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Preface

Among many exciting developments in statistics over the last two decades,
nonlinear time series and data-analytic nonparametric methods have greatly
advanced along seemingly unrelated paths. In spite of the fact that the ap-
plication of nonparametric techniques in time series can be traced back to
the 1940s at least, there still exists healthy and justified skepticism about
the capability of nonparametric methods in time series analysis. As en-
thusiastic explorers of the modern nonparametric toolkit, we feel obliged
to assemble together in one place the newly developed relevant techniques.
The aim of this book is to advocate those modern nonparametric techniques
that have proven useful for analyzing real time series data, and to provoke
further research in both methodology and theory for nonparametric time
series analysis.

Modern computers and the information age bring us opportunities with
challenges. Technological inventions have led to the explosion in data col-
lection (e.g., daily grocery sales, stock market trading, microarray data).
The Internet makes big data warehouses readily accessible. Although clas-
sic parametric models, which postulate global structures for underlying
systems, are still very useful, large data sets prompt the search for more
refined structures, which leads to better understanding and approximations
of the real world. Beyond postulated parametric models, there are infinite
other possibilities. Nonparametric techniques provide useful exploratory
tools for this venture, including the suggestion of new parametric models
and the validation of existing ones.

In this book, we present an up-to-date picture of techniques for analyz-
ing time series data. Although we have tried to maintain a good balance
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among methodology, theory, and numerical illustration, our primary goal
is to present a comprehensive and self-contained account for each of the
key methodologies. For practical relevant time series models, we aim for
exposure with definition, probability properties (if possible), statistical in-
ference methods, and numerical examples with real data sets. We also in-
dicate where to find our (only our!) favorite computing codes to implement
these statistical methods. When soliciting real-data examples, we attempt
to maintain a good balance among different disciplines, although our per-
sonal interests in quantitative finance, risk management, and biology can
be easily seen. It is our hope that readers can apply these techniques to
their own data sets.

We trust that the book will be of interest to those coming to the area
for the first time and to readers more familiar with the field. Application-
oriented time series analysts will also find this book useful, as it focuses on
methodology and includes several case studies with real data sets. We be-
lieve that nonparametric methods must go hand-in-hand with parametric
methods in applications. In particular, parametric models provide explana-
tory power and concise descriptions of the underlying dynamics, which,
when used sensibly, is an advantage over nonparametric models. For this
reason, we have also provided a compact view of the parametric methods
for both linear and selected nonlinear time series models. This will also
give new comers sufficient information on the essence of the more classical
approaches. We hope that this book will reflect the power of the integration
of nonparametric and parametric approaches in analyzing time series data.
The book has been prepared for a broad readership—the prerequisites are
merely sound basic courses in probability and statistics. Although advanced
mathematics has provided valuable insights into nonlinear time series, the
methodological power of both nonparametric and parametric approaches
can be understood without sophisticated technical details. Due to the in-
nate nature of the subject, it is inevitable that we occasionally appeal to
more advanced mathematics; such sections are marked with a “*”. Most
technical arguments are collected in a “Complements” section at the end
of each chapter, but key ideas are left within the body of the text.

The introduction in Chapter 1 sets the scene for the book. Chapter 2
deals with basic probabilistic properties of time series processes. The high-
lights include strict stationarity via ergodic Markov chains (§2.1) and mix-
ing properties (§2.6). We also provide a generic central limit theorem for
kernel-based nonparametric regression estimation for a-mixing processes.
A compact view of linear ARMA models is given in Chapter 3, including
Gaussian MLE (§3.3), model selection criteria (§3.4), and linear forecasting
with ARIMA models (§3.7). Chapter 4 introduces three types of paramet-
ric nonlinear models. An introduction on threshold models that emphasizes
developments after Tong (1990) is provided. ARCH and GARCH models
are presented in detail, as they are less exposed in statistical literature.
The chapter concludes with a brief account of bilinear models. Chapter 5
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introduces the nonparametric kernel density estimation. This is arguably
the simplest problem for understanding nonparametric techniques. The re-
lation between “localization” for nonparametric problems and “whitening”
for time series data is elucidated in §5.3. Applications of nonparametric
techniques for estimating time trends and univariate autoregressive func-
tions can be found in Chapter 6. The ideas in Chapter 5 and §6.3 provide a
foundation for the nonparametric techniques introduced in the rest of the
book. Chapter 7 introduces spectral density estimation and nonparametric
procedures for testing whether a series is white noise. Various high-order au-
toregressive models are highlighted in Chapter 8. In particular, techniques
for estimating nonparametric functions in FAR models are introduced in
68.3. The additive autoregressive model is exposed in §8.5, and methods for
estimating conditional variance or volatility functions are detailed in §8.7.
Chapter 9 outlines approaches to testing a parametric family of models
against a family of structured nonparametric models. The wide applicabil-
ity of the generalized likelihood ratio test is emphasized. Chapter 10 deals
with nonlinear prediction. It highlights the features that distinguish non-
linear prediction from linear prediction. It also introduces nonparametric
estimation for conditional predictive distribution functions and conditional
minimum volume predictive intervals.

The interdependence of the chapters is depicted above, where solid di-
rected lines indicate prerequisites and dotted lines indicate weak associ-
ations. For lengthy chapters, the dependence among sections is not very
strong. For example, the sections in Chapter 4 are fairly independent, and
so are those in Chapter 8 (except that §8.4 depends on §8.3, and §8.7 de-
pends on the rest). They can be read independently. Chapter 5 and §6.3
provide a useful background for nonparametric techniques. With an under-
standing of this material, readers can jump directly to sections in Chapters
8 and 9. For readers who wish to obtain an overall impression of the book,
we suggest reading Chapter 1, §2.1, §2.2, Chapter 3, §4.1, §4.2, Chapter 5,



e Preface

§6.3, §8.3, §8.5, §8.7, §9.1, §9.2, §9.4, §9.5 and §10.1. These core materials
may serve as the text for a graduate course on nonlinear time series.

Although the scope of the book is wide, we have not achieved complete-
ness. The nonparametric methods are mostly centered around kernel/local
polynomial based smoothing. Nonparametric hypothesis testing with struc-
tured nonparametric alternatives is mainly confined to the generalized like-
lihood ratio test. In fact, many techniques that are introduced in this
book have not been formally explored mathematically. State-space mod-
els are only mentioned briefly within the discussion on bilinear models and
stochastic volatility models. Multivariate time series analysis is untouched.
Another noticeable gap is the lack of exposure of the variety of paramet-
ric nonlinear time series models listed in Chapter 3 of Tong (1990). This
is undoubtedly a shortcoming. In spite of the important initial progress,
we feel that the methods and theory of statistical inference for some of
those models are not as well-established as, for example, ARCH/GARCH
models or threshold models. Their potential applications should be further
explored.

Extensive effort was expended in the composition of the reference list,
which, together with the bibliographical notes, should guide readers to a
wealth of available materials. Although our reference list is long, it merely
reflects our immediate interests. Many important papers that do not fit
our presentation have been omitted. Other omissions and discrepancies are
inevitable. We apologize for their occurrence.

Although we both share the responsibility for the whole book, Jianqing
Fan was the lead author for Chapters 1 and 5-9 and Qiwei Yao for Chapters
2—4 and 10.

Many people have been of great help to our work on this book. In partic-
ular, we would like to thank Hong-Zhi An, Peter Bickel, Peter Brockwell,
Yuzhi Cai, Zongwu Cai, Kung-Sik Chan, Cees Diks, Rainer Dahlhaus, Li-
udas Giraitis, Peter Hall, Wai-Keung Li, Jianzhong Lin, Heng Peng, Liang
Peng, Stathis Paparoditis, Wolfgang Polonik, John Rice, Peter Robinson,
Richard Smith, Howell Tong, Yingcun Xia, Chongqi Zhang, Wenyang Zhang,
and anonymous reviewers. Thanks also go to Biometrika for permission
to reproduce Figure 6.10, to Blackwell Publishers Ltd. for permission to
reproduce Figures 8.8, 8.15, 8.16, to Journal of American Statistical As-
sociation for permission to reproduce Figures 8.2 — 8.5, 9.1, 9.2, 9.5, and
10.4 — 10.12, and to World Scientific Publishing Co, Inc. for permission to
reproduce Figures 10.2 and 10.3.

Jianging Fan’s research was partially supported by the National Sci-
ence Foundation and National Institutes of Health of the USA and the
Research Grant Council of the Hong Kong Special Administrative Region.
Qiwei Yao’s work was partially supported by the Engineering and Physical
Sciences Research Council and the Biotechnology and Biological Sciences
Research Council of the UK. This book was written while Jianqing Fan was
employed by the University of California at Los Angeles, the University of
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North Carolina at Chapel Hill, and the Chinese University of Hong Kong,
and while Qiwei Yao was employed by the University of Kent at Canterbury
and the London School of Economics and Political Science. We acknowl-
edge the generous support and inspiration of our colleagues. Last but not
least, we would like to take this opportunity to express our gratitude to all
our collaborators for their friendly and stimulating collaboration. Many of
their ideas and efforts have been reflected in this book.

December 2002 Jianqing Fan
Qiwei Yao
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1

Introduction

In attempts to understand the world around us, observations are frequently
made sequentially over time. Values in the future depend, usually in a
stochastic manner, on the observations available at present. Such depen-
dence makes it worthwhile to predict the future from its past. Indeed, we
will depict the underlying dynamics from which the observed data are gen-
erated and will therefore forecast and possibly control future events. This
chapter introduces some examples of time series data and probability mod-
els for time series processes. It also gives a brief overview of the fundamental
ideas that will be introduced in this book.

1.1 Examples of Time Series

Time series analysis deals with records that are collected over time. The
time order of data is important. One distinguishing feature in time series
is that the records are usually dependent. The background of time series
applications is very diverse. Depending on different applications, data may
be collected hourly, daily, weekly, monthly, or yearly, and so on. We use
notation such as {X;} or {Y;} (¢t = 1,---,T) to denote a time series of
length T'. The unit of the time scale is usually implicit in the notation
above . We begin by introducing a few real data sets that are often used in
the literature to illustrate time series modeling and forecasting.

Example 1.1 (Sunspot data) The recording of sunspots dates back as far
as 28 B.C., during the Western Han Dynasty in China (see, e.g., Needham
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FIGURE 1.1. Annual means of Wolf’s sunspot numbers from 1700 to 1994.

1959, p. 435 and Tong, 1990, p. 419). Dark spots on the surface of the
Sun have consequences in the overall evolution of its magnetic oscillation.
They also relate to the motion of the solar dynamo. The Zurich series
of sunspot relative numbers is most commonly analyzed in the literature.
Izenman (1983) attributed the origin and subsequent development of the
Zurich series to Johann Rudolf Wolf (1816-1893). Let X; be the annual
means of Wolf’s sunspot numbers, or simply the sunspot numbers in year
1770 4+ t. The sunspot numbers from 1770 to 1994 are plotted against time
in Figure 1.1. The horizontal axis is the index of time ¢, and the vertical
axis represents the observed value X; over time ¢. Such a plot is called a
time series plot. It is a simple but useful device for analyzing time series
data.

Example 1.2 (Canadian lynz data) This data set consists of the annual
fur returns of lynx at auction in London by the Hudson Bay Company for
the period 1821-1934, as listed by Elton and Nicolson (1942). It is a proxy
of the annual numbers of the Canadian lynx trapped in the Mackenzie
River district of northwest Canada and reflects to some extent the popu-
lation size of the lynx in the Mackenzie River district. Hence, it helps us
to study the population dynamics of the ecological system in that area.
Indeed, if the proportion of the number of lynx being caught to the pop-
ulation size remains approximately constant, after logarithmic transforms,
the differences between the observed data and the population sizes remain
approximately constant. For further background information on this data
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FIGURE 1.2. Time series for the number (on log,, scale) of lynx trapped in the
MacKenzie River district over the period 1821-1934.

set, we refer to §7.2 of Tong (1990). Figure 1.2 depicts the time series plot
of

X = logyg(number of lynx trapped in year 1820 +1¢), ¢=1,2,---,114.

The periodic fluctuation displayed in this time series has profoundly influ-
enced ecological theory. The data set has been constantly used to examine
such concepts as “balance-of-nature”, predator and prey interaction, and
food web dynamics, for example, see Stenseth et al. (1999) and the refer-
ences therein.

Example 1.3 (Interest rate data) Short-term risk-free interest rates play
a fundamental role in financial markets. They are directly related to con-
sumer spending, corporate earnings, asset pricing, inflation, and the overall
economy. They are used by financial institutions and individual investors
to hedge the risks of portfolios. There is a vast amount of literature on in-
terest rate dynamics, see, for example, Duffie (1996) and Hull (1997). This
example concerns the yields of the three-month, six-month, and twelve-
month Treasury bills from the secondary market rates (on Fridays). The
secondary market rates are annualized using a 360-day year of bank in-
terest and quoted on a discount basis. The data consist of 2,386 weekly
observations from July 17, 1959 to September 24, 1999, and are presented
in Figure 1.3. The data were previously analyzed by Andersen and Lund
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FIGURE 1.3. Yields of Treasury bills from July 17, 1959 to December 31, 1999
(source: Federal Reserve): (a) Yields of three-month Treasury bills; (b) yields of
six-month Treasury bills; and (c) yields of twelve-month Treasury bills.
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The Standard and Poor’s 500 Index
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FIGURE 1.4. The Standard and Poor’s 500 Index from January 3, 1972 to De-
cember 31, 1999 (on the natural logarithm scale).

(1997) and Gallant and Tauchen (1997), among others. This is a multivari-
ate time series. As one can see in Figure 1.3, they exhibit similar structures
and are highly correlated. Indeed, the correlation coefficients between the
yields of three-month and six-month and three-month and twelve-month
Treasury bills are 0.9966 and 0.9879, respectively. The correlation matrix
among the three series is as follows:

1.0000 0.9966 0.9879
0.9966 1.0000 0.9962
0.9879 0.9962 1.0000

Example 1.4 (The Standard and Poor’s 500 Index) The Standard and
Poor’s 500 index (S&P 500) is a value-weighted index based on the prices
of the 500 stocks that account for approximately 70% of the total U.S.
equity market capitalization. The selected companies tend to be the lead-
ing companies in leading industries within the U.S. economy. The index is
a market capitalization-weighted index (shares outstanding multiplied by
stock price)—the weighted average of the stock price of the 500 compa-
nies. In 1968, the S&P 500 became a component of the U.S. Department
of Commerce’s Index of Leading Economic Indicators, which are used to
gauge the health of the U.S. economy. It serves as a benchmark of stock
market performance against which the performance of many mutual funds
is compared. It is also a useful financial instrument for hedging the risks
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FIGURE 1.5. Time series plots for the environmental data collected in Hong
Kong between January 1, 1994 and December 31, 1995: (a) number of hospital
admissions for circulatory and respiratory problems; (b) the daily average level
of sulfur dioxide; (c) the daily average level of nitrogen dioxide; and (d) the daily
average level of respirable suspended particulates.

of market portfolios. The S&P 500 began in 1923 when the Standard and
Poor’s Company introduced a series of indices, which included 233 compa-
nies and covered 26 industries. The current S&P 500 Index was introduced
in 1957. Presented in Figure 1.4 are the 7,076 observations of daily clos-
ing prices of the S&P 500 Index from January 3, 1972 to December 31,
1999. The logarithm transform has been applied so that the difference is
proportional to the percentage of investment return.
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Example 1.5 (An environmental data set) The environmental condition
plays a role in public health. There are many factors that are related to
the quality of air that may affect human circulatory and respiratory sys-
tems. The data set used here (Figure 1.5) comprises daily measurements of
pollutants and other environmental factors in Hong Kong between January
1, 1994 and December 31, 1995 (courtesy of Professor T.S. Lau). We are
interested in studying the association between the level of pollutants and
other environmental factors and the number of total daily hospital admis-
sions for circulatory and respiratory problems. Among pollutants that were
measured are sulfur dioxide, nitrogen dioxide, and respirable suspended
particulates (in ug/m?®). The correlation between the variables nitrogen
dioxide and particulates is quite high (0.7820). However, the correlation
between sulfur dioxide and nitrogen dioxide is not very high (0.4025). The
correlation between sulfur dioxide and respirable particulates is even lower
(0.2810). This example distinguishes itself from Example 1.3 in which the
interest mainly focuses on the study of cause and effect.

Example 1.6 (Signal processing—deceleration during car crashes) Time
series often appear in signal processing. As an example, we consider the
signals from crashes of vehicles. Airbag deployment during a crash is ac-
complished by a microprocessor-based controller performing an algorithm
on the digitized output of an accelerometer. The accelerometer is typically
mounted in the passenger compartment of the vehicle. It experiences de-
celerations of varying magnitude as the vehicle structure collapses during a
crash impact. The observed data in Figure 1.6 (courtesy of Mr. Jiyao Liu)
are the time series of the acceleration (relative to the driver) of the vehi-
cle, observed at 1.25 milliseconds per sample. During normal driving, the
acceleration readings are very small. When vehicles are crashed or driven
on very rough and bumpy roads, the readings are much higher, depend-
ing on the severity of the crashes. However, not all such crashes activate
airbags. Federal standards define minimum requirements of crash condi-
tions (speed and barrier types) under which an airbag should be deployed.
Automobile manufacturers institute additional requirements for the airbag
system. Based on empirical experiments using dummies, it is determined
whether a crash needs to trigger an airbag, depending on the severity of
injuries. Furthermore, for those deployment events, the experiments de-
termine the latest time (required time) to trigger the airbag deployment
device. Based on the current and recent readings, dynamical decisions are
made on whether or not to deploy airbags.

These examples are, of course, only a few of the multitude of time se-
ries data existing in astronomy, biology, economics, finance, environmental
studies, engineering, and other areas. More examples will be introduced
later. The goal of this book is to highlight useful techniques that have
been developed to draw inferences from data, and we focus mainly on non-



8 1. Introduction

Nondeployment event Nondeployment event
3 1 3
8 1 8 1
2 - 2
o A o 4
0 50 100 150 0 50 100 150
(a) (b)

Deployment required before 18 ms Deployment required before 48 ms

o o |
(] (]

o | o |
3] 3]

2 2
o 4 o 4

0 50 100 150 0 50 100 150
(c) (d)

FIGURE 1.6. Time series plots for signals recorded during crashes of four vehicles.
The acceleration (in a) is plotted against time (in milliseconds) after crashes. The
top panels are the events that require no airbag deployments. The bottom panels
are the events that need the airbag triggered before the required time.

parametric and semiparametric techniques that deal with nonlinear time
series, although a compact and largely self-contained review of the most
frequently used parametric nonlinear and linear models and techniques is
also provided. We aim to accomplish a stochastic model that will represent
the data well in the sense that the observed time series can be viewed as a
realization from the stochastic process. The model should reflect the under-
lying dynamics and can be used for forecasting and controlling whenever
appropriate. The observed time series are typically regarded as a realiza-
tion from the stochastic process. An important endeavor is to unveil the
unknown probability laws that describe well the underlying process. Once
such a model has been established, it can be used for various purposes such
as understanding and interpreting the mechanisms that generated the data,
forecasting, and controlling the future.
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1.2 Objectives of Time Series Analysis

The objectives of time series analysis are diverse, depending on the back-
ground of applications. Statisticians usually view a time series as a realiza-
tion from a stochastic process. A fundamental task is to unveil the prob-
ability law that governs the observed time series. With such a probability
law, we can understand the underlying dynamics, forecast future events, and
control future events via intervention. Those are the three main objectives
of time series analysis.

There are infinitely many stochastic processes that can generate the same
observed data, as the number of observations is always finite. However,
some of these processes are more plausible and admit better interpretation
than others. Without further constraints on the underlying process, it is
impossible to identify the process from a finite number of observations. A
popular approach is to confine the probability law to a specified family and
then to select a member in that family that is most plausible. The former
is called modeling and the latter is called estimation, or more generally
statistical inference. When the form of the probability laws in a family
is specified except for some finite-dimensional defining parameters, such a
model is referred to as a parametric model. When the defining parameters lie
in a subset of an infinite dimensional space or the form of probability laws
is not completely specified, such a model is often called a nonparametric
model. We hasten to add that the boundary between parametric models
and nonparametric models is not always clear. However, such a distinction
helps us in choosing an appropriate estimation method. An analogy is that
the boundary between “good” and “bad”, “cold” and “hot”, “healthy” and
“unhealthy” is moot, but such a distinction is helpful to characterize the
nature of the situation.

Time series analysis rests on proper statistical modeling. Some of the
models will be given in §1.3 and §1.5, and some will be scattered throughout
the book. In selecting a model, interpretability, simplicity, and feasibility
play important roles. A selected model should reasonably reflect the physi-
cal law that governs the data. Everything else being equal, a simple model
is usually preferable. The family of probability models should be reason-
ably large to include the underlying probability law that has generated the
data but should not be so large that defining parameters can no longer be
estimated with reasonably good accuracy. In choosing a probability model,
one first extracts salient features from the observed data and then chooses
an appropriate model that possesses such features. After estimating pa-
rameters or functions in the model, one verifies whether the model fits the
data reasonably well and looks for further improvement whenever possi-
ble. Different purposes of the analysis may also dictate the use of different
models. For example, a model that provides a good fitting and admits nice
interpretation is not necessarily good for forecasting.
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It is not our goal to exhaust all of the important aspects of time se-
ries analysis. Instead, we focus on some recent exciting developments in
modeling and forecasting nonlinear time series, especially those with non-
parametric and semiparametric techniques. We also provide a compact and
comprehensible view of both linear time series models within the ARMA
framework and some frequently used parametric nonlinear models.

1.3 Linear Time Series Models

The most popular class of linear time series models consists of autoregres-
sive moving average (ARMA) models, including purely autoregressive (AR)
and purely moving-average (MA) models as special cases. ARMA models
are frequently used to model linear dynamic structures, to depict linear
relationships among lagged variables, and to serve as vehicles for linear
forecasting. A particularly useful class of models contains the so-called au-
toregressive integrated moving average (ARIMA) models, which includes
stationary ARMA - processes as a subclass.

1.3.1 White Noise Processes

A stochastic process {X;} is called white noise, denoted as {X;} ~ WN(0,
a?), if

EX; =0, Var(X;) =0 and Cov(X;, X;)=0, forallij.

White noise is defined by the properties of its first two moments only.
It serves as a building block in defining more complex linear time series
processes and reflects information that is not directly observable. For this
reason, it is often called an innovation process in the time series literature.
It is easy to see that a sequence of independent and identically distributed
(i.i.d.) random variables with mean 0 and finite variance o2 is a special
white noise process. We use the notation I1ID(0,02) to denote such a se-
quence.

The probability behavior of a stochastic process is completely deter-
mined by all of its finite-dimensional distributions. When all of the finite-
dimensional distributions are Gaussian (normal), the process is called a
Gaussian process. Since uncorrelated normal random variables are also in-
dependent, a Gaussian white noise process is, in fact, a sequence of i.i.d.
normal random variables.

1.3.2 AR Models

An autoregressive model of order p > 1 is defined as

Xt :letfl +"'+prt7p+Et7 (11)
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A realization from an AR(2) model
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FIGURE 1.7. A length of 114 time series from the AR(2) model
X¢ = 1.07 + 1.35X; 1 — 0.72X;_2 + & with {e:} ~;; 4 N(0,0.24*). The pa-
rameters are taken from the AR(2) fit to the lynx data.

where {g;} ~ WN(0,0?). We write {X;} ~ AR(p). The time series {X;}
generated from this model is called the AR(p) process.

Model (1.1) represents the current state X; through its immediate p past
values Xy _q, -+, Xy, in a linear regression form. The model is easy to
implement and therefore is arguably the most popular time series model in
practice. Comparing it with the usual linear regression models, we exclude
the intercept in model (1.1). This can be absorbed by either allowing &; to
have a nonzero mean or deleting the mean from the observed data before
the fitting. The latter is in fact common practice in time series analysis.

Model (1.1) explicitly specifies the relationship between the current value
and its past values. This relationship also postulates the way to generate
such an AR(p) process. Given a set of initial values X_;_1, -, X_¢,—p,
we can obtain X; for t > —tg iteratively from (1.1) by generating {e;}
from, for example, the normal distribution N(0,0?). Discarding the first
to + 1 values, we regard { X, t > 1} as a realization of the process defined
by (1.1). We choose tg > 0 sufficiently large to minimize the artifact due
to the arbitrarily selected initial values. Figure 1.7 shows a realization of a
time series of length 114 from an AR(2)-model.

We will also consider nonlinear autoregressive models in this book. We
adopt the convention that the term AR-model always refers to a linear
autoregressive model of the form (1.1) unless otherwise specified.
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1.8.3 MA Models

A moving average process with order ¢ > 1 is defined as
Xy =er+aige—1+ -+ agEr—q, (1.2)

where {g;} ~ WN(0, 0?). We write {X;} ~ MA(q).

An MA-model expresses a time series as a moving average of a white
noise process. The correlation between X; and X;_j is due to the fact
that they may depend on the same e;_;’s. Obviously, X; and X;_j are
uncorrelated when h > q.

Because the white noise {g;} is unobservable, the implementation of an
MA-model is more difficult than that of an AR - model. The usefulness
of MA models may be viewed from two aspects. First, they provide par-
simonious representations for time series exhibiting MA-like correlation
structure. As an illustration, we consider a simple MA(1)-model

Xt =&t — 0.95,571.

It can be proved that X; admits the equivalent expression

X+ (097X =¢.

Jj=1

(The infinite sum above converges in probability.) Note that 0.9%0 = 0.1216.
Therefore, if we model a data set generated from this MA(1) process in
terms of an AR(p) - model, then we need to use high orders such as p > 20.
This will obscure the dynamic structure and will also render inaccurate
estimation of the parameters in the AR(p) model.

The second advantage of MA models lies in their theoretical tractability.
It is easy to see from the representation of (1.2) that the exploration of
the first two moments of {X;} can be transformed to that of {e;}. The
white noise {e;} can be effectively regarded as an “i.i.d.” sequence when
we confine ourselves to the properties of the first two moments only. We
will see that a routine technique in linear time series analysis is to represent
a more general time series, including the AR-process, as a moving average
process, typically of infinite order (see §2.1).

A moving average series is very easy to generate. One first generates a
white noise process {&;} ~ WN(0,0?) from, for example, normal distri-
bution N(0,02) and then computes the observed series {X;} according to
(1.2).

1.3.4 ARMA Models

The AR and MA classes can be further enlarged to model more complicated
dynamics of time series. Combining AR and MA forms together yields the
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popular autoregressive moving average (ARMA) model defined as
Xt = let—l + -4 prt—p +ert+a1Ep—1+ -+ AgEt—q, (13)

where {e;} ~ WN(0,02), p,q > 0 are integers, and (p, q) is called the order
of the model. We write {X;} ~ ARMA(p, q). Using the backshift operator,
the model can be written as

b(B)X: = a(B)et,
where B denotes the backshift operator, which is defined as
B¥X, = X, 4, k=41,42,---,
and a(-) and b(-) are polynomials defined as
b(z)=1—biz—---=by2?, a(z)=14+az+ -+ az2%

ARMA models are one of the most frequently used families of parametric
models in time series analysis. This is due to their flexibility in approximat-
ing many stationary processes. However, there is no universal key that can
open every door. The ARMA models do not approximate well the nonlinear
phenomena described in §1.4 below. enddocument

1.3.5 ARIMA Models

A useful subclass of ARMA models consists of the so-called stationary mod-
els defined in §2.1. The stationarity reflects certain time-invariant proper-
ties of time series and is somehow a necessary condition for making a statis-
tical inference. However, real time series data often exhibit time trend (such
as slowly increasing) and/or cyclic features that are beyond the capacity of
stationary ARMA models. The common practice is to preprocess the data
to remove those unstable components. Taking the difference (more than
once if necessary) is a convenient and effective way to detrend and desea-
sonalize. After removing time trends, we can model the new and remaining
series by a stationary ARMA model. Because the original series is the in-
tegration of the differenced series, we call it an autoregressive integrated
moving average (ARIMA) process.

A time series {Y;} is called an autoregressive integrated moving average
(ARIMA) process with order p, d, and ¢, denoted as {Y;} ~ ARIMA(p, d, q),
if its d-order difference X; = (1—B)?Y; is a stationary ARMA (p, q) process,
where d > 1 is an integer, namely, b(B)(1 — B)?Y; = a(B)s;.

It is easy to see that an ARIMA(p, d, ¢) model is a special ARMA (p+d, p)
model that is typically nonstationary since b(B)(1 — B)? is a polynomial
of order p+ d. As an illustration, we have simulated a time series of length
200 from the ARIMA(1,1, 1) model

(1-0.5B)(1 - B)Y; = (1+0.3B);,  {e1} ~j;q N(0,1). (1.4)
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FIGURE 1.8. (a) A realization of a time series from ARIMA(1,1,1) given by
(1.4). The series exhibits an obvious time trend. (b) The first-order difference of
the series.

The original time series is plotted in Figure 1.8(a). The time trend is clearly
visible. Figure 1.8(b) presents the differenced series {Y; — Y;_1}. The de-
creasing time trend is now removed, and the new series appears stable.

1.4 What Is a Nonlinear Time Series?

From the pioneering work of Yule (1927) on AR modeling of the sunspot
numbers to the work of Box and Jenkins (1970) that marked the maturity of
ARMA modeling in terms of theory and methodology, linear Gaussian time
series models flourished and dominated both theoretical explorations and
practical applications. The last four decades have witnessed the continuous
popularity of ARMA modeling, although the original ARMA framework
has been enlarged to include long-range dependence with fractionally in-
tegrated ARMA (Granger and Joyeux 1980, Hosking 1981), multivariate
VARMA and VARMAX models (Hannan and Deistler 1988), and random
walk nonstationarity via cointegration (Engle and Granger 1987). It is safe
to predict that in the future the ARMA model, including its variations,
will continue to play an active role in analyzing time series data due to its
simplicity, feasibility, and flexibility.

However, as early as the 1950s, P.A.P. Moran, in his classical paper (i.e.,
Moran 1953) on the modeling of the Canadian lynx data, hinted at a lim-
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itation of linear models. He drew attention to the “curious feature” that
the residuals for the sample points greater than the mean were signifi-
cantly smaller than those for the sample points smaller than the mean.
This, as we now know, can be well-explained in terms of the so-called
“regime effect” at different stages of population fluctuation (§7.2 of Tong
1990; Stenseth et al.1999). Modeling the regime effect or other nonstandard
features is beyond the scope of Gaussian time series models. (Note that a
stationary purely nondeterministic Gaussian process is always linear; see
Proposition 2.1.) Those nonstandard features, which we refer to as nonlin-
ear features from now on, include, for example, nonnormality, asymmetric
cycles, bimodality, nonlinear relationship between lagged variables, vari-
ation of prediction performance over the state-space, time irreversibility,
sensitivity to initial conditions, and others. They have been well-observed
in many real time series data, including some benchmark sets such as the
sunspot, Canadian lynx, and others. See Tong (1990, 1995) and Tjgstheim
(1994) for further discussion on this topic.

The endeavors to model the nonlinear features above can be divided
into two categories—implicit and explicit. In the former case, we retain the
general ARMA framework and choose the distribution of the white noise
appropriately so that the resulting process exhibits a specified nonlinear
feature (§1.5 of Tong 1990 and references therein). Although the form of
the models is still linear, conditional expectations of the random variables
given their lagged values, for example, may well be nonlinear. Thanks to the
Wold decomposition theorem (p. 187 of Brockwell and Davis 1991), such a
formal linear representation exists for any stationary (see §2.1 below) time
series with no deterministic components. Although the modeling capacity
of this approach is potentially large (Breidt and Davis 1992), it is difficult
in general to identify the “correct” distribution function of the white noise
from observed data. It is not surprising that the research in this direction
has been surpassed by that on explicit models that typically express a
random variable as a nonlinear function of its lagged values. We confine
ourselves in this book to explicit nonlinear models.

Beyond the linear domain, there are infinitely many nonlinear forms to be
explored. The early development of nonlinear time series analysis focused
on various nonlinear parametric forms (Chapter 3 of Tong 1990; Tjgstheim
1994 and the references therein). The successful examples include, among
others, the ARCH-modeling of fluctuating volatility of financial data (En-
gle 1982; Bollerslev 1986) and the threshold modeling of biological and
economic data (§7.2 of Tong 1990; Tiao and Tsay 1994). On the other
hand, recent developments in nonparametric regression techniques provide
an alternative to model nonlinear time series (Tjgstheim 1994; Yao and
Tong 1995 a, b; Hardle, Liitkepohl, and Chen 1997; Masry and Fan 1997).
The immediate advantage of this is that little prior information on model
structure is assumed, and it may offer useful insights for further parametric
fitting. Furthermore, with increasing computing power in recent years, it
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has become commonplace to access and to attempt to analyze time series
data of unprecedented size and complexity. With these changes has come
an increasing demand for nonparametric and semiparametric data-analytic
tools that can identify the underlying structure and forecast the future ac-
cording to a new standard of accuracy. The validity of a parametric model
for a large real data set over a long time span is always questionable. All of
these factors have led to a rapid development of computationally intensive
methodologies (see, e.g., Chapter 8) that are designed to identify compli-
cated data structures by exploring local lower-dimensional structures.

1.5 Nonlinear Time Series Models

In this section, we introduce some nonlinear time series models that we will
use later on. This will give us some flavor for nonlinear time series models.
For other parametric models, we refer to Chapter 3 of Tong (1990). We
always assume {e;} ~ IID(0,0?) instead of WN(0, 0?) when we introduce
various nonlinear time series models in this section. Technically, this as-
sumption may be weakened when we proceed with theoretical explorations
later on. However, as indicated in a simple example below, a white noise
process is no longer a pertinent building block for nonlinear models, as we
have to look for measures beyond the second moments to characterize the
nonlinear dependence structure.

1.5.1 A Simple Example

We begin with a simple example. We generate a time series of size 200 from
the model

X; =2X; /(1 +0.8X2 ) +ey, (1.5)

where {g;} is a sequence of independent random variables uniformly dis-
tributed on [—1, 1]. Figure 1.9(a) shows the 200 data points plotted against
time. The scatterplot of X; against X;_; appears clearly nonlinear; see Fig-
ure 1.9(b). To examine the dependence structure, we compute the sample
correlation coefficient p(k) between the variables X; and X;_j for each k
and plot it against k£ in Figure 1.9(c). It is clear from Figure 1.9(c) that
p(k) does not appear to die away at least up to lag 50, although the data
are generated from a simple nonlinear autoregressive model with order 1.
In fact, to reproduce the correlation structure depicted in Figure 1.9(c),
we would have to fit an ARMA(p,q) model with p + ¢ fairly large. This
indicates that correlation coefficients are no longer appropriate measures
for the dependence of nonlinear time series.
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A simulated time series
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FIGURE 1.9. (a) A realization of a time series from model (1.5). (b) Scatter plot
of the variable {X;_1} against {X:}. (c) The sample autocorrelation function;
the two dashed lines are approximate 95%-confidence limits around 0.

1.5.2 ARCH Models

An autoregressive conditional heteroscedastic (ARCH) model is defined as

Xi=oe, and of =ag+ b X7 |+ +b X7, (1.6)
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where a9 > 0, b; > 0, and {e,} ~ IID(0, 1).

ARCH models were introduced by Engle (1982) to model the varying
(conditional) variance or volatility of time series. It is often found in eco-
nomics and finance that the larger values of time series also lead to larger in-
stability (i.e., larger variances), which is termed (conditional) heteroscedas-
ticity . For example, it is easy to see from Figure 1.3 that the yields of
Treasury bills exhibit the largest variation around the peaks. In fact, the
conditional heteroscedasticity is also observed in the sunspot numbers in
Figure 1.1 and the car crash signals in Figure 1.6.

Bollerslev (1986) introduced a generalized autoregressive conditional het-
eroscedastic (GARCH) model by replacing the second equation in (1.6)
with

o2 =ap+aol  +-+ apcrtz_p + 0 X2 4+ qutQ_q, (1.7)

where a; > 0 and b; > 0.

1.5.8 Threshold Models

The threshold autoregressive (TAR) model initiated by H. Tong assumes
different linear forms in different regions of the state-space. The division of
the state-space is usually dictated by one threshold variable, say, X;_q4, for
some d > 1. The model is of the form

Xe =0 40 Xe 4 D Xy e, i Xege Qi (1.8)

for i = 1,-- -k, where {;} forms a (nonoverlapping) partition of the real
line, and {EEZ)} ~ IID(0,0?). We refer the reader to §5.2 and Tong (1990)
for more detailed discussion on TAR models.

The simplest thresholding model is the two-regime (i.e. & = 2) TAR
model with Q; = {X;_4 < 7}, where the threshold 7 is unknown. As an
illustration, we simulated a time series from the two-regime TAR(2)-model

X, — { 062+1.25X, 1 —0.43X;_o+¢e, Xp9<3.25
=

9295 + 1.52X;_, — 124X, o + ¢, X;_o > 3.25, (1.9)

where ¢, ~ N(0,0.22) and ¢, ~ N(0,0.25%). This model results from a
two-regime TAR fit to the lynx data with a prescribed threshold variable
Xi—o; see §7.2.6 of Tong (1990). Figure 1.10 depicts the simulated data and
their associated sample autocorrelation function. Although the form of the
model above is simple, it effectively captures many interesting features of
the lynx dynamics; see §7.2 of Tong (1990).

1.5.4 Nonparametric Autoregressive Models

Nonlinear time series have infinite possible forms. We cannot entertain
the thought that one particular family would fit all data well. A natural
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A simulated time series
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FIGURE 1.10. (a) A realization of a time series of length 200 from model (1.9).
(b) and (c) The sample autocorrelation functions for the simulated data and the
lynx data: two lines are approximate 95%-confidence limits around 0.

alternative is to adopt a nonparametric approach. In general, we can assume
that

Xt = f(Xt—la ey Xt—p) + O'(Xt_l, ceey Xt—p)gt; (110)
where f(-) and o(-) are unknown functions, and {e,} ~ IID(0, 1). Instead
of imposing concrete forms on functions f and o, we only make some qual-
itative assumptions, such as that the functions f and o are smooth. Model
(1.10) is called a nonparametric autoregressive conditional heteroscedastic
(NARCH) model or nonparametric autoregressive (NAR) model if o(-) is
a constant.

Obviously, model (1.10) is very general, making very few assumptions on
how the data were generated. It allows heteroscedasticity. However, such a
model is only useful when p = 1 or 2. For moderately large p, the functions
in such a “saturated” nonparametric form are difficult to estimate unless
the sample size is astronomically large. The difficulty is intrinsic and is often
referred to as the “curse of dimensionality” in the nonparametric regression
literature; see §7.1 of Fan and Gijbels (1996) for further discussion.
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There are many useful models between parametric models and nonpara-
metric models (1.10). For example, an extension of the thresholding model
results is the so-called function-coefficient autoregressive (FAR) form

Xi = fi(Xe—a) Xy + -+ [p(Xi—a) Xi—p + 0(Xi—a)es, (1.11)

where d > 0 and fi(-),- -, fp(-) are unknown coefficient functions. We write
{X:} ~ FAR(p). Obviously, a FAR(p) model is more flexible than a TAR(p)
model. The coefficient functions in FAR models can be well-estimated with
moderately large samples.

A powerful extension of (1.11) is to replace the “threshold” variable by
a linear combination of the lagged variables of X; with the coefficients de-
termined by the data. This will enlarge the class of models substantially.
Furthermore, it is of important practical relevance. For example, in model-
ing population dynamics it is of great biological interest to detect whether
the population abundance or the population growth dominates the nonlin-
earity. We will discuss such a generalized FAR model in §8.4.

Another useful nonparametric model, which is a natural extension of the
AR(p) model, is the following additive autoregressive model:

Xt = fl(X1)+"'+fp(Xt7p)+€t. (112)

Denote it by {X:} ~ AAR(p). Again, this model enhances the flexibil-
ity of AR models greatly. Because all of the unknown functions are one-
dimensional, the difficulties associated with the curse of dimensionality can
be substantially eased.

1.6 From Linear to Nonlinear Models

Nonlinear functions may well be approximated by either local lineariza-
tion or global spline approximations. We illustrate these fundamental ideas
below in terms of models (1.11) and (1.12). On the other hand, a goodness-
of-fit test should be carried out to assess whether a nonparametric model
is necessary in contrast to parametric models such as AR or TAR. The
generalized likelihood ratio statistic provides a useful vehicle for this task.
We briefly discuss the basic idea below. These topics will be systematically
presented in Chapters 5-9.

1.6.1 Local Linear Modeling

Due to a lack of knowledge of the form of functions fq,---, f, in model
(1.11), we can only use their qualitative properties: these functions are
smooth and hence can be locally approximated by a constant or a lin-
ear function. To estimate the functions f1,--- , f, at a given point z, for
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simplicity of discussion we approximate them locally by a constant
fi(z) = aj, for x € (xg — h,zo + h), (1.13)

where h is the size of the neighborhood that the constant approximations
hold. The local parameter a; corresponds to f;(x¢). This leads to the local
AR(p) model

XimarXio1+ -+ apXe—p + o(x0)es, Xi_q €xoEh.
Using only the subset of data
{(Xi—p, -, X4): Xy_q€xotht=p+1,--- T},
we can fit an AR(p) model via the least squares method by minimizing

T
2
S (Xi—arXey— - —apXy ) T(|Xi—a — 0| < ), (1.14)

t=p+1

where I(-) is the indicator function. The minimizer depends on the point

xo, which is denoted by (@1(zo),- - ,ap(x0)). This yields an estimator of
fi,-++, fp at the point xg:
Filwo) =@ (x0), -+ , fplwo) = Ap(0)-

Because xg runs over an interval [a, b], we obtain estimated functions over
[a,b]. To plot them, the estimated functions are frequently evaluated on a
grid of points on [a, b]. Depending on the resolution needed, the number of
grid points typically ranges from 100 to 400. Most of the graphs plotted in
this book use 101 grid points.

The idea above can be improved in two ways. First, the local constant
approximations in (1.13) can be improved by using the local linear approx-
imations:

fi(x) =~ a; +bj(x — o) for x € xg £ h. (1.15)

The local parameter b; corresponds to the local slope of f; at the point xo.
This leads to the following approximate model:

Xt ~ {a1 + b1 (Xt—d — xo)}Xt_l — = {ap + bp(Xt—d - IQ)}Xt_p
+o(xo)et for X;_gq € xg £ h.

Second, the uniform weights in (1.14) can be replaced by the weighting
scheme K ((X;_4 — xo)/h) using a nonnegative unimodal function K. This
leads to the minimization of the locally weighted squares

T
Z [Xt —{a1 + 01 (Xp—qg —w0) } Xy1 — -+
t=p+1

o+ by (Xia - s} XK (T (g
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FIGURE 1.11. Fitted coeflicient functions for the simulated data given in Fig-
ure 1.10(a). Dashed curves are estimated functions and solid curves are true
functions.

which attributes the weight for each term according to the distance between
Xi—q and 9. When K has a support on [—1, 1], the weighted regression
(1.16) uses only the local data points in the neighborhood X;_4 € x¢ % h.
In general, weight functions need not have bounded supports, as long as
they have thin tails. The weight function K is called the kernel function
and the size of the local neighborhood h is called the bandwidth in the
literature of nonparametric function estimation.

As an illustration, we fit a FAR(2)-model with d = 2 to the simulated
data presented in Figure 1.10(a). Note that model (1.9) can be written as
the FAR(2) model with

Py o[ 18 w<an,
A7 152, x > 3.25,

and
j%(x) _ [ 0.62/x —0.43, r < 3.25,
2 T 2.25/x—1.24 x > 3.25.

Figure 1.11 depicts the resulting estimates using the Epanechnikov kernel

3
()= 50— ),
and bandwidth h = 1.5. Here, x is the positive part of x, taking value x

when x > 0 and 0 otherwise. The discontinuity of the underlying functions
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around 3.25 can easily be detected by using nonparametric change-point
techniques. Thus, we fit FAR(2) for two subsets of data with X;_o < 3.25
and X;_o > 3.25. Even though we do not assume any specific forms of the
coefficient functions, the resulting estimates are quite close to the true func-
tions. After inspecting the nonparametric fitting, one can now postulate a
parameter model such as a TAR(2) to analyze the data further.

The combination of nonparametric and parametric methods has been
proven fruitful. Nonparametric estimates attempt to find a good estimate
among a large class of functions. This reduces the risk of modeling biases
but at the expense of obtaining crude estimates. These estimates provide
us guidance in choosing an appropriate family of parametric models. Para-
metric methods can be used to refine the fitting, which leads to easily
interpretable estimators for the underlying dynamics. This is another rea-
son why we introduce both parametric and nonparametric methods in this
book.

1.6.2  Global Spline Approzimation

Local linear modeling cannot be directly employed to fit the additive au-

toregressive model (1.12). To approximate unknown functions f1,---, f,
locally at the point (z1,--- ,,), we need to localize simultaneously in the
variables X;_1,---, X;_,. This yields a p-dimensional hypercube, which

contains hardly any data points, unless the local neighborhood is very large.
When the local neighborhood is too large to contain enough data points,
the errors in the approximation will be large. This is the key problem un-
derlying the curse of dimensionality. As we will see in §8.5, the local linear
method can be applied to the AAM models by incorporating the backfitting
algorithm.

To attenuate the problem, we approximate nonlinear functions by, for ex-
ample, piecewise linear functions. The positions where piecewise linear func-

tions can possibly change their slopes are called knots. Let 51, ,tjm,
be the knots for approximating the unknown function f; (j = 1,---,p).
Then

fi(@) = bjo+bj1x+bja(x—tj1)r + -+ bjmp1(x—tjx)s.  (1.17)

Denote by f;(z,b;) the piecewise linear function on the right-hand side of
(1.17). When the knots are fine enough in the interval [a, b], the resulting
piecewise linear functions can approximate the smooth function f; quite
well. This is an example of polynomial spline modeling. After the spline
approximation with the given knots, one can estimate parameters by the
least squares method: minimize the following sum-of-square errors with
respect to b:

T

AKX~ fi(Xi1b1) = = fp(Xemp, b)Y (1.18)

t=p
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The estimated functions are simply
fi(z) = fi(z,by).

The global spline modeling approach solves one large parametric prob-
lem (1.8). In contrast, the local modeling approaches solve many small
parametric problems.

1.6.3 Goodness-of-Fit Tests

After fitting nonparametric models, we frequently ask whether a parametric
model is adequate. Similarly, after fitting a parametric model, one asks
whether the parametric model has excessive modeling biases. In the latter
case, we can embed the parametric model into a larger family of models,
such as nonparametric models. In both situations, we test a parametric
hypothesis against a nonparametric alternative.

As an example, we consider different models for the simulated data pre-
sented in Figure 1.10(a). To test whether an AR(2) model

Hy: Xy =01 X1 + b2 X2 + &4
fits the data, we employ the FAR(2) model
X = [1(Xi—2) X1 + fo(Xi—2) Xi2 + &

as the alternative hypothesis. One can now compute the residual sum of
squares (RSS) under both null and alternative models; namely,

T

~ ~ 2
RSS, = Z{Xt Xy — bQXt_Q} (1.19)
t=3
and
T . R 2
RSS; = > { X~ Ai(Xi2) X1t - (X 2) X2} (1.20)
t=3

For these particular data, RSSy = 13.82 and RSS; = 10.60. Now, define
the generalized likelihood ratio (GLR) statistic as

T-2
2

The null distribution of the GLR statistic can be found either by the
generalized likelihood theory developed in Fan, Zhang, and Zhang (2001)
or via a bootstrap method. By applying the bootstrap approach, we obtain
the p-value 0% based on 1,000 bootstrap replications. The method will be
detailed in §9.3. This provides strong evidence against the null hypothesis.

GLR =

log(RSSO/Rssl) = 26.25.
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The result is again consistent with the fact that the data were simulated
from (1.9).

Consider now whether the TAR(2) model (1.9) adequately fits the data.
Again, we use the nonparametric FAR(2) model above as the alternative
hypothesis. In this case, the RSS under the null model is given by

T

2

RSSo = > {Xi = F(Xi-2)Xim1 = B(Xe2) X2
t=3

where J/"? and fg are simply the (estimated) coefficient functions in model
(1.9). For these particular data, RSSy = 9.260 and RSS; = 10.60. This
is possible because the fitting methods under the null and alternative hy-
potheses are not the same. This leads to the generalized likelihood ratio
statistic

T-2

2

This means that the null model (1.9) fits even better than the nonparamet-
ric alternative model. This is not surprising because the data were drawn
from (1.9).

By applying the bootstrap approach, we obtain the p-value 0.523 based
on 1,000 bootstrap replications. This provides little evidence against Hy. In
other words, both the TAR(2) and FAR(2) models provide indistinguish-
able fitting to these simulated data.

GLR =

log(RSSO/Rssl) = —13.41.

1.7 Further Reading

This book does not intend to exhaust all aspects of nonlinear time series
analysis. Instead, we mainly focus on various commonly-used nonparamet-
ric and parametric techniques. The techniques for modeling linear time
series within the ARMA framework are presented in a compact and com-
prehensible manner for the sake of comparison and complement.

There are many excellent books on time series written at different levels
for different purposes. Almost all of them are on parametric models. Box
and Jenkins (1970) is the first book systematically dealing with time series
analysis within the ARMA framework. Many examples used in the book
are now classic. It is a good guide into the practical aspects. Brockwell and
Davis (1996) is a modern textbook with a comprehensive and user-friendly
package I'TSM. It also includes state-space models and multivariate mod-
els. Shumway and Stoffer (2000) provide an ideal text for graduate courses
for nonmathematics/statistics students. It has wide coverage, with numer-
ous interesting real data examples. Chatfield (1996) and Cryer (1986) offer
alternatives for more compact courses. Brockwell and Davis (1991) discuss
the theory of time series in depth, which should be ideal for serious theo-
rists. Their work contains a lucid discussion of continuous-time AR models
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and analysis of heavy-tailed time series. The book by Anderson (1971) has
been written specifically to appeal to mathematical statisticians trained
in the more classical parts of statistics. Taniguchi and Kakizawa (2000)
present a wealth of modern asymptotic theory of inference for various time
series models, including (linear) ARMA processes, long-memory processes,
nonlinear time series, continuous-time processes, nonergodic processes, dif-
fusion processes, and others. Brillinger (1981) and Priestley (1981) offer
wide coverage as well as in-depth accounts of the spectral analysis of
time series. Early monographs on nonlinear time series include Priestley
(1988). Tong (1990) provides comprehensive coverage of parametric non-
linear time series analysis. It also initiates the link between nonlinear time
series and nonlinear dynamic systems (chaos). The state-space modeling
of time series data, making judicious use of the celebrated Kalman filters
and smoothers, is well-presented by Harvey (1990), Kitagawa and Ger-
sch (1996), and more recently by Durbin, and Koopman (2001). West and
Harrison (1989) deal with dynamic models based on Bayesian methods.
Golyandina, Nekrutkin and Zhigljavsky (2001) summarize the techniques
based on singular-spectrum analysis. Analysis of multivariate time series is
systematically presented by Hannan (1970), Liitkepohl (1993), and Reinsel
(1997). Diggle (1990) specializes in applications to biological and medical
time series. Tsay (2002) assembles the techniques for analyzing financial
time series. Akaike and Kitagawa (1999) and Xie (1993) collect some inter-
esting case studies for practical problems in diverse fields. Monographs on
more specific topics include those by Gouriéroux (1997) on ARCH/GARCH
models, Subba-Rao and Gabr (1984) and Terdik (1999) on bilinear mod-
els, Tong (1983) on threshold models, Nicholls and Quinn (1982) on ran-
dom coefficient autoregressive models, and Beran (1995) on long-memory
processes. For nonparametric approaches, Gyorfi, Hardle, Sarda, and Vieu
(1989) and Bosq (1998) are concerned with the asymptotic theory of ker-
nel estimation for time series data and provide useful techniques (such as
mixing and exponential inequalities) for further exploration of theoretical
properties of nonparametric time series models.

Nonparametric modeling is a very large and dynamic field. It keeps ex-
panding due to the demand for nonlinear approaches and the availability
of modern computing power. Indeed, most parametric models and tech-
niques have their nonparametric counterparts. Many excellent books have
been written in this very dynamic area. There are three basic approaches
to nonparametric modeling: kernel-local polynomial, spline, and orthogonal
series methods. For kernel density estimation and regression, see Devroye
and Gyorfi (1985), Silverman (1986), Miiller (1988), Hardle (1990), Scott
(1992), Wand and Jones (1995), and Simonoff (1996). Local polynomial
methods are extensively discussed by Fan and Gijbels (1996). Work on
spline modeling has been published by Wahba (1990), Green and Silverman
(1994), and Eubank (1999). Hastie and Tibshirani (1990) outline nonpara-
metric additive modeling. For orthogonal series methods such as Fourier
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series and wavelets, see Ogden (1997), Efromovich (1999), and Vidakovic
(1999), among others. Nonparametric hypothesis testing can be found in
the books by Bowman and Azzalini (1997) and Hart (1997). Applications
of nonparametric methods to functional data can be found in the work of
Ramsay and Silverman (1997).

1.8 Software Implementations

Part of the computation in this book was carried out using the software
package S-Plus. A large part of linear modeling was performed using the
ITSM package of Brockwell and Davis (1996), estimation for GARCH mod-
els was carried out in S+GARCH. The procedures that are computation-
ally more demanding were implemented in the C language. Most of the one-
dimensional smoothing described in this book can easily be implemented by
using existing software. Local linear smoothing with automatic bandwidth
selection was programmed in C-code. Varying-coefficient models (1.11) can
be implemented using any package with a least-squares function by intro-
ducing weights. Most of the graphics in this book are plotted using S-Plus.

It is our hope that readers will be stimulated to use the methods de-
scribed in this book for their own applications and research. Our aim is to
provide information in sufficient detail so that readers can produce their
own implementations. This will be a valuable exercise for students and
readers who are new to the area. To assist this endeavor, we have placed
all of the data sets and codes used in this book on the following web site.

http://www.stat.unc.edu/faculty /fan /nls.html
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2

Characteristics of Time Series

Statistical inference is about learning something that is unknown from the
known. Time series analysis is no exception in this aspect. In order to
achieve this, it is necessary to assume that at least some features of the un-
derlying probability law are sustained over a time period of interest. This
leads to the assumptions of different types of stationarity, depending on
the nature of the problem at hand. The dependence in the data marks the
fundamental difference between time series analysis and classical statisti-
cal analysis. Different measures are employed to describe the dependence
at different levels to suit various practical needs. In this chapter, we intro-
duce the most commonly used definitions for stationarity and dependence
measures. We also make comments on when those definitions and measures
are most relevant in practice.

2.1 Stationarity

2.1.1 Definition

We introduce two types of stationarity, namely (weak) stationarity and
strict stationarity, in this section. Both of them require that time series
exhibit certain time-invariant behavior.

Definition 2.1 A time series {X¢, t = 0,£1,£2,---} is stationary if
E(X?) < oo for each t, and

(i) E(X}) is a constant, independent of t, and
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(i) Cov(Xy, Xitx) is independent of t for each k.

Definition 2.2 A time series {X;,t = 0,+1,£2, - -} is strictly stationary
if (X1, -, Xp) and (X4, -+, Xntr) have the same joint distributions for
any integer n > 1 and any integer k.

The stationarity, which is often referred to as the weak stationarity in
textbooks, assumes that only the first two moments of time series are time-
invariant and is generally weaker than the strict stationarity, provided that
the process has finite second moments. Weak stationarity is primarily used
for linear time series, such as ARMA processes, where we are mainly con-
cerned with the linear relationships among variables at different times. In
fact, the assumption of stationarity suffices for most linear time series anal-
ysis, such as in spectral analysis. In contrast, we have to look beyond the
first two moments if our focus is on nonlinear relationships. This explains
why strict stationarity is often required in the context of nonlinear time
series analysis.

2.1.2  Stationary ARMA Processes

It is obvious that a white noise process WN(0,0?) is stationary but not
necessarily strictly stationary; see §1.3.1. In view of the discussion above,
it is natural to use WN(0,0?) as a building block for general linear time
series. For Gaussian time series, we need only to focus on the properties of
the first two moments, too. A stationary Gaussian process is also strictly
stationary.

First, we consider moving average models. It is easy to see from (1.2) that
any MA(q) process with finite ¢ is stationary. Let us consider an MA (c0)
model defined as

X = Zajat_j for all ¢, (2.1)
§=0

where {&;} ~ WN(0,0?) and E?io |a;| < co. Therefore

E|X:| < Elea] Y la;] < 0.

Jj=0

This implies that the infinite sum on the right-hand side of (2.1) converges
in probability, and also in mean of order 1 as well as order 2, as the condition
> laj| < oo implies >, a? < oo. (Under the additional condition that
{e:} is independent, the infinite sum also converges almost surely due to
the Loeve theorem; see Corollary 3, p. 117 of Chow and Teicher 1997.)

Furthermore, £ X; = 0, and

COV(Xt,Xt+k) = Z ajakE(€t7j7Et+k,l) = O'2 Zajaj_i_w, (22)
7,1=0 7=0
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which is independent of ¢. Hence, such an MA(o0) model also defines a
stationary process. Obviously, it {e;} are i.i.d and Fl|e;| < co. The process
{X;} defined by (2.1) is strictly stationary.

