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These lecture notes provide a nontechnical introduction to the field of nonparametric economet-
rics. The reader is expected to know the basics in probability theory and parametric econometrics,
e.g. the classical linear regression model'. For a more mathematical treatment of the subject, the
reader is referred to Pagan and Ullah (1999), Wand and Jones (1995) and the references therein.

1 Introduction

Let {(Y;,X;),i=1,2,...} be a series of independent random variables. In our context, Y; is the
dependent variable and X; the independent or explanatory variable. In this text we will just treat
the univariate case, meaning that both random variables are unidimensional. Most of the theory
given will also hold under some suitable assumptions in the dependent case, i.e. when (Y}, X;) is

a stationary time series. Some aspects:
e The distribution function (df) of X :

Fx (z)=Pr(X <uz).
e The probability density function (pdf) of X, fx (z), is defined as

Px(o)= [ fx()d:

or equivalently
fx (@) = B (),

where F)((1 ) () denotes the first derivative of the df.

e The joint df of X and Y
Fxy (z,y) =Pr(X <z,Y <y).

e The joint pdf of X and Y, fxy (z,y), is defined as
oy
Fxy (z,y) = / / fxy (z,w) dzdw.

e The marginal pdf of X, fx (x) is defined as

—+00

fx () = fxy (z,y)dy.

—00

LA good and sufficient source for both subjects is Hill, Griffiths and Judge (2001). A more advanced introduction

to mathematical statistics is given in Hogg and Craig (1995) and to econometrics in Johnston and DiNardo (1997).



e The conditional pdf of Y given X, fy|x (v | x), is defined as

fxy (2,y)
frix (| z) =—=—"7—.
xle) == @
e The conditional mean of Y given X is given by

E<Y|X:x>=/ T yfvx | 2)dy = g (z).

—00

Note that g (x) only depends on the z—variable.

Whereas the joint density fxy (x,y) delivers a very general description of the joint occurrence
of two (or more) random variables, the conditional density describes the probability of occurrence
of the dependent variable given that the independent variable takes some specific value x. Re-
gression theory focuses on the first moment of the conditional density, the conditional mean. The

relationship between two random variables, e.g. consumption and income is described as:

y = g@)+e (1)
E(|z) =

We call g (z) the regression function and e the error or disturbance term. Note that the second

line is not an assumption but follows by taking conditional expectations on both sides of EQ(1):

E(ylz) = E(g(x)]z)+E(e]|x)
= g@)+EE]). (2)

This is true because conditioning on x means we know that value, so g (=) is known as well because
the g-function does only depend on x. Therefore, the expectation for the first term can be ignored.
EQ(2) then immediately implies the second line in EQ(1). Intuitively: the only information we can
get out of the known variable x to predict the dependent variable y is contained in the g—function,
the disturbance term is completely uninformative.

So far we just made some statistical description of the relationship of two random variables
which is in general true. But how do we estimate this relationship given a random sample observed
in the real world? In general, the researcher has no idea about the form of g (z). There are basically

two approaches: the parametric and the nonparametric approach.

1.1 The Parametric Approach

The parametric approach assumes that the g—function can be described by a few parameters. The

most prominent model is the linear 2-parameter model:
g(z) =a+ pz.
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Other functional forms are possible like the log-linear or quadratic model:
g(x) = a+pflnz,
g(x) = a+Bx+y2®

where in the last example three parameters are used to describe the functional relationship between
y and x. The linear form can be justified by the fact, that given Y and X are jointly normally
distributed, then the conditonal expectation will take a linear form. Estimation of all these models
is quite easy, the parameters can be determined by running a simple OLS-regression. As is well
known, under the Gauss-Markov assumptions, OLS is the Best Linear Unbiased Estimator or
briefly BLUE. Remember however, that in practice, seldom one of those assumptions will hold.
Especially, it is hard to believe, that the researcher knows the exact functional form of g (z). The
model for g (z) is therefore likely to be misspecified and leads to wrong inference. The best we
can hope is that the functional form assumed in our model is not too far away from the true form,

so that the mistakes we make are quite small.

1.2 The Nonparametric Approach

The nonparametric approach does not assume any functional form for g (z), but rather goes back

to the statistical definition of conditional expectation:

s@ = [ ol ad=—— [ urer @ B

Instead of modelling g directly, we could model the joint density of (X, Y") and the marginal pdf of

X. Choosing a parametric model for these densities would however implicitly imply the choice of
a parametric model for g (e.g. choosing normality implies linearity). If we don’t know the model
for g, why should we know the model for the densities? The only way out of this situation is
therefore not to assume any model for the densities at all and estimate them by some datadriven
nonparametric way. The estimates of the joint and the marginal can then be used to get an
estimate g (x) of the conditional expectation at point z. From EQ(3) :
1 oo
g9(z) == / yixy (z,y)dy.
Fr (@) /oo

These ideas make it obvious, that the estimation of pdfs is a central topic in nonparametric

econometrics. Once a good understanding for density estimation is developed, the estimation of

regression functions is "peanuts".

1.3 Semiparametric estimation

A drawback of nonparametric estimation is that the absence of a structure given by a parametric

form makes estimation less precise. If the assumed parametric model is indeed true, parametric
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estimation is much more precise than a corresponding nonparametric estimator. This is especially
true if the explanatory variable is multivariate. This problem of nonparametric estimation is called
the "curse of dimensionality" and will be explained later in the course. It intuitively means that
estimation gets "exponentially more difficult" as the dimension of the regressors increases.

