μ,ν)b−2 → 0, b → 0;

(x) k ∈ Kmax(l+m−1,l+n−1), for the integers l, m, n such that l − 1 < λ � l,
m − 1 < μ � m, and n − 1 < ν � n.

Then the condition that

Φ ≡ E
{[

x − E(x|z)][x − E(x|z)]′} is positive definite

is necessary and sufficient for
√

N(β̂ − β)
d−→ N(0, σ 2Φ−1) and

σ̂ 2

(
N−1

N∑
i=1

[
xi − Ê(xi |zi)

][
xi − Ê(xi |zi)

]′
Îi

)−1
p−→ σ 2Φ−1,

48 Frisch–Waugh double residual regression. See Goldberger (1968) and Malinvaud (1970).
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where

σ̂ 2 = N−1
N∑

i=1

[
yi − Ê(yi |zi) − (

xi − Ê(xi |zi)
)′
β̂
]2

.

As stated earlier, the convergence rate of β̂ is
√

N , which does not depend on the di-
mension of Z, despite the presence of ϕ. The theorem is stated for the kernel regression
estimator, but the result also holds for other nonparametric estimators as discussed in
Section 7.

If Ê is a linear in dependent variable estimator, then σ̂ 2 can be rewritten as

N−1
N∑

i=1

[
yi − x′

i β̂ − Ê
(
yi − x′

i β̂|zi

)]2
,

which is a natural estimator of σ 2.
Compared to the OLS estimation without ϕ under homoskedasticity, the variance is

higher because

Var(x) = Φ + Var
(
E(x|z)).

When there is heteroskedasticity, so that (iii) does not hold, under analogous condi-
tions

√
N(β̂ − β)

d−→ N
(
0, Φ−1ΩΦ−1),

where

Ω = E
{
ε2[x − E(x|z)][x − E(x|z)]′}.

The partially linear regression model also resembles the conditional mean function
in the sample selection model. If the outcome equation is specified as Y = X′β + u

and the selection equation is specified by the latent model of the form 1(z′θ + v > 0),
where (u, v) and (X,Z) are independent, then without specifying the joint distribution
of (u, v), the following relationship holds:

Y = X′β0 + ϕ(Z′θ) + ε,

E(ε|X,Z) = 0.

Note that in this case, there is more structure on the ϕ function and that θ (up to a
scalar) can be estimated from the data on whether Y is observed. Without this structure,
as discussed above, the partially linear regression model only identifies coefficients of X

variables that are not in the Z variables.
Powell (1987) made use of this observation, modified Robinson’s estimator so that

there is no need for trimming, and discussed estimation of β0. Ahn and Powell (1993)
extended this approach further based on the observation that in the sample selection
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model one can write the conditional mean function as

Y = X′β0 + ϕ
(
P(Z)

) + ε,

E(ε|X,Z) = 0,

where P(z) is the probability of being selected into samples, which can be estimated
from the data about selection.49 Ichimura and Lee (1991) propose a way of simulta-
neously estimating β and θ with truncated data. Yatchew (1997) proposes using the
differencing idea of Powell (1987) without averaging. Heckman et al. (1998), Heckman,
Ichimura and Todd (1998b) study estimation of β and ϕ(P (z)), allowing for paramet-
rically estimated P(z) and data-dependent bandwidths. The estimator they study is
basically the same as the estimator studied by Robinson, but they use the local poly-
nomial estimator instead of the kernel regression estimator. Instead of Z, they have a
parametric form P(z′θ) where θ is estimated by θ̂ from the data on selection, use trim-
ming based on an estimated low percentile (usually 1 or 2%) of P(z′

i θ̂ ), denoted as q̂n

so that the trimming function is written as Îi = 1(f̂ (P̂i ) > q̂n) where f̂ (·) is the kernel
density estimator of the density of P(z′θ), and the smoothing parameter can be data
dependent. Estimation of ϕ is done using the estimated β to purge Y of its dependence
on X. That is, we can estimate ϕ(p0) by a local linear regression of Yi − X′

i β̂ on P̂i

evaluated at p0, which we denote by ϕ̂(p0).
The following theorem summarizes the results by Heckman, Ichimura and Todd

(1998b). Di denotes the indicator of whether the ith observation is in the sample or
not.

THEOREM 5.2. Assume that:
(i) data {(Xi, Yi, Zi,Di)} are i.i.d., E{‖xi‖2+ε + ‖zi‖2+ε} < ∞ for some ε > 0,

and E{|yi |3} < ∞,
(ii)

√
n(θ̂ − θ0) = n−1/2 ∑n

i=1 ψ(zi, di) + op(1), where n−1/2 ∑n
i=1 ψ(zi) con-

verges in distribution to a normal random vector,
(iii) the kernel function K(·) is supported on [−1, 1] and it is twice continuously

differentiable,
(iv) P(z′

iθ) is twice continuously differentiable with respect to θ and both deriva-
tives have second moments,

(v) E(X|P), E{ϕ(P )} are twice continuously differentiable with respect to θ ,
(vi) H1 = E{[X − E(X|P)][X − E(X|P)]′I } evaluated at the true θ = θ0 is

nonsingular,
(vii) the density of P(Z′θ), fθ , is uniformly bounded and uniformly continuous in

the neighborhood of θ0 and for any ε > 0 there exists δ > 0 such that if
‖θ − θ0‖ < δ then sup0�s�1 |fθ (s) − fθ0(s)| < ε,

49 Establishing the asymptotic distribution theory for an estimator that involves trimming which uses esti-
mated θ or estimated P(z) would be a nontrivial task. Powell (1987) and Ahn and Powell (1993) avoided the
need for trimming by a clever re-weighting scheme. This approach have been developed to be applicable to
broader models by Honoré and Powell (1994, 2005), and Aradillas-Lopez, Honoré and Powell (2005).
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(viii) na3
n/ log n → ∞ and na8

n → 0.
Then

n1/2(β̂ − β0) = n−1/2
n∑

i=1

H−1
1

{[
Xi − E(X|Pi)

]
εiIi + H2ψ(Zi,Di)

} + op(1)

where H2 = E{[X − E(X|P)]P(Z′θ0)[Z − E(Z|P)]′I }.
If in addition to the assumptions above, the following assumptions hold:
(ix) ϕ is twice continuously differentiable,
(x) fθ0(p0) > 0,

(xi) the bandwidth sequence satisfies ân = α̂nn
−1/5, plim α̂n = α0 > 0,

(xii) σ 2(p0) = E[|Y − X′β|2|P = p0] is finite and continuous at p0,
then

n2/5(ϕ̂(p0) − ϕ(p0)
) ∼ N(B, V )

where

B = 1

2
ϕ′′(p0)

[ ∫
s2K(s) ds

]
α2

0,

V = Var(Y − X′β|P = p0)

fθ0(p0)α0

∫
K2(s) ds,

where ϕ′′(p0) is the second derivative of the regression function.

5.2. Improving the convergence rate by changing the parameter of interest

The prototypical way to improving the convergence rate is by averaging. If we give
up estimating a function at a point and instead average the point estimates over a re-
gion, we can, under some conditions, improve the convergence rate. This point is clear
enough for the case of the conditional mean function m(x) = E(Y |X = x). We saw
that the convergence rate of the estimator of the conditional mean function depends on
the number of continuous conditioning variables and the underlying smoothness of the
conditional mean function with respect to these variables. Let X = (X1, X2). Instead of
estimating m(x1, x2), one can estimate m(x1, A) = E(Y |X1 = x1, X2 ∈ A) for some
region A. In this case, since it is equivalent to having less continuous regressors, the
convergence would only depend on the number of continuous regressors among X1.

An analogous result holds for the estimation of the average of a nonparametric esti-
mator of the derivative of a function. The average derivative estimator is examined by
Stoker (1986) and its asymptotic distribution theory, in modified forms, is established
by Powell, Stock and Stoker (1989), Robinson (1989), and Härdle and Stoker (1989).
Newey and Stoker (1993) discusses efficiency issues. A nice application is Deaton and
Ng (1998).

Note that when E(Y |X) = g(X), the solution to

min
b

E
{[Y − X′b]2} = min

b
E
{[

g(X) − X′b
]2} + E

[
Var(Y |X)

]
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corresponds to the OLS estimator. Here, b∗ = E(XX′)−1E[XY ] can be interpreted as
the best predictor of the form X′b∗ as observed by White (1980).

Because we are also interested in measuring the marginal effect of a change in re-
gressors to dependent variables, ∂g/∂x, we may want to estimate δk that solves

min
δk

E
{
(∂g/∂x − δk)

2}
for each k = 1, . . . , d . The solution is δ∗

k = E{∂g/∂x}. Stoker (1986) proposed estima-
tion of δ∗

k .
Another case δ∗

k is of interest is when g(x) = φ(x′β0). Stoker observed that many
limited dependent variable models have this property. In this case

∂g/∂x = φ′(x′β0) · β0.

Thus E(∂g/∂x) = c · β0 for some constant c: estimation of the average derivative
corresponds to β0 parameter up to a constant term.

However, the interpretation of the average derivative as β0 parameter up to a constant
term depends on the assumption that (i) there is no discrete regressors among regressors
and (ii) there is no functional relationship among regressors. These two assumptions
may make the direct application of the average derivative method unsuitable for many
limited dependent variable models. This issue is not relevant if we interpret the average
derivative in a nonparametric context.

As we discussed earlier, g(x) and its derivatives can be estimated consistently by
nonparametric estimators. But as noted there, the convergence rate is very slow espe-
cially when K is large and/or when we estimate higher order derivatives. It turns out that
δ∗
k can be estimated 1/

√
n-consistently, the typical rate at which parametric estimators

converge.
Let Δ̂(x) be a nonparametric estimator of ∂g/∂x at a point x. Then a natural estimator

of δ∗ = (δ∗
1 , δ∗

2 , . . . , δ∗
d)′ is

1

n

n∑
i=1

Δ̂(xi).

Stoker (1986) does not examine this estimator but instead bases his estimator on an
integration by parts argument. We present his argument for the one dimension case but
the same argument goes through for a higher dimension, with an appropriate boundary
conditions as made explicit in the computation below:

E(g′) =
∫ ∞

−∞
g′(x)f (x) dx

= g(x)f (x)|∞−∞ −
∫ ∞

−∞
g(x)f ′(x) dx

= −
∫ ∞

−∞
g(x)

f ′(x)

f (x)
f (x) dx = −E

(
Y

f ′

f

)
.
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Thus by making use of a nonparametric estimator of f (x) and its derivative, one can
estimate the average derivative. As the ratio f ′/f will not be estimable where f is low,
the estimator is defined making use of a trimming function Îi = 1{f̂ (xi) > bn} for a
given sequence of numbers {bn}.

δ̂ = 1

n

n∑
i=1

−∂f̂ (xi)/∂x

f̂ (xi)
yi Îi , where

f̂ (x) = 1

n

n∑
j=1

1

aK
n

K

(
x − xj

an

)
.

The estimator can be obtained directly without any optimization. Härdle and Stoker
(1989) show:

THEOREM 5.3. Consider yi = g(xi) + εi with E(εi |xi) = 0 under iid sampling.
Assume that:

(1) The regressors have density f (x) where the support of f is a convex subset
of RK .

(2) f (x) = 0 at the boundary of the support.
(3) g(x) is continuously differentiable almost everywhere.
(4) E{y2(∂ log f (x)/∂x)(∂ log f (x)/∂x)′} and E{(∂g/∂x)(∂g/∂x)′} are finite and

E(y2|x) is continuous.
(5) f (x) is differentiable up to p � K + 2.
(6) f (x) and g(x) obey local Lipschitz conditions, i.e. for v in neighborhood of 0,

there exist functions ωf , ωf ′ , ωg′ , and ω�g such that∣∣f (x + ν) − f (x)
∣∣ � ωf (x)|ν|,∣∣f ′(x + ν) − f ′(x)
∣∣ � ωf ′(x)|ν|,∣∣g′(x + ν) − g′(x)
∣∣ � ωg′(x)|ν|,∣∣∣∣∂ log f (x + ν)

∂x
g(x + ν) − ∂ log f (x)

∂x
g(x)

∣∣∣∣ � ω�g(x)|ν|

where second moments of ωf , ωf ′ , ωg′ , and ω�g are finite.
(7) Let An = {x|f (x) > bn}. As n → ∞,∫

Ac
n

g(x)
∂f (x)

∂x
dx = o

(
n−1/2).

(8) Let f (p) denote the pth order derivative of f . f (p) is locally Hölder continuous:
there exist γ > 0 and c(x) such that∣∣f (p)(x + ν) − f (p)(x)

∣∣ � c(x)|ν|γ ,

where second moments of f (p) and c(x) are finite.
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(9) The kernel function K(u), u ∈ RK , has finite support, is symmetric, has
(p + γ )-absolute moments, and K(u) = 0 at the boundary points, and K(u) is
of order p, i.e.

∫
RK K(u) du = 1,∫

RK

u
�1
1 u

�2
2 · · · u�ρ

ρ K(u1, u2, . . . , uK) du = 0 where

�1 + · · · + �ρ < p, for all ρ � K, and∫
RK

u
�1
1 u

�2
2 · · · u�ρ

ρ K(u1, u2, . . . , uK) du �= 0 where

�1 + · · · + �ρ = p, for all ρ � K.

(10) As n → ∞, an → 0, bn → 0, an/bn → 0 and for some ε > 0,
n1−εa2K−2

n b4
n → ∞, and na

2p−2
n → 0.

Then
√

n(δ̂ − δ)
d−→ N(0,Σ),

where

Σ = E

{[
∂g

∂x
− E

(
∂g

∂x

)][
∂g

∂x
− E

(
∂g

∂x

)]′}
+ E

{
σ 2

ε

∂ log f (x)

∂x

∂ log f (x)

∂x′

}
.

Although bn has to converge to zero, there is no restriction on the speed at which
that convergence has to happen in this condition. The speed requirement comes from
assumption (7). As na

2p−2
n → 0, the parameter an does need to converge to zero suf-

ficiently fast. In order for these bandwidth requirements to be mutually consistent, the
density f needs to approach 0 sufficiently smoothly.

As observed above, the estimator is based on some boundary conditions. When the
boundary conditions do not hold, then direct estimation of the average of a nonpara-
metric estimator of the derivative would be preferable. Also, in deriving the theoretical
properties of the estimator, negative kernel functions are used to “kill” the bias term
asymptotically. Additionally, E(ε|x) = 0 is needed, so that models with endogenous
regressors cannot be treated with this estimator. Lastly, if some of the regressors are
discrete, the derivative is clearly not defined. Even in this case, however, if one re-
stricts taking derivative with respect to the continuous regressors, then the arguments
would go through without a modification. See Härdle and Stoker (1989) for estimation
of the asymptotic variance–covariance matrix. Newey and Stoker (1993) showed that
the estimator has the variance and covariance matrix that coincides with the smallest
variance–covariance matrix within nonparametric estimators that are 1/

√
n-consistent

to δ∗.

5.3. Usage of different stochastic assumptions

As we discussed in the context of the censored regression model, a quantile restric-
tion leads to n1/2-consistent estimator even in the presence of an infinite dimensional
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nuisance parameter. This important result was shown by Powell (1984). A conditional
mean restriction is not sufficient. The same idea applied to the binary response model
does not lead to n1/2-consistent estimator. We will see why below via a discussion of
Manski’s (1975, 1985) maximum score estimator.

5.3.1. Censored regression model

The model we study is

y∗
t = x′

t β0 − εt ,

yt =
{

y∗
t if y∗

t > 0,

0 if y∗
t � 0,

where the conditional median of ε is assumed to be 0. In econometric literature, Powell
(1984) is the first to explicitly recognize essentially the parametric nature of the con-
ditional quantile function under the censored regression model even though the condi-
tional distribution of ε is restricted to have the conditional median to be 0.

There are two observations that lead to Powell’s estimator. First, when x′
t β0 > 0 the

median of observed dependent variable is still x′
t β0 and when x′

t β0 < 0 the median of
observed dependent variable is 0 so that the median of the observed dependent variable
is known to have the following parametric form:

max
{
0, x′

t β0
}
.

Second, the minimizer of
∑T

t=1 |yt − a| over a estimates the median consistently. Thus
the estimator is defined as the minimizer of

inf
b

T∑
t=1

∣∣yt − max
{
0, x′

t b
}∣∣.

Powell (1984) showed that the estimator is n1/2-consistent and asymptotically nor-
mal:

√
T (β̂ − β0)

d−→ N
(

0, lim
T →∞ C−1

T MT C−1
T

)
where

CT = E

{
T −1

T∑
t=1

2ft (0|xt ) · 1
(
x′
t β0 > 0

)
xtx

′
t

}
and

MT = E

{
T −1

T∑
t=1

1
(
x′
t β0 > 0

)
xtx

′
t

}
.

When ft (0|xt ) = f (0), CT = 2f (0) and thus

√
T (β̂ − β0)

d−→ N

(
0, lim

T →∞
1

4f (0)
M−1

T

)
.
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Under this assumption Powell provides consistent estimator of f (0) and limT →∞ MT .
When we have i.i.d. sampling f (0|x) can be estimated consistently and thus CT also,
under some regularity conditions.

5.3.2. Binary response model

For the case of binary response, the model is:

yi = 1
(
x′
iβ0 − εi > 0

)
.

Observe that

E(yi |xi) = Fε

(
x′
iβ0|xi

)
,

where Fε is the cumulative distribution function of ε. If the median of εi given xi is 0,
that is, if

Fε(s|xi) = 1/2 if and only if s = 0,

then the median of yi given xi is 1 if x′
iβ0 > 0 and 0 if x′

iβ0 < 0. That is the conditional
median function of yi is known to be parametric and the form is 1(x′

iβ0 > 0). Thus,
based on the quantile regression idea, a natural estimator is to find the minimizer of the
following objective function

n∑
i=1

∣∣yi − 1
(
x′
iβ > 0

)∣∣,
as in the censored LAD estimator. As Manski (1985) discusses, minimizing this ob-
jective function is equivalent to maximizing the maximum score objective function of
Manski (1985):

n∑
i=1

(2yi − 1) sign
(
x′
iβ
)
,

where sign(s) equals 1 if s > 0 and −1 if s < 0 and equals 0 if s = 0. Unlike the
objective function of the censored LAD estimator, this objective function changes the
value around the points x′

iβ = 0. As the observations corresponding to this line is mea-
sure zero when there is a continuous regressor, the convergence rate is not n−1/2. Kim
and Pollard (1990) showed that in fact the estimator converges with rate n−1/3. Note
that this convergence rate corresponds to that of nonparametric estimators which do not
exploit smoothness. Horowitz (1992) showed how to exploit the smoothness of the un-
derlying conditional CDF and improved the convergence rate when the underlying CDF
is smooth. His estimator replaces the unsmooth sign function by a smooth function.50

50 Horowitz (1992) implementation does not exactly correspond to a smoothed version of the Manski’s ob-
jective function as Horowitz replaces the sign function with a smooth CDF function.
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6. Smoothing parameter choice and trimming

The flexible estimators described in Sections 4 and 5 are specified up to some choice of
smoothing parameter. For local estimators, the smoothing parameter choice corresponds
to choosing the bandwidth parameter. For global estimators, the smoothing parameter
choice corresponds to choosing the bases functions to include in the expansion. For
semiparametric estimators, in addition to choosing the smoothing parameter, imple-
mentation of the estimators also requires choosing a method of trimming the data, as
discussed in Section 5. In this section, we discuss the problem of smoothing parameter
choice in the context of density and conditional mean function estimation and also in
the context of semiparametric estimation. We also discuss trimming methods.

One way of choosing smoothing parameters is to use graphical diagnostics, which re-
veal how an estimated surface changes in response to varying the smoothing parameters.
For a simple problem, some argue that this can be a reasonable way of selecting smooth-
ing parameters. But this procedure is subjective and hence the choice would be hard to
justify formally or communicate to others. In addition, even at the subjective level, it
is questionable if we can visualize something corresponding to bias and variance of
the estimator. Moreover, for higher dimensional problems or for cases where nonpara-
metric estimators are being used as input into a semiparametric estimation problem, an
implicit criteria the graphical approach uses is not necessarily appropriate and is too
user-intensive to be practical. A more automatic bandwidth selection method is needed.
For nonparametric density and regression estimation, the importance of developing
data-based methods to guide researchers in selecting bandwidths is well recognized and
a variety of bandwidth selectors have been proposed in the statistics and econometrics
literatures. All the methods select the bandwidth to minimize error in estimation with
respect to a certain criteria. They differ in the criteria used for measuring estimation
error.

We summarize results in the literature as well as our own Monte Carlo studies
evaluating the performance of different smoothing parameter selection methods. Our
discussion is limited to the bandwidth selection methods for the kernel density estima-
tor and local polynomial estimators.

There are two types of smoothing parameters: constant, or sometimes referred to as
global, and variable. A global smoothing parameter is held fixed for the entire domain
of the function being estimated and a variable smoothing parameter is allowed to vary
at each point of the domain.51

For the density estimation, we discuss global bandwidth choice for the kernel density
estimator. The advantage of a variable bandwidth is that it adapts better to the design
of the data. A disadvantage, in the case of the kernel density estimation, is that once
the bandwidth is allowed to depend on the data, the resulting estimator is no longer
guaranteed to be a density. For regression estimation, this problem does not exist so we
will consider both global and local bandwidth selectors.

51 Fan and Gijbels (1992) studies a bandwidth selection method which differ for each data point and refers
to the method as a “global variable” method.
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6.1. Methods for selecting smoothing parameters in the kernel density estimation

As was discussed earlier, the efficiency of the kernel density estimator

fn(x; h) = 1

nh

n∑
i=1

K

(
x − Xi

h

)

depends more on the choice of bandwidth h than on the choice of kernel function K(·)
within a class of commonly used kernels. Therefore, in the following discussion we take
the choice of kernel function as given and focus on the question of how to choose the
smoothing parameter.

The three bandwidth selection methods we discuss are the rule of thumb (ROT)
method, the least square cross validation method (LSCV), and the smoothed bootstrap
(SB) method by Taylor (1989).

The ROT method is chosen for its simplicity in implementation. The other two meth-
ods are chosen for their theoretical coherence as well as reliable performance in Monte
Carlo studies.

The loss function underlying all three methods of selecting the bandwidth of the
kernel density estimator is the highest order of the integrated mean squared error:∫

E
{(

fn(x; h) − f (x)
)2} dx =

∫ [
Var

((
fn(x; h)

)) + Bias2(x)
]

dx,

where Bias(x) = E[fn(x; h)] − f (x) and here and below, the integration is taken over
the whole real line.

Three methods differ in ways to approximate this objective function. If we wish to
choose the bandwidth local to a particular point x, then clearly we should examine
E{(fn(x; h)− f (x))2} at the point x rather than examining the overall measure such as
above.

Rule of thumb Under suitable regularity conditions the IMSE can be approximated by
the sum of two terms:

AIMSE(h) = c2K

nh
+ σ 2

K

4
h4

∫ [
f ′′(x)

]2 dx,

where c2K = ∫
K2(s) ds and σ 2

K = ∫
s2K(s) ds. The first term represents the variance

and the second term represents the bias term.52

52 The highest order approximation to the MSE at point x is

c2K

nh
f (x) + 1

4
h4σ 2

K

[
f ′′(x)

]2
.

There is a different trade-off between variance bias at each point reflecting different values of f (x) and f ′′(x).
Thus it seems more desirable to choose a point-wise bandwidth.
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The h that minimizes the AIMSE is

(6.1)hAIMSE =
[
c2K

σ 2
K

1

[∫ [f ′′(x)]2 dx]
]1/5

n−1/5.

The optimal bandwidth decreases with the size of the sample and increases when the
effect of bias on the AMISE is greater; i.e. when

∫ [f ′′(x)]2 dx is larger.
From Equation (6.1) we see that estimating the global optimal plug-in bandwidth that

minimizes the AIMSE requires obtaining an estimate of
∫ [f ′′(x)]2 dx.

ROT estimates the unknown quantity by assuming a value based on a parametric
family, usually the N(μ, σ 2) distribution. Under normality,∫

f ′′(x)2 dx = σ−5 3

8
√

π
≈ 0.212σ−5.

If in addition a normal kernel is used, the ROT bandwidth is approximately equal to
1.06σn−1/5.

Because the scale parameter σ is potentially sensitive to outliers, Silverman (1986)
suggests using a more robust rule-of-thumb estimator, where the interquartile range of
the data replaces the sample standard deviation as a scale parameter. It is given by
hROT = 1.06 min(σ̂ , R̂/1.34)n−1/5, where σ̂ is the sample standard deviation and R̂

the estimated interquartile range (for Gaussian data, R̂ ≈ 1.34σ̂ ).53

Clearly, when the underlying density is not normal, the ROT method does not consis-
tently estimate the hAIMSE and hence is suboptimal. However, because it converges to
0 with an appropriate rate, it does yield a consistent and asymptotically normal kernel
density estimator when the underlying density is twice continuously differentiable.

Least square cross validation The least square cross validation (LSCV) discussed by
Stone (1974) chooses the bandwidth that minimizes the estimated integrated squared
error (ISE):

ISE =
∫ [

fn(x; h) − f (x)
]2 dx.

Hall (1982) showed that under regularity conditions

ISE = IMSE + op

(
h4 + (nh)−1)

so that minimizing the ISE and minimizing the IMSE is equivalent to the first order
under some regularity conditions.

Note that

ISE =
∫ [

fn(x; h)
]2 dx − 2

∫
fn(x; h)f (x) dx +

∫ [
f (x)

]2 dx

53 The rule-of-thumb method can of course be tailored to a particular application. For example, if a researcher
strongly suspected bimodality in the density, he/she may want to use a bimodal parametric density for the
plug-in estimator.
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and that the last term does not depend on h so minimizing the sum of the first two
terms is equivalent to minimizing the ISE. Although the second term is not computable
because f (x) is not known, its unbiased estimator can be constructed by

−2
1

n

n∑
i=1

fni(Xi; h),

where fni(x; h) = (n − 1)−1 ∑
j �=i K((x − Xi)/h)/h.

Thus the LSCV chooses the bandwidth that minimizes

AISE(h) =
∫ [

fn(x; h)
]2

dx − 2
1

n

n∑
i=1

fni(Xi; h).

Note that if we use fn(x; h) in place of fni(x; h), then the LSCV yields an inconsistent
method. To see this observe that∫ [

fn(x; h)
]2 dx =

∫
K2(s) ds

nh
+ 1

n2h

n∑
i=1

∑
j �=i

K ∗ K
(
(Xi − Xj)/h

)
,

where K ∗K(u) = ∫
K(u− s)K(s) ds. So if there is no duplication in the observations

{Xi}ni=1 and∫
K2(s) ds < 2K(0)

and lim|s|→∞ |s|K(s) = 0 as well as lim|s|→∞ |s|K ∗ K(s) = 0, then choosing h small
will make the objective function small. Since this holds regardless of f (x), the LSCV
yields an inconsistent method. Note that

∫
K2(s) ds < 2K(0) holds for most kernel

functions such as those densities that has a single peak at 0.54

When there is no duplication of observations, on the other hand, the “delete one”
modification fixes the problem as defined above. However, the same issue which was
avoided by the “delete one” modification arises when there are duplication of observa-
tions. Because the duplication of observations arises naturally if there is discretization,
one needs to be aware of this potential problem when applying the LSCV.

Hall (1983) and Stone (1984) justified LSCV as a data dependent method to choose
the optimal bandwidth. In particular, Stone (1984) showed that, only assuming bound-
edness of f (x) (and its marginals, for the multivariate case),

ISE(hLSCV)

ISE(hopt)
→ 1

as n → ∞ with probability 1, where hopt minimizes ISE(h).

54 For these functions
∫

K2(x) dx can be regarded as the mean of K(x) and it has to be lower than its
maximum K(0).
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Smoothed bootstrap The smoothed bootstrap method of Taylor (1989) is motivated
by the formula obtained when estimating

∫
E{[fn(x; h) − f (x)]2} dx by a bootstrap

sample generated from fn(x; h). That is, writing X∗
i to be sampled from distribution

fn(x; h), one can estimate
∫

E{[fn(x; h) − f (x)]2} dx by

E∗
{

1

nh

n∑
i=1

K
((

x − X∗
i

)
/h

) − 1

nh

n∑
i=1

K
(
(x − Xi)/h

)}2

.

Taylor (1989) observes that this can be explicitly computed when Gaussian kernel is
used and its integration over x is:

1

2n2h(2π)1/2

[
n∑

i=1

n∑
j=1

exp

{
−Xj − Xi

8h2

}
− 4

31/2

n∑
i=1

n∑
j=1

exp

{
−Xj − Xi

6h2

}

+ 21/2
n∑

i=1

n∑
j=1

exp

{
−Xj − Xi

4h2

}
+ n21/2

]
.

He modifies the above formula to sum over i �= j . The modified objective function,
B∗(h), say, is then minimized to define the data dependent bandwidth.

Taylor (1989) shows that

Var
{
B∗(h)

} = 0.026

8n2hπ1/2

∫ [
f (x)

]2 dx + O
(
h/n2).

It is an order of magnitude less than the corresponding object for the LSCV,
Var(AISE(h)) computed by Scott and Terrell (1987):

Var
(
AISE(h)

) = 4

n

[ ∫ [
f (x)

]3 dx −
{∫ [

f (x)
]2 dx

}]
+ O

(
1/
(
n2h

) + h4/n
)
.

A brief discussion of other methods Other methods which perform well in Monte
Carlo studies is the method of Jones and Sheather (1991) and its modification by Jones,
Marron and Sheather (1996). We did not discuss this method here as the method seems
theoretically incoherent. Like the ROT method, their approach targets the optimal band-
width when the underlying density is twice continuously differentiable. But the method
presumes that the density has higher order derivatives so that the target is not necessarily
an interesting object from a theoretical point of view.

From a statistical perspective, the least square based objective functions we have
discussed above may seem ad hoc. Indeed the literature has considered likelihood based
methods to selecting the bandwidth as well. However, Schuster and Gregory (1981)
showed that when the tail of the target density is thicker than exponential decay, then
choosing the bandwidth by the likelihood based cross validation leads to an inconsistent
density estimator.
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Empirical performance Several published studies examine bandwidth performance
in real data examples and in Monte Carlo settings. They include Jones, Marron and
Sheather (1992) (hereafter JMS), Cao, Cuevas and Gonzalez-Mantiega (1994), Park
and Turlach (1992), Park and Marron (1990), Härdle (1991), Cleveland and Loader
(1996) and Loader (1995). Below we summarize commonalities and disparities in find-
ings across studies and then present some findings from our own Monte Carlo study.
More empirical evidence needs to be accumulated to better understand how different
methods compare under data designs that commonly arise in economics.

In their evaluation of rule-of-thumb (ROT) methods, Silverman (1986), JMS (1996)
and Härdle (1991) conclude that a ROT estimator with a normal reference density has
a tendency to over-smooth, or choose too large a bandwidth, particularly when the data
are highly skewed or is multi-modal. In two separate examples, JMS (1996) and Härdle
(1991) find that the ROT estimator is unable to detect a simple case of bimodality.55

The LSCV estimator tends to suffer from the opposite problem: under-smoothing.
JMS conclude that because of under-smoothing, the LSCV procedure leads to high
variability and overall unreliability in choosing the optimal bandwidth. Hall and Marron
(1991) partly explain the under-smoothing tendency by showing that LSCV frequently
gives local minima and the tendency to under-smooth likely comes from not finding the
global minimum. Park and Marron (1990) and Loader (1995) point out that LSCV is
nonetheless the method of choice for cases where the researcher is only willing to main-
tain a limited degree of smoothness on the true density. Most other bandwidth selection
methods require smoothness assumptions on higher order derivatives. In Loader’s sim-
ulations, the LSCV approach performs well. This was also the finding in our own
simulations.

The smoothed bootstrap (SB) selector has only been studied in a few papers. JMS
find its performance to be close to that of the Sheather and Jones’ method. Faraway and
Jhun (1990) compare the SB and LSCV procedures and find that SB performs better,
which they attribute mostly to its lower variability. For further evidence on relative
performance of bandwidth selectors, see Hall et al. (1991), and Park, Kim and Marron
(1994), and Loader (1995).

6.2. Methods for selecting smoothing parameters in the local polynomial estimator of
a regression function

Here, we consider the problem of choosing the smoothing parameter for a local poly-
nomial estimator of a fixed degree; typically equal to one (i.e. local linear regression).
In particular we discuss a rule of thumb method by Fan and Gijbels (1996), least square
cross validation, and Fan and Gijbels’s method (1995) of residual square criteria (RSC).
These methods do not require an initial bandwidth selection. We also discuss Fan and

55 This drawback could possibly be overcome by using a more flexible parametric family as a reference in

constructing the plug-in estimate of
∫ [f ′′(x)]2 dx. For example, a mixture of normals could be used.
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Gijbels’s (1995) finite sample approximation method as a prototype of an attempt to
improve on these methods.

These methods are the standard bandwidth selection methods, but limitations of these
methods are also discussed in view of the alternatives proposed by Fan et al. (1996),
Doksum, Peterson and Samarov (2000), and Prewitt and Lohr (2006).

6.2.1. A general discussion

All the methods we discuss estimate in some ways the asymptotic mean square error
(AMSE) of estimating Djm(x0) (j = (j1, . . . , jd)), at a point for the case of the local
bandwidth or its integral and with some weights for the case of the global bandwidth.
For the local polynomial estimator of order p when the underlying one-dimensional
regression function is at least p + 1 times continuously differentiable, the AMSE at a
point can be obtained by inspecting Theorem 2:

AMSE(x0) = [(
M−1Bm(p+1)(x0)

)
�

]2
h2(p+1−|j |)

+ σ 2(x0)/f (x0)

nhd+2|j |
(
M−1Γ M−1)

�,�

where � is the order in which j appear. Note that in using this formula, we assume that
p − |j | is odd so that the bias term does not vanish.

Thus the asymptotically optimum point-wise bandwidth is

hopt,p,j (x0) =
[ [(d + 2|j |)(M−1Γ M−1)�,�σ

2(x0)/f (x0)]
2(p + 1 − |j |)[(M−1Bm(p+1)(x0))�]2n

]1/(2p+d+2)

.

The optimum bandwidth depends on three factors: the conditional variance, the density
of regressors, and the (p + 1)st derivative of the underlying function. The (p + 1)st
derivative enters because we consider the local polynomial estimator of order p and the
size of the (p+1)st derivative captures a local deviation from the pth order model used.
When there is a larger variance (high σ 2(x0)), less data (low f (x0)), or less deviation
from the model (high ‖m(p+1)(x0)‖), then we want to use a wider bandwidth.

Sometimes, statistical packages choose a fixed proportion of the data nearest to the
point of evaluation (x0) by default. This approach will effectively choose a wider band-
width at a lower density region. In view of the result above, this may be appropriate
when the variance and the model approximation is roughly constant. However, gen-
erally the approach cannot be an optimal way to choose the bandwidth as it does not
have a way to accommodate the two other factors affecting the optimal bandwidth. In
addition, the method is silent about the appropriate level of proportionality.

6.2.2. One step methods

Rule of thumb Fan and Gijbels (1996) proposes a ROT method for choosing a global
bandwidth. Optimum global bandwidth is obtained by minimizing the integrated version
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of the AMSE(x) using some weight function, say w(x) over x:

AMSE =
∫ [(

M−1Bm(p+1)(x)
)
�

]2
w(x) dxh2(p+1−|j |)

+
∫ [σ 2(x)/f (x)]w(x) dx

nhd+2|j |
(
M−1Γ M−1)

�,�
.

Thus the optimum global bandwidth is expressed exactly as the local one except that
each of the functions in the expression above are replaced by the integrated versions:

hopt,global,p,j

=
[
(d + 2|j |)(M−1Γ M−1)�,�

∫ [σ 2(x)/f (x)]w(x) dx

2(p + 1 − |j |) ∫ [(M−1Bm(p+1)(x))�]2w(x) dxn

]1/(2p+d+2)

.

They propose to use w(x) = f (x)w0(x) for a given w0(x), estimate m(x) by a global
polynomial of order p + 3, m̂p+3(x) so that the (p + 1)st derivative m̂

(p+1)

p+3 (x) has
enough flexibility, and use the residuals yi − m̂p+3(xi) from the global polynomial
regression to estimate the global residual variance, say σ̂ 2 and defined the ROT band-
width:

hROT,p,j =
[

(d + 2|j |)(M−1Γ M−1)i,i σ̂
2
∫

w0(x) dx

2(p + 1 − |j |)∑n
i=1[(M−1Bm̂

(p+1)

p+3 (xi))�]2w0(xi)

]1/(2p+d+2)

.

Effectively, the method presumes homoskedasticity. Note that
∫ [(M−1Bm(p+1)(x))�]2 ×

w(x) dxn is replaced by its consistent estimator
n∑

i=1

[(
M−1Bm̂

(p+1)

p+3 (xi)
)
�

]2
w0(xi).

In implementation, they used a constant function on the support of the regressors as w0.

Least square cross validation The LSCV bandwidth is a method for obtaining the
optimum bandwidth for estimating the conditional mean function. A global bandwidth
is chosen to minimize a weighted sum of the squared prediction errors:

hLSCV = arg min
h

1

n

n∑
i=1

(
yi − m̂i,h(xi)

)2
w0(xi),

where m̂i,h(xi) is the local polynomial regression function estimator computed without
using the ith observation but evaluated at xi . The ith observation has to be omitted, be-
cause if we use all observations to estimate the conditional mean function, by choosing
the bandwidth very small, one can always make the objective function 0.56

56 When there are duplicate observations in the sense that the (yi , xi ) pair is the same for multiple observa-
tions, then the “leave-one-out” m̂i,h(xi ) estimator needs to be modified to also exclude duplicate observations.
Otherwise the problem the leave-one-out approach aims to avoid would not be avoided.
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Another consideration in carrying out LSCV is that the local linear estimator in one
dimension is defined only when there are at least two data points within the support
of the kernel weight function. This effectively places a lower bound on the values of
bandwidths that can be considered.57

Note the importance of using w0(x) in the objective function. Without the weight
function LSCV chooses a global bandwidth with w(x) = f (x). Thus unless the regres-
sor distribution is bounded, the objective function may not converge to a meaningful
object when the conditional variance is bounded away from zero, for example.

Residual squares criterion Fan and Gijbels (1995) proposes an objective function for
choosing the bandwidth appropriate for estimating the conditional mean function and its
derivatives by the local polynomial estimator of order p in one-dimensional problems.
Note that in one-dimensional problems the AMSE(x0) simplifies to

AMSE(x0) = [(
M−1B

)
�
m(p+1)(x0)

]2
h2(p+1−|j |)

+ σ 2(x0)/f (x0)

nhd+2|j |
(
M−1Γ M−1)

�,�

because m(p+1)(x0) is a scalar. Thus, the bandwidth optimal for estimating the regres-
sion function can be adjusted by a known factor to produce the optimum bandwidth
suitable for estimating the derivatives of the regression function. They study

RSC(x0) =
∑n

i=1(yi − ŷi )
2Kh(xi − x0)

trace{W − WX(X′WX)−1X′W }
(
1 + (p + 1)V̂

)
,

where ŷ = (ŷ1, . . . , ŷn)
′ = Xβ̂ is the local polynomial fit using all the estimated

coefficients, V̂ is the 1–1 element of (X′WX)−1(X′W 2X)(X′WX)−1. The minimizer
of this objective function multiplied by a known factor is the local RSC bandwidth. The
multiplying factor depends on p and the order of the derivative being estimated. They
show that this method selects the locally optimum bandwidth asymptotically.58

To understand the objective function we examine each term of the expression
separately. Note that since β̂ = (X′WX)−1X′Wy, the denominator, ignoring the
1 + (p + 1)V term can be written as

y′(I − WX(X′WX)−1X′)W (
I − X(X′WX)−1X′W

)
y

= y′(W − WX(X′WX)−1X′W
)
y.

Recall that y = Xβ0 + r + ε. Since the term related to Xβ0 vanishes and ignoring the
cross terms of r and ε as they are smaller order, the leading two terms are

r ′(W − WX(X′WX)−1X′W
)
r and ε′(W − WX(X′WX)−1X′W

)
ε.

57 By restricting the range of the bandwidth to be above a certain smallest value, we may not need to use the
delete-one-method, which is computationally costly.
58 See Fan and Gijbels (1995, Table 1) for the adjustment factors.
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For the local linear case the first term divided by the trace in the denominator of the
definition of RSC converges to [m(p+1)(x0)]2h2(p+1) times a constant (say C) and the
second term divided by the same trace converges to σ 2(x0).

As we saw, the V̂ is approximately constant (say C′) divided by (nh)f (x0). Thus

(
C
[
m(p+1)(x0)

]2
h2(p+1) + σ 2(x0)

)(
1 + (1 + p)C′

nhf (x0)

)

= σ 2(x0) + C
[
m(p+1)(x0)

]2
h2(p+1) + (1 + p)C′σ 2(x0)

nhf (x0)
+ o

(
h4 + 1/(nh)

)
.

The minimizer is proportional to the optimum bandwidth by a known factor as desired.
They advocate using the integrated version of the RSC(x0) over an interval to select

a global bandwidth. In fact even for the local bandwidth, they advocate using locally
integrated version of RSC(x0) objective function. Clearly the adjustment term does not
change.

6.2.3. Two step methods

The methods discussed above do not require that an initial bandwidth be specified. As
discussed, other methods proposed in the literature attempt to improve on these proce-
dures by using the first stage estimates as inputs into a second stage.

The methods estimate the bias and variance terms. Note that to estimate the bias term,
which involves the (p + 1)st order derivative, we need to assume that the function is
smoother than required for estimating the regression function itself. For example, when
a twice continuously differentiable function is being estimated by the local linear re-
gression estimator, the bias term depends on the second order derivative. To compute
the optimum bandwidth for estimating the second order derivative, the underlying func-
tion is assumed to be at least (p + 1)-times continuously differentiable, or in this case
at least three times continuously differentiable. But for a function with that degree of
smoothness, the local linear estimator does not achieve the optimum rate of conver-
gence. Thus the bandwidth computed does not have an overall optimality property. In
this case, we will be estimating the optimal bandwidth optimum given that the local
linear estimator is used in estimation.

Fan and Gijbels’s finite sample method Fan and Gijbels (1995) propose to use their
RSC bandwidths to construct a “refined” bandwidth. Instead of using the asymptotic
formula, they propose to use the finite sample counter-part discussed in Section 4. The
bias is

(X′WX)−1X′Wr

and the variance is

(X′WX)−1X′W 2X(X′WX)−1σ 2(x0).
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Because r = m − Xβ0, the bias is not known. But it can be approximated by

(X′WX)−1X′Wτ,

where the τ is a vector of length n with the ith element to be

(xi − x0)
(p+1)/(p + 1)!β(p+1) + · · · + (xi − x0)

(p+a)/(p + a)!β(p+a).

They advocate using a = 2 or 3 as a target bias expression. Writing Sn = X′WX and
Sn,s,t = [X(s) ′/s!]W [X(t)/t !], we can write (X′WX)−1X′Wτ as

S−1
n

⎛
⎝ Sn,0,p+1β

(p+1) + · · · + Sn,0,p+aβ
(p+a)

...

Sn,p,p+1β
(p+1) + · · · + Sn,p,p+aβ

(p+a)

⎞
⎠ .

The unknown terms β(p+1), . . . , β(p+a) can be estimated using the local polynomial
estimator of degree p + a. For this step, RSC method is being advocated. They also
note that the finite sample performance was better when the terms corresponding to
Sn,s,p+t where s + t > p + a are set to 0. These terms are smaller order terms than the
target bias expression.

The conditional variance is estimated by the same expression corresponding to the
first expression of the RSC objective function:∑n

i=1(yi − ŷp+ai
)2Kh(xi − x0)

trace{W − WXp+a(X
′
p+aWXp+a)−1X′

p+aW } ,

where Xp+a corresponds to regressors of the (p + a)th degree local polynomial esti-
mator and ŷp+a = Xp+aβ̂p+a . Because the higher degree local polynomial estimator is
used, the bias contribution is of order hp+a+1 and thus can be ignored. The estimated
bias and variance terms are then used to form the estimated mean square error used to
choose the bandwidth.

Other methods Ruppert (1997) proposes instead to estimate the bias term by estimat-
ing the OLS regression:

m̂
(j)
h (x0) = c0(x0) + cp+1−|j |(x0)h

p+1−|j | + · · · + cp+a−|j |hp+a−|j |

using different h values as regressors and the corresponding m̂
(j)
h (x0) values as the

dependent variable. This formulation is motivated by the asymptotic bias calculation.
The estimated terms after the first one are used to estimate the bias. Ruppert (1997)
replaces Fan and Gijbels’s bias estimator in the finite sample method with this estimator
in approximating the asymptotic mean square error.

Note that the point-wise optimum bandwidth becomes infinite when m(p+1)(x0) = 0,
even though this may hold only at x0, so that the pth order approximation does not hold
globally. This is a limitation of considering the optimum bandwidth point-wise. Fan et
al. (1996) considers modeling the local bandwidth globally using the LSCV objective
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function. While they describe the method for the kernel regression estimator, the method
is clearly applicable to local polynomial estimator. Their objective function is

n∑
i=1

[
yi − mi

(
xi, h(xi)

)]2

where in their case

mi

(
x, h(x)

) =
∑

j �=i yjK((x − xj )/h(x))∑
j �=i K((x − xj )/h(x))

and h(x) = h0g(x) for some g(x) to be in a prespecified class of functions. This ap-
proach avoids approaching the problem point-wise and also makes the global LSCV
method a local method.

Doksum, Peterson and Samarov (2000) argues that the asymptotic formula used to
construct approximation to the asymptotic mean square error is valid only for small
bandwidths. They show that for larger bandwidths, a finite differencing gives a better
approximation.

Prewitt and Lohr (2006) develops a way to eliminate a too small bandwidth from
being considered, using the ratio of the largest to the smallest eigenvalues of the matrix
X′WX/(nhd), drawing an analogy between local polynomial methods and regular lin-
ear regression analysis. This approach could be applied to prevent to guard against too
small a bandwidth being chosen by any of the above methods.

6.3. How to choose smoothing parameters in semiparametric models

Relatively few papers have examined the problem of how to choose smoothing para-
meters in implementing semiparametric models.59 Here we provide a brief account of
some of the developments in this area of research.

6.3.1. Optimal bandwidth choice in average derivative estimation

The problem of choosing the optimal bandwidth in average derivative estimation is con-
sidered in Powell and Stoker (1996), Härdle et al. (1992), Härdle and Tsybakov (1993),
and Nishiyama and Robinson (2000, 2001). Härdle et al. (1992) study bandwidth choice
for the estimation of univariate unweighted average derivatives. Härdle and Tsybakov
(1993) and Powell and Stoker (1996) study a variety of weighted average derivative es-
timators for higher dimensions under a variety of weighting schemes using asymptotic
mean square error as a criterion. Nishiyama and Robinson (2000, 2001) propose to use
an approximation to the asymptotic normality as a criterion.

59 See Härdle, Hall and Ichimura (1993), Härdle et al. (1992), Härdle and Tsybakov (1993), Hall and
Horowitz (1990), Hall and Marron (1987), Horowitz (1992), Ichimura and Linton (2005), Linton (1995a,
1996), Nishiyama and Robinson (2000, 2001), Powell and Stoker (1996), Stoker (1996), and Robinson (1991).
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Here, we describe the approach taken in Powell and Stoker (1996) as a prototype
analysis of an optimal plug-in bandwidth selection that minimizes the leading terms of
the asymptotic mean-squared error of a semiparametric estimator. Recall from Section 5
of the chapter that an indirect density weighted average derivative estimator takes the
form

δ̂WIAD = −2

n

n∑
i=1

∂f̂ (x)

∂x
yi.

As shown in Powell and Stoker (1996), this estimator can alternatively be written as(
N

2

)−1 ∑
i<j

p(zi, zj , h),

where zi = (xi, yi), for a d-dimensional vector xi and a scalar yi , p(zi, zj , h) =
−h−d−1K ′( xi−xk

h
)(yi − yj ) and K(·) is a kernel function satisfying K(u) = K(−u),

K ′(·) denotes the d-dimensional vector of partial derivatives of K(·), ∫ K(u) du = 1,∫
K(u)ul du = 0 for l < α,

∫
K(u)uα du �= 0 (for commonly used kernel functions,

α = 2). A requirement for asymptotic normality of the estimator is 2α > d + 2. Define

r̂(zi , h) = 1

N − 1

∑
j �=i

p(zi, zj , h),

r0(z) = limh→0 E[r̂(z, h)]. Note that

E
[
r̂(z, h)

] − r0(z) = s(z)hα + o
(
hα
)

for some s(z) under the assumption on the kernel function, among others and

E
(∥∥p(z, zj , h)

∥∥2) = q(z)h−γ + o
(
h−γ

)
.

For the average derivative case, γ = d + 2 and

q(z) = [(
y − E(y|x)

)2 + Var(y|x)
]
f (x)

k∑
j=1

∫
K2

j (s) ds

where Kj denote the j th element of K ′. As shown in Powell and Stoker (1996), the
leading terms of the mean-squared error of δ̂WIAD are[

E
(
s(zi)

)]2
h2α + 4n−1 Var

[
r0(zi)

] + 2n−1C0h
α + 2n−2E

[
q(zi)

]
h−(d+2)

+ o
(
h2α

) + o
(
hα/n

) + o
(
1/
(
n2hd+2)).

Minimizing over h (noting that the variance term does not depend on the bandwidth)
and keeping only the leading terms gives the optimal plug-in bandwidth selector60:

hopt =
[
(d + 2)E[q(zi)]

α[E(s(x))]2

]1/(2α+d+2)[1

n

]2/(2α+d+2)

.

60 See Proposition 4.1 in Powell and Stoker (1996).
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The method calls for using a high order kernel so that 2α > d + 2. However, a
simulation study conducted by Horowitz and Härdle (1996) found that using a second
order kernel produced more stable results.

Robinson (1995) showed that the normal approximation to the asymptotic distribu-
tion of the density weighted averaged derivative estimator could be worse than for the
standard parametric case, depending on the bandwidth. In particular, he showed that,
under some regularity conditions, the approximation error is of order

n−1/2 + n−1h−d−2 + n1/2hα + hM−1,

where M denotes the order of differentiability of the conditional mean function of y

given x. Thus, the bandwidth required to make the order of approximation comparable
to the parametric case of n−1/2 is, for some C ∈ (1,∞) when M − 1 � α/2,(

Cn1/(2d+4)
)−1 � h � Cn−α.

The optimum bandwidth proposed by Powell and Stoker (1996) does not satisfy the
second inequality (the bias contribution to the normal approximation dominates), so
using the bandwidth will make the normal approximation to be suboptimal. Nishiyama
and Robinson (2000, 2001) derived the optimum bandwidth when approximation to the
normality is the criterion.

Given that the normal approximation is worse than the parametric cases, Nishiyama
and Robinson (2005) examine the bootstrap approximation and provide sufficient con-
ditions under which the bootstrap approximates the asymptotic distribution to a higher
order. While the work is carried out in detail for the particular case of the average deriv-
ative estimator, no doubt the technologies developed would be useful for investigating
properties of other estimators.

6.3.2. Other works

Härdle, Hall and Ichimura (1993) study the semiparametric least squares estimation of
the single index model and propose to optimize over the bandwidth as well as the un-
known coefficient. They propose a way of choosing the bandwidth that is asymptotically
optimal for estimating the conditional mean function. It is not in general optimal for es-
timating the unknown coefficient, although the asymptotic distribution theory will still
be valid with that choice of bandwidth.

Hall and Horowitz (1990), Horowitz (1992), Ichimura and Linton (2005) and Lin-
ton (1995a) study optimum bandwidth selection for estimation of censored regression
models, binary choice models, program evaluation models and the partially linear re-
gression models, respectively. All these papers use the leading terms of the asymptotic
mean square error terms as the criterion in choosing the optimum bandwidth.

Compared to the literature in the nonparametric estimation, the literature in selecting
the smoothing parameter for estimators of semiparametric model parameters is sparse.
Much more research needs to be done in this direction. Without specifying ways of
choosing the bandwidth parameter, the estimators are not well defined.
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6.4. Trimming

6.4.1. What is trimming?

In the context of computing a statistic, trimming refers to a practice to systematically
discarding the contribution of estimated function values to the statistic when some prop-
erties hold at the points the function is being evaluated. Usually the term “trimming
function” refers to an indicator function indicating which points to include, rather than
which points to discard.

6.4.2. Three reasons for trimming

There are three reasons for trimming. First, a parameter studied may not make sense
without trimming. Second, a statistic may not make sense without trimming, or third,
the statistics may not have desirable properties asymptotically without trimming.

As an example for the first case, consider estimating the conditional mean function
m(x). Recall that this function is defined at any point in the support, S, of the condition-
ing random vector so more precisely we should write it as m(x) · 1 (x ∈ S). If we are to
estimate the conditional mean function at observed data points, the indicator function is
always 1, so that we can ignore the trimming function, but otherwise, the definition of
the parameter calls for it. Parameters examined in Section 2 provide some other exam-
ples where trimming is needed. We saw there that the identifiable parameter under the
matching assumption needed to satisfy the common support condition. Therefore, the
definition of the average treatment on treated parameter, for example, incorporated the
trimming function as in

E{(Y1 − Y0)1(X ∈ S)|D = 1}
E{1(X ∈ S)|D = 1} ,

where S denotes the common support of regressors X.
As an example for the second reason for trimming, recall the definition of the kernel

regression estimator using the Epanechnikov kernel with optimal bandwidth. With this
estimator, there is a positive probability that the denominator is zero, so that the estima-
tor is not necessarily well defined. The estimator is well defined only if there is a data
point in the appropriate neighborhood.

There are at least two distinct technical reasons for trimming in order to establish
desirable properties of the statistics under consideration. First, to secure local data and
second, to avoid the boundary value problem. Consider the same estimator and assume
we want to show that the estimator converges with a rate uniformly over a given domain.
Then at any point over the domain, the density of the conditioning vector needs to be
bounded away from 0 by the amount dictated by the convergence rate of the estimator
we wish to obtain. For one thing, if the density is too low, then we cannot hope to obtain
the local observation comparable to other regions. From a theoretical point of view, we
can assume that the density is bounded away from 0, but of course in application, the
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condition does not necessarily hold and hence we have to introduce trimming. We may
also need to ensure that the function is not evaluated at points too close to the boundary
value.

The third case for trimming often arises in examining semiparametric estimators
which use nonparametric estimators in their construction. In establishing asymptotic
properties of the semiparametric estimator, a uniform convergence rate of the nonpara-
metric estimator is used.

The need for trimming for all cases is uncontroversial. But we have heard some claims
for ignoring trimming “in practice” as “it does not matter very much”. While it would be
nice if it were true, we emphasize that at this point we know of no systematic empirical
or theoretical study which substantiates the claim.

6.4.3. How trimming is done

Sometimes trimming is specified using an a priori chosen set over which some desir-
able properties hold, such as the density being bounded away from zero. There is no
provision for how we should choose such a set given a finite amount of observations.

Bickel (1982) introduced the trimming function that does not depend on a priori
knowledge of the shape of the support in the context of adaptive estimation. In carrying
out trimming of certain data points with low density, he used an estimated density. A de-
terministic sequence which converges to zero is used to decide which points correspond
to “low” density points.

While theoretically this procedure can be carried out without knowing anything about
the density, in finite sample, the procedure might inadvertently trim out a high fraction
of observations. To avoid this problem, Heckman et al. (1998) proposed defining a trim-
ming function using a quantile of the estimated density.

An additional complication arises for the case of the index model. Consider for con-
creteness the linear index model. In this case, we need to find points of low density
corresponding to any index defined by a linear combination of the regressors. It may
seem enough to trim observations based on the joint density of the regressors but that
is not the case. To see this consider two independent regressors both distributed uni-
formly over unit intervals. On the support, the density of the regressors are bounded
away from zero. But any linear combination of the two regressors will not be bounded
away from zero at the minimum and the maximum points, when two regressors are in-
volved in the linear combination. This is because the density is low when the length of
the line segment that leads to the same value for the linear combination is short. At the
points that have the minimum and the maximum values of the linear combination, the
corresponding length of the line segments are zero.

In addition to the density being bounded away from zero, trimming needs to guaran-
tee that the points of estimation are interior points of the support, so that the length of
the line segments will be away from zero. Clearly, one can presume a priori knowledge
about the support and define trimming function using the knowledge.
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One way to define the trimming function empirically is to use the estimated density as
previously described. In this case, we need to keep points only if the density values are
above certain value and that in a neighborhood there are no points with density values
below the prespecified value. The prespecified value can be defined using the quantiles
of the estimated density as in the previous case.

Given that the index models are used when we do not have enough observations to use
fully nonparametric models, the above trimming approach may be unattractive, because
it uses fully nonparametric density estimator. An alternative approach which only in-
volves one-dimensional density estimation is to search over the lowest one-dimensional
density estimate at each point. We only keep a point if the point does not correspond
to a low density point for any linear combination of regressors. Clearly this approach is
computationally intensive. A practical alternative to this approach may be to try out the
density estimation of the index defined by the bases of the space of the coefficients and
keep all points which are above the prespecified low density values.

Asymptotic analysis becomes complicated with data dependent trimming. A simple
method is provided by Ichimura (1995).

7. Asymptotic distribution of semiparametric estimators

In this section, we gather some basic asymptotic results that are useful in deriving
the asymptotic distribution for semiparametric estimators. The structure underlying
the asymptotic distribution of semiparametric estimators has been clarified greatly
through the works of Aït-Sahalia (1992), Andrews (1994), Newey (1994a), Sherman
(1994a, 1994b), Ai and Chen (2003), Chen, Linton and Van Keilegom (2003), and
Ichimura and Lee (2006). Using these results, the asymptotic variance–covariance ma-
trix of most of the semiparametric estimators can be easily computed. Chen (in this
handbook) describes this development for the semiparametric GMM estimators, so we
will describe the developments with regard to semiparametric M-estimators, summariz-
ing the results obtained by Ichimura and Lee (2006).

Let Z denote the random variable of dimension Rdz with the support S. Also, let
θ0 be an element of a finite dimensional parameter space Θ ⊂ Rdθ that minimizes
E[m(Z, θ, f0(·, θ))], for an unknown, df -vector-valued function f0 ∈ F , where F is a
Banach space of df -vector-valued function of Z on the domain U with the supremum
norm. We assume that for each θ ∈ Θ , f (·, θ) ∈ F . Note that function f (·, θ) is
a function of Z, but the · argument may be different from Z. This is the reason for
introducing the notation of U . We will discuss this again with an example.

We denote the Euclidean norm by ‖ · ‖, ‖f ‖F = supθ∈Θ supz∈S ‖f (z, θ)‖ for any
f (·, θ) ∈ F , and ‖(θ, f )‖Θ×F = ‖θ‖ + ‖f ‖F . When f depends on θ , ‖f (·, θ)‖∞ is
understood to be the supremum norm with θ fixed.

Let the function m(Z, θ, f ) denote a known, real-valued function that may depend on
the data Z and parameter θ directly and also possibly indirectly through f , for example,
if f depends on θ . The function m can depend on f only via a particular value Z, in
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which case m is a regular function with respect to f (Z, θ), or it can depend on an entire
function f (·, θ), in which case m is a functional with respect to f for each Z and θ . In
any case, we assume that m(z, θ, f ) is defined over S × Θ × F .

Assume that for each θ , a nonparametric estimator f̂n(·, θ) of f0(·, θ) is available.
We define an M-estimator of θ0 as the minimizer of

Ŝn(θ) ≡ n−1
n∑

i=1

m
(
Zi, θ, f̂n(·, θ)

)
,

under the assumption that the observed data {Zi : i = 1, . . . , n} are a random sample
of Z. Let θ̂n denote the resulting estimator of θ0.

Examples that fit within this framework include the estimators studied by Robinson
(1988), Powell, Stock and Stoker (1989), Ichimura (1993), and Klein and Spady (1993)
among many others, but the framework is also general enough to include the single-
index quantile regression estimator, as discussed in Ichimura and Lee (2006).

Here, we will use the semiparametric least squares (SLS) estimator of Ichimura
(1993) as a working example to illustrate how the assumptions and theorems can be
applied to derive the distribution theory. In the SLS case, Z = (Y,X) and

m
(
Z, θ, f (·, θ)

) = (
Y − f (X′θ, θ)

)21(X ∈ X )/2.

We assume E(Y |X) = φ(X′θ0). In this example, θ enters m only via f and m depends
on f only via its value at X. Note that the · argument in this case is one-dimensional,
although X is in general a vector. In this example, U is the support of X′θ .

To state the assumptions and results of Ichimura and Lee (2006), we need to introduce
some more notation. For any δ1 > 0 and δ2 > 0, define Θδ1 = {θ ∈ Θ: ‖θ − θ0‖ < δ0}
and Fδ1,δ2 = {f ∈ F : supθ∈Θδ1

‖f (·, θ) − f0(·, θ0)‖∞<δ2}.

7.1. Assumptions

The function m is not required to be differentiable, but is assumed to satisfy the follow-
ing conditions.

ASSUMPTION 7.1. For any (θ1, f1) and (θ2, f2) in Θδ1 × Fδ1,δ2 , there exist linear
operators Δ1(z)·(θ1 −θ2) and Δ2(z, f1(·)−f2(·)) and a function ṁ(z, δ1, δ2) satisfying

(a)
∣∣m(

z, θ1, f1(·)
) − m

(
z, θ2, f2(·)

) − Δ1(z)(θ1 − θ2) − Δ2
(
z, f1(·) − f2(·)

)∣∣
�
[‖θ1 − θ2‖ + ∥∥f1(·) − f2(·)

∥∥∞
]
ṁ(z, δ1, δ2),

and

(b) E
[
ṁ2(Z, δ1, δ2)

]1/2 � C
(
δ
α1
1 + δ

α2
2

)
for some constants C < ∞, α1 > 0, and α2 > 0.61

61 Here, Δ1, Δ2, and ṁ may depend on (θ2, f2(·)). However, we suppress the dependence on (θ2, f2(·)) for
the sake of simplicity in notation.
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Ichimura and Lee (2006) verify the condition for the single-index semiparametric
quantile regression estimator. The condition is easier to verify for differentiable cases.
Note that Δ1(z) and Δ2(z) correspond to the “derivatives” of m with respect to θ and f ,
respectively. Because m is generally a functional in f , the first “derivative” with respect
to f is a linear operator, whereas the “derivative” with respect to θ can be expressed as
a finite dimensional vector.

For SLS, the function m depends on f only via f (X′θ, θ), so that both “derivatives”
correspond to a finite dimensional vector. One can guess the forms of Δ1(z) and Δ2(z)

by taking derivatives and evaluating them at the true values. Because the function m

does not depend on θ directly, Δ1(z) = 0 and Δ2(z) = −(Y − f0(X
′θ0, θ0)). One can

verify that with these functions, the assumption holds with ṁ(z, δ1, δ2) = δ2, so that
α2 = 1.

While the function m is allowed to be nondifferentiable, its expected value is assumed
to be differentiable with respect to θ and f (as assumed in Pollard (1985)). Denote the
expected value by m∗(θ, f ) = E[m(Z, θ, f )].

ASSUMPTION 7.2. m∗(θ, f ) is twice continuously Fréchet differentiable in an open,
convex neighborhood of (θ0, f0(·, θ0)) with respect to a norm ‖(θ, f )‖Θ×F .

For the SLS example, the Fréchet derivative with respect to θ is zero and hence the
cross derivative is also. The Fréchet derivative with respect to f is Df m∗(θ, f )(h) =
−E[(Y − f (X))h(X)1{X ∈ X }] and the second Fréchet derivative with respect to f is
Df,f m∗(θ, f )(h1, h2) = E[h1(X)h2(X)1{X ∈ X }].

The class of functions F needs to be restricted as well. To characterize the nature of
the restriction, we first introduce a few additional notations. Let α denote the greatest
integer strictly smaller than α, j = (j1, . . . , jd), and let

‖g‖α = max
|j |�α

sup
x

∣∣Djg(x)
∣∣ + max|j |=α

sup
x,y

|Djg(x) − Djg(y)|
‖x − y‖α−α

,

where the suprema are taken over all x, y in the interior of U with x �= y. Then Cα
M(U)

is defined as the set of all continuous functions g :U ⊂ Rd �→ R with ‖g‖α � M .

ASSUMPTION 7.3. f0(·, θ) is twice continuously differentiable on Θδ1 with bounded
derivatives on U and F is a subset of Cα

M(U), where U is a finite union of bounded
convex subsets of Rdu with nonempty interior where α > du/2.

For SLS, f0(u, θ) = E(Y |X′θ = u). The assumption requires that f0 is twice con-
tinuously differentiable with respect to θ . In the SLS case, du = 1, so we do not require
differentiability with respect to u.

The next set of assumptions are restrictions on the estimator of f0.

ASSUMPTION 7.4.
(a) For any θ ∈ Θδ1 , f̂n(·, θ) ∈ Cα

M(X ) with probability approaching one.
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(b) supθ∈Θδ1
‖f̂n(·, θ) − f0(·, θ)‖∞ = Op(δ̃2) for δ̃2 satisfying n1/2δ̃

1+α2
2 → 0.

(c) For any ε > 0 and δ > 0, independent of θ , there exists n0 such that for all
n � n0, the following holds:

Pr
{∥∥[f̂n(·, θ) − f̂n(·, θ0)

] − [
f0(·, θ) − f0(·, θ0)

]∥∥∞ � δ‖θ − θ0‖
}

� 1 − ε.

Condition (b) requires that f̂n(·, θ) converge uniformly in probability. If α2 = 1
(smooth m), then δ̃2 = o(n−1/4); when α2 = 0.5 (nonsmooth m), then δ̃2 = o(n−1/3).
In general, f̂n(·, θ) needs to converge at a faster rate when m is less smooth.

Condition (c) is satisfied if f̂n(·, θ) is differentiable with respect to θ and the deriv-
ative converges uniformly to ∂f0(·, θ)/∂θ over both arguments. This is shown by
Ichimura (1993) for the SLS example. Ichimura and Lee’s (1991) results in the appendix
are useful in proving analogous results in other kernel based estimators.

The next set of assumptions are joint conditions on the second Fréchet deriva-
tive of m∗(θ, f ) with respect to f and the estimator of f0. Write Df,f m∗(θ, f ) =∫

w(θ, f (·, θ))h1(·)h2(·) dP , where P is the measure of Z.

ASSUMPTION 7.5. One of the following three conditions holds:
(i) w(θ, f (·, θ)) does not depend on θ or f (·, θ) and is bounded.

(ii) ‖w(θ, f (·, θ)) − w(θ0, f0(·, θ0))‖ � Cw‖θ − θ0‖ for some finite constant Cw

and supθ∈Θδ1
‖f̂n(·, θ) − f0(·, θ)‖∞ = op(n−1/4).

(iii) ‖w(θ, f (·, θ))−w(θ0, f0(·, θ0))‖ � Cw[‖θ − θ0‖+‖f (·, θ)−f0(·, θ0)‖∞] for
some finite constant Cw

We saw that for SLS, case (i) applies.
The following assumption is made first to accommodate cases where estimation of f0

has an effect on the asymptotic distribution of the estimator of θ0. Later, sufficient con-
ditions for this higher level assumption are discussed.

ASSUMPTION 7.6.
(a) As a function of θ , Df m∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)] is twice continuously

differentiable on Θδ1 with probability approaching one.
(b) There exists a nonsingular dθ -row-vector-valued Γ1(z) such that E[Γ1(Z)] = 0,

E[Γ1(Z)Γ T
1 (Z)] < ∞

d

dθT

(
Df m∗(θ, f0(·, θ)

)[
f̂n(·, θ) − f0(·, θ)

])∣∣
θ=θ0

(7.1)= n−1
n∑

i=1

Γ1(Zi) + op

(
n−1/2).

In (b), Γ1(z) captures the effects of the first stage estimation of f0. Two cases
where the derivative is easy to compute are: when f0 does not depend on θ and
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when Df m∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)] is identically zero. For SLS estimator,
Df m∗(θ, f0(·, θ))[f̂n(·, θ) − f0(·, θ)] is identically zero so that there is no first order
effect of estimating f0.

The following proposition proved in Ichimura and Lee (2006) provides a set of suffi-
cient conditions for computing the adjustment term that appears in Assumption 7.6.

PROPOSITION 7.1. Assume that

(a) (7.2)Df m∗(θ, f0(·, θ)
)[

h(·)] =
∫

h(·)g(·, θ) dP ;

(b) g(·, θ) is twice continuously differentiable with respect to θ with probability one;
(c) f̂n(·, θ) has an asymptotic linear form: for any θ ∈ Θδ1 ,

(7.3)f̂n(·, θ) − f0(·, θ) = n−1
n∑

j=1

ϕnj (·, θ) + bn(·, θ) + Rn(·, θ),

where ϕnj (·, θ) is a stochastic term that has expectation zero (with respect to the
j th observation), bn(·, θ) is a bias term satisfying supz,θ ‖bn(z, θ)‖ = o(n−1/2),
and Rn(·, θ) is a remainder term satisfying supz,θ ‖Rn(z, θ)‖ = op(n−1/2);

(d) f̂n(·, θ) is twice continuously differentiable with respect to θ with probability
approaching one and ∂f̂n(·, θ)/∂θ also has an asymptotic linear form:

(7.4)
∂f̂n(·, θ)

∂θ
− ∂f0(·, θ)

∂θ
= n−1

n∑
j=1

ϕ̃nj (·, θ) + op

(
n−1/2),

uniformly over (z, θ), where ϕ̃nj (·, θ) is a stochastic term that has expectation
zero (with respect to the j th observation); and

(e) there exists a dθ -row-vector-valued Γ1(z) such that E[Γ1(Z)] = 0 and

max
1�i�n

∥∥Γn1(Zi) − Γ1(Zi)
∥∥ = op

(
n−1/2),

where

(7.5)Γn1(Zi) =
∫

ϕ̃ni(·, θ0)g(·, θ0) dP +
∫

ϕni(·, θ0)
∂g(·, θ0)

∂θ
dP.

Then Assumption 7.6 is satisfied.

7.2. Main results on asymptotic distribution

First some notation. Let Δ10(z) and Δ20(z, h) denote Δ1(z) and Δ2(z, h) in Assump-
tion 7.1 with (θ1, f1) = (θ, f ) and (θ2, f2) = (θ0, f0(·, θ0)). Thus, Δ10(z)(θ − θ0) +
Δ20(z, f (·, θ) − f0(·, θ0)) is a linear approximation of m(z, θ, f (·, θ)) − m(z, θ0,
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f0(·, θ0)). Define Δ∗
20[h] = E[Δ20(Z, h)] for fixed h. Also define a dθ -row-vector-

valued function Γ0(z) such that

Γ0(z) = Δ10(z) − E
[
Δ10(Z)

] + Δ20

[
z,

∂f0(·, θ0)

∂θT

]
− Δ∗

20

[
∂f0(·, θ0)

∂θT

]
+ Γ1(z),

Ω0 = E[Γ0(Z)T Γ0(Z)], and

V0 = d2 m∗(θ, f0(·, θ))

dθ dθT

∣∣∣∣
θ=θ0

.

Notice that V0 is the Hessian matrix of m∗(θ, f0(·, θ)) with respect to θ , evaluated at
θ = θ0.

The following theorem gives the asymptotic distribution of θ̂n.

THEOREM 7.2. Assume that θ0 is an interior point of Θ , θ0 is a unique minimizer
of m∗(θ, f0(·, θ)), and θ̂n is a consistent estimator of θ0. Moreover, assume that
{Zi : i = 1, . . . , n} are a random sample of Z. Let Assumptions 7.1–7.6 hold. As-
sume that there exists C(z) satisfying ‖Δ20[z, h(·, θ)]‖ � C(z)‖h(·, θ)‖∞ for any θ

and ‖C(Z)‖L2(P ) < ∞. Also, assume that Ω0 exists and V0 is a positive definite ma-
trix. Then

n1/2(θ̂n − θ0) →d N
(
0, V −1

0 Ω0V
−1
0

)
.

Let ∂1m
∗(θ, f ) denote a vector of the usual partial derivatives of m∗(θ, f ) with re-

spect to the first argument θ . In this notation, ∂1m
∗(θ, f (·, θ)) denotes the partial deriv-

ative of m∗(θ, f ) with respect to the first argument θ , evaluated at (θ, f ) = (θ, f (·, θ)).
Similarly, let ∂2

1 m∗(θ, f ) denote the usual Hessian matrix of m∗(θ, f ) with respect to θ ,
holding f constant. Using this notation, note that by the chain rule, the expression of V0

can be written as62

V0 = d2 m∗(θ, f0(·, θ))

dθ dθT

∣∣∣∣
θ=θ0

= ∂2
1 m∗(θ0, f0(·, θ0)

) + Dff m∗(θ0, f0(·, θ0)
)[∂f0(·, θ0)

∂θ
,
∂f0(·, θ0)

∂θT

]

+ 2

{
Df

[
∂1m

∗(θ0, f0(·, θ0)
)T ][∂f0(·, θ0)

∂θ

]}

+ Df m∗(θ0, f0(·, θ0)
)[∂2f0(·, θ0)

∂θ∂θT

]
.

62 See Ichimura and Lee (2006, Appendix) for the expression of V0 when df > 1.
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For the SLS case, note that ∂1m
∗(θ, f0(·, θ)) = 0 and that Df m∗(θ0, f0(·, θ0))(h) = 0

so that

V0 = Dff m∗(θ0, f0(·, θ0)
)[∂f0(·, θ0)

∂θ
,
∂f0(·, θ0)

∂θT

]
.

Because ∂f0(X
′θ, θ)/∂θ evaluated at θ0 is φ′(X′θ0)[X̃ − E(X̃|X′θ0)], where X̃ is all X

except for the variable whose associated coefficient is set to 1 (required for normaliza-
tion). Thus,

V0 = E
{[

φ′(X′θ0)
]21{X ∈ X }[X̃ − E(X̃|X′θ0)

][
X̃ − E(X̃|X′θ0)

]′}
and

Ω0 = E
{[

φ′(X′θ0)
]2

ε21{X ∈ X }[X̃ − E(X̃|X′θ0)
][

X̃ − E(X̃|X′θ0)
]′}

where ε = Y − φ(X′θ0).
As indicated above, when f0 does not depend on θ , one can easily compute the ad-

justment term Γ1(z). It turns out that one can relax the smoothness condition on function
m with respect to f as well. The following assumptions are invoked in the theorem be-
low, which gives the asymptotic distribution of θ̂n when the first-stage nonparametric
estimator f̂n(·, θ) does not depend on θ .

ASSUMPTION 7.7. For any (θ1, f ) and (θ2, f ) in Θδ1 × Fδ2 , there exist a dθ -row-
vector-valued function Δ1(z, θ2, f ) and a function ṁ(z, δ1) satisfying

(a)
∣∣m(

z, θ1, f (·)) − m
(
z, θ2, f (·)) − Δ1(z, θ2, f )(θ1 − θ2)

∣∣
� ‖θ1 − θ2‖ṁ(z, δ1),

(b)
∥∥ṁ(Z, δ1)

∥∥
L2(P )

� Cδ
α1
1 for some constants C < ∞ and α1 > 0,

and

(c) sup
f ∈Fδ2

∥∥∥∥∥n−1
n∑

i=1

{
Δ1(Zi, θ0, f ) − E

[
Δ1(Z, θ0, f )

]}

− {
Δ1(Zi, θ0, f0) − E

[
Δ1(Z, θ0, f0)

]}∥∥∥∥∥
= op

(
n−1/2) for any δ2 → 0.

ASSUMPTION 7.8.
(a) f0(·) is an element of Cα

M(X ) for some α > d1/2, where d1 is the dimension of
the argument of f0(·) and X is a finite union of bounded, convex subsets of Rd1

with nonempty interior.
(b) f̂n(·) ∈ Cα

M(X ) with probability approaching one.
(c) ‖f̂n(·) − f0(·)‖∞ = op(1).
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We next state the theorem providing the asymptotic distribution of θ̂n when the first-
stage nonparametric estimator f̂n(·, θ) does not depend on θ .

THEOREM 7.3. Assume that θ0 is an interior point of Θ , θ0 is a unique mini-
mizer of m∗(θ, f0(·)), and θ̂n is a consistent estimator of θ0. Moreover, assume that
{Zi : i = 1, . . . , n} are a random sample of Z. Let Assumptions 7.2, 7.5, 7.6, and 7.8
hold. Assume that either Assumption 7.1 or Assumption 7.7 holds. Also, assume that
Ω0 = E[Γ0(Z)T Γ0(Z)T ] exists and V0 is a positive definite matrix, where

Γ0(z) = Δ1(z, θ0, f0) − E
[
Δ1(Z, θ0, f0)

] + Γ1(z)

and

V0 = ∂2m∗(θ0, f0(·))
∂θ∂θT

.

Then
n1/2(θ̂n − θ0) →d N

(
0, V −1

0 Ω0V
−1
0

)
.

8. Computation

Flexible modeling methods are computationally more demanding than traditional ap-
proaches. Among the various classes of flexible estimators, local methods tend to be the
most computationally intensive, because they require solving separate problems at each
point at which the density or function is evaluated. The computational burden is par-
ticularly great when cross-validation or bootstrap methods are used to select smoothing
parameters and/or bootstrap methods are used to evaluate the variation of the estimators.
Because local density and regression estimators form the ingredients for many semi-
parametric procedures, the semiparametric methods can also be highly computationally
intensive.

Fortunately, the processing speeds of today’s computers make nonparametric and
semiparametric modeling methods feasible in many applications with sample sizes of a
few thousand, despite their additional computational burden. But when sample sizes get
large, say on the order of 10,000 or more, then computing estimates and standard errors
can become a major task, and time considerations may drive the choice of bandwidth
selector and variance estimator. In such cases, one can take advantage of approxima-
tion methods that were suggested by Silverman (1982a) and further studied in Fan and
Marron (1994), Hall and Wand (1996), Jones and Lotwick (1984), Wand (1994) and
others for speeding up computations in local regression and density estimation. These
methods allow for great gains in speed and provide a way of controlling the accuracy of
the approximation.

8.1. Description of an approximation method

The approximation method first grids the x-axis and computes the estimates only at grid
points. Computation over grids is done efficiently using fast Fourier transformation. The
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method then interpolates to find function values between the grid-point estimates. The
number of grid points, M , is chosen by the researcher. We first describe the most simple
version of the binning method, in the context of obtaining a local linear regression es-
timate. Then we describe a fast Fourier implementation of the binning method, first for
density estimation and then for local regression. The FF transformation effectively fac-
tors the data component and the bandwidth component in the frequency domain. This
allows computation across different bandwidths to be done in a more efficient way, be-
cause the data component of the computation can be done only once and reused when
computing the values at different bandwidths.

8.1.1. A simple binning estimator

Let x1 . . . xn denote n actual data points at which we wish to evaluate the conditional
mean function for the model

y = m(x) + ε.

The local linear regression estimator at a point x is given by

Ên(yi |x)

=
∑n

j=1 yjKj

∑n
k=1 Kk(x − xk)

2 − ∑n
j=1 yjKj (x − xj )

∑n
k=1 Kk(x − xk)∑n

j=1 Kj

∑n
k=1 Kk(x − xk)2 − [∑n

j=1 Kj(x − xj )]2
,

where Kj = K((x − xj )/hn). Calculating the local regression estimator requires esti-
mating terms of the form

(8.1)
n∑

i=1

yi(x − xi)
lK

(
(x − xi)/hn

)
for l = 0, 1, 2 for the n data points at which the function is evaluated.

The binning method reduces the computational burden of evaluating these kernel
values by making an equally spaced grid over the support of the conditioning variable,
evaluating the function only at the grid points and interpolating to estimate the value of
the function at other points. Denote the N grid points by z1, . . . , zN . Binning can be
implemented by first assigning each data point (xi) and point of evaluation (x) to their
nearest grid points (zj and zj ′ , respectively) and approximating (8.1) by

N∑
j=1

∑
i∈Ij

yi(zj ′ − zj )
lK

(
(zj ′ − zj )/hn

)
,

where zj ′ are now the N grid points of evaluation, zj are the grid points to which the
data points have been assigned and Ij are the set of indices that are binned into the j th
bin.

A consequence of choosing equally-spaced grid points is that the distance between z1
and z3 is the same as between zN−2 and zN , etc. Letting Δ denote the smallest distance
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between two grid points, we only need to evaluate the kernel at N values:

K(Δ/h),K(2Δ/h),K(3Δ/h), . . . , K(NΔ/h)

which reduces the required number of evaluations of the kernel function to N from n2

(the number required under a naive strategy of evaluating the kernel for each possible
combination of data-points).

Fan and Marron (1994) introduce a modification of this simple binning idea, called
linear binning. Linear binning assigns each data point or point of evaluation to multiple
grid points, weighting each in proportion to their distance from the grid points. Fan and
Marron (1994) show that for the linear binning estimator, the approximation error can
be bounded by δ4, where δ is the bin or grid width. The FFT implementation described
below uses the linear binning idea.

8.1.2. Fast Fourier transform (FFT) binning for density estimation

The binning method described above is adequate for many univariate estimation prob-
lems. But for multivariate as well as univariate estimation problems, a more efficient
FFT implementation of binning is available. We describe how the FFT can be used to
increase the efficiency of the binning estimator in the context of estimating a density,
and then discuss how to apply it for local linear regression estimation. The FFT reduces
the number of computations by taking advantage of periodicity in complex functions.

The Fourier transform of a density g(t) is

(8.2)g̃(s) = (2π)−1/2
∫ ∞

−∞
eistg(t) dt.

Let f̂n(x) be a standard kernel density estimator, f̂n(x) = (nhn)
−1 ∑n

j=1 K((t −
xj )/hn). The F-transform of f̂n(x) is

˜̂
f n(s) = (2π)−1/2(nhn)

−1
n∑

j=1

∫
eistK

(
(t − xj )/hn

)
dt

= (2π)−1/2n−1
n∑

j=1

∫
eis(xj +hnu)K(u) du

=
{

n−1
n∑

j=1

eisxj

}
·
{
(2π)−1/2

∫
eishnuK(u) du

}

where the last two equalities follow after doing a change of variables u = (t − xj )/hn.
The first term in brackets depends only on the data. The second is the F-transform of
the K(shn), which depends on the kernel and bandwidth choice. Under certain choices
for K , there is an explicit solution for the second term. For example, if K is normal it
equals (2π)−1/2 exp{(−s2h2

n)/2}.



Ch. 74: Implementing Nonparametric and Semiparametric Estimators 5455

The separation of (8.2) into two terms – one that depends solely on the data and one on
the smoothing parameters – has a major computational advantage for algorithms, such
as cross-validation, which require evaluating the function for several different band-
width parameters, since the data component needs to be evaluated only once.

To be able to quickly evaluate the data component, we wish to find an approximation
to the first term, (2π)−1/2n−1 ∑n

j=1 eisxj . Then fn(s) will be estimated by applying FF

inversion to ˜̂
f n(s).

For large n, (2π)−1/2n−1 ∑n
j=1 eisxj converges to (2π)−1/2

∫∞
−∞ eisxg(x) dx. Usu-

ally it is not possible to explicitly obtain the integral, but it can be approximated over a
discrete set of points. Let tk = kΔ denotes grid points over the interval [−∞,∞], Δ a
bin width, k = −(N − 1), . . . , 0, . . . , (N − 1), and let gk = g(tk). The discrete FFT
approximation to the integral evaluated at a point sn = n/(NΔ), n = −N/2, . . . , N/2
is

g̃(sn) = (2π)−1/2
(N−1)∑

k=−(N−1)

eisntk gkΔ.

The last expression can be written as

g̃(sn) = (2π)−1/2Δ

(N−1)∑
k=−(N−1)

e
inkΔ
NΔ gk.

We can use the fact that eiα is a cyclical function to reduce the number of calculations
to N log2 N . Writing the last expression as

(8.3)(2π)−1/2Δ

{ −1∑
k=−(N−1)

e
ink
N gk + g0 +

(N−1)∑
k=1

e
ink
N gk

}
.

We now consider just the third term in brackets, since all the same considerations apply
to the first. We can write it as

(N−1)∑
k=1

e
ink
N gk =

( N
2 −1)∑
k=1

e
in(2k+1)

N g(2k+1) +
( N

2 −1)∑
k=1

e
in(2k)

N g(2k)

= e
in
N

( N
2 −1)∑
k=1

e
ink
N/2 g(2k+1) +

( N
2 −1)∑
k=1

e
ink
N/2 g(2k).

Repeat this process until the summation only includes one term:

= e
in
N

( N
4 −1)∑
k=1

e
in(2k+1)

N/2 g(2(2k+1)+1) + e
in
N

( N
4 −1)∑
k=1

e
in(2k)
N/2 g(2(2k)+1)
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+
( N

4 −1)∑
k=1

e
in(2k+1)

N/2 g(2(2k+1)) +
( N

4 −1)∑
k=1

e
in2k
N/2 g(2(2k))

= e
in
N e

in
N/2

( N
4 −1)∑
k=1

e
ink
N/4 g(4k+3) + e

in
N

( N
4 −1)∑
k=1

e
ink
N/4 g(4k+1)

+ e
in

N/2

( N
4 −1)∑
k=1

e
ink
N/4 g(4k+2) +

( N
4 −1)∑
k=1

e
ink
N/4 g(4k) etc.

After making these substitutions, we get

= g(0)

(
ein/N

)0 + g(1)

(
ein/N

)1 + g(2)

(
ein/N

)2 + · · · + g(2r )

(
ein/N

)2r
,

where 2r is the total number of grid points (2r = M).
Consider the number of calculations required for each of these terms for n =

0, . . . , N/2. (Negative terms are complex conjugates.) Here

g(1)

(
ein/N

)
, n = 0, . . . , N/2, requires N complex multiplications,

g(2)

(
ein/N

)2
, n = 0, . . . , N/2, requires N/2 complex multiplications,

g(3)

(
ein/N

)3
, n = 0, . . . , N/2, requires N/3 complex multiplications,

...

g(2r )

(
ein/N

)2r

, n = 0, . . . , N/2, requires N/N complex multiplications.

Thus, we need no more than N + N/2 + N/3 + · · · + N/N = N log2 N complex
multiplications.

Making the grid To implement the method described above, consider an interval [a, b]
in which the data lie. The FFT method imposes periodic boundary conditions, so the
interval needs to be chosen large enough. For a normal kernel, it suffices to choose a

and b that satisfy

a < min(xj ) − 3hn,

b > max(xj ) + 3hn,

where hn is the bandwidth [Silverman (1986)]. Also, let M = 2r for some integer r

denote the total number of grid points and let δ be the bin width, δ = (b − a)/M . The
grid points are given by tk = a + kδ, for k = 0, 1, . . . ,M − 1. If the data point falls
onto the grid interval [tk, tk+1], we assign a weight ξk = δ−2n−1(tk+1 − xj ) to tk and

a weight ξ̄k+1 = δ−2n−1(xj − tk) to tk+1. The weights over all the data points (xj ,
j = 1, . . . , n) are accumulated at each grid point. Let

ξk = δ−2n−1
n∑

j=1

(tk+1 − xj )1
(
xj ∈ [tk, tk+1]

)
,
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ξ̄k = δ−2n−1
n∑

j=1

(xj − tk−1)1
(
xj ∈ [tk−1, tk]

)
,

ξk = ξk + ξ̄k.

The ξk weights satisfy
∑M

k=0 ξk = δ−1.
In this notation, we can write the binning approximation for (2π)−1/2n−1 ∑n

j=1 eisnxj

as

≈ (2π)−1/2
M−1∑
k=0

δξke
isntk

= (2π)−1/2
M−1∑
k=0

δξke
isn(a+kδ).

sn are taken to be sn = n/Mδ for n = −M/2, . . . , M/2:

= (2π)−1/2
M−1∑
k=0

δξke
i n
Mδ

(a+kδ)

= (2π)−1/2e
ia
Mδ

{
M−1∑
k=0

δξke
ink
M

}
.

This last expression is in the form needed to apply FFT. Jones and Lotwick (1983) show
that the MISE of this approximation is O(δ4).

8.2. Performance evaluation

In this section, we evaluate the gains in speed in a set-up where we are perform-
ing local linear regression and choosing smoothing parameters through least squares
cross-validation (the LSCV method described in Section 6). The computational method
effectively factors the data component and the bandwidth component in the frequency
domain, so that computation across different bandwidths can be done efficiently by
reusing the data component of the computation. We show how these techniques work
very well and make it feasible to do nonparametric and semiparametric estimation with
sample sizes well over 100,000.

The following result is obtained for data generated by y = exp x without error, where
x has the standard normal distribution. Grids are constructed between −3 and 3. We
estimate E{y|x} at all data points using the local linear regression method and use LSCV
to select the globally optimum bandwidth. The machine we used is a DEC 5000/240.

Table 1 compares the speed and the average root percentage mean squared errors
compared to the method without approximating (reported in the second row of each
cell) for different size samples and for different grid sizes, M .
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Table 1
Speed/accuracy comparisons

n = 1000 n = 10,000 n = 100,000

M = 100 1.02 sec 14.7 sec 185.8 sec
0.25% 0.27% 0.40%

M = 500 1.81 sec 11.5 sec 145.1 sec
0.047% 0.048% 0.049%

M = 1000 2.45 sec 11.5 sec 137.4 sec
0.021% 0.036% 0.041%

No approx. 175.2 sec 22,257 sec N/A

Speed does not necessarily increase with the gain in accuracy, because the compu-
tation involves optimization over the bandwidth. The time it takes for convergence, in
our experience, goes down as M increases. As one can see for the case of 10,000 obser-
vations we can reduce the computation time to 0.036% of the time it would otherwise
take. For the case of 100,000 observations and for this workstation, the computation
would have been a major task running over days as opposed to about 3 minutes with the
approximation method.

9. Conclusions

In this chapter, we have reviewed recent advances in nonparametric and semiparametric
estimation, with emphasis on applicability of methods in empirical research. Our discus-
sion focused on the modeling and estimation of densities, conditional mean functions
and derivatives of functions. The examples of Section 2 illustrated how flexible mod-
eling methods have been adopted in previous empirical studies, either as an estimation
method in their own right or as a way of checking parametric modeling assumptions.
Section 3 highlighted key concepts in semiparametric and nonparametric modeling that
do not have counterparts in parametric modeling, such as the dependence of rates of
convergence on the dimension of the estimation problem, the notion of models with an
infinite number of parameters, the criteria used to define optimal convergence rates, and
the existence of so-called “dimension-free” semiparametric estimators.

Section 4 of the chapter described a number of nonparametric approaches for estimat-
ing densities and conditional mean functions. Although nonparametric estimators are
sometimes deemed infeasible because of slow convergence rates, they are nonetheless
of keen interest because they form the building blocks of many semiparametric meth-
ods. We introduced some likelihood based and method of moments based approaches
and presented a unifying framework for thinking about how apparently different esti-
mators relate to one another. The asymptotic distribution theory for the commonly used
local polynomial regression estimator was also presented.
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Section 5 studied application of a variety of semiparametric models that offer a mid-
dle ground between fully parametric and nonparametric approaches. By imposing some
parametric restrictions, they typically achieve faster convergence rates than nonpara-
metric estimators. By remaining flexible with regard to certain aspects of the model,
semiparametric estimators are consistent under a broader class of models than are fully
parametric estimators. In some cases, flexibility can be achieved without sacrificing
rates of convergence. However we note that semiparametric models are generally not
embedded in a sequence of models in which an arbitrary function can be approximated.
It is desirable to consider such embedding and construct tests against such sequences
when semiparametric models are used. Stone’s extended linear model provides such a
framework for the additive separable models.

In Section 6 we addressed questions that arise in implementing nonparametric meth-
ods, with regard to optimal choices of smoothing parameters and how best to implement
trimming procedures. We reviewed a large and growing literature on bandwidth selec-
tors for nonparametric density and regression estimators. Section 6 also considers the
bandwidth selection problem in the context of semiparametric models, although that
literature is still in its infancy. We described a few bandwidth selectors that have been
proposed for index models and for the partially linear model.

Section 7 presented a way to compute asymptotic variance of the semiparametric M-
estimators. Section 8 provided a brief introduction to some computational methods that
have been introduced to ease the computational burden of nonparametric estimators
when applied to large datasets. These methods show much promise, but their perfor-
mance has yet to be widely studied in economic applications.

It is our hope that the topics of this chapter have provided an overview of how empir-
ical researchers can best take advantage of recent developments in nonparametric and
semiparametric modeling.
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Abstract

Economists who use survey or administrative data for inferences regarding a population
may want to combine information obtained from two or more samples drawn from the
population. This is the case if there is no single sample that contains all relevant vari-
ables. A special case occurs if longitudinal or panel data are needed but only repeated
cross-sections are available.

In this chapter we survey sample combination. If two (or more) samples from the
same population are combined, there are variables that are unique to one of the samples
and variables that are observed in each sample. What can be learned by combining such
samples, depends on the nature of the samples, the assumptions that one is prepared to
make, and the goal of the analysis. The most ambitious objective is the identification and
estimation of the joint distribution, but often we settle for the estimation of economic
models that involve these variables or a subset thereof. Sometimes the goal is to reduce
biases due to mismeasured variables.

We consider sample merger by matching on identifiers that may be imperfect in the
case that the two samples have a substantial number of common units. For the case
that the two samples are independent, we consider (conditional) bounds on the joint
distribution. Exclusion restrictions will narrow these bounds. We also consider inference
under the strong assumption of conditional independence.

Keywords

sample combination, matching, nonparametric identification, repeated cross-sections

JEL classification: C13, C14, C23, C21, C42, C81
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1. Introduction

Economists who use survey or administrative data for inferences regarding a population
may want to combine information obtained from two or more samples drawn from the
population. This is the case if (i) there is no single sample that contains all relevant
variables, (ii) one of the samples has all relevant variables, but the sample size is too
small, (iii) the survey uses a stratified design. A special case of (i) occurs if longitudinal
or panel data are needed, while only repeated cross sections are available.

There are good reasons why data sets often do not have all relevant variables. If
the data are collected by interview, it is advisable to avoid long questionnaires. If the
data come from an administrative file, usually only variables that are relevant for the
eligibility for a program and for the determination of the benefits or payments associated
with that program are included. Hence, unless a survey was designed to include all
the relevant variables for a particular research project, there is no single data set that
contains all variables of interest. However, often the variables are available in two or
more separate surveys. In that case it is natural to try to combine the information in the
two surveys to answer the research question.

In this chapter we survey sample combination. What can be learned by combining
two or more samples depends on the nature of the samples and the assumptions that one
is prepared to make. If two (or more) samples from the same population are combined,
there are variables that are unique to one of the samples and variables that are observed
in each sample. To be specific, consider a population and assume that for each member
of the population we can define the variables Y,Z,X. Sample A contains the variables
Y,Z and sample B the variables X,Z. The variables in Y are unique to sample A and
those in X are unique to sample B. Hence, we have random samples from overlapping
(in variables) marginal distributions.

How one uses this information depends on the goal of the study. We distinguish be-
tween

(i) Identification and estimation of the joint distribution of X, Y,Z. This was the
original motivation for the type of sample merging that is discussed in Sec-
tion 3.2. The hope was that with the merged sample the distributional impact of
taxes and social programs could be studied. An example is a study of the effect
of a change in the tax code on the distribution of tax payments. In principle,
tax returns contain all the relevant variables. However, if the change depends on
variables that did not enter the tax code before, or if it is desired to estimate the
effect for specific subgroups that are not identifiable from the tax returns, the
need arises to obtain the missing information from other sources. The joint dis-
tribution is also the object of interest in non-parametric (conditional) inference.
This is obviously the most ambitious goal.