For a general ARMA (p,q) model defined in (1.3), we may express the
process in a compact form in terms of backshift operator B as:

b(B)X; = a(B)e; for all t, (2.3)
where B is the backshift operator defined as
B¥X, =X, k=0+1,+2,---,
and b(-) and a(-) are polynomials given by
b(z) =1—biz—---—bpz?, a(z)=1+aiz+ - +a42% (2.4)

Remark 2.1 For ARMA models as defined in (2.3), we always assume
that polynomials b(-) and a(-) do not have common factors. Otherwise, a
process so defined is effectively equivalent to the process with orders smaller
than (p, ¢) after removing those common factors.

Theorem 2.1 The process {X;, t = 0,+1,£2,---} given by (2.3) is sta-
tionary if b(z) # 0 for all complex numbers z such that |z| < 1.

Proof. Let z1,--- , z, be the roots of b(z) = 0. Then |z;| > 1 and b(z) =
[1i<j<,(1 = 2/2;). It follows from some simple Taylor expansions that for
any [2] < 1,

jf[l 1—z/z) f[{ki) z/2;) }ngi.
Note that
Z lej| < H {kzol/pj’f} ﬁ 1-1/]z]) " < oo
Now, write c(z) = z j50¢i#0. Then ¢(2) bgz) = 1. Therefore
X; = ¢(B)b(B)X; = ¢(B)a(B)e; = d(B)ey, (2.5)

where d(z) = ¢(z)a(z) = E;io djz? with Z?io |d;| < oo. This indicates
that {X;} is effectively an MA(co) process defined as in (2.1) and is there-
fore stationary. [

Another important concept in time series is causality.

Definition 2.3 A time series {X;} is causal if for all t

%) o)
Xt:Zdjgt—j; Z‘dﬂ < 00,
j=0 j=0

where {&;} ~ WN(0,02).
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Causality means that X; is caused by the white noise process (from the
past) up to time t and is effectively an MA(oo) process. For the ARMA
process defined in (2.3), causality is equivalent to the condition that b(z) #
0 for all |z] < 1 (p. 83 of Brockwell and Davis 1996), and therefore it implies
stationarity, but the converse is not true. In fact, the model (2.3) admits a
unique stationary solution if and only if b(z) # 0 for all complex numbers
z on the unit cycle |z| =1 (p. 82 of Brockwell and Davis 1996). However,
it may be shown that under the condition b(z) # 0 for all |z| > 1, the
stationary solution of (2.3) with ¢ = 0, for example, is of the form

9]
Xt: E dj€t+j,
=0

which is not causal. One may argue whether such a process should be called
a time series since X; depends on ‘future’ noise €44 ; for j > 1. However,
any stationary noncausal ARMA process can be represented as a causal
ARMA process (with the same orders) in terms of a newly defined white
noise, and both processes have identical first two moments (Proposition
3.5.1 of Brockwell and Davis 1991). Therefore, we lose no generality by
restricting our attention to the subset of causal processes in the class of
stationary ARMA processes. But we should be aware of the fact that even
if the original process is defined in terms of an i.i.d. process {e;}, the white
noise in the new representation is no longer i.i.d.

In Theorem 2.1, the condition that the process {X;} is doubly infinite in
time is important. For example, the process defined by

X =05X; 1+ ¢

for t = 0,£1,42,--- is stationary (also strictly stationary), where {&;}
~iid. N(0,1). However, the process defined by the equation above for
t=1,2,--- only and initiated at X ~ U(0, 1) is no longer stationary since
EX; = 0.5"*! for all t > 0. The process {X;, t = 1,2,---} will be (strictly)
stationary if and only if we start the process with Xy ~ N(0,1/0.75), which
is in fact the stationary distribution of the Markov chain defined by the
AR(1) model above (see Theorem 2.2 below).

2.1.3 Stationary Gaussian Processes

A time series {X;} is said to be Gaussian if all its finite-dimensional dis-
tributions are normal. If {e;} ~;; 3 N(0,07) and b(z) # 0 for all [z] < 1,
{X.} defined by (2.3) is a stationary Gaussian process (and therefore also
strictly stationary). On the other hand, it follows from the Wold decompo-
sition theorem (p. 187 of Brockwell and Davis 1991) that for any stationary
Gaussian process {X;} with mean 0, it holds that

Xt = Zaj&'tfj + ‘/;57 (26)
7=0
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where ), a? < 00, {&:} and {V;} are two independent normal processes,
{et} ~i1.q. N(0,0?), and {V;} is deterministic in the sense that, for any ¢,
V% is entirely determined by its lagged values Vi1, V;_a,--- (i.e., Vi is Fi_1-
measurable, where F; is the o-algebra generated by {V;_x, k=1,2,---}).
When V; = 0, we call {X;} purely nondeterministic. Therefore, a purely
nondeterministic stationary Gaussian process is always linear in the sense
that it can be written as an MA(co) process with normal white noise.

A particularly simple case is a g-dependent stationary Gaussian process
in the sense that X; and Xy, are independent for all k£ > ¢. This implies
that ¥, = 0 and a; = 0 for all j > ¢ in (2.6). Therefore {X,;} ~ MA(q).

On the other hand, if, given {X;_1,---,X;_,}, X; is independent of
{X:i_k, k > p}, it is easy to see that

e = Xy — E<Xt‘Xt717 te 7Xt7p)

is independent of {X;_x, k > 1} since Cov(es, X¢—x) = 0 for k > 1. There-
fore €; is also independent of {e;_x, k > 1} since &;_ is a function of
{X¢—k, X¢—p—1,--- } only. Hence {&¢} ~;; q. N(0,0?). Due to the normal-
ity, B(X¢|X—1, -+, Xi—p) is a linear function of X;_q,--- , X;_p:

E(Xy X1, Xip) =1 X1+ + b0, X
for some coefficients by, - - - , b,. This implies that {X;} ~ AR(p) since

Xy = E(Xy|Xi1,-, Xip) + e
== b]thl + .- +prt7p+€t-

The results above are summarized as follows.

Proposition 2.1 Let {X;} be a stationary Gaussian time series.

(i) {X:} ~ MA(oc0) if it is a purely nondeterministic process.

(i1) {X:} ~ MA(q) if, it is a q-dependent process.

(111) {X} ~ AR(p) if, given {Xy_1,--- ,Xi—p}, Xy is independent of
{Xt—ka k> p}

2.1.4 FErgodic Nonlinear Models*

It is relatively straightforward to check stationarity in linear time series
models. However, it is by no means easy to check whether a time series de-
fined by a nonlinear model is strictly stationary. It remains open to prove
(or disprove) that some simple nonlinear models (such as quadratic func-
tions) may generate a strictly stationary process. The common practice is
to represent a time series as a (usually vector-valued) Markov chain and
to establish that the Markov chain is ergodic. Stationarity follows from the
fact that an ergodic Markov chain is stationary.

First, we give a brief introduction of Markov chains. A vector-valued
stochastic process {X;} is called a Markov chain if it fulfills the Markovian
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property that the conditional distribution of X;y1 given {X;, X;—1,---}
depends on X; only for all . The Markovian property requires that, given
the present and the past, the future depends on the present only. The
conditional distribution of X, given X, is called the transition distribu-
tion at time t. If the transition distribution is independent of time ¢, the
Markov chain is called homogeneous. In this book, we consider homoge-
neous Markov chains only. Therefore, we simply call them Markov chains.
We consider a general form of nonlinear AR model

Xt = f(Xt—la T 7Xt—p) + €t (27)

where {g;} is a sequence of ii.d. random variables. When a time series
model is defined with an i.i.d. noise, we always assume implicitly that e; is
independent of {X;_x, k > 1}. This condition is natural when the process
{X:} is generated from the model in the natural time order.
Define
XtZ(Xt,"' ,Xt_p_;,_l)T, z—:t:(et,O,--- ,O)T,

and for x = (z1,--- ,z,)” € RP,
£) = (F(21), 21, 2y 1)
Then, it follows from (2.7) that {X;} is a Markov chain defined as
X =f(Xi—1) + & (2.8)

Let G(-) be the distribution function of &;, and let F,,(:|x) be the conditional
distribution of X,, given Xy = x. It follows from (2.8) that, for n > 2,

Fulyl) = [ Gy~ f(w)} s (dubo (2:9)

and Fi(y|x) = G{y — f(x)}, which is in fact the transition distribution of
the Markov chain.

The (Harris) ergodicity introduced below is defined in terms of the con-
vergence of probability distributions in the norm of total variation. For two
probability distributions P; and P, defined on the same sample space, the
total variation of (P; — Py) is defined as

1Py = Pof| =sup Y _|Pi(4;) — Pa(4;)],
i

where the supremum is taken over all measurable partitions {A4,} of the
sample space. If P; has probability density function p; (i = 1,2), it may be
shown that

1P — By :/|p1<x> ~ pa(x)ldx.
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Definition 2.4 If there exists a distribution F and a constant p € (0,1]
such that
p M|Fn(:|x) — F()|] = 0 for any x, (2.10)

the Markov model (2.8) is called ergodic when p =1 and geometrically er-
godic when p < 1. F is called the stationary distribution. In the expression
above, || - || denotes the total variation.

Obviously, geometric ergodicity implies ergodicity. The ergodicity of a
Markov chain depends entirely on its transition distribution. If the tran-
sition distribution is strictly positive and regular, the process is “weakly”
ergodic in the sense that F,, — F at all continuous points of F', and further-
more the process initiated from F' is strictly stationary; see, for example,
§8.7 of Feller (1971). Unfortunately, the processes as defined in (2.8) do not
fulfill those conditions. The Harris ergodicity adopted here strengthens the
convergence in terms of the total variation, which effectively ensures the

required stationarity. For further discussion on Harris ergodicity, we refer
the reader to Chan (1990a, 1993b).

Theorem 2.2 Suppose that the Markov model (2.8) is ergodic. Then there
exists a stationary (p-dimensional) distribution F such that the time series
{Xi,t=1,2,---} defined by (2.7) and initiated at (Xo, X_1, -+, X_p11)"
~ F' is strictly stationary.

Proof. Let n — oo on both sides of (2.9), it then follows from the fact that
the total variation of (F,, — F) converges to 0 that

/G — £(y))F(dy).

Note that G(- —f(y)) is the conditional distribution of X, given X; =y.
The equation above indicates that if X; ~ F, then X;y; ~ F. Therefore,
all of the random variables {X;;; for k > 2} share the same marginal
distribution F'. The Markovian property implies that the joint distribution
of (X4, X441, , X¢tk) is completely determined by the transition density
and the marginal distribution of X;. Hence, the Markov chain {X;, ¢t =

2,--- } defined by (2.8) and initiated at X ~ F is strictly stationary. By
considering the first component of X;’s only, we obtain the theorem. [

For ergodic Markov chains, the law of large numbers always holds, ir-
respective of initial distributions. The theorem below was proved in Chan
(1993a).

Theorem 2.3 Suppose that model (2.8) is ergodic with stationary distri-
bution F. For {X;, t =1,2,---} defined by (2.7) with any initial variables
(X()a X*17 e 7X7p+1)7

L3 g0X0) =5 Brlg(X0)

t=1
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provided Ep|g(X)| < oo.

It is by no means easy to derive a general condition under that (2.8) is
(Harris) ergodic. We list a few simple criteria below that are often used
to check whether a nonlinear model is ergodic. For x = (z1,---,x,)7, we
write |[x[| = (2§ + - 4+ 22)/2.

Theorem 2.4 Suppose that in model (2.7) f(-) is measurable and €, has
a positive density function and Ee; = 0. The induced Markov model (2.8)
is geometrically ergodic if one of the following three conditions holds.

(i) f is bounded on bounded sets and

Jim 160 = (b -+ by, /| =0, (2.11)
where by, -+ ,b, are some constants satisfying the condition that 1 — b1z —

<o = bpzP # 0 for all complex z satisfying |z| < 1.
(ii) There exist constants A € (0,1) and ¢ for which

[FGI] < Amaxf|za],- - [ap[} +c.

(11t) There exist constants p € (0,1), ¢, and a; >0, and a1 +---+ap, =1
such that

[F()] < plaafar] + - -+ aplay|) + ¢ (2.12)

In the above, (i) and (ii) were obtained by An and Huang (1996), and
(iii) was proved by Bhattacharya and Lee (1995). An and Chen (1997)
extended the condition (2.12) to the case where p = 1. An and Huang
(1996) also derived a condition for the case where f(-) in (2.7) is continuous.
To simplify statements, we call model (2.7) (geometrically) ergodic if the
induced Markov model (2.8) is (geometrically) ergodic.

Example 2.1 (TAR-model) Consider the TAR model with k regimes [see
also (1.8)],

k
Xy = Z{bio +on X1+ Fbip, Xi—p, }
i=1
X I(’I‘i_l < Xi_a < ’I“i) + &, (2.13)
where {e;} satisfies the condition in Theorem 2.4, —co =rg < r; < -+ <
rr, = 00, and d, p1,- -+, pg are some positive integers. It follows from Theo-

rems 2.4 and 2.2 that there exists a strictly stationary solution {X;} from
the model above if either max<;<x Zle |bi;| < 1, which entails condition
(ii) of Theorem 2.4, or maxi<i<x |bij| < a; and a1 + --- + a, = 1, where
p = maxj<;<j p; which implies condition (iii). |
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The conditions imposed above are unfortunately more stringent than
necessary. It remains as a challenge to derive the necessary and sufficient
condition for model (2.13) to be ergodic. Chan and Tong (1985) proved
that the simple TAR model

X, = { a+ X1 + e, X1 <0,

B+ X1 +ey, Xi1>0 (2.14)

is ergodic if and only if @ < 0 < (. Note that, for this model, condition
(2.12) holds with p = 1.

From Theorems 2.2 and 2.4, we may derive some sufficient conditions for
AAR model (1.12) or FAR model (1.11) admitting a strictly stationary
solution. In general, (2.7) admits a strictly stationary solution if f(x) grows
slower than ||x|| as ||x|| — oo, since (2.11) holds with all b; = 0. On the
other hand, if f(-) in (2.7) is a polynomial function with order greater than
1, which is unbounded, the condition that ¢; be compactly supported is
necessary for ergodicity when p = 1 (Chan and Tong 1994). Finally, we
note that a causal AR(p) model with i.i.d. white noise is geometrically
ergodic, which can be seen easily from Theorem 2.4(i).

2.1.5 Stationary ARCH Processes
We introduce a general form of ARCH (co0) model

Yi=pi&e,  pe :a—}—ijYt,j, (2.15)
j=1

where {£; } is a sequence of nonnegative i.i.d. random variables with F¢; = 1
and a > 0 and b; > 0. Obviously, the model above includes the standard
ARCH model (1.6) as a special case if we let Y; = X? (the standard model
allows observing the sign of {X;}, which, however, contains no information
on the variance of the series). It also contains the GARCH model (1.7)
if the coefficients {a;} in (1.7) fulfill certain conditions; for example, all
a; > 0 and > o, a; < 1. In this case, (1.7) admits the expression o7 =

ao + Z;; chf_j with ap > 0 and ¢; > 0.

Theorem 2.5 (i) Under the condition 2;0:1 b; < 1, model (2.15) has a
unique strictly stationary solution {Y;, t =0,+1,42,---} for which

EY; =a/ 1—§:bj

Jj=1

Furthermore the unique solution is Yy =0 for all t if a = 0.
(ii) Suppose that E€? < oo and

max{l,(Eftg)l/2}ibj <1 (2.16)

j=1
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Then, model (2.15) has a unique strictly stationary solution {Y;} with EY?
< 00.

The theorem above was established by Giraitis, Kokoszka, and Leipus
(2000) through a Volterra expansion of Y; in terms of {&_x, k > 0}. We
reproduce its proof for part (i) in §2.7.1 below. Note that an ARCH process
is not a linear process in the sense that it cannot be expressed as an
MA (00) process defined in terms of an i.i.d. white noise. In fact, the Volterra
expansion contains multiplicative terms of &;, which makes the theoretical
investigation more complicated. But, on the other hand, the fact that all
of the quantities involved (such as ¢, b;, and &;) are nonnegative does bring
appreciable convenience to the analytic derivations; see §2.7.1.

It follows from Theorem 2.5 that the ARCH model (1.6) admits a strictly
stationary solution if Z?:l b; < 1. Giraitis, Kokoszka, and Leipus (2000)
also established the central limit theorem below. A stochastic process W (t)
is called a Brownian motion or Wiener process if it is a Gaussian process
starting at zero with mean zero and covariance function EW ()W (7) =
min(¢, 7).

Theorem 2.6 Suppose that {Y;} is the strictly stationary process defined
by (2.15) for which condition (2.16) holds. Define for t € [0,1]

[nt]
S(0) = 2= Y% ~ EY)),

Jj=1

where o2 = Yoo o Cov(Y:,Yy) < oo. Then, for any k > 1 and 0 < t; <
e < tk S 1;

{(S(t1), -+ S(te)} 5 {W(tr), -+, W(tn)},

where {W(t), 0 <t < 1} is the standard Wiener process with mean 0 and
covariance E{W (t)W (s)} = min(t, s).

The theorem above indicates that the stochastic process {S(t), 0 < t <
1} converges in distribution to the Brownian motion {W(t), 0 < ¢ < 1}.

2.2  Autocorrelation

For linear time series {X,}, we are interested in the linear relationships
among the random variables at different time points ¢. The autocorrelation
coefficient measures the linear dependence between X,;; and X;. The
partial autocorrelation coefficient is the correlation between the residual of
X+ and that of X after regressing both linearly on X1, , Xiqyp—1.
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2.2.1 Autocovariance and Autocorrelation

For stationary time series {X;}, it follows from Definition 2.1 that
Cov(Xtyk, Xt) = Cov(Xg, Xo) for any k.

That means that the correlation between X; and X depends on the abso-
lute time difference |t — s| only.

Definition 2.5 Let {X;} be a stationary time series. The autocovariance
function (ACVF) of {X;} is

’}/(]{1) :COV()(t_A,_]f,)(t)7 k::O,:l:l,:I:Q, .
The autocorrelation function (ACF) of {X;} is
p(k) = rY(k)/’Y(O) = Corr(Xt-'rk; Xt)7 k= 07 :l:la j:27 .

From the definition above, we can see that both v(-) and p(-) are even
functions, namely

Y(=k) =~(k) and p(—k) = p(k).

The theorem below presents the necessary and sufficient condition for a
function to be an ACVF of a stationary time series.

Theorem 2.7 (Characterization of ACVF) A real-valued function ~(-) de-
fined on the integers is the ACVF of a stationary time series if and only if
it is even and nonnegative definite in the sense that

n
> aiay(i—4) >0 (2.17)
i,j=1
for any integer n > 1 and arbitrary real numbers ay,--- , an,.

The necessity of the theorem above follows from the fact that the sum
in (2.17) is the variance of random variable Z;;l a; X;. Hence, the sum
is nonnegative. The proof of the sufficiency uses Kolmogorov’s existence
theorem; see p. 27 of Brockwell and Davis (1991).

We now examine the properties of ACVFs and ACFs for stationary
ARMA processes. First, it is obvious that a process is a white noise if
and only if p(k) = 0 for all k # 0.

For MA(c0) process

o]
Xt: E Aj€t—j,
=0
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where {&;} ~ WN(0,0?), ag = 1 and Z;io la;| < oco. It is easy to see from
(2.2) that

= Dm0 @ik
v(k) = 0% ajajipy,  plk) = Zooi" (2.18)
=0 =0 %;

Therefore, if {X;} ~ MA(q) (i.e., aj = 0 for all j > ¢), the formulas above
reduce to

q—|k| q—|k|
- a;a;
y(k) =0 > ajaj and p(k) = —Zf—Oq J@;*"“' for |k| < ¢, (2.19)
j=0 J=0"J

and (k) and p(k) are 0 for all |k| > ¢g. We say that the ACF of an MA(q)
process cuts off at ¢. This is a benchmark property for MA processes.
For causal ARMA(p, q) process

Xe=01 Xy 1+ -+ b0p Xy pterHarg—1 + -+ agEi—g,

where {g;} ~ WN(0,0?), we may calculate the ACVF and ACF through
their MA(co0) representation

oo
Xt: E dj€t7j7
Jj=0

where d;’s are the coefficients of polynomial b(z)'a(z) (see (2.5)), which
may be evaluated recursively as:

dy = ao(=1),
di = a1 +doby,
dy = az+dobz + diby,
and, in general,
k-1
d=ap+ Y dibej, k>1, (2.20)
§=0

We assume that a; = 0 for j > g and b; = 0 for ¢ > p in the recursion above.
Now, both the ACVF and ACF are given as in (2.18), with a; replaced by
d;. It is easy to see from (2.18) and (2.20) that, for causal ARMA processes,
the ACF depends on the coefficients {b;} and {a;} only and is independent
of the variance of white noise 2. (Of course, the ACVF depends on o2.)
This indicates that the autocorrelation of an ARMA process is dictated by
the coefficients in the model and is independent of the amount of white
noise injected into the model.
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The approach above does not lead to a simple closed-form solution. It
provides little information on the asymptotic behavior of p(k) as k — oo,
which reflects the “memory” of the ARMA(p,q) process. To investigate
this asymptotic behavior, we calculate the covariance of both sides of an
ARMA(p, q) model with X;_j, for k > ¢. By (2.3),

COV{b(B)Xt, thk} = COV{a(B)Et, thk;} =0

since €¢,- - ,€¢—q are independent of X;_, for k& > ¢. This leads to the
Yule-Walker equation
V(k) =biy(k=1) = =bpy(k—p) =0, k>gq. (2.21)

It is easy to see that the general solution of this equation is

y(k) = ez Pz (2.22)
where oy, -, a, are arbitrary constants and z1,- -, 2, are the p roots of
equation

1—biz—--- =0yl =0.

The condition for causality implies |z;| > 1 for all j. Therefore, it follows
from (2.22) that v(k) converges to 0 at an exponential rate as |k| — cc.

We summarize the findings above in the proposition below.

Proposition 2.2 (i) For causal ARMA processes, p(k) — 0 at an expo-
nential rate as |k| — oo.
(it) For MA(q) processes, p(k) =0 for all |k| > q.

2.2.2  Estimation of ACVF and ACF

Given a set of observations { X7, -+, X7} from a stationary time series, we
may estimate the ACVF by the sample autocovariance function defined as
T—k
N 1 _ _
’Y(k) = T Z(Xt_XT)(Xt+k_XT)7 k:O717 7T_17 (223)

t=1

where X1 = % 23;1 X;. This also leads to estimating the ACF by the
sample autocorrelation function

Tt is impossible to estimate v(k) and p(k) for k > T from observed data
X1, -+, Xp. Even for k slightly smaller than T, the estimates J(k) and
p(k) are unreliable since there are only a few pairs (X, X;1x) available.
A useful guide proposed by Box and Jenkins (1970 p. 30) requires 7' > 50
and k < T/4.
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A natural alternative for estimating ACVF and ACF is to replace the
divisor T in (2.23) by T —k. The resulting estimators could be substantially
different for large k and are less biased. However, it is fair to say that p(k)
and J(k) defined with the divisor T are more preferable in practice, as
reflected by the fact that they have been implemented as default estimators
in most time series packages. This may be due to the fact that in time
series analysis we are more interested in estimating the ACF as a whole
function rather than p(k) for some fixed k. It may be shown that {7(k)},
and therefore also {p(k)}, is a nonnegative-definite function if we define
Y(—k) = F(k) for £ > 1 and (k) = 0 for |k| > T. This property may be
lost if we replace the divisor T" by T — k. Furthermore, when k becomes
large relative to T, the smaller variance of (k) compensates for its larger
bias.

The sample ACF plays an active role in model identification. For exam-
ple, the ACF of an MA(q) process cuts off at g. But, its sample ACF will
not have a clear cutoff at lag ¢ due to random fluctuations. The proper
statistical inference rests on the sampling distributions of the statistics in-
volved. Let p(k) = (p(1),---,p(k))” and p(k) be defined in the same way.
The theorem below presents the asymptotic normality of sample mean X7,
sample variance 7(0), and sample ACF when the sample size T — co. Its
proof relies on the central limit theorem for m-dependent sequences; see,
for example, Theorem 6.4.2 of Brockwell and Davis (1991). The basic idea
is to approximate the double infinite MA process (2.24) by a finite MA
process. We refer to §7.3 of Brockwell and Davis (1991) for the detailed
technical derivations.

Theorem 2.8 Let {X;} be a stationary process defined as

Xt =K + Z AjEt—j, (224)

j=—o00

where {e;} ~ 1ID(0,02) and E;ifoo |la | < oo.
(i) If Y72 a; #0, VT (X1 — p) EN N(0,v%), where

(ii) If B} < 0o, VT{7(0) — ~(0)} L, N(0,v3), where

v3=20" Y p(j)*=20201+2> p(j)* ¢ (2.25)
j=1

j=—o00
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(iii) If Ee} < oo, VT{p(k) — p(k)} -2 N(0, W), where W is a k x k
matriz with its (i, j)th element given by Bartlett’s formula

wig = Y A{pt+i)p(t +§) + p(t — i)p(t + 5) + 2p(i)p(3)p(t)?
—2p()p(t)p(t + 7) — 2p(j)p(t)p(t + i)}. (2.26)

From (2.25), the sample variance (0) has the asymptotic variance 202 {1+
23 51 p(j)*}/T. When {X;} is an i.i.d. sequence (i.e., a; = 0 for all j # 0
in (2.24)), this asymptotic variance becomes 202 /T. Comparing these two
quantities, as far as the estimation of (0) = Var(X;) is concerned, we may

call
T =T/$1+ 0()?
j=1

the equivalent number of independent observations, which reflects the loss
of information due to the correlation in the data.

If {X;} is an MA(q) process (i.e., a; = 0 for all j < 0 and j > q), it
follows from Theorem 2.8(iii) that

VT () =5 N (0,1+ 250, p(0)?), j>q (2.27)

This is a very useful result for the estimation of the order g for an MA-
process. In particular, if {X;} ~ WN(0,0?), then

VT p(j) 2 N (0,1), for j #0.

Hence, there is an approximately 95% chance that p(j) falls in the interval
+1.967-1/2.

2.2.3 Partial Autocorrelation

The ACF p(k) measures the correlation between X; and X;_j regardless
of their relationship with the intermediate variables X;_1,--- X;_g11. The
order determination in fitting an AR model relies on the correlation, con-
ditioned on immediate variables; see, for example, Proposition 2.1 (iii). We
will only include a further lagged variable X;_j in the model for X; if X;_y
makes a genuine and additional contribution to X; in addition to those from
Xi—1,+ y Xi—g+1. The partial autocorrelation coefficient (PACF) is used
for measuring such a relationship.

Definition 2.6 Let {X;} be a stationary time series with EX; = 0. The
PACF is defined as w(1) = Corr(X7, X2) = p(1) and

m(k) = Corr(Ryj.... gy Rpy1)2,. k) fork > 2,
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where Rja.... 1 is the residual from the linear regression of X; on (Xa, - - -,
Xk), namely

Rj\Q,m k= Xj — (OéjQXQ 4+ -4 aijk)7
and

(@ja, -+, ;) = arg minﬁ E{X; — (BoXo+ -+ BXp)}?  (2.28)

2, 5Pk

In the definition above, we assume that £X; = 0 to simplify the notation.
For a Gaussian process, the partial autocorrelation is in fact equal to

7T(]€) = E{Corr(Xl,Xk+1|X2, s ,Xk)}

In general, PACF is introduced in a rather indirect manner and is defined
in terms of the least square regression (2.28). Nevertheless, it follows im-
mediately from the definition that the PACF cuts off at p for causal AR(p)
processes. In general, the PACF is entirely determined by the ACF; see
(2.29) below.

Proposition 2.3 (i) For any stationary time series { X},

v(k) — Cov(Xy11, X7 )25, Cov(Xa i, X1)
7(0) — Cov(X1, X7 )25 ;. Cov(Xa k, X1)

(k) = . k>1, (229

where () is the ACVF of {X;}, Xop = (Xp, Xp—1,- -+, X2)", and o ), =
Var(Xa ).
(i1) For causal AR (p) models, w(k) =0 for all k > p.

The following theorem establishes a link between PACF and AR-modeling.
It shows that 7(k) is the last autoregressive coefficient in the autoregres-
sive approximation for X; by its nearest k lagged variables. The following
theorem is proved in §2.7.3.

Theorem 2.9 Let {X;} be a stationary time series and EXy; = 0. Then
(k) = bgx for k > 1, where

(bik, - ,bpx) = arg min E(X; — 01 X; 1 — - — bp Xs_p)>

by, b

The theorem above also paves the way for the estimation of PACF—

we need to fit a sequence of AR models with order £k = 1,2,--- in order
to estimate w(k) for k = 1,2,---. More precisely, we estimate w(k) by
(k) = Ekk from the sample (X;,---, Xr), where (gm, _ ,Zkk) minimizes
the sum

T

Yo (X —biXiy = X))

t=k+1
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(a) ACF for white noise (b) PACF for white noise
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FIGURE 2.1. The sample (thin line) and the true (thick line) ACF and PACF
plots for a Gaussian white noise process.

In practice, the estimation is often carried out in terms of some standard
algorithms such as the Levinson-Durbin algorithm and the Burg algorithm;
see §3.2.3 and §5.1 of Brockwell and Davis (1996). The asymptotic prop-
erties of 7(k) will be discussed in Chapter 3 in conjunction with those of
parameter estimation for AR models; see Proposition 3.1.

We present the direct proofs for both Proposition 2.3(i) and Theorem 2.9
in §2.7, as their proofs in textbooks are usually mixed with the algorithms
used in determining AR coefficients.

2.2.4 ACF Plots, PACF Plots, and Examples

Both ACF and PACF provide important information on the correlation
structure of time series and play active roles in model identification as well
as estimation. For example, the ACF cuts off at ¢ for MA(q) processes and
the PACF cuts off at p for AR(p) processes. Plotting the estimated ACF
and PACF against the time lag is a simple but very useful technique in
analyzing time series data. Such an ACF plot is called a correlogram.

In Examples 2.2-2.4, we plot some estimated ACFs and PACFs (thin
lines) based on samples of size T' = 100 together with the true ACFs and
PACFs (thick lines); see Figures 2.1-2.3. We also superimpose the horizon-
tal lines (dashed lines) at +1.96/v/T. These intervals give the pointwise
acceptance region for testing the null hypothesis Hy : p(k) = 0 at the 5%
significance level; see (2.27) and its subsequent discussion. They assist us
in judging whether a particular p(k) is statistically significantly different
from zero. We used standard Gaussian white noise {&;} ~;; 4 N(0,1) in
the examples.
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(a) Time series (b=0.7) (b) Time series (b=-0.7)
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FIGURE 2.2. Time series plots and the sample (thin line) and the true (thick
line) ACF and PACF plots for AR(1) models with b = 0.7 or —0.7.
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FIGURE 2.3. The sample (thin line) and the true (thick line) ACF and PACF
plots for three stationary models defined in Example 2.4.
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Example 2.2 (White noise ) Let Xy = ¢, for t = 0,%£1,---. Then p(k) =
0 and w(k) = 0 for all £ > 1. A sample of size 100 is generated from
standard normal distribution. The estimated ACF and PACF are plotted
in Figure 2.1. The estimated ACF and PACF are almost always between
the two bounds +1.96/v/Tand + 0.196. ]

Example 2.3 Let us consider AR(1) model
X =bXy1 +ey,

where |b] < 1. This process is causal (and therefore also stationary). It is
easy to see that X; depends on its past values through X; ; only. From
Yule-Walker equation (2.21), we may derive that p(k) = bl*l. A simulated
series with length 100 is plotted against time in Figures 2.2 (a) for b = 0.7
and 2.2 (b) for b = —0.7. When b > 0, the series is more stable and
smoother in the sense that X; tends to retain the same sign as X;_;. In
contrast, when b < 0, the series oscillates around its mean value 0. The
similar pattern is preserved in its correlogram as shown in Figures 2.2 (c)
and (d), although the absolute value of ACF decays fast. For the AR(1)
model, (k) = 0 for k > 2. Most estimated values for m(k) (k > 2) are
between +1.96/+/T and £0.196. [

Example 2.4 We consider three causal ARMA models:

AR(4) : Xt = 0.5Xt_1 + O.3Xt_2 — 0.7Xt_3 + 0.2Xt_4 + &,
MA(4) : Xy =€ +0.664_17 4+ 0.66¢_2+40.36¢_3 + 0.7¢;_4,
ARMA(Q, 2) : Xt = 0.8Xt,1 — O.6Xt,2 +e&¢ + 0.76,5,1 + 0.451/,2.

Now, the correlation structure is no longer as clear-cut as for an AR(1)
model, although p(k) = 0 for the MA(4) model and (k) = 0 for the AR(4)
model for all & > 4. Nevertheless, both ACF and PACF decay to 0 fast;
see Figure 2.3. Furthermore, it tends to hold that, for large values of k,

PR > lp(R)], - [w(R)| > [ (k).

This is due to the fact that when the true values of p(k) and 7 (k) are
close to 0 for large k, the errors in estimation become “overwhelming”.
This phenomenon is common in the estimation of both ACF and PACF;
see also Figures 2.1 and 2.2. [

2.3 Spectral Distributions

The techniques used in analyzing stationary time series may be divided into
two categories: time domain analysis and frequency domain analysis. The
former deals with the observed data directly, as in conventional statistical
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analysis with independent observations. The frequency domain analysis,
also called spectral analysis, applies the Fourier transform to the data (or
ACVF) first, and the analysis proceeds with the transformed data only. The
spectral analysis is in principle equivalent to the time domain analysis based
on ACVF. However, it provides an alternative way of viewing a process
via decomposing it into a sum of uncorrelated periodic components with
different frequencies, which for some applications may be more illuminating.
Since the properties beyond the second moments will be lost in spectral
distributions, we argue that the spectral analysis, at least in its classical
form, is not useful in handling nonlinear features. In this section, we first
introduce the concept of spectral distribution via a simple periodic process.
Spectral density is defined for stationary processes with “short memory” in
the sense that ), |7(k)| < co. We derive a general form of spectral density
functions for stationary ARMA processes via linear filters.

2.8.1 Periodic Processes

We first consider the simple periodic process
X; = Acos(wt + ),

where both frequency w and amplitude A are constant while the phase ¢
is a random variable distributed uniformly on the interval [—m,7]. Then
EXt = 0, and

A2 T
Cov(Xy, Xiyr) = on / cos(wt + ) cos(wt + wr + @)dp
A2 ™ - A2
= I / {cos(2wt + 2¢ + wT) + cos(wT) }dp = 5 cos(wr), (2.30)
T J -7

which depends on 7 only. Therefore, {X;} is stationary with v(7) = A;
cos(wT).
Now, we turn to a more general form of periodic process,
k
X = Z Ajcos(wjit + ¢j), (2.31)
j=—k

where {¢;} are independent random variables with the common distribu-
tion U[—m, x|, {A;} and {w;} are constants, Ay = 0, and

OSW1<...<wk§’/T, W_j = —wj.
Furthermore for j =1,--- ,k,

pj=—wj A=A
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By treating {X;, ¢ = 0,+1,£2,...} as observed values on regular time
intervals of a continuous wave, the process is an accumulation of 2k periodic

waves with frequencies w_yg,...,wy. Note that X; is equal to
k
Xy =2 Ajcos(wit + ;). (2.32)
j=1

Algebraic manipulation similar to (2.30) shows that { X} is stationary with
the ACVF

k
~v(T) = Z A? cos(w;T).

j=—k

It is easy to see that any linear combination of sinusoidals can be ex-
pressed as in (2.32), and therefore also as in (2.31). We use the symmetric
form (2.31) for technical convenience; see (2.33) and (2.34) below. Since we
take observations at discrete times 0, £1,+2,... only, waves with frequen-
cies higher than 7 cannot be identified. (For any X; = cos(wt + ) with
w > m, there exist w’ € [0,7] and ¢’ such that X; = cos(w't + ¢').) In
principle, we may restrict frequencies to the interval [0, 7] only. We include
[—7,0) in the frequency domain entirely for technical convenience.

Note that Var(X;) = v(0) = 2%

=k AZ. Define the (unnormalized) spec-
tral distribution function

Gw) = Z A?, -1 <w<m,

jrwj<w

which is a discrete distribution with mass A? at point w; for j = £1,---£k.
In fact, G(w) can be viewed as the contribution to Var(X;) from the waves
with frequencies not greater than w. Therefore, if we regard Var(X;) as the
total power (or energy) of the process {X;}, G(-) reflects how this total
power is distributed over its components at different frequencies. In fact,
the ACVF 7(-) can be expressed as a Stieltjes integral

k

(1) = /Tr cos(wt)dG(w) = Z cos(ij)AJQ-.

—r p—

Note that the symmetry of form (2.31) ensures that the distribution of
G(-) is symmetric on the interval [—m, 7]. Hence, the integral above can be
written as

~(r) = i {cos(wT) + isin(wr)}dG(w) = /7T e“TdG(w), (2.33)

—T —T

where 1 = /—1.
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We further normalize G and define the normalized spectral distribution
function

F(w) = G(w)/7(0) = G(w)/G(m).

Then F is a proper probability distribution that has probability mass
A?/’y(O) at wj, j = %1, , k. It follows from (2.33) immediately that

p(T) = /7T e“TdF (w). (2.34)

—T

In summary, we have defined the spectral distribution for a time series
that is an accumulation of finite periodic waves as defined in (2.31). The
spectral distribution depicts the distribution of the total power (i.e. the
variance) over the waves at different frequencies. Further, the ACVF and
ACF can be expressed as Fourier transforms of the spectral distribution
functions in (2.33) and (2.34). This simple model is illustrative, as any
stationary time series can be viewed as an accumulation of (usually infinite)
periodic waves with different frequencies. The statements above on spectral
distributions are still valid in general.

2.8.2  Spectral Densities

We now introduce the spectral distribution or spectral density for a sta-
tionary time series through the Wiener—Khintchine theorem below. As we
will see, a spectral distribution is defined in terms of an autocovariance
function only. Therefore, it is powerless to deal with the properties beyond
the second moments of a time series.

Theorem 2.10 (Wiener—Khintchine theorem) A real-valued function de-
fined at all the integers {p(7) : 7 =0,£1,42,...} is the ACF of a station-
ary time series if and only if there exists a symmetric probability distribu-
tion on [—m, | with distribution function F for which

o(7) = /_ " R (w), (2.35)

where F' is called the normalized spectral distribution function of the time
series. If F' has a density function f,

or) = [ &7 fw)d,

and f is called the normalized spectral density function.

The theorem is also called Wold’s theorem or Herglotz’s theorem (in
slightly different forms). We give a direct proof in §2.7.4, which is almost
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the same as that on pp. 118-119 of Brockwell and Davis (1991), although
they dealt with complex-valued processes.
Since p(-) is real, it holds that

™ ™
p(r) = / cos(wT)dF(w) = 2/ cos(wt)dF (w).
—T 0
Theorem 2.11 Suppose that {p(7)} is the ACF of a stationary time series
and is absolutely summable in the sense that > | |p(T)| < oo. Then the
normalized spectral density function exists and is a symmetric probability
density function on the interval [—m, 7| defined as

flw) = % p(T)e ™ = {1 + 22,0 cos(wt } (2.36)

Proof. Let f(w) = o= >°° (r)e~"". First, we show f > 0. Define

2m T=—00 P
£ = Z;‘L:1 e~ ““X;. Then ¢ is a random variable taking complex values,

and
n

Var(f) = COV(&,E) = Z 7(] — k)e_i(j_k)“’ > 0’

jok=1
where £ denotes the conjugate of . Define f,,(w) = Var(¢)/{2mnvy(0)} > 0.
Then

1 < . 1 _
- ik —i(j—k)w - 1— —imw
e 2o i =K 5w 32 (1= Il

fn(w) =

For any € > 0, we may choose a large integer N > 0 such that

—Z m)| < e.

|m|>N
Then, for any n > N,
11
_ < = .
[fn(w) = f(w)] n2ﬂ_|Z<Nmp(m)|+25—>2£ as n — 0o

This implies that f,,(w) = f(w). Therefore f(w) >0
Now, it holds for any integer j that

oo

™ . 1 ™ o

[ e side = o= 30 o) [ 9Td = o),
-n i T=—00 -n

Let j = 0 in the expression above, and we have ["  f(w)dw = 1. Hence

f() is the normalized spectral density. The second equality in (2.36) fol-

lows from the fact that p(-) is symmetric, which itself implies that f(-) is

symmetric. [}
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In some applications such as engineering, spectral decomposition of the
total power (i.e., the variance) is of primary interest. For this purpose, we
define the nonnormalized spectral distribution and density functions as

which we simply call the spectral distribution function and the spectral
density function, respectively. It follows from Theorems 2.10 and 2.11 im-
mediately that

(1) = /7T e dG (W) = /7r cos(Tw)dG(w) (2.37)

—T —T

g(w) = % Y(T)e " = { )+ 227 cos(Tw } (2.38)

T=—00

provided that > _|y(7)| < co. Note that G(m) = v(0) = Var(X;). Hence,
if we regard {X;} as an accumulation of periodic waves with different fre-
quencies in [—7, 7],

w2

Gl(ws) — Glwr) = / 9(w)dw

w1

could be viewed as the contributions to the total power from the waves
with the frequencies in the range (wp,ws]. If g is large at wg, the waves
with frequencies around wg make a large contribution to the total variation
of {Xt}

Formulas (2.36) or (2.38) may be used to calculate spectral density func-
tions when ACVFs can be evaluated explicitly. For example, we know, by
(2.38), that the spectral density for a white noise process is a constant on
[—7, 7]. Further, for the MA(q) process

Xi=er+ar1e—1+ -+ ag8—q, {et} ~ WN(O, 02),

the normalized spectral density is

Flw)=— Z 115”5 J’“ cos(kw) (2.39)

(see (2.19)). However, (2.36) and (2.38) do not lead to simple solutions for
general stationary ARMA processes the explicit spectral density functions
of which can be derived in terms of a device called the linear filter, discussed
in §2.3.3 below.
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(a) AR(1) (b>0) (b) AR(1) (b<0)

(d) MA(q) (0=2,3,4)
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FIGURE 2.4. Spectral density functions for (a) AR(1) with b = 0.7 (solid line),
0.5 (dotted line), and 0.3 (dashed line); (b) AR(1) with b = —0.7 (solid line),
—0.5 (dotted line), and —0.3 (dashed line); (¢) MA(1) model with a = 0.7 (solid
line), —0.7 (dotted line), 0.3 (dashed line), and —0.3 (long-dashed line); and (d)
MA(4) process X; = €4 +0.6et—1+0.6e1—2 + azer—3 +asc¢—4 with (a3, as) = (0.3,
0.7) (solid line), (0.3, 0) (dotted line), and (0, 0) (dashed line).

Example 2.5 For the stationary AR(1) process
X, =bX; 1 +e, |b <1, {e}~WN(0,0?),
p(k) = bl¥l (Jb| < 1). It follows from (2.36) that the normalized spectral

density function is
_ i - k ) _ i - iw\k
f(ou)—27T {1+22b cos(kw)}—Qﬂ {1+2Re ;(be ) ]}

k=1
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Note that

i(beiw)k_ be™  beosw —b® +ibsinw
— T 1—be®  1+b2—2bcosw

k=1

Taking the real part, we obtain that

1 beosw — b? 1 1-0?
— g ey L2 ST (240
@) 27r{ N 1+b2—2bcosw} 211+ b2 — 2bcosw (2.40)

We plot normalized spectral density functions of some simple stationary
processes on the half interval [0, 7] in Figure 2.4. Note that the normalized
spectral density function for MA processes is given by (2.39).

2.8.8 Linear Filters

Definition 2.7 For two time series {X;} and {Y;}, we call {X;} a filtered
version of {Yz} if

X, = Z o1Yi_ ks (2.41)
k=—oc0
where the coefficients {¢} are absolutely summable (i.e., Y oo okl <
00).

The device (2.41) is often referred to as a linear filter, in which {Y;} is
the input and {X;} is the output. The filter can be expressed in a more
compact form in terms of the backshift operator,

X, = p(B)Ys, (2.42)

where

o)=Y euit.

k=—o0

We may purposely design the filter such that it will boost (or suppress) the
signals (of the input) within a certain frequency band, producing output
with the desired properties. The function

o0
Tw)= > pre ™ =p(e™™)
k=—oc0
is called a transfer function of the linear filter. Its squared modulus |T'(w)|?
is called a power transfer function . The theorem below shows that the
signal-boosting (or suppression) is controlled by the power transfer func-
tion.
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Theorem 2.12 Let {X;} and {Y;} be two stationary processes satisfying
(2.41). Suppose that their ACFEs are absolutely summable. Then

9o (@) = gy(@)FW)*, —m<w<m,

where g, and g, are the spectral density functions of {X;} and {Y:}, re-
spectively.

Proof. Without loss of generality, we let EX; = FY; = 0. Then

o0
BE(XiXi1,) = Z 0iorE(Yi— Y1)

71'(7-) =
J,k=—o0
o0
= ) eienT+i—k).
j,k=—o00
Therefore
1 , — ,
ge(w) = o Vo (T)e ™Y = el Z ©ierYy(T+5—k)e ™
T=—00 J,k,T=—00

1 g . _ iR
= 5D wie Y enem™ Yy (r g — ke T
J k T
1 —tlw
= PP Y e ™ = g, ) Tw)P
l
The proof is completed. [}

Example 2.6 (A three-point moving average filter of an AR(1)) Let {Y;}
be a stationary AR(1) process defined by

Y; =bY; 1+, | <1, {e} ~WN(0,0?).
Then Var(V;) = 02 /(1 — b%) and p,(7) = bl7l. It follows from (2.40) that

1 o2

9y(w) = 27 1+ b2 — 2bcos(w)’

which is shown in Figure 2.5(a) with b = 0.5 and —0.5 (with o2 = 0.75).
Define a three-point moving average filter

1
Xt = g(Y%71 + Y% + X/t+1). (243)

The transfer function is

M(w) = (™ +14+e™)/3={1+2cos(w)}/3.
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(a) Spectral density for AR(1)
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FIGURE 2.5. Example 2.6. (a) Spectral density for an AR(1) process {Y;} with
b = 0.5 (solid lines) and b = —0.5 (dotted lines). (b) Power transfer function.
(c) Spectral density for the output {X;} with b = 0.5 (solid lines) and b = —0.5

(dotted lines).
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Power transfer function of Y(t) - Y(t-3)
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FIGURE 2.6. The power transfer function of the difference filter (2.45).

The power transfer function is

D)2 = 1+ 4cos(w) +4cos?(w) 3+ 4cos(w) + 2cos(2w)
B 9 B 9 ‘

(2.44)

Figure 2.5(b) shows that (2.43) is a lower-pass filter since it passes the
signals at lower frequencies and suppresses the signals at higher frequencies.
It follows from Theorem 2.12 that the spectral density of {X;} is

0?3+ 4cos(w) + 2 cos(2w)

9x(w) = 187 1+ b2 — 2bcos(w)

which is plotted in Figure 2.5(c). Note that the AR(1) process with b = —0.5
has most power distributed in higher frequencies near 7; see Figure 2.5(a).
Having passed through a lower-pass filter (2.43), those high-frequency sig-
nals are largely suppressed. This deduces a substantial power (i.e., variance)
loss in the output process. [

Note that the power transfer function (2.44) is equal to 0 at w = 2?“,

so the three-point moving average filter removes the periodic components
with period 27 /w = 3. In practice, we often adopt the difference filter

Xy = (Yt - 5/}73)/2 (245)

to remove those components. The power transfer function of the difference
filter above is
{1 — cos(3w)}/2,

which is shown in Figure 2.6. We can see that this difference filter passes
the signals around frequencies 7/3 and 7 and removes signals at frequencies
0 and %’“ Therefore, it is no longer a lower-pass filter. In general, we may
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use either moving average or difference filters to remove certain periodic
components. However we should be aware in the meantime of the different
impacts on the filtered series; see, for example, Figures 2.5(b) and 2.6.

Now, we derive the spectral density function for a general ARMA(p, q)
process defined by

Xt — b1Xt_1 — = prt—p =&t +a16—1+ -+ AgEt—q, (246)

or simply b(B)X; = a(B)e;, where {e;} ~ WN(0,0?) and b(z) # 0 for all
|z| < 1. Define
Vi = Xe—biXp1— = bpXyyp
= &t a1&—1+ -+ a¢€t—q-

Then {Y;} is a filtered version of {X,;} and also a filtered version of {e;}.
It follows from Theorem 2.12 that

2 2

gy (W) = go(w) 1—Zbe‘”“’ = ge(w 1+Zae“”

Since g.(w) = 02/(27), it holds that

() o2 1+ 1 aje” 9P 52 |g(em))2 (2.47)
(w) = — — = — . . .
g 27 [L— 5P e w2 21 [be— )2

Letting by = --- = b, = 0 in the expression above and comparing it with
(2.39), we obtain that

2

a;ili_p
1+Za T o<1+22 ] k j ] 5 cos(kw).
J 1 J

Combining this with (2.47), we obtain the following proposition showing

that the spectral density of a stationary ARMA (p, ¢) process is of the form
Ag + Ay cos(w) + - - - + Ay cos(qw)
By + By cos(w) + -+ - + By cos(pw)’

(2.48)

where {A;} and {B;} are constants. In fact, it is easy to see that this
spectral density can be expressed more explicitly as follows.

Proposition 2.4 For a stationary ARMA (p, q) process defined as in (2.46),
the spectral density function is given as in (2.47). Furthermore,

(W) = 21"‘2] 1 j+22 1{Z? @ikt cos(kw)
S T 2 (o, Ot} cos(kw)

where ag = by =1 and bj, = —by, for 1 <k <p.
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Example 2.7 Let {X;} ~ AR(1) be stationary, and
Y't :Xt+et7 {et} NWN(()’O—z)v

and {e;} is uncorrelated with {X;}. It is easy to see that {Y;} is stationary
and 7, (7) = 7z (1) for 7 # 0 and ~,(7) + o2 for 7 = 0. Hence, it follows
from (2.48) that

o2 A 02 A+ B'cosw

e

9w =9:(W)+ 5 = prso T o T Ot Dicosw”

This spectral density looks similar to that of an ARMA(1, 1) process and
hence seems to suggest that {Y;} is an ARMA(1, 1) process. Indeed, if we
write Xy — aX;_1 = ¢, we have an explicit expression for Y; as follows

Yi—aYi 1 =e —ae; 1 + &

Note that the term ¢, is invisible from the form of the spectral density of

{vi}. ]

2.4 Periodogram

The periodogram is a powerful tool for statistical inference for time series in
the frequency domain. This is largely due to the fact that the periodogram
ordinates for a stationary ARMA process are asymptotically independent
and exponentially distributed. The periodogram is defined in terms of the
discrete Fourier transform of observed data.

2.4.1 Discrete Fourier Transforms

Let {Xy,---, X7} be T successive observations of a time series. Thinking of
the underlying process as being periodic with the period T', we can express
those X;’s as linear combinations of sinusoidals. To this end, we define
Fourier frequencies

27k T-1 T
=— k=—|—1,...,—1,0,1,..., | =
Wk Ta |: 9 :|7 ) 703 ) a|:2:|a

where [y] denotes the integer part of y (i.e., the largest integer not greater
than y). Let

io.)k

Qiujk
1 e T-1 T
— =—|—,...,—1,0,1,...,|=|. (24
\/T ) k [ 2 }7 b 707 9 ’[2] ( 9)

e, =

Tiwy
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Then, the T" components of e, may be viewed as the observed values at T’
discrete time points of a periodic wave at the frequency wy. Note that {es}
are orthonormal in the sense that

T
ejep = T-! Z exp{il(wy —w;)}
1=1
o [T (e — )} — W explif — w)))

exp{i(wr —wj)} —1
1 if k=
0 if k # 7,

where €7 = T2 (e7™i, ... e T) is the conjugate of e;. Therefore {ej}
is a base of the T-dimensional complex space in the sense that any T-
dimensional complex vector can be expressed as a linear combination of
e;’s. Hence, there exist 7' (complex) numbers ay,’s such that

Xi (2]
X=|[ : |= Y e (2.50)
Xr k=—[T54]

This decomposes the series {X;} into linear combinations of periodic waves
e with frequency wg. The magnitude || represents the energy of {X;}
at the frequency wi. Due to the orthonormality of {ex}, it is easy to see,
by multiplying €}, on both sides, that

T
1 )
ap = éZX = ﬁ E Xt@iltwk (2.51)
t=1

and

1]
23
I

£3)
> ol (2.52)
k=125

We call {ay} the discrete Fourier transform of {X,}.
Since we only deal with real X;’s, the equation (2.50) reduces to

[£]
1 .
Xy = — § age'ten (2.53)
AP

1
{ag.1 cos(wit) + agasin(wpt)} + (—1)7/2—

2
— «
\/T e \/T T/2
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for t = 1,---,T. In the expression above the last term on the right-hand
side is defined to be 0 if T is odd, and

T T
1 1

= —= E Xicos(wit), o= —= E X sin(wyt). (2.54)
vT =1 VT =1

2.4.2  Periodogram

Definition 2.8 The periodogram of a set of real numbers {X1,--- , X}
is defined as

2
T-1 T
= |ag|?, k:—[],...,—1,0,1,...,[2},

I (wk B

Z X e—ztwk

where wy, = 2wk /T is the Fourier frequency, and oy, is given in (2.51).

T

Obviously,
Ir(wy) = 0f y +aj g,

where ay,1 and oy o are defined in (2.54). Further, it follows from (2.52)
immediately that

T (5]
dNoXxP= > Ir(w)
t=1 k=—[T51)

2

The periodic representation (2.53) distributes the total energy ZtT:1 X?
of the original data {X;,--- , Xr} over T periodic waves e, with different
frequencies wy, and energy I(wy). When Ip(wy) is large, the waves at (or
around) the frequency wy have large energy. The theorem below establishes
the link between periodogram and spectral density function. Its proof is
given in §2.7.5.

Theorem 2.13 For k= —[T-],... [Z] and k # 0,
T-1 ‘
In(w) = Y Alr)e ™,
T=—(T-1)

where §(-) is the sample ACVF defined as in (2.23).

The theorem above defines a natural estimator for spectral density func-
tion

§(w) = Ir(w)/(27), we (=m,m);

see (2.36). However, this naive substitution estimator is inconsistent and
is therefore not that useful in practice since Var{Ir(w)} converges to a
nonzero constant; see Theorem 2.14 below.
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Theorem 2.14 Suppose that {X1, -, X1} is a sample from the station-
ary process defined as

X = Z ajer—j, {e} ~1ID(0,0%), and Z jaj| < oo.

j=—00 j=—00

Letn=[(T —1)/2]. Fork=1,--- ,n, define

V2 o V2 &
o1 = —— gecos(wgt), Eop = —— ¢ sin(wgt).

(i) Because T — oo, {&k, k=1,---,2n} is a sequence of asymptotically
independent and standard mormal random variables in the sense that for
any fized c1,--- ¢, € R and v > 1, 375, ¢y, EEN N(0,>77, 3) for any
1<k <--<k.<2n.

(ii) For k=1,--- n,

€31 + &5
2

where g(-) is the spectral density of {X;} and maxi<x<n E|Rr(w)| — 0 as
T — oo.

Ir(wi) = 2mg(wy) + Ry (wi),

The proof of Theorem 2.14 is given in §2.7.6. It follows from Theo-
rem 2.14(i) that &2, | +&3, is asymptotically x? with 2 degrees of freedom.
Hence, the limit distribution of random variable (£3, ; + £5,)/2 is expo-
nential with mean 1. By Theorem 2.14(ii), we could approximately regard

IT(wk)/{Qﬂ—g(wk)} for k= 17 N

as n i.i.d. standard exponential random variables when the sample size T is
large. It can also be proved that under some additional conditions on a;’s
and &

Var{Ir(wp)} = 4n°g?(wi) + O(T™2), k=1, ,m;

see Theorem 10.3.2 of Brockwell and Davis (1991). Note that in the theorem
above we only consider periodogram ordinates I (wy) with wy € (0, 7). Tt
is easy to see from Definition 2.8 that

It(w) = Ir(—w), w e (0,m).

The symmetry above is in alignment with the symmetry of spectral den-
sity functions. However, in most applications, we use periodogram ordinate
I7(w) with positive w only.

To overcome the inconsistency problem in practice, tapering or other
smoothing techniques are often applied in calculating the periodogram; see
Brillinger (1981), Dahlhaus (1990b), Chen, Dahlhaus and Wu (2000), and
also §7.2 and §7.3.
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(a) Difference (b) Absolute difference
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1.0
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Lag Lag

FIGURE 2.7. ACF plots for (a) the differences {Y; — Y;—1} and (b) the absolute
differences {|Y: — Yz—1|} of S&P 500 Index data reported in Example 1.4.

2.5 Long-Memory Processes*

It follows from Proposition 2.2(i) (see also (2.22)) that the ACF of a sta-
tionary ARMA process satisfies the inequality

|p(kﬁ)|§c’rk, k:1727"'a

where C' > 0 and r € (0, 1) are some constants. Therefore >, [p(k)| < oo.
A process with the absolutely summable ACF is often referred to as a short-
memory process. There exists another type of stationary process for which
the ACF decays to 0 at a much slower rate; for example, it exhibits the
asymptotic behavior

p(k) ~ CE*™1  ask — oo,

where C' # 0 and d < 0.5. We refer to the feature above as the long-memory
phenomenon. In other words, the ACF of a long-memory process decays to
0 at the slower rate k2=, and > 7 |p(k)| = oo when d € (0,0.5).