A way out of this dilemma is semiparametric estimation, which is as the name suggests, a

combination of parametric and nonparametric estimation ideas.

1.4 Structure of these Notes

We will start in the next chapter with probability density function estimation. After briefly
reviewing the main parametric workhorse "Maximum Likelihood" estimation, we will focus on the
most popular nonparametric approach called kernel density estimation. The third section develops
properties of the kernel density estimator whereas the fourth section deals with the choice of the
smoothing parameter. The fifth section deals with bias reduction techniques for the kernel density
estimator. The sixth section then introduces nonparametric regression estimation. In Section 7

we will outline some semiparametric techniques.



2 Probability Density Function Estimation

In this section we consider a univariate series of i.i.d random variables { X;,i = 1,2, ...}. The reader
may think about income data of households in a particular year, losses of an insurance company
from fire insurance contracts or, in a time series context, a series of stock returns. Before turning

to nonparametric techniques, we first repeat the maximum likelihood concept.

2.1 Maximum Likelihood

In this subsection we assume that we know the parametric form of the pdf we want to estimate
and that it can be described by some function f which is characterized by a parameter vector ¢

whose true value is 5. Maximum likelihood is the most efficient method to get an estimate of 6.

2.1.1 Definition of the ML Estimator

The joint pdf of a random sample of size N is given by

le,...,XN (1’1, oy TN 90) .

Since we are in the i.i.d case, this joint density can be factored into the product of its marginals:

N
Pty @1, i 00) = [ | fx, (35 60). (4)
i=1

Note that in EQ(4), the parameter 0 is fixed and characterizes the true pdf of the random sample.
The joint density function allows to evaluate the probability of occurrence of each single vector
x = (21, ...,xx). The likelihood function is something very similar like the joint density function,
but the roles of x and 6, are exchanged. Now the sample x is observed and a fixed point. Instead
we can vary the vector 6 which parametrizes the pdf. Every different parameter value 6 specifies
a different joint density. We want to choose # such that the implied joint density is maximized at
the sample vector =, meaning that it is likely that the given realisation x = (1, ..., xy) is indeed
observed from such a joint density.

The likelihood function is given by

L(0;zy,...,xN) = Hf;g(@,@) (5)

The estimation of € is obvious now: choose this parameter vector to maximize the likelihood

function.



Definition 1 Given an observed (i.i.d) sample = and some parametrized family of probability
density functions fx(z;0), the maximum likelihood estimator 011, is the mazimizer of the likelihood

function:

N
OnL = arg max H fxi (05 ;).

=1

Remark 1 Almost always we consider the log likelihood function which is the logarithm of the

likelihood function and easier to handle:

N
log L (6; x1, ..., xN) :Zlongi(0;$i)‘ (6)
i=1

Since this transformation is monotonic, the maximizers of the likelihood and log likelihood function

are identical.

2.1.2 Properties of ML Estimators

Since this is not a course about ML estimation, we just collect here the most important properties

of the ML estimator:

e Consistency: Ot converges in probability to the true parameter value 6y. This means that

for a very large sample size N, O is very close to 0.

e Asymptotic normality: it can be shown that
VN (8111 = 80) — N (0,1 (80) ")
where T (09)~" is the variance of the maximum likelihood estimator?.

e [t can be shown that any other possible method for the estimation of 6, yields an estimator

0 which has (for large N) a variance at least as large as the ML estimator:

Var (é) > Var <9ML) for large N.

Obviously it is the third point which makes ML estimation very attractive since the first two
are shared by other estimators as well. So in case we indeed know the true parametric density
function, the best thing we can do is ML.

In practice it is however unlikely that we know the true parametric form. Figure 1 shows

two examples what happens, when one misspecifies the parametric density function. Data from

21 (Ao) is also called the Fisher-information matrix.



a lognormal LN(0, 1) and a Weibull(1, 1.5)% were generated and the two pdfs estimated assuming
that both data sets can be described by a gamma density.

Figure 1 approx. here

The figure clearly shows that the fit for the Weibull sample is, although incorrect, not too bad.
The fit for the lognormal sample is however quite bad. The mode of the density is overestimtated,

whereas the tails of the density are underestimated?.

2.2 Example

Before turning to nonparametric techniques, we conclude this subsection with an example for ML

estimation.

Example 1 We have a random sample of size N and assume that a single observation is X; ~
N (p1,0%). We have to compute EQ(6) where

_ 1
log fx,(p, 0% 2:) = log {(27TU2) i exp <—ﬁ [2; — N]Q)}
o

1 1 1
— —§log27r—§log02—§[xi—u]2 (7)

The log likelihood function is then given by :

N
N 2 1 2
logL:—Eloga =552 E [z; — u”.

20%
The two FOC give us the ML estimators
X
po= N Z_Zlmz =z,
N
SR > a5

which are just the sample mean and the sample variance’.