(ii) Estimation of economic models that involve X, Y,Z (or a subset of these vari-
ables). Such models are indexed by a vector of parameters θ that is of primary
interest, and, as will become clear in Section 4.3, parametric restrictions are
helpful (but not necessary) in securing identification by sample combination.
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An example is the estimation of the effect of age at school entry on the years of
schooling by combining data from the US censuses in 1960 and 1980 [Angrist
and Krueger (1992)].

(iii) Estimation of an economic model with mismeasured variables. In this case sam-
ple A contains Y,X,Z and sample B X∗, Z with X∗ the correct value and X

the mismeasured value of the same variable, e.g. income. If X is self-reported
income, this variable may be an imperfect indicator of true income X∗. A better
indicator is available in administrative data, e.g. tax records. Hence, it is desir-
able to combine these samples to obtain a dataset that has both the correctly
measured variable and Y . Again this was a motivation for the type of sample
merger discussed in Section 3.2. In Section 4.5 we show that sample merger is
not necessary to avoid measurement error bias.

For problems of type (i) there are a number of methods that merge the samples A
and B into one sample that is treated as a random sample from the joint distribution of
X, Y,Z. Because the common variables Z1 are often not of independent interest, we
assume for the moment that the researcher is satisfied with a random sample from the
joint distribution of X, Y . Sample merging is discussed in Sections 2 and 3. Its suc-
cess depends on two factors: (i) the number of members of the population that are in
both samples, and (ii) the degree to which these common members can be identified
from the common variables Z. In the simplest case Z identifies members of the pop-
ulation uniquely, for instance if Z is an individual’s Social Security Number or some
other unique identifier (measured without error). If the common members are a random
sample from the population, then the merged sample is indeed a random sample from
the population distribution of X, Y . Complications arise if the number of population
members that are in both samples is substantial, but they cannot be identified without
error. We discuss estimation in samples that have been merged. Because the matching
process is not perfect the merging introduces a form of measurement or matching error.
The analogy is almost complete because the bias is similar to the attenuation bias in
models with mismeasured independent variables

The merger of samples has also been attempted in the case that the fraction of units
that are in both samples is negligible. Indeed the techniques that have been used to
merge such samples are the same as for samples with common units that cannot be
identified with absolute certainty. Only under the strong assumption of conditional in-
dependence of Y and X given Z, we can treat the merged or matched sample as a random
sample from the joint distribution of Y,Z,X (Section 4). As shown in Section 4 it is
preferable not to merge the two samples, even if the assumption of conditional indepen-
dence is correct. Under conditional independence we can estimate the joint distribution
of Y,Z,X and any identified conditional model without merging the samples. If the as-
sumption of conditional independence does not hold and our goal is to recover the joint

1 Sometimes variables have to be transformed to make them equal in both samples. For instance, A may
contain the age and B the year of birth.
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distribution of Y,Z0, X with Z0 a subvector of Z, then the two samples give bounds on
this joint distribution. Point identification is possible if we specify a parametric model
for the conditional distribution of Y given X,Z0, f (y | x, z0; θ) or moments of that
distribution, e.g. the conditional mean. In both cases, it is essential that some of the
common variables in Z are not in Z0, i.e. that there are exclusion restrictions. In Sec-
tion 4.5 we also consider the case that one or more of the variables of a survey is subject
to measurement error, while there is a second survey that has error free data on these
variables, but does not contain data on the other relevant variables in the first survey.
We show that the merger of the two samples is again not the solution, but that such data
are helpful in reducing or even eliminating the errors-in-variables bias.

A special case of sample combination with some distinct variables are synthetic co-
horts obtained from repeated cross sections. In that case Y and X are the same variables
in two time periods and Z is the variable that identifies the cohort. This special case
deserves separate consideration and is discussed in Section 5.

In Section 6 we consider the combination of samples with common variables that are
drawn from possibly overlapping subpopulations of some target population. We distin-
guish between (i) all samples have the same set of variables, but they are drawn from
distinct subpopulations, (ii) there is one sample that has all variables of interest and at
least one other sample that is drawn from the same population, but contains a subset of
the variables of interest. Case (i) occurs if the sample design is stratified. Often, a simple
random sample from a population is not the most efficient sample design. If subpopula-
tions are identifiable from the sampling frame, a design that oversamples heterogeneous
subpopulations and undersamples homogeneous ones, requires fewer observations to
achieve the same precision. Such a sample design is called a stratified design (with un-
equal probabilities of selection). It may even be that in a simple random sample certain
subpopulations that are of particular interest will not be represented at all. For instance,
if the dependent variable is the indicator of a rare event, there may be insufficient obser-
vations to study factors that affect the occurrence of the event. With a stratified sample
design the samples from the strata must be combined. The procedure depends on the
type of inference, in particular on whether the inference is on the conditional distribu-
tion of a (vector of) dependent variable(s) given a set of conditioning variables or not.
If the strata are subsets of the support of the conditioning variables or of variables that
are independent of the dependent variables given the conditioning variables, then the
stratified sample can be treated as a random sample. If the inference is unconditional or
if the strata are subsets of the support of the dependent variables, then we cannot treat
the stratified sample as if it were a random sample. The correct procedure is to use some
weighting scheme that uses the inverse probability of selection as the sampling weights
[Horvitz and Thompson (1952)].

In case (ii) a small sample with all relevant variables is typically combined with a
larger sample with fewer variables. The goal is to increase the precision of the estimates
obtained from the small sample. The main difference between the sample combination
considered in Sections 2–4 and in Section 6 is that in Sections 2–4 the issue is whether
the distribution, moments or parameters of interest are identified from the combined
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samples. In Section 6 identification is usually ensured (see Section 6.2 for a discussion
of the conditions) and the focus is on efficient inference.

A stratified sample is a special case of a sample in which the probability that a popu-
lation unit is included in the sample depends on the variables of interest. In a stratified
sample this probability is a known function of the variables that define the strata. The
more general case in which this probability is not known and has to be estimated oc-
curs for instance, if responses are missing for a fraction of the population. A special
case is the estimation of treatment effects where the counterfactual outcome is miss-
ing. If the probability of observation depends on the independent variables, but not on
the dependent variable, the data are Missing At Random (MAR). If we have a random
sample from the marginal population distribution of the independent variables, either
because we observe the independent variables even if the dependent variable is missing,
or because we have an independent random sample from this distribution, then we can
estimate parameters of the distribution of the dependent variable. Hirano, Imbens and
Ridder (2003) have shown that the efficient estimator uses estimated sampling weights,
even if these weights are known. This seems to be a generic result, because the efficient
estimator in stratified samples also requires estimated weights.

This chapter provides a common framework for research in different fields of eco-
nomics and statistics. It is mostly a survey, but we also point at some areas, for instance
non-parametric identification of joint distributions by exclusion restrictions, that have
not been explored yet. Although we survey empirical applications we have not at-
tempted to include all studies that use some form of data combination. By bringing
together research that until now was rather disjoint we hope to stimulate further re-
search on data combination.

2. Merging samples with common units

An obvious way to combine information in two samples is to merge the samples. If the
two samples have a substantial number of common units, the natural action is to link
the records relating to the same unit. The linkage of records for the same unit is usually
called exact matching. This term is misleading, because it suggests that the linkage is
without errors. Record linkage is easy if both records contain a unique identifier, e.g. an
individual’s social security number, that is observed without error. Card, Hildreth and
Shore-Sheppard (2001) match survey to administrative data, and find that even in the
administrative data the social security numbers are often misreported. If the two surveys
are independently drawn samples from two overlapping populations, the linked records
are a sample from the intersection of the two populations.

2.1. Broken random samples

DeGroot, Feder and Goel (1971), DeGroot and Goel (1976) and DeGroot and Goel
(1980) consider the reconstruction of a broken random sample, i.e. a random sample in
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which the identity of the members is observed with error. Besides its intrinsic interest,
we discuss their method because of its similarity to methods used to merge samples that
have no common units.

Consider a random sample of size N from a population and assume that the iden-
tity of the units in the random sample is observed with error, i.e. a record consist of
(Yi, Z1i , Z2j , Xj ) with

(1)Zki = Zi + εki, k = 1, 2.

The identifier Z is observed with error and unit i is erroneously linked to unit j . We
ignore for the moment Y,X.2 We also assume that Z, ε1, ε2 are jointly normally dis-
tributed,3 and as a consequence the observed Z1, Z2 have a bivariate normal distribution
with means μ1, μ2, standard deviations σ1, σ2, and correlation coefficient ρ. Let φ de-
note a permutation of 1, . . . , N so that Z1i is linked with Z2φ(i). The loglikelihood of
the sample Z1i , Z2φ(i), i = 1, . . . , N , is

ln L
(
μ1, μ2, σ

2
1 , σ 2

2 , ρ, φ
)

= C − N

2
log

(
1 − ρ2) − N

2
log σ 2

1 − N

2
log σ 2

2

− 1

2(1 − ρ)2

(2)×
N∑

i=1

{
(z1i − μ1)

2

σ 2
1

+ (z2φ(i) − μ2)
2

σ 2
2

− 2ρ
(z1i − μ1)(z2φ(i) − μ2)

σ1σ2

}
.

Note that the vector φ is treated as a vector of parameters, i.e. the likelihood is the joint
distribution if φ is the correct linkage. Maximizing the loglikelihood with respect to the
means and variances yields the usual MLE for these parameters. If we substitute these
MLE and maximize with respect to ρ we obtain the concentrated loglikelihood that only
depends on φ

(3)L(φ) = C − N

2
log

(
1 − ρ2

φ

)
with ρφ the sample correlation coefficient between Z1i , Z2φ(i), i = 1, . . . , N . This
sample correlation coefficient depends on the permutation φ. It is easily verified for
N = 2 and it can be shown for all N [Hájek and Šidak (1967)] that the average of the
sample correlation coefficient over all permutations is equal to 0. Hence the smallest
value for ρφ is ρmin < 0 and the largest ρmax > 0. If the order statistics of Z1, Z2 are
denoted by Z1(i), Z2(i), then it is intuitively clear that the sample correlation coefficient
is maximal if Z1(i) is linked with Z2(i), and minimal if Z1(i) is linked with Z2(N−i+1).
The first permutation is denoted by φmax, the second by φmin. Because the concentrated

2 If Y,X are correlated (given Z1, Z2) they could be helpful in reconstructing the correctly linked sample.
3 This assumption can be relaxed, see DeGroot, Feder and Goel (1971).
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loglikelihood increases with ρ2
φ , the MLE of ρ is ρmax if ρ2

max > ρ2
min and ρmin if

the reverse inequality holds. In the first case the likelihood is maximized if we link
according to the order statistics, and in the second case if we link in the reverse order.
As is obvious from the loglikelihood in (2) the nature of the linkage, i.e. the choice of φ,
depends only on the sign of ρ. The MLE for ρ suggests the following rule to decide on
this sign: if ρ2

max > ρ2
min then we estimate the sign of ρ as +1, while we use the opposite

sign if the reverse inequality holds. DeGroot and Goel (1980) conduct some sampling
experiments that show that for values of ρ of 0.9, i.e. a relatively small measurement
error in the identifier, this procedure yields the correct sign in more than 75% of the
replications (for sample sizes ranging from 5 to 500).

Obviously, if the Z1, Z2 are observations on a common identifier, we do not have to
estimate the sign of ρ, because the correlation is positive, unless we make extreme as-
sumptions on the correlation between the two measurement errors. The optimal linkage
is then on the order statistic of Z1 and Z2. Maximization of the loglikelihood (2) with
respect to the permutation φ is equivalent to maximization of

(4)
N∑

i=1

z1iz2φ(i)

and this is in turn equivalent to minimization of

(5)
N∑

i=1

z2
1i +

N∑
i=1

z2
2i − 2

N∑
i=1

z1iz2φ(i) =
N∑

i=1

(z1i − z2φ(i))
2.

Hence the Euclidean or L2 distance between the vectors of observed identifiers is min-
imized. As we shall see, this rule that is derived for the case of exact matching with
mismeasured identifiers, is also used in the case that there are no common units in the
samples.

If there are multiple identifiers, i.e. if Z is a K vector and Z1, Z2 have multivariate
normal distributions with means μ1, μ2, variance matrices Σ11,Σ22, and covariance
matrix Σ12, the factor of the likelihood function that depends on the permutation φ is

(6)ln L(μ,Σ12) = exp

{
−1

2

N∑
i=1

z′
1iΣ

12z2φ(i)

}
.

In this expression

(7)Σ12 = −Σ−1
11 Σ12

(
Σ22 − Σ21Σ

−1
11 Σ12

)−1
.

This likelihood factor is the probability that the permutation φ is the correct match
and hence maximization of the likelihood function is equivalent to maximization of the
probability of a correct match.

The maximization of the likelihood factor in (6) is equivalent to the maximization of

(8)
N∑

i=1

z1iC12z2φ(i)
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with C12 = −Σ12. This is equivalent to the minimization of

(9)
N∑

i=1

(z1i − z2φ(i))
′C12(z1i − z2φ(i)),

i.e. the quadratic distance with matrix C12 between the vectors of identifiers. The same
distance measure is sometimes used if the samples have no common units and Z is a
vector of common characteristics (see Section 3.2).

Because all units must be matched the maximization of (8) is equivalent to the mini-
mization of

(10)
N∑

i=1

N∑
j=1

dij z1iC12z2j

subject to for i = 1, . . . , N , j = 1, . . . , N ,

(11)
N∑

i=1

dij =
N∑

j=1

dij = 1

and dij = 0, 1. This is a linear assignment problem, an integer programming problem
for which efficient algorithms are available.

This procedure requires an estimate of Σ12, the covariance matrix of Z1 and Z2. Note
that in the case of a single identifier only the sign of this covariance was needed. If the
errors in the identifiers are independent in the two samples, an estimate of the variance
matrix of the true identifier vector Z suffices. The extension of DeGroot and Goel’s
MLE to the multivariate case has not been studied.

2.2. Probabilistic record linkage

2.2.1. Matching with imperfect identifiers

The ML solution to the reconstruction of complete records assumes that the mismea-
sured identifiers are ordered variables. The method of probabilistic record linkage can
be used if the matching is based on (mismeasured) nominal identifiers, such as names,
addresses or social security numbers. Probabilistic record linkage has many applica-
tions. It is used by statistical agencies to study the coverage of a census, by firms that
have a client list that is updated regularly, and by epidemiologists who study the effect
of a potentially harmful exposure [see Newcombe (1988), for a comprehensive survey
of the applications]. In epidemiological studies a sample of individuals who have been
exposed to an intervention is linked with a population register to determine the effects
on fertility and/or mortality, the latter possibly distinguished by cause [Newcombe et
al. (1959), Buehler et al. (2000), Fair et al. (2000)]. Probabilistic record linkage is also
used in queries from a large file, e.g. finding matching fingerprints or DNA samples.
The implementation of probabilistic record linkage depends on the specific features of
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the data. In this survey we only describe some general ideas. We use the setup of Fellegi
and Sunter (1969), although we change it to stress the similarity with the reconstruction
of broken random samples (Section 2.1) and statistical matching (Section 3.2).

Initially we assume that there is a single identifier Z that identifies each member of
the population uniquely. We have two samples of sizes N1 and N2 from the population.
These samples need not be of equal size and, although it is assumed that a substantial
fraction of the units in both samples are common, the remaining units are unique to one
of the samples. This is a second departure from the assumptions made in the case of a
broken random sample. A key ingredient of probabilistic matching is the record gener-
ating model that describes how the observed identifiers in the records are related to the
unique true identifier. It is obvious that errors in names and reported social security num-
bers cannot be described by a simple model with additive measurement error [Fellegi
and Sunter (1969), Copas and Hilton (1990), and Newcombe, Fair and LaLonde (1992),
develop alternative record generating models]. To keep the exposition simple, we will
stick with the additive model of Equation (1). The main ideas can be explained with this
model and are independent of a specific model of the record generating process.

The first step is to define a comparison vector Wij for each pair i, j , with i with
identifier Z1i in the first and j with identifier Z2j in the second random sample. An
obvious choice is Wij = Z2j − Z1i , but we can also include Z1 and use the comparison
vector Wij = (Z2j − Z1i , Z1i )

′. Define Mij as the indicator of the event that i and j

are matched, i.e. are the same unit. If we assume that the measurement errors in the
two samples are independent of each other and of the true identifier Z, and that the
identifiers of distinct units are independently distributed in the two samples, we have,
for Wij = Z2j − Z1i , with f the density of ε2 − ε1 and Gk the cdf of Z in sample k,

h(wij | Mij = 1) = f (wij ),

(12)h(wij | Mij = 0) =
∫∫

f (wij − z′ + z) dG1(z) dG2(z
′).

For every pair i, j we consider the density ratio, provided that the denominator is
greater than 0 (if the denominator is 0, the match can be made without error),

(13)
h(wij | Mij = 1)

h(wij | Mij = 0)
.

This ratio gives the relative likelihood that the comparison vector is from a matched
pair. Just as in a statistical test of the null hypothesis that i, j refer to the same unit, we
decide that the pair is matched if the density ratio exceeds a threshold. Note that with
this matching rule unit i may be matched with more than one unit in sample 2 and unit
j may be matched with more than one unit in sample 1.

To illustrate the procedure we consider a simple case. The distribution of the identifier
is usually discrete. Here we assume that there is a superpopulation of identifiers from
which the identifiers in the (finite) population are drawn. In particular, we assume that
the Z’s in both samples are independent draws from a normal distribution with mean
μ and variance σ 2. A uniform distribution may be a more appropriate choice in many
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instances. The measurement errors are also assumed to be normally distributed with
mean 0 and variances σ 2

1 , σ 2
2 .

Under these assumptions, the density ratio is

φ(z2j − z1i; σ 2
1 + σ 2

2 )

φ(z2j − z1i; 2σ 2 + σ 2
1 + σ 2

2 )

(14)=
√

2σ 2 + σ 2
1 + σ 2

2

σ 2
1 + σ 2

2

exp

{
− σ 2

(2σ 2 + σ 2
1 + σ 2

2 )(σ 2
1 + σ 2

2 )
(z2j − z1i )

2
}
.

The cutoff value for the density ratio can also be expressed as

(15)(z2j − z1i )
2 < C

and we match if this inequality holds. C is a constant that is chosen to control either the
probability of a false or a missed match. If we take the first option we choose C such
that

(16)2Φ

( √
C√

2σ 2 + σ 2
1 + σ 2

2

)
− 1 = α.

The advantage of this choice is that the cutoff value can be computed with the (esti-
mated) variances of the observed identifiers Z1i and Z2j which are σ 2+σ 2

1 and σ 2+σ 2
2 ,

respectively. Estimation of the variances of the measurement errors is not necessary. If
there are multiple identifiers, the criterion for matching i and j is

(17)(z2j − z1i )
′((Σ1 + Σ2)

−1 − (2Σ + Σ1 + Σ2)
−1)(z2j − z1i ) < C,

i.e. the quadratic distance with the specified matrix between the observed identifiers
is less than a threshold. To use this criterion we need estimates of Σ and Σ1 + Σ2.
If Σ � Σ1 + Σ2 the criterion can be approximated by a quadratic form with matrix
(Σ1 + Σ2)

−1, and the distance is chi-squared distributed for matches. In that case it is
more convenient to choose C to control the probability of a missed match.

In general, the estimation of the parameters that enter the density ratio is the most
problematic part of probabilistic linkage. Tepping (1968), Copas and Hilton (1990) and
Belin and Rubin (1995) propose estimation methods that use a training sample in which
it is known which pairs are matched to estimate the parameters of the distribution of the
comparison vector among matched and unmatched pairs.

It is interesting to compare probabilistic record linkage to the method that was pro-
posed for the reconstruction of a broken random sample. Instead of minimizing the
(average) distance between the identifiers as in (5), we choose a cutoff value for the
distance and match those pairs with a distance less than the cutoff value. In probabilis-
tic record linkage a record may be linked with two or more other records. If the true
identifiers are sufficiently distinct and/or if the measurement errors are relatively small
the probability of this event is negligible. Alternatively, we can choose the record that
has the largest match probability.
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2.2.2. Matching errors and estimation

The term exact matching is a misnomer when dealing with samples that have been
matched using identifiers that are subject to error. Matching error biases estimates of
parameters. In this section we consider the case that a random sample from a population
is matched (with error) to a register that contains each unit in the sample. There has
been very little work on biases due to matching errors. Usually, matched samples are
analyzed as if there are no mismatches. This section provides a framework that can be
used to assess potential biases and to obtain unbiased estimates if some knowledge of
the matching process is available.

We assume that a random sample of size N1 is matched with a register of size N2
that is a random sample from the target population or the complete target population
(N2 > N1). For example, we have a sample of taxpayers that is matched with the regis-
ter of tax returns. The sample contains a variable X and an identifier Z1 that is measured
with error and the register contains a variable Y and an identifier Z2 that is also mea-
sured with error. The true identifier is denoted by Z. We want to study the relation
between X and Y or in general statistics defined for the joint distribution of X, Y . In
fact, we show that the joint distribution of X, Y is (non-parametrically) identified, if the
matching probabilities are available.

The data are generated as follows. First, a sample of size N2 is drawn from the joint
distribution of X, Y,Z. This sample is the register. Next, we generate the mismeasured
identifiers Z1, Z2, e.g. according to (1) or some other record generating model discussed
in the previous section. We observe Yj , Z2j , j = 1, . . . , N2. The next step is to draw
N1 < N2 observations from the register without replacement. This is the sample, for
which we observe Xi,Z1i , i = 1, . . . , N1. Note that in this case all members in the
sample are represented in the register.

The bias induced by the matching errors depends on the relation between the mis-
measured identifier and the variables of interest. For instance, if the identifier is a
(misreported) social security number, then it is reasonable to assume that both the iden-
tifier Z and the observed values Z1, Z2 are independent of the variables of interest. If,
in addition, there is a subsample with correctly reported identifiers Z1 = Z2 = Z, e.g.
the subsample with Z1 = Z2 (this is an assumption), then this subsample is a random
sample from the joint distribution of the variables of interest. However, often common
variables beside the identifier are used to match units i and j with z1i �= z2j , e.g. we
match i and j if z1i and z2j are close and i and j have the same gender, age, and
location etc. Note that the additional common variables need not be observed with er-
ror in the two samples. However, the probability that the match is correct depends on
these additional common variables that in general are correlated with variables of inter-
est. In this case, even if we can identify a subsample in which all matches are correct,
this subsample is not a random sample from the joint distribution of the variables of
interest.

Here we only consider the case that Z,Z1, Z2 are independent of X, Y . The general
case can be analyzed in much the same way. Note that this is the simplest case for
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probabilistic record linkage. There is an interesting contrast with statistical matching,
as discussed in the next section, because there the quality of the approximation relies
heavily on the correlation between the identifiers and the variables of interest.

The quality of the matches depends on the matching method that in turn depends
on the record generating model. We use the same example that was considered in
Section 2.2.1. The record generating model is as in (1) and Z, ε1 and ε2 are all in-
dependently normally distributed. Under these assumptions i in the sample is matched
with φ(i) in the register if and only if |z2φ(i) − z1i | < C with C determined e.g. as
in (16) or by some other rule. We can derive an expression for the probability that the
match is correct given that we use this matching rule, i.e. the probability of the event
that Zi = Zφ(i) given that |Z2φ(i) − Z1i | � C. Substitution of (1) and using the inde-
pendence of the reporting errors and the true value gives by Bayes’ theorem

Pr(Miφ(i) = 1)

= Pr
(
Zi = Zφ(i)

∣∣ |Z2φ(i) − Z1i | � C
)

= Pr(Zi = Zφ(i)) Pr(|ε2φ(i) − ε1i | < C)

Pr(Zi = Zφ(i)) Pr(|ε2φ(i) − ε1i | < C) + Pr(Zi �= Zφ(i)) Pr(|Zφ(i) + ε2φ(i) − Zi − ε1i | < C)

(18)=
1

N2
Φ

(
C√

σ 2
1 +σ 2

2

)
1

N2
Φ

(
C√

σ 2
1 +σ 2

2

) + N2−1
N2

Φ
(

C√
σ 2

1 +σ 2
2 +2σ 2

) .

This expression for the probability of a correct match under the given matching rule
has a Bayesian flavor. The probability of a correct match, if a unit in the sample is
matched at random with a unit in the register is 1

N2
. This is also the limit of the proba-

bility of a correct match if C → ∞. The probability decreases in C. If C ↓ 0 we obtain
the limit

(19)
1

N2

1
N2

+ N2−1
N2

√
σ 2

1 +σ 2
2

σ 2
1 +σ 2

2 +2σ 2

and this probability approaches 1 if the reporting error in the identifier is small. Hence,
we improve on random matching by using the noisy identifiers. Of course, if we choose
C too small, there will be few matches. As will be seen below, the variance of estimators
is inversely proportional to the probability of a correct match, so that if our goal is
to estimate parameters accurately we face a trade-off between the number of matched
observations and the probability that the match is correct. Although this analysis is for
a specific record generating model, the trade-off is present in all matched samples.

If we match i in the sample to φ(i) in the register, if |Z2φ(i) − Z1i | � C, then the
conditional probability of a correct match given the identifiers Z1, Z2 is

Pr
(
Miφ(i) = 1

∣∣ Z1i , Z2φ(i)

)
= Pr

(
Zi = Zφ(i)

∣∣ |Z2φ(i) − Z1i | � C,Z1i , Z2φ(i)

)
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(20)= Pr(Miφ(i) = 1)φ1(Z2φ(i) − Z1i )

Pr(Miφ(i) = 1)φ1(Z2φ(i) − Z1i ) + Pr(Miφ(i) = 0)φ2(Z2φ(i) − Z1i )

with

φ1(Z2φ(i) − Z1i ) = φ
(
Z2φ(i) − Z1i

∣∣ |Z2φ(i) − Z1i | � C; σ 2
1 + σ 2

2

)
,

φ2(Z2φ(i) − Z1i ) = φ
(
Z2φ(i) − Z1i

∣∣ |Z2φ(i) − Z1i | � C; 2σ 2 + σ 2
1 + σ 2

2

)
.

Now we are in a position to discuss estimation. Consider a pair i, φ(i) matched accord-
ing to a matching rule, e.g. the rule above, from the N1 × N2 possible pairs. The joint
distribution of Xi,Z1i , Yφ(i), Z2φ(i) has density g(xi, z1i , yφ(i), z2φ(i)) with

g(xi, z1i , yφ(i), z2φ(i))

(21)

= g(xi, z1i , yφ(i), z2φ(i),Miφ(i) = 1) + g(xi, z1i , yφ(i), z2φ(i),Miφ(i) = 0).

If the joint density of X, Y is f (x, y), then because we assume that X, Y and Z,Z1, Z2
are independent,

g(xi, z1i , yφ(i), z2φ(i),Miφ(i) = 1)

(22)= f (xi, yφ(i)) Pr(Miφ(i) = 1 | z1i , z2φ(i))g(z1i , z2φ(i))

and

g(xi, z1i , yφ(i), z2φ(i),Miφ(i) = 0)

(23)= f1(xi)f2(yφ(i)) Pr(Miφ(i) = 0 | z1i , z2φ(i))g(z1i , z2φ(i)).

Substituting (22) and (23) in (21), and using g(xi, z1i , yφ(i), z2φ(i)) = f (xi, yφ(i)) ×
g(z1i , z2φ(i)), we can solve for f (xi, yφ(i))

f (xi, yφ(i)) = g(xi, yφ(i)) − Pr(Miφ(i) = 0 | z1i , z2φ(i))f1(xi)f2(yφ(i))

Pr(Miφ(i) = 1 | z1i , z2φ(i))

(24)= f1(xi)f2(yφ(i)) + g(xi, yφ(i)) − f1(xi)f2(yφ(i))

Pr(Miφ(i) = 1 | z1i , z2φ(i))

if the denominator is greater than 0, which is the case for any sensible matching rule.
The distributions on the right-hand side of this expression are all observed. Hence

this identification result is non-parametric, although it requires that the matching prob-
abilities are known or that they can be estimated.

Often we are not interested in the joint distribution of Y,X, but in a population para-
meter θ0 that is the unique solution to a vector of population moment conditions

(25)E
[
m(Xi, Yi; θ)

] = 0.

These population moment conditions refer to the correctly matched observations. If two
observations are incorrectly matched, they are stochastically independent. In general
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for i �= j

(26)E
[
m(Xi, Yj ; θ)

] = 0

is solved by θ1 �= θ0. In other words, the parameter cannot be identified from the two
marginal distributions.

The solution for the joint population distribution in (24) suggests the sample moment
conditions that combine information from the sample and the register

1

N1

N1∑
i=1

m(xi, yφ(i); θ)

Pr(Miφ(i) = 1 | z1i , z2φ(i))

(27)− 1

N2
1

N1∑
j=1

N1∑
k=1

1 − Pr(Mjφ(k) = 1 | z1j , z2φ(k))

Pr(Mjφ(k) = 1 | z1j , z2φ(k))
m(xj , yφ(k); θ)

and the weighted GMM estimator of θ either makes (27) equal to 0 or is the minimizer
of a quadratic form in these sample moment conditions. In this expression (but not in
(24)) it is implicitly assumed that the probability that a unit in the sample is matched
with two or more units in the register is negligible. This simplifies the notation.

We obtain a particularly simple result if we use the identifiers to match the sample to
the register, but ignore them in the inference, i.e. in (21) we start with the joint distribu-
tion of Xi, Yφ(i), so that

f (xi, yφ(i)) = f1(xi)f2(yφ(i)) + g(xi, yφ(i)) − f1(xi)f2(yφ(i))

Pr(Miφ(i) = 1)
.

This will give consistent, but less efficient, estimates. Let the probability of a correct
match Pr(Miφ(i) = 1) = λ. If X and Y have mean 0, then

(28)cov(Xi, Yi) = cov(Xi, Yφ(i))

λ
.

With the same assumption we find for the moment conditions of a simple linear regres-
sion with an intercept

E
[
(Yi − α − βXi)Xi

]

(29)

= E[(Yφ(i) − α − βXi)Xi] − (1 − λ)[E(Yφ(i))E(Xi) − αE(Xi) − βE(X2
i )]

λ
,

E[Yi − α − βXi]
= E[Yφ(i) − α − βXi] − (1 − λ)[E(Yφ(i)) − α − βE(Xi)]

λ
(30)= E[Yφ(i) − α − βXi].

Setting these conditions equal to 0 and solving for the parameters we find that

β = cov(Xi, Yφ(i))

λ var(Xi)
,
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(31)α = E(Yφ(i)) − βE(Xi)

and, if we substitute the sample statistics for the population statistics, we obtain the es-
timator suggested by Neter, Maynes and Ramanathan (1965) and Scheuren and Winkler
(1993). The results in this section generalize their results to arbitrary moment conditions
and less restrictive assumptions on the sampling process. In particular, we show that the
matching probabilities that are computed for probabilistic linkage can be used to com-
pute the moment conditions for the matched population. This is important because the
simulation results in Scheuren and Winkler (1993) show that the bias induced by false
matches can be large.

The asymptotic variance of the estimator for β is

(32)var(β̂) = σ 2

N1λ2 var(X)
.

The variance decreases with the matching probability. The GMM estimator is consistent
if the matching probability is positive.

3. Independent samples with common variables

3.1. Fréchet bounds and conditional Fréchet bounds on the joint distribution

Exact or probabilistic matching is not advisable if the fraction of units that are in both
samples is small. If the fraction is negligible, we may treat the two random samples
as independent samples that have no units in common. Although exact or probabilistic
matching produces more informative data, the fear that linked files pose a threat to
the privacy of individuals who, with some effort, may be identifiable from the linked
records, has prevented the large scale matching of administrative and survey data.4 As
a consequence, often the only available samples that contain all relevant variables are
relatively small random samples from a large population. It is safe to assume that these
random samples have no common units.

The two independent random samples identify the marginal distributions of X,Z

(sample A) and Y,Z (sample B). If there are no common variables Z, the marginal dis-
tributions put some restrictions on the joint distribution of X, Y . These Fréchet (1951)
bounds on the joint distribution are not very informative. For example, if the marginal
and joint distributions are all normal, there is no restriction on the correlation coefficient
of X and Y , i.e. it can take any value between −1 and 1.

4 Fellegi (1999) notes that public concern with file linkage varies over place and time and that, ironically,
the concern is larger if the linkage is performed by government agencies than if private firms are involved.
Modern data acquisition methods like barcode scanners and the internet result in large files that are suitable
for linkage.
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With common variables Z the Fréchet bounds can be improved. The bounds for the
joint conditional cdf of X, Y given Z = z are

(33)max
{
F(x | z) + F(y | z) − 1, 0

}
� F(x, y | z) � min

{
F(x | z), F (y | z)

}
.

Taking the expectation over the distribution of the common variables Z we obtain

E
[
max

{
F(x | Z) + F(y | Z) − 1, 0

}]
(34)� F(x, y) � E

[
min

{
F(x | Z), F (y | Z)

}]
.

The bounds are sharp, because the lower and upper bounds, E[max{F(x | Z) + F(y |
Z) − 1, 0}] and E[min{F(x | Z), F (y | Z)}] are joint cdf’s of X, Y with marginal cdf’s
equal to F(x) and F(y). Note that because the expectation of the maximum is greater
than the maximum of the expectations (the reverse relation holds for the expectation
of the minimum), the Fréchet bounds with common variables are narrower than those
without. If either X or Y are fully determined by Z, then the joint cdf is identified. To
see this let the conditional distribution of X given Z = z be degenerate in x(z). Define
A(x) = {z | x(z) � x}. Then F(x | z) = 1 if z ∈ A(x) and F(x | z) = 0 if z ∈ A(x)c.
Substitution in (34) gives that the lower and upper bounds coincide and that

(35)F(x, y) = E
[
F(y | Z)

∣∣ Z ∈ A(x)
]

Pr
(
Z ∈ A(x)

)
.

In the special case that the population distribution of X, Y,Z is trivariate normal, the
only parameter that cannot be identified is the correlation between X and Y . We have

(36)ρXY = ρXY |Z
√

1 − ρ2
XZ

√
1 − ρ2

YZ + ρXZρYZ.

This gives the bounds

ρXZρYZ −
√

1 − ρ2
XZ

√
1 − ρ2

YZ

(37)� ρXY � ρXZρYZ +
√

1 − ρ2
XZ

√
1 − ρ2

YZ.

The lower bound reaches its minimum −1 if ρXZ = −ρYZ (the upper bound is
1 − 2ρ2

XZ) and the upper bound reaches its maximum 1 if ρXZ = ρYZ (the lower
bound is −1+2ρ2

XZ . Also if either ρXZ or ρYZ is equal to 1, then ρXY = ρXZρYZ . The

length of the interval is 2
√

1 − ρ2
XZ

√
1 − ρ2

YZ and hence the bound is more informative
if the correlation between either Z and X or Z and Y is high.

An example illustrates how much correlation between X, Y and Z is required to nar-
row bounds. Consider a linear regression model

(38)Y = α + βX + U

where X and U are independent and normally distributed. If σX, σY denote the standard
deviation of X and Y , respectively, we have

(39)
σY

σX

= |β|√
R2
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with R2 the coefficient of determination of the regression. If we multiply the bounds in
(37) by σY

σX
we obtain an interval for the slope β. If p denotes the relative (with respect to

β) length of the interval and we consider the case that the correlation between X and Z

and Y and Z are equal, we obtain the following expression for the required correlation

(40)ρXZ =
√

1 − p
√

R2

2
.

The correlation decreases with R2 and the (relative) length of the interval for β. For
instance, if we want a 0.20 relative length for a regression with an R2 of 0.9, we need
that ρXZ = ρYZ = 0.95. In general, the correlation that is needed to obtain informa-
tive bounds is rather high, and this illustrates the limited information about the relation
between X and Y in the combined sample.

The Fréchet bounds on the joint cdf in (34) treat the variables X and Y symmetrically.
As the notation suggests, often Y is the dependent and X the independent variable in
a relation between these variables, and we focus on the conditional distribution of Y

given X. An important reason to do this, is that we may assume that this conditional
distribution is invariant under a change in the marginal distribution of X. For example,
Cross and Manski (2002) consider the case that Y is the fraction of votes for a party
and X is the indicator of an ethnic group. It is assumed that the ethnic groups vote in
the same way in elections, but that the ethnic composition of the voters changes over
time. If we have the marginal distributions of Y (election results by precinct) and X

(ethnic composition by precinct), what can we say about future election results, if we
have a prediction of the future composition of the population, i.e. the future marginal
distribution of X?

Horowitz and Manski (1995) and Cross and Manski (2002) have derived bounds for
the case that X is a discrete variable with distribution

(41)Pr(X = xk) = pk, k = 1, . . . , K.

We first derive their bounds for the case that there are no common variables Z. They
consider bounds on the conditional expectation

E
[
g
(
h(Y ),X

) ∣∣ X = x
]

with g bounded and monotone in h for almost all x. A special case is g(h(Y ),X) =
I (Y � y) which gives the conditional cdf. Because the conditional expectation above
is continuous and increasing in F(y | x), in the sense that the expectation with respect
to F1(y | x) is not smaller than that with respect to F2(Y | x), if F1(y | x) first-order
stochastically dominates F2(y | x), we can derive bounds on this expectation from
bounds on the conditional cdf.

In the sequel we derive bounds both on the conditional cdf F(y | x) and on
F(y; xk) = Pr(Y � y,X = xk). We first derive bounds on these cdf’s for a given k.
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Next we consider the K-vector of these cdf’s. Note that by the law of total probability

K∑
k=1

F(y; xk) = F(y)

which imposes an additional restriction on the vector F(y; xk), k = 1, . . . , K .
The Fréchet bounds on F(y; xk) are

(42)max
{
F(y) − (1 − pk), 0

}
� F(y; xk) � min

{
F(y), pk

}
.

For each k these bounds are sharp, because both the lower and upper bound are increas-
ing in y, and they both increase from 0 to pk , i.e. they are F̃ (y; xk) for some random
variables Ỹ and X̃.

The bounds in (42) imply that if pk � 1
2

0 � F(y; xk) � F(y), y < F−1(pk),

0 � F(y; xk) � pk, F−1(pk) � y < F−1(1 − pk),

(43)F(y) − (1 − pk) � F(y; xk) � pk, y � F−1(1 − pk),

with an obvious change if pk > 1
2 . Upon division by pk we obtain bounds on the

conditional cdf of Y given X = xk

0 � F(y | xk) � F(y)

pk

, y < F−1(pk),

0 � F(y | xk) � 1, F−1(pk) � y < F−1(1 − pk),

(44)
F(y) − (1 − pk)

pk

� F(y | xk) � 1, y � F−1(1 − pk).

The bounds have an appealing form. The lower bound is the left truncated cdf of Y

where the truncation point is the (1−pk)th quantile of the distribution of Y and the upper
bound is the right truncated cdf with truncation point equal to the pkth quantile. These
bounds on the conditional cdf of Y were derived by Horowitz and Manski (1995) and
Cross and Manski (2002). They are essentially Fréchet bounds on the joint distribution.

Next, we consider bounds on the vector F(y; .) = (F (y; x1) . . . F (y; xK))′. For
K = 2 the bounds in (42) are (without loss of generality we assume p1 < 1

2 , i.e.
p2 = 1 − p1 > p1)

0 � F(y; x1) � F(y), y < F−1(p1),

0 � F(y; x1) � p1, F−1(p1) � y < F−1(p2),

F (y) − p2 � F(y; x1) � p1, y � F−1(p2),

0 � F(y; x2) � F(y), y < F−1(p1),

F (y) − p1 � F(y; x2) � F(y), F−1(p1) � y < F−1(p2),

(45)F(y) − p1 � F(y; x2) � p2, y � F−1(p2).
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Figure 1. Bounds on (F (y; x1), F (y; x2)) for three values of y.

By the law of total probability F(y; .) satisfies for all y

(46)
K∑

k=1

F(y; xk) = F(y).

Hence, the vector of conditional cdf’s is in a set that is the intersection of the Fréchet
bounds in (45) and the hyperplane in (46). The resulting bounds on (F (y; x1), F (y; x2))

are given in Figure 1 for three values of y with y1 < F−1(p1), F−1(p1) � y2 <

F−1(p2), and y3 � F−1(p2). The Fréchet bounds on (F (y; x1), F (y; x2)) are the
squares. The law of total probability selects two vertices of these squares as the ex-
treme points of the set of (F (y; x1), F (y; x2)) that satisfy both the Fréchet bounds and
the law of total probability. Bounds on the conditional cdf’s F(y | x1) and F(y | x2)

are obtained upon division by p1 and p2, respectively. This amounts to a change in the
units in Figure 1 and except for that the figure is unchanged.

From (45) the lower bound on F(y; x1) is

FL(y; x1) =
{

0, y < F−1(p2),

F (y) − p2, y � F−1(p2),



Ch. 75: The Econometrics of Data Combination 5489

and the upper bound is

FU(y; x1) =
{

F(y), y < F−1(p1),

p1, y � F−1(p1).

Note that both the lower and upper bound increase from 0 to p1 with y, and hence
are equal to F̃ (y; x1) for some random variables Ỹ and X̃. The corresponding upper
and lower bounds on F(y; x2) are FU(y; x2) = F(y) − FL(y; x1) and FL(y; x2) =
F(y) − FU(y; x1), and these bounds are equal to F̃ (y; x2) for some random variables
Ỹ and X̃. This establishes that the bounds are sharp. A general proof of this statement
can be found in Cross and Manski.

The bounds on the conditional cdf’s F(y | x1) and F(y | x2) are also given in
Figure 2. By the law of total probability, the lower bound of F(y | x1) corresponds with
upper bound of F(y | x2) and the other way around. Note that the bounds are narrower
for F(y | x2) because x2 has a higher probability than x1. From this figure we can
obtain bounds on the conditional median of Y given X. We find that the change in this
conditional median has bounds

F−1
(

1

2
− 1

2
p1

)
− F−1

(
1 − 1

2
p1

)
� med(Y | x2) − med(Y | x1)

(47)� F−1
(

1

2
+ 1

2
p1

)
− F−1

(
1

2
p1

)
.

Note that the lower bound is negative and the upper bound positive for all p1, so that
it is impossible to sign the change of the conditional median with this information.
This suggests that the relation between Y and X cannot be inferred from two marginal
distributions without common variables.

If K � 3 the bounds can be derived in the same way. First, we order the pk by
increasing size. Next, we find the hypercubes that correspond to the Fréchet bounds
on F(y; .). As in Figure 1 the vertices depend on the value of y, i.e. for which k we
have F−1(pk) � y < F−1(pk+1). Finally, we select the vertices that satisfy the law
of total probability. These are the extreme points of the set of admissible F(y; xk),
k = 1, . . . , K . To be precise, the set is the convex hull of these extreme points. As we
shall see below, for prediction purposes it is sufficient to find the vertices.

The main reason for bounds on the conditional cdf of Y given X, instead of on the
joint cdf of Y,X, is that it is usually assumed that the conditional cdf is invariant with
respect to changes in the distribution of X. Of course, this is a common assumption
in conditional econometric models with fixed parameters. An obvious application is to
conditional prediction. Cross and Manski consider the prediction of the outcome of a
future election assuming that the voting behavior of demographic groups remains the
same, but that the composition of the population changes and the future composition of
the population can be predicted accurately.

The predicted distribution of the future outcome F̃ (y) satisfies

(48)F̃ (y) = F(y; x1)
p̃1

p1
+ F(y; x2)

p̃2

p2
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Figure 2. Bounds on F(y | x1) and F(y | x2).
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with p̃1 the future fraction with X = x1. Again, without loss of generality we assume
p1 < 1

2 . We can further distinguish between p̃1 � p1 and p̃1 > p1. In the former case
the bounds on the predicted cdf can be found as in Figure 1. In that figure we indicate
the bounds for F−1(p1) � y < F−1(p2). The bounds are obtained by intersecting the
set of feasible (F (y; x1), F (y; x2)) with (48). We find

p̃1

p1
F(y) � F̃ (y) � min

{
p̃2

p2
F(y), 1

}
, y < F−1(p1),

1 − p̃2

p2

(
1 − F(y)

)
� F̃ (y) � min

{
p̃2

p2
F(y), 1

}
, F−1(p1) � y < F−1(p2),

(49)1 − p̃2

p2

(
1 − F(y)

)
� F̃ (y) � 1 − p̃1

p1

(
1 − F(y)

)
, y � F−1(p2).

As is obvious from Figure 1, the bounds increase with the difference between p1 and p̃1.
For K � 3 the bounds on the predicted cdf are found by evaluating

(50)
K∑

k=1

p̃k

pk

F (y; xk)

at the extreme points of the set of feasible F(y; .).
As noted, a key assumption in the derivation of the bounds is that X is a discrete

variable. From (44) it is obvious that the bounds on the conditional cdf become uninfor-
mative if pk goes to 0, i.e. the bounds become 0 � F(y | xk) � 1 for all y. Hence, if X

is close to continuous the bounds on the conditional cdf’s are not useful. If the support
of Y is bounded, e.g. if it is a dichotomous variable, then the bounds on the support can
be used to obtain bounds on conditional expectations. Such bounds are of a different
nature and beyond the scope of this chapter.

3.2. Statistical matching of independent samples

The Fréchet bounds exhaust the information on the joint distribution of X, Y . If we
merge the samples A and B no information is added, and our knowledge of the joint
distribution of X and Y does not increase. How much we can learn about the joint dis-
tribution of X, Y is completely determined by the relation between X and Z in sample
A and that between Y and Z in sample B.

In spite of this, the temptation to match two samples that do not have common
units as if they were two samples with a substantial degree of overlap has been irre-
sistible. A number of authors have proposed methods for this type of file matching
[Okner (1972), Ruggles and Ruggles (1974), Radner (1974), Ruggles, Ruggles and
Wolff (1977), Barr and Turner (1978), Kadane (1978); see also the survey in Radner
et al. (1980)]. These methods are direct applications of those that are used in the recon-
struction of broken random samples and probabilistic matching. Let the sample A be
xi, z1i , i = 1, . . . , N1, and the sample B be yi, z2i , i = 1, . . . , N2. The vectors z1 and
z2 contain the same variables and the subscript only indicates whether the observation is
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in sample A or B. Because the samples A and B do not contain common units, the fact
that z1i and z2j are close does not imply that they refer to the same unit or even similar
(except for these variables) units. If we match unit i in A to unit j in B we must decide
which of the vectors z1i or z2j we include in the matched file. If we use the observation
for file A, then this file is referred as the base file, and file B is called the supplemental
file.

The two methods that have been used in the literature are constrained and un-
constrained matching. Both methods require the specification of a distance function
D(z1i , z2j ). In (9) (for broken random sample) and (17) (for probabilistic record link-
age) we specify the distance function as a quadratic function of the difference, but other
choices are possible.5 In practice, one must also decide on which variables to include
in the comparison, i.e. in the z vector. The Fréchet bounds suggest that the joint dis-
tribution of X, Y is best approximated, if the correlation between either X or Y and Z

or the R2 in a regression of either X or Y on Z is maximal. Often, the units that can
be matched are restricted to, e.g. units that have the same gender. In that case gender is
called a cohort variable.

With constrained matching every unit in sample A is matched to exactly one unit in
sample B. Often A and B do not have an equal number of units. However, both are
random samples from a population and hence the sampling fraction for both samples is
known (assume for the moment that the sample is obtained by simple random sampling).
The inverse of the sampling fraction is the sample weight, wA for sample A and wB

for sample B. Assume that the weights are integers. Then we can replicate the units
in sample A wA times and those in sample B wB times to obtain two new samples
that have the same number of units M (equal to the population size). Now we match
the units in these samples as if they were a broken random sample, i.e. we minimize
over dij , i = 1, . . . ,M , j = 1, . . . ,M , with dij = 1 if i and j are matched

(51)
M∑
i=1

M∑
j=1

dijD(z1i , z2j )

subject to

M∑
k=1

dik = 1,

(52)
M∑

k=1

dkj = 1,

for all i = 1, . . . , M , j = 1, . . . , M . If we choose distance function (9) we obtain the
same solution as in a broken random sample. Of course, there is little justification for
this matching method if the samples A and B have no common units.

5 Rodgers (1984) finds no systematic differences in the performance of distance functions, although he
comments that the Mahalanobis distance using an estimated variance matrix does not perform well.
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The method of constrained matching was first proposed by Barr and Turner (1978).
An advantage of this method is that the marginal distributions of X and Y in the merged
file are the same as those in the samples A and B. A disadvantage is that the optimization
problem in (51) is computationally burdensome.

In unconstrained matching the base file A and the supplemental file B are treated
asymmetrically. To every unit i in file A we match the unit j in file B, possibly restricted
to some subset defined by cohort variables, that minimizes D(z1i , z2j ). It is possible that
some unit in B is matched to more than one unit in A, and that some units in B are not
matched to any unit in A. As a consequence, the distribution of Z2, Y in the matched file
may differ from that in the original sample B. Note that if we use the distance function
(17), unconstrained matching is formally identical to probabilistic record linkage. Of
course, there is no justification for this method, if the samples A and B have no common
units. The first application of unconstrained matching was by Okner (1972) who used
the 1967 Survey of Economic Opportunity as the base file and the 1966 Tax File as the
supplemental file to create a merged file that contained detailed data on the components
of household income.

The merger of two files using either unconstrained or constrained matching has been
criticized since its first use. In his comment on Okner’s (1972) method, Sims (1972)
noted that an implicit assumption on the conditional dependence of X, Y given Z is
made, usually the assumption that X, Y are independent conditional on Z. A second
problem is best explained if we consider matching as an imputation method for missing
data. File A contains X,Z1 and Y is missing. If we assume conditional independence,
an imputed value of Y is a draw from the conditional distribution of Y given Z1 = z1.
Such a draw can be obtained from file B, if for one of the units in file B Z2 = z1. If
such a unit is not present in file B, we choose a unit with a value of Z2 close to z1. This
is an imperfect imputation, and we can expect that the relation between Z1 and Y in the
merged file is biased. Indeed, Rodgers (1984) reports that the covariance between Z1
and Y is underestimated, as one would expect. An alternative would be to estimate the
relation between Y and Z2 in sample B, e.g. by a linear regression, and use the predicted
value for Z1 = z1, or preferably a draw from the estimated conditional distribution of
Y given Z1 = z1, i.e. include the regression disturbance variability in the imputation.6

The imputation becomes completely dependent on model assumptions, if the support of
Z1 is larger than that of Z2. In general the distribution of X, Y,Z can only be recovered
on the intersection of the supports of Z1 and Z2. If both samples are random samples
from the same population, as we assume here, then the supports coincide.

It is possible to evaluate the quality of the data produced by a statistical match, by
matching two independent subsamples from a larger dataset. The joint distribution in
the matched sample can be compared to the joint distribution in the original dataset.
Evaluation studies have been performed by, among others, Ruggles, Ruggles and Wolff
(1977), and Rodgers and DeVol (1982). It comes as no surprise that the conclusion from

6 Even better: also include the variability due to parameter uncertainty.



5494 G. Ridder and R. Moffitt

these evaluations is that the joint distribution of X, Y cannot be estimated from the joint
marginal distributions of X,Z and Y,Z.

As noted, matching can be considered as an imputation method for missing data.
Rubin (1986) has suggested that instead of merging the files A and B, it is preferable to
concatenate them, and to impute the missing Y in file A and missing X in file B using
the estimated relations between X and Z1 (file A) and Y and Z2 (file B). In particular,
he suggests not to use a single draw from the (estimated) conditional distribution of X

given Z1 = z2 and of Y given Z2 = z1, effectively assuming conditional independence,
but to add draws from the distributions of X given Z1 = z2, Y = y and Y given Z2 = z1,
X = x assuming a range of values for the conditional correlation. The resulting datasets
reflects the uncertainty on the conditional correlation and the variability of parameter
estimates over the imputations indicates the sensitivity of these estimates to assumptions
on the conditional correlation. Further developments along these lines can be found in
Raessler (2002).

4. Estimation from independent samples with common variables

4.1. Types of inference

Without further assumptions the (conditional) Fréchet bounds on the joint cdf is all that
can be learned from the two samples. These bounds are usually not sufficiently narrow,
unless the common variables are highly correlated with Y and X. In this section we
explore what additional assumptions are needed to improve the inference.

We consider (i) conditional independence, and (ii) exclusion restrictions. Exclusion
restrictions refer to the situation that the distribution of Y given X,Z is independent of
a subvector Zc

0 of Z, and hence depends only on the other variables Z0 in Z. We also
consider both non-parametric inference, i.e. the goal is to estimate the joint distribu-
tion of Y,X,Z0 or the conditional distribution of Y given X,Z0 or moments of these
distributions, and parametric inference, i.e. the joint distribution of Y,X,Z0 or the con-
ditional distribution of Y given X,Z0 is in a parametric class. Parametric assumptions
play an important role in inference from independent samples, a theme that is repeated
in Section 5 on inference in repeated cross sections.

None of the methods discussed below requires that the two samples are merged. All
computations can be done on the two samples separately.

4.2. Semi- and non-parametric inference

4.2.1. Conditional independence

If Y,X are stochastically independent given the common variables Z, then the joint
density of X, Y is

(53)f (x, y) = E
(
f (x | Z)f (y | Z)

)
.
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Although the joint distribution is identified, often we just want to compute an expecta-
tion E(g(X, Y )). We have

(54)E
(
g(X, Y )

) = EYZ

(
E
(
g(X, Y )

∣∣ Y,Z
)) = EYZ

(
E
(
g(X, Y )

∣∣ Z
))

,

where the last equality holds by conditional independence. Note that the inner condi-
tional expectation is with respect to the distribution of X given Z that is identified from
sample A, and that the outer expectation is with respect to the joint distribution of Y,Z

that is identified from sample B. We implicitly assume that the distributions of Z1 and
Z2 in the samples A and B are identical. This is true if both samples are from the same
population.

For a fixed value of Y , we can estimate the inner conditional expectation by a non-
parametric regression (e.g. kernel or series) estimator of g(X, y) on Z using sample A.
The estimator of E(g(X, Y )) is then obtained by averaging this regression estimator
over Y,Z in sample B. The analysis of this estimator is beyond the scope of this chapter.
It is similar to the semi-parametric imputation estimator proposed by Imbens, Newey
and Ridder (2004) and Chen, Hong and Tarozzi (2004) who establish semi-parametric
efficiency for their estimator. Their results can be directly applied to this estimator. In
the literature it has been suggested that for the estimation of E(g(X, Y )) we must first
estimate the joint distribution of X, Y [see Sims (1972) and Rubin (1986)], but this is
not necessary. Note that a similar method can be used to estimate E(g(X, Y,Z0)) with
Z0 a subvector of Z.

4.2.2. Exclusion restrictions

If we are not prepared to assume that X, Y are conditionally independent given Z,
we can only hope for bounds on the expected value E(g(X, Y,Z0)). Such bounds are
given by Horowitz and Manski (1995) and Cross and Manski (2002) and can be de-
rived in the same way as the bounds in Section 3.1. In particular, they derive bounds
on E[g(h(Y,Z0),X,Z0) | X = x,Z0 = z0] with g bounded and monotone in h for
(almost all) x, z0.

We consider two possibilities: (i) the conditional distribution of Y given X,Z depends
on all variables in Z, (ii) this conditional distribution only depends on a subvector Z0

of Z and is independent of the other variables Zc
0 in Z. Note that the possibilities are

expressed in terms of the conditional distribution of Y given X (and Z or Z0). This
suggests that Y is considered as the dependent variable and that X,Z are explanatory
variables.

If assumption (i) applies, the bounds derived above are bounds on F(y; . | Z = z)

or F(y | ., Z = z). If we are interested in F(y; .) or F(y | .), we have to average
over the marginal distribution of Z or the conditional distribution of Z given X = xk

(F(y | X = xk, Z) has to be averaged over this distribution). As noted in Section 3.1
this averaging results in narrower bounds, but as noted in that section the correlation
between Y and Z and X and Z must be high to obtain informative bounds.
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Assumption (ii) that states that the vector of common variables Zc
0 can be omitted

from the relation between Y and X,Z is more promising. As stated, assumption (ii)
focuses on conditional (in)dependence of Y and Zc

0 given X,Z0. Alternatively, the as-
sumption can be expressed as conditional mean (in)dependence or conditional quantile
(in)dependence. In that case, we identify or obtain bounds on the conditional mean or
quantile. We only discuss conditional (in)dependence. The derivation of bounds on the
conditional mean from bounds on the conditional cdf is complicated by the fact that the
conditional mean is not a continuous function of the conditional cdf. However, if the
assumptions are expressed as restrictions on the conditional mean, this does not matter.

Assumption (ii) is an exclusion restriction. If we decompose Z = (Z′
0Z

c′
0 )′, then

Zc
0 is excluded from the conditional distribution of Y given X,Z. Exclusion restric-

tions are powerful and often are sufficient to identify F(y | x, z0). We maintain the
assumption that X is discrete. This simplifies the analysis substantially. This is not sur-
prising, because non-parametric identification under exclusion restrictions is an inverse
problem, and it is well known that inverse problems are much harder for continuous
distributions [see, e.g. Newey and Powell (2003)]. First, we consider conditions under
which F(y | x, z0) is non-parametrically identified. Next, we consider the underiden-
tified case, and we show that we can find bounds that improve on the bounds that hold
without an exclusion restriction.

Without loss of generality we omit Z0. The common variable Z is excluded from the
conditional cdf of Y given X,Z. We denote

(55)Pr(X = xk | Z = z) = pk(z).

With the exclusion restriction we have that for all z,

(56)F(y | z) =
K∑

k=1

F(y | xk)pk(z).

If Z is also discrete, (56) is a linear system of equations with unknowns F(y | xk), i.e.
K unknowns. Hence, this system has a unique solution if Z takes at least L � K values
and the L × K matrix, with (l, k)th component pk(zl) has rank equal to K . In that case
F(y | .) is exactly identified. If the rank of this matrix is strictly greater than K (this
requires that L > K), then the equation has no solution. Hence, if L > K a test of the
rank of the matrix, and in particular a test whether the rank is equal to K is a test of
the overidentifying restrictions, or in other words, a test of the exclusion restriction. If
the exclusion restriction is rejected, we can allow the conditional cdf of Y given X,Z

to depend on Z. For instance, if X takes two values and Z contains two variables, of
which the first takes two values and the second four, then we obtain an exactly identified
model by allowing the conditional cdf to depend on the first variable in Z.

If X and Z take two values, i.e. K = L = 2, the solution to (56) is

F(y | x1) = p2(z1)F (y | z2) − p2(z2)F (y | z1)

p1(z2) − p1(z1)
,
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(57)F(y | x2) = p1(z2)F (y | z1) − p1(z1)F (y | z2)

p1(z2) − p1(z1)
.

Note that this implies that

(58)F(y | x2) − F(y | x1) = F(y | z2) − F(y | z1)

p1(z2) − p1(z1)
.

If conditional cdf’s are replaced by conditional expectations, this is the Wald estimator
[Wald (1940)], which is the Instrumental Variable (IV) estimator for a dichotomous
endogenous variable with a dichotomous instrument.

Solving (56) for the case that X is continuous is much harder. In effect, we have to
find the components of a mixture in the case that the mixing distribution is known. The
problem is that the solution is not continuous in F(y | .) unless restrictions are imposed
on these conditional distributions. For instance, if Z is independent of Y,X (exclusion
restriction) and the joint distribution of Y,X is normal, then the covariance of Y,X can
be recovered from

(59)E(Y | Z = z) = μY + ΣYXΣ−1
XX

(
E(X | Z = z) − μX

)
.

with μ the mean and Σ the covariance matrix of the joint normal distribution. Further
details on weaker restrictions can be found in Newey and Powell (2003).

The similarity of the non-parametric two-sample estimator and the corresponding IV
estimator with endogenous X and Z as instrumental variable, can lead (and as will be
noted in Section 4.4 has led) to much confusion. In particular, it does not mean that we
should consider X as an endogenous variable.

If L < K the conditional cdf F(y | .) is not identified. In that case we can use the
results in Horowitz and Manski (1995) and Cross and Manski (2002) to obtain bounds
(see the discussion in Section 3.1). The exclusion restriction imposes additional restric-
tions on the conditional cdf. Figure 3 illustrates these bounds for the case K = 3,
L = 2. In this figure the two triangles give the sets of F(y | x1), F (y | x2), F (y | x3)

that are consistent with sample information if Z = z1 or Z = z2. Because Z takes
both values and is excluded from the conditional distribution of Y given X = x,
F(y | x1), F (y | x2), F (y | x3) has to be in the intersection of these triangles.
Note that the extreme points are the Wald estimators of F(y | x1), F (y | x3) and
F(y | x2), F (y | x3) for the case that F(y | x2) and F(y | x1) are set to 0, respectively.
In general the extreme points are Wald estimators for conditional cdf’s that are obtained
by imposing identifying restrictions. Figure 3 is drawn for pk(zl) � 1

2 , k = 1, 2, 3,
l = 1, 2, and y < min{F−1(pk(zl)), k = 1, 2, 3, l = 1, 2}. The other bounds can be
obtained in the same way. Note that the exclusion restriction gives a narrower bound. To
see this, compare the bound on F(y | x1) in the figure to those for Z = z1 or Z = z2,
which are 0 (lower bound) and F(y|z1)

p1(z1)
and F(y|z2)

p1(z2)
(upper bound), respectively.
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Figure 3. Bounds on F(y | x1), F (y | x2), F (y | x3) in underidentified case; pk(zl ) � 1
2 , k = 1, 2, 3,

l = 1, 2, and y < min{F−1(pk(zl)), k = 1, 2, 3, l = 1, 2}.

4.3. Parametric inference

4.3.1. Conditional independence

Often two samples are merged to estimate a parametric relation between a dependent
variable Y , present in one sample, and a vector of independent variables X some of
which may be only present in an independent sample. We assume that sample A contains
X,Z, sample B contains Y,Z and that we estimate a relation between Y and X,Z0 with
Z0 a subvector of Z. This relation has a vector of parameters θ and we assume that
the population parameter vector θ0 is the unique solution to the population moment
conditions

(60)E
(
m(Y,X,Z0; θ)

) = 0.

This framework covers Maximum Likelihood (ML) and Generalized Method of Mo-
ments (GMM). Initially, we assume that X and Y are conditionally independent given Z.
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Under conditional independence we have

E
(
m(Y,X,Z0; θ)

) = EYZ

(
EX

(
m(Y,X,Z0; θ)

∣∣ Y,Z
))

(61)= EYZ

(
EX

(
m(Y,X,Z0; θ)

∣∣ Z
))

.

If we have an estimate of the conditional distribution of X given Z, identified in sample
A, we can estimate E(m(y,X, z0; θ) | Z = z) for fixed values Y = y and Z = z using
the data from sample A. The sample moment conditions corresponding to (61) are

(62)
1

N2

N2∑
j=1

ÊX|Z
(
m(Yj ,X,Z02j ; θ)

∣∣ Z2j

) = 0,

where the hat indicates that the conditional expectation is estimated using the data from
sample A.

As an example consider the regression model

(63)Y = β1X + β2Z0 + ε.

The scalar dependent variable Y and a vector of common variables Z1 are observed in
sample A. The (scalar) independent variable X and a vector of the common variables
Z2 are observed in sample B (the subscript on Z indicates the sample). We assume that
Z1 and Z2 are independently and identically distributed. The scalar variable Z0 is a
component of Z. The parameters β1, β2 are identified by

(64)E(ε | X,Z) = 0.

In general this assumption is too strong, because it generates more moment conditions
than are needed to identify the regression parameters. These parameters are identified,
even if (scalar) X is correlated with ε, provided that Z has two variables that are not
correlated with ε. In general, Z is chosen to ensure that the variables in the relation that
are in sample A and those that are in sample B are conditionally independent given Z,
and Z may contain many variables. It is not even necessary to assume that all the vari-
ables in Z are exogenous, as suggested by (64). If X is exogenous, only Z0 (or one other
variable in Z) has to be exogenous.

We first consider the case that both X and Z0 are exogenous. The population moment
conditions are

E
[
(Y − β1X − β2Z0)X

] = 0,

(65)E
[
(Y − β1X − β2Z0)Z0

] = 0.

Under conditional independence these can be written as

(66)EYZ2

[
YEX|Z1(X | Z2) − β1EX|Z1

(
X2

∣∣ Z2
) − β2Z02EX|Z1(X | Z2)

] = 0,

(67)EYZ2

[(
Y − β1EX|Z1(X | Z2) − β2Z02

)
Z02

] = 0.

In these expressions EX|Z1(X | Z2) is the conditional expectation of X given Z1 that
can be estimated from sample A and that is a function of Z1, with Z2 substituted for Z1.
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In other words, it is the imputed X in sample B based on Z2 observed in sample B and
using the conditional expectation of X given Z1 in sample A.

If we substitute the sample moments for EYZ2 [YEX|Z1(X | Z2)], EYZ2 [EX|Z1(X |
Z2)], EYZ2 [EX|Z1(X

2 | Z2)], and EYZ2 [Z02EX|Z1(X | Z2)], we obtain the sample
moment conditions that can be solved to obtain the estimator of the regression coef-
ficients. From GMM theory [Hansen (1982)] it follows that this estimator is consistent
and asymptotically normal. If the number of moment conditions exceeds the number
of parameters, we obtain an efficient estimator by minimizing a quadratic form in the
sample moment conditions with the inverse of the variance matrix of these conditions
as weighting matrix.

It is interesting to note that the GMM estimator obtained from (66)–(67) is not the
imputation estimator obtained by replacing the unobserved X in sample B by its imputed
value. The imputation estimator is not even available, if X and Z0 are both exogenous
and Z = Z0.

If Z contains at least one additional exogenous variable, Zc
0, we can choose to use the

moment condition corresponding to Zc
0, instead of the moment condition corresponding

to X, even if X is exogenous. In that case we can replace the moment conditions (65)
by

E
[
(Y − β1X − β2Z0)Z

c
0

] = 0,

(68)E
[
(Y − β1X − β2Z0)Z0

] = 0.

Because the Z’s are in both samples, all expected values in these population mo-
ment conditions can be obtained from sample A (E(XZ0), E(XZc

0)), sample B
(E(YZ0), E(YZc

0)) or both (E(Z2
0), E(Z0Z

c
0)). Hence, in this case we need not make

the assumption of conditional independence of X and Y given Z. Note that this is true,
irrespective of whether X is endogenous or not. Key are the availability of additional
common variables that can replace X in the moment conditions and the additive sepa-
rability of variables that are in different samples in the residual Y − β1X − β2Z0. We
shall explore this below.

In the example the distribution of X given Z was not needed to obtain the GMM
estimator, because the moment conditions were quadratic in X and only E(X | Z) and
E(X2 | Z) had to be estimated. In general, this will not be the case, and an assump-
tion on this conditional distribution is needed. Econometricians are usually reluctant to
specify the distribution of exogenous variables, and for that reason we may consider a
semi-parametric alternative in which EX|Z1(m(y,X, z0; θ) | Z = z) is estimated by
a non-parametric regression (series or kernel estimator) of m(y,Xi, z0; θ) on Z1i in
sample A. This gives ÊX|Z(m(y,X, z0; θ)) which is substituted to obtain the sample
moment conditions as an average in sample B. This estimator is similar to the estimator
considered in Chen, Hong and Tarozzi (2004) and Imbens, Newey and Ridder (2004),
and their results can be used to analyze this estimator.
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4.3.2. Exclusion restrictions

In Section 4.2.2 we discussed conditions under which exclusion restrictions are suf-
ficient for the non-parametric identification of the conditional distribution of Y given
X,Z0. In this section we consider parametric inference. The assumptions we impose
are convenient, but stronger than needed. In particular, we restrict the discussion to ad-
ditively separable moment conditions. The existing literature only considers this case.
If the exclusion restrictions identify the joint distribution as explained in Section 4.2.2,
the separability assumption can be relaxed. This has not been studied, and developing
procedures for this case is beyond the scope of this chapter.

The setup and notation is as in Section 4.2.2 with Zc
0 the components of Z that are

not in the relation and satisfy (69), i.e. that are exogenous for the relation between Y

and X,Z0. We consider moment conditions that can be written as

(69)E
((

f (Y ; θ) − g(X,Z0; θ)
)
h
(
Z0, Z

c
0

)) = 0

with f, g, h known functions and θ a vector of parameters. If Y is scalar, then so is g.
The dimension of h is not smaller than that of θ . In general, this implies that the dimen-
sion of Zc

0 has to exceed that of X,7 i.e. the number of common exogenous variables
that are excluded from the relation cannot be smaller than the number of variables in X.
If we assume that some variables in either X or Z0 are endogenous we need as many
additional variables in Zc

0 as there are endogenous variables among X,Z0.
The estimator based on the population moment conditions (69) is called the Two-

Sample Instrumental Variable (2SIV) estimator. In the case that all variables are ob-
served in a single sample, the estimator based on the moment conditions in (69) is
related to Amemiya’s nonlinear simultaneous equations estimator [see, e.g. Amemiya
(1985, Chapter 8)].

We discuss three examples of models that give moment conditions as in (69): the
linear regression model, the probability model for discrete dependent variables, and the
mixed proportional hazard model for duration data. In all models we take h(Z0, Z

c
0) =

(Z′
0Z

c′
0 )′. For the linear regression model the moment conditions are

(70)E
(
Y − β0 − β ′

1X − β ′
2Z0

) = 0,

(71)E
((

Y − β0 − β ′
1X − β ′

2Z0
)
Z0

) = 0,

(72)E
((

Y − β0 − β ′
1X − β ′

2Z0
)
Zc

0

) = 0.

Note that we can replace X by E(X | Z0, Z
c
0).

8 We can even replace X by the linear
approximation to this conditional expectation, i.e. by π0 +π ′

1Z0 +π ′
2Z

c
0 where the vec-

tor π minimizes E[(X − π0 − π ′
1Z0 − π ′

2Z
c
0)

2]. This gives the estimating equations of

7 If Z0 is exogenous, then functions, e.g. powers, of Z0 are also exogenous. To avoid identification by
functional form, we need the additional exogenous variables in Zc

0.
8 This is a consequence of the equivalence of 2SLS and IV in this type of models.
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the two-stage linear imputation estimator first suggested by Klevmarken (1982). In the
first stage, the vector of independent variables X is regressed on the common exogenous
variables Z0, Z

c
0 using data from sample A. This estimated relation is used to compute

the predicted value of X in sample B, using the common variables as observed in sam-
ple B. These predicted values are substituted in the estimating equations that now only
contain variables observed in sample B.

The second example is the probability model for discrete dependent variables. If we
consider a dummy dependent variable then we specify

(73)Pr(Y = 1 | X,Z0) = G
(
β0 + β ′

1X + β ′
2Z0

)
with G a cdf of some continuous distribution, e.g. the standard normal (Probit) or logis-
tic cdf (Logit). The moment conditions are

(74)E
(
Y − G

(
β0 + β ′

1X + β ′
2Z0

)) = 0,

(75)E
(
Y − G

(
β0 + β ′

1X + β ′
2Z0

)
Z0

) = 0,

(76)E
(
Y − G

(
β0 + β ′

1X + β ′
2Z0

)
Zc

0

) = 0.

Except for the logit model, these moment conditions do not give the efficient estimator
of β. To obtain the efficient estimator we must multiply the residual by

(77)
g(β0 + β ′

1X + β ′
2Z0)

G(β0 + β ′
1X + β ′

2Z0)(1 − G(β0 + β ′
1X + β ′

2Z0))
.

The resulting moment equation cannot be computed from the separate samples.
Ichimura and Martinez-Sanchis (2005) discuss this case and also derive bounds on
the parameters if there is no point identification.

The last example is the Mixed Proportional Hazard (MPH) model for duration data.
In that model the hazard rate h of the duration Y is specified as

(78)h(y | x, V ; θ) = λ(y; θ1) exp
{
θ ′

2X + θ ′
3Z0

}
V

with λ the baseline hazard and V a random variable that is independent of Z0, Z1 and
that captures the effect of omitted variables. By (78) we have that

(79)ln Λ(Y ; θ1) + θ ′
2X + θ ′

3Z0 = U

with U independent of Z0, Z1 and Λ the integral of λ. This gives the moment conditions

(80)E
((

ln Λ(Y ; θ1) + θ ′
2X + θ ′

3Z0
)
Z0

) = 0,

(81)E
((

ln Λ(Y ; θ1) + θ ′
2X + θ ′

3Z0
)
Zc

0

) = 0.

The number of variables in Zc
0 must at least be equal to the number of parameters in

(θ ′
1θ

′
2)

′.9 Alternatively, we can identify θ1 by making assumptions on the functional

9 If we assume the baseline hazard is Weibull we can identify the regression parameters up to scale. These
parameters can be identified, if we choose a functional form for the baseline hazard that is not closed under a
power transformation.
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form of the regression function. For instance, if we maintain the hypothesis that the
regression function is linear, we can use powers of the variables in Zc

0 in the moment
conditions. In that case no additional common variables are needed.10 Besides the MPH
model, we can estimate other transformation models from two independent samples. Ex-
amples are the Box–Cox transform [Box and Cox (1964)] and the transform suggested
by Burbidge, Magee and Robb (1988).11

These three examples correspond to linear regression, nonlinear regression and trans-
formation models. Other models, as the Tobit model, can also be estimated with this
type of data. For the Tobit model we can employ the two-part estimation method that
yields moment conditions as in (69). Only in the linear regression model is the GMM es-
timator equivalent to a (linear) imputation estimator. In the other examples, imputation
yields biased estimates.

The additional common variables Zc
0 must be exogenous. They also have to be cor-

related with the variables in X. In other words, they must satisfy the requirements for
valid instruments for X, irrespective of whether the variables in X are exogenous or
endogenous. As noted before, the separability of the moment conditions is a sufficient,
but not necessary condition for identification.

The asymptotic distribution theory of the 2SIV estimator based on (69) raises some
new issues. First, we introduce some notation. Let

(82)m(θ) = (
f (Y ; θ) − g(X,Z0; θ)

)
h
(
Z0, Z

c
0

)
and for i = 1, . . . , N1, j = 1, . . . , N2,

m2j (θ) = f (Yj ; θ)h
(
Z02j , Z

c
02j

)
,

(83)m1i (θ) = g(Xi, Z01i; θ)h
(
Z01i , Z

c
01i

)
with the second subscript in, e.g. Z01i indicating that the common included exogenous
variable Z0 is observed in sample A etc. Using this notation, the sample moment con-
ditions are

(84)mN(θ) = 1

N2

N2∑
j=1

m2j (θ) − 1

N1

N1∑
i=1

m1i (θ).

We make the following assumptions (the derivatives in the assumptions are assumed
to exist and to be continuous in θ ):

(A1) The common variables in samples A and B, the random vectors Z01, Z
c
01 and

Z02, Z
c
02 are independently but identically distributed.

10 Provided that the identification condition (A3) below is satisfied.
11 The latter transform is used by Carroll, Dynan and Krane (1999) who use two independent samples to
estimate their regression model. Because their model has a ‘missing parameter’ and not a missing regressor,
they do not use 2SIV.
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(A2) If N1, N2 → ∞
∂mN

∂θ ′ (θ)
p−→ E

(
∂m

∂θ ′ (θ)

)
uniformly for θ ∈ Θ with Θ the parameter space.

(A3) The rank of the matrix E( ∂m
∂θ ′ (θ0)) is equal to the dimension of θ .

Assumption (A1) ensures that the limit in (A2) holds pointwise for every θ ∈ Θ . As-
sumption (A3) is the identification condition. The probability limit of the derivative of
the moment conditions is

(85)

E

(
∂m

∂θ ′ (θ)

)
= E

(
∂f (Y ; θ)

∂θ ′ h
(
Z02, Z

c
02

)) − E

(
∂g(X,Z01; θ)

∂θ ′ h
(
Z01, Z

c
01

))
.

This matrix can be estimated consistently from the samples A and B, because the ex-
pectations only involve variables that are observed in the same sample.

The 2SIV is formally defined by

(86)θ̂N = arg min
θ∈Θ

mN(θ)′WNmN(θ)

with WN a weighting matrix that satisfies

(87)WN
p−→ W

with W a positive definite matrix and N → ∞ if N1, N2 → ∞. In Appendix A we
show that assumptions (A1)–(A3) are sufficient for weak consistency of the 2SIV.

If (A1) does not hold, the 2SIV is biased. The probability limit is the minimizer of

(θ − θ0)
′E

[
∂m′

∂θ
(θ∗)

]
WE

[
∂m

∂θ ′ (θ∗)
]
(θ − θ0)

(88)+ 2E
[
m(θ0)

]′
WE

[
∂m

∂θ ′ (θ∗)
]
(θ − θ0) + E

[
m(θ0)

]′
WE

[
m(θ0)

]
but the last two terms do not vanish. We can use this expression to find the asymptotic
bias of the 2SIV estimator.

The optimal weight matrix W is the inverse of the variance matrix of mN(θ0). To
derive the asymptotic variance matrix we have to make an assumption on the rate at
which the sample sizes increase. Such an assumption was not needed to establish weak
consistency of the 2SIV estimator. We assume

(A4) limN1→∞,N2→∞ N2
N1

= λ with 0 < λ < ∞.
Consider, using the fact that E(m(θ0)) = 0 if (A1) is true,

√
N2mN(θ0) = 1√

N2

N2∑
j=1

(
m2j (θ0) − E

(
m2j (θ0)

))

(89)−
√

N2

N1

1√
N1

N1∑
i=1

(
m1i (θ0) − E

(
m1i (θ0)

))
.
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Hence, the asymptotic variance matrix of the moment conditions is

(90)M(θ0) = lim
N2→∞ E

[
N2mN(θ0)mN(θ0)

′] = λ Var
(
m2j (θ0)

) + Var
(
m1i (θ0)

)
and the inverse of this matrix is the optimal choice for W(θ0). This matrix can be eas-
ily estimated if we have an initial consistent estimator. Note that by the central limit
theorem for i.i.d. random variables (if the asymptotic variance is finite)

√
N2mN(θ0)

converges to a normal distribution with mean 0. However, if (A1) does not hold and as
a consequence E(m(θ0)) �= 0, the mean diverges. This will affect the interpretation of
the test of overidentifying restrictions that will be discussed below.

Under (A1)–(A4)

(91)
√

N2(θ̂N − θ0)
d−→ N

(
0, V (θ0)

)
with

V (θ0) =
[

E

(
∂m′

∂θ
(θ0)

)
W(θ0)E

(
∂m

∂θ ′ (θ0)

)]−1

· E

(
∂m′

∂θ
(θ0)

)
W(θ0)

(
λ Var

(
m2j (θ0)

)
+ Var

(
m1i (θ0)

))
W(θ0)E

(
∂m

∂θ ′ (θ0)

)

(92)·
[

E

(
∂m′

∂θ
(θ0)

)
W(θ0)E

(
∂m

∂θ ′ (θ0)

)]−1

.

See Appendix A for a proof.
The preceding discussion suggest a two-step procedure. In the first step we use a

known weight matrix, e.g. WN = I . The resulting 2SIV estimator is consistent, but not
efficient. In the second step, we first estimate the optimal weight matrix, the inverse of
(90). This matrix only depends on the first-step consistent estimator and moments that
can be computed from the two independent samples A and B (for λ we substitute N2

N1
).

Next, we compute the efficient 2SIV estimator (86) with this weight matrix. This esti-
mator has asymptotic variance

(93)

[
E

(
∂m′

∂θ
(θ0)

)(
λ Var

(
m2j (θ0)

) + Var
(
m1i (θ0)

))
E

(
∂m

∂θ ′ (θ0)

)]−1

which can be estimated from the independent samples.
In general, the efficient 2SIV estimator is less efficient than efficient estimators based

on a sample that contains all the variables. In the case that the information matrix only
depends on variables in sample A, we can estimate the variance of the efficient estima-
tor, even if the estimator itself cannot be computed from the independent samples. The
inverse of the information matrix gives an indication of the efficiency loss, due to the
fact that we do not have a sample that has all variables.
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If the number of moment conditions is larger than the number of parameters, we can
test the overidentifying restrictions. The test statistic is

(94)TN = N2mN(θ̂N)′
[
N2

N1
V̂ar

(
m2j (θ̂N )

) + V̂ar
(
m1i (θ̂N )

)]−1

mN(θ̂N),

where V̂ar denotes the sample variance. If (A1)–(A4) hold, then TN
d−→ χ2(dim(m) −

dim(θ)). Appendix A contains a proof.
As noted before, rejection of the overidentifying restrictions indicates that either

some of the common variables that are used as instruments are not exogenous or that
they are not identically distributed in the samples A and B.

Although the technique of choice for estimating relations from combined samples
has been GMM, Maximum Likelihood can be used as well. A reason for the preference
for GMM (or IV) may be that in that framework it is easier to obtain consistent esti-
mates of structural parameters if some of the regressors are endogenous. Orthogonality
conditions for equation errors and instrumental variables are more natural in GMM. To
define the Two-Sample Maximum Likelihood (2SML) estimator we start with a para-
metric model for the conditional distribution of Y given X,Z0, f (y | x, z0; θ). Because
X is not observed in sample A, we use sample B to estimate the conditional density
of X given Z0, Z1. We can use a parametric or a non-parametric estimator for the lat-
ter conditional density. The likelihood contributions are obtained from the conditional
density of Y given Z0, Z1

(95)f (y | z0, z1; θ) =
∫

f (y | x, z0; θ)g(x | z0, z1) dx.

With a parametric estimator for g(x | z0, z1) the 2SML estimator is a conventional
MLE with all the usual properties. The properties of the 2SML with a non-parametric
estimator of this conditional density have not been studied. In Section 4.2.2 we consid-
ered non-parametric identification of f (y | x1, z0), and non-parametric identification
is sufficient for parametric identification. Again Chen, Hong and Tarozzi (2004) and
Imbens, Newey and Ridder (2004) provide the framework in which the 2SML can be
analyzed.

2SIV or 2SML are used if some of the explanatory variables in a relation are not
measured in the same sample as the dependent variable. Another situation occurs in
models with generated regressors, in which the parameters of the generated regressor
cannot be estimated from the same sample. An important example of a generated re-
gressor is the sample selection correction function. An example is the estimation of
a wage equation on a sample of working individuals. This yields biased estimates of
the regression coefficients if a positive fraction of the population under consideration
does not work. A method to reduce this bias is to include a sample selection correction
function [Heckman (1979)]. The parameters of this function cannot be estimated from
the sample of working individuals. However, if an independent sample is available that
contains both working and nonworking individuals but no information on wages, then
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the parameters can be estimated from this sample. This allows us to compute the sample
selection correction for the working individuals.

Another example of a generated regressor is Carroll, Dynan and Krane (1999) who
estimate the effect of the probability of becoming unemployed on the wealth to in-
come ratio. They estimate the wealth equation with data from the Survey of Consumer
Finances (SCF). However, the SCF has no information on unemployment. The proba-
bility of becoming unemployed is estimated from the Current Population Survey (CPS)
and because the variables that enter this probability are also observed in the SCF, this
probability can be imputed in the SCF. Note that in these examples there are no miss-
ing variables. Only the parameters that enter the generated regressor are estimated from
an independent sample. This type of data combination can be treated as any estima-
tion problem with a generated regressor [Pagan (1984)]. The fact that the parameter is
estimated from an independent sample even simplifies the distribution theory.

4.4. The origin of two-sample estimation and applications

Of the methods discussed in this section only the 2SIV estimator is prominent in econo-
metrics. The first author who suggested this estimator was Klevmarken (1982). Since
then it was rediscovered independently by Angrist and Krueger (1992) and Arellano
and Meghir (1992).12 Klevmarken derives the 2SIV estimator for a single equation that
is part of a system of linear simultaneous equations. In our notation he considers

(96)Y = β0 + β ′
1X + β ′

2Z0 + ε

with X observed in sample A and Y in sample B, while Z0 is a subvector of the com-
mon variables Z. He also assumes that all the variables in X are endogenous,13 that all
the common variables Z are exogenous and that Z contains all exogenous variables.14

If we compare these assumptions with ours, we see that Klevmarken’s assumptions are
far too strong and limit the application of 2SIV to rather special cases. In particular,
the assumption that Z contains all exogenous variables seems to be inspired by a de-
sire to give a structural interpretation to the first-stage imputation regression, in which
X is regressed on the exogenous variables in Z. Such an interpretation is not needed,
and hence the only requirement is the order condition discussed in the previous subsec-
tion. Moreover, not all common variables need to be exogenous, as long as this order
condition is satisfied. Finally, some of the variables in X may be exogenous. Klev-
marken states that we can only allow for exogenous variables if the joint distribution of
X and Z is multivariate normal, which ensures that the conditional mean of X given Z

is linear in Z. As the derivation in the previous subsection shows, a linear conditional
mean is not essential for the 2SIV estimator. In the linear regression model replacing

12 These authors do not cite Klevmarken’s contribution.
13 Klevmarken (1982, p. 160).
14 Klevmarken (1982, p. 159).
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the conditional expectation by the linear population projection on Z will not affect the
moment conditions15 and hence the assumption of multivariate normality is not needed.
Carroll and Weil (1994) start from the same model as Klevmarken. They claim16 that
to compute the variance matrix of the 2SIV estimator it is required that in one of the
datasets we observe Y,X,Z. The discussion in the previous subsection shows that this
is not necessary. The problem with their approach is that their estimator of the variance
matrix requires the residuals of the regression and these cannot be recovered from the
independent samples.

At this point, we should clarify the role of endogenous and exogenous regressors in
2SIV estimation. The natural solution to missing variables in a statistical relation is im-
putation of these variables. Indeed, the 2SIV estimator in the linear regression model
can be seen as an imputation estimator. Econometricians are used to imputation if the
regression contains some endogenous variables. In the Two-Stage Least Squares (2SLS)
estimator the endogenous variables are replaced by a predicted or imputed value. Hence,
it is not surprising that 2SIV was originally developed for linear regression models with
endogenous regressors. Our derivation shows that such a restriction is not necessary,
and in particular, that the 2SIV only imputes missing variables, if the model is a lin-
ear regression. In the general case specified in (69), there is no imputation of missing
variables.

After Klevmarken (1982) the 2SIV estimator was reinvented independently by
Arellano and Meghir (1992) and Angrist and Krueger (1992). Arellano and Meghir
consider moment restrictions of the form (we use our earlier notation with Z1, Z2 the
common variables Z as observed in sample A and B, respectively)

E
(
m(X,Z1; θ)

) = 0,

(97)E
(
m(Y,Z2; θ)

) = 0,

i.e. the moment restrictions are defined for the samples A and B separately. These sep-
arate moment restrictions are obtained if we consider the linear regression model (96).
If we relate the X to the exogenous common variables Z

(98)X = ΠZ + η,

we can substitute this in (96) to obtain

(99)Y = β0 + β ′
1ΠZ + β ′

2Z0 + ε + β ′
1η.

If the order condition is satisfied, we can estimate β from the linear regression in (99).
In particular, (98) can be estimated from sample A and (99) from sample B. The corre-
sponding moment conditions are

15 Provided that the distribution of the common variables in the two samples is the same.
16 See the Technical Appendix to in their paper.
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E
(
(X1 − ΠZ1)

′Z1
) = 0,

(100)E
((

Y − β0 − β ′
1ΠZ2 − β ′

2Z02
)
Z2

) = 0

and this has the form (97). Note again that the linear first step can be seen as a linear
population projection and is valid even if the conditional expectation of X1 given Z

is not linear (provided that Z1 and Z2 have the same distribution). Also the moment
restrictions are nonlinear in the structural parameters β. Arellano and Meghir (1992)
propose to estimate β0, π = Π ′β1 and β2, and to use Chamberlain’s (1982) minimum
distance estimator in a second stage to obtain an estimate of the structural parameters.
Their estimator is equivalent to the imputation estimator. In particular, it can only be
used if the X enters linearly in the moment conditions, and it cannot be used if we
estimate a model with a nonlinear (in X) moment condition.

Arellano and Meghir apply their estimator to a female labor supply equation. In this
equation the dependent variable, hours, is observed in the UK Labor Force Survey
(LFS), the European counterpart of the US Current Population Survey. Two of the inde-
pendent variables, the wage rate and other income, are obtained from a budget survey,
the Family Expenditure Survey (FES). This situation is common: budget surveys con-
tain detailed information on the sources of income, while labor market surveys contain
information on labor supply and job search. An indicator whether the woman is search-
ing for (another) job is one of the explanatory variables. Arellano and Meghir estimate
the labor supply equation using the LFS data after imputing the wage rate and other
income, using a relation that is estimated with the FES data. The common variables
(or instruments) that are used in the imputation, but are excluded in the labor supply
equation are education and age of husband and regional labor market conditions.

Angrist and Krueger (1992) consider the linear regression model

(101)Y = β0 + β ′
1X + ε

with X,Z1 observed in sample A and Y,Z2 in sample B with A and B independent
samples from a common population. They assume that all common variables are ex-
ogenous, and they implicitly assume that the number of (exogenous) common variables
exceeds the number of variables in X, i.e. that the order condition is satisfied. Under
these conditions the 2SIV estimator is based on a special case of the moment conditions
in (70)–(72).

Angrist and Krueger apply the 2SIV estimator to study the effect of the age at school
entry on completed years of schooling. Children usually go to school in the year in
which they turn 6. If this rule were followed without exceptions, then the age at school
entry would be determined by the birthdate. However, exceptions occur and there is
some parental control over the age at school entry which makes this variable potentially
endogenous. Angrist and Krueger assume that the date of birth is not correlated with any
characteristic of the child and hence has no direct effect on completed years of school-
ing. Because there is no dataset that contains both age at school entry and completed
years of schooling, Angrist and Krueger combine information in two US censuses, the
1960 and the 1980 census. Because they use 1% (1960) and 5% (1980) samples they
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assume that the number of children who are in both samples is negligible. They com-
pute the age at school entry from the 1960 census and the completed years of schooling
from the 1980 census. The common variable (and instrument) is the quarter in which
the child is born.

Other applications of 2SIV are Carroll and Weil (1994), Lusardi (1996), Dee and
Evans (2003), and Currie and Yelowitz (2000). Carroll and Weil (1994) combine data
from the 1983 Survey of Consumer Finances (SCF) that contains data on savings and
wealth and the Panel Study of Income Dynamics (PSID) that contains data on income
growth to study the relation between the wealth income ratio and income growth. The
common variables are education, occupation, and age of the head of the household.
Lusardi (1996) estimates an Euler equation that relates the relative change in consump-
tion to the predictable component of income growth. Because the consumption data in
the PSID are unreliable, she uses the Consumer Expenditure Survey (CEX) to obtain the
dependent variable. She also shows that the income data in the CEX are measured with
error (and that number of observations with missing income is substantial) and for that
reason she uses the PSID to measure income growth. She experiments with different sets
of common exogenous variables that contain household characteristics (marital status,
gender, ethnicity, presence of children, number of earners), education and occupation
(interacted with age), education (interacted with age). Dee and Evans (2003) study the
effect of teen drinking on educational attainment. The problem they face is that there is
no dataset that has both information on teen drinking and on later educational outcomes.
Moreover, drinking may be an endogenous variable, because teenagers who do poorly
in school may be more likely to drink. Data on teen drinking are obtained from the
1977–1992 Monitoring the Future (MTF) surveys, while data on educational outcomes
are obtained from the 5% public use sample from the 1990 US census. The common
exogenous variables are the minimum legal drinking age that differs between states, but
more importantly increased over the observation period, state beer taxes, ethnicity, age
and gender. The indicator of teen age drinking is considered to be endogenous. Currie
and Yelowitz (2000) consider the effect of living in public housing on outcomes for
children. The outcome variables, living in high density housing, overcrowding in the
house, being held back at school, are from the 1990 census. The indicator of living in
public housing is from the pooled 1990–1995 March supplements to the Current Pop-
ulation Survey (CPS). This indicator is assumed to be endogenous in the relation with
the outcome variables. The common exogenous variable is the sex composition of the
household where households with two children of different gender are more likely to
live in public housing because they qualify for larger units.

4.5. Combining samples to correct for measurement error

One of the reasons to merge datasets is that the variables in one of the sets is measured
more accurately. An example is the study by Okner (1972) who merged the 1967 Sur-
vey of Economic Opportunity with the 1966 Tax File using file matching, because the
income measures reported in the SEO were thought to be inaccurate. In this section we
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show that even for this purpose the datafiles need not be merged, and that we can correct
for measurement error in one (or more) of the explanatory variables with only marginal
error free information.

The procedure that we describe works even if there are no common variables in the
two datasets. If there are common variables and if these are exogenous and not corre-
lated with the measurement error, we can use the 2SIV estimator to obtain consistent
estimates of the coefficients in a linear relation where some independent variables are
measured with error.

There is a larger literature on the use of validation samples to correct for measure-
ment error. In a validation sample both X1 and the true value X∗

1 (and X2) are observed.
This allows for weaker assumptions on the measurement error process. In particular, the
measurement error can be correlated with X∗

1 and with X2. This type of sample combi-
nation is beyond the scope of the present chapter. Validation samples are rare, because
they require the matching of survey and administrative data. Chen, Hong and Tamer
(2005) propose a method for the use of validation samples if variables are measured
with error.

We consider a simple example of a conditional distribution with pdf f (y | x∗
1 , x2; θ).

There are two explanatory variables X∗
1, X2 where X2 is observed without error and the

error-free X∗
1 is not observed. Instead, we observe X1 that is related to X∗

1 as specified
below. The observed conditional distribution of Y given X1, X2 is

(102)f (y | x1, x2; θ) =
∫

f
(
y

∣∣ x∗
1 , x2; θ

)
g
(
x∗

1

∣∣ x1, x2
)

dx∗
1

if X∗
1 is continuous and the integral is replaced by a sum if X∗

1 is discrete. To determine
the observed conditional distribution we need to specify or identify g(x∗

1 | x1, x2). We
show that this conditional density can be identified from a separate dataset that only
contains observations from the distribution of X∗

1 , i.e. observations from the marginal
distribution of the error-free explanatory variable. Hence we have a sample A that con-
tains Y,X1, X2 and an independent sample B that contains only X∗

1 .
We consider a special case that allows for a closed-form solution. In particular, we

assume that both X∗
1 and X1 are 0–1 dichotomous variables. The relation between these

variables, the measurement error model, can be specified in a number of ways. We
only allow for measurement error models that are identified from observations from the
marginal distribution of X1 observed in sample A and the marginal distribution of X∗

1 ,
observed in the independent sample B. An example of such a measurement error model
is classical measurement error which assumes

(103)Pr
(
X1 = 1

∣∣ X∗
1 = 1, X2

) = Pr
(
X1 = 0

∣∣ X∗
1 = 0, X2

) = λ,

i.e. the probability of misclassification is independent of X∗
1 . Moreover, (103) implies

that X1 is independent of X2 given X∗
1 . Solving for λ we find

(104)λ = Pr(X1 = 1) + Pr(X∗
1 = 1) − 1

2 Pr(X∗
1 = 1) − 1

.

Hence, λ is indeed identified from the marginal distributions of X1 and X∗
1 .
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Note that (104) only gives solutions between 0 and 1 if

(105)Pr(X1 = 1) < Pr
(
X∗

1 = 1
)

if Pr(X∗
1 = 1) > 1/2, or if

(106)Pr(X1 = 1) > Pr
(
X∗

1 = 1
)

if Pr(X∗
1 = 1) > 1/2. This is equivalent to

Pr(X1 = 1)
(
1 − Pr(X1 = 1)

) = Var(X1) > Var
(
X∗

1

)
(107)= Pr

(
X∗

1 = 1
)(

1 − Pr
(
X∗

1 = 1
))

.