The long-memory features have been observed in diverse fields such as hy-
drology, economics, and finance. Figure 2.7 displays the ACF plots for both
differenced series {Y; —Y;_1} and absolutely differenced series {|Y; —Y;_1|},
where {Y;} is the S&P 500 Index time series reported in Example 1.4. There
seems to exist overwhelming evidence of the long-memory feature in the ab-
solute differences {|Y; — Y;—_1|}. In this section, we present an introduction
to fractionally integrated ARMA processes, which form the most frequently
used class of long-memory processes. We refer the reader to Beran (1995)
for a systematic treatment of long-memory processes.
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2.5.1 Fractionally Integrated Noise

For any real number d > —1, define the difference operator by means of
the binomial expansion

Vi=(1-B)' =Y B
=0

where g =1, for j > 1
T'(j—d) k—1—d
Pi=Fm T —
7T+ 1)I(—d) 0<1_[k§j

and I'(+) is the gamma function defined as

JoS e et x>0,
INz)=4 o0 z =0,
7 10(1 + ), -1<z<0.

Definition 2.9 A zero-mean stationary process {X;,t = 0,+1,+£2,---} is
said to be an ARIMA(0,d,0) process with d € (—0.5,0.5) and d # 0 if

ViX, =¢,  {e} ~ WN(0,0?). (2.55)
{X.} is often called fractionally integrated noise.

It can be shown that for d € (=0.5,0.5), > ¢? < oo. This ensures that
ViX, = Z?io ¢ X¢—; converges in mean square. The theorem below guar-
antees the existence of fractionally integrated noise processes; see §13.2 of
Brockwell and Davis (1991) for its proof.

Theorem 2.15 Ford € (—0.5,0.5) and d # 0, there exists a unique purely
nondeterministic, zero-mean, and stationary process

thvfdst :ijat_j’ t:O,:i:l,:I:2, N
7=0

which satisfies (2.55), where ¥g = 1, and

I'(j+d k—1+d .
b, = (j ) _ H , j=1,2

FG+1r@) 4% e

Furthermore, Var(X;) = v,(0) = o?T'(1 — 2d)/T?(1 — d), the ACF of {X;}
is of the form

T+ dT(1—d) j—1+d
TT(k—d+DI(d) Il =

p(k)
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the PACF w(k) = d/(k — d) (k > 1), and the spectral density function of
{X:} may be written as

2
9(w) = -1 — 77 = T [2sin(w/2)[ .
27 27
By Stirling’s formula T'(z) ~ v2re ** (2 — 1)*~1/2 (2 — o), we may
see that the ACF of a fractionally integrated noise process admits the
asymptotic expression

p(k) ~ k*70(1 — d)/T(d) as k — oo.
Thus ), |p(k)| = oo for d > 0. This tail behavior of the ACF is reflected

in its spectral density around the origin as:

2
o _
g(w) ~ s—w™?¢

asw — 0,
2w

which has an infinite pole at the origin when d > 0. (Note that sin(x) ~
x as x — 0.) Fractionally integrated noise processes themselves are of
limited value in modeling long-memory data since the two parameters d
and o2 allow little flexibility. They serve as building blocks to generate a
much more general class of long-memory processes—fractionally integrated
ARMA processes.

2.5.2  Fractionally Integrated ARMA processes

Definition 2.10 A zero-mean stationary process {X;,t = 0,£1,4+2,---}
is said to be a FARIMA(p,d,q) process with d € (—0.5,0.5) and d # 0 if

VeX, ~ ARMA(p, q).

{X:} is also called a fractionally integrated ARMA process.
Let {X:} ~ FARIMA(p, d, q). The definition above implies that
b(B)VIX; = a(B)e;, {er} ~ WN(0,0?), (2.56)

where b(z) =1 —biz — -+ —bp2P, a(z) = 14+ a1z + - - - + a42%. Note that
a~Y(B), b(B), and V¢ are polynomials of operators B. Since the terms in
a product of those polynomials are exchangeable, it holds that

Vi Y(B)b(B)X, = &.

Let Y; = a=1(B)b(B)X;. Then V%Y, = ¢ (i.e., {Y;} is a fractionally inte-
grated noise). Note that

b(B)X, = a(B)Y;.
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Thus, a FARIMA(p, d, q) process can be viewed as an ARMA(p, ¢) process
driven by a fractionally integrated noise FARIMA(0,d,0). The theorem
below guarantees the existence of fractionally integrated ARMA processes;
see §13.2 of Brockwell and Davis (1991) for its proof.

Theorem 2.16 Let d € (—0.5,0.5) and d # 0, and a(z) =0 and b(z) =0
have no common roots. If b(z) # 0 for all |z| < 1, equation (2.56) defines
a unique nondeterministic stationary solution

oo
Xo=> Vi,
j=0
where ¥(z) = Z;io ¥;27 = a(z)/b(z). Furthermore, the ACF and the spec-
tral density function of {X;} exhibit the asymptotic properties
p(k) ~ CE*1  as k — oo,

where C' # 0, and

o2
2

0_2 |a(67iw)|2

— : 1 o —iw|—2d
o et ¢ |

g(w) [a(1)/b(1)Pw™2  asw — 0.

As we pointed out earlier, a long-memory process FARIMA(p, d, ¢) is an
ARMA process driven by a fractionally integrated noise FARIMA(0, d, 0).
Theorem 2.16 indicates that the FARIMA (p, d, q) exhibits the same long-
memory behavior as the FARIMA(0, d, 0), reflected by the asymptotic prop-
erties of both the ACF (as k — oo0) and spectral density (as w — 0); see
also Theorem 2.15.

2.6 Mixing*

The classical asymptotic theory in statistics is built on the central limit
theorem and the law of large numbers for the sequences of independent
random variables. In the study of the asymptotic properties for linear time
series that are the sequences of dependent random variables, the conven-
tional approach is to express a time series in terms of an MA process in
which the white noise {£;} is assumed to be i.i.d.; see, for example, The-
orems 2.8 and 2.14. Unfortunately, the MA representation such as (2.24)
is no longer relevant in the context of nonlinear time series, where more
complicated dependence structures will be encountered. We need to im-
pose certain asymptotic independence in order to appreciate large sample
properties of nonlinear time series inferences. A mixzing time series can be
viewed as a sequence of random variables for which the past and distant
future are asymptotically independent.
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For mixing sequences, both the law of large numbers (i.e., ergodic theo-
rem) and central limit theorem can be established. In this section, we intro-
duce different mixing conditions. Since the a-mixing is the weakest among
the most frequently used mixing conditions, we state some limit theorems
and probability inequalities for a-mixing processes. They play important
roles in the development of asymptotic theory for nonlinear time series.
For a more detailed discussion on mixing conditions, we refer the reader
to Bradley (1986) and Doukhan (1994). Finally, we present a central limit
theorem for a generic form that is constantly encountered in nonparametric
regression based on kernel smoothing.

2.6.1 Mixing Conditions

To simplify the notation, we only introduce mixing conditions for strictly
stationary processes (in spite of the fact that a mixing process is not neces-
sarily stationary). The idea is to define mizing coefficients to measure the
strength (in different ways) of dependence for the two segments of a time
series that are apart from each other in time. Let {X;, t =0,+1,+2,---}

be a strictly stationary time series. For n = 1,2,-- -, define

a(n) = sup |[P(A)P(B) — P(AB)],
AeF° _, BeFe

ﬁ(n) = E{ sup P(B)—P(B|X0,X17X27-~-)},

BeFge

p(n) = sup |Corr(X,Y)],
XeL2(Fl ), YEL2(FR)

p(n) = sup |P(B) — P(B|A)],
AeF° _,BEF,P(A)>0

Y(n) = sup [1—P(B|A)/P(B)|,  (2.57)
AeF° _,BEF,P(A)P(B)>0

where ]—'ij denotes the o-algebra generated by {X;, ¢ <t < j}, and Lz(fij)
consists of .7-'ij -measurable random variables with finite second moment.
(Readers are referred to Chapter 1 of Chow and Teicher (1997) for the
definitions of o-algebra and measurable functions.) Intuitively, F; assem-
bles all information on the time series collected between time ¢ and time j.
When at least one of the mixing coefficients converges to 0 as n — oo, we
may say that the process {X;} is asymptotically independent. Note that
Fo C F° for any m > 1. Thus, all of the mixing coefficients defined

above are monotonically nonincreasing.

Definition 2.11 The process {X;} is said to be a-mixing if a(n) —
0,
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B-mixing if B(n) — 0,
p-mixing if p(n) — 0,
e-mixing if p(n) — 0,
and
-mixing if P(n) — 0 as n — oo.

Some basic facts on mixing conditions are now in order.

(i) The diagram below illustrates the relationships among the five mixing
conditions:

/0 f-mixing N\,
N\, p-mixing

see, for example, Bradley (1986). Further, it is well-known that

1-mixing — p-mixing a-mixing;

1 1

afk) < o(k) < 5

o2 (k).

The a-mixing, also called strong mizing, is the weakest among the five,
which is implied by any one of the four other mixing conditions. On the
other hand, ¢-mixing is the strongest. In general, -mixing (also called ab-
solute regular) and p-mixing do not imply each other. However, for Gaussian
processes, p-mixing is equivalent to a-mixing and therefore is weaker than
[S-mixing. See §1.3.2 of Doukhan (1994) for examples of time series with
various mixing properties.

(ii) The mixing properties are hereditary in the sense that, for any mea-
surable function m(-), the process {m(X;)} possesses the mixing property
of {Xt}

(iii) Consider the MA(c0) process

oo
Xt: E Aj€¢—j,
Jj=0

where a; — 0 exponentially fast (note that causal ARMA(p, q) processes
fulfill this condition), and {&; } is an i.i.d. sequence. If the probability density
function of &; exists (such as normal, Cauchy, exponential, and uniform
distributions), then {X;} is S-mixing with #(n) — 0 exponentially fast
(Pham and Tran 1985). However, this result does not always hold when &,
is discrete. For example, the process X;+1 = 0.5X; + &4 is not a-mixing
when ¢; has a binomial distribution; see Andrews (1984).

(iv) If {X,} is a strictly stationary Markov chain, the mixing coefficients
are effectively defined with (F°__, F°) replaced by (o(Xp),o (X)), where
0(X;) denotes the o-algebra generated by the single random variable X}
only (Theorem 4.1 of Bradley 1986). Further, the mixing coefficients decay
to 0 exponentially fast if { X;} is p-, ¢-, or 1»-mixing (Theorem 4.2 of Bradley
1986).
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(v) It follows from (iv) above and Lemma 1.3 in Bosq (1998) that if {X;}
is a strictly stationary and a-mixing Markov chain, the mixing coefficient
is bounded by

a(m) < 5 [ 1fon(e.0) — @) 1(w)ldady,

where f is the marginal density function of X, and fy ,, is the joint density
of (Xo, X,).

(vi) Davydov (1973) showed that, for a strictly stationary Markov chain
{Xt}7

8(m) = [ 18 (o)~ FOIIF (o), (258

where F' is the marginal distribution of Xy, F,,(-|x) is the conditional dis-
tribution of X, given Xy = x, and || - || denotes the total variation. If {X;}
is geometrically ergodic satisfying the additional condition that

[ En(-fx) = FOI < A(z)n™ (2.59)

almost surely with respect to the distribution F(-), where n € (0,1) is a
constant and [ A(z)F(dz) < oo (see also (2.10)), it follows immediately
from (2.58) that {X;} is S-mixing with exponentially decaying coefficients.
Nummelin and Tuominen (1982) provided some sufficient conditions under
which (2.59) holds; see also §2.4 of Doukhan (1994).

(vil) We may define a “one-side-infinite” process {X;, t > 1} to be,
for example, a-mixing if a(n) — 0, where a(n) is defined as in (2.57)
with “sup,cro  pere” replaced by “maxi>y SupAe]—'{‘,Be]—'ﬁikﬂ’ Then, a
strictly stationary process {X;,t = 0,£1,+2,--- } is a-mixing if and only if
its “positive half” {X;,t =1,2,---} is a-mixing. This remark also applies
to the four other mixing conditions.

(viii) A GARCH(p, q) process defined by (1.7) and (1.6) is a-mixing with
exponentially decaying coefficients if (i) >0, ;< ai + 321, b; < 1 and
(ii) the density function of e; is positive in an interval containing 0; see
Theoerm 3.1 and Remark 3.2 of Basrak, Davis and Mikosch (2002).

(ix) Any sequence of independent (or m-dependent) random variables is
mixing in all of the types defined in Definition 2.11. On the other hand, a
sequence generated by a deterministic equation such as

Xt+1 = m(Xt), t= 0, il, i27 ce

is not a-mixing, where m(-) is a nonlinear function. Intuitively, X;, is
completely determined by X;. Hence, their dependence cannot vanish even
when n — oo. To appreciate this, assume that the process defined above is
stable in the sense that it admits an invariant probability measure

1 n
P(X; € A) nlgrolo - E I(X; € A), forallt>1andmeasurable A.

Jj=1
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Take a point zy such that ¢ = P(A) = P(X; < ) > 0 and let
Ag = {m™(Xo) <m} € FOy, Bo={Xn <o} € FY,

where m(™) denotes the nth fold of m. Then Ay = By since X,, = m(™ (Xo).
Thus

a(n) > [P(AB) — P(A)P(B)| = P(A){1 - P(A)} = (1 — ¢) > 0

for all n > 1. Therefore a(n) does not converge to 0.

In the rest of this book, we mainly deal with the a-mixing processes. The
discussion above indicates that such a condition is likely to hold for strictly
stationary time series, including ARMA processes and geometrically er-
godic Markov chains. On the other hand, it is by no means easy in general
to check whether a nonlinear time series is, for example, a-mixing. The spe-
cial properties for Markov chains stated in (iv)—(vi) above certainly make
the theoretical investigation easier. In this vein, mixing properties for non-
linear AR and nonlinear ARCH(1) processes have been established; see, for
example, §2.4.2 of Doukhan (1994). Unfortunately, the required conditions
on underlying distributions are difficult to check in general. This partially
explains why it is a common practice to assume a certain mild asymp-
totic independence (such as a-mixing) as a precondition in the context of
asymptotic theory of statistical analysis for nonlinear time series.

2.6.2 Inequalities

We introduce three types of inequalities, namely covariance inequalities,
moment inequalities for partial sums, and exponential inequalities for tail
probabilities. They will serve as basic tools in the development of asymp-
totic theory in nonlinear time series analysis; see, for example, the proof of
Theorem 2.21 in §2.6.3. The exponential inequalities are required to derive
uniform convergence rates for nonparametric estimators.

(a) Cowvariance inequalities

Let X and Y be two real random variables. Define

a= sup |P(A)P(B) — P(AB)].
A€o(X), Beo(Y)

Proposition 2.5 below presents the bound for Cov(X,Y) in terms of the
dependence measure a. Its proof can be found in §1.2.2 of Doukhan (1994).

Proposition 2.5 (i) If E{|X|P + |Y|?} < oo for some p,q > 1 and 1/p +
1/q < 1, it holds that

|Cov(X,Y)| < 8a!/"{EIX[PYP{E|Y |4},

where r = (1 —1/p—1/q)~ 1.
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(it) If P(|X| < C1) =1 and P(|Y| < C3) =1 for some constants Cy and
Cs, it holds that
|Cov(X,Y)| <4aCiCs.

Note that if we allow X and Y to be complex-valued random variables,
Proposition 2.5(ii) still holds, with the coefficient “4” on the right-hand side
of the inequality replaced by “16”. Using this modified inequality (k — 1)
times, we obtain the following proposition, which plays an important role
in the proof of central limit theorems for mixing sequences. The result was
first proved by Volkonskii and Rozanov (1959).

Proposition 2.6 Let F! and o(-) be the same as in (2.57). Let £1,--- &,
be complez-valued random variables measurable with respect to the o- alge-
bras FJ!,--- , F]¥, respectively. Suppose iy 1 —ji >n forl=1,--- k-1,

and j; >4 and P(|§| <1) =1 forl=1,--- k. Then
|E(Sy -+ &k) — E(&1) -+ - E(&)| < 16(k — 1)a(n).

(b) Moment inequalities

Let {X;} be a sequence of random variables with mean 0. For any integers
r >0 and g > 2, define

M’r‘,q = sup ‘COV(th e ti7 Xt e th)|7 (260)

p+1

where the supremum is taken over all 1 <#; < --- <t;and 1 < p < ¢ with
tp+1 —tp = r. The proposition below provides the bounds for the moments
of the partial sum S,, = X; + --- + X,,.

Theorem 2.17 If, for some fized ¢ > 2, M, , = O(r=9/2) asr — oo, then
there exists a positive constant C independent of n for which

|E(S2)| < Cn®/2, (2.61)

The theorem above is Theorem 1 of Doukhan and Louhichi (1999).
Proposition 2.7 below specifies some conditions under which (2.61) holds
for a-mixing processes. A sharper condition can be found in Lemma 7 of
Doukhan and Louhichi (1999).

Proposition 2.7 Let {X;} be a strictly stationary and a-mizing process
with mean 0. Let o(-) be the mizing coefficient defined in (2.57) and q > 2.
Then (2.61) holds if one of the following two conditions holds:

(i) E|X;|° < oo for some § > q, and a(n) = O(n~ 2<§Eq>),
(ii) P(|X¢| < C1) = 1 for some constant Cy, and a(n) = O(n=9?).

Proof. We give a proof for case (i) only. It follows from Proposition 2.5(i)
that

|COV(X,51 "'ti, ti-‘,-l "'th)|
a s .p S _J4a=p
< a(r)' THEIXy, - X [P} A{B Xy X [T}
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By using the Holder inequality successively, we have that

s p 1 _6 _p—1
(B|Xy, - Xy, [P} < {BEIX, P} {B| Xy, - Xy, |777}5
- < {B|X,%)5.

IN

Thus
Cov(Xy, - Xy, Xppgr- Xy,)| < o) 75 { B X7}

This implies that M, , < a(r)!=9{E|X,|°}9/°. Now (2.61) follows from

Theorem 2.17, and condition a(r) = O (7"72(;%)). I

(¢) Ezxponential inequalities

Let {X:} be a strictly stationary process with mean 0 and S,, = X; +---+
X, Let a(-) be defined as in (2.57). The two theorems below follow from
Theorems 1.3 and 1.4 of Bosq (1998) directly.

Theorem 2.18 Suppose that P(|X:| <b) =1. Then

(i) For each ¢ =1,--- ,[n/2] and ¢ > 0,
2 4b %
e%q n
P(|Sp| > ne) < 4dexp (_8l)2> +22 <1+€> qa([%}>.
(ii) For each ¢ =1,--- ,[n/2] and e > 0,

P(|S,| > ne) < dexp <8;2?q)> +22 (1 + tb)éqoz (B;D :

where v?(q) = 20%(q)/p* + be/2, p = n/(2q), and
2 = ] —_— 1 ...
olg) = max  E{(jp]+1-5p) X1+ Xz +

+ Xl + P+ D= [0+ DX (G410 lipl 41 L

Theorem 2.19 Suppose that Cramer’s condition is fulfilled, that is, for
some constant C > 0,

E| X" < C* 2k EX? <00, k=34, . (2.62)
Then, for anyn > 2, k >3, g € [1,n/2], and e > 0,

P(|Sn| > ns) < 2{1 + n/q + M(E)}e*qu(a)

+ 1l +5e Y(EXF)wry n 1)
n al |— ,
K qg+1

where p(e) = 2 /(25EX? + 5Ck¢).



74 2. Characteristics of Time Series

2.6.3 Limit Theorems for a-Mizing Processes

Let {X;} be a strictly stationary and a-mixing process. Define S,, = X; +
-+ + X,,. Let v(-) be the ACVF of {X;} whenever it exists.

Proposition 2.8 Suppose that E|X;| < co. Then as n — o0, Sp/n ~%
EX,.

Proposition 2.8 is an ergodic theorem for c-mixing processes. It follows
from the fact that an a-mixing sequence is mixing in the sense of ergodic
theory; see Theorem 10.2.1 of Doob (1953) and also Theorem 17.1.1 of
Ibragimov and Linnik (1971).

Theorem 2.20 Suppose that one of the following two conditions holds:
(i) E|X|° < 0o and > > a(j)172/% < 0o for some constant § > 2,
(11) P(|X¢| <'C) =1 for some constant C' >0, and }_ -, a(j) < oc.

Then 35, [7(j)| < oo, and

%Var(Sn) — ~(0) + 227(]'). (2.63)

The proof for case (i) can be found in §1.5 of Bosq (1998) (where the
law of the iterated logarithm for a-mixing processes is also presented). We
present the proof for case (ii) below.

Proof of Theorem 2.20(ii). It follows from Proposition 2.5(ii) that
I7(5)| < 4a(j){E|X1|}?. This implies that > ()] < co. For any n > 2,

1 1 — 2
- n) = — X))+ = Xi, X;
~Var(5,) n;\/ar( = > Cov( )

= 4(0)+ 22 <1 - 72)7(1).

Now (2.63) follows from the dominated convergence theorem. ]

Theorem 18.4.1 of Ibragimov and Linnik (1971) specified the necessary
and sufficient conditions of the central limit theorem (CLT) for a-mixing
processes. Peligrad (1986) and §1.5 of Doukhan (1994) provided collections
of the CLTs under different conditions for a- and other mixing processes.
The result presented in Theorem 2.21 below follows directly from Theorem
1.7 of Peligrad (1986). The key idea in the proof of CLTs for dependent
processes is to adopt the standard small-block and large-block arguments
due to Bernstein (1926); see the proof for Theorem 18.4.1 of Ibragimov and
Linnik (1971). We also attach a proof for part of Theorem 2.21 below to
illustrate this key idea.
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Theorem 2.21 Assume that EX; = 0, and o> = v(0) + 22;’;1 ~v(j) is
positive. Then

Sn/vn 25 N(0,02)

if one of the following two conditions holds:
(i) E|X|° < 0o and dois1 a(j)172/% < 0o for some constant § > 2;
(it) P(|X¢| < c) =1 for some constant ¢ >0 and 3, a(j) < oo.

Proof. We only present the proof for case (ii). To employ the small-block
and large-block arguments, we partition the set {1,---,n} into 2k, + 1
subsets with large blocks of size [,, and small blocks of size s,, and the last
remaining set of size n — ky, (I, + s, ), where [,, and s,, are selected such that

Sp = 00, Spfln =0, I,/n—0, and ky,=[n/(l,+ sn)] = O(sn).

For example, we may choose [, = O(n%l) and s,, = O(n'/") for any r > 2.
Then k,, = O(n'/") = O(s,). For j = 1,--- , ky,, define

Jln+(G—1)sn J(ln+sn)
&= ) Xiy  my = >, X
i=(j—1)(In+sn)+1 i=jln+(G—1)sn+1

and ¢ = E?:kn(lwrsn)ﬂ X;. Note that a(n) = o(n™!) and ky,s,/n — 0. It
follows from Proposition 2.7(ii) that

2
kn

1 1
~E § ; —E¢? .
- 4 7; — 0, nEC —0
Jj=1
Thus

1 1 | & b 1 &
—5, = — 4 , = 4 1). 2.64
Jn N ;@"‘;W"’C n;§]+017() ( )

It follows from Proposition 2.6 that as n — oo
it kn kn

Elexp | — ij - H E{exp(it;/v/n)}
vn j=1 j=1

< 16 (kn — 1) a(sy) — 0. (2.65)

Now, applying Theorem 2.20(ii), we have [, 1 E¢? — o2, which implies
the Feller condition

k
1 & ko l, 1
Y E¢ = TEg%—m?.
nj:l n

n
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By Proposition 2.7(ii),

E{e1(&] > Ean%)} < {Egil}% P{l&| > Ean%}
1
< Cly - ——5Bg = 0(I3/n).

Consequently,
1 )
~ > B{EI(g] = con®)} = O(knl} /n?) = O(ln/n) = 0,
j=1

which is the Lindberg condition. Using the standard argument for the proof
of CLTs (see, for example, p. 315 of Chow and Teicher 1997), we have

kn
H E{exp(it;/v/n)} — e~t%/2,
j=1

(Note that the convergence above would follow directly from the CLT for
the sum of independent random variables if the random variables {¢;} were
independent.) This, together with (2.65) and (2.64), entails the required
CLT. u

2.6.4 A Central Limit Theorem for Nonparametric Regression

In this section, we present a central limit theorem that can be used di-
rectly to derive the asymptotic distributions of nonparametric regression
estimators based on kernel smoothing for a-mixing processes.

Let {(et, Xt)} be a two-dimensional stochastic process. Let = be a fixed
real number, W(-) be a given function, and h = h(n) > 0 be a constant
depending on n. Define the triangular array

Xt—l'), "

Vi = Yin(@) = e W (=

=1,---,n;n>1 (2.66)

We will establish the central limit theorem for the partial sum
Su(x) = Yin (2.67)
t=1

under the following regularity conditions.

(C1) {(es, X¢)} is a strictly stationary process with E(e¢|X;) =
0, E(e?|X;) = o(X;)?, and E(|e;]?) < oo for some § > 2. Fur-
thermore, the function o(-)? and the marginal density function
p(+) of X; are continuous at x.



2.6 Mixing* 7

(C2) The conditional density function of (X1, X;) given (e1,e;)
is bounded by a positive constant Cy independent of j > 1.

(C3) {(et, X+)} is a-mixing with the mixing coefficients satisfy-
ing the condition Y-, t*a(t)!7%/% < oo for some A > 1 —2/6.

(C4) W(-) is a bounded function, and [ |W (u)|*du < oo for

k=1,2.

A42-2/6
(C5) n — 0o, h — 0, and nh ™ >¥2/5 = O(n*) for some constant
€, > 0.

Conditions (C1)—(C5) are standard in nonparametric regression. In par-
ticular, (C5) is implied by the condition that nh3 — oo and h — 0 (since
A > 1—2/§). Note that although the mixing conditions were introduced
for univariate processes in §2.6.1, they are readily applicable to the case
where X; = X; is a vector-valued process.

The partial sums of forms (2.67) and (2.66) are constantly encountered
in nonparametric regression estimation. They differ from the conventional
partial sums (such as those treated in Theorem 2.21) in two aspects. First,
each Y; ,, depends on n through h = h(n). Furthermore, due to the localiza-
tion dictated by W(-/h), only the terms with X} close to = on the right-hand
side of (2.67) are effectively counted asymptotically. This changes the con-
vergence rate from the standard n'/2 to (nh)/2. For further discussion on
this type of localization, see Chapters 5 and 6.

Due to the differences stated above, the limit theorems such as Propo-
sition 2.8 and Theorem 2.21 are not directly applicable to the partial sum
Sp(x), although similar results can be established in a similar manner with
additional regularity conditions. Note that the (weak) laws of large num-
bers may be derived relatively easily from the exponential inequalities in
Theorems 2.18 and 2.19. We only present a central limit theorem below.

Theorem 2.22 Under conditions (C1)-(C5), it holds that

1

S 5al®) b, N(o, o (z)2p(z) / W(u)Qdu).

The proof of the theorem above is presented in §2.7.7. It is similar to
the proof of Theorem 2.21 in spirit. The conditions and the proof of The-
orem 2.22 have been used in Masry and Fan (1997). See also the proof of
Theorem 6.3.
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2.7 Complements

2.7.1  Proof of Theorem 2.5(i)
It follows from (2.15) that, for any integer k > 1,

Y, = a&+ Z bi&i&i—ipi—i = a&y +a Z bi&i&i—i + Z bibj&&i—iYii—j
i=1

i=1 i,j=1

k
= a§+ az Z bjl te bjlft&t*jl T ft—jlf---—j,

=1 1<j1,,ji<oco

+ Z bj T bjk+1£t£t_j1 T gt—jl—”'—jk}/t—jl—"'jwrl' (268)

1<g1, ,Jk+1<00
Define
oo
Yt - agt +a E : § : le b]lgtgtfﬁ &*Jl*“'*jz'
=1 1<j1,,j1<oc0

Note that all of the terms on the right-hand side of the expression above
are nonnegative, and for any [ > 1,

E Z le . bjzftgt*jj . gt*jlf-“fjl

1<g1,,51<00

= Z bjl"'bjz: ij
=1

1<d1, 51 <00

l

Thus 0 < Y/ < oo as., E(Y/) = a/(1 —>_;b;), and therefore {Y/'} is
strictly stationary. It is easy to verify that Y, fulfills (2.15).

To prove the uniqueness, let {Y;} be a strictly stationary solution of
(2.15) with |EY;| < oco. We will show below that Y; = Y/ a.s. for any
fixed t.

Let ¢ be fixed now. It follows from (2.68) that for any k£ > 1

|}/t - YZ‘ < Z bjl o 'bjk+1£t€t—j1 o 'ft—jl_"'_jk |Y;5—j1—'”jk+1

1<j1, k1 <00
oo
+ a Z Z bj1 e bjzftgt—ﬁ T gt—jl_"‘_jl'
I=k+1 1<j1,,j1<o0
The expectation of the right-hand side of the above is not greater than

k+1

{E|Y1|+a/ <1ib>} ibj

i=1
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Let Ay = {|Y; = Y/| > 1/k}. Then

k+1

P(Ar) < REIY; - Y{| < k {Em +a/ (1 - Z@-)} Db
j=1

i=1

Thus >, -, P(Ai) < oo. It follows from the Borel-Cantelli lemma (see,
e.g., Theorem 3.2.1 in Chow and Teicher 1997) that P{Ay, i.0.} = 0. Since
Aj C Agy1, it holds that P(Ag) =0 for any k (i.e., Y: =Y/ a.s.). |

2.7.2  Proof of Proposition 2.3(i)

Let 79, = Cov(Xgy, X;). First we derive an explicit expression for
a = (ag, -+ ,a)" defined in (2.28) for j = 1. Note that for any 8 =
(ﬂ?» te aﬂky—?

E(X, - B Xox)? = E(X)—a Xyp)? + E{(a - B) Xy}
+ 2B{(X) — a"X2)X3 .} e - B). (2.69)

Hence E(X; — 37X24)? > E(X; — a™Xsa)? for any 3 if and only if the
third term on the right-hand side of the expression above is 0 (for any 3).
This is equivalent to

E{(Xl — aTXQVk)X;k} =0. (270)

This normal equation leads to the least squares solution a = X 11c72,k;1-
Hence, we have Ry ... 1, = Xl—'y;’k;lZ];’,chg’k. In the same vein, Ry 12.... &
= Xpt1 = V5 pops1 B2 1 X2,k It follows from (2.70) that

Cov(Riq1j2,- ks B2, k) = Cov(Xig1, Ryjo,.. i)
= (k) - ’772—,k;122_,i72,k;k+1'
The conclusion follows from the fact that
Var(Ryjs,... ;) = 7(0) — 75,k;122_,i'72,k;1
and Var(Rj41j2,... k) = Var(Rya,... k). (Note that {X;} is time-reversible

as far as its first two moments properties are concerned.) ]

2.7.3 Proof of Theorem 2.9

It may be shown in terms of a decomposition similar to (2.69) that

b11 1
) _ ( Yok Yok ) ( Yo, k;k+1 )
Yora (0) v(k)

ik
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It follows from the matrix partition inverse formula (p. 33 of Rao 1973)
that

—1 _ . _ _
( Yok Yok > _ ( EQ,Ilc(I+72,k;172,{c;122,i)/’/ *Ez,i’)’z,m/V )
’)’72—,k;1 7(0) _7§,k;12£k/y vt '

where v = ~(0) — ’772—,k;122_,i72,k;1' Combining the two expressions above ,
we have

brr = {v(k) — 75,k;12§,11¢72,k;k+1}/V7
which is the same as the right-hand side of (2.29). |

2.7.4  Proof of Theorem 2.10
Suppose that (2.35) holds. Then for any aq,--- ,a, € R,

Z ajarp(j — k) = / Z ajapeUP dF(w)

J,k=1 k=1

/ |Zaje“”j\2dF(w) > 0.
T

It follows from Theorem 2.7 that {p(k)} is the ACF of a stationary time
series.

Conversely, suppose that {p(k)} is the ACF of a stationary time series
{X;}. Define, for w € [—m, 7],

n

1 —iw(j— . 1 —iwm
fl@) = 5= 30 e I k) = s 37 (n— |ml)p(m)e .
j,k=1 |m|<n

Then f,(w) = Var(¢) = Cov(,€) > 0, where £ = Y7 e~ ™I X, /1/2my(0)

is a complex-valued random variable and & denotes its conjugate. Let
w
F,(w) = folw)dw, w e [-m .
—T
Then, for any integer j,

[ emarw) = 5 3 = pulupn) [ e,

—T —T

Note that the integral on the right-hand side of the expression above is
nonzero (i.e., 27) if and only if j = m. Therefore

/” eI dF, (w) = { (A =1l/m)p@), il <n, (2.71)

0, otherwise.

—T
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Since {F,(-)} is a sequence of probability distribution functions defined on
the finite interval [—m, 7], it follows from Helly’s selection theorem (see, e.g.,
Lemma 8.2.2 of Chow and Teicher 1997) that there exists a subsequence of
{F,} that converges in distribution to a probability distribution function
F'. Taking the limit as n — oo in (2.71) for that subsequence, we conclude
from the Helly—Bray theorem (Corollary 8.1.6 of Chow and Teicher 1997)
that

[ erar) = o)

—T

2.7.5 Proof of Theorem 2.13
Note that eq is a vector with 1 as all of its components. Hence, for k # 0,

T T
E et = ele;, =0, E e " = eley = 0.
=1

t=1

Therefore

Nl =
] =

T
Ir (wk) _ Xtefitwk Z Xseiswk
s=1

o~
Il
-

T
Z(Xt — X7)(X, — Xp)e i t=o)wn,
1s=1

I
Nl=
[M]=

~
Il

By a change of variable, 7 = t — s, and then an exchange of summation,
we have

~

-T
(Xt — XT)(Xt_-,— — XT)eiika

1 T
Iwe) = 7>,
t=1 1=t—1
T—1 1 T—|7| - - ‘
B T > (Xe = Xp)(Xigyr) — Xp)e T
r=(r-n =1
T-1 )
R
T=—(T-1)

2.7.6 Proof of Theorem 2.1/

First, we prove (i). To simplify the notation, we write 3 7_, ¢;&x; = 21221 bi&y,
where b; = ¢; for | = k; and 0 otherwise. It is easy to see that E(Z?gl b)) =
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0 and

r \/i T n
ci&p, = —— € boi_1cos(w;k) + ba;sin(w,k)}.
;jfkj \/Ta; ka:;{%l (J) 23 (J)}

This is a sequence of the linear combinations of independent random vari-
ables, and the central limit theorem (CLT) will be employed. We now cal-
culate the variance of the sum above . To this end, note that

T
Z )cos(wik) = (ej +e_;) (e1+e_;)/4=10;,/2,

k:

where e; is defined as in (2.49), and ¢;; = 1 if j = [ and 0 otherwise. In
the same vein, we have

T T
1
E )sin(wik) = 0;,/2, T E cos(wjk) sin(wk) = 0.

k k=1

Hence
-
§ : C;&k;
j=1

T n
2 .
= TT?VM ; Ek j:Zl{bgj,l cos(wjk) + boj sin(w;k)}
2

T
= %Z Z{sz 1 cos(wjk) + bej sin(w,k)}

k=1 \j=1
2n T
— 2 _ 2
= 20=>9
J=1 Jj=1

Write dj, = 377 {baj—1 cos(wjk) + bz;sin(w;k)}. It is easy to see that
|di| < rmax; |¢;| for all 1 <k < 2n. Hence, for any n > 0,

T

1

= " B I (exdi] > nTV2)} < CoE{1(ea] > nTV/?/C1)} =0,
k=1

where C and Cy are some positive constants. It follows from the CLT for
double arrays of random variables (see, e.g. p. 31 of Serfling 1980) that

r D r
Zj:l ik, — N(0, Zj:l c?)
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To prove (ii), note that the discrete Fourier transform of {X;} can be
expressed as

1 X
ap = — X, e twrt
TE t
o0
_ L aje I gy _jemiont=d)
7 ;

o T

1 S )

= Z aje” "k Z gre” Wkt UTj>
\F <t=

a(e M)Oéke + Y7 (wi),

: - T it - .
where a(z) = Y02 _a;27, ap. = T-H2Y,_ ere”™*! is the discrete

Fourier transform of {e;}, and

(o)
UTJ Z Egte —hwpt ZE e Zwkt YT(wk.) :T71/2 Z ajefi“”“jUTj.
t=1—3 j=—o00
Note that |ayc|? = 02(£3,_; + £3;.)/2. Hence
o l? = la(e™)*|ae|* + Rr (wk)
2mg(wr)(E3k—1 + E3k) + Rr(wi),

Ir(wy)

where g(wy) = |a(e™"*)|20?/(27) is the spectral density function of {X;}
(see Theorem 2.12), and

Rr(wi) = |Yr(wi)]? + ale”“*) o, Yo (—wi) + a(e“*)ay, Y (wi). (2.72)

Note that if |j| < T, Up; is a sum of 2|j| independent random variables,
whereas if |j| > T', Ur; is a sum of 27" independent random variables. Thus,
E|Ur;i|? < 2min(|j],T)o?. Therefore, for any fixed positive integer | and
T>1,

2
e}

1

Brol < | 3 lajl(BUZ)Y
j=—00
2
202 = s
s T Z |a;|{min(|j],T)}'/?
Jj=—00

[ V)

20

< fzw 2+ ]

[71<t [F1>1
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Note that the right-hand side of the expression above is independent of &
and can be smaller than any given positive constant (by choosing ! large
enough accordingly) as T — oco. Hence, maxj<r<pn E|Yr(w)[*> = 0. On the
other hand, |a(et™*)| < >-;lajl < oo and Elay > = 0. Application of
the Cauchy-Schwartz inequality to (2.72) gives maxi<x<n E|Rr(wg)| — 0.

]

2.7.7 Proof of Theorem 2.22

First, we calculate the variance of S, (x). Let Z; = Ytn/\/ﬁ It is easy to
see that F(Z;) =0, and

Lvar(S,(a)) = B(ZD) + 23 (1 i mB(ZiZ, ).
j=1

Condition (C1) implies that

Bz = 3 [ BEx = (5) @
= /a(x + hu)*p(x + hu) W (u)?du
— a(m)Qp(x)/W(u)Zdu = v(x), (2.73)

as h — 0. By conditioning on (e1, e;41), it follows from (C2) that

1 X —=x Xiy1—x
|E(Z1Zj+1)| = h‘E{616j+1W< 1h )W( j+]17, )}‘

— 2
S Coh_1E|616.j+1|{/W (y hl‘) dy}
2
< cohE(ef){/W(u)du} = O(h).
Therefore
> E(Z1Zj41)| = O(myh). (2.74)
j=1

By Proposition 2.5(i),
|B(Z1Z;41)| < Ca(j) =212/,
Let m,, = [m] Then m,, — oo, myh — 0, and

n—1 h2/5_1 n
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see condition (C3). Combining this with (2.74), we have
n—1
> E(Z1Zj11) — 0. (2.75)
j=1
Now, it follows from (2.73) and (2.75) that
1
—hVar{S’n(x)} =v(z){1+0(1)}. (2.76)
n
To prove the CLT, we employ the small-block and large-block arguments
as follows. We partition the set {1,--- ,n} into 2k, + 1 subsets with large

blocks of size [,,, small blocks of size s,, and the last remaining set of size
n — ky(ln + sn) and write accordingly

K En
Sul@) =D&+ > m+¢, (2.77)
j=1 j=1
where
jln“"(j*l)sn j(ln+5n)
& = > Yin, = > Y;m,
i=(j—1)(In+sn)+1 i=jln+(j—1)sn+1

and ¢ = Z:'L:kn(ln-l-sn)-i-l Y; .. Put

I, = [\/%/logn}, Sp = [(\/mlogn)%].
It follows from condition (C5) that s, /l,, — 0. Therefore
kn = [n/(ln + sn)] = O(v/n/h logn).
Note that condition (C3) implies nTErs a(n) — 0. Hence
kno(sy) — 0. (2.78)
It follows from (2.76) that

EE <P 0,
and E(n?) = sphv(z){1+ o(1)}. Hence
1 o i Ky sn, 1|
B (m) = R o)+ 1| Y Covtanme
kns =
< @) {1+ o(L)} + Y 1B(ZiZj1)]
j=1

- 0. (2.79)
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The limit on the right-hand side of (2.79) makes use of (2.75). Now, by
(2.77),

RS g,
ik Sn(z) = ﬁ;@‘ +op(1) = m@n +op(1). (2.80)

Similar to (2.79), it holds that

! g -
—Var(Q) = —E(Q2) =

knl

“v(x) +o(1) = v(z). (2.81)

We employ a truncation argument now. Write eX = e;I(|e;] < L) and
elt = e;I(|e;| > L) for a fixed constant L > 0. Write

kn kn

L R R

=Y &, Q=) ¢k
j=1 j=1

where ij and §]R are defined in the same manner as §; with e; replaced,
respectively, by el and eff. Similar to (2.81), we have that

iVaur(Q,LL) — Var{e I(|e1| < L)| X1 = z}p(x) / W (u)?du = v ()

nh
(2.82)
and
%Var(@f) S Var{eI(Jer] > L)| X1 = 2}p(a) / W(w)2du.  (2.83)
Define

M, = |Eexp(itQ,/Vnh) — exp{—t*v(z)/2},

where i = v/—1 now. Then, the required result follows from the statement
that
lim M, <e (2.84)

n—oo

for any given € > 0. Note that

IN

M, E ’exp(ith /v/nh){exp(itQF /vnh) — 1}

kn
+  |Eexp(itQL/vnh) — H ztﬁL/r

E(itéf /V/nh) — exp{~t*vr () /2}

+
Ew

j=1

Jexp{~ 12w (2)/2} — exp{~tu(x)/2}|.

_|_
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Note that the first term on the right-hand side of the expression above is
bounded by

E|exp(itQ}f /Vnh) — 1| = O{Var(QF)/(nh)}

which may be smaller than €/2 by choosing large L ; see (2.83). The last
term may also be smaller than €/2 by choosing large L as well; see (2.82).
By Proposition 2.6, the second term is bounded by 16(k,, — 1)a(s,,), which
converges to 0 due to (2.78). To prove that the third term converges to 0
is equivalent to proving that

1
vnh

while treating {§]L } as a sequence of independent random variables. The
latter is implied by the Lindberg condition

QL =N N(O7 UL(:L‘))

k

1 n
— > B[ I{Igf| > wrr(x)Vnh}] =0
j=1
for any w > 0; see, for example, p. 315 of Chow and Teicher (1997). Note
that l,/vnh — 0. When n is large enough, {|§]L| > wrl(x)v/nh} is an
empty set for all j. Hence the limit above holds. Therefore, we have shown
that (2.83) holds for any € > 0. The proof is completed. (]

2.8 Additional Bibliographical Notes

The literature on strict stationarity and ergodicity of nonlinear time series
(2.7) may be divided into two categories: general cases and special cases. In
addition to those presented in Theorem 2.4, Tweedie (1975, 1976), Num-
melin (1984), Chan and Tong (1985), Chan (1990a), Tjgstheim (1990),
Meyn and Tweedie (1993, 1994) derived various useful tools to identify
the (geometric) ergodicity of model (2.7). The research on ergodicity for
some individual models includes Petruccelli and Woolford (1984), Chan,
Petruccelli, Tong and Woolford (1985), Chen and Tsay (1991) and Guo
and Petruccelli (1991)on various TAR models and Chen and Tsay (1993)
for FAR models.

The general framework leading to model (2.15) was introduced by Robin-
son (1991b). Work on stationarity on ARCH and GARCH models includes,
among others, Nelson (1990), Bougerol and Picard(1992a, b), Nelson and
Cao (1992), and Kokoszka and Leipus (2000).

Dahlhaus (1997) introduced the class of local stationary time series in
terms of a spectral representation. The class provides, for example, an ar-
bitrarily close approximation to an AR model with the coefficients varying
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with respect to time; see also Neumann and von Sachs (1997) and Adak
(1998). The time-domain approach for local stationarity can be traced back
at least to Ozaki and Tong (1975) and Kitagawa and Akaike (1978). They
proposed the concept of interval-wise stationarity, which divides a time se-
ries into several time intervals and fits a stationary model on each interval.
Withers (1981) introduced the [-mixing condition, which is weaker than
a-mixing. Unfortunately, the [-mixing property is not hereditary in the
sense that {X;} being -mixing does not guarantee {g(X;)} being l-mixing
for nonlinear ¢(-). Doukhan and Louhichi (1999) provide a unifying ap-
proach dealing with mixing, association, Gaussian sequences and Bernoulli
shifts. The limit theorems and various inequalities were established un-
der a unifying weak dependence condition. Yoshihara (1976) and Denker
and Keller (1983) provided asymptotic theory of U-statistics for S-mixing
processes. A central limit theorem on degenerate U-statistics under the
[B-mixing condition can be found in Hjellvik, Yao, and Tjgstheim (1998).



3
ARMA Modeling and Forecasting

Fitting an appropriate ARMA (p, ¢) model to an observed time series data
set involves two interrelated problems, namely determining the order (p, q)
(which is usually referred to as model identification) and estimating pa-
rameters in the model. Further, the postfitting diagnostic checking on the
validity of the fitted model is equally important.

In this chapter, we first present a comprehensive account on the (Gaus-
sian) maximum likelihood approach for parameter estimation, which covers
the methodology, the algorithms and the asymptotic properties. Then we
outline some routine procedures for model identification and diagnostic
checking, paying particular attention to the Akaike information criterion
and its variants. Although fitting a time series model is always in the or-
der of model identification, parameter estimation, and diagnostic checking,
we deal with the problem of estimation first since almost all identifica-
tion methods involve estimating parameters. Finally, we briefly discuss the
forecasting methods based on nonstationary ARMA models. The methods
presented there are practically applicable for ARIMA models.

3.1 Models and Background

Let X1, -+, X7 be observations from a causal ARMA (p, ¢) process defined
by

Xt — letfl — = prtfp =& +a16¢-1+ -+ AgEt—q, (31)
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where {&;} ~ WN(0, 0%). Our goal is to determine the AR-order p and the
MA-order ¢ and to estimate the AR coefficients {b;}, the MA coefficients
{a;}, and the variance of the white noise o2.

In the setting above, we let £ X; = 0. In practice, we subtract the sample
mean from the data before the fitting; see Theorem 2.8(i) for the asymptotic
property of the sample mean.

We assume that model (3.1) is causal (see Definition 2.3). This is equiva-
lent to the condition b(z) =1—byz—---—b,zP # 0 for all |z| < 1. To avoid
ambiguity, we also assume that {a;} and o2 have been adjusted (without
changing the ACVF of the model) to ensure that

a(z)=1+ar1z+---+a2?7#0 forall |z| < 1. (3.2)

This condition rules out the possibility that two different causal ARMA
models share the same ACVF; see Proposition 4.4.2 of Brockwell and Davis
(1991). In practice, the assumption above implies that whenever we en-
counter more than one set of solutions, we always pick those estimated AR
coefficients such that the fitted model is causal and those estimated MA
coefficients such that condition (3.2) holds.

In the case ¢ = 0, model (3.1) reduces to a pure AR model, which is in
the form of a linear regressive model. Therefore, standard procedures for
linear regression estimation, such as the least squares method, are readily
applicable. An alternative approach is to replace the ACVF in (2.21) by its
sample version. Then, the estimators for the b;’s are obtained by solving
the equations with £ = 1, - | p. This leads to the well-known Yule—-Walker
estimators; see §8.1 of Brockwell and Davis (1991). Both methods admit
simple and closed-form solutions. However, they are not directly applica-
ble for MA and ARMA models. The modified Yule-Walker estimators for
ARMA models are typically inefficient. Therefore, we focus on the (Gaus-
sian) maximum likelihood method, which in principle is applicable to any
stationary time series. In fact, Theorem 3.2 below shows that Gaussian
maximum likelihood estimators for ARMA models with i.i.d. white noise
{e:} are always asymptotically normal, with the variance independent of
the distribution of &;.

Due to the dependence in the data, the Gaussian likelihood function for
an ARMA model involves the inverse of a T x T covariance matrix and
does not admit an explicit maximum likelihood estimator. This posed dif-
ficulties in implementing the method in practice at early stages. Various
ad hoc methods, aiming for approximating the exact maximum likelihood
approach, have been proposed to ease the computational burden; see Sec-
tion 5.4 of Priestley (1981) and the references therein. For example, for
an AR(p) model with Gaussian white noise, the conditional distribution

function of X411, -+, X7 given the first p observations X, -+, X, is
1
2y—(T-p)/2 _ _ . 2
(2wo”) P)I2 exp { 52 t:Ep_H(Xt b1 X1 bpXi—p) } ,
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from which we can easily derive the conditional mazimum likelihood estima-
tors for b;’s and o2. By doing this, we effectively reduce the sample size from
T to T — p. The full likelihood is the product of the conditional density of
Xps1,-+, X7 given Xy,---, X, and the density of Xy, -, X,. Thus, the
conditional likelihood function contains nearly all of the information in the
data except that contained in the density function of Xi,---,X,. On the
other hand, with modern computer power coupled with efficient algorithms,
we argue that it is ready now for us to use the exact maximum likelihood
(either the full likelihood or, more conveniently, the conditional likelihood)
estimation as a benchmark procedure for the estimation of ARMA models.
The estimation is in fact implemented in most modern time series packages
such as the ITSM of Brockwell and Davis (1996).

3.2 The Best Linear Prediction—Prewhitening

In order to avoid computing the inverse of large matrices in likelihood
functions, we prewhiten the data first, which is effectively equivalent to
evaluating the best linear predictor for X; based on X;_1, -+, X; fort > 2.

Definition 3.1 Let {X;} be a stationary process with mean zero. We call

Xir1 = o Xy + -+ o Xa (3.3)
the best linear predictor for Xy,1 based on Xy, -, X1 if
2
~ k
E(Xk+1 — Xk+1)2 = ?}blI;E Xk+1 - Z”L/)ij_j_H . (34)
i =

Taking the derivatives with respect to 1; and setting them to zero, we
obtain a system of equations:

k

E| X1 — Z‘ijkajJrl Xi—i+1 =0.
j=1

This yields the following theorem.

Theorem 3.1 A set of coefficients {¢x;} satisfies (3.3) and (3.4) if and
only if

k
Z@ker(i -Jj)= V(i)a i=1-,k, (3'5)

where y(-) is the ACVF of {X;}.
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Proof. For any {¢;},

2

k
E | Xpp1— 0 Xk 1 (3.6)
j=1
2
K
— Y 2
= BE(Xipr1 — Xer1)* + EQ Y (or5 — ) Xe—ji1 ¢ +2B,
j=1
where
k k
B = ES | Xen— Y ki Xepaj | D (ki — i) X1
j=1 i=1
K K
= D (i =) V(D) = D ey — )
i=1 =1

It is easy to see from (3.6) that E(Xy41 — Z?Zl Vi Xp—j11)? > E(Xpy1 —
Xji1)? for any {¢;} if B = 0. The latter is equivalent to condition (3.5).
On the other hand, suppose that there exists an i (1 <4 < k) for which

Cy =~(i) — Z?Zl VYt —J) # 0. Let ¢; = @i + Co and ¢; = ¢y for all
j # 4. Then

k
E(Xpg1 = Y i Xk—j41)* = E(Xpg1 — Xep1)? + C3Var(X,) — 2C2C1.
j=1
Choosing Cy such that CoC7 > 0 and |Cs| < 2|Cy|/Var(X;) entails that
E(Xkq1 — Zj Vi Xk j11)? < B(Xpy1 — Xk+1) , which contradicts the

definition of the best linear predictor. Therefore (3.5) is also a necessary
condition for (3.4). [

From the proof above we can see that
COV(X]C+1_X]€+1,X7;):07 i:17~-~ ,k‘.

Since X; — )?l is a linear combination of X;,--- , X; only, we conclude that
{Xy — X3, t =1,--- T} is a sequence of uncorrelated random variables,
where we define X; = 0. Transforming the original data {X;, t =1,--- , T}
to the uncorrelated sequence {th)A(t, t=1,---,T} is called prewhitening.
It is easy to sce that E(X; — X;) = 0 and

vy = Var(Xip1 — Xt+1) = E{(X¢41 — )?tJrl)XtJrl}

= 7(0) - Z ©i57(4)- (3.7)
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Note that, for causal ARMA processes, ACVF can be easily evaluated
numerically based on its MA (oo)-representation; see (2.20). Based on the

ACVF, the predictive errors {X; — X,;} and their variances {1} can be
calculated through the innovation algorithm described below. For its proof,
we refer to Proposition 5.2.2 of Brockwell and Davis (1991).

Innovation algorithm: Set vy = v(0). Based on the cross-recursive equa-
tions

j—1
Oy = v {V(k —Jj) - Zej,j—iek,k—wi} ;
i=0
k-1
v = 7(0)— Zoi,k—j%‘v
=0

compute the values of {6;;} and {r;} in the order

ellayla
022,021, V2,

033, 032,031, 13,

Or—17-1,0r—1,17—2, " ,07_1.1,V7—1.

The best linear predictors are given by X 1 =0 and

k
X1 = Zekj(XkH—j - Xky1-j), k=1, ,T—1 (3-8)
i=1

3.3 Maximum Likelihood Estimation

3.8.1 FEstimators

Let Xp = (X3, -+, X7)" and XT = ()/(\'1,~~ ,)/(\’T)T. It follows from (3.8)
that XT = @(XT — XT), where

0 0 0
011 0 0
e—| 0= 021 0

oo O oo

Or_17-1 Or—17—2 O7_17-3

Hence, we may write X7 = C(Xp — )A(T)7 where C = © + I is a lower-
triangular matrix with all main diagonal elements 1, and I is the T' x T
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identity matrix. Let D be the diagonal matrix D = diag(vg, - ,vr—1).
Since EXp = 0, it follows from (3.7) that

¥ = Var(Xy) = CDC™ and [%|=D|= ][]

Note that the matrices 3, C, and D depend on the parameters a and b
(see the innovation algorithm). Hence, if {X;} is a Gaussian causal ARMA
process defined by (3.1), the likelihood function is of the form (the density
of multivariate normal distribution)

1
L(b,a,0?) x |Z[72exp {2X921XT}

T
1 N
= (W vro1) Y exp 3 Z(Xj - X;)?/vi
j=1
;I
= o Trg--rp_1) Y2 exp —2—2 D2 /rici g, (3.9)
where b = (b1, ,b,)7, a = (ai,...,a,)7, and r7; = v;/0?. Maximizing

this likelihood function, we obtain the mazximum likelihood estimator

b,a,52) = b, a, o> 3.10
(b,8,5%) = arg(ba)rélzlsa2>o L(b,a,0%), (8.10)

where
B={(b,a) : b(z)-a(z) #0forall |z| <1}. (3.11)

In the definition above, we require the estimator to be in the set B to ensure
that the fitted model is causal and invertible. We call the ARMA(p, q)
model (3.1) invertible if a(z) # 0 for all complex numbers z with |z| < 1.
From the proof of Theorem 2.1, we can see that the invertibility implies
that {X;} can be expressed as an AR(co) process.

We can see from (2.19), (3.5), and (3.7) that {r;} and {¢;;} do not
depend on ¢2. Maximizing over o first, by (3.9), the maximum likelihood
estimators can be expressed as

T
(b,a) = arg (bH;i)relB log{S(b,a)} + 7! Zlogrj,l , 2= 8(b,a)/T,

)

J:1 (3.12)
where
T o~
S(b, a) = Z(Xj — Xj)z/ijl. (313)
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Equality (3.9) shows that we can avoid calculating the inverse of the
covariance matrix 3 through prewhitening, which reduces a great deal of
the computational burden in searching for (b,a). In numerical implemen-
tation, we often drop the constraint (b,a) € B in (3.12) and solve the
unconstrained minimization problem first. Let gj’s and a;’s be the uncon-
strained minimizers. As long as they do not entertain a unit root in the
sense that (1 — zp_lb )1+ YL @2") # 0 for all |z|] = 1, the con-
strained minimizer (b7 a) € B can be obtained as follows. Let z1,- - , 2, be
the roots of 1 — Z?Zlgjzj = 0, that is,

Z :Hl—z/z]

(See §9.5 of Press et al. (1992) for the algorithms to find the roots’ z;’s.)
Without loss of generality, we assume that |z;] < 1 for 1 < j < k and

|zj| > 1 for k < j < p. Then, the desired estimators’ b;’s are defined by the
equation

p k P
“2 b ==z I a2z,
j=1 j=1 i=k+1

see Proposition 4.4.2 of Brockwell and Davis (1991) and the discussion on
causality below Definition 2.3. The estimators’ @;’s may be obtained in a
similar manner. Furthermore, the estimator 52 defined in (3.12) should be
calculated based on (b,a) instead of (b,a). Note that (b,a) and (b,a)
share the same ACF. Thus, it holds that S(B,ﬁ) = S(b,a). From (3.12),
we can see that the likelihood function admits the same values at (b, ) and
(b,a). Hence (B,ﬁ) obtained above is the genuine constrained maximum
likelihood estimator within the set B.

The maximum likelihood estimation has been implemented in most mod-
ern time series packages, such as the I'TSM of package Brockwell and Davis
(1996). In general, some nonlinear optimization programs will be used in
conjunction with the innovation algorithm in the search. One common opti-
mization routine for this purpose is the Newton—Raphson procedure, which
computes the estimator in an iterative manner. To illustrate the basic idea
of the procedure, we write 3 = (b",a”)” and

T
£(B) = log {S(b, a)} +71 Zlog i1

j=1

Let ﬂ be the maximum likelihood estimator for 8. It is easy to see from
(3.12) that £(8) = 0, where ¢ denotes the derivative of £ with respect to 8.