3These and the gamma density are parametric density functions which can be described by two parameters.
4For a real life example: suppose these data are losses from fire insurance contracts. To control their risk,

insurance companies try to estimate the density for their losses. Especially the large losses are important for them.
As the right hand panel in Figure 1 shows, the wrong parametric form can potentially underestimate the risk

contained in the insurance portfolio.
®The first term in EQ(7)is not relevant since it does not contain any of the parameters of interest.
®Note that the estimator for the variance is slightly biased, since an unbiased estimator for o2 has just (N — 1)

in the denominator. The effect is however small even for moderate sample sizes.



2.3 The Histogram

The first and simplest nonparametric description of a density is the standard histogram. To
construct a histogram, one first has to determine the so called origin Dy and the binwidth b (see
Figure 2). The origin determines where one begins to construct the bins, the binwidth determines
the width of a single bin. The histogram is then completely determined by the fact that the

density has to integrate to one. The procedure to calculate the density at a point z is as follows:

e determine in which bin x is located. Call this bin (z).

e count the number of observations in bin () and normalize such that the density integrates

to one. Formally:

N

~ 1 )

f@) =57 > I(X; € bin(x)) (8)
i=1

where [ is the indicator function and equals one if the condition in brackets is true and zero

otherwise.

Why do we have to normalize by Nb? Imagine we just have one large bin which contains all
observations (Figure 3). As can be seen from EQ(8), the density takes inside the bin everywhere
the value 1/b. Since the width of the bin is b, the density integrates to one and we therefore have
chosen the right normalization.

Figure 2-5 approx. here

Some remarks:

Inside a bin, the density estimate is a constant.

The density is not continuous when the bin changes.

Choosing a different origin Dy, the histogram changes its appearance (Figures 2/4).

A large binwidth produces a very smooth density (Figure 3), a small one returns a very

rough and erratic picture (Figure 5).

The first three properties are clearly not a desirable feature of a density estimator. As we
will see later, the last observation will turn out to be one of the most important questions in the

nonparametric literature: the choice of the smoothing parameter.



2.4 The local Histogram or naive Kernel Estimator

We try in a first step to get rid of the choice of the origin. The idea is to center a local bin at each
point = where one wants to estimate the density. Then one just considers points for the density

calculation that are in a neighbourhood +b of the point of interest x. Formally and similarly to

EQ(8)":

fla) = NL(%) T(x—b<X,<a+b)

1=

N
= — Y —J[-1< <
N.bZQI(l_ ; _1) (9)

[y

which can be rewritten as

N
o=k (F5) (10
where

K (u) = (11)

1/2, ful <1
{ 0, |ul>1 .
The estimator in EQ(9) is called the local histogram or more often the naive kernel density
estimator. The K function, called kernel, displayed in Figure 6 is always positive, integrates to
one and is just a uniform probability density function.

Figure 7 considers an example of this estimator, 200 random standard normal values were
drawn and the naive kernel estimator applied. Although we got rid of the choice of the origin
problem, we see that the density is still not continuous®. Figure 8 makes clear why this is the case.
Estimating the density at point z; includes 6 observations in the local bin. Estimating a bit to the
right of x1, the point which were just on the left boundary does no longer get any weight in the
new local bin and only 5 observations remain. There is therefore a discrete jump in the density
as soon as one observation enters or leaves the local bin. The reason for these jumps is that the
weight which is allocated to an observation is not a continuous function of its distance from the

point of interest. This feature is not desirable since we would like to get a continuous density.

2.5 The Kernel Density Estimator

To get a continuous density estimate, we have to replace the uniform kernel by another kernel

function which changes the weight allocated to the observation in a neighbourhood of x in a

"Note that width of the local bin is 2b, this explains the denominator in EQ(9) .
8The figure shows a rough but continuous density, this is because the program (Eviews), which created this

picture, is connecting the points by lines.



continuous way. This kernel function can be any symmetric function which is always positive and

integrates to one. Note that every symmetric pdf satisfies this requirement.

Definition 2 A kernel estimator of f () is defined by

N
p 1 X;—x
= — K v
f@) =55 ; ( ; )
where b is called the bandwidth or smoothing parameter and K is called the kernel and satisfies’

/K(u)du = 1, (12)
K (u)

> 0  everywhere. (13)

We further assume that

b — 0as N — (14)
Nb — o0 as N — o0 (15)

Property (12) makes sure that the estimated density is integrating to one. This follows since

/f(x)dx . /%iK<Xib_x)da}

by a change of variable!”

which equals only one if the used kernel function integrates to one. Property (13) ensures that
f (x) > 0, we will relax this property later. Property (14) means that as our available sample gets
larger, we decrease the bandwidth and just give weight to observations in a shrinking neighbour-
hood around the point x, where we estimate the density. Property (15) means that the smoothing
parameter is not approaching zero as fast as the sample size approaches infinity. Popular kernel

functions which satisfy the above requirements are:

e Triangular kernel: (T—Jul) I (Ju] <1).

9The limits of integration are from now on —oo to 4+o00 unless otherwise stated.

W0Use u = 2= and the fact that K (£2) = K (£524).
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e Epanechnikov kernel: S(1—u?)I(Jul <1).

e Gaussian kernel: (2m) "% exp (—3u?).

Figures 9/10/11 show density estimates using those kernels and the same data as in Figure
7. An optimal bandwidth was chosen, we discuss later how this is done. Note that the rough
feature present in the naive kernel estimator disappeared. We also remark, that independent of

the kernel used, the density estimates look very similar. We will see that f () depends more on

the smoothing parameter b than on K.
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3 Properties of the Kernel Density Estimator

In this section we derive mean square error, bias and variance of the kernel density estimator and

also show that the estimator is consistent and has an asymptotic normal distribution.