In other words, the observed X has a larger variance than the true X∗
1 , as is generally

true for classical measurement error models. This restriction on the observable marginal
distributions must be satisfied, if we want to consider the classical measurement error
model.

The second measurement error model assumes that misclassification only occurs if
X∗

1 is equal to 1,17 maintaining the assumption that X1 is independent of X2 given X∗
1 .

Hence

Pr
(
X1 = 0

∣∣ X∗
1 = 0, X2

) = 1,

(108)Pr
(
X1 = 1

∣∣ X∗
1 = 1, X2

) = λ.

With this assumption we find

(109)λ = Pr(X1 = 1)

Pr(X∗
1 = 1)

.

As in the case of classical measurement error, this measurement error model im-
plies an observable restriction on the two observed marginal distributions, in the case
Pr(X1 = 1) � Pr(X∗

1 = 1).
Both measurement error models are special cases of the general misclassification

error model

Pr
(
X1 = 0

∣∣ X∗
1 = 0, X2

) = λ0,

(110)Pr
(
X1 = 1

∣∣ X∗
1 = 1, X2

) = λ1.

Again we assume that X1 is independent of X2 given X∗
1 . In this general model the

parameters λ0, λ1 are not identified from the marginal distributions of X1 and X∗
1 . Hence

we must fix one of these parameters or their ratio, as is done in the measurement error
models that we introduced in this section. We also assume that the misclassification is
independent of X2.

Of course, it is not sufficient to identify the measurement error distribution. The
conditional density of Y given X1, X2, which is the basis for likelihood inference, is

17 The misclassification can also only occur if X∗
1 is 0.



Ch. 75: The Econometrics of Data Combination 5513

obtained from the density of Y given X∗
1, X2, which contains the parameters of interest,

if we integrate the unobserved X∗
1 with respect to the density of X∗

1 given the observed
X1, X2 (see (102)). Hence, the key is the identification of the distribution of X∗

1 given
X1, X2.

This conditional distribution is identified from the measurement error model that in
turn is identified from the marginal distributions of X1 and X∗

1 and the joint distribution
of X1, X2. The solution depends on the measurement error model. Here we give the
solution, if we assume that the measurement error is classical, but the solution for other
(identified) measurement error models is analogous. In the sequel we use subscripts to
indicate the variables in the distribution.

Consider

gx1,x
∗
1 ,x2

(
x1, x

∗
1 , x2

) = gx1

(
x1

∣∣ x∗
1 , x2

)
gx∗

1 ,x2

(
x∗

1 , x2
)

(111)= gx1

(
x1

∣∣ x∗
1

)
gx∗

1 ,x2

(
x∗

1 , x2
)

because X1 is independent of X2 given X∗
1 . After substitution of (103) we obtain

(112)gx1,x
∗
1 ,x2

(
x1, x

∗
1 , x2

) =
{

λgx∗
1 ,x2(x

∗
1 , x2), x1 = x∗

1 ,

(1 − λ)gx∗
1 ,x2(x

∗
1 , x2), x1 �= x∗

1 .

The marginal distribution of X1, X2, which can be observed, is

(113)gx1,x2(x1, x2) = λgx∗
1 ,x2(x1, x2) + (1 − λ)gx∗

1 ,x2(1 − x1, x2).

Solving for gx∗
1 ,x2(x

∗
1 , x2) we find

(114)gx∗
1 ,x2

(
x∗

1 , x2
) = (1 − λ)gx1,x2(1 − x∗

1 , x2) − λgx1,x2(x
∗
1 , x2)

1 − 2λ
.

Substitution in (112) gives the joint density of X1, X
∗
1, X2. The conditional density of

X∗
1 given X1, X2 is obtained if we divide the result by gx1,x2(x1, x2).
With a dichotomous X1 we obtain a simple closed form solution. If X1 is continuous,

we can still identify the distribution of X∗
1 given X1, X2 if the measurement error model

is identified from the marginal distributions of X1 and X∗
1 , as is the case if we assume

classical measurement error. Hu and Ridder (2003) show that the identification involves
two sequential deconvolution problems. They also develop the distribution theory of the
resulting estimator.

5. Repeated cross sections

5.1. General principles

Repeated cross sections consist of independent samples drawn from a population at
multiple points in time t = 1, . . . , T . There are many such data sets in the US and
other countries, and more than true panel data sets in some. In the US, the Current
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Population Survey (CPS) is a leading example, as is the General Social Survey, and
even the Survey of Income and Program Participation, if data from different cohorts are
employed. There are also examples of firm-level data sets of this kind. In the UK, the
Family Expenditure Survey (FES) is a prominent example. In continental Europe, CPS-
like cross sections are often used, as are repeated cross-sectional labor force surveys. In
developing countries, such labor force surveys are often available as well as several of
the World Bank LSMS surveys which have multiple waves.

Although repeated cross section (RCS) data have the obvious disadvantage relative to
panel data of not following the same individuals over time, they have certain advantages
over panel data. Attrition and nonresponse problems are generally much less severe,
for example, and often RCS data have much larger sample sizes than available panels.
In many cases RCS data are available farther back in calendar time than longitudinal
data because governments began collecting repeated cross sections prior to collecting
panel data. In some cases, RCS data are available for a broader and more representative
sample of the population than true panel data, at least in cases where the latter only
sample certain groups (e.g. certain cohorts as in the US NLS panels).

Although the cross sections can be pooled and cross-sectional models can be esti-
mated on them, the more interesting question is whether they can be used to estimate
models of the type estimable with true panel data. To consider this question, assume
that in each cross section t we observe a sample from the distribution Wt,Zt where Wt

is a vector of variables that are only measured in each cross section and Zt is a vector of
variables which are measured in all cross sections, and hence can be used to match the
individuals across the different waves (individual subscripts i = 1, . . . , N are omitted
for now). Both Wt and Zt may contain variables which are identical at all t (i.e. time
invariant variables) although in most applications all time invariant variables will be
measured at all t and hence will be in Zt . We assume that the population is sufficiently
large and the sample sufficiently small that there are no common individuals in the cross
sections. Further, we assume that the population from which the samples are drawn is
closed,18 and thus we ignore out in- and out-migration, births, and mortality.

At issue is what distributions and what types of models can be identified from the set
of cross sections. The unconditional joint distribution of W1, . . . ,WT is not identified
except in the trivial case in which the elements are independent. Models which require
for identification only moments from each cross section, and which therefore do not
require knowledge of the joint distribution, are identified but do not make particular use
of the repeated cross section (RCS) nature of the data except perhaps for investigations
of time-varying parameters. The models of interest and under discussion here are those
which require identification of the joint distribution or of some aspect of it.

Identification necessarily requires restrictions. Non-parametric identification of con-
ditional distributions f (Wt | Wτ), t �= τ , follows from the general principles and

18 This ensures that the relation between a dependent and independent variables does not change over time
due to in- and outflow from the population, and we can make this assumption, instead of that of a closed
population.
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restrictions elucidated in Section 4.2.2 above, with the change of notation from Y to
Wt and from X to Wτ . With the common variable Zt available in each cross section and
used for matching, bounds on those conditional distributions can be established. If Zt

or some elements of it are excluded from the relation between Wt and Wτ , and Zt is
discrete, the conditional distributions are exactly identified provided a rank condition is
met which relates the number of points in the support of Zt to the number of conditional
distributions to be estimated.

We shall focus in this section primarily on parametric models for which independence
of W1, . . . ,WT is not assumed but which contain exclusion restrictions. While there are
in general many models which can be identified under different restrictions, we will
work with a model similar to that in Section 4.3.2 above:

(115)f (Yt ; θ) = g1(Xt , Z0; θ) + g2(Yt−1, Z0; θ) + εt

and with associated GMM moment condition, following on (69), of:

(116)E
[(

f (Yt ; θ) − g1(Xt , Z0; θ) − g2(Yt−1, Z0; θ)
)
h(Z0, Z1t )

] = 0,

where f, g1, g2, and h are known (possibly up to parameters) functions and θ a vec-
tor of parameters. The vector Z0 is a vector of common time-invariant variables in the
cross sections which are included in the g1 and g2 relations.19 In most applications,
f (Yt ; θ) = Yt . The function g1 contains only Xt and Z0 and hence appears to be es-
timable from a single cross section, but, as will be shown below, this is problematic
in fixed effects models because Xt is correlated with the error in that case. The func-
tions g1 and g2 must be separable because Xt and Yt−1 do not appear in the same cross
section.

Individuals across cross sections are identified by variables Z0 and Z1t , with the latter
excluded from the relation between Yt and Xt, Yt−1, Z0. In most applications to date,
Z1t = t or a set of time dummies.20 The critical exclusion restriction in all RCS models
is that Z1t and its interactions with Z0 do not enter in g1 and g2, and yet these variables
are correlated with those functions. For the Z1t = t case, this implies that variables
that change predictably with time, as individual age, year, unemployment duration, or
firm lifetimes (depending on the application) cannot enter g1 and g2. Thus the essential
restriction in RCS estimation is that intertemporal stability exist in the true relationship.
Such a restriction is not needed when true panel data are available. Note as well that the
number of independent components in h must not be smaller than the dimension of θ

and, in most models, must be larger than the dimension of Xt , Yt−1, and Z0. This also
can be a fairly limiting condition in practice if the number of cross sections available is

19 These variables can be time-varying but this is rare in applications so we consider only the case where they
are time-constant. None of the results we discuss below are substantially changed by this restriction.
20 However, it is possible that some history information is available in each cross section which means that
these time-varying variables (e.g. employment or marital status histories in the case of household survey data;
ages of children are another) are potential additional instruments.
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small relative to the number of parameters whose identification requires instrumenting
with functions of t .

In linear models the GMM estimator can be implemented as a two-step estimator.
First, project Xt and Yt−1 on h(Z0, Z1t ), i.e. obtain E(Xt | h(Z0, Z1t )) and E(Yt−1 |
h(Z0, Z1t )).21 Second, regress Yt on these projections and on Z0. If there are no Z0 in
the data and h(Z1t ) is a set of time dummies, this is equivalent to an aggregate time-
series regression where the time means of Yt are regressed upon the time means of Xt

and Yt−1. In this case the number of cross sections has to be at least 3. Most interesting
cases arise however when Z0 variables are available; in household survey data, these
may be birth year (= cohort), education, race, sex, and so on. If these variables are
all discrete and h(Z1t , Z0) is assumed to be a vector of indicators for a complete cross-
classification Z0 and time, estimation using (116) is equivalent to a regression of the cell
means of Yt on the cell means of Xt , Yt−1, and the dummy variables Z0. Note that in
that case we need fewer cross sections. However, if a parametric form of h is assumed,
this aggregation approach is not necessary, and if the model is nonlinear (including the
binary choice and related models), the two-step aggregation approach is not possible in
the first place. In that case the estimator is the possibly overidentified GMM estimator
defined by the moment conditions in (116).

Two leading examples fit into this framework. One is the linear first-order autoregres-
sion (with individual i subscripts now added)

(117)Yit = α + βYi,t−1 + γXit + δZ0i + εit .

With time dummies as excluded variables the number of observations is equal to the
number of cross sections and this imposes restrictions on the time-variation of the pa-
rameters of (117). The restriction that the instrument must be relevant implies that the
mean of E(Yt−1 | Z0, t) must vary with t . If Yt−1 is correlated with εt , an instrument
Z1t must be found which is orthogonal to εt .

A second example is the linear individual effects model

(118)Yit = γXit + δZ0i + fi + εit ,

where f is an individual effect which is potentially correlated with Xt and Z0. The
within-estimator commonly used with true panel data cannot be implemented with RCS
data because it requires knowledge of Yt at multiple t . RCS IV estimation using (116)
proceeds by using the elements of h as instruments for Xt , which again requires some
minimal time-invariance of the parameters of (118). Consistency (see below) is based
on the presumption that time-varying variables like those in Z1t must be orthogonal
to time-invariant variables like f . For instrument relevance, E(Xt | Z0, t) must vary
with t .

Estimation of the model in (118) by the aggregation method mentioned previously
was proposed by Deaton (1985). He considers cohort data, so that time in his case is

21 Projections onto Z0 and Z1t directly are an alternative.
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age. Deaton considered Z0 to contain only birth year (= cohort) indicators and h to be
a set of all cohort-age indicators. He then proposed constructing a data set of cohort
profiles of mean Y and X (a ‘pseudo’ panel data set) and estimating (118) by regressing
the age-cohort means of Y on those of X and on cohort dummies (or by the within-
estimator for fixed effects models applied to these aggregate observations).

5.2. Consistency and related issues

The conditions for consistency of moment estimators in the form (116) are well known
in general [Hansen (1982)]. The special form they take in the two sample case were
considered in Section 4.3.2 above, where weak consistency was proven. For the RCS
case, aside from the usual rank conditions and conditions on convergence of matrices
to positive definite forms, we have the condition that the instruments are not correlated
with the random error

E
[
ηith(Z0i , Zit )

] = 0,

where ηit = f (Yit ; θ) − g1(Xit , Z0i; θ) − g2(Yi,t−1, Z0i; θ). If there is an individual
effect, we have that ηit = fi + εit and hence we require that E[εith(Z0i , Zit )] = 0, and
E[fih(Z0i , Zit )] = 0. The first assumption must hold even with the presence of Yt−1 in
the equation and represents an IV solution familiar to panel data models with dynamics
and lagged endogenous variables. However, with a lagged dependent variable in the
equation the errors in successive periods have a MA(1) structure because the errors
in not observing the same individuals in each cross section are correlated [McKenzie
(2004)].

The assumption on the individual effect fi that may be correlated with Xit is the
more problematic assumption. If h is a set of time dummies, then a sufficient condition
is that the (population) mean of fi does not change over time. If we have repeated cross
sections of size Nt in period t = 1, . . . , T , then this implies that22

f t = 1

Nt

Nt∑
i=1

fi
p−→ 0.

Hence, if min{N1, . . . , NT } → ∞, then the limit of the time averaged regression with-
out a lagged dependent variable is

Y ∗
t = α + γX∗

t + ε∗
t

with ε∗
t a common time shock in the εit and * indicating population averages of the

variables. OLS applied to this equation gives consistent estimators of the regression
parameters, and this establishes that the GMM estimator that uses moment condition
(116) is consistent if min{N1, . . . , NT } → ∞, i.e. for large N asymptotics.

22 Without loss of generality we can take the common time constant limit equal to 0.
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For the same model and assumptions on the random error, time dummies are not
valid instruments if Nt is fixed and T becomes large. Note that in this case the number
of instruments is equal to T and hence goes to infinity. The problem is obvious if we
consider the second stage regression that involves the projections on the instruments,
i.e. the averages in the repeated cross sections

Y t = α + γXt + f t + εt .

Hence

E[Xtf t ] = 1

Nt

E[Xitfi] �= 0

for finite Nt .
There is another asymptotic that can be considered as well, which is an asymptotic

in the number of cohorts [Deaton (1985), Verbeek (1996)]. Up to this point we have
assumed that a single population of N individuals is followed over time for T periods,
which is equivalent to a single cohort (or a fixed set of birth years). Now let us con-
sider increasing the number of such cohort groups (c) by moving over calendar time,
or possibly space, and increasing the number of pseudo-panels in the data. Each new
panel has N individuals and is observed for T periods. Once again, with fixed N , the
average individual effect will be correlated with the average covariate, so that the GMM
estimator is biased.

Deaton (1985) has proposed a modification of the estimator for the linear fixed effects
model which contains a bias adjustment for the finite, fixed N case and which is con-
sistent for the large T case, an estimator that has been much discussed in the literature.
Deaton notes that estimation of the aggregated estimation equation

(119)Y ct = γXct + δc + εct ,

where means are taking over observations within each cohort (c) and year (t) cell yields
biased estimates for finite N because f ct is correlated with Xct . Deaton instead consid-
ers the “population” equation

(120)Y ∗
ct = γX∗

ct + δc + ε∗
ct ,

where variables with asterisks represent population values, i.e. values that would obtain
if the cohort would be infinitely large. Note that δc absorbs a nonzero mean of the fi in
cohort c.

For the estimation of (120) Xct and Y ct must be inserted to proxy their population
counterparts but they do so with error. Deaton suggests that the measurement error for
each be estimated by the within-cell variances of X and Y using the individual data and
that a finite-sample adjustment be made when estimating the coefficient vector.

Deaton does not set up his model in the GMM framework but it can be done so.
Although he discusses his estimator as an errors-in-variables estimator, it is more in
line with our discussion to consider it as a finite N bias-corrected version of the GMM
estimator. To focus on the key issues, assume that only one cohort of N individuals is
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observed for T periods. The individual model is

(121)yit = δ + βxit + fit + εit .

The second stage equation when using time dummies as instruments is

(122)yt = βxt + f t + εt .

Consequently,

(123)Cov(yt , xt ) = β Var(xt ) + Cov(f t , xt ).

The bias term in (123) is

(124)Cov(f t , xt ) = Cov(fi, xit )

N
.

This bias term is small if N is large or if the correlation between the regressor and the
individual effect is small. The Deaton finite sample adjustment can be derived by noting
that fit = yit −βxit −εit and that, therefore, Cov(fit , xit ) = Cov(yit , xit )−β Var(xit ).

Hence Cov(f t , xt ) = σyx−βσ 2
x

N
where σyx and σ 2

x are the covariance of x and y and the
variance of x for the individual observations in a time period. Inserting this into (123)
and solving for β, we obtain the Deaton estimator if we replace the population variances
and covariances with sample variances and covariances:

(125)β̂ = Cov(yt , xt ) − σyx

N

Var(xt ) − σ 2
x

N

.

As N → ∞ the bias and the bias correction terms go to 0 and the least squares estimate
of the aggregate model is consistent. Deaton noted that the estimator is also consistent
as T → ∞ and Verbeek and Nijman (1992, 1993) show that this estimator is consis-
tent as C → ∞ provided a minor change is made in the bias correction. Verbeek and
Nijman also note that the Deaton estimator increases variance at the same time that
it reduces bias, giving rise to a mean-squared error tradeoff that can be addressed by
not subtracting off the “full” bias correction in (125). Devereux (2003) shows that the
Deaton estimator is closely related to estimators which adjust for finite sample bias in
IV estimation and that, in fact, the estimator is equivalent to the Jacknife Instrumental
Variables estimator and is closely related to k-class estimators. Devereux also proposes a
modification of the Deaton estimator which is approximately unbiased but has a smaller
finite sample variance.

There have been some explorations in the literature seeking to determine how large
N must be for the finite sample adjustments to be avoided by Monte Carlo simulations.
Verbeek and Nijman (1992) suggest that cell sizes of 100 to 200 are sufficient, while
Devereux (2003) suggests that they should be higher, possibly 2000 or more. The neces-
sary N is sensitive to the specification of the model. Devereux also conducts an exercise
which subsamples the available N in a model to gauge the degree of bias.
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There has also been a discussion in the literature of how to divide the available data
into cohort groups, given that most data sets do not have sufficient samples to divide the
data completely by discrete values of birth year [Verbeek and Nijman (1992, 1993)]. Di-
viding the sample into more birth cohorts increases C while decreasing the sample size
per cohort. In the applied literature, groupings of birth cohorts and formation of cells
for the aggregated estimation has been, by and large, ad hoc. Moffitt (1993) suggests
that aggregation not be conducted at all but rather that the individual data be employed
and a parametric function of birth year and t be estimated to smooth the instrument to
achieve efficiency, but he does not present any formal criteria for how to do so. A better
framework for analyzing these issues is that which considers alternative specifications
of the instrument which trade off bias and variance. Donald and Newey (2001) present
one such analysis.

The literature has also addressed dynamic fixed effects models. In this case we are
interested in the individual model

(126)Yit = α + βYi,t−1 + δZ0i + fi + εit

which is a combination of (117) and (118). The desirability of different instrument sets
Z1i depends once again on the asymptotics involved. But when asymptotics are taken
in N (the number of observations per cohort), the consistency properties of different
instrument sets are almost identical to those for true panel data [Sevestre and Trognon
(1996), Arellano and Honoré (2001)]. Using simple functions of t as instruments, for
example, will yield inconsistent estimates for the same reasons that conventional fixed
effects methods in true panel data yield inconsistent estimates in the presence of both
fixed effects and lagged regressors. As in the case of true panel data, additional instru-
ments which generate first-differenced estimators and which use lagged values of the
dependent variable can yield consistent estimates.

Collado (1997) and McKenzie (2004) consider this model and discuss various ap-
plications of IV to the model, using the same principles in the literature on true panel
data, using lagged values of the dependent variable as instruments and possibly using
the larger instrument set implied by the Arellano–Bond estimator. Collado and McKen-
zie also propose Deaton-style bias-correction terms to correct for the finite N problem
discussed above. Collado shows that her estimator is consistent in C and, for a different
bias-correction, consistent in T . McKenzie considers a sequential asymptotic in which
N is first allowed to go to infinity conditional on fixed T and then limits are taken
w.r.t. T .

5.3. Binary choice models

In the binary choice model we return to (115) and let f (Yt ; θ) = Y ∗
t , Yt = I (Y ∗

t � 0),
and F be the c.d.f. of −εt . Then Pr(Yt = 1 | Xt, Z0, Yt−1; θ) = F(g1(Xt , Z0; θ) +
g2(Yt−1, Z0; θ)) so that

(127)Yit = F
(
g1(Xit , Z0i; θ) + g2(Yi,t−1, Z0i; θ)

) + νit ,
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which does not fit into the framework of the moment condition in (117) because Xt and
Yt−1 are not separable. Let us therefore initially assume g2 = 0 and consider lagged
indicators below. Now (117) applies directly assuming the availability of a suitable ex-
clusion restriction, as before. The moment conditions are a simple extension of those
shown in Equations (74)–(76). The method is applicable to the individual effects binary
choice model or to a binary choice model with endogenous Xt with the restrictions that
hold in the cross section case. For instance, in parametric estimation where the F distri-
bution is assumed to be known, a distributional assumption is needed for the individual
effect in order to derive F , e.g., if f is the individual effect component of εt ,

(128)fi = v(Z0i; φ) + ηi,

where v is assumed to be of known form and where ηi has a known parametric distrib-
ution from which the c.d.f. of the composite error ηi − εit can be derived.

If Xt is endogenous and if the instrument is a set of time dummies, possibly interacted
with Z0, the nonlinearity of the conditional expectation function means that GMM is
not equivalent to any type of aggregate regression of cell means of Y on cell means of X

and Z. However, with a stronger assumption, a version of such an approach is possible
[Moffitt (1993)]. The necessary assumption, in addition to (128), is

(129)Xit = w(Z0i , Z1it ; ψ) + ωit ,

where w is a function of known parametric form and ωit is an error term with a para-
metric distributional form that may be correlated with εit . The assumption that the exact
form of dependence of the endogenous variable on the instruments is known and that
the conditional distribution of the regressor follows a specific parametric form are very
strong. In the simplest case, g1 is linear in Xt and Z0 and w is linear in Z0 and Z1t , and
εt and ωt are assumed to be bivariate normal. Then a variety of estimating techniques
are possible, drawing on the literature on endogenous regressors in limited depen-
dent variable models [Amemiya (1978), Heckman (1978), Nelson and Olsen (1978),
Rivers and Vuong (1988), Smith and Blundell (1986); see Blundell and Smith (1993)
for a review]. Options include replacing Xt in g1 with its predicted value from (129);
inserting an estimated residual from (129) into (127); and estimating (153) and (155) in
reduced form by inserting (129) into (127). In this approach, the parameters of (127) are
estimated by maximum likelihood, which implies that the instrument vector h in (116)
is the binary choice instrument vector that is equal to F ′

(1−F)F
times the derivative of the

argument of F w.r.t. θ .
To consider the model with Yt−1 let us first consider the case in which Xt = X is

time invariant, in which case it can be folded into Z0 and we can let g1 = 0 without loss
of generality. Then we have

(130)E(Yit | Z0i , Yi,t−1) = F
(
g2(Yi,t−1, Z0i; θ)

)
,

where we have assumed that εit is distributed independently of Yi,t−1, i.e. there is no se-
rial correlation. Instrumental variable estimation of (130) conducted by replacing Yt−1
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by a predicted value and applying maximum likelihood to the resulting model is known
to be inconsistent because Yt−1 is binary and hence its prediction error follows a non-
normal, two-point discrete distribution. An alternative procedure is to integrate Yt−1 out
of the equation. Letting pt(Z0) be the marginal probability Pr(Yt = 1 | Z0), we have

E(Yt | Z0) = pt (Z0)

= pt−1(Z0) Pr(Yt = 1 | Z0, Yt−1 = 1)

+ (
1 − pt−1(Z0)

)
Pr(Yt = 1 | Z0, Yt−1 = 0)

= pt−1(Z0)F
(
g2(1, Z0; θ)

) + (
1 − pt−1(Z0)

)
F

(
g2(0, Z0; θ)

)
= pt−1(Z0)

(
1 − λ(Z0; θ)

) + (
1 − pt−1(Z0)

)
μ(Z0; θ)

(131)= μ(Z0; θ) + η(Z0; θ)pt−1(Z0),

where λ(Z0; θ) = Pr(Yt = 0 | Z0, Yt−1 = 1) = F(g2(1, Z0; θ)) is the exit rate from
Yt−1 = 1 to Yt = 0, μ(Z0; θ) = Pr(Yt = 1 | Z0, Yt−1 = 0) = F(g2(0, Z0; θ))

is the exit rate from Yt−1 = 0 to Yt = 1, and η(Z0; θ) = 1 − λ(Z0; θ)μ(Z0; θ).
Equation (131) is a familiar flow identity from renewal theory showing how the mar-
ginal probability at t − 1 is transformed by the two transition probabilities into the
marginal probability at t . It suggests a procedure by which the reduced form model
Yt = μ(Z0; θ) + η(Z0; θ)pt−1(Z0) + νt is estimated by nonlinear least squares (given
the nonlinearity of the two transition probabilities in θ ) or GMM using a first-stage es-
timate of pt−1(Z0) similar to the case of a generated regressor. Because the marginals
at every t are estimable from the RCS data, such a first-stage estimate is obtainable.
Identification of the transition probabilities is achieved by restricting their temporal de-
pendence (indeed, in (131) they are assumed to be time invariant); identification is lost
if the two transition probabilities vary arbitrarily with t [Moffitt (1993)]. The model
is equivalent to a two-way contingency table where the marginals are known; the data
furnish a sample of tables and the restrictions on how the joint distribution varies across
the sample yields identification.

The first-stage estimation of pt−1(Z0) can be obtained from an approximation of the
function or the structure of the model can be used to recursively solve for pt−1(Z0)

back to the start of the process. Assuming that p0 = 0 and that the process begins with
t = 1, and continuing to assume time-invariant hazards,

pt−1(Z0) = μ(Z0; θ)

[
1 +

t−2∑
τ=1

η(Z0; θ)t−1−τ

]

(132)= μ(Z0; θ)
1 − η(Z0; θ)t−1

1 − η(Z0; θ)

which can be jointly estimated with (131) imposing the commonality of the functions23

Alternatively, (131) can be expressed in fully solved back form and estimated as well.

23 Alternatively an initial conditions can be specified as a marginal p in the first period.
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Equation (131) has been used as the basis of RCS estimation at the aggregate level.
Miller (1952) considered estimation of (131) with time-series data on the proportions
of a variable, pt which is special case of RCS data. Without data on individual regres-
sors Z0, he suggested simple least squares estimation of

(133)pt = μ + ηpt−1 + νt .

Madansky (1959) proved that the least squares estimators of the two hazards are
consistent for fixed N as T → ∞ and for fixed T as N → ∞. Lee, Judge and Zellner
(1970) and MacRae (1977) proposed various types of restricted least squares estimators
to ensure that the estimated hazards do not fall outside the unit interval. This problem
would not arise in the approach here, which specifies the hazards in proper probability
form.

Estimation of the Markov model with RCS data is considerably complicated if there
is serial correlation in the errors or if time-varying Xt are allowed. With serial correla-
tion of the errors, the two transition probabilities require knowledge of the functional
dependence of εt on Yt−1. The most straightforward approach would require replacing
the simple transition probabilities we have shown here with joint probabilities of the en-
tire sequences of states Yt−1, Yt−2, . . . , Y1 which in turn would be a nonlinear function
of Z0 and the parameters of the assumed joint distribution of εt−1, εt−2, . . . , ε1. This
treatment would be parallel to maximum likelihood estimation with true panel data in
random effects and similar models where the joint distribution is likewise integrated
out. With time-varying Xt , the approach in (131) is problematic because

(134)E(Yt | Xt, Z0) = μ(Xt , Z0; θ) + η(Xt , Z0; θ)pt−1(Xt , Z0),

where μ(Xt , Z0; θ) = F(g1(Xt , Z0; θ) + g2(0, Z0; θ)) and λ(Xt , Z0; θ) = 1 −
F(g1(Xt , Z0; θ) + g2(1, Z0; θ)). The difficulty is that pt−1(Xt , Z0) is not identified
from the data. Estimation would require the assumption of a Markov or other process
for Xt which could be used to formulate a function pt−1(Xt , Z0) which could be iden-
tified from the data.

5.4. Applications

Despite the large number of RCS data sets in the US and abroad, the methods de-
scribed in this section have been applied relatively infrequently. The vast majority of
uses of RCS data simply estimate pooled cross-sectional parameters without matching
individuals across waves by birth cohort, education, or other individual time-invariant
covariates. A rather large literature on program evaluation in the US uses RCS data with
area fixed effects in a period where policies differ across areas and over time and policy
effects are estimated from the cross-area covariation in the change in policies and in
the outcome (migration is ignored). This literature likewise does not make use of the
techniques discussed here.

Of the applications that have been conducted, virtually all have used the Deaton lin-
ear fixed effects aggregation approach rather than the more general GMM-IV approach



5524 G. Ridder and R. Moffitt

described here. Most of the applications have been to life cycle models, which is a nat-
ural area of application because age profiles are central to the theory and the Deaton
approach is explicit in formulating aggregate cohort profiles of that type. Browning,
Deaton and Irish (1985) estimated a life cycle model of labor supply and consump-
tion using seven waves of the FES and were the first to demonstrate the estimation of
the fixed effects model, which arises naturally from the first order conditions of sep-
arable lifetime utility functions, by aggregation into cohort profiles. Subsequent FES
analyses include Blundell, Browning and Meghir (1994), who estimated Euler equa-
tions under uncertainty for aggregate cohort profiles of consumption, using instrumental
variables with lags to control for the endogeneity of lagged consumption; Attanasio and
Weber (1994), who estimated life cycle consumption profiles with aggregate cohort
means but allowed calendar-time varying effects in an attempt to explain macro trends
in UK consumption; and Alessie, Devereux and Weber (1997), who added borrowing
constraints to the model. Analyses using RCS methods to other data sets are small in
number. Attanasio (1998) used the US Consumer Expenditure Survey to construct ag-
gregate cohort profiles of saving rates in an attempt to explain the decline in saving
rates in the US. Blow and Preston (2002) used a UK tax data set that did not contain
information on age to estimate the effect of taxes on earnings of the self-employed,
and followed the aggregation approach grouping on region of residence and occupa-
tion. Paxson and Waldfogel (2002) used the Deaton method but applied to state-specific
means over time in the US, regressing state-specific measures of measures of child mis-
treatment on a number of state-level variables and mean socioeconomic characteristics
obtained from the CPS as well as state and year fixed effects. The authors applied the
Deaton finite-sample correction to the regressor matrix containing the moments for the
aggregate CPS regressors and reported large increases in estimated coefficients as a re-
sult. Finally, Heckman and Robb (1985) showed that treatment effects models can be
estimated with RCS data even if information on who has been trained and who has
not is not available in post-training cross sections if the fraction who are trained is
known.

There have been a few applications of the Markov model described above. Pelzer,
Eisinga and Franses (2002, 2004) have implemented the maximum likelihood estimator
suggested in Moffitt (1993) and discussed above, adding unobserved heterogeneity, for
two applications. The papers also discuss alternative computational methods and algo-
rithms. In the first application, the authors used a true panel data set with five waves
to estimate a Markov model for changes in voter intentions (Democrat vs Republican),
treating the panel as a set of repeated cross sections. They then validated the model by
estimating model on the true panel, and found that the coefficients on the regressor vari-
ables were quite similar in both methods but that the intercept was quite different. In
the second application, the authors examined transition rates in personal computer own-
ership in the Netherlands over a 16-year period, but again using a true panel data set
which was initially treated as a set of repeated cross sections. The authors again found
the regressor coefficients to be quite close in both cases. The authors also note that
the RCS Markov model is formally identical to problem of ecological inference, or the
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problem of how to infer individual relationships from grouped data [Goodman (1953),
King (1997)]. In the ecological inference problem, a set of grouped observations fur-
nishes data on the marginals of binary dependent and independent variables (the “ag-
gregate” data) and restrictions on how the joint distribution (the “individual data”) varies
across groups is used for identification.

Güell and Hu (2003) studied the estimation of hazard functions for leaving unem-
ployment using RCS data containing information on the duration of the spell, allowing
matching across cross sections on that variable. The authors used a GMM procedure
very similar to that proposed here. The similarity to the RCS Markov model discussed
here is superficial, however, for the matching on duration permits direct identification
of transition rates. The authors apply the method to quarterly Spanish labor force sur-
vey data, which recorded spell durations, over a 16 year period, and estimate how exit
rates from unemployment have changed with calendar time and what that implies for
the distribution of unemployment. A simpler but similar exercise by Peracchi and Welch
(1994) used matched CPS files in adjacent years over the period 1968–1990 to measure
labor force transitions between full-time, part-time, and no work, and then assemble the
transition rates into an RCS data set which they use to estimate transition rates by cohort
as a function of age, year, and other variables.

6. Combining biased samples and marginal information

6.1. Biased samples and marginal information

In the previous sections we combined random samples from the same population that
had (some) population members and/or variables in common. In this section we study
the combination of samples that are drawn from distinct, but possibly overlapping sub-
populations. The most common case is that of a stratified sample. In a stratified sample
the population is divided into nonoverlapping subpopulations, the strata, and separate
random samples, usually with different sampling fractions, are drawn from these strata.
A stratified random sample usually achieves the same precision, as measured by the
variance of estimates, with a smaller sample size.

If the sampling fraction differs between strata, the members of the population have
an unequal probability of being observed. If the probability of observation depends on
the variable of interest, or on variables that are correlated with the variable of interest,
then the stratified sample gives a biased estimate of the distribution of the variable of
interest and any parameter defined for this distribution.

A stratified sample is a special case of a biased sample. A biased sample is a sample
in which the probability of observation depends on the variable(s) of interest. Let Y be
the vector of variables of interest. In a biased sample the probability of observation is
proportional with W(Y). The function W is called the biasing function. The density of
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Y in the sample is24

(135)g(y) = W(y)f (y)∫ ∞
−∞ W(v)f (v) dv

.

Special cases of biasing functions are W(y) = IS(y) with IS the indicator of the
subset S of the support of Y , i.e. a stratum of the population, and W(y) = y, i.e. the
probability of selection is proportional to Y . If Y is a duration, the second biased sample
is called a length-biased sample. A length-biased sample is a biased sample from the
full distribution and not a sample from a subpopulation. Estimation from a pure length-
biased sample does not involve sample combination.

For biased samples the distinction between the dependent variable(s) Y and the inde-
pendent variable(s) X is important. In particular, it makes a difference if the distribution
of interest is that of Y or the conditional distribution of Y given X. If the biasing function
W(y, x) is a function of x only, the joint density of Y given X in the sample is

(136)g(y, x) = W(x)f (y | x)f (x)∫ ∞
−∞ W(w)f (w) dw

.

The marginal distribution of X in the sample has density

(137)g(x) = W(x)f (x)∫ ∞
−∞ W(w)f (w) dw

so that the conditional density of Y given X in the sample is the population conditional
density f (y | x). Hence, if we are interested in the conditional distribution of Y given
X (or parameters defined for this distribution) and the biasing function is a function of
X only, the biased sample directly identifies the conditional distribution of Y given X.
In all other cases, we cannot ignore the fact that we have a biased sample.

In Section 6.2 we consider parametric and non-parametric identification in biased
samples. In leading cases parametric restrictions secure identification while there is
non-parametric underidentification. This precludes tests of these parametric restrictions.
Non-parametric identification requires that the biased samples are ‘overlapping’ (in
a sense that will be made precise). Necessary and sufficient conditions for the non-
parametric identification of the distribution of Y or the joint distribution of Y,X are
given by Gill, Vardi and Wellner (1988). These conditions apply if the biased samples
have the same variables. However they cannot be used if some of the subsamples only
have a subset of the variables in Y,X. It is even possible that we do not observe the
subsample itself, but only moments of the variables in the subsample. In these cases
non-parametric identification has to be established on a case by case basis.

Efficient estimation from a combination of biased samples is considered in Sec-
tion 6.3. First, we consider efficient non-parametric estimation of the cdf of Y or that

24 Here and in the sequel g and f are either pdf’s or mass functions, i.e. densities with respect to the counting
measure.
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of Y,X from a combination of biased samples that non-parametrically identifies these
distributions. Next, we consider the special case of an endogenously stratified sample
and parametric inference on the conditional distribution of Y given X, if the parame-
ters in this distribution are identified.25 Finally, we consider the case that a (possibly
biased) sample is combined with information from other samples that only specify se-
lected moments of a subset of the variables in Y,X. If the main sample is a random
sample then the parameters are identified from this sample and the additional informa-
tion overidentifies the parameters. The additional degrees of freedom can be used to
increase the precision of the estimates or they can be used to test the (parametric) model
for the conditional distribution of Y given X. If the additional information just identi-
fies the parameters there is no gain in precision. Finally, the first sample and additional
information may not identify the parameters. In that case the combination may pro-
vide narrower bounds on these parameters. An alternative is to define a population that
is consistent with all available information and to estimate parameters defined for this
population. These parameters are equal to the population parameters in the identified
case [Imbens and Hellerstein (1999)].

This final approach has all the earlier efficient parametric estimators as special cases.
It also covers the combination of biased samples with samples that have marginal infor-
mation on a subset of the variables in Y,X. An example is the contaminated sampling
problem considered by Lancaster and Imbens (1996) who consider the combination of
a sample from the distribution of X given Y = 1, Y is a 0–1 variable, with a random
sample from the marginal distribution of X.

The theory of biased samples is now fairly complete. The general theory of iden-
tification is summarized in Gill, Vardi and Wellner (1988) who also discuss efficient
non-parametric estimation of the marginal cdf of Y or the joint cdf of Y,X. In econo-
metrics the emphasis has been on parametric inference in the conditional distribu-
tion of Y given X. The efficient MLE was developed by Imbens (1992). Imbens and
Lancaster (1996) consider the general case. The history of this problem is interest-
ing, because the contributions were made by researchers with different backgrounds,
which reflects the prevalence of biased samples in different areas. Cox (1969) con-
sidered non-parametric inference in length-biased samples. This was followed by a
number of contributions by Vardi (1982, 1985), culminating in Gill, Vardi and Well-
ner (1988). In econometrics the problem was first studied in discrete-choice models
[Manski and Lerman (1977)]. Further contributions are Manski and McFadden (1981),
Cosslett (1981b, 1981a), Morgenthaler and Vardi (1986), and Imbens (1992). The case
that the dependent variable Y is continuous was studied by Hausman and Wise (1981)
and Imbens and Lancaster (1996). Related problems that will be considered in this
section are case-control studies [Prentice and Pyke (1979), Breslow and Day (1980)],
contaminated samples [Hsieh, Manski and McFadden (1985), Lancaster and Imbens

25 Parametric identification suffices, but preferably the conditional distribution of Y given X should be non-
parametrically identified, and for this the strata need to be overlapping.
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(1996)] and the combination of micro and macro data [Imbens and Lancaster (1994),
Imbens and Hellerstein (1999)].

6.2. Identification in biased samples

General results on non-parametric identification of the population cdf from combined
biased samples are given by Vardi (1985) and Gill, Vardi and Wellner (1988). Initially,
we make no distinction between dependent and independent variables. Let the popula-
tion distribution of the random vector Y have cdf F . Instead of a random sample from
the population with cdf F , we have K random but biased samples from distributions
with cdf’s Gk , k = 1, . . . , K . The relation between Gk and F is given by

(138)Gk(y) =
∫ y

−∞ Wk(y) dF(y)∫ ∞
−∞ Wk(v) dF(v)

.

In this expression Wk is a biasing function. This function is assumed to be known and
nonnegative (it may be 0 for some values of y). An obvious interpretation of this func-
tion is that it is proportional to the probability of selection. If f is the density of F , then
the probability of observing y in the kth biased sample is proportional to Wk(y)f (y).
Because we specify the probability of selection up to a multiplicative constant we must
divide by the integral of Wk(y)f (y) to obtain a proper cdf.

It is obvious that we can only recover the population cdf for values of y where at least
one of the weight functions is positive. The region where F is identified, S, is defined
by

(139)S =
{

y

∣∣∣ K∑
k=1

Wk(y) > 0

}
.

If S is a strict subset of the support of Y we can only recover the conditional cdf of Y

given Y ∈ S. For values of y with Wk(y) > 0, the population pdf can be found from

(140)gk(y) = Wk(y)

Wk

f (y)

with

(141)Wk =
∫ ∞

−∞
Wk(w) dF(w).

If f satisfies (140), then so does c.f for any positive constant c. Because f is a density,
the sum or integral over its support is 1, and this restriction determines the constant.

Let g(y) be the density of a randomly selected observation from the pooled sample.
If the subsample sizes are determined by a multinomial distribution with parameters λk ,
k = 1, . . . , K , and N (the size of the pooled sample), then we have a multinomial
sampling plan. The density of a randomly selected observation from the pooled sample
is g(y) = ∑K

i=1 λkgk(y). In the case that the subsample sizes are fixed, we substitute
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Nk

N
for λk to obtain the density of a randomly selected observation in the pooled sam-

ple. This implies that the identification results for multinomial sampling and for fixed
subsample sizes are identical.

From (140) we solve for f as a function of g

(142)f (y) = 1∑K
k=1 λk

Wk(y)
Wk

g(y).

This solution does not express f in terms of observable quantities, because it depends
on the unknown Wk’s. The Wk , k = 1, . . . , K , are determined by the following system
of equations that is obtained by multiplying (142) by Wk(y) and by integrating the
resulting expression over y

(143)1 = 1

Wk

∫ ∞

−∞
Wk(y)∑K

l=1 λl
Wl(y)
Wl

g(y) dy

for k = 1, . . . , K . Note that this set of equations only determines the Wk’s up to a
multiplicative factor. To obtain a solution we choose an arbitrary subsample, e.g. sub-
sample 1, and we set W1 = 1.

By rewriting (142) (we divide by 1), we find

(144)f (y) =
1∑K

k=1 λk
Wk(y)

Wk

g(y)

∫ ∞
−∞

1∑K
k=1 λk

Wk(v)

Wk

g(v) dv
.

We see that f only depends on the ratios Wk

W1
, k = 2, . . . , K . We can now restate the

identification problem: The population pdf f (with cdf F ) is non-parametrically identi-
fied from the K biased samples if and only if the equation system (143) and (144) has
a unique solution for f and Wk , k = 2, . . . , K (in the equations we set W1 = 1). If
desired we can recover W1 from (141) with k = 1.

We consider the solution in more detail for the case of two biased samples, i.e. K = 2.
Define the set V12 by

(145)V12 = {
y

∣∣ W1(y)W2(y) > 0
}
.

Note that if the weight functions are stratum indicators, the V12 contains all y that are
common to both strata. For all y ∈ V12

(146)
W2

W1
= g1(y)

g2(y)

W2(y)

W1(y)
.

Note that the functions on the right-hand side are all known or estimable from the biased
samples. Hence, the ratio W2

W1
is (over)identified on V12. This ratio can be substituted in

(144) to obtain f . If the set V12 is empty, then it is not possible to identify the ratio W2
W1

and f .
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If K � 3 we look for biased samples k, l for which the set Vkl = {y |
Wk(y)Wl(y) > 0} is not empty, i.e. for which

(147)
∫ ∞

−∞
Wk(y)Wl(y) dF(y) > 0.

The same argument as for K = 2 shows that for such a pair of subsamples k, l

we can identify the conditional distribution of Y given that Y is in the set where
Wk(y) + Wl(y) > 0. Samples for which (147) holds are called connected. Because
the result holds for all pairs k, l we can characterize the region of identification of the
population distribution. Let Km, m = 1, . . . ,M , be disjoint index sets of connected
subsamples. The union of these index sets is the set of all subsamples {1, . . . , K}.
The population distribution is identified on the regions Sm, m = 1, . . . ,M , with
Sm = {y | ∑

k∈Km
Wk(y) > 0}, i.e. we can identify the conditional distributions of

Y given that Y ∈ Sm. If there is only one region of identification that coincides with the
support of Y , the population distribution is identified on its support.

Until now we did not distinguish between the dependent variable(s) Y and indepen-
dent variables X. The theory developed above applies directly if biased samples from
the joint distribution of Y,X are combined. The special case that the biasing function
only depends on X has already been discussed. There are however other possibilities,
e.g. that in some subsample only Y or only X is observed. A sample from the marginal
distribution of X or Y cannot be considered as a biased sample from the joint distrib-
ution of X, Y , so that the general theory cannot be used. A simple example illustrates
this point.26

Assume that X and Y are both discrete with 2 and K values and assume that we
have random samples from strata defined by Y . The biasing functions are Wk(y, x) =
Iy=k(y, x), k = 1, . . . , K . The subsamples are not connected and we cannot identify the
joint distribution of X, Y . Now assume that we have an additional random sample from
the distribution of X. It seems that the ‘biasing’ function for this sample is Ix=1,2(y, x)

and this additional subsample is connected with each of the other subsamples. We con-
clude that the joint distribution is identified. This conclusion is not correct, because the
marginal density of X satisfies by the law of total probability

(148)fX(1) =
K∑

k=1

f (1 | k)fY (k).

If K = 2 we can identify the marginal distribution of Y and therefore the joint distribu-
tion of Y,X from the biased samples and the marginal distribution of X. If K > 2, there
will be observationally equivalent solutions and we cannot identify the joint distribution.
If the additional sample is from the marginal distribution of Y we can identify the joint
distribution. Note that Wk = fY (k) so that this case corresponds to prior information

26 Although Gill, Vardi and Wellner (1988) do not claim that their identification theorem applies with mar-
ginal information, they give suggestive examples, e.g. their Example 4.4.
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on the Wk’s. In general, samples from marginal distributions provide prior information
on the Wk’s, e.g. (148) imposes as many restrictions as the number of distinct values
taken by X. Currently there is no general theory of non-parametric identification with
marginal information that is comparable to the Gill, Vardi and Wellner (1988) theory.

We now consider some examples:

Endogenous stratification First, we consider the marginal distribution of Y . Let Sk ,
k = 1, . . . , K , be a partition of the support of Y , and let Wk(y) = ISk

. The population
cdf of Y is not identified, because the biased samples are not connected. If we have a
supplementary random sample from the distribution of Y , the biased samples are con-
nected and the cdf is identified. Next, consider the conditional distribution of Y given X.
If the subpopulations partition the support of the joint distribution of Y,X, then the joint
and conditional cdf are identified with a supplementary sample from the joint distrib-
ution. This conditional cdf is in general not identified if the supplementary sample is
from the marginal distribution of Y . If the subpopulations are defined as a partition of
the support of Y , then an additional random sample from the marginal distribution of Y

suffices for identification of the joint and conditional cdf of Y,X, because the Wk can
be obtained from the marginal distribution of Y . A special case is a case-control study
in which Y is 0–1 and the strata are defined by Y .

Case-control with contaminated controls Consider the case that Y is a 0–1 vari-
able. We combine a random sample from the subpopulation defined by Y = 1, i.e.
a random sample from the conditional distribution of X given Y = 1, with random
samples from the marginal distributions of X and Y . By the law of total probability
f (x) = f (x | y = 1) Pr(Y = 1) + f (x | y = 0)(1 − Pr(Y = 1)). The marginal dis-
tribution of Y identifies Pr(Y = 1) and combining this with the marginal distribution of
X identifies f (x | y = 0). Hence, the joint distribution of X, Y is identified. A sample
from the marginal distribution of X does not identify the joint distribution of Y,X nor
the marginal distribution of Y given X.

Non-parametric identification of the conditional distribution of Y given X is desir-
able, even if we assume that the conditional cdf is a member of a parametric family
F(y | x; θ). Often, parametric assumptions identify θ from a single biased sample.
Consider

(149)f (y, x; θ) = f (y | x; θ)h(x) = Wk

gk(y, x)

Wk(y, x)

for all (y, x), (y′, x′) ∈ Sk with Sk = {(y, x) | Wk(y, x) > 0} we have

(150)
f (y | x; θ)

f (y′ | x′; θ)
= gk(y, x)

gk(y′, x′)
Wk(y

′, x′)
Wk(y, x)

.

For instance, if the model is a probit model with Pr(Y = 1 | x; θ) = Φ(θ0 + θ1x) for
a dummy dependent Y , and Wk is the indicator of the stratum Y = 1, then θ0, θ1 are
identified from this biased sample. To see this we consider the case that x is continuous
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and that 0 and 1 are in the support of x. Fix x′ in (150) and consider the derivative with
respect to x of the logarithm of the resulting expression. Evaluating the result fot x = 0
and x = 1 gives a (nonlinear) system of two equations in θ0, θ1 that can be solved for
these two parameters. A more comprehensive discussion of parametric identification in
choice-based samples can be found in Lancaster (1992). We do not discuss this type of
identification any further, because it should be avoided.

Nonresponse in sample surveys or attrition in panel data also results in biased samples
from the underlying population. For conditional inference, the key question is whether
the response/attrition depends on Y . Note that in this case the biasing function is in gen-
eral unknown. The large literature on sample selectivity goes back to Heckman (1979).
Sample combination can be used to put restrictions on the biasing function, in this case
the probability of response. Hirano et al. (2001) consider the combination of a panel
survey with selective attrition and a refreshment sample. Manski (2003, Section 1.4),
derives bounds on the population distribution under weak assumptions on the missing
data process. This type of biased samples is beyond the scope of this survey.

6.3. Non-parametric and efficient estimation in biased samples

6.3.1. Efficient non-parametric estimation in biased samples

The efficient non-parametric estimator of the population cdf from a set of biased sam-
ples was first derived by Vardi (1985). Gill, Vardi and Wellner (1988) give a rigorous
analysis of this estimator and prove that it is asymptotically efficient.27

Vardi’s estimator is the solution to the empirical counterparts of Equations (144) and
(143). The estimator of the cdf is

(151)F̂ (y) =

∫ y

0
1∑K

k=1 λk
Wk(v)

Ŵk

dĜ(v)

∫ ∞
−∞

1∑K
k=1 λk

Wk(v)

Ŵk

dĜ(v)
,

(152)1 = 1

Ŵk

∫ ∞

−∞
Wk(y)∑K

l=1 λl
Wl(y)

Ŵl

dĜ(y), k = 2, . . . , K.

In these equations λk = Nk

N
. Integration with respect to the empirical cdf is just averag-

ing over the combined sample.
If the cdf is non-parametrically identified, then the system of K−1 equations in K−1

unknowns (152) has a unique solution. This solution is substituted in (151) to obtain the
non-parametric estimator of the cdf.

27 In the sense that its limit process has a covariance function that reaches the lower bound for all regular
estimators.
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Gill, Vardi and Wellner (1988) show that the empirical cdf is consistent (at rate n
1
2 )

and asymptotically normal with a covariance function that can be easily estimated.28

In the case of endogenous stratification we have Wk(y) = ISk
(y) with Sk , k =

1, . . . , K , a partition of the set of values taken by Y . To ensure identification we have
an additional random sample and we call this stratum K + 1 with WK+1(y) = 1 for
all y. We normalize with respect to this stratum so that in (152) we have K equations in
the unknowns Ŵ1, . . . , ŴK . They are

(153)1 = 1

Ŵk

∫ ∞

−∞
Wk(y)∑K+1

l=1 λl
Wl(y)

Ŵl

+ λK+1
dĜ(y), k = 1, . . . , K.

Because integration with respect to the empirical cdf Ĝ is just averaging over the com-
plete data we obtain

1 = 1

Ŵk

1

N

N∑
i=1

Wk(yi)∑K+1
l=1 λl

Wl(yi )

Ŵl

+ λK+1

(154)= 1

Ŵk

1

N

N∑
i=1

1

λk
1

Ŵk

+ λK+1
ISk

(yi).

If Nk , k = 1, . . . , K + 1, is the sample size in the strata, N = N1 + · · · + NK+1,
and N̂K+1,k is the number of observations in the random sample that is in Sk , we have∑N

i=1 ISk
(yi) = Nk + N̂K+1,k

(155)1 = Nk + N̂K+1,k

Nk + NK+1Ŵk

, k = 1, . . . , K,

with solution

(156)Ŵk = N̂K+1,k

NK+1
.

Hence the non-parametric estimator of the empirical cdf is just the sum of the empirical
cdf of the random sample and the weighted empirical cdf in the strata with weights λk

Ŵk

,

i.e. the ratio of the fraction of stratum k in the sample and population.

6.3.2. Efficient parametric estimation in endogenously stratified samples

We restrict the discussion to parametric models that specify the conditional density
f (y | x; θ). A special case is the discrete choice model where y is a categorical

28 If the dimension of y � 2 the result applies to the empirical measure that counts the number of outcomes

in a set E ⊂ �M with M the dimension of y. There are restrictions on the choice of E, e.g. the orthants y � c

will do, in order to obtain uniform convergence.
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variable. The sample space Y × X is divided into strata Sk . These strata need not be
disjoint. Indeed the analysis in Section 6.2 shows that to ensure non-parametric iden-
tification of f (y | x) the strata should be overlapping. A special case occurs if Y is
discrete and Sy = {y} × X for y = 1, . . . ,M . Such a sample is called a choice-
based or response-based sample. In econometrics, estimation in endogenously strati-
fied samples was first discussed in choice-based samples [Manski and Lerman (1977),
Manski and McFadden (1981), Cosslett (1981b)]. The surprisingly simple efficient es-
timator in such samples was also first discovered for choice-based samples [Imbens
(1992)] and later generalized to arbitrary endogenously stratified samples [Imbens and
Lancaster (1996)]. We use a suggestion by Lancaster (1992) who showed that in choice-
based samples the efficient estimator is the Conditional Maximum Likelihood (CML)
estimator, if we substitute the observed stratum fractions, even if these fractions are
specified by the sample design. This is true in any endogenously stratified sample. This
simple result is similar to the observation of Wooldridge (1999) and Hirano, Imbens
and Ridder (2003) who show that in stratified sampling the estimated or observed sam-
ple weights are preferred over the weights computed from the sampling probabilities
that are used in the sample design. In the sequel we assume that the parameters in the
conditional distribution of Y given X are identified, preferably because this conditional
distribution is non-parametrically identified.

We assume that sampling is in two stages (i) a stratum Sk is selected with probabil-
ity Hk , (ii) a random draw is obtained from f (y, x | (Y,X) ∈ Sk) which we denote
as f (y, x | Sk). This is called multinomial sampling. In stratified sampling the number
of observations in each stratum Sk is fixed in advance. Imbens and Lancaster (1996)
show that inferences for both sampling schemes are the same, because the associated
likelihood functions are proportional. Let S be the stratum indicator that is equal to k if
the observation is in Sk .

The joint density of Y,X, S in the sample is

(157)g(s, y, x) = Hsf (y, x | Sk) = Hs

f (y | x; θ)f (x)

Qs

with

Qs =
∫
Sk

f (y | x; θ)f (x) dy dx,

where we implicitly assume that Y is continuous. If not, just replace integration by
summation. Now define

Sk(x) = {
y

∣∣ (y, x) ∈ Sk

}
and

R(k, x, θ) = Pr
(
(Y,X) ∈ Sk

∣∣ X = x
) = Pr

(
Y ∈ Sk(x)

∣∣ X = x
)

=
∫
Sk(x)

f (y | x; θ) dy.

Obviously Qk = E(R(k,X, θ)).
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The marginal density of X in the sample is obtained from (157) by integration with
respect to y over Sk(x) (which may be an empty set for some x and k) and summation
over k

g(x) = f (x)

K∑
k=1

Hk

Qk

R(k, x, θ).

The sample density of X depends on the parameters θ . In endogenously stratified sam-
ples this distribution contains information on X. The conditional density of S, Y given
X in the sample is

(158)g(s, y | x) = f (y | x; θ) Hs

Qs∑K
k=1

Hk

Qk
R(k, x, θ)

.

An obvious method to obtain an efficient estimator of θ is by maximizing the likeli-
hood function based on (157)

ln L(θ) =
N∑

i=1

ln g(si, yi, xi) =
N∑

i=1

ln f (yi | xi; θ)f (xi) + ln

(
Hsi

Qsi

)
.

This likelihood requires the evaluation of Qk that depends on θ and also on the mar-
ginal population density of X, f (x). This is computationally unattractive, and worse it
requires the specification of the density of the independent variables.

For that reason we consider an alternative method to obtain the MLE. This method
consists of three steps. First, we assume that the distribution of X is discrete with L

points of support, i.e.

Pr(X = xl) = f (xl) = πl, l = 1, . . . , L.

Next, we reparameterize from the discrete distribution of X in the population πl to
its discrete distribution in the sample λl . The stratum probabilities Qk can also be ex-
pressed in λl . After this reparametrization the log likelihood is the sum of the conditional
loglikelihood and the marginal loglikelihood of the observations on X. The first factor
depends on λl only through the stratum probabilities Qk .

The third step is that, if we maximize the conditional loglikelihood with respect to
H1, . . . , HK and evaluate the first-order conditions at the MLE of these ‘parameters’,
the restrictions on the stratum probabilities Qk are satisfied. Hence maximizing the con-
ditional loglikelihood with respect to θ and H1, . . . , HK is equivalent to maximization
of the sample loglikelihood with respect to θ . This conclusion does not depend on the
assumption that X has a discrete distribution. Following Chamberlain (1987) we con-
clude that the CMLE is efficient. Note that this is true if we replace the multinomial
sampling probabilities Hk in the conditional loglikelihood by their sample values Nk

N

with Nk the number of observations in stratum k. The CMLE is not efficient if we use
the probabilities Hk that were actually used in the multinomial sampling.
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The discrete distribution of X in the sample is

g(xl) = λl = πl

[
K∑

k=1

Hk

Qk

R(k, xl, θ)

]
.

Hence

Qk =
L∑

l=1

R(k, xl, θ)πl =
L∑

l=1

R(k, xl, θ)∑K
m=1

Hm

Qm
R(m, xl, θ)

λl

which can be written as a sample average

(159)1 = 1

N

N∑
i=1

R(k, xi, θ) 1
Qk∑K

m=1
Hm

Qm
R(m, xi, θ)

.

The conditional loglikelihood is

ln Lc(θ) =
N∑

i=1

ln f (yi | xi; θ) −
N∑

i=1

ln

{
K∑

k=1

Hk

Qk

R(k, xi, θ)

}
+

K∑
k=1

Nk ln
Hk

Qk

.

The first-order condition for Hk is

Nk

Hk

=
N∑

i=1

R(k, xi, θ) 1
Qk∑K

m=1
Hm

Qm
R(m, xi, θ)

.

If we substitute the MLE Ĥk = Nk

N
in this equation and in (159) we see that they are

identical and we conclude that the restrictions for Qk are satisfied at the MLE (but not
if we substitute Hk).

Note that if (159) holds for all k = 1, . . . , K , multiplication by Hk and summation
over k gives that

∑L
l=1 λl = 1. Again this condition is satisfied if the first-order condi-

tions for maximization of the conditional loglikelihood with respect to H1, . . . , HK are
evaluated at the MLE of these ‘parameters’.

Hence the efficient estimator of θ is found by maximizing the conditional loglikeli-
hood with respect to θ and H1, . . . , HK . The first order conditions are evaluated at the
MLE of H1, . . . , HK and solved for θ and Q1, . . . , QK . These first-order conditions set
the sample average of the following functions equal to 0

(160)m1(s, y, x; θ,Q) =
∂
∂θ

f (y | x; θ)

f (y | x; θ)
−

∑K
k=1

Ĥk

Qk

∂
∂θ

R(k, x, θ)∑K
k=1

Ĥk

Qk
R(k, x, θ)

,

(161)m2k(s, y, x; θ,Q) = Qk − R(k, x, θ)∑K
m=1

Ĥm

Qm
R(m, x, θ)

,
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for k = 1, . . . , K and Ĥk = Nk

N
. Hence the efficient estimator is a GMM estimator

that satisfies moment conditions based on these moment functions. An additional mo-
ment function that gives Ĥk can be added, but the corresponding moment condition is
independent of the other moment conditions. Hence we can treat the Ĥk as given.

The variance of the efficient estimator can be found by the usual GMM formula. The
GMM formulation is convenient if we add additional sample information. This is just
another moment condition.

6.3.3. Efficient parametric estimation with marginal information

Random sample with marginal information First we consider the case that a random
sample Yi,Xi , i = 1, . . . , N , is combined with marginal information. The marginal in-
formation consists of moments E(h(Y,X)) = h with h a known function of dimension
K and h an K vector of constants. The expectation is over the population distribution
of X, Y . Hence we combine information in two random samples, one of which com-
prises the whole population. Although these random samples cannot be independent,
we can think of this as the combination of a relatively small random sample with a very
large one. The sampling variance in the second sample is negligible. This is the setup
considered by Imbens and Lancaster (1994).

Without loss of generality we set h equal to 0. The goal is to estimate the para-
meter vector θ in the conditional distribution of Y given X with conditional density
f (y | x; θ). Because we have a random sample, identification is not an issue. However,
the additional moments overindentify the parameters, and these additional moment re-
strictions increase the precision of the estimation or can be used to create more powerful
specification tests.

The score vector is

(162)m1(y, x; θ) = ∂ ln f (y | x; θ)

∂θ
.

Of course setting the sample average of the score equal to 0 gives the MLE that is an
efficient estimator without additional information. The additional information can be
expressed as

(163)E
(
h(Y,X)

) =
∫∫

h(y, x)f (y | x; θ) dy g(x) dx = 0.

This gives a restriction on θ . The efficient estimator that uses this restriction is the
restricted MLE that is obtained by maximizing the loglikelihood subject the constraint
in (163).

The implementation of the restricted MLE requires the specification of the marginal
density of X. Applied researchers are usually unwilling to make parametric assumptions
on this marginal distribution, and for that reason it is convenient that such a specification



5538 G. Ridder and R. Moffitt

is not needed. Rewrite (163) as an average over the sample

(164)
1

N

N∑
i=1

∫
h(y,Xi)f (y | Xi; θ) dy = 1

N

N∑
i=1

m2(Yi, Xi; θ).

Imbens and Lancaster (1994) show that the optimal GMM estimator with weight matrix
equal to the inverse of the variance matrix of the moment restrictions has an asymptotic
variance that is equal to that of the restricted MLE.29

Their simulation study and empirical example show that the efficiency gains can
be substantial. The precision of the estimator of the regression coefficient of Xj in-
creases if the marginal information is the joint population distribution of grouped Y and
grouped Xk . For instance, if Y is the employment indicator and Xj is age, the joint
population distribution of employment status and age category (but no other variable) is
highly informative on the age coefficient in an employment probit or logit. If the model
has no interactions the pairwise population joint distributions of the dependent and the
independent variables reduce the variances of the regression coefficients. Also in the
case of a dummy dependent variable the marginal information is very useful if one of
the outcomes is rare.

The additional moments (164) involve an integral over y (if Y is continuous). If one
wants to avoid this integral one would be tempted to use the additional moment

(165)
1

N

N∑
i=1

h(Yi,Xi) = 1

N

N∑
i=1

m3(Yi, Xi; θ)

instead of (164). The resulting GMM estimator is less efficient than the restricted MLE.
This can be seen if one considers the case without covariates X and a scalar h and θ . In
that case the moment condition in (164) restricts the parameter to its population value,
while the moment condition in (165) does not remove the sampling variation in the
restricted MLE. To achieve efficiency one should use (164) as the second set of moment
conditions.

In the case that the conditional density is not specified, the moment conditions in
(164) are not available and one if forced to use (165) together with the moment con-
ditions based on m(y, x; θ) that is a vector of moment conditions that identifies θ and
could be used to estimate the parameters if one only had the random sample from the
population. The moment conditions (164) do not depend on θ , but because they are cor-
related with the moment conditions in (164). Hence imposing them along with (164)
improves the precision of the estimators.

As noted the additional moments can be used for an often powerful test of the para-
metric model f (y | x; θ). The obvious test is the GMM overidentification test based
on the moment conditions (162) and (164). The test statistic is the minimal value of the
optimal GMM minimand and it has under the null hypothesis of correct specification,

29 An alternative definition is the restricted MLE with (164) as the restriction.
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a chi-squared distribution with K (dimension of h) degrees of freedom. It should be
noted that the test also rejects if the random sample is not from the same population that
is used to compute E(h(Y,X)). To deal with this one could consider a joint test based
on the moment conditions (162), (164) and (165) that tests both for the compatibility of
the information and the specification. This test statistic has 2K degrees of freedom.

Van den Berg and van der Klaauw (2001) consider the estimation of a model for
unemployment durations where the aggregate information consists of unemployment
rates. Their approach is a direct application of the restricted MLE with the additional
complication that they allow for measurement error in the aggregate data.

Biased samples with marginal information Imbens and Hellerstein (1999) show30 that
the optimal GMM estimator, based on (162) and (165), i.e. we consider the case that
the conditional density of Y given X is not specified, but θ is estimated from a set of
moment conditions, is equivalent to a weighted GMM estimator that solves

(166)
N∑

i=1

wim1(Yi, Xi; θ) = 0

with weights wi , i = 1, . . . , N , defined as the solution to

(167)max
N∑

i=1

ln wi s.t.
N∑

i=1

wi = 1,

N∑
i=1

wih(Yi,Xi) = h.

The weights are equal to

(168)wi = w(Yi,Xi) = 1

N(1 + λ̂′h(Yi,Xi))

with λ̂ the Lagrange multiplier on the second restriction. It is the solution to

(169)
1

N

N∑
i=1

h(Yi,Xi)

1 + λ̂′h(Yi,Xi)
= 0.

Now consider the case that a biased sample is combined with marginal information
from the population. As an illustration we consider the example of a 0–1 dependent
variable with conditional density f (y | x; θ) = G(x′θ)y(1 − G(x′θ))1−y . The endoge-
nously stratified sample has strata S1 = 1×X and S2 = 0×X with X the support of X.
The multinomial sampling probabilities are H1,H2 and the population fractions of the
two strata are Q1,Q2. Also h(y, x) = y − Q1. In large samples λ̂ in (169) converges
to the solution to the equation that is obtained by replacing the sample average in (169)

30 To be precise, they only consider linear regression with additional moment restrictions, but their argument
applies generally.
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by the corresponding expectation over the sample distribution

(170)

∫ 1∑
y=0

y − Q1

1 + λ(y − Q1)

(
H1

Q1
G(x′θ)

)y(
H2

Q2

(
1 − G(x′θ)

))1−y

g(x) dx = 0.

The solution is

(171)λ = H1 − Q1

Q1Q2

so that the weights that depend on the value of y only are

(172)w(y, x) = 1

N

1

1 + H1−Q1
Q1Q2

(y − Q1)
= 1

N

(
Q1

H1

)y(
Q2

H2

)1−y

.

These weights are used in the score based on the full sample to obtain the weighted
likelihood equation

(173)
N∑

i=1

w(Yi,Xi)

(
Yi

∂ ln G(X′
iθ)

∂θ
+ (1 − Yi)

∂ ln(1 − G(X′
iθ))

∂θ

)
= 0.

This corresponds to the Weighted Exogenous Sampling MLE of Manski and Lerman
(1977). This estimator is not fully efficient because it does not use the parametric model
in the additional moment condition.

We conclude that if the additional population moments combined with the biased
sample identify the population parameters, then the weighted estimator proposed by
Imbens and Hellerstein (1999) is the efficient GMM that imposes the population mo-
ments. If the conditional density is specified, the estimator is not fully efficient. Hence
their weighted estimator provides a constructive method to combine biased samples
with population moments. Devereux and Tripathi (2004) consider the combination of
sample in which some of the variables in Y,X are censored or truncated with a sample
in which all these variables or fully observed. They show that the efficient GMM esti-
mator is a weighted GMM estimator. For instance, in the case of Y censored at C the
weights are w = I (Y �=C)

p+(1−p)I (Y<C)
with p the fraction of the combined sample with fully

observed Y . The assumption that in one of the samples all variables are fully observed
is restrictive.

If the combination of the biased sample(s) and the population moment does not iden-
tify the population parameters, the weighted GMM estimator converges to the solution
of

(174)
∫∫

m1(y, x; θ)
fs(y, x)

1 + λ′h(y, x)
dy dx

with λ the solution of (169) if we replace the (biased) sample average by the (biased)
sample expected value. Hence the GMM estimator is consistent for the parameters in a
distribution that satisfies the population moments and is also consistent with the biased
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sample. It is obtained from the distribution in the biased sample by weighting, which
is the general approach (see Section 6.3.2). The weights reproduce the population dis-
tribution if the parameters are identified. If not, they produce a GMM estimate that is
consistent with the available information. However, in that case the weight (and hence
the GMM estimator) are not unique. In the optimization problem (167) we can replace
ln wi by K(wi) with K any concave function. This reflects the fact that the parameters
are not point identified.

Appendix A

THEOREM 1. If assumptions (A1)–(A3) hold, then the 2SIV estimator is weakly con-
sistent.

PROOF. We have by adding and subtracting mN(θ0)

mN(θ)′WNmN(θ) = (
mN(θ) − mN(θ0)

)′
WN

(
mN(θ) − mN(θ0)

)
+ 2mN(θ0)

′WN

(
mN(θ) − mN(θ0)

)
(175)+ mN(θ0)

′WNmN(θ0).

By the mean value theorem

(176)mN(θ) = mN(θ0) + ∂mN

∂θ ′ (θ∗)(θ − θ0)

with θ∗ between θ and θ0. Substitution in (175) and taking the limit N1, N2 → ∞ gives

(θ − θ0)
′E

[
∂m′

∂θ
(θ∗)

]
WE

[
∂m

∂θ ′ (θ∗)
]
(θ − θ0)

(177)+ 2E
[
m(θ0)

]′
WE

[
∂m

∂θ ′ (θ∗)
]
(θ − θ0) + E

[
m(θ0)

]′
WE

[
m(θ0)

]
and this limit is attained uniformly in θ . If (A1) holds, then E(m(θ0)) = 0, so that the
last two terms on the right-hand side are equal to 0. Because E[ ∂m′

∂θ
(θ)] is continuous in

θ this matrix has full rank in a neighborhood of θ0. In that neighborhood θ0 is the unique
minimizer. By Van der Vaart (1998, Theorem 5.7), this implies that the 2SIV estimator
converges in probability to θ0. �

THEOREM 2. If assumptions (A1)–(A4) hold, then

(178)
√

N2(θ̂N − θ0)
d−→ N

(
0, V (θ0)

)
with

V (θ0) =
[

E

(
∂m′

∂θ
(θ0)

)
W(θ0)E

(
∂m

∂θ ′ (θ0)

)]−1
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· E

(
∂m′

∂θ
(θ0)

)
W(θ0)

(
λ Var

(
m1j (θ0)

)
+ Var

(
m2i (θ0)

))
W(θ0)E

(
∂m

∂θ ′ (θ0)

)

(179)·
[

E

(
∂m′

∂θ
(θ0)

)
W(θ0)E

(
∂m

∂θ ′ (θ0)

)]−1

.

PROOF. The first-order conditions give

(180)0 = ∂m′
N

∂θ
(θ̂N )WN

√
N2mN(θ̂N).

By the mean value theorem we have for some θN between θ0 and θ̂N

(181)
√

N2mN(θ̂N) = √
N2mN(θ0) + ∂mN

∂θ ′ (θN)
√

N2(θ̂N − θ0).

Substitution in (180) and solving for
√

N2(θ̂N − θ0) gives√
N2(θ̂N − θ0)

(182)= −
[
∂m′

N

∂θ
(θ̂N )WN

∂mN

∂θ ′ (θN)

]−1 ∂m′
N

∂θ
(θ̂N )WN

√
N2mN(θ0).

The proof is completed by noting that ∂mN

∂θ
(θ) is continuous in θ , and by using the

central limit theorem for i.i.d. random variables to obtain the asymptotic distribution of√
N2mN(θ0). �

THEOREM 3. If (A1)–(A4) hold, then TN
d−→ χ2(dim(m) − dim(θ)).

PROOF. Substitution of (182) in (181) gives√
N2mN(θ̂N)

(183)

=
[
I − ∂mN

∂θ ′ (θN)

[
∂m′

N

∂θ
(θ̂N )WN

∂mN

∂θ ′ (θN)

]−1 ∂m′
N

∂θ
(θ̂N )WN

]√
N2mN(θ0).

Using the notation A(θ) = ∂m′
N

∂θ
(θ) and the assumption that this matrix is continuous

in θ , we have

(184)

√
N2mN(θ̂N) = [

I − A(θ0)
′(A(θ0)WA(θ0)

′)−1
A(θ0)W

]√
N2mN(θ0) + op(1).

Upon substitution of (184) in (94)

TN = √
N2mN(θ0)

′[I − W ′A(θ0)
′(A(θ0)WA(θ0)

′)−1
A(θ0)

]
W
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· [
I − A(θ0)

′(A(θ0)WA(θ0)
′)−1

A(θ0)W
]√

N2mN(θ0) + op(1)

= √
N2mN(θ0)

′[W − W ′A(θ0)
′(A(θ0)WA(θ0)

′)−1
A(θ0)W

]√
N2mN(θ0)

(185)+ op(1).

If W = M(θ0)
−1, we can find a matrix M(θ0)

− 1
2 with M(θ0)

−1 = M(θ0)
− 1

2 M(θ0)
− 1

2 .
Then

TN = √
N2mN(θ0)

′M(θ0)
− 1

2

· [
I − M(θ0)

− 1
2 A(θ0)

′(A(θ0)M(θ0)
−1A(θ0)

′)−1
A(θ0)M(θ0)

− 1
2
]

(186)· M(θ0)
− 1

2
√

N2mN(θ0) + op(1).

Because
√

N2mN(θ0)
′M(θ0)

− 1
2

d−→ N(0, I ) and the matrix between [.] is idempotent
with rank equal to dim(mN) − dim(θ), the result follows. �
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Abstract

Often researchers find parametric models restrictive and sensitive to deviations from the
parametric specifications; semi-nonparametric models are more flexible and robust, but
lead to other complications such as introducing infinite-dimensional parameter spaces
that may not be compact and the optimization problem may no longer be well-posed.
The method of sieves provides one way to tackle such difficulties by optimizing an
empirical criterion over a sequence of approximating parameter spaces (i.e., sieves);
the sieves are less complex but are dense in the original space and the resulting opti-
mization problem becomes well-posed. With different choices of criteria and sieves, the
method of sieves is very flexible in estimating complicated semi-nonparametric models
with (or without) endogeneity and latent heterogeneity. It can easily incorporate prior
information and constraints, often derived from economic theory, such as monotonicity,
convexity, additivity, multiplicity, exclusion and nonnegativity. It can simultaneously es-
timate the parametric and nonparametric parts in semi-nonparametric models, typically
with optimal convergence rates for both parts.

This chapter describes estimation of semi-nonparametric econometric models via the
method of sieves. We present some general results on the large sample properties of the
sieve estimates, including consistency of the sieve extremum estimates, convergence
rates of the sieve M-estimates, pointwise normality of series estimates of regression
functions, root-n asymptotic normality and efficiency of sieve estimates of smooth func-
tionals of infinite-dimensional parameters. Examples are used to illustrate the general
results.
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1. Introduction

Semiparametric and nonparametric modelling techniques have grown increasingly pop-
ular in both theoretical and applied econometrics.1 This is partly because economic
theory seldom suggests any parametric functional relationships among economic vari-
ables, nor does it suggest particular parametric forms for error distributions. An addi-
tional reason for the growing popularity of semi-nonparametric models is the declining
computational cost of collecting and analyzing large economic data sets. All of the
chapters in the book edited by Barnett, Powell and Tauchen (1991) and several chap-
ters2 in the Handbook of Econometrics Volume 4 edited by Engle and McFadden (1994)
have already reviewed the work in semiparametric and nonparametric econometrics that
has been conducted up to the mid-1990s. More recently, Horowitz (1998) has provided a
comprehensive treatment of four leading classes of semiparametric econometric models
estimated via the kernel method. Pagan and Ullah (1999), Härdle et al. (2004) and Li and
Racine (2007) have surveyed the most well-known existing theoretical and empirical
work on the estimation and testing of semiparametric and nonparametric economet-
ric models via the methods of kernel, local linear regression and series. This chapter
will review some recent developments in large sample theory on estimation of semi-
nonparametric models via the method of sieves [Grenander (1981)].

Semi-nonparametric models involve unknown parameters that lie in infinite-dimen-
sional parameter spaces; hence it can be computationally difficult to estimate such
models using finite samples. Moreover, even if one could solve the problem of opti-
mizing a sample criterion over an infinite-dimensional parameter space, the resulting
estimator may have undesirable large sample properties such as inconsistency and/or
a very slow rate of convergence; this is because the problem of optimization over an
infinite-dimensional noncompact space may no longer be well-posed. To resolve this
problem, the method of sieves optimizes a criterion function over a sequence of sig-
nificantly less complex, and often finite-dimensional, parameter spaces, which we call
sieves. To ensure consistency of the method, we require that the complexity of sieves
increases with the sample size so that in the limit the sieves are dense in the original
parameter space.3

The infinite-dimensional unknown parameter in a nonparametric or semiparametric
model can often be viewed as a member of some function space with certain regularities
(e.g., having bounded second derivatives, monotone, concave). Thus, many determinis-
tic approximation results developed in mathematics and computer science can be used to

1 In this chapter, an econometric model is termed “parametric” if all of its parameters are in finite-
dimensional parameter spaces; a model is “nonparametric” if all of its parameters are in infinite-dimensional
parameter spaces; a model is “semiparametric” if its parameters of interests are in finite-dimensional spaces
but its nuisance parameters are in infinite-dimensional spaces; a model is “semi-nonparametric” if it contains
both finite-dimensional and infinite-dimensional unknown parameters of interests.
2 See the ones written by Newey and McFadden (1994), Andrews (1994a), Powell (1994), Härdle and Linton

(1994), Matzkin (1994), Manski (1994) and others.
3 These terms will become much clearer in the next two sections.
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suggest sieves that provide good and computable approximations to an unknown func-
tion. For example, the sieves or approximating spaces can be constructed using linear
spans of power series, Fourier series, splines or many other basis functions; see e.g. Judd
(1998, Chapters 6 and 12) for numerical implementation of such sieves for problems in
economics and finance. Since these approximating spaces can often be characterized by
a finite number of “parameters”, a nonparametric or semiparametric estimation problem
is often reduced to a parametric one when the method of sieves is implemented. How-
ever, to obtain the desired theoretical properties of the estimator, it is necessary that the
number of parameters increase slowly with the sample size. It is this feature that gives
the sieve method its added flexibility and robustness over classical parametric methods
which assume fixed, finite-dimensional parameter spaces.

One attractive feature of the method of sieves is that it is easy to implement. The
sieve method is particularly convenient when the unknown functions enter the crite-
rion function (or moment condition) nonlinearly, satisfy some known restrictions such
as monotonicity, concavity, additivity, multiplicity and exclusion, or when the error
distribution has known tail behavior such as fat tails. With different choices of crite-
ria and sieves, the method of sieves provides a flexible and computationally feasible
approach to estimate complicated semi-nonparametric models with (or without) con-
straints, endogeneity and latent heterogeneity. Moreover, it can simultaneously estimate
the parametric and nonparametric components in semi-nonparametric models, and can
often achieve optimal convergence rates for both parts. We shall demonstrate these with
some examples in the subsequent sections.

Although the method of sieves is easy to implement and the sieve estimators typically
have desirable large sample properties, its theoretical properties cannot be justified by
applying the classical theory for parametric models. Any appropriate large sample the-
ory for the sieve method should not only account for the approximation errors, which
arise because we replace the original parameter space with the simpler sieve space, but
also control for the complexity of the sieve parameter spaces, which increases with
the sample size. Consequently, the large sample properties of the sieve method are
in general difficult to derive, which may partly explain why currently there are fewer
econometric applications using such techniques than those using the kernel method.
However, we should mention that the sieve estimation method admits, as special cases,
many standard estimation methods (such as series-based method) in econometrics. As
a result, some large sample results appear in the literature in papers that do not mention
the word “sieve” at all.

In this chapter we shall present some general results on large sample estimation the-
ory using the method of sieves and illustrate how to apply these results with examples.
Instead of presenting the current sieve estimation theory at its greatest generality, we
have chosen to review results that are relatively accessible but general enough to cover
most semi-nonparametric econometric applications. References are given for the results
that are not presented in detail.

The rest of this chapter is organized as follows. In Section 2, we first present several
examples of semi-nonparametric econometric models. We then define the sieve ex-
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tremum estimation and its special cases including sieve M-estimation, sieve maximum
likelihood estimation (MLE), sieve generalized least squares (GLS), sieve minimum
distance (MD) and others. The various criterion functions are illustrated using exam-
ples. In addition, we introduce the popular series estimators as the sieve M-estimators
obtained when the criterion functions are concave and the sieve spaces are finite-
dimensional linear.4 We then review typical function spaces and sieve spaces used in
econometrics, and conclude this section with a small Monte Carlo study to demon-
strate the implementation of the sieve extremum estimation.5 Section 3 focuses on the
large sample properties of sieve estimation of infinite-dimensional unknown parame-
ters. We first provide a new consistency theorem for general sieve extremum estimation
where the original parameter space may not be compact and the problem may not
be well-posed. This theorem implies consistency of sieve M-estimators and of sieve
MD-estimators in two remarks. We then present a convergence rate result for sieve M-
estimators and illustrate how to apply the result with some examples. We also review
the convergence rate and the pointwise asymptotic normality results for the series esti-
mators. In Section 4, we present general results on

√
n-asymptotic normality of sieve

estimators of smooth functionals of unknown infinite-dimensional parameters, where
n denotes the sample size. Here we first discuss the popular two-step semiparamet-
ric procedures in which the first step unknown functions could be estimated by any
nonparametric procedures such as kernel, local linear regression and sieve methods,
and the second step unknown parametric components are estimated by the generalized
method of moments (GMM). The theorem on

√
n-asymptotic normality of the second

step GMM estimator is a slight refinement of the existing ones in the semiparametric
literature. We then review the

√
n-asymptotic normality of the sieve M-estimation of

smooth functionals of unknown functions, as well as the semiparametric efficiency of
the sieve MLE. Finally we present the recent theory on the sieve MD estimation for the
parametric components in semi-nonparametric conditional moment models where the
unknown functions could depend on endogenous variables. Section 5 points out addi-
tional topics on statistical inference via the method of sieves that are not reviewed here
due to the lack of space.

Throughout this chapter, we assume that there is an underlying complete probability
space, the data {Zt = (Y ′

t , X
′
t )

′: t � 1} are strictly stationary ergodic,6 and all probabil-
ity calculations are done under the true probability measure Po. For random variables Vn

and positive numbers bn, n � 1, we define Vn = OP (bn) as limc→∞ lim supn P (|Vn| �

4 We note that this definition of series estimators differs slightly from those in the current econometrics
literature.
5 See the chapter by Ichimura and Todd (2007) for more details on the implementation of semi-

nonparametric estimators.
6 In this chapter, the notation ′ denotes the transpose of a vector. See Hansen (1982), White (1984) or

Wooldridge (1994) for the definition of a strictly stationary ergodic process. We make this assumption to sim-
plify the presentation. See White and Wooldridge (1991) on sieve extremum estimation for general dependent
heterogeneous processes.
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cbn) = 0, and define Vn = oP (bn) as limn P (|Vn| � cbn) = 0 for all c > 0. The
notation plimn→∞ Vn = 0 also means that Vn = oP (1) (i.e., Vn converges to 0 in prob-
ability). Similarly Vn = oa.s.(1) means that Vn converges to 0 almost surely. For two
sequences of positive numbers b1n and b2n, the notation b1n � b2n means that the ratio
b1n/b2n is bounded below and above by positive constants that are independent of n.

2. Sieve estimation: Examples, definitions, sieves

As alluded to in the introduction, the method of sieves consists of two key ingredients:
a criterion function and sieve parameter spaces (a sequence of approximating spaces).
Both the criterion functions and the sieve spaces can be very flexible. In particular,
almost all of the classical criterion functions stated in Newey and McFadden (1994),
so long as they still allow for identification, can be used as criterion functions in the
method of sieve estimation. Therefore, the main new ingredient is the choice of sieve
parameter spaces, which will be discussed in this section.

2.1. Empirical examples of semi-nonparametric econometric models

It is impossible to list all of the existing and potential semi-nonparametric models and
their empirical applications in econometrics. In this subsection we present three em-
pirical examples as illustration; additional ones can be found in Manski (1994), Powell
(1994), Matzkin (1994), Horowitz (1998), Pagan and Ullah (1999), Blundell and Powell
(2003) and other surveys on this topic.

EXAMPLE 2.1 (Single spell duration models with unobserved heterogeneity). Classi-
cal single spell duration models in search unemployment [Flinn and Heckman (1982)],
job turnover [Jovanovic (1979)], labor supply [Heckman and Willis (1977)] and others
often suggest a functional form for the structural duration distribution conditional on
individual heterogeneity. More specifically, let G(τ |u, x) be the structural distribution
function of duration T conditional on a scalar of unobserved heterogeneity U = u and
a vector of observed heterogeneity X = x. The distribution of observed duration given
X = x is

F(τ |x) =
∫

G(τ |u, x) dh(u),

where the unobserved heterogeneity U is modelled as a random factor with distribu-
tion function h(·). An i.i.d. sample of observations {Ti,Xi}ni=1 allows us to recover the
true F(τ |x) uniquely. Theoretical models often imply parametric functional forms of G

up to unknown finite-dimensional parameters β. Denote g(·|β, u, x) as the probability
density function of G(·|β, u, x). Conventional parametric MLE method assumes that
the unobserved heterogeneity follows some known distribution hγ up to some unknown
finite-dimensional parameters γ . Under this assumption it then estimates the unknown
parameters β, γ by arg maxβ,γ

1
n

∑n
i=1 log{∫ g(Ti |β, u,Xi) dhγ (u)}.
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Heckman and Singer (1984) point out that both theoretical and empirical examples
indicate that the parametric MLE estimates of structural parameters β in these du-
ration models are inconsistent if the distribution of the unobserved heterogeneity is
misspecified. Instead, they propose the following semi-nonparametric single spell dura-
tion model

(2.1)F(τ |β, h, x) =
∫

G(τ |β, u, x) dh(u),

where the distribution h of unobserved heterogeneity is left unspecified. Heckman and
Singer (1984) establish the identification of (β ′, h), and propose a sieve MLE method
to estimate (β ′, h) jointly. They also show that their estimator is consistent.

The Heckman–Singer model is a typical example of a broad class of semi-nonparam-
etric models that specify the (conditional) distribution associated with the observed eco-
nomic variables semi-nonparametrically, where the specific semi-nonparametric form
can be derived from independence of errors and regressors such as in discrete choice
models, transformation models, sample selection models, mixture models, random cen-
soring, nonlinear measurement errors and others. More generally, one could consider
semi-nonparametric models based on quantile independence, symmetry or other quali-
tative restrictions on distributions. See Horowitz (1998), Manski (1994), Powell (1994)
and Bickel et al. (1993) for examples.

EXAMPLE 2.2 (Shape-invariant system of Engel curves). Blundell, Browning and
Crawford (2003) have shown that a system of Engel curves that satisfies Slutsky’s sym-
metry condition and allows for demographic effects on budget shares in a given year
must take the following form:

Y1�i = h1�

(
Y2i − h0(X1i )

)+ h2�(X1i ) + ε�i, � = 1, . . . , N,

where Y1�i is the ith household budget share on �th goods, Y2i is the ith household
log-total nondurable expenditure, X1i is a vector of the ith household demographic vari-
ables that affect the household’s nondurable consumption. Note that h0(X1i ) is common
among all the goods and is called an “equivalence scale” in the consumer demand lit-
erature. Citing strong empirical evidence and many existing works, Blundell, Browning
and Crawford (2003) have argued that popular parametric linear and quadratic forms
for h1�(·) are inadequate, and that consumer demand theory only suggests the purely
nonparametric specification:

E
[
Y1�i − {h1�

(
Y2i − h0(X1i )

)+ h2�(X1i )
}∣∣X1i , Y2i

]
(2.2)= E[ε�i |X1i , Y2i] = 0,

where h1�, h2� and h0 are all unknown functions. For the identification of all these
unknown functions θ = (h0, h11, . . . , h1N, h21, . . . , h2N)′ satisfying (2.2), it suffices
to assume that at least one of h1�, � = 1, . . . , N , is nonlinear and that h2�(x

∗
1 ) = 0,

� = 1, . . . , N , for some x∗
1 in the support of X1.
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Unfortunately, when X1i contains too many household demographic variables (say
when dim(X1i ) � 3), the fully nonparametric specification (2.2) cannot lead to pre-
cise estimates of the unknown functions h0, h21, . . . , h2N due to the so-called “curse
of dimensionality”. Therefore, applied researchers must impose more structure on the
model. Using the British family expenditure survey (FES) data, Blundell, Duncan and
Pendakur (1998) found the following semi-nonparametric specification to be reason-
able:

(2.3)E
[
Y1�i − {h1�

(
Y2i − g

(
X′

1iβ1
))+ X′

1iβ2�

}∣∣X1i , Y2i

] = 0,

where h1�, � = 1, . . . , N , are still unknown functions, but now h0(X1i ) = g(X′
1iβ1)

and h2�(X1i ) = X′
1iβ2� are known up to unknown finite-dimensional parameters β1

and β2�. Here the parameters of interest are θ = (β ′
1, β

′
21, . . . , β

′
2N, h11, . . . , h1N)′.

This semi-nonparametric specification has been estimated by Blundell, Duncan and
Pendakur (1998) using the kernel method and Blundell, Chen and Kristensen (2007)
using the sieve method.

Both the specifications (2.2) and (2.3) assume that the total nondurable expenditure
Y2i is exogenous. However, this assumption has been rejected empirically. Noting the
endogeneity of total nondurable expenditure, Blundell, Chen and Kristensen (2007)
considered the following semi-nonparametric instrumental variables (IV) regression:

(2.4)E
[
Y1�i − {h1�

(
Y2i − g

(
X′

1iβ1
))+ X′

1iβ2�

}∣∣X1i , X2i

] = 0,

where the parameters of interest are still θ = (β ′
1, β

′
21, . . . , β

′
2N, h11, . . . , h1N)′, and

X2i is the gross earnings of the head of the ith household which is used as an instru-
ment for the total nondurable expenditure Y2i . They estimated this model via the sieve
method and their empirical findings demonstrate the importance of accounting for the
endogenous total expenditure semi-nonparametrically.

EXAMPLE 2.3 (Consumption-based asset pricing models). A standard consumption-
based asset pricing model assumes that at time zero a representative agent maximizes
the expected present value of the total utility function E0{∑∞

t=0 δtu(Ct )}, where δ is
the time discount factor and u(Ct ) is period t’s utility. The consumption-based asset
pricing model comes from the first-order conditions of a representative agent’s optimal
consumption choice problem. These first-order conditions place restrictions on the joint
distribution of the intertemporal marginal rate of substitution in consumption and asset
returns. They imply that for any traded asset indexed by �, with a gross return at time
t + 1 of R�,t+1, the following Euler equation holds:

(2.5)E(Mt+1R�,t+1|wt ) = 1, � = 1, . . . , N,

where Mt+1 is the intertemporal marginal rate of substitution in consumption, and
E(·|wt ) denotes the conditional expectation given the information set at time t (which
is the sigma-field generated by wt ). More generally, any nonnegative random variable
Mt+1 satisfying Equation (2.5) is called a stochastic discount factor (SDF); see Hansen
and Richard (1987) and Cochrane (2001).
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Hansen and Singleton (1982) have assumed that the period t utility takes the power
specification u(Ct ) = [(Ct )

1−γ − 1]/[1 − γ ], where γ is the curvature parameter of
the utility function at each period, which implies that the SDF takes the form Mt+1 =
δ(

Ct+1
Ct

)−γ and the Euler equation becomes:

(2.6)E

(
δo

(
Ct+1

Ct

)−γo

R�,t+1 − 1
∣∣∣wt

)
= 0, � = 1, . . . , N,

where the unknown scalar parameters δo, γo can be estimated by Hansen’s (1982) gen-
eralized method of moment (GMM). However, this classical power utility-based asset
pricing model (2.6) has been rejected empirically.

Many subsequent papers have tried to relax the model (2.6) to fit the data better
by introducing durable goods, habit formation or a nonseparable preference specifica-
tion. The first class of papers proposes various parametric forms of the SDF, Mt+1, that
are more flexible than Mt+1 = δ(

Ct+1
Ct

)−γ ; see e.g. Eichenbaum and Hansen (1990),
Constantinides (1990), Campbell and Cochrane (1999). The second class of papers has
made the SDF, Mt+1, a purely nonparametric function of a few state variables; see e.g.
Gallant and Tauchen (1989), Newey and Powell (1989) and Bansal and Viswanathan
(1993). Recently, Chen and Ludvigson (2003) have specified the SDF, Mt+1, to be
semi-nonparametric in order to incorporate some preference parameters. In particular,
they combine the power utility specification with a nonparametric internal habit forma-
tion: E0{∑∞

t=0 δt [(Ct − Ht)
1−γ − 1]/[1 − γ ]}, where Ht = H(Ct , Ct−1, . . . , Ct−L) is

the period t habit level. Here H(·) is a homogeneous of degree one unknown function
of current and past consumption, and can be rewritten as H(Ct , Ct−1, . . . , Ct−L) =
Ctho(

Ct−1
Ct

, . . . ,
Ct−L

Ct
) with ho(·) unknown. It is obvious that one needs to impose

0 � ho(·) < 1 so that 0 � Ht < Ct . The following external habit specification is a
special case of their model:

(2.7)E

(
δo

(
Ct+1

Ct

)−γo

(
1 − ho

(
Ct

Ct+1
, . . . ,

Ct+1−L

Ct+1

))−γo(
1 − ho

(Ct−1
Ct

, . . . ,
Ct−L

Ct

))−γo
R�,t+1 − 1

∣∣∣wt

)
= 0,

for � = 1, . . . , N , where γo > 0, δo > 0 are unknown scalar preference parameters,
ho(·) ∈ [0, 1) is an unknown function and Ht+1 = Ct+1ho(

Ct

Ct+1
, . . . ,

Ct+1−L

Ct+1
) is the

habit level at time t + 1. Chen and Ludvigson (2003) have applied the sieve method to
estimate this model and its generalization which allows for internal habit formation of
unknown form. Their empirical findings, using quarterly data, are in favor of flexible
nonlinear internal habit formation.