When the sample size T is large, it is reasonable to expect that B is close
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to the true value 3. Hence, a simple Taylor expansion entails

_é(ﬁo) ~ g(50)(@ = Bo);

where ¢ denotes the Hessian matrix. Based on this, we may define the
iterative estimators

Bii1 =B — {{BL)} By), k=0,1,---.

With a carefully selected initial value BO, the iterative estimators Bk may
converge to a limit that is taken as the maximum likelihood estimator B
since ¢ (B) = 0. Although this idea is very simple, the actual implementation
is much more complicated and involves quite a few fine technical details; see,
for example, §9.4 and §9.6 of Press et al. (1992). A good initial estimator
plays an important role in ensuring a secure and fast convergence. On
the other hand, more sophisticated optimization algorithms, such as those
presented in Chapter 10 of Press et al. (1992), may also be used for this
purpose.

Although we advocate the maximum likelihood estimation method, some
preliminary estimation based on relatively simple or ad hoc methods pro-
vides good initial values for the algorithms searching for the maximum
likelihood estimators, which practically constitute an important part of the
maximum likelihood estimation procedure. We refer the reader to §8.1-68.4
of Brockwell and Davis (1991) for detailed discussion on various prelimi-
nary estimation methods. Those methods have also been incorporated in
the package ITSM.

In fact, the method described above may be applied to compute the max-
imum likelihood estimators for any Gaussian processes. On the other hand,
when {X;} is not Gaussian, we may still regard (3.9) as a measure of good-
ness of fit to the data and choose the parameters that maximize this mea-
sure. We will always refer to (3.9) as the Gaussian likelihood function and
estimators derived from maximizing the Gaussian likelihood as maximum
pseudolikelihood estimators or simply maximum likelihood estimators, re-
gardless of the underlying distribution. Theorem 3.2 below shows that the
maximum likelihood estimators so defined are asymptotically distribution-
free as long as {&;} ~ IID(0,0?). However, when ¢, is not Gaussian, the
maximum pseudolikelihood estimators (B,ﬁ) are typically inefficient. Fur-
thermore, when &; has heavy tails in the sense that Var(e;) = oo, Gaussian
likelihood (as well as the least squares approach) may lead to inconsistent
estimators. Some robust methods are more adaptive to heavy-tailed data;
see, for example, Davis, Knight, and Liu (1992) and Hall, Peng, and Yao
(2002).



3.3 Maximum Likelihood Estimation 97

3.3.2  Asymptotic Properties
We first introduce some notation. Let {W;} ~ WN(0, 1). Define

b(B)U = W, and a(B)V; = W,.

Namely, {U;} is an AR(p) process defined in terms of the AR-coefficients
in model (3.1) and {V;} is an AR(q) process defined in terms of the MA-
coefficients in model (3.1), and the two processes are correlated with each

other since they are defined in terms of the same white noise process {W, }.
Let Z=(U_qy,---,U_p,V_q,---,V_4)7, and

W(b,a) = {Var(Z)} . (3.14)
Theorem 3.2 Let {X,;} be the ARMA process defined in (3.1) in which

{e1} ~ 1ID(0,0?) with o > 0 and the true value (bg,a0) € B defined in
(3.11). Then, as T — oo,

(3 ) B VO W)

2 ) and 52 are defined in (3.12), and W(-) is

o)

and 52 55 o2, where (B,
defined in (3.14).

The theorem above shows that the asymptotic distributions of the esti-
mators are independent of ¢2. In this sense, the quality of the estimators
for causal and invertible ARMA models is not affected by the magnitude
of the white noise. This is due to the fact that the ratio of signal to noise
in a causal ARMA model is independent of o2. For example, for the AR(1)
model X; = bX;_1 + & with {&;} ~ WN(0,0?), we have

Var(X;) = b*Var(X;_1) + o2
Due to stationarity,
Var(X;) = Var(X;_;) and Var(X;) = o?/(1 —b%).
Hence, the ratio of signal to noise is
{Var(X,)/Var(e,) }'/? = (1 —b%)71/2,

which does not depend on ¢2. In fact, this conclusion holds for general
causal ARMA processes.

The theorem above was first obtained by Hannan (1973) based on some
sophisticated frequency-domain arguments; see §10.8 of Brockwell and Davis
(1991). A time-domain proof was given in Yao and Brockwell (2001). Note
that we do not even need the condition that F(g;)* < co (see Theorem 2.8).
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This is due to the fact that under the condition (bg,ag) € B, {X;} is ef-
fectively an AR(oo) process. Therefore, the asymptotic behavior can be
established similarly to that of the estimator in a linear regression model.
In fact, the condition that {e;} ~ IID(0,0?) in the theorem above can be
replaced by {e;} being merely a sequence of martingale differences with
constant conditional variance 0% < oo; see Hannan (1973).

The covariance matrix W(+) is dictated by two correlated AR processes.
We list below concrete forms of W(-) for some simple models to illustrate
the usefulness of this asymptotic result.

(i) AR(p) models

For autoregressive models with order p, Z = (Up,--- ,U1)". Since the scale
of Z is a factor of o as large as (X,, -+, X1), Var(Z) = I'p/0?, where T,
is a p X p matrix with (i — j) as its (¢, j)th element. Thus, the asymptotic
variance of b = (77\1, e ,3,1)7 is O'ZI‘;I/T. In the special cases p =1 and 2,
we have

AR(1):  Var(h) ~ (1 —b})/T,
_ b\ 1 1—03 —b1(1+ bg)
AR(2) : Var</b\2 > NT( —by(1 + by) 113 .

For an AR(p) model, the least squares estimator, the Yule-Walker esti-
mator, and the conditional maximum likelihood estimator share the same
asymptotic distribution as the maximum likelihood estimator b; see The-
orem 10.8.2 of Brockwell and Davis (1991). This can be understood as fol-
lows. Note that an AR(p) model may be regarded as an AR(k) model for
any k > p with b; = 0 for p < j < k. It can be proved that, for any causal
AR(p) model and k > p, the (k, k)th element of T}, " is |Ty_1|/|Tx| = 072
Thus Ek is asymptotically normal with mean 0 and variance 1/T. Applying
this result in the context of the estimation of partial autocorrelation func-
tion 7(-) (see §2.2.3), we obtain the following proposition, which will play
an important role in identifying purely autoregressive models.

Proposition 3.1 Suppose that {X1,---, X7} is a sample from a causal
AR(p) model defined with 1ID(0,02) white noise and o® > 0. Then, as
T — oo,

T2 % (k) N N(0,1) for any k > p,

where 7w(k) = by is an estimator for by, in fitting an AR(k) model to the
data {Xy,- -, X7} using the (conditional) mazimum likelihood method, the
least squares method, or the Yule—Walker estimation method.

(ii) MA(q) models

For moving average models with order ¢, the asymptotic variance of a =
(@1, ,aq)" is (T;)~'/T, and T, is a ¢ x ¢ matrix with y*(i — j) as its
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(4, 7)th element, where v*(-) is the ACVF of the AR(q) process a(B)Y; = e,
and {e;} ~ WN(0,1). In the special cases of ¢ = 1 and 2, we have

MA(1) : Var(a;) =~ (1 —a?})/T,

ay) a
. al - 1 1—&% al(l—ag)
MA(Z) . Var ( 62 ) ~ T ( 0,1(1 o a2) 1— a% .

(iii) ARMA(1,1) models
For model X; — bX;_ 1 = ¢&; + ag;_1, it can be computed that

Var( b ) ~1+ab< (1-0)(1+ab) (B2~ 1)(1—a?) >

i) Taror \ 1)1 —a?) (1-a)(1+ab)

3.3.8 Confidence Intervals

The asymptotic variance matrix W (b, a) given in (3.14) may be used to
calculate the standard errors of the maximum likelihood estimators for
parameters in causal and invertible ARMA models. For example, the stan-
dard errors for b; and @; are (w;;/T)"/? and (wpyi p+i/T) /2, respectively,
where w; is the (i, )th element of W (b, a). Most time series packages auto-
matically provide the values of standard errors when calculating estimates.

On the other hand, approximate confidence regions for parameters in
ARMA models can be easily constructed in terms of the limit distribution
in Theorem 3.2. For example, an approximate (1 — «) confidence region for
the AR coefficient vector b is obtained as

~

{b=(b1,---,b,)": (b—b)"Wi(b—b) <x3_,(p)/T}.

where V/Vl is the p x p upper-left submatrix of W(B,ﬁ), and Xg(l —a) is
the 100ath percentile of the y2-distribution with p degrees of freedom. An
approximate (1 — «) confidence interval for the single parameter b; is given
as

{bj : |/b\j — bj| < T_1/2w]1-]/221—a/2}7

where z, denotes the 100ath percentile of the standard normal distribution.

3.4 Order Determination

In this section, we first introduce general principles for determining the
order (p,q) in ARMA modeling, namely AIC, BIC, and FPE. In the end,
we outline a general routine procedure for model identification.
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3.4.1 Akaike Information Criterion

Akaike’s information criterion (AIC) (Akaike 1973, 1974) is used to select
the optimum parametric model based on observed data. It has been re-
garded as one of the important breakthroughs in statistics in the twentieth
century. The basic idea of the AIC can be described as follows. Suppose
that we use a probability density function f to approximate an unknown
density g. The Kullback—Leibler information

Ig:) = [ ga)togg@do ~ [ ga)log o)z (3.5
provides a measure for the lack of the approximation. It is easy to see that

I(g; ) = Elog{g(X)/f(X)}, with X ~g.

By Jensen’s inequality, we have
I(g:f) = —Elog{f(X)/g(X)} > —log(B{f(X)/9(X)})

~tog( [ f(@)/g(a)g(a)ds) = .

with equality holding if and only if f = g. A good approximation should
make the measure I(g; f) as small as possible. Note that the first term
on the right-hand side of (3.15) does not depend on f. Hence, we should
choose f that minimizes

- / g(x) log f(z)dz = — E,{log f(X)}.

Since we do not know g, we have only a set of observations {X1, -+, X1}
from g. Naturally, we will replace the expectation above by its unbiased

estimator
1 T
-7 Z log f(X;)
j=1

Typically, we would choose f from among a set of parametric family
{fm(:|0m)} indexed by m. The form of f,, is typically given for each m.
For example, in the context of time series analysis f,, may stand for an
ARMA family with the order m = (p,q), and 0,, = (b1, ,bp, a1, ,a,).

The best approximation would minimize

T
Z 0g fm (X;|0m).- (3.16)

Note that this is a two-step optimization: searching for the minimizer of 6,
for fixed m and then searching for the global minimum over different values
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of m. Obviously, the minimizer in the first step is the maximum likelihood
estimator 6,,. The second step involves searching for m that minimizes

However, there is a serious drawback in this approach: the expression above
is no longer an unbiased estimator for —Eg{log f (X0 )} due to the over-
fitting caused by the double use of the same data for the estimation of the
expected log-likelihood and the estimation of the parameter 6,,. Akaike
(1973) proposed to rectify this problem by adding the bias

T
{108 fn (X10)) + S By{10 fin (X; 1)}
j=1

to the sample likelihood function. He showed that the bias can asymptoti-
cally be approximated as

T
{108 i (X10m)} + 7 D By {108 fin (X518} = b /T,
j=1

where p,, denotes the number of estimated parameters; see also §2.1.3 of
Kitagawa and Gersch (1996). Thus, a term p,,, /T should be added to (3.16)
in order to correct the bias, leading to

T
1 —~
_T E Ingm(Xj‘am) +pm/T'
j=1

Multiplying by a factor of 27, which does not affect the choice of m, we
define the following Akaike information criterion (AIC):

T
AIC(m) = =2 10g f(X;l0m) + 2Pm (3.17)
j=1
= —2(maximized log likelihood) + 2(No. of estimated parameters).

On the right-hand side of the expression above, the first term reflects the
lack of fit; increasing the complexity (e.g., number of parameters p,,) of the
model is likely to make this term decrease. However, the model complexity
is penalized by the second term. The optimum model that minimizes the
AIC is a trade-off between the two terms, that is similar to the bias and
variance trade-off in nonparametric estimation (see Chapter 5).

In the context of fitting an ARMA model to time series data, if we regard
the Gaussian likelihood (3.9) as the true likelihood function, the AIC is of
the form (after discarding some constants)

AIC(p, q) = —2log{L(b,a, S(b,a)/T)} +2(p + ¢ + 1), (3.18)
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where b and & are the maximum likelihood estimators for (b1,--- ,bp)" and
(a1, ,aq4)7 defined in (3.10) and S(-,-) is defined in (3.13). Hurvich and
Tsai (1989) argued that a better bias correction could be obtained if we
replaced (p + ¢ + 1) by an asymptotically equivalent quantity T'(p + g +
1)/(T —p—q—2); see also pp. 303-304 of Brockwell and Davis (1991). This
leads to a modified criterion

2p+q+1)T

(3.19)

In view of the fact that the AIC tends to overestimate the orders (Akaike
1970, Jones 1975; Shibata 1980), AICC places a heavier penalty for large
values of p and ¢ to counteract the overfitting tendency of the AIC.

Suppose now that we fit a pure AR model with order 1 < p < L with
L > 1 prescribed. Let 77 = T — L. Based on the conditional Gaussian
likelihood function

T
’ _ ’ 1
(2m)" o exp {_202 Z (Xt =01 Xpoq — - — prtp)z} ;
t=L+1

which is the full likelihood function divided by the density function of
X1, -, X, we may define the following simpler versions of the AIC and

AICC:
AIC(p) = T'log(G2) + 2(p + 1), (3.20)

~ 2(p+ 1T’
2

AICC(p) =T log(ap) + m, (3.21)

where

1 & ~ ~
52 = T (X —biXeg == b Xy ) (3.22)
t=L+1

We select the order p that minimizes AIC(p) or AICC(p) defined above.
The conditional argument above effectively reduces the sample size from
T toT' =T — L. When T is large relative to L, the selected orders differ
little from those derived from (3.18) and (3.19).

3.4.2 FPE Criterion for AR Modeling

An alternative procedure for the order determination in AR modeling is the
final prediction error criterion due to Akaike (1969). The basic idea is very
simple. We have a hypothetical set of observations {)?1, e ,)A(:T} that are
from the same underlying process as the real observations {Xi, -+, Xrp}.
Then, we estimate the AR coefficients from {X;} and select the order such
that the prediction errors on the fictitious data {)NQ} obtain the minimum.
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Namely, we choose p that minimizes

where gj’s are the MLE of b;’s based on {X1,---, X7}
If the underlying process is a stationary AR(p) process with IID(0, o2)
white noise, the asymptotic approximations

E(&;) ~o?(1 +p/T"), E(&i) ~o?(1—p/T),

hold,where o7 is defined in (3.22). Therefore, we may use 52(7"+p) /(1" —p)
as an approximation for the unobservable 512,. Now, the final prediction error
is defined as

o T +p
_ =2
FPE(p) = o, 7
The FPE criterion selects p that minimizes FPE(p).
Note that
T'log{FPE(p)} = T’ log(5%) + T log(1+ 2P
p T — P
~ 2p
— 2
= T'log(5,) + TIT’ — +0(1/T").

Comparing this with (3.20) and (3.21), we have

AIC(p) = AICC(p) + O <T1) — T'log{FPE(p)} + O <T1) .

In this sense, the AIC, AICC, and FPE are asymptotically equivalent.

3.4.8 Bayesian Information Criterion

Since the AIC (also AICC and FPE) does not lead to a consistent order
selection (Akaike 1970; Shibata 1980; Woodroofe 1982), various procedures
have been proposed to modify the criterion in order to obtain consistent
estimators. As a popular alternative to AIC, the Bayesian information
criterion (BIC) defines the optimum model that minimizes

—2(maximized log likelihood) 4 log T' x (No. of estimated parameters).

Comparing this with (3.17), BIC increases the penalty for the model com-
plexity by replacing the factor 2 by log(T'). This ensures that the estimated
order is consistent (Hannan 1980). In the context of ARMA models, we have

BIC(p, q) = —2log{L(b,3,S(b,a)/T)} + (p+ ¢+ 1)logT.  (3.23)
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In the same vein as (3.20) and (3.21), we may define the BIC for fitting
AR models as

BIC(p) = T"log(5;) + (p+ 1) log T". (3.24)

In the expressions above, all of the estimators are derived from the maxi-
mum likelihood method or its asymptotic equivalents.

The name BIC is due to the fact that the criterion was derived from di-
verse Bayesian arguments, see for example, Akaike (1977), Kashyap (1977),
and Schwarz (1978). In fact, it can also be derived from a non-Bayesian ar-
gument such as in Rissanen (1980).

3.4.4 Model Identification

It is a general philosophy in model identification to allow modelers certain
flexibility in exercising their subjective judgment. It is a fact of life that
there rarely exists a true model in practice. A good practice of model iden-
tification should end with a selected model that is statistically sound and
practically meaningful. A parsimonious model is always preferable when
two candidate models appear about equally good. Below, we list a routine
guideline from a purely data-analytic point of view.

Step 1. Examination of time-series plot

The first step is to produce a time-series plot; namely, to plot X; against
t and examine the plot to identify obvious trends, seasonal components,
and outliers. These components should be removed through differencing,
moving-averaging, or other appropriate methods (see §6.2).

Step 2. Examination of correlogram

Trend and seasonal components may show up in a correlogram (i.e., the plot
of sample ACF p(k) against k). A slowly damping correlogram is indicative
of a slowly varying trend component. A periodic fluctuating correlogram
is indicative of a periodic component (with the same period). Taking the
difference at appropriate time lags may remove those nonstationary com-
ponents.

Step 3. Determining the MA-order from the ACF and the AR-order from
the PACF

If the data appear stationary in both the time-series plot and correlogram,
we may try to identify the order (p,q) from the sample ACF {p(k)} and
the sample PACF {7(k)} first. As a rule of thumb, we fit an AR(p) model
to the data if

7] < 1.96/VT (3.25)
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for about 95% of k’s among all k > p (see Proposition 3.1), and we fit an
MA(q) model to the data if

1/2

P(k)| < 1.96 1+2§qjﬁ(j)2 INT (3.26)

Jj=1

for about 95% of k’s among all k > ¢ (see (2.27)). (We ignore the correlation
among 7(k)’s and p(k)’s for different &k in the heuristic argument above.)
Unfortunately, the simple patterns above are seldom observed in real data
analysis. On the other hand, it is always recommended to estimate (or
double-check) the order using the formal procedures in Step 4 below (see,
for example, Example 3.2 below).

Step 4. Determining the orders using AIC or other information criteria
Since Akaike’s pioneering work on AIC, various information criteria have
been developed; see Choi (1992) for a survey. Each method has its own
merit. A practically relevant question is when to use what, although a gen-
eral answer to this question is inconceivable. The choice should depend on
the nature and the aim of the data analysis. Empirical experience suggests
that AIC is a good starting point. If we prefer a simple model that reflects
the main and interpretable features, we may also try BIC, for example. On
the other hand, forecasting based on an AR model with a slightly overesti-
mated order does little harm. Shibata (1980) and Hurvich and Tsai (1989)
showed that AIC, AICC, and FPE are asymptotically efficient, while BIC
is not. The asymptotic efficiency is a desirable property defined in terms of
the one-step mean square prediction error achieved by the fitted model. The
AIC was not designed to be consistent, nor is its inconsistency necessarily
a defect (Hannan 1986).

It is easy to see from (3.5) and (3.7) that the likelihood function (3.9)
depends on the coefficients {b;} and {a;} only through the ACF. There
may exist quite a few different ARMA models that provide almost equally
good approximations to the sample ACF of the observed data set; see Ex-
ample 3.3 below. Therefore, we may consider the models with AIC values
within a small distance from the minimum AIC value as competitive candi-
dates. Selection among the competitive models may be based on interpre-
tation, simplicity, or diagnostic checking using the techniques described in
§3.5 and/or §7.4. Formal statistical tests may also be employed if a choice
has to be made, for example, between two candidate models.

To gain insights on the various criteria, we illustrate the methods through
some simulated examples below. Estimation was carried out using the
package ITSM of Brockwell and Davis (1996). ITSM evaluates the maxi-
mum likelihood estimate based on a ‘preliminary estimate’ that is obtained
through the Yule-Walker method or other methods. Note that the ITSM
calculates the BIC based on a different formula (p. 171 of Brockwell and
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(a) AIC, BIC & FPE (T=100) (b) AIC, BIC & FPE (T=50)
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FIGURE 3.1. Example 3.1—Fitting an AR(p) model. Plots of AIC(p) (labeled
“a”), AICC(p) (labeled “c”), BIC(p) (labeled “b”), and aFPE(p)+03 (labeled “f”)
against p for sample size (a) T'= 100 and (b) 7" = 50. [(c, 3) = (100,120) in (a)
and (50, 50) in (b)]. Lines labeled with k are —2log(maximum likelihood). (c)
and (d) are ACF and PACF plots for a sample of size 50.

Davis 1996). The BIC values reported below were calculated based on (3.23)
directly.

Example 3.1 (Fitting AR models) We draw a sample of 100 observations
from the model

Xt = 0.5Xt_1 + O.3Xt_2 - O.?Xt_g + O.QXt_4 + &, {5t} ~ii.d. N(O, 0'2).

Assuming that the data are drawn from an AR model with an unknown
order p, we fit a causal AR model with the order determined by the data.
The sample PACF plotted in Figure 2.3(b) shows that w(k)’s for k& > 4



3.4 Order Determination 107

are almost always between the bounds +1.96/v/T (see (3.25)). This sug-
gests that AR(p) with p = 4 might be a suitable candidate model. On
the other hand, the sample ACF plotted in Figure 2.3(a) does not appear
to have a clear cutoff. We apply AIC, AICC, BIC, and FPE to estimate
the order p. The results are displayed in Figure 3.1(a). We also plot the
—2log(maximum likelihood) (i.e., the first term on the right hand side of
(3.18), (3.19), and (3.23)), which decreases as the order p increases, al-
though the decrease became slow and steady after the model reached the
order 3. Nevertheless, this shows that the penalty for the model complexity
is necessary for model selection. The difference between AIC and AICC is
small for small values of p and only shows up when p is large. Due to the
larger penalty on complex models, BIC increases faster than both AIC and
AICC, as p increases. AIC, AICC and FPE chose the correct order 4 for
the given sample, whereas BIC prefers orders 3 to 4 by a narrow numerical
margin of 0.21. We repeated the exercise with a sample of size 50 and ob-
tained similar results; see Figure 3.1(b). The PACF plot in Figure 3.1(d)
suggests the order p = 3. Both AIC and FPE choose the correct order 4 for
the given sample, whereas both AICC and BIC prefer orders 3 to 4 by nu-
merical margins 0.18 and 1.62, respectively. The models with orders 3 and
4 could be regarded as competitive models. With sample size T' = 50, the
maximum likelihood estimates for the AR coefficients in the AR(4) model
are
0.36, 0.29, —0.69, and 0.22,

with the standard errors 0.14, 0.11, 0.11, and 0.14, respectively. The esti-
mate for the variance of the white noise is 0.94.

Example 3.2 (Fitting MA models) We generate a sample of 100 from the
model

Xt =¢e;+0.664_17 4+ 0.66¢_9+4+0.36,_3 + 0.7e4_4, {6,5} ~iid. ]\7(07 1)

with o = 1. Assuming that the data are drawn from an MA model with
an unknown order ¢, we determine the order and estimate MA coefficients
from the data. The sample ACF plotted in Figure 2.3(c) shows that p(k)’s
for k > 4 are almost always within the bounds +1.96/+/T and therefore also
within the bounds +1.96{1 + 22?:1 P2(5) Y2 /V/T (see (3.26)). This sug-
gests that MA(4) might be a suitable candidate model. We apply AIC,
AICC, BIC, and FPE to estimate g. The results are displayed in Fig-
ure 3.2(a). In general, we see a similar pattern as in the previous example.
All of the AIC, AICC, and BIC select the correct order ¢ = 4. We repeat
the exercise with a sample of size T' = 50. The order ¢ = 4 is still selected
by all of the three information criteria; see Figure 3.2(b). With T = 50, the
maximum likelihood estimates for the MA coefficients are

0.56, 0.54, 0.17, and 0.71,
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(a) AIC, AICC & BIC (T=100) (b) AIC, AICC & BIC (T=50)
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FIGURE 3.2. Example 3.2—Fitting an MA(g) model. Plots of AIC(q) (labeled
“a”), AICC(q) (labeled “c”) and BIC(q) (labeled “b”) against g for sample size (a)
T =100 and (b) T = 50. Lines labeled with k are —2log(maximum likelihood).
(c) and (d) are ACF and PACF plots for a sample of size 50.

with the standard errors 0.12, 0.14, 0.20, and 0.18, respectively. The esti-
mate for the variance of the white noise is 1.08. Note that with the sample
size 50 the PACF plot in Figure 3.2(d) seems to suggest that the AR(1)
model would be a reasonable alternative. However, the corresponding AIC
value is 169.09, which is substantially larger than 161.43—the AIC value
corresponding to the fitted MA(4) model. The difference is in the same
order of magnitude as the difference of the AIC from order 3 to order 4. In
fact, AR(1) is the best AR-model for the data according to AIC. However, it
is a poor fitting overall. For example, the estimated variance for the white
noise is 1.58, greatly exceeding the true value 1. This example indicates
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AIC, AICC and BIC (T=100)
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FIGURE 3.3. Example 3.3—Fitting an ARMA(p, ¢) model. Plots of AIC(p, q)
(labeled “a”), AICC(p, q) (labeled “c”) and BIC(p, q¢) (labeled “b”) against (p, q).
The four segments of curves correspond to p = 0 and 1 < ¢ < 6, p = 1 and
0<q¢<6,p=2and 0<¢g<3,and p=3 and 0 < ¢q < 3, respectively.

that heuristic order selection based on PACF and ACF could sometimes
be misleading.

Example 3.3 (Fitting ARMA models) We generate a sample of 100 from
the model

X =08X;1—06X: o+ 40711 +04dero, {et} ~iid. N(0,1).

Assuming that the true model is unknown, we will fit the data with an
appropriate causal and invertible ARMA model. The sample ACF and
PACF plotted in Figures 2.3 (e) and (f) show that p(k) for k > 6 and 7(j)
for j > 3 are not significantly different from 0. Thus, we search for the
optimum ARMA (p, ¢) model with 0 < p < 3 and 0 < ¢ < 6. The results
are displayed in Figure 3.3. Both AIC and AICC select the true model with
p = q = 2 whereas, BIC favors AR(3). Note that the values of AIC, AICC,
or BIC for those two models are very close; see Figure 3.3. We regard both
as “competitive models”. The fitted ARMA(2, 2) model from the maximum
likelihood method is

Xt = 0.72Xt,1 — 0.64Xt,2 +e& + 0.745,571 + 0.415,572, (327)
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with Var(e;) = 0.96. The fitted AR(3) model is
X; = 1.29X; 1 — 110X, + 0.34X;_3 + &4, (3.28)

with Var(e;) = 1.01. We will revisit this example in §3.5.

3.5 Diagnostic Checking

In view of the fact that a statistical model is only an approximation to
reality, it is important to conduct postfitting diagnostic checking to see
whether the fitted model explains the data well. In this section, we outline
some standard methods for model diagnostics. The most frequently used
techniques are residual-based methods that are designed to test whether the
residuals derived from the fitted model behave like a white noise process.
Some nonparametric tests to be introduced in §7.4 are also designed for this
purpose. It is useful to bear in mind that the residual-based methods usually
have little power to detect overfitting. Therefore, it is important to select
an appropriate order, using criteria that penalize the model complexity.

3.5.1 Standardized Residuals

First, we define the standardized residuals from a fitted ARMA (p, ¢) model
as follows. Based on the form of the likelihood function (3.9), the standard-
ized residuals should be the estimates of the WN(0, 1) random variables

Rj = (X; — X;)/(c%r;_)Y?, j=1,--- T

Note that both )A(j and r;_; depend on the unknown parameters b =
(b1, -+ ,b,)" and a = (a1, -+ ,a,)". Replacing them (as well as o%) by the
maximum likelihood estimators defined in (3.12), we obtain the standard-
ized residuals

R; = {X,; — X;(b,a)}/{6%r;_1(b,a)}"/?, j=1,--- T (3.29)

In the expression above, we write both X ; and r;_; explicitly as functions

of b and a to indicate that they are approximated from the fitted model.
If the model is correct, {R;} should resemble {R;}, which is a WN(0,1)

process. Furthermore {EJ} should resemble an ii.d. N(0,1) sequence if
{e:} in the model is Gaussian.

3.5.2  Visual Diagnostic

A simple and powerful diagnostic tool is to look at the time-series plot of
{R;}, and the plots of R; against the regressors (one in each time). Those
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plots should resemble “purely random” pattern of the WN(0, 1) process if
the fitted model is adequate. The inadequacy may be indicated by a sys-
tematic pattern such as deviation of the mean from zero, changing variation
over time or over the regions of regressors, the existence of trend and cyclic
components, and so on. We may superimpose the horizontal lines at £1.96
in the plots, and expect that about 95% of the residuals are within the two
lines if the model fits the data.

The correlogram of {R;} may also be revealing. If the model is correct,
we expect the sample ACF of {]/%J} to fall within the bounds +1.96/v/T
at about 95% of time lags. Box and Pierce (1970) modified the bounds
+1.96/v/T to take into account the dependence of the sample ACF of {ﬁj}
at different time lags; see also §9.4 of Brockwell and Davis (1991).

3.5.8  Tests for Whiteness

There are an abundance of tests for whiteness that can be applied to
test whether {R;} is a white noise process. The tests presented in §7.4
are designed to test the whiteness based on the spectral density of the
residuals. All of the tests are approximately valid, giving approximately
correct levels of tests, since the parameters under the null hypothesis are
typically estimated with rate Op(T~1/2).

Example 3.3 (Continued) We conduct a diagnostic check for both the
fitted ARMA(2, 2) model (3.27) and AR(3) model (3.28). The standardized
residuals calculated according to the formula (3.29) from both models are
plotted in Figures 3.4 (a) and (b), and their ACFs and PACFs are plotted
in Figures 3.4 (¢)—(f). All of the plots provide stark evidence to support
that the residuals from both models behave like a white noise process.

By applying the tests in §7.4, the p-values for the Fisher test (7.33), the
generalized likelihood ratio test (7.37), the adaptive Neyman test (7.43),
and the y>-test (7.40) are 0.66, 0.89 (with 8 d.f.), 0.89, and 0.36 (with 46
d.£.) for model (3.27) and .78, 0.84 (with 8 d.£.), 0.93, and 0.57 (with 47 d.f.)
for model (3.28). Those tests lend further support to both fitted models.

Note that in principle two seemingly different ARMA models could effec-
tively be the same if their MA(00)- or AR(00)-representations were almost
the same. However, the two fitted models above are really different. Because
model (3.27) is invertible, it can be represented as

Xt =&+ Zdet,j,
j=1

in which |d;| > 0.15 for 1 < j < 6, and the first three d;’s are —1.46, 1.31
and —0.38, respectively. This indicates that model (3.27) is substantially
different from (3.28). This example illustrates that there could be two or
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(a) Residuals from ARMA(2,2) (b) Residuals from AR(3)
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FIGURE 3.4. Example 3.3—analyzing residuals. Time-series plot, correlogram,
and PACF plot for the standardized residuals from the fitted ARMA(2, 2) model
(3.27) are displayed in (a), (c), and (e), respectively. Those for the standardized
residuals from the fitted AR(3) model (3.28) are displayed in (b), (d), and (f).
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more fundamentally different models that fit a given finite series almost
equally well.

3.6 A Real Data Example—Analyzing German
Egg Prices

Figure 3.5(a) displays the weekly egg prices at a German agricultural mar-
ket between April 1967 and May 1990. The series is of length 300 and
is the first quarter of a longer series extensively analyzed in Finkenstadt
(1995). The sample mean and variance are 12.38 and 6.77, respectively.
Since the data exhibit a clear nonstationary feature (see also its correlo-
gram in Figure 3.5(c)), we take the first-order difference of the series. The
differenced series are plotted in Figure 3.5(b), which looks more stationary-
like. A scrutiny of Figures 3.5 (d) and (f) suggests that we may fit an
ARMA (p, ¢) model with p < 7 and ¢ < 7. Note |p(k)| or |7(k)| > 1.96//T
for k = 18, 22,25, and a few other larger values. But with sample size 300,
we prefer to fit the data with some small-order models first. We subtract
the sample mean —0.015 from the data before the fitting. We select the
model based on AICC simply because it is implemented in ITSM.

The optimum AR model based on AICC is AR(7) with the AICC-value
698.24. The estimated AR-coefficients 31, e ,37 are

0.322, —0.159, 0.021, —0.004, —0.055, —0.023 and — 0.163.
The ratios @/{SE(BJ)} forj=1,---,7 are
5.651, —2.666, 0.035, —0.071, —0.906, —0.378, and — 2.869,

where SE(b;) stands for the standard error of b; (see §3.3.3). The small
values (<< 1.96) of |/b\] / SE(EJ)\ are the significant supporting evidence to
the hypothesis b; = 0. Therefore, we fit the data with the same model again
with the constraints b3 = b, = 0. The fitted model becomes

X; = 0.321X;_1 — 0.160X;_s — 0.057X;_5 — 0.023X;_¢ — 0.165X;_7 + &1,
(3.30)
where {g;} ~ N(0,0.567). By leaving out the terms X;_3 and X;_4, the
AICC-value has been reduced to 694.04.
On the other hand, we fit an MA(7) model to the data. The estimated
MA-coefficients ay,- -+ , a7 are

0.320, —0.038, —0.054, —0.023, —0.048, —0.046, and — 0.195.
The ratios @;/SE(@;) for j =1,--- ,8 are

5.541, —0.629, —0.896, —0.386, —0.790, —0.757, and — 3.210.
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FIGURE 3.5. (a) Time plot of weekly German egg prices over a period of 300
weeks. (b) Lag-1 differenced series. (c) and (e) are ACF and PACF plots of the
series displayed in (a). (d) and (f) are ACF and PACF plots of the differenced
series displayed in (b).
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Note that five out of seven of these ratios are smaller than 1 in absolute
value. We use AICC to select the optimum model among the MA(7) family
with at least one of ao, as, a4, as, and ag equal to 0. The selected model is

X, =, +0.345e,_1 — 0.173,_7 (3.31)

with 32 = 0.570 and the standard errors of the two coefficients in the model
above 0.054 and 0.051 in order. The corresponding AICC-value is 689.34,
which is noticeably smaller than that of model (3.30).

Looking at the AR-coefficients in model (3.30), we search for an optimum
ARMA(p, q) model with p =1 or 2 and 1 < ¢ < 7. The model selected by
AICC is the ARMA(1, 2)

Xt =0.906X:_1 + et — 0.619¢4_1 — 0.381e4—_2, (3.32)

with 52 = 0.563 and AICC= 690.58. The standard errors for the three
coefficients in the model are 0.022, 0.053, and 0.052 in that order.

According to AICC, both models (3.31) and (3.32) are comparable with
each other. We conduct diagnostic checking on both of them. The standard-
ized residuals and their ACF and PACF plots are depicted in Figure 3.6.
Slightly more than 5% (but < 6%) of residuals from both models are be-
yond the bounds +1.96. But both ACF and PACF plots show that there
still exists weak but significant autocorrelation in the residuals at some
discrete lags. To see whether there is a genuine lack of fitting, we fit AR
models to both residuals. In both cases AICC picks the optimum order
p = 0, which indicates that the residuals are fairly white. By applying
the tests in §7.4, the p-values for the Fisher test (7.33), the generalized
likelihood ratio test (7.37), the adaptive Neyman test (7.43) and the y2-
test (7.40) are 0.22, 0.82 (with 8 d.f.), 0.04, and 0.00 (with 50 d.f.) for
model (3.31) and 0.22, 0.53 (with 9 d.f.), 0.01, and 0.00 (with 50 d.f.) for
model(3.32). While both fittings passed the Fisher test and the generalized
likelihood ratio test comfortably, they failed in the y2-test and model(3.32)
also failed the adaptive Neyman test. This reflects the fact that there still
exists some significant autocorrelation in the residuals; see Figures 3.5 (c)
and (d). In fact, we set ar equal to 50 in the adaptive Neyman test (7.43).
The maximum value of T 5, was obtained at m = 42 for both models (3.31)
and(3.32). One possible remedy is to include variables at the lags at which
(partial) autocorrelation is significant. However it is in general difficult to
interpret the resulting model. For example, it is hard to argue why the egg
price at present depends more on the price 42 weeks ago rather than those
in the last couple of weeks. Therefore, we decide to leave our fitted models
unchanged.

Converting models (3.31) and (3.32) to the original egg price data {Y;},
we obtain the two competitive ARIMA models

Y; =Yy +e40.345e,_1 — 0.1735_7, {e1} ~ WN(0,0.570),
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FIGURE 3.6. Fitting German egg price data. (a) Standardized residuals from
fitted MA(7) model (3.31). (b) Standardized residuals from fitted ARMA(1, 2)
model (3.32). (c) and (e) are the ACF-plot and PACF-plot of residuals from the
MA(7) model. (d) and (f) are the ACF-plot and PACF-plot of residuals from the
ARMA(1, 2) model.
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and

Y; = —0.001+ 1.906Y;_; — 0.906Y;_5
+ & — 061951 —0.381e,_5, {e:} ~ WN(0,0.563).

3.7 Linear Forecasting

In this section, we discuss the forecasting for nonstationary ARMA (such
as ARIMA) time series. We assume that the time series has mean 0 over
all time. The practical implication of this assumption is that the mean
function can be dealt with easily such that either the time series has a
constant mean or we have fairly substantial prior knowledge on the way
in which the mean function varies. It is intuitively clear that we can only
forecast the future if the underlying process sustains certain stability over
time.

First, we present a definition for the least squares m-step-ahead pre-
dictor, which is typically a linear predictor for linear time series. When
the time series follows an AR equation (such as ARIMA(p, 0,0) processes),
the m-step-ahead predictor can be recursively computed based on the AR
equation (see (3.35) below). The mean squared predictive error can also be
calculated in a recursive manner. The stationarity is not required.

For a general ARMA(p, q) process with ¢ > 0, we need to assume that
the process is invertible (although not necessarily stationary). This is an
essential assumption that enables us to recover white noise signals {e;,t <
T} from observations {X;,¢t < T'}.

Although we will proceed with a general form of the ARMA model with-
out the assumption of stationarity, we assume that both the form of the
model and the coefficients in the model are known and remain unchanged,
so we can predict the future based on the stable form of the model (in-
stead of stationarity). The techniques presented are practically applicable
to ARIMA models for which the parameters can be replaced by their esti-
mators obtained from the differenced observations.

3.7.1 The Least Squares Predictors

Suppose that we have observations X, , Xp from a time series {X;}.
We forecast a future observation Xp,,, for some m > 1 based on the
observations X, --- , X;7. The time series is not necessarily stationary. But
we assume that EX; = 0 and E(X}) < oo for all ¢.

Definition 3.2 For m > —T, we call X7(m), a (measurable) function of
Xrp,-+-, X1, the least squares predictor for Xri,, based on Xr,---, X1 if

Xr(m) = arg irfle(XTer - 13
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where the infimum is taken over all the (measurable) functions of Xr, - - -,
X,

In the definition above, we allow m to be nonpositive for technical con-
venience. It is easy to see that X7 (m) = Xp_,,,| when =T <m < 0.

Proposition 3.2 Xr(m) = E(X1r4m| X7, -+, X1).
Proof. Let Xp = (Xp,--+,X1)7. For any measurable f = f(Xr),

E(XT+m — f)2 = E{XT+m — E(XT+m|XT)}2
+  E{E(X7im|X7)— f}*+ 2B,

where
B = E[{XT+m — E(XTJ,-m|XT)}{E(XT+77L|XT) - f}]
= FEE[{Xrim — E(X14m|Xr) HE(X74m[X7) — f}HX7]
= E{E(Xrim|X7) = fYE{X1im — E(X74m|X7)XT}]
= E{EXr+m|X7) — FHEX14m|Xr) — E(X11m|X1)}
0.
Thus E(X71m — f)? 2 E{X74m — E(X74m|X1)}>. |

3.7.2  Forecasting in AR Processes

Suppose that {X;} is defined by an autoregressive model (not necessarily
stationary)
Xt = let—l + -+ prt—p —+ Et, (333)

where {&;} ~ WN(0,0?) and
E(Etht—l, Xt_g, s ) =0 forallt. (334)

The proposition below shows that Xr(m) is a linear function of Xr,--- , X3.
Therefore Xr(m) is also the best linear predictor which is discussed, for
example, in §9.5 of Brockwell and Davis (1991).

Proposition 3.3 Let {X;} be a process defined by (3.33) and T > p. Then
Xr(m)=uXr(m—-1)+---+b,Xpr(m—p), m=1,2,---. (3.35)
Furthermore, Xr(m) is a linear function
Xp(m) =™ Xp+ -+ Xy, m=1,2,-,

where {cpg-m)} are some constants.
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The proof of the proposition is trivial, as (3.35) follows from (3.33), (3.34)
and Proposition 3.2, and the linearity follows from (3.35) and an obvious
induction argument.

Let {X:} be an ARIMA(p', d,0) process now, that is

d

d! .
Y, = ViX, = — = (=1 X,_;, t=0,+1,+2 ---
t \% t JZ::O]'(d_])'( ) t—3> ) ) )

is a stationary AR(p’) process, where d is an integer. Therefore { X;} follows
formally the AR equation with order p = p’ +d,

d d

! . 4 ! 4
Z W(_l)j){tﬁ' =&+ kz::l b Z m(_l)thfkfjv

Jj=0 Jj=0

where {e;} ~ WN(0,0?). Thus, X; can be expressed in an autoregres-
sive form. With the observations {X1, -, X1}, X7(m) for m > 1 can be
evaluated recursively based on the equation above; see (3.35). In practice
we replace by, -, by by their maximum likelihood estimators, which are
obtained based on the (T — d) “observations” {VX; j=d+1,---,T}.

3.7.8  Mean Squared Predictive Errors for AR Processes

For the process {X;} defined by the autoregressive equation (3.33), it can
be proved by induction that

k+p K

Zd emit > Y dibjiXej, k=0,1,2,-, (3.36)

j=k+1 =0

where d;’s are obtained recursively by (2.20) with dy = 1 and a; = bp4; =0
forall j > 1. Let t =T +m and k = m — 1 in the expression above, and
we obtain that, for T > p,

p—1m—1

XT+m— ZdETer J+szbm+l zXT l-

=0 i=0

By Proposition 3.2, Xr(m) is equal to the second sum (i.e., the double
sum) on the right-hand side of the expression above:

—1m—

p—1 1
XT(m) - Z dib7n+l—iXT—l~
=0 0

Hence, the residual is X7, — X7 (m) = Zl<j<m djer4m—;. This entails
the proposition below immediately. -

1=
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Proposition 3.4 Let {X,;} be a process defined by (3.33) andT > p. Then,
the mean squared predictive error of Xr(m) for m > 1 is given by

;-.

0 (m) = E{X14m — Xr(m)}? = o? d
7=0

where d;’s are obtained recursively by (2.20) withdy =1 and aj = bp4; =0
for all j > 1. Furthermore, if for any i,j > 1 and any integer t,

Eleryictsi| Xe, Xe—1,- ) = E(et4i€t45), (3.37)
o2.(m) is also equal to the conditional mean squared prediction error, namely

or(m) = E[{Xqim — Xr(m)}?| Xe, Xp_q,---].

When {X;} is causal, 3~ |d;| < occ. In this case,
—>022d2 Var(X;) asm — oo

(see §2.2.1). This is the same as the noise level and implies that X (m) —
E(X74+m) = 0, which indicates that a long-term forecasting is nearly im-
possible.

Condition (3.37) is very mild. For example, it holds if, in addition, {e;}
is a sequence of independent random variables and &; is independent of
{X:¢_k, k > 1} for any t. Hence, the proposition above also shows that the
conditional predictive error for those processes is independent of the values
of Xp,---,Xy. This illustrates the fact that the forecast based on linear
time series models does not reflect the common knowledge that the risk of
a prediction depends on the current state (i.e., Xr,---, X1). We will see in
Chapter 10 that the dependence of prediction on its initial condition may
be naturally captured in nonlinear time series models.

3.7.4 Forecasting in ARMA Processes

Suppose that {X;} is defined by an ARMA equation (not necessarily sta-
tionary)

p q
Xo=> biXej+e+ Y ae, (3.38)
j=1 j=1

where {g;} ~ WN(0,0?) and condition (3.34) holds. It is easy to see that
when T' > max{p, q},

= b Xr(m—j)+ > ajer(m—j), (3.39)
j=1

Jj=1
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where e (i) = E(eryi| X, -+, X1). Obviously, er(i) =0 for all ¢ > 1.

In order to evaluate those er(i)’s in (3.38) with i < 0, we make two
further assumptions. First, we assume that model (3.38) is invertible in
the sense that

l4az+---4a2?7#0 forall|z| <1

Under this condition, model (3.38) admits an AR(co) expression

oo

Xi=¢e4+ chXt*j’ Z |Cj| < 00, (340)

j=1 j=1

where ¢g = 1 and ¢, = by — Z?;& cjar—; for k > 1 (see (2.20)). In the
recursive calculation of c’s, we let b1 ; = ag4+; = 0 for all j > 1.

We also assume that we have all of the observations from time 7" back
to negative infinite. Therefore, the least squares predictor based on all
observations is

Xr(m) = E(X7rym| X, X7_1---),

and ep(j) is defined accordingly as

. 0 > 1,
er(j) = E(eT-&-j‘XTaXT—l ) = { ers; j 2 0

In practice, we assume that X; = 0 for all j < 0. We expect that the
modification has little impact as long as T is large relative to p and ¢ since
then the dependence between Xrpy; (j > 0) and its remote past would be
weak or very weak. Summarizing the findings above, we obtain the following
propositions. Note that (3.41) can be established in the same manner as
Proposition 3.4.

Proposition 3.5 Let {X;} be defined by model (3.88) which is invertible.
Then the least squares predictor for Xpym based on Xp, Xp_1, - is de-
fined recursively by (3.39), in which er(j) =0 for j > 1 and ep4; given by
(8.40) for j < 0. Furthermore, the mean-square prediction error is given
by

=

o7 (m) = E{Xr4m — Xr(m)}* =0 ) d7, (3.41)
§=0

where d;’s are obtained recursively by (2.20) with ag4; = byt; = 0 for all
j > 1. Under the additional condition (8.37), it holds that

op(m) = E[{X1im — Xr(m)}?| Xr, X7_1,---].
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Example 3.4 Let us consider the invertible ARIMA(0, 1, 1) model
Xt—Xt,1 =&t —Q&¢_1, {Et} '\JVV:I\I(O,OQ)7

where |a| < 1 and E(g|X;—1,Xi—2,--+) = 0 for any ¢. Since |a| < 1, we
have the infinite series expansion

(1-az)” Zajzj |z] < 1/a.
Note that the model can be written as (1 — B) X, = (1 — aB)e;. Hence

g = (1—aB) ZaJle—

—(1-a) Zaj_lXt,j.
j=1

It follows from Proposition 3.5 that

)?T—i-l XT 1 —a Z aJXT —j (342)
and for m > 2
Xr(m) = (1—a)d @ Xp(m—j—1)
=0

= Xp(m—-1)—a{ Xp(m—1)—(1-a)Y o 'Xg(m—j—1)

= Xrim—-1)—a{Xr(m—-1) - Xr(m—-1)} = Xp(m—1).

The latter follows also directly from (3.39).
Note that the predictor X741 defined in (3.42) is a moving average of

all of its lagged values with the coefficients exponentially decaying. If we
define Xy = E(X¢|X¢—1,X¢—2,---) for all ¢, it follows from (3.42) that

Xt+1 = (1 — a) Zantfj = (1 — G)Xt + (Z,)?t
7=0

Xt + G(Xt — Xt)

The predictor Xt+1a giving weight (1 — a) to the most recent observation
X; and weight a to its predicted value, is referred to as the exponential
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smoothing, which is one of the most frequently used methods in forecast-
ing. The example above shows that it is optimal if {X;} is an invertible
ARIMA(0, 1, 1) process. However, as a heuristic algorithm, the exponential
smoothing (with 0 < a < 1) has been widely used in practical forecasting.
For example, it plays an important role in volatility forecasting for financial
time series; see (8.54). In fact, the exponential smoothing may be viewed as
a special type of kernel smoothing (see §6.2.5). This indicates that it is ro-
bust against model misspecification. For further discussion on exponential
smoothing, see Gardner (1985).

All of the forecasting techniques described in this section are model-based
in the sense that they are the best if the assumed model is correct and
the parameters in the model are known. Practical experience shows that
some heuristic forecasting algorithms, such as the exponential smoothing
mentioned above, are well worth serious consideration; see Chapter 9 of
Brockwell and Davis (1996).
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4

Parametric Nonlinear Time Series

Models

The long-lasting popularity of ARMA models convincingly justifies the use-
fulness of linear models for analyzing time series data. Nevertheless, in view
of the fact that any statistical model is an approximation to the real world,
a linear model is merely a first step in representing an unknown dynamic re-
lationship in terms of a mathematical formula. The truth is that the world
is nonlinear! Therefore, it is not surprising that there exists an abundance
of empirical evidence indicating the limitation of the linear ARMA fam-
ily. To model a number of nonlinear features such as dependence beyond
linear correlation, we need to appeal to nonlinear models. In this chapter,
we present some parametric nonlinear time series models and their statis-
tical inferences. §4.1 provides an introduction to the threshold modeling
for conditional mean functions. §4.2 is devoted to ARCH modeling of non-
constant conditional variance functions—a phenomenon called conditional
heteroscedasticity. A brief account on bilinear models is given in §4.3.

4.1 Threshold Models

Linear approximation serves as a powerful tool in quantitative scientific
investigation in almost all disciplines. However, when we tackle nonlinear
problems such as modeling nonlinear dynamics, a global linear law is often
inappropriate. For example, it seems naive to assume that, in an economy
or an animal population, the expanding phase is governed by the same
linear dynamics as the contracting phase. Since a global quadratic (or a
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higher-order) autoregressive form is typically unstable, a natural alterna-
tive would be to break a global linear approximation into several, each on
a subset of the state-space. Under the umbrella of the threshold princi-
ple (§3.3 of Tong 1990), there is a class of nonlinear time series models
that models nonlinear dynamics based on a “piecewise” linear approxima-
tion via partitioning a state-space into several subspaces. The partition is
typically dictated by a so-called “threshold” variable. In this section, we
present a simple but frequently used form—the threshold autoregressive
model; focusing on the developments after Tong (1990). We introduce the
techniques for estimation, testing, and model identification and illustrate
those techniques through a real data example.

4.1.1 Threshold Autoregressive Models

Definition 4.1 A threshold autoregressive (TAR) model with k (k > 2)
regimes is defined as

k

X = Z{bio + b1 X1+ + bi,piXt—pi, + O'iEt}I(Xt_d S A1)7 (41)
i=1

where {e;} ~ IID(0,1), d,p1, -+ ,pr are some unknown positive inlegers,

o; > 0 and b;; are unknown parameters, and {A;} forms a partition of
(—00,00) in the sense that UF_|A; = (—o0,00) and A; N A; = @ for all
1# 7.

In the model above, we fit on each A; a linear form. The partition
is dictated by the threshold variable X;_4, and d is called a delay pa-
rameter. It is often (but not always) the case that A4; = (r;—1,r;] with
—00 =719 < 7T1 < - < 1 = oo. In this case, r;’s are called thresh-
olds. This model, first introduced by H. Tong in 1977, is in fact a special
type of threshold model called self-exciting threshold model; see Tong and
Lim (1980) and Tong (1990). It has been widely used to model nonlin-
ear phenomena in diverse areas, including economics (Tiao and Tsay 1994;
Hansen 1999), environmental sciences (Mélard and Roy 1988), neural sci-
ence (Brillinger and Segundo 1979), finance (Li and Lam 1995), hydrology
(Tong and Lim 1980), physics (Pemberton 1985), and population dynamics
(Stenseth et al. 1999). Tts success partially lies in its simplicity in terms of
both model-fitting and, perhaps more importantly, model-interpretation.
By modeling the nonlinearity via partitioning the state-space, the station-
arity may be preserved. This is in marked contrast to change-point models
for which the regime-switch happens according to time, resulting in non-
stationary processes. Unfortunately, our knowledge of the TAR model is
still developing. We do not have a comprehensive theory and methodology
as we do for linear ARMA models.

It is easy to see from Theorem 2.4 that model (4.1) admits a strictly sta-
tionary solution if (a) o1 = - -+ = 0, and (b) either maxi<;j<x Y72, [bij| < 1
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or Z§:1 maxi<i<k |bi;| < 1 with p = maxi<,;<y p;. Note that these condi-
tions are sufficient but not necessary; see model (2.14).

The linear correlation of two random variables is explicitly defined. Con-
sequently, autocorrelation of a time series is well-captured by its autocor-
relation function (ACF), which, as we have witnessed in Chapter 3, plays
a key role in modeling the autolinear relationship. (Note that a PACF is
a function of the corresponding ACF; see Proposition 2.3.) Unfortunately,
there exists no analog of the ACF to represent nonlinear dependence in
general. Various attempts have been made to define appropriate measures
for nonlinear dependence/association, either localized or global. But none
of them are as simple and illustrative as the ACF and PACF in analyz-
ing linear relationships. We have in fact a paradox here; a nonlinear phe-
nomenon is typically more complex and more difficult to model than a
linear one, and the available tools are much less comprehensive and less
effective. Therefore data-exploratory and data-analytic techniques such as
various plots (§5.2 of Tong 1990), background information, and nonpara-
metric and semi-parametric techniques play important roles in identifying
an appropriate (parametric) form in nonlinear modeling. A statistical test
for linearity is a routine practice to testify to nonlinearity. We will illustrate
some of those ideas in case studies in §4.1.4 below.

For fitting a low-dimensional structure, the scatter plots that plot a time
series variable against its lagged values are almost as insightful as any more
sophisticated tools. To illustrate this idea, we consider a simple TAR model
with two regimes as follows:

—0.7X: 1 + &, X1 2>,
X = { 0.7X¢_1 + &4, X1 <, (42)
where ¢;’s are independent N(0,0.5%) variables. We generate four sample
series (of length 500 for each) from the model above with r equal to, respec-
tively, —oo, —1,—0.5, and 0. Figure 4.1 presents the scatter plots of those
four sample series. For r = —oo, the model reduces to a linear AR(1). For
all three other cases, the nonlinearity is clearly displayed in those plots.
On the other hand, ACF and PACF plots, although still useful, cannot be
taken as ultimate measures for the dependence. For example, Figures 4.2 (a)
and (d) indicate that there is hardly any significant autocorrelation when
r = —1 in spite of the intimate dependence between X; and X;_; defined
by (4.2).

It is worth pointing out that the usefulness of TAR models is due to
the fact that the class of piecewise linear functions may typically provide a
simple and easy-to-handle approximation to a more sophisticated nonlinear
function. Figure 4.3 displays some examples for which different nonlinear
functions can be approximated by piecewise linear functions with two, three
or four regimes, which may be viewed as linear splines with two, three or
four knots; see §6.4. In practice, a good fitting from a TAR model does
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(a) Linear AR (b) TAR, r=-1

FIGURE 4.1. Scatter plots of the samples generated from TAR model (4.2) with
(a) r = —o0, (b) 7 = =1, (¢) r = —0.5, and (d) r = 0. The solid lines are the

true regression functions.

not necessarily imply that the underlying process is exactly piecewise lin-
ear. But a practically meaningful interpretation is often entertained when
each regime in a fitted model represents a different characteristic of the
underlying nonlinear dynamic. To illustrate this point, we report below the
fitted TAR model for the quarterly U.S. real GNP data due to Tiao and
Tsay (1994) in which the regimes are defined in terms of two (instead of
one) threshold variables.

Let Yy, Y1, -, Y176 denote the quarterly US real GNP from February
1947 to January 1991, a total of 177 observations. Figure 4.4 is the time
series plot of the growth rate series

X: =log(Vs) — log(Yi—1), t=1,---,176.
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FIGURE 4.2. Sample ACF and PACF plots for time series generated from the
TAR model (4.2).

Tiao and Tsay (1994) fitted the growth rates with the following TAR mod-
els with four regimes (discarding the two insignificant intercepts):

—0.015 — 1.076 X1 + €14,
0.630Xt_1 — O.756Xt—2 + €2t
0.006 + 0.438X;_1 + e3¢
0.443Xt71 + 4.ty

Xi—1 < X2 <0,
Xio1> X2, X4 2 <0,
Xi1 £ X9, X492 >0,
Xi—1> X2 >0.

X, = (4.3)

This model can be interpreted as follows.

The first regime (i.e., X;—1 < X;_ o < 0) denotes a recession
period in which the economy changed from a contraction to an
even worse one. Only six observations were from this recession
phase. Furthermore it is reassuring to see the negative explosive
nature of the regression function in this regime, indicating that
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FIGURE 4.3. Piecewise linear approximations (dotted lines) to nonlinear func-
tions (solid curves): (a) z2, (b) exp{—(z — 1)?}, and (c) sin(mz).
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FIGURE 4.4. Time plot of growth of U.S. quarterly real GNP (February
1947-January 1991).

the economy usually recovers quickly from the recession period.
In fact, within given series there were only three occasions in
which two consecutive negative growth periods were observed.