3.1 Mean Square Error (MSE)

We start with a definition.

Definition 3 The MSE of an estimator 0 of the true value 0y is given by'!
. . 2
MSE (0) = B (0—0,) .

The MSE gives a good indication of how close the estimator is to the true value 6,. We prefer
estimators with small MSE. Note that at first glance, the definition of MSE seems to be the same
as the variance of an estimator. Indeed, there is a relationship between these two measures which

leads us to our first Lemma.
N A\ 2 a
Lemma 1 MSE <6’) = Bias (9) +Var <9) )
Recall the definition of the bias of an estimator.
Definition 4 The bias of an estimator 0 of the true value 6y is defined as

Bias (0) = £ (0) — bo.

Example 2 Assume we draw 1 Billion samples of 200 random values from a standard normal
distribution and calculate for each sample j the density estimate fj (x), if the average of all these
evaluated estimators is not equal to f (x), then our estimator has a bias. Recall that e.g. the OLS

estimator is unbiased, so is the sample mean, c.f. Example 1, since

E(z) = E

119 can be for example the least squares estimator B in linear regression, in our context it is the kernel density
. . 2 . 2 R 2
estimator f (z). Also note that the notation F (9 — 90> means F <(9 — 90> > and not [E (9 — 90>} . When we

mean the latter, we will explicitely write it like this.
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Let’s proove now Lemma 1.

Proof. By definition:

msE (9)

Var <é) + Bias <é)2,

which follows since as [E (@) — 90] is constant, we can take it out of the expectation and therefore

E([o-2@)][E@)-0]) = [£(0) -] - £[-£ ()

= 0.

3.2 Bias and Variance of the Kernel Estimator

There exists in general no unbiased nonparametric density estimator. We first derive bias and

variance of the kernel density estimator and then give a lengthy intuitive discussion of these two

expressions.

Starting with the bias, we have that

The first term can be written as

E(%Zd

because

e (16) follows since data is i.i.d.,

Bias (f (@) = B (f (@) = f ().

) - g (e (2))

e (17) follows by definition of expectation,

13

(16)

(17)

(18)



Xl—.’lf

e (18) follows by a change of variable using v = =%

The last term we can be simplified using a Taylor expansion:
1
/K { + fO (z )bu+§f(2) (z) b2u2+...] du
. +5f(2) ($)/K(u)u2du+...

The second term in the bracket dissapeared since the kernel is symmetric, therefore [uK (u)du =

0. Collecting everything together and abstracting from higher order terms'?we get that

Bias (f (x)) = %2f(2) (x) /K (u) uidu.

Turning to the variance:

Var (f (x)) = Var

because
e (19) follows since Var(aX) = a*Var(X),
e (20) follows since we have i.i.d data, so no covariance terms,
e (21) follows since Var(X) = E (X?) — [E (X)]*.

It can be shown that the second term in EQ(21) is "very small" and is therefore neglected

from further calculations, the first term can be written, using similar steps as above, as

1 Xl—x 2
N—bQ/K( : )f(Xl)Xm
= NbQ/K f (bu + x) bdu

- Nb/K { )+ fU ()bu+%f(2)($)b2u2+... du

_ W/K(u)%z +

again neglecting small terms. We can therefore state now our first proposition.

2Higher order terms are terms which are very small as soon as the sample size takes sufficiently large values.

They are therefore ignored.
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Proposition 1 Under suitable conditions and abstracting from higher order terms, the bias and

variance of the kernel density estimator are given by the following expressions:
R b2
Bias (f (x)) = Ef@) (x) - /K (u) u?du, (22)
var (f () = J@) /K(u)2du. (23)
Nb

We note that whereas the bias of the kernel density estimator is increasing with b, the variance
of the estimator is getting larger as we decrease the smoothing parameter. To minimize the MSE,
we would like to have both bias and variance to be small. The opposite effect of the smoothing
parameter on bias and variance means that there is a trade off between these two terms. Where
does this come from? Imagine we want to estimate the density at x. Then we would like to use
just points very close to = to get a good description of f (z), since those close points seem to
represent best the local behaviour of f (). But as Figure 12 shows, a small bandwidth leads to a
very variable density estimate with a lot of bumps which can hardly be a useful density estimate.
We call this bumpy feature undersmoothing. On the other side, choosing the bandwidth too large
is called oversmoothing. Note that although the right panel in Figure 12 looks quite well, there
is way too much weight in the tails of the density for standard normal data. The right amount
of smoothing lies somewhere in the middle. We will devote Section 4 to the choice of bandwidth,

which is still one of the most important areas of research in the nonparametric literature.

3.3 Consistency of the Kernel Density Estimator

We show here convergence in mean square, recall the definition.

Definition 5 An estimator Oy is said to converge in mean square™® to the true value 0y if the
following condition holds true:
. 2
lim E (eN - 90> —0.
N—o00
Note that for an unbiased estimator, this just means that the variance of the estimator con-

verges to zero as N — oo. This basically means that 0 converges to 0y as the sample size gets

larger and larger.

Proposition 2 Under some suitable (weak) conditions and if EQ(14) and EQ(15) hold, then the

kernel density estimator is mean square consistent.