Semi-nonparametric conditional moment models. We note that Examples 2.2 and 2.3
and many other economic models imply semi-nonparametric conditional moment re-
strictions of the form

(2.8)E
[
ρ(Zt ; θo)

∣∣Xt

] = 0, θo ≡ (β ′
o, h

′
o

)′
,
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where ρ(·;·) is a column vector of residual functions whose functional forms are known
up to unknown parameters, θ ≡ (β ′, h′)′, and {Z′

t = (Y ′
t , X

′
t )}nt=1 is the data where

Yt is a vector of endogenous variables and Xt is a vector of conditioning variables.
Here E[ρ(Zt , θ)|Xt ] denotes the conditional expectation of ρ(Zt , θ) given Xt , and
the true conditional distribution of Yt given Xt is unspecified (and is treated as a
nuisance function). The parameters of interest θo ≡ (β ′

o, h
′
o)

′ contain a vector of finite-
dimensional unknown parameters βo and a vector of infinite-dimensional unknown
functions ho(·) = (ho1(·), . . . , hoq(·))′, where the arguments of hoj (·) could depend
on Y , X, known index function δj (Z, βo) up to unknown βo, other unknown function
hok(·) for k 
= j , or could also depend on unobserved random variables. Motivated
by the asset pricing and rational expectations models, Hansen (1982, 1985) studied the
conditional moment restriction E[ρ(Zt ; βo)|Xt ] = 0 (i.e., without unknown ho) for sta-
tionary ergodic time series data (where typically Z′

t = (Y ′
t , X

′
t ) and Xt includes lagged

Yt and other pre-determined variables known at time t). Chamberlain (1992), Newey
and Powell (2003), Ai and Chen (2003) and Chen and Pouzo (2006) studied the general
case E[ρ(Zt ; βo, ho)|Xt ] = 0 for i.i.d. data.

The semi-nonparametric conditional moment models given by (2.8) can be classified
into two broad subclasses. The first subclass consists of models without endogene-
ity in the sense that ρ(Zt , θ) − ρ(Zt , θo) does not depend on any endogenous vari-
ables (Yt ); hence the true parameter θo can be identified as the unique maximizer of
Q(θ) = −E[ρ(Zt , θ)′{Σ(Xt)}−1ρ(Zt , θ)], where Σ(Xt) is a positive definite weight-
ing matrix. The second subclass consists of models with endogeneity in the sense that
ρ(Zt , θ)−ρ(Zt , θo) does depend on endogenous variables (Yt ). Here the true parameter
θo can be identified as the unique maximizer of

Q(θ) = −E
[
m(Xt , θ)′

{
Σ(Xt)

}−1
m(Xt , θ)

]
with m(Xt , θ) ≡ E

[
ρ(Zt , θ)

∣∣Xt

]
.

Although the second subclass includes the first subclass as a special case, when
θ contains unknown functions, it is much easier to derive asymptotic properties for
various nonparametric estimators of θ identified by the conditional moment models
belonging to the first subclass. The first subclass includes, as special cases, many semi-
nonparametric regression models that have been well studied in econometrics. For
example, it includes the specifications (2.2) and (2.3) of Example 2.2, the partially linear
regression E[Yi − X′

1iβo − ho(X2i )|X1i , X2i] = 0 of Engle et al. (1986) and Robinson
(1988), the index regression E[Yi − ho(X

′
iβo)|Xi] = 0 of Powell, Stock and Stoker

(1989), Ichimura (1993) and Klein and Spady (1993), the varying coefficient model
E[Yi −∑q

j=1 hoj (Dji)Xji |(Dki, Xki), k = 1, . . . , q] = 0 of Chen and Tsay (1993),
Cai, Fan and Yao (2000) and Chen and Conley (2001), and the additive model with a
known link (F ) function E[Yi − F(

∑q

j=1 hoj (Xji))|X1i , . . . , Xqi] = 0 of Horowitz
and Mammen (2004).

The second subclass includes, as special cases, the specification (2.4) of Example 2.2,
Example 2.3, semi-nonparametric asset pricing and rational expectation models, and
simultaneous equations with flexible parameterization. A leading, yet difficult exam-
ple of this subclass, is the purely nonparametric instrumental variables (IV) regression
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E[Y1i − ho(Y2i )|Xi] = 0 studied by Newey and Powell (2003), Darolles, Florens and
Renault (2002), Blundell, Chen and Kristensen (2007), Hall and Horowitz (2005) and
Carrasco, Florens and Renault (2006). A more difficult example is the nonparametric
IV quantile regression E[1{Y1i � ho(Y2i )} − γ |Xi] = 0 for some known γ ∈ (0, 1)

considered by Chernozhukov, Imbens and Newey (2007), Horowitz and Lee (2007) and
Chen and Pouzo (2006). See Blundell and Powell (2003), Florens (2003), Newey and
Powell (1989), Carrasco, Florens and Renault (2006) and Chen and Pouzo (2006) for
additional examples.

2.2. Definition of sieve extremum estimation

2.2.1. Ill-posed versus well-posed problem, sieve extremum estimation

Let Θ be an infinite-dimensional parameter space endowed with a (pseudo-) metric d .
A typical semi-nonparametric econometric model specifies that there is a population cri-
terion function Q : Θ → R, which is uniquely maximized at a (pseudo-) true parameter
θo ∈ Θ .7 The choice of Q(·) and the existence of θo are suggested by the identifica-
tion of an econometric model. The (pseudo-) true parameter θo ∈ Θ is unknown but
is related to a joint probability measure Po(z1, . . . , zn), from which a sample of size n

observations {Zt }nt=1, Zt ∈ Rdz , 1 � dz < ∞, is available. Let Q̂n : Θ → R be an
empirical criterion, which is a measurable function of the data {Zt }nt=1 for all θ ∈ Θ ,
and converges to Q in some sense (to be more precise in Subsection 3.1) as the sample
size n → ∞. One general way to estimate θo is by maximizing Q̂n over Θ; the maxi-
mizer, arg supθ∈Θ Q̂n(θ), assuming it exists, is then called the extremum estimate. See
e.g. Amemiya (1985, Chapter 4), Gallant and White (1988b), Newey and McFadden
(1994) and White (1994).

When Θ is infinite-dimensional and possibly not compact with respect to the
(pseudo-) metric d ,8 maximizing Q̂n over Θ may not be well-defined; or even if a
maximizer arg supθ∈Θ Q̂n(θ) exists, it is generally difficult to compute, and may have
undesirable large sample properties such as inconsistency and/or a very slow rate of con-
vergence. These difficulties arise because the problem of optimization over an infinite-
dimensional noncompact space may no longer be well-posed. Throughout this chapter,
we say the optimization problem is well-posed, if for all sequences {θk} in Θ such that
Q(θo) − Q(θk) → 0, then d(θo, θk) → 0; is ill-posed (or not well-posed) if there exists
a sequence {θk} in Θ such that Q(θo) − Q(θk) → 0 but d(θo, θk) � 0.9 For a given

7 Although we often call θo the “true” parameter in this survey chapter, it in fact could be a pseudo-true
parameter value, depending on the specification of the econometrics model and the choice of Q. See Ai and
Chen (2007) for estimation of misspecified semi-nonparametric models.
8 In an infinite-dimensional metric space (H, d), a compact set is a d-closed and totally bounded set. (A set

is totally bounded if for any ε > 0, there exist finitely many open balls with radius ε that cover the set.)
A d-closed and bounded set is compact only in a finite-dimensional Euclidean space.
9 See Carrasco, Florens and Renault (2006) and Vapnik (1998) for surveys on ill-posed inverse problems in

linear nonparametric models.
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semi-nonparametric model, suppose the criterion Q(θ) and the space Θ are chosen such
that Q(θ) is uniquely maximized at θo in Θ . Then whether the problem is ill-posed or
well-posed depends on the choice of the pseudo-metric d . This is because different
metrics on an infinite-dimensional space Θ may not be equivalent to each other.10 In
particular, it is likely that some standard norm (say ‖θo − θ‖s) on Θ is not continuous
in Q(θo) − Q(θ) and the problem is ill-posed under ‖ · ‖s , but there is another pseudo-
metric (say ‖θo − θ‖w) on Θ that is continuous in Q(θo) − Q(θ), hence the problem
becomes well-posed under this ‖ · ‖w; such a pseudo-metric is typically weaker than
‖ · ‖s (i.e., ‖θo − θ‖s → 0 implies ‖θo − θ‖w → 0). See Ai and Chen (2003, 2007) for
more discussions.11

No matter whether the semi-nonparametric problems are well-posed or ill-posed, the
method of sieves provides one general approach to resolve the difficulties associated
with maximizing Q̂n over an infinite-dimensional space Θ by maximizing Q̂n over a
sequence of approximating spaces Θn, called sieves by Grenander (1981), which are
less complex but are dense in Θ . Popular sieves are typically compact, nondecreasing
(Θn ⊆ Θn+1 ⊆ · · · ⊆ Θ) and are such that for any θ ∈ Θ there exists an element πnθ

in Θn satisfying d(θ, πnθ) → 0 as n → ∞, where the notation πn can be regarded as a
projection mapping from Θ to Θn.

An approximate sieve extremum estimate, denoted by θ̂n, is defined as an approximate
maximizer of Q̂n(θ) over the sieve space Θn, i.e.,

(2.9)Q̂n(θ̂n) � sup
θ∈Θn

Q̂n(θ) − OP (ηn), with ηn → 0 as n → ∞.

When ηn = 0, we call θ̂n in (2.9) the exact sieve extremum estimate.12 The sieve ex-
tremum estimation method clearly includes the standard extremum estimation method
by setting Θn = Θ for all n.

REMARK 2.1. Following White and Wooldridge (1991, Theorem 2.2), one can show
that θ̂n in (2.9) is well defined and measurable under the following mild sufficient con-
ditions: (i) Q̂n(θ) is a measurable function of the data {Zt }nt=1 for all θ ∈ Θn; (ii) for
any data {Zt }nt=1, Q̂n(θ) is upper semicontinuous on Θn under the metric d(·,·); and
(iii) the sieve space Θn is compact under the metric d(·,·). Therefore, in the rest of this
chapter we assume that θ̂n in (2.9) exists and is measurable.

For a semi-nonparametric econometric model, θo ∈ Θ can be decomposed into two
parts θo = (β ′

o, h
′
o)

′ ∈ B × H, where B denotes a finite-dimensional compact parame-
ter space, and H an infinite-dimensional parameter space. In this case, a natural sieve

10 This is in contrast to the fact that all the norms are equivalent on a finite-dimensional Euclidean space.
11 The use of a weaker pseudo-metric enables Ai and Chen (2003) to obtain root-n normality of β̂ for βo iden-
tified via the model E[ρ(Zt ; βo, ho)|Xt ] = 0, even when ho( ) is a function of the endogenous variable Y and
the estimation problem may be ill-posed under the standard mean squared error metric

√
E[h(Y ) − ho(Y )]2.

12 Since the complexity of the sieve space Θn increases with the sample size, it is obvious that the maxi-

mization of Q̂n(θ) over Θn need not be exact and the approximate maximizer θ̂n in (2.9) will be enough for
consistency; see the consistency theorem in Subsection 3.1.
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space will be Θn = B × Hn with Hn being a sieve for H, and the resulting estimate
θ̂n = (β̂n, ĥn) in (2.9) will sometimes be called a simultaneous (or joint) sieve ex-
tremum estimate. For a semi-nonparametric model, we can also estimate the parameters
of interest (βo, ho) by the approximate profile sieve extremum estimation that consists
of two steps:

Step 1. For an arbitrarily fixed value β ∈ B, compute

Q̂n

(
β, h̃(β)

)
� sup

h∈Hn

Q̂n(β, h) − OP (ηn)

with ηn = o(1);
Step 2. Estimate βo by β̂n solving Q̂n(β̂, h̃(β̂)) � maxβ∈B Q̂n(β, h̃(β)) − OP (ηn),

and then estimate ho by ĥn = h̃(β̂n).

Depending on the specific structure of a semi-nonparametric model, the profile sieve
extremum estimation procedure may be easier to compute.

2.2.2. Sieve M-estimation

When Q̂n(θ) can be expressed as a sample average of the form

sup
θ∈Θn

Q̂n(θ) = sup
θ∈Θn

1

n

n∑
t=1

l(θ, Zt ),

with l : Θ ×Rdz → R being the criterion based on a single observation, we also call the
θ̂n solving (2.9) as an approximate sieve maximum-likelihood-like (M-) estimate.13 This
includes sieve maximum likelihood estimation (MLE), sieve least squares (LS), sieve
generalized least squares (GLS) and sieve quantile regression as special cases.

EXAMPLE 2.1 (Continued). Heckman and Singer (1984) estimated the unknown true
parameters θo = (β ′

o, ho)
′ ∈ Θ in their semiparametric specification, (2.1), of Exam-

ple 2.1 by the sieve MLE:

sup
θ∈Θn

Q̂n(θ) = sup
β∈B, h∈Hn

1

n

n∑
i=1

log

(∫
g(Ti |β, u,Xi) dh(u)

)
,

where as n → ∞, the sieve space, Hn, becomes dense in the space of probability
distribution functions over R.

13 Our definition follows that in Newey and McFadden (1994). Some statisticians such as Birgé and Massart
(1998) call this a sieve minimum contrast estimate.
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EXAMPLE 2.2 (Continued). The nonparametric exogenous expenditure specification
(2.2) of Example 2.2 can be estimated by the sieve nonlinear LS:

sup
θ∈Θn

Q̂n(θ) = sup
h∈Hn

−1

n

n∑
i=1

N∑
�=1

[
Y1�i − {h1�

(
Y2i − h0(X1i )

)+ h2�(X1i )
}]2

,

with θ = h = (h0, h11, . . . , h1N, h21, . . . , h2N)′ the unknown parameters and Θn =
Hn = H0,n × ∏N

�=1 H1�,n × ∏N
�=1 H2�,n the sieve space,14 where we impose the

identification condition h2�(x
∗
1 ) = 0 on the sieve space H2�,n for � = 1, . . . , N . The

semi-nonparametric exogenous expenditure specification (2.3) of Example 2.2 can be
also estimated by the sieve nonlinear LS:

sup
θ∈Θn

Q̂n(θ) = sup
β∈B, h∈Hn

−1

n

n∑
i=1

N∑
�=1

[
Y1�i − {h1�

(
Y2i − g

(
X′

1iβ1
))+ X′

1iβ2�

}]2
,

with θ = (β ′, h′)′ = (β ′
1, β

′
21, . . . , β

′
2N, h11, . . . , h1N)′ the unknown parameters and

Θn = B × Hn = B1 ×∏N
�=1 B2� ×∏N

�=1 H1�,n the sieve space.
More generally, we can apply the sieve GLS criterion

sup
θ∈Θn

Q̂n(θ) = sup
θ∈Θn

−1

n

n∑
i=1

ρ(Zi, θ)′
{
Σ(Xi)

}−1
ρ(Zi, θ)

to estimate all the models belonging to the first subclass of the conditional moment re-
strictions (2.8) where ρ(Zi, θ)−ρ(Zi, θo) does not depend on endogenous variables Yi ,
here Σ(Xi) is a positive definite weighting matrix function such as the identity matrix.
See Remark 4.3 in Subsection 4.3 for optimally weighted version of this procedure.

2.2.3. Series estimation, concave extended linear models

In this chapter, we call a special case of sieve M-estimation series estimation, which
is sieve M-estimation with concave criterion functions Q̂n(θ) = 1

n

∑n
t=1 l(θ, Zt ) and

finite-dimensional linear sieve spaces Θn. We say the criterion is concave if Q̂n(τθ1 +
(1 − τ)θ2) � τQ̂n(θ1) + (1 − τ)Q̂n(θ2) for any θ1, θ2 ∈ Θ and any scalar τ ∈ (0, 1).
Of course this definition only makes sense when the parameter space Θ is convex (i.e.,
for any θ1, θ2 ∈ Θ , we have τθ1 + (1 − τ)θ2 ∈ Θ for any scalar τ ∈ (0, 1)). We say a
sieve Θn is finite-dimensional linear if it is a linear span of finitely many known basis
functions; see Subsection 2.3.1 for examples.

Although our definition of series estimation may differ from those in the current
econometrics literature, it is closely related to the definition of the sieve M-estimation
of “concave extended linear models” in the statistics literature; see e.g. Hansen (1994),
Stone et al. (1997), and Huang (2001). Consider a Z-valued random variable Z, where

14 Throughout this chapter
∏N

�=1 H�,n denotes a Cartesian product H1,n × · · · × HN,n.



5564 X. Chen

Z is an arbitrary set. The probability density po(z) of Z depends on a true but un-
known parameter θo. All the concave extended linear models have three common
ingredients: (1) a (possibly infinite-dimensional) linear parameter space Θ; (2) the
criterion evaluated at a single observation is concave; that is, given any θ1, θ2 ∈ Θ ,
l(τθ1 + (1 − τ)θ2, z) � τ l(θ1, z) + (1 − τ)l(θ2, z) for any scalar τ ∈ (0, 1) and any
value z ∈ Z; (3) the population criterion Q(θ) = E[l(θ, Z)] is strictly concave; that is,
given any two essentially different functions θ1, θ2 ∈ Θ , E[l(τθ1 + (1 − τ)θ2, Z)] >

τE[l(θ1, Z)] + (1 − τ)E[l(θ2, Z)] for any scalar τ ∈ (0, 1).
The sieve M-estimation of a concave extended linear model can be implemented

by maximizing Q̂n(θ) = 1
n

∑n
t=1 l(θ, Zt ) over a finite-dimensional linear sieve space

Θn without any constraints. The resulting estimator is called a series estimator in this
paper. Therefore, for the same concave criterion function, a sieve M-estimator is a series
estimator if the sieve spaces Θn are finite-dimensional linear (such as the ones listed in
Subsections 2.3.1 and 2.3.2), but is not a series estimator if the sieve spaces Θn are
not finite-dimensional linear (such as the ones listed in Subsections 2.3.3 and 2.3.4).
Although this definition of a series estimator might look restrictive, it will make the
descriptions of large sample properties much easier in Section 3.

For series estimation, concavity of the criterion function plays a central role. In par-
ticular, the sieve spaces used in estimation are not required to be compact and can be
any unrestricted finite-dimensional linear spaces. Such sieves not only make it easy to
compute the estimators, but also make it convenient to discuss orthogonal projections
and functional analysis of variance (ANOVA) decompositions (such as additivity) in the
nonparametric multivariate regression framework; see e.g. Stone (1985, 1986), Andrews
and Whang (1990), Huang (1998a).

In order to apply the series estimation to a semi-nonparametric model, one needs to
first find a concave criterion function that identifies the unknown parameters of interest.
We now present several such examples.

EXAMPLE 2.4 (Multivariate LS regression). We consider the estimation of an un-
known multivariate conditional mean function θo(·) = ho(·) = E(Y |X = ·). Here
Z = (Y,X), Y is a scalar, X has support X that is a bounded subset of Rd , d � 1.
Suppose ho ∈ Θ , where Θ is a linear subspace of the space of functions h with
E[h(X)2] < ∞. Let l(h, Z) = −[Y − h(X)]2 and Q(θ) = −E{[Y − h(X)]2}; then
both are concave in h and Q is strictly concave in h ∈ Θ .

Let {pj (X), j = 1, 2, . . .} denote a sequence of known basis functions that can ap-
proximate any real-valued square integrable functions of X well; see Subsection 2.3.1
or Newey (1997) for specific examples of such basis functions. Then

(2.10)Θn = Hn =
{

h :X → R, h(x) =
kn∑

j=1

ajpj (x): a1, . . . , akn ∈ R
}

,

with dim(Θn) = kn → ∞ slowly as n → ∞, is a finite-dimensional linear sieve for Θ ,
and ĥ = arg maxh∈Hn

−1
n

∑n
t=1[Yt − h(Xt )]2 is a series estimator of the conditional
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mean ho(·) = E(Y |X = ·). Moreover, this series estimator ĥ has a simple closed-form
expression:

(2.11)ĥ(x) = pkn(x)′(P ′P)−
n∑

i=1

pkn(Xi)Yi, x ∈ X ,

with pkn(X) = (p1(X), . . . , pkn(X))′, P = (pkn(X1), . . . , p
kn(Xn))

′ and (P ′P)− the
Moore–Penrose generalized inverse. The estimator ĥ given in (2.11) will be called a
series LS estimator or a linear sieve LS estimator.

EXAMPLE 2.5 (Multivariate quantile regression). Let α ∈ (0, 1). We consider the
estimation of an unknown multivariate αth quantile function θo(·) = ho(·) such that
E[1{Y � ho(X)}|X] = α. Here Z = (Y,X), X has support X that is a bounded
subset of Rd , d � 1. Suppose ho ∈ Θ , where Θ is a linear subspace of the space of
functions h with E[h(X)2] < ∞. Let l(h, Z) = [1{Y � h(X)} − α][Y − h(X)],15 and
Q(θ) = E{[1{Y � h(X)}−α][Y −h(X)]}, then both are concave in h and Q is strictly
concave in h ∈ Θ .

Let Θn = Hn be a finite-dimensional linear sieve such as the one given in (2.10).
Then ĥ = arg maxh∈Hn

1
n

∑n
t=1[1{Yt � h(Xt)} − α][Yt − h(Xt )] is a series estimator

of the conditional quantile function ho.

EXAMPLE 2.6 (Log-density estimation). Let fo be the true unknown positive proba-
bility density of Z on Z and suppose that we want to estimate the log-density, log fo.
Since log fo is subject to the nonlinear constraint

∫
Z exp{log fo(z)} dz = 1, it is more

convenient to write log fo = ho − log
∫
Z exp ho(z) dz, and treat ho as an unknown func-

tion in some linear space. Since log fo = [ho + c] − log
∫
Z exp[ho(z) + c] dz for any

constant c, we need some location normalization to ensure the identification of ho. By
imposing a linear constraint such as

∫
Z h(z) dz = 0 (or h(z∗) = 0 for a fixed z∗ ∈ Z),

we can determine h uniquely and make the mapping h → log f one-to-one. Therefore,
we assume ho ∈ Θ , where Θ is a linear subspace of the space of real-valued functions
h with E[h(Z)2] < ∞ and

∫
Z h(z) dz = 0. The log-likelihood evaluated at a single ob-

servation Z is given by l(h, Z) = h(Z) − log
∫
Z exp h(z) dz. Stone (1990) has shown

that l(h, Z) is concave and Q(θ) = E{h(Z) − log
∫
Z exp h(z) dz} is strictly concave in

h ∈ Θ .
Let {pj (Z), j = 1, 2, . . .} denote a sequence of known basis functions that can ap-

proximate any real-valued square integrable functions of Z well. Then

Θn = Hn

=
{

h :Z → R, h(z) =
kn∑

j=1

ajpj (z):
∫
Z

h(z) dz = 0, a1, . . . , akn ∈ R
}

,

15 This is a “check” function in Koenker and Bassett (1978).
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with dim(Θn) = kn → ∞ slowly as n → ∞, is a finite-dimensional linear sieve for Θ ,
and

ĥ = arg max
h∈Hn

1

n

n∑
i=1

[
h(Zi) − log

∫
Z

exp h(z) dz

]

is a series estimator of the log-density function ho.
It is easy to see that log-conditional density and log-spectral density estimation can

be carried out in the same way; see e.g. Stone (1994) and Kooperberg, Stone and Truong
(1995b).

EXAMPLE 2.7 (Estimation of conditional hazard function). Consider a positive sur-
vival time T , a positive censoring time C, the observed time Y = min(T , C) and
an X -valued random vector X of covariates. Let Z = (X′, Y, 1(T � C))′ denote a
single observation. Suppose T and C are conditionally independent given X, and that
Pr(C � τ0) = 1 for a known positive constant τ0. Let fo(τ |x) and Fo(τ |x), τ > 0, be
the true unknown conditional density function and conditional distribution function, re-
spectively, of T given X = x. Then the ratio fo(τ |x)/[1−Fo(τ |x)], τ > 0, is called the
conditional hazard function of T given X = x. We want to estimate the log-conditional
hazard function ho(τ, x) = log{fo(τ |x)/[1−Fo(τ |x)]}. Since the likelihood at a single
observation Z equals

[
f (Y |X)

]1(T �C)[1 − F(Y |X)
]1(T >C)

= [exp
{
h(Y,X)

}]1(T �C) exp

(
−
∫ Y

0
exp
{
h(τ,X)

}
dτ

)
,

the log-likelihood evaluated at a single observation is given by

l(h, Z) = 1(T � C)h(Y,X) −
∫ Y

0
exp
{
h(τ,X)

}
dτ.

Kooperberg, Stone and Truong (1995a) showed that the l(h, Z) is concave in h and
Q(θ) = E{l(h, Z)} is strictly concave in h.

Suppose ho ∈ Θ , where Θ is a linear subspace of the space of real-valued functions h

with E[h(Y,X)2] < ∞. Let {pj (Y,X), j = 1, 2, . . .} denote a sequence of known ba-
sis functions that can approximate any real-valued square integrable functions of (Y,X)

well. Then

Θn = Hn

=
{

h : (0, τ0] × X → R, h(τ, x) =
kn∑

j=1

ajpj (τ, x): a1, . . . , akn ∈ R
}

,
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with dim(Θn) = kn → ∞ slowly as n → ∞, is a finite-dimensional linear sieve for Θ ,
and

ĥ = arg max
h∈Hn

1

n

n∑
i=1

[
1(Ti � Ci)h(Yi,Xi) −

∫ Yi

0
exp
{
h(τ,Xi)

}
dτ

]

is a series estimator of the log-conditional hazard function ho.

Finally, we should point out that not all semi-nonparametric M-estimation problems
can be reparameterized into series estimation problems. For example, the nonparametric
exogenous expenditure specification (2.2) of Example 2.2 does not belong to the con-
cave extended linear models, since, in this specification, the unknown function h0(X1)

enters the other unknown functions h1�(Y2 − h0(X1)), � = 1, . . . , L, nonlinearly as an
argument. Nevertheless, as described in the previous subsection, this model can still be
estimated by the general sieve M-estimation method.

2.2.4. Sieve MD estimation

When −Q̂n(θ) can be expressed as a quadratic distance from zero, we call the θ̂n solving
(2.9) an approximate sieve minimum distance (MD) estimate.

One typical quadratic form is

(2.12)sup
θ∈Θn

Q̂n(θ) = sup
θ∈Θn

−1

n

n∑
t=1

m̂(Xt , θ)′
{
Σ̂(Xt )

}−1
m̂(Xt , θ)

with m̂(Xt , θo) → 0 in probability. Here m̂(Xt , θ) is a nonparametrically estimated
moment restriction function of fixed, finite dimension, and Σ̂(Xt ) is a possibly non-
parametrically estimated weighting matrix of the same dimension as that of m̂(Xt , θ).
The weighting matrix, Σ̂ , is introduced for the purpose of efficiency,16 and Σ̂(Xt ) →
Σ(Xt) in probability, where Σ(Xt) is a positive definite matrix (of the same fixed, finite
dimension as that of Σ̂(Xt )). We can apply the sieve MD criterion, (2.12), to estimate
all the models belonging to the conditional moment restrictions E[ρ(Z, θo)|X] = 0,
regardless of whether or not ρ(Zt , θ) − ρ(Zt , θo) depends on endogenous variables Yt .
In particular, m̂(Xt , θ) could be any nonparametric estimate of the conditional mean
function m(Xt , θ) = E[ρ(Z, θ)|X = Xt ]; see e.g. Newey and Powell (1989, 2003) and
Ai and Chen (1999, 2003).

Another typical quadratic form is the sieve GMM criterion

(2.13)sup
θ∈Θn

Q̂n(θ) = sup
θ∈Θn

−ĝn(θ)′Ŵ ĝn(θ)

16 See Ai and Chen (2003) or Subsection 4.3 for details on semiparametric efficiency.
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with ĝn(θo) → 0 in probability. Here ĝn(θ) is a sample average of some unconditional
moment conditions of increasing dimension, and Ŵ is a possibly random weighting ma-
trix of the same increasing dimension as that of ĝn(θ). As above, the weighting matrix
Ŵ is introduced for the purpose of efficiency, and Ŵ −Wn → 0 in probability, with Wn

being a positive definite matrix (of the same increasing dimension as that of Ŵ ). Note
that E[ρ(Z, θo)|X] = 0 if and only if the following increasing number of unconditional
moment restrictions hold:

(2.14)E
[
ρ(Zt , θo)p0j (Xt )

] = 0, j = 1, 2, . . . , km,n,

where {p0j (X), j = 1, 2, . . . , km,n} is a sequence of known basis functions that can
approximate any real-valued square integrable functions of X well as km,n → ∞. Let
pkm,n(X) = (p01(X), . . . , p0km,n(X))′. It is now obvious that the conditional moment
restrictions (2.8) E[ρ(Z, θo)|X] = 0 can be estimated via the sieve GMM criterion
(2.13) using ĝn(θ) = 1

n

∑n
t=1 ρ(Zt , θ) ⊗ pkm,n(Xt ).

Not only it is possible for both the sieve MD, (2.12), and the sieve GMM, (2.13),
to estimate all the models belonging to the conditional moment restrictions (2.8), but
they are also very closely related. For example, when applying the sieve MD (2.12)
procedure, we could use the series LS estimator (2.15) as an estimator of the conditional
mean function m(X, θ) = E[ρ(Z, θ)|X]:

(2.15)m̂(X, θ) =
n∑

j=1

ρ(Zj , θ)pkm,n(Xj )
′(P ′P)−pkm,n(X),

with P = (pkm,n(X1), . . . , p
km,n(Xn))

′ where km,n → ∞ slowly as n → ∞,
and (P ′P)− the Moore–Penrose inverse. The resulting sieve MD (2.12) with identity
weighting Σ̂(Xt ) = I will become the following sieve GMM (2.13):

(2.16)

min
θ∈Θn

(
n∑

i=1

ρ(Zi, θ) ⊗ pkm,n(Xi)

)′(
I ⊗ (P ′P)−

)( n∑
i=1

ρ(Zi, θ) ⊗ pkm,n(Xi)

)
,

where ⊗ denotes the Kronecker product; see Ai and Chen (2003) for details.

EXAMPLE 2.2 (Continued). The semi-nonparametric endogenous expenditure specifi-
cation (2.4) of Example 2.2 can be estimated by the sieve MD (2.12), with m̂(Xi, θ) =
(m̂1(Xi, θ), . . . , m̂N (Xi, θ))′,

m̂�(Xi, θ)

=
n∑

j=1

[
Y1�j − {h1�

(
Y2j − g

(
X′

1j β1
))+ X′

1j β2�

}]
pkm,n(Xj )

′(P ′P)−pkm,n(Xi),

where θ = (β ′, h′)′ = (β ′
1, β

′
21, . . . , β

′
2N, h11, . . . , h1N)′ is the vector of unknown

parameters, and Θn = B ×Hn = B1 ×∏N
�=1 B2� ×∏N

�=1 H1�,n is the sieve space; see
Blundell, Chen and Kristensen (2007) for details.
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EXAMPLE 2.3 (Continued). The semi-nonparametric external habit specification (2.7)
of Example 2.3 can be estimated by the sieve GMM criterion (2.16), with ρ(Zt , θ) =
(ρ1(Zt , θ), . . . , ρN(Zt , θ))′,

ρ�(Zt , θ) = δ

(
Ct

Ct+1

)γ
(
1 − h

(
Ct

Ct+1
, . . . ,

Ct+1−L

Ct+1

))−γ

(
1 − h

(Ct−1
Ct

, . . . ,
Ct−L

Ct

))−γ
R�,t+1 − 1,

� = 1, . . . , N,

Zt =
(

Ct

Ct+1
, . . . ,

Ct+1−L

Ct+1
,
Ct−1

Ct

, . . . ,
Ct−L

Ct

, R1,t+1, . . . , RN,t+1, Xt

)
,

Xt = wt ,

where θ = (β ′, h)′ = (δ, γ, h)′ is the vector of unknown parameters, and Θn =
B × Hn = Bδ × Bγ × Hn is the sieve space, here 0 � h < 1 is imposed on the
sieve space Hn. Obviously, this model (2.7) can also be estimated by the sieve MD
(2.12), with m̂(Xt , θ) = m̂(wt , θ) being a nonparametric estimator such as the series
LS estimator (2.15) of E[ρ(Zt , θ)|Xt = wt ]; see Chen and Ludvigson (2003) for de-
tails.17

2.3. Typical function spaces and sieve spaces

Here we will present some commonly used sieves whose approximation properties are
already known in the mathematical literature on approximation theory.

2.3.1. Typical smoothness classes and (finite-dimensional) linear sieves

We first review the most popular smoothness classes of functions used in the non-
parametric estimation literature; see e.g. Stone (1982, 1994), Robinson (1988), Newey
(1997) and Horowitz (1998). Suppose for the moment that X = X1 × · · · × Xd is the
Cartesian product of compact intervals X1, . . . ,Xd . Let 0 < γ � 1. A real-valued func-
tion h on X is said to satisfy a Hölder condition with exponent γ if there is a positive
number c such that |h(x)−h(y)| � c|x−y|γe for all x, y ∈ X ; here |x|e = (

∑d
l=1 x2

l )1/2

is the Euclidean norm of x = (x1, . . . , xd) ∈ X . Given a d-tuple α = (α1, . . . , αd) of
nonnegative integers, set [α] = α1 +· · ·+αd and let Dα denote the differential operator
defined by

Dα = ∂ [α]

∂x
α1
1 . . . ∂x

αd

d

.

17 There are also semi-nonparametric recursive method of moment procedures that enable us to estimate
nonlinear time series models with latent variables. See e.g. Chen and White (1998, 2002), Pastorello, Patilea
and Renault (2003) and Linton and Mammen (2005).
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Let m be a nonnegative integer and set p = m + γ . A real-valued function h on X is
said to be p-smooth if it is m times continuously differentiable on X and Dαh satisfies
a Hölder condition with exponent γ for all α with [α] = m.

Denote the class of all p-smooth real-valued functions on X by Λp(X ) (called a
Hölder class), and the space of all m-times continuously differentiable real-valued func-
tions on X by Cm(X ). Define a Hölder ball with smoothness p = m + γ as

Λ
p
c (X ) =

{
h ∈ Cm(X ): sup

[α]�m

sup
x∈X

∣∣Dαh(x)
∣∣ � c,

sup
[α]=m

sup
x,y∈X , x 
=y

|Dαh(x) − Dαh(y)|
|x − y|γe

� c

}
.

The Hölder (or p-smooth) class of functions are popular in econometrics because a
p-smooth function can be approximated well by various linear sieves.

A sieve is called a “(finite-dimensional) linear sieve” if it is a linear span of fi-
nitely many known basis functions. Linear sieves, including power series, Fourier series,
splines and wavelets, form a large class of sieves useful for sieve extremum estimation.
We now provide some examples of commonly used linear sieves for univariate functions
with support X = [0, 1].

Polynomials. Let Pol(Jn) denote the space of polynomials on [0, 1] of degree Jn or
less; that is,

Pol(Jn) =
{

Jn∑
k=0

akx
k, x ∈ [0, 1]: ak ∈ R

}
.

Trigonometric polynomials. Let TriPol(Jn) denote the space of trigonometric polyno-
mials on [0, 1] of degree Jn or less; that is,

TriPol(Jn)

=
{

a0 +
Jn∑

k=1

[
ak cos(2kπx) + bk sin(2kπx)

]
, x ∈ [0, 1]: ak, bk ∈ R

}
.

Let CosPol(Jn) denote the space of cosine polynomials on [0, 1] of degree Jn or less;
that is,

CosPol(Jn) =
{

a0 +
Jn∑

k=1

ak cos(kπx), x ∈ [0, 1]: ak ∈ R
}

.

Let SinPol(Jn) denote the space of sine polynomials on [0, 1] of degree Jn or less; that
is,

SinPol(Jn) =
{

Jn∑
k=1

ak sin(kπx), x ∈ [0, 1]: ak ∈ R
}

.
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We note that the classical trigonometric sieve, TriPol(Jn), is well suited for approximat-
ing periodic functions on [0, 1], while the cosine sieve, CosPol(Jn), is well suited for
approximating aperiodic functions on [0, 1] and the sine sieve, SinPol(Jn), can approx-
imate functions vanishing at the boundary points (i.e., when h(0) = h(1) = 0).

Univariate splines. Let Jn be a positive integer, and let t0, t1, . . . , tJn , tJn+1 be real
numbers with 0 = t0 < t1 < · · · < tJn < tJn+1 = 1. Partition [0, 1] into Jn + 1
subintervals Ij = [tj , tj+1), j = 0, . . . , Jn − 1, and IJn = [tJn , tJn+1]. We assume that
the knots t1, . . . , tJn have bounded mesh ratio:

(2.17)
max0�j�Jn

(tj+1 − tj )

min0�j�Jn
(tj+1 − tj )

� c for some constant c > 0.

Let r � 1 be an integer. A function on [0, 1] is a spline of order r , equivalently, of degree
m ≡ r − 1, with knots t1, . . . , tJn if the following hold: (i) it is a polynomial of degree
m or less on each interval Ij , j = 0, . . . , Jn; and (ii) (for m � 1) it is (m − 1)-times
continuously differentiable on [0, 1]. Such spline functions constitute a linear space of
dimension Jn + r . For detailed discussions of univariate splines; see de Boor (1978)
and Schumaker (1981). For a fixed integer r � 1, we let Spl(r, Jn) denote the space of
splines of order r (or of degree m ≡ r − 1) with Jn knots satisfying (2.17). Since

Spl(r, Jn) =
{

r−1∑
k=0

akx
k +

Jn∑
j=1

bj

[
max{x − tj , 0}]r−1

, x ∈ [0, 1]: ak, bj ∈ R
}

,

we also call Spl(r, Jn) the polynomial spline sieve of degree m ≡ r − 1.
In this chapter, L2(X , leb) denotes the space of real-valued functions h such that∫

X |h(x)|2 dx < ∞.

Wavelets. Let m � 0 be an integer. A real-valued function ψ is called a “mother
wavelet” of degree m if it satisfies the following: (i)

∫
R xkψ(x) dx = 0 for 0 �

k � m; (ii) ψ and all its derivatives up to order m decrease rapidly as |x| → ∞;
(iii) {2j/2ψ(2j x − k): j, k ∈ Z} forms a Riesz basis of L2(R, leb), in the sense that
the linear span of {2j/2ψ(2j x − k): j, k ∈ Z} is dense in L2(R, leb) and there exist
positive constants c1 � c2 < ∞ such that

c1

∞∑
j=−∞

∞∑
k=−∞

|ajk|2 �
∥∥∥∥∥

∞∑
j=−∞

∞∑
k=−∞

ajk2j/2ψ
(
2j x − k

)∥∥∥∥∥
2

L2(R,leb)

� c2

∞∑
j=−∞

∞∑
k=−∞

|ajk|2

for all doubly bi-infinite square-summable sequences {ajk: j, k ∈ Z}.
A scaling function φ is called a “father wavelet” of degree m if it satisfies the fol-

lowing: (i)
∫
R φ(x) dx = 1; (ii) φ and all its derivatives up to order m decrease rapidly
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as |x| → ∞; (iii) {φ(x − k): k ∈ Z} forms a Riesz basis for a closed subspace of
L2(R, leb).

Orthogonal wavelets. Given an integer m � 0, there exist a father wavelet φ of de-
gree m and a mother wavelet ψ of degree m, both compactly supported, such that for
any integer j0 � 0, any function g in L2(R, leb) has the following wavelet m-regular
multiresolution expansion:

g(x) =
∞∑

k=−∞
aj0kφj0k(x) +

∞∑
j=j0

∞∑
k=−∞

bjkψjk(x), x ∈ R,

where

ajk =
∫
R

g(x)φjk(x) dx, φjk(x) = 2j/2φ
(
2j x − k

)
, x ∈ R,

bjk =
∫
R

g(x)ψjk(x) dx, ψjk(x) = 2j/2ψ
(
2j x − k

)
, x ∈ R,

and {φj0k, k ∈ Z; ψjk, j � j0, k ∈ Z} is an orthonormal18 basis of L2(R, leb); see
Meyer (1992, Theorem 3.3).

For j � 0 and 0 � k � 2j − 1, denote the periodized wavelets on [0, 1] by

φ∗
jk(x) = 2j/2

∑
l∈Z

φ
(
2j x + 2j l − k

)
,

ψ∗
jk(x) = 2j/2

∑
l∈Z

ψ
(
2j x + 2j l − k

)
, x ∈ [0, 1].

For j0 � 0, the collection {φ∗
j0k

, k = 0, . . . , 2j0 − 1; ψ∗
jk, j � j0, k = 0, . . . , 2j − 1}

is an orthonormal basis of L2([0, 1], leb) [see Daubechies (1992)]. We consider the
finite-dimensional linear space spanned by this wavelet basis. For an integer Jn > j0,
set

Wav
(
m, 2Jn

) =
{

2j0 −1∑
k=0

αj0kφ
∗
j0k

(x) +
Jn−1∑
j=j0

2j −1∑
k=0

βjkψ
∗
jk(x),

x ∈ [0, 1]: αj0k, βjk ∈ R
}

or, equivalently [see Meyer (1992)],

Wav
(
m, 2Jn

) =
{

2Jn−1∑
k=0

αkφ
∗
Jnk(x), x ∈ [0, 1]: αk ∈ R

}
.

18 I.e.,
∫
R ψjk(x)ψjk(x) dx = 1 and

∫
R ψjk(x)ψj ′k′ (x) dx = 0 for j 
= j ′ or k 
= k′;

also
∫
R φj0k(x)φj0k(x) dx = 1 and

∫
R φj0k(x)φj0k′ (x) dx = 0 for k 
= k′; in addition∫

R φj0k(x)ψjk′ (x) dx = 0 for j � j0.
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Tensor product spaces. Let U�, 1 � � � d , be compact sets in Euclidean spaces and
U = U1 × · · · × Ud be their Cartesian product. Let G� be a linear space of functions on
U� for 1 � � � d , each of which can be any of the sieve spaces described above, among
others. The tensor product, G, of G1, . . . , Gd is defined as the space of functions on U
spanned by the functions

∏d
�=1 g�(x�), where g� ∈ G� for 1 � � � d . We note that

dim(G) = ∏d
�=1 dim(G�). Tensor-product construction is a standard way to generate

linear sieves of multivariate functions from linear sieves of univariate functions.
Linear sieves are attractive because of their simplicity and ease of implementation.

Moreover, linear sieves can approximate functions in a Hölder space, Λp(X ), well. In
the following we let θ denote a real-valued function with a bounded domain X ⊂ Rd ,
‖θ‖∞ ≡ supx∈X |θ(x)| denote its L∞ norm, and ‖θ‖2,leb ≡ {∫X [θ(x)]2 dx/ vol(X )}1/2

be the scaled L2 norm relative to the Lebesgue measure of X . Define the sieve approx-
imation errors to θo ∈ Λp(X ) in L∞(X , leb)-norm and L2(X , leb)-norm as

ρ∞n ≡ inf
g∈Θn

‖g − θo‖∞ and ρ2n ≡ inf
g∈Θn

‖g − θo‖2,leb.

It is obvious that ρ2n � ρ∞n. For a multivariate function θo ∈ Θ = Λp([0, 1]d),
we consider the tensor product linear sieve space Θn, which is constructed as a ten-
sor product space of some commonly used univariate linear approximating spaces
Θn1, . . . , Θnd . Let dim(Θn) = kn and [p] be the biggest integer satisfying [p] < p.
Then we have the following tensor product sieve approximation error rates for θo ∈
Λp([0, 1]d):

Polynomials. If each Θn� = Pol(Jn), then ρ∞n = O(J
−p
n ) = O(k

−p/d
n ) [see e.g.

Section 5.3.2 of Timan (1963)].

Trigonometric polynomials. If θo can be extended to a periodic function, and if each
Θn� = TriPol(Jn), then ρ∞n = O(J

−p
n ) = O(k

−p/d
n ) [see e.g. Section 5.3.1 of Timan

(1963)].

Splines. If each Θn� = Spl(r, Jn) with r � [p]+1, then ρ∞n = O(J
−p
n ) = O(k

−p/d
n )

[see (13.69) and Theorem 12.8 of Schumaker (1981)].

Orthogonal wavelets. If each Θn� = Wav(m, 2Jn) with m > p, then ρ∞n =
O(2−pJn) = O(k

−p/d
n ) [see Proposition 2.5 of Meyer (1992)].

2.3.2. Weighted smoothness classes and (finite-dimensional) linear sieves

In semi-nonparametric econometric applications, sometimes the parameters of interest
are functions with unbounded supports. Here we present two finite-dimensional linear
sieves that can approximate functions with unbounded supports well. In the following
we let Lp(X , ω), 1 � p < ∞, denote the space of real-valued functions h such that∫
X |h(x)|pω(x) dx < ∞ for a smooth weight function ω :X → (0,∞).
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Hermite polynomials. Hermite polynomial series {Hk: k = 1, 2, . . .} is an ortho-
normal basis of L2(R, ω) with ω(x) = exp{−x2}. It can be obtained by apply-
ing the Gram–Schmidt procedure to the polynomial series {xk−1: k = 1, 2, . . .}
under the inner product 〈f, g〉ω = ∫

R f (x)g(x) exp{−x2} dx. That is, H1(x) =
1/

√∫
R exp{−x2} dx = π−1/4, and for all k � 2,

Hk(x) = xk−1 −∑k−1
j=1〈xk−1,Hj 〉ωHj (x)√∫

R[xk−1 −∑k−1
j=1〈xk−1,Hj 〉ωHj (x)]2 exp{−x2} dx

.

Let HPol(Jn) denote the space of Hermite polynomials on R of degree Jn or less:

HPol(Jn) =
{

Jn+1∑
k=1

akHk(x) exp

{
−x2

2

}
, x ∈ R: ak ∈ R

}
.

Then any function in L2(R, leb) can be approximated by the HPol(Jn) sieve as
Jn → ∞.

When the HPol(Jn) sieve is used to approximate an unknown
√

θo, where θo is a
probability density function over R, the corresponding sieve maximum likelihood esti-
mation is also called SNP in econometrics; see e.g. Gallant and Nychka (1987), Gallant
and Tauchen (1989) and Coppejans and Gallant (2002).

Laguerre polynomials. Laguerre polynomial series {Lk: k = 1, 2, . . .} is an ortho-
normal basis of L2([0,∞), ω) with ω(x) = exp{−x}. It can be obtained by applying
the Gram–Schmidt procedure to the polynomial series {xk−1: k = 1, 2, . . .} under the
inner product 〈f, g〉ω = ∫∞

0 f (x)g(x) exp{−x} dx. Let LPol(Jn) denote the space of
Laguerre polynomials on [0,∞) of degree Jn or less:

LPol(Jn) =
{

Jn+1∑
k=1

akLk(x) exp

{
−x

2

}
, x ∈ [0,∞): ak ∈ R

}
.

Then any function in L2([0,∞), leb) can be approximated by the LPol(Jn) sieve as
Jn → ∞.

2.3.3. Other smoothness classes and (finite-dimensional) nonlinear sieves

Nonlinear sieves can also be used for sieve extremum estimation. A popular class of
nonlinear sieves in econometrics is single hidden layer feedforward Artificial Neural
Networks (ANN). Here we present three typical forms of ANNs; see Hornik et al.
(1994) for additional ones.

Sigmoid ANN. Define

sANN(kn) =
{

kn∑
j=1

αjS
(
γ ′
j x + γ0,j

)
: γj ∈ Rd, αj , γ0,j ∈ R

}
,
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where S :R → R is a sigmoid activation function, i.e., a bounded nondecreasing func-
tion such that limu→−∞ S(u) = 0 and limu→∞ S(u) = 1. Some popular sigmoid
activation functions include

• Heaviside S(u) = 1{u � 0};
• logistic S(u) = 1/(1 + exp{−u});
• hyperbolic tangent S(u) = (exp{u} − exp{−u})/(exp{u} + exp{−u});
• Gaussian sigmoid S(u) = (2π)−1/2

∫ u

−∞ exp(−y2/2) dy;

• cosine squasher S(u) = 1+cos(u+3π/2)
2 1{|u| � π/2} + 1{u > π/2}.

Let X be a compact set in Rd , and C(X ) be the space of continuous functions map-
ping from X to R. Gallant and White (1988a) first established that the sANN sieve with
the cosine squasher activation function is dense in C(X ) under the sup-norm. Cybenko
(1990) and Hornik, Stinchcombe and White (1989) show that the sANN(kn), with any
sigmoid activation function, is dense in C(X ) under the sup-norm.

Let H = {h ∈ L2(X , leb):
∫
Rd |w||h̃(w)| dw < ∞}. This means h ∈ H if and

only if it is square integrable and its Fourier transform h̃ has finite first moment, where
h̃(w) ≡ ∫ exp(−iwx)h(x) dx is the Fourier transform of h. Barron (1993) established
that for any ho ∈ H, the sANN(kn) sieve approximation error rate in L2(X , leb)-norm
ρ2n is no slower than O([kn]−1/2), which was later improved to O([kn]−1/2−1/(2d))

in Makovoz (1996) for the sANN(kn) with the Heaviside sigmoid function, and to
O([kn]−1/2−1/(d+1)) in Chen and White (1999) for the sANN(kn) with general sigmoid
function.

General ANN. Define

gANN(kn)

=
{2r kn∑

j=1

αj

[
max
{|γj |e, 1

}]−m
ψ
(
γ ′
j x + γ0,j

)
: γj ∈ Rd , αj , γ0,j ∈ R

}
,

where ψ :R → R is any activation function but not a polynomial with fixed degree. In
particular, we often let ψ be a smooth function in a Hölder space Λm(R) and satisfy
0 <

∫
R |Drψ(x)| dx < ∞ for some r � m. This includes all the above sigmoid

activation functions as special cases (with m = 0 and r = 1); see Hornik et al. (1994)
for additional examples.

Let

H =
{
h ∈ L2(X , μ): h(x) =

∫
exp(ia′x) dσh(a),∫

Rd

[
max
{|a|e, 1

}]m+1 d|σh|tv(a) < ∞
}
,

where σh is a complex-valued measure, and |σh|tv denotes the total variation of σh.
Let Wm

2 (X , μ) be the weighted Sobolev space of functions, where functions as well
as all their partial derivatives (up to mth order) are L2(X , μ)-integrable for a finite
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measure μ. It is known that a function in H also belongs to Wm
2 (X , μ). Denote

‖h‖m,μ = {∫ h(x)2 dμ(x) + ∫ |Dmh(x)|2e dμ(x)}1/2 as the weighted Sobolev norm.
Hornik et al. (1994) established that for any ho ∈ H, the gANN(kn) sieve approxima-
tion error rate in the weighted Sobolev norm (‖ · ‖m,μ) is no slower than O([kn]−1/2),
which was later improved to O([kn]−1/2−1/(d+1)) in Chen and White (1999).

Gaussian radial basis ANN. Let X = Rd . Define

rbANN(kn) =
{

α0 +
kn∑

j=1

αjG

( {(x − γj )
′(x − γj )}1/2

σj

)
: γj ∈ Rd ,

αj , σj ∈ R, σj > 0

}
,

where G is the standard Gaussian density function. Let Wm
1 (X ) be the Sobolev space

of functions, where functions as well as all their partial derivatives (up to mth order) are
L1(X , leb)-integrable. Meyer (1992) shows that rbANN(kn) is dense in the smoothness
class Wm

1 (X ). Girosi (1994) established that for any ho ∈ H, the rbANN(kn) sieve
approximation error rate in L2(X , leb)-norm ρ2n is no slower than O([kn]−1/2), which
was later improved to O([kn]−1/2−1/(d+1)) in Chen, Racine and Swanson (2001).

Additional examples of nonlinear sieves include spline sieves with data-driven
choices of knot locations (or free-knot splines), and wavelet sieves with thresholding.
Nonlinear sieves are more flexible and may enjoy better approximation properties than
linear sieves; see e.g. Chen and Shen (1998) for the comparison of linear vs. nonlinear
sieves.

2.3.4. Infinite-dimensional (nonlinear) sieves and method of penalization

Most commonly used sieve spaces are finite-dimensional truncated series such as those
listed above. However, the general theory on sieve extremum estimation can also al-
low for infinite-dimensional sieve spaces. For example, consider the smoothness class
Θ = Λp(X ) with X = [0, 1], p > 1/2. It is well known that any function θ ∈ Θ can
be expressed as an infinite Fourier series θ(x) = ∑∞

k=1[ak cos(kx) + bk sin(kx)], and
its derivative with fractional power γ ∈ (0, p] can also be defined in terms of Fourier
series:

θ(γ )(x) =
∞∑

k=1

kγ

[(
ak cos

πγ

2
+ bk sin

πγ

2

)
cos(kx)

+
(

bk cos
πγ

2
− ak sin

πγ

2

)
sin(kx)

]
.

Similarly, any function θ ∈ Θ = Λp(X ) and its fractional derivatives can be ex-
pressed as infinite series of splines and wavelets; see e.g. Meyer (1992). Let pen(θ) =
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(
∫
X |θ(p)(x)|q dx)1/q for p > 1/2 and some integer q � 1. Then we can take the sieves

to be Θn = {θ ∈ Θ: pen(θ) � bn} with bn → ∞ as n → ∞ arbitrarily slowly; see
e.g. Shen (1997). The choice of q is typically related to the criterion function Q̂n(θ),
such as q = 2 for conditional mean regression [Wahba (1990)], q = 1 [Koenker, Ng
and Portnoy (1994)] and total variation norm [Koenker and Mizera (2003)] for quantile
regressions.

More generally, if the parameter space Θ is a typical function space such as a Hölder,
Sobolev or Besov space, then any function θ ∈ Θ can be expressed as infinite series of
some known Riesz basis {Bk(·)}∞k=1. An infinite-dimensional sieve space could take the
form:

(2.18)

Θn =
{

θ ∈ Θ: θ(·) =
∞∑

k=1

akBk(·), pen(θ) � bn

}
with bn → ∞ slowly,

where pen(θ) is a smoothness (or roughness) penalty term.

REMARK 2.2. When Q̂n(θ) is concave and pen(θ) is convex, the sieve extremum es-
timation, supθ∈Θn

Q̂n(θ) with Θn given in (2.18), becomes equivalent to the penalized
extremum estimation

(2.19)max
θ∈Θ

{
Q̂n(θ) − λn pen(θ)

}
where the Lagrange multiplier λn is chosen such that the solution satisfies pen(θ̂) = bn.
See e.g. Eggermont and LaRiccia (2001, Subsection 1.6).

2.3.5. Shape-preserving sieves

There are many sieves that can preserve the shape, such as nonnegativity, monotonicity
and convexity, of the unknown function to be approximated. See e.g. DeVore (1977a,
1977b) on shape-preserving spline and polynomial sieves, Anastassiou and Yu (1992a,
1992b) and Dechevsky and Penev (1997) on shape-preserving wavelet sieves. Here we
mention one of such shape-preserving sieves.

Cardinal B-spline wavelets. The cardinal B-spline of order r � 1 is given by

(2.20)Br(x) = 1

(r − 1)!
r∑

j=0

(−1)j
(

r

j

)[
max(0, x − j)

]r−1
,

which has support [0, r], is symmetric at r/2 and is a piecewise polynomial of highest
degree r − 1. It satisfies Br(x) � 0,

∑+∞
k=−∞ Br(x − k) = 1 for all x ∈ R, which is

crucial to preserve the shape of the unknown function to be approximated. Its derivative
satisfies ∂

∂x
Br(x) = Br−1(x)−Br−1(x −1). See Chui (1992, Chapter 4) for a recursive

construction of cardinal B-splines and their properties.
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We can construct a cardinal B-spline wavelet basis for the space L2(R, leb) as fol-
lows. Let φr(x) = Br(x) be the father wavelet (or the scaling function). Then there is
a “unique” mother wavelet function ψr with minimum support [0, 2r − 1] and is given
by

ψr(x) =
3r−2∑
�=0

q�Br(2x − �), q� = (−1)�21−r
r∑

j=0

(
r

j

)
B2r (� + 1 − j).

Let

φr,jk(x) = 2j/2Br

(
2j x − k

)
, ψr,jk(x) = 2j/2ψr

(
2j x − k

)
, x ∈ R.

Then for an integer j0 � 0, {φr,j0k, k ∈ Z; ψr,jk, j � j0, k ∈ Z} is a Riesz basis of
L2(R, leb). Moreover, any function g in L2(R, leb) has the following spline-wavelet
m = r − 1 regular multiresolution expansion:

g(x) =
∞∑

k=−∞
aj0k2j0/2Br

(
2j0x − k

)+ ∞∑
j=j0

∞∑
k=−∞

bjkψr,jk(x), x ∈ R,

see Chui (1992, Chapter 6). For an integer Jn > j0 = 0, set

SplWav
(
r − 1, 2Jn

) =
{ ∞∑

k=−∞
a0kBr(x − k)

+
Jn−1∑
j=0

∞∑
k=−∞

βjkψr,jk(x), x ∈ R: a0k, βjk ∈ R
}

or, equivalently,19

SplWav
(
r − 1, 2Jn

) =
{ ∞∑

k=−∞
αk2Jn/2Br

(
2Jnx − k

)
, x ∈ R: αk ∈ R

}
.

Any nondecreasing continuous function on R can be approximated well by the
SplWav(r − 1, 2Jn) sieve with nondecreasing sequence {αk} (i.e., αk � αk+1). In par-
ticular, let

MSplWav
(
r − 1, 2Jn

) =
{

g(x) =
∞∑

k=−∞
αk2Jn/2Br

(
2Jnx − k + r

2

)
:

αk � αk+1

}

19 See Chen, Hansen and Scheinkman (1998) for the approximation property of this sieve for twice differen-
tiable functions on R.
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denote the monotone spline wavelet sieve. Then for any bounded nondecreasing contin-
uous function θo on R, the MSplWav(r − 1, 2Jn), r � 1, sieve approximation error rate
in sup-norm is O(2−Jn); for any bounded nondecreasing continuously differentiable
function θo on R, the MSplWav(r − 1, 2Jn), r � 2, sieve approximation error rate in
sup-norm is O(2−2Jn); see e.g. Anastassiou and Yu (1992a).

2.3.6. Choice of a sieve space

The choice of a sieve space Θn = B × Hn depends on how well it approximates Θ =
B × H and how easily one can compute maxθ∈Θn Q̂n(θ).

In general, it will be easier to compute maxθ∈Θn Q̂n(θ) when the sieve space, Θn =
B × Hn, is an unconstrained finite-dimensional linear space. Moreover, if the criterion
function, Q̂n(θ), is concave, one can choose such a linear sieve, just as in the series
estimation of a concave extended linear model described in Subsection 2.2.2.

However, the ease of computation should not be the only concern when one decides
which sieve to use in practice. This is because the large sample performance of a sieve
estimate also depends on the approximation properties of the chosen sieve. Unfortu-
nately, a finite-dimensional linear sieve does not always possess better approximation
properties than some nonlinear sieves. For example, let us consider the estimation of a
multivariate conditional mean function ho(·) = E[Yt |Xt = ·] ∈ Θ . Let Θn be a sieve
space. Then θ̂ = ĥ = arg maxh∈Θn

−1
n

∑n
t=1[Yt − h(Xt )]2 is a sieve M-estimator of ho.

If Θ = Λp([0, 1]d) is the space of p-smooth functions with p > d/2, then one can
take Θn to be any of the finite-dimensional linear sieve space in Subsection 2.3.1, and
the resulting estimator ĥ is a series estimator. However, if Θ = W 1

1 ([0, 1]d) as defined
in Subsection 2.3.3, then it is better to choose the sieve space, Θn, to be the nonlinear
Gaussian radial basis ANN in Subsection 2.3.3; the resulting estimator is still a sieve
M-estimator but not a series estimator. See Section 3 for additional examples.

How well a sieve, Θn, approximates Θ often depends on the support, the smooth-
ness, the shape restrictions of functions in Θ and the structure, such as additivity,
nonnegativity, exclusion restrictions, imposed by the econometric model. For example,
a Hermite polynomial sieve can approximate a multivariate unknown smooth density
with unbounded supports and relatively thin tails well, but a power series sieve and a
Fourier series sieve cannot. This is why Gallant and Nychka (1987) considered Hermite
polynomial sieve MLE since they wanted to approximate multivariate densities that
are smooth, have unbounded supports and include the multivariate normal density as a
special case. As another example, a first-order monotone spline sieve can approximate
any bounded monotone but nondifferentiable function well, and a third-order cardinal
B-spline wavelet sieve can approximate any bounded monotone differentiable function
well. In Example 2.1, Heckman and Singer (1984, pp. 300 and 301) did not want to
impose any assumptions on the distribution function h(·) of the latent random factor,
hence they applied a first-order monotone spline sieve to approximate it. In their esti-
mation of the first eigenfunction of the conditional expectation operator associated with
a fully nonparametric scalar diffusion model, Chen, Hansen and Scheinkman (1998)
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applied a shape-preserving third order cardinal B-spline wavelet sieve to approximate
the unknown first eigenfunction, since the first eigenfunction is known to be monotone
and twice continuously differentiable. As a final example, in their sieve MD estimation
of the semi-nonparametric external habit model (2.7) of Example 2.3, Chen and Lud-
vigson (2003) used the sANN sieve with logistic activation function to approximate the
unknown habit function H(Ct , Ct−1, . . . , Ct−L) = Cth(

Ct−1
Ct

, . . . ,
Ct−L

Ct
). This is partly

because when L � 3, the unknown smooth function h :RL → [0, 1) can be approx-
imated by a sANN sieve well, and partly because it is very easy to impose the habit
constraint 0 � H(Ct , Ct−1, . . . , Ct−L) < Ct when h(

Ct−1
Ct

, . . . ,
Ct−L

Ct
) is approximated

by the sANN sieve with logistic activation function.
For a sieve estimate to be consistent with a fast rate of convergence, it is important to

choose sieves with good approximation error rates as well as controlled complexity.20

Nevertheless, for econometric applications where the only prior information on the un-
known functions is their smoothness and supports, the choice of a sieve space is not
important, as long as the chosen sieve space has the desired approximation error rate.

2.4. A small Monte Carlo study

To illustrate how to implement the sieve extremum estimation, we present a small Monte
Carlo simulation carried out using Matlab and Fortran. The true model is: Y1 = X1βo +
ho1(Y2) + ho2(X2) + U with βo = 1, ho1(Y2) = 1/[1 + exp{−Y2}] and ho2(X2) =
log(1 + X2). We assume that Y2 is endogenous and Y2 = X1 + X2 + X3 + R × U + e

with either R = 0.9 (strong correlation) or 0.1 (weak correlation). Suppose that the
regressors X1, X2, X3 are independent and uniformly distributed over [0, 1], and that e

is independent of (X,U) and normally distributed with mean zero and variance 0.1. (We
have also tried E[e2] = 0.05, 0.25, the simulation results share very similar patterns
to the ones when E[e2] = 0.1, hence are not reported here.) Conditional on X =
(X1, X2, X3)

′, U is normally distributed with mean zero and variance (X2
1 + X2

2 +
X2

3)/3. Let Z = (Y1, Y2, X
′)′. A random sample of n = 1000 data {Zi}ni=1 is generated

from this design. An econometrician observes the simulated data {Zi}ni=1, and wants to
estimate θo = (βo, ho1, ho2)

′, obeying the conditional moment restriction:

(2.21)E
[
Y1i − {X1iβo + ho1(Y2i ) + ho2(X2i )

}∣∣Xi

] = 0.

This model is a generalization of the partially linear IV regression E[Y1 − {X1βo +
ho1(Y2)}|X] = 0 example of Ai and Chen (2003) to a partially additive IV regression.
Since ho1(Y2) is an unknown function of the endogenous variable Y2, both examples
belong to the so-called ill-posed inverse problems.

Let ρ(Z, θ) = Y1 −{X1β +h1(Y2)+h2(X2)} with θ = (β, h1, h2)
′. We say that the

parameters θo = (βo, ho1, ho2)
′ are identified if E[ρ(Z, θ)|X] = 0 only when θ = θo.

20 This will become clear from the large sample theory discussed later in Section 3.
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As a sufficient condition for the identification of θo, we assume that Var(X1) > 0,
h1(y2) is a bounded function with supy2

|h1(y2)| � 1 and that h2(x2) satisfies h2(0.5) =
log(3/2). In particular, we assume that θo = (βo, ho1, ho2)

′ ∈ Θ = B×H1×H2 with B

a compact interval in R, H1 = {h1 ∈ C2(R): supy2
|h1(y2)| � 1,

∫ [D2h1(y2)]2 dy2 <

∞} and H2 = {h2 ∈ C2([0, 1]): h2(0.5) = log(3/2),
∫ [D2h2(x2)]2 dx2 < ∞}.

Since this model (2.21) fits into the second subclass of the conditional moment re-
strictions (2.8) with E[ρ(Z, θo)|X] = 0, we can apply the sieve MD criterion (2.12) to
estimate θo = (βo, ho1, ho2). We take Θn = B × H1n × H2n as the sieve space, where

H1n =
{
h1(y2) = Π ′

1B
k1,n (y2):

∫ [
D2h1(y2)

]2 dy2 � c1 log n

}
,

Bk1,n (y2) is either a polynomial spline basis with equally spaced (according to empirical
quantile of Y2) knots, or a 3rd order cardinal B-spline basis, or a Hermite polynomial
basis,21 and dim(Π1) = k1,n is the number of unknown sieve coefficient of h1. Simi-
larly,

H2n =
{
h2(x2) = Π ′

2B
k2,n (x2):

∫ [
D2h2(x2)

]2 dx2 � c2 log n,

h2(0.5) = log(3/2)

}
,

Bk2,n (x2) is either a polynomial spline basis with equally spaced (according to empirical
quantile of X2) knots, or a 3rd order cardinal B-spline basis, and dim(Π2) = k2,n is the
number of unknown sieve coefficients of h2. In the Monte Carlo study, we have tried
k1,n = 4, 5, 6, 8 and k2,n = 4, 5, 6.

As an illustration, we only consider the sieve MD estimation (2.12) using the identity
weighting Σ̂(X) = I ,22 and the series LS estimator as the m̂(X, θ) for the conditional
mean function E[ρ(Z, θ)|X], thus the criterion becomes

min
β∈B, h1∈H1n, h2∈H2n

1

n

n∑
i=1

{
m̂(Xi, θ)

}2
, with

m̂(X, θ) =
n∑

j=1

[
Y1j − {X1jβ + h1(Y2j )

+ h2(X2j )
}]

pkm,n(Xj )
′(P ′P)−pkm,n(X),

where in the simulation pkm,n(X) is taken to be the 4th degree polynomial spline sieve,
with basis {1, X1, X2

1, X3
1, X4

1, [max(X1 − 0.5, 0)]4, X2, X2
2, X3

2, X4
2, [max(X2 −

0.5, 0)]4, X3, X2
3, X3

3, X4
3, [max(X3 − 0.1, 0)]4, [max(X3 − 0.25, 0)]4, [max(X3 −

21 See Blundell, Chen and Kristensen (2007) for a more detailed description on the choice of H1n.
22 See Subsection 4.3 or Ai and Chen (2003) for the sieve MD procedure with the optimal weighting matrix.
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0.5, 0)]4, [max(X3 − 0.75, 0)]4, [max(X3 − 0.90, 0)]4, X1X3, X2X3, X1[max(X3 −
0.25, 0)]4, X2[max(X3−0.25, 0)]4, X1[max(X3−0.75, 0)]4, X2[max(X3−0.75, 0)]4}.
We note that the above criterion is equivalent to a constrained 2 Stage Least Squares
(2SLS) with km,n = 26 instruments and dim(Θn) = 1 + k1,n + k2,n (< km,n) unknown
parameters:

min
β∈B, h1∈H1n, h2∈H2n

[Y1 − X1β − BΠ ]′P(P ′P)−P ′[Y1 − X1β − BΠ ],

where Y1 = (Y11, . . . , Y1n)
′, X1 = (X11, . . . , X1n)

′, Π = (Π ′
1,Π

′
2)

′, B1 =
(Bk1,n (Y21), . . . , B

k1,n (Y2n))
′, B2 = (Bk2,n (X21), . . . , B

k2,n (X2n))
′ and B = (B′

1, B′
2)

′.
Since ρ(Z, θ) is linear in θ = (β, h1, h2)

′, the joint sieve MD estimation is equivalent
to the profile sieve MD estimation for this model. We can first compute a profile sieve
estimator for h1(y2)+h2(x2). That is, for any fixed β, we compute the sieve coefficients
Π by minimizing

∑n
i=1{m̂(Xi, θ)}2 subject to the smoothness constraints imposed on

the functions h1 and h2:

(2.22)

min
Π :
∫ [D2h�(y)]2 dy�c� log n, �=1,2

[Y1 − X1β − BΠ ]′P(P ′P)−P ′[Y1 − X1β − BΠ ]

for some upper bounds c� > 0, � = 1, 2. Let Π̃(β) be the solution to (2.22) and
h̃1(y2; β) + h̃2(x2; β) = (Bk1,n (y2)

′, Bk2,n (x2)
′)Π̃(β) be the profile sieve estimator of

h1(y2)+h2(x2). Next, we estimate β by β̂iv which solves the following 2SLS problem:

(2.23)min
β

[
Y1 − X1β − BΠ̃(β)

]′
P(P ′P)−P ′[Y1 − X1β − BΠ̃(β)

]
.

Finally we estimate ho1(y2) + ho2(x2) by

ĥ1(y2) + ĥ2(x2) = (Bk1,n (y2)
′, Bk2,n (x2)

′)Π̃(β̂iv),

and then estimate ho1 and ho2 by imposing the location constraint h2(0.5) = log(3/2):

ĥ2,iv(x2) = Bk2,n (x2)
′Π̃2(β̂iv) − Bk2,n (0.5)′Π̃2(β̂iv) + log(3/2),

ĥ1,iv(y2) = Bk1,n (y2)
′Π̃1(β̂iv) + Bk2,n (0.5)′Π̃2(β̂iv) − log(3/2).

We note that although this model (2.21) belongs to the nasty ill-posed inverse prob-
lem, the above profile sieve MD procedure is very easy to compute, and in fact, β̂iv and
Π̃(β̂iv) have closed form solutions. To see this, we note that (2.22) is equivalent to

min
Π,λ�

(Y1 − X1β − BΠ)′P(P ′P)−P ′(Y1 − X1β − BΠ)

+
2∑

�=1

λ�

{
Π ′

�C�Π� − c� log n
}
,

where for � = 1, 2, C� = ∫ [D2Bk�,n(y)][D2Bk�,n(y)]′ dy, Π ′
�C�Π� = ∫ [D2h�(y)]2 dy

and λ� � 0 is the Lagrange multiplier. However, we do not want to specify the upper
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bounds c� > 0, � = 1, 2, instead we choose some small values as the penalization
weights λ1, λ2, and solve the following problems:

(2.24)min
Π

(Y1 − X1β − BΠ)′P(P ′P)−P ′(Y1 − X1β − BΠ) +
2∑

�=1

λ�Π
′
�C�Π�.

Denote C(λ1, λ2) = [ λ1C1 0
0 λ2C2

]
as the smoothness penalization matrix. The minimiza-

tion problem (2.24) has a simple closed form solution:

Π̃(β) = (B′P(P ′P)−P ′B + C(λ1, λ2)
)−B′P(P ′P)−P ′[Y1 − X1β]

= W [Y1 − X1β],
with W = (B′P(P ′P)−P ′B + C(λ1, λ2))

−B′P(P ′P)−P ′. Substituting the solution
Π̃(β) into the 2SLS problem (2.23), we obtain

β̂iv = [X′
1(I − BW)′P(P ′P)−P ′(I − BW)X1

]−1X′
1

× (I − BW)′P(P ′P)−P ′(I − BW)Y1,

and Π̃(β̂iv) = W [Y1 − X1β̂iv].

Table 1
Different endogeneity, Spl(3, 2) for h2, k2n = 5, λ2 = 0.0001

R β SE(β) IBias2(h1) IMSE(h1) IBias2(h2) IMSE(h2)

Spl(3, 2) k1n = 5 λ1 = 0.005

0.0 1.0081 0.0909 0.0003 0.0427 0.0000 0.0026
0.1 1.0021 0.0907 0.0003 0.0446 0.0000 0.0026
0.9 0.9404 0.0947 0.0148 0.0926 0.0003 0.0030

Spl(3, 1) k1n = 4 λ1 = 0.001

0.0 1.0076 0.0891 0.0002 0.0225 0.0000 0.0025
0.1 1.0010 0.0886 0.0002 0.0229 0.0000 0.0025
0.9 0.9398 0.0941 0.0160 0.0623 0.0003 0.0029

HPol(4) k1n = 5 λ1 = 0.005

0.0 1.0089 0.0906 0.0003 0.0395 0.0000 0.0026
0.1 1.0029 0.0901 0.0003 0.0397 0.0000 0.0026
0.9 0.9418 0.0948 0.0121 0.0830 0.0003 0.0030

HPol(3) k1n = 4 λ1 = 0.001

0.0 1.0078 0.0890 0.0002 0.0202 0.0000 0.0025
0.1 1.0012 0.0885 0.0002 0.0205 0.0000 0.0025
0.9 0.9401 0.0941 0.0112 0.0546 0.0003 0.0029
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Table 2
Different penalization levels and sieve terms, R = 0.9

(λ1, λ2) β SE(β) IBias2(h1) IMSE(h1) IBias2(h2) IMSE(h2)

Spl(3, 1) for h1 and h2, k1n = k2n = 4

(0.001, 0.0) 0.9366 0.0941 0.0176 0.0612 0.0003 0.0018
(0.05, 0.001) 0.9324 0.0867 0.0185 0.0568 0.0003 0.0016

Spl(3, 3) for h1 and h2, k1n = k2n = 6

(0.001, 0.0) 0.9451 0.0984 0.0124 0.1594 0.0003 0.0032
(0.05, 0.001) 0.9441 0.0954 0.0125 0.0720 0.0003 0.0028

For R = 0.9, 0.1 and 0.0, a sample of 1000 data points were generated according
to the above design. The sieve MD procedure was applied to the data with identity
weighting matrix Σ̂(X) = I and the penalization weights λ1 = 0.005 (or 0.001) and
λ2 = 0.0001 (or 0) for simplicity. The estimated coefficients were recorded. Then, a new
sample of 1000 data points were drawn and the estimated coefficients were computed
again. This procedure was repeated 400 times. The mean (M) and standard error (SE)
of the βo estimator across the 400 simulations are reported in Tables 1–2. To evaluate
the performance of the sieve MD estimators of the nonparametric components ho1(Y2)

and ho2(X2), we report their integrated squared biases (IBias2) and the integrated mean
squared errors (IMSE) across the 400 simulations in Tables 1–2.23 Table 1 summarizes
the performance of the estimators across different degrees of endogeneity and different
sieves for h1(Y2). Table 2 summarizes the sensitivity of the estimators (under R = 0.9)
to different sieve number of terms and penalization parameters for both h1(Y2) and
h2(X2). We also plot the estimated functions ho1(Y2) and ho2(X2) corresponding to the
strong correlation case (R = 0.9) in Figure 1, where the solid lines represent the true
functions and the dashed (or dotted) lines denote the sieve MD (or sieve IV) estimates.

Tables 1–2 and Figure 1 indicate that even under strong correlation, the sieve MD
estimates of βo and ho2(X2) perform well. We find that the sieve IV estimates of βo

and ho2(X2) are not sensitive to the choices of the penalization parameters λ1, λ2, nor
to the choices of sieve bases for ho1(Y2). The sieve IV estimate of ho1(Y2) is also not
very sensitive to the choices of sieve bases, although it is slightly more sensitive to the
penalization parameter λ1 under strong correlation. Since under strong correlation, the

23 The IBias2(h1) and IMSE(h1) in Table 1 are calculated as follows. Let ĥi be the estimate of ho1 from

the ith simulated data set, and h(y) =∑400
i=1 ĥi (y)/400 be the pointwise average across 200 simulations. We

calculate the pointwise squared bias as [h(y)−ho1(y)]2, and the pointwise variance as 400−1∑400
i=1[ĥi (y)−

h(y)]2. The integrated squared bias is calculated by numerically integrating the pointwise squared bias from y

to y which are respectively the 2.5th and 97.5th empirical percentiles of Y2; The integrated MSE are computed
in a similar way.
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Figure 1. True and estimated functions with R = 0.9, λ1 = 0.001, λ2 = 0.0001.

estimation of ho1(Y2) is a nasty ill-posed inverse problem, as the penalization parameter
λ1 gets smaller, the integrated squared bias of ho1( ) does not change much but the
integrated variance of ho1( ) increases more. The additional Monte Carlo results for
other sieve bases such as 3rd order cardinal B-splines and for different combinations of
sieve number of terms and penalization levels share similar patterns to the ones reported
here. These findings are also consistent with the more detailed Monte Carlo studies in
Blundell, Chen and Kristensen (2007).

2.5. An incomplete list of sieve applications in econometrics

We conclude this section by listing a few applications of the sieve extremum estimation
in econometrics.24 Most of the existing applications are done in microeconometrics.
Elbadawi, Gallant and Souza (1983) studied Fourier series LS estimation of demand
elasticity. Cosslett (1983) proposed nonparametric ML estimation of a binary choice
model. Heckman and Singer (1984) considered sieve ML estimation of a duration model
where the unknown error distribution is approximated by a first-order spline. Their es-
timation procedure was also applied in Cameron and Heckman (1998) to a life-cycle
schooling problem. Duncan (1986) used spline sieve MLE in estimating a censored
regression. Hausman and Newey (1995) considered power series and spline series LS
estimation of consumer surplus. Hahn (1998) and Imbens, Newey and Ridder (2005)

24 Although restricting our attention to economic applications only, it is still impossible to mention all the
existing applications of sieve methods in econometrics. Any omissions reflect my lack of awareness and are
purely unintentional.
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used power series and splines in the two-step efficient estimation of the average treat-
ment effect models. Newey, Powell and Vella (1999), and Pinkse (2000) considered
series estimation of a triangular system of simultaneous equations. To estimate semi-
parametric generalizations of Heckman’s (1979) sample selection model, Gallant and
Nychka (1987) proposed the Hermite polynomial sieve MLE, while Newey (1988)
and Das, Newey and Vella (2003) applied the series LS estimation method. Recently,
Newey (2001) used the sieve MD procedure to estimate a nonlinear measurement error
model. Blundell, Chen and Kristensen (2007) considered a profile sieve MD procedure
to estimate shape-invariant Engel curves with nonparametric endogenous expenditure.
Coppejans (2001) proposed sieve ML estimation of a binary choice model. Khan (2005)
considered a sieve LS estimation of a probit binary choice model with unknown het-
eroskedasticity. Hirano, Imbens and Ridder (2003) proposed a sieve logistic regression
to estimate propensity score for treatment effect models. Mahajan (2004) estimated
a semiparametric single index model with binary misclassified regressors via sieve
MLE. Chen, Fan and Tsyrennikov (2006) studied sieve MLE of semi-nonparametric
multivariate copula models. Chen, Hong and Tamer (2005) made use of spline sieves
to estimate nonlinear nonclassical measurement error models with an auxiliary sam-
ple. Their estimation procedure was shown in Chen, Hong and Tarozzi (2007) to be
semiparametrically efficient for general nonlinear GMM models of nonclassical mea-
surement errors, missing data and treatment effects. Hu and Schennach (2006) apply
sieve MLE to estimate a nonlinear nonclassical measurement error model with instru-
ments. Brendstrup and Paarsch (2004) applied Hermite and Laguerre polynomial sieve
MLE to estimate sequential asymmetric English auctions. Bierens (in press) and Bierens
and Carvalho (in press) applied Legendre polynomial sieve MLE respectively to es-
timate an interval-censored mixed proportional hazard model and a competing risks
model of recidivism.

There have also been many applications of the method of sieves in time series econo-
metrics. Engle et al. (1986) forecasted electricity demand using a partially linear spline
regression. Engle and Gonzalez-Rivera (1991) applied sieve MLE to estimate ARCH
models where the unknown density of the standardized innovation is approximated by
a first order spline sieve. Gallant and Tauchen (1989) and Gallant, Hsieh and Tauchen
(1991) employed Hermite polynomial sieve MLE to study asset pricing and foreign
exchange rates. Gallant and Tauchen (1996, 2004) have proposed the combinations
of Hermite polynomial sieve and simulated method of moments to effectively solve
many complicated asset pricing models with latent factors, and their methods have been
widely applied in empirical finance. Bansal and Viswanathan (1993), Bansal, Hsieh and
Viswanathan (1993) and Chapman (1997) considered sieve approximation of the whole
stochastic discount factor (or pricing kernel) as a function of a few macroeconomic
factors. White (1990) and Granger and Teräsvirta (1993) suggested nonparametric LS
forecasting via sigmoid ANN sieve. Hutchinson, Lo and Poggio (1994) applied radial
basis ANN to option pricing. Chen, Racine and Swanson (2001) used partially linear
ANN and ridgelet sieves to forecast US inflation. McCaffrey et al. (1992) estimated
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the Lyapunov exponent of a chaotic system via ANN sieves.25 Chen and Ludvigson
(2003) employed a sigmoid ANN sieve to estimate the unknown habit function in a
consumption asset pricing model. Polk, Thompson and Vuolteenaho (2003) applied
sigmoid ANN to compute conditional quantile in testing stock return predictability.
Chen, Hansen and Scheinkman (1998) employed a shape-preserving spline-wavelet
sieve to estimate the eigenfunctions of a fully nonparametric scalar diffusion model
from discrete-time low-frequency observations. Chen and Conley (2001) made use of
the same sieve to estimate a spatial temporal model with flexible conditional mean and
conditional covariance. Phillips (1998) applied orthonormal basis to analyze spurious
regressions. Engle and Rangel (2004) proposed a new Spline GARCH model to mea-
sure unconditional volatility and have applied it to equity markets for 50 countries for up
to 50 years of daily data. See Fan and Yao (2003) for additional applications to financial
time series models.

3. Large sample properties of sieve estimation of unknown functions

We already know that the sieve method is very general and easily implementable. In
this section, we shall first establish that, under mild regularity conditions, the sieve
extremum estimation will consistently estimate both finite-dimensional and infinite-
dimensional unknown parameters. However, for econometric and statistical inference,
one would like to know how accurate a consistent sieve estimator might be given a
finite data set and what its limiting distribution is. Unfortunately there does not yet ex-
ist a general theory of pointwise limiting distribution for a sieve extremum estimator
of an unknown function. There are a few results on pointwise limiting distribution for
series estimators of densities and LS regression functions, which we shall review at
the end of this section. However, all is not lost. We do have a well developed theory
on

√
n-asymptotic normality of sieve estimators of smooth functionals26 of unknown

functions.
As we shall see in Section 4, in order to derive

√
n-asymptotic normality and

semiparametric efficiency of sieve estimators of parametric components in a semi-
nonparametric model, the sieve estimators of the nonparametric components should
converge to the true unknown functions at rates faster than n−1/4 under certain metric.
This motivates the importance of establishing rates of convergence for sieve estimators
of unknown functions even when the unknown functions are nuisance parameters (i.e.,
not the parameters of interest). Moreover, when an unknown function is also a parame-
ter of interest in a nonparametric or a semi-nonparametric model, the convergence rate

25 Their work is closely related to the estimation of derivative of a multivariate unknown regression function
via ANN sieves in Gallant and White (1992). Shintani and Linton (2004) proposed a nonparametric test of
chaos via ANN sieves.
26 See Section 4 for the definition of a “smooth functional”. Here it suffices to know that regular finite-
dimensional parameters and average derivatives of unknown functions are examples of smooth functionals.
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will provide useful information on the accuracy of a sieve estimator for a given finite
sample size. Unfortunately, to date there is no unified theory on rates of convergence
for the general sieve extremum estimators of unknown functions either.27 Nevertheless,
the theory on convergence rates of sieve M-estimators is by now well developed.

In this section we first provide a new consistency theorem on general sieve extremum
estimation in Subsection 3.1. We then review the existing results on convergence rates
and pointwise limiting distributions for sieve M-estimators of unknown functions. We
begin this discussion with a survey of the convergence rate results for general sieve
M-estimators of unknown functions in Subsection 3.2 and illustrate how to verify the
technical conditions assumed for the general result with two examples. Although series
estimation is a special case of sieve M-estimation, due to its special properties (i.e.,
concave criterion and finite-dimensional linear sieve space), the convergence rate of
a series estimator can be derived under alternative sufficient conditions, which will be
reviewed in Subsection 3.3. Subsection 3.4 presents the existing results on the pointwise
normality of the series estimator in the special case of a LS regression function.

3.1. Consistency of sieve extremum estimators

For an infinite-dimensional, possibly noncompact parameter space Θ , Geman and
Hwang (1982) obtained the consistency of sieve MLE with i.i.d. data; White and
Wooldridge (1991) obtained the consistency of sieve extremum estimates with depen-
dent and heterogeneous data. For an infinite-dimensional, compact parameter space Θ ,
Gallant (1987) and Gallant and Nychka (1987) derived the consistency of sieve M-
estimates; Newey and Powell (2003) and Chernozhukov, Imbens and Newey (2007)
established the consistency of sieve MD estimates. In the following, we present a
new consistency theorem for approximate sieve extremum estimates that allows for
noncompact infinite-dimensional Θ and is applicable to ill-posed semi-nonparametric
problems.28

Let d(·,·) be a (pseudo) metric on Θ . In particular, when Θ = B × H where B is a
subset of some Euclidean space and H is a subset of some normed function space, we

27 To the best of our knowledge, currently there is one unpublished paper [Chen and Pouzo (2006)] that de-

rives the convergence rates for the sieve MD estimates θ̂n of θo = (βo, ho) satisfying the semi-nonparametric
conditional moment models E[ρ(Z, βo, ho(·))|X] = 0, where the unknown ho(·) could depend on the
endogenous variables Y or latent variables. Earlier, Ai and Chen (2003) obtained a faster than n−1/4 con-
vergence rate under a weaker metric. There are also a few papers on convergence rates of sieve MD estimate
of ho in specific models; see e.g. Blundell, Chen and Kristensen (2007) and Hall and Horowitz (2005) for the
model E[Y1 −ho(Y2)|X] = 0. Van der Vaart and Wellner (1996, Theorem 3.4.1) stated an abstract rate result
for sieve extremum estimation. However, their conditions rule out ill-posed semi-nonparametric problems,
and require a maximal inequality with rate for the process

√
n(Q̂n −Q), which is currently not available for a

general criterion Q̂n. Hence, it is fair to say that a general theory on rates of convergence for sieve extremum
estimators is currently lacking.
28 Based on a recent theorem of Stinchcombe (2002), the consistency of sieve extremum estimates is a generic
property.
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can use d(θ, θ̃) = |β − β̃|e + ‖h − h̃‖H, where | · |e denotes the Euclidean norm, and
‖ · ‖H is a norm imposed on the function space H. For example, if H = Cm(X ) with a
bounded X , we could take ‖h‖H to be ‖h‖∞ or ‖h‖2,leb.

CONDITION 3.1 (Identification).
(i) Q(θo) > −∞, and if Q(θo) = +∞ then Q(θ) < +∞ for all θ ∈ Θk \ {θo} for

all k � 1;
(ii) there are a nonincreasing positive function δ( ) and a positive function g( ) such

that for all ε > 0 and for all k � 1,

Q(θo) − sup
{θ∈Θk : d(θ,θo)�ε}

Q(θ) � δ(k)g(ε) > 0.

CONDITION 3.2 (Sieve spaces). Θk ⊆ Θk+1 ⊆ Θ for all k � 1; and there exists a
sequence πkθo ∈ Θk such that d(θo, πkθo) → 0 as k → ∞.

CONDITION 3.3 (Continuity).
(i) For each k � 1, Q(θ) is upper semicontinuous on Θk under the metric d(·,·);

(ii) |Q(θo) − Q(πk(n)θo)| = o(δ(k(n))).

CONDITION 3.4 (Compact sieve space). The sieve spaces, Θk , are compact under
d(·,·).

CONDITION 3.5 (Uniform convergence over sieves).
(i) For all k � 1, plimn→∞ supθ∈Θk

|Q̂n(θ) − Q(θ)| = 0;
(ii) ĉ(k(n)) = oP (δ(k(n))) where ĉ(k(n)) ≡ supθ∈Θk(n)

|Q̂n(θ) − Q(θ)|;
(iii) ηk(n) = o(δ(k(n))).

THEOREM 3.1. Let θ̂n be the approximate sieve extremum estimator defined by (2.9).
If Conditions 3.1–3.5 hold, then d(θ̂n, θo) = oP (1).

PROOF. By Remark 2.1, θ̂n is well defined and measurable. For all ε > 0, under Con-
ditions 3.3(i) and 3.4, sup{θ∈Θk(n): d(θ,θo)�ε} Q(θ) exists. By definition, we have for all
ε > 0,

Pr
(
d(θ̂n, θo) > ε

)
� Pr
(

sup
{θ∈Θk(n): d(θ,θo)�ε}

Q̂n(θ) � Q̂n(πk(n)θo) − O(ηk(n))
)

� P1 + P2,

where

P1 ≡ Pr
(

sup
{θ∈Θk(n): d(θ,θo)�ε}

∣∣Q̂n(θ) − Q(θ)
∣∣ > ν̂

(
k(n)
))

� Pr
(

sup
θ∈Θk(n)

∣∣Q̂n(θ) − Q(θ)
∣∣ > ν̂

(
k(n)
))

,
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and

P2 ≡ Pr
(

sup
{θ∈Θk(n): d(θ,θo)�ε}

Q(θ) � Q(πk(n)θo) − 2ν̂
(
k(n)
)− O(ηk(n))

)

= Pr
(

2ν̂
(
k(n)
)+ {Q(θo) − Q(πk(n)θo)

}+ O(ηk(n)) � Q(θo)

− sup
{θ∈Θk(n): d(θ,θo)�ε}

Q(θ)
)
.

Choosing ν̂(k(n)) = ĉ(k(n)) it follows that the P1 = 0 by definition of ĉ(k(n))

and Condition 3.5(i), and P2 � Pr[2ĉ(k(n)) + {Q(θo) − Q(πk(n)θo)} + O(ηk(n)) �
δ(k(n))g(ε)] → 0 by Conditions 3.1 and 3.5(ii). �

REMARK 3.1. (1) Theorem 3.1 is applicable to both well-posed and ill-posed semi-
nonparametric models. When the problem (such as the nonparametric IV regression
E[Y1 − ho(Y2)|X] = 0) is ill-posed, one may have lim infk δ(k) = 0, which is still
allowed by Conditions 3.1(ii), 3.3(ii) and 3.5(ii)(iii). See Chen and Pouzo (2006) for
alternative general consistency theorems for sieve extremum estimates that allow for
ill-posed problems.

(2) If lim infk δ(k) > 0, then Condition 3.5(iii) is automatically satisfied with ηk(n) =
o(1), Condition 3.5(ii) is implied by Condition 3.5(i), and Condition 3.3(ii) is implied
by Condition 3.2 and Condition 3.3(ii)′:

CONDITION 3.3(ii)′. Q(θ) is continuous at θo in Θ .

(3) Theorem 3.1 is an extension of Corollary 2.6 of White and Wooldridge (1991).
Their corollary implies d(θ̂n, θo) = oP (1) under Conditions 3.4, 3.5(i) and Condi-
tions 3.1′, 3.2′ and 3.3′:

CONDITION 3.1′.
(i) Q(θ) is continuous at θo in Θ , Q(θo) > −∞;

(ii) for all ε > 0, Q(θo) > sup{θ∈Θ: d(θ,θo)�ε} Q(θ).

CONDITION 3.2′. Θk ⊆ Θk+1 ⊆ Θ for all k � 1; and for any θ ∈ Θ there exists
πkθ ∈ Θk such that d(θ, πkθ) → 0 as k → ∞.

CONDITION 3.3′. For each k � 1,
(i) Q̂n(θ) is a measurable function of the data {Zt }nt=1 for all θ ∈ Θk; and

(ii) for any data {Zt }nt=1, Q̂n(θ) is upper semicontinuous on Θk under the metric
d(·,·).

We note that under Condition 3.2, Condition 3.1′(ii) implies that Condition 3.1(ii) is
satisfied with δ(k) = const. > 0, hence Remark 3.1(2) is applicable and d(θ̂n, θo) =
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oP (1). Unfortunately, Condition 3.1′(ii) may fail to be satisfied in some ill-posed semi-
nonparametric models when Θ is a noncompact infinite-dimensional parameter space.

(4) Condition 3.1′ is satisfied by Condition 3.1′′:

CONDITION 3.1′′.
(i) Θ is compact under d(·,·), and Q(θ) is upper semicontinuous on Θ under d(·,·);

(ii) Q(θ) is uniquely maximized at θo in Θ , Q(θo) > −∞.

As a consequence of Theorem 3.1, we obtain: d(θ̂n, θo) = oP (1) under Condi-
tions 3.1′′, 3.2, 3.4 and 3.5(i). This result is very similar to Lemmas A.1 in Newey
and Powell (2003) and Chernozhukov, Imbens and Newey (2007).

REMARK 3.2. If θ̂n satisfies Q̂n(θ̂n) � supθ∈Θn
Q̂n(θ) − Oa.s.(ηn), then d(θ̂n, θo) =

oa.s.(1) under Conditions 3.1–3.4 and Condition 3.5′′:

CONDITION 3.5′′.
(i) For all k � 1, supθ∈Θk

|Q̂n(θ) − Q(θ)| = oa.s.(1);
(ii) ĉ(k(n)) = oa.s.(δ(k(n)));

(iii) ηk(n) = o(δ(k(n))).

This extends Gallant’s (1987) theorem to almost sure convergence of approximate
sieve extremum estimates, allowing for noncompact infinite-dimensional Θ and for ill-
posed semi-nonparametric models.

Note that when Θk = Θ is compact, the conditions for Theorem 3.1 become the stan-
dard assumptions imposed for consistency of parametric extremum estimation in Newey
and McFadden (1994) and White (1994). For semi-nonparametric models, the entire
parameter space Θ contains infinite-dimensional unknown functions and is generally
noncompact. Nevertheless, one can easily construct compact approximating parameter
spaces (sieves) Θk . Moreover, it is relatively easy to verify the uniform convergence
over compact sieve spaces,29 while “plimn→∞ supθ∈Θ |Q̂n(θ) − Q(θ)| = 0” may fail
when the space Θ is too “large” or too “complex”.

We now review some notions of complexity of a function class. Let Lr(Po), r ∈
[1,∞), denote the space of real-valued random variables with finite rth moments and
‖ · ‖r denote the Lr(Po)-norm. Let Fn = {g(θ, ·): θ ∈ Θn} be a class of real-valued,
Lr(Po)-measurable functions indexed by θ ∈ Θn. One notion of complexity of the class
Fn is the Lr(Po)-covering numbers without bracketing, which is the minimal number
of w-balls {{f : ‖f − gj‖r � w}, ‖gj‖r < ∞, j = 1, . . . , N} that cover Fn, denoted

29 One could modify the proof of Corollary 2.2 in Newey (1991) or the proof of Lemma 1 in Andrews (1992)
to provide sufficient conditions for Condition 3.5(i) in terms of Conditions 3.3(i) and 3.4 and the pointwise
convergence over Θk .
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as N(w,Fn, ‖ · ‖r ). Likewise, we can define N(w,Fn, ‖ · ‖n,r ) as the Lr(Pn)-(random)
covering numbers without bracketing, where ‖ · ‖n,r denotes the Lr(Pn)-norm and Pn

denotes the empirical measure of a random sample {Zi}ni=1. Sometimes the covering
numbers of Fn can grow to infinity very fast as n grows; it is then more convenient
to measure the complexity of Fn using the notion of Lr(Po)-metric entropy without
bracketing, H(w,Fn, ‖ · ‖r ) ≡ log(N(w,Fn, ‖ · ‖r )), and the Lr(Pn)-(random) metric
entropy without bracketing, H(w,Fn, ‖ · ‖n,r ) ≡ log(N(w,Fn, ‖ · ‖n,r )). Detailed
discussions of metric entropy can be found in Pollard (1984), Andrews (1994a), van der
Vaart and Wellner (1996) and van de Geer (2000).