The second regime (i.e., X;—1 > X;—2 and X;_o < 0) corre-
sponds to a period in which the economy was in contraction
but also improving. In this phase, the regression function tends
to be positive, suggesting that the economy is more likely to
grow continuously out of recession once a recovery has started.
The third regime (i.e., X;—1 < X;_o and X;_2 > 0) denotes
a period in which the economy was reasonable but the growth
declined. The fourth regime (i.e., X;_1 > X;_o > 0) denotes an
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expansion period in which the economy became stronger. The
fitted linear forms in these two regimes are similar, both with
an autoregressive coefficient around 0.44.

All of the coefficients in model (4.3) are statistically significant.
For a detailed statistical analysis of this model, see Tiao and
Tsay (1994).

4.1.2  Estimation and Model Identification

Suppose that X, -+, X are observed values from model (4.1) with &
given. Based on these observations, we estimate the parameters’ b;;’s, 0;’s,
and d and determine the orders’ p;’s and the partition {A4;}.

First, we assume that the partition {A;} and the orders p;’s are known.
To simplify the notation, we assume d < p = maxi<;<j p;- Then, the least
squares estimators for the autoregressive coefficients b; = (b0, bi1, -+,

bip;)7, i =1,---,k, are defined as b;’s, where by, -+, by and d minimize
k

> L(b;, d; A;) (4.4)
i=1

over all possible real values of b;;’s and integer values 1 < d < p, in which

L(b;,d; A;)) = Y {Xe— (bio + b Xe1 + -+ + bip, Xi—p,)}>. (45)
Xt—d€A;
p<t<T
The minimization above may be viewed as a two-step process: for each fixed
d, we first minimize (4.5) for ¢ = 1,--- ,k and then choose d to minimize
(4.4). Note that, for a fixed d, the minimizer b;(d) of (4.5) is an ordinary
least squares estimator of a linear regression model, and it therefore can be
obtained explicitly. In case there exists more than one minimizer, we always
choose the smallest d as our estimator for the delay parameter. Now, an
estimator for the variance o7 is defined as
1~ =
o, = 7L(bia dv Ai)7 (46)
T;
where T; is the number of elements in the set {¢t: p <t < T and X, ;€
A}, i=1,--k.

If we assume that &; is Gaussian, the least squares estimation derived
above is not necessarily asymptotically equivalent to the conditional max-
imum likelihood estimation. In fact, the conditional maximum likelihood
estimators for b;’s, s and d can be obtained from maximizing

k k
1 , 1
3 > L(bi, d; Ai) /o] — 3 ;Tibggi-

i=1
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For a given d, b; is obtained by minimizing L(b;, d; A4;), as in (4.4). However,
d is obtained by minimizing

k

> L(bi, d; A;)/o?

i=1

instead of (4.4). For a given b; and d, the conditional MLE for o; is ob-
tained by (4.6). The schematic algorithm is as follows. For each given d,
via the least-squares method, we obtain EZ and o7 from (4.6). This yields
a sequence of the conditional likelihood

k

i=1

indexed by d, from which an estimate of d can be obtained. We do not
pursue this further since the efficiency-gain over the least squares estimation
is significant only if the discrepancy among o?’s is large.

In practice, the partition {4;} is often unknown and is often assumed
to be of the form A; = (r;_1,r;] with —co = rog < r; < -+ < 1, = 0.
In theory, we may determine the partition in the manner of an exhausting
search as follows: for a given collection of partitions {A;}, let L({4;}) =
D oi<i<k L(b;,d; A;), the minimal value of (4.4); we search for the partition

{A;} that minimizes L({A4;}). In practice, k often takes a small value such
as 2, 3, or 4, and threshold r;’s are searched within certain inner sample
ranges. For example when k£ = 2, we may search for r; within, for example,
the 60% inner sample range.

Now, we define the least squares estimators that minimize (4.4) with
A, = A\Z as Bz and d and define

~ 1~ =~ .

02 = —L(b;,d; Ay), i=1,--- k. (4.7)
T;

To determine the autoregressive order p;’s, we may define a generalized

AIC as:
k

AIC({p:}) = > [T log{57(p:)} + 2(pi + 1)),

i=1

where 5%(p;) = 62 is given by (4.7). We choose {p;} such that the corre-
sponding AIC-value obtains the minimum. The penalty for the number of
regimes is reflected in the sum over p; in the expression above. Of course,
the criteria such as BIC or AICC can be adopted in the same manner in
this context; see §3.4.

To consider the asymptotic properties of the estimators, we assume that
{X:} generated by (4.1) is strictly stationary and ergodic with finite sec-
ond moment. It can be shown that if the partition {A4;} and the delay
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parameter d are given in model (4.1), the least squares estimator for b; is
asymptotically normal in the sense that

T} *{b;(d) — b;} 25 N(0,02W; 1), (4.8)

where

N (G )T
W, = ( ul E(Slg;r) >7 51 (613 ’é-pi) )

1 is the p; x 1 vector with common components 1, u = E&;, and
§ = bio + b1+ +bip&i—p, te, {er} ~ WN(O,1)

(see also Theorem 3.2). Unfortunately, { 4;} and d are typically unknown in
practice. The asymptotic properties of the estimators are more complicated,
depending on whether the regression function F(X¢|X;—x = zi—g, k > 1)
is continuous (such as in Figure 4.1(d)) or not (such as in Figures 4.1 (b)
and (c)). Intuitively, the discontinuity displayed in Figure 4.1(b) makes the
estimation of the threshold r easier than that in a continuous case such as
in Figure 4.1(d). Theorem 4.2 below, due to Chan (1993a), shows that the
estimator for the threshold converges at the rate T~! (in contrast to the
conventional rate T~ '/2) when the regression function is discontinuous. For
the asymptotic properties for continuous cases, see Chan and Tsay (1998).

The two theorems below concern a special case of model (4.1) with k = 2
and p; = p2 = p given. In this case the estimation of the partition {4;}
reduces to the estimation of the single threshold r = r;. We denote its
estimator as 7.

Theorem 4.1 (Chan 1993a) Suppose that {X:} satisfies (4.1) with k =
2 and py = p2 = p is ergodic and strictly stationary with finite second
moments. Suppose that the joint density function (X1,---,X,) is positive

everywhere. Then, all of the estimators El, Bg, 02,05, 7, and d are strongly
consistent.

Theorem 4.2 (Chan 1993a) In additional to the condition of Theorem 4.1,
we assume that:

(i) The Markov chain X; = (Xy, Xi—1, -, Xi—pt+1)” 1S geo-
metrically ergodic.

(#i) e has a positive and uniformly continuous density function,
and E(e} + X}!) < oo.

(ii) The autoregressive function is discontinuous (i.e., there
exists z = (1,2zp—1,2p—2, -+ ,20)" with z,_q = r such that

ZT(bl — b2) 7é 0)
Then T (7T —r) = Op(1), and (¥ —1) is asymptotically independent of (Bl -

by, by —bs). Furthermore /T;(b; —b;) is asymptotically normal with mean
0 and variance c?W; ' defined in (4.8), i = 1,2.
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Note that d takes only integer values. Therefore, it holds almost surely
that d is equal to d eventually for all large T'; see Theorem 4.1. Theorem 4.2
shows that due to the discontinuity, 7" — r converges to 0 faster by a factor
T—'/2 than b; — b does. (The asymptotic distribution of 7'(F—1) is given in
Chan 1993a.) Therefore, both d and r may be viewed as known as far as the
asymptotic distributions of b;’s are concerned; see Theorem 4.2 and (4.8).
Thus, approximate confidence intervals for the coefficients b;; may be easily
constructed based on (4.8). On the other hand, the required geometrical
ergodicity condition in Theorem 4.2 holds if (a) o1 = o2 and (b) either
maxj<;<2 Zf;l |b1]‘ <lor 23:1 maxi<;<k |bij| < 1lwithp = maxi<;<k Pi;
see Example 2.1 and Theorem 2.4.

4.1.3  Tests for Linearity

Since there is a lack of a general measure of nonlinear dependence, test-
ing for linearity becomes a routing exercise to check nonlinearity in fitting
nonlinear models. There are now more than a dozen of such tests available
(85.3 of Tong 1990), which may be divided into two categories: portman-
teau tests, which test for departure from linear models without specifying
alternative models, and the tests designed for some specific alternatives.
More recently, the tests that make use of nonparametric and semiparamet-
ric fitting have received considerable attention; see Chapter 9. We introduce
below the likelihood ratio test for a linear model against a TAR alternative
with two regimes due to Chan and Tong (1990) and Chan (1990b). Al-
though the test is designed for a specified alternative, it may be applied to
test for a departure to a general smooth nonlinear function since a piece-
wise linear function will provide a better approximation than that from
a (global) linear function. This is in the same spirit as Cox (1981), who
suggested the use of quadratic or cubic regression for testing nonlinearity.

Let X1,---, X7 be observations from a strictly stationary process. We
test the null hypothesis that {X,} is from a linear AR(p) model,

p
Hy: X; =00+ Zert,j + &,

j=1

against the alternative,

p p
H1 : Xt:00+29th_j —|—I(Xt_d ST) (,00+2(ij,§_]' +€t,
j=1 7j=1

which specifies a TAR model with two regimes. In the expression above
{et} ~i1.q. N(0,0?) with 02 € (0,00), and p and d are known positive in-
tegers. Further, we assume that the threshold r lies inside a known bounded
closed interval Z,.
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Since {e;} is Gaussian, the likelihood ratio test will reject Hy for large
values of the test statistic

{T — max(p, d)}log(73 /5?),
which is equivalent to the F-test
St = {T — max(p,d)}(¢* — 55)/57, (4.9)

where the factor 7/ = {T — max(p,d)} is a normalizing constant,

T p
1 §
~2 : E
o = inf e Xt o 60 o ant_J
!
reZ, {0:}.{p:} T t=max(p,d)+1 Jj=1

2

p
—I(Xe—a<7) | o+ Z%‘thj ’
=1

,\ . 1
O'g = {1(191% T Z X — 6y — Z 0; X¢—j
t=max(p,d)+1 Jj=1

Based on a Poisson clumping heuristic, Chan (1991) developed the following
approximation for the significance levels (when y is large) of the above test:

pt1
P{Sr >y|Ho} =1 — exp {—2X§+1(y) (pil-l - 1) Z/z hi(x)dx} ;
i=1 /T
(

4.10)
where X?() denotes the probability density function of the y2-distribution
with j degrees of freedom, h;(z) = dJ;(z)/dx, ma = Eo(X?) and

1 {PO(Xt <)

4 = -1 ’ ]-S 5
J(ZIZ) 2 o8 Po(Xt >.’L‘)} v<p

Jp(z) and J,41(x) are the roots of the equation y* — by + ¢ = 0 with
b= Eo{(1+ X?/m2)I(X; < z)}, and

c= m%[PO(Xt < 2)Eo{ X7 1(X; < 2)} — {Eo( X I(X: < 2))}7].
In the expressions above, Py and Ejy denote, respectively, the probability
law and the expectation under Hy.

Based on (4.10), we can tabulate the approximate upper percentage
points for the null distribution of Sp. Tables 4.1 and 4.2 were extracted
from Chan (1991). Percentage points for some other values of the order p
may be approximately obtained by interpolation.

The approximation for the significance levels of the likelihood ratio tests
can also be obtained via the bootstrap; see §9.2.3.
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TABLE 4.1. Upper percentage points for the asymptotic null distribution of S,
with Z, being the 50% inner sample range.
order p  10% 5%  2.5% 1%  0.1%
0 6.12 7.75 9.33 11.36 16.33
1 9.27 11.18 12.94 15.16 20.45
2 11.34 13.38 1526 17.60 23.13
3 13.25 1542 1739 19.83 25.57
4 15.07 17.33 19.39 21.93 27.87
b)
6

16.80 19.16 21.30 23.93 30.04
18.48 2093 23.14 25.58 32.13

9 2328 2596 28.36 31.29 38.01
12 27.83 30.70 33.27 36.39 43.50
15 32.20 35.25 3797 41.26 48.72
18 36.45 39.67 4252 4596 53.74

TABLE 4.2. Upper percentage points for the asymptotic null distribution of S,
with Z, being the 80% inner sample range.

order p  10% 5% 2.5% 1%  0.1%
0 7.61 9.21 10.77 12.80 17.75
11.05 12.85 14.55 16.72 21.94
13.26  15.18 16.98 19.25 24.69
15.30 17.31 19.19 21.57 27.20
17.22 19.32 21.28 23.73 29.54
19.05 21.23 23.26 25.79 31.77
20.82 23.07 25.16 27.77 33.90
9 2584 28.30 30.55 33.36 39.90
12 30.58 33.20 35.61 38.59 45.49
15 3513 3791 4044 43.58 50.81
18 39.54 42.45 45.11 48.39 55.92

SO W N =

4.1.4  Case Studies with Canadian Lynz Data

The annual record of the numbers of the Canadian lynx trapped in the
Mackenzie River district of northwest Canada plotted in Figure 1.2 has
been featured in several textbooks on time series. The periodic fluctuation
displayed in this series has profoundly influenced ecological theory. It has
also become a benchmark series to test new statistical methodology for
time series analysis. The first time series model built for this particular
data set was probably that of Moran (1953). Moran fitted the following
linear AR(2) model to the logarithm of the lynx data:

X; =105+ 1.41X,_1 — 0.77X;_5 + &4, (4.11)
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(a) Time plot of lynx data
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FIGURE 4.5. (a) Time plot of Canadian lynx data; (b) reversed time series plot
of lynx data.

where {e;} ~ IID(0,0.04591). In fact, Moran immediately realized the lim-
itation of the linear fitting, as he pointed out in the same paper a “curious
feature”—the sum of squares of residuals corresponding to values of X;
greater than the mean is 1.781, whereas the sum of squares of residuals
corresponding to values of X; smaller than the mean is 4.007. The ratio of
the two sums is 2.250, which would be judged significant at the 1% level
(F-test) against the null hypothesis that the two sets of residuals are ran-
dom samples from the same normal population. Later, we will demonstrate
how to fit a TAR model to this data set step-by-step, including exploratory
analysis using various plots and nonparametric smoothing and statistical
tests for linearity. This part of the analysis is partially extracted from §7.2
of Tong (1990). We always refer the lynx data to the log;o-transformed
data displayed in Figure 1.2.

(a) Plots and nonparametric smoothing

As in fitting linear time series models, a judiciously constructed data-plot
can be very informative and revealing. Figure 4.5 plots the lynx time series
in the conventional as well as the reversed time order. It is clear that the
lynx population exhibits a periodic-like fluctuation with most cycles around
nine or ten years. It is also clear that there exists some characteristic in
this series that is not time-reversible. For example, the population cycle
is asymmetric; it took about six years to reach a peak from a trough and
took only three or four years to drop from a peak to a trough.

Is the lack of time-reversibility suggestive of nonlinearity? The answer
is not necessarily affirmative in general. However, if we look for a statis-
tical model that will reproduce a time-irreversible characteristic, we may
appeal for nonlinear modeling. The (linear) ARMA models discussed in
Chapter 3 focus on linear autocorrelation, which, by virtue of its nature, is
time-reversible. Furthermore, if an ARMA process is defined in terms of a
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FIGURE 4.6. Two histograms of Canadian lynx data with different bin-sizes,
together with the estimated density function (solid curve).
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FIGURE 4.7. Directed scatter diagrams at lags 1 and 2 for Canadian lynx data.

Gaussian white noise, its entire probability distribution is time-reversible.
Although we do not impose the normality explicitly in an ARMA model,
we treat it implicitly as a Gaussian model, as we often look into its first
two moment properties only. The spectral analysis is a typical example in
point. Such a treatment is entirely legitimate only for Gaussian processes.
Therefore, once we have identified some non-Gaussian properties, we may
be prepared to entertain a nonlinear model. In this sense, nonnormality
may be viewed as nonlinearity (see also Proposition 2.1).

Figure 4.6 presents two histograms of the lynx data with different bin-
sizes, which clearly indicate that the marginal distribution is at least bi-
modal. The nonparametric estimator for the probability density function
(see §5.2) produced by the standard S-Plus function “density” with the
default setting reinforces this non-Gaussian property.
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A directed scatter diagram at lag k plots X; against X;_; with adjacent
points (such as (X;—g, X¢) and (Xy—gy1, X¢11)) linked by straight lines. Tt
is basically a scatter plot presented in a more informative manner. A direct
scatter diagram is another powerful graphical tool in analyzing nonlinear
time series. For the lynx data, Figure 4.7 shows that there is clearly a
void in the center of the diagram at both lags 1 and 2. This indicates
convincingly that the joint distributions of (X;_x, X;), for k = 1,2, are not
Gaussian since a two-dimensional normal distribution cannot have a hole
in the center of its sample space. This is also consistent with the marginal
density shown in Figure 4.6. If {X;} is a Gaussian process, its marginal
distribution of X; is also Gaussian.

The scatter plots in Figures 4.8(a)—(d) display X, against X, j for
k=1,2,3, and 4, together with nonparametric estimators for the lag regres-
sion F(X;|X:— = z), produced by the standard S-Plus function “ksmooth”
with the default setting. (The estimated curves are undersmoothed. How-
ever, we decide not to increase the amount of smoothness since the estima-
tors merely serve as explanatory devices at this stage. For a comprehen-
sive account on nonparametric smoothing, see §6.3.) Like most real data,
the lag regression at lag 1 is pretty linear. However, E(X|X;_; = z) for
k = 2,3, and 4 are unlikely to be linear (in z), lending further support that
{X:} is not a Gaussian process. Inspired by the linearity portrayed in Fig-
ure 4.8(a), we fitted a linear regression of X; on X;_1, leading to the model
)?t = 0.620 + 0.788X;_1. We plot the residuals X; — )?t against X;_1 and
X9, respectively, in Figures 4.8 (e) and (f). As expected, X;_1 contains
little information on the residuals as the regression curve in Figure 4.8(e) is
virtually zero. However, X;_5 does contain some additional information. In
Figure 4.8(f), except for a few “outliers” the residual points spread almost
evenly on both sides of the regression curve, which is clearly nonlinear. This
indicates the nonlinear dependence of X; on its lagged value X;_.

In summary, by plotting the data in various manners coupled with non-
parametric smoothing, we have identified some nonlinear features such as
time-irreversibility, nonnormality, and nonlinear autodependence.

(b) Testing for linearity

We apply the likelihood ratio test (4.9) for the null hypothesis-Hy: {X;} is
a linear AR(2) process-against the alternative-H;: {X;} follows TAR model
(4.1) with two regimes and p; = py = d = 2. Now T' = 114 and 53 = 0.0586.
Setting 7, equal to the 90% inner sample range, we have 52 = 0.0441. Thus
St = (T —2)(52 — %) /52 = 36.825. According to Table 4.2, we reject the
null hypothesis of a linear AR(2) model even at the level 0.1%.

(¢) A simple TAR model with biological interpretation

For many biological populations, birth rates depend on population sizes-
for example, due to competition for the resources of habitat, the limitation
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(a) Scatter plot at lag 1 (b) Scatter plot at lag 2
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FIGURE 4.8. Scatter plots of X; against (a) X;—1, (b) Xi—2, (¢) X¢—3, and (d)
Xi—4 for Canadian lynx data together with kernel regression estimators (solid
curves) for E(X:|X:—r = z) and scatter plots of the residual from the linear
regression )/(\'t = 0.620 4 0.788X;_1 against (e) X;—1 and (f) X;—2. Solid curves
are nonparametric regression estimators.

of food, the predator—prey interaction and other factors. Typically, the
birth rate will increase in the early stage, called an increasing phase, in
a population cycle, and it will decrease when the population is oversized
in the latter stage, leading to a decreasing phase. A population decrease
for one species will lead, in due course, to a population decrease of its
predators and the population increase of its prey and also the abundance
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of resources. This in turn will lead to a new increasing phase. Therefore, it
seems very appealing to model population dynamics in terms of a threshold
model in which different regimes would reflect different phases or stages in
population cycles. Having incorporated the biological evidence, H. Tong
fitted the following TAR model with two regimes with delay variable d = 2
to the lynx data:

1
X, = { 0.62 +1.25X, 1 — 043X, 5 + ¢, Xt < 3.25, (4.12)

2.25 4+ 1.52X;_1 — 1.24X;_5 +&\?, X;_o > 3.25;

see Tong (1990, p. 377). Let us rewrite the model above, discarding the
error terms, as follows:

0.62 +0.25X,_1 — 0.43X,_o, X;_o < 3.25,

(124X, 5 — 2.25) +0.52X, 1, X, 5 >325 (19

Xe— X1 = {

In the upper regime (i.e., X;_o > 3.25), X; — X;_; tends to be negative,
implying a population decrease. In the lower regime (i.e., X; o < 3.25),
X;—X;:_1 tends to be marginally positive, implying slow population growth.
In fact, a sequence {X;} generated by (4.13) will converge to a stable limit
cycle of period 9 consisting of an ascent phase of length 6 and a descent
phase of length 3. This is in agreement with the observed asymmetric cycles
in Figure 4.5.

Stenseth et al. (1999) gave a nice interpretation of model (4.12) in terms
of the well-known predator (lynx) and prey (hare) interaction model in
ecology. As we pointed out above, the lower regime corresponds roughly
to the population increase phase, and the upper regime corresponds to the
population decrease phase. Note that the coefficients of X;_; in (4.12) are
significantly positive but less so during the increase phase. The coefficients
of X;_o are significantly negative and more so during the decline phase.
The signs of those coefficients reflect that lynx and hares relate with each
other in a specified prey—predator interactive manner. The difference of
the coefficients in increasing and decreasing phases represents the so-called
phase-dependence and density-dependence in ecology, which can only be re-
flected in a nonlinear model. The phase-dependence means that the both
lynx and the hare behave differently (in hunting or escaping) when the lynx
population increases or decreases. The density-dependence implies that the
reproduction rates of animals as well as their behavior depend on the abun-
dance of the population. For further discussion on the biological meaning of
TAR fitting for the lynx data, we refer the reader to Stenseth et al. (1999).
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(d) The model selected by AIC

Setting k =2, 1 < p1,p2 <10, and 1 < d < 6, the AIC selected for the
lynx data the following TAR model

0.546 + 1.032X;_1 — 0.173X;_o + 0.171X,_5 — 0.431X;_4

X, ={ +0.332X, 5 — 0.284X, ¢ +0.210X, 7+, X, 5 <3.116,
2.632 4+ 1.492X;_1 — 1.324X,_5 +&\?, X;_5 > 3.116;
(4.14)

see Tong (1990, p. 387). The estimated threshold is 7 = 3.116, which is the
turning point of the regression estimator in Figure 4.8(f). The estimated
variances for EEI) and 5%2) are 0.0259 and 0.0505, respectively. The standard
errors of the eight estimated coeflicients in the lower regime, calculated
based on (4.8) (see also Theorem 4.2), are, respectively, 0.275, 0.094, 0.156,
0.149, 0.153, 0.170, 0.167, and 0.101 in order of their appearance in the
model. The standard errors of the three estimated coefficients in the upper
regime are, respectively, 0.655, 0.102, and 0.195.

Model (4.14) preserves the basic dynamics of the simpler model (4.12).
For example, the sequence {X;} generated by (4.14) (discarding the error
terms) also converges to a limit cycle of period 9 with an increase phase
of length 6 and a decrease phase of length 3. In terms of statistical fitting,
model (4.14) represents an improvement over (4.12). However its more com-
plex form also makes biological interpretation less clear. The choice between
the two models rests on the purpose of the analysis. Obviously, model (4.12)
would be preferable if we aim to model lynx population fluctuation and re-
flect different characteristics at different phases of the population cycles.
On the other hand, model (4.14) entertains better statistical properties,
providing better fitting to the original data. Furthermore, it may provide
a better forecasting for further values.

It is a good practice to look into several models selected by different cri-
teria such as AIC, BIC, and others, or, say, the best three models selected
by the same criterion. The choice of the final model depends on the statis-
tical and/or physical properties of the models, dictated by the purpose of
the data analysis. Table 7.6 of Tong (1990, p. 386) listed six selected mod-
els for lynx data. Model (4.14) was singled out as the one with both good
statistical fitting and adequate resemblance to lynx population fluctuation.

(e) Diagnostic checking

Like all statistical fitting, it is important to conduct a diagnostic check
for a fitted nonlinear time series model, although some diagnostic ideas
have already been incorporated into the modern modeling techniques. For
example, a model selected by BIC is usually free from overfitting.

Similar to fitting linear models, the residual-based methods remain as the
most frequently used diagnostic tools; see §3.5. The residuals from model
(4.14) passed most of those tests comfortably. It is also helpful to compare
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some characteristics of the original data with those of the simulated data
from a fitted model. For example, as we mentioned above, both models
(4.12) and (4.14) can reproduce the asymmetric population cycle success-
fully.

4.2 ARCH and GARCH Models

In contrast to traditional time series analysis, which focuses on modeling
the conditional first moment, ARCH and GARCH models specifically take
the dependency of the conditional second moments into modeling consid-
eration. This, hopefully, would accommodate the increasingly important
demand to explain and to model risk and uncertainty in, for example, fi-
nancial time series. In this section, we first present basic probabilistic prop-
erties of ARCH and GARCH models. The most frequently used statistical
inference methods for ARCH/GARCH modeling will also be introduced.
We also briefly mention the application of ARCH/GARCH modeling with
financial time series. Further, we illustrate the methodology of GARCH
modeling through a real data set. These methods have been implemented
in S+GARCH, an add-on module to the S-Plus system. Finally, we give
a brief introduction on stochastic volatility models. For a comprehensive
account of ARCH and GARCH modeling, see Gouriéroux (1997).

4.2.1 Basic Properties of ARCH Processes

Definition 4.2 An autoregressive conditional heteroscedastic (ARCH)
model with order p (> 1) is defined as

X; =0 and Uf =co+ lef_l 4+t prf_p,

(4.15)

where ¢g > 0, b; > 0 are constants, {e;} ~1ID(0,1), and &, is independent
of {Xt—k,k > 1} for allt. A stochastic process {X;} defined by the equations
above is called an ARCH(p) process.

The ARCH model was first introduced by Engle (1982) for modeling
the predictive variance for U.K. inflation rates. Since then, it has been
widely used to model volatility of financial and economic time series. The
basic idea behind the construction of (4.15) is quite intuitive: the predictive
distribution of X; based on its past is a scale-transform of the distribution
of &;, with the scaling constant o; depending on the past of the process.
Therefore, conditional quantiles of X; given its past, which play important
roles in financial risk management (see Part (e) of §4.2.8 and §8.5.6 below),
can also be evaluated easily. For example, if e, ~ N(0, 1), the predictive
distribution is N (0, ¢7), with the variance o7 depending on the conditions
on which the prediction was made. Further, a large predictive variance will
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be caused by the large absolute values of observations in the immediate
past. This is in marked contrast to the prediction based on linear models
for which the conditional mean squared predictive errors are constants; see
Proposition 3.4.

Theorem 4.3 (i) The necessary and sufficient condition for (4.15) defin-
ing a unique strictly stationary process { Xy, t = 0,41, £2,--- } with EX? <
oo is Y_F_, by < 1. Furthermore,

P
EX,=0 and EX]=co/{1—> b,
j=1

and Xy =0 for allt if cg = 0.
(ii) If Ee} < oo and

p
max{1, (Ee})'/*} ) "b; < 1, (4.16)

j=1

the strictly stationary solution of (4.15) has the finite fourth moment,
namely EX} < .

Proof. The sufficiency of (i) and (ii) follows from Theorem 2.5 immediately.
By (4.15) and stationarity, EX; = 0 and

p
EX? =co+ b EX? 4 +b,EX , =co+ > bEX}
j=1
or

Co
EX}=———
D S

The necessity of (i) follows from Theorem 1 of Bollerslev (1986), which
shows that the condition Zj b; < 1 is also necessary for (4.15) having a
(weakly) stationary solution. (Note that Theorem 1 in Bollerslev’s paper
does not depend on the assumed normality.) Indeed, EX? > 0 entails that

?:1 b]’ < 1. I

It is easy to see from (4.15) that any stationary ARCH process {X;}
is also a white noise WN(0,¢o/(1 — ?:1 b;)); see also Theorem 4.3(i).
Furthermore, we may write

XP=co+ b1 X7+ + X7, +e, (4.17)
where e; = (¢2 — 1){co + Py b; X7 ;}. Tt is easy to see that

E(ed| X¢—p, Xt—g—1,---) =0 foranyk > 1. (4.18)



4.2 ARCH and GARCH Models 145

Hence, for any k > p, by (4.17) and (4.18)

P
B(X2 4| Ximm,m > 0) = co+ b E(XP | Ximm,m > 0)

Jj=1

or

P
Var( X4k | Xt—m, m > 0) =co + Z bjVar(Xiyp—j| Xi—m, m > 0). (4.19)

j=1
More generally, for k£ > 1,
k—1
Var(Xi1p| Xe—m, m>0) = c¢o+ Z b;Var(Xiyk—j| Xi—m, m > 0)
j=1
P
+ > b X (4.20)
j=k

The two equations above reflect the fact that the high risk in forecasting
will be sustained over a period before it dies away; a phenomenon called
volatility clustering in financial time series analysis.

It follows from Theorem 4.3(ii) that under the additional condition (4.16),
{et} ~ WN(0,02) with

2

P
02 = Var(e?) EX co + ijXt{j < 00.
j=1

Note that under the condition Z§:1 bj <1,

p p p
D b | <Y bl <> b <1 forall |2 < 1.
j=1 j=1 j=1

Thus 1 — ;7:1 bjz7 # 0 for all |z| < 1. This means that {X?} is a causal
AR(p) process. Therefore, the ACF (and also ACVF) of the process {X?}
can be easily calculated in terms of (2.20) and (2.18). Furthermore, it is
easy to see from those formulas that, for all 7, Corr(X?, X2 ) > 0 if

1;:1 b; > 0, although Corr(X;, X;+,) =0.

If we adopt kurtosis as a measure for heavy tails of distribution, the
ARCH process {X;} has heavier tails than those of the white noise {e;}
on which {X;} is defined. To this end, denote by k. = E(e})/(Fe?)? the
kurtosis of the distribution of ;. Then

E(X} X1, Xe—p) = 0}Ee} = r.0}(Ee})?
kel B(X2 1 X1, Xip) }2
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Now, it follows from Jensen’s inequality that
E(X}) = ke B{BE(X}| X1, -+, Xo-p)}* > me(BXT)%. (4.21)

Hence r, = E(X})/(EX?)? > k.. In the case where ¢; is normal and
Kz > ke = 3, X; has leptokurtosis (i.e., fat tails).
We summarize the findings above in the proposition below.

Proposition 4.1 Let {X;} be the strictly stationary ARCH(p) process
defined by (4.15) with co >0 and 3°7_, by < 1. Then

(i) {Xt} ~ WN(0,co /(1 — Z§:1 b;)), and the conditional variance func-
tion fulfills equation (4.19).

Under the additional condition (4.16),

(ii) {X?2} is a (linear) causal AR(p) process, and its ACF is always
positive if Z§:1 b; >0, and

(iii) X; exhibits heavier tails than those of €; in the sense that K, > ke.

Example 4.1 Consider the strictly stationary ARCH(1) process
X; = oie, and Uf =co+ letz_l, (4.22)

where {e:} ~ IID(0,1), ¢g > 0, and by € (0,1). Then EX? = co/(1 — b1),
and for k > 1,

Var( X x| Xe—j, j > 0) = Var(Xe ]| Xy)
= ¢o+ b1Var(Xt+k_1|Xt). (423)

Iteratively, using (4.23), we have

_ Co(l — blf)

Var(Xy x| Xi—j, j 2 0) 1= b

+0F X7,

which indicates that a large value of |X;| will lead to large predictive risk
(i.e., conditional variance) and that the risk will be sustained for a while
in the immediate future.

Suppose that &; ~ N(0,1). Then, the condition (4.16) reduces to 3b? < 1

(ie., by < 0.577). Under this condition, Corr(X2, X2, ) = b/ and {X2}
follows a causal AR(1) equation

XtQ = Cp + letQ_l + €t,

where e, = (¢ — 1)(co + b1 X¢—1). Hence, by multiplying the term X? and
taking the expectation on the both sides of the equation above, we have

EX}! = ¢EX?+0EX2X2 )+ E(X2e)
= coEX}? +bi{b)Var(X?) + (EX?)?} + E(€?)

2
= (A=) (EX)?+ b {bEX}+ (1 —b1)(EX?)?} + gEX?.
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The last equality makes use of the fact that cg = (1 — by)EX?. It is easy

to see now that
EXt4 B 3(1 —b%) S 3
(EX?)? (1-30b7) '

Hence X; has leptokurtosis (fat tails).

We generate a series of length 1000 from (4.22) with ¢y = 1.5, by = 0.9
and normal &;. The first 250 sample points X; are shown in Figure 4.9(a).
Figure 4.9(c) is the plot of corresponding conditional standard deviations
oy, which clearly indicates that the large values of |X;| and o, are lined
together. Both histograms of the sample in Figure 4.9(b) and the plot
(against normal) in Figure 4.9(d) show that the tails of the distribution of
X; are heavier than a normal distribution. Figures 4.9 (e) and (f) are the
sample ACFs of {X;} and {X?}.

We repeat the exercise above in Figure 4.10 with reduced value b; = 0.4.
Comparing Figures 4.10 (a) and (b) with Figures 4.9 (a) and (b), the volatil-
ity is more prominent for larger values of b;. Figure 4.9(d) shows that the
tails of the distribution of X; are still heavier than a normal distribution,
although not as much so as in the case of b = 0.9. Note now that {X?}
is a causal AR(1) model with the ACF p(k) = 0.4%; see Figure 4.10(f).
In contrast, in Figure 4.9(f) with b; = 0.9, there is a substantial discrep-
ancy between p(k) and 0.9% for k = 1,2,---. This is due to the fact that
EX} = co when b; = 0.9. Therefore, the ACVF is not well-defined. ]

4.2.2  Basic Properties of GARCH Processes

The ARCH model has been extended in a number of directions, some dic-
tated by economic consideration, others by broadly statistical ideas. The
most important of these is the extension to include moving average parts,
namely the generalized ARCH (GARCH) model due to Bollerslev (1986)
and Taylor (1986).

Definition 4.3 A generalized autoregressive conditional heteroscedastic (GARCH
) model with order p(> 1) and q(> 0) is defined as

p q
Xy=ow, and of =co+» X7, + ) ajof (4.24)

i=1 j=1

where ¢g > 0, b; > 0, and a; > 0 are constants, {e;,} ~IID(0,1), and & is
independent of {Xi—r,k > 1} for all t. A stochastic process {X;} defined
by the equations above is called a GARCH (p, q) process.

Empirical work has shown that the simple ARCH(p) model defined in
(4.15) will provide a reasonable fit to financial time series only if the or-
der p is large. Since the rationale for the definition of (4.15) is to take a
weighted average of the past squared observations as an approximation to
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FIGURE 4.9. Example 4.1 — A sample of 1,000 was generated from the ARCH(1)
model with b = 0.9: (a) and (c) time series plots of the first 250 X; and oy;
(b) normalized histogram and the normal density function with the same mean
and variance; (d) plot: the sample quantiles versus the quantiles of N(0,1); (e)
and (f) sample ACFs of {X;} and { X7}, respectively.
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FIGURE 4.10. Example 4.1 — A sample of 1,000 was generated from the
ARCH(1) model with b; = 0.4: (a) and (c) time series plots of the first 250
X: and oy; (b) normalized histogram and the normal density function with the
same mean and variance; (d) plot: the sample quantiles versus the quantiles of
N(0,1); (e) and (f) sample ACFs of {X;} and {X?}, respectively.
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the conditional variance o2, it is quite natural to define o? as a weighted
average of not only past X Jz’s but also past ajz’s. This leads to the GARCH
model (4.24), which in fact entertains an interesting link to ARMA models,

D q
X2 = ¢o+ Z bi X2, + Zajatzfj +e
i=1 j=1
pVgq q
= ¢o+ Z(bl + ai)th_z- + ey — Z aj€t—j, (425)
i=1 j=1

where by ; = agy; =0 for j > 1, pV g =max{p,q}, and

P q
ee=X—02=(e2—-1)|co+ Z biX2, + Zajotz_j . (4.26)
i=1 j=1

Thus, formally {X7?} follows an ARMA (pVgq, ¢) model. Note that an invert-
ible ARMA(p, ¢) model with finite p and ¢ is effectively an AR(co) model.
This explains why simple GARCH models, such as GARCH(1, 1), may
provide a parsimonious representation for some complex autodependence
structure of { X2}, that can only be accommodated by an ARCH(p) model
with large p; see also (4.17). In fact, the GARCH(1, 1) model has been
tremendously successful in empirical work and is regarded as the bench-
mark model by many econometricians.

Theorem 4.4 The necessary and sufficient condition for (4.24) defining
a unique strictly stationary process {X;,t = 0,£1, 42, .-} with EX? < 00

1S » q
Z b; + Z a; < 1. (427)
i=1 J=1

Furthermore, EX; =0 and

Co
var(X;) = , Cov(Xy, Xi—k) =0 foranyk #0.
1= 300 b — Zj‘:l aj

In addition, EX} < oo, provided

p
any
max{1, (Be})'/?} —=5—— < 1. (4.28)
L=2 =14

Proof. Note that the second equation in (4.24) can be formally written as

q p
1->"a;B | o2 =co+ > b;BX2.
j=1

=1



4.2 ARCH and GARCH Models 151

Condition (4.27) implies that 1 — Z?Zl ajzl # 0 for all |z| < 1. Hence

—1

q p
of = (1-> a;B {cOJeriBin}
j=1

i=1
q 00
= Co/ 1-— ZCLJ' +Zlet2—z7
j=1 i=1

where d;’s are determined by the equation Y .o, d;z* = >0 b;2"/(1 —
> -1 a;27). Hence, by taking z = 1,

o0 P q
>a= o (12w
i=1 i=1 i=1

Similar to (2.20), d;’s can be calculated recursively where d; = b; and, for
i>2,
i—1

d; = b; + Zakdzek»
k=1
In the expression above, we assume that b,; = agy; = 0 for j > 1.

By an inductive argument, we may show d; > 0 for all ¢ > 0. Now, the
theorem follows from Theorem 2.5 and Bollerslev (1986); see the proof
of Theorem 4.3. Under stationarity, the variance and covariance can be
calculated as

p q
EX? =Eo} =co+ Y bEX?+ Y a;Eo7.
i=1 j=1

This implies that

P q
EXt2 =co+ Zbi+zaj EX?é

i=1 j=1

that is,

Co
EX? = .
! L= bi— Z?:l a;

Furthermore, for & > 0, using the double expectation formula,
EX Xy = E{Xt—kE(Xt|Xt—la Xt—27 T )} = 0.

This completes the proof. [
Theorem 4.4 presents a necessary and sufficient condition for model
(4.24) defining a strictly stationary process with a finite second moment.
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Bougerol and Picard (1992b) established a necessary and sufficient condi-
tion for the existence of a strictly stationary solution that does not nec-
essarily have a finite second moment; see also Kazakevicius and Leipus
(2001). The condition is defined in terms of Lyapunov exponents for some
random matrices associated with the model and is in general difficult to
check in practice; therefore, it is not presented here.

Under condition (4.27), {X;} ~ WN(0,co/(1 =327, bi—>2_, a;)), and
the ARMA representation (4.25) is causal and invertible (although Fe? is
not necessarily finite). Thus EX? = Ee? Eo? = Fo? and

E(Xy|X¢—1,X¢—2,---) =0.
From (4.26), it holds that
Ee; = E(et|X¢—1, Xt—2, ) =0.
Consequently,
Var(X;| X1, Xi—9,--+) = B(X7| X1, Xy -2, )

P q

2 2 2 2 2
= Co+ biXt—i+ ajot_j :Jt'

i=1 j=1

Thus o7 defined in (4.24) is the conditional variance of X; given its infinite
past.

If {X,} is a strictly stationary GARCH(p, ¢) process and condition (4.28)
holds, Eo} = EX}/FEe} < oco. Hence Ee} < oco. In this case, {X?} is a
causal and invertible ARMA(p V ¢, q) process defined in (5.8). In contrast
to ARCH processes, the ACF of {X?} is not necessarily always positive.

Note that the kurtosis inequality (4.21) still holds if we use the condi-
tional expectations given the whole lagged values instead of only p lagged
values. Hence, the following proposition holds.

Proposition 4.2 (i) A stationary GARCH(p,q) process {X:} defined in
(4.24) is a white noise, and o} is the conditional variance of X; given its
infinite past.

(i1) If {X:} is a strictly stationary GARCH(p,q) defined in (4.24) for
which condition (4.28) holds, {X?} is a causal and invertible ARMA (p v
q,q) process. Furthermore X; exhibits heavier tails than those of e; in the
sense that Ky > K.

Example 4.2 Consider the stationary GARCH(1, 1) process

X; =0 and o =co+ b X2, +ajory, (4.29)

where ¢g, b1, and a; are positive, by + a1 < 1, and {e;} ~ IID(0,1). Then
EX? =co/(1 —by —ay). Since (1 — a1 B)o? = co + b1 X7 1, it holds that

Co

of =Y alBl(co+ b1 X7 ) =

Jj=0

oo
1 +blzaj1Xt27];1-
—a =
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FIGURE 4.11. Example 4.2. A sample of 1,000 was generated from the GARCH(1,
1) model with b1 = 0.6 and a1 = 0.3: (a) and (c) time series plots of the first 250
X: and oy; (b) normalized histogram and the normal density function with the
same mean and variance; (d) plot: the sample quantiles versus the quantiles of
N(0,1); (e) and (f) sample ACFs of {X;} and {X?}, respectively.



154

1.0

ACF
0.4 0.6 0.8

0.2

0.0

(b) Histogram

< 4

-2 0 2
! ! !

GARCH quantile

-4
1

Normal quantile

(f) ACF of squared series

1.0

0.6
1

ACF
0.4

0.2

0.0

T T T T T T
5 10 15 20 25 30

4. Parametric Nonlinear Time Series Models
(a) GARCH(1,1) time series
< 4
o 4
o 4
l\'l -
<'l‘ 4
Q'D 4
0 50 100 150 200 250
t
(c) Conditional STD
v |
(8]
o |
(8]
v |
[aV)
< |
[aV)
0 |
0 50 100 150 200 250
t
(e) ACF
| | Ly |
™ I SRS
T T T T T T
0 5 10 15 20 25 30
Lag

Lag

FIGURE 4.12. Example 4.2. A sample of 1,000 was generated from the GARCH(1,
1) model with b1 = 0.3 and a1 = 0.3: (a) and (c¢) time series plots of the first 250
X: and oy; (b) normalized histogram and the normal density function with the
same mean and variance; (d) plot: the sample quantiles versus the quantiles of
N(0,1); (e) and (f) sample ACFs of {X;} and {X?}, respectively.
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Hence

C > i
Var(X| Xi—p, k> 1) = 1 7Oa1 + by E a{XtQ,jfp
=0

which depends on the infinite past of X;. This is a marked difference from
the ARCH(1) process for which Var(X;|X;_,k > 1) depends on X;_; only;
see (4.23). This also indicates that the volatility cluster is more persistent
for GARCH processes than for ARCH processes.

Nelson (1990) showed that the necessary and sufficient condition for ex-
istence of a strictly stationary GARCH(1, 1) process (with possible infinite
second moment) is

E{log(bie? +a;)} < 0.

By Jensen’s inequality, E{log(b1e?+a;)} < log E(bie? +a1) = log(by +ay).
Hence, the condition b; + a; < 1 is sufficient to ensure that {X;,t =
0,+1,---} defined in (4.29) is strictly stationary. It becomes also a neces-
sary condition if we require the strictly stationary solution to be also weakly
stationary (having a finite second moment). Under the additional condi-
tion (4.28), EX} < co. Now, define e; = (¢7 — 1)(co + b1 X7 1 +ajo? ;). It
follows from (4.25) that

Xt2 =co+ (b + al)Xil +er —arei_1;
that is, { X7} is a causal and invertible ARMA(1, 1) process. Its ACF is

(1 — CL% — albl)bl

Corr(X? X2 ,) =
( t t+k) 1—a%—2a1b1

(b1 +a))*, kE>1. (4.30)

We generated a series of length 1,000 from (4.29) with ¢g = 1.5, by =
0.6, a; = 0.3, and &, ~ N(0,1). The first 250 sample points X; together
with their conditional standard deviation o; are shown in Figures 4.11 (a)
and (c), respectively. Note that the GARCH(1, 1) process generated here
has the same (unconditional) variance as the ARCH(1) process presented
in Figure 4.9. However, the conditional variance of the GARCH process is
much more volatile; compare Figures 4.9 (a) and (c) and Figure 4.11 (a)
and (c). Furthermore, the GARCH process has more persistent volatility
clusters. Figures 4.11 (b) and (d) show that the marginal distribution of
X has leptokurtosis. The sample ACF indicates some significant autocor-
relation in the squared X; but not X; itself.

We repeat the exercise above with a reduced b; = 0.3. Now EX} < oc.
The ACF of {X?} is well-defined. The sample ACF of {X?} plotted in
Figure 4.12(f) provides a reasonable estimator for the true ACF, which
is 0.337, 0.202, and 0.120 for k£ = 1,2, and 3, respectively, obtained from
(4.30). In contrast, when b; = 0.6, the ACVF of {X?} is not well-defined.
The sample ACF plotted in Figure 4.11(f) does not resemble the function
defined in (4.30). We also notice that, for the smaller b; = 0.3, the heavier
tail property is no longer pronounced; see Figures 4.12 (b) and (d).
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Although the kurtosis x, is a simple and intuitive measure to use in
practice, it does not give a direct description of the heaviness of the tails
of a distribution. A much more pertinent measure would be the tail index
introduced by Kesten (1973). For the GARCH(1, 1) model defined in (4.29)
with a; +b; < 1, we assume that €7 has a probability density function with
unbounded support, and there exists a constant Sy < oo such that

E(a; + blth)ﬁ < oo forall 8 < By and E(ay + blef)go = 00.

Then, the equation
E(ay +be2)/2 =1 (4.31)

defines a unique positive constant v that is called a tail index in the sense
that, as x — oo,

P{|Xi| >z} ~ Elet|"P(or > x) ~ Cz™7, (4.32)

where {X,} is a strictly stationary solution of (4.29) and oy = X;/e;. In the
expression above, the sign “~” implies that the ratio of the two quantities
on both sides has the limit 1, and C' > 0 is a constant. Obviously, the
estimation of v is a difficult task. For further discussion on the tail index,
see Kesten (1973), Goldie (1991), and de Haan, Resnick, Rootzen and de
Vries (1989).

Before the end of this section, we point out that the condition (4.27) is not
necessary for the existence of a strictly stationary solution for GARCH(p, q)
model (4.24). In fact, Bougerol and Picard (1992b) proved that if the dis-
tribution of €; has unbounded support and has no atom at zero, and

p q
S b+ Y a;=1, (4.33)
i=1 j=1

there exists a unique strictly stationary process {X;} satisfying (4.24) and
EX? = co. In analogy with integrated ARMA (ARIMA) processes (i.e.,
processes with unit roots), Engle and Bollerslev (1986) coined the name
integrated GARCH(p, ¢q) (IGARCH ) for the GARCH(p, q) processes for
which (4.33) holds. It is perhaps worth mentioning the possible confusion
here: ARIMA processes are always nonstationary, whereas, as we have seen
above, an IGARCH process may be strictly stationary.

4.2.8  Estimation

We always assume that { X} is a strictly stationary solution of the GARCH
model

p q
Xy=ow, and of =co+ Y biX7 ,+ Y a0, (4.34)

i=1 j=1
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where p > 1, ¢ > 0, co,b;,a; > 0, Y0 b + 23:1 a; < 1, and {e;} ~
IID(0,1). Based on the observations X1, --- , X7, we discuss various meth-
ods for estimating parameters in the models. Our task here is to estimate
conditional second moments, which, by virtue of their nature, are more
difficult to estimate than conditional means. The likelihood functions, even
when correctly specified, tend to be rather flat. Large sample sizes are often
required in order to obtain reliable estimates.

We will introduce three types of estimators for parameters cg, b;, and
aj. They are the conditional mazimum likelihood estimator, Whittle’s es-
timator, and the least absolute deviation estimator. The first one is the
benchmark estimator that has been widely used in the banking industry.
The last one is appealing for the models with heavy-tailed errors.

(a) Conditional maximum likelihood estimators

Similar to the estimation for ARMA models (see §3.3.1), the most frequently-
used estimators for ARCH/GARCH models are those derived from a (con-
ditional) Gaussian likelihood function. For example, if £; is normal in model
(4.34) and ¢ = 0 (i.e., a pure ARCH model), the negative logarithm of the
(conditional) likelihood function based on observations Xi,--- , X7, ignor-
ing constants, is
T
Z (logo} + X7 /07),

t=p+1

where 0?7 = ¢y + Py b; X7 ;. The (Gaussian) maximum likelihood esti-
mators are defined as the minimizers of the function above. Note that this
likelihood function is based on the conditional probability density func-

tion of Xp11,---, X7, given X,,---, X}, since the unconditional proba-
bility density function, which involves the joint density of X, -, X, is
unattainable.

For a general GARCH model (i.e., ¢ > 0 in model (4.34)) the conditional
variance o7 cannot be expressed in terms of a finite number of the past
observations X;_1, Xy_o,---. Some truncation is inevitable. By induction,

we may derive that

ol = +befl (4.35)
J 1 -7 i=1

o0

1S9 4.
p
+ szz Z%"' tzgr —

=1 k=171=1 Jr=1

where the multiple sum vanishes if ¢ = 0. Note that the multiple sum above
converges with probability 1 since each b; and a; is nonnegative, and since
the expected value of the multiple series is finite. In practice, we replace
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the expression above by a truncated version

p > 4
03_17 be FY by > Zaﬁ -aj, (4.36)

i=1 k=171=1 Jr=1

><X2 It —i—7j1—-—jp>1), t>p.

t—i—ji——Jk
Note that when ¢ =0, 67 = 07 =co + > 5 biX7 ;. Let b= (b1, -+ ,by)?
and a = (a1, - ,a4)". The (conditional) maximum likelihood estimator

(B,ﬁ,@o) is defined by minimizing

T

L(co,b,a) =Y (loga7 + X7/57) , (4.37)

t=v

where v > p is an integer.

The numerical calculation of the conditional maximum likelihood estima-
tors above may be carried out by using the S+GARCH function “garch”,
which in fact can also compute the estimators derived from ¢-distributions
and generalized Gaussian distributions. In general, suppose that f(-) is
the probability density function of ¢; and is known. Then, the maximum
likelihood estimators will be derived from minimizing

I(co,b,a) = {log&; — log f(X:/51)} (4.38)

t=v

instead of (4.37). Apart from the normal distribution, some frequently used
forms of f(-) are:

o t-distribution with v degrees of freedom:

= it (22) (0 x_z>) ,

where v > 2 may be treated as a continuous parameter.

o Generalized Gaussian distribution:
_ 1+1/v -1 Lizw
f(@) =v{Ar2 [(1/v)} ™" exp *i\x\ ,

where A = {2_%I‘(%)/F(%)}% and 0 < v < 2.

When v = 1, the generalized Gaussian distribution reduces to the double
exponential distribution f(z) = exp{—+v/2|z|}/v/2. All of the distributions
above have been normalized to have mean 0 and variance 1, and all of them
have heavier tails than normal distributions. For example, E(|e;|”) = o0
if g ~ tv.
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S+GARCH may also compare two or more fitted models using the func-
tion “compare”, which will print out the AIC and BIC values for all of the
models. For model (4.34),

AIC =1,(¢,b,8) + 2(p+ ¢ + 1), (4.39)
and R
BIC =1,(co,b,a) + (p+q+ 1) log(T — v + 1), (4.40)
where [,,(+) is defined in (4.38) (see §3.4.1 and §3.4.3).

(b) Whittle’s estimator

For GARCH(p, ¢) defined in (4.34), the conditional variance can be written
as

q [e ]
0’?200/ 1—ZCLJ‘ +Zde1‘/2*j’
J=1 J=1

where dj > 0 and Y 77, d; = Y27 bi/(1 — Y27, a;); see the proof of
Theorem 4.4. Suppose that {X;} is fourth-order stationary in the sense
that its first four moments are all time-invariant (see the condition (4.28)
in Theorem 4.4). Let Y; = X?. Then {Y;} is a stationary AR(co) process
satisfying

q o]
Y: :C()/ 1—Zaj +Zdj}/;,j+et, (441)
j=1 =1

where e; is a martingale difference

q 00
et:({:‘f*l) Co/ 172(%‘ +Zdj}/;_j
j=1 j=1

with 02 = Var(e;) < oo. Therefore, the spectral density of the process {Y;}
is
-2
o? =

— Zc |1 - ptiw .
g(W)— ot 1 Zldje )
J:

see Theorem 2.12. Based on (4.41), Giraitis and Robinson (2001) proposed
the Whittle’s estimators for b; and a; by minimizing

T-1

ZIT(%)/Q(%‘),

where Ip(-) is the periodogram of {Y;} (see Definition 2.8), and w; =
27§ /T; see also Theorem 2.14. Giraitis and Robinson (2001) also estab-
lished the asymptotic normality for the estimators. Mikosch and Strau-
mann (2000) investigated the Whittle estimation for a heavy-tailed GARCH(1,
1) model.
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Whittle’s estimators suffer from the lack of efficiency, as e; is unlikely
to be normal even when ¢; is normal. Furthermore the condition (4.28) is
hardly fulfilled in financial applications.

(¢) Li-estimation

Both estimators discussed in (a) and (b) above are derived from maxi-
mizing a Gaussian likelihood or an approximate Gaussian likelihood. In
this sense, they are Ls-estimators. It is well-known that L-estimators are
more robust with respect to heavy-tailed distributions than Ls-estimators.
Empirical evidence suggests that some financial time series exhibit heavy-
tailed behavior and that the models based on distributions with heavier
tails than those of a normal distribution would be more appropriate; see
Mandelbrot (1963), Fama (1965), Mittnik, Rachev, and Paolella (1998),
and Mittnik and Rachev (2000)

Based on this consideration, Peng and Yao (2002) proposed least absolute
deviations estimators for co, b;, and a; in model (4.34) that minimize

T

> [log(X?) —log(d7)

t=v

, (4.42)

where 77 is defined in (4.36) and v =p+1ifg=0and v > p+1if ¢ > 0.

The idea behind (4.42) implies implicitly a reparameterization of model
(4.34) such that Ee; = 0 and the median (instead of variance) of &7 is
equal to 1. Now, under this new setting, the parameters ¢y and the b;’s
differ from those in the old setting by a common constant factor, whereas
a;’s are unchanged. Note that in the regression model

log(XtQ) = log(af) + log(af),

the errors log(e?) are i.i.d. with median 0. This naturally leads to the es-
timators derived from minimizing (4.42). In fact, Peng and Yao (2002)
showed that under very mild conditions, the least absolute deviations esti-
mators are asymptotically normal with the standard convergence rate 7''/2
regardless of whether the distribution of £; has heavy tails or not. This
is in marked contrast to the conditional maximum likelihood estimators
derived from (4.37), which will suffer from slow convergence when e; is
heavy-tailed; see Theorem 4.6 in §4.2.4.

Simulation comparisons between the least absolute deviations estima-
tor and the conditional Gaussian maximum likelihood estimator were con-
ducted for ARCH(2) and GARCH(1, 1) models, with &; being normal and
t-distributed with 3 and 4 degrees of freedom in Peng and Yao (2002). The
numerical results suggested that for models with very heavy-tailed errors
(i.e., e; ~ t3), the least absolute deviations estimator performed much bet-
ter than the Gaussian maximum likelihood estimator. In contrast, when
the error £; was normal, the Gaussian maximum likelihood estimator was
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preferred. When ¢, ~ t4, the performance of the two methods was compara-
ble. In fact, the performance of the Gaussian maximum likelihood estimator
decreases when the heaviness of the tails increases. However, this is not al-
ways the case for the least absolute deviations estimator, as it is robust
against heavy tails.

4.2.4  Asymptotic Properties of Conditional MLESs*

As discussed in the previous section, conditional maximum likelihood es-
timation remains as one of the most frequently-used methods in fitting
GARCH models. In practice, the distribution of ¢; is typically unknown.
The estimator derived from a Gaussian likelihood is often employed. Hall
and Yao (2003) established the asymptotic properties of this estimator,
ranging from nonheavy-tailed to heavy-tailed errors. The results will be
presented below in a compact manner. For further mathematical rigors,
see Hall and Yao (2003).