Jim B (f(x) - () =o0.

13This is also called L? convergence.
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Proof. From Lemma 1 we just have to show

N—o0

lim [Bias (f (w))2+Var (f (a:))] —0,

but from the assumptions made this follows easily:

lim Bias ( f @:))2 — lim {%2 O (z / K (u 2du1 =0

—00

since b — 0 as N — oo and

lim Var(f(x))- lm /K ) du =0

N—o00 N—oo Nb

sitnce Nb — 0o as N — co. ®

We next give a discussion of asymptotic normality of the kernel density estimator.

3.4 Asymptotic normality of the Kernel Density Estimator

Although we know the bias and variance of the kernel density estimator, we can’t do valid and
efficient inference, e.g. construct confidence intervals, since we don’t know yet the distribution of

the kernel density estimator. Recall first the central limit theorem.

Theorem 1 If we have an i.i.d sample {X;}1, with E(X;) = p and Var (X;) = o2, then

Z —p) — N (0,0%). (24)

=1

2l

The above means that v/N (Z — p) has for very large N a distribution which is normal with
mean zero and variance o2. Note that we have two effects: by the law of large numbers, & converges
to its mean. Also the variance of T converges to zero since the variance of the sample mean is
0?/N. We need the premultiplier VN to ensure that we don’t get a point mass distribution at .
Note that )

Var (\/NJZ’) =N- Var(i’):N~UN =07,

so this premultiplier ensures that we get a stable variance, which does not depend on N, the
number of observations we have.
We would like to get a similar result like (24) for our kernel density estimator. The discussion

we give here is very intuitive but sufficient for our purposes*. Note that

f@ 1@ =(@-e[fw])+(E[f@)]-fw@). (25)

14 A mathematically correct proof can be found in Pagan and Ullah (1999).
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To start, let us focus on the first bracket in EQ(25). It can be written as

w3or (25) -],

Note that by construction, this whole term has zero expectation and the first term is a sum of

i.i.d random variables. If we can stabilize the variance of this whole term as N — oo, we should
by the central limit theorem get a limiting normal distribution for the kernel density estimator.

Call the stabilizing factor ¢, then we want to have
Var (c (f () — FE [f (w)]))
= AVar (f (x))
o (2) 2
—. [ K = .
5 / (u)” du = const
It follows therefore immediately that we have to choose
c =V Nb.
Premultiplying EQ(25) by this term yields
VN (f (@) - E|f@)]) + VN (E [f (@)] - f ().

We established that the first term has a stable variance and has by the CLT a limiting normal
distribution, the second term is by EQ(22) just given by

b2 2 2
\/N_bEf( ) (x)/K(u)u du
N2 C) () / K (u) u2du. (26)

We want term (26) to go to zero as N gets very large, such that this term can be ignored. This
term then has no effect on the asymptotic distribution. We therefore assume that in addition to
EQ(14) and EQ(15), also

Nb® — 0 (27)

holds. Summing up, we can therefore establish that
VNG (f (@)~ f (@) = N <0,f(x) . /K(U)Qdu) .
Using this result, an approximate pointwise 95% confidence intervall for f can be written as
X 1/2
F () £ 1.96 (Nb) /2 (f (z) - /K (1)? du) |

In practice we replace f (z) by its consistent estimator f (x).
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Remark 2 In parametric econometrics, the stabilizing factor or the so called rate of convergence
is V'N. In nonparametric econometrics, we just saw that the factor takes the form /Nb, which
is slower than the parametric rate. This is because Nb is not converging to infinity as fast as N
1. The intuition behind this is that in parametric estimation, the whole sample size is used. In
nonparametrics, one is focussing on a shrinking neighbourhood of the point of interest, so just part
of the sample is needed. This shrinking neighbourhood is described by the smoothing parameter,

which explains its appearance in the nonparametric rate of convergence.

Remark 3 Imagine we want to estimate a d-dimensional density, one can show that in this case
the convergence rate is no longer Nb but VNb. So increasing the dimension means that our
estimator converges even slower to its true value f (x). This is different in parametric estimation,
the rate of convergence is always the same. This situation is called "the curse of dimensionality”

and is the main drawback of nonparametric techniques.
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4 Optimal Bandwidth and Kernel

We saw in the last section that the bias of the kernel density estimator can be decreased by
choosing a low smoothing parameter. But at the same time, this increased the variance. In this

section we derive the optimal bandwidth.

4.1 Optimal Bandwidth
Recall that we used the MSE as a goodness of fit measure for our density estimator. Using Lemma
1 and Equations (22) and (23), we can write

MSE ( f (x)> - %) + C2b* (28)

where
¢ = fla) [ K@
L@ 2
Cy = §f()(x)-/K(u)udu.

We can now choose the smoothing parameter such that the MSE is minimized:

dMSE G
b~ NP

+4C3° =0

which implies that the optimal bandwidth at point z is given by

oo [ E v 15 f(x)- [ K (w)?’du v 15
! )_<403) T ([f@) <x>fK<u>u2du}2> o .

Note that this optimal bandwidth varies with =, we can avoid this by minimizing a global goodness

of fit measure. The most popular global measure is the integrated mean square error defined as

MISE = / MSE ( f (x)) dz.