When the function class Θ is too complex in terms of its metric entropy be-
ing too large, then the uniform convergence over the entire parameter space Θ may
fail, but the uniform convergence over a sieve space Θn (i.e., Condition 3.5(i)) can
still be satisfied. For example, when Q̂n(θ) = n−1∑n

t=1 l(θ, Zt ) and {Zt }nt=1 is
i.i.d., E{supθ∈Θn

|l(θ, Zt )|} < ∞, then Condition 3.5(i) is satisfied if and only if
H(w, {l(θ, ·): θ ∈ Θn}, ‖ · ‖n,1) = oP (n) for all w > 0; see Pollard (1984).
When the space Θ is infinite-dimensional and not totally bounded, H(w, {l(θ, ·): θ ∈
Θ}, ‖ · ‖n,1) = OP (n) may occur; hence supθ∈Θ |Q̂n(θ) − Q(θ)| 
= oP (1). For
such a case, the extremum estimator obtained by maximizing over the entire parameter
space Θ , arg supθ∈Θ Q̂n(θ), may fail to exist or be inconsistent.

Conditions 3.1–3.4 of Theorem 3.1 are basic regularity conditions; one can provide
more primitive sufficient assumptions for Condition 3.5 in specific applications. In the
next remarks we present simple consistency results for sieve M-estimators and sieve
MD-estimators. Let N(w,Θn, d) denote the minimal number of w-radius balls (under
the metric d) that cover the sieve space Θn.

REMARK 3.3 (Consistency of sieve M-estimator θ̂n = arg supθ∈Θn
n−1∑n

t=1 l(θ, Zt )−
oP (1)). Suppose that Conditions 3.2 and 3.4 hold, that Condition 3.1 is satisfied with
Q(θ) = E{l(θ, Zt )} and lim infk(n) δ(k(n)) > 0, and that E{l(θ, Zt )} is continuous at
θ = θo ∈ Θ . Then d(θ̂n, θo) = oP (1) under the following Condition 3.5M:

CONDITION 3.5M.
(i) {Zt }nt=1 is i.i.d., E{supθ∈Θn

|l(θ, Zt )|} is bounded;
(ii) there are a finite s > 0 and a random variable U(Zt ) with E{U(Zt)} < ∞ such

that supθ,θ ′∈Θn: d(θ,θ ′)�δ |l(θ, Zt ) − l(θ ′, Zt )| � δsU(Zt );
(iii) log N(δ1/s,Θn, d) = o(n) for all δ > 0.

Remark 3.3 is a direct consequence of Theorem 3.1 and Pollard’s (1984) The-
orem II.24. This is because Condition 3.5M(i) and (ii) imply H(w, {l(θ, ·): θ ∈
Θn}, ‖ · ‖n,1) � log N(δ1/s,Θn, d), hence Condition 3.5M implies Condition 3.5(i).
See White and Wooldridge (1991, Theorem 2.5) and Ai and Chen (2007, Lemma A.1)
for more general sufficient assumptions for Condition 3.5.
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REMARK 3.4 (Consistency of sieve MD-estimator θ̂n = arg infθ∈Θn
1
n

∑n
t=1 m̂(Xt , θ)′ ×

{Σ̂(Xt )}−1m̂(Xt , θ) + oP (1)). Suppose that Conditions 3.2 and 3.4 hold, that
m(Xt , θ) ≡ E{ρ(Zt , θ)|Xt } = 0 only when θ = θo ∈ Θ , that for all Xt , m(Xt , θ)

is continuous in θo under the metric d(·,·), and that lim infk(n) δ(k(n)) > 0. Then
d(θ̂n, θo) = oP (1) under the following Condition 3.5MD:

CONDITION 3.5MD.
(i) {Zt }nt=1 is i.i.d., E{supθ∈Θn

|m(Xt , θ)′m(Xt , θ)|} is bounded;
(ii) there are a finite s > 0 and a U(Xt) with E{[U(Xt)]2} < ∞ such that

supθ,θ ′∈Θn: d(θ,θ ′)�δ |m(Xt , θ) − m(Xt , θ
′)| � δsU(Xt );

(iii) log N(δ1/s,Θn, d) = o(n) for all δ > 0;
(iv) uniformly over Xt , Σ̂(Xt ) = Σ(Xt) + oP (1) for a positive definite and finite

Σ(Xt);
(v) 1

n

∑n
i=1 |m̂(Xi, θ) − m(Xi, θ)|2 = oP (1) uniformly over θ ∈ Θn.

See Chen and Pouzo (2006) for a proof of Remark 3.4; they also provide suf-
ficient conditions for the consistency of sieve MD-estimator θ̂n without imposing
lim infk(n) δ(k(n)) > 0. Also see Newey and Powell (2003) and Ai and Chen (1999,
2003, 2007) for primitive sufficient conditions for Condition 3.5MD(iv) and (v) where
Σ̂(Xt ) and m̂(Xt , θ) are kernel or series estimates of Σ(Xt) and m(Xt , θ), respectively.

Finally, Theorem 3.1 is also applicable to derive convergence of sieve extremum es-
timates to some pseudo-true values in misspecified semi-nonparametric models; see
Lemma 3.1 of Ai and Chen (2007) for such an application.

3.2. Convergence rates of sieve M-estimators

There are many results on convergence rates of sieve M-estimators of unknown func-
tions. For i.i.d. data, Van de Geer (1995) obtained the rate for sieve LS regression. Shen
and Wong (1994), and Birgé and Massart (1998) derived the rates for general sieve
M-estimation. Van de Geer (1993) and Wong and Shen (1995) obtained the rates for
sieve MLE. For time series data, Chen and Shen (1998) derived the rate for sieve M-
estimation of stationary beta-mixing models.30 The general theory on convergence rates
is technically involved and relies on the theory of empirical processes. In this section
we present a simple version of the rate results for sieve M-estimation whose conditions
are easy to verify. However, readers who are interested in the most general theory on
convergence rates of sieve M-estimates are encouraged to read the papers by Shen and
Wong (1994), Wong and Shen (1995) and Birgé and Massart (1998).

30 It is impossible to mention here all the existing results on convergence rates of sieve M-estimates. There
are many papers on convergence rates of particular sieves, such as the work on polynomial spline regression
and density estimation by Stone and his collaborators, see Subsection 3.3 for details; the work on wavelets
by Donoho, Johnstone and others [see e.g., Donoho et al. (1995)]; the work on neural networks by Barron
(1993), White (1990) and others.
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Recall θo ∈ Θ and that the approximate sieve M-estimate θ̂n solves:

(3.1)n−1
n∑

t=1

l(θ̂n, Zt ) � sup
θ∈Θn

n−1
n∑

t=1

l(θ, Zt ) − OP

(
ε2
n

)
with εn → 0.

Let d(θo, θ) be a (pseudo-) metric on Θ such that d(θo, θ̂n) = oP (1). Let K(θo, θ) ≡
E(l(θo, Zt ) − l(θ, Zt )).31 Let ‖θo − θ‖ be a metric on Θ such that ‖θo − θ‖ �
const.d(θo, θ) for all θ ∈ Θ , and ‖θo − θ‖ � K1/2(θo, θ) for θ ∈ Θ with d(θo, θ) =
o(1). We shall give a convergence rate for sieve estimate θ̂n under ‖θo − θ‖, and thus
automatically give an upper bound on d(θo, θ̂n), where d is any other metric on Θ sat-
isfying d(θo, θ) � const.K1/2(θo, θ).

In order for θ̂n to converge to θo at a fast rate under the metric ‖θo − θ̂n‖, not only
does the sieve approximation error rate, ‖θo − πnθo‖, have to approach zero suitably
fast, but additionally, the sieve space, Θn, must not be too complex. We have already in-
troduced Lr(Po)-covering numbers (metric entropy) without bracketing as a complexity
measure of a class Fn = {g(θ, ·): θ ∈ Θn}, we now consider another measure of com-
plexity. Let Lr be the completion of Fn under the norm ‖ · ‖r . For any given w > 0,
if there exists a collection of functions (brackets) {gl

1, g
u
1 , . . . , gl

N , gu
N } ⊂ Lr such that

max1�j�N ‖gu
j − gl

j‖r � w and for any g ∈ Fn, there exists j ∈ {1, . . . , N} with

gl
j � g � gu

j a.e.-Po, then the minimal number of such brackets, N[ ](w,Fn, ‖ · ‖r ) ≡
min(N : {gl

1, g
u
1 , . . . , gl

N , gu
N }), is called the Lr(Po)-covering numbers with bracketing.

Likewise, H[ ](w,Fn, ‖ · ‖r ) ≡ log(N[ ](w,Fn, ‖ · ‖r )) is called the Lr(Po)-metric en-
tropy with bracketing of the class Fn. See Pollard (1984), Andrews (1994a), Van der
Vaart and Wellner (1996) and Van de Geer (2000) for more details.

We now present a result of Chen and Shen (1996) for i.i.d. data; see Chen and Shen
(1998) for the stationary beta-mixing case and Chen and White (1999) for the stationary
uniform-mixing case.32

CONDITION 3.6. {Zt }nt=1 is an i.i.d. or m-dependent sequence.

CONDITION 3.7. There is C1 > 0 such that for all small ε > 0,

sup
{θ∈Θn: ‖θo−θ‖�ε}

Var
(
l(θ, Zt ) − l(θo, Zt )

)
� C1ε

2.

CONDITION 3.8. For any δ > 0, there exists a constant s ∈ (0, 2) such that

sup
{θ∈Θn: ‖θo−θ‖�δ}

∣∣l(θ, Zt ) − l(θo, Zt )
∣∣ � δsU(Zt ),

with E([U(Zt )]γ ) � C2 for some γ � 2.

31 If the criterion is a log-likelihood, then K(θo, θ) is simply the Kullback–Leibler information.
32 See Fan and Yao (2003) for description of various nonparametric methods applied to nonlinear time series
models.
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Conditions 3.6 and 3.7 imply that, within a neighborhood of θo,

Var

(
n−1/2

n∑
t=1

(
l(θ, Zt ) − l(θo, Zt )

))

behaves like ‖θo − θ‖2. Condition 3.8 implies that, when restricting to a local neigh-
borhood of θo, l(θ, Zt ) is “continuous” at θo with respect to a metric ‖θo − θ‖, which
is locally equivalent to K1/2. Conditions 3.7 and 3.8 are usually easily verifiable by
exploiting the specific form of the criterion function.

Denote Fn = {l(θ, Zt ) − l(θo, Zt ): ‖θo − θ‖ � δ, θ ∈ Θn}, and for some constant
b > 0, let33

δn = inf

{
δ ∈ (0, 1):

1√
nδ2

∫ δ

bδ2

√
H[ ]
(
w,Fn, ‖ · ‖2

)
dw � const.

}
.

To calculate δn, an upper bound on H[ ](w,Fn, ‖ · ‖2) is often enough, and, fortunately
for us, much of the work has already been done. For instance, according to Lemma 2.1
of Ossiander (1987) we have that, H[ ](w,Fn, ‖ · ‖2) � H(w,Fn, ‖ · ‖∞). Moreover,
Condition 3.8 implies that

H[ ]
(
w,Fn, ‖ · ‖2

)
� log N

(
w1/s,Θn, ‖ · ‖).

For finite-dimensional linear sieves such as those listed in Subsection 2.3.1 we have
log N(ε,Θn, ‖ · ‖) � const. dim(Θn) log( 1

ε
) [see e.g. Chen and Shen (1998)]; and

for neural network and ridgelet nonlinear sieves we have log N(ε,Θn, ‖ · ‖) �
const. dim(Θn) log(

dim(Θn)
ε

) [see e.g. Chen and White (1999)].

THEOREM 3.2. Let θ̂n be the approximate sieve M-estimator defined by (3.1). If Con-
ditions 3.6–3.8 hold, then

‖θo − θ̂n‖ = OP (εn), with εn = max
{
δn, ‖θo − πnθo‖

}
.

We note that δn increases with the complexity of the sieve Θn and can be interpreted
as a measure of the standard deviation term, while the deterministic approximation error
‖θo −πnθo‖ decreases with the complexity of the sieve Θn and is a measure of the bias.
The best convergence rate can be obtained by choosing the complexity of the sieve Θn

such that δn � ‖θo − πnθo‖.
Chen and Shen (1998) have demonstrated how to apply the time series version of

this theorem with three examples: first, they considered a multivariate nonparametric
regression with either a neural network sieve, a wavelet sieve or a spline sieve; second,
a partially additive time series model via spline and Fourier series sieves; and third,

33 There is a typo in Chen and Shen (1998, p. 297), where the “sup” in the definition of δn should be replaced
by the “inf”. Nevertheless, all the other calculations of δn in Chen and Shen (1998) are correct.
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a transformation model with an unknown link via a monotone spline sieve. Chen and
White (1999) considered a time series nonparametric conditional quantile regression
via neural network sieve and multivariate conditional density estimation via neural net-
work sieve. Chen and Conley (2001) applied this theorem to a varying coefficient VAR
model with a flexible spatial conditional covariance. In the following we illustrate the
verification of the conditions of Theorem 3.2 with two examples.

3.2.1. Example: Additive mean regression with a monotone constraint

Suppose that the i.i.d. data {Yt ,X
′
t = (X1t , . . . , Xqt )}nt=1 are generated according to

Yt = ho1(X1t ) + · · · + hoq(Xqt ) + et , E[et |Xt ] = 0.

Let θo = (ho1, . . . , hoq)′ ∈ Θ = H be the parameters of interest with H = H1 × · · · ×
Hq to be specified in Assumption 3.1. For simplicity, we assume that dim(Xj ) = 1
for j = 1, . . . , q, dim(X) = q and dim(Y ) = 1. We estimate the regression function
θo(X) = ∑q

j=1 hoj (Xjt ) by maximizing over a sieve Θn = Hn the criterion Q̂n(θ) =
n−1∑n

t=1 l(θ, Zt ), where l(θ, Zt ) = −(1/2)[Yt −∑q

j=1 hj (Xjt )]2 and Zt = (Yt , X
′
t )

′.
Let ‖θ − θo‖2 = E(θ(Xt ) − θo(Xt ))

2 = E{∑q

j=1[hj (Xjt ) − hoj (Xjt )]}2.

ASSUMPTION 3.1.
(i) ho1 ∈ H1 = C([b11, b21]) ∩ {h: nondecreasing};

(ii) for j = 2, . . . , q, hoj ∈ Hj = Λ
pj
cj

([b1j , b2j ]) with pj > 1/2; and hoj (x
∗
j ) = 0

for some known x∗
j ∈ (b1j , b2j ).

ASSUMPTION 3.2. σ 2(X) ≡ E[e2|X] is bounded.

Assumption 3.1(ii) is sufficient for identification, and Assumption 3.2 is a simple
regularity condition that has been imposed in many papers; see e.g. Newey (1997).

The sieve will be chosen to have the form Hn = H1
n × · · · × Hq

n . First we let H1
n

be a shape-preserving sieve such as the monotone spline wavelet sieve MSplWav(r1 −
1, 2J1n) with r1 � 1 and k1n = 2J1n in Subsection 2.3.5. For j = 2, . . . , q, we let Hj

n =
{hj ∈ Θjn: hj (x

∗
j ) = 0, ‖hj‖∞ � cj } where Θjn can be any of the finite-dimensional

linear sieve examples in Subsection 2.3.1 such as Θjn = Pol(kjn) or TriPol(kjn) or
Spl(rj , kjn) with rj � [pj ] + 1, or Wav(mj , 2Jjn) with mj > pj and kjn = 2Jjn .

In the following result we denote p1 = 1 and p = min{p1, p2, . . . , pq}.

PROPOSITION 3.3. Let θ̂n be the sieve M-estimate. Suppose that Assumptions 3.1 and
3.2 hold. Let kjn = O(n1/(2pj +1)) for j = 1, . . . , q. Then ‖θ̂n−θo‖ = OP (n−p/(2p+1))

with p = min{p1, . . . , pq}.

PROOF. Theorem 3.2 is readily applicable to prove this result. It is easy to see that
K(θo, θ) � ‖θ −θo‖2. Condition 3.6 is assumed. Now we check Conditions 3.7 and 3.8.
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Since l(θ, Zt ) − l(θo, Zt ) = (θ − θo)[et + (θo − θ)/2], we have

E
[
l(θ, Zt ) − l(θo, Zt )

]2 � 2E
(
σ 2(Xt )

[
θo(Xt ) − θ(Xt )

]2)
+ (1/2)E

([
θo(Xt ) − θ(Xt )

]4)
� const.‖θ − θo‖2 + (1/2)E

([
θo(Xt ) − θ(Xt )

]4)
.

By Theorem 1 of Gabushin (1967) when p is an integer and Lemma 2 in Chen and Shen
(1998) for any p > 0, we have ‖θ − θo‖∞ � c‖θ − θo‖2p/(2p+1). Hence

E
([

θo(Xt ) − θ(Xt )
]4) � sup

x

[
θ(x) − θo(x)

]2
E
([

θo(Xt ) − θ(Xt )
]2)

� C‖θ − θo‖2(1+[2p/(2p+1)]).

So Condition 3.7 is satisfied for all ε � 1. On the other hand,∣∣l(θ, Zt ) − l(θo, Zt )
∣∣ � ‖θ − θo‖∞

[|et | + (‖θo‖∞ + ‖θ‖∞
)
/2
]

a.s.

Using Lemma 2 in Chen and Shen (1998) we see that Condition 3.8 is then satisfied
with s = 2p/(2p + 1), U(Zt) = |et | + const. and γ = 2.

To apply Theorem 3.2, it remains to compute the deterministic approximation error
rate ‖θo − πnθo‖ and the metric entropy with bracketing H[ ](w,Fn, ‖ · ‖2) of the class
Fn = {l(θ, Zt ) − l(θo, Zt ): ‖θ − θo‖ � δ, θ ∈ Θn}. By definition, ‖θo − πnθo‖ �
const. max{‖hoj − πnhoj‖∞: j = 1, . . . , q}. Let C = √E{U(Zt)2}, then for all 0 <
w
C

� δ < 1, H[ ](w,Fn, ‖ · ‖2) �
∑q

j=1 log N(w
C

,Hj
n, ‖ · ‖∞).

The final bit of calculation now depends on the choice of sieves. First, ‖ho1 −
πnho1‖∞ = O((k1n)

−1) by Anastassiou and Yu (1992a); and for j = 2, . . . , q,
Hj = Λ

pj
cj

, ‖hoj − πnhoj‖∞ = O((kjn)
−pj ) by Lorentz (1966). Second, for all

j = 1, 2, . . . , q, log N(w
C

,Hj
n, ‖ · ‖∞) � const. × kjn × log(1 + 4cj

w
) by Lemma 2.5 in

van de Geer (2000). Hence δn solves

1√
nδ2

n

∫ δn

bδ2
n

√
H[ ]
(
w,Fn, ‖ · ‖2

)
dw

� 1√
nδ2

n

max
j=1,...,q

∫ δn

bδ2
n

√
kjn × log

(
1 + 4cj

w

)
dw

� 1√
nδ2

n

max
j=1,...,q

√
kjn × δn � const.

and the solution is δn � maxj=1,...,q

√
kjn

n
. By Theorem 3.2, ‖θ̂n − θo‖ =

OP (maxj=1,...,q{(kjn)
−pj , δn}). With the choice of kjn = O(n1/(2pj +1)) for j =

1, . . . , q, we obtain ‖θ̂n − θo‖ = OP (n−p/(2p+1)) with p = min{p1, . . . , pq} > 0.5.
This immediately implies ‖ĥj − hoj‖2 = OP (n−p/(2p+1)) for j = 1, . . . , q. �
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REMARK 3.5. (1) Since the parameter space H = H1 ×· · ·×Hq specified in Assump-
tion 3.1 is compact with respect to the norm ‖ · ‖, we can take the original parameter
space H as the sieve space Hn. Applying Theorem 3.2 again, note that the approxima-
tion error ‖πnθo − θo‖ = 0, we have ‖θ̂n − θo‖ = OP (δn), where δn solves:

1√
nδ2

n

∫ δn

bδ2
n

√√√√ q∑
j=1

log N
(
w,Hj , ‖ · ‖∞

)
dw

� 1√
nδ2

n

∫ δn

bδ2
n

√√√√ q∑
j=1

(
cj

w

)1/pj

dw by Birman and Solomjak (1967)

� 1√
nδ2

n

max
j=1,...,q

const.(δn)
1− 1

2pj � const.

which is satisfied if δn = O(n−p/(2p+1)) with p = min{p1, . . . , pq} > 0.5. However, it
is unclear how one can implement such an optimization over the entire parameter space
H given a finite data set.

(2) Suppose that in Proposition 3.3 we replace Assumption 3.1(i) by ho1 ∈
Λ

p1
c1 ([b11, b21]) and let H1

n = Pol(k1n), or TriPol(k1n), or Spl(r1, k1n) with r1 �
[p1]+1, or Wav(m1, 2J1n) with m1 > p1, 2J1n = k1n. Let p = min{p1, . . . , pq} > 0.5.
Then we have ‖ĥj − hoj‖2 = OP (n−p/(2p+1)) for j = 1, . . . , q. Further, let
‖Dmĥj − Dmhoj‖2 = {E[Dmĥj (Xjt ) − Dmhoj (Xjt )]2}1/2 for an integer m � 1.

If p > m � 1 then ‖Dmĥj − Dmhoj‖2 = OP (k
−(p−m)
jn ) = OP (n−(p−m)/(2p+1)) for

j = 1, . . . , q. This convergence rate achieves the optimal one derived in Stone (1982).

3.2.2. Example: Multivariate quantile regression

Suppose that the i.i.d. data {Yt ,Xt }nt=1 are generated according to

Yt = θo(Xt ) + et , P [et � 0|Xt ] = α ∈ (0, 1),

where Xt ∈ X = Rd , d � 1. We estimate the conditional quantile function θo(·) by
maximizing over Θn the criterion Q̂n(θ) = n−1∑n

t=1 l(θ, Yt , Xt ), where l(θ, Yt , Xt ) =
{1(Yt < θ(Xt )) − α}[Yt − θ(Xt )]. Let ‖θ − θo‖2 = E(θ(Xt ) − θo(Xt ))

2 and W 1
1 (X )

be the Sobolev space defined in Subsection 2.3.3.

ASSUMPTION 3.3. θo ∈ Θ = W 1
1 (X ).

ASSUMPTION 3.4. Let fe|X be the conditional density of et given Xt satisfying 0 <

infx∈X fe|X=x(0) � supx∈X fe|X=x(0) < ∞ and supx∈X |fe|X=x(z)−fe|X=x(0)| → 0
as |z| → 0.

It is known that the tensor product of finite-dimensional linear sieves such as those
in Subsection 2.3.1 will not be able to approximate functions in Wm

1 (X ), m � 1, well,
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hence the sieve convergence rates based on those linear sieves will be slower than those
based on nonlinear sieves; see e.g. Chen and Shen (1998, Proposition 1, Case 1.3(ii))
for such an example. For time series regression models, Chen and White (1999), Chen,
Racine and Swanson (2001) have shown that neural network sieves lead to faster con-
vergence rates for functions in Wm

1 (X ). Thus we consider the following Gaussian radial
basis ANN sieve Θn for the unknown θo ∈ W 1

1 (X ):

Θn =
{

α0 +
kn∑

j=1

αjG

( {(x − γj )
′(x − γj )}1/2

σj

)
,

kn∑
j=0

|αj | � c0, |γj | � c1, 0 < σj � c2

}
,

where G is the standard Gaussian density function.

PROPOSITION 3.4. Let θ̂n be the sieve M-estimate. Suppose that Assumptions 3.3 and
3.4 hold. Let k

2(1+1/(d+1))
n log(kn) = O(n). Then

‖θ̂n − θo‖ = OP

([n/ log n]−(1+2/(d+1))/[4(1+1/(d+1))]).
PROOF. Theorem 3.2 is readily applicable to prove this result. Condition 3.6 is directly
assumed. By the above assumptions on conditional density fe|X, it is easy to check that
K(θo, θ) � E(θ(Xt ) − θo(Xt ))

2; see Chen and White (1999, pp. 686–687) for details.
Now let us check Conditions 3.7 and 3.8. Note that |l(θ, Yt , Xt ) − l(θo, Yt , Xt )| �
max(α, 1 − α)|θ(Xt ) − θo(Xt )|, we have

Var
(
l(θ, Yt , Xt ) − l(θo, Yt , Xt )

)
� E
[
l(θ, Yt , Xt ) − l(θo, Yt , Xt )

]2
� E
[
θ(Xt ) − θo(Xt )

]2
,

and thus Condition 3.7 is satisfied. Moreover, we have

sup
{θ∈Θn: ‖θ−θo‖�δ}

∣∣l(θ, Yt , Xt ) − l(θo, Yt , Xt )
∣∣ � sup

{θ∈Θn: ‖θ−θo‖�δ}

∣∣θ(Xt ) − θo(Xt )
∣∣,

and ‖θ −θo‖∞ � c‖θ −θo‖2/3 by Theorem 1 of Gabushin (1967). Hence, Condition 3.8
is satisfied with s = 2/3, U(Xt) ≡ c.

Now by results in Chen, Racine and Swanson (2001),

‖θo − πnθo‖ � const.(kn)
−1/2−1/(d+1)

and log N(w,Θn, ‖ · ‖∞) � const.kn log( kn

w
). With k

2(1+1/(d+1))
n log(kn) = O(n), it

is easy to see that ‖θ̂n − θo‖ = OP ([n/ log n]−(1+2/(d+1))/[4(1+1/(d+1))]) by applying
Theorem 3.2. �
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3.3. Convergence rates of series estimators

In this subsection we present the convergence rate of the series estimators for the con-
cave extended linear models. Recall that in this framework, the parameter space, Θ , is
a linear space which is often a subspace of the space of square integrable functions,
the sample criterion function Q̂n(θ) = n−1∑n

i=1 l(θ, Zi) is concave in θ ∈ Θ almost
surely and the population criterion function Q(θ) = E[l(θ, Zi)] is strictly concave in
θ ∈ Θ . The results reported here are largely based on those of Huang (1998a, 2001) and
Newey (1997).

Throughout this subsection, {Zi}ni=1 is i.i.d. and θ denotes a real-valued function with
a bounded domain, X ⊂ Rd . We use ‖θ̂ − θo‖ to measure the discrepancy between θ̂

and θo.

CONDITION 3.9. ‖θ‖ � ‖θ‖2,leb for any Lebesgue square-integrable function θ .

In the multivariate LS regression of Example 2.4, θo(X) = E[Y |X], a natural choice
for the norm is ‖θ‖ = ‖θ‖2 = {E[θ(X)2]}1/2. If the density of X is bounded away from
zero and infinity, then Condition 3.9 is satisfied. In general a natural choice of the norm,
‖ · ‖, will depend on the specific application and on the data generating process.

We impose the following condition on the linear sieve space.

CONDITION 3.10. The finite-dimensional linear sieve space, Θn, is theoretically iden-
tifiable in the sense that any θ ∈ Θn with ‖θ‖ = 0 implies that θ(u) = 0 everywhere.

Under Condition 3.9, Condition 3.10 is trivially satisfied by commonly used linear
approximation spaces such as those given in Subsection 2.3.1.

CONDITION 3.11. θo = arg maxΘ E[l(θ, Z)] satisfies ‖θo‖∞ � Ko < ∞.

CONDITION 3.12. For any bounded functions θ1, θ2 ∈ Θ , E[l(θ1 + τ(θ2 − θ1), Z)]
is twice continuously differentiable with respect to τ ∈ [0, 1]. For any constant 0 <

K < ∞, ∂2

∂τ 2 E[l(θ1 + τ(θ2 − θ1), Z)] � −‖θ2 − θ1‖2 for θ1, θ2 ∈ Θ with ‖θ1‖∞ � K

and ‖θ2‖∞ � K and 0 � τ � 1.

Given the above conditions, we can define θn ≡ arg maxθ∈Θn E[l(θ, Z)], and it is
easy to see that ‖θn − θo‖ � infθ∈Θn ‖θ − θo‖.

CONDITION 3.13. For any pair of functions θ1, θ2 ∈ Θn, l(θ1 + τ(θ2 − θ1), Z) is twice
continuously differentiable with respect to τ . Moreover,

(i)

sup
g∈Θn

| ∂
∂τ

l(θn + τg, Z)|τ=0|
‖g‖ = OP

(√
dim(Θn)

n

)
;
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(ii) for any constant 0 < K < ∞, there is a c > 0 such that ∂2

∂τ 2 l(θ1 + τ(θ2 −
θ1), Z) � −c‖θ2 − θ1‖2 for any θ1, θ2 ∈ Θn with ‖θ1‖∞ � K and ‖θ2‖∞ � K

and 0 � τ � 1, except on an event whose probability tends to zero as n → ∞.

Denote kn = dim(Θn), An ≡ supθ∈Θn,‖θ‖2,leb 
=0(‖θ‖∞/‖θ‖2,leb) and ρ2n ≡
infθ∈Θn ‖θ − θo‖2,leb. Under Conditions 3.9–3.11, we have ρ2n � infθ∈Θn ‖θ − θo‖.
The following result is a special case of Huang (2001) for the sieve estimator of a con-
cave extended linear model.

THEOREM 3.5. Suppose Conditions 3.9–3.13 hold. Let limn→∞ Anρ2n = 0 and
limn→∞ A2

nkn/n = 0. Then the series estimator, θ̂ , exists uniquely with probability
approaching one as n → ∞, and

‖θ̂ − θo‖ = OP

(√
kn

n
+ ρ2n

)
.

This theorem could be regarded as a special case of Theorem 3.2 by taking δn �
√

kn

n

and ‖πnθo − θo‖ � ρ2n. To see this, first note that under Conditions 3.9–3.11 there is an
essentially unique element πnθo ∈ Θn such that ‖πnθo − θo‖ = infθ∈Θn ‖θ − θo‖, and
‖πnθo − θo‖ � ‖πnθo − θo‖2,leb � ρ2n, which is the approximation error rate. Second,
within the framework of concave extended linear models, for a finite-dimensional linear

sieve Θn we have log N(w,Θn, ‖ · ‖∞) � const.kn log( 1
w

), hence δn �
√

kn

n
.

The constant An � 1 is a measure of irregularity of the finite-dimensional linear sieve
space, Θn. Since we require that Θn be theoretically identifiable and functions in Θn

be bounded, An is finite. In fact, let {φj , j = 1, . . . , kn} be an orthonormal basis of
Θn relative to the theoretical inner product. Then, by the Cauchy–Schwarz inequality,
An � {∑kn

j=1 ‖φj‖2∞}1/2 < ∞. It is obvious that ‖θ‖∞ � An‖θ‖2,leb for all θ ∈ Θn.
The linear sieve spaces are usually chosen to be among commonly used approximating
spaces such as those described in Subsection 2.3.1 and the associated constant An is
readily obtained by using results in the approximation theory literature. Here are some
examples.

Polynomials. If Θn = Pol(Jn) and X = [0, 1], then An � Jn [see Theorem 4.2.6 of
DeVore and Lorentz (1993)].

Trigonometric polynomials. If Θn = TriPol(Jn) and X = [0, 1], then An � J
1/2
n [see

Theorem 4.2.6 of DeVore and Lorentz (1993)].

Univariate splines. If Θn = Spl(r, Jn) and X = [0, 1], then An � J
1/2
n [see Theo-

rem 5.1.2 of DeVore and Lorentz (1993)].
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Orthogonal wavelets. If Θn = Wav(m, 2Jn) and X = [0, 1], then An � 2Jn/2 [see
Lemma 2.8 of Meyer (1992)].

Tensor product spaces. Let Θn be the tensor product of Θn1, . . . , Θnd . The constant
An associated with the tensor product linear sieve space, Θn, can be determined from
the corresponding constants for its components. Set

an� = sup
θ∈Θn�, ‖θ‖2,leb 
=0

(‖θ‖∞/‖θ‖2,leb
)

for 1 � � � d . It is shown in Huang (1998a) that An � const.
∏d

�=1 an�.
We conclude this subsection with an application to the multivariate LS regression of

Example 2.4.

ASSUMPTION 3.5.
(i) X has a compact support X and has a density that is bounded away from zero

and infinity on X , where X ⊂ Rd is a Cartesian product of compact intervals
X1, . . . ,Xd ;

(ii) Var(Y |X = ·) is bounded on X ;
(iii) ho(·) = E[Y |X = ·] ∈ Λp(X ) with p > d/2.

Theorem 3.5 can treat a general finite-dimensional linear sieve space Θn. For simplic-
ity, however, we consider here only the case when the sieve space, Θn, in Example 2.4
is constructed as a tensor product space of some commonly used univariate linear ap-
proximating spaces Θn1, . . . , Θnd . Then kn = dim(Θn) =∏d

�=1 dim(Θn�).

PROPOSITION 3.6. Suppose Assumption 3.5 holds. Let ĥn be the series estimate of ho

in Example 2.4, with the sieve, Θn, being the tensor-product of the univariate sieve
spaces Θn1, . . . , Θnd . For � = 1, . . . , d ,

• if Θn� = Pol(Jn), p > d and J 3d
n /n → 0, then ‖ĥn −ho‖ = OP (

√
J d

n /n+J
−p
n );

• if Θn� = TriPol(Jn), p > d/2 and J 2d
n /n → 0, then ‖ĥn − ho‖ = OP (

√
J d

n /n +
J

−p
n );

• if Θn� = Spl(r, Jn) with r � [p]+ 1, p > d/2 and J 2d
n /n → 0, then ‖ĥn −ho‖ =

OP (
√

J d
n /n + J

−p
n ).

Let Jn = O(n1/(2p+d)), then ‖ĥn − ho‖ = OP (n−p/(2p+d)).

We note that this proposition can also be obtained as a direct consequence of Theo-
rem 1 in Newey (1997).34 The choice of Jn � n1/(2p+d) balances the variance (J d

n /n)

and the squared bias (J−2p
n ) trade-off: J d

n /n � J
−2p
n . The resulting rate of convergence

34 Proposition 3.6 is about the convergence rates under ‖ · ‖2-norm for LS regressions. There are also a few
results on the convergence rates under ‖ · ‖∞-norm for LS regressions; see e.g. Stone (1982), Newey (1997)
and de Jong (2002).
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n−2p/(2p+d) is actually optimal in the context of regression and density estimations:
no estimate has a faster rate of convergence uniformly over the class of p-smooth
functions [Stone (1982)]. The rate of convergence depends on two quantities: the spec-
ified smoothness p of the target function θo and the dimension d of the domain on
which the target function is defined. Note the dependence of the rate of convergence
on the dimension d: given the smoothness p, the larger the dimension, the slower the
rate of convergence; moreover, the rate of convergence tends to zero as the dimension
tends to infinity. This provides a mathematical description of a phenomenon commonly
known as the “curse of dimensionality”. Imposing additivity on an unknown multivari-
ate function can imply faster rates of convergence of the corresponding estimate; see
Subsection 3.2.1, Stone (1985, 1986), Andrews and Whang (1990), Huang (1998b) and
Huang et al. (2000).

3.4. Pointwise asymptotic normality of series LS estimators

To date, we have a relatively complete theory on the rates of convergence for sieve
M-estimators. The corresponding asymptotic distribution theory, however, is incom-
plete and requires much future work. All of the currently available results are for series
estimators of densities and the LS regression functions. Asymptotic normality of the
series LS estimators has been studied in Andrews (1991b), Gallant and Souza (1991),
Newey (1994b, 1997), Zhou, Shen and Wolfe (1998), and Huang (2003). Stone (1990)
and Strawderman and Tsiatis (1996) have given asymptotic normality results for poly-
nomial spline estimators in the context of density estimation and hazard estimation,
respectively.35

We focus on Example 2.4 throughout this subsection. That is, we assume that the
data {Zi = (Yi, X

′
i )

′}ni=1 are i.i.d., and the parameter of interest, θo(·) = ho(·) =
E[Y |X = ·], is a real-valued regression function with a bounded domain X ⊂ Rd .

3.4.1. Asymptotic normality of the spline series LS estimator

Here we present a result by Huang (2003) on the pointwise asymptotic normality of the
spline series LS estimator.

ASSUMPTION 3.6.
(i) Var(Y |X = ·) is bounded away from zero on X ;

(ii)

sup
x∈X

E
[{

Y − ho(X)
}2 × 1

(∣∣Y − ho(X)
∣∣ > λ

)∣∣X = x
]→ 0 as λ → ∞.

35 See Portnoy (1997) for a closely related result on the asymptotic normality for smoothing spline quantile
estimators.
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In the following, Φ(·) denotes the standard normal distribution function, and
SD(ĥ(x)|X1, . . . , Xn) = {Var(ĥ(x)|X1, . . . , Xn)}1/2.

THEOREM 3.7. [See Huang (2003).] Suppose Assumptions 3.5 and 3.6 hold. Let ĥn be
the series estimate of ho in Example 2.4, with the sieve, Θn, being the tensor-product
of the univariate spline sieve spaces Θn� = Spl(r, Jn), r � [p] + 1, 1 � � � d . If
limn→∞ J d

n log n/n = 0 and limn→∞ Jn/n1/(2p+d) = ∞, then

Pr
(
ĥ(x) − ho(x) � t × SD

(
ĥ(x)
∣∣X1, . . . , Xn

))→ Φ(t), t ∈ R.

Asymptotic distribution results such as Theorem 3.7 can be used to construct
asymptotic confidence intervals. Let ŜD(ĥ(x)|X1, . . . , Xn) be a consistent estimate
of SD(ĥ(x)|X1, . . . , Xn); see Andrews (1991b) and Newey (1997) for such an es-
timate. Let ĥl

α(x) = ĥ(x) − z1−α/2ŜD(ĥ(x)|X1, . . . , Xn) and ĥu
α(x) = ĥ(x) +

z1−α/2ŜD(ĥ(x)|X1, . . . , Xn), where z1−α/2 is the (1 − α/2)th quantile of the standard
normal distribution. If the conditions of Theorem 3.7 hold, then [ĥl

α(x), ĥu
α(x)] is an

asymptotic 1 − α confidence interval of ho(x); that is, limn→∞ P(ĥl
α(x) � ho(x) �

ĥu
α(x)) = 1 − α.
Recall that for the tensor product spline sieve Θn, kn = dim(Θn) � J d

n . If ho(·)
is p-smooth, then the tensor product spline sieve has the bias order J

−p
n � k

−p/d
n .

The condition limn→∞ Jn/n1/(2p+d) = ∞ in Theorem 3.7 implies that the bias term is
asymptotically negligible relative to the standard deviation of the estimate. Such a con-
dition, limn→∞ kn/nd/(2p+d) = ∞, is usually called undersmoothing (or overfitting);
that is, the total number of sieve parameters (kn) required for undersmoothing is more
than what is required to achieve Stone’s (1982) optimal rate of convergence.

3.4.2. Asymptotic normality of functionals of series LS estimator

We now review the asymptotic normality results in Newey (1997) for any series esti-
mation of functionals of the LS regression function. Let a : Θ → R be a functional,
and we want to estimate a(ho), where ho(·) = E[Y |X = ·] ∈ Θ . Recall that
ĥ(·) = pkn(·)′(P ′P)−

∑n
i=1 pkn(Xi)Yi is the series LS estimator of ho(·), with pkn(X)

being the finite-dimensional linear sieve (2.10), see Example 2.4. Then a(ĥ) will be a
natural estimator for a(ho).

Let s � 0 be an integer, and define a strong norm on Θ as ‖h‖s,∞ =
max[γ ]�s supx∈X |Dγ h(x)|. Also, let ζ0(kn) ≡ supx∈X |pkn(x)|e, ζs(kn) ≡
max[γ ]�s supx∈X |Dγ pkn(x)|e, where | · |e is the Euclidean norm.

ASSUMPTION 3.7.
(i) Var(Y |X = ·) is bounded away from zero on X ; supx∈X E[{Y − ho(X)}4|X =

x] < ∞;
(ii) the smallest eigenvalue of E[pkn(X)pkn(X)′] is bounded away from zero uni-

formly in kn;
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(iii) for an integer s � 0 there are α > 0, β∗
kn

such that infg∈Θn ‖g − ho‖s,∞ =
‖pkn(·)′β∗

kn
− ho(·)‖s,∞ = O(k−α

n ).

ASSUMPTION 3.8. Either
(i) limn→∞ kn{ζ0(kn)}2/n = 0, and a(h) is linear in h ∈ Θ; or

(ii) for s as in Assumption 3.7, limn→∞ k2
n{ζs(kn)}4/n = 0, and there exists a func-

tion D(h; h̃) that is linear in h ∈ Θ such that for some c1, c2, ε > 0 and for all
h̃, h with ‖h̃ − ho‖s,∞ < ε, ‖h − ho‖s,∞ < ε, it is true that∣∣a(h) − a(h̃) − D(h − h̃; h̃)

∣∣ � c1
{‖h − h̃‖s,∞

}2; and∣∣D(h; h̃) − D(h; h)
∣∣ � c2‖h‖s,∞‖h̃ − h‖s,∞.

ASSUMPTION 3.9.
(i) There is a positive constant c such that |D(h; ho)| � c‖h‖s,∞ for s from As-

sumption 3.7;
(ii) there is an hn ∈ Θn such that E[hn(X)2] → 0 but D(hn; ho) is bounded away

from zero.

Assumption 3.7(iii) is a condition on the sieve approximation error under the strong
norm ‖h‖s,∞. Assumption 3.8 implies that a(h) is Frechet differentiable in h with
respect to the norm ‖h‖s,∞. Assumption 3.9 says that the derivative D(h; ho) is contin-
uous in the norm ‖h‖s,∞ but not in the mean-square norm ‖h‖2 = {E[h(X)2]}1/2.
The lack of mean-square continuity will imply that the estimator a(ĥ) is not

√
n-

consistent for a(ho); see Newey (1997) for detailed discussions. In the following we
denote Σ = E[pkn(X)pkn(X)′ Var(Y |X)],

A = ∂a(pkn(X)′β)

∂β

∣∣∣∣
β∗

kn

and

Vkn = A′{E[pkn(X)pkn(X)′
]}−1

Σ
{
E
[
pkn(X)pkn(X)′

]}−1
A.

We let d−→ denote convergence in distribution and N (0, 1) denote a scalar random vari-
able drawn from a standard normal distribution.

THEOREM 3.8. [See Newey (1997).] Suppose Assumptions 3.5(i)(ii), 3.7–3.9 hold. Let
ĥn be the series estimate of ho in Example 2.4, with the sieve Θn being the linear sieve
(2.10). If limn→∞

√
nk−α

n = 0, then√
n

Vkn

(
a(ĥ) − a(ho)

) d−→ N (0, 1).

We note that for the linear functional a(ho) = ho(x), this theorem implies pointwise
asymptotic normality of any series LS estimators ĥ(x) satisfying Assumptions 3.5(i)(ii),
3.7, 3.8(i) and 3.9(ii). When we specialize this theorem further to the tensor product
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spline series estimator of ho(x), then Assumption 3.8(i) requires limn→∞ k2
n/n = 0,

which is stronger than the condition limn→∞ kn log n/n = 0 in Theorem 3.7. However,
Theorem 3.7 is applicable only to the spline series LS estimator, while the results by
Newey (1994b, 1997) are much more general.

The normality results reported in this section are only valid for i.i.d. data; see
Andrews (1991b) for asymptotic normality of linear functionals of the series LS es-
timators based on time series dependent observations.

4. Large sample properties of sieve estimation of parametric parts in
semiparametric models

In the general sieve extremum estimation framework of Section 2, a model typically
contains a parameter vector θ = (β, h), where β is a vector of finite-dimensional pa-
rameters and h is a vector of infinite-dimensional parameters. When both β and h are
parameters of interest we call the model “semi-nonparametric”. When h is a vector of
nuisance parameters, then, following Powell (1994) and others, we will call the model
“semiparametric”.

For weakly dependent observations, semiparametric models can be classified into two
categories: (i) β cannot be estimated at a

√
n-rate, i.e., β has zero information bound;

see van der Vaart (1991); and (ii) β can be estimated at a
√

n-rate. Models belong-
ing to category (i) should be correctly viewed as nonparametric. However, since these
models can still be estimated by the method of sieves, the general sieve convergence
rate results can be applied to derive slower than

√
n-rates for the sieve estimates of β.

To date there is little research about whether or not the sieve estimate of β can reach
the optimal convergence rate and what its limiting distribution is. It is worth mention-
ing that for Heckman and Singer’s (1984) model, Ishwaran (1996a) established that the
β-parameters cannot be estimated at

√
n-rate, while Ishwaran (1996b) constructed an-

other estimator of β that converges at the optimal rate but is not a sieve MLE. Prior to
the work of Ishwaran (1996a, 1996b), Honoré (1990, 1994) proposed a clever estimator
of β that is not a sieve MLE either and computed its convergence rate. It is still an open
question whether or not Heckman and Singer’s (1984) sieve MLE estimator could reach
Ishwaran’s optimal rate.36

There is a large literature on semiparametric estimation of β for models belonging
to category (ii); see Bickel et al. (1993), Newey and McFadden (1994), Powell (1994),

36 There are other important results in econometrics about specific models belonging to category (i). For
example, Manski (1985) proposed a maximum score estimator of a binary choice model with zero median
restriction; Kim and Pollard (1990) derived the n1/3 consistency of Manski’s estimator; Horowitz (1992)
proposed a smoothed maximum score estimator for Manski’s model, and proved that his smoothed estimator
converges faster than n1/3 and is asymptotically normal; Andrews and Schafgans (1998) proposed a slower
than

√
n rate kernel estimator of the intercept in Heckman’s sample selection model; Honoré and Kyriazidou

(2000) developed a slower than
√

n rate kernel estimator of a discrete choice dynamic panel data model. See
Powell (1994), Horowitz (1998), Pagan and Ullah (1999) for more examples.
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Horowitz (1998) and Pagan and Ullah (1999) for reviews. Most of these results are
derived using the so-called two-step procedure: Step one estimates h nonparametrically
by ĥ, while step two estimates β via either M-estimation, GMM or more generally,
MD-estimation with the unknown h replaced by ĥ. A few general results deal with the
simultaneous estimation of β and h. For example, the sieve simultaneous procedure
jointly estimates β and h by maximizing a sample criterion function Q̂n(β, h) over
the sieve parameter space Θn = B × Hn. The earlier applications of sieve MLE in
econometrics, such as the papers by Duncan (1986) and Gallant and Nychka (1987)
took this approach.

In Subsection 4.1 we review existing theory on the
√

n-asymptotic normality of the
two-step estimates of β. In Subsection 4.2, we present recent advances on the

√
n-

asymptotic normality and efficiency of the sieve simultaneous M-estimates of β. In
Subsection 4.3, we mention the

√
n-asymptotic normality and efficiency of the simulta-

neous sieve MD estimates of β.

4.1. Semiparametric two-step estimators

There are several general theory papers in econometrics about the semiparametric two-
step procedure. Andrews (1994b) proposed the MINPIN estimator of β, which is the
extremum estimator of β where the empirical criterion function depends on the first step
nonparametric estimator of h. Andrews (1994b) also provided a set of relatively high
level conditions to ensure the

√
n-normality of his MINPIN estimator of β. Ichimura

and Lee (2006) presented a set of relatively low level conditions to ensure the
√

n-
normality of the semiparametric two-step M-estimator of β. Newey (1994a), Pakes and
Olley (1995), and Chen, Linton and van Keilegom (2003) have studied the properties
of the semiparametric two-step GMM estimator of β. In addition to providing a general
way to compute the asymptotic variance of the second step β estimate, Newey (1994a)
showed that the second stage estimation of β and its asymptotic variance do not depend
on the particular choice of the nonparametric estimation technique in the first step, but
only depend on the convergence rate of the first step estimation.

4.1.1. Asymptotic normality

In the following we state two results which are slight modifications of those in Chen,
Linton and van Keilegom (2003), in which the empirical criterion function can be
nonsmooth with respect to both β and h. Let M : B × H → Rdm be a nonran-
dom, vector-valued measurable function, where B is a compact subset in Rdβ with
dm � dβ . The identifying assumption is that M(β, ho(·, β)) = 0 at β = βo ∈ B and
M(β, ho(·, β)) 
= 0 for all β 
= βo. We denote βo ∈ B and ho ∈ H as the true unknown
finite- and infinite-dimensional parameters, where the function ho ∈ H can depend on
the parameters β and the data Z. We usually suppress the arguments of the function
ho for notational convenience; thus: (β, h) ≡ (β, h(·, β)), (β, ho) ≡ (β, ho(·, β)) and
(βo, ho) ≡ (βo, ho(·, βo)). We assume that H is a vector space of functions endowed
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with a pseudo-metric ‖ · ‖H, which is a sup-norm metric with respect to the β-argument
and a pseudo-metric with respect to all the other arguments. Suppose that there also
exists a random vector-valued function Mn : B × H → Rdm depending on the data
{Zi : i = 1, . . . , n}, such that Mn(β, ho)

′WMn(β, ho) is close to M(β, ho)
′WM(β, ho)

for some symmetric positive-definite matrix W . Suppose that for each β there is an ini-
tial nonparametric estimator ĥ(.) for ho(.). Denote Wn as a possibly random weighting
matrix such that Wn − W = oP (1). Then βo can be estimated by β̂, which solves the
sample minimum distance problem37:

(4.1)min
β∈B

Mn(β, ĥ)′WnMn(β, ĥ).

For any β ∈ B, we say that M(β, h) is pathwise differentiable at h in the direction
[h−h] if {h+τ(h−h): τ ∈ [0, 1]} ⊂ H and limτ→0[M(β, h+τ(h−h))−M(β, h)]/τ
exists; we denote the limit by Γ2(β, h)[h − h].

THEOREM 4.1. Suppose that βo ∈ int(B) satisfies M(βo, ho) = 0, that β̂ − βo =
oP (1), Wn − W = oP (1), and that:

(4.1.1) ‖Mn(β̂, ĥ)‖ = inf‖β−βo‖�δn
‖Mn(β, ĥ)‖ + oP (1/

√
n) for some positive se-

quence δn = o(1).
(4.1.2) (i) The ordinary partial derivative Γ1(β, ho) in β of M(β, ho) exists in a

neighborhood of βo, and is continuous at β = βo; (ii) the matrix Γ1 ≡
Γ1(βo, ho) is such that Γ ′

1WΓ1 is nonsingular.
(4.1.3) The pathwise derivative Γ2(β, ho)[h−ho] of M(β, ho) exists in all directions

[h − ho] and satisfies:∥∥Γ2(β, ho)[h − ho] − Γ2(βo, ho)[h − ho]
∥∥ � ‖β − βo‖ × o(1)

for all β with ‖β − βo‖ = o(1), all h with ‖h − ho‖H = o(1). Either
(4.1.4) ‖M(β, ĥ) − M(β, ho) − Γ2(β, ho)[ĥ − ho]‖ = oP (n−1/2) for all β with

‖β − βo‖ = o(1); or
(4.1.4)′ (i) there are some constants c � 0, ε ∈ (0, 1] such that∥∥M(β, h) − M(β, ho) − Γ2(β, ho)[h − ho]

∥∥ � c‖h − ho‖1+ε
H

for all β with ‖β − βo‖ = o(1) and all h with ‖h − ho‖H = o(1); and
(ii) c‖ĥ − ho‖1+ε

H = oP (n−1/2).
(4.1.5) For all sequences of positive numbers {δn} with δn = o(1),

sup
‖β−βo‖<δn, ‖h−ho‖H<δn

‖Mn(β, h) − M(β, h) − Mn(βo, ho)‖
n−1/2 + ‖Mn(β, h)‖ + ‖M(β, h)‖ = oP (1).

(4.1.6) For some finite matrix V1,
√

n{Mn(βo, ho)+Γ2(βo,ho)[ĥ−ho]} d−→ N [0, V1].
Then

√
n(β̂ − βo)

d−→ N [0, (Γ ′
1WΓ1)

−1Γ ′
1WV1WΓ1(Γ

′
1WΓ1)

−1].

37 See Theorem 1 in Chen, Linton and van Keilegom (2003) for the consistency property of β̂ −βo = oP (1).
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REMARK 4.1. This theorem can be established by following the proof of Theorem 2
in Chen, Linton and van Keilegom (2003). Note that condition (4.1.4) is implied by
condition (4.1.4)′, while condition (4.1.4)′ with ε = 1 becomes the one imposed in
Newey (1994a) and Chen, Linton and van Keilegom (2003). When M(β, h) is highly
nonlinear in h and/or when the argument “·” of h(·, β) has unbounded support, then
condition (4.1.4)′(i) with ε = 1 may fail to hold, but condition (4.1.4)′ with 0 < ε < 1
is typically satisfied. See Chen, Hong and Tarozzi (2007) for such an example in the
two-step GMM estimation for nonclassical measurement error models and missing data
problems. Of course a smaller ε has to be compensated by a faster rate of convergence
of ĥ to ho in condition (4.1.4)′(ii) ‖ĥ − ho‖H = oP (n−1/2(1+ε)). In the extreme case
when ‖ĥ − ho‖H = OP (n−1/2), which is the case if ho is a probability distribution
function, then condition (4.1.4) is implied by condition

(4.1.4)′′ (i) ‖M(β, h)−M(β, ho)−Γ2(β, ho)[h−ho]‖ = ‖h−ho‖H×o(1) for all β

with ‖β−βo‖ = o(1) and all h with ‖h−ho‖H = o(1); and (ii) ‖ĥ−ho‖H =
OP (n−1/2).

Many econometric models correspond to M(β, h) = E[m(Zi, β, h)], Mn(β, h) =
n−1∑n

i=1 m(Zi, β, h), where m :Rdz × B ×H → Rdm is a measurable, vector-valued
function such that E[m(Zi, β, ho(·, β))] = 0 if and only if β = βo ∈ B, a subset
of Rdβ . In this situation, Theorem 3 in Chen, Linton and van Keilegom (2003) provides
a set of easily-verifiable sufficient conditions for the stochastic equicontinuity condition
(4.1.5) with i.i.d. data {Zi}. The following lemma extends their result to strictly station-
ary processes. Let F = {m(z, β, h): β ∈ B, h ∈ H} denote the class of measurable
functions indexed by (β, h), and H[ ](w,F, ‖ · ‖r ) be the Lr(Po)-metric entropy with
bracketing of the class F .

LEMMA 4.2. Suppose that {Zt : t � 1} is strictly stationary, that M(β, h) =
E[m(Zt , β, h)] and Mn(β, h) = n−1∑n

i=1 m(Zt , β, h), and that the arguments of the
h(·) in m(Zt , β, h(·)) only depend on β and finitely many Zt . Suppose that each com-
ponent mj of m = (m1, . . . , mdm)′ satisfies:

(4.2.1) mj(·, β, h) is locally uniformly Lr(Po)-continuous with respect to β, h in the
sense:(

E
[

sup
(β ′,h′): ‖β ′−β‖<δ, ‖h′−h‖H<δ

∣∣mlcj (Z, β ′, h′) − mlcj (Z, β, h)
∣∣r])1/r

� Kjδ
sj

for all (β, h) ∈ B × H, all small positive value δ = o(1), and for some
constants sj ∈ (0, 1], Kj > 0 and r � 1.

Then: (i) H[ ](w,Fj , ‖·‖r ) � log N([ ε
2Kj

]1/sj , B, ‖·‖)+ log N([ ε
2Kj

]1/sj ,H, ‖·‖H)

for j = 1, . . . , dm.
Furthermore, suppose that

(4.2.2) B is a compact subset of Rdβ , and
∫∞

0

√
log N(ε1/sj ,H, ‖ · ‖H) dε < ∞ for

j = 1, . . . , dm.
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(4.2.3) Either {Zt }nt=1 is i.i.d. and (4.2.1) holds with r � 2, or {Zt }nt=1 is beta-mixing
with a mixing decay rate satisfying

∑∞
t=1 t2/(r−2)βt < ∞ for some r > 2,

and (4.2.1) holds with r > 2.
Then: (ii) for all positive δn with δn = o(1),

sup
‖β−βo‖<δn, ‖h−ho‖H<δn

∥∥Mn(β, h) − M(β, h) − {Mn(βo, ho) − M(βo, ho)
}∥∥

(4.2)= oP

(
n−1/2).

PROOF. Result (i) is already derived in the proof of Theorem 3 in Chen, Linton and
van Keilegom (2003). Result (ii) for i.i.d. case is Theorem 3 of Chen, Linton and van
Keilegom (2003). Now for stationary beta-mixing case, conditions (4.2.1)–(4.2.3) imply
that
∫∞

0

√
H[ ](w,F, ‖ · ‖r ) dw < ∞ with r > 2. This and

∑∞
t=1 t2/(r−2)βt < ∞ imply

that all the assumptions in Doukhan, Massart and Rio (1995) for the Donsker theorem on
stationary beta-mixing are satisfied, which in turn implies the stochastic equicontinuity
(4.2) result (ii). �

Both Theorem 3 in Chen, Linton and van Keilegom (2003) and Lemma 4.2 are ex-
tensions of the “type II class” and “type IV class” defined in Andrews (1994a) from
β ∈ B to (β, h) ∈ B ×H. Condition (4.2.1) allows for discontinuous moment functions
in (β, h) such as sign and indicator functions of (β, h).

Given the results of Newey (1994a), Chen, Linton and van Keilegom (2003) and
Theorem 4.1, the choice of estimation of h in the first step should mainly depend
on the ease of implementation. Recently, for the partially linear quantile regression
Yt = X′

0t βo + ho(X1t ) + et , P [et � 0|Xt ] = α ∈ (0, 1), Lee (2003) proposed a
two-step,

√
n asymptotically normal and efficient estimator of β, where the first step

involved a high-dimensional kernel quantile regression of Yt on X = (X′
0, X

′
1)

′. Chen,
Linton and van Keilegom (2003) considered a modification of Lee’s model to a par-
tially linear quantile regression with some endogenous regressors, and proposed another√

n asymptotically normal estimator of β by two-step GMM where the first step non-
parametric estimation only involves h(X1t ). We can extend their models further to a
partially additive quantile regression:

Yt = X′
0t βo +

q∑
j=1

hoj (Xjt ) + et , P [et � 0|Xt ] = α ∈ (0, 1).

If ho1, . . . , hoq were known, then βo could be estimated based on the moment re-
striction E[m(Zi, β, ho)] = 0 iff β = βo with m(Zi, β, ho) = X0{α − 1(Y �
X′

0t β+∑q

j=1 hoj (Xjt )}. Clearly, to estimate β by semiparametric two-step GMM using

the sample moment n−1∑n
i=1 m(Zi, β, ĥ), it would be much easier if ĥ = (ĥ1, . . . , ĥq)

were a sieve estimate, say obtained by maxh∈Hn
Q̂n(β, h) = n−1∑n

t=1 l(β, h, Yt , Xt )

for any arbitrarily fixed β, where
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l(β, h, Yt , Xt )

=
{

1

(
Yt < X′

0t β +
q∑

j=1

hj (Xjt )

)
− α

}[
Yt − X′

0t β −
q∑

j=1

hj (Xjt )

]
,

and Hn = H1
n × · · · ×Hq

n as in Subsection 3.2.1, rather than a high-dimensional kernel
quantile regression. Andrews (1994b), Newey (1994a, 1994b), Newey, Powell and Vella
(1999) and Das, Newey and Vella (2003) have made the same recommendation in the
context of two-step estimation with an additive LS regression in the first step.

There is also a large literature on the general theory of efficient estimation of β via
various two-step procedures. For instance, the profile MLE estimation of β [which can
be viewed as an important subclass of Andrews’ (1994b) MINPIN procedure] can lead
to efficient estimation of β; see e.g. Severini and Wong (1992), Ai (1997) and Murphy
and van der Vaart (2000). Other two-step procedures which lead to the efficient esti-
mation of β include those based on the efficient score equation approach; see Bickel et
al. (1993) and Newey (1990a), and the optimally weighted GMM approach; see Newey
(1990a, 1990b, 1993). See Powell (1994) and Pagan and Ullah (1999) for other exam-
ples. Clearly, these efficient procedures can be combined with a first step nonparametric
estimation of h via the method of sieves.

4.2. Sieve simultaneous M-estimation

There are few general theory papers about the sieve simultaneous M-estimation of β

and h; see Wong and Severini (1991), Shen (1997), Chen and Shen (1998). This pro-
cedure jointly estimates β and h by maximizing a sample criterion function Q̂n(β, h)

over the sieve parameter space Θn = B × Hn, where Q̂n(β, h) takes a sample av-
erage form 1

n

∑n
i=1 l(β, h, Zi). Wong and Severini (1991) established

√
n-asymptotic

normality and efficiency of smooth functionals of nonparametric MLE with parameter
space Θn ≡ Θ = B × H. Shen (1997) extended their results to sieve MLE and to
allow for highly curved (nonlinear) least favorable directions. Chen and Shen (1998)
extend the result of Shen (1997) to general sieve M-estimation with stationary weakly
dependent data.

4.2.1. Asymptotic normality of smooth functionals of sieve M-estimators

Let θ̂n = (β̂n, ĥn) = arg max(β,h)∈B×Hn

1
n

∑n
i=1 l(β, h, Zi) denote the sieve M-esti-

mate of θo = (βo, ho). In this subsection we present a simple
√

n-asymptotic normality
theorem for the plug-in estimate of a smooth functional of θo. See Shen (1997) and
Chen and Shen (1998) for the general version.

Suppose that Θ = B × H is convex in θo so that θo + τ [θ − θo] ∈ Θ for all small
τ ∈ [0, 1] and for all fixed θ ∈ Θ . Suppose that the directional derivative

∂l(θo, z)

∂θ
[θ − θo] ≡ lim

τ→0

l(θo + τ [θ − θo], z) − l(θo, z)

τ

is well defined for almost all z in the support of Z.
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Let Θ = B × H be equipped with a norm ‖ · ‖. Suppose the functional of interest,
f : Θ → R, is smooth in the sense that

∂f (θo)

∂θ
[θ − θo] ≡ lim

τ→0

f (θo + τ [θ − θo]) − f (θo)

τ

is well defined and∥∥∥∥∂f (θo)

∂θ

∥∥∥∥ ≡ sup
{θ∈Θ: ‖θ−θo‖>0}

| ∂f (θo)
∂θ

[θ − θo]|
‖θ − θo‖ < ∞.

Next, suppose that ‖ · ‖ induces an inner product 〈·,·〉 on the completion of the space
spanned by Θ − θo, denoted as V̄ . By the Riesz representation theorem, there exists
v∗ ∈ V̄ such that, for any θ ∈ Θ ,

∂f (θo)

∂θ
[θ − θo] = 〈θ − θo, v

∗〉 iff

∥∥∥∥∂f (θo)

∂θ

∥∥∥∥ < ∞.

Suppose that the sieve M-estimate θ̂n converges to θo at a rate faster than δn (i.e., ‖θ̂n −
θo‖ = oP (δn)). Let εn denote any sequence satisfying εn = o(n−1/2), and μn(g(Z)) =
1
n

∑n
t=1{g(Zt ) − E(g(Zt ))} denote the empirical process indexed by the function g.

Recall that K(θo, θ) ≡ E[l(θo, Zi) − l(θ, Zi)].

CONDITION 4.1.
(i) There is ω > 0 such that |f (θ) − f (θo) − ∂f (θo)

∂θ
[θ − θo]| = O(‖θ − θo‖ω)

uniformly in θ ∈ Θn with ‖θ − θo‖ = o(1);
(ii) ‖ ∂f (θo)

∂θ
‖ < ∞;

(iii) there is πnv
∗ ∈ Θn such that ‖πnv

∗ − v∗‖ × ‖θ̂n − θo‖ = oP (n−1/2).

CONDITION 4.2.

sup
{θ∈Θn: ‖θ−θo‖�δn}

μn

(
l(θ, Z) − l(θ ± εnπnv

∗, Z) − ∂l(θo, Z)

∂θ
[±εnπnv

∗]
)

= OP

(
ε2
n

)
.

CONDITION 4.3. K(θo, θ̂n) − K(θo, θ̂n ± εnπnv
∗) = ±εn〈θ̂n − θo, πnv

∗〉 + o(n−1).

CONDITION 4.4.
(i) μn(

∂l(θo,Z)
∂θ

[πnv
∗ − v∗]) = oP (n−1/2);

(ii) E{ ∂l(θo,Z)
∂θ

[πnv
∗]} = o(n−1/2).

CONDITION 4.5. n1/2μn(
∂l(θo,Z)

∂θ
[v∗]) d−→ N (0, σ 2

v∗), with σ 2
v∗ > 0.

We note that for classical nonlinear M-estimation such as those reviewed in Newey
and McFadden (1994), Conditions 4.1(i)(ii), 4.2, 4.3 and 4.5 are still required (albeit
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in slightly different expressions), while Conditions 4.1(iii) and 4.4 are automatically
satisfied since πnv

∗ = v∗ for the standard nonlinear M-estimation. Note that for i.i.d.
data Condition 4.5 is satisfied whenever σ 2

v∗ = Var( ∂l(θo,Z)
∂θ

[v∗]) > 0. If l(θ, Z) is also
pathwise differentiable in θ ∈ Θn with ‖θ − θo‖ = o(1), then Conditions 4.2 and 4.3
are implied by Conditions 4.2′ and 4.3′ respectively, where

CONDITION 4.2′.

sup
{θ∈Θn: ‖θ−θo‖�δn}

μn

(
∂l(θ, Z)

∂θ
[πnv

∗] − ∂l(θo, Z)

∂θ
[πnv

∗]
)

= oP

(
n−1/2).

CONDITION 4.3′. E{ ∂l(θ̂n,Z)
∂θ

[πnv
∗]} = 〈θ̂n − θo, πnv

∗〉 + o(n−1/2).

Condition 4.2 (or 4.2′) can be verified by applying Lemma 4.2. Condition 4.3 (or
4.3′) can be verified when a Hilbert norm ‖θ − θo‖ is chosen.

Conditions 4.2–4.4 may need to be modified when the parameter space Θ is not
convex; see Shen (1997) and Chen and Shen (1998) for the needed modification.

THEOREM 4.3. Suppose Conditions 4.1–4.5 hold, and ‖θ̂n − θo‖ω = oP (n−1/2). Then,
for the sieve M-estimate θ̂n, n1/2(f (θ̂n) − f (θo))

d−→ N (0, σ 2
v∗).

The proof of Theorem 4.3 follows trivially from those in Shen (1997) and Ai and
Chen (1999). In applications, one needs to specify a Hilbert norm ‖θ − θo‖ in order
to compute the representer v∗. Wong and Severini (1991) and Shen (1997) have used
the Fisher norm, ‖θ − θo‖2 = E{ ∂l(θo,Zi)

∂θ
[θ − θo]}2, for the sieve MLE procedure. Ai

and Chen (1999, 2003) have introduced a Fisher-like norm for their sieve MD and sieve
GLS procedures. In the next subsection we specialize Theorem 4.3 to derive root-n
asymptotic normality of parametric parts in sieve GLS problems.

4.2.2. Asymptotic normality of sieve GLS

Recall that for all the models belonging to the first subclass of the conditional moment
restrictions (2.8), E{ρ(Z, θo)|X} = 0, where ρ(Z, θ) − ρ(Z, θo) does not depend on
endogenous variables Y , we can estimate θo = (βo, ho) ∈ B × H by the sieve GLS
procedure:

θ̂n = (β̂n, ĥn) = arg min
(β,h)∈B×Hn

1

n

n∑
i=1

ρ(Zi, β, h)′Σ(Xi)
−1ρ(Zi, β, h),

where Σ(Xi) is a positive definite weighting matrix. When Σ(Xi) is known such
as the identity matrix, this belongs to the sieve M-estimation with l(θ, Zi) =
−ρ(Zi, θ)′Σ(Xi)

−1ρ(Zi, θ)/2. See Subsection 4.3 and Remark 4.3 for estimation of
the optimal weighting matrix Σo(Xi) ≡ Var{ρ(Zi, θo)|Xi}.
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We now apply Theorem 4.3 to derive root-n asymptotic normality of the sieve GLS
estimator β̂n. Define the norm ‖θ −θo‖2 = E{( ∂ρ(Zi ,θo)

∂θ
[θ −θo])Σ(Xi)

−1(
∂ρ(Zi ,θo)

∂θ
[θ −

θo])}. For j = 1, . . . , dβ , let

Dwj
(X) = ∂ρ(Z, β, ho(·))

∂βj

∣∣∣∣
β=βo

− ∂ρ(X, βo, ho(·) + τwj (·))
∂τ

∣∣∣∣
τ=0

= ∂ρ(Z, θo)

∂βj

− ∂ρ(Z, θo)

∂h
[wj ],

w = (w1, . . . , wdβ ), and Dw(X) = (Dw1(X), . . . ,Dwdβ
(X)) = ∂ρ(Z,θo)

∂β ′ − ∂ρ(Z,θo)
∂h

[w]
be a (dρ × dβ)-matrix valued measurable function of X. Let w∗ = (w∗

1, . . . , w∗
dβ

),
where for j = 1, . . . , dβ , w∗

j solves

E
{
Dw∗

j
(X)′Σ(X)−1Dw∗

j
(X)
} = inf

wj

E
{
Dwj

(X)′Σ(X)−1Dwj
(X)
}
.

Denote Dw∗(X) = ∂ρ(Z,θo)
∂β ′ − ∂ρ(Z,θo)

∂h
[w∗]. Let

v∗
β = (E{Dw∗(X)′Σ(X)−1Dw∗(X)

})−1
λ,

v∗
h = −w∗v∗

β and v∗ = (v∗
β, v∗

h).

ASSUMPTION 4.1.
(i) βo ∈ int(B);

(ii) E[Dw∗(X)′Σ(X)−1Dw∗(X)] is positive definite;
(iii) there is πnv

∗ ∈ Θn such that ‖πnv
∗ − v∗‖ × ‖θ̂n − θo‖ = oP (n−1/2).

ASSUMPTION 4.2.
(i) Σ(X) and Σo(X) ≡ Var{ρ(Zi, θo)|X} are positive definite and bounded uni-

form over X;
(ii) ρ(Z, θ) is twice continuously pathwise differentiable with respect to θ ∈ Θ

with ‖θ − θo‖ = o(1);

(iii) Conditions 4.2′ and 4.3′ are satisfied with ∂l(θ,Z)
∂θ

[πnv
∗] = −ρ(Z, θ)′ ×

Σ(X)−1{ ∂ρ(Z,θ)
∂θ

[πnv
∗]} for all θ ∈ Θn with ‖θ − θo‖ = o(1);

(iv) {Zi}ni=1 is i.i.d., E{ρ(Z, θo)|X} = 0, E{ρ(Z, θ) − ρ(Z, θo)|X} = ρ(Z, θ) −
ρ(Z, θo) for all θ ∈ Θ .

PROPOSITION 4.4. Let θ̂n be the sieve GLS estimate. Suppose Assumptions 4.1–4.2
hold. Then n1/2(β̂n − βo)

d−→ N (0, V −1
1 V2V

−1
1 ) where

V1 = E
[
Dw∗(X)′Σ(X)−1Dw∗(X)

]
,

V2 = E
[
Dw∗(X)′Σ(X)−1Σo(X)Σ(X)−1Dw∗(X)

]
.
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PROOF. Let f (θ) = λ′β, where λ is an arbitrary unit vector in Rdβ . Clearly, Condi-
tion 4.1(i) is satisfied with ∂f (θo)

∂θ
[θ − θo] = (β − βo)

′λ and ω = ∞. In addition, under
Assumption 4.1(i)(ii), we have v∗ = (v∗

β, v∗
h) and

‖v∗‖2 = sup
{θ∈Θ: ‖θ−θo‖>0}

{(β − βo)
′λ}2

‖θ − θo‖2

= λ′(E{Dw∗(X)′Σ(X)−1Dw∗(X)
})−1

λ < ∞.

Thus Condition 4.1 is implied by Assumption 4.1. Note that

∂l(θo, Z)

∂θ
[θ − θo]

= −ρ(Z, θo)
′Σ(X)−1

(
∂ρ(Z, θo)

∂β ′ (β − βo) + ∂ρ(Z, θo)

∂h
[h − ho]

)
,

we have

E

{
∂l(θo, Z)

∂θ
[πnv

∗]
}

= −E

{
ρ(Z, θo)

′Σ(X)−1
(

∂ρ(Z, θo)

∂β ′
(
v∗
β

)+ ∂ρ(Z, θo)

∂h

[
πnv

∗
h

])} = 0,

hence Condition 4.4(ii) is automatically satisfied. Since

1

n

n∑
t=1

∂l(θo, Zt )

∂θ
[πnv

∗ − v∗]

= −1

n

n∑
t=1

ρ(Zt , θo)
′Σ(Xt)

−1
(

∂ρ(Zt , θo)

∂h

[
πnv

∗
h − v∗

h

])
,

by Chebyshev inequality and Assumptions 4.1(iii) and 4.2(i), we have

1

n

n∑
i=1

∂l(θo, Zi)

∂θ
[πnv

∗ − v∗] = oP

(
n−1/2),

hence Condition 4.4(i) is satisfied. Since data are i.i.d. and under Assumptions 4.1(ii)
and 4.2(i),

σ 2
v∗ = Var

{
∂l(θo, Z)

∂θ
[v∗]
}

= Var

{
ρ(Z, θo)

′Σ(X)−1
(

∂ρ(Z, θo)

∂β ′ − ∂ρ(Z, θo)

∂h
[w∗]
)(

v∗
β

)}
= (v∗

β

)′
E
{
Dw∗(X)′Σ(X)−1Σo(X)Σ(X)−1Dw∗(X)

}(
v∗
β

)
= λ′V −1

1 V2V
−1
1 λ > 0,



5616 X. Chen

Condition 4.5 is satisfied. By Theorem 4.3, we obtain, for any arbitrary unit vector
λ ∈ Rdβ , n1/2λ′(β̂n −βo)

d−→ N (0, σ 2
v∗). Hence

√
n(β̂n −βo)

d−→ N (0, V −1
1 V2V

−1
1 ). �

REMARK 4.2. The asymptotic variance, V −1
1 V2V

−1
1 , of the sieve GLS estimator β̂n

can be consistently estimated by V̂ −1
1 V̂2V̂

−1
1 , where

V̂1 = 1

n

n∑
i=1

(
∂ρ(Zi, θ̂n)

∂β ′ − ∂ρ(Zi, θ̂n)

∂h
[ŵ]
)′

× Σ(Xi)
−1
(

∂ρ(Zi, θ̂n)

∂β ′ − ∂ρ(Zi, θ̂n)

∂h
[ŵ]
)

,

V̂2 = 1

n

n∑
i=1

(
∂ρ(Zi, θ̂n)

∂β ′ − ∂ρ(Zi, θ̂n)

∂h
[ŵ]
)′

× Σ(Xi)
−1Σ̂o(Xi)Σ(Xi)

−1
(

∂ρ(Zi, θ̂n)

∂β ′ − ∂ρ(Zi, θ̂n)

∂h
[ŵ]
)

,

ŵ = (ŵ1, . . . , ŵdβ ) solves the following sieve minimization problem: for j =
1, . . . , dβ ,

min
wj ∈Hn

n∑
i=1

(
∂ρ(Zi, θ̂n)

∂βj

− ∂ρ(Zi, θ̂n)

∂h
[wj ]
)′

× [Σ(Xi)
]−1
(

∂ρ(Zi, θ̂n)

∂βj

− ∂ρ(Zi, θ̂n)

∂h
[wj ]
)

,

and Σ̂o(Xi) can be any consistent nonparametric estimator of Σo(Xi); see Ai and Chen
(1999) for kernel estimator and Ai and Chen (2003, 2007) for series LS estimator of
Σo(Xi).

4.2.3. Example: Partially additive mean regression with a monotone constraint

Suppose that the i.i.d. data {Yt ,X
′
t = (X′

0t , X1t , . . . , Xqt )}nt=1 are generated according
to

Yi = X′
0iβo + ho1(X1i ) + · · · + hoq(Xqi) + ei, E[ei |Xi] = 0.

Let θo = (β ′
o, ho1, . . . , hoq)′ ∈ Θ = B × H be the parameters of interests, where

B is a compact subset of Rdβ and H is the same as that in Subsection 3.2.1. Since
ho1(·) can have a constant we assume that X0 does not contain the constant regressor,
dim(X0) = dβ , dim(Xj ) = 1 for j = 1, . . . , q, dim(X) = dβ + q, and dim(Y ) = 1.
We estimate the regression function θo(X) = X′

0t βo +∑q

j=1 hoj (Xjt ) by maximizing

over Θn = B × Hn the criterion Q̂n(θ) = n−1∑n
t=1 l(θ, Yt , Xt ), where l(θ, Yt , Xt ) =
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− 1
2 [Yt −X′

0t β −∑q

j=1 hj (Xjt )]2. Let ‖θ −θo‖2 = E{X′
0t (β −βo)+∑q

j=1[hj (Xjt )−
hoj (Xjt )]}2.

Note that Dw∗(X)′ = X0 −∑q

k=1 w∗k(Xk), where w∗k(Xk), k = 1, . . . , q, solves

inf
wk,k=1,...,q: E[|X0−∑q

k=1 wk(Xk)|2e ]>0
E

[(
X0 −

q∑
k=1

wk(Xk)

)(
X0 −

q∑
k=1

wk(Xk)

)′]
.

PROPOSITION 4.5. Suppose that Assumption 3.1 and the following hold:
(i) βo ∈ int(B);

(ii) Σo(X) is positive and bounded;
(iii) E[X0X

′
0] is positive definite; E[Dw∗(X)′Dw∗(X)] is positive definite;

(iv) each element of w∗j belongs to the Hölder space Λmj with mj > 1/2 for j =
1, . . . , q.

Let kjn = O(n1/(2pj +1)) for j = 1, . . . , q. Then n1/2(β̂n − βo)
d−→ N (0, V −1

1 V2V
−1
1 )

where V1 = E[Dw∗(X)′Dw∗(X)], V2 = E[Dw∗(X)′Σo(X)Dw∗(X)].

PROOF. We obtain the result by applying Proposition 4.4. Let Θn = B ×Hn and Hn =
H1

n × · · · × Hq
n , where Hj

n, j = 1, 2, . . . , q, are the same as those in Subsection 3.2.1.
By the same proof as that for Proposition 3.3, we have ‖θ̂n − θo‖ = OP (n−p/(2p+1))

provided that p = min{p1, . . . , pq} > 0.5. This and assumption (iv) imply Assump-
tion 4.1(iii). Condition 4.3′ is trivially satisfied given the definition of the metric ‖ · ‖. It
remains to verify Condition 4.2′:

μn

({
X′

0

[
v∗
β

]+ q∑
j=1

[
πnv

∗
hj

(Xj )
]}{

X′
0[β − βo] +

q∑
j=1

[
hj (Xj ) − hoj (Xj )

]})

= oP

(
n−1/2),

uniformly over θ ∈ Θn with ‖θ − θo‖ � δn = O(n−p/(2p+1)). Applying Theorem 3
in Chen, Linton and van Keilegom (2003) (or Lemma 4.2 for i.i.d. case), assumptions
(i)–(iv) and Assumption 3.1 (hj ∈ Hj = Λ

mj
c with mj > 1/2 for all j = 1, . . . , q)

imply Condition 4.2′; also see van der Vaart and Wellner (1996). �

Notice that for the well-known partially linear regression model Yi = X′
0iβo +

ho1(X1i )+ei , E[ei |Xi] = 0, we can explicitly solve for Dw∗(X)′ ≡ X0−w∗1(X1) with
w∗1(X1) = E{X0|X1}. Hence assumption (iv) will be satisfied if E{X0|X1} is smooth
enough. See Remark 4.3 for semiparametric efficient estimation of βo.

4.2.4. Efficiency of sieve MLE

Wong (1992), and Wong and Severini (1991) established asymptotic efficiency of plug-
in nonparametric MLE estimates of smooth functionals. Shen (1997) extended their
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results to sieve MLE. We review the results of Wong (1992) and Shen (1997) in this
subsection. Related work can be found in Begun et al. (1983), Ibragimov and Hasmin-
skii (1991), Bickel et al. (1993).

Here the criterion is Q̂n(θ) = 1
n

∑n
i=1 l(Zi, θ), where l(Zi, θ) = log p(Zi, θ)

is a log-likelihood evaluated at the single observation Zi . We use the Fisher norm:
‖θ − θo‖2 = E{ ∂ log p(Zi ,θo)

∂θ
[θ − θo]}2. Recall that a probability family {Pθ : θ ∈ Θ} is

locally asymptotically normal (LAN) at θo, if (1) for any g in the linear span of Θ − θo,
θo + tn−1/2g ∈ Θ for all small t � 0, and (2)

dPθo+n−1/2g

dPθo

(Z1, . . . , Zn) = exp

{
Σn(g) − 1

2
‖g‖2 + Rn(θo, g)

}
,

where Σn(g) is linear in g, Σn(g)
d−→ N (0, ‖g‖2) and plimn→∞ Rn(θo, g) = 0 (both

limits are under the true probability measure Po = Pθo ); see e.g. LeCam (1960).
To avoid the “super-efficiency” phenomenon, certain conditions on the estimates

are required. In estimating a smooth functional in the infinite-dimensional case, Wong
(1992, p. 58) defines the class of pathwise regular estimates in the sense of Bahadur
(1964). An estimate Tn(Z1, . . . , Zn) of f (θo) is pathwise regular if for any real number
τ > 0 and any g in the linear span of Θ − θo, we have

lim sup
n→∞

Pθn,τ

(
Tn < f (θn,τ )

)
� lim inf

n→∞ Pθn,−τ

(
Tn < f (θn,−τ )

)
,

where θn,τ = θo + n−1/2τg.

THEOREM 4.6. [See Wong (1992), Shen (1997).] In addition to LAN, suppose the func-
tional f : Θ → R is Frechet-differentiable at θo with 0 < ‖ ∂f (θo)

∂θ
‖ < ∞. Then for any

pathwise regular estimate Tn of f (θo), and any real number τ > 0,

lim sup
n→∞

Po

(√
n
∣∣Tn − f (θo)

∣∣ � τ
)

� Po

(∣∣∣∣N
(

0,

∥∥∥∥∂f (θo)

∂θ

∥∥∥∥2)∣∣∣∣ � τ

)

where N (0, ‖ ∂f (θo)
∂θ

‖2) is a scalar random variable drawn from a normal distribution

with mean 0 and variance ‖ ∂f (θo)
∂θ

‖2.

THEOREM 4.7. [See Shen (1997).] In addition to the conditions to ensure n1/2(f (θ̂n)−
f (θo))

pθo−−→ N (0, σ 2
v∗) with σ 2

v∗ = ‖ ∂f (θo)
∂θ

‖2, if LAN holds, then for the plug-in sieve
MLE estimates of f (θ), any real number τ > 0, and any g in the linear span of Θ − θo,

n1/2(f (θ̂n) − f (θn,τ )
) pθn,τ−−−→ N

(
0, σ 2

v∗
)
,

where θn,τ = θo + n−1/2τg. Here
pθ−→ means convergence in distribution under proba-

bility measure Pθ .



Ch. 76: Large Sample Sieve Estimation of Semi-Nonparametric Models 5619

4.3. Sieve simultaneous MD estimation: Normality and efficiency

As we mentioned in Section 2.1, most structural econometric models belong to the
semiparametric conditional moment framework: E[ρ(Z, βo, ho(·))|X] = 0, where the
difference ρ(Z, β, h(·)) − ρ(Z, βo, ho(·)) does depend on the endogenous variables Y .
There are even fewer general theory papers on the sieve simultaneous MD estimation
of βo and ho for this class of models; see Newey and Powell (1989, 2003) and Ai and
Chen (1999, 2003). The sieve simultaneous MD procedure jointly estimates βo and
ho by minimizing a sample quadratic form 1

n

∑n
i=1 m̂(Xi, β, h)′[Σ̂(Xi)]−1m̂(Xi, β, h)

over the sieve parameter space Θn = B ×Hn, where m̂(Xi, β, h) is any nonparametric
estimator of the conditional mean function m(X, β, h) ≡ E[ρ(Z, β, h(·))|X], Σ̂(X) →
Σ(X) in probability and Σ(X) is a positive definite weighting matrix. Ai and Chen
(1999, 2003) established the

√
n-asymptotic normality of this sieve MD estimator β̂

of βo.
For semiparametric efficient estimation of βo, Ai and Chen (1999) proposed the three-

step optimally weighted sieve MD procedure:
Step 1. Obtain an initial consistent sieve MD estimator θ̂n = (β̂n, ĥn) by

min
θ=(β,h)∈B×Hn

1

n

n∑
i=1

m̂(Xi, θ)′m̂(Xi, θ),

where m̂(Xi, θ) is any nonparametric estimator of the conditional mean
function m(X, θ) ≡ E[ρ(Z, β, h(·))|X].

Step 2. Obtain a consistent estimator Σ̂o(X) of the optimal weighting matrix
Σo(X) ≡ Var[ρ(Z, βo, ho(·))|X] using θ̂n = (β̂n, ĥn) and any nonpara-
metric regression procedures (such as kernel, nearest-neighbor or series LS
estimation).

Step 3. Obtain the optimally weighted estimator θ̃n = (β̃n, h̃n) by solving

min
θ=(β,h)∈B×Hn

1

n

n∑
i=1

m̂(Xi, θ)′
[
Σ̂o(Xi)

]−1
m̂(Xi, θ).

As an alternative way to efficiently estimate βo, Ai and Chen (2003) proposed the
locally continuously updated sieve MD procedure:

Step 1. Obtain an initial consistent sieve MD estimator θ̂n by

min
θ∈B×Hn

n∑
i=1

m̂(Xi, θ)′m̂(Xi, θ),

where m̂(Xi, θ) is the series LS estimator (2.15) of m(X, θ) ≡ E[ρ(Z, β,

h(·))|X].
Step 2. Obtain the optimally weighted sieve MD estimator θ̃n = (β̃n, h̃n) by

min
θ=(β,h)∈Non

1

n

n∑
i=1

m̂(Xi, θ)′
[
Σ̂o(Xi, θ)

]−1
m̂(Xi, θ),
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where Non is a shrinking neighborhood of θo = (βo, ho) within the sieve
space B × Hn, and Σ̂o(Xi, θ) is any nonparametric estimator of the condi-
tional variance function Σo(X, θ) ≡ Var[ρ(Z, β, h(·))|X]. To compute this
Step 2 one could use θ̂n = (β̂n, ĥn) from Step 1 as a starting point.

While Ai and Chen (1999) consider kernel estimation of the conditional mean m(·, θ)

and the conditional variance Σo(·, θ), Ai and Chen (2003) propose series LS esti-
mation of m(·, θ) and Σo(·, θ). Let {p0j (X), j = 1, 2, . . . , km,n} be a sequence of
known basis functions that can approximate any real-valued square integrable func-
tions of X well as km,n → ∞, pkm,n(X) = (p01(X), . . . , p0km,n(X))′ and P =
(pkm,n(X1), . . . , p

km,n(Xn))
′. Then a series LS estimator of the conditional variance

Σo(X, θ) ≡ Var[ρ(Z, θ)|X] is

Σ̂o(X, θ) ≡
n∑

i=1

ρ(Zi, θ)ρ(Zi, θ)′pkm,n(Xi)
′(P ′P)−1pkm,n(X).

Also, Σo(X) = Var[ρ(Z, θo)|X] can be simply estimated by Σ̂o(X) ≡ Σ̂o(X, θ̂n).
We state the following result on semiparametric efficient estimation of βo for the class

of conditional moment restrictions E[ρ(Z, βo, ho(·))|X] = 0; see Ai and Chen (2003)
for details. For j = 1, . . . , dβ , let

Dwj
(X) ≡ ∂E{ρ(Z, β, ho(·))|X}

∂βj

∣∣∣∣
β=βo

− ∂E{ρ(X, βo, ho(·) + τwj (·))|X}
∂τ

∣∣∣∣
τ=0

≡ ∂m(X, θo)

∂βj

− ∂m(X, θo)

∂h
[wj ],

E
{
Dwoj

(X)′Σo(X)−1Dwoj
(X)
} = inf

wj

E
{
Dwj

(X)′Σo(X)−1Dwj
(X)
}
,

wo = (wo1, . . . , wodβ ), and Dwo(X) ≡ (Dwo1(X), . . . ,Dwodβ
(X)) be a (dρ × dβ)-

matrix valued measurable function of X.

THEOREM 4.8. Let β̃n be either the three-step optimally weighted sieve MD estimator
or the two-step locally continuously updated sieve MD estimator. Under the conditions
stated in Ai and Chen (2003, Theorems 6.1 and 6.2), β̃n is semiparametric efficient and
satisfies

√
n(β̃n − βo)

d−→ N (0, V −1
o ), with

Vo = E
[
Dwo(X)′

[
Σo(X)

]−1
Dwo(X)

]
.

Ai and Chen (2003) also provide a simple consistent estimator, V̂ −1
o , for the asymp-

totic variance V −1
o of β̃n, where

V̂o = 1

n

n∑
i=1

(
∂m̂(Xi, θ̃n)

∂β ′ − ∂m̂(Xi, θ̃n)

∂h
[ŵo]
)′

× {Σ̂o(Xi)
}−1
(

∂m̂(Xi, θ̃n)

∂β ′ − ∂m̂(Xi, θ̃n)

∂h
[ŵo]
)

,
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ŵo = (ŵo1, . . . , ŵodβ ) solves the following sieve minimization problem:

min
wj ∈Hn

n∑
i=1

(
∂m̂(Xi, θ̃n)

∂βj

− ∂m̂(Xi, θ̃n)

∂h
[wj ]
)′[

Σ̂o(Xi)
]−1

×
(

∂m̂(Xi, θ̃n)

∂βj

− ∂m̂(Xi, θ̃n)

∂h
[wj ]
)

for j = 1, . . . , dβ , and

∂m̂(X, θ)

∂βj

− ∂m̂(X, θ)

∂h
[wj ]

≡
n∑

i=1

(
∂ρ(Zi, θ)

∂βj

− ∂ρ(Zi, θ)

∂h
[wj ]
)

pkm,n(Xi)
′(P ′P)−1pkm,n(X).

REMARK 4.3. (1) Recently, Chen and Pouzo (2006) have extended the root-n normal-
ity and efficiency results of Ai and Chen (2003) to allow that the generalized residual
functions ρ(Z, β, h(·)) are not pointwise continuous in θ = (β, h).

(2) The three-step optimally weighted sieve MD leads to semiparametric efficient
estimation of βo for the model E[ρ(Z, βo, ho(·))|X] = 0 regardless of whether
ρ(Z, β, h(·)) − ρ(Z, βo, ho(·)) depends on the endogenous variables Y or not. How-
ever, when ρ(Z, β, h(·)) − ρ(Z, βo, ho(·)) does not depend on Y , to obtain an efficient
estimator of βo one can also apply the following simpler three-step sieve GLS procedure
as suggested in Ai and Chen (1999):

Step 1. Obtain an initial consistent sieve GLS estimator θ̂n = (β̂n, ĥn) by

min
(β,h)∈B×Hn

1

n

n∑
i=1

ρ
(
Zi, β, h(·))′ρ(Zi, β, h(·)).

Step 2. Obtain a consistent estimator Σ̂o(X) of Σo(X) = Var[ρ(Z, θo)|X] us-
ing θ̂n = (β̂n, ĥn) and any nonparametric regression procedures such as
Σ̂o(X) = Σ̂o(X, θ̂n).

Step 3. Obtain the optimally weighted GLS estimator θ̃n = (β̃n, h̃n) by solving

min
(β,h)∈B×Hn

1

n

n∑
i=1

ρ
(
Zi, β, h(·))′[Σ̂o(Xi)

]−1
ρ
(
Zi, β, h(·)).

That is, for all the models belonging to the first subclass of the conditional moment
restrictions (2.8), E{ρ(Z, βo, ho)|X} = 0, where ρ(Z, θ) − ρ(Z, θo) does not depend
on endogenous variables Y , the simple three-step sieve GLS estimator β̃n also satisfies√

n(β̃n −βo)
d−→ N (0, V −1

o ). Of course, the following continuously updated sieve GLS
procedure will also lead to semiparametric efficient estimation of βo:
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(β̃cgls, h̃cgls)

= arg min
(β,h)∈B×Hn

1

n

n∑
i=1

ρ
(
Zi, β, h(·))′[Σ̂o

(
Xi, β, h(·))]−1

ρ
(
Zi, β, h(·)).

For the conditional moment restriction (without unknown function ho), E[ρ(Z, βo)|
X] = 0, there are many alternative efficient estimation procedures for βo, includ-
ing the empirical likelihood of Donald, Imbens and Newey (2003), the generalized
empirical likelihood (GEL) of Newey and Smith (2004), the kernel-based empirical
likelihood of Kitamura, Tripathi and Ahn (2004), the continuously updated minimum
distance procedure or the Euclidean conditional empirical likelihood of Antoine, Bon-
nal and Renault (2007), among others. It seems that one could extend their results to
the more general conditional moment framework E[ρ(Z, βo, ho( ))|X] = 0, where the
unknown function ho( ) is approximated by a sieve. In fact, Zhang and Gijbels (2003)
have already considered the sieve empirical likelihood procedure for the special case
E[ρ(Z, βo, ho(X))|X] = 0 where ho is a function of conditioning variable X only; See
Otsu (2005) for the general case.

Recently Ai and Chen (2007, 2004) have considered the semiparametric conditional
moment framework E[ρj (Z, βo, ho( ))|Xj ] = 0 for j = 1, . . . , J with finite J , where
each conditional moment has its own conditioning set Xj that could differ across equa-
tions. This extension would be useful to estimating semiparametric structure models
with incomplete information.

5. Concluding remarks

In this chapter, we have surveyed some recent large sample results on nonparametric and
semiparametric estimation of econometric models via the method of sieves. We have re-
stricted our attention to general consistency and convergence rates of sieve estimation of
unknown functions and

√
n-asymptotic normality of sieve estimation of smooth func-

tionals. Examples were used to illustrate the general sieve estimation theory. It is our
hope that the examples adequately depicted the general sieve extremum estimation ap-
proach and its versatility. We conclude this chapter by pointing out additional topics on
the method of sieves that have not been reviewed for lack of time and space.

First, although there is still lack of general theory on testing via the sieve method,
there are some consistent specification tests using the method of sieves. For example,
Hong and White (1995) tested a parametric regression model using series LS estima-
tors; Hart (1997) presented many consistent tests using series estimators; Stinchcombe
and White (1998) tested a parametric conditional moment restriction E[ρ(Z, βo)|
X] = 0 using neural network sieves and Li, Hsiao and Zinn (2003) tested semipara-
metric/nonparametric regression models using spline series estimators. Most recently
Song (2005) proposed consistent tests of semi-nonparametric regression models via
conditional martingale transforms where the unknown functions are estimated by the
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method of sieves. Additional references include Wooldridge (1992), Bierens (1990),
Bierens and Ploberger (1997) and de Jong (1996). Also in principle, all of the existing
test results based on kernel or local linear regression methods such as those in Robinson
(1989), Fan and Li (1996), Lavergne and Vuong (1996), Chen and Fan (1999), Fan and
Linton (1999), Aït-Sahalia, Bickel and Stoker (2001), Horowitz and Spokoiny (2001)
and Fan, Zhang and Zhang (2001) can be done using the method of sieves.