Let {X;} be the strictly stationary solution from GARCH(p,¢) model
(4.34) in which &, may not be normal. We assume that p > 1, ¢ > 0,
co>0,b;>0forj=1,--- ,p,and a; >0fori=1,---,¢q when ¢ > 0. Let
(/c\(),ﬁﬁ) be the estimator derived from minimizing (4.37), which should
be viewed as a (conditional) quasimaximum likelihood estimator. We also
assume that in (4.37) v = v(T) diverges to infinite at a rate sufficiently
slow to ensure v/T — 0 as T — 0o. Theorems 4.5 and 4.6 below present,
respectively, its asymptotic distributions for the case of nonheavy-tailed
errors and the case of heavy-tailed errors. To this end, we introduce some
notation first. R R )

Let 6 = (co,b™,a”)", 8 = (¢p,b7,a")7, and U, = %C;" . It may be shown
that U;/o? has all of its moments finite. We assume that the matrix

M = E (U,Uj /o)) >0

is positive-definite. Let {V;} be a sequence of independent random vari-
ables with the same distribution as M~1U; /0. Let Y1,Ys,... represent
the infinite extension of the multivariate joint extreme-value distribution
of the first type, with exponent a. In other words, for each k, the distri-
bution of (Y1,...,Y%) is the limiting joint distribution, as n — oo, of the
k largest values of a sample of size n drawn from a distribution in the
domain of attraction of the first type of extreme-value distribution, after
appropriate normalization for scale. More precisely, we assume that the
normalization is chosen such that Y; has distribution function exp(—y~<)
for y > 0. Hall (1978) formulated a representation of the distribution of the
full process Y7,Ys, - -. We assume that {Vj} and {Y}} are independent of
each other. Put

oo

Wo =Y {ViVi — E(Y2)E(V1)}.
k=1
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Now, Theorems 4.5 and 4.6 hold under the conditions assumed above.
For their proofs, see Hall and Yao (2003). Part (i) of Theorem 4.5 below
shows that the finite fourth moment of e; will ensure asymptotic normality.
Part (ii) shows that the condition can be relaxed so that €7 is in the domain
of attraction of the normal distribution. In general, a distribution G is said
to be in the domain of attraction of a distribution F if

a, (S, —by) N F, asn — oo,

where S,, = Z?zl i, {6} ~i5.q. G, and a,, > 0 and b, are some constants.
See §6.1 of Feller (1971).

Theorem 4.5 (Hall and Yao 2003)
(i) If E(e}) < o0,

1/2 R
{E(a;lT)—l}w(" —6) = N(O,M ™).

(ii) If E(e}) = oo and the distribution of €7 is in the domain of attraction
of the normal distribution, then

L6 2 noMm),
AT

where
A =inf[A > 0: E{eil(e? <N} < \/T].

Intimately related to the concept of domain of attraction is the distri-
bution family of stable laws. Let {n;} ~;; 4 F and S, = >7" m. A
nondegenerate distribution F' is stable if, for each n > 2, there exist some
constants « > 0,7, such that the distributions of S,, and n%n; + ~, are
the same, where « is called the exponent of the stable law. It measures
the tail-heaviness of a distribution; the smaller the value of «, the heavier
the tails. It is known that o € (0,2] and o = 2 corresponds to normal
distributions. Furthermore, a distribution is stable if and only if it has a
non-empty domain of attraction; see also §17.5 of Feller (1971). Now, we
are ready to state the asymptotic properties of 6 when €2 has a heavy-tailed
distribution.

Theorem 4.6 (Hall and Yao 2003)
If the distribution of 2 is in the domain of attraction of a stable law with

the exponent o € (1,2), then

T ~

—(6-0) 2w,

AT
where

Ar =inf{A >0: TP(e} > \) < 1}.
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Note that if the distribution of a random variable £ belongs to the do-
main of attraction of a stable law with exponent «, E|(]*T¢ = co and
E|£|*~ ¢ < oo for any € > 0. Furthermore, the A, defined in Theorem 4.6,
increases as « increases. Therefore, the convergence rate of the estimator 0
is dictated by the distribution tails of 2; the heavier the tails, the slower the
convergence. When a classic central limit theorem holds and the limiting
distribution is normal, all of the terms in the partial sums are equally im-
portant and none of them dominates the others. This is no longer the case
for a heavy-tailed the distribution with, typically, infinite second moment
(i.e., E{(¢7)?} = oo in the current setting). For heavy-tailed distributions,
the partial sums are dominated by a few extremely large values from the
tails; see the definition of {Y;} above. Therefore, it will take considerably
longer before the partial sums settle, resulting in slower convergence rates.

4.2.5 Bootstrap Confidence Intervals

Theorems 4.5 and 4.6 indicate that the range of possible limit distributions
for a (conditional) Gaussian maximum likelihood estimator is extraordinar-
ily vast. In particular, the limit laws are not restricted to a class that can be
described by a finite number of parameters. Rather, they depend intimately
on the error distribution in its entirety. This makes it impossible (in the
heavy-tailed cases) to perform statistical tests or interval estimation based
on asymptotic distributions in any conventional sense. Bootstrap methods
seem the best option for tackling these problems.

However, it is well known that in the settings where the limiting distribu-
tion of a statistic is not normal, standard bootstrap methods are generally
not consistent when used to approximate the distribution of the statistic;
see, for example, Mammen (1992). To some extent, subsampling methods
can be used to overcome the problem of inconsistency; see Bickel, Gotze,
and van Zwet (1995). However, although this approach consistently approx-
imates the distribution of a statistic, it does so only for a value of sample
size that has to be an order of magnitude less than the true sample size.
As a result, a confidence interval based on the subsample bootstrap can
be very conservative. In the absence of an accurate method for adjusting
scale, which typically depends on the convergence rate, subsampling can
be unattractive. In this section, we introduce a percentile-t form of the
subsampling method introduced by Hall and Yao (2003), which gives con-
sistent confidence intervals for parameters in GARCH models. Note that
the percentile-t method is usually employed in order to attain a high order
of accuracy in approximations where the limiting distribution is normal.
That is not the main goal in this context. Instead, it is used to avoid the
rescaling of the distribution from subsamplings.
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By Theorems 4.5 and 4.6, it holds that
@-0) 2w, (4.43)

provided that the distribution of £? is in the domain of attraction of a
stable law with exponent « € (1,2], where W has a proper nondegenerate
distribution, and the convergence rate y— is unknown and it may depend
on the underlying distribution 1nt1mately To get rid of the influence of this
unknown convergence rate, we define

1 & 1 &L\
~2 _ ~4 ~2
T —TZEt—<TZ€t> , (4.44)
the sample standard deviation of {7}, where & = X;/ O’t( ). It may be
proved (Hall and Yao 2003) that
Ap T (O —0). 727} 25 (W..5),

where S is a random variable with P(0 < S < o0) = 1. The studentized
statistic is defined as the ratio of the two statistics on the left-hand side of
the expression above, which admits the asymptotic distribution

T3

® ; b) o, w/S (4.45)

with the known convergence rate Tz,

Let & = X;/o(@) fort =wv,--- ,T,and let &,,- - - , &1 be the standardized
version of {&;} such that the sample mean is zero and the sample variance
is 1. Now, we draw ¢; with replacement from {&;} and define X; = oje;
fort=v,---,m with

p q
ZbXt*z Z Utj

and form the statistic (5*, 7*) based on {X}, -+, X/} in the same way as
(0,7) based on {X,,- -, Xr}. Hall and Yao (2003) proved that as T — oo,
m — oo, and m/T — 0, it holds for any convex set C' that

~% ~

P{\/Fn w?:e)eC’Xl,mXT}—P{\/f(e;a) eCH—m

Based on this, a one-sided bootstrap confidence interval for, for example,
Oy, the kth component of 8 with the confidence level w € (0,1) is defined
as

[0, — T7% 70y, 00), (4.46)
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where
Uy = inf {u : Plm'2(7) N0 — Ox) < u| Xy, Xp] > w}. (4.47)

Both left-sided intervals and two-sided intervals may be constructed in a
similar manner. The simulation results reported in Hall and Yao (2003)
indicated that the procedure worked reasonably well for ARCH(2) and
GARCH(1, 1) models with heavy or nonheavy-tailed errors and is insensi-
tive to the choice of the values of m in the range of 50%-80% of the original
sample size T'.

In the heavy-tailed case, the limit properties of the maximum likelihood
estimators are dictated by the behavior of extreme order statistics. The
reason that the full-sample (i.e., T-out-of-T") bootstrap fails to be consistent
is that it does not accurately model relationships among extreme order
statistics in the sample. For example, for each fixed k > 2, the probability
that the k largest values in a resample are equal does not converge to 0
in the T-out-of-T" bootstrap. The probability does converge to 0 for the
m-out-of-T" bootstrap, provided m/T — 0, and of course it converges to 0
for the sample itself.

In principle, we may construct confidence intervals in terms of a boot-
strap approximation for the distribution of @ — 8 directly. Since we have
to use a subsampling bootstrap, the intervals so constructed will be for
the sample size m. Those intervals would have to be converted to those for
the sample size T according to the unknown convergence rate T'/Ar, which
is practically infeasible. The statistic 7 defined in (4.44) was introduced
to studentize & — 6. Note that the studentized statistic (5 — 0)/7 has a
known convergence rate T%; see (4.45). Therefore, the conversion can be
done with ease; see (4.46) and (4.47). Of course, we lose some precision in
the estimation due to the introduction of random quantity 7.

4.2.6  Testing for the ARCH Effect

It becomes a routine practice in analyzing financial data, for example, to
test the existence of conditional heteroscedasticity. Neglect of the con-
ditional heteroscedasticity may lead to a loss in asymptotic efficiency of
parameter estimation (Engle 1982) and can result in overparameterization
of an ARMA model (Weiss 1984). It may also cause overrejection of con-
ventional tests, such as (7.29), for serial correlation in mean (Milhoj 1985;
Taylor 1986). In principle, we may test the hypotheses of the parameters
a; and b; based on the bootstrap confidence intervals developed in the
last section. We introduce in this section some methods based on more
traditional parametric methods that model conditional heteroscedasticity
in terms of an ARCH specification. Those methods may be more efficient
when additional information on the distribution of ¢; is available and &;
has finite high order (> 4) moments.
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Suppose that {X;} is a strictly stationary process defined by

P
Xy = o0&, of = co+ ijXtZﬂ', (4.48)
i=1

where cg > 0 and a; > 0. We are interested in testing the null hypothesis
of no ARCH effects, which can be formulated as

H()Zbl:”-:bpzo, (449)
against the alternative hypothesis

Hy: bj #0 for at least one j.
It is easy to see that, under Hj, the conditional variance o? = c; is a
constant. If the density function f(-) of &; in (4.48) is known, a natural
approach is to use the (conditional) likelihood ratio test based on the test

statistic
T

o Jt(/c\Oug)_lf{Xt/Jt(/c\Oag)}
STJ B H Ut(EO’O)_lf{Xt/Ut(EOvO)} ’

(4.50)
t=p+1

~

where (¢p, b) is the maximum (conditional) likelihood estimator for model
(4.48) and ¢y is the constrained maximum (conditional) likelihood estima-
tor under the null hypothesis (4.49). It is well-known that under the null
hypothesis Hy

D
2 log(ST)l) — X?),

provided that the density function f(-) is smooth enough and the Fisher
information matrix

_ ( Tii(co,b) Ti2(co,b)
I(co,b) = ( I21(co,b) Ia2(co,b)

) = E{{(Xy; ¢, b)l(Xy;¢0,b)7}

(4.51)
exists and is positive-definite; see §4.4.4 of Serfling (1980). (Those condi-
tions are fulfilled for ARCH models with e; ~ N(0,1).) In the expression
above,

— _( 0(Xi5c0,b) \ _ [ 5= logloy f(Xi /o))
i = (e ) = ( " ogloy F (X, /o) )

Furthermore, the asymptotic distribution under the null hypothesis is also
shared by both the score test (4.52) advocated by Engle (1982) and the
Wald test (4.54) below.

The score test is also called the Rao test or the Lagrange multiplier test.
It is based on the fact that the gradient of a log-likelihood function should
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be close to 0 under a null hypothesis. More precisely, it can be shown that
under Hy,

1
VI —p

T
Z U9(Xy; G, 0) 2> N(0,I52(co,0)),
t=p+1

where Iy is defined in (4.51). The score statistic is defined as

ST72: T‘l—p{ Z éQ(Xt;g0,0)} {122(50,0)}71 Z éQ(Xt;E0,0).

t=p+1 t=p+1
(4.52)
An advantage of the score test is that it does not require computation of
/C\O and b.

If e; in (4.48) is normal, Engle (1982) has shown that the score test
may be performed in terms of the statistic TR?, which is asymptotically
equivalent to St2, where R? is the multiple correlation coefficient of X7
and (X2 4, ,Xf_p), namely

R? = X7 X(XTX) T XX 1 /(X1 Xp1),s (4.53)

where X, = (Xﬁ,X,f_i_l7 e ,X%_p_l_i_k)T7 X =(1,X,,X,-1,---,X1),and
1 is a vector with all components 1. Although the asymptotic equivalence
is justified for the models with normal errors only, the statistic TR? has
been used also for nonnormal cases. Since R? is the percentage of the part
of the variation of X? that can be explained in terms of its p lagged val-
ues, the large values of R? are indicative of a linear dependence of X?
on X7 |,---, X2 . Therefore, it is a sound test statistic for testing the
ARCH effect. However, its asymptotic properties are less clear when ¢; is
not normal. R

The Wald test directly compares the MLE b with b = 0, the parameter

value under the null hypothesis Hy. Note that under Hy, (T — p)%g =N
N(0,1%2(co,0)), where I?2 is the lower p x p submatrix of {I(co,b)} !,
which equals to

I?%(co, b) = {Is2(co, b) — In1(co, b)I11(co, b) "' Ti2(co, b)} 1.
The Wald statistic is defined as
Srs = (T —p)b"{I**(%,b)} 'b. (4.54)

Section 4.4.4 of Serfling (1980) discussed the asymptotic properties of the
three tests defined above. Although all three statistics 21log(St,1), St,2, and
St 3 share the same asymptotic distribution X;Q; under Hy, there are some
practical differences in the use of these tests. For example, it is anticipated
that they will not have the same power at fixed alternatives. Likelihood
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ratio tests are invariant to one-to-one transformations for both random
variables and parameters, a property not shared by score tests and Wald
tests. On the other hand, the score statistic is potentially simpler from a
computational point of view since it depends on the estimator ¢y only; see
(4.52).

Based on truncation (4.36), we may extend the test above for testing Hy
against a GARCH(p, q) alternative. This is effectively to test Hy against
an ARCH(oo) alternative. Since our primary interest in this practice is
to detect the existence of conditional heteroscedasticity, we may simply
test Hy against an ARCH(p) alternative in which the choice of p is not so
critical. Once the null hypothesis Hy is rejected, we may select an adequate
model in terms of AIC or BIC; see (4.39) and (4.40).

Note that in forming the test statistic (4.50) we did not make use of the
information that b; > 0. (If the estimator Ej’s are restricted to be non-
negative, the y2-asymptotic approximation stated above is not necessarily
valid since the parameter value b; = 0 is at the boundary rather than
the interior of the parameter space). Literature concerning testing for Hy
against a one-sided alternative (i.e., Hy : b; > 0 for some j) includes Lee
and King (1993) and Hong (1997).

4.2.7 ARCH Modeling of Financial Data

The direct motivation for introducing ARCH models is to evaluate and/or
to forecast risk in financial time series in the form of conditional het-
eroscedasticity. Standard examples of financial time series are the prices
of company-shares quoted at major stock exchanges, interest rates set by
governments or major national banks, and foreign exchange rates among
different currencies. For stock prices, data sets can be intra-daily “tick-by-
tick” trade data. This means that every trade in a specific stock is recorded
together with the time when the trade took place. However, most data an-
alyzed in terms of statistical models (such as GARCH) are daily data for
which only a single number is recorded for each day. Most commonly ana-
lyzed daily stock prices contain only daily closing prices.

Since financial data typically have the autocorrelation coefficient close to
1 at lag 1 (e.g., the exchange rate between the U.S. dollar and pounds ster-
ling hardly changes from today to tomorrow), it is much more interesting
and also practically more relevant to model the returns of a financial series
rather than the series itself. Let {Y;} be a stock price series, for example.
The returns are typically defined as

Y, —Yi_
X;=logV; —logV, . or X;=-"‘_—"1
Y1
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which measure the relative changes of price. Note that the two forms above
are approximately the same as

Y, =Y

logY; —logY;_1 = log <1 +
Y1

) ~ (Vi Vi) /Y.

Rydberg (2000) summarizes some important stylized features of financial
return series, which have been repeatedly observed in all kinds of assets
including stock prices, interest rates, and foreign exchange rates. We list
below some of those features for daily data.

(i) Heavy tails. It has been generally accepted that the distribu-
tion of the return X; has tails heavier than the tails of a normal
distribution. Typically, it is assumed that X; only has a finite
number of finite moments, although it is still an ongoing de-
bate how many moments actually exist. Nevertheless, it seems
a general agreement nowadays to assume that the daily return
has a finite second moment (i.e. EX? < co). This also serves as
a prerequisite for ARCH/GARCH modeling.

(ii) Volatility clustering. The term volatility clustering refers
to the fact that large price changes occur in clusters. Indeed,
large volatility changes tend to be followed by large volatility
changes, and periods of tranquillity alternate with periods of
high volatility; see, for example, Figure 4.16(a) below.

(iil) Asymmetry. There is evidence that the distribution of stock
returns is slightly negatively skewed. One possible explanation
could be that traders react more strongly to negative informa-
tion than positive information.

(iv) Aggregational Gaussianity. When the sampling frequency
decreases, the central limit law sets in and the distribution of
the returns over a long time-horizon tends toward a normal
distribution. Note that a return over k days is simply the ag-
gregation of k daily returns:

k k
log ¥y, —log¥p = Y (log; —log¥i1) = ) | Xo.
t=1

t=1

(v) Long range dependence. The returns themselves of all kinds
of assets hardly show any serial correlation, which, however,
does not mean that they are independent. In fact, both squared
returns and absolute returns often exhibit persistent autocor-
relations, indicating possible long-memory dependence in those
transformed return series; see, for example, Figure 2.7.
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ARCH and GARCH models may catch three out of the five stylized fea-
tures listed above, namely (i), (ii), and (iv). First, ARCH and GARCH
processes defined in terms of normal errors are innately heavy-tailed; see
Propositions 4.1(iii) and 4.2(ii). The models with heavy-tailed errors such
as e; ~ ty for K = 4 or 3 have been used to model very heavy-tailed data in
practice. However we should not overlook the fact that a GARCH model
with normal errors may be very heavy-tailed as well; see (4.31) and (4.32).
Further, the volatility clustering is also portrayed naturally in ARCH and
GARCH models; see (4.20). Note that a GARCH(p,q) process is effec-
tively an ARCH(oo) process (see (4.35)). Therefore (4.20) also holds for
a GARCH process with p = oo, indicating even more persistent volatil-
ity clustering. Finally, a strictly stationary GARCH process {X;} with
EX? < oo is also a sequence of martingale differences. Therefore, it may
hold that 7/2 Zthl X, is asymptotically normal; see Theorem 4 on p. 511
of Shiryayev (1984). Therefore, the aggregational Gaussianity holds.

However, GARCH models, in their classic form, fail to catch the styl-
ized features (iii) asymmetry and (v) long-range dependence. Extension
of the classic GARCH form to model these, and also other, stylized fea-
tures received ample attention in the literature. We list below a few ex-
tended GARCH models (in their simplest forms) that are often used in
practice. Shephard (1996) provides a more comprehensive survey on ex-
tended GARCH models.

(a) EGARCH

Nelson (1991) introduced an ezponential GARCH (EGARCH) model that
specifies the model

Xy =erexp(he/2), hi =0 +v1hi—1+g(es-1),

where
g(x) =wz + N(|z| — Elx]). (4.55)

In contrast to the form of o; in the GARCH model, the value of the func-
tion g(-) depends on both the size and the sign of its argument. As a re-
sult, EGARCH responds nonsymmetrically to random shocks ;. Although
(4.55) looks somewhat complicated, it is rather straightforward to identify
the properties of the process {h;} and therefore also those of {X;}. Note
that {g(e¢)} is i.i.d. provided {e;} is i.i.d. Therefore {h;} is a causal linear
AR(1) process if |y1| < 1. For further discussion on EGARCH models, see
Bollerslev, Engle, and Nelson (1994).

(b) FIARCH

In order to model the persistent correlations in squared returns, attempts
have been made to construct long-memory ARCH type models. Similar
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to FARIMA models defined in §2.5.2, we define a fractionally integrated
ARCH (FIARCH) model as

Xt = 0164, Ut2 =co + {1 - (1 - B)d}Xt2—1 =co + b(B)th—lv

where d € (—0.5,0.5), and b(+) is a polynomial with hyperbolically (rather
than exponentially) decaying coefficients. Although a FIARCH model is
in the form of ARCH(c0), the slow-decaying coefficients cause the long-
term autocorrelation in the series {X?}. For further discussion on FI-
ARCH processes, see Baillie, Bollerslev and Mikkelsen (1996), Ding and
Granger (1996), Robinson and Zaffaroni (1998), and Mikosch and Starica
(1999).

(c) ARCH-M

In finance theory, the relationship between risk and return plays a pre-
dominant role. If we take conditional deviation as a measure for risk, it is
possible to use risk as a regressor in modeling returns. Engle, Lilien, and
Robins (1987) proposed the ARCH in mean (ARCH-M) model

Xt 29(0370) + €t01, 0'152 :CO+b{Xt—1 —9(03_1,0)}2.

A commonly used parameterization is the linear one: g(y,0) = 6y + 61y.
See Hong (1991) for its statistical properties.

Finally, we point out that many different types of models have been
proposed for the modeling of financial data, including the ARCH/GARCH
model discussed in this section. The stochastic volatility models (Shephard
1996; also §4.3.3 below) form another class of popular statistical models.
See also Rydberg (2000) for references on various models in the category
of mathematical finance.

4.2.8 A Numerical Fxample: Modeling SEP 500 Index

Returns

We illustrate the GARCH modeling techniques in terms of the daily S&P
500 index data from January 3, 1972 to December 31, 1999 introduced in
Example 1.4. We define the returns

X: =100(log Y; — log Y;_1),

where Y; is the index at time t. The sample size is T = 7075. Numerical
fitting of GARCH models was performed using the S+GARCH function
garch.

(a) Graphical investigation

The S&P 500 returns are plotted in Figure 4.16(a), in which the large
sparks around ¢ = 4,000 correspond to the stock market crash in October
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FIGURE 4.13. Histogram of the S&P 500 returns and a normal density function
with the same mean and variance.
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FIGURE 4.14. Correlogram of (a) the S&P 500 returns, and (b) the squared
returns.

1987. The histogram in Figure 4.13 has a long stretch on its left due to
the single large negative return. However, if we discard this single “out-
lier”, the marginal distribution seems fairly symmetric but not normal.
The correlogram in Figure 4.14 shows that there is almost no significant
autocorrelation in the return series { X;} itself, but such an autocorrelation
does exist in the squared series { X?}. Figure 4.15 presents the plots of the
returns versus the normal distribution and Student’s t-distributions with
degrees of freedom ranging from 7 to 3. (The plots against ¢t-distributions
were produced by the S+GARCH function “aqgplot”). Those plots are in-
formative for identifying the moment condition. For example, both tails of
the empirical distribution of the returns are heavier than those of the nor-
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FIGURE 4.15. Sample quantiles of the S&P 500 returns are plotted against,
respectively, quantiles of N (0, 1) and ¢-distributions with degrees of freedom be-

tween 7 and 3.
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mal distribution, and ¢-distributions with 7 and 6 degrees of freedom are
considerably lighter than ¢-distribution with 3 degrees of freedom. There-
fore, it seems reasonable to assume that E(X?) = co and E(|X;|>7¢) < oo
for any € > 0.

(b) Testing for conditional heteroscedasticity

Following the argument in J.P. Morgan’s RiskMetrics (J.P. Morgan 1996,
p. 92), we fixed the conditional mean for the daily returns at 0. This leads
to the fitting of the data with a GARCH specification (4.48). Figure 4.14(b)
indicates a clear autocorrelation in the series { X?}. To reinforce this obser-
vation, we applied the likelihood ratio test (4.50) to test for the existence
of the ARCH-effect (i.e., conditional heteroscedasticity). The test has been
implemented in the S+GARCH code “archtest.s”, which simultaneously
carries out the tests with normal €; and ¢g-distributed e, respectively, for
3 <k < 8. For the S&P 500 returns, the null hypothesis (4.49) was always
rejected with p-value virtually O for all of the assumed error distributions
with order p between 1 and 4. As we pointed out in §4.2.6, the choice of the
order p is not important. Since we tend to reject a null hypothesis when the
sample size is extremely large, we also applied the test for different sections
of original series with length varying between 200 and 1,000. The evidence
for rejecting the homoscedasticity hypothesis (4.49) was still overwhelming.

(c) Fitting a GARCH model with Gaussian error

To model the conditional heteroscedasticity, we fitted a GARCH(p, ¢) model
with Gaussian error [i.e., {e:} ~;;q N(0,1)] based on the conditional
maximum likelihood method presented in §4.2.3. Among the candidate
models with p > 1 and ¢ > 0, both AIC (4.39) and BIC (4.40) selected a
GARCH(1, 3) model with the estimated conditional standard deviation

62 = 0.015 4+ 0.112X72 | +0.49207 | — 0.03407_, +0.42007 5.  (4.56)

For this selected model, AIC= 17792.2 and BIC= 17826.5. The standard
errors of the five estimated coefficients on the right-hand side of the equa-
tions above are 0.002, 0.004, 0.070, 0.083, and 0.055, respectively, and were
calculated based on the asymptotic normal distribution of the estimator;
see Theorem 4.5(i). The coefficient —0.034 in the model above is not signif-
icant since the corresponding p-value of the t-test is 0.341. Therefore, the
term containing o , may be removed from the model.

Figure 4.16(b) plots the estimated standard deviations 7 given in (4.56).
Compared with Figure 4.16(a), (4.56) models the volatility in the original
return series very well. Figure 4.16(c) shows that the “residuals” &;, defined
as & = X, /0, are not necessarily always smaller than the original data X3,
but they certainly look much less volatile. Indeed, apart from a few large
downward sparks, the variation of the residuals seems fairly homogeneous.
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FIGURE 4.16. Time plots of (a) the S&P 500 returns {X;}, (b) the esti-
mated conditional standard deviations {o:} given in (4.56), and (c) the residual
{&: = X:/0:}. The estimates were derived based on a GARCH(1, 3) model with
Et N~ N(O, 1)

Figures 4.17 (a) and (b) indicate that there seems to be no significant auto-
correlation in both the residual sequence and its squared sequence. In fact,
the residuals pass the likelihood ratio test (4.50) with normal conditional
density for the null hypothesis (4.49) comfortably for all attempted values
of p (i.e.,, 1 < p < 4), indicating that there exists no significant conditional
heteroscedasticity in the residual series. We also applied both Fisher’s test
(7.33) and the adaptive Neyman test (7.43) for testing the hypothesis that
the residuals are from a white noise process. Fisher’s test was passed with
the p-value 0.364, whereas the adaptive Neyman test was failed with the p-
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FIGURE 4.17. Correlogram of (a) the residuals from fitted model (4.56) and (b)
the squared residuals. (c) plot of the residuals versus a normal distribution.

value virtually equal to 0. Note that if the fitting is perfectly adequate, the
residuals should behave like Gaussian white noise. However, Figure 4.17(c)
clearly indicates that both tails of the empirical distribution of the residu-
als are heavier than those of a normal distribution. This suggests that we
may explore the possibility of fitting a GARCH model with heavy-tailed e,
to this data set.

(d) Fitting a GARCH model with t-distributed error

Based on the analysis in (c) above, we fitted a GARCH model with {;} ~; ; 4.
ty with degree of freedom d, together with other parameters in the model,
estimated by the (conditional) maximum likelihood method. Now, both
AIC and BIC selected a GARCH(1, 1) model with estimated conditional
standard deviation

57 = 0.007 + 0.047X7 ; +0.94507 ;. (4.57)

For this selected model, AIC= 17411.7 and BIC= 17439.2. The estimated
degrees of freedom is d = 7.41 with the standard error 0.487. By treating
d as a continuous parameter, the estimator is asymptotically normal. The
standard errors for the three parameters on the right-hand side of (4.57)
are 0.001, 0.005, and 0.005. All the three coefficients are significantly away
from zero according to the t-tests. Figure 4.18(b) shows that the conditional
standard deviation ; catches the heteroscedasticity in the original data se-
ries, plotted again in Figure 4.18(a), very well. The residuals &; = X/
depicted in Figure 4.18(c) are obviously less volatile than the original re-
turns. We applied both Fisher’s test (7.33) and the adaptive Neyman test
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(a) Returns of the S&P 500 Index
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FIGURE 4.18. Time plots of (a) the S&P 500 returns {X;}, (b) the esti-
mated conditional standard deviations {o:} given in (4.57), and (c) the residual
{&: = X:/0:}. The estimates were derived based on a GARCH(1, 1) model with
t-distributed ¢, with the estimated degrees of freedom 7.41.

(7.43) for testing the hypothesis that the residuals are from white noise.
Fisher’s test was passed with the p-value 0.346, whereas the adaptive Ney-
man test was failed with the p-value virtually equal to 0. Figures 4.19
(a) and (b) indicate that there is hardly any significant autocorrelation in
both the residual series and its squared series. Now, the residuals seem more
agreeable to the distribution specified by the model, although the left-tail
of its empirical distribution is still heavier than that of the ¢-distribution
with 7.41 degrees of freedom; see Figure 4.19(c).
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FIGURE 4.19. Correlogram of (a) residuals from fitted model (4.57) and (b) the
squared residuals. (c) g~ — ¢ plot of the residuals versus the t-distribution with
d.f.=7.41.

(e) Estimation of VaR — value at risk

As we pointed out earlier, one of direct motivation for ARCH/GARCH
modeling is to estimate the predictive distribution for X; given its lagged
values {X;_r,k > 1}. If we assume that X; follows a specific GARCH
model with a known f(-) as the density function of error &, the required
predictive density function is just o; ' f(-/o;). Then, the task boils down
to the estimation of the parameters in the function o7. Often, in financial
applications, we are interested in extreme quantiles of this distribution,
which are called value at risk (VaR). For « € (0,1), the 100a% (conditional)
quantile is defined as

2o =inf{z: P(X; <z|Xi_k, k>1) > a}. (4.58)

(See Example 8.14 for further discussion.) An extreme high quantile z,,
with « very close to 1 (or an extreme low quantile z, with a very close to
0) represents the potential loss at the probability a (or 1 — «). The VaR is
arguably the most frequently used measure for risk management in finance.
For a GARCH process, an estimator for x, can be easily constructed as

(4.59)

Lo = 0t Tw,0,

where z, o is the 100a% quantile of €;, namely
oo
f@)dx = a.
Ta,0
Obviously, a misspecification of the distribution of £; may lead to a con-
siderable error in the estimator (4.59).
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For the S&P 500 return data, the fitted GARCH(1, 3) model (4.56) with
Gaussian error is inappropriate for a VaR estimation since it seriously mis-
specifies the tail behavior at both ends of the error distribution; see Fig-
ure 4.17(c). The GARCH(1, 1) model (4.57) with ¢-distributed error would
be better for estimating x, when « is close to 1 since the ¢-distribution with
7.41 degrees of freedom models the right tail of the error fairly well; see Fig-
ure 4.19(c). For o = 0.95,0.99,0.995, and 0.999, x,,0 = 1.879,2.952, 3.434,
and 4.656, respectively, for the t-distribution with 7.41 degrees of free-
dom. Due to the symmetry, —1.879, —2.952, —3.434, and —4.656 are the
low quantiles with o = 0.05,0.01,0.005, and 0.001, respectively. However,
the method (4.59) may underestimate the low quantiles of the returns,
as the left tail of the error distribution may be heavier than that of the ¢-
distribution; see Figure 4.19(c) again. This means that although a carefully
selected GARCH model may well catch the conditional heteroscedasticity
behavior of the S&P 500 returns, and may well forecast the risk associ-
ated with high quantiles, it will unfortunately underforecast the loss due to
market crashes of the scale similar to that in October 1987. An EGARCH
model will accommodate the asymmetric tail-behavior into the model, but
it still cannot forecast the extremely large losses in financial markets, which
remains a gigantic challenge to all time series modelers.

For further discussion on the VaR estimation in terms of nonparametric
methods, including the methods prescribed by the RiskMetrics Technical
Document of J.P. Morgan (1996), see Example 8.14.

4.2.9 Stochastic Volatility Models

In this subsection, we give a brief account of stochastic volatility models.
This class of models is not within the ARCH/GARCH family, but it of-
fers an alternative for modeling conditional heteroscedasticity of financial
returns. An excellent survey on stochastic volatility models is available in
Shephard (1996).

A general form of stochastic volatility model may be written as

Xt = Etg(ht) and ht = ag + alht_l + ey,

where {g;} ~ IID(0,1), {e;} ~ IID(0,02), {e;} and {e;} are independent,
and ¢g(-) > 0 is a known function. In contrast to a GARCH model, the
heteroscedastic variation of X; is expressed in terms of function g(h)?,
which depends on a (unobservable) latent process {h:} instead of a lagged
value of X;. The basic idea is that the latent h; may represent the random
and uneven flow of new information that is too complex to be modeled as
a function of the lagged values X; 1, Xy o, -+ only. (Unfortunately, this
statement itself is often true in the real world!) It is easy to see that when
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la1| < 1, the latent process {h;} is strictly stationary with

2
and (k) = Cov(he, hy_y) = —all. (4.60)

pn = E(hy) = .
1

170,1

This, in turn, also ensures that {X;} is a strict stationarity process.
The most popular form of stochastic volatility model is due to Tay-
lor (1986), which specifies

Xt =&t exp(ht/2), ht =ao + alht_l + €, (461)

where both {e;} and {e;} are Gaussian white noise. Now {h.} is a Gaussian
AR(1) process. Therefore, we may derive that, for all k£ > 1,

2k) exp{kun + k%03 /2}

B(X) = B Blexp(ihy)y = Zobn

where p, and o7 = 75,(0) are given in (4.60). Consequently, the kurtosis of
X, fulfills the inequality

ko = B(X{)/{E(X?)}? = 3exp{oj} > ke = 3.

This indicates that the distribution of X; has heavier tails than that of &;
—a property also shared by ARCH/GARCH processes.
It follows from (4.61) that

log X} = h; + loge}. (4.62)

Since {h;} is an AR(1) process and {loge?} is white noise, {log X?} is an
ARMAC(1, 1) process as far as its first two moment properties are concerned;
see Example 2.7. Note that the causality of {h,} implies that {h;} and {e;}
are independent of each other. Based on the normality of {h;}, it holds
that

Cov(X?, X7 ) Efexp(hy + hi—y)} — E(e")E(e"*)

k
exp(2un + a,%){exp(aiall I) -1}
Therefore

2 |kl 2
exp(oja; ) — 1 N I} K|
1

X2, X2 ) = ~
Corr(X? X2 ) exp(0?)—1  exp(o?) —1

The approximation holds for large |k|, which may be justified by a Taylor
expansion. Note that the term on the right-hand side of the expression
above is an ACF for an ARMA(1, 1) process. In this sense a stochastic
volatility process behaves in a manner similar to a GARCH(1, 1) process;
see (4.30).
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In spite of the simple theoretical properties stated above, stochastic
volatility models, unfortunately, do not facilitate a straightforward statisti-
cal estimation and inferences. The main difficulty is that, unlike ARCH and
GARCH models, it is not immediately clear how to evaluate the likelihood,
as the conditional distribution of X; given its lagged values is specified
implicitly only, due to the presence of latent variable h;. Simple estimators
for parameters may be derived in terms of generalized method-of-moments
(Hamilton, 1989, Chapter 14). In order to estimate the latent process {h:},
which is necessary for modeling conditional heteroscedasticity, a Kalman
filter based on a linear state-space representation for the non-Gaussian
process {log X2}, given in (4.62), may be employed; see Melino and Turn-
bull (1990) and Harvey, Ruiz, and Shephard (1994). Some approximate
likelihood methods coupled with Markov chain Monte Carlo methods have
also been developed for the estimation of stochastic volatility models; see
Shephard (1996) and references within.

4.3 Bilinear Models

Perhaps the most natural way to introduce nonlinearity into a linear ARMA
model is to add product terms. By restricting to products of time series
variable X;_; and innovation &;_;, we end with a model of the form

P q P Q
Xe=> 0Xi j+e+ Y acik+ Y, Y ciuXe ek, (4.63)
j=1

k=1 j=1k=1

where &; ~ I1ID(0,0?), and bj, ar and c;j; are unknown parameters. This
model is called a bilinear model with order (p,q, P,Q). For the process
{X;} defined by the model above, we write {X;} ~ BL(p, q, P, Q). Bilinear
time series models were introduced by Granger and Anderson (1978a). The
name of “bilinear” came from the fact that the model is linear in X; as well
as in ;. The appeal of this class is at least partially due to the fact that
a bilinear model goes beyond a simple linear form and yet retains much
of the simple structure of linear ARMA models. Indeed, we may argue
that we understand the probabilistic properties and are able to carry out
analytic computations for bilinear models more than any other nonlinear
time series models. In terms of potential applications, bilinear models are
known to be able to model occasional outbursts in time series (see Fig-
ure 4.20), which might be useful for modeling seismological data such as
records for explosions and earthquakes. However, successful applications
are still rare. Furthermore, the performance of statistical inference is less
well-understood. The asymptotic distribution of the maximum likelihood
estimators is still unknown. Invertibility is essential for understanding the
asymptotic properties of the estimators and yet it is almost uncheckable.
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4.8.1 A Simple Example

Although we are able to explore a fair amount of the analytical properties of
bilinear models, the calculation is typically clouded with cumbersome no-
tation. To illustrate some basic ideas and methods associated with bilinear
models, we start with a simple BL(1, 0, 1, 1) model

Xt = bthl + ¢+ C_thlé-t,l? (464)

where {&;} ~ IID(0,0?). Note that the model is not in the form of the
general autoregressive model (2.7). Therefore, we cannot use Theorem 2.4
to deduce the conditions for existence of a strictly stationary solution.
However, since the model is so close to a linear form, we may express
it in a kind of “moving average” with infinite order as we do for linear AR
or ARMA processes; see (2.5). Indeed, by iterating (4.64) n times, we have

X = {ﬁ(b + C€t—k)} Xion+er+ ”Zl {]]i[(b + cst_k)} gr—j. (4.65)

k=1

If the sum on the right-hand side of the expression above converges in

probability as n — oo, it must also hold that [],_, (b + cer—x) L5 0. In
this case, X; may be expressed as

Xt —€t+Z{H b+c<€t—k)}5t—j, (466)
k=1

which is in the form of MA(oo) with “random coefficients” given in the
curly brackets. Since {e;} is i.i.d., {X;} given in (4.66) is a strictly station-
ary solution of model (4.65). Pham and Tran (1991) showed that under
the condition that E(e}) < oo, the sum on the right-hand side of (4.65)
converges in mean squares if and only if b2 + c?0? < 1. This is also the nec-
essary and sufficient condition for model (4.65) to define a unique strictly
stationary solution with F(X?) < oo, provided that E(e}) < oo.
It follows from (4.66) that

je = EX, = Zbﬂ LeB(e2 )= 25

Furthermore, the variance Var(X;) may be derived from (4.66) as well, al-
though the expression is cumbersome and not particularly inspiring. Nev-
ertheless, it is clear that the condition E(e}) < oo is necessary for E(X?) <
0o. By (4.64), it holds that F(X;e;) = o2. Centering all of the terms in
(4.64), we have

Xi— pra = 0(Xo—1 — pio) + 60 + (X161 — 02)-
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BL(1,0,1,1) time series
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FIGURE 4.20. A time series of length 500 generated from bilinear model (4.64)
with b = 0.75,¢ = 0.6, and &; ~ N(0, 1). The horizontal line indicates the mean

(2.4) of the process.
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FIGURE 4.21. (a) ACF plot, (b) PACF plot, and (c) ¢" — ¢ plot versus normal
distribution for bilinear time series displayed in Figure 4.20.

Multiplying both sides by X;_ for £ > 2 and taking the expectation, we
derive a Yule-Walker equation

V(k) =

where 7(+) denotes the ACVF of {X;}. Thus, we may define an ARMA(1,
1) model with the autoregressive coefficient b and the moving average coef-
ficient and the variance of white noise selected such that the model’s ACVF
is the same as the ACVF of {X;} at both lags 0 and 1. This indicates that
a BL(1, 0, 1, 1) process is effectively an ARMA(1, 1) process as far as its

by(k—1), k> 2,
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first two moment properties are concerned. In fact, this is true for general
bilinear models; see Part (b) of §4.3.3 below.

Figure 4.20 depicts a time series of length 500 generated from the BL(1,
0, 1, 1) model (4.64) with b = 0.75,¢ = 0.6, and standard normal inno-
vations. The series exhibits occasional sharp spikes. Figures 4.21 (a) and
(b) indicate that the sample ACF decays fairly fast and that the sample
PACEF is virtually only significant at lag 1, resembling the properties of an
ARMA(1, 1) process. Due to those occasional bursts, the marginal distri-
bution exhibits heavy tails; see the ¢V — ¢ plot versus normal distribution
in Figure 4.21(c). In general, a bilinear process does not necessarily have
all moments finite.

4.3.2  Markovian Representation

The algebraic complication in manipulating bilinear models can be sup-
pressed under their state-space representation in which state vectors are
defined by random-coefficient autoregressive models with order 1 and are
therefore Markov chains. Accordingly, the representation is also called Marko-
vian representation. The stationarity of bilinear processes and their proba-
bilistic properties can then be deduced from those of state vector processes.
It is instructive to consider first the subdiagonal models for which c;;, =0
for all j < k in (4.63). We reparameterize a subdiagonal bilinear model as

P q P Q
Xy = Z bjXi—j+er+ Z agEt—k + Z Z cinXt—jrEt—k.  (4.67)
j=1 k=1 =0 k=1

Now, parameters P, ), and c¢;;, are different from those in (4.63). Let n =

max{p, P+q, P+Q}, m = n—max{q, @}, and byy; = ag4; = cpiiq+; =0
for all 4, j > 1. It has been established by Pham (1985, 1993) that X; defined

by (4.67) has the state-space representation
Xt = hTZt_l + &, (468)

and
Z, = (A +Be))Z; 1 +cey +de?, (4.69)

where the state-space variable Z; is an n x 1 vector with X;_,,, 1, as its ith
component for s =1,--- ,m and

m n—m P
SobXepint+ Y Sak+ Y cnXegjokt o Etijk
k=j k=j 1=0

as its (m + j)th element for j = 1,--- ;n —m, h is an n x 1 vector with
the (m + 1)-th element 1 and all others 0, ¢ is an n x 1 vector with the
first m — 1 elements 0 followed by 1,b1 + a1, - ,bp—m + an—m, d is an
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n X 1 vector with the first m elements 0 followed by co1,- -, co,n—m, B is
an n X n matrix with

Cm1 T Co1

Cm,n—m e Co,n—m

as the (n —m) x (m+ 1) submatrix at the bottom-left corner and all of the
other elements 0, and A is an n X n matrix with 1 as its (¢,4 + 1) element
fori=1,---,n—1,bj asits (m+j,m+1) element for j =1,--- ,n—m,
and b, 14 as its (n, k)th element for k =1,--- ;m+ 1 and 0 as all of the
other elements.

The representation (4.68) and (4.69) can be checked by direct computa-
tion. The state-variable equation (4.69) is in the form of the AR(1) model
with a random coefficient. Note that Z; consists of the lagged values X;_1,
Xi—9, -+ . Therefore, in (4.69) “regressor” Z,_; is independent of both “co-
efficient” (A + Be;) and “noise” (ce; + de?) if the bilinear process {X;} is
causal in the sense that X; is determined by {e¢,e1—1,&1—2,- - } only. Fur-
thermore {Z;} is a Markov chain. In fact, the Markovian representation of
this nature is also available for the general bilinear model (4.63) with much
more added complexity in notation; see Pham (1985, 1993). In general, for
{X.} defined in (4.63), it holds that

Xt = hTZt_l + &¢ (470)

and
Zt = A(st)Zt_l + C(€t), (471)

where Z; is an appropriately defined state-space random vector, h is a
constant vector, and A(+) and c(+) are constant matrix and vector functions,
respectively.

4.3.8  Probabilistic Properties®
(a) Stationarity

For a bilinear process {X;} defined in (4.63), if the state-space process
{Z,} specified in (4.71) is strictly stationary, {X;} is also strictly stationary
because of (4.70) and the fact that {e,} is i.i.d. Therefore, we only need to
derive the conditions under which the state-space equation (4.71) admits
a strictly stationary solution. Actually, the form of A(-) and c(-) is not
important. We are thus led to consider a general random coefficient model

Zt = AtZt,l + Ct, (472)

where A; is a random matrix and c; is a random vector, and {(Ay, c;)}
i.i.d. In comparison with the random-coefficient autoregressive models con-
sidered by Nicholls and Quinn (1982), A, is not assumed to be independent
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of ¢; in the model above. For this reason, (4.72) is called a generalized ran-
dom coefficient autoregressive model (Pham 1986).
Since (4.72) is in the form of AR(1), it holds that for any n > 1

n—1
Zt = At s At+1_nZt_n +ct + Z At ce At—‘,—l—jct—j- (473)

j=1

Thus, a sufficient condition for the existence of a stationary solution of
(4.73) is that the series 27:—11 A;---Aipi_jci—j converge in probability.
Since {A,} is i.i.d., it holds that

1 a.s.,
?j]Og{/\maX(AZ-&-l—j o ATAL A og) = Ao €[00, 00

as j — 00, where Apax(A) denotes the maximal eigenvalue of matrix A;
the limit \g, which may take infinite values, is called the upper Lyapunov
exponent of the sequence {A.}; see, for example, Cohen, Kesten, and New-
man (1986). When Ag < 0, it holds that for some fixed p > 0 and all
sufficiently large 7,

Minax (A7 1y AT A A )| < 7P,

Consequently,
[[Ag- - Apri—jce—jl| < e 7Pllei|

for all large j, where the matrix norm || - || is defined as

I|A]]? = 5171&18 x"ATAx/XTx,
X

which reduces to the conventional Euclidean norm when A is a vector. Note
that

n—1 n—1
ZAt"'At+17th7j < Z||At"'At+17th7jH
j=1 j=1
n—1 n—1 1/2 n—1 1/2
< CY e eyl <Cqd e > el :
j=1 j=1 j=1

where C' > 0 is a constant. Hence (4.73) has the unique strictly stationary
solution

Xt =c; + Z At s At+l—jct—ja (474)

Jj=1

provided
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(i) the upper Lyapunov exponent of the sequence {A;} is neg-
ative, and

(i) E{|le]|} < oo

The infinite sum on the right-hand side of (4.74) converges in mean square.
This result was first obtained by Pham (1986) and Brandt (1986). In fact,
under some mild additional conditions on the underlying distribution, con-
dition (i) above is also necessary for the existence of a stationary solu-
tion; see Theorem 2.5 of Bougerol and Picard (1992a). Theorem 2.1 of
Pham (1993) presented the necessary and sufficient condition for the ex-
istence of a causal, strictly stationary solution {Z;} of (4.71) for which
E{||Z||*} < oco. This requires, among other things, the condition E(e}) <
00.

(b) Moment properties

Suppose that {X;} is a strictly stationary solution of the BL(p,q, P, Q)
model (4.63) that admits the state-space representation (4.70) and (4.71)
where the state-space process {Z;} can be written as

Zi=cle)+ Y Aler) - Aleryj)eler));

j=1

see (4.74). The equation above indicates that Z; is causal, as it depends on
{&t—k, k > 0} only. Therefore, in the AR model (4.71), the “regressor” Z;_;
is independent of both the “coefficient” A(e;) and the “noise” c(e¢). The
moments of Z; can be evaluated based on (4.71). Based on the moments
Z;, the moments of X; can be easily obtained through (4.70). Note that
X is also causal in the sense that X; is a function of {&;,e4—1,--} only.

An important feature of the bilinear model is that not all moments exist.
It is easy to see from (4.69) and (4.68) that the condition E(e}) < oo is
necessary for a subdiagonal (and also general) bilinear linear process having
finite second moment. The required conditions become more stringent when
the order of moment increases. See Pham (1993) for further discussions on
those conditions.

Now, let E{X?} < co. Then, as far as only the first two moment proper-
ties are concerned, {X;} is in fact an ARMA(p, ¢’) process with the same
b;s as in (4.63) as its autoregressive coeflicients, where ¢’ = max{q, @}. To
this end, define

Y:

p
X =Y biXej—p
j=1

q P Q
= &+ Z aREi—k + Z Z CikXt—jEt—k — Iy (4.75)
k=1 J=1 k=1
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where p = (1 — Z§:1 b;)EX;. The last equality in the expression above
follows from (4.63). Then {Y;} is stationary with EY; = 0 and

Cov(Yy,Yi—p) =0  for all k > ¢ = max{q, Q}. (4.76)

For each t, let
Yo=Y ¢Yiy (4.77)
j=1

be the best linear predictor for Y; based on Y;_1,Y;_o,--- in the sense that
2
E(Y, =Y =minE QY =Y Y0

Jj=1

where the minimum is taken over all {¢;} for which the infinite sum on the
right-hand side of the expression above converges in mean square. Write
e; = Yy — Y;. Then, the least square property above implies that {e;} is
a sequence of uncorrelated random variables; that is, {e;} ~ WN(0,02).
Similar to (3.8), it holds that for each ¢

o0
Y, = E Oiep—;.
i=1

Consequently,
o0
Yi=e+Y=e +Zaiet—i~

i=1
It is easy to see from (4.75) and (4.76) that Cov(Y;, ei—i) = 0 for any
k > ¢'. Hence

Or = Cov(Yy, e, ) /o2 =0 forall k>q.

Therefore {Y;} is an MA(q’) process. By (4.75), it holds now that

P q
Xo =Y biXej—p=et Y aie (4.78)
j=1 i=1

(i.e., {X:} is an ARMA(p, ¢’) process).

(¢) Mixing

The mixing properties of bilinear processes may be established in terms
of their Markovian representation (4.70) and (4.71). Since {e;} is i.i.d.,
the bilinear process {X;} shares the mixing properties possessed by the
Markov chain {Z;}. Therefore, the ergodicity of {Z;} ensures that {X;}
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is f-mixing; see (2.58). Furthermore, the geometric ergodicity implies the
[B-mixing with exponentially decaying mixing-coefficients; see (2.59).

There exists a fairly large literature dealing with ergodicity of Markov
chains; see, for example, Nummelin and Tuominen (1982) and Tweedie (1983).
Unfortunately conditions for the ergodicity are not always easy to check in
practice. But those conditions are typically very mild. Therefore, we may
hope that they will be satisfied in most practical situations.

4.3.4  Mazimum Likelihood Estimation

Fitting a bilinear model consists of at least two aspects: determination of
the order (p, ¢, P, Q) and estimation of the parameters b;, ax, c;x, and 0.
The order determination is usually carried out in terms of some well-known
model selection criteria such as AIC and BIC. However, the performance of
those procedures in the context of bilinear models is not well-understood.
This is due to the lack of asymptotic theory for maximum likelihood esti-
mation for bilinear models.

However, if the order (p,q, P, @) is given, the standard method for ap-
proximating a Gaussian likelihood function for time series may be applied
to derive approximate maximum likelihood estimators. Let X1, -+, X7 be
observations from a strictly stationary BL(p,q, P,Q) process defined by
(4.63) in which g, ~ N(0,0?). Let 8 = (67,0%)7, where

01 = (b1, ,bp,a1,--+,a,)", 02 = (c11,-+,c19,¢21 ,¢pQ)"-
The (conditional) log likelihood function may be approximated by

T

N-—9p 1
2y _ 2 ~ )2
1(6,0%) = ———logo® — o > a2,
t=p’'+1
where p’ = max{p, P}, and £,/(0),E,+1(0),--- are computed recursively

from model (4.63) with some (arbitrarily) specified initial values for e, _1,
Tty Epl—q’s and q, = max{q, Q}

4.8.5  Bispectrum

Suppose that {X;} is a stationary process with mean 0. Furthermore, we
assume that its third moments are also time-invariable in the sense that

C(j, k) = B(Xi X4 Xetk)

is independent of ¢ for any j and k. Such a process may be referred to as
third-order stationary.
The bispectral density function of {X;} is defined as

I oo s .
g(wi,w2) = @ZZC(%I@) exp{—i(jwi + kws)}, wi,ws € [-m, 7.
j=1k=1
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It is easy to see that g is well-defined if

iiw k)| < oo.

j=1k=1

On the other hand, it holds by inversion that
Cj,k) = /[ . exp{i(jw1 + kws)}g(w1,ws)dwrdws.

Hence,
BOX) = C0.0) = [ glon wa)dirden,
[, 7]

Note that a spectral density depends only on the second moments of the
process; see §2.3.2. Likewise, the bispectral density defined above depends
on the third moments of {X;} only. Based on the fact that a stationary
BL(p, q, P, Q) process is also a stationary ARMA (p, max{q, Q}) as far as
the covariance structure is concerned, its nonlinearity will only show up in
its bispectral density but not in its spectral density (see (4.78)). Although
in principle for bilinear processes bispectral density functions may be eval-
uated explicitly, the derivation is typically tedious and the formulas always
appear cumbersome; see §2.6 of Subba Rao and Gabr (1984) for an example
with simple BL(1, 0, 1, 1) processes.

For two third-order stationary processes {X;} and {Y;}, if {X;} is a
filtered version of {Y;}, namely

o0

Z LYk, Z k| < oo,

k=—o0 k=—oc0
we may show, in the same manner as the proof of Theorem 2.12, that

T)p(em (el ten)), (4.79)

gw(wth) = gy(w17w2)<p(e @(e

where g5, g, denote, respectively, the bispectral densities of {X;} and {3},
and p(2) = Y 2"

Suppose now that {X;} is a purely nondeterministic and zero-mean sta-
tionary process. The Wold decomposition entails

oo
Xe=er+ Y orciok, {e} ~WN(0,07). (4.80)
j=1

The process {X;} is called linear if {e;} ~ IID(0,0?). For example, a
stationary bilinear process entertains the expression (4.80), but {e;} is not
an i.1.d. sequence; see (4.78). The spectral density of {X;} in (4.80) is equal

to

o2

g(w) = %Me*iw)@(e”) (4.81)
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When {X;} is linear (i.e., {g;} ~ IID(0,0?)), it follows from (4.79) that
the bispectral density of {X;} is equal to

3 —iwy —iw i(w1+w
g(wi,wa) = (e )p(e™ (el ), (4.82)
where p3 = E(g}). Combining this with (4.81), we have

27 |g(w1u WQ)|2

Klnw2) = 00 n)gr + s

) = ’[,Lg/O'G.

Thus, we may test for the linearity in terms of a test for the hypothesis that
the function K (-,-) is a constant; see §4.4 of Subba Rao and Gabr (1984),
Hinich(1982), and Subba Rao (1983) for the development of the tests for
linearity based on this idea.

4.4 Additional Bibliographical notes

The developments on threshold models up to the late 1980s were system-
atically presented in Tong (1990), which also dealt with other paramet-
ric nonlinear models not covered in this book. Tsay (1989) proposed an
alternative strategy for TAR modeling that selected the delay parame-
ter, number of regimes, and thresholds based on some F- and t-statistics.
Threshold models with continuous regression functions were studied in
Chan and Tsay (1998). Stramer, Tweedie, and Brockwell (1996) dealt with
continuous-time threshold models. Double threshold models that impose
threshold structure on both conditional means and conditional variances
were proposed by Li and Li (1996).

Lawrance and Lewis (1980, 1985) introduced a class of exponential ARMA
models in which coefficients change according to a sequence of independent
random variables. Autoregressive models with regime-switch controlled by
a Markov chain mechanism were suggested in Tong and Lim (1980, p.285
line —12), and studied by Tyssedal and Tjgstheim (1988) and Hamil-
ton (1989).

Asymptotic properties of maximum likelihood estimators for stationary
Markov chains can be found in Billingsley (1961), Basawa and Prakasa
Rao (1980), and Hall and Heyde (1980).

Strict stationarity was first established for GARCH(1, 1) models by Nel-
son (1991), and for GARCH(p, q) processes by Bougerol and Picard (1992b).
The conditions for the existence of a strictly stationary GARCH process
that is also (weakly) stationary is much simpler; see Giraitis, Kokoszka
and Leipus (2000). The extremal behavior of ARCH(1) processes was pre-
sented in §8.4.3 of Embrechts, Kliippelberg, and Mikosch (1997), and see
also Zhang and Tong (2001).
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Under the assumption that F(s}) < oo but &; may be non-Gaussian, the
asymptotic normality for Gaussian conditional maximum likelihood esti-
mators was established for the ARCH(p) models by Weiss (1986), and for
GARCH(1,1) models by Lee and Hansen (1994) and Lumsdaine (1996).
Hall and Yao (2003) established the comprehensive asymptotic theory for
Gaussian conditional maximum likelihood estimators for general GARCH
(p, q) models including heavy-tailed cases. On the other hand, estimation
for ARCH(p) models adaptive to unknown error distributions was consid-
ered by Linton (1993). Whittle estimation for a general ARCH(o0) process
was studied by Giraitis and Robinson (2001).

The most popular ARCH test in the literature is Engle’s (1982) Lagrange
multiplier test (LMT) T'R?; see (4.53). Lee (1991) showed that a modified
LMT for GARCH(p, q) is the same as the LMT for ARCH(p). McLeod
and Li (1983) applied the portmanteau tests of (7.29) due to Box and
Pierce (1970) and Ljung and Box (1978) in the context of ARCH/GARCH
models, which are asymptotically equivalent to the LMT (Granger and
Terasvirta 1993, pp.93-94). Other ARCH tests include those of Weiss (1986),
Robinson (1991b), and Bera and Higgins (1992). The literature on non-
parametric tests for the ARCH effect includes Chen and An (1997) and
Laib (2002); see also Koul and Stute (1999).

The early developments on bilinear models are summarized in Subba Rao
and Gabr (1984). An excellent survey on both basic properties and statisti-
cal inference for bilinear models is available in Pham (1993). Terdik (1999)
is a modern account on the frequency-domain approach for bilinear models
based on chaotic Wiener—It6 spectral representation.