Following similar steps like above, one can show that the optimal global bandwidth is given by

bopt = J I ()" du " N (30)
T\ ) do [ K () wd]?

Note that the optimal local and global bandwidths depend on the sample size, the kernel and on

the unknown quantities f (z) and £ (). The optimal bandwidth can therefore not be computed.
Before turning to some possible solutions, let’s give the intuition why [ f @) (x)2 dx appears in the

expression for the optimal global bandwidth'®>. Note that when f (z) is a very smooth density,

I5Remember that the second derivative measures the curvature of a function at point z.
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e.g. close to a uniform density, then this expression is close to zero and the optimal bandwidth
is therefore very large. Intuitively, if the density takes similar values almost everywhere, then we
can borrow information from a large neighbourhood of the point of interest. If the density is very
curvy, this is not the case and we should use a small bandwidth.

Here are some solutions for the unknown values in EQ(29) and (30):

e insert pilot estimates of f (x) and f® (), using kernel estimates based on arbitrary b.

e insert pilot estimates of f () and f® (z) based on a parametric model for f, e.g. take the

normal density.

e since b should vary with the scale of X, estimate the first factor in EQ(30) by the sample

standard deviation'®. Then just choose the bandwidth proportional to N~1/5.

The second rule is known as Silverman’s rule of thumb, one can show that, combined with a

gaussian kernel function, it amounts to choose
b=1.060N"1/°,

where o is the standard deviation and can be estimated from the data. This rule seems to work

pretty well in practice unless the density is bimodal or strongly skewed.

4.2 Optimal Kernel

EQ(28) shows that the MSE (as well the MISE) also depends on the chosen kernel function'”. So
to make the M(I)SE as small as possible, we could choose a kernel function which minimizes the
M(I)SE. It can be shown that the Epanechnikov kernel is in this sense optimal. But also, the gain
of the Epanechnikov kernel versus other kernels is very small, so that researchers usually do not

care about the choice of kernel. What really matters in nonparametrics is the choice of bandwidth.

4.3 Cross Validation Method of choosing Bandwidth

We outline here an automatic method which achieves for large N the optimal global bandwidth
given in EQ(29). Write

o) = %ij (=) 31

16This means that for data ranging from -1000 to 1000, the bandwidth should be larger than for data ranging

just from -1 to 1.
1"We could substitute the optimal bandwidth given in EQ(28) back into EQ(29) to obtain the optimal MSE,

which does no longer depend on the bandwidth, but on unknown density terms and the chosen kernel.
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to emphasize the dependence of the kernel estimator on the smoothing parameter b. Then by

analogy with parametric maximum likelihood, consider
N A
L) =11/ (32)
j=1

Note that this function is very similar to the likelihood function given in EQ(5). So a very intuitive
idea is to choose the smoothing parameter b such that this function is maximized. It turns out
that this is problematic since substituting EQ(31) in EQ(32) yields

v = I 3 (%5)
_ ﬁib[K(OHZK(@)]. (33)

This function is of course maximized if we choose b = 0, which can hardly be a good smoothing

parameter. A solution to this problem is the so called leave one out estimator, defined as

. 1 L X - X

this will prevent the appearance of the problematic K (0) term in EQ(33). The cross validated
bandwidth is then defined as

N
b= argmbaxl_[lfg‘ (X;).
j:

This bandwidth selection is data-dependent, but can come close to the optimal bandwidth as
described above. This procedure is relatively expensive to compute for large N, though this is

increasingly possible with faster computational facilities.
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5 Bias Reduction Techniques

In this section we deal with bias reduction techniques for the kernel density estimator. This topic
is of particular importance in the nonparametric literature, since the bias induced by smoothing

can be large.

5.1 Higher Order Kernels

Recall the development of the bias of the kernel density estimator in Section 3, EQ(18):

Bias (f (2)) + f (x) = /K(u)f(uber) du.
We can use a Taylor expansion to approximate the last term by

/K (w) [ f @)+ fO (x)ub+ 5 () (ub)2+ 1F®) () (ub)® +

d
L1 (@) (wb) + '

= f(x)+%f(2) (I)/U2K (u) du—l—%j‘“) (a:)/u4K(u)du+...,

which follows since the symmetry of the kernel function implies that the second and forth term
in brackets are zero. Abstracting from higher order terms than those considered here, we can

therefore write the bias of the kernel estimator as
o b2 b*
Bias (f (x)) = Ef@) (x) /uQK (u) du + ﬁfw (x) /u4K (u) du. (34)

Note that the second term is converging faster to zero than the first'®, this is why we ignored this
term in the development of the bias in Section 3.
The so called higher order kernel technique aims at eliminating the first and larger term by

choosing an appropriate kernel function. For this we need

/u2K (u) du = 0.

2 is for sure

It is obvious that this is only possible when K (u) takes negative values, since u
everywhere positive. Before showing how to construct such a higher order kernel, let us remark
that the above discussion can be extended to also eliminate the second term in EQ(34), this would
require

/u4K (u) du = 0.

In general, let us give the following definition:

18Tn case this is not obvious for you: use the bandwidth selection rule in EQ(30) . EQ(34) can then be written as
Bias (f (m)) = N 725 4 cgN=4/5,

where ¢; are some irrelevant constants. The second term converges faster to zero than the first.