Second, we have not touched on the issue of data-driven selection of sieve spaces.
In practice, many existing model selection methods such as cross-validation (CV), gen-
eralized CV and AIC have been used in the current context due to the connection of
the method of sieves with the parametric models; see the survey chapter by Ichimura
and Todd (2007) on implementation details of semi-nonparametric estimators includ-
ing series estimators, and the review by Stone et al. (1997) and Ruppert, Wand and
Carroll (2003) on model selection with spline sieves for extended linear models. There
are a few papers in statistics including Barron, Birgé and Massart (1999) and Shen
and Ye (2002) that address data-driven selection among different sieve bases. There are
many results on data-driven selection of the number of terms for a given sieve basis;
see e.g. Li (1987), Andrews (1991a), Hurvich, Simonoff and Tsai (1998), Donald and
Newey (2001), Coppejans and Gallant (2002), Phillips and Ploberger (2003), Fan and
Peng (2004) and Imbens, Newey and Ridder (2005). In particular, Andrews (1991a)
establishes the asymptotic optimality of CV as a method to select series terms for non-
parametric least square regressions with heteroskedastic errors. Imbens, Newey and
Ridder (2005) establishes a similar result for semiparametrically efficient estimation
of average treatment effect parameters with a first step series estimation of conditional
means. It would be very useful to extend their results to handle a more general class of
semi-nonparametric models estimated via the method of sieves.

Third, so far there is little research on the higher order refinements of the large
sample properties of the semiparametric efficient sieve estimators. Many authors, in-
cluding Linton (1995) and Heckman et al. (1998), have pointed out that the first-order
asymptotics of semiparametric procedures could be misleading and unhelpful. For the
case of kernel estimators, some papers such as Robinson (1995), Linton (1995, 2001),
Nishiyama and Robinson (2000, 2005), Xiao and Linton (2001) and Ichimura and Lin-
ton (2002) have obtained higher order refinements. It would be useful to extend these
results to semiparametric efficient estimators using the method of sieves.

Finally, given the relative ease of implementation of the sieve method, but the general
difficulty of deriving its large sample properties, it might be fruitful to combine the sieve
method with the kernel or the local linear regression methods [see e.g. Fan and Gijbels
(1996)]. Recent papers by Horowitz and Mammen (2004) and Horowitz and Lee (2005)
have demonstrated the usefulness of this combination.
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Abstract

Inverse problems can be described as functional equations where the value of the func-
tion is known or easily estimable but the argument is unknown. Many problems in
econometrics can be stated in the form of inverse problems where the argument itself
is a function. For example, consider a nonlinear regression where the functional form
is the object of interest. One can readily estimate the conditional expectation of the de-
pendent variable given a vector of instruments. From this estimate, one would like to
recover the unknown functional form.

This chapter provides an introduction to the estimation of the solution to inverse
problems. It focuses mainly on integral equations of the first kind. Solving these equa-
tions is particularly challenging as the solution does not necessarily exist, may not be
unique, and is not continuous. As a result, a regularized (or smoothed) solution needs
to be implemented. We review different regularization methods and study the properties
of the estimator. Integral equations of the first kind appear, for example, in the gener-
alized method of moments when the number of moment conditions is infinite, and in
the nonparametric estimation of instrumental variable regressions. In the last section
of this chapter, we investigate integral equations of the second kind, whose solutions
may not be unique but are continuous. Such equations arise when additive models and
measurement error models are estimated nonparametrically.

Keywords

additive models, generalized method of moments, instrumental variables, integral
equation, many regressors, nonparametric estimation, Tikhonov and
Landweber–Fridman regularizations

JEL classification: C13, C14, C20
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1. Introduction

1.1. Structural models and functional estimation

The objective of this chapter is to analyze functional estimation in structural econo-
metric models. Different approaches exist to structural inference in econometrics and
our presentation may be viewed as a nonparametric extension of the basic example of
structural models, namely the static linear simultaneous equations model (SEM). Let
us consider Y a vector of random endogenous variables and Z a vector of exogenous
random variables. A SEM is characterized by a system

(1.1)BθY + CθZ = U

where Bθ and Cθ are matrices that are functions of an unknown “structural” parameter
θ and E[U | Z] = 0. The reduced form is a multivariate regression model

(1.2)Y = ΠZ + V

where Π is the matrix of ordinary regression coefficients. The relation between reduced
and structural form is, in the absence of higher moments restrictions, characterized by

(1.3)BθΠ + Cθ = 0.

The two essential issues of structural modeling, the identification and the overiden-
tification problems, follow from the consideration of Equation (1.3). The uniqueness
of the solution in θ for given Π defines the identification problem. The existence of a
solution (or restrictions imposed on Π to guarantee the existence) defines the overiden-
tification question. The reduced form parameter Π can be estimated by OLS and if a
unique solution in θ exists for any Π , it provides the indirect least square estimate of θ .
If the solution does not exist for any Π , θ can be estimated by a suitable minimization
of BθΠ̂ + Cθ where Π̂ is an estimator of Π .

In this chapter, we address the issue of functional extension of this construction. The
data generating process (DGP) is described by a stationary ergodic stochastic process
which generates a sequence of observed realizations of a random vector X.

The structural econometric models considered in this chapter are about the station-
ary distribution of X. This distribution is characterized by its cumulative distribution
function (c.d.f.) F , while the functional parameter of interest is an element ϕ of some
infinite dimensional Hilbert space. Following the notation of Florens (2003), the struc-
tural econometric model defines the connection between ϕ and F under the form of a
functional equation:

(1.4)A(ϕ, F ) = 0.

This equation extends Equation (1.3) and the definitions of identification (uniqueness
of this solution) and of overidentification (constraints on F such that a solution exists)
are analogous to the SEM case. The estimation is also performed along the same line:
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F can be estimated by the empirical distribution of the sample or by a more sophisti-
cated estimator (like kernel smoothing) belonging to the domain of A. ϕ is estimated by
solving (1.4) or, in the presence of overidentification, by a minimization of a suitable
norm of A(ϕ, F ) after plugging in the estimator of F .

This framework may be clarified by some remarks.

1. All the variables are treated as random in our model and this construction seems
to differ from the basic econometric models which are based on a distinction be-
tween exogenous or conditioning variables and endogenous variables. Actually
this distinction may be used in our framework. Let X be decomposed into Y and
Z and F into FY (· | Z = z) the conditional c.d.f. of Y given Z = z, and FZ the
marginal c.d.f. of Z. Then, the exogeneity of Z is tantamount to the conjunction
of two conditions.

Firstly, the solution ϕ of (1.4) only depends on FY (· | Z = z) and ϕ is iden-
tified by the conditional model only. Secondly if FY (· | Z = z) and FZ are
“variations free” in a given statistical model defined by a family of sampling dis-
tributions (intuitively no restrictions link FY (· | Z = z) and FZ), no information
on FY (· | Z = z) (and then on ϕ) is lost by neglecting the estimation of FZ . This
definition fully encompasses the usual definition of exogeneity in terms of cuts
[see Engle, Hendry and Richard (1983), Florens and Mouchart (1985)]. Extension
of that approach to sequential models and then to sequential or weak exogeneity
is straightforward.

2. Our construction does not explicitly involve residuals or other unobservable vari-
ables. As will be illustrated in the examples below, most of the structural econo-
metric models are formalized by a relationship between observable and unobserv-
able random elements. A first step in the analysis of these models is to express
the relationship between the functional parameters of interest and the DGP, or, in
our terminology, to specify the relation A(ϕ, F ) = 0. We start our presentation at
the second step of this approach and our analysis is devoted to the study of this
equation and to its use for estimation.

3. The overidentification is handled by extending the definition of the parameter
in order to estimate overidentified models. Even if A(ϕ, F ) = 0 does not have
a solution for a given F , the parameter ϕ is still defined as the minimum of a
norm of A(ϕ, F ). Then ϕ can be estimated from an estimation of F , which does
not satisfy the overidentification constraints. This approach extends the original
generalized method of moments (GMM) treatment of overidentification. Another
way to take into account overidentification constraints consists in estimating F

under these constraints (the estimator of F is the nearest distribution to the em-
pirical distribution for which there exists a solution, ϕ, of A(ϕ, F ) = 0). This
method extends the new approach to GMM called the empirical likelihood analy-
sis [see Owen (2001) and references therein]. In this chapter, we remain true to
the first approach: if the equation A(ϕ, F ) = 0 has no solution it will be replaced
by the first-order condition of the minimization of a norm of A(ϕ, F ). In that
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case, this first-order condition-defines a functional equation usually still denoted
A(ϕ, F ) = 0.

1.2. Notation

In this chapter,X is a random element of a finite or infinite dimensional spaceX . In most
of the examples, X is a finite dimensional euclidean space (X ⊂ Rm) and the distribu-
tion of X, denoted F is assumed to belong to a set F . If F is absolutely continuous with
respect to Lebesgue measure, its density is denoted by f . Usually, X is decomposed into
several components, X = (Y, Z,W) ∈ Rp × Rq × Rr (p + q + r = m) and the mar-
ginal c.d.f.’s or probability density function (p.d.f.’s) are denoted by FY , FZ, FW and
fY , fX, fW , respectively. Conditional c.d.f. are denoted by FY (· | Z = z) or FY (· | z)
and conditional density by fY (· | Z = z) or fY (· | z). The sample may be an i.i.d.
sample of X (denoted in that case (xi)i=1,...,n) or weakly dependent time series sample
denoted (xt )t=1,...,T in the dynamic case.

The paper focuses on the estimation of an infinite dimensional parameter denoted
by ϕ, which is an element of a Hilbert space H (mathematical concepts are recalled in
Section 2). In some particular cases, finite dimensional parameters are considered and
this feature is underlined by the notation θ ∈ Θ ⊂ Rd .

The structural model is expressed by an operator A from H×F into an Hilbert space
E and defines the equation A(ϕ, F ) = 0. The (possibly local) solution of this equation
is denoted by

(1.5)ϕ = Ψ (F).

For statistical discussions, a specific notation for the true value is helpful and F0 will
denote the true c.d.f. (associated with the density f0 and with the true parameter ϕ0
(or θ0)). The estimators of the c.d.f. will be denoted by Fn in an i.i.d. setting or FT in a
dynamic environment.

The operator A may take various forms. Particular cases are linear operators with
respect to F or to ϕ. The first case will be illustrated in the GMM example but most
of the paper will be devoted to the study of linear operators relative to ϕ. In that case,
equation A(ϕ, F ) = 0 can be rewritten

(1.6)A(ϕ, F ) = Kϕ − r = 0

where K is a linear operator from H to E depending on F and r is an element of E and
is also a function of F . The properties of K are essential and we will present different
examples of integral or differential operators. More generally,Amay be nonlinear either
with respect to F or to ϕ, but as usual in functional analysis, most of the analysis of
nonlinear operators may be done locally (around the true value typically) and reduces to
the linear case. Game theoretic models or surplus estimation give examples of nonlinear
models.

The problem of solving Equation (1.4) enters in the class of inverse problems. An
inverse problem consists of the resolution of an equation where the elements of the
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equations are imperfectly known. In the linear case, the equation is Kϕ = r and F is not
exactly known but only estimated. Thus, r is also imperfectly known. The econometric
situation is more complex than most of the inverse problems studied in the statistical
literature because K is also only imperfectly known. According to the classification
proposed by Vapnik (1998), the stochastic inverse problems of interest in this chapter
are more often than not characterized by equations where both the operator and the
right-hand side term need to be estimated. Inverse problems are said to be well-posed if
a unique solution exists and depends continuously on the imperfectly known elements
of the equation. In our notation, this means that Ψ in (1.5) exists as a function of F
and is continuous. Then if F is replaced by Fn, the solution ϕn of A(ϕn, Fn) = 0 exists
and the convergence of Fn to F0 implies the convergence of ϕn to ϕ0 by continuity.
Unfortunately a large class of inverse problems relevant to econometric applications are
not well-posed [they are then said to be ill-posed in the Hadamard sense, see e.g. Kress
(1999), Vapnik (1998)]. In this case, a regularization method needs to be implemented
to stabilize the solution. Our treatment of ill-posed problems is close to that of Van
Rooij and Ruymgaart (1999).

1.3. Examples

This section presents various examples of inverse problems motivated by structural
econometric models. We will start with the GMM example, which is the most famil-
iar to econometricians. Subsequently, we present several examples of linear (w.r.t. ϕ)
inverse problems. The last three examples are devoted to nonlinear inverse problems.

1.3.1. Generalized method of moments (GMM)

Let us assume that X is m dimensional and the parameter of interest θ is also finite
dimensional (θ ∈ Θ ⊂ Rd). We consider a function

(1.7)h : Rm × Θ → E
and the equation connecting θ and F is defined by

(1.8)A(θ, F ) = E
(
h(X, θ)

) = 0.

A particular case is given by h(X, θ) = μ(X)− θ where θ is exactly the expectation
of a transformation μ of the data. More generally, θ may be replaced by an infinite
dimensional parameter ϕ but we do not consider this extension here.

The GMM method was introduced by Hansen (1982) and has received numerous ex-
tensions [see Ai and Chen (2003) for the case of an infinite dimensional parameter].
GMM consists in estimating θ by solving an inverse problem linear in F but nonlinear
in θ . It is usually assumed that θ is identified i.e. that θ is uniquely characterized by
Equation (1.8). Econometric specifications are generally overidentified and a solution
to (1.8) only exists for some particular F , including the true DGP F0, under the hy-
pothesis of correct specification of the model. The c.d.f. F is estimated by the empirical
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distribution and Equation (1.8) becomes:

(1.9)
1

n

n∑
i=1

h(xi, θ) = 0,

which has no solution in general. Overidentification is treated by an extension of the
definition of θ as follows:

(1.10)θ = arg min
θ

∥∥BE(h)∥∥2

whereB is a linear operator in E and ‖ ‖ denotes the norm in E . This definition coincides
with (1.8) if F satisfies the overidentification constraints. Following Equation (1.10), the
estimator is

(1.11)θ̂n = arg min
θ

∥∥∥∥∥Bn

(
1

n

n∑
i=1

h(xi, θ)

)∥∥∥∥∥
2

where Bn is a sequence of operators converging to B. If the number of moment condi-
tions is finite, Bn and B are square matrices.

As θ is finite dimensional, the inverse problem generated by the first-order condi-
tions of (1.10) or (1.11) is well-posed and consistency of the estimators follows from
standard regularity conditions. As it will be illustrated in Section 6, an ill-posed inverse
problem arises if the number of moment conditions is infinite and if optimal GMM is
used. In finite dimensions, optimal GMM is obtained using a specific weighting matrix,

B = Σ− 1
2 , where Σ is the asymptotic variance of

√
n( 1

n

∑n
i=1 h(xi, θ))(Σ = Var(h)

in i.i.d. sampling). In the general case, optimal GMM requires the minimization of ‖g‖2

where

(1.12)Σ
1
2 g = E(h).

The function g is then the solution of a linear inverse problem. If the dimension of h
is not finite, Equation (1.12) defines an ill-posed inverse problem, which requires a
regularization scheme (see Section 3).

1.3.2. Instrumental variables

Instrumental regression is a possible strategy to perform nonparametric estimation when
explanatory variables are endogenous. Let us decompose X into (Y, Z,W) where Y ∈
R, Z ∈ Rq , W ∈ Rr . The subvectors Z and W may have common elements. The
econometrician starts with a relation

(1.13)Y = ϕ(Z)+ U

where U is a random term which does not satisfy E(U | Z) = 0. This assumption is
replaced by the more general hypothesis

(1.14)E(U | W) = 0



5642 M. Carrasco et al.

and W is called the set of instrumental variables. Condition (1.14) defines ϕ as the
solution of an integral equation. In terms of density, (1.14) means that

(1.15)A(ϕ, F ) =
∫

ϕ(z)fZ(z | W = w) dz −
∫

yfY (y | W = w) dy = 0.

Using previous notation, the first part of (1.15) is denoted Kϕ and the second part is
equal to r .

This expression is linear in ϕ and can be made linear in F by eliminating the denom-
inator through a multiplication by fW(w). However, as will be seen later, this problem
is essentially nonlinear in F because the treatment of overidentification and of regular-
ization will necessarily reintroduce the denominator in (1.15).

Instrumental regression introduced in (1.15) can be generalized to local instrumental
regression and to generalized local instrumental regression. These extensions are rele-
vant in more complex models than (1.13), where in particular the error term may enter
the equation in nonadditive ways [see for such a treatment, Florens et al. (2003)]. For
example, consider the equation

(1.16)Y = ϕ(Z) + Zε + U

where Z is scalar and ε is a random unobservable heterogeneity component. It can be
proved that, under a set of identification assumptions, ϕ satisfies the equations:

(1.17)Aj(ϕ, F ) = E

(
∂ϕ(Z)

∂Z

∣∣∣ W = w

)
−

∂
∂Wj

E(Y | W = w)

∂
∂Wj

E(Z | W = w)
= 0

for any j = 1, . . . , r . This equation, linear with respect to ϕ, combines integral and
differential operators.

Instrumental variable estimation and its local extension define ill-posed inverse prob-
lems as will be seen in Section 5.

1.3.3. Deconvolution

Another classical example of an ill-posed inverse problem is given by the deconvolution
problem. Let us assume that X, Y,Z are three scalar random elements such that

(1.18)Y = X + Z.

Only Y is observable. The two components X and Z are independent. The density of the
error term Z is known and denoted g. The parameter of interest is the density ϕ of X.
Then ϕ is solution of

(1.19)A(ϕ, F ) =
∫

g(y − x)ϕ(x) dx − h(y) = 0 ≡ Kϕ − r.

This example is comparable to the instrumental variables case but only the r.h.s. r = h

is unknown whereas the operator K is given.
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1.3.4. Regression with many regressors

This example also constitutes a case of linear ill-posed inverse problems. Let us consider
a regression model where the regressors are indexed by τ belonging to an infinite index
set provided with a measure Π . The model is

(1.20)Y =
∫

Z(τ)ϕ(τ)Π(dτ) + U

whereE(U | (Z(τ))τ ) = 0 and ϕ is the parameter of interest and is infinite dimensional.
Examples of regression with many regressors are now common in macroeconomics [see
Stock and Watson (2002) or Forni and Reichlin (1998) for two presentations of this
topic].

Let us assume that Y and (Z(τ))τ are observable. Various treatments of (1.20) can
be done and we just consider the following analysis. The conditional moment equation
E(U | (Z(τ))τ ) = 0 implies an infinite number of conditions indexed by τ :

E
(
Z(τ)U

) = 0, ∀τ,
or equivalently

(1.21)
∫

E
(
Z(τ)Z(ρ)

)
ϕ(ρ)Π(dρ) − E

(
YZ(τ)

) = 0, ∀τ.
This equation generalizes the usual normal equations of the linear regression to

an infinite number of regressors. The inverse problem defined in (1.21) is linear in
both F and ϕ but it is ill-posed. An intuitive argument to illustrate this issue is to
consider the estimation using a finite number of observations of the second moment
operator E(Z(τ)Z(ρ)) which is infinite dimensional. The resulting multicollinearity
problem is solved by a ridge regression. The “infinite matrix” E(Z(·)Z(·)) is replaced
by αI +E(Z(·)Z(·)) where I is the identity and α a positive number, or by a reduction
of the set of regressors to the first principal components. These two solutions are partic-
ular examples of regularization methods (namely the Tikhonov and the spectral cut-off
regularizations), which will be introduced in Section 3.

1.3.5. Additive models

The properties of the integral equations generated by this example and by the next one
are very different from those of the three previous examples. We consider an additive
regression model:

(1.22)Y = ϕ(Z)+ ψ(W) + U

where E(U | Z,W) = 0 and X = (Y, Z,W) is the observable element. The para-
meters of interest are the two functions ϕ and ψ . The approach we propose here is
related to the backfitting approach [see Hastie and Tibshirani (1990)]. Other treatments
of additive models have been considered in the literature [see Pagan and Ullah (1999)].
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Equation (1.22) implies

(1.23)

{
E(Y | Z = z) = ϕ(z) + E(ψ(W) | Z = z),

E(Y | W = w) = E(ϕ(Z) | W = w)+ ψ(w)

and by substitution

ϕ(z) − E
(
E
(
ϕ(Z) | W ) | Z = z

)
(1.24)= E(Y | Z = z) − E

(
E(Y | W) | Z = z

)
or, in our notations:

(I − K)ϕ = r

where K = E(E(· | W) | Z). Backfitting refers to the iterative method to solve Equa-
tion (1.23).

An analogous equation characterizes ψ . Actually even if (1.22) is not well specified,
these equations provide the best approximation of the regression of Y given Z and W

by an additive form. Equation (1.24) is a linear integral equation and even if this inverse
problem is ill-posed because K is not one-to-one (ϕ is only determined up to a constant
term), the solution is still continuous and therefore the difficulty is not as important as
that of the previous examples.

1.3.6. Measurement-error models or nonparametric analysis of panel data

We denote η to be an unobservable random variable for which two measurements Y1 and
Y2 are available. These measurements are affected by a bias dependent on observable
variables Z1 and Z2. More formally:

(1.25)

{
Y1 = η + ϕ(Z1) + U1, E(U1 | η,Z1, Z2) = 0,
Y2 = η + ϕ(Z2) + U2, E(U2 | η,Z1, Z2) = 0.

An i.i.d. sample (y1i , y2i , ηi, z1i , z2i ) is drawn, but the ηi are unobservable. Equiva-
lently this model may be seen as a two period panel data with individual effects ηi .

The parameter of interest is the “bias function” ϕ, identical for the two observa-
tions. In the experimental context, it is natural to assume that the joint distribution
of the observables is independent of the order of the observations, or equivalently
(Y1, Z1, Y2, Z2) are distributed as (Y2, Z2, Y1, Z1). This assumption is not relevant in a
dynamic context.

The model is transformed in order to eliminate the unobservable variable by differ-
ence:

(1.26)Y = ϕ(Z2)− ϕ(Z1) + U

where Y = Y2 − Y1, U = U2 − U1, and E(U | Z1, Z2) = 0.
This model is similar to an additive model except for the symmetry between the vari-

ables, and the fact that with the notation of (1.22), ϕ and ψ are identical. An application
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of this model can be found in Gaspar and Florens (1998) where y1i and y2i are two
measurements of the ocean level in location i by a satellite radar altimeter, ηi is the true
level and ϕ is the “sea state bias” depending on the waves’ height and the wind speed
(Z1i and Z2i are both two-dimensional).

The model is treated through the relation

(1.27)E(Y | Z2 = z2) = ϕ(z2)− E
(
ϕ(Z1) | Z2 = z2

)
,

which defines an integral equation Kϕ = r . The exchangeable property between the
variables implies that conditioning on Z1 gives the same equation (where Z1 and Z2 are
exchanged).

1.3.7. Game theoretic model

This example and the next ones present economic models formalized by nonlinear in-
verse problems. As the focus of this chapter is on linear equations, these examples are
given for illustration and will not be treated outside of this section. The analysis of non-
linear functional equations raises numerous questions: uniqueness and existence of the
solution, asymptotic properties of the estimator, implementation of the estimation pro-
cedure and numerical computation of the solution. Most of these questions are usually
solved locally by a linear approximation of the nonlinear problem deduced from a suit-
able concept of derivative. A strong concept of derivation (typically Frechet derivative)
is needed to deal with the implicit form of the model, which requires the use of the
implicit function theorem.

The first example of nonlinear inverse problems follows from the strategic behavior
of the players in a game. Let us assume that for each game, each player receives a
random signal or type denoted by ξ and plays an action X. The signal is generated by
a probability described by its c.d.f. ϕ, and the players all adopt a strategy σ dependent
on ϕ which associates X with ξ , i.e.

X = σϕ(ξ).

The strategy σϕ is determined as an equilibrium of the game (e.g. Nash equilibrium)
or by an approximation of the equilibrium (bounded rationality behavior). The signal
ξ is private knowledge for the player but is unobserved by the econometrician, and
the c.d.f. ϕ is common knowledge for the players but is unknown for the statistician.
The strategy σϕ is determined from the rules of the game and by the assumptions on
the behavior of the players. The essential feature of the game theoretic model from a
statistical viewpoint is that the relation between the unobservable and the observable
variables depends on the distribution of the unobservable component. The parameter of
interest is the c.d.f. ϕ of the signals.

Let us restrict our attention to cases where ξ and X are scalar and where σϕ is strictly
increasing. Then the c.d.f. F of the observable X is connected with ϕ by

(1.28)A(ϕ, F ) = F ◦ σϕ − ϕ = 0.
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If the signals are i.i.d. across the different players and different games, F can be
estimated by a smooth transformation of the empirical distribution and Equation (1.28)
is solved in ϕ. The complexity of this relation can be illustrated by the auction model.
In the private value first price auction model, ξ is the value of the object and X the bid.
If the number of bidders is N + 1 the strategy function is equal to

(1.29)X = ξ −
∫ ξ
ξ
ϕN(u) du

ϕN(ξ)

where [ξ, ξ̄ ] is the support of ξ and ϕN(u) = [ϕ(u)]N is the c.d.f. of the maximum
private value among N players.

Model (1.28) may be extended to a non-i.i.d. setting (depending on exogenous vari-
ables) or to the case where σϕ is partially unknown. The analysis of this model has been
done by Guerre, Perrigne and Vuong (2000) in a nonparametric context. The framework
of inverse problem is used by Florens, Protopopescu and Richard (1997).

1.3.8. Solution of a differential equation

In several models like the analysis of the consumer surplus, the function of interest is
the solution of a differential equation depending on the data generating process.

Consider for example a class of problems where X = (Y, Z,W) ∈ R3 is i.i.d., F is
the c.d.f. of X and the parameter ϕ verifies:

(1.30)
d

dz
ϕ(z) = mF

(
z, ϕ(z)

)
when mF is a regular function depending on F . A first example is

(1.31)mF (z,w) = EF (Y | Z = z, W = w)

but more complex examples may be constructed in order to take into account the endo-
geneity of one or two variables. For example, Z may be endogenous and mF may be
defined by

(1.32)E(Y | W1 = w1, W2 = w2) = E
(
mF (Z,W1) | W1 = w1, W2 = w2

)
.

Microeconomic applications can be found in Hausman (1981, 1985) and Hausman and
Newey (1995) where the function mF represents the demand function for one good
and ϕ measures the variation of the consumer surplus associated with a price change.
A theoretical treatment is given by Vanhems (2006) and Loubes and Vanhems (2001).

1.3.9. Instrumental variables in a nonseparable model

Another example of a nonlinear inverse problem is provided by the following model:

(1.33)Y = ϕ(Z,U)
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where Z is an endogenous variable. The function ϕ is the parameter of interest. De-
note ϕz(u) = ϕ(z, u). Assume that ϕz(u) is an increasing function of u for each z.
Moreover, the distribution FU of U is assumed to be known for identification purposes.
Model (1.33) may arise in a duration model where Y is the duration [see Equation (2.2)
of Horowitz (1999)]. One difference with Horowitz (1999) is the presence of an endoge-
nous variable here. Assume there is a vector of instruments W , which are independent
of U . Because U and W are independent, we have

(1.34)P(U � u | W = w) = P(U � u) = FU(u).

Denote f the density of (Y, Z) and

F(y, z | w) =
∫ y

−∞
f (t, z | w) dt.

F can be estimated using the observations (yi, zi , wi), i = 1, 2, . . . , n. By a slight
abuse of notation, we use the notation P(Y � y,Z = z | W = w) for F(y, z | w). We
have

P(U � u,Z = z | W = w) = P
(
ϕz(Y )

−1 � u, Z = z | W = w
)

= P
(
Y � ϕz(u), Z = z | W = w

)
(1.35)= F

(
ϕz(u), z | w).

Combining Equations (1.34) and (1.35), we obtain

(1.36)
∫

F
(
ϕz(u), z | w) dz = FU(u).

Equation (1.36) belongs to the class of Urysohn equations of Type I [Polyanin and
Manzhirov (1998)]. The estimation of the solution of Equation (1.36) is discussed in
Florens (2005).

1.4. Organization of the chapter

Section 2 reviews the basic definitions and properties of operators in Hilbert spaces.
The focus is on compact operators because they have the advantage of having a discrete
spectrum. We recall some laws of large numbers and central limit theorems for Hilbert
valued random elements. Finally, we discuss how to estimate the spectrum of a compact
operator and how to estimate the operators themselves.

Section 3 is devoted to solving integral equations of the first kind. As these equations
are ill-posed, the solution needs to be regularized (or smoothed). We investigate the
properties of the regularized solutions for different types of regularizations.

In Section 4, we show under suitable assumptions the consistency and asymptotic
normality of regularized solutions.

Section 5 details five examples: the ridge regression, the factor model, the infinite
number of regressors, the deconvolution, and the instrumental variables estimation.



5648 M. Carrasco et al.

Section 6 has two parts. First, it recalls the main results relative to reproducing ker-
nels. Reproducing kernel theory is closely related to that of the integral equations of the
first kind. Second, we explain the extension of GMM to a continuum of moment con-
ditions and show how the GMM objective function reduces to the norm of the moment
functions in a specific reproducing kernel Hilbert space. Several examples are provided.

Section 7 tackles the problem of solving integral equations of the second kind. A typ-
ical example of such a problem is the additive model introduced earlier.

Finally, a web site containing an annotated bibliography and resources on inverse
problems complements this chapter. It can be found on http://www.sceco.umontreal.ca/
liste_personnel/carrasco/.

2. Spaces and operators

The purpose of this section is to introduce terminology and to state the main proper-
ties of operators in Hilbert spaces that are used in our econometric applications. Most
of these results can be found in Debnath and Mikusinski (1999) and Kress (1999).
Aït-Sahalia, Hansen and Scheinkman (2005) provide an excellent survey of operator
methods for the purpose of financial econometrics.

2.1. Hilbert spaces

We start by recalling some of the basic concepts of analysis. In the sequel, C denotes the
set of complex numbers. A vector space equipped by a norm is called a normed space.
A sequence (ϕn) of elements in a normed space is called a Cauchy sequence if for every
ε > 0 there exists an integer N(ε) such that

‖ϕn − ϕm‖ < ε

for all n, m � N(ε), i.e., if limn,m→∞ ‖ϕn − ϕm‖ = 0. A space S is complete if every
Cauchy sequence converges to an element in S. A complete normed vector space is
called a Banach space.

Let (E, E,Π) be a probability space and

L
p

C
(E, E,Π) =

{
f :E → C measurable s.t. ‖f ‖ ≡

( ∫
|f |p dΠ

)1/p
< ∞

}
,

p � 1.

Then, Lp

C
(E, E,Π) is a Banach space. If we only consider functions valued in R this

space is still a Banach space and is denoted in that case by Lp (we drop the subscript C).
In the sequel, we also use the following notation. If E is a subset of Rp, then the σ -field
E will always be the Borel σ -field and will be omitted in the notation Lp(Rq,Π). If
Π has a density π with respect to Lebesgue measure, Π will be replaced by π . If π is
uniform, it will be omitted in the notation.

http://www.sceco.umontreal.ca/liste_personnel/carrasco/
http://www.sceco.umontreal.ca/liste_personnel/carrasco/
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DEFINITION 2.1 (Inner product). Let H be a complex vector space. A mapping
〈,〉 :H × H → C is called an inner product in H if for any ϕ,ψ, ξ ∈ H and α, β ∈ C

the following conditions are satisfied:

(a) 〈ϕ,ψ〉 = 〈ψ, ϕ〉 (the bar denotes the complex conjugate),
(b) 〈αϕ + βψ, ξ 〉 = α〈ϕ, ξ 〉 + β〈ψ, ξ 〉,
(c) 〈ϕ, ϕ〉 � 0 and 〈ϕ, ϕ〉 = 0 ⇐⇒ ϕ = 0.

A vector space equipped by an inner product is called an inner product space.

EXAMPLE. The space CN of ordered N -tuples x = (x1, . . . , xN) of complex numbers,
with the inner product defined by

〈x, y〉 =
N∑
l=1

xlyl

is an inner product space.

EXAMPLE. The space l2 of all sequences (x1, x2, . . .) of complex numbers such that∑∞
j=1 |xj |2 < ∞ with the inner product defined by 〈x, y〉 = ∑∞

j=1 xjyj for x =
(x1, x2, . . .) and y = (y1, y2, . . .) is an infinite dimensional inner product space.

EXAMPLE. The space L2
C
(E, E,Π) associated with the inner product defined by

〈ϕ,ψ〉 =
∫

ϕψ dΠ

is an inner product space. On the other hand, Lp

C
(E, E,Π) is not an inner product space

if p �= 2.

An inner product satisfies the Cauchy–Schwartz inequality, that is,∣∣〈ϕ,ψ〉∣∣2 � 〈ϕ, ϕ〉〈ψ,ψ〉
for all ϕ, ψ ∈ H . Remark that 〈ϕ, ϕ〉 is real because 〈ϕ, ϕ〉 = 〈ϕ, ϕ〉. It actually defines
a norm ‖ϕ‖ = 〈ϕ, ϕ〉1/2 (this is the norm induced by the inner product 〈,〉).

DEFINITION 2.2 (Hilbert space). If an inner product space is complete in the induced
norm, it is called a Hilbert space.

A standard theorem in functional analysis guarantees that every inner product space
H can be completed to form a Hilbert space H. Such a Hilbert space is said to be the
completion of H .

EXAMPLE. CN , l2 and L2(R,Π) are Hilbert spaces.
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EXAMPLE (Sobolev space). Let Ω = [a, b] be an interval of R. Denote by H̃m(Ω),
m = 1, 2, . . . , the space of all complex-valued functions ϕ ∈ Cm such that for all
|l| � m, ϕ(l) = ∂lϕ(τ )/∂τ l ∈ L2(Ω). The inner product on H̃m(Ω) is

〈ϕ,ψ〉 =
∫ b

a

m∑
l=0

ϕ(l)(τ )ψ(l)(τ ) dτ.

H̃m(Ω) is an inner product space but it is not a Hilbert space because it is not complete.
The completion of H̃m(Ω), denoted Hm(Ω), is a Hilbert space.

DEFINITION 2.3 (Convergence). A sequence (ϕn) of vectors in an inner product
space H is called strongly convergent to a vector ϕ ∈ H if ‖ϕn − ϕ‖ → 0 as n → ∞.

Remark that if (ϕn) converges strongly to ϕ in H then 〈ϕn,ψ〉 → 〈ϕ,ψ〉 as n → ∞,
for every ψ ∈ H . The converse is false.

DEFINITION 2.4. Let H be an inner product space. A sequence (ϕn) of nonzero vec-
tors in H is called an orthogonal sequence if 〈ϕm, ϕn〉 = 0 for n �= m. If in addition
‖ϕn‖ = 1 for all n, it is called an orthonormal sequence.

EXAMPLE. Let π(x) be the p.d.f. of a normal with mean μ and variance σ 2. Denote by
φj the Hermite polynomials of degree j :

(2.1)φj (x) = (−1)j
dj π
dxj

π
.

The functions φj (x) form an orthogonal system in L2(R, π).

Any sequence of vectors (ψj ) in an inner product space that is linearly independent,
i.e.,

∞∑
j=1

αjψj = 0 ⇒ αj = 0 ∀j = 1, 2, . . . ,

can be transformed into an orthonormal sequence by the method called Gram–Schmidt
orthonormalization process. This process consists of the following steps. Given (ψj ),
define a sequence (ϕj ) inductively as

ϕ1 = ψ1

‖ψ1‖ ,

ϕ2 = ψ2 − 〈ψ2, ϕ1〉ϕ1

‖ψ2 − 〈ψ2, ϕ1〉ϕ1‖
...
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ϕn = ψn −∑n−1
l=1 〈ψn, ϕl〉ϕl

‖ψn −∑n−1
l=1 〈ψn, ϕl〉ϕl‖

.

As a result, (ϕj ) is orthonormal and any linear combinations of vectors ϕ1, . . . , ϕn is
also a linear combinations of ψ1, . . . , ψn and vice versa.

THEOREM 2.5 (Pythagorean formula). If ϕ1, . . . , ϕn are orthogonal vectors in an inner
product space, then∥∥∥∥∥

n∑
j=1

ϕj

∥∥∥∥∥
2

=
n∑

j=1

‖ϕj‖2.

From the Pythagorean formula, it can be seen that the αj that minimize∥∥∥∥∥ϕ −
n∑

j=1

αjϕj

∥∥∥∥∥
are such that αj = 〈ϕ, ϕj 〉. Moreover

(2.2)
n∑

j=1

∣∣〈ϕ, ϕj 〉∣∣2 � ‖ϕ‖2.

Hence the series
∑∞

j=1 |〈ϕ, ϕj 〉|2 converges for every ϕ ∈ H . The expansion

(2.3)ϕ =
∞∑
j=1

〈ϕ, ϕj 〉ϕj

is called a generalized Fourier series of ϕ. In general, we do not know whether the series
in (2.3) is convergent. Below we give a sufficient condition for convergence.

DEFINITION 2.6 (Complete orthonormal sequence). An orthonormal sequence (ϕj ) in
an inner product space H is said to be complete if for every ϕ ∈ H we have

ϕ =
∞∑
j=1

〈ϕ, ϕj 〉ϕj

where the equality means

lim
n→∞

∥∥∥∥∥ϕ −
n∑

j=1

〈ϕ, ϕj 〉ϕj
∥∥∥∥∥ = 0

where ‖ · ‖ is the norm in H .
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A complete orthonormal sequence (ϕj ) in an inner product spaceH is an orthonormal
basis in H , that is every ϕ ∈ H has a unique representation ϕ = ∑∞

j=1 αjϕj where
αj ∈ C. If (ϕj ) is a complete orthonormal sequence in an inner product space H then
the set

span{ϕ1, ϕ2, . . .} =
{

n∑
j=1

αjϕj : ∀n ∈ N, ∀α1, . . . , αn ∈ C

}

is dense in H .

THEOREM 2.7. An orthonormal sequence (ϕj ) in a Hilbert space H is complete if and
only if 〈ϕ, ϕj 〉 = 0 for all j = 1, 2, . . . , implies ϕ = 0.

THEOREM 2.8 (Parseval’s formula). An orthonormal sequence (ϕj ) in a Hilbert space
H is complete if and only if

(2.4)‖ϕ‖2 =
∞∑
j=1

∣∣〈ϕ, ϕj 〉∣∣2
for every ϕ ∈ H.

DEFINITION 2.9 (Separable space). A Hilbert space is called separable if it contains a
complete orthonormal sequence.

EXAMPLE. A complete orthonormal sequence in L2([−π, π]) is given by

φj (x) = eijx√
2π

, j = . . . ,−1, 0, 1, . . . .

Hence, the space L2([−π, π]) is separable.

THEOREM 2.10. Every separable Hilbert space contains a countably dense subset.

2.2. Definitions and basic properties of operators

In the sequel, we denote K :H → E the operator that maps a Hilbert space H (with
norm ‖ · ‖H) into a Hilbert space E (with norm ‖ · ‖E ).

DEFINITION 2.11. An operator K :H → E is called linear if

K(αϕ + βψ) = αKϕ + βKψ

for all ϕ, ψ ∈ H and all α, β ∈ C.
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DEFINITION 2.12.
(i) The null space of K :H → E is the set N (K) = {ϕ ∈ H: Kϕ = 0}.

(ii) The range of K :H → E is the set R(K) = {ψ ∈ E : ψ = Kϕ for some
ϕ ∈ H}.

(iii) The domain of K :H → E is the subset of H denoted D(K) on which K is
defined.

(iv) An operator is called finite dimensional if its range is of finite dimension.

THEOREM 2.13. A linear operator is continuous if it is continuous at one element.

DEFINITION 2.14. A linear operator K :H → E is called bounded if there exists a
positive number C such that

‖Kϕ‖E � C‖ϕ‖H
for all ϕ ∈ H.

DEFINITION 2.15. The norm of a bounded operator K is defined as

‖K‖ ≡ sup
‖ϕ‖�1

‖Kϕ‖E .

THEOREM 2.16. A linear operator is continuous if and only if it is bounded.

EXAMPLE. The identity operator defined by Iϕ = ϕ for all ϕ ∈ H is bounded with
‖I‖ = 1.

EXAMPLE. Consider the differential operator:

(Dϕ)(x) = dϕ(τ)

dτ
= ϕ′(τ )

defined on the space E1 = {ϕ ∈ L2([−π, π]): ϕ′ ∈ L2([−π, π])} with norm

‖ϕ‖ =
√∫ π

−π
|f (τ)|2 dτ . For ϕj (τ ) = sin jτ , j = 1, 2, . . . , we have ‖ϕj‖ =√∫ π

−π
| sin(jτ )|2 dτ = √

π and ‖Dϕj‖ =
√∫ π

−π
|j cos(jτ )|2 dτ = j

√
π . Therefore

‖Dϕj‖ = j‖ϕj‖ proving that the differential operator is not bounded.

THEOREM 2.17. Every linear operator K from a finite dimensional normed space H
into a normed space E is bounded.

An important class of linear operators are valued in C and they are characterized
by Riesz theorem. By Cauchy–Schwartz inequality, it follows that for any fixed vector
g in an inner product space H , the formula G(ϕ) = 〈ϕ, g〉 defines a bounded linear
functional on H . It turns out that if H is a Hilbert space, then every bounded linear
functional is of this form.
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THEOREM 2.18 (Riesz). Let H be a Hilbert space. Then for each bounded linear func-
tion G :H → C there exists a unique element g ∈ H such that

G(ϕ) = 〈ϕ, g〉
for all ϕ ∈ H. The norms of the element g and the linear function G coincide

‖g‖H = ‖G‖
where ‖ · ‖H is the norm in H and ‖ · ‖ is the operator norm.

DEFINITION 2.19 (Hilbert space isomorphism). A Hilbert space H1 is said to be iso-
metrically isomorphic (congruent) to a Hilbert space H2 if there exists a one-to-one
linear mapping J from H1 to H2 such that〈

J (ϕ), J (ψ)
〉
H2

= 〈ϕ,ψ〉H1

for all ϕ, ψ ∈ H1. Such a mapping J is called a Hilbert space isomorphism (or congru-
ence) from H1 to H2.

The terminology “congruence” is used by Parzen (1959, 1970).

THEOREM 2.20. Let H be a separable Hilbert space.

(a) If H is infinite dimensional, then it is isometrically isomorphic to l2.
(b) If H has a dimension N , then it is isometrically isomorphic to CN .

A consequence of Theorem 2.20 is that two separable Hilbert spaces of the same
dimension (finite or infinite) are isometrically isomorphic.

THEOREM 2.21. Let H and E be Hilbert spaces and let K :H → E be a bounded
operator. Then there exists a uniquely determined linear operator K∗ : E → H with the
property

〈Kϕ,ψ〉E = 〈ϕ,K∗ψ〉H
for all ϕ ∈ H and ψ ∈ E . Moreover, the operator K∗ is bounded and ‖K‖ = ‖K∗‖.
K∗ is called the adjoint operator of K .

Riesz Theorem 2.18 implies that, in Hilbert spaces, the adjoint of a bounded operator
always exists.

EXAMPLE 2.1 (Discrete case). Let π and ρ be two discrete probability density
functions on N. Let H = L2(N, π) = {ϕ : N → R, ϕ = (ϕl)l∈N such that∑

l∈N
ϕ2
l π(l) < ∞} and E = L2(N, ρ). The operator K that associates to elements
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(ϕl)l∈N of H elements (ψp)p∈N of E such that

(Kϕ)p = ψp =
∑
l∈N

k(p, l)ϕlπ(l)

is an infinite dimensional matrix. If H and E are finite dimensional, then K is simply a
matrix and K∗ = K ′.

EXAMPLE 2.2 (Integral operator). An important kind of operator is the integral oper-
ator. Let H = L2

C
(Rq, π) and E = L2

C
(Rr , ρ) where π and ρ are p.d.f. The integral

operator K :H → E is defined as

(2.5)Kϕ(τ) =
∫

k(τ, s)ϕ(s)π(s) ds.

The function k is called the kernel of the operator. If k satisfies

(2.6)
∫ ∫ ∣∣k(τ, s)∣∣2π(s)ρ(τ) ds dτ < ∞

(k is said to be a L2-kernel) then K is a bounded operator and

‖K‖ �
√∫ ∫ ∣∣k(τ, s)∣∣2π(s)ρ(τ) ds dτ .

Indeed for any ϕ ∈ H, we have

‖Kϕ‖2
E =

∫ ∣∣∣∫ k(τ, s)ϕ(s)π(s) ds
∣∣∣2ρ(τ) dτ =

∫ ∣∣〈k(τ, ·), ϕ(·)〉H∣∣2ρ(τ) dτ

�
∫ ∥∥k(τ, ·)∥∥2

H‖ϕ‖2
Hρ(τ) dτ

by Cauchy–Schwarz inequality. Hence we have

‖Kϕ‖2
E � ‖ϕ‖2

H

∫ ∥∥k(τ, ·)∥∥2
Hρ(τ) dτ = ‖ϕ‖2

H

∫ ∫ ∣∣k(τ, s)∣∣2π(s)ρ(τ) ds dτ.

The upperbound for ‖K‖ follows.
The adjoint K∗ of the operator K is also an integral operator

(2.7)K∗ψ(s) =
∫

k∗(s, τ )ψ(τ)ρ(τ) dτ

with k∗(s, τ ) = k(τ, s). Indeed, we have

〈Kϕ,ψ〉E =
∫
(Kϕ)(τ)ψ(τ)ρ(τ) dτ

=
∫ ( ∫

k(τ, s)ϕ(s)π(s) ds
)
ψ(τ)ρ(τ) dτ
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=
∫

ϕ(s)
( ∫

k(τ, s)ψ(τ)ρ(τ) dτ
)
π(s) ds

=
∫

ϕ(s)
( ∫

k∗(s, τ )ψ(τ)ρ(τ) dτ
)
π(s) ds

= 〈ϕ,K∗ψ〉H.

There are two types of integral operators we are interested in, the covariance operator
and the conditional expectation operator.

EXAMPLE 2.3 (Conditional expectation operator). When K is a conditional expec-
tation operator, it is natural to define the spaces of reference as functions of unknown
p.d.f.s. Let (Z,W) ∈ Rq × Rr be a r.v. with distribution FZ,W , let FZ , and FW be the
marginal distributions of Z and W , respectively. The corresponding p.d.f.s are denoted
fZ,W , fZ , and fW . Define

H = L2(Rq, fZ
) ≡ L2

Z, E = L2(Rr , fW
) ≡ L2

W .

Let K be the conditional expectation operator:

K :L2
Z → L2

W

(2.8)ϕ → E
[
ϕ(Z) | W ].

K is an integral operator with kernel

k(w, z) = fZ,W (z,w)

fZ(z)fW (w)
.

By Equation (2.7), its adjointK∗ has kernel k∗(z, w) = k(w, z) and is also a conditional
expectation operator:

K∗ :L2
W → L2

Z

ψ → E
[
ψ(W) | Z].

EXAMPLE 2.4 (Restriction of an operator on a subset of H). Let K :H → E and
consider the restriction denoted K0 of K on a subspace H0 of H. K0 :H0 → E is such
that K0 and K coincide on H0. It can be shown that the adjoint K∗

0 of K0 is the operator
mapping E into H0 such that

(2.9)K∗
0 = PK∗

where P is the projection on H0. The expression of K∗
0 will reflect the extra information

contained in H0.
To prove (2.9), we use the definition of K∗:

〈Kϕ,ψ〉E = 〈ϕ,K∗ψ〉H for all ϕ ∈ H0

= 〈ϕ,K∗
0ψ〉H0 for all ϕ ∈ H0
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⇔ 〈ϕ,K∗ψ −K∗
0ψ〉H = 0 for all ϕ ∈ H0

⇔ K∗ψ − K∗
0ψ ∈ H⊥

0

⇔ K∗
0ψ = PK∗ψ.

A potential application of this result to the conditional expectation in Example 2.3 is
the case where ϕ is known to be additive. Let Z = (Z1, Z2). Then

H0 = {
ϕ(Z) = ϕ1(Z1) + ϕ2(Z2): ϕ1 ∈ L2

Z1
, ϕ2 ∈ L2

Z2

}
.

Assume that E[ϕ1(Z1)] = E[ϕ2(Z2)] = 0. We have Pϕ = (ϕ1, ϕ2) with

ϕ1 = (I − P1P2)
−1(P1 − P1P2)ϕ,

ϕ2 = (I − P1P2)
−1(P2 − P1P2)ϕ,

where P1 and P2 are the projection operators on L2
Z1

and L2
Z2

, respectively. If the two

spaces L2
Z1

and L2
Z2

are orthogonal, then ϕ1 = P1ϕ and ϕ2 = P2ϕ.

DEFINITION 2.22 (Self-adjoint). If K = K∗ then K is called self-adjoint (or Her-
mitian).

Remark that if K is a self-adjoint integral operator, then k(s, τ ) = k(τ, s).

THEOREM 2.23. Let K :H → H be a self-adjoint operator then

‖K‖ = sup
‖ϕ‖=1

∣∣〈Kϕ, ϕ〉H
∣∣.

DEFINITION 2.24 (Positive operator). An operator K :H → H is called positive if it
is self-adjoint and 〈Kϕ, ϕ〉H � 0 for all ϕ in H.

DEFINITION 2.25. A sequence (Kn) of operators Kn :H → E is called pointwise
convergent if for every ϕ ∈ H, the sequence Knϕ converges in E . A sequence (Kn) of
bounded operators converges in norm to a bounded operator K if ‖Kn − K‖ → 0 as
n → ∞.

DEFINITION 2.26 (Compact operator). A linear operator K :H → E is called a com-
pact operator if for every bounded sequence (ϕn) in H, the sequence (Kϕn) contains a
convergent subsequence in E .

THEOREM 2.27. Compact linear operators are bounded.

Not every bounded operator is compact. An example is given by the identity operator
on an infinite dimensional space H. Consider an orthonormal sequence (en) in H. Then
the sequence Ien = en does not contain a convergent subsequence.
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THEOREM 2.28. Finite dimensional operators are compact.

THEOREM 2.29. If the sequence Kn :H → E of compact linear operators are norm
convergent to a linear operator K :H → E , i.e., ‖Kn −K‖ → 0 as n → ∞, then K is
compact. Moreover, every compact operator is the limit of a sequence of operators with
finite dimensional range.

Hilbert–Schmidt operators are discussed in Dunford and Schwartz (1988, p. 1009),
Dautray and Lions (1988, p. 41).

DEFINITION 2.30 (Hilbert–Schmidt operator). Let {ϕj , j = 1, 2, . . .} be a complete
orthonormal set in a Hilbert space H. An operator K :H → E is said to be a Hilbert–
Schmidt operator if the quantity ‖ · ‖HS defined by

‖K‖HS =
{ ∞∑

j=1

‖Kϕj‖2
E

}1/2

is finite. The number ‖K‖HS is called the Hilbert–Schmidt norm of K . Moreover

(2.10)‖K‖ � ‖K‖HS

and hence K is bounded.

From (2.10), it follows that HS norm convergence implies (operator) norm conver-
gence.

THEOREM 2.31. The Hilbert–Schmidt norm is independent of the orthonormal basis
used in its definition.

THEOREM 2.32. Every Hilbert–Schmidt operator is compact.

THEOREM 2.33. The adjoint of a Hilbert–Schmidt operator is itself a Hilbert–Schmidt
operator and ‖K‖HS = ‖K∗‖HS.

Theorem 2.32 implies that Hilbert–Schmidt (HS) operators can be approached by a
sequence of finite dimensional operators, which is an attractive feature when it comes
to estimating K . Remark that the integral operator K defined by (2.5) and (2.6) is
a Hilbert–Schmidt (HS) operator and its adjoint is also a HS operator. Actually, all
Hilbert–Schmidt operators of L2(Rq, π) in L2(Rr , ρ) are integral operators. The fol-
lowing theorem is proved in Dautray and Lions (1988, p. 45).

THEOREM 2.34. An operator ofL2(Rq, π) inL2(Rr , ρ) is Hilbert–Schmidt if and only
if it admits a kernel representation (2.5) conformable to (2.6). In this case, the kernel k
is unique.
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EXAMPLE 2.1 (Continued). Let K be an operator from L2(N, π) in L2(N, ρ) with
kernel k(l, p). K is a Hilbert–Schmidt operator if

∑∑
k(l, p)2π(l)ρ(p) < ∞. In

particular, the operator defined by (Kϕ)1 = ϕ1 and (Kϕ)p = ϕp−ϕp−1, p = 2, 3, . . . ,
is not a Hilbert–Schmidt operator; it is not even compact.

EXAMPLE 2.3 (Continued). By Theorem 2.34, a sufficient condition for K and K∗ to
be Hilbert–Schmidt and therefore compact is∫ ∫ [

fZ,W (z,w)

fZ(z)fW (w)

]2

fZ(z)fW (w) dz dw < ∞.

EXAMPLE 2.5 (Conditional expectation with common elements). Consider a condi-
tional expectation operator from L2(X,Z) into L2(X,W) defined by

(Kϕ)(x,w) = E
[
ϕ(X,Z) | X = x, W = w

]
.

Because there are common elements between the conditioning variable and the argu-
ment of the function ϕ, the operator K is not compact. Indeed, let ϕ(X) be such that
E(ϕ2) = 1, we have Kϕ = ϕ. It follows that the image of the unit circle in L2(X,Z)

contains the unit circle ofL2(X) and hence is not compact. Therefore,K is not compact.

EXAMPLE 2.6 (Restriction). For illustration, we consider the effect of restricting K on
a subset of L2

C
(Rq, π). Consider K̃ the operator defined by

K̃ :L2
C

(
Rq, π̃

) → L2
C

(
Rr , ρ̃

)
,

K̃ϕ = Kϕ

for every ϕ ∈ L2
C
(Rq, π̃), where L2

C
(Rq, π̃) ⊂ L2

C
(Rq, π) and L2

C
(Rr , ρ̃) ⊃

L2
C
(Rr , ρ). Assume that K is an HS operator defined by (2.5). Under which conditions

is K̃ an HS operator? Let

K̃ϕ(s) =
∫

k(τ, s)ϕ(s)π(s) ds =
∫

k(τ, s)
π(s)

π̃(s)
ϕ(s)π̃(s) ds

≡
∫

k̃(τ, s)ϕ(s)π̃(s) ds.

Assume that π̃(s) = 0 implies π(s) = 0 and ρ(τ) = 0 implies ρ̃(τ ) = 0. Note that∫ ∣∣k̃(τ, s)∣∣2π̃(s)ρ̃(τ ) ds dτ

=
∫ ∣∣k(τ, s)∣∣2 π(s)

π̃(s)

ρ̃(τ )

ρ(τ )
π(s)ρ(τ ) ds dτ

< sup
s

∣∣∣∣π(s)π̃(s)

∣∣∣∣ sup
τ

∣∣∣∣ ρ̃(τ )ρ(τ )

∣∣∣∣
∫ ∣∣k(τ, s)∣∣2π(s)ρ(τ) ds dτ.

Hence the HS property is preserved if (a) there is a constant c > 0 such that π(s) �
cπ̃(s) for all s ∈ Rq and (b) there is a constant d such that ρ̃(τ ) � dρ(τ) for all τ ∈ Rr .
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2.3. Spectral decomposition of compact operators

For compact operators, spectral analysis reduces to the analysis of eigenvalues and
eigenfunctions. Let K :H → H be a compact linear operator.

DEFINITION 2.35. λ is an eigenvalue of K if there is a nonzero vector φ ∈ H such that
Kφ = λφ. φ is called the eigenfunction of K corresponding to λ.

THEOREM 2.36. All eigenvalues of a self-adjoint operator are real. Eigenfunctions
corresponding to different eigenvalues of a self-adjoint operator are orthogonal.

THEOREM 2.37. All eigenvalues of a positive operator are nonnegative.

THEOREM 2.38. For every eigenvalue λ of a bounded operator K , we have |λ| � ‖K‖.

THEOREM 2.39. Let K be a self-adjoint compact operator, the set of its eigenvalues
(λj ) is countable and its eigenvectors (φj ) can be orthonormalized. Its largest eigen-
value (in absolute value) satisfies |λ1| = ‖K‖. If K has infinitely many eigenvalues
|λ1| � |λ2| � · · ·, then limj→∞ λj = 0.

Let K :H → E , K∗K and KK∗ are self-adjoint positive operators on H and E ,
respectively. Hence their eigenvalues are nonnegative by Theorem 2.37.

DEFINITION 2.40. Let H and E be Hilbert spaces, K :H → E be a compact linear
operator and K∗ : E → H be its adjoint. The square roots of the eigenvalues of the
nonnegative self-adjoint compact operator K∗K :H → H are called the singular values
of K .

The following results [Kress (1999), Theorem 15.16] apply to operators that are not
necessarily self-adjoint.

THEOREM 2.41. Let (λj ) denote the sequence of the nonzero singular values of the
compact linear operator K repeated according to their multiplicity. Then there exist
orthonormal sequences φj of H and ψj of E such that

(2.11)Kφj = λjψj , K∗ψj = λjφj

for all j ∈ N . For each ϕ ∈ H we have the singular value decomposition

(2.12)ϕ =
∞∑
j=1

〈ϕ, φj 〉φj + Qϕ



Ch. 77: Linear Inverse Problems in Structural Econometrics 5661

with the orthogonal projection operator Q :H → N (K) and

(2.13)Kϕ =
∞∑
j=1

λj 〈ϕ, φj 〉ψj .

{λj , φj , ψj } is called the singular system of K . Note that λ2
j are the nonzero eigen-

values of KK∗ and K∗K associated with the eigenfunctions ψj and φj , respectively.

THEOREM 2.42. Let K be the integral operator defined by (2.5) and assume condi-
tion (2.6) holds. Let {λj , φj , ψj } be as in (2.11). Then:

(i) The Hilbert–Schmidt norm of K can be written as

‖K‖HS =
{ ∑

j∈N
|λj |2

}1/2

=
{∫ ∫ ∣∣k(τ, s)∣∣2π(s)ρ(τ) ds dτ

}1/2

where each λj is repeated according to its multiplicity.
(ii) (Mercer’s formula) k(τ, s) = ∑∞

j=1 λjψj (τ )φj (s).

EXAMPLE (Degenerate operator). Consider an integral operator defined on L2([a, b])
with a Pincherle–Goursat kernel i.e.

Kf (τ) =
∫ b

a

k(τ, s)f (s) ds, k(τ, s) =
n∑
l=1

al(τ )bl(s).

Assume that al and bl belong to L2([a, b]) for all l. By (2.6), it follows that K is
bounded. Moreover, as K is finite dimensional, we have K compact by Theorem 2.28.
Assume that the set of functions (al) is linearly independent. The equality Kφ = λφ

yields

n∑
l=1

al(τ )

∫
bl(s)φ(s) ds = λφ(τ),

hence φ(τ) is necessarily of the form
∑n

l=1 clal(τ ). The dimension of the range of K is
therefore n and there are at most n nonzero eigenvalues.

EXAMPLE. Let H = L2([0, 1]) and the integral operator Kf (τ) = ∫ 1
0 (τ ∧ s)f (s) ds

where τ ∧ s = min(τ, s). It is possible to explicitly compute the eigenvalues and eigen-
functions of K by solving Kφ = λφ ⇐⇒ ∫ τ

0 sφ(s) ds + τ
∫ 1
τ
φ(s) ds = λφ(τ).

Using two successive differentiations with respect to τ , we obtain a differential equation
φ(τ) = −λφ′′(τ ) with boundary conditions φ(0) = 0 and φ′(1) = 0. Hence the set of
orthonormal eigenfunctions is φj (τ ) = √

2 sin((πjτ)/2) associated with the eigenval-
ues λj = 4/(π2j2), j = 1, 3, 5, . . . . We can see that the eigenvalues converge to zero
at an arithmetic rate.
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EXAMPLE. Let π be the p.d.f. of the standard normal distribution and H = L2(R, π).
Define K as the integral operator with kernel

k(τ, s) = l(τ, s)

π(τ)π(s)

where l(τ, s) is the joint p.d.f. of the bivariate normal N
(( 0

0

)
,
( 1 ρ

ρ 1

))
. Then K is a

self-adjoint operator with eigenvalues λj = ρj and has eigenfunctions that take the
Hermite polynomial form φj , j = 1, 2, . . . , defined in (2.1). This is an example where
the eigenvalues decay exponentially fast.

2.4. Random element in Hilbert spaces

2.4.1. Definitions

Let H be a real separable Hilbert space with norm ‖ ‖ induced by the inner product 〈,〉.
Let (Ω,F , P ) be a complete probability space. Let X :Ω → H be a Hilbert space-
valued random element (an H-r.e.). X is integrable or has finite expectation E(X) if
E(‖X‖) = ∫

Ω
‖X‖ dP < ∞, in that case E(X) satisfies E(X) ∈ H and E[〈X, ϕ〉] =

〈E(X), ϕ〉 for all ϕ ∈ H. An H-r.e. X is weakly second-order if E[〈X, ϕ〉2] < ∞ for
all ϕ ∈ H. For a weakly second-order H-r.e. X with expectation E(X), we define the
covariance operator K as

K :H → H,

Kϕ = E
[〈
X − E(X), ϕ

〉(
X − E(X)

)]
for all ϕ ∈ H. Note that var〈X, ϕ〉 = 〈Kϕ, ϕ〉.

EXAMPLE. Let H = L2([0, 1]) with ‖g‖ = [∫ 1
0 g(τ)2 dτ ]1/2 and X = h(τ, Y )

where Y is a random variable and h(·, Y ) ∈ L2([0, 1]) with probability one. Assume
E(h(τ, Y )) = 0, then the covariance operator takes the form:

Kϕ(τ) = E
[〈
h(·, Y ), ϕ〉h(τ, Y )]

= E

[(∫
h(s, Y )ϕ(s) ds

)
h(τ, Y )

]

=
∫

E
[
h(τ, Y )h(s, Y )

]
ϕ(s) ds

≡
∫

k(τ, s)ϕ(s) ds.

Moreover, if h(τ, Y ) = I {Y � τ } − F(τ) then k(τ, s) = F(τ ∧ s) − F(τ)F (s).

DEFINITION 2.43. An H-r.e. Y has a Gaussian distribution on H if for all ϕ ∈ H the
real-valued r.v. 〈ϕ, Y 〉 has a Gaussian distribution on R.
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DEFINITION 2.44 (Strong mixing). Let {Xi,n, i = . . . ,−1, 0, 1, . . . ; n � 1} be
an array of H-r.e., defined on the probability space (Ω,F , P ) and define An,b

n,a =
σ(Xi,n, a � i � b) for all −∞ � a � b � +∞, and n � 1. The array {Xi,n} is
called a strong or α-mixing array of H-r.e. if limj→∞ α(j) = 0 where

α(j) = sup
n�1

sup
l

sup
A,B

[∣∣P(A ∩ B)− P(A)P (B)
∣∣: A ∈ An,l

n,−∞, B ∈ An,+∞
n,l+j

]
.

2.4.2. Central limit theorem for mixing processes

We want to study the asymptotic properties of Zn = n−1/2∑n
i=1 Xi,n where {Xi,n:

1 � 1 � n} is an array of H-r.e. Weak and strong laws of large numbers for near
epoch dependent (NED) processes can be found in Chen and White (1996). Here we
provide sufficient conditions for the weak convergence of processes to be denoted ⇒
[see Davidson (1994) for a definition]. Weak convergence is stronger than the stan-
dard central limit theorem (CLT) as illustrated by a simple example. Let (Xi) be an
i.i.d. sequence of zero mean weakly second-order elements of H. Then for any Z in H,
〈Xi,Z〉 is an i.i.d. zero mean sequence of C with finite variance 〈KZ,Z〉. Then stan-
dard CLT implies the asymptotic normality of 1√

n

∑n
i=1〈Xi,Z〉. The weak convergence

of 1√
n

∑n
i=1 Xi to a Gaussian process N (0,K) in H requires an extra assumption,

namely E‖X1‖2 < ∞. Weak convergence theorems for NED processes that might have
trending mean (hence are not covariance stationary) are provided by Chen and White
(1998). Here, we report results for mixing processes proved by Politis and Romano
(1994). See also van der Vaart and Wellner (1996) for i.i.d. sequences.

THEOREM 2.45. Let {Xi,n: 1 � i � n} be a double array of stationary mixing
H-r.e. with zero mean, such that for all n, ‖Xi,n‖ < B with probability one, and∑m

j=1 j
2α(j) � Kmr for all 1 � m � n and n, and some r < 3/2. Assume, for

any integer l � 1, that (X1,n, . . . , Xl,n), regarded as a r.e. of Hl , converges in distribu-
tion to say (X1, . . . , Xl). Moreover, assume E[〈X1,n, Xl,n〉] → E[〈X1, Xl〉] as n → ∞
and

lim
n→∞

n∑
l=1

E
[〈X1,n, Xl,n〉

] =
∞∑
l=1

E
[〈X1, Xl〉

]
< ∞.

Let Zn = n−1/2∑n
i=1 Xi,n. For any ϕ ∈ H, let σ 2

ϕ,n denote the variance of 〈Zn, ϕ〉.
Assume

(2.14)σ 2
ϕ,n −→

n→∞ σ 2
ϕ ≡ Var

(〈X1, ϕ〉)+ 2
∞∑
i=1

cov
(〈X1, ϕ〉, 〈X1+i , ϕ〉).

Then Zn converges weakly to a Gaussian process N (0,K) in H, with zero mean and
covariance operator K satisfying 〈Kϕ, ϕ〉 = σ 2

ϕ for each ϕ ∈ H.
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In the special case when the Xi,n = Xi form a stationary sequence, the conditions
simplify considerably:

THEOREM 2.46. Assume X1, X2, . . . , is a stationary sequence of H-r.e. with mean μ

and mixing coefficient α. Let Zn = n−1/2∑n
i=1(Xi − μ).

(i) If E(‖X1‖2+δ) < ∞ for some δ > 0, and
∑

j [α(j)]δ/(2+δ) < ∞
(ii) or if X1, X2, . . . , is i.i.d. and E‖X1‖2 < ∞.

Then Zn converges weakly to a Gaussian process G ∼ N (0,K) in H. The distribu-
tion of G is determined by the distribution of its marginals 〈G,ϕ〉 which are N (0, σ 2

ϕ )

distributed for every ϕ ∈ H where σ 2
ϕ is defined in (2.14).

Let {el} be a complete orthonormal basis of H. Then ‖X1‖2 = ∑∞
l=1〈X1, el〉2 and

hence in the i.i.d. case, it suffices to check that E‖X1‖2 = ∑∞
l=1 E[〈X1, el〉2] < ∞.

The following theorem is stated in more general terms in Chen and White (1992).

THEOREM 2.47. Let An be a random bounded linear operator from H to H and A �= 0
be a nonrandom bounded linear operator from H to H. If ‖An−A‖ → 0 in probability
as n → ∞ and Yn ⇒ Y ∼ N (0,K) in H. Then AnYn ⇒ AY ∼ N (0, AKA∗).

In Theorem 2.47, the boundedness of A is crucial. In most of our applications, A will
not be bounded and we will not be able to apply Theorem 2.47. Instead we will have to
check the Liapunov condition [Davidson (1994)] “by hand”.

THEOREM 2.48. Let the array {Xi,n} be independent with zero mean and variance

sequence {σ 2
i,n} satisfying

∑n
i=1 σ

2
i,n = 1. Then

∑n
i=1 Xi,n

d→ N (0, 1) if

lim
n→∞

n∑
i=1

E
[|Xi,n|2+δ

] = 0 (Liapunov condition)

for some δ > 0.

2.5. Estimation of an operator and its adjoint

2.5.1. Estimation of an operator

In many cases of interest, an estimator of the compact operator, K , is given by a degen-
erate operator of the form

(2.15)K̂nϕ =
Ln∑
l=1

al(ϕ)εl

where εl ∈ E , al(ϕ) is linear in ϕ.
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Examples:
1. Covariance operator

Kϕ(τ1) =
∫

E
[
h(τ1, X)h(τ2, X)

]
ϕ(τ2) dτ2.

Replacing the expectation by the sample mean, one obtains an estimator of K:

K̂nϕ(τ1) =
∫ (

1

n

n∑
i=1

h(τ1, xi)h(τ2, xi)

)
ϕ(τ2) dτ2 =

n∑
i=1

ai(ϕ)εi

with

ai(ϕ) = 1

n

∫
h(τ2, xi)ϕ(τ2) dτ2 and εi = h(τ1, xi).

Note that here K is self-adjoint and the rate of convergence of K̂n to K is parametric.

2. Conditional expectation operator

Kϕ(w) = E
[
ϕ(Z) | W = w

]
.

The kernel estimator of K with kernel ω and bandwidth cn is given by

K̂nϕ(w) =
∑n

i=1 ϕ(zi)ω
(
w−wi

cn

)
∑n

i=1 ω
(
w−wi

cn

) =
n∑
i=1

ai(ϕ)εi

where

ai(ϕ) = ϕ(zi) and εi =
[

ω
(
w−wi

cn

)
∑n

i=1 ω
(
w−wi

cn

)].
In this case, the rate of convergence of K̂n is nonparametric, see Section 4.1.

2.5.2. Estimation of the adjoint of a conditional expectation operator

Consider a conditional expectation operator as described in Example 2.3. Let
K :L2

Z → L2
W be such that (Kϕ)(w) = E[ϕ(Z) | W = w] and its adjoint is

K∗ :L2
W → L2

Z with (Kψ)(z) = E[ψ(W) | Z = z]. Let f̂Z,W , f̂Z(z), and f̂W (w) be
nonparametric estimators of fZ,W , fZ(z), and fW(w) obtained either by kernel or sieves
estimators. Assume that K and K∗ are estimated by replacing the unknown p.d.f.s by
their estimators, that is

K̂nϕ(w) =
∫

f̂Z,W (z,w)

f̂Z(z)
ϕ(z) dz,

(̂K∗)nψ(z) =
∫

f̂Z,W (z,w)

f̂W (w)
ψ(w) dw.
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Remark that (̂K∗)n �= (K̂n)
∗ for H = L2

Z and E = L2
W . Indeed, we do not have

(2.16)〈K̂nϕ,ψ〉E = 〈
ϕ, (̂K∗)nψ

〉
H.

There are two solutions to this problem. The first solution consists in choosing as space
of references Hn = L2(Rq, f̂Z) and En = L2(Rr , f̂W ). In which case, (̂K∗)n = (K̂n)

∗
for Hn and En because

(2.17)〈K̂nϕ,ψ〉En = 〈
ϕ, (̂K∗)nψ

〉
Hn

.

The new spaces Hn and En depend on the sample size and on the estimation procedure.
Another approach consists in defining H = L2(Rq, π) and E = L2(Rr , ρ) where
π and ρ are known and satisfy: There exist c, c′ > 0 such that fZ(z) � cπ(z) and
fW(w) � c′ρ(w). Then

K∗ψ(z) =
∫

fZ,W (z,w)

fW (w)

ρ(w)

π(z)
ψ(w) dw �= E

[
ψ(W) | Z = z

]
.

In that case, (̂K∗)n = (K̂n)
∗ for H and E but the choice of π and ρ require some

knowledge on the support and the tails of the distributions of W and Z.
An alternative solution to estimating K and K∗ by kernel is to estimate the spectrum

of K and to apply Mercer’s formula. Let H = L2
Z and E = L2

W . The singular system
{λj , φj , ψj } of K satisfies

(2.18)λj = sup
φj ,ψj

E
[
φj (Z)ψj (W)

]
, j = 1, 2, . . . ,

subject to ‖φj‖H = 1, 〈φj , φl〉H = 0, l = 1, 2, . . . , j − 1, ‖ψj‖E = 1, 〈ψj ,ψl〉E = 0,
l = 1, 2, . . . , j − 1. Assume the econometrician observes a sample {wi, zi : i =
1, . . . , n}. To estimate {λj , φj , ψj }, one can either estimate (2.18) by replacing the
expectation by the sample mean or by replacing the joint p.d.f. by a nonparametric
estimator.

The first approach was adopted by Darolles, Florens and Renault (1998). Let

Hn =
{
ϕ : Rq → R,

∫
ϕ(z)2 dF̂Z(z) < ∞

}
,

En =
{
ψ : Rr → R,

∫
ψ(w)2 dF̂W (w) < ∞

}
where F̂Z and F̂W are the empirical distributions of Z and W . That is ‖ϕ‖2

Hn
=

1
n

∑n
i=1 ϕ(zi)

2 and ‖ψ‖2
En = 1

n

∑n
i=1 ψ(wi)

2. Darolles, Florens and Renault (1998)
propose to estimate {λj , φj , ψj } by solving

(2.19)λ̂j = sup
φ̂j ,ψ̂j

1

n

n∑
i=1

[
φ̂j (zi)ψ̂j (wi)

]
, j = 1, 2, . . . ,
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subject to ‖φ̂j‖Hn
= 1, 〈φ̂j , φ̂l〉Hn

= 0, l = 1, 2, . . . , j − 1, ‖ψ̂j‖En = 1,
〈ψ̂j , ψ̂l〉En = 0, l = 1, 2, . . . , j − 1, where φ̂j and ψ̂j are elements of increasing
dimensional spaces

φ̂j (z) =
J∑

j=1

αjaj (z), ψ̂j (w) =
J∑

j=1

βjbj (w)

for some bases {aj } and {bj }. By Mercer’s formula (2.13), K can be estimated by

K̂nϕ(w) =
∑

λ̂j

(∫
φ̂j (z)ϕ(z) dF̂Z

)
ψ̂j (w)

(̂K∗)nψ(z) =
∑

λ̂j

(∫
ψ̂j (w)ψ(w) dF̂W

)
φ̂j (z).

Hence (̂K∗)n = (K̂n)
∗ for Hn and En.

The second approach consists in replacing fZ,W by a nonparametric estimator f̂Z,W .
Darolles, Florens and Gouriéroux (2004) use a kernel estimator, whereas Chen, Hansen
and Scheinkman (1998) use B-spline wavelets. Let Hn = L2(Rq, f̂Z) and En =
L2(Rr , f̂W ) where f̂Z and f̂W are the marginals of f̂Z,W . Equation (2.18) can be re-
placed by

(2.20)λ̂j = sup
φj ,ψj

∫
φj (z)ψj (w)f̂Z,W (z,w) dz dw, j = 1, 2, . . . ,

subject to ‖φj‖Hn
= 1, 〈φj , φl〉Hn

= 0, l = 1, 2, . . . , j − 1, ‖ψj‖En = 1,
〈ψj ,ψl〉En = 0, l = 1, 2, . . . , j − 1. Denote {λ̂j , φ̂j , ψ̂j } the resulting estimators
of {λj , φj , ψj }. By Mercer’s formula, K can be approached by

K̂nϕ(w) =
∑

λ̂j

(∫
φ̂j (z)ϕ(z)f̂Z(z) dz

)
ψ̂j (w),

(̂K∗)nψ(z) =
∑

λ̂j

(∫
ψ̂j (w)ψ(w)f̂W (w) dw

)
φ̂j (z).

Hence (̂K∗)n = (K̂n)
∗ for Hn and En. Note that in the three articles mentioned above,

Z = Xt+1 and W = Xt where {Xt } is a Markov process. These papers are mainly
concerned with estimation. When the data are the discrete observations of a diffusion
process, the nonparametric estimations of a single eigenvalue–eigenfunction pair and of
the marginal distribution are enough to recover a nonparametric estimate of the diffusion
coefficient. The techniques described here can also be used for testing the reversibility
of the process {Xt }, see Darolles, Florens and Gouriéroux (2004).
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2.5.3. Computation of the spectrum of finite dimensional operators

Here, we assume that we have some estimators of K and K∗, denoted K̂n and K̂∗
n such

that K̂n and K̂∗
n have finite range and satisfy

(2.21)K̂nϕ =
Ln∑
l=1

al(ϕ)εl,

(2.22)K̂∗
nψ =

Ln∑
l=1

bl(ψ)ηl

where εl ∈ E , ηl ∈ H, al(ϕ) is linear in ϕ and bl(ψ) is linear in ψ . Examples of
such operators are given in Section 2.5.1. Moreover the {εl} and {ηl} are assumed to be
linearly independent. It follows that

(2.23)K̂∗
nK̂nϕ =

Ln∑
l=1

bl

(
Ln∑
l′=1

al′(ϕ)εl′

)
ηl =

Ln∑
l,l′=1

al′(ϕ)bl(εl′)ηl.

We calculate the eigenvalues and eigenfunctions of K̂∗
nK̂n by solving

K̂∗
nK̂nφ = λ2φ.

Hence φ is necessarily of the form: φ = ∑
l βlηl . Replacing in (2.23), we have

(2.24)λ2βl =
Ln∑

l′,j=1

βjal′(ηj )bl(εl′).

Denote β̂ = [β1, . . . , βLn ] the solution of (2.24). Solving (2.24) is equivalent to finding

the Ln nonzero eigenvalues λ̂2
1, . . . , λ̂

2
Ln

and eigenvectors β̂
1
, . . . , β̂

Ln of an Ln × Ln-
matrix C with principal element

cl,j =
Ln∑
l′=1

al′(ηj )bl(εl′).

The eigenfunctions of K̂∗
nK̂n are

φ̂j =
Ln∑
l=1

β̂
j
l ηl, j = 1, . . . , Ln,

associated with λ̂2
1, . . . , λ̂

2
Ln

. {φ̂j : j = 1, . . . , Ln} need to be orthonormalized. The

estimators of the singular values are λ̂j =
√
λ̂2
j .
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2.5.4. Estimation of noncompact operators

This chapter mainly focuses on compact operators, because compact operators can be
approached by a sequence of finite dimensional operators and therefore can be easily
estimated. However, it is possible to estimate a noncompact operator by an estimator,
which is infinitely dimensional. A simple example is provided by the conditional ex-
pectation operator with common elements.

EXAMPLE 2.5 (Continued). This example is discussed in Hall and Horowitz (2005).
Assume that the dimension of Z is p. The conditional expectation operator K can be
estimated by a kernel estimator with kernel ω and bandwidth cn

(K̂ϕ)(x,w) =
∑n

i=1[
∫ 1

c
p
n
ϕ(x, z)ω

(
z−zi
cn

)
dz]ω( x−xi

cn

)
ω
(
w−wi

cn

)
∑n

i=1 ω
(
x−xi
cn

)
ω
(
w−wi

cn

) .

We can see that K̂ is an infinite dimensional operator because all functions ϕ(x) that
depend only on x are in the range of K̂ .

3. Regularized solutions of integral equations of the first kind

Let H and E be two Hilbert spaces considered only over the real scalars for the sake
of notational simplicity. Let K be a linear operator on D(K) ⊂ H into E . This section
discusses the properties of integral equations (also called Fredholm equations) of the
first kind

(3.1)Kϕ = r

where K is typically an integral compact operator. Such an equation in ϕ is in general
an ill-posed problem by opposition to a well-posed problem. Equation (3.1) is said to
be well-posed if (i) (existence) a solution exists, (ii) (uniqueness) the solution is unique,
and (iii) (stability) the solution is continuous in r , that is ϕ is stable with respect to
small changes in r . Whenever one of these conditions is not satisfied, the problem is
said to be ill-posed. The lack of stability is particularly problematic and needs to be
addressed by a regularization scheme. Following Wahba (1973) and Nashed and Wahba
(1974), we introduce generalized inverses of operators in reproducing kernel Hilbert
spaces (RKHS). Properties of RKHS will be studied more extensively in Section 6.

3.1. Ill-posed and well-posed problems

This introductory subsection gives an overview of the problems encountered when solv-
ing an equation Kϕ = r where K is a linear operator, not necessarily compact. A more
detailed encounter can be found in Groetsch (1993). We start with a formal definition
of a well-posed problem.
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DEFINITION 3.1. Let K :H → E . The equation

(3.2)Kϕ = r

is called well-posed if K is bijective and the inverse operator K−1 : E → H is continu-
ous. Otherwise, the equation is called ill-posed.

Note that K is injective means N (K) = {0}, and K is surjective means R(K) = E .
In this section, we will restrict ourselves to the case whereK is a bounded (and therefore
continuous) linear operator. By Banach theorem [Kress (1999, p. 266)], if K :H → E
is a bounded linear operator, K bijective implies that K−1 : E → H is bounded and
therefore continuous. In this case, Kϕ = r is well-posed.

An example of a well-posed problem is given by

(I − C)ϕ = r

where C :H → H is a compact operator and 1 is not an eigenvalue of C. This is an
example of integral equations of the second kind that will be studied in Section 7.

We now turn our attention to ill-posed problems.

PROBLEM OF UNIQUENESS. If N (K) �= {0}, then to any solution of ϕ of (3.2), one
can add an element ϕ1 of N (K), so that ϕ + ϕ1 is also a solution. A way to achieve
uniqueness is to look for the solution with minimal norm.

PROBLEM OF EXISTENCE. A solution to (3.2) exists if and only if

r ∈ R(K).

Since K is linear, R(K) is a subspace of E , however it generally does not exhaust E .
Therefore, a traditional solution of (3.2) exists only for a restricted class of functions r .
If we are willing to broaden our notion of solution, we may enlarge the class of functions
r for which a type of generalized solution exists to a dense subspace of functions of E .

DEFINITION 3.2. An element ϕ̃ ∈ H is said to be a least squares solution of (3.2) if:

(3.3)‖Kϕ̃ − r‖ � ‖Kf − r‖, for any f ∈ H.

If the set Sr of all least squares solutions of (3.2) for a given r ∈ E is not empty and
admits an element ϕ of minimal norm, then ϕ is called a pseudosolution of (3.2).

The pseudosolution, when it exists, is denoted ϕ = K†r where K† is by definition
the Moore Penrose generalized inverse of K . However, the pseudosolution does not
necessarily exist. The pseudosolution exists if and only if Pr ∈ R(K) where P is
the orthogonal projection operator on R(K), the closure of the range of K . Note that
Pr ∈ R(K) if and only if

(3.4)r = Pr + (1 − P)r ∈ R(K) + R(K)⊥.
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Therefore, a pseudosolution exists if and only if r lies in the dense subspace
R(K) + R(K)⊥ of E .

We distinguish two cases:

1. R(K) is closed.
For any r ∈ E , ϕ = K†r exists and is continuous in r .

EXAMPLE. (I−C)ϕ = r whereC is compact and 1 is an eigenvalue of C. The problem
is ill-posed because the solution is not unique but it is not severely ill-posed because the
pseudosolution exists and is continuous.

2. R(K) is not closed.
The pseudosolution exists if and only if r ∈ R(K) + R(K)⊥. But here, ϕ = K†r is

not continuous in r .

EXAMPLE. K is a compact infinite dimensional operator.

For the purpose of econometric applications, condition (3.4) will be easy to maintain
since:

Either (K, r) denotes the true unknown population value, and then the assumption
r ∈ R(K) means that the structural econometric model is well specified. Inverse prob-
lems with specification errors are beyond the scope of this chapter.

Or (K, r) denotes some estimators computed from a finite sample of size n. Then,
insofar as the chosen estimation procedure is such that R(K) is closed (for instance
because it is finite dimensional as in Section 2.5.1), we have R(K) + R(K)⊥ = E .

The continuity assumption of K will come in general with the compactness assump-
tion for population values and, for sample counterparts, with the finite dimensional
property. Moreover, the true unknown value K0 of K will be endowed with the identifi-
cation assumption:

(3.5)N (K0) = {0}
and the well-specification assumption:

(3.6)r0 ∈ R(K0).

Equations (3.5) and (3.6) ensure the existence of a unique true unknown value ϕ0 of ϕ
defined as the (pseudo)solution of the operator equation K0ϕ0 = r0. Moreover, this
solution is not going to depend on the choice of topologies on the two spaces H and E .

It turns out that a compact operator K with infinite-dimensional range is a prototype
of an operator for which R(K) is not closed. Therefore, as soon as one tries to general-
ize structural econometric estimation from a parametric setting (K finite dimensional)
to a nonparametric one, which can be seen as a limit of finite dimensional problems
(K compact), one is faced with an ill-posed inverse problem. This is a serious issue for
the purpose of consistent estimation, since in general one does not know the true value
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r0 of r but only a consistent estimator r̂n. Therefore, there is no hope to get a consistent
estimator ϕ̂n of ϕ by solving Kϕ̂n = r̂n that is ϕ̂n = K†r̂n, when K† is not continuous.
In general, the issue to address will be even more involved since K† and K must also
be estimated.

Let us finally recall a useful characterization of the Moore–Penrose generalized in-
verse of K .

PROPOSITION 3.3. Under (3.4), K†r is the unique solution of minimal norm of the
equation K�Kϕ = K�r .

In other words, the pseudosolution ϕ of (3.2) can be written in two ways:

ϕ = K†r = (K�K)†K�r.

For r ∈ R(K) (well-specification assumption in the case of true unknown values),
K�r ∈ R(K�K) and then (K�K)−1K�r is well defined. The pseudosolution can then
be represented from the singular value decomposition of K as

(3.7)ϕ = K†r = (K�K)−1K�r =
∞∑
j=1

〈r, ψj 〉
λj

φj .

It is worth noticing that the spectral decomposition (3.7) is also valid for any r ∈
R(K) + R(K)⊥ to represent the pseudosolution ϕ = K†r = (K�K)†K�r since
r ∈ R(K)⊥ is equivalent to K†r = 0.

Formula (3.7) clearly demonstrates the ill-posed nature of the equationKϕ = r . If we
perturb the right-hand side r by rδ = r+ δψj , we obtain the solution ϕδ = ϕ+ δφj /λj .
Hence, the ratio ‖ϕδ − ϕ‖/‖rδ − r‖ = 1/λj can be made arbitrarily large due to the
fact that the singular values tend to zero. Since the influence of estimation errors in r is
controlled by the rate of this convergence, Kress (1999, p. 280) says that the equation
is “mildly ill-posed” if the singular values decay slowly to zero and that it is “severely
ill-posed” if they decay rapidly. Actually, the critical property is the relative decay rate
of the sequence 〈r, ψj 〉 with respect to the decay of the sequence λj . To see this, note
that the solution ϕ has to be determined from its Fourier coefficients by solving the
equations

λj 〈ϕ, φj 〉 = 〈r, ψj 〉, for all j.

Then, we may expect high instability of the solution ϕ if λj goes to zero faster than
〈ϕ, φj 〉. The properties of regularity spaces introduced below precisely document this
intuition.

3.2. Regularity spaces

As stressed by Nashed and Wahba (1974), an ill-posed problem relative to H and E
may be recast as a well-posed problem relative to new spaces H′ ⊂ H and E ′ ⊂ E ,
with topologies on H′ and E ′, which are different from the topologies on H and E ,
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respectively. While Nashed and Wahba (1974) generally build these Hilbert spaces H′
and E ′ as RKHS associated with an arbitrary self-adjoint Hilbert–Schmidt operator, we
focus here on the RKHS associated with (K�K)β , for some positive β. More precisely,
assuming that K is Hilbert–Schmidt and denoting (λj , φj , ψj ) its singular system (see
Definition 2.40), we define the self-adjoint operator (K�K)β by

(K�K)βϕ =
∞∑
j=1

λ
2β
j 〈ϕ, φj 〉φj .

DEFINITION 3.4. The β-regularity space of the compact operator K is defined for all
β > 0, as the RKHS associated with (K�K)β . That is, the space:

(3.8)Φβ =
{
ϕ ∈ N (K)⊥ such that

∞∑
j=1

〈ϕ, φj 〉2

λ
2β
j

< ∞
}

where a Hilbert structure is being defined through the inner product

〈f, g〉β =
∞∑
j=1

〈f, φj 〉〈g, φj 〉
λ

2β
j

for f and g ∈ Φβ .

Note however that the construction of RKHS considered here is slightly more general
than the one put forward in Nashed and Wahba (1974) since we start from elements of a
general Hilbert space, not limited to be a L2 space of functions defined on some interval
of the real line. This latter example will be made explicit in Section 6. Moreover, the
focus of our interest here will only be the regularity spaces associated with the true
unknown value K0 of the operator K . Then, the identification assumption will ensure
that all the regularity spaces are dense in H:

PROPOSITION 3.5. Under the identification assumption N (K) = {0}, the sequence of
eigenfunctions {φj } associated with the nonzero singular values λj defines a Hilbert
basis of H. In particular, all the regularity spaces Φβ , β > 0, contain the vectorial
space spanned by the {φj } and, as such, are dense in H.

Proposition 3.5 is a direct consequence of the singular value decomposition (2.12).
Generally speaking, when β increases, Φβ , β > 0, is a decreasing family of subspaces
of H. Hence, β may actually be interpreted as the regularity level of the functions ϕ, as
illustrated by the following result.

PROPOSITION 3.6. Under the identification assumption (N (K) = {0}), for any β > 0,

Φβ = R
[
(K∗K)β/2].

In particular, Φ1 = R(K∗).
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PROOF. By definition, the elements of the range of (K∗K)β/2 can be written f =∑∞
j=1 λ

β
j 〈ϕ, φj 〉φj for some ϕ ∈ H. Note that this decomposition also describes the

range of K∗ for β = 1. Then:

‖f ‖2
β =

∞∑
j=1

〈ϕ, φj 〉2

λ
2β
j

λ
2β
j =

∞∑
j=1

〈ϕ, φj 〉2 = ‖ϕ‖2 < ∞.

Hence R[(K∗K)β/2] ⊂ Φβ .
Conversely, for any ϕ ∈ Φβ , one can define:

f =
∞∑
j=1

〈ϕ, φj 〉
λ
β
j

φj

and then (K∗K)β/2f = ∑∞
j=1〈ϕ, φj 〉φj = ϕ since N (K) = {0}. Hence,

Φβ ⊂ R[(K∗K)β/2]. �

Since we mainly consider operators, K , which are integral operators with continuous
kernels, applying the operator (K∗K)β/2 has a smoothing effect, which is stronger for
larger values of β. This is the reason why the condition ϕ ∈ Φβ qualifies the level, β,
of regularity or smoothness of ϕ. The associated smoothness properties are studied in
further details in Loubes and Vanhems (2003). The space Φ1 of functions is also put
forward in Schaumburg (2004) when K denotes the conditional expectation operator
for a continuous time Markov process Xt with Levy type generator sampled in discrete
time. He shows that whenever a transformation ϕ(Xt) of the diffusion process is con-
sidered with ϕ ∈ Φ1, the conditional expectation operator E[ϕ(Xt+h) | Xt ] admits a
convergent power series expansion as the exponential of the infinitesimal generator.

The regularity spaces Φβ are of interest here as Hilbert spaces (included in H but
endowed with another scalar product) where our operator equation (3.2) is going to
become well-posed. More precisely, let us also consider the family of regularity spaces
Ψβ associated with the compact operator K∗:

Ψβ =
{
ψ ∈ N (K�)⊥ such that

∞∑
j=1

〈ψ,ψj 〉2

λ
2β
j

< ∞
}

Ψβ is a Hilbert space endowed with the inner product:

DEFINITION 3.7. 〈F,G〉β = ∑∞
j=1

〈F,ψj 〉〈G,ψj 〉
λ

2β
j

for F and G ∈ Ψβ .

Note that the spaces Ψβ are not in general dense in E since N (K�) �= {0}. But they
describe well the range of K when K is restricted to some regularity space:

PROPOSITION 3.8. Under the identification assumption N (K) = {0}, K(Φβ) = Ψβ+1
for all positive β. In particular, Ψ1 = R(K).
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PROOF. We know from Proposition 3.6 that when ϕ ∈ Φβ , it can be written: ϕ =∑∞
j=1 λ

β
j 〈f, φj 〉φj for some f ∈ H. Then, Kϕ = ∑∞

j=1 λ
β+1
j 〈f, φj 〉ψj ∈ Ψβ+1.

Hence K(Φβ) ⊂ Ψβ+1.
Conversely, since according to a singular value decomposition like (2.12), the se-

quence {ψj } defines a basis of N (K�)⊥, any element of Ψβ+1 can be written as

ψ =
∞∑
j=1

〈ψ,ψj 〉ψj with
∞∑
j=1

〈ψ,ψj 〉2

λ
2β+2
j

< ∞.

Let us then define ϕ = ∑∞
j=1(1/λj )〈ψ,ψj 〉φj . We have

∞∑
j=1

〈ϕ, φj 〉2

λ
2β
j

=
∞∑
j=1

〈ψ,ψj 〉2

λ
2β+2
j

< ∞

and thus ϕ ∈ Φβ . Moreover, Kϕ = ∑∞
j=1〈ψ,ψj 〉ψj = ψ . This proves that

Ψβ+1 ⊂ K(Φβ). �

Therefore, when viewed as an operator from Φβ into Ψβ+1, K has a closed range
defined by the space Ψβ+1 itself. It follows that the ill-posed problem

K :H → E,
Kϕ = r

may be viewed as well-posed relative to the subspacesΦβ intoΨβ+1 and their associated
norms. This means that

(i) First, we think about the pseudosolution ϕ = K†r as a function of r evolving in
Ψβ+1, for some positive β.

(ii) Second, continuity of ϕ = K†r with respect to r must be understood with respect
to the norms ‖r‖β+1 = 〈r, r〉1/2

β+1 and ‖ϕ‖β = 〈ϕ, ϕ〉1/2
β .

To get the intuition of this result, it is worth noticing that these new topologies define
another adjoint operator K�

β of K characterized by

〈Kϕ,ψ〉β+1 = 〈ϕ,K�
βψ〉β,

and thus:

K�
βψ =

∞∑
j=1

(1/λj )〈ψ,ψj 〉φj .

In particular, K�
βψj = φj/λj . In other words, all the eigenvalues of K�

βK and KK�
β are

now equal to one and the pseudosolution is defined as

ϕ = K
†
βr = K�

βr =
∞∑
j=1

〈r, ψj 〉
λj

φj .
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The pseudosolution depends continuously on r because K†
β = K�

β is a bounded operator
for the chosen topologies; it actually has a unit norm.

For the purpose of econometric estimation, we may be ready to assume that the true
unknown value ϕ0 belongs to some regularity space Φβ . This just amounts to an addi-
tional smoothness condition about our structural functional parameter of interest. Then,
we are going to take advantage of this regularity assumption through the rate of conver-
gence of some regularization bias as characterized in the next subsection.

Note finally that assuming ϕ0 ∈ Φβ , that is r0 ∈ Ψβ+1 for some positive β, is nothing
but a small reinforcement of the common criterion of existence of a solution, known as
Picard’s theorem [see e.g. Kress (1999, p. 279)], which states that r0 ∈ Ψ1 = R(K).
The spaces Φβ and Ψβ are strongly related to the concept of Hilbert scales, see Natterer
(1984), Engel, Hanke and Neubauer (1996), and Tautenhahn (1996).

3.3. Regularization schemes

As pointed out in Section 3.1, the ill-posedness of an equation of the first kind with a
compact operator stems from the behavior of the sequence of singular values, which
converge to zero. This suggests trying to regularize the equation by damping the explo-
sive asymptotic effect of the inversion of singular values. This may be done in at least
two ways:

A first estimation strategy consists in taking advantage of the well-posedness of the
problem when reconsidered within regularity spaces. Typically, a sieve kind of ap-
proach may be designed, under the maintained assumption that the true unknown value
r0 ∈ Ψβ+1 for some positive β, in such a way that the estimator r̂n evolves when n

increases, in an increasing sequence of finite dimensional subspaces of Ψβ+1. Note
however that when the operator K is unknown, the constraint r̂n ∈ N (K�)⊥ may be
difficult to implement. Hence, we will not pursue this route any further.