The stationarity of bilinear processes was also studied by, among others,
Hannan (1982), Liu and Brockwell (1982),Quinn (1982), Bhaskara Rao,
Subba Rao and Walker (1983), Pham (1986), and Liu (1990, 1992). The
stationarity for random coefficient autoregressive models was studied by
Pham (1986) and Bougerol and Picard (1992a). The invertibility of bilin-
ear models was discussed, for example, in Granger and Andersen (1978b),
Subba Rao (1981), Quinn (1982), Guegan and Pham (1989), and Pham
(1993).

Method-of-moments estimation for simple bilinear models can be found
in Kim, Billard, and Nasawa (1990) and Liu and Chen (1991). Sesay and
Subba Rao (1992) proposed a Whittle-like estimator for bilinear models.
Various statistical tests for linearity were assembled in §5.3 of Tong (1990).
Saikkonen and Luukkonen (1991) and Guegan and Pham (1992) studied
score tests for bilinear models.
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Nonparametric Density Estimation

5.1 Introduction

Smoothing is one of the most fundamental techniques in nonparamet-
ric function estimation. It usually refers to one-dimensional scatterplot
smoothing and density estimation. It serves as a useful building block for
nonparametric estimation in a multidimensional setting. Smoothing arose
first from spectral density estimation in time series. In a discussion of the
seminal paper by Bartlett (1946), Henry E. Daniels suggested that a possi-
ble improvement on spectral density estimation could be made by smoothed
periodograms. The theory and techniques were then systematically devel-
oped by Bartlett (1948, 1950). Thus, smoothing techniques were already
prominently featured in time series analysis over half a century ago.
Smoothing problems arise frequently from various aspects of time series
analysis. Smoothing techniques provide useful graphic tools for summa-
rizing the marginal distribution of a given time series. They can also be
applied to estimate and a remove slowly varying time trend. This results in
time domain smoothing. The need to study the associations between a time
series and its lagged series leads to state domain smoothing. These tech-
niques can easily be extended to estimate the conditional variance (volatil-
ity) of a time series. To examine cyclic patterns and other features, such as
the power spectrum in a time series, smoothing techniques are frequently
employed to estimate spectral density. An important question in fitting
time series data is whether or not the residuals of a fitted model behave
like white noise. Nonparametric function estimation provides useful tools
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Kernel density estimation redistributes point masses
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FIGURE 5.1. Kernel density estimation redistributes the point mass, depicted
by a solid vertical bar, at each datum point and adds the redistributed masses
together to get the final estimate.

for this kind of nonparametric goodness-of-fit test. These subjects will be
discussed in this and the next two chapters.

The simplest nonparametric function estimation problem is probably the
density estimation. This simple setup provides useful ingredients for our
understanding of more complicated problems in nonparametric modeling
and inferences. This motivates us to devote this chapter to nonparametric
density estimation.

5.2 Kernel Density Estimation

What is the distribution of the yields of Treasury bills? Use of a histogram
is a classical method of answering this question. An improvement of the
histogram method is the kernel density estimation. It is used to examine the
overall distribution of a data set. This includes the number and locations of
peaks and troughs as well as the symmetry of a density. It is the simplest
setting to reveal the basic ingredients of nonparametric function estimation.
The comprehensive account of density estimation and its applications is
given in Devroye and Gyorfi (1985), Silverman (1986), and Scott (1992).
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Given T data points X1, - - , X, their empirical distribution function is
obtained by putting mass 1/7" at each observed datum:

N 1 Z
F(z):TE I(X; < x).
t=1

This cumulative distribution function is nondecreasing and is not that use-
ful for examining the overall structure of the underlying distribution. When
one refers to distributions, one often has density functions in mind. How-
ever, the density of the empirical distribution does not exist. An improve-
ment over the empirical distribution function is to smoothly redistribute
the mass 1/T at each datum point to its vicinity (see Figure 5.1). This is
usually accomplished by introducing a kernel function K, which is usually
a nonnegative symmetric, unimodal probability density function. Let h be
a bandwidth parameter representing the window size in Figure 5.1 (indeed,
it is the standard deviation of density functions plotted in dashed lines).
Then, the kernel density estimate is defined by

Fal) lei;}lll( (Xthx> :/Kh,(ufx)dﬁ(u), (5.1)

where K, (1) = K(-/h)/h.
Commonly used kernel functions include the Gaussian kernel

K(u) = (V2r) " exp(—u/2)

and the symmetric Beta family

1

" Bem(ijz (=0,

Ky (u)
The choices v = 0,1,2, and 3 correspond to the uniform, the Epanech-
nikov, the biweight, and the triweight kernel functions, respectively. When
v is large, by appropriate rescaling, the symmetric gamma kernel is ap-
proximately the same as the Gaussian kernel function. Note that different
kernel functions have different support. For example, the uniform kernel
has effective support [—1,1], while the triweight kernel has much shorter
effective support (due to a smaller weight at tails) and the Gaussian ker-
nel has much longer effective support (see Figure 5.2). Thus, even with
the same bandwidth, different kernels use different amounts of information
provided by the local data points around z. Formula (5.7) below attempts
to relate the equivalent amount of smoothing using two different kernels.
The concept of canonical kernels introduced by Marron and Nolan (1988)
attenuates this problem.
To employ the kernel density estimator, one needs to choose the kernel
function and the bandwidth. It is well-known both empirically and theo-
retically that the choice of kernel functions is not very important to the
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Commonly used kernel functions
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FIGURE 5.2. Commonly used kernel functions normalized to have maximum
height 1 to facilitate the presentation. The thick curve is the Gaussian kernel,
which has a much longer effective support than other kernels.

kernel density estimator. As long as they are symmetric and unimodal, the
resulting kernel density estimator performs nearly the same when the band-
width h is optimally chosen (see Table 5.1 in §5.4). Thus, as demonstrated
in Figure 5.3, a large bandwidth h produces an oversmooth estimate, leav-
ing out possible details such as multimodalities and underestimating the
density at peaks. In other words, the estimate can create large biases when
a large bandwidth is used. When a small bandwidth is applied, there are
not many local data points available to reduce the variance of the estimate.
This can result in a wiggly curve. Trial-and-error is needed in order to pro-
duce satisfactory results. A data-driven choice of bandwidth can assist us in
determining the optimal amount of smoothing (see §5.4 for more details).
As an illustration, Figure 5.3 depicts the estimated distributions for the
yields of 3-month Treasury bills using the Gaussian kernel with bandwidths
h =0.61/3,0.61, and 3 x 0.61. The S-Plus function “density” was used to
compute the kernel density estimator. The bandwidth h = 0.61 was deter-
mined by the normal reference bandwidth selector (5.9) below. It is clear
that a small bandwidth results in an undersmoothed estimator, creating a
wiggly density function with artificial modes, while a large bandwidth leads
to an oversmoothed curve, obscuring fine structure of the underlying dis-
tribution. The simple reference bandwidth h = 0.61, which is often viewed
as an initial choice for h, gives a reasonable amount of smoothing for this
example, although the resulting curve appears somewhat oversmoothed.
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Distribution for the yields of 3-month Treasury bills
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FIGURE 5.3. Estimated densities for the yields (in percent) of 3-month Treasury
bills using the Gaussian kernel with bandwidths A = 0.61/3 (short-dashed curve),
0.61 (solid curve), and 3 x 0.61(long-dashed curve). A factor of 3 is intentionally
used to illustrate the effects of undersmoothing and oversmoothing.

As shown in Figure 5.3, the distribution of the interest rates has a long
right tail. The median and mode are about 5.34%, while the mean is 5.97%.
The interest rate at the beginning of the 1980s was as high as over 15%.

5.3 Windowing and Whitening

If the data { X;}Z_; are a realization from a stationary process with marginal
density f, then by a change of variable,

Efn(z) = EKp (X, — a) = - K(u)f(z + hu)du. (5.2)

—00

Thus, the bias of the estimator, defined as E f,(z) — f (), does not depend
on the dependent structure of the data. It is the same as that for the in-
dependent sample. The variance of the estimator can, however, be affected
by the dependent structure.

To gain further insights, let us consider the case where K has a bounded
support [—1, 1]. Then, the kernel density estimator (5.1) uses only the local
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FIGURE 5.4. (a) Lag 1 scatterplot of the lynx data. (b) Lag 1 scatterplot of
those data {Yj,7 = 1,---,J} falling in the local neighborhood 2.7 £ 0.2. The
point X (;y is plotted against X,(;_1) using the number #(j) to indicate the point
(Xt(j—1), Xe(5))- (c) Kernel density estimate for the lynx data using the bandwidth
h = 0.14 (solid) and 0.23 (dashed).

data points within the local window x + h:

J
ﬁl(x) =7t ZKh(Xt(j) — .T),
j=1

where ¢(j) is the jth data point falling in the interval = £ h and J is
the total number of local data points. Although the data in the original
sequence can be highly correlated, the dependence for the new series {Y; =
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Xi(jy,J = 1,---,J} in the local window around z can be much weaker.
This is due to the fact that the time sequence {t(j),j =1,---,J} is quite
far apart for small bandwidth h (see Figure 5.4 for an illustration). The lag
1 autocorrelation for the lynx data is much stronger than that for the data
in the local window, 2.7+0.2. Indeed, the local data look like those from an
independent sample. Hence, one would expect that the asymptotic variance
for the kernel density estimator is the same as that for the independent
observations when certain mixing conditions are imposed. This intuition
is elucidated by Hart (1996). Because of the whitening property by local
windowing in the state domain, the kernel density estimators for mixing
processes behave very much like those for independent samples. Hence, all
techniques for independent samples can be extended to mixing stationary
processes. We will develop some of the basic theory in §5.6. The effect
of dependence structure on the kernel density estimation was thoroughly
studied recently by Claeskens and Hall (2002).

5.4 Bandwidth Selection

When the data {X;} are a realization from a stationary process, by Theo-
rem 5.1 below, the mean square error (MSE) of the kernel density estimator
can be expressed as

MSE(z) = B{fu(z) — f(z)}*

+o0 2 +oo x
111{/_00 uQK(u)du} [ K?(u)du%h) (5.3)

Q

9

for x in the interior of the support of f. Here and hereafter, “~” means
that both sides have the same leading terms. This is a pointwise measure.

A global measure can be obtained by using a mean integrated square error
(MISE):

MISE = E / (Fol@) — f(2))2dz

~ L +oou2K(u)du a4 [ R i (5.4)
4 Th

— 00 —0o0 — 00
Minimizing the asymptotic MISE with respect to the bandwidth parameter

h results in a bandwidth, called the asymptotically optimal bandwidth or
simply the optimal bandwidth, which is given by

hops = a(K)|| f"||5 2> T4/, (5.5)

where ||g[|3 = [T g(u)2du is the Lo-norm, pg(K) = fjoo: u? K (u)du is the

o]
variance of K, and

a(K) = pa(K) 2% K|[3°
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TABLE 5.1. Some useful constants related to the kernel functions.

Functional Gaussian Uniform Epanechnikov Biweight Triweight

112 () 1 0.3333 0.2000 0.1429  0.1111
|K|12 0.2821  0.5000 0.0600 0.7143  0.8159
a(K) 0.7764  1.3501 1.7188 2.0362  2.3122
B(K) 0.3633  0.3701 0.3491 0.3508  0.3529

is a known constant. With this asymptotically optimal bandwidth, the
optimal MISE is given by

2B @I T, (56)

where
BIK) = pa(K)2/3||K |57

It follows from (5.5) that the optimal bandwidths for the two different
kernel functions K and K satisfy

hopt (K1) = ——hopt (K2),

where hop (K1) and hopt (K2) are, respectively, the optimal bandwidths as-
sociated with the kernel functions K and K. Table 5.1 below tabulates the
values of these useful functions for a few commonly-used kernel functions.
From this table, different choices of kernels using their optimal bandwidth
perform nearly the same (see the row with §(K)). Therefore, the kernel Ko
using the bandwidth ho performs nearly the same as the kernel K; using
the bandwidth

oK)

M= )

ha. (5.7)

This is the idea behind the concept of the canonical kernel (Marron and
Nolan 1988). It allows two investigators to compare the amount of smooth-
ing even though they used two different kernels.

The optimal bandwidth (5.5) is not directly usable since it depends on
the unknown parameter || f”’||2. When f is a Gaussian density with standard
deviation o, one can easily deduce from (5.5) that

hopt.T = (87 /3) (K )oT /7. (5.8)

The normal reference bandwidth selector (see, for example, Bickel and Dok-
sum 1977; Silverman 1986) is the one obtained by replacing the unknown
parameter o in (5.8) by the sample standard deviation s. In particular, after
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calculating the constant a(K) numerically, we have the following normal
reference bandwidth selector:
h

1.06sT~Y%  for the Gaussian kernel
opt,n — (59)

2.34sT~1/5  for the Epanechnikov kernel

An improved rule can be obtained by writing an Edgeworth expansion
for f around the Gaussian density. Such a rule is provided in Hjort and
Jones (1996b) and is given by

35 35,

—%s + @73

L 385, -5
48 ’

hopt. 7 = Ropt,T <1 + 1024 4

where 43 and 7, are, respectively, the sample skewness and kurtosis, defined
by

(Xe — X)°/s?,

N

3 o= (T—-1)~"

o~
Il
=

o= (T-1)7') (X - X)Y/s' -3

B

o~
Il
-

The normal reference bandwidth selector is only a simple rule of thumb.
It is a good selector when the data are nearly Gaussian-distributed and is
often reasonable in many applications. However, it can lead to oversmooth-
ing when the underlying distribution is asymmetric or multimodal. In that
case, one can either subjectively tune the bandwidth or select the band-
width by more sophisticated bandwidth selectors. One can also transform
data first to make their distribution closer to normal, then estimate the
density using the normal reference bandwidth selector, and then apply the
inverse transform to obtain an estimated density for the original data. Such
a method is called the transformation method; see (5.12) below. For the
asymmetric distribution suggested by Figure 5.3, the normal reference gives
a somewhat oversmooth estimate. For the bimodal data in Figure 5.4(c),
the normal reference bandwidth selector gives h = 0.23 and results in an
oversmooth estimate. We hence reduce the amount of smoothing until a
reasonable estimate (solid curve in Figure 5.4) is obtained.

There are quite a few important techniques for selecting the bandwidth,
such as cross-validation (CV) and plug-in bandwidth selectors. A con-
ceptually simple technique, with theoretical justification and good empiri-
cal performance, is the plug-in technique. This technique relies on finding
an estimate of the functional ||f”]|2 in (5.5). A good implementation of
this approach is proposed by Sheather and Jones (1991). An overview on
the progress of bandwidth selection can be found in Jones, Marron, and
Sheather (1996); see also §6.3.5.
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Kernel density estimate for simulated data
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FIGURE 5.5. Kernel density estimate for a random sample of size n = 200 drawn
from the standard exponential distribution; the solid curve is the true curve, and
the dashed curve is the estimated curve. The boundary effect can easily be seen.

5.5 Boundary Correction

In many situations, the density f is known to have a bounded support. For
example, the interest rate cannot be less than zero. It is natural to assume
that the interest rate has support [0, 00). In fact, over the last forty years,
the lowest short-term interest rate is 2.11% and the highest interest rate
is 16.76%, so it is not unreasonable to assume that the short-term interest
rate has a support interval [2%, 17%]. However, because a kernel density
estimator spreads point masses smoothly around the observed data points,
some of those near the boundary of the support are distributed outside
the support of the density (see Figure 5.3). As a result, the kernel density
estimator underestimates the density in the boundary regions. As shown
in Figure 5.3, the problem is more severe for large bandwidths and for the
left boundary, where the density is high. Therefore, some adjustments are
needed.

To gain some further insights, let us assume without loss of generality
that the density function f has a bounded support [0, 1] and we deal with
the density estimate at the left boundary. For simplicity, suppose that K
has a support [—1, 1]. Then, the point z = ch(0 < ¢ < 1) is a left boundary
point. It can easily be seen that as h — 0,

Efn(ch) = h fch + hu)K (uw)du = £(0) h K(u)du+o(1).  (5.10)

—C —C
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In particular, Ef,(0) = £(0)/2+0(1) for symmetric kernels. In other words,
the estimator at the left boundary point estimates only half of its true
density. To illustrate this point, a random sample of size 200 was drawn
from the standard exponential distribution f(x) = exp(—x)I(x > 0), and
the density is estimated based on the kernel density estimator using the
Gaussian kernel with bandwidth 0.344 obtained from (5.9). It is apparent
that the estimate at point = = 0 is only about half of the true value.

There are several methods to deal with the density estimation at bound-
ary points. Possible approaches include the boundary kernel, reflection,
transformation, and local polynomial fitting. Here, we introduce two simple
approaches: reflection and transformation methods.

The reflection method is to construct the kernel density estimate based
on the “reflected” data {—X;,t =1,--- ,T} and the original data {X;,t =
1,---,T}. This results in the estimate

T T
f,’:(x):;{ZKh(Xt—m)—Q—ZKh(—Xt—x)} forx > 0. (5.11)

t=1 t=1

Note that when z is away from the boundary, the second term in (5.11) is
negligible. Hence, it only corrects the estimate in the boundary region; see
Schuster (1985) and Hall and Wehrly (1991). This estimator is twice the
kernel density estimate based on the synthetic data {£X;, ¢ =1,--- ,T}.
In general, if the left boundary point is x¢ (instead of 0), the synthetic data
are

{_(Xt - mo),Xt,t = 1, te ,T},

leading to the estimate

T

T
ﬁ;(x) = % {ZKh(Xt —x) +ZKh(x0 - X, x)} , for x > xg.
t=1

t=1

For the simulated data given in Figure 5.5, Figure 5.6(a) depicts the es-
timate based on this method. The Gaussian kernel and bandwidth 0.344
were used.

Another simple method is first to transform the data by

K:g(Xl)aZ:17 , 1,

where ¢ is a given monotone increasing function ranging from —oo to oc.
Now, apply the kernel density estimator (5.1) to this transformed data set

to obtain the estimate fy(y), and apply the inverse transform to obtain
the density of X. This results in

T
fx(@) = g'(@) fr(9(2)) = ¢' (@)Y Kn(g(x) = 9(X2)), (5.12)
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Reflection method Transformation method
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FIGURE 5.6. (a) Kernel density estimation using the reflection method. (b) Ker-
nel estimate using the transformation method; the solid curve is the true curve,
and the dashed curve is the estimated curve.

where ¢'(+) is the derivative function of g(-). Figure 5.6(b) illustrates this
idea using the logarithmic transform to the data given in Figure 5.5. We
first apply the kernel density to the transformed data {—log(X:),t =
1,---,200} to obtain ]?y(y) The normal reference bandwidth selector gives
h = 0.344 for the transformed data using the Gaussian kernel. Hence, the
estimated density is fx(z) = fy(logz)/x, or fx(exp(z)) = exp(—z) fy ().
Thus, the estimated density can be obtained by plotting exp(z) against
exp(—ac)fy(x). The density at = 0 corresponds to the tail density of the
transformed data since log(0) = —oo, which cannot usually be estimated
well due to the lack of data at tails. Except at this point, the transformation
method does a fairly good job.

5.6 Asymptotic Results*

We now derive the asymptotic bias and variance of the kernel density esti-
mator as the sample size T' — oco. Necessarily, the bandwidth A depends on
T and tends to zero. The idea used here can be extended to more sophis-
ticated settings such as nonparametric regression. We begin with a simple
lemma that is useful for deriving asymptotic bias.

Lemma 5.1 Let f have the pth bounded derivative that is continuous at
an interior point x of the support of f. Assume that K is a function such
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that fjo(): |uP K (u)|du < oco. Then, as h — 0, we have

“+oo P
| s R @ =3 ) 5O @ 1+ ofh?),

- i=0

where pi(K) = [72°ui K (u)du.

— 00

Proof. Let D = fjooj f(@+ hu) K (u)du — 3P pi(K) f@(x)hi/il. Then

D = /+<><>{ f(z + hu) — z:f(Z ) (hu) /z'} K (u)du.

— 00
By the Taylor expansion,

hP [T
b= {fP @+ &r) - fP (@)} K (u)du,
where &7 lies between 0 and hu. By a simple application of the Lebesgue
dominated convergence theorem, we have

D/h? =0 as h — 0.
This completes the proof. [

Note that when the kernel function K has a bounded support, the in-
tegration above takes place only around a neighborhood of z. Hence, it
suffices to assume that the density f has a pth continuous derivative at
the point x. For this reason, the bounded support of K is frequently im-
posed for the sake of simplicity. It can be removed at the cost of lengthier
arguments. In particular, the Gaussian kernel is allowed.

By using the lemma above and (5.2) for the kernel function satisfying

+o0 +oo
K(u)du =1, / uK (u)du = 0,

—00 —00

we obtain immediately that the bias of the kernel density estimator is

K
,LL2(2 )f"(l‘)hz +O(h2),
provided that f has a continuous second derivative. If f has a higher-order

derivative, a bias of order O(h?) can be obtained by requiring
po(K)=1,pu;(K)=0,57=1,--- ,p—1, (5.13)

but the gain usually is not substantial for practical sample sizes. A kernel
satisfying (5.13) is called a pth order kernel. When p > 2, K can no longer
be nonnegative since po(K) = 0.

We now turn to computing the variance component. For this, we assume
that the process { X} is a stationary process with a-mixing coefficient a(k).
Furthermore, let g;(z,y) be the joint density between X7 and X, 1.
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Theorem 5.1 Let {X;} be an a-mizing process with the mizing coefficient
la(€)| < CL=P for some ¢ > 0 and 3 > 2. Assume further that ||ge|loo =
SUP (5, ge(z,y) is bounded. Suppose that K is a bounded kernel function
with a bounded support and 1 (K) =0 and that h — 0 in such a way that
Th — oco. If f has the continuous second derivative at an interior point x
of the support of f, then

p2(K)

5@ +o(h?)

Efu(z) = f(z) +

and

Var(fu )} = SR B 4o (77 )

Proof. The bias expression follows directly from Lemma 5.1. Thus, we
only need to derive the asymptotic expression for the variance term. Let
Zy = Kp(X¢ — x). Then, by the stationarity of {X;}, we have

—~ 2 —
Var(fp,(z)) = —Var (Z1) + + ; (1 —4/T)Cov(Z1, Zps1).

Note that EZ; = th(x) = O(1). By a change of variables and Lemma 5.1,
we have

Var(Z,) = EK}(X;—2)— (EZ)?
“+o00
— h—l/ K2(u)f(z + hu)dx — (EZ;)?
= W (@) KI5+ o(h™H).
Thus, we need only to show that

T-1

> |Cov(Zy, Zsr)| = o(h71). (5.14)
=1

By using Billingsley’s inequality (Proposition 2.5 (ii)), we have
Cov(Z1, Zp41)| < 4a(D)]| Z1llol| Zes |0 < 4a(O)IK|% /R (5.15)

On the other hand,

|Cov(Z1, Zisa)l = |EZ1Zi1 — (EZ1)?|
+oo +o0
< / Kp(u—2)Kp(v — x)ge(u, v)dudv
— 00 — o0
+(EZy)?
< lgelloo + (EZ1)*. (5.16)
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Hence, the covariance is bounded by a constant C'.
We now verify (5.14). Let dp — oo be a sequence of integers. Then, by
(5.16),
dr—1
> [Cov(Zy, Zisa)| < Cdr.
=1
Using (5.15) and the assumption on the mixing coefficient, we have

T-1 oo
> |Cov(Z1, Zea)| < DY 7P h = 0(d7 7 /h?),
{=dr {=dr

for some constant D. By taking dp = h=2/8 we have

T-1
3" [Cov(Z1, Zus)| = O(h=2/7) = o(1/h)
=1
for # > 2. Hence (5.14) follows. This completes the proof. |

The pointwise mean square error admits the following bias and variance
decomposition:

MSE(z) = E{J?(x)af(fr)}2 .
{Efu(z) — f(z)}* + Var{fn(2)}.

By Theorem 5.1, an approximation of the MSE is given by (5.3). Mini-
mizing the right-hand side of (5.3) with respect to h yields the asymptotic
pointwise optimal bandwidth

hopt (%) = a(E){f"(x)} /7 f () /°T 117,

provided that f”(z) # 0. The minimum (ideal) risk, which is the minimizer
of the main order approximation of MSE(z), is given by

2B f" 7 f )T, (517)

where B(K) is given in (5.6). Similarly, minimizing the right-hand side of
(5.4) gives the optimal bandwidth (5.5) and the minimum (ideal) MISE
in (5.6). Therefore, by taking the square-root, the kernel density estima-
tor can achieve the rate of convergence T2/5. This rate is achievable as
long as h = ¢I'~'/% for some ¢ > 0. This is the best possible rate for esti-
mating the density function among the class of functions with the second
bounded derivative, according to Farrell (1972), Hasminskii (1978), and
Stone (1980).

The asymptotic normality of the kernel density estimator also holds.
We state the theorem without a proof. The proof is very similar to that
of Theorem 6.3. We leave it as an exercise to the reader. The condition
Th®/3 — oo can be relaxed if the mixing condition a(¢) < c[¢|~? with
B > 2 is strengthened.
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Theorem 5.2 Under the conditions of Theorem 5.1, if Th®/3 — oo, then
we have
(K)

M{fh(x) = ey - 2B

S @+ o) | 2N 0, 5@ IKTR).

The kernel density estimator possesses various nice properties. See Chap-
ter 2 of Bosq (1998) for some of them. We prove a result that is similar to
Theorem 2.2 of Bosq (1998), but the geometric mixing condition there is
significantly relaxed.

Theorem 5.3 Assume that the mizing coefficient of the process {X;} sat-
isfies a(l) < €8 with 3 > 5/2. Suppose that the density f of X; is bounded
on an interval [a,b] and that K satisfies a Lipschitz condition. Then

R R —1/2
sup |fu(z) — Efn(z) :OP{(IC;%}LT> },

z€[a,b]

provided that h — 0 in such a way that
T25_5h25+5(log T)_(ZBH)/‘1 — 0.

As a corollary of Theorem 5.3, when the process is geometrically mizing
a(f) < cp® for some ¢ > 0 and some p € [0,1), Theorem 5.3 holds for
h =dT~7 for any v € (0,1) and d > 0.

Theorem 5.3 controls uniformly the stochastic errors of the kernel density
estimator. The bias term Efy,(z) — f(z) is deterministic and can easily be
bounded uniformly by using Lemma 5.1. It is of order O(h?). By choosing
h = O((log T/T)*/%), one obtains

sup |fu(z) = f(z)] < sup |Efu(z) — f(x)|+ sup |fu(z)— Efu(2)|
z€la,b] z€la,b] z€la,b]

= Op{(logT/T)*/*}

when a(f) < ¢f=# with 3 > 15/4. This rate is optimal according to Has-
minskii (1978).

A more precise description of the uniform convergence is given by Bickel
and Rosenblatt (1973), who derived the asymptotic distribution of the nor-
malized statistic

Myr = sup [f(@)I|K[3/(Th)] ™ (fu(w) = Efa(x))

71‘7

for independent samples. We would expect the result to hold for a station-
ary process under certain mixing conditions. Here, the interval [0, 1] is used
for convenience. It can be replaced by any other intervals in the support
of f. We require that the density f be continuous and positive on [0, 1]
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and that f'(z)/f'/?(2) and f”(z) be bounded on [0,1]. Assume that K is
bounded and symmetric about 0. Moreover, K either vanishes outside an
interval [—A, A] and is absolutely continuous on [—A, A] with derivative
K’ or is absolutely continuous on (—oc0,00) such that ps(K), ua(K’), and
||K’||2 are finite.

Theorem 5.4 Under the conditions above, if X1, ---, X7 are indepen-
dently and identically distributed, we have

P {(—2log h)Y2(Mp — dr) < x} — exp(—2exp(—zx)),

provided that h = ¢T—° for 0 < § < 1/2 and ¢ > 0, where
dp = (—2log h)Y/% 4+ (=2log h)~Y?*{log ¢(K)/m'/? — 0.5log log h}
if o(K) = K2(A)/||K||3 > 0 and otherwise

[

dp = (—2log h)Y/% 4+ (=21log h)~*/?log TR
2

A corollary of Theorem 5.4 is that My = O,{(—logh)'/2}. This entails
that

sup {fn(z) — Efu(x)} = Op[{—(logh)/(Th)}'/?],

0<z<1

the same order as that given in Theorem 5.3. An application of Theorem 5.4
is to construct simultaneous confidence intervals for all {f(x),z € [0, 1]}.
Indeed, by Theorem 5.4, with approximate probability 1 — «,

My < dp — (—2log h)~Y?log {—; log(1 — a)} = c(a, h).

The expression above is equivalent to
Efu(z) € fal) + c(a, )[f (@) K3/(Th)]'?, V€ [0,1].

Using Theorem 5.1, th(x) = f(z) + O(h?). Substituting this into the last
expression and replacing f(x) by its estimate, we have an approximate level
(1 — ) confidence interval

f(@) € Fu(@) £ cla, W)[fn(@) | K3/ (T2, Va € [0,1],

if h = o{(T'logT)~1/5}.

Finally, we would like to make some notes on the optimal kernel. Optimal
theory on the choices of kernel functions can be found in Gasser, Miiller,
and Mammitzsch (1985) and Miiller(1991, 1993). The ideal pointwise MSE
(5.17) and the ideal MISE (5.6) depend on K through G(K) given in (5.6).
Theorem 5.5 shows that the optimal kernel is the Epanechnikov kernel.
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The result is due to Epanechnikov (1969) for the kernel density estimation.
But this result has already appeared in the robust regression literature (see
p. 384 of Lehmann 1983, and references therein). Such a kernel has been
used as a converging factor in the Fourier transform by Bochner (1936)
and in spectral density estimation by Parzen (1961). With the known op-
timal kernel, it can easily be computed that the values of B(K) for other
commonly-used kernels are close to optimal. See row §(K) of Table 5.1.

Theorem 5.5 The nonnegative probability density function K that mini-
mizes B(K) is a rescaling of the Epanechnikov kernel :

3
Kops(u) = E(l —u?/a®),  for any a > 0.

Proof. First, we note that 5(Kj) = B(K) for any h > 0. Let Ky be
the Epanechnikov kernel. For any other nonnegative K, by rescaling if
necessary, we assume that po(K) = ps(Kp). Thus, we need only to show
that || Kol < || K. Let 6 = K — K. Then

+oo +oo
/ d(u)du = 0, / u?§(u)du = 0,

which implies that

+oo
/ (1 — u2)8(u)du = 0.

— 00

Using this and the fact that Ky has the support [—1, 1], we have

—0o0

+oo
/ 0(u)Ko(u)du = /|<15(u)(1u2)du
= —/ S(u)(1 —u?)du
|ul>1

K(u)(u* — 1)du.

Ju|>1

Since K is nonnegative, so is the last term. Therefore

+o0 +o0 +oo +oo
K?*(u)du = K2 (u)du + 2 Ko(u)o(u)du + / 62 (u)du
+oo
> K§(u)du,

which proves that K is the optimal kernel. [
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5.7  Complements—Proof of Theorem 5.3

Throughout this section, we use C' to denote a generic constant, which may
vary from line to line.

We first reduce the problem from the supremum over the interval [a, b] to
the maximum over a grid of points on that interval. To this end, partition
the interval [a, b] into N subintervals {I;} of equal length. Let {z;} be the
centers of I;. By the Lipschitz condition on K, we have with probability
tending to 1

T
Fa(@) = Fa(a)] STV (Ko — Xo) — Kn(a' — X,)] < Ch™ Yo — 2|,

t=1
This entails that

|Efu(@) = Efa(2)] < E|fu(z) = fu@’)| < Ch 7z — o).
Using these, we have

sup | () = Efu()] < |fu(a;) = Efula;)| + C(NR)

z€l;
Thus

1) = Ba)| < mas 1Faes) = Efus)| + CNR) .

By taking N = (T'/h)'/?, we have

sup |fu(x) — Efy(e)] < max |fu(z;) — Efa(a;)| + C(Th)"Y2. (5.18)
z€[a,b] 1<j<N

We now bound the tail probability for fh(x) - th(w) Let V; = Kp(z —
X)—EKp(z—X3). Then ||Y;]|oo < Ch~!. By using the exponential inequal-
ity (Theorem 2.18), we have for any € > 0, and each integer ¢ € [1,T/2],

=R . 2
P - ER@I > < e (55

+ 22{1—#?5}1/2(1@([21:1}), (5.19)

v*(q) = 20%(q)/p* + Ce/(2h)
with p = [T/(2¢)] and

where

2
o°(q) = Oggrg%_l\/ar{%pﬂ o Yk
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By Theorem 5.1, 0(q) < Cph~!. Thus, by taking ¢ = T,
v?(q) < C(ph)™' + Ceh™' < Ceh™.
This and (5.19) imply that
P{|fn(z) — Efa(z)| > €} < dexp(—CThe?) + CTh™ /20105 (5.20)

We now prove the theorem. By taking €2 = alogT/(CTh) for a suffi-
ciently large a, the right-hand side of (5.20) is bounded by

AT~ + CT*B/2+0.75h7ﬁ/270.75 (log T)B/2+0'25.

Consequently,

P (e, o)~ B(ay)| > <)

1<j<N
< N{4T~a 4 TB/2H0T5p=p/2-0.75 (155 1)/2+0.25)
= o(l)+ O{(Th)*(2ﬁ*5)/4h*5/2(10g T)(2'8+1)/4},

which tends to zero. This entails that

R R 1 1/2
max |fu(z;) — Efn(z;)| = Op{< (;%hT) },

1<j<N

which together with (5.18) proves the theorem. |

5.8 Bibliographical Notes

The literature on nonparametric smoothing is vast. It includes kernel den-
sity estimation, nonparametric regression, time-domain smoothing, spec-
tral density estimation, and applications to other statistical estimations.
Indeed, most parametric problems have their nonparametric counterpart.
Most nonparametric results can be generalized from independent data to
dependent data. Nonparametric function estimation has been one of the
most active areas over the last three decades. Many new techniques have
been invented, and many new phenomena have been unveiled. It is impos-
sible to give a complete survey of this vast area. Rather, we sample only a
small fraction of references from this active area. They are not even repre-
sentative of the many important contributions in the field. In this section,
we mainly outline the key developments for dependent data. Books on non-
parametric function estimation listed in §1.7 give more detailed accounts
of the work on independent data. Related literature can be found in §6.7
and §7.6.
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Extensive treatments of nonparametric function estimation for depen-
dent data can be found in the monographs by Gyorfi, Hardle, Sarda, and
Vieu (1989), Rosenblatt (1991), and Bosq (1998). They mainly focus on
the theoretical developments in univariate nonparametric smoothing.

Density estimation for independent data

There is much literature on kernel density estimation. Most of the work
focuses on independent random samples. The basic idea of kernel density
estimation appeared in a technical report by Fix and Hodges (1951). The
asymptotic mean square errors and mean integrated square errors were
studied by Rosenblatt (1956), Parzen (1962), and Watson and Leadbetter
(1963). There are a number of books on kernel density estimation. These
include Devroye and Gyorfi (1985), Silverman (1986), Scott (1992) and
Wand and Jones (1995). Various properties of kernel density estimators
can be found in the books by Prakasa Rao (1983) and Nadaraya (1989).

The properties of kernel density estimation have been widely studied.
The idea of using higher-order kernels for bias reduction dates back to
Parzen (1962) and Bartlett (1963). Davis (1975) used the sinc kernel to
obtain a near root-n consistent estimator for supersmooth densities. Theory
on optimal kernels has been extensively developed by Gasser, Miiller, and
Mammitzsch (1985), Granovsky and Miiller (1991), and Miiller (1993).

Optimal rates of convergence for density estimation were studied by Far-
rell (1972). They were further investigated by Hasminskii (1978) and Stone
(1980, 1982). Ibragimov and Hasminskii (1984), Donoho and Liu (1991a,
b), Fan (1993b), and Low (1993) expanded the scope of the minimax study.
Sharp asymptotic minimax risks over Sobolov spaces were established by
Pinsker (1980), Efromovich and Pinsker (1982), and Nussbaum (1985).
These optimal rates of convergence depend on the smoothness of unknown
functions. Adaptive procedures have been constructed so that they are
nearly optimal for each given class of functions; see, for example, Efro-
movich (1985), Lepski (1991, 1992), Donoho and Johnstone (1995, 1996,
1998), Donoho, Johnstone, Kerkyacharian, and Picard (1995), Brown and
Low (1996), and Tsybakov (1998). Adaptive estimation based on penal-
ized least-squares can be found in Barron, Birgé, and Massart (1999) and
Antoniadis and Fan (2001). Minimax results on nonlinear functionals can
be found in Bickel and Ritov (1988), Fan (1991), and Birgé and Massart
(1995), among others.

There are a number of variations and modifications of kernel density es-
timators. Local likelihood estimation of a density can be found in Loader
(1996) and Hjort and Jones (1996a). Parametric guided nonparametric den-
sity and regression estimation was proposed in Hjort and Glad (1995),
Efron and Tibshirani (1996), and Glad (1998). Transformation methods
for kernel density estimation were studied by Wand, Marron, and Ruppert
(1991) and Yang and Marron (1999). The idea of using variable band-
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widths can be found in Breiman, Meisel, and Purcell (1977), Abramson
(1982), Hall and Marron (1988), and Hall (1990), among others. Many pa-
pers in the literature deal with possible approaches for reducing boundary
biases. Boundary kernel methods were introduced and studied by Gasser
and Miiller (1979) and Gasser, Miiller, and Mammitzsch (1985). Schucany
and Sommers (1977) and Rice (1984a) suggested a linear combination of
two kernel estimators with different bandwidths to reduce biases. Bound-
ary correction methods for smoothing splines have been studied by Rice
and Rosenblatt (1981) and Eubank and Speckman (1991), among others.

Density estimation for dependent data

Early references on kernel density estimation for dependent data are Rous-
sas (1967, 1969) and Rosenblatt (1970), where the local asymptotic nor-
mality is established. Strong consistency for estimating transition prob-
ability densities was established in Yakowitz (1979). Ahmad (1979, 1982)
studied consistent properties for estimating the density of an a-mixing pro-
cess using an orthogonal theory method. Masry (1983) derived asymptotic
expressions for the bias and covariance of discrete-time estimates for the
marginal probability density function of continuous-time processes; see also
Robinson (1983). Density estimation for time series residuals was investi-
gated by Robinson (1987). Cheng and Robinson (1991) established various
properties of density estimation for strongly dependent data. The uniform
strong consistent rate was established by Pham and Tran (1991) and Cai
and Roussas (1992). Gyorfi and Masry (1990) proved the strong consistency
of recursive density estimation for dependent data. Kim and Cox (1995)
gave useful moment bounds for mixing random variables. Density estima-
tion for random fields was investigated by Roussas (1995), Carbon, Hallin,
and Tran (1996), and Bradley and Tran (1999), among others. Gyérfi and
Lugosi (1992) gave an interesting example where the kernel density esti-
mate is inconsistent. Adams and Nobel (1998) studied density estimation
of ergodic processes. The impact of dependence on the MISE, ISE, and
optimal bandwidths of the kernel density estimation has been thoroughly
studied by Claeskens and Hall (2002).
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Smoothing in Time Series

6.1 Introduction

Having introduced the basic concept of nonparametric function estima-
tion in the last chapter, we are now ready to apply it to other important
smoothing problems in time series. Smoothing techniques are useful graphic
tools for estimating slowly-varying time trends, resulting in time domain
smoothing (§6.2). Nonparametric inferences on the associations between
future events and their associated present and past variables lead to state
domain smoothing in §6.3. Spline methods, introduced in §6.4, are useful
alternatives to the local polynomial techniques in §6.3. These techniques
can easily be extended to estimate the conditional variance (volatility) of
a time series and even the whole conditional distribution; see §6.5.

6.2 Smoothing in the Time Domain

6.2.1 Trend and Seasonal Components

The first step in the analysis of time series is to plot the data. This allows
one to inspect visually whether a series resembles a realization of a station-
ary stochastic process. Should a trend or seasonal pattern be observed, it
is usually removed before the analysis of the series.

Suppose that a time series {Y;} can be decomposed as

Y= fi+ s+ Xy, (6.1)
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Difference of the transformed S&P 500 Index
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FIGURE 6.1. The difference of the logarithmic transform of the S&P 500 Index
from January 3, 1972 to December 31, 1999 (top panel) and from January 4, 1999
to December 31, 1999 (bottom panel).

where f; represents a slowly varying function known as a trend component,
s¢ is a periodic function referred to as a “seasonal component” and X; is a
stochastic component, which is assumed to be stationary with mean zero.
A variance-stabilizing transformation or the Box—Coz transform may be
applied before using the decomposition. This family of power transform

admits the form \ ‘ L
u’, or A#£0
g(u) = { log(u), for A=10 (6:2)

indexed by the parameter A, or in the form having continuity at A = 0,

g(u) = (u* — 1)/A.

This class of transformation was considered by Box and Cox (1964). Note
that a translation transform might be needed before using the power trans-
form since the data in the power transform must be nonnegative.

Our objective is to estimate and extract the deterministic components
fr and s;. It is hoped that the residual component X; will be stationary
and can be further analyzed by using linear and nonlinear time series tech-
niques. An alternative approach, developed extensively by Box and Jenkins
(1970), is to repeatedly apply difference operators to the time series {Y;}
until the differenced series appears stationary. The differenced series is then
processed further by using stationary time series techniques. As an illustra-
tion of the Box and Jenkins approach, we took the logarithmic transform
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Moving averages of S&P 500 Index
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FIGURE 6.2. The S&P 500 Index from January 4, 1999 to December 31, 1999
and its 21 (thick curve) and 41-(dashed curve) trading day moving averages.

of the S&P 500 Index and then computed the first-order difference. Fig-
ure 6.1 presents this preprocessed series. The resulting series is basically
the percentage of daily price changes in the index. It appears stationary
except for a few outliers (e.g., 20.47% market corruption on October 19,
1987, called “Black Monday” in the financial markets). This transform is
related to discretization of the geometric Brownian motion model popularly
employed for asset pricing in the financial industry.

We first focus on the situation without the seasonal component, namely

}/t = ft + Xt, EXt = 0 (63)

We then return to estimate the trend and seasonal components in §6.3.8.

6.2.2 Moving Averages

Averaging is the most commonly-used technique to reduce stochastic noise.
Assume that the trend is slowly-varying so that it can be approximated by
a constant in a local time window of size h, namely

Yt+i ~ ft + Xt—i—i for —h <1< h. (64)
Then f; can be estimated by the local average around this window:

fo=(2h+1)" ZYW (6.5)
i1=—h
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As the center ¢ changes, the local time window moves. For example, the
estimate at t = 50 with h = 20 is the average of the data in that first
window depicted in Figure 6.2. The centers of the windows are moved to
new points to form estimates at these points. As the local window slides
from the left to the right, it traces a moving average curve. This is the
simplest form of the moving average smoothing. It is frequently used to
examine the trend of a time series. Figure 6.2 depicts the one-month and
two-month moving averages for the S&P 500 Index from January 4, 1999
to December 31, 1999.

A convention for the moving average estimator at the boundary is to
ignore the data beyond the observed time range. For example, f5 is simply
estimated by using the average of data Y7, - -, Y4, (more data to the right
of the time point 2 than to the left). This asymmetric average may create
an unappealing boundary bias. This boundary effect is more pronounced
when the trend at the boundary is steep and the window size is large. As
shown in Figure 6.2, the moving average underestimates the trend at the
right boundary. The problem can be attenuated by using the local linear
smoothing (see §6.2.6) or other boundary correction methods, such as the
boundary kernel method (Gasser and Miiller 1979; Miiller 1993) and the
data-sharpening method (Choi, Hall, and Rousson 2000).

The moving average series (6.5) utilizes both sides of data around the
time t. It depends also on the data after time ¢. To facilitate prediction,
the one-sided moving average series

h
fr=n"1Y Vi (6.6)
=1

is also frequently used to examine the time trend. The series employs only
the past data up to time ¢ — 1.

6.2.3 Kernel Smoothing

An improved version of the moving average estimator is to introduce a
weighting scheme. This allows data near the given time point to receive
larger weights. This leads to the kernel regression estimator, defined by

s _ X VK (5)
to — .
LS K ()

This estimator is also called the Nadaraya—Watson estimator; see Nadaraya
(1964) and Watson (1964). When the uniform kernel K (u) = 0.5I(|u] <
1) is employed, the kernel estimator above becomes the moving average
estimator (6.5). When the kernel function has a bounded support [—1, 1],
the kernel regression estimator is a weighted average of local (2h + 1) data
points around the time point tg. When the kernel K (t) is unimodal with

(6.7)
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the mode at zero, the data points near ty receive more weight. In general,
the kernel function is not required to have a bounded support as long as
its tails are thin (e.g., a density function that has a second moment). The
nonnegativity requirement of K can also be dropped. The bandwidth A
does not need to be an integer.

Note that the normalization constants in the definition of the Gaussian
kernel and the symmetric Beta family of kernels are merely used to make
the function K a probability density function. They play no roles in ker-
nel regression estimation. In computation, we often normalize the various
kernel functions such that they have the same maximum value 1 as in Fig-
ure 5.2. With this normalization, (6.7) can be intuitively understood as
the effective average of Zthl K{(t —to)/h} data points. When the kernel
function has a support in (—oo,0) (such a kernel is also referred to as a
one-sided kernel), the kernel regression estimator uses only the data up to
time ¢o — 1. This is an extension of the one-sided moving average (6.6).

As in the kernel density estimation, the bandwidth h is a critical param-
eter in kernel regression estimation. As demonstrated in Figure 6.2, a large
bandwidth h produces an oversmooth estimate, leaving out possible details
of the trend and underestimating the magnitude of peaks and troughs.
Specifically, the estimator can create large biases when a large bandwidth
is used. When a small bandwidth is applied, there are only a few local
data points available to reduce the variance of the estimator. This results
in a wiggly curve. For example, with h = 0, the moving average estimator
(6.5) simply reproduces the original series. Trial-and-error is needed in or-
der to produce satisfactory results. A data-driven choice of bandwidth can
assist us in determining the amount of smoothness required . As shown in
§6.2.9, the asymptotic variance depends critically on the correlation struc-
ture of the underlying process. Hence, the data-driven bandwidth selectors
designed for independent data perform poorly in time-domain smoothing.
Indeed, Altman (1990), Chu and Marron (1991a), and Hart (1991) reported
that the ordinary leave-one-out cross-validation method performs poorly
for the dependent data. Several modifications were proposed by these au-
thors. The plug-in approaches for bandwidth selection were proposed by
Ray and Tsay (1997) and Beran and Feng (2001).

The observation above can also be understood by calculating the bias and
variance of the kernel regression estimator. Following direct calculation,
under model (6.3), the bias of the kernel estimator is

s i ) K (5
Efto fto - ZtT:lK(%) .

This does not depend on the error process. It is purely an approximation
error. When the bandwidth is small, the approximation errors f; — f;, are
small and so is the bias term. On the other hand, when A is large, many
of the approximation errors f; — fi, can be large due to the large distance
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between t and ¢y, and hence the bias can be large. The variance of this
linear estimator,

K (55)

L K (5

can also be computed. Let yx(t) be the autocovariance function of the
process X (t). Then

T
fto = E weYs,  wy
t=1

T T
Var(fi) = D0 yx(li = g wiw;. (6.8)

i=1 j=1

The variance depends on the autocorrelation function. Further simplifica-
tion needs asymptotic analysis. We will discuss this in §6.2.9. It will be
shown that the asymptotic variance depends on the behavior of vx (k) as
k — oo. Suffice it to say that when the bandwidth is small, the variance of
the kernel smoothing is large due to the limited amount of the local data
point.

6.2.4 Variations of Kernel Smoothers

There are a number of variations of the kernel smoothers. The denominator
in (6.7) is not convenient for taking derivatives with respect to ¢ and for
mathematical analysis. Instead, assigning the heights of a kernel function
as weights, we can also use the areas under the kernel function as weights.
Since the total area under the kernel function is one, no denominator is
needed. This is the basic idea behind the Gasser—Miiller estimator.

In the current context, let s; = (2¢+1)/2(t =1,--- ,T—1) with sg = —o0
and st = co. Gasser and Miiller (1979) proposed the following estimator:

~ T St
fto :Z/ Kh(u—to)qut.
t=1"5t-1

No denominator is needed since the total weight is

T St [e’e}
Z/ Kn(u—to) :/ Kn(u—to)du = 1.
t=1"5t-1 i

The Gasser—Miiller estimator is a modification of an earlier version of
Priestley and Chao (1972), which is defined as

T
fro = Z Kp(t —to)Ys.
=1
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This estimator simply drops the denominator of the Nadaraya—Watson es-
timator. Approximating the Riemann sum by an integral and by a change
of the variable, we have the total weight

(T—to)/h

T T
;Kh(t_to)z\/l Kh(t—to)dt:/ K(u)du

—(to—1)/h

for proper choices of h. If 3 is not too close to the boundaries and h is
small relative to T so that (to —1)/h and (T —tg)/h are large, the integral
above is approximately the same as

/_O; K (u)du = 1.

In fact, this holds exactly as long as the support of K is contained in the
interval [—(to — 1)/h, (T — to)/h]. In other words, for ¢y that is not in the
boundary region, the total weight is approximately 1. The argument above
relies on the fact that the design points are equispaced. In fact, the Priestley
and Chao estimator can only be applied to the equispace setting. It will
not be applicable to the state-domain smoothing in §6.3.

6.2.5 Filtering

The kernel regression is a special convolution filter used by engineers. In
general, a linear filter of length 2h 4 1 is defined by

h
fi= Z Wi Y- (6.9)

i=—h

The kernel regression corresponds to w; = K(i/h)/ Z?:_h K(j/h) when
K has the support [—1,1]. Filters {w;} can be designed to possess various
properties. For example, they can be designed to remove high-frequency
signals (low-pass filter) or low-frequency signals (high-pass filter) or signals
outside a certain range of frequencies (bandpass filter); see §2.3.3. The
kernel smoothing is a low-pass filter.

A linear filter can also be defined via a recursion. For example, a one-
sided moving average f; can also be defined via

ﬁ:bn+(1_b)ﬁfla t:23"'7Ta

for some b < 1. This is equivalent to using the following weighted moving
average of Y7,---,Y;:

Fo=bY +b(1 = b)Yy g + -+ b(1 — b)Y, + b(1 — b)Yy,

Since the weights decrease exponentially fast, the filter above effectively
uses only the local data near time t. The effective size of the smoothing
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depends on the parameter b. This method is referred to as exponential
smoothing.

The exponential smoothing is a special case of kernel smoothing using
Kp,(z) = MI(z > 0) with A" = 1—b. This is a one-sided kernel smoothing.
It uses only the data up to the current time ¢t. Further discussion on this
subject can be found in Gijbels, Pope, and Wand (1999).

The recursive and convolution filterings can be combined to yield a much
richer family of linear filters used in the engineering literature. The idea is
very similar to combining AR and MA processes to enlarge the scope of
linear processes.

6.2.6 Local Linear Smoothing

The local constant approximation (6.4) can be improved if the local linear
approximation is used. Let us approximate the trend f; as a function of ¢
locally by a linear function

Vi~ fi+fii—t)+X; for|i—t| <h.

Thus f; is approximately the intercept of the locally linear model above.
See Figure 6.3 for an illustration at ¢ = 200. The data inside the window are
fitted by a linear regression. Using the least squares method for the data
around the local window, we can estimate the local intercept via minimizing

T

> (Y —a—b(i — )} Ky (i — t)

i=1

with respect to a and b. Here, the kernel weights are introduced to weigh
down the contributions of the data that are remote from the given time
point ¢. Let a; and b; be the least-squares solutions. Here, the subscript # is
used to indicate the fact that the solution depends on the given time point
t. Then f; is estimated by the local intercept a;, which admits the explicit
expression

= Zi Z tzy/zwt,i; W g = Kh(i — t){STQ(t) — (7, — t)ST,l(t)},

(6.10)
where Sp;(t) = ZiT=1 Ky (i —t)(i — t)7. The whole trend function is esti-
mated when ¢ runs from 1 to 7. Thus, the local linear smoother is really a
running linear regression method. As illustrated in Figure 6.3, the estimate
at ¢ = 80 is found by forming a new local least-squares problem. The linear
fit in each data window is shown as a solid line. The local intercepts-the val-
ues of the estimate-are the intersections between the dashed vertical lines
and the local linear lines. The local slopes are estimates of the derivatives
of the time trend. Further, these local windows can also overlap with each
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Local linear fit for S&P 500 Index
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FIGURE 6.3. Local linear fit for the S&P 500 Index from January 4, 1999 to
December 31, 1999, using the Epanechnikov kernel and bandwidth h = 20. The
dashed parabola in each window indicates the weight that each local data point
receives.

other (see Figure 6.2). The S-Plus function “ lls.s” was programmed and
used to compute the smoothed curve in Figure 6.3. This S-Plus function
can be obtained from the Web site of this book.

The local linear smoothing can easily be extended to the local polyno-
mial smoothing. A thorough treatment of local polynomial fitting and its
applications can be found in Fan and Gijbels (1996). The merits of the local
polynomial fitting will be summarized in §6.3.3. Note that weights w; ; in
(6.11) satisfy

T
> wii(i —t) = Sra(t)Sra(t) — Sra(t)Sra(t) = 0. (6.11)

This implies that if the trend is linear, f; = at+ /3, the local linear smoother
is unbiased:

T T
Ef, = Zwt,i(ai + ﬁ)/zwt,i =at+ 0.
i=1 i—1

In other words, the local linear smoother is unbiased for estimating lin-
ear trends, no matter how steep they are. This holds for ¢ in the interior
as well as near the boundary. In other words, the local linear estimator
would have a small bias for estimating a steep trend. Kernel smoothers, on
the other hand, would have large biases for estimating steep trends near
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boundary regions because the equation similar to (6.11) does not hold, even
approximately.

6.2.7 Other Smoothing Methods

There are many other variations of the kernel local linear smoother. For
example, Gasser and Miiller (1979) use different weighting schemes from
the kernel and local linear weights, and Jones (1997) introduces variations
to the local linear smoothing. Chapter 2 of Fan and Gijbels (1996) gives an
overview on various smoothing techniques, including splines and orthogonal
series methods.

The kernel regression and the local polynomial modeling are based on
local approximations at many grid points. Global approximation methods
such as splines can also be applied to the time domain smoothing. These
ideas will be introduced in the state-domain smoothing in §6.4.

For equispaced designs such as the time domain smoothing, orthogonal
series methods are also very handy to use. The basic idea is first to trans-
form data using an orthogonal matrix and then selectively set coefficients
at high frequencies to zero (or shrink them toward zero). The smoothed es-
timate can be obtained by the inverse transform of the tapered coefficients.
Commonly used orthogonal transforms include the Fourier transform and
the wavelet transform. For their statistical applications, see recent books
by Ogden (1997), Efromovich (1999), and Vidakovic (1999).

6.2.8 Seasonal Adjustments

There are many ad hoc procedures for seasonal adjustments. We just outline
one here to indicate the flavor.
Suppose that the period of the seasonal component in (6.1) is p; namely,

p
Sk4jp = Sk Z s =0. (6.12)
k=1

The last constraint is an identifiability condition. Without this constraint,
one can add a constant to the trend component f; and subtract the same
constant on the seasonal component. Due to the constraint (6.12), the
trend can be conveniently estimated by using the moving average (6.5) with
h = (p—1)/2 when p is an odd number. The seasonal component is averaged
out in (6.5) and hence does not contribute to the trend estimate. When the
period p is even, one can estimate the trend with a slight modification:

Fi=(05Y a+Yi a1+ +Yia1+05Ya)/p, d=p/2.

The seasonal component can be estimated as follows. For the sake of
argument, we assume that we deal with monthly data and that the seasonal
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component has period p = 12. The value of the seasonal component in, say,
March can be well-approximated by the average of all of the observations
made in March, after removing the trend component. This leads to the
estimate

(T—d—k)/] ~
Si= Y ey = Jea) AT —d = k)/p] = [(d — k)/p] + 13,

j=l(d—k)/pl+1

where [a] indicates the integer part of a and d = [p/2]. The limits in the
summation above are imposed so that the data are not too close to the
boundary so as to minimize the boundary effect in trend estimation. This
preliminary estimate may not exactly satisfy the constraint (6.12). This
can easily be modified by using

:S\k:gz_dilzg?a Ile,,p

i=1

to estimate the seasonal component {s}.

The technique above is also applicable in the absence of the trend com-
ponent f;. In this case, one does not need to remove the trend-namely,
setting f; = 0.

6.2.9 Theoretical Aspects*

The theoretical formulation of problem (6.3) should be made with care.
One simple way is to think of the observed time series {Y;} as a discretized
sample path from a continuous process

Y(t) = f(t) + X (¢).

This formulation is frequently used in financial time series modeling. The
time unit is usually years and weekly data (say) are regarded as the data
sampled from a continuous process at the rate A = 1/52. The formulation
is very powerful for option pricing and risk management in finance. How-
ever, it has some drawbacks in the time domain smoothing. First, to be
able to estimate f(t) consistently, we need to localize the data around a
given time to with window size h — 0. However, as long as the process X (¢)
is continuous, all local data {Y (¢) : t € to & h} are highly correlated, with
the correlation tending toward 1 as A — 0. This implies that local data
do not vary much, and hence local smoothing is not needed. As shown in
Figure 6.2, local data do vary substantially, and the local smoothing does
improve the trend estimation. Thus, the formulation above seems patho-
logical from the theoretical point of view. Secondly, under the formulation
above, the trend f(¢) and the stochastic error X (¢) have similar degrees
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of smoothness (both of them are continuous). Hence, there is no hope of
separating the trend part from the stochastic part in Y (¢).