22



Definition 6 A function K (u) is called a kernel function of order r if the following conditions
hold:

/K(T) (w)du = 1, (35)
/qu(r)(u)du =0 1<j<r-—1 (36)

The corresponding kernel density estimator of order r is given by

N
~ 1 Xz — X
f(r) ($) - Nb ;:1: K(r) ( b ) .

Again, Condition (35) ensures that the density estimator integrates to one. Condition (36)

ensures that ”enough” terms in the Taylor expansion of the bias cancel out. Again, abstracting
from terms of higher order than those considered, we obtain the bias of the higher order kernel

density estimator.

Proposition 3 Bias (f(r) (a:)) =L f0 (z) [u" Ky (u) du.

r!

Note that the standard kernel function used so far satisfies the definition of a higher order
kernel with r = 2. Also note that as long as the kernel function is symmetric, Condition (36) is

not a restriction when j is odd.

Example 3 Let us construct here a kernel function of order r = 3. Note that this is what we
need to set the first term in EQ(34) equal to zero. Let ¢ (u) denote the standard normal pdf and

consider
Koy (w) = (c+d-u?) 6 (u).
Then the following conditions have to hold:
/K(g) (u)du = 1,
/u2K(3) (u)du = 0.
9

These two conditions can be written as!

c+d = 1,
c+3d = 0.

The solutions are ¢ = 3/2 and d = —1/2.We plot this kernel function of order three in Figure 7.

Figure 13 app. here

9Recall that if u is a normal random variable with zero mean and variance o2, then E (u4) =3 0%
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Note that since the higher order kernel function is not everywhere positive, the density estimate
can take negative values as well. This problem does only vanish if samples are very large, since
the kernel estimator is consistent. In practice, although theoretically appealing, there is hardly
bias improvement from choosing r» > 3. Although we did not derive the exact expression for the
variance of the higher order kernel here, note from EQ(23) that the variance of the kernel estimator

depends on
/ K (u)* du,

which is likely to be larger for a higher order kernel than a standard kernel. Also note that using
the Taylor expansion in our bias derivation, we implicitely assumed that the unknown density is

r-times differentiable, which may not be true.

5.1.1 Implications for Bandwidth Selection

Abstracting from higher order terms, the MSE for the higher order kernel density estimator is
given by c
MSE ( f ) — 2Ly,
fry (@) = 35 + &

where

G = fla)- / K (u)? du,
(r) (x)

f ,
C, = U Ky (u) du.
Following identical steps as in Section 4, the optimal local bandwidth is given by
o, \ Ve
bopt(r) () = <27"C'2) N-VCH) = copst - N~V @r+1), (37)

Note that the optimal local bandwidth for the standard kernel estimator is obtained from EQ(37)
by setting » = 2. When we assume that fourth order derivatives of f exist, then we can choose
r = 4 and obtain that the optimal local bandwidth takes the form const- N~/?. So this bandwidth
converges slower to zero than that for the standard kernel density estimator. The intuition is that
the since the bias is smaller, the marginal cost of increasing the bandwidth is smaller than before,
but the marginal benefit (decreasing the variance) remains the same. The smoother f, the more

information we can borrow from other parts of the distribution (e.g. uniform).
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5.2 Multiplicative Bias Correction

An attractive method to reduce the smoothing bias is multiplicative bias reduction. Jones, Linton

and Nielsen (1995) (JLN) propose to use the following nonparametric density estimator:
N A~
X, —
Z f 7). (38)
o [ (X b

where f () denotes the standard kernel density estimator. This procedure can be viewed as

multiplicative bias correction. Note that by definition,

f(2) = f(2) () (39)
where F o)
" Fay
A natural estimator of « () is given by
= L EC)
=N X, o

Combining EQ(40) and EQ(39) yields the density estimator in EQ(38) . It can be shown that this
estimator has a leading term in the bias of the form const - b*, the const - b* term is vanishing
similarly as for higher order kernel methods. This happens because in EQ(38), the denominator
cancels out some of the bias which is contained in the numerator. JLN show that the appealing
theoretical properties of their estimator also transfers to finite samples. Also, unlike higher order

kernel density estimators, the JLN estimator is always positive.
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6 Nonparametric Regression

In this section we turn to nonparametric regression techniques. After a brief discussion about
multivariate density estimation, we introduce the Nadaraya-Watson estimator. We then go on to

discuss local polynomial estimators.
6.1 Multivariate Kernel Density Estimation

Till now we considered in this text univariate density estimation. Recall from the introduction of

this text that an estimator of the conditional expectation function is given by

g(x) =

+oo
fx (x)/_ yfxy (z,y) dy. (41)

We assume throughout that both Y and X are one-dimensional. We already know how to estimate

the marginal density of X, but we do not know the corresponding estimator for the bivariate joint

density fxy (x,y). We concentrate here on bivariate density estimators based on product kernel

functions?.

Definition 7 The bivariate kernel density estimator at point (x,y) is defined by

fxy (y,x Nz ZK2< y)Xb—x>. (42)

K5 is a product kernel defined as

Ky (u,v) = K (u) K (v),

where K (u) is a univariate pdf .