The approach adopted in this chapter follows the general regularization framework
of Kress (1999, Theorem 15.21). It consists in replacing a sequence {1/μj } of explo-
sive inverse singular values by a sequence {q(α, μj )/μj } where the damping function
q(α, μ) is chosen such that:

(i) {q(α, μ)/μ} remains bounded when μ goes to zero (damping effect),
(ii) for any given μ : Limα→0 q(α, μ) = 1 (asymptotic unbiasedness).

Since our inverse problem of interest can be addressed in two different ways:

ϕ = K†r = (K�K)†K�r,

the regularization scheme can be applied either to K† (μj = λj ) or to (K�K)†

(μj = λ2
j ). The latter approach is better suited for our purpose since estimation errors

will be considered below at the level of (K�K) and K�r , respectively. We maintain in
this subsection the identification assumption N (K) = {0}. We then define:
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DEFINITION 3.9. A regularized version ϕα = AαK
�r of the pseudosolution ϕ =

(K�K)†K�r is defined as

ϕα =
∞∑
j=1

1

λ2
j

q
(
α, λ2

j

)〈K�r, φj 〉φj =
∞∑
j=1

1

λj
q
(
α, λ2

j

)〈r, ψj 〉φj

(3.9)=
∞∑
j=1

q
(
α, λ2

j

)〈ϕ, φj 〉φj
where the real-valued function, q, is such that

(3.10)
∣∣q(α, μ)∣∣ � d(α)μ, lim

α→0
q(α, μ) = 1.

Note that (3.9) leaves unconstrained the values of the operator Aα on the space
R(K∗)⊥ = N (K). However, since N (K) = {0}, Aα is uniquely defined as

(3.11)Aαϕ =
∞∑
j=1

1

λ2
j

q
(
α, λ2

j

)〈ϕ, φj 〉φj
for all ϕ ∈ H. Note that as q is real, Aα is self-adjoint. Then by (3.10), Aα is a bounded
operator from H into H with

(3.12)‖Aα‖ � d(α).

In the following, we will always normalize the regularization parameter α such that
αd(α) has a positive finite limit c when α goes to zero. By construction, AαK

∗Kϕ → ϕ

as α goes to zero. When a genuine solution exists (r = Kϕ), the regularization induces
a bias:

ϕ − ϕα =
∞∑
j=1

[
1 − q

(
α, λ2

j

)]〈r, ψj 〉(φj /λj )

(3.13)=
∞∑
j=1

[
1 − q

(
α, λ2

j

)]〈ϕ, φj 〉φj .
The squared regularization bias is

(3.14)‖ϕ − ϕα‖2 =
∞∑
j=1

b2(α, λ2
j

)〈ϕ, φj 〉2,

where b(α, λ2
j ) = 1 − q(α, λ2

j ) is the bias function characterizing the weight of
the Fourier coefficient 〈ϕ, φj 〉. Below, we show that the most common regularization
schemes fulfill the above conditions. We characterize these schemes through the defini-
tions of the damping weights q(α, μ) or equivalently, of the bias function b(α,μ).
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EXAMPLE (Spectral cut-off). The spectral cut-off regularized solution is

ϕα =
∑

λ2
j�α/c

1

λj
〈r, ψj 〉φj .

The explosive influence of the factor (1/μ) is filtered out by imposing q(α, μ) = 0 for
small μ, that is |μ| < α/c. α is a positive regularization parameter such that no bias is
introduced when |μ| exceeds the threshold α/c:

q(α, μ) = I
{|μ| � α/c

} =
{

1 if |μ| � α/c,

0 otherwise.

For any given scaling factor c, the two conditions of Definition 3.9 are then satisfied
(with d(α) = c/α) and we get a bias function b(α, λ2) which is maximized (equal to 1)
when λ2 < α/c and minimized (equal to 0) when λ2 � α/c.

EXAMPLE (Landweber–Fridman). Landweber–Fridman regularization is characterized
by

Aα = c

1/α−1∑
l=0

(I − cK∗K)l,

ϕα = c

1/α−1∑
l=0

(I − cK∗K)lK∗r.

The basic idea is similar to spectral cut-off but with a smooth bias function. Of course,
one way to make the bias function continuous while meeting the conditions b(α, 0) = 1
and b(α, λ2) = 0 for λ2 > α/c would be to consider a piecewise linear bias function
with b(α, λ2) = 1 − (c/α)λ2 for λ2 � α/c. Landweber–Fridman regularization makes
it smooth, while keeping the same level and the same slope at λ2 = 0 and zero bias for
large λ2, b(α, λ2) = (1 − cλ2)1/α for λ2 � 1/c and zero otherwise, that is

q(α, μ) =
{

1 if |μ| > 1/c,
1 − (1 − cμ)1/α for |μ| � 1/c.

For any given scaling factor c, the two conditions of Definition 3.9 are then satisfied
with again d(α) = c/α.

EXAMPLE (Tikhonov regularization). Here, we have

Aα =
(
α

c
I + K∗K

)−1

,

ϕα =
(
α

c
I + K∗K

)−1

K∗r =
∞∑
j=1

λj

λ2
j + α/c

〈r, ψj 〉φj
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where c is some scaling factor. In contrast to the two previous examples, the bias func-
tion is never zero but decreases toward zero at a hyperbolic rate (when λ2 becomes
infinitely large), while still starting from 1 for λ2 = 0:

b
(
α, λ2) = (α/c)

λ2 + α/c

that is:

q
(
α, λ2) = λ2

λ2 + α/c
.

For any given scaling factor c, the two conditions of Definition 3.9 are again satisfied
with d(α) = c/α.

We are going to show now that the regularity spaces Φβ introduced in the previous
subsection are well suited for controlling the regularization bias. The basic idea is a
straightforward consequence of (3.15):

(3.15)‖ϕ − ϕα‖2 �
[

sup
j

b2(α, λ2
j

)
λ

2β
j

]
‖ϕ‖2

β.

Therefore, the rate of convergence (when the regularization parameter α goes to zero)
of the regularization bias will be controlled, for ϕ ∈ Φβ , by the rate of convergence of

Mβ(α) = sup
j

b2(α, λ2
j

)
λ

2β
j .

The following definition is useful to characterize the regularization schemes.

DEFINITION 3.10 (Geometrically unbiased regularization). A regularization scheme
characterized by a bias function b(α, λ2) is said to be geometrically unbiased at order
β > 0 if:

Mβ(α) = O
(
αβ
)
.

PROPOSITION 3.11. The spectral cut-off and the Landweber–Fridman regularization
schemes are geometrically unbiased at any positive order β. Tikhonov regularization
scheme satisfies

Mβ(α) = O
(
αmin(β,2)),

therefore it is geometrically unbiased only at order β ∈ (0, 2].

PROOF. In the spectral cut-off case, there is no bias for λ2
j > α/c while the bias is

maximum, equal to one, for smaller λ2
j . Therefore:

Mβ(α) � (α/c)β.
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In the Landweber–Fridman case, there is no bias for λ2
j > 1/c but a decreasing bias

(1−cλ2
j )

1/α for λ2
j increasing from zero to (1/c). Therefore,Mβ(α) � [Supλ2�(1/c)(1−

cλ2)2/αλ2β ]. The supremum is reached for λ2 =(β/c)[β + (2/α)]−1 and gives:

Mβ(α) � (β/c)β
[
β + (2/α)

]−β � (β/2)β(α/c)β.

In the Tikhonov case, the bias decreases hyperbolically and then Mβ(α) � supλ2[ (α/c)

(α/c)+λ2

]2
λ2β . For β < 2, the supremum is reached for λ2 = (βα/c)[2 − β]−1 and

thus

Mβ(α) � λ2β �
[
β/(2 − β)

]β
(α/c)β.

As K is bounded, its largest eigenvalue is bounded. Therefore, for β � 2, we have

Mβ(α) � (α/c)2 sup
j

λ
2(β−2)
j . �

PROPOSITION 3.12. Let K :H → E be an injective compact operator. Let us assume
that the solution ϕ of Kϕ = r lies in the β-regularity space Φβ of operator K , for some
positive β. Then, if ϕα is defined by a regularization scheme geometrically unbiased at
order β, we have

‖ϕα − ϕ‖2 = O
(
αβ
)
.

Therefore, the smoother the function ϕ of interest (ϕ ∈ Φβ for larger β) is, the faster
the rate of convergence to zero of the regularization bias will be. However, a degree of
smoothness larger than or equal to 2 (corresponding to the case ϕ ∈ R[(K∗K)]) may be
useless in the Tikhonov case. Indeed, for Tikhonov, we have ‖ϕα−ϕ‖2 = O(αmin(β,2)).
This is basically the price to pay for a regularization procedure, which is simple to
implement and rather intuitive (see Section 3.4 below) but introduces a regularization
bias which never vanishes completely.

Both the operator interpretation and the practical implementation of smooth regular-
ization schemes (Tikhonov and Landweber–Fridman) are discussed below.

3.4. Operator interpretation and implementation of regularization schemes

In contrast to spectral cut-off, the advantage of Tikhonov and Landweber–Fridman
regularization schemes is that they can be interpreted in terms of operators. Their al-
gebraic expressions only depend on the global value of (K∗K) and (K∗r), and not of
the singular value decomposition. An attractive feature is that it implies that they can be
implemented from the computation of sample counterparts (K̂nK̂

∗
n ) and (K̂∗

n r̂n) without
resorting to an estimation of eigenvalues and eigenfunctions.

The Tikhonov regularization is based on

(αnI + K∗K)ϕαn = K∗r ⇔ ϕαn =
∞∑
j=1

λj

λ2
j + αn

〈r, ψj 〉φj
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for a penalization term αn and λj =
√
λ2
j , while, for notational simplicity, the scaling

factor c has been chosen equal to 1.

The interpretation of αn as a penalization term comes from the fact that ϕα can be
seen as the solution of

ϕα = arg min
ϕ

‖Kϕ − r‖2 + α‖ϕ‖2 = arg min
ϕ

〈ϕ,K∗Kϕ + αϕ − 2K∗r〉 + ‖r‖2.

To see this, just compute the Frechet derivative of the above expression and note that it
is zero only for K∗Kϕ + αϕ = K∗r .

This interpretation of Tikhonov regularization in terms of penalization may suggest
looking for quasi-solutions [see Kress (1999, Section 16-3)], that is solutions of the
minimization of ‖Kϕ−r‖ subject to the constraint that the norm is bounded by ‖ϕ‖ � ρ

for given ρ. For the purpose of econometric estimation, the quasi-solution may actually
be the genuine solution if the specification of the structural econometric model entails
that the function of interest ϕ lies in some compact set [Newey and Powell (2003)].

If one wants to solve directly the first-order conditions of the above minimization,
it is worth mentioning that the inversion of the operator (αI + K∗K) is not directly
well suited for iterative approaches since, typically for small α, the series expansion of
[I + (1/α)K∗K]−1 does not converge. However, a convenient choice of the estimators
K̂n and K̂∗

n may allow us to replace the inversion of infinite dimensional operators by
the inversion of finite dimensional matrices.

More precisely, when K̂n and K̂∗
n can be written as in (2.21) and (2.22), one can

directly write the finite sample problem as

(3.16)

(αnI + K̂∗
nK̂n)ϕ = K̂∗

nr ⇔ αnϕ +
Ln∑

l,l′=1

al′(ϕ)bl(εl′)ηl =
Ln∑
l=1

bl(r)ηl.

(1) First we compute al(ϕ):
Apply aj to (3.16):

(3.17)αnaj (ϕ) +
Ln∑

l,l′=1

al′(ϕ)bl(εl′)aj (ηl) =
Ln∑
l=1

bl(r)aj (ηl).

Equation (3.17) can be rewritten as

(αnI + A)a = b

where a = [ a1(ϕ) a2(ϕ) · · · aLn(ϕ) ]′, A is the Ln × Ln matrix with principal
element

Aj,l′ =
Ln∑
l=1

bl(εl′)aj (ηl)
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and

b =
⎡
⎣
∑

l bl(r)a1(ηl)
...∑

l bl(r)aLn(ηl)

⎤
⎦ .

(2) From (3.16), an estimator of ϕ is given by

ϕ̂n = 1

αn

[
Ln∑
l=1

bl(r)ηl −
Ln∑

l,l′=1

al′(ϕ)bl(εl′)ηl

]
.

Landweber–Fridman regularization
The great advantage of this regularization scheme is not only that it can be written
directly in terms of quantities (K∗K) and (K∗r), but also the resulting operator problem
can be solved by a simple iterative procedure, with a finite number of steps. To get this,
one has to first choose a sequence of regularization parameters, αn, such that (1/αn)
is an integer and second the scaling factor c so that 0 < c < 1/‖K‖2. This latter
condition may be problematic to implement since the norm of the operator K may be
unknown. The refinements of an asymptotic theory, that enables us to accommodate a
first step estimation of ‖K‖ before the selection of an appropriate c, is beyond the scope
of this chapter. Note however, that in several cases of interest, ‖K‖ is known a priori
even though the operator K itself is unknown. For example, if K is the conditional
expectation operator, ‖K‖ = 1.

The advantage of the condition c < 1/‖K‖2 is to guarantee a unique expression for
the bias function b(α, λ2) = (1 − cλ2)1/α since all eigenvalues satisfy λ2 � 1/c. Thus,
when (1/α) is an integer:

ϕα =
∞∑
j=1

1

λj
q
(
α, λ2

j

)〈r, ψj 〉φj

with

q
(
α, λ2

j

) = 1 − (
1 − cλ2

j

)1/α = cλ2
j

1/α−1∑
l=0

(
1 − cλ2

j

)l
.

Thus,

ϕα = c

1/α−1∑
l=0

∞∑
j=1

λj
(
1 − cλ2

j

)l〈r, ψj 〉φj

= c

1/α−1∑
l=0

∞∑
j=1

λ2
j

(
1 − cλ2

j

)l〈ϕ, φj 〉φj
= c

1/α−1∑
l=0

(I − cK∗K)lK∗Kϕ.
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Therefore, the estimation procedure will only resort to estimators of K∗K and of K∗r ,
without need for either the singular value decomposition or any inversion of operators.
For a given c and regularization parameter αn, the estimator of ϕ is

ϕ̂n = c

1/αn−1∑
l=0

(I − cK̂∗
nK̂n)

lK̂∗
n r̂n.

ϕ̂n can be computed recursively by

ϕ̂l,n = (I − cK̂∗
nK̂n)ϕ̂l−1,n + cK̂∗

n r̂n, l = 1, 2, . . . , 1/αn − 1,

starting with ϕ̂0,n = cK̂∗
n r̂n. This scheme is known as the Landweber–Fridman iteration

[see Kress (1999, p. 287)].

3.5. Estimation bias

Regularization schemes have precisely been introduced because the right hand side r

of the inverse problem Kϕ = r is generally unknown and replaced by an estimator.
Let us denote by r̂n an estimator computed from an observed sample of size n. As
announced in the Introduction, a number of relevant inverse problems in econometrics
are even more complicated since the operator K itself is unknown. Actually, in order to
apply a regularization scheme, we may not need only an estimator of K but also of its
adjoint K∗ and of its singular system {λj , φj , ψj : j = 1, 2, . . .}. In this subsection, we
consider such estimators K̂n, K̂∗

n , and {λ̂j , φ̂j ,ψ̂j : j = 1, . . . , Ln} as given. We also
maintain the identification assumption, so that the equation Kϕ = r defines without
ambiguity a true unknown value ϕ0.

If ϕα = AαK
∗r is the chosen regularized solution, the proposed estimator ϕ̂n of ϕ0

is defined by

(3.18)ϕ̂n = ÂαnK̂
∗
n r̂n.

Note that the definition of this estimator involves two decisions. First, we need to select
a sequence (αn) of regularization parameters so that limn→∞ αn = 0 (possibly in a
stochastic sense in the case of a data-driven regularization) in order to get a consistent
estimator of ϕ0. Second, for a given αn, we estimate the second-order regularization
scheme AαnK

∗ by ÂαnK̂
∗
n . Generally speaking, Âαn is defined from (3.9) where the

singular values are replaced by their estimators and the inner products 〈ϕ, φj 〉 are re-
placed by their empirical counterparts (see Section 2.5.3). Yet, we have seen above that
in some cases, the estimation of the regularized solution does not involve the estimators
λ̂j but only the estimators K̂n and K̂∗

n .
In any case, the resulting estimator bias ϕ̂n − ϕ0 has two components:

(3.19)ϕ̂n − ϕ0 = ϕ̂n − ϕαn + ϕαn − ϕ0.

While the second component ϕαn − ϕ0 defines the regularization bias characterized in
Section 3.3, the first component ϕ̂n − ϕαn is the bias corresponding to the estimation of
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the regularized solution of ϕαn . The goal of this subsection is to point out a set of statis-
tical assumptions about the estimators K̂n, K̂∗

n , and r̂n that gives an (asymptotic) upper
bound to the specific estimation bias magnitude, ‖ϕ̂n − ϕαn‖ when the regularization
bias ‖ϕαn − ϕ0‖ is controlled.

DEFINITION 3.13 (Smooth regularization). A regularization scheme is said to be
smooth when

(3.20)

∥∥(ÂαnK̂
∗
nK̂n − AαnK

∗K)ϕ0
∥∥ � d(αn)‖K̂∗

nK̂n − K∗K‖‖ϕαn − ϕ0‖(1 + εn)

with εn = O(‖K̂∗
nK̂n − K∗K‖).

PROPOSITION 3.14 (Estimation bias). If ϕα = AαK
∗r is the regularized solution con-

formable to Definition 3.9 and ϕ̂n = ÂαnK̂
∗
n r̂n, then

(3.21)‖ϕ̂n − ϕαn‖ � d(αn)‖K̂∗
n r̂n − K̂∗

nK̂nϕ0‖ + ∥∥(ÂαnK̂
∗
nK̂n − AαnK

∗K)ϕ0
∥∥.

In addition, both the Tikhonov and Landweber–Fridman regularization schemes are
smooth. In the Tikhonov case, εn = 0 identically.

PROOF.

ϕ̂n − ϕαn = ÂαnK̂
∗
n r̂n − AαnK

∗r
(3.22)= ÂαnK̂

∗
n(r̂n − K̂nϕ0)+ ÂαnK̂

∗
nK̂nϕ0 − AαnK

∗Kϕ0.

Thus,

‖ϕ̂n − ϕαn‖ � d(αn)‖K̂∗
n r̂n − K̂∗

nK̂nϕ0‖ + ‖ÂαnK̂
∗
nK̂nϕ0 − AαnK

∗Kϕ0‖.
(1) Case of Tikhonov regularization:

(3.23)

ÂαnK̂
∗
nK̂nϕ0 − AαnK

∗Kϕ0 = Âαn(K̂
∗
nK̂n − K∗K)ϕ0 + (Âαn − Aαn)K

∗Kϕ0.

Since in this case,

Aα = (αI + K∗K)−1,

the identity

B−1 − C−1 = B−1(C − B)C−1

gives

Âαn − Aαn = Âαn(K
∗K − K̂∗

nK̂n)Aαn

and thus,

(Âαn − Aαn)K
∗Kϕ0 = Âαn(K

∗K − K̂∗
nKn)AαnK

∗Kϕ0

(3.24)= Âαn(K
∗K − K̂∗

nK̂n)ϕαn .
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Equations (3.23) and (3.24) together give

ÂαnK̂
∗
nK̂nϕ0 − AαnK

∗Kϕ0 = Âαn(K̂
∗
nK̂n − K∗K)(ϕ0 − ϕαn),

which shows that Tikhonov regularization is smooth with εn = 0.

(2) Case of Landweber–Fridman regularization:
In this case,

ϕα =
∞∑
j=1

[
1 − (

1 − cλ2
j

)1/α]〈ϕ0, φj 〉φj = [
I − (I − cK∗K)1/α

]
ϕ0.

Thus,

ÂαnK̂
∗
nK̂nϕ0 − AαnK

∗Kϕ0

= [
(I − cK∗K)1/αn − (I − cK̂∗

nK̂n)
1/αn

]
ϕ0

+ [
I − (I − cK̂∗

nK̂n)
1/αn(I − cK∗K)−1/αn

]
(I − cK∗K)1/αnϕ0

+ [
I − (I − cK̂∗

nK̂n)
1/αn(I − cK∗K)−1/αn

]
(ϕ0 − ϕαn).

Then, a Taylor expansion gives:

∥∥I − (I − cK̂∗
nK̂n)

1/αn(I − cK∗K)−1/αn
∥∥ =

∥∥∥∥ c

αn
(K̂∗

nK̂n − K∗K)

∥∥∥∥(1 + εn)

with εn = O(‖K̂∗
nK̂n −K∗K‖).

The result follows with d(α) = c/α. �

Note that we are not able to establish (3.20) for the spectral cut-off regularization.
In that case, the threshold introduces a lack of smoothness, which precludes a similar
Taylor expansion based argument as above.

The result of Proposition 3.14 jointly with (3.19) shows that two ingredients matter in
controlling the estimation bias ‖ϕ̂n − ϕ0‖. First, the choice of a sequence of regulariza-
tion parameters, αn, will govern the speed of convergence to zero of the regularization
bias ‖ϕαn −ϕ0‖ (for ϕ0 in a given Φβ ) and the speed of convergence to infinity of d(αn).
Second, nonparametric estimation of K and r will determine the rates of convergence
of ‖K̂∗

n r̂n − K̂∗
nK̂nϕ0‖ and ‖K̂∗

nK̂n − K∗K‖.

4. Asymptotic properties of solutions of integral equations of the first kind

4.1. Consistency

Let ϕ0 be the solution of Kϕ = r . By abuse of notation, we denote Xn = O(cn) for
positive sequences {Xn} and {cn}, if the sequence Xn/cn is upper bounded.
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We maintain the following assumptions:

A1. K̂n, r̂n are consistent estimators of K and r .
A2. ‖K̂∗

nK̂n − K∗K‖ = O
( 1
an

)
.

A3. ‖K̂∗
n r̂n − K̂∗

nK̂nϕ0‖ = O
( 1
bn

)
.

As before ϕα = AαK
∗r is the regularized solution where Aα is a second-order

regularization scheme and ϕ̂n = ÂαnK̂
∗
n r̂n. Proposition 4.1 below follows directly

from Definition 3.13 and Proposition 3.14 (with the associated normalization rule
αd(α) = O(1)):

PROPOSITION 4.1. When applying a smooth regularization scheme, we get:

‖ϕ̂n − ϕ0‖ = O

(
1

αnbn
+
(

1

αnan
+ 1

)
‖ϕαn − ϕ0‖

)
.

Discussion on the rate of convergence

The general idea is that the fastest possible rate of convergence in probability
of ‖ϕ̂n − ϕ0‖ to zero should be the rate of convergence of the regularization bias
‖ϕαn − ϕ0‖. Proposition 4.1 shows that these two rates of convergence will precisely
coincide when the rate of convergence to zero of the regularization parameter, αn, is
chosen sufficiently slow with respect to both the rate of convergence an of the sequence
of approximations of the true operator, and the rate of convergence bn of the estimator
of the right-hand side of the operator equation. This is actually a common strategy when
both the operator and the right-hand side of the inverse problem have to be estimated
[see e.g. Vapnik (1998, corollary, p. 299)].

To get this, it is first obvious that αnbn must go to infinity at least as fast as
‖ϕαn − ϕ0‖−1. For ϕ0 ∈ Φβ , β > 0, and a geometrically unbiased regularization
scheme, this means that:

α2
nb

2
n � α−β

n

that is αn � b
− 2

β+2
n . To get the fastest possible rate of convergence under this constraint,

we will choose:

αn = b
− 2

β+2
n .

Then, the rate of convergence of ‖ϕ̂n − ϕ0‖ and ‖ϕαn − ϕ0‖ will coincide if and only if

anb
− 2

β+2
n is bounded away from zero. Thus, we have proved:

PROPOSITION 4.2. Consider a smooth regularization scheme, which is geometrically
unbiased of order β > 0 with estimators of K and r conformable to Assumptions A1,

A2, A3, and anb
− 2

β+2
n bounded away from zero. For ϕ0 ∈ Φβ , the optimal choice of the
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regularization parameter is αn = b
− 2

β+2
n , and then

‖ϕ̂n − ϕ0‖ = O
(
b

− β
β+2

n

)
.

For Tikhonov regularization, when ϕ0 ∈ Φβ , β > 0, provided anb
− min( 2

β+2 ,
1
2 )

n is

bounded away from zero and αn = b
− min( 2

β+2 ,
1
2 )

n , we have

‖ϕ̂n − ϕ0‖ = O
(
b

− min( β
β+2 ,

1
2 )

n

)
.

Note that the only condition about the estimator of the operator K∗K is that its rate

of convergence, an, is sufficiently fast to be greater than b
2

β+2
n . Under this condition, the

rate of convergence of ϕ̂n does not depend upon the accuracy of the estimator of K∗K .
Of course, the more regular the unknown function ϕ0 is, the larger β is and the easier
it will be to meet the required condition. Generally speaking, the condition will involve
the relative bandwidth sizes in the nonparametric estimation of K∗K andK∗r . Note that
if, as it is generally the case for a convenient bandwidth choice (see e.g. Section 5.4),
bn is the parametric rate (bn = √

n), an must be at least n1/(β+2). For β not too small,
this condition will be fulfilled by optimal nonparametric rates. For instance, the optimal
unidimensional nonparametric rate, n2/5, will work as soon as β � 1/2.

The larger β is, the faster the rate of convergence of ϕ̂n is. In the case where ϕ0 is a
finite linear combination of {φj } (case where β is infinite), and bn = √

n, an estimator
based on a geometrically unbiased regularization scheme (such as Landweber–Fridman)
achieves the parametric rate of convergence. We are not able to obtain such a fast rate
for Tikhonov, therefore it seems that if the function ϕ0 is suspected to be very regular,
Landweber–Fridman is preferable to Tikhonov. However, it should be noted that the
rates of convergence in Proposition 4.2 are upperbounds and could possibly be improved
upon.

4.2. Asymptotic normality

Asymptotic normality of

ϕ̂n − ϕ0 = ϕ̂n − ϕαn + ϕαn − ϕ0

= ÂαnK̂
∗
n r̂n − AαnK

∗Kϕ0 + ϕαn − ϕ0

can be deduced from a functional central limit theorem applied to K̂∗
n r̂n − K̂∗

nK̂nϕ0.
Therefore, we must reinforce Assumption A3 by assuming a weak convergence in H:

Assumption WC

bn(K̂
∗
n r̂n − K̂∗

nK̂nϕ0) ⇒ N (0,Σ) in H.
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According to (3.22), (3.23), and (3.24), we have in the case of Tikhonov regulariza-
tion:

(4.1)bn(ϕ̂n − ϕ0) = bnÂαn[K̂∗
n r̂n − K̂∗

nK̂nϕ0]
(4.2)+ bnÂαn [K̂∗

nK̂n − K∗K](ϕ0 − ϕαn)

while an additional term corresponding to εn in (3.20) should be added for general
regularization schemes. The term (4.1) can be rewritten as

Âαnξ + Âαn(ξn − ξ)

where ξ denotes the random variable N (0,Σ) in H and

ξn = bn(K̂
∗
nrn − K̂∗

nK̂nϕ0).

By definition

〈Âαnξ, g〉
‖Σ1/2Âαng‖

d→ N (0, 1)

for all g ∈ H. Then, we may hope to obtain a standardized normal asymptotic proba-
bility distribution for

〈bn(ϕ̂n − ϕ0), g〉
‖Σ1/2Âαng‖

for vectors g conformable to the following assumption:

Assumption G

‖Âαng‖
‖Σ1/2Âαng‖ = O(1).

Indeed, we have in this case:

|〈Âαn(ξn − ξ), g〉|
‖Σ1/2Âαng‖ � ‖ξn − ξ‖‖Âαng‖

‖Σ1/2Âαng‖ ,

which converges to zero in probability because ‖ξn − ξ‖ P→ 0 by WC. We are then able
to show:

PROPOSITION 4.3. Consider a Tikhonov regularization. Suppose Assumptions A1, A2,
A3, and WC hold and ϕ0 ∈ Φβ , β > 0, with bnα

min(β/2,1)
n −→

n→∞0, we have for any g

conformable to G:

〈bn(ϕ̂n − ϕ0), g〉
‖Σ1/2Âαng‖

d→ N (0, 1).
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PROOF. From (4.1) and (4.2), we have:〈
bn(ϕ̂n − ϕαn), g

〉 = 〈Âαnξ, g〉 + 〈
Âαn(ξn − ξ), g

〉
(4.3)+ 〈

bnÂαn [K̂∗
nK̂n − K∗K](ϕ0 − ϕαn), g

〉
in the case of Tikhonov regularization. We already took care of the terms in ξ and ξn, it
remains to deal with the bias term corresponding to (4.3):

bn〈Âαn(K̂
∗
nK̂n − K∗K)(ϕ0 − ϕαn), g〉

‖Σ1/2Âαng‖

� bn〈(K̂∗
nK̂n −K∗K)(ϕ0 − ϕαn), Âαng〉

‖Σ1/2Âαng‖

� bn‖K̂∗
nK̂n − K∗K‖‖ϕ0 − ϕαn‖

‖Âαng‖
‖Σ1/2Âαng‖

= O

(
bnα

min(β/2,1)
n

an

)
. �

Discussion of Proposition 4.3

(i) It is worth noticing that Proposition 4.3 does not in general deliver a weak conver-
gence result for bn(ϕ̂n − ϕ0) because it does not hold for all g ∈ H. However, the
condition G is not so restrictive. It just amounts to assuming that the multiplication by
Σ1/2 does not modify the rate of convergence of Âαng.

(ii) We remark that for g = K∗Kh, Âαng and Σ1/2Âαng converge respectively to
h and Σ1/2h. Moreover, if g �= 0, Σ1/2h = Σ1/2(K∗K)−1g �= 0. Therefore, in this
case, not only the condition G is fulfilled but the asymptotic normality holds also with
rate of convergence bn, that is typically root n. This result is conformable to the the-
ory of asymptotic efficiency of inverse estimators as recently developed by Van Rooij,
Ruymgaart and Van Zwet (2000). They show that there is a dense linear submanifold of
functionals for which the estimators are asymptotically normal at the root n rate with
optimal variance (in the sense of minimum variance in the class of the moment estima-
tors). We do get optimal variance in Proposition 4.3 since in this case (using heuristic
notations as if we were in finite dimension) the asymptotic variance is

lim
n→∞ g′AαnΣAαng = g′(K∗K)−1Σ(K∗K)−1g.

Moreover, we get this result in particular for any nonzero g in R(K∗K) while we
know that R(K∗) is dense in H (identification condition). Generally speaking, Van
Rooij, Ruymgaart and Van Zwet (2000) stress that the inner products do not converge
weakly for every vector g in H at the same rate, if they converge at all.

(iii) The condition bnα
min(β/2,1)
n → 0 imposes a convergence to zero of the regular-

ization coefficient αn faster than the rate αn = b
− min( 2

β+2 ,
1
2 )

n required for the consis-
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tency. This stronger condition is needed to show that the regularization bias multiplied
by bn converges to zero. A fortiori, the estimation bias term vanishes asymptotically.

The results of Proposition 4.3 are established under strong assumptions: convergence
in H and restriction on g. An alternative method consists in establishing the normality
of ϕ̂n by the Liapunov condition [Davidson (1994)], see the example on deconvolution
in Section 5 below.

5. Applications

A well-known example is that of the kernel estimator of the density. Indeed, the estima-
tion of the p.d.f. f of a random variable X can be seen as solving an integral equation
of the first kind

(5.1)Kf (x) =
∫ +∞

−∞
I (u � x)f (u) du = F(x)

where F is the cdf of X. Applying the Tikhonov regularization to (5.1), one obtains
a kernel estimator of f . This example is detailed in Härdle and Linton (1994) and in
Vapnik (1998, pp. 308–311) and will not be discussed further.

This section reviews the standard examples of the ridge regression and factor models
and less standard examples such as the regression with an infinite number of regressors,
the deconvolution, and the instrumental variable estimation.

5.1. Ridge regression

The Tikhonov regularization discussed in Section 3 can be seen as an extension of
the well-known ridge regression. The ridge regression was introduced by Hoerl and
Kennard (1970). It was initially motivated by the fact that in the presence of near mul-
ticollinearity of the regressors, the least-squares estimator may vary dramatically as the
result of a small perturbation in the data. The ridge estimator is more stable and may
have a lower risk than the conventional least-squares estimator. For a review of this
method, see Judge et al. (1980) and for a discussion in the context of inverse problems,
see Ruymgaart (2001).

Consider the linear model (the notation of this paragraph is specific and corresponds
to general notations of linear models):

(5.2)y = Xθ + ε

where y and ε are n×1-random vectors,X is a n×q matrix of regressors of full rank, and
θ is an unknown q × 1-vector of parameters. The number of explanatory variables, q, is
assumed to be constant and q < n. Assume that X is exogenous and all the expectations
are taken conditionally on X. The classical least-squares estimator of θ is

θ̂ = (X′X)−1X′y.
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There exists an orthogonal transformation such that X′X/n = P ′DP with

D =
⎛
⎝μ1 0

. . .

0 μq

⎞
⎠ ,

μj > 0, and P ′P = Iq . Using the mean square error as measure of the risk, we obtain

E‖θ̂ − θ‖2 = E
∥∥(X′X)−1X′(Xθ + ε) − θ

∥∥2

= E
∥∥(X′X)−1X′ε

∥∥2

= E
(
ε′X(X′X)−2X′ε

)
= σ 2 trace

(
X(X′X)−2X′)

= σ 2

n
trace

((
X′X
n

)−1)

= σ 2

n
trace

(
P ′D−1P

)
= σ 2

n

q∑
j=1

1

μj

.

If some of the columns of X are closely collinear, the eigenvalues may be very small
and the risk very large. Moreover, when the number of regressors is infinite, the risk is
no longer bounded.

A solution is to use the ridge regression estimator:

θ̂a = arg min
θ

‖y − Xθ‖2 + a‖θ‖2 ⇒ θ̂a = (aI + X′X)−1X′y

for a > 0. We prefer to introduce α = a/n and define

(5.3)θ̂α =
(
αI + X′X

n

)−1
X′y
n

.

This way, the positive constant α corresponds to the regularization parameter introduced
in earlier sections.

The estimator θ̂α is no longer unbiased. Indeed we have

θα = E(θ̂α) =
(
αI + X′X

n

)−1
X′X
n

θ.

Using the fact that A−1 − B−1 = A−1[B − A]B−1, the bias can be rewritten as

θα − θ =
(
αI + X′X

n

)−1
X′X
n

θ −
(
X′X
n

)−1
X′X
n

θ = −α

(
αI + X′X

n

)−1

θ.



5692 M. Carrasco et al.

The risk becomes

E‖θ̂α − θ‖2 = E‖θ̂α − θα‖2 + ‖θα − θ‖2

= E

∥∥∥∥
(
αI + X′X

n

)−1
X′ε
n

∥∥∥∥2

+ α2
∥∥∥∥
(
αI + X′X

n

)−1

θ

∥∥∥∥2

= E

(
ε′X
n

(
αI + X′X

n

)−2
X′ε
n

)
+ α2

∥∥∥∥
(
αI + X′X

n

)−1

θ

∥∥∥∥2

= σ 2

n
trace

((
αI + X′X

n

)−2
X′X
n

)
+ α2

∥∥∥∥
(
αI + X′X

n

)−1

θ

∥∥∥∥2

= σ 2

n

q∑
j=1

μj

(α + μj )2
+ α2

q∑
j=1

((P θ)j )
2

(α + μj )2
.

There is the usual trade-off between the variance (decreasing in α) and the bias (increas-
ing in α). For each θ and σ 2, there is a value of α for which the risk of θ̂α is smaller
than that of θ̂ . As q is finite, we have E‖θ̂α − θα‖2 ∼ 1/n and ‖θα − θ‖2 ∼ α2. Hence,
the MSE is minimized for αn ∼ 1/

√
n. Let us compare this rate with that necessary to

the asymptotic normality of θ̂α . We have

θ̂α − θ = −α

(
αI + X′X

n

)−1

θ +
(
αI + X′X

n

)−1
X′ε
n

.

Therefore, if X and ε satisfy standard assumptions of stationarity and mixing, θ̂α is
consistent as soon as αn goes to zero and

√
n(θ̂α − θ) is asymptotically centered normal

provided αn = o(1/
√
n), which is a faster rate than that obtained in the minimization of

the MSE. Data-dependent methods for selecting the value of α are discussed in Judge
et al. (1980).

Note that the ridge estimator (5.3) is the regularized inverse of the equation

(5.4)y = Xθ,

where obviously θ is overidentified as there are n equations for q unknowns. Let H be
Rq endowed with the euclidean norm and E be Rn endowed with the norm, ‖v‖2 =
v′v/n. Define K :H → E such that Ku = Xu for any u ∈ Rq . Solving 〈Ku, v〉 =
〈u,K∗v〉, we find the adjoint of K , K∗ : E → H where K∗v = X′v/n for any v ∈ Rn.
The Tikhonov regularized solution of (5.4) is given by

θ̂α = (αI +K∗K)−1K∗y,

which corresponds to (5.3). It is also interesting to look at the spectral cut-off regu-
larization. Let {P1, P2, . . . , Pq} be the orthonormal eigenvectors of the q × q matrix
K∗K = X′X/n and {Q1,Q2, . . . ,Qn} be the orthonormal eigenvectors of the n × n

matrix KK∗ = XX′/n. Let λj = √
μj . Then the spectral cut-off regularized estimator
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is

θ̂α =
∑
λj�α

1

λj
〈y,Qj 〉Pj =

∑
λj�α

1

λj

y′Qj

n
Pj .

A variation on the spectral cut-off consists in keeping the l largest eigenvalues to obtain

θ̂l =
l∑

j=1

1

λj

y′Qj

n
Pj .

We will refer to this method as truncation. A forecast of y is given by

(5.5)ŷ = Kθ̂l =
l∑

j=1

y′Qj

n
Qj .

Equation (5.5) is particularly interesting for its connection with forecasting using factors
described in the next subsection.

5.2. Principal components and factor models

Let Xit be the observed data for the ith cross-section unit at time t , with i = 1, 2, . . . , q
and t = 1, 2, . . . , T . Consider the following dynamic factor model

(5.6)Xit = δ′
iFt + eit

where Ft is an l × 1 vector of unobserved common factors and δi is the vector of factor
loadings associated with Ft . The factor model is used in finance, where Xit represents
the return of asset i at time t , see Ross (1976). Here we focus on the application of
(5.6) to forecasting a single time series using a large number of predictors as in Stock
and Watson (1998, 2002), Forni and Reichlin (1998), and Forni et al. (2000). Stock and
Watson (1998, 2002) consider the forecasting equation

yt+1 = β ′Ft + εt+1

where yt is either the inflation or the industrial production and Xit in (5.6) com-
prises 224 macroeconomic time-series. If the number of factors l is known, then
Δ = (δ1, δ2, . . . , δq) and F = (F1, F2, . . . , FT )

′ can be estimated from

(5.7)min
Δ,F

1

qT

q∑
i=1

T∑
t=1

(Xit − δ′
iFt )

2

under the restriction F ′F/T = I . The F solution of (5.7) are the eigenvectors
of XX′/T associated with the l largest eigenvalues. Hence F = [Q1| · · · |Ql] where
Qj is j th eigenvector of XX′/T . Using the compact notation y = (y2, . . . , yT+1)

′,
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a forecast of y is given by

ŷ = F β̂ = F(F ′F)−1F ′y = F
F ′y
T

=
l∑

j=1

Q′
j y

T
Qj .

We recognize (5.5). It means that forecasting using a factor model (5.6) is equivalent to
forecasting Y from (5.4) using a regularized solution based on the truncation. The only
difference is that in the factor literature, it is assumed that there exists a fixed number of
common factors, whereas in the truncation approach (5.5), the number of factors grows
with the sample size. This last assumption may seem more natural when the number of
explanatory variables, q, goes to infinity.

An important issue in factor analysis is the estimation of the number of factors. Stock
and Watson (1998) propose to minimize the MSE of the forecast. Bai and Ng (2002)
propose various BIC and AIC criterions that enable us to consistently estimate the num-
ber of factors, even when T and q go to infinity.

5.3. Regression with many regressors

Consider the following model where the explained variable is a scalar Y while the ex-
planatory variableZ is a square integrable random function w.r. to some known measure
Π (possibly with finite or discrete support)

(5.8)Y =
∫

Z(τ)ϕ(τ)Π(dτ) + U.

Moreover Z is uncorrelated with U and may include lags of Y and E(U) = 0. The aim
is to estimate ϕ from observations (yi, zi(·))i=1,...,n. When Π has a continuous support,
this model is known in statistics as the functional linear model. However, when Π has
a discrete support, it corresponds to a regression with an infinity or a large number of
regressors. For a broad review, see Ramsay and Silverman (1997). Various estimation
methods of the function ϕ are discussed in recent papers including Van Rooij, Ruym-
gaart and Van Zwet (2000), Cardot, Ferraty and Sarda (2003), and Hall and Horowitz
(2007).

First approach: Ridge regression

Equation (5.8) can be rewritten as⎛
⎝ y1

...

yn

⎞
⎠ =

⎛
⎜⎝
∫
z1(τ )ϕ(τ)Π(dτ)

...∫
zn(τ )ϕ(τ)Π(dτ)

⎞
⎟⎠+

⎛
⎝ u1

...

un

⎞
⎠

or equivalently

y = Kϕ + u
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where the operator K is defined in the following manner:

K :L2(Π) → Rn,

Kϕ =
⎛
⎜⎝
∫
z1(τ )ϕ(τ)Π(dτ)

...∫
zn(τ )ϕ(τ)Π(dτ)

⎞
⎟⎠ .

As is usual in the regression, the error term u is omitted and we solve

Kϕ = y

using a regularized inverse

(5.9)ϕα = (αI + K∗K)−1K∗y.
As an exercise, we compute K∗ and K∗K . To compute K∗, we solve

〈Kϕ,ψ〉 = 〈ϕ,K∗ψ〉
for ψ in Rn and we obtain

(K∗y)(τ ) = 1

n

n∑
i=1

yizi(τ ),

K∗Kϕ(τ) =
∫

1

n

n∑
i=1

zi(τ )zi(s)ϕ(s)Π(ds).

The properties of the estimator (5.9) are further discussed in Van Rooij, Ruymgaart
and Van Zwet (2000) and Hall and Horowitz (2007). Hall and Horowitz show that this
estimator is more robust than the spectral cut-off estimator when the eigenvalues are
close to each other.

Second approach: Moment conditions

As U and Z(·) are uncorrelated, we obtain the moment conditions:

E
[
YZ(τ) − 〈Z, ϕ〉Z(τ)] = 0 ⇐⇒∫
E
[
Z(τ)Z(s)

]
ϕ(s)Π(ds) = E

[
YZ(τ)

] ⇐⇒
(5.10)T ϕ = r.

The operator T can be estimated by T̂n, the integral operator with kernel 1
n

∑n
i=1 zi(τ )×

zi(s) and r can be estimated by r̂n(τ ) = 1
n

∑n
i=1 yizi(τ ). Hence (5.10) becomes

(5.11)T̂nϕ = r̂n,

which is equal to

K∗Kϕ = K∗y.
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If one preconditions (5.11) by applying the operator T̂ ∗
n , one gets the regularized solu-

tion

(5.12)ϕ̂n = (αI + T̂ ∗
n T̂n)

−1T̂ ∗
n r̂n

which differs from the solution (5.9). When α goes to zero at an appropriate rate of
convergence (different in both cases), the solutions of (5.9) and (5.12) will be as-
ymptotically equivalent. Actually, the preconditioning by an operator in the Tikhonov
regularization has the purpose of constructing an operator which is positive self-adjoint.
Because T̂n = K∗K is already positive self-adjoint, there is no reason to precondi-
tion here. Sometimes preconditioning more than necessary is aimed at facilitating the
calculations [see Ruymgaart (2001)].

Using the results of Section 4, we can establish the asymptotic normality of ϕ̂n de-
fined in (5.12).

Assuming that

A1. ui has mean zero and variance σ 2 and is uncorrelated with zi(τ ) for all τ .
A2. uizi(·) is an i.i.d. process of L2(Π).
A3. E‖uizi(·)‖2 < ∞

we have

(i) ‖T̂ 2
n − T 2‖ = O

( 1√
n

)
,

(ii)
√
n(T̂nr̂n − T̂ 2

n ϕ0) ⇒ N (0,Σ) in L2(Π).

(i) is straightforward. (ii) follows from

r̂n − T̂nϕ0 = 1

n

n∑
i=1

yizi(τ ) −
∫

1

n

n∑
i=1

zi(τ )zi(s)ϕ0(s)Π(ds) = 1

n

n∑
i=1

uizi(τ ).

Here, an = √
n and bn = √

n. Under Assumptions A1 to A3, we have

1√
n

n∑
i=1

uizi(τ ) ⇒ N
(
0, σ 2T

)

in L2(Π) by Theorem 2.46. Hence
√
n
(
T̂nr̂n − T̂ 2

n ϕ0
) ⇒ N

(
0, σ 2T 3).

Let us rewrite Condition G introduced in Section 4.2 in terms of the eigenvalues λj and
eigenfunctions φj of T

‖(T 2 + αnI)
−1g‖2

‖T 3/2(T 2 + αnI)−1g‖2
= O(1) ⇔

∑∞
j=1

〈g,φj 〉2

(λ2
j+α)2∑∞

j=1
λ3
j 〈g,φj 〉2

(λ2
j+α)2

= O(1).

Obviously Condition G will not be satisfied for all g in L2(Π).
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By Proposition 4.3, assuming that ϕ0 ∈ Φβ, 0 < β < 2 and
√
nα

β/2
n → 0, we have

for g conformable with Condition G,

〈√n(ϕ̂n − ϕ0), g〉
‖T 3/2(T 2 + αnI)−1g‖

d→ N (0, 1).

The asymptotic variance is given by

∥∥T −1/2g
∥∥2 =

∞∑
j=1

〈g, φj 〉2

λj
.

Whenever it is finite, that is whenever g ∈ R(T −1/2), 〈(ϕ̂n − ϕ0), g〉 converges at the
parametric rate.

A related but different model from (5.8) is the Hilbertian autoregressive model:

(5.13)Xt = ρ(Xt−1) + εt

where Xt and εt are random elements in a Hilbert space and ρ is a compact linear
operator. The difference between (5.13) and (5.8) is that in (5.8), Y is a random variable
and not an element of a Hilbert space. Bosq (2000) proposes an estimator of ρ and
studies its properties. An example of application of (5.13) is given in Kargin and Onatski
(2004).

Kargin and Onatski (2004) are interested in the best prediction of the interest rate
curve. They model the forward interest rate Xt(τ) at maturity τ by (5.13) where ρ is a
Hilbert–Schmidt integral operator:

(5.14)(ρf )(τ ) =
∫ ∞

0
ρ(τ, s)f (s) ds.

The operator ρ is identified from the covariance and cross-covariance of the process Xt .
Let Γ11 be the covariance operator of random curve Xt and Γ12 the cross-covariance
operator of Xt and Xt+1. For convenience, the kernels of Γ11 and Γ12 are denoted using
the same notation. Equations (5.13) and (5.14) yield

Γ12(τ1, τ2) = E
[
Xt+1(τ1)Xt (τ2)

]
= E

[ ∫
ρ(τ1, s)Xt (s)Xt (τ2) ds

]

=
∫

ρ(τ1, s)Γ11(s, τ2) ds.

Hence,

Γ12 = ρΓ11.

Solving this equation requires a regularization because Γ11 is compact. Interestingly,
Kargin and Onatski (2004) show that the best prediction of the interest rate curve in
finite sample is not necessarily provided by the eigenfunctions of Γ11 associated with
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the largest eigenvalues. It means that the spectral cut-off does not provide satisfactory
predictions in small samples. They propose a better predictor of the interest rate curve
based on predictive factors.

5.4. Deconvolution

Assume we observe i.i.d. realizations y1, . . . , yn of a random variable Y with unknown
p.d.f. h, where Y satisfies

Y = X + Z

where X and Z are independent random variables with p.d.f. ϕ and g, respectively. The
aim is to estimate ϕ assuming g is known. This problem consists in solving in ϕ the
equation:

(5.15)h(y) =
∫

g(y − x)ϕ(x) dx.

Equation (5.15) is an integral equation of the first kind where the operator K defined
by (Kϕ)(y) = ∫

g(y − x)ϕ(x) dx has a known kernel and need not be estimated.
Recall that the compactness property depends on the space of reference. If we define
as space of reference, L2 with respect to Lebesgue measure, then K is not a compact
operator and hence has a continuous spectrum. However, for a suitable choice of the
reference spaces, K becomes compact. The most common approach to solving (5.15)
is to use a deconvolution kernel estimator, this method was pioneered by Carroll and
Hall (1988) and Stefanski and Carroll (1990). It is essentially equivalent to inverting
Equation (5.15) by means of the continuous spectrum of K , see Carroll, Van Rooij and
Ruymgaart (1991) and Section 5.4.2 below. In a related paper, Van Rooij and Ruymgaart
(1991) propose a regularized inverse to a convolution problem of the type (5.15) where
g has the circle for support. They invert the operator K using its continuous spectrum.

5.4.1. A new estimator based on Tikhonov regularization

The approach of Carrasco and Florens (2002) consists in defining two spaces of refer-
ence, L2

πX
(R) and L2

πY
(R) as

L2
πX
(R) =

{
φ(x) such that

∫
φ(x)2πX(x) dx < ∞

}
,

L2
πY
(R) =

{
ψ(y) such that

∫
ψ(y)2πY (y) dy < ∞

}
,

where πX and πY are arbitrary functions so that K is a Hilbert–Schmidt operator from
L2
πX
(R) to L2

πY
(R), that is the following condition is satisfied:∫ ∫ (

πY (y)g(y − x)

πY (y)πX(x)

)2

πY (y)πX(x) dx dy < ∞.
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As a result K has a discrete spectrum for these spaces of reference. Let {λj , φj , ψj }
denote its singular value decomposition. Equation (5.15) can be approximated by a
well-posed problem using Tikhonov regularization

(αnI + K∗K)ϕαn = K∗h.

Hence we have

ϕαn(x) =
∞∑
j=1

1

αn + λ2
j

〈K∗h, φj 〉φj (x)

=
∞∑
j=1

1

αn + λ2
j

〈h,Kφj 〉φj (x)

=
∞∑
j=1

λj

αn + λ2
j

〈h,ψj 〉φj (x)

=
∞∑
j=1

λj

αn + λ2
j

E
[
ψj(Yi)πY (Yi)

]
φj (x).

The estimator of ϕ is obtained by replacing the expectation by a sample mean:

ϕ̂n = 1

n

n∑
i=1

∞∑
j=1

λj

αn + λ2
j

ψj (yi)πY (yi)φj (x).

Note that we avoided estimating h by a kernel estimator. In some cases, ψj and φj are
known. For instance, if Z ∼ N (0, σ 2), πY (y) = φ(y/τ) and πX(x) = φ(x/

√
τ 2 + σ 2)

then ψj and φj are Hermite polynomials associated with λj = ρj . When ψj and φj are
unknown, they can be estimated via simulations. Since one can do as many simulations
as one wishes, the error due to the estimation of ψj and φj can be considered negligible.

Using the results of Section 3, one can establish the rate of convergence of ‖ϕ̂n−ϕ0‖.
Assume that ϕ0 ∈ Φβ , 0 < β < 2, that is

∞∑
j=1

〈ϕ, φj 〉2

λ
2β
j

< ∞.

We have ‖ϕαn − ϕ0‖ = O(α
β/2
n ) and ‖ϕ̂n − ϕαn‖ = O(1/(αn

√
n)) as here bn = √

n.
For an optimal choice of αn = Cn−1/(β+2), ‖ϕ̂n − ϕ0‖2 is O(n−β/(β+2)). The mean in-
tegrated square error (MISE) defined as E‖ϕ̂n −ϕ0‖2 has the same rate of convergence.
Fan (1993) provides the optimal rate of convergence for a minimax criterion on a Lip-
schitz class of functions. The optimal rate of the MISE when the error term is normally
distributed is only (ln n)−2 if ϕ is twice differentiable. On the contrary, here we get an
arithmetic rate of convergence. The condition ϕ0 ∈ Φβ has the effect of reducing the
class of admissible functions and hence improves the rate of convergence. Which type
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of restriction does ϕ0 ∈ Φβ impose? In Carrasco and Florens (2002), it is shown that
ϕ0 ∈ Φ1 is satisfied if

(5.16)
∫ ∣∣∣∣φϕ0(t)

φg(t)

∣∣∣∣ dt < ∞
where φϕ0 and φg denote the characteristic functions of ϕ0 and g, respectively. This con-
dition can be interpreted as the noise is “smaller” than the signal. Consider for example
the case where ϕ0 and g are normal. Condition (5.16) is equivalent to the fact that the
variance of g is smaller than that of ϕ0. Note that the condition ϕ0 ∈ Φ1 relates ϕ0 and
g while one usually imposes restrictions on ϕ0 independently of those on g.

5.4.2. Comparison with the deconvolution kernel estimator

Let L2(R) be the space of square-integrable functions with respect to Lebesgue measure
on R. Let F denote the Fourier transform operator from L2(R) into L2(R) defined by

(Fq)(s) = 1√
2π

∫
eisxq(x) dx.

F satisfies that F ∗ = F−1. We see that

F(g ∗ f ) = φgFf

so that K admits the following spectral decomposition [see Carroll, van Rooij and
Ruymgaart (1991, Theorem 3.1)]:

K = F−1MφgF

where Mρ is the multiplication operator Mρϕ = ρϕ.

K∗K = F−1M|φg |2F.
We want to solve in f the equation:

K∗Kf = K∗h.
Let us denote

q(x) = (K∗h)(x) =
∫

g(y − x)h(y) dy.

Then,

q̂(x) = 1

n

n∑
i=1

g(yi − x)

is a
√
n-consistent estimator of q.

Using the spectral cut-off regularized inverse of K∗K , we get

f̂ = F−1MI {|φg |>α}
|φg |2

F q̂.
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Using the change of variables u = yi − x, we have

(F q̂)(t) = 1

n

n∑
i=1

∫
eitxg(yi − x) dx

= 1

n

n∑
i=1

∫
eit (yi−u)g(u) du

= 1

n

n∑
i=1

φg(t)e
ityi .

f̂ (x) = 1

2π

∫
e−itxI

{∣∣φg(t)∣∣ > α
} 1

|φg(t)|2 (F q̂)(t) dt

= 1

2π

1

n

n∑
i=1

∫
e−it (yi−x)I

{∣∣φg(t)∣∣ > α
} 1

φg(t)
dt.

Assuming that φg > 0 and strictly decreasing as |t | goes to infinity, we have I {|φg(t)| >
α} = I {−A � t � A} for some A > 0 so that

f̂ (x) = 1

2π

1

n

n∑
i=1

∫ A

−A

e−it (yi−x)

φg(t)
dt.

Now compare this expression with the kernel estimator [see e.g. Stefanski and Carroll
(1990)]. For a smoothing parameter c and a kernel ω, the kernel estimator is given by

(5.17)f̂k(x) = 1

nc

n∑
i=1

1

2π

∫
φω(u)

φg(u/c)
eiu(yi−x)/c du.

Hence f̂ coincides with the kernel estimator when φω(u) = I[−1,1](u). This is the sinc
kernel corresponding to ω(x) = sin c(x) = sin(x)/x. This suggests that the kernel
estimator is obtained by inverting an operator that has a continuous spectrum. Because
this spectrum is given by the characteristic function of g, the speed of convergence of
the estimator depends on the behavior of φg in the tails. For a formal exposition, see
Carroll, van Rooij and Ruymgaart (1991, Example 3.1). They assume in particular that
the function to estimate is p differentiable and they obtain a rate of convergence (as a
function of p) that is of the same order as the rate of the kernel estimator.

By using the Tikhonov regularization instead of the spectral cut-off, we obtain

f̂ (y) = 1

n

n∑
i=1

∫
φg(t)

|φg(t)|2 + α
e−itxi eity dt.

We apply a change of variable u = −t ,

(5.18)f̂ (y) = 1

n

n∑
i=1

1

2π

∫
φg(u)

|φg(u)|2 + α
eiu(xi−y) du.
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The formulas (5.18) and (5.17) differ only by the way the smoothing is applied. Inter-
estingly, (5.18) can be computed even when the characteristic function of Z vanishes
but f̂ is no longer consistent.

5.5. Instrumental variables

This example is mainly based on Darolles, Florens and Renault (2002).
An economic relationship between a response variable Y and a vector Z of explana-

tory variables is often represented by an equation:

(5.19)Y = ϕ(Z) + U,

where the function ϕ(·) defines the parameter of interest while U is an error term. The
relationship (5.19) does not characterize the function ϕ if the residual term is not con-
strained. This difficulty is solved if it is assumed that E[U | Z] = 0, or if equivalently
ϕ(Z) = E[Y | Z]. However in numerous structural econometric models, the condi-
tional expectation function is not the parameter of interest. The structural parameter is
a relation between Y and Z where some of the Z components are endogenous. This
is the case in various situations: simultaneous equations, error-in-variables models, and
treatment models with endogenous selection, etc.

The first issue is to add assumptions to Equation (5.19) in order to characterize ϕ. Two
general strategies exist in the literature, at least for linear models. The first one consists
in introducing some hypotheses on the joint distribution of U and Z (for example on the
variance matrix). The second one consists in increasing the vector of observables from
(Y, Z) to (Y, Z,W), where W is a vector of instrumental variables. The first approach
was essentially followed in the error-in-variables models and some similarities exist
with the instrumental variables model [see e.g. Malinvaud (1970, Chapter 9), Florens,
Mouchart and Richard (1974) or Florens, Mouchart and Richard (1987) for the linear
case]. Instrumental variable analysis as a solution to an endogeneity problem was pro-
posed by Reiersol (1941, 1945), and extended by Theil (1953), Basmann (1957), and
Sargan (1958).

However, even in the instrumental variables framework, the definition of the func-
tional parameter of interest remains ambiguous in the general nonlinear case. Three
possible definitions of ϕ have been proposed [see Florens et al. (2003) for a general
comparison between these three concepts and their extensions to more general treat-
ment models].

(i) The first one replaces E[U | Z] = 0 by E[U | W ] = 0, or equivalently it
defines ϕ as the solution of

(5.20)E
[
Y − ϕ(Z) | W ] = 0.

This definition was the foundation of the analysis of simultaneity in linear mod-
els or parametric nonlinear models [see Amemiya (1974)], but its extension to
the nonparametric case raises new difficulties. The focus of this subsection is
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to show how to address this issue in the framework of ill-posed inverse prob-
lems. A first attempt was undertaken by Newey and Powell (2003), who prove
consistency of a series estimator of ϕ in Equation (5.20). Florens (2003) and
Blundell and Powell (2003) consider various nonparametric methods for es-
timating a nonlinear regression with endogenous regressors. Darolles, Florens
and Renault (2002) prove both the consistency and the asymptotic distribution
of a kernel estimator of ϕ. Hall and Horowitz (2005) give the optimal rate of
convergence of the kernel estimator under conditions which differ from those
of Darolles, Florens and Renault (2002). Finally, Blundell, Chen and Kristensen
(2003) propose a sieves estimator of the Engel curve.

(ii) A second approach called control function approach was systematized by
Newey, Powell and Vella (1999). This technique was previously developed in
specific models (e.g. Mills ratio correction in some selection models for exam-
ple). The starting point is to compute E[Y | Z,W ] which satisfies:

(5.21)E[Y | Z,W ] = ϕ(Z) + h(Z,W),

where h(Z,W) = E[U | Z,W ]. Equation (5.21) does not characterize ϕ.
However we can assume that there exists a function V (the control function)
of (Z,W) (typically Z−E[Z | W ]), which captures all the endogeneity of Z in
the sense that E[U | W,Z] = E[U | W,V ] = E[U | V ] = h̃(V ). This implies
that (5.21) may be rewritten as

(5.22)E[Y | Z,W ] = ϕ(Z) + h̃(V ),

and under some conditions, ϕ may be identified from (5.22) up to an additive
constant term. This model is an additive model where the V are not observed
but are estimated.

(iii) A third definition follows from the literature on treatment models [see e.g.
Imbens and Angrist (1994), Heckman et al. (1998) and Heckman and Vytlacil
(2000)]. We extremely simplify this analysis by considering Z and W as scalars.
A local instrument is defined by ∂E[Y |W ]

∂W
/
∂E[Z |W ]

∂W
, and the function of interest

ϕ is assumed to be characterized by the relation:

(5.23)
∂E[Y |W ]

∂W
∂E[Z |W ]

∂W

= E

[
∂ϕ

∂Z

∣∣∣ W].
Let us summarize the arguments which justify Equation (5.23).
Equation (5.19) is extended to a nonseparable model

(5.24)Y = ϕ(Z) + Zε + U

where ε and U are two random errors.
First, we assume that

E(U | W) = E(ε | W) = 0.
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This assumption extends the instrumental variable assumption but is not suffi-
cient to identify the parameter of interest ϕ. From (5.24) we get:

E(Y | W = w) =
∫ [

ϕ(z) + zr(z,w)
]
fZ(z | w) dz

where fZ(· | ·) denotes the conditional density of Z given W and r(z,w) =
E(ε | Z = z,W = w). Then, we have

∂

∂w
E(Y | W = w) =

∫
ϕ(z)

∂

∂w
fZ(z | w) dz

+
∫

z
∂

∂w
r(z,w)fZ(z | w) dz

+
∫

zr(z,w)
∂

∂w
fZ(z | w) dz,

assuming that the order of integration and derivative may commute (in particular
the boundary of the distribution of Z given W = w does not depend on w).

Second, we introduce the assumption that V = Z−E(Z | W) is independent
ofW . In terms of density, this assumption implies that fZ(z | w) = f̃ (z−m(w))

where m(w) = E(Z | W = w) and f̃ is the density of v. Then:

∂

∂w
E(Y | W = w) = −∂m(w)

∂w

∫
ϕ(z)

∂

∂z
fZ(z | w) dz

+
∫

z
∂

∂w
r(z,w)fZ(z | w) dz

− ∂m(w)

∂w

∫
zr(z,w)

∂

∂z
fZ(z | w) dz.

An integration by parts of the first and the third integrals gives

∂

∂w
E(Y | W = w) = ∂m(w)

∂w

∫
∂

∂z
ϕ(z)fZ(z | w) dz

+
∫

z

(
∂r

∂w
+ ∂m

∂w

∂r

∂z

)
fZ(z | w) dz

+ ∂m(w)

∂w

∫
r(z,w)fZ(z | w) dz.

The last integral is zero under E(ε | w) = 0. Finally, we need to assume that
the second integral is zero. This is true in particular if there exists r̃ such that
r(z,w) = r̃(z − m(w)).

Hence, Equation (5.23) is verified.
These three concepts are identical in the linear normal case but differ in general.

We concentrate our presentation in this chapter on the pure instrumental variable cases
defined by Equation (5.20).
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For a general approach of Equation (5.20) in terms of inverse problems, we introduce
the following notation:

K :L2
F (Z) → L2

F (W), ϕ → Kϕ = E
[
ϕ(Z) | W ],

K∗ :L2
F (W) → L2

F (Z), ψ → K∗ψ = E
[
ψ(W) | Z].

All these spaces are defined relatively to the true (unknown) DGP (see Example 2.3 in
Section 2). The two linear operators K and K∗ satisfy:〈

ϕ(Z),ψ(W)
〉 = E

[
ϕ(Z)ψ(W)

] = 〈
Kϕ(W),ψ(W)

〉
L2
F (W)

= 〈
ϕ(Z),K∗ψ(Z)

〉
L2
F (Z)

.

Therefore, K∗ is the adjoint operator of K , and reciprocally. Using these notations,
the unknown instrumental regression ϕ corresponds to any solution of the functional
equation:

(5.25)A(ϕ, F ) = Kϕ − r = 0,

where r(W) = E[Y | W ].
In order to illustrate this construction and the central role played by the adjoint op-

erator K∗, we first consider the example where Z is discrete, namely Z is binary. This
model is considered by Das (2005) and Florens and Malavolti (2002). In that case,
a function ϕ(Z) is characterized by two numbers ϕ(0) and ϕ(1) and L2

Z is isomorphic
to R2. Equation (5.20) becomes

ϕ(0)Prob(Z = 0 | W = w)+ ϕ(1)Prob(Z = 1 | W = w) = E(Y | W = w).

The instruments W need to take at least two values in order to identify ϕ(0) and ϕ(1)
from this equation. In general, ϕ is overidentified and overidentification is solved by
replacing (5.25) by

K∗Kϕ = K∗r

or, in the binary case, by

ϕ(0)E
(
Prob(Z = 0 | W) | Z)+ ϕ(1)E

(
Prob(Z = 1 | W) | Z)

= E
(
E(Y | W) | Z).

In the latter case, we obtain two equations which in general have a unique solution.
This model can be extended by considering Z = (Z1, Z2) where Z1 is discrete (Z1 ∈

{0, 1}) and Z2 is exogenous (i.e. W = (W1, Z2)). In this extended binary model, ϕ is
characterized by two functions ϕ(0, z2) and ϕ(1, z2), the solutions of

ϕ(0, z2)E
(
Prob(Z1 = 0 | W) | Z1 = z1, Z2 = z2

)
+ ϕ(1, z2)E

(
Prob(Z1 = 1 | W) | Z1 = z1, Z2 = z2

)
= E

(
E(Y | W) | Z1 = z1, Z2 = z2

)
, for z1 = 0, 1.
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The properties of the estimator based on the previous equation are considered in Florens
and Malavolti (2002). In this case, no regularization is needed because K∗K has a
continuous inverse (since the dimension is finite in the pure binary case and K∗K is not
compact in the extended binary model).

We can also illustrate our approach in the case when the Hilbert spaces are not
necessarily L2 spaces. Consider the following semiparametric case. The function ϕ is
constrained to be an element of

X =
{
ϕ such that ϕ =

L∑
l=1

βlεl

}

where (εl)l=1,...,L is a vector of fixed functions in L2
F (Z). Then X is a finite dimen-

sional Hilbert space. However, we keep the space E equal to L2
F (W). The model is then

partially parametric but the relation between Z and W is treated nonparametrically. In
this case, it can easily be shown that K∗ transforms any function ψ of L2

F (W) into
a function of X , which is its best approximation in the L2 sense (see Example 2.4 in
Section 2). Indeed:

If ψ ∈ L2
F (W), ∀j ∈ {1, . . . , L}

E(εjψ) = 〈Kεj , ψ〉 = 〈εj ,K∗ψ〉.
Moreover, K∗ψ ∈ X �⇒ K∗ψ = ∑L

l=1 αlεl , therefore〈
εj ,

L∑
l=1

αlεl

〉
= E(ψεj ) ⇔

L∑
l=1

αlE(εj εl) = E(ψεj ).

The function ϕ defined as the solution of Kϕ = r is in general overidentified but the
equation K∗Kϕ = K∗r always has a unique solution. The finite dimension of X im-
plies that (K∗K)−1 is a finite dimensional linear operator and is then continuous. No
regularization is required.

Now we introduce an assumption which is only a regularity condition when Z and W
have no element in common. However, this assumption cannot be satisfied if there are
some common elements between Z and W . Extensions to this latter case are discussed
in Darolles, Florens and Renault (2002), see also Example 2.5 in Section 2.

ASSUMPTION A.1. The joint probability distribution of (Z,W) is dominated by the
product of its marginal probability distributions, and its Radon Nikodym density is
square integrable w.r.t. the product of margins.

Assumption A.1 ensures that K and K∗ are Hilbert–Schmidt operators, and is a suf-
ficient condition for the compactness of K , K∗, KK∗ and K∗K [see Lancaster (1968),
Darolles, Florens and Renault (2002) and Theorem 2.34].

Under Assumption A.1, the instrumental regression ϕ is identifiable if and only if 0
is not an eigenvalue of K∗K . Then, for the sake of expositional simplicity, we focus on
the i.i.d. context:
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ASSUMPTION A.2. The data (yi, zi , wi), i = 1, . . . , n, are i.i.d. samples of (Y, Z,W).

We estimate the joint distribution F of (Y, Z,W) using a kernel smoothing of the
empirical distribution. In the applications, the bandwidths differ, but they all have the
same speed represented by the notation cn.

For economic applications, one may be interested either by the unknown function
ϕ(Z) itself, or only by its moments, including covariances with some known functions.
These moments may for instance be useful for testing economic statements about scale
economies, elasticities of substitutions, and so on.

For such tests, one will only need the empirical counterparts of these moments and
their asymptotic probability distribution. An important advantage of the instrumental
variable approach is that it permits us to estimate the covariance between ϕ(Z) and
g(Z) for a large class of functions. Actually, the identification assumption amounts to
ensure that the range R(K∗) is dense in L2

F (Z) and for any g in this range:

∃ψ ∈ L2
F (W), g(Z) = E

[
ψ(W) | Z],

and then Cov[ϕ(Z), g(Z)] = Cov[ϕ(Z),E[ψ(W) | Z]] = Cov[ϕ(Z),ψ(W)] =
Cov[E[ϕ(Z) | W ], ψ(W)] = Cov[Y,ψ(W)], can be estimated with standard para-
metric techniques. For instance, if E[g(Z)] = 0, the empirical counterpart of
Cov[Y,ψ(W)], i.e.:

1

n

n∑
i=1

Yiψ(Wi),

is a root-n consistent estimator of Cov[ϕ(Z), g(Z)], and

√
n

[
1

n

n∑
i=1

Yiψ(Wi)− Cov
[
ϕ(Z), g(Z)

]] d→ N
(
0,Var

[
Yψ(W)

])
,

where Var[Yψ(W)] will also be estimated by its sample counterpart. However, in prac-
tice, this analysis has very limited interest because even if g is given, ψ is not known
and must be estimated by solving the integral equation g(Z) = E[ψ(W) | Z], where
the conditional distribution of W given Z is also estimated.

Therefore, the real problem of interest is to estimate Cov[ϕ(Z), g(Z)], or 〈ϕ, g〉 by
replacing ϕ by an estimator. This estimator will be constructed by solving a regular-
ized version of the empirical counterpart of (5.25) where K and r are replaced by their
estimators. In the case of kernel smoothing, the necessity of regularization appears ob-
viously. Using the notation of Section 2.5, the equation

K̂nϕ = r̂n

becomes∑n
i=1 ϕ(zi)ω

(
w−wi

cn

)
∑n

i=1 ω
(
w−wi

cn

) =
∑n

i=1 yiω
(
w−wi

cn

)
∑n

i=1 ω
(
w−wi

cn

) .
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The function ϕ cannot be obtained from this equation except for the values ϕ(zi) equal
to yi . This solution does not constitute a consistent estimate. The regularized Tikhonov
solution is the solution of

αnϕ(z) +
∑n

j=1 ω
( z−zj

cn

)∑n
i=1 ϕ(zi )ω(

wj−wi
cn

)∑n
i=1 ω(

wj−wi
cn

)∑n
j=1 ω

( z−zj
cn

) =
∑n

j=1 ω
( z−zj

cn

)∑n
i=1 yiω(

wj−wi
cn

)∑n
i=1 ω(

wj−wi
cn

)∑n
j=1 ω

( z−zj
cn

) .

This functional equation may be solved in two steps. First, the z variable is fixed to the
values zi and the system becomes an n× n linear system, which can be solved in order
to obtain the ϕ(zi). Second, the previous expression gives a value of ϕ(z) for any value
of z.

If n is very large, this inversion method may be difficult to apply and may be replaced
by a Landweber–Fridman regularization (see Section 3). A first expression of ϕ(z) may
be for instance the estimated conditional expectation E(E(Y | W) | Z) and this estima-
tor will be modified a finite number of times by the formula

ϕ̂l,n = (I − cK̂∗
nK̂n)ϕ̂l−1,n + cK̂∗

n r̂n.

To simplify our analysis, we impose a relatively strong assumption:

ASSUMPTION A.3. The error term is homoskedastic, that is

Var(U | W) = σ 2.

In order to check the asymptotic properties of the estimator of ϕ, it is necessary to
study the properties of the estimators of K and of r . Under regularity conditions such
as the compactness of the joint distribution support and the smoothness of the density
[see Darolles, Florens and Renault (2002)], the estimation by boundary kernels gives
the following results:

(i) ‖K̂∗
nK̂n − K∗K‖2 = O( 1

n(cn)p
+ (cn)

2ρ) where ρ is the order of the kernel and
p the dimension of Z.

(ii) ‖K̂∗
n r̂n − K̂∗

nK̂nϕ‖2 = O( 1
n

+ (cn)
2ρ).

(iii) A suitable choice of cn implies

√
n(K̂∗

n r̂n − K̂∗
nK̂nϕ) �⇒ N

(
0, σ 2K∗K

)
.

This convergence is a weak convergence in L2
F (Z) (see Section 2.4).

Using results developed in Section 4 and in Darolles, Florens and Renault (2002) it
can be deduced that:

(a) If αn → 0, c
2ρ
n

α2
n

→ 0, 1
α2
nnc

ρ
n

= O(1), the regularized estimator ϕ̂n converges in

probability to ϕ in L2 norm.
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(b) If ϕ ∈ Φβ (0 < β � 2), the optimal choices of αn and cn are:

αn = k1n
− 1

2β , cn = k2n
− 1

2ρ

and, if ρ is chosen such that p
2ρ � β

2+β
, we obtain the following bound for the

rate of convergence:

‖ϕ̂n − ϕ‖ = O
(
n

− β
2+β
)
.

(c) Let us assume that the penalization term, α, is kept constant. In that case, the
linear operators (αI + K∗

nKn)
−1 and (αI + K∗K)−1 are bounded, and using

a functional version of the Slutsky theorem [see Chen and White (1992), and
Section 2.4], one can immediately establish that

(5.26)
√
n
(
ϕ̂n − ϕ − bαn

) �⇒ N (0,Ω),

where

bαn = α
[
(αI + K̂∗

nK̂n)
−1 − (αI +K∗K)−1]ϕ,

and

Ω = σ 2(αI +K∗K)−1K∗K(αI + K∗K)−1.

Some comments may illustrate this first result:
(i) The convergence obtained in (5.26) is still a functional distributional con-

vergence in the Hilbert space L2
F (Z), which in particular implies the con-

vergence of inner product
√
n〈ϕ̂n − ϕ − bαn , g〉 to the univariate normal

distribution N (0, 〈g,Ωg〉).
(ii) The convergence of ϕ̂n involves two bias terms. The first bias is ϕα − ϕ.

This term is due to the regularization and does not decrease if α is constant.
The second one, ϕ̂n − ϕα follows from the estimation error of K . This bias
decreases to zero when n increases, but at a lower rate than

√
n.

(iii) The asymptotic variance in (5.26) can be seen as the generalization of the
two stage least-squares asymptotic variance. An intuitive (but not correct)
interpretation of this result could be the following. If α is small, the as-
ymptotic variance is approximately σ 2(K∗K)−1, which is the functional
extension of σ 2(E(ZW ′)E(WW ′)−1E(WZ′))−1.

(d) Let us now consider the case where α → 0. For any δ ∈ Φβ(β � 1), if αn is

optimal (= k1n
− 1

2β ) and if cn = k2n
−( 1

2ρ +ε)
(ε > 0), we have√

νn(δ)〈ϕ̂n − ϕ, δ〉 − Bn �⇒ N
(
0, σ 2),

where the speed of convergence is equal to

νn(δ) = n

‖K(αnI + K∗K)−1δ‖2
� O

(
n

2β
2+β
)
,
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and the bias Bn is equal to
√
νn(δ)〈ϕα − ϕ, δ〉, which in general does not vanish.

If δ = 1 for example, this bias is O(nα2
n) and diverges.

The notion of Φβ permits us to rigorously define the concept of weak or strong
instruments. Indeed, if λj are not zero for any j , the function ϕ is identified
by Equation (5.25) and ϕ̂n is a consistent estimator. A bound for the speed of
convergence of ϕ̂n is provided under the restriction that ϕ belongs to a space
Φβ with β > 0. The condition ϕ ∈ Φβ means that the rate of decline of the
Fourier coefficients of ϕ in the basis of φj is faster than the rate of decline of the

λ
β
j (which measures the dependence). In order to have asymptotic normality we

need to assume that β � 1. In that case, if ϕ ∈ Φβ , we have asymptotic normality
of inner products 〈ϕ̂n − ϕ, δ〉 in the vector space Φβ . Then, it is natural to say
that W is a strong instrument for ϕ if ϕ is an element of a Φβ with β � 1. This
may have two equivalent interpretations. Given Z and W , the set of instrumental
regressions for which W is a strong instrument is Φ1 or given Z and ϕ, any
set of instruments is strong if ϕ is an element of the set Φ1 defined using these
instruments.

We may complete this short presentation with two final remarks. First, the optimal
choice of cn and αn implies that the speed of convergence and the asymptotic distribu-
tion are not affected by the fact that K is not known and is estimated. The accuracy of
the estimation is governed by the estimation of the right-hand side term K∗r . Secondly,
the usual “curse of dimensionality” of nonparametric estimation appears in a complex
way. The dimension of Z appears in many places but the dimension of W is less explicit.
The value and the rate of decline of the λj depend on the dimension of W : Given Z, the
reduction of the number of instruments implies a faster rate of decay of λj to zero and
a slower rate of convergence of the estimator.

6. Reproducing kernel and GMM in Hilbert spaces

6.1. Reproducing kernel

Models based on reproducing kernels are the foundation for penalized likelihood es-
timation and splines [see e.g. Berlinet and Thomas-Agnan (2004)]. However, it has
been little used in econometrics so far. The theory of reproducing kernels becomes
very useful when the econometrician has an infinite number of moment conditions and
wants to exploit all of them in an efficient way. For illustration, let θ ∈ R be the pa-
rameter of interest and consider an L × 1-vector h that gives L moment conditions
satisfying Eθ0(h(θ)) = 0 ⇔ θ = θ0. Let hn(θ) be the sample estimate of Eθ0(h(θ)).
The (optimal) generalized method of moments (GMM) estimator of θ is the minimizer
of hn(θ)′Σ−1hn(θ) where Σ is the covariance matrix of h. hn(θ)′Σ−1hn(θ) can be
rewritten as ‖Σ−1/2hn(θ)‖2 and coincides with the norm of hn(θ) in a particular space
called the reproducing kernel Hilbert space (RKHS). When h is finite dimensional, the
computation of the GMM objective function does not raise any particular difficulty,
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however when h is infinite dimensional (for instance is a function) then the theory of
RKHS becomes very handy. A second motivation for the introduction of the RKHS of a
self-adjoint operator K is the following. Let T be such that K = T T ∗. Then the RKHS
of K corresponds to the 1-regularity space of T (denoted Φ1 in Section 3.1).

6.1.1. Definitions and basic properties of RKHS

This section presents the theory of reproducing kernels, as described in Aronszajn
(1950) and Parzen (1959, 1970). Let L2

C
(π) = {ϕ : I ⊂ RL → C:

∫
I
|ϕ(s)|2π(s) ds <

∞} where π is a p.d.f. (π may have a discrete or continuous support) and denote ‖ · ‖
and 〈,〉 the norm and inner product on L2

C
(π).

DEFINITION 6.1. A space H(K) of complex-valued functions defined on a set I ⊂ RL

is said to be a reproducing kernel Hilbert space H(K) associated with the integral
operator K :L2

C
(π) → L2

C
(π) with kernel k(t, s) if the three following conditions

hold:

(i) it is a Hilbert space (with inner product denoted 〈,〉K ),
(ii) for every s ∈ I , k(t, s) as a function of t belongs to H(K),

(iii) (reproducing property) for every s ∈ I and ϕ ∈ H(K), ϕ(s) = 〈ϕ(.), k(·, s)〉K .

The kernel k is then called the reproducing kernel.

The following properties are listed in Aronszajn (1950) and Berlinet and Thomas-
Agnan (2004):

(1) If the RK k exists, it is unique.
(2) A Hilbert space H of functions defined on I ⊂ RL is a RKHS if and only if all

functionals ϕ → ϕ(s) for all ϕ ∈ H, s ∈ I , are bounded.
(3) K is a self-adjoint positive operator on L2

C
(π).

(4) To a self-adjoint positive operator K on I , there corresponds a unique RKHS
H(K) of complex-valued functions.

(5) Every sequence of functions {ϕn} which converges weakly to ϕ in H(K) (that
is 〈ϕn, g〉K → 〈ϕ, g〉K for all g ∈ H(K)) converges also pointwise, that is
limϕn(s) = ϕ(s).

Note that (2) is a consequence of Riesz Theorem 2.18. There exists a representor k
such that for all ϕ ∈ H

ϕ(t) = 〈ϕ, kt 〉K.
Let kt = k(t, ·) so that 〈kt , ks〉K = k(t, s). (5) follows from the reproducing property.
Indeed, 〈ϕn(t)− ϕ(t), k(t, s)〉K = ϕn(s) − ϕ(s).

EXAMPLE (Finite dimensional case). Let I = {1, 2, . . . , L}, let Σ be a positive definite
L×L matrix with principal element σt,s . Σ defines an inner product on RL: 〈ϕ,ψ〉Σ =
ϕ′Σ−1ψ . Let (σ1, . . . , σL) be the columns of Σ . For any vector ϕ = (ϕ(1), . . . , ϕ(L))′,
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then we have the reproducing property

〈ϕ, σt 〉Σ = ϕ(t), τ = 1, . . . , L,

because ϕΣ−1Σ = ϕ. Now we diagonalize Σ , Σ = PDP ′ where P is the L × L

matrix with (t, j) element φj (t) (φj are the orthonormal eigenvectors of Σ) and D

is the diagonal matrix with diagonal element λj (the eigenvalues of Σ). The (t, s)th
element of Σ can be rewritten as

σ(t, s) =
L∑

j=1

λjφj (t)φj (s).

We have

(6.1)〈ϕ,ψ〉Σ = ϕ′Σ−1ψ =
L∑

j=1

1

λj
〈ϕ, φj 〉〈ψ, φj 〉

where 〈,〉 is the euclidean inner product.

From this small example, we see that the norm in a RKHS can be characterized by the
spectral decomposition of an operator. Expression (6.1) also holds for infinite dimen-
sional operators. Let K :L2(π) → L2(π) be a positive self-adjoint compact operator
with spectrum {φj , λj : j = 1, 2, . . .}. Assume that N (K) = 0. It turns out that H(K)

coincides with the 1/2-regularization space of the operator K:

H(K) =
{
ϕ: ϕ ∈ L2(π) and

∞∑
j=1

|〈ϕ, φj 〉|2
λj

< ∞
}

= Φ1/2(K).

We can check that

(i) H(K) is a Hilbert space with inner product

〈ϕ,ψ〉K =
∞∑
j=1

〈ϕ, φj 〉〈ψ, φj 〉
λj

and norm

‖ϕ‖2
K =

∞∑
j=1

|〈ϕ, φj 〉|2
λj

.

(ii) k(·, t) belongs to H(K).
(iii) 〈ϕ, k(·, t)〉K = ϕ(t).

PROOF. (ii) follows from Mercer’s formula (Theorem 2.42(iii)) that is k(t, s) =∑∞
j=1 λjφj (t)φj (s). Hence ‖k(·, t)‖2

K = ∑∞
j=1 |〈φj , k(·, t)〉|2/λj = ∑∞

j=1 |λjφj (t)|2/
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λj = ∑∞
j=1 λjφj (t)φj (t) = k(t, t) < ∞. For (iii), we use again Mercer’s for-

mula. 〈ϕ(·), k(·, t)〉K = ∑∞
j=1〈φj , k(·, t)〉〈ϕ, φj 〉/λj = ∑∞

j=1〈ϕ, φj 〉Kφj (t)/λj =∑∞
j=1〈ϕ, φj 〉φj (t) = ϕ(t). �

There is a link between calculating a norm in a RKHS and solving an integral equa-
tion Kϕ = ψ . We follow Nashed and Wahba (1974) to enlighten this link. We have

Kϕ =
∞∑
j=1

λj 〈ϕ, φj 〉φj .

Define K1/2 as the square root of K:

K1/2ϕ =
∞∑
j=1

√
λj 〈ϕ, φj 〉φj .

Note that N (K) = N (K1/2), H(K) = K1/2(L2
C
(π)). Define K−1/2 = (K1/2)† where

( )† is the Moore–Penrose generalized inverse introduced in Section 3.1:

K†ψ =
∞∑
j=1

1

λj
〈ψ, φj 〉φj .

Similarly, the generalized inverse of K1/2 takes the form:

K−1/2ψ =
∞∑
j=1

1√
λj

〈ψ, φj 〉φj .

From Nashed and Wahba (1974), we have the relations

‖ϕ‖2
K = inf

{‖p‖2: p ∈ L2
C
(π) and ϕ = K1/2p

}
,

(6.2)〈ϕ,ψ〉K = 〈
K−1/2ϕ,K−1/2ψ

〉
, for all ϕ,ψ ∈ H(K).

The following result follows from Proposition 3.6.

PROPOSITION 6.2. Let E be a Hilbert space and T : E → L2
C
(π) be an operator such

that K = T T ∗ then

H(K) = R
(
K1/2) = R(T ∗) = Φ1(T ).

Note that T ∗ :L2
C
(π) → E and K1/2 :L2

C
(π) → L2

C
(π) are not equal because they

take their values in different spaces.
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6.1.2. RKHS for covariance operators of stochastic processes

In the previous section, we have seen how to characterize H(K) using the spectral
decomposition of K . When K is known to be the covariance kernel of a stochastic
process, then H(K) admits a simple representation. The main results of this section
come from Parzen (1959). Consider a random element (r.e.) {h(t), t ∈ I ⊂ Rp} defined
on a probability space (Ω,F , P ) and observed for all values of t . Assume h(t) has
mean zero and E(|h(t)|2) = ∫

Ω
|h(t)|2 dP < ∞ for every t ∈ I . Let L2(Ω,F, P )

be the set of all r.v. U such that E|U |2 = ∫
Ω

|U |2 dP < ∞. Define the inner product
〈U,V 〉L2(Ω,F ,P ) between any two r.v. U and V of L2(Ω,F, P ) by 〈U,V 〉L2(Ω,F ,P ) =
E(UV ) = ∫

Ω
UV dP . Let L2(h(t), t ∈ I ) be the Hilbert space spanned by the r.e.

{h(t), t ∈ I }. Define K the covariance operator with kernel k(t, s) = E(h(t)h(s)). The
following theorem implies that any symmetric nonnegative kernel can be written as a
covariance kernel of a particular process.

THEOREM 6.3. K is a covariance operator of a r.e. if and only if K is a positive self-
adjoint operator.

The following theorem can be found in Parzen (1959) for real-valued functions and
in Saitoh (1997) for complex-valued functions. It provides powerful tools to compute
the norm in a RKHS.

THEOREM 6.4. Let {h(t), t ∈ I } be a r.e. with mean zero and covariance kernel k.
Then

(i) L2(h(t), t ∈ I ) is isometrically isomorphic or congruent to the RKHS H(K).
Denote J :H(K) → L2(h(t), t ∈ I ) as this congruence.

(ii) For every function ϕ in H(K), J (ϕ) satisfies〈
J (ϕ), h(t)

〉
L2(Ω,F ,P )

= E
(
J (ϕ)h(t)

) = 〈
ϕ, k(·, t)〉

K
= ϕ(t),

(6.3)for all t ∈ I,

where J (ϕ) is unique in L2(h(t), t ∈ I ) and has mean zero and variance such
that

‖ϕ‖2
K = ∥∥J (ϕ)∥∥2

L2(Ω,F ,P )
= E

(∣∣J (ϕ)∣∣2).
Note that, by (6.3), the congruence is such that J (k(·, t)) = h(t). The r.v. U ∈

L2(h(t), t ∈ I ) corresponding to ϕ ∈ H(K) is denoted below as 〈ϕ, h〉K (or J (ϕ)). As
L2(h(t), t ∈ I ) and H(K) are isometric, we have by Definition 2.19

cov
[〈ϕ, h〉K, 〈ψ, h〉K

] = E
[
J (ϕ)J (ψ)

] = 〈ϕ,ψ〉K
for every ϕ,ψ ∈ H(K). Note that 〈ϕ, h〉K is not correct notation because h =∑

j 〈h, φj 〉φj a.s. does not belong to H(K). If it were the case, we should have
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∑
j 〈h, φj 〉2/λj < ∞ a.s. Unfortunately 〈h, φj 〉 are independent with mean 0 and vari-

ance 〈Kφj , φj 〉 = λj . Hence, E[∑j 〈h, φj 〉2/λj ] = ∞ and by Kolmogorov’s theorem∑
j 〈h, φj 〉2/λj = ∞ with nonzero probability. It should be stressed that the r.v. J (ϕ) it-

self is well defined and that only the notation 〈ϕ, h〉K is not adequate; as Kailath (1971)
explains, it should be regarded as a mnemonic for finding J (ϕ) in a closed form. The
rest of this section is devoted to the calculation of ‖ϕ‖K . Note that the result (6.3) is
valid when t is multidimensional, t ∈ RL. In the next section, h(t) will be a moment
function indexed by an arbitrary index parameter t .

Assume that the kernel k on I × I can be represented as

(6.4)k(s, t) =
∫

h(s, x)h(t, x)P (dx)

where P is a probability measure and {h(s, ·), s ∈ I } is a family of functions
on L2(Ω,F, P ). By Theorem 6.4, H(K) consists of functions ϕ on I of the form

(6.5)ϕ(t) =
∫

ψ(x)h(t, x)P (dx)

for some unique ψ in L2(h(t, ·), t ∈ I ), the subspace of L2(Ω,F, P ) spanned by
{h(t, ·), t ∈ I }. The RKHS norm of ϕ is given by

‖ϕ‖2
K = ‖ψ‖2

L2(Ω,F ,P ).

When calculating ‖ϕ‖2
K in practice, one looks for the solutions of (6.5). If there are

several solutions, it is not always obvious to see which one is spanned by {h(t, ·),
t ∈ I }. In this case, the right solution is the solution with minimal norm [Parzen (1970)]:

‖ϕ‖2
K = min

ψ s.t.
ϕ=〈ψ,h〉L2

‖ψ‖2
L2(Ω,F ,P ).

Theorem 6.4 can be reinterpreted in terms of range. Let T and T ∗ be

T :L2(π) → L2
(
h(t, ·), t ∈ I

)
,

ϕ → T ϕ(x) =
∫

ϕ(t)h(t, x)π(t) dt

and

T ∗ :L2
(
h(t, ·), t ∈ I

) → L2(π),

ψ → T ∗ψ(s) =
∫

ψ(x)h(s, x)P (dx).

To check that T ∗ is indeed the adjoint of T , it suffices to check 〈T ϕ,ψ〉L2(Ω,F ,P ) =
〈ϕ, T ∗ψ〉L2(π) for ϕ ∈ L2(π) and ψ(x) = h(t, x) as h(t, ·) spans L2(h(t, ·), t ∈ I ).
Using the fact that K = T ∗T and Proposition 6.2, we have H(K) = R(T ∗), which
gives Equation (6.5).
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EXAMPLE. The Wiener process on [0, 1] has covariance k(t, s) = t ∧ s. k can be
rewritten as

k(t, s) =
∫ 1

0
(t − x)0+(s − x)0+ dx

with

(s − x)0+ =
{

1 if x < s,

0 if x � s.

It follows that H(K) consists of functions ϕ of the form:

ϕ(t) =
∫ 1

0
ψ(x)(t − x)0+ dx =

∫ t

0
ψ(x) dx, 0 � t � 1

⇒ ψ(t) = ϕ′(t).

Hence, we have

‖ϕ‖2
K =

∫ 1

0

∣∣ψ(x)∣∣2 dx =
∫ 1

0

∣∣ϕ′(x)
∣∣2 dx.

EXAMPLE. Let k be defined as in (6.4) with h(t, x) = eitx . Assume P admits a p.d.f.
fθ0(x), which is positive everywhere. Equation (6.5) is equivalent to

ϕ(t) =
∫

ψ(x)e−itxP (dx) =
∫

ψ(x)e−itxfθ0(x) dx.

By the Fourier inversion formula, we have

ψ(x) = 1

2π

1

fθ0(x)

∫
eitxϕ(t) dt,

‖ϕ‖2
K = 1

4π

∫ ∣∣∣∣
∫

eitxϕ(t) dt

∣∣∣∣2 1

fθ0(x)
dx.

6.2. GMM in Hilbert spaces

First introduced by Hansen (1982), the generalized method of moments (GMM) became
the cornerstone of modern structural econometrics. In Hansen (1982), the number of
moment conditions is supposed to be finite. The method proposed in this section permits
dealing with moment functions that take their values in finite or infinite dimensional
Hilbert spaces. It was initially proposed by Carrasco and Florens (2000) and further
developed in Carrasco and Florens (2001) and Carrasco et al. (2007).
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6.2.1. Definition and examples

Let {xi : i = 1, 2, . . . , n} be an i.i.d. sample of a random vector X ∈ Rp. The case where
X is a time-series will be discussed later. The distribution ofX is indexed by a parameter
θ ∈ Θ ⊂ Rd . Denote Eθ as the expectation with respect to this distribution. The
unknown parameter θ is identified from the function h(X; θ) (called moment function)
defined on Rp × Θ , so that the following is true.

Identification assumption

(6.6)Eθ0
(
h(X; θ)) = 0 ⇔ θ = θ0.

It is assumed that h(X; θ) takes its values in a Hilbert space H with inner product
〈·,·〉 and norm ‖ · ‖. When f = (f1, . . . , fL) and g = (g1, . . . , gL) are vectors of
functions of H, we use the convention that 〈f, g′〉 denotes the L×L matrix with (l,m)
element 〈fl, gm〉. Let Bn :H → H be a sequence of random bounded linear operators
and

ĥn(θ) = 1

n

n∑
i=1

h(xi; θ).

We define the GMM estimator associated with Bn as

(6.7)θ̂n(Bn) = arg min
θ∈Θ

∥∥Bnĥn(θ)
∥∥.

Such an estimator will in general be suboptimal; we will discuss the optimal choice
of Bn later. Below, we give four examples that can be handled by the method discussed
in this section. They illustrate the versatility of the method as it can deal with a finite
number of moments (Example 1), a continuum (Examples 2 and 3) and a countably
infinite sequence (Example 4).

EXAMPLE 1 (Traditional GMM). Let h(x; θ) be a vector of RL, Bn be a L× L matrix
and ‖ · ‖ denote the Euclidean norm. The objective function to minimize is∥∥Bnĥn(θ)

∥∥2 = ĥn(θ)
′B ′

nBnĥn(θ)

and corresponds to the usual GMM quadratic form ĥn(θ)
′Wnĥn(θ) with weighting ma-

trix Wn = B ′
nBn.

EXAMPLE 2 (Continuous time process). Suppose we observe independent replications
of a continuous time process

(6.8)Xi(t) = G(θ, t) + ui(t), 0 � t � T , i = 1, 2, . . . , n,

where G is a known function and ui = {ui(t): 0 � t � T } is a zero mean Gaussian
process with continuous covariance function k(t, s) = E[ui(t)ui(s)], t, s ∈ [0, T ].



5718 M. Carrasco et al.

Denote Xi = {Xi(t): 0 � t � T }, G(θ) = {G(θ, t): 0 � t � T }, and H = L2([0, T ]).
The unknown parameter θ is identified from the moment of the function

h
(
Xi; θ) = Xi − G(θ).