20Multivariate kernel density estimators can be defined using any multivariate probability density function.
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Note that the estimator for the marginal density of X can be obtained from EQ(42) by inte-

grating over y.

fx) = | fxy(y,z)dy
— /LN Yi—y Xi—z d
N & T 4
N

which is the standard kernel density estimator. Almost all results stated in Section 3 go through
also in the bivariate case by replacing Nb with Nb?. Especially the rate of convergence, or
stabilizing factor, is now v/ Nb? which is slower than the univariate convergence rate v/Nb. This
is the curse of dimensionality discussed in Remark 3.

It is in most cases not appropriate to choose a single bandwidth parameter for both dimensions.

This problem can be solved by transforming the variables such that they have equal variance?!.

6.2 The Nadaraya-Watson Estimator

Knowing how to estimate bivariate densities, we can now derive a nonparametric estimator for
the regression function g (z) . Using EQ(41) and substituting the nonparametric estimators for the

joint and marginal density we obtain

N

. 1 1 Yi—vy Xi—=x

g(x)= — /y K( )K( )dy.
S S e= N AP ;

210One often goes one step further and chooses the transformation such that the covariance between the x and y

is eliminated as well. One then estimates the density of the transformed data and finally transforms back to obtain

the density estimate of the untransformed data.
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The integral term can be written as®?

Ao (K5) fox (455
_ ﬁéK(Xib_z)/(ub—kE)K(u)bdu
_ NLbZK(Xb_””> {Yi/K(u)du%—/ubK(u)du}
- Nibzlyf(((b_x)

Collecting terms, we have therefore derived the famous Nadaraya-Watson estimator given by
N o
§(2) = Nib D i ilK (le )
1 N X;—x\
Nb Zi:l K ( b )

Note that this estimator is a weighted average of the observations {Yi}iil , where the weight w;

for observation Y; is given by

K (5)

- N X;—z\ "’
> i K (T)
These weights sum up to one and put a large weight on an observation Y; if the corresponding

w

regressor X; is close to x.
The Nadaraya-Watson estimator can also be interpreted as the solution to the following mini-

mization problem:

a Xi—z
N _ . }/;_ 2K 7 )
1) = sngmin 3~ - 9)* € (2 )

Note that for each z, this is just a weighted least squares criterion, where the only explanatory
variable is a (local) constant. The Nadaraya-Watson estimator can therefore be obtained by

running OLS on the following regression equation:

Xi—{L' Xi—{L' XZ‘—.T
i (55) = i () e (55
Y = gK; +e;

7

This way of reasoning will become especially useful when we deal with local polynomial estimators.

6.3 Properties of the Nadaraya-Watson Estimator

Bias and variance results for nonparametric regression estimators are more complex to derive than
for nonparametric density estimators. We restrict ourselves therefore to the discussion of the main

results.

22Use a change of variable: u = % The last line follows since the kernel integrates to one and is symmetric.
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Proposition 4 Under suitable assumptions and abstracting from higher order terms, bias and

variance of the Nadaraya- Watson estimator are given by

2 (W) (,
Bias (g (z)) = % [9(2) () —i-Q%i))g(l) (x)} /u2K (u) du, (43)
Var (4 (z)) = m / K (u)? du. (44)

Note that this expressions are quite similar as the bias and variance expressions for the kernel
density estimator in EQ(22) and EQ(23) . The bias of the regression estimator contains in addition
to the second derivative of the regression function also a term which depends on the slope of the
regression function, the slope of the density and the density of X itself. This feature is different
than in the density estimation case. We will see soon how to get rid of this term.

The variance of the Nadaraya-Watson estimator is large in areas of small f (z). This means
that in areas where there are few observations, it is difficult to estimate the regression function,
which is very intuitive. Also the variance depends on the variance of the disturbance term. The
higher the noise in the model, the more difficult is precise estimation, again this is very intuitive.

Also note from EQ(43) and EQ(44), that in terms of bandwidth choice, we have the same
trade off as we had in density estimation. We do not repeat this discussion here, but turn to local

polynomial estimators.

6.4 Local Polynomial Estimators

We saw in the previous section that the Nadaraya-Watson estimator can be interpreted as locally
fitting a constant. We can extend this approach to local linear fitting. Note that by a Taylor

expansion, we can write the standard regression model as

Y = g(Xi) +e
~ @)+ g0 (@) (Xi— )+
= Bo(z) + B (2) (Xi —2) + &

Using this, we can form again a weighted least squares criterion function

Qo) = X (i~ o) = () (X, =) & (S5

i=1

This can again be interpreted as running OLS on the regression equation

Vit = Bo () K + By (2) K (Xi — 2) + €],
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where the variables are defined as above. The estimator of the regression function at point z is

then given by
gu (z) = By ()
It can be shown that the variance of the local linear estimator g, (x) matches the variance of

the Nadaraya-Watson estimator. The bias however takes a different form:

2
b” (2

Bias (gu (x)) = 59 (x) /u2K (u) du,

the second term in brackets in EQ(43) has vanished. Why does this happen? Intuitively, locally
fitting a line means that we can capture the local linear properties of the regression function,
meaning that we can better estimate the first derivative of the regression function. This term
therefore vanishes. Also note that if the true regression function is linear, the local linear estimator
has no bias at all. This is because ¢® () equals zero in this case. The approach described above
can be extended without problems to local polynomial fitting. However, there is a similiar feature
there as in higher order kernel methods, it is questionable how well the nice theoretical properties
transfer to finite samples. In practice, higher order fitting than quadratic will hardly bring any

improvements.
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