Assume h(Xi; θ) ∈ L2([0, T ]) with probability one. Candidates for Bn are arbitrary
bounded operators on L2([0, T ]) including the identity. For Bnf = f , we have

∥∥Bnĥn(θ)
∥∥2 =

∫ T

0
ĥn(θ)

2 dt.

The estimation of model (6.8) is discussed in Kutoyants (1984).

EXAMPLE 3 (Characteristic function). Denote ψθ(t) = Eθ [eit ′X] the characteristic
function of X. Inference can be based on

h(t,X; θ) = eit
′X − ψθ(t), t ∈ RL.

Note that contrary to the former examples, h(t,X; θ) is complex valued and
|h(t,X; θ)| � |eit ′X| + |ψθ(t)| � 2. Let Π be a probability measure on RL and
H = L2

C
(RL,Π). As h(·, X; θ) is bounded, it belongs to L2

C
(RL,Π) for any Π .

Feuerverger and McDunnough (1981) and more recently Singleton (2001) show that an
efficient estimator of θ is obtained from h(·, X; θ) by solving an empirical counterpart
of
∫
Eh(t,X; θ)ω(t) dt = 0 for an adequate weighting function ω, which turns out to

be a function of the p.d.f. of X. This efficient estimator is not implementable as the p.d.f.
of X is unknown. They suggest estimating θ by GMM using moments obtained from a
discrete grid t = t1, t2, . . . , tM . An alternative strategy put forward in this section is to
use the full continuum of moment conditions by considering the moment function h as
an element of H = L2

C
(RL,Π).

EXAMPLE 4 (Conditional moment restrictions). Let X = (Y, Z). For a known function
ρ ∈ R, we have the conditional moment restrictions

Eθ0
[
ρ(Y,Z, θ) | Z] = 0.

Hence for any function g(Z), we can construct unconditional moment restrictions

Eθ0
[
ρ(Y,Z, θ)g(Z)

] = 0.

Assume Z has bounded support. Chamberlain (1987) shows that the semiparametric
efficiency bound can be approached by a GMM estimator based on a sequence of mo-
ment conditions using as instruments the power function of Z: 1, Z,Z2, . . . , ZL for a
large L. Let π be the Poisson probability measure π(l) = e−1/l! and H = L2(N, π) =
{f : N → R:

∑∞
l=1 g(l)π(l) < ∞}. Let

h(l,X; θ) = ρ(Y,Z, θ)Zl, l = 1, 2, . . . .
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If h(l,X; θ) is bounded with probability one, then h(·, X; θ) ∈ L2(N, π) with proba-
bility one. Instead of using an increasing sequence of moments as suggested by Cham-
berlain, it is possible to handle h(·, X; θ) as a function. The efficiency of the GMM
estimator based on the countably infinite number of moments {h(l,X; θ): l ∈ N} will
be discussed later.

6.2.2. Asymptotic properties of GMM

Let H = L2
C
(I,Π) = {f : I → C:

∫
I
|f (t)|2Π(dt) < ∞} where I is a subset of RL

for some L � 1 and Π is a (possibly discrete) probability measure. This choice of H is
consistent with Examples 1–4. Under some weak assumptions,

√
nĥn(θ0) converges to

a Gaussian process N (0,K) in H where K denotes the covariance operator of h(X; θ0).
K is defined by

K :H → H,

f → Kf (s) = 〈
f, k(·, t)〉 = ∫

I

k(t, s)f (s)Π(ds)

where the kernel k of K satisfies k(t, s) = Eθ0[h(t,X; θ0)h(s,X; θ0)] and k(t, s) =
k(s, t). Assume moreover that K is a Hilbert–Schmidt operator and hence admits a dis-
crete spectrum. Suppose that Bn converges to a bounded linear operator B defined on H
and that θ0 is the unique minimizer of ‖BEθ0h(X; θ)‖. Then θ̂n(Bn) is consistent and
asymptotically normal. The following result is proved in Carrasco and Florens (2000).

PROPOSITION 6.5. Under Assumptions 1 to 11 of Carrasco and Florens (2000), θ̂n(Bn)

is consistent and

√
n
(
θ̂n(Bn)− θ0

) L→ N (0, V )

with

V = 〈
BEθ0(∇θh), BE

θ0(∇θh)
′〉−1

× 〈
BEθ0(∇θh), (BKB∗)BEθ0(∇θh)

′〉
× 〈

BEθ0(∇θh), BE
θ0(∇θh)

′〉−1

where B∗ is the adjoint of B.

6.2.3. Optimal choice of the weighting operator

Carrasco and Florens (2000) show that the asymptotic variance V given in Proposi-
tion 6.5 is minimal for B = K−1/2. In that case, the asymptotic variance becomes
〈K−1/2Eθ0(∇θh),K

−1/2Eθ0(∇θh)〉−1.
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EXAMPLE 1 (Continued). K is the L×L-covariance matrix of h(X; θ). Let Kn be the
matrix 1

n

∑n
i=1 h(xi; θ̂1)h(xi; θ̂1)′ where θ̂1 is a consistent first step estimator of θ . Kn

is a consistent estimator of K . Then the objective function becomes〈
K

−1/2
n ĥn(θ),K

−1/2
n ĥn(θ)

〉 = ĥn(θ)
′K−1

n ĥn(θ)

which delivers the optimal GMM estimator.

When H is infinite dimensional, we have seen in Section 3.1 that the inverse of K ,
K−1, is not bounded. Similarly K−1/2 = (K1/2)−1 is not bounded on H and its domain
has been shown in Section 6.1.1 to be the subset of H which coincides with the RKHS
associated with K and denoted H(K).

To estimate the covariance operator K , we need a first step estimator θ̂1 that is
√
n-

consistent. It may be obtained by letting Bn equal the identity in (6.7) or by using a
finite number of moments. Let Kn be the operator with kernel

kn(t, s) = 1

n

n∑
i=1

h
(
t, xi; θ̂1)h(s, xi; θ̂1

)
.

Then Kn is a consistent estimator of K and ‖Kn − K‖ = O(1/
√
n). As K−1f is not

continuous in f , we estimate K−1 by the Tykhonov regularized inverse of Kn:(
Kαn
n

)−1 = (
αnI + K2

n

)−1
Kn

for some penalization term αn � 0. If αn > 0, (Kαn
n )−1f is continuous in f but is

a biased estimator of K−1f . There is a trade-off between the stability of the solution
and its bias. Hence, we will let αn decrease to zero at an appropriate rate. We define
(K

αn
n )−1/2 = ((K

αn
n )−1)1/2.

The optimal GMM estimator is given by

θ̂n = arg min
θ∈Θ

∥∥(Kαn
n

)−1/2
ĥn(θ)

∥∥.
Interestingly, the optimal GMM estimator minimizes the norm of ĥn(θ) in the RKHS
associated with Kαn

n . Under certain regularity conditions, we have∥∥(Kαn
n

)−1/2
ĥn(θ)

∥∥ P→ ∥∥Eθ0
(
h(θ)

)∥∥
K
.

A condition for applying this method is that Eθ0(h(θ)) ∈ H(K). This condition can be
verified using results from Section 6.1.

PROPOSITION 6.6. Under the regularity conditions of Carrasco and Florens (2000,
Theorem 8), θ̂n is consistent and

√
n(θ̂n − θ0)

L→ N
(
0,
〈
Eθ0

(∇θh(θ0)
)
, Eθ0

(∇θh(θ0)
)′〉−1

K

)
as n and nα3

n → ∞ and αn → 0.
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The stronger condition nα3
n → ∞ of Carrasco and Florens (2000) has been relaxed

into nα2
n → ∞ in Carrasco et al. (2007). Proposition 6.6 does not indicate how to select

αn in practice. A data-driven method is desirable. Carrasco and Florens (2001) propose
to select the αn that minimizes the mean square error (MSE) of the GMM estimator θ̂n.
As θ̂n is consistent for any value of αn, it is necessary to compute the higher order
expansion of the MSE, which is particularly tedious. Instead of relying on an analytic
expression, it may be easier to compute the MSE via bootstrap or simulations.

6.2.4. Implementation of GMM

There are two equivalent ways to compute the objective function

(6.9)
∥∥(Kαn

n

)−1/2
ĥn(θ)

∥∥2
,

(1) using the spectral decomposition of Kn, or
(2) using a simplified formula that involves only vectors and matrices.

The first method, discussed in Carrasco and Florens (2000), requires calculating the
eigenvalues and eigenfunctions of Kn using the method described in Section 2.5.3. Let
φ̂j denote the orthonormalized eigenfunctions of Kn and λ̂j the corresponding eigen-
values. The objective function in Equation (6.9) becomes

(6.10)
n∑

j=1

λ̂j

λ̂2
j + αn

∣∣〈ĥn(θ), φ̂j 〉∣∣2.
The expression (6.10) suggests a nice interpretation of the GMM estimator. Indeed,
note that 〈√nĥn(θ0), φj 〉, j = 1, 2, . . . , are asymptotically normal with mean 0 and
variance λj and are independent across j . Therefore (6.10) is the regularized version of
the objective function of the optimal GMM estimator based on the n moment conditions
E[〈h(θ), φj 〉] = 0, j = 1, 2, . . . , n.

The second method is more attractive by its simplicity. Carrasco et al. (2007) show
that (6.9) can be rewritten as

v(θ)′
[
αnIn + C2]−1

v(θ)

where C is a n × n-matrix with (i, j) element cij , In is the n × n identity matrix and
v(θ) = (v1(θ), . . . , vn(θ))

′ with

vi(θ) =
∫

h
(
t, xi; θ̂1

)′ĥn(t; θ)Π(dt),

cij = 1

n

∫
h(t, xi; θ̂1)′h

(
t, xj ; θ̂1)Π(dt).

Note that the dimension of C is the same whether h ∈ R or h ∈ RL.
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6.2.5. Asymptotic efficiency of GMM

Assume that the p.d.f. of X, fθ , is differentiable with respect to θ . Let L2(h) be the
closure of the subspace of L2(Ω,F, P ) spanned by {h(t,Xi; θ0): t ∈ I }.

PROPOSITION 6.7. Under standard regularity conditions, the GMM estimator based
on {h(t, xi; θ): t ∈ I } is asymptotically as efficient as the MLE if and only if

∇θ ln fθ (xi; θ0) ∈ L2(h).

This result is proved in Carrasco and Florens (2004) in a more general setting where
Xi is Markov of order L. A similar efficiency result can be found in Hansen (1985),
Tauchen (1997) and Gallant and Long (1997).

EXAMPLE 2 (Continued). Let K be the covariance operator of {u(t)} and H(K) the
RKHS associated with K . Kutoyants (1984) shows that if G(θ) ∈ H(K), the likelihood
ratio of the measure induced by X(t) with respect to the measure induced by u(t) equals

LR(θ) =
n∏
i=1

exp

{〈
G(θ), xi

〉
K

− 1

2

∥∥G(θ)∥∥2
K

}

where 〈G,X〉K has been defined in Section 6.1.2 and denotes the element of L2(X(t):
0 � t � T ) under the mapping J−1 of the function G(θ) (J is defined in Theorem 6.4).
The score function with respect to θ is

∇θ ln
(
LR(θ)

) =
〈
∇θG(θ),

1

n

n∑
i=1

(
xi − G(θ)

)〉
K

.

For θ = θ0 and a single observation, the score is equal to〈∇θG(θ0), u
〉
K
,

which is an element of L2(u(t): 0 � t � T ) = L2(h(X(t); θ0): 0 � t � T ). Hence,
by Proposition 6.7, the GMM estimator based on h(X; θ0) is asymptotically efficient.
This efficiency result is corroborated by the following. The GMM objective function is

∥∥h(x; θ)∥∥2
K

=
〈

1

n

n∑
i=1

(
xi − G(θ)

)
,

1

n

n∑
i=1

(
xi − G(θ)

)〉
K

.

The first-order derivative equals to

∇θ

∥∥h(x; θ)∥∥2
K

= 2

〈
∇θG(θ),

1

n

n∑
i=1

(
xi −G(θ)

)〉
K

= 2∇θ ln
(
LR(θ)

)
.

Therefore, the GMM estimator coincides with the MLE in this particular case as they
are solutions of the same equation.
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EXAMPLE 3 (Continued). Under minor conditions on the distribution of Xi , the clo-
sure of the linear span of {h(t,Xi; θ0): t ∈ RL} contains all functions of L2(X) =
{g: Eθ0[g(X)2] < ∞} and hence the score ∇θ ln fθ (Xi; θ0) itself. Therefore the GMM
estimator is efficient. Another way to prove efficiency is to explicitly calculate the as-
ymptotic covariance of θ̂n. To simplify, assume that θ is scalar. By Theorem 6.4, we
have∥∥Eθ0

(∇θh(θ0)
)∥∥2

K
= ∥∥Eθ0

(∇θh(θ0)
)∥∥2

K
= E|U |2

where U satisfies

Eθ0
[
Uh(t; θ0)

] = Eθ0
(∇θh(t; θ0)

)
for all t ∈ RL

which is equivalent to

(6.11)Eθ0
[
U(X)

(
eit

′X − ψθ0(t)
)] = −∇θψθ0(t) for all t ∈ RL.

As U has mean zero, U has also mean zero and we can replace (6.11) by

Eθ0
[
U(X)eit

′X] = −∇θψθ0(t) for all t ∈ RL

⇔
∫

U(x)eit
′xfθ0(x) dx = −∇θψθ0(t) for all t ∈ RL

(6.12)⇔ U(x)fθ0(x) = − 1

2π

∫
e−it ′x∇θψθ0(t) dt.

The last equivalence follows from the Fourier inversion formula. Assuming that we can
exchange the integration and derivation in the right-hand side of (6.12), we obtain

U(x)fθ0(x) = −∇θfθ0(x) ⇔ U(x) = −∇θ ln fθ0(x).

Hence Eθ0 |U |2 = Eθ0[(∇θ ln fθ0(X))
2]. The asymptotic variance of θ̂n coincides with

the Cramer–Rao efficiency bound even if, contrary to Example 3, θ̂n differs from the
MLE.

EXAMPLE 4 (Continued). As in the previous example, we intend to calculate the as-
ymptotic covariance of θ̂n using Theorem 6.4. We need to find U , the p-vector of r.v.
such that

Eθ0
[
Uρ(Y,Z; θ0)Z

l
] = Eθ0

[∇θρ(Y, Z; θ0)Z
l
]

for all l ∈ N,

⇔ Eθ0
[
Eθ0

[
Uρ(Y,Z; θ0) | Z]Zl

]
(6.13)= Eθ0

[
Eθ0

[∇θρ(Y, Z; θ0) | Z]Zl
]

for all l ∈ N.

Equation (6.13) is equivalent to

(6.14)Eθ0
[
Uρ(Y,Z; θ0) | Z] = Eθ0

[∇θρ(Y, Z; θ0) | Z]
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by the completeness of polynomials under some mild conditions on the distribution
of Z. A solution is

U0 = Eθ0
[∇θρ(Y, Z; θ0) | Z]Eθ0

[
ρ(Y,Z; θ0)

2 | Z]−1
ρ(Y,Z; θ0).

We have to check that this solution has minimal norm among all the solutions. Consider
an arbitrary solution U = U0 + U1. U is a solution of (6.14) implies

Eθ0
[
U1ρ(Y,Z; θ0) | Z] = 0.

Hence Eθ0(UU ′) = Eθ0(U0U
′
0) + Eθ0(U1U

′
1) and is minimal for U1 = 0. Then∥∥Eθ0

(∇θh(θ0)
)∥∥2

K
= Eθ0(U0U

′
0)

= Eθ0
{
Eθ0

[∇θρ(Y, Z; θ0) | Z]Eθ0
[
ρ(Y,Z; θ0)

2 | Z]−1

× Eθ0
[∇θρ(Y, Z; θ0) | Z]′}.

Its inverse coincides with the semi-parametric efficiency bound derived by Chamber-
lain (1987).

Note that in Examples 2 and 3, the GMM estimator reaches the Cramer–Rao bound
asymptotically, while in Example 4 it reaches the semi-parametric efficiency bound.

6.2.6. Testing overidentifying restrictions

Hansen (1982) proposes a test of specification, which basically tests whether the overi-
dentifying restrictions are close to zero. Carrasco and Florens (2000) propose the ana-
logue to Hansen’s J test in the case where there is a continuum of moment conditions.
Let

p̂n =
n∑

j=1

λ̂2
j

λ̂2
j + αn

, q̂n = 2
n∑

j=1

λ̂4
j

(λ̂2
j + αn)2

where λ̂j are the eigenvalues of Kn as described earlier.

PROPOSITION 6.8. Under the assumptions of Theorem 10 of Carrasco and Florens
(2000), we have

τn = ‖(Kαn
n )−1/2ĥn(θ̂n)‖2 − p̂n

q̂n

d→ N (0, 1)

as αn goes to zero and nα3
n goes to infinity.

This test can also be used for testing underidentification. Let θ0 ∈ R be such that
E[h(X, θ0)] = 0. Arellano, Hansen and Sentana (2005) show that the parameter, θ0,
is locally unidentified if E[h(X, θ)] = 0 for all θ ∈ R. It results in a continuum of
moment conditions indexed by θ . Arellano, Hansen and Sentana (2005) apply τn to test
for the null of underidentification.
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6.2.7. Extension to time series

So far, the data was assumed to be i.i.d. Now we relax this assumption. Let {x1, . . . , xT }
be the observations of a time series {Xt } that satisfies some mixing conditions. Inference
will be based on moment functions {h(τ,Xt ; θ0)} indexed by a real, possibly multidi-
mensional index τ . {h(τ,Xt ; θ0)} are in general autocorrelated, except in some special
cases, an example of which will be discussed below.

EXAMPLE 5 (Conditional characteristic function). Let Yt be a (scalar) Markov process
and assume that the conditional characteristic function (CF) of Yt+1 given Yt , ψθ(τ |
Yt ) ≡ Eθ [exp(iτYt+1) | Yt ], is known. The following conditional moment condition
holds:

Eθ
[
eiτYt+1 − ψθ(τ | Yt ) | Yt

] = 0.

Denote Xt = (Yt , Yt+1)
′. Let g(Yt ) be an instrument so that

h(τ,Xt ; θ) = (
eiτYt+1 − ψθ(τ | Yt )

)
g(Yt )

satisfies the identification condition (6.6). {h(τ,Xt ; θ)} is a martingale difference se-
quence and is therefore uncorrelated. The use of the conditional CF is very popular in
finance. Assume that {Yt , t = 1, 2, . . . , T } is a discretely sampled diffusion process,
then Yt is Markov. While the conditional likelihood of Yt+1 given Yt does not have a
closed form expression, the conditional CF of affine diffusions is known. Hence GMM
can replace MLE to estimate these models where MLE is difficult to implement. For
an adequate choice of the instrument g(Yt ), the GMM estimator is asymptotically as
efficient as the MLE. The conditional CF has been recently applied to the estimation of
diffusions by Singleton (2001), Chacko and Viceira (2003), and Carrasco et al. (2007).
The first two papers use GMM based on a finite grid of values for τ , whereas the last
paper advocates using the full continuum of moments which permits us to achieve effi-
ciency asymptotically.

EXAMPLE 6 (Joint characteristic function). Assume Yt is not Markov. In that case, the
conditional CF is usually unknown. On the other hand, the joint characteristic function
may be calculated explicitly [for instance when Yt is an ARMA process with stable
error, see Knight and Yu (2002); or Yt is the growth rate of a stochastic volatility model,
see Jiang and Knight (2002)] or may be estimated via simulations [this technique is
developed in Carrasco et al. (2007)]. Denote ψθ(τ) ≡ Eθ [exp(τ1Yt + τ2Yt+1 + · · · +
τL+1Yt+L)] with τ = (τ1, . . . , τL)

′, the joint CF of Xt ≡ (Yt , Yt+1, . . . , Yt+L)
′ for

some integer L � 1. Assume that L is large enough for

h(τ,Xt ; θ) = eiτ
′Xt − ψθ(τ)
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to identify the parameter θ . Here {h(τ,Xt ; θ)} are autocorrelated. Knight and Yu (2002)
estimate various models by minimizing the following norm of h(τ,Xt ; θ):

∫ (
1

T

T∑
t=1

eiτ
′xt − ψθ(τ)

)2

e−τ ′τ dτ.

This is equivalent to minimizing ‖B 1
T

∑T
t=1 h(τ,Xt ; θ)‖2 with B = e−τ ′τ/2. This

choice of B is suboptimal but has the advantage of being easy to implement. The op-
timal weighting operator is, as before, the square root of the inverse of the covariance
operator. Its estimation will be discussed shortly.

Under some mixing conditions on {h(τ,Xt ; θ0)}, the process ĥT (θ0) =
1
T

∑T
t=1 h(τ,Xt ; θ0) follows a functional CLT (see Section 2.4.2):
√
T ĥT (θ0)

L→ N (0,K)

where the covariance operator K is an integral operator with kernel

k(τ1, τ2) =
+∞∑

j=−∞
Eθ0

[
h(τ1, Xt ; θ0)h(τ2, Xt−j ; θ0)

]
.

The kernel k can be estimated using a kernel-based estimator as those described in
Andrews (1991) and references therein. Let ω : R → [−1, 1] be a kernel satisfying the
conditions stated by Andrews. Let q be the largest value in [0,+∞) for which

ωq = lim
u→∞

1 − ω(u)

|u|q
is finite. In the sequel, we will say that ω is a q-kernel. Typically, q = 1 for the Bartlett
kernel and q = 2 for Parzen, Tuckey-Hanning and quadratic spectral kernels. We define

(6.15)k̂T (τ1, τ2) = T

T − d

T−1∑
j=−T+1

ω

(
j

ST

)
Γ̂T (j)

with

(6.16)Γ̂T (j) =
⎧⎨
⎩

1
T

∑T
t=j+1 h(τ1, Xt ; θ̂1

T )h(τ2, Xt−j ; θ̂1
T ), j � 0,

1
T

∑T
t=−j+1 h(τ1, Xt+j ; θ̂1

T )h(τ2, Xt ; θ̂1
T ), j < 0,

where ST is some bandwidth that diverges with T and θ̂1
T is a T 1/2-consistent estimator

of θ . Let KT be the integral estimator with kernel k̂T . Under some conditions on ω

and {h(τ,Xt ; θ0)}, and assuming S
2q+1
T /T → γ ∈ (0,+∞), Carrasco et al. (2007)

establish the rate of convergence of KT to K:

‖KT − K‖ = Op

(
T −q/(2q+1)).
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The inverse of K is estimated using the regularized inverse of KT , (KαT
T )−1 =

(K2
T + αT I)

−1KT for a penalization term αT � 0. As before, the optimal GMM esti-
mator is given by

θ̂T = arg min
θ∈Θ

∥∥(KαT
T

)−1/2
ĥT (θ)

∥∥.
Carrasco et al. (2007) show the following result.

PROPOSITION 6.9. Assume that ω is a q-kernel and that S2q+1
T /T → γ ∈ (0,+∞).

We have

(6.17)
√
T (θ̂T − θ0)

L→ N
(
0,
(〈
Eθ0(∇θh), E

θ0(∇θh)
′〉
K

)−1)
as T and T q/(2q+1)αT go to infinity and αT goes to zero.

Note that the implementation of this method requires two smoothing parameters αT
and ST . No cross-validation method for selecting these two parameters simultaneously
has been derived yet. If {ht } is uncorrelated, then K can be estimated using the sample
average and the resulting estimator satisfies ‖KT − K‖ = Op(T

−1/2). When {ht } are
correlated, the convergence rate ofKT is slower and accordingly the rate of convergence
of αT to zero is slower.

7. Estimating solutions of integral equations of the second kind

7.1. Introduction

The objective of this section is to study the properties of the solution of an integral
equation of the second kind (also called Fredholm equation of the second type) defined
by

(7.1)(I − K)ϕ = r

where ϕ is an element of a Hilbert space H, K is a compact operator from H to H and r
is an element of H. As in the previous sections, K and r are known functions of a data
generating process characterized by its c.d.f. F , and the functional parameter of interest
is the function ϕ.

In most cases, H is a functional space and K is an integral operator defined by its
kernel k. Equation (7.1) becomes:

(7.2)ϕ(t)−
∫

k(t, s)ϕ(s)Π(ds) = r(t).

The estimated operators are often degenerate, see Section 2.5.1 and in that case, Equa-
tion (7.2) simplifies into:

(7.3)ϕ(t)−
L∑
�=1

a�(ϕ)ε�(t) = r(t)

where the a�(ϕ) are linear forms on H and ε� belongs to H for any �.
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The essential difference between equations of the first kind and of the second kind
is the compactness of the operator. In (7.1), K is compact but I − K is not compact.
Moreover, if I−K is one-to-one, its inverse is bounded. In that case, the inverse problem
is well-posed. Even if I − K is not one-to-one, the ill-posedness of Equation (7.1) is
less severe than in the first kind case because the solutions are stable in r .

In most cases, K is a self-adjoint operator (and hence I − K is also self-adjoint) but
we will not restrict our presentation to this case. On the other hand, Equation (7.1) can
be extended by considering an equation (S − K)ϕ = r where K is a compact operator
from H to E (instead of H to H) and S is a one-to-one bounded operator from H to
E with a bounded inverse. Indeed, (S − K)ϕ = r ⇔ (I − S−1K)ϕ = S−1r where
S−1K :H → H is compact. So that we are back to Equation (7.1), see Corollary 3.6 of
Kress (1999).

This section is organized in the following way. The next subsection recalls the main
mathematical properties of the equations of the second kind. The two following sub-
sections present the statistical properties of the solution in the cases of well-posed and
ill-posed problems, and the last subsection applies these results to the two examples
given in Section 1.

The implementation of the estimation procedure is not discussed here because it is
similar to the implementation of the estimation of a regularized equation of the first
kind (see Section 3). Actually, regularizations transform first kind equations into second
kind equations and the numerical methods are then formally equivalent, even though the
statistical properties are fundamentally different.

7.2. Riesz theory and Fredholm alternative

We first briefly recall the main results about equations of the second kind as they were
developed at the beginning of the 20th century by Fredholm and Riesz. The statements
are given without proofs [see e.g. Kress (1999, Chapters 3 and 4)].

Let K be a compact operator from H to H and I be the identity on H (which is
compact only if H is finite dimensional). Then, the operator I − K has a finite dimen-
sional null space and its range is closed. Moreover, I − K is injective if and only if it
is surjective. In that case I − K is invertible and its inverse (I − K)−1 is a bounded
operator.

An element of the null space of I − K verifies Kϕ = ϕ, and if ϕ �= 0, it is an
eigenfunction of K associated with the eigenvalue equal to 1. Equivalently, the inverse
problem (7.1) is well-posed if and only if 1 is not an eigenvalue of K . The Fredholm
alternative follows from the previous results.

THEOREM 7.1 (Fredholm alternative). Let us consider the two equations of the second
kind:

(7.4)(I − K)ϕ = r
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and

(7.5)(I − K∗)ψ = s

where K∗ is the adjoint of K . Then:

(i) Either the two homogeneous equations (I − K)ϕ = 0 and (I − K∗)ψ = 0 only
have the trivial solutions ϕ = 0 and ψ = 0. In that case, (7.4) and (7.5) have a
unique solution for any r and s in H

(ii) or the two homogeneous equations (I − K)ϕ = 0 and (I − K∗)ψ = 0 have
the same finite number m of linearly independent solutions ϕj and ψj (j =
1, . . . , m) respectively, and the solutions of (7.4) and (7.5) exist if and only if
〈ψj , r〉 = 0 and 〈ϕj , s〉 = 0 for any j = 1, . . . , m.

(ii) means that the null spaces of I − K and I − K∗ are finite dimensional and have
the same dimensions. Moreover, the ranges of I − K and I −K∗ satisfy

R(I − K) = N (I −K∗)⊥, R(I − K∗) = N (I − K)⊥.

7.3. Well-posed equations of the second kind

In this subsection, we assume that I − K is injective. In this case, the problem is
well-posed and the asymptotic properties of the solution are easily deduced from the
properties of the estimation of the operator K and the right-hand side r .

The starting point of this analysis is the relation:

ϕ̂n − ϕ0 = (I − K̂n)
−1r̂n − (I − K)−1r

= (I − K̂n)
−1(r̂n − r) + [

(I − K̂n)
−1 − (I − K)−1]r

= (I − K̂n)
−1[r̂n − r + (K̂n − K)(I − K)−1r

]
(7.6)= (I − K̂n)

−1[r̂n − r + (K̂n − K)ϕ0
]

where the third equality follows from A−1 − B−1 = A−1(B − A)B−1.

THEOREM 7.2. If

(i) ‖K̂n − K‖ = o(1).
(ii) ‖(r̂n + K̂nϕ0)− (r + Kϕ0)‖ = O

( 1
an

)
.

Then ‖ϕ̂n − ϕ0‖ = O
( 1
an

)
.

PROOF. As I − K is invertible and admits a continuous inverse, (i) implies that
‖(I − K̂n)

−1‖ converges to ‖(I − K)−1‖ and the result follows from (7.6). �

In some cases ‖r − r̂n‖ = O
( 1
bn

)
and ‖K̂n − K‖ = O

( 1
dn

)
. Then 1

an
= 1

bn
+ 1

dn
.

In some particular examples, as will be illustrated in the last subsection, the asymptotic
behavior of r̂n − K̂nϕ0 is directly considered.
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Asymptotic normality can be obtained from different sets of assumptions. The fol-
lowing theorems illustrate two kinds of asymptotic normality.

THEOREM 7.3. If

(i) ‖K̂n − K‖ = o(1).
(ii) an((r̂n + K̂nϕ0)− (r + Kϕ0)) �⇒ N (0,Σ) (weak convergence in H).

Then

an(ϕ̂n − ϕ0) �⇒ N
(
0, (I − K)−1Σ(I −K∗)−1).

PROOF. The proof follows immediately from (7.6) and Theorem 2.47. �

THEOREM 7.4. We consider the case where H = L2(Rp, π). If

(i) ‖K̂n − K‖ = o(1).

(ii) ∃an s.t. an[(r̂n + K̂nϕ0) − (r + Kϕ0)](x) d→ N (0, σ 2(x)), ∀x ∈ Rp.
(iii) ∃bn s.t. an

bn
= o(1) and

bnK̂n

[
(r̂n + K̂nϕ0)− (r + Kϕ0)

] �⇒ N (0,Ω)

(weak convergence in H).

Then

an(ϕ̂n − ϕ0)(x)
d→ N

(
0, σ 2(x)

)
, ∀x.

PROOF. Using

(I − K)−1 = I + (I −K)−1K,

we deduce from (7.6) that

an(ϕ̂n − ϕ0)(x) = an
{
(I − K̂n)

−1[r̂n + K̂nϕ0 − r − Kϕ0]
}
(x)

= an(r̂n + K̂nϕ0 − r −Kϕ0)(x)

(7.7)+ an

bn

{
bn(I − K̂n)

−1K̂n(r̂n + K̂nϕ0 − r −Kϕ0)
}
(x).

The last term in brackets converges (weakly inL2) to a N (0, (I−K)−1Ω(I−K)−1) and
the value of this function at any point x also converges to a normal distribution (weak
convergence implies finite dimensional convergence). Then the last term in brackets is
bounded and the result is verified. �

Note that condition (iii) is satisfied as soon as premultiplying by K̂n increases the rate
of convergence of r̂n + K̂nϕ0. This is true in particular if K̂n is an integral operator.

We illustrate these results by the following three examples. The first example is an
illustrative example, while the other two are motivated by relevant econometric issues.
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EXAMPLE. Consider L2(R,Π) and (Y, Z(·)) is a random element of R × L2(R,Π).
We study the integral equation of the second kind defined by

(7.8)ϕ(x)+
∫

EF
(
Z(x)Z(y)

)
ϕ(y)Π(dy) = EF

(
YZ(x)

)
denoted by ϕ + V ϕ = r . Here K = −V . As the covariance operator, V is a posi-
tive operator, K is a negative operator and therefore 1 cannot be an eigenvalue of K .
Consequently, Equation (7.8) defines a well-posed inverse problem.

We assume that an i.i.d. sample of (Y, Z) is available and the estimated Equation (7.8)
defines the estimator of the parameter of interest as the solution of an integral equation
having the following form:

(7.9)ϕ(x)+ 1

n

n∑
i=1

zi(x)

∫
zi(y)ϕ(y)Π(dy) = 1

n

n∑
i=1

yizi(x).

Under some standard regularity conditions, one can check that ‖V̂n−V ‖ = O
( 1√

n

)
and

that
√
n

1

n

∑
i

{
zi(·)

[
yi −

∫
zi(y)ϕ(y)Π(dy)

]
− EF

(
YZ(·))

+
∫

EF
(
Z(·)Z(y))ϕ(y)Π(dy)

}
⇒ N (0,Σ) in L2(R,Π).

Then, from Theorem 7.3,
√
n(ϕ̂n − ϕ0) ⇒ N

(
0, (I + V )−1Σ(I + V )−1).

EXAMPLE (Rational expectations asset pricing models). Following Lucas (1978), ra-
tional expectations models characterize the pricing functional as a function ϕ of the
Markov state solution of an integral equation:

(7.10)ϕ(x)−
∫

a(x, y)ϕ(y)f (y | x) dy =
∫

a(x, y)b(y)f (y | x) dy.

While f is the transition density of the Markov state, the function a denotes the marginal
rate of substitution and b the dividend function. For the sake of expositional simplic-
ity, we assume here that the functions a and b are both known while f is estimated
nonparametrically by a kernel method. Note that if the marginal rate of substitution a

involves some unknown preference parameters (subjective discount factor, risk aver-
sion parameter), they will be estimated, for instance by GMM, with a parametric

√
n

rate of convergence. Therefore, the nonparametric inference about ϕ (deduced from the
solution of (7.10) using a kernel estimation of f ) is not contaminated by this paramet-
ric estimation; all the statistical asymptotic theory can be derived as if the preference
parameters were known.
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As far as kernel density estimation is concerned, it is well known that under mild
conditions [see e.g. Bosq (1998)] it is possible to get the same convergence rates and
the same asymptotic distribution with stationary strongly mixing stochastic processes
as in the i.i.d. case.

Let us then consider an n-dimensional stationary stochastic process Xt and H the
space of square integrable functions of one realization of this process. In this example,
H is defined with respect to the true distribution. The operator K is defined by

Kϕ(x) = EF
(
a(Xt−1, Xt )ϕ(Xt ) | Xt−1 = x

)
and

r(x) = EF
(
a(Xt−1, Xt )b(Xt ) | Xt−1 = x

)
.

We will assume that K is compact through possibly a Hilbert–Schmidt condition (see
Assumption A.1 of Section 5.5 for such a condition). A common assumption in rational
expectation models is that K is a contraction mapping, due to discounting. Then, 1 is
not an eigenvalue of K and (7.10) is a well-posed Fredholm integral equation.

Under these hypotheses, both numerical and statistical issues associated with the so-
lution of (7.10) are well documented. See Rust, Traub and Wozniakowski (2002) and
references therein for numerical issues. The statistical consistency of the estimator ϕ̂n
obtained from the kernel estimator K̂n is deduced from Theorem 7.2 above. Assump-
tion (i) is satisfied because K̂n−K has the same behavior as the conditional expectation
operator and

r̂n + K̂nϕ0 − r − Kϕ0 = EFn
(
a(Xt−1, Xt )

(
b(Xt ) + ϕ0(Xt )

) | Xt−1
)

− EF
(
a(Xt−1, Xt )

(
b(Xt ) + ϕ0(Xt )

) | Xt−1
)

converges at the speed 1
an

= ( 1
ncmn

+ c4
n

)1/2 if cn is the bandwidth of the (second-order)
kernel estimator and m is the dimension of X.

The weak convergence follows from Theorem 7.4. Assumption (ii) of Theorem 7.4
is the usual result on the normality of kernel estimation of conditional expectation. As
K is an integral operator, the transformation by K̂n increases the speed of convergence,
which implies (iii) of Theorem 7.4.

EXAMPLE (Partially nonparametric forecasting model). This example is drawn from
Linton and Mammen (2005). Nonparametric prediction of a stationary ergodic scalar
random process Xt is often performed by looking for a predictor m(Xt−1, . . . , Xt−d)

able to minimize the mean square error of prediction:

E
[(
Xt − m(Xt−1, . . . , Xt−d)

)2]
.

In other words, if m can be any squared integrable function, the optimal predictor is
the conditional expectation

m(Xt−1, . . . , Xt−d) = E[Xt | Xt−1, . . . , Xt−d ]
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and can be estimated by kernel smoothing or any other nonparametric way of estimating
a regression function. The problems with this kind of approach are twofold. First, it
is often necessary to include many lagged variables and the resulting nonparametric
estimation surface suffers from the well-known “curse of dimensionality”. Second, it is
hard to describe and interpret the estimated regression surface when the dimension is
more than two.

A solution to deal with these problems is to think about a kind of nonparametric
generalization of ARMA processes. For this purpose, let us consider semiparametric
predictors of the following form:

(7.11)E[Xt | It−1] = mϕ(θ, It−1) =
∞∑
j=1

aj (θ)ϕ(Xt−j )

where θ is an unknown finite dimensional vector of parameters, aj (·), j � 1 are known
scalar functions, and ϕ(·) is the unknown functional parameter of interest. The notation

E[Xt | It−1] = mϕ(θ, It−1)

stresses the fact that the predictor depends on the true unknown value of the parameters
θ and ϕ, as well as on the information It−1 available at time (t − 1). This information
is actually the σ -field generated by Xt−j , j � 1. A typical example is

(7.12)aj (θ) = θj−1 for j � 1 with 0 < θ < 1.

Then the predictor defined in (7.11) is actually characterized by

(7.13)mϕ(θ, It−1) = θmϕ(θ, It−2) + ϕ(Xt−1).

In the context of volatility modeling, Xt would denote a squared asset return over
period [t − 1, t] and mϕ(θ, It−1) the so-called squared volatility of this return as
expected at the beginning of the period. Engle and Ng (1993) have studied such a
partially nonparametric (PNP for short) model of volatility and called the function ϕ

the “news impact function”. They proposed an estimation strategy based on piecewise
linear splines. Note that the PNP model includes several popular parametric volatility
models as special cases. For instance, the GARCH (1, 1) model of Bollerslev (1986)
corresponds to ϕ(x) = w + αx while the Engle (1990) asymmetric model is obtained
for ϕ(x) = w+α(x+δ)2. More examples can be found in Linton and Mammen (2005).

The nonparametric identification and estimation of the news impact function can be
derived for a given value of θ . After that, a profile criterion can be calculated to esti-
mate θ . In any case, since θ will be estimated with a parametric rate of convergence,
the asymptotic distribution theory of a nonparametric estimator of ϕ is the same as if
θ were known. For the sake of notational simplicity, the dependence on unknown finite
dimensional parameters θ is no longer made explicit.

At least in the particular case (7.12)–(7.13), ϕ is easily characterized as the solution
of a linear integral equation of the first kind

E[Xt − θXt−1 | It−2] = E
[
ϕ(Xt−1) | It−2

]
.
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Except for its dynamic features, this problem is completely similar to the nonparametric
instrumental regression example described in Section 5.5. However, as already men-
tioned, problems of the second kind are often preferable since they may be well-posed.
As shown by Linton and Mammen (2005) in the particular case of a PNP volatility
model, it is actually possible to identify and consistently estimate the function ϕ0 de-
fined as

(7.14)ϕ0 = arg min
ϕ

E

[(
Xt −

∞∑
j=1

ajϕ(Xt−j )

)2]

from a well-posed linear inverse problem of the second kind. When ϕ is an element
of the Hilbert space L2

F (X), its true unknown value is characterized by the first-order
conditions obtained by differentiating in the direction of any vector h

E

[(
Xt −

∞∑
j=1

ajϕ(Xt−j )

)( ∞∑
l=1

alh(Xt−l )

)]
= 0.

In other words, for any h in L2
F (X)

∞∑
j=1

ajE
X
[
E[Xt | Xt−j = x]h(x)]−

∞∑
j=1

a2
jE

X
[
ϕ(x)h(x)

]

(7.15)−
∞∑
j=1

∞∑
l=1
l �=j

aj alE
X
[
E[ϕ(Xt−l) | Xt−j = x]h(x)] = 0

where EX denotes the expectation with respect to the stationary distribution of Xt . As
the equality in (7.15) holds true for all h, it is true in particular for a complete sequence
of functions of L2

F (X). It follows that

∞∑
j=1

ajE[Xt | Xt−j = x] −
( ∞∑

l=1

a2
l

)
ϕ(x)

−
∞∑
j=1

∞∑
l �=j

aj alE
[
ϕ(Xt−l) | Xt−j = x

] = 0

PX – almost surely on the values of x. Let us denote

rj (Xt ) = E[Xt+j | Xt ] and Hk(ϕ)(Xt ) = E
[
ϕ(Xt+k) | Xt

]
.

Then, we have proved that the unknown function ϕ of interest must be the solution of
the linear inverse problem of the second kind

(7.16)A(ϕ, F ) = (I −K)ϕ − r = 0
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where

r =
( ∞∑

j=1

a2
j

)−1 ∞∑
j=1

aj rj ,

K = −
( ∞∑

j=1

a2
j

)−1 ∞∑
j=1

∑
l �=j

aj alHj−l ,

and, with a slight change of notation, F now characterizes the probability distribution
of the stationary process (Xt ).

To study the inverse problem (7.16), it is first worth noticing that K is a self-adjoint
integral operator. Indeed,

K =
( ∞∑

j=1

a2
j

)−1 +∞∑
k=±1

Hk

( +∞∑
l=max[1,1−k]

alal+k

)

and it follows from Section 2.2 that the conditional expectation operator Hk is such that

H ∗
k = H−k

and thus K = K∗, since

+∞∑
l=max[1,1−k]

alal+k =
+∞∑

l=max[1,1+k]
alal−k.

As noticed by Linton and Mammen (2005), this property greatly simplifies the practical
implementation of the solution of the sample counterpart of Equation (7.16). Even more
importantly, the inverse problem (7.16) will be well-posed as soon as one maintains the
following identification assumption about the news impact function ϕ.

ASSUMPTION A. There exists no θ and ϕ ∈ L2
F (X) with ϕ �= 0 such that∑∞

j=1 aj (θ)ϕ(Xt−j ) = 0 almost surely.

To see this, observe that Assumption A means that for any nonzero function ϕ

0 < E

[ ∞∑
j=1

ajϕ(Xt−j )

]2

,

that is

0 <

∞∑
j=1

a2
j 〈ϕ, ϕ〉 +

∞∑
j=1

∞∑
l=1
l �=j

alaj 〈ϕ,Hj−lϕ〉.



5736 M. Carrasco et al.

Therefore

(7.17)0 < 〈ϕ, ϕ〉 − 〈ϕ,Kϕ〉
for nonzero ϕ. In other words, there is no nonzero ϕ such that

Kϕ = ϕ

and hence the operator (I − K) is one-to-one. Moreover, (7.17) implies that (I − K)

has eigenvalues bounded from below by a positive number. Therefore, if K depends
continuously on the unknown finite dimensional vector of parameters θ and if θ evolves
in some compact set, the norm of (I − K)−1 will be bounded from above uniformly
in θ .

It is also worth noticing that the operator K is Hilbert–Schmidt and a fortiori com-
pact under reasonable assumptions. As already mentioned in Section 2.2, the Hilbert–
Schmidt property for the conditional expectation operators Hk is tantamount to the
integrability condition∫ ∫ [

fXt ,Xt−k
(x, y)

fXt (x)fXt (y)

]2

fXt (x)fXt (y) dx dy < ∞.

It amounts to saying that there is not too much dependence between Xt and Xt−k . This
should be tightly related to the ergodicity or mixing assumptions about the stationary
process Xt . Then, if all the conditional expectation operators Hk , k � 1 are Hilbert–
Schmidt, the operator K will also be Hilbert–Schmidt insofar as

∞∑
j=1

∑
l �=j

a2
j a

2
l < +∞.

Up to a straightforward generalization to stationary mixing processes of results only
stated in the i.i.d. case, the general asymptotic theory of Theorems 7.3 and 7.4 can then
be easily applied to nonparametric estimators of the news impact function ϕ based on
the Fredholm equation of the second kind (7.15). An explicit formula for the asymptotic
variance of ϕ̂n as well as a practical solution by implementation of matricial equations
similar to those of Section 3.4 (without need of a regularization) is provided by Linton
and Mammen (2005) in the particular case of volatility modeling.

However, an important difference with the i.i.d. case (see for instance Assump-
tion A.3 in Section 5.5 about instrumental variables) is that the conditional homoskedas-
ticity assumption cannot be maintained about the conditional probability distribution
of Xt given its own past. This should be particularly detrimental in the case of volatil-
ity modeling, since when Xt denotes a squared return, it will in general be even
more conditionally heteroskedastic than returns themselves. Such severe conditional
heteroskedasticity will likely imply a poor finite sample performance, and a large as-
ymptotic variance of the estimator ϕ̂n defined from the inverse problem (7.15), that is
from the least-squares problem (7.14). Indeed, ϕ̂n is a kind of OLS estimator in infinite
dimension. In order to better take into account conditional heteroskedasticity of Xt in
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the context of volatility modeling, Linton and Mammen (2005) propose to replace the
least squares problem (7.14) by a quasi-likelihood kind of approach where the criterion
to optimize is defined from the density function of a normal conditional probability dis-
tribution of returns, with variance mϕ(θ, It−1). Then the difficulty is that the associated
first-order conditions now characterize the news impact function ϕ as solution of a non-
linear inverse problem. Linton and Mammen (2005) suggest working with a version of
this problem which is locally linearized around the previously described least-squares
estimator ϕ̂n (and associated consistent estimator of θ ).

7.4. Ill-posed equations of the second kind

7.4.1. Estimation

The objective of this section is to study equations (I−K)ϕ = r where 1 is an eigenvalue
of K , i.e. where I − K is not injective (or one-to-one). For simplicity, we restrict our
analysis to the case where the order of multiplicity of the eigenvalue 1 is one and the
operator K is self-adjoint. This implies that the dimension of the null spaces of I − K

is one and using the results of Section 7.2, the space H may be decomposed into

H = N (I − K) ⊕ R(I − K)

i.e. H is the direct sum between the null space and the range of I −K , both closed. We
denote by PN r the projection of r on N (I −K) and by PRr the projection of r on the
range R(I − K).

Using (ii) of Theorem 7.1, a solution of (I −K)ϕ = r exists in the noninjective case
only if r is orthogonal to N (I −K) or equivalently, if r belongs to R(I −K). In other
words, a solution exists if and only if r = PRr . However in this case, the solution is not
unique and there exists a one-dimensional linear manifold of solutions. Obviously, if ϕ
is a solution, ϕ plus any element of N (I − K) is also a solution. This nonuniqueness
problem will be solved by a normalization rule which selects a unique element in the
set of solutions. The normalization we adopt is

(7.18)〈ϕ, φ1〉 = 0

where φ1 is the eigenfunction of K corresponding to the eigenvalue equal to 1.
In most statistical applications of equations of the second kind, the random element r

corresponding to the true data generating process is assumed to be in the range of I−K ,
where K is also associated with the true DGP. However, this property is no longer true
if F is estimated and we need to extend the resolution of (I − K)ϕ = r to cases where
I − K is not injective and r is not in the range of this operator. This extension must be
done in such a way that the continuity properties of inversion are preserved.

For this purpose we consider the following generalized inverse of (I − K). As K is
a compact operator, it has a discrete spectrum λ1 = 1, λ2, . . . , where only 0 may be an
accumulation point (in particular 1 cannot be an accumulation point). The associated
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orthonormal eigenfunctions are φ1, φ2, . . . . Then we define:

(7.19)Lu =
∞∑
j=2

1

1 − λj
〈u, φj 〉φj , u ∈ H.

Note that L = (I −K)† is the Moore–Penrose generalized inverse of I −K , introduced
in Proposition 3.3. Moreover, L is continuous and therefore bounded because 1 is an
isolated eigenvalue. This operator computes the unique solution of (I − K)ϕ = PRr
satisfying the normalization rule (7.18). It can be easily verified that L satisfies:

LPR = L = PRL,

(7.20)L(I − K) = (I −K)L = PR.

We now consider estimation. For an observed sample, we obtain an estimator Fn of F
(that may be built from a kernel estimator of the density) and then estimators r̂n and K̂n

of r and K , respectively. Let φ̂1, φ̂2, . . . , denote the eigenfunctions of K̂n associated
with λ̂1, λ̂2, . . . . We restrict our attention to the cases where 1 is also an eigenvalue of
multiplicity one of K̂n (i.e. λ̂1 = 1). However, φ̂1 may be different from φ1.

We have to make a distinction between two cases. First, assume that the Hilbert space
H of reference is known and in particular the inner product is given (for example H =
L2(Rp,Π) with Π given). The normalization rule imposed on ϕ̂n is

〈ϕ̂n, φ̂1〉 = 0

and L̂n is the generalized inverse of I − K̂n in H (which depends on the Hilbert space
structure) where

L̂nu =
∞∑
j=2

1

1 − λ̂j
〈u, φ̂j 〉φ̂j , u ∈ H.

Formula (7.20) applies immediately for Fn.
However, if the Hilbert space H depends on F (e.g. H = L2(Rp, F )), we need to

assume that L2(R, Fn) ⊂ L2(Rp, F ). The orthogonality condition which defines the
normalization rule (7.18) is related to L2(Rp, F ), but the estimator ϕ̂n of ϕ will be
normalized by

〈ϕ̂n, φ̂1〉n = 0

where 〈,〉n denotes the inner product relative to Fn. This orthogonality is different from
an orthogonality relative to 〈,〉. In the same way L̂n is now defined as the generalized
inverse of I − K̂n with respect to the estimated Hilbert structure, i.e.

L̂nu =
∞∑
j=2

1

1 − λ̂j
〈u, φ̂j 〉nφ̂j
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and L̂n is not the generalized inverse of I − K̂n in the original space H. The advantages
of this definition are that L̂n may be effectively computed and satisfies the formula
(7.20) where Fn replaces F . In the sequel PRn

denotes the projection operator on Rn =
R(I − K̂n) for the inner product 〈·,·〉n.

To establish consistency, we will use the following equality:

(7.21)L̂n − L = L̂n(K̂n − K)L + L̂n(PRn
− PR)+ (PRn

− PR)L.

It follows from (7.20) and L̂n−L = L̂nPRn
−PRL = L̂n(PRn

−PR)+(PRn
−PR)L−

PRn
L+ L̂nPR and L̂n(K̂n−K)L = L̂n(K̂n−I )L+ L̂n(I −K)L = −PRn

L+ L̂nPR.
The convergence property is given by the following theorem.

THEOREM 7.5. Let us define ϕ0 = Lr and ϕ̂n = L̂nr̂n. If

(i) ‖K̂n − K‖ = o(1).
(ii) ‖PRn

− PR‖ = O
( 1
bn

)
.

(iii) ‖(r̂n + K̂nϕ0)− (r +Kϕ0)‖ = O
( 1
an

)
.

Then

‖ϕ̂n − ϕ0‖ = O

(
1

an
+ 1

bn

)
.

PROOF. The proof is based on:

ϕ̂n − ϕ0 = L̂nr̂n − Lr

= L̂n(r̂n − r) + (L̂n − L)r

= L̂n(r̂n − r) + L̂n(K̂n − K)ϕ0

(7.22)+ L̂n(PRn
− PR)r + (PRn

− PR)ϕ0

deduced from (7.21). Then

‖ϕ̂n − ϕ0‖ � ‖L̂n‖
∥∥(r̂n + K̂nϕ0)− (r +Kϕ0)

∥∥
(7.23)+ (‖L̂n‖‖r‖ + ‖ϕ0‖

)‖PRn
− PR‖.

Under (i) and (ii), ‖L̂n − L‖ = o(1) from (7.21). This implies ‖L̂n‖ → ‖L‖ and the
result follows. �

If an
bn

= O(1), the actual speed of convergence is bounded by 1
an

. This will be the
case in the two examples of Section 7.4.2 where an

bn
→ 0.

We consider asymptotic normality in this case. By (7.20), we have L̂n = PRn
+

L̂nK̂n, hence:

(7.24)ϕ̂n − ϕ0 = PRn

[
(r̂n + K̂nϕ0)− (r +Kϕ0)

]
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(7.25)+ L̂nK̂n

[
(r̂n + K̂nϕ0) − (r + Kϕ0)

]
(7.26)+ L̂n(PRn

− PR)r + (PRn
− PR)ϕ0.

Let us assume that there exists a sequence an such that (i) and (ii) below are satisfied

(i) anPRn
[(r̂n + K̂nϕ0)− (r + Kϕ0)](x) has an asymptotic normal distribution,

(ii) an[L̂nK̂n(r̂n + K̂nϕ0 − r − Kϕ0)](x) → 0, an[L̂n(PRn
− PR)r](x) → 0,

and an[(PRn
− PR)ϕ0](x) → 0 in probability.

Then the asymptotic normality of an(ϕ̂n − ϕ0) is driven by the behavior of (7.24).
This situation occurs in the nonparametric estimation, as illustrated in the next section.

7.4.2. Two examples: backfitting estimation in additive and measurement error models

Backfitting estimation in additive models Using the notation of Section 1.3.5, an ad-
ditive model is defined by

(Y, Z,W) ∈ R × Rp × Rq, Y = ϕ(Z) + ψ(W) + U,

(7.27)E(U | Z,W) = 0.

It follows from (1.23) that the function ϕ0 is solution of the equation

ϕ − E
[
E(ϕ(Z) | W) | Z] = E(Y | Z) − E

[
E(Y | W) | Z]

and ψ is the solution of an equation of the same nature obtained by a permutation
of W and Z. The backfitting algorithm of Breiman and Friedman (1985), and Hastie
and Tibshirani (1990) is widely used to estimate ϕ and ψ in Equation (7.27). Mammen,
Linton and Nielsen (1999) derive the asymptotic distribution of the backfitting pro-
cedure. Alternatively, Newey (1994), Tjøstheim and Auestad (1994), and Linton and
Nielsen (1995) propose to estimate ϕ (respectively ψ) by integrating an estimator
of E[Y | Z = z,W = w] with respect to w (respectively z).

We focus our presentation on the estimation of ϕ. It appears as the result of a linear
equation of the second kind. More precisely, we have in that case:

• H is the space of the square integrable functions of Z with respect to the true data
generating process. This definition simplifies our presentation but an extension to
different spaces is possible.

• The unknown function ϕ is an element of H. Actually, asymptotic considerations
will restrict the class of functions ϕ by smoothness restrictions.

• The operator K is defined by Kϕ = E[E(ϕ(Z) | W) | Z]. This operator is
self adjoint and we assume its compactness. This compactness may be obtained
through the Hilbert–Schmidt Assumption A.1 of Section 5.5.

• The function r is equal to E(Y | Z) − E[E(Y | W) | Z].
The operator I−K is not one-to-one because the constant functions belong to the null

space of this operator. Indeed, the additive model (7.27) does not identify ϕ and ψ . We
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introduce the following assumption [see Florens, Mouchart and Rolin (1990)], which
warrants that ϕ and ψ are exactly identified up to an additive constant, or equivalently
that the null space of I − K only contains the constants (meaning 1 is an eigenvalue
of K of order 1).

Identification assumption Z and W are measurably separated w.r.t. the distribution F ,
i.e. a function of Z almost surely equal to a function of W is almost surely constant.

This assumption implies that if ϕ1, ϕ2, ψ1, ψ2 are such that E(Y | Z,W) = ϕ1(Z)+
ψ1(W) = ϕ2(Z)+ψ2(W) then ϕ1(Z)− ϕ2(Z) = ψ2(W)−ψ1(W) which implies that
ϕ1 − ϕ2 and ψ2 − ψ1 are a.s. constant. In terms of the null set of I −K , we have

Kϕ = ϕ

⇐⇒ E
[
E
(
ϕ(Z) | W ) | Z] = ϕ(Z)

�⇒ E
[(
E
[
ϕ(Z) | W ])2] = E

[
ϕ(Z)E

(
ϕ(Z) | W )] = E

(
ϕ2(Z)

)
.

But, by Pythagore theorem

ϕ(Z) = E
(
ϕ(Z) | W )+ υ,

E
(
ϕ2(Z)

) = E
((
E
(
ϕ(Z) | W ))2)+ Eυ2.

Then:

Kϕ = ϕ �⇒ υ = 0,

⇔ ϕ(Z) = E
[
ϕ(Z) | W ].

Then, if ϕ is an element of the null set of I − K , ϕ is almost surely equal to a function
of W and is therefore constant.

The eigenvalues of K are real, positive and smaller than 1 except for the first one, that
is 1 = λ1 > λ2 > λ3 > · · · .1 The eigenfunctions are such that φ1 = 1 and the condition
〈ϕ, φ1〉 = 0 means that ϕ has an expectation equal to zero. The range of I − K is the
set of functions with mean equal to 0 and the projection of u, PRu, equals u − E(u).

It should be noticed that under the hypotheses of the additive model, r has zero mean
and is then an element of R(I −K). Then, a unique (up to the normalization condition)
solution of the structural equation (I − K)ϕ = r exists.

The estimation may be done by kernel smoothing. The joint density is estimated2 by

(7.28)f̂n(y, z,w) = 1

nc
1+p+q
n

n∑
i=1

ω

(
y − yi

cn

)
ω

(
z − zi

cn

)
ω

(
w − wi

cn

)

1 Actually K = T ∗T where T ϕ = E(ϕ | W) and T ∗ψ = E(ψ | Z) when ψ is a function of W . The
eigenvalues of K correspond to the squared singular values of T and T ∗.
2 By abuse of notations, we denote the kernels associated with y, z, w by the same notation ω although they

have different dimensions. Similarly, we denote all the bandwidths by cn although they are equivalent up to a
multiplicative constant.
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and Fn is the c.d.f. associated with fn. The estimated K̂n operator satisfies

(7.29)(K̂nϕ)(z) =
∫

ϕ(u)ân(u, z) du

where

ân(u, z) =
∫

f̂n(·, u,w)f̂n(·, z, w)
f̂n(·,·, w)f̂n(·, z, ·)

dw.

The operator K̂n must be an operator from H to H (it is by construction an operator

from L2
Z(Fn) into L2

Z(Fn)). Therefore,
ω(

z−z�
cn

)∑
� ω(

z−z�
cn

)
must be square integrable w.r.t. F .

The estimation of r by r̂n verifies

r̂n(z) = 1∑n
�=1 ω

(
z−z�
cn

) n∑
�=1

(
y� −

n∑
i=1

yiω�i

)
ω

(
z − z�

cn

)

where ω�i = ω(
w�−wi
cn

)∑n
j=1 ω(

w�−wj
cn

)
.

The operator K̂n also has 1 as the greatest eigenvalue corresponding to an eigen-
function equal to 1. Since Fn is a mixture of probabilities for which Z and W are
independent, the measurable separability between Z and W is fulfilled. Then, the null
set of I − K̂n reduces a.s. (w.r.t. Fn) to constant functions. The generalized inverse of
an operator depends on the inner product of the Hilbert space because it is defined as
the function ϕ of minimal norm which minimizes the norm of K̂nϕ − r̂n. The general-
ized inverse in the space L2

Z(F ) cannot be used for the estimation because it depends
on the actual unknown F . Then we construct L̂n as the generalized inverse in L2

Z(Fn)

of I−K̂n. The practical computation of L̂n can be done by computing the n eigenvalues
λ̂1 = 1, . . . , λ̂n and the n eigenfunctions φ̂1 = 1, φ̂2, . . . , φ̂n of K̂n. Then

L̂nu =
n∑

j=2

1

1 − λ̂j

{∫
u(z)φ̂j (z)f̂n(z) dz

}
φ̂j .

It can be easily checked that property (7.20) is verified where PRn
is the projection

(w.r.t. Fn) on the orthogonal of the constant function. This operator subtracts from any
function its empirical mean, which is computed through the smoothed density:

PRn
u = u − 1

nc
p
n

∑
i

∫
u(z)ω

(
z − zi

cn

)
dz.

The right-hand side of the equation (I − K̂n)ϕ = r̂n has a mean equal to 0 (w.r.t. Fn).
Hence, this equation has a unique solution ϕ̂n = L̂nϕ0 which satisfies the normalization
condition 1

nc
p
n

∑
i

∫
ϕ̂n(z)ω

(
z−zi
cn

)
dz = 0.

The general results of Section 7.4 apply. First, we check that the conditions (i) to (iii)
of Theorem 7.5 are fulfilled.
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(i) Under very general assumptions, ‖K̂n − K‖ → 0 in probability.
(ii) We have to check the properties of PRn

− PR

(PRn
− PR)ϕ = 1

nc
p
n

∑
i

∫
ϕ(z)ω

(
z − zi

cn

)
dz −

∫
ϕ(z)f (z) dz.

The asymptotic behavior of the positive random variable, ‖(PRn
− PR)ϕ‖2 =

| 1
nc

p
n

∑n
i=1

∫
ϕ(z)ω(

z−zi
cn

) dz − E(ϕ)|2, is the same as the asymptotic behavior

of its expectation:

E

(
1

nc
p
n

n∑
i=1

∫
ϕ(z)ω

(
z − zi

cn

)
dz − E(ϕ)

)2

.

Standard computation on this expression shows that this mean square error is

O( 1
n

+ c
2 min(d,d ′)
n )‖ϕ‖2, where d is the smoothness degree of ϕ and d ′ the order

of the kernel.
(iii) The last term we have to consider is actually not computable but its asymptotic

behavior is easily characterized. We simplify the notation by denoting EFn(· | ·)
the estimation of a conditional expectation. The term we have to consider is

(r̂n + K̂nϕ0)− (r + Kϕ0)

= EFn(Y | Z) − EFn
(
EFn(Y | W) | Z)+ EFn

(
EFn

(
ϕ0(Z) | W ) | Z)

− EF (Y | Z) + EF
(
EF (Y | W) | Z)− EF

(
EF
(
ϕ0(Z) | W ) | Z)

= EFn
(
Y − EF (Y | W)+ EF

(
ϕ0(Z) | W ) | Z)

− EF
(
Y − EF (Y | W) + EF

(
ϕ0(Z) | W ) | Z)− R

where R = EF {EFn(Y − ϕ0(Z) | W)−EF (Y − ϕ0(Z) | W)}. Moreover, from
(7.27):

EF (Y | W) = EF
(
ϕ0(Z) | W )+ ψ0(W).

Then

(r̂n + K̂nϕ0)− (r + Kϕ0) = EFn
(
Y − ψ0(W) | Z)

− EF
(
Y − ψ0(W) | Z)− R.

The term R converges to zero at a faster rate than the first part of the r.h.s. of this
equation and can be neglected. We have seen in the other parts of this chapter
that ∥∥EFn

(
Y − ψ0(W) | Z)− EF

(
Y − ψ0(W) | Z)∥∥2 = O

(
1

nc
p
n

+ c2ρ
n

)
where ρ depends on the regularity assumptions. Therefore, condition (iii) of
Theorem 7.5 is fulfilled.
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From Theorem 7.5 and ncp+2 min(d,d ′)
n → 0, it follows that ‖ϕ̂n − ϕ0‖ → 0 in proba-

bility and that ‖ϕ̂n − ϕ0‖ = O
( 1√

nc
p
n

+ c
ρ
n

)
.

The pointwise asymptotic normality of
√
nc

p
n (ϕ̂n(z)−ϕ0(z)) can now be established.

We apply the formulas (7.24) to (7.26) and Theorem 7.4.

(1) First, consider (7.26). Under a suitable condition on cn (typically ncp+2 min(d,d ′)
n →

0), we have:√
nc

p
n

{
L̂n(PRn

− PR)r + (PRn
− PR)ϕ0

} → 0

in probability.
(2) Second, consider (7.25). Using the same argument as in Theorem 7.4, a suitable

choice of cn implies that

(7.30)
√
nc

p
n L̂nK̂n

[
(r̂n + K̂nϕ0)− (r + Kϕ0)

] → 0.

Actually, while EFn(Y − ψ0(W) | Z) − EF (Y − ψ0(W) | Z) only converges
pointwise at a nonparametric speed, the transformation by the operator K̂n con-
verts this convergence into a functional convergence at a parametric speed. Then√

nc
p
n

∥∥K̂n

[
EFn

(
Y − ψ0(W) | Z)− EF

(
Y − ψ0(W) | Z)]∥∥ → 0.

Moreover, L̂n converges in norm to L, which is a bounded operator. Hence, the
result of (7.30) follows.

(3) The term (7.24) remains. The convergence of
√
nc

p
n (ϕ̂n(z)− ϕ0(z)) is then iden-

tical to the convergence of√
nc

p
nPRn

[
EFn

(
Y − ψ0(W) | Z = z

)− EF
(
Y − ψ0(W) | Z = z

)]
=
√
nc

p
n

[
EFn

(
Y − ψ0(W) | Z = z

)− EF
(
Y − ψ0(W) | Z = z

)
− 1

n

∑
i

(
yi − ψ0(wi)

)

− 1

nc
p
n

∑
i

∫ ∫ (
y − ψ0(w)

)
f (y,w | Z = z)ω

(
z − zi

cn

)
dz dw

]
.

It can easily be checked that the difference between the two sample means con-
verge to zero at a higher speed than

√
nc

p
n and these two last terms can be

neglected. Then using standard results on nonparametric estimation, we obtain:√
nc

p
n

(
ϕ̂n(z) − ϕ0(z)

) d→ N
(

0,Var
(
Y − ψ0(W) | Z = z

)∫ ω(u)2 du

fZ(z)

)
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where the 0 mean of the asymptotic distribution is obtained thanks to a suitable
choice of the bandwidth, which needs to converge to 0 faster than the optimal
speed.

Note that the estimator of ϕ has the same properties as the oracle estimator based
on the knowledge of ψ . This attractive feature was proved by Mammen, Linton and
Nielsen (1999) using different tools.

Estimation of the bias function in a measurement error equation We have introduced
in Section 1.3.6, the measurement error model:{

Y1 = η + ϕ(Z1) + U1, Y1, Y2 ∈ R,

Y2 = η + ϕ(Z2) + U2, Z1, Z2 ∈ Rp,

where η, Ui are random unknown elements and Y1 and Y2 are two measurements of η
contaminated by a bias term depending on observable elements Z1 and Z2. The unob-
servable component η is eliminated by differentiation to obtain:

(7.31)Y = ϕ(Z2)− ϕ(Z1) + U

where Y = Y2 − Y1 and E(Y | Z1, Z2) = ϕ(Z2) − ϕ(Z1). We assume that i.i.d.
observations of (Y, Z1, Z2) are available. Moreover, the order of measurements is arbi-
trary or equivalently (Y1, Y2, Z1, Z2) is distributed identically to (Y2, Y1, Z2, Z1). This
exchangeability property implies that (Y, Z1, Z2) and (−Y,Z2, Z1) have the same dis-
tribution. In particular, Z1 and Z2 are identically distributed.

• The reference space H is the space of random variables defined on Rp that are
square integrable with respect to the true marginal distribution of Z1 (or Z2). We
are in a case where the Hilbert space structure depends on the unknown distribu-
tion.

• The function ϕ is an element of H but this set has to be reduced by a smoothness
condition in order to obtain the asymptotic properties of the estimation procedure.

• The operator K is the conditional expectation operator

(Kϕ)(z) = EF
(
ϕ(Z2) | Z1 = z

) = EF
(
ϕ(Z1) | Z2 = z

)
from H to H. The two conditional expectations are equal because (Z1, Z2) and
(Z2, Z1) are identically distributed (by the exchangeability property). The operator
K is self-adjoint and is assumed to be compact. This property may be deduced as
in previous cases from a Hilbert–Schmidt argument.

Equation (7.31) introduces an overidentification property because it constrains the
conditional expectation of Y given Z1 and Z2. In order to define ϕ for any F (and in
particular for the estimated one), the parameter ϕ is now defined as the solution of the
minimization problem:

ϕ = arg min
ϕ

E
(
Y − ϕ(Z2)+ ϕ(Z1)

)2
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or, equivalently as the solution of the first-order conditions:

EF
[
ϕ(Z2) | Z1 = z

]− ϕ(z) = E(Y | Z1 = z)

because (Y, Z1, Z2) and (−Y,Z2, Z1) are identically distributed.
The integral equation which defines the function of interest, ϕ, may be denoted by

(I − K)ϕ = r

where r = E(Y | Z2 = z) = −E(Y | Z1 = z). As in the additive model, this inverse
problem is ill-posed because I−K is not one-to-one. Indeed, 1 is the greatest eigenvalue
of K and the eigenfunctions associated with 1 are the constant functions. We need an
extra assumption to warrant that the order of multiplicity is one, or in more statistical
terms, that ϕ is identified up to a constant. This property is obtained if Z1 and Z2 are
measurably separated, i.e. if the functions of Z1 almost surely equal to some functions
of Z2, are almost surely constant.

Then, the normalization rule is

〈ϕ, φ1〉 = 0

where φ1 is constant. This normalization is equivalent to

EF (ϕ) = 0.

If F is estimated using a standard kernel procedure, the estimated Fn does not in
general, satisfy the exchangeability assumption ((Y, Z1, Z2) and (−Y,Z2, Z1) are iden-
tically distributed). A simple way to incorporate this constraint is to estimate F using
a sample of size 2n by adding to the original sample (yi, z1i , z2i )i=1,...,n a new sample
(−yi, z2i , z1i )i=1,...,n. For simplicity, we do not follow this method here and consider
an estimation of F , which does not verify the exchangeability. In that case, r̂n is not in
general an element of R(I − K̂n), and the estimator ϕ̂n is defined as the unique solution
of

(I − K̂n)ϕ = PRn
r̂n,

which satisfies the normalization rule

EFn(ϕ) = 0.

Equivalently, we have seen that the functional equation (I − K̂n)ϕ = r̂n reduces to a n
dimensional linear system, which is solved by a generalized inversion. The asymptotic
properties of this procedure follow immediately from the theorems of Section 7.4 and
are obtained identically to the case of additive models.
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4796, 4799, 4801, 4812, 4815, 4825,
4826, 4829, 4837, 4849–4851

equilibrium 4174
– search models 5282
error correction model 4444, 4445, 4470, 4474
error structure 4070–4072, 4080, 4082, 4091,

4093, 4100, 4129, 4144, 4152
essential heterogeneity 4894, 4908–4912,

4914, 4928, 4940, 4943, 4949, 4950,
4983, 4984, 5039, 5059, 5063, 5066,
5067, 5076, 5130

estimate 5567
estimating conditional mean functions 5402
estimation of an operator 5664
estimators 4879, 4880, 4883, 4885, 4887,

4896, 4900, 4906, 4908, 4911, 4914,
4915, 4939, 4963, 4964, 4984, 4998,
5027, 5028, 5035, 5052, 5097, 5106

Euler equation 4417, 4423, 4431, 4435–4438,
4447–4450, 4458, 4460, 4464, 4471,
4477, 4478, 4481, 4482, 4488, 4737,
4746–4753, 4759

evaluation
– bias 4881
– estimator 4824, 4830, 4851
– problem 4787, 4789, 4790, 4799, 4800,

4814, 4835, 4857, 4858, 4880, 4881,
4886, 4890, 5027, 5059, 5081, 5094,
5175, 5182, 5183, 5189, 5210, 5213–5215

event-history
– analysis 5230, 5237–5239, 5241, 5242
– approach 5210, 5230, 5231, 5272–5274
– model 5231, 5236, 5237, 5239, 5249
evidence on performance of alternative

bandwidth selectors for density estimation
5433

ex ante
– evaluations 4791, 4808
– outcomes 5259
– returns 5181
ex post
– evaluations 4791, 4809, 4810, 4825
– outcomes 4827, 4830, 4834, 4838, 4846,

5153, 5172, 5182, 5209, 5252, 5259
– returns 5170, 5172, 5181, 5182
exact aggregation 4617
– and distributional restrictions 4617
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exact approach 4525
exact index number approach 4507
exact matching 5474
excess sensitivity 4641, 4642
exchangeability 3888, 5350
exclusion restrictions 4026, 4296, 4689, 4703,

4745, 4748, 5164, 5230, 5235, 5236,
5242, 5244, 5249, 5254, 5263, 5268,
5271, 5273, 5473, 5494, 5495, 5501, 5515

exit 4206, 4217, 4218, 4233, 4234
exogeneity 4783, 4820, 4849, 4858, 4859
expansion 3989
expected lifetime utility 4738
expected utility 3972
experience 4754, 4756, 4758
– goods 4200
extended Roy model 4816, 4821, 4823, 4856,

4858, 4892, 4900, 4913, 4931, 4934,
4939, 4971, 5042, 5164

extensive margin 4678, 4752
external validity 4791

F
factor 5693, 5694
– analysis 5173, 5179, 5180, 5263
– demand 4417, 4420, 4421, 4423, 4424,

4426–4431, 4443–4445, 4449, 4450,
4453–4456, 4476, 4484

– loading 5170, 5172, 5173, 5179, 5184, 5188,
5189, 5194, 5257, 5259, 5263

– model 5166, 5167, 5179, 5198, 5200,
5256–5258

– price equalization 4593
family labor supply 4672, 4730, 4731
fast Fourier transform 5452
– binning for density estimation 5452
Feller square root process 4007
file matching 5491
financial wealth 4001
financing constraints 4417, 4418, 4421, 4423,

4434, 4446, 4453, 4456, 4458, 4459,
4463–4466, 4468–4472, 4476, 4488

finite-dimensional linear sieve spaces 5563
finite-dimensional operator 5653
first differencing 4070, 4071, 4209
first-order
– asymptotics
– – performance of 5445
– autoregression 5516
– Markov process 4212, 4215, 4217, 4229,

4230

– risk aversion 3974
first-price auctions 3862
Fisher indexes 4518
Fisher TFPG index 4539
fixed cost 4678, 4679, 4682, 4690, 4702, 4718,

4721, 4723, 4728, 4733, 4738, 4748,
4749, 4751, 4752, 4754, 4758

fixed effect 4209, 4210, 4219, 4686,
4741–4745, 4751, 4758–4760, 5361, 5520

fixed point 4177
fixed-point algorithm 4359
fixing 4831, 4832, 4840, 4850
forecast 4782, 4783, 4787, 4788, 4792, 4808,

4820, 4846–4849, 4858, 4860–4863
forecasting 4782, 4789, 4791, 4799, 4801,

4812, 4826, 4828, 4838, 4849–4852,
4856, 4858, 4862

Fourier series 5394
Fréchet bounds 5484
Fréchet differentiability 5445
Fréchet–Hoeffding bounds 5154, 5156, 5157
Fredholm alternative 5728
Frisch labor supply equation 4741
full identification 4888
full insurance 4639
fully identified 5043
functional form assumptions 4884, 4951,

4952, 5035, 5039, 5041, 5059, 5097
functional relationship 4827, 4846
fundamental problem of causal inference 5253

G
g-computation formula 5222–5224, 5227,

5252
game-theoretic 4361
– model 4281, 5645
gamma 4012
GDP per capita 4512
general equilibrium 4630, 4879, 4887, 4897,

4978, 5060, 5070
– effect 4796, 4797, 4802, 4805, 4834, 5274,

5276–5278, 5281, 5282, 5285
generalized
– accelerated failure time model 5250
– additive models (GAMs) 5416
– empirical likelihood 5622
– inverse 5672, 5713, 5738
– least squares 4076, 4090, 4101, 4104, 4105
– Leontief model 4676
– method of moments (GMM) 3971, 4451,

4747, 4750, 5483, 5498, 5640, 5716
– – GMM estimator 5516
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– – GMM-IV 5523
– Roy model 4811, 4813, 4816, 4825, 4826,

4856, 4858, 4860, 4879, 4888, 4890,
4892, 4894, 4895, 4899, 4900, 4912,
4913, 4919, 4922, 4931, 4934, 4941,
4950, 4967–4969, 4971, 5023,
5028–5031, 5043, 5047, 5058,
5060–5062, 5133, 5153, 5164, 5173, 5181

generated regressor 5507
global series estimation 5439
Gorman polar form 4180, 4673, 4675
gross national product 4552
gross output 4550
growth accounting 4546–4548
– framework 4551

H
habit persistence 3976
habits 4673, 4737
Hannan–Quinn 5440
Hannan–Quinn Criterion 5436
hazard rate 5232, 5233, 5235, 5236
hazard regression 5234
Heckscher–Ohlin 4592, 4595
Heckscher–Ohlin model 4591
Heckscher–Ohlin–Vanek 4595
Hermite polynomials 5574
heterogeneity 4046, 4356, 4357, 4372, 4612,

4751, 4879, 4890, 4900, 4902, 4912,
4916, 4919, 4928, 4964, 5000, 5009,
5010, 5023, 5024, 5038, 5059, 5063,
5067, 5185, 5211–5213, 5229–5232,
5237, 5238, 5245, 5250, 5263, 5272, 5274

– in attributes 4622
– in income 4612
– in individual tastes 4612
– in market participation 4612
– in preferences 4678, 4682, 4733, 4736,

4751, 4758, 4759
– in wealth and income risks 4612
heterogeneous agents 4178
heterogenous treatment effect case 4893
heteroscedastic 4071, 4110, 4145, 4148
heteroscedasticity 4101, 4111, 4118, 4127,

4129, 4139, 4148, 4589
Hilbert space 5648
– isomorphism 5654
Hilbert–Schmidt 5736, 5745
– operator 5658, 5706
histogram 5396
Hölder ball 5570

Hölder class 5570
home bias 4598
homogeneity restrictions 5352
homogeneous treatment effects 4892
homogenization 3891
homoscedastic 4065, 4078, 4082, 4087, 4089,

4118, 4146
homoscedasticity 4081, 4118, 4145
horizontal product differentiation 4356
Hotz and Miller 4246
hour labor productivity (HLP) 4504, 4513,

4514
hours of work 4672–4676, 4678–4680, 4683,

4684, 4686, 4690, 4694, 4695,
4697–4701, 4703–4705, 4707, 4710,
4711, 4713–4723, 4725–4727, 4729,
4730, 4732, 4733, 4740, 4741, 4745,
4748, 4751–4753, 4758

hours-weighting 4649
household production 4735–4737
household spending 4611
housing 4046
human capital 4004, 4646, 4746, 4755, 4756,

4758, 4759, 4761, 5276, 5277
hypothesis testing 4592
hypothetical volume aggregates 4516
hypothetical volumes 4531

I
identifiability 5164, 5178, 5179, 5191, 5231,

5235, 5243, 5244, 5257, 5258, 5268
identification 3852, 4234, 4269, 4298, 4321,

4322, 4332, 4368, 4372, 4374, 4387,
4407, 4879, 4880, 4884, 4887, 4888,
4897, 4898, 4903, 4910, 4914, 4915,
4917, 4951, 4952, 4959, 4972, 4981,
4983, 4999–5001, 5005, 5010–5012,
5014–5018, 5020, 5021, 5023, 5024,
5026, 5027, 5038, 5058, 5072, 5078,
5081, 5082, 5092, 5094–5096, 5123,
5130, 5131, 5149, 5150, 5165, 5166,
5170, 5175, 5180, 5181, 5184, 5190,
5230, 5235, 5236, 5238, 5242–5244,
5247, 5250, 5253, 5263, 5265, 5271,
5273, 5294, 5323, 5514, 5522

– at infinity 5265
– in additive models 5324
– in discrete choice models 5338
– in nonadditive index models 5331
– in nonadditive models 5326
– in simultaneous equations models 5333
– in triangular systems 5329
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– of a utility function 5338
– of average derivatives 5344
– of derivatives 5328
– of finite changes 5329
– problem 4325
identifier 5472, 5478
identifying assumption 4193
identifying restrictions 4196
ill-posed 5560
– equations of the second kind 5737
– problem 5670
impulse response 3987
imputation 5493
– estimator 5500
incentive compatibility 4385, 4392
inclusion and exclusion restrictions 4300
income 4179
– aggregate permanent shocks 4630
– aggregate transitory shocks 4630
– individual permanent shocks 4630
– individual transitory shocks 4630
– shocks 4613
income effect 4688, 4692, 4708, 4719, 4720
income maintenance programs 4731
income pooling hypothesis 4732
incomplete model 3876, 3877
increasing spread 4629
independence 3888
– of irrelevant alternatives (IIA) 4183–4185,

4187, 4345
independent 4880, 4882, 4889, 4890, 4895,

4900, 4902, 4905, 4908–4911, 4913,
4914, 4916, 4926, 4929, 4960, 4962,
4964, 4965, 4968, 4978, 4987, 4988,
5005, 5009, 5010, 5025, 5031, 5033,
5038, 5045, 5048, 5058, 5062, 5063,
5065, 5067, 5088, 5095, 5096, 5102,
5106, 5109, 5127, 5129–5133

– private values 4367
– random samples 5484
index models (single and multiple) 5413
index number methods 4505
index number theory 4506
index sufficiency 4950, 4961, 4963, 4983,

5116
– restriction 4896, 4982, 5123
indicator function 4888, 4961, 4978, 5111
indirect utility 4672, 4674, 4675, 4682, 4683,

4724, 4726
– function 4673–4675, 4683, 4705, 4722,

4746, 4747, 4749, 4752

individual
– effect 4688, 4741, 5517
– heterogeneity 4611
– level 4611
– – causal effect 4788, 4793, 4800, 4826
– rationality 4386
– specific coefficients 4185
– treatment effect 4793, 4802
individual-specific 4184
infinite-dimensional sieve space 5577
infinite-order distributed lag 4069
information set 4631, 4885–4887, 5018, 5045,

5069, 5153, 5182–5184, 5186–5188,
5194, 5213, 5216, 5218, 5219, 5244,
5262–5264, 5266, 5267

information structure 5227, 5229
information updating 5210, 5219, 5262, 5271,

5272, 5286
initial conditions 4091, 4094, 4095, 4098,

4099, 4270, 4271, 5239–5242, 5246
– problem 5240, 5241
input volume indexes 4542
inputs 4205
instrument 4226
instrumental variables (IV) 4207, 4297, 4299,

4641, 4879, 4887, 4889, 4890,
4894–4897, 4902, 4903, 4905–4909,
4912, 4914–4916, 4918–4920, 4928,
4934, 4959, 4960, 4962, 4964, 4984,
4999, 5001, 5005, 5010–5012, 5015,
5030, 5033, 5042, 5060, 5071, 5083,
5086, 5088, 5089, 5091, 5112, 5133,
5230, 5236, 5237, 5346, 5641, 5702

– estimators 4887, 4917, 4959
– procedure 4118
– Wald estimator 4918
– weights 4924, 4931, 4943, 4953, 4954, 4958,

4988, 4996, 4997, 5112, 5114, 5118
instruments 4105, 4188, 4196, 4226, 4298,

4339, 4359
insurance 4630
intangible capital 4567
integrability restrictions 4620
integral equations
– of the first kind 5669
– of the second kind 5670, 5727
integral operator 5655
integrated hazard rate 5232
integrated squared error (ISE) 5431
– criterion 5438
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integration estimator for the additively separable
models 5414

intensive margin 4678, 4752
intention to treat 5236, 5237
interdependent values 3856
interest rate 5697
intermediate inputs 4221, 4550
intermediate products 4566
internal validity 4791, 4815, 4879, 4967, 4976,

4978, 5059
Internet auctions 3915
interpretable parameters 4889, 4915, 4964,

4979
intertemporal
– budget constraint 4738, 4739, 4754
– complementarity 3976
– elasticity of substitution 4634, 4635
– labor supply 4737, 4738, 4753
– marginal rate of substitution 3977
– models of labor supply 4737
– nonseparability 4737, 4738, 4753, 4754
– substitution 3970, 4737, 4746, 4752
intervention 4590, 4786–4789, 4791, 4844,

4846, 4850, 4851
intra firm transactions 4566
intra-industry trade 4599
intrinsic uncertainty 5158, 5185, 5194
invariance conditions 4796, 4834, 4835, 4842,

5220
inverse 4214
– problems 5633
inversion 4224–4227, 4229, 4232
inverted 4214, 4221
investment function 4260
investments 4235

J
Jacobian 4708, 4709, 4711, 4713–4715, 4720
joint characteristic function 5725
joint generalized least squares 4092
JTPA 5155, 5157, 5160, 5162

K
Kendall’s τ 5154
Kendall’s rank 5161
kernel 3865, 3867, 4028
– estimation 5741
– estimator
– – of the density 5690
– function 5395
– – choice of 5400

– – efficiency of 5396
kink point 4695–4697, 4699, 4703, 4705,

4707, 4708, 4710, 4712, 4715–4718,
4720, 4722, 4724, 4726, 4728, 4729

KLEMS 4508, 4550, 4566
Kotlarski’s Theorem 5173, 5174
Kullback–Leibler information criterion 5431

L
Lr(Po)-covering numbers
– with bracketing 5594
– without bracketing 5591
Lr(Po)-metric entropy
– with bracketing 5594
– without bracketing 5592
labor 4206
– input 4568
– participation 4613
– productivity (LP) 4221, 4513
– services 4567
– supply function, 4667, 4672
– – function 4676, 4677, 4700, 4702, 4705,

4706, 4708, 4710, 4714, 4717,
4720–4722, 4725, 4747, 4752

labor-market history 5240, 5241
labor-market transition 5230, 5236, 5237,

5240
lag operator 3982
lagged dependent variable 5517
lagged duration dependence 5241
Laguerre polynomials 5574
Lancaster 4182
Landweber–Fridman 5678, 5679, 5682, 5684,

5687, 5708
Laspeyres price index 4518
Laspeyres volume index 4518
latent duration 5238
latent variable model 4894, 4896, 5018
Law of Demand 4628
learning 5262, 5263, 5271–5273, 5276, 5278
least absolute deviation (LAD) 4744
– procedures 4073, 4107
least squares 4839–4844, 4850
– cross-validation for selecting bandwidths in

regression estimation 5434
least-squares
– cross-validation bandwidth selector for density

estimation 5436
leave-one-out estimator 5438
leisure 4046
length-biased sample 5526
Leontief paradox 4597
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Lerner index 4326
LES preferences 4675
life-cycle 4673–4675, 4685, 4737–4739, 4741,

4742, 4746, 4750, 4752–4754
likelihood approaches to density estimation

5402
likelihood function 4322, 4393, 4395, 4396,

4672, 4679–4681, 4683, 4684, 4704,
4710, 4712–4715, 4717–4721, 4723,
4724, 4726–4730, 4732–4734, 4745,
4756, 4757, 4760, 4761

likelihood-ratio 4079
limit distributions 4202
limitations of kernel regression estimator 5446
limited dependent variable models 5373, 5521
linear
– binning 5449
– equations model 4882
– factor models 5358
– imputation estimator 5502
– labor supply 4674
– operator 5653
– programming 4593
linearity 4820, 4858, 4859, 4863
– restrictions 4617
linearly homogeneous 4561
Linton’s plug-in estimator for partially linear

model 5442
liquidity constraints 4613, 4672, 4750
local
– average treatment effect (LATE) 4817–4819,

4836, 5279–5281
– average treatment effect reversed (LATER)

5280, 5281
– constant estimator 5446
– identification 4030, 5347
– independence 5351
– instrument 5703
– instrumental variable (LIV) 4914, 4915,

4917–4919, 4928, 4930, 4950–4952,
4960, 4965, 4969, 4971, 4986, 4999,
5000, 5011–5016, 5020, 5021, 5025,
5037, 5105, 5106, 5109, 5120

– likelihood density estimation 5436
– likelihood estimation 5401
– returns to scale measure 4558
local linear 3933
– estimator 5446
– regression estimator
– – properties of 5446

locally asymptotically normal 5618
log-density estimation 5565
log-linear 4634
– approximation 3980
– dynamics 3993
logit 4353, 4355
lognormal distribution 4636
long-run return 4017
long-run risk 3984
longitudinal analyses 4120

M
macro level 4612
macro shocks 4688, 4761
macroeconomic policy 4646
maintenance of physical capital approach 4554
Malmquist
– indexes 4534, 4542
– input index 4536
– output volume 4535
– TFPG index 4537
margin 4510
margin of indifference 4818
marginal
– distribution 4882, 4906, 5037, 5059, 5063
– independence 5346
– information 5537
– investor 4046
– posterior 4050
– rate of substitution functions 4753
– returns 4912, 4928, 4996, 5029, 5032, 5036,

5042
– treatment effect (MTE) 4804, 4817–4819,

4865, 4879, 4881, 4882, 4895, 4897,
4899, 4900, 4911, 4915, 4917, 4926,
4927, 4942, 4943, 4951, 4953, 4955,
4968, 4999, 5008, 5011, 5012, 5014,
5017, 5021, 5022, 5024, 5025, 5039,
5042, 5098, 5101, 5102, 5127, 5149,
5258, 5264, 5279–5281, 5299

– utility 4673, 4740, 4741, 4747, 4748, 4750,
4760

– wage 4686, 4694, 4700–4703, 4705, 4715,
4716, 4721, 4724

market
– excess demand 4614
– power 4281, 4315, 4317, 4326, 4329
– return 4038
Markov
– chain 4051, 4237, 4238
– chain Monte Carlo 4033
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– kernel 5159
– perfect equilibrium 4177, 4237
– representation 3983
– strategy 4237
Markovian decision problem 5227
Marshallian 4793, 4850, 4863
– causal function 4829–4831, 4861
matching 4880, 4882–4885, 4887, 4889, 4890,

4894, 4897, 4898, 4907, 4928, 4942,
4943, 5026–5043, 5046–5049, 5052,
5053, 5056, 5057, 5062, 5094, 5097,
5129–5131, 5133, 5149, 5158, 5163,
5166, 5173, 5198, 5210, 5220, 5223,
5225, 5233, 5245, 5267, 5286, 5472

– error 5480
– estimators 5382
– identification 5130
– probabilities 5482
material 4221
Matzkin class of functions 5178, 5289, 5293
maximum likelihood (ML) 4032, 4313, 5498
– estimation 4677, 4694, 4701, 4703, 4713,

4715, 4719, 4721, 4724, 4745, 4755
mean compensated price effect 4628
mean income effect 4628
mean-integrated squared error (MISE) 5430
measurement equation 5179, 5187, 5189, 5263
measurement error 4287, 4305, 4311, 4312,

4362, 4395, 4676, 4701, 4703, 4711,
4713, 4714, 4716–4721, 4723, 4726,
4730, 4742, 4743, 4748, 4755–4757,
4760, 5349, 5473, 5510, 5644, 5745

– model 5511
medical trial 5181
mergers 4174
method
– of moment estimators 5383
– of moments 4062, 4074, 4111, 4115, 4254,

4262
– of sieves 5552
Metropolis–Hastings 4051
micro data 4192
micro level 4612
MicroBLP 4185, 4194, 4195
microeconometric models 4612
microeconomic data 4658
Mincer model 5378
mineral rights 3856
– model 3930

minimal relevant information set 4885–4887,
5046–5048, 5052, 5056, 5057

minimum distance 4677, 4682, 4745
– estimator 5509
MINPIN estimator 5607
mismeasured variables 5472
Missing At Random (MAR) 5474
missing wages 4678, 4680, 4703, 4721, 4732
misspecification 4222, 4914, 5052
mixed hitting-time model 5243
mixed proportional hazards model 5262, 5501,

5502
mixed semi-Markov model 5231, 5237, 5238,

5241
mixture of normals 5194
model
– misspecification 4033
– selection criteria 5439
– with endogeneity 5559
– with heterogenous responses 4913
moment condition 4359, 5498, 5500, 5515
monotonic 4220
monotonicity 3886, 4211, 4214, 4220, 4221,

4232, 4879, 4880, 4896, 4909–4911,
4922, 4926–4930, 4936, 4938, 4943,
4959, 4960, 4964, 4978, 4981, 5011,
5063, 5065, 5089, 5102–5106, 5112, 5122

Monte Carlo 4359, 4744, 4748
– study of bandwidth selector performance for

partially linear model 5442
moving-average 3982, 4135
– process 4070, 4097, 4102, 4103, 4106, 4129,

4131, 4132, 4135, 4144, 4150, 4151
multi factor productivity 4513, 4514
multi-object auctions 3953–3957
multi-step estimation 4086
multi-step procedures 4086
multi-unit auction 3950, 4382
multifactor productivity (MFP) 4504, 4513
multinomial discrete-choice model 5256
multiple entry locations 4255
multiple equilibria 4234
multiple outcomes 4879, 4880, 4907, 5076
multiple program participation 4694, 4718,

4728
multiple units of demand 4198
multiproduct firms 4191
multivariate
– ARMA model 4091
– LS regression 5564
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– quantile regression 5565
– unobservables 5362

N
Nadaraya–Watson kernel regression estimator

5404
Nash equilibrium 4407
Nash in prices 4191
national productivity 4505
natural experiment 4689, 4692, 5373
negative weights 4899, 4923–4926, 4929,

4934, 4936, 4958, 4960, 4986, 4989,
5063, 5121

nested fixed point 4233, 4242–4244, 4246
nested logit model 4344–4346
net domestic product 4552
net investment 4552
new goods 4180
– problem 4181
new products 4565
Neyman–Rubin model 4789, 4800, 4826,

4833–4835, 4837
NLSY79 5194
no-anticipation condition 5218, 5220, 5221,

5223, 5226, 5227, 5233–5235, 5252, 5260
non-parametric
– identification 5514
– inference 5494
– regression 5500
nonadditive index models 5319
nonadditive models 5317
noncompact operators 5669
nonconstant returns to scale 4558
nonconvex budget constraints 4724
nonconvexity 4683, 4690, 4694, 4697–4699,

4721, 4724, 4733, 4752
nonidentification 5234, 5244, 5268, 5273
nonlabor income 4682, 4683, 4694, 4715,

4719, 4721, 4735, 4736
nonlinear
– 3SLS 4088
– budget constraints 4693, 4719, 4724
– instrumental variable (NIV) 4073, 4074,

4082, 4086, 4087, 4106, 4107, 4109,
4111, 4119, 4126, 4154

– joint generalized least squares 4094
– simultaneous equation 4065, 4077, 4107,

4108, 4110
– solution 4047
– taxes 4676, 4677, 4700, 4702, 4703
– three-stage least squares 4131

nonlinearity 4613
nonmonotonicity 4925, 4936
nonnegative weights 4911, 4923, 4986
nonparametric 3847, 4026, 4283, 4371, 4372,

4375, 4380, 4387, 4400, 4998, 5552
– density 4368
– estimate 4177, 4244, 4245, 4249, 4259, 4262
– function 4362
– identifiability 5257
– identification 3851, 4383, 4385, 4387, 5000,

5039, 5095
– least squares 4880, 4884
– regression 4883, 4942, 4951, 5030
nonparticipation 4674, 4675, 4677, 4678,

4683, 4686, 4694, 4703, 4732, 4738,
4743, 4755, 4756

nonprice attributes 4339, 4346
nonrecursive model 4838, 4843, 4844, 4847
nonseparability 4672, 4737, 4750, 4751
nonseparable model 5646
nonseparable preferences 4758
nonstationarity 4071, 4072, 4098, 4101
normal density 4819
normal Roy selection model 4888
normality 4783, 4810, 4816, 4818, 4820,

4826, 4839, 4858–4860, 4866
normalization 4187, 4301
null space 5653

O
objective outcomes 4880, 5066, 5216, 5245,

5259
observationally equivalent 5324
observed consumer characteristics 4187
obsolescence 4566
occurrence dependence 5241, 5242
oligopoly 4315, 4334, 4362, 4382
omitted variables 4293
on-the-job training 5276
operators 5648
optimal
– behavior 4611
– choice 4078, 4082, 4119
– convergence rate 5385, 5386
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