An alternative formulation involves extending the nonparametric regres-
sion model for equispace design to the time series setup. One assumes that
the observed time series is a realization from the model

Y, = g(t/T)+ X, t=1,---,T (6.13)

for a smooth time trend function g and a stationary process {X;} with
EX,; = 0. Under this formulation, we can now separate the smooth trend
from the noisy stochastic error via smoothing techniques. One minor draw-
back is that the smooth trend f(¢) = ¢(¢/T) depends on the number of
observations T'. This problem appears already in the literature of nonpara-
metric regression with fixed designs. It is not really a serious issue. After
all, the asymptotic theory is only a means of providing a simplified struc-
ture for our understanding of theoretical properties. Modeling the trend as
g(t/T) is a simple technical device for capturing the feature that the trend
is much more slowly varying than the noise.

The selection between the two formulations above depends on the prob-
lems under study. In longitudinal data analysis and functional data anal-
ysis, Hart and Wehrly (1986) and Silverman (1996) basically used the
first formulation: one observes many independent series from the model
Y(t) = f(t) + X(t). This formulation is suitable for their problems. For
time domain smoothing, model (6.13) is frequently assumed; see, for ex-
ample, Hall and Hart (1990), Johnstone and Silverman (1997), and Robin-
son(1997). This enables one to capture the feature that the time trend
is much smoother than the underlying stochastic noise. Furthermore, it
enables one to consistently estimate the time trend.

With the formulation (6.13), the asymptotic properties for the kernel
and the local linear smoothers can be obtained. The bias for estimating
g is the same as that for the independent sample with a uniform design.
The variances for the kernel and the local linear estimators can also be
computed with extra effort. They depend on the covariance structure of
the noise process {X;}. In general, we assume that the autocorrelation
function of {X;} behaves as

vx (k) = Cov(Xe, Xiqx) ~ Cxk™, as k — oo, (6.14)

for some o« > 0 and some constant C'x. Fractional ARIMA processes defined
in §2.5.2 satisfy (6.14).

We now consider the bias and variance of the local linear estimator (6.10)
under the model (6.13). We rewrite the estimator (6.10) as g(¢/T'). For any
u=1t/T € (0,1), using EY; = g(¢/T) and (6.11), we have the bias

>ims wradg(i/T) — g(u) — g/ (w)(i/T — u)} .

ZiTzl Wi

Eg(u) —g(u) = (6.15)
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Note that this bias does not depend on the error process { X (¢)}. It is purely
the approximation error of the local linear fit.

For simplicity of technical arguments, we assume that K has a bounded
support. This assumption can be weakened at the expense of lengthier
arguments. In particular, light-tail kernels such as the Gaussian kernel are
allowed. Denote fj:j v K (v)dv by ;.

We summarize the asymptotic bias and variance in the following Theo-
rem, which will be proved in §6.6.1. Note that because of our scale of time
unit, h/T is the same as the bandwidth used for conventional nonparamet-
ric regression.

Theorem 6.1 Suppose that K has a bounded support, satisfying po(K) =
1 and p1(K) =0, and the bandwidth h — oo in such a way that h/T — 0.

a +) eTILSTS ana 1S continuous a € point u, en
If g" ists and is conti t the point u, th

1

Eg(u) = g(u) = 5 pa(K)g" (z)(h/T)* + o{(h/T)*}.

(b) If the autocovariance vx satisfies (6.14), we have
Cx [ [K(x)K(y)|x — y|~*dzdyh™, 0<a<1

Var{g(u)} = ¢ 2Cx|K|3h~ " log(h), when a = 1
e e X (DIKNZAT, when a > 1
(6.16)

Theorem 6.1 shows that the asymptotic variance is strongly influenced
by the covariance structure of the process of {X;}. This in turn affects the
asymptotic optimal bandwidth and explains why data-driven bandwidth
selectors for independent data cannot be applied directly to the dependent
data.

The result similar to Theorem 6.1 for the kernel estimator was proved by
Hall and Hart (1990). It was recently extended to local polynomial fitting
by Beran and Feng (2001) using technical arguments different from those
given in §6.6.1. It was also shown there that the asymptotic variance is of
order h~172% for antipersistent processes.

The asymptotic normality for the local linear estimator can also be es-
tablished. If the error process {X;} is Gaussian, then its weighted average
estimator (6.10) is also Gaussian. Thus, the asymptotic normality of the
local linear estimator follows directly from Theorem 6.1. Furthermore, un-
der the normality assumption, Csoérgé and Mielniczuk (1995) established
the asymptotic distribution for the maximum deviation that is similar to
Theorem 5.4. However, the normality assumption on {X;} is not critical.
It can be removed as demonstrated in Robinson (1997). Here we outline
the technical device used in that paper.

Let {e;:} be a martingale difference with respect to its natural o-fields,
namely

E(e¢{e;,j <t})=0, as.
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Assume that {X;} is a doubly infinite-order moving average process
o0 o0
Z ajei—j;, with Z a? < 00,
j=—o0 j=—o0
and that the {e?} are uniformly integrable, satisfying
E({ejj<t}) =1, as.

Fractional ARIMA processes satisfy these assumptions. Consider the weighted

sum .
St = ZwT,tXt = Z (Zthat j)

t=1 j=—00

which is the sum of the martingale difference. Using the martingale prop-
erty,

2
Var(St) = Z (Zth(lt ]> )

j=—o00

which is assumed to exist. The following result is due to Robinson (1997).
A similar theorem can be found in Ibragimov and Linnik (1971).

Theorem 6.2 Under the conditions just stated,
Var(Sr) Y28y 25 N(0,1),

provided that

T
g Wttt —j

t=1

=0 (Var(ST)_l/Q) .

max

Now, for the local linear estimator (6.10), one can easily see that

Eft Zwth/Zwtz

The asymptotic normality becomes a matter of checking the conditions
stated in Theorem 6.2. We omit the details.

6.3 Smoothing in the State Domain

6.3.1 Nonparametric Autoregression

Smoothing in the state domain is strongly related to nonparametric pre-
diction. Consider a stationary time series {X;}. For simplicity, we consider
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the prediction based on the variable X;_; only. The best prediction of X,
based on X;_ 1 = z is the conditional expectation of X; given X; 1 = x,

m(x) = E(Xt|Xt_1 = .’I,'),
which minimizes the MSE
E{X; — g(X;1)}?

among all prediction rules g. This function is also called the autoregression
function of order 1. When { X} is a stationary Gaussian process with mean
0, this conditional mean is linear m(xz) = ax and the conditional variance
is constant. This leads to an AR(1)-model

Xt = aXt_l + &¢.

In general, the function m(z) is not necessarily linear and the conditional
variance is not necessarily homoscedastic. However, we can always express
the data in the form

Xt = m(Xt_l) + O'(Xt_l)é't, (617)

where 02(x) = Var(X;|X;_1 = z). Here &; has conditional zero mean and
unit variance
E(et|X¢-1) =0, Var(e,|X;_1) = 1.

Nonparametric smoothing techniques can be applied beyond the estima-
tion of the autoregression function. Consider a bivariate sequence {(X;,Y;) :
t = 1,---,T} that can be regarded as a realization from a stationary
process. We are interested in estimating the regression function m(x) =
E(Y:|X; = ). To facilitate comprehension, we write

}/t = m(Xt) + U(Xt)€t7 (618)
where 0%(z) = Var(Y;|X; = z) and &, satisfies
E(8t|Xt) = 0, Var(6t|Xt) =1

Clearly, this setup includes estimating the autoregression function as a
specific example by taking Y; = Xy, 1. Here are three useful examples.

Example 6.1 Consider a stationary time series {Z;}. One takes Y; =
(Z;)* and X; = Z;_; for a given k. Then, the target function becomes

my(z) = B(ZF|Z,_, = ).

The conditional variance can be estimated by using Mo (z) — My (x)?. In
particular, when m;j(x) is small, such as the difference among the interest
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rate data given in Example 1.1, mo(z) is basically the same as the condi-
tional variance function. In other words, the mean regression function for
the data given in Figure 6.4 below is the square of the volatility function

o(z) = /Var(X,| X, = x).

This forms the basis of the volatility estimator given in Stanton (1997) and
Fan and Yao (1998).

Example 6.2 Consider again the stationary time series {Z;}. One takes
Y, = I(a < Z; < b), the indicator function on the interval (a,b], and
X: = Z;_1. Then, the target function becomes

m(x) = Pla < Zy < blZ;_1 = x).

In particular, if a = —oco, we are estimating the conditional distribution.
Furthermore, if a = y — 0 and b = y + 0, then m(x)/(20) is basically the
same as the conditional density of Z; given Z;_y = x when 0 is small.
This conditional density function is very useful for the summary of the
distribution of Z; given Z;_1 = x. In particular, the autoregression function
is the center of this distribution, and the volatility function is the spread of
this distribution. The idea forms the genesis of the methods used by Fan,
Yao, and Tong (1996) for estimating conditional densities (§6.5) and their
related functionals (§10.3), by Hall, Wolff, and Yao (1999) for estimating
conditional distribution functions (§10.3), and by Polonik and Yao (2000)
for estimating minimum-volume predictive regions (§10.4).

Example 6.3 For a given time series {Z;}, multistep forecasting can be
accomplished by setting Y; = Z; 14 and X; = Z;, where d is the number of
steps. In this case, we estimate nonparametrically

m(z) = E(Zi1a|Z: = ),

the best d-step predictor based on the variable Z;. Figure 6.6 below depicts
the one-step and two-step predictions for the lynx data. By combining this
method with the techniques in Examples 6.1 and 6.2, we can estimate
conditional variance and conditional density for multistep forecasting.

6.3.2 Local Polynomial Fitting

Local polynomial fitting is a widely used nonparametric technique. It pos-
sesses various nice statistical properties. For a detailed account on the sub-
ject, see Fan and Gijbels (1996).

Let m®)(z) be the vth derivative of the regression function defined in
(6.18). The local polynomial technique is very convenient to use for estimat-
ing m()(z), including the regression function itself, m(x) = m(9 (x). Since
the form of the function m(-) is not specified, a remote data point from
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provides very little information about m(x). Hence, we can only use the
local data points around xg. Assume that m(z) has the (p + 1) derivative
at the point zy. By Taylor’s expansion, for x in the local neighborhood of
g, we have

m//(xo)

m(z) = m(zo) +m'(wo)(x — w0) + —;— (¥ — w0)*
m® (zq
+e #(m —20)? + O {(z — 20)"*'}. (6.19)

In terms of statistical modeling, locally around z(, we model m(x) as

m(z) = Zﬂj (z — z0) . (6.20)

Jj=0

The parameters {3;} depend on zy and are called local parameters. Clearly,
the local parameter £, = m®*)(z¢)/v!. Fitting the local model (6.20) using
the local data, one minimizes

2
T P

D RYi= > B (X —w0) p Kn(Xy — ), (6.21)

t=1 =0

where h is a bandwidth controlling the size of the local neighborhood.

As an illustration, we took Y; = (X; — X;_1)?, where X, is the yield of
the 12-month Treasury bill. The bandwidth h = 3.06 was used, which was
selected by the preasymptotic substitution method (see §6.3.5) using the
C-code “lls.c”. At the point zo = 12 (percent), a line (p = 1) was fitted for
the local data in the shaded area xy & h, with weights for each data point
indicated by the dashed curve (corresponding to the Epanechnikov kernel).
The local intercept Gy at the point zq is the intersection between the fitted
line and the vertical line. This forms an estimate of the regression function
(v = 0) at the point xg = 12. Sliding this window along the horizontal
axis, we obtain an estimated curve on the interval [3,14]. The conditional
standard deviation is shown in Figure 6.4(b). The residual-based method
for estimating the conditional variance, proposed by Fan and Yao (1998)
and computed by the C-code “autovar.c” (see also §8.7.2), is shown in the
short-dashed curve for comparison. The parametric model m(z) = ax? is
frequently used to model the volatility of interest rate dynamics, which is
shown in the long-dashed curve. As one can see, there are still substantial
differences between the parametric and the nonparametric methods, and
the question of adequacy of the parametric fitting arises. The preasymp-
totic substitution method of Fan and Gijbels (1995) was employed to select
bandwidths; see §6.3.5.

Denote by 8j, j = 0,...,p, the solution to the least squares problem

(6.21). The local polynomial estimator for m®)(xq) is m,(x¢) = VB,
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Conditional second moment for 12-month Treasury bill
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FIGURE 6.4. Local linear fit for estimating conditional variance for the yields
of the 12-month Treasury bill. (a) Illustration of the local linear fit with the
Epanechnikov kernel and bandwidth h = 3.06; (b) estimated conditional standard
deviation by using the local linear fit (solid curve), the residual-based method of
Fan and Yao (1998) (short-dashed curve), and the parametric model o(z) = az”®
(long-dashed curve) with o = 0.143 and 3 = 1.324.

(v = 0,1,---,p). Here, we do not use the notation m*)(z¢) in order to
avoid confusion with the vth derivative function of the estimated regression
m(xzg). In fact, the derivative m/(x) is estimated by the local slope rather
than the derivative of the estimated regression function.
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When p = 0, the local polynomial fit reduces to the kernel regression
estimator

T
_ 2 Vi (Xe — @)
= = ;
Etzl Kpn(Xt — )

which is also called the Nadaraya—Watson estimator. Hence, from the local
approximation point of view, the kernel regression estimator is based on
the local constant approximation; see (6.19).

It is more convenient to work with matrix notation. Denote by X the
design matrix of problem (6.21),

m(x)

1 (Xl —$0) (Xl —.’L‘o)p
X=|: z :
1 (XT — 330) e (XT — xo)p
and put R
Y ~ Bo
y= and 8=
YT Bp

Then, the weighted least squares problem (6.21) can be written as

min(y — X)W (y - X5). (6.22)

with 3 = (8o, -+, 3p)T, where W is the diagonal matrix whose ith element
is Kp(X; — o). The solution vector is given by

B=XTWX) 'X"Wy. (6.23)

To implement the local polynomial estimator, one needs to choose the
order p, the bandwidth h, and the kernel K. These parameters are of course
related each other. When h = oo, the local polynomial fitting becomes a
global polynomial fitting and the order p determines the model complexity.
Unlike in the parametric models, the complexity of local polynomial fits is
primarily controlled by the bandwidth. Hence p is usually small, and the
issue of choosing p becomes less critical. If the objective is to estimate m®),
the local polynomial fitting automatically corrects the boundary bias when
p—rv is odd. Furthermore, when p—v is odd, compared with the order p—1
fit (so that p — v — 1 is even), the order p fit contains one extra parameter
without increasing the variance for estimating m(*). But this extra param-
eter creates opportunities for bias reduction, particularly in the boundary
regions; see Fan (1992), Fan and Gijbels (1992), Hastie and Loader (1993),
and Ruppert and Wand (1994). For these reasons, the odd order fits (the
order p is chosen so that p — v is odd) outperforms the even order fits (the
order (p — 1) fit so that p — v is even). Based on theoretical and practical
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considerations, the order p = v 4+ 1 is recommended in Fan and Gijbels
(1996). If the primary objective is to estimate the regression function, one
uses the local linear fit, and if the target function is the first-order deriva-
tive, one uses the local quadratic fit, and so on. On the other hand, the
choice of the bandwidth h plays an important role in the local polynomial
fitting. Too large a bandwidth causes oversmoothing, creating excessive
modeling bias, whereas too small a bandwidth results in undersmoothing,
obtaining noisy estimates. The bandwidth can be subjectively chosen by
users by visually inspecting resulting estimates or automatically chosen by
data by minimizing an estimated theoretical risk (see §6.3.5). Since the es-
timate is based on the local regression (6.21), it is reasonable to require a
nonnegative weight function K. It is shown by Fan et al.(1996) that, for all
choices of p and v, the optimal weight function is K(z) = %(1 —2%),, the
Epanechnikov kernel. Thus, it is a universal weighting scheme and provides
a useful benchmark to compare with other kernels. As shown in §5.5, other
kernels have nearly the same efficiency for practical use of p and v. Hence,
the choice of the kernel function is not critical.

The local polynomial estimator compares favorably with other estima-
tors, including the Nadaraya—Watson estimator, the Gasser and Miiller
estimator, and the Priestley and Chao estimator. Indeed, it was shown by
Fan (1993a) that the local linear fitting is asymptotically minimax among
all linear estimators and is nearly minimax among all possible estimators.
This minimax property is extended by Fan et al. (1996) to more general
local polynomial fitting.

6.3.3  Properties of the Local Polynomial Estimator

Throughout this section, we assume that (Xy,Y7),---, (Xp,Yr) are a sta-
tionary sequence. Let F¥ be the o-algebra of events generated by the ran-
dom variables {(X,Y;),i < j < k}. Let a(k) and p(k) be their correspond-
ing a- and p-mixing coefficients. Denote by e, 11 the unit vector with 1 at
the (v + 1) position. Let

T
Srj = Kn(Xe — 20)(X; — x0)’ (6.24)

t=1
and S = XTWX be the (p+ 1) x (p + 1) matrix, whose (i, j)th element

is ST,i+jf2- R
First, one can easily show that the estimator 3, can be written as

Bu = GZHB = Z WE (Xt_xo) Y:, (6.25)
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where the effective kernel W T is the multiplication of the kernel K with a
polynomial function, defined as

WIt)=el, S7' {1,th, -, (th)P} K (t)/h. (6.26)

The expression above reveals that the estimator B\V looks like a conventional
kernel estimator except that the “kernel” W7 depends on the design points
{X1,---,Xr} and locations xg. This explains why the local polynomial fit
can adapt automatically to various designs and to boundary estimation.
Figure 6.5 presents the effective kernel functions for the local constant fit
(p = 0) and the local linear fit (p = 1) at 29 = 0.05 and zy = 0.5 for the
Epanechnikov kernel K. They satisfy the following moment property:

Proposition 6.1 The effective kernel W satisfies the following finite mo-
ment properties

a Xe—x
ZXt_xO qWT(thO):du,q OSV,qu,
t=1

where §, 4 =0 if v # q and 1, otherwise.

Proof. By the definition of Sr,

T
Z (X, — xo) qWT (‘Xthxo)
t=1

1
S Y K| | K - o)
t=1 x, B 20)?
= e:jFHS;lSTeqH =0uq-
The conclusion follows. ]

As a consequence of Proposition 6.1, the local polynomial estimator is
unbiased for estimating 3, when the true regression function m(z) is a
polynomial of order p. To gain more insights about the effective kernel, we
provide its asymptotic form. We first introduce some notation. Let S be
the (p + 1) x (p + 1) matrix whose (¢,j) element is p;y;_o, where p; =
fj;o u? K (u)du. Define the equivalent kernel by

Kit)=el 1S (Lt ") TK(t) = <zp: s”#) K(t), (6.27)

£=0

where S** is the (v + 1, ¢ + 1)-element of S~*.
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Nadaraya-Watson estimator

—— True value
— — - Estimated value
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Local linear regression estimator
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FIGURE 6.5. Effective weights assigned to local data points at an interior point
2o = 0.5 (weights denoted by A) and a boundary point zo = 0.05 (weights de-
noted by o) for the local constant fit (p = 0) and the local linear fit (p = 1),
with K being the Epanechnikov kernel. The horizontal solid and dashed lines are
the heights of true and estimated functions at zo = 0.05 and o = 0.5, respec-
tively. Their differences are biases at these two points. (a) The Nadaraya—Watson

estimator; (b) the local linear fit. For clarity, the data () contain no noise.

Proposition 6.2 Under the conditions of Theorem 5.3, if the marginal

density f of X has a continuous derivative at point xo, then

W) = Fmr ey Ko {1+ Or(an)}
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uniformly in ¢ € [a,b] and t, where ar = h+(log T/Th)'/?. The equivalent
kernel satisfies the following moment condition for a higher-order kernel:

+oo
/ WK} (w)du=96,, 0<wv,q<p.

— o0

Proof. Note that St ;/(Th?) is basically the same as the kernel density es-
timator with the induced kernel K*(z) = 27 K (x). Hence, by Theorem 5.3,

(Th!)~ St = f(zo)uj + Op(ar) (6.28)

uniformly in z¢ € [a, b]. From this, one obtains immediately by substituting
(6.28) into each element of St that

T 'H'SyrH™' = f(20)S{1 + Op(ar)},

or equivalently,
St = Tf((ﬂo)HSH{]. + OP(GT)},

where H = diag(1, h,--- , h?). Hence, substituting this into the definition
of Wy, we find that

1
T\ _ T q-1 .4\ T
WE) = g e (Lt )KL+ op(ar)).
This proves the first conclusion. The second conclusion follows from the
same proof as that of Proposition 6.1. (]

From (6.25) and Proposition 6.2,

~ 1 d Xt — o
o= g 35 (T s orten). o

Hence, the local polynomial estimator works like a kernel regression estima-
tor with a known design density f. This explains why the local polynomial
fit adapts to various design densities. In contrast, the kernel regression
estimator has a large bias at the region where the derivative of f is large;
namely, it cannot adapt to highly-skewed designs. To see this, imagine that
the true regression function has large slope in this region. Since the deriva-
tive of the design density is large, for a given z(, there are more points
on one side of zg than the other. When the local average is taken, the
Nadaraya—Watson estimate is biased toward the side with more local data
points because the local data are asymmetrically distributed. This issue
is more pronounced at the boundary regions since the local data are even
more asymmetric (see Figure 6.5). On the other hand, the local polynomial
fit creates asymmetric weights, if needed, to compensate for this kind of
design bias (Figure 6.5 (b)). Hence, it is adaptive to various design densities
and to the boundary regions.
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We now give the asymptotic bias and variance expression for local poly-
nomial estimators. For independent data, we can obtain the bias and vari-
ance expression via conditioning on the design matrix X. However, for
time series data such as those in Examples 6.1-6.3, conditioning on X
would mean conditioning on nearly the entire series. Hence, we derive the
asymptotic bias and variance using the asymptotic normality rather than
conditional expectation. As explained in §5.3, localizing in the state domain
weakens the dependent structure for the local data. Hence, one would ex-
pect that the result for the independent data continues to hold for the
stationary process with certain mixing conditions. The mixing condition
and the window size should be related. A rigorous statement of this is
given in Condition 1(iv) in §6.6.2. The proof of the following theorem, due
to Masry and Fan (1997), will be outlined in §6.6.2.

Theorem 6.3 Under Condition 1 in §6.6.2, if h = O(Tl/(2p+3)) and
m®P+1(.) is continuous at the point z, then as T — oo,

. oA hP+1m(1’+1)(x) 4
VTh diag(1,--- ,hP){B(x) — Bo(x)} — WS Cp
=N N{0,0%(x)S™'S*S™/f(2)},

where Bo(z) = (m(z),- - ,m(p)(m)/p!)T, S*isa(p+1) x(p+1) matriz
whose element (i,7) is vitj_o = fj;o tHI=2K2(t)dt, and c, is a (p+ 1)-
dimensional vector with i element ppio—;.

Note that from the definition of the equivalent kernel, one can easily see
that

—+oo
/ LK (t)dt = el 1S e,

— 00

and
“+o0
Kj(t)?dt =e ,S™'S*S e, 1.

— 00

Hence, an immediate consequence of Theorem 6.1 is that the derivative
estimator m, (z) is asymptotically normal:

Im (P+1)
VTh2r+1 {ﬁzy(m)—m(”)(x)—/tp“K:(t)dchp“"}

(p+ 1)
(v)2o?(x) IK;Q(t)dt}
f(z) '

2N {0, (6.30)

When v = 0, (6.30) gives the asymptotic normality of m(x) itself.
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The asymptotic bias and the asymptotic variance for the local polynomial
estimator are naturally defined as

AB(z) = / tp“Kj(t)dtw Py (6.31)
AV(z) = (v)o h2y+{ﬁ*) Jdt (6.32)

The ideal choice of bandwidth is the one that minimizes with respect to h
+oo
/ {AB?(z) + AV (z) }w(z)dx

for a given weight function w. This leads to the asymptotic optimal band-
width

o 1/(2p+3)
hopt = Cp(K) [fjj{m(pﬂ)( )}/2f<()) } TS (6.33)

where

[+ )Pu ) [ KA
Cop(K) = {2(p+ 1—v){[tPH1K3(t )dt}Q}

However, this ideal bandwidth is not directly usable since it depends on
unknown functions. We will propose methods to estimate this in §6.3.5.

As mentioned in the last section, local polynomial fits adapt automat-
ically to boundary regions when p — v is odd. To demonstrate this, we
follow the formulation of Gasser and Miiller (1979). Suppose that X; has a
bounded support, say, [0, 1]. Then z = ¢h(0 < ¢ < 1) is a right boundary
point when the kernel K has a bounded support [0,1]. We now consider
the behavior of M, (x) at the boundary point x = ch. To this end, let

oo o0

Wje = /qu(u)du and Vj,cz/qu2(u)du.

—C —C

Define S., S}, and c, . similarly to S, S*, and c,,, with u; and v; replaced
by .. and v; ., respectively. Similarly, one defines the equivalent kernel at
the boundary by

Ko (t) =el STt ) K(1).

Then, we have the following result, whose proof is very analogous to that
of Theorem 6.3.

Theorem 6.4 Suppose that Condition 1 in §6.6.2 holds and f(0) > 0. If
h=O(T"@+3)) and mP+Y) and o f are right-continuous at the point 0,
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then as T — o0,

hp+1m(p+1) (0) .

VTh |diag(1, - - - ,hp){B(Ch) —Bo(0)} - o (p1 T

2, N{0,02(0)S;1SS 1 /£(0+)},

where By(0) = (m(0),- -+ ,m) (0)/19!)T

As a consequence of Theorem 6.4, we have the asymptotic bias and vari-
ance at the boundary point z = ch as

oo Im®+1) (0
AB(z) = / tp"’lK:C(t)dtL(—i_)th_”
e ' (p+ 1)
and

(W)202(04) [ K32 (t)dt

AV(@) Th>+1f(0+)

Compare them with (6.31) and (6.32). Note that when K is symmetric
and p — v is even, it can be shown (Ruppert and Wand 1994) that the
coefficient in (6.31) is zero. Hence, the bias is of smaller order at an interior
point than that at a boundary point. This is referred to as a boundary
effect. When p — v is odd, the biases at interior and boundary points
are of the same order. Indeed, they are even continuous at the point ¢ =
1, the boundary between interior and boundary points. Hence, the local
polynomial fit does not create excessive boundary bias when p — v is odd.
Assume that p — v is odd and K is symmetric. It can be shown that the
asymptotic variance for the local polynomial fit of order p — 1 has the same
asymptotic variance as that for the order p fit (see §3.3 of Fan and Gijbels,
1996). However, the latter has one more parameter, which reduces modeling
biases, particularly at boundary regions. This is the theoretical background
for our recommendation to use odd order fits. It is indeed an odd world!

The following lemma is very useful for deriving uniform convergence of
the local polynomial estimator. It is an extension of a result due to Mack
and Silverman (1982).

Lemma 6.1 Let (X1,Y1), -, (X7, Yr) be a stationary sequence satisfying
the mizing condition |a(f)| < ct=P for some ¢ > 0 and 3 > 5/2. Assume
further that for some s > 2 and interval [a,b],

E|Y]® < oo and sup /|y| flz,y)dy < oo,
z€[a,b)

where f denotes the joint density of (X,Y). In addition, we assume that
Conditions 1 (ii) and (iii) in §6.6.2 hold. Let K be a bounded function with
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a bounded support, satisfying the Lipschitz condition. Then

T
. T {Kn(Xe—2)Y:— E[Kp(X;—2)Y]} = Op[{Th/log(T)} /7],

provided that h — 0, for some § > 0, T2 =26 4 o0 and

T(BHL5) (s~ +6)~B/2+5/4),~B/2-5/4 _, (.

Note that since 7172~ =20}, — oo, when the mixing coefficient is ex-
ponentially decays, the last condition of Lemma 6.1 holds automatically. In
general, when [ is sufficiently large, the last condition in the lemma above
will hold.

We now state and prove the uniform convergence result for the local
polynomial estimator.

Theorem 6.5 Suppose that the conditions of Lemma 6.1 hold and the de-
sign density f is uniformly continuous on [a,b] with inf,cp, 4 f(x) > 0.
Then

PP () ]
S D

sup [diag(l,--- ’hP){B\(x) — PBo(z)} — (p+1)!

z€Ja,b]
— Op[{Th/og(1/h)} V.

By taking the (v + 1)th element from Theorem 6.5, we have

vim®P+h ()
(p+ 1)

p+1—v

sup ﬁ%u(x)—m(”)(ac)—/t”+1Klf(t)dt

z€[a,b]
= Op[{Th**'/log(T)}~'/?].

In particular, the local polynomial estimator has the following uniform
convergence:

sap, (@) = mlz)] = Op[h*! + {Th/log(1/h)}~1/2).

6.3.4 Standard Errors and Estimated Bias

The standard errors for local polynomial estimators are useful for con-
structing confidence intervals. To derive them, let us temporarily assume
that {(X;,Y;)} are an independent sample from a population. Then, from
(6.23),

Var(B|X) = (XTWX) ' X" W Var(y| X) WX (X" WX) 1.
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Note that Var(Y;|X;) = 0%(X;). Since all operations are conducted locally
for X; =~ x¢, the conditional variance above is nearly constant, 02(:100).
Using this local homoscedasticity, we have

Var(y[X) = diag (0%(X1), -+, 0%(X,) ) ~ 0% (z0) In.

This approximation holds of course only for those X; ~ x(, but those are
exactly the data points involved in calculating the variance. Using this, we
have

Var(3]X) ~ 02(20) (X" WX) ' XWX (X" WX) .

The conditional variance 02(x) can be estimated by smoothing using a
pilot bandwidth h* and the square residuals {(X;,£7)}, where & = Y; —
m(X¢). This results in an estimate of the covariance matrix

S (z0) = 62 (20)(XTWX) ' XTW2X(XTWX) 1. (6.34)

This is a preasymptotic substitution method for estimating conditional vari-
ance, proposed in Fan and Gijbels (1995). In contrast, many authors use an
asymptotic substitution method, which substitutes estimates into asymp-
totic expressions such as (6.31) and (6.32). This not only creates more
unknown functions to estimate but also decreases the accuracy of the esti-
mate.

Recall the definition of By in Theorem 6.3. Following the same argument
as above, the bias of the local polynomial estimator for an independent
sample is

E(B|X) - o = (XTWX) ' XTWr,

where r = m — X3y, with the ith element given by

@ .
- m(Xi)_ZL'(fﬂo)(Xi_xo)J
PR
m®P+) () m®P+2) (z4)

= VX, — )Pt 4

(p I 1)' (Xl - xO)p+2'

(p+2)!

The preasymptotic substitution method of Fan and Gijbels (1995) is to
estimate m®+1) (29) and mP*2)(zq) first by using a local polynomial fit
with order p 4+ 2 and the pilot bandwidth h*. This gives an estimate of r
and the estimated bias vector

Bias(zo) = (XTWX) ' XTWT. (6.35)

For dependent data, the arguments above do not hold. However, as
demonstrated in §5.3, the local data behave very much like local indepen-
dent data. Thus, the estimates (6.34) and (6.35) give a consistent estimate
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for the asymptotic bias and asymptotic variance under some mixing con-
ditions. Indeed, by using (6.28) and a similar expression for the kernel K?,
one can easily show that the bias and variance estimators are consistent.

The bias of m(*)(z) is estimated by the (v + 1)-element of Bias(z),
denoted by B, (z). Similarly, the (v+1) diagonal element of £(z), denoted
by V,(z0), is the estimated variance of () (z¢). By using Theorem 6.3,
an approximate (1 — a) pointwise confidence interval for m()(zg) is

~

T/fL,,(ajo) - Bl/(xo) + zlfa/Z‘/}V(xO)l/a (636)

where z1_4 /2 is the (1 —a/2) quantile of the standard normal distribution.

The estimated bias involves estimation of higher-order derivatives, which
usually cannot be estimated well with moderate sample sizes. For this rea-
son, the bias is often ignored in the construction of the confidence intervals.
Some even argue that the confidence intervals in parametric models also ig-
nore biases since parametric models are at best approximately correct. For
simplicity, we will still call intervals (6.36) with B(z¢) = 0 pointwise confi-
dence intervals. As an illustration, Figure 6.6 depicts the estimated regres-
sion functions my(xg) = E(Xy1|Xe = x0) and ma(xg) = E(Xiy2| Xt = x0)
and their associated pointwise confidence intervals.

6.3.5 Bandwidth Selection

As explained in §5.3, for stationary sequences of data under certain mixing
conditions, state-domain smoothing performs very much like nonparametric
regression for independent data because windowing reduces dependency
among local data. Partially because of this, there are not many studies
on bandwidth selection for state-domain smoothing problems. However,
it is reasonable to expect the bandwidth selectors for independent data
to continue to work for dependent data with certain mixing conditions.
Below, we summarize a few useful approaches. When data do not have
strong enough mixing, the general strategy is to increase bandwidth in
order to reduce the variance.

Cross-validation is very useful for assessing the performance of an esti-
mator via estimating its prediction error. The basic idea is to set one of
the data points aside for validation of a model and use the remaining data
to build the model. It is defined as

CV(h) =T1"" Z{Yz — n,—i(X3)}?, (6.37)

where My, _; is the local polynomial estimator (6.25) with v = 0 and band-
width h, but without using the ith observation. The summand in (6.37)
is a squared-prediction error of the ith data point using the training set
{(X;,Y;) : j # i}. This cross-validation method uses ideas of Allen (1974)
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Lag 1 forecasting for Lynx data
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FIGURE 6.6. Local linear fits for the lynx data. (a) One-step prediction; (b)
two-step forecasting. The dashed curves are the pointwise 95% confidence inter-
vals.

and Stone (1974) and is computationally intensive. An improved version,
in terms of computation, is the generalized cross-validation (GCV), pro-
posed by Wahba (1977) and Craven and Wahba (1979). This criterion can
be described as follows. By (6.25), the fitted values can be expressed as

(M(X1),-- ,m(Xr))" = H(h)Y,

where H(h) is a T x T hat matrix, depending on the X-variate and band-
width h, and Y = (Y1,---,Yp)T. H(h) is called a smoothing matriz. Then,
the GCV approach selects the bandwidth h that minimizes

GCV(h) = [T~ tx{I — H(h)}]~2 MASE(h), (6.38)
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where MASE(h) = T—1 ZiT:l{Yi —m(X;)}? is the average of squared resid-
uals.

A drawback of the cross-validation method is its inherent variability (see
Hall and Johnstone 1992). Furthermore, it cannot be directly applied to
select bandwidths for estimating derivative curves. Plug-in methods avoid
these problems.

The basic idea is to find a bandwidth A that minimizes the estimated
mean integrated square error (MISE). For the preasymptotic substitution
method, the MISE is defined as

MISE(h) — / [B,@)’ + Vu(a) b wia)da (6.39)

for a given weight function w, where E,,(ac) and V, (x) are given in (6.36).
This procedure was proposed by Fan and Gijbels (1995) and depends on
the pilot bandwidth h*. The pilot bandwidth may be selected by a residual
squares criterion (RSC) proposed by Fan and Gijbels (1995). All automatic
bandwidths in this book are selected by this method and implemented by
using the C-code “lls.c”. This includes bandwidth selection for spectral
density estimation (§7.3) and estimation of conditional variance (§8.7).

The residual squares criterion is an automatic method for selecting a
bandwidth. Suppose that we wish to select a bandwidth for estimating
m(”)(~) on an interval, based on the local polynomial fit of order p with
odd p — v. Define

RSC(zo; h) = 62 (z){1 + (p+ 1)V},
where V is the first diagonal element of the matrix
(XTWX)HXTW2X)(XTWX) .

By (6.34), V is the variance reduction of estimator 7 (zg), and hence V=1
is the effective number of local data points. When A is small, V' is expected
to be large, and when h is large, 62 (o) is large if the bias of the local fit is
large. Thus, the RSC compromises these two contradictory demands. Let

IRSC(h) = RSC(z; h)dx
[a,b]

be the integrated version of the RSC over the interval [a, b]. In practice, the
integration is replaced by summation over a fine grid of points. Denote the
minimizer of IRSC(h) by h. This bandwidth works reasonably in practice.

To obtain the optimal bandwidth, some adjustments are needed. Set C,, =
papr2 — ¢ S ep, and let

(2V+ ]‘)CPIK:Q(t)dt 1/(2p+3)
(p+ 1= ) {J 1K (Ddt}? [ K2 ()de

adjy’p =
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This adjusting constant depends on the kernel K and is slightly smaller
than 1. The residual squares criterion selects the bandwidth

hioC = adj, ,h.
More details can be found in Fan and Gijbels (1995).

The plug-in method of Ruppert, Sheather and Wand (1995) is an asymp-
totic substitution method. It estimates the derivative function m®+b (z),
conditional variance o?(z), and design density f(z) first and then substi-
tutes them into the asymptotic bias and variance expressions. The band-
width is selected to minimize the estimated MISE. Pilot bandwidths are
also needed for this procedure.

The empirical bias method, proposed by Ruppert (1997), relies on a
different estimation of bias. The bias is estimated empirically by calculating
m, (xo; h) at a grid of h values and then modeling it as a function of h. Let
Jy > 1 be an integer, and let h}, h3,- - ,hg’“ be in a neighborhood of hyg.
Calculate i, (zo; h§) for £ = 1,---, Jy. Then, for some integer a > 1, fit
the model

do(xo) + dp+1_y($0)hp+1iy + -+ dp+a_y(1’o)hp+a7y (640)

to the synthetic data {(hf, M, (zo;h§)) : £ = 1,---,J,} using ordinary
least-squares. The expression (6.40) is the asymptotic “expected value” of
M, (o; h§) and hence is a natural model to use. An estimator for the bias
for estimating m®)(z() is then

dps1- o (@o)hP T 4o s (o) RO (6.41)

More details on bandwidth selections can be found in the references cited
above. They can also be found in Chapter 4 of Fan and Gijbels (1996) and
in Fan and Gijbels (2000).

6.4 Spline Methods

Spline methods are very useful for nonparametric modeling. They are based
on global approximation and are useful extensions of polynomial regression
techniques. A polynomial function, possessing all derivatives at all loca-
tions, is not very flexible for approximating functions with different de-
grees of smoothness at different locations. For example, the functions in
Figure 6.3 and Figure 6.9(a) cannot be approximated very effectively by
a polynomial function. One way to enhance the flexibility of the approxi-
mations is to allow the derivatives of the approximating functions to have
discontinuities at certain locations. This results in piecewise polynomials
called splines. The locations where the derivatives of the approximating
functions may have discontinuities are called knots. Useful reference books
on spline applications in statistics include Wahba (1990), Green and Sil-
verman (1994), and Eubank (1999).
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6.4.1 Polynomial Splines

As a brief introduction to spline methods, we use the state domain smooth-
ing as the backlog. Let ¢1,--- ,t; be a sequence of given knots such that
—00 < t; < --- < tj < +00. These knots can be chosen either by data
analysts or data themselves. A spline function of order p is a (p — 1) con-
tinuously differentiable function such that its restriction to each of the
intervals (—oo, t1], [t1, 2], -~ -, [ts—1,t7], [ts, +00) is a polynomial function
of order p. Any spline function s(x) of order p with knots t1,--- ,¢t; can be

represented as
J+p+1

> 4i8@), (6.42)

where (2) = ( "
ij:x—tj+, jzl,'”,J,
{ Sres@) =271 j=1 ptl (6.43)
In other words, the space of all spline functions with knots ty,--- ,t; is

a (J + p + 1)-dimensional linear space, and the functions {S;(z)} are a
basis of this linear space, called the power basis. The power spline basis
has the advantage that deleting a term S;(z)(j < J) in (6.42) is the same
as deleting a knot. However, as shown in Figure 6.7, the power spline basis
may have large multiple correlation coefficients and could result in a nearly
degenerate design matrix. Another commonly used basis is the B-spline
basis (see p. 108 of de Boor (1978) for the definition), which is usually
numerically more stable (see Figure 6.7(b)). However, deleting a term from
this basis does not correspond to deleting a knot.

Frequently, cubic splines are used in practice. To facilitate the presenta-
tion, from now on, we focus on the cubic spline approximation. Substituting
(6.42) into (6.18), we have

J+4
Y, NZ@ (X1) + o(Xp)er.

Ignoring the heteroscedasticity, we estimate unknown parameters {3;} by
minimizing
2

J+4
mlIlZ Y: — Z B S; . (6.44)
Let Bj (j=1,---,J+4) be the least squares estimate. Then, the regression

function is estimated by the spline function m(z) = ZJ+4 B;S;(z). This is
a cubic spline function since it is a linear combination of the cubic spline
basis (6.43).

The polynomial spline method above is sensitive to the choice of knots
{t;}. One method of choosing the knots automatically is to initially place



248 6. Smoothing in Time Series

Power spline basis

1.0

0.8
1

0.6
1

0.4

0.2

0.0
L

B-spline basis

1.0

0.6
1

0.4

0.2

FIGURE 6.7. The power spline basis and B-spline basis for cubic splines with
knots 0.3, 0.7 and 0.9. Any cubic spline functions with knots 0.3, 0.7, and 0.9
must be a linear combination of these basis functions.

many knots that might be deleted in the knot selection process. These
knots are often placed at the order statistics of the X-variable. An ex-
ample of the initial knots is t; = X(35),j = 1,---,[T//3]. One can now
treat problem (6.44) as an ordinary least-squares problem and apply lin-
ear regression techniques to select “significant variables” among the basis
functions {S;(z)}. Hence, the knots are selected.

We now briefly describe the stepwise deletion method. Let B\j be the
least-squares estimate resulting from (6.44) and SE (Bj) be its estimated
standard error. Then, delete the joth knot (1 < jo < J) having the smallest
absolute t-statistic: |§J|/S’E(B\j) (1 < j < J). Repeat the process above
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L_1 and hard-thresholding penalty SCAD penalty
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FIGURE 6.8. Some commonly used penalty functions. (a) Li-penalty function
(dashed curve) with w = 1 and the hard-thresholding penalty with w = 3; (b)
smoothly clipped absolute deviation (SCAD) penalty with w = 1.

(delete one knot at each step). We obtain a sequence of models indexed
by j (0 < j < J): the jth model contains J + 4 — j free parameters with
residual sum of squares RSS;. Choose the model /j\ that minimizes the
modified Mallows C), criterion (see Mallows 1973),

C; = RSS; + a(J + 4 — j)o2, (6.45)

where 7 is the estimated standard deviation of the initial model (full model)
and « is a smoothing parameter. Kooperberg and Stone (1991) recommend
using o = 3 instead of the more traditional value o = 2 in Akaike’s infor-
mation criterion (AIC) Akaike 1970), while Schwarz (1978) recommends
using a = log T in a different context. These kinds of knot selection ideas
are often employed by Stone and his collaborators; see, for example, Stone,
Hansen, Kooperberg, and Truong (1997) and the references therein.

6.4.2 Nonquadratic Penalized Splines

One drawback of the stepwise approach in knot selection above is the
stochastic noise accumulation in the variable selection process. The se-
lected model is not chosen from all possible submodels, and the sampling
properties of the procedures are hard to understand. To overcome these
drawbacks, Fan and Li (2001) propose the following penalized least-squares
method. Let s; be the standard deviation of {S;(X;) :t =1,--- ,T}. This



250 6. Smoothing in Time Series

represents the scale of S;(-). Let p,,(|8]) be a penalty function with singu-
larities at 0 (Figure 6.8), where w is a smoothing parameter. Examples of
penalty functions include

pu(l0]) = W|9|a L1-penalty,

po(0]) = w®—{(0] —w)4}?, HT-penalty, 16

LB = w{](e < w) 4 (e 0 10> w)}, (6.46)
with a = 3.7, for 0 > 0 SCAD-penalty,

which are called L;-, hard thresholding (HT), and the smoothly clipped
absolute deviation (SCAD) penalties, respectively. Note that the SCAD
penalty is smoother than the hard-thresholding function. The latter pro-
duces discontinuous solutions, resulting in unstable models. The procedure
with the Li-penalty is called LASSO by Tibshirani (1996). It creates un-
necessary bias for large coefficients 3. See Antoniadis and Fan (2001) for a
more detailed discussion, where necessary conditions are given for the pe-
nalized least-squares estimator to have certain properties such as sparsity,
continuity, and unbiasedness. Our favorable choice of penalty function is
the SCAD, which was derived to overcome the drawbacks of the hard and
L-penalty functions.

To account for different scales of the basis function {S;(X;)} for different
7, we normalize it by its standard deviation. The penalized least-squares
method minimizes

J+4 J+4
Z{Yt Zﬂa (X0)/5;3> + > pul1B5]) (6.47)
=1

with respect to (. Fan and Li (2001) give an extension of the Newton—
Raphson algorithm for optimizing (6.47), and Tibshirani (1996) and Fu
(1998) propose two different algorithms for the LASSO. The estimated
regression function is

J+4

Zﬂg (X)/s5, (6.48)

where {3]} are the estimated coefficients. Many of these estimated coeffi-
cients will be zero, according to Fan and Li (2001). Hence, only a subset of
the basis functions will be selected. Due to penalty functions in (6.47), the
choice of J can be very large and the problem is still not degenerate.

For the finite-dimensional problems, Fan and Li (2001) show that the
penalized least-squares estimator possesses the following oracle properties.
Suppose that there are (p 4+ ¢) unknown parameters, p of them zero and
¢ nonzero unknown parameters. The penalized least-squares estimator will
estimate those p zero coefficients as zero with probability tending to 1 and
those ¢ nonzero coefficients as efficiently as the ¢g-dimensional submodel. In
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other words, the penalized least-squares estimator performs as well as an
oracle who knows in advance which coefficients are zero and which are not.

6.4.3 Smoothing Splines

A different approach to the regression spline and penalized least-squares
method above is the smoothing spline method. The basic idea is to find
a smooth function that minimizes the residual sum of squares. A popular
measure of roughness of a function m is |[m”(z)||3. By the Lagrange mul-
tiplier method, minimizing the RSS subject to the roughness constraint
is equivalent to the following penalized least-squares problem: minimizing
with respect to m,

Z{Yt (X} +w /{m )12dz, (6.49)

where w is a smoothing parameter (Lagrange’s multiplier). It is clear that
w = 0 corresponds to interpolation, whereas w = +oo results in a linear
regression m(z) = « + Bx. As w ranges from zero to infinity, the esti-
mate ranges from the most complex model (interpolation) to the simplest
model (linear model). Thus, the model complexity of the smoothing spline
approach is effectively controlled by the smoothing parameter w. The es-
timator m,, is a spline function and is referred to as a smoothing spline
estimator. It admits a Bayesian interpretation (Good and Gaskins 1971;
Wahba 1978). Figure 6.9 illustrates the method using the environmental
data given in Example 1.5. The method is first applied to the time domain
smoothing. It is clear that the cross-validation method gives too small a
bandwidth for the time domain smoothing (Altman 1990; Chu and Marron
1991a). The smoothing method is then applied to study the association
between the pollutant NOy and the number of hospital admissions. The
cross-validation method in this state-domain smoothing gives about the
right amount of smoothing.

It is well-known that a solution to the minimization of (6.49) is a cubic
spline. All possible knots are the data points {X1,---,Xr}. By using a
spline basis expansion (e.g., B-spline basis),

T+4

OEDILIC

and ||m”||3 is a quadratic function in {3;}. Hence, the problem (6.49) is
really the same as the penalized least-squares estimator with a quadratic
penalty. As a result, many estimated parameters are shrunk toward zero
but are not exactly zero. Moreover, since {(3;} are linearly in the responses,
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FIGURE 6.9. Nonparametric regression using the smoothing spline method.
(a) Estimated trend with smoothing parameter chosen by the cross-validation
method (solid curve) and w = 0.0001 (dashed curve). (b) Estimated regression
function between the pollutant NO2 and the number of hospital admissions.

so is My, = Z]r;rf Bj S;(z). Hence, it can be expressed as
M) =n"" Y Wilz,w; X1, , X)), (6.50)
i=1

where the weight W; does not depend on the response {Y;}. Hence, one can
use the GCV (6.38) to select the smoothing parameter w.

There are strong connections between kernel regression and smoothing
splines; see Speckman (1981), Cox (1984) and Silverman (1984, 1985). In
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particular, for independent data, Silverman (1984) shows that the smooth-
ing spline is basically a local kernel average with a variable bandwidth.
For X; away from the boundary, and for T large and w relatively small
compared with T,

Wiz, w; X1, Xn) =~ £( X)) (X)) T K {(X; —2)/h(X;)},  (6.51)
where h(X;) = [w/{nf(X;)}]*/* and
K(t) = 0.5exp(—[t|/V2) sin(|t|/V2 + 7 /4).

This approximation is also valid for calculating the mean and variance of
the smoothing spline estimator (see Messer 1991).

6.5 Estimation of Conditional Densities

Conditional densities provide a very informative summary of a random
variable Y given X = z. The mean regression m(z) = E(Y|X = z) is the
“center” of this distribution. The conditional standard deviation o(x) pro-
vides the likely size with which the random variable Y would deviate away
from the conditional mean. Furthermore, the conditional density allows us
to examine the overall shape of the conditional distribution. In the context
of the k-step forecasting, one takes X = X; and Y = Yi4. The “center”
of the conditional density, the mean regression function m(x), provides the
predicted value, and the spread of the conditional distribution, the condi-
tional standard deviation o(z), indicates the likely size of the prediction
erTor.

6.5.1 Methods of Estimation

As indicated in Example 6.2, we can estimate the conditional density f(y|z)
in the same way as the conditional mean. This can be seen via

E{(2ha) ' I([Y —y| < ho)|X =z}
= (2he) H{F(y + holz) — F(y — ho|z)} = f(y|z) (6.52)

as hg — 0, where F'(y|z) is the cumulative conditional distribution of YV’
given X = z. Expression (6.52) utilizes the uniform kernel. In general, by
Lemma 5.1,

E{Kp, (Y —9)|X =z} =~ f(y|lz) ashy =0 (6.53)

for a given probability density function K. This leads to the nonparametric
regression of the synthetic data K,(Y —y) on X.
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Let (X1,Y1),---, (X7, Yr) be a stationary sequence. Applying the local
polynomial technique to the synthetic data {(Xy, Kp,(Y; — y))} leads to

2
T p

Y S Kn(Yi—y) =D B (X —a) 3 Wi, (Xe — ), (6.54)

t=1 j=0

where W (-) is a kernel function. Let Ej(x,y) be the solution to the least
squares problem (6.54). Then, from §6.3.2, it is clear that f®)(y|z) =

% can be estimated as

75 "
uole) = 20D 15, ), (6.55)

By (6.25), the estimator can be expressed as

T
Folyle) = 0> WX, — ) /ha} Kny (i — ). (6.56)

t=1

We rewrite j?o(|) as A(|) This idea was due to Fan, Yao, and Tong (1996).
By (6.56), when K (-) has zero mean, one can easily see that

oo T
/ yFule)dy =1 S WI{(X, = 2)/ha}Ys = iy ().

- t=1

Thus, the local polynomial estimation of the mean regression function is
simply the mean of the estimated conditional density f,(y|x).

Estimating a bivariate conditional density is computationally intensive.
The simultaneous choice of bandwidths h; and ho can be difficult. A simple
rule of thumb is as follows. Choose hy by the normal reference method
(5.8) and (5.9). Once hg is chosen, the problem (6.54) is a standard local
polynomial regression problem. Thus, one can use a bandwidth selection
method outlined in §6.3.5 to choose an hy. In the implementation below,
the preasymptotic substitution method of Fan and Gijbels (1995) will be
used.

As an illustration, we draw a random sample from

X, =0.23X,_1(16 — X;_1) + 0.4e, > 1, (6.57)

where {e;} are independent random variables having the same distribution
as the sum of 48 independent random variables, each distributed uniformly
on [—0.25,0.25]. By the central limit theorem, &, can effectively be treated
as a standard normal variable. However, it has bounded support, which
is necessary for the stationarity of the time series (see Chan and Tong
1994). The skeleton of model (6.57) appears chaotic; see the top panel of
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Skeleton and simulated time series
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FIGURE 6.10. (a) Time series plot of the skeleton z; = 0.23z4—1(16 — z¢—1)
with o = 10 (top panel) and a simulated series from model (6.57) (bottom
panel). (b)—(d) are, respectively, the one-step, two-step, and three-step forecasting
conditional densities. (e) Conditional densities of X43 given X; = 4,6, and 8.
Adapted from Fan, Yao, and Tong (1996).
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Figure 6.10(a). The bottom panel of Figure 6.10(a) shows a typical sim-
ulated time series. The conditional densities for the one-step-, two-step-,
and three-step-ahead predictions are depicted in Figures 6.10 (b)—(e).

For the one-step ahead prediction, the conditional density is approxi-
mately normal with constant variance (see (6.57)). This is consistent with
the shape shown in Figure 6.10(b). The quadratic ridge is the conditional
mean regression function. For the two-step and the three-step forecasts,
the true conditional density is hard to derive. Nevertheless, our method is
able to estimate their conditional densities. The two-step forecasting densi-
ties appear unimodal for all x, whereas the shape of three-step forecasting
densities is hard to determine. To help us examine the conditional density,
we plot a few slices from Figure 6.10(d). It appears that these conditional
densities are unimodal, but their variances are quite different. This noise
amplification will be further discussed in Chapter 10. An advantage of the
conditional densities approach is that it is more informative, indicating not
only the predicted value but also the likely size of prediction errors.

6.5.2 Asymptotic Properties*

We now summarize some asymptotic theory derived in Fan, Yao, and Tong
(1996). The technical device is similar to that used in Theorem 6.3. For
simplicity, we only discuss the two most useful cases: p = 1,v = 0 (es-
timating the conditional density function) and p = 2,v = 1 (estimating
the partial derivative function). Let upx = [t*K(t)dt, vk = [{K(t)}*dt,
pi = [HW(t)dt, and v; = [tI{W (t)}?dt.

Theorem 6.6 For the local linear fit, under Condition 2 in §6.6.5, we have

VThiha{flyle) — f(ylz) — 910} 2 N (0, 03),

provided that the bandwidths hy and ho converge to zero in such a way that
Thihy — oo, where

hipg O f(ylx) | hipx 02 f(ylx)

Iroley) = ST ga Ty gp tolhithi),
T
ap(z,y) = VKVofJEZ(/L)),

where f(x) is the marginal density of X;.
Theorem 6.7 implies that the rate of convergence of the conditional den-
sity is of order

1
0 h2+h2+>.
P<1 27 Thihy

By taking hy = hy = O(T~'/%), one obtains the optimal rate Op(T~/3).
To state the results for the local quadratic fit (mainly used for derivative
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estimation), we denote

1 02 T
dra(z,y) = 2m<g(yy2|)h§ +o(hi + h3),
10 — 2puapuaVs + p3vy
o2(z,y) = fl)vie pivo 2 274
e = ) (s — 12)?
pa O fyla 1 Pflyle
Ira(r,y) = 6:28(505””]1% + QMK&C(ay'Q)h% +o(hF + h3),
flylz)vik vov

Theorem 6.7 Suppose that the bandwidths hy and ho converge to zero,
that Thihy — oo, and that Condition 2 in §6.6.5 holds. For the local
quadratic fit, we have

VThiha/2{f(ylz) - f(ylz) —Or1} > N(0,0%)

VTt 2 { Fivle) - 37 flole) - 0ra 2> N(0.03),

Moreover, they are asymptotically jointly normal with covariance 0.

and

6.6 Complements

Throughout this section, we use C' to denote a generic constant, which may
vary from line to line.

6.6.1 Proof of Theorem 6.1

We first establish the bias expression. Since the kernel K has a bounded
support, say [—1, 1], the weight wy,, ; does not vanish only when |i — Tu| <
h. Since h/T — 0, by (6.15) and Taylor’s expansion, we have

S wruig" (6) (i) T — u)?

2 Z?:l WTy,i

Eg(u) —g(u) =

)

where &; lies between u and i/T. Hence, we have

max |§ —u| < h/T — 0. (6.58)

Let

sr;(t) =Y Kn(i—t)(i—t)g" (&)

i=1
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Then, by the definition of the weight function w; ;, we have

Sto(Tu)sro(Tu) — Sr1(Tu)sr3(Tu)

Bg(u) —g(u) =T St.0(Tu)St2(Tu) — Sr.1(Tu)? (6.59)
We now show that for all j
St (Tu) = hp; +O(h 1) (6.60)
and
st (Tu) = hig" (u)p; + O(h?~1). (6.61)

Suppose that (6.60) and (6.61) hold. Substituting these two results into
(6.59), the bias result follows from the fact that p; = 0. It remains to
prove (6.60) and (6.61). Their arguments are quite similar, and hence we
only prove (6.61). By approximating the discrete sum by its integral, using
(6.58), we have

T
srj(Tu) = W'Y K(i/h—Tu/h)(i/h — Tu/hY g" (&)
i=1
= W' (u) +oo K (v —Tu/h)(v—Tu/h)Y dv+ O(h?™")

= Wy (u)u; + O ).

This completes the proof for part (a).
For part (b), denote

Then, we have

B ST’Q(TU)S:},O(TU) — ST,l(Tu)s*Tvl(Tu)

g(u) — Eg(u) = , 6.62
g( ) g( ) ST70(TU)ST)2(T’U,) — ST)l(T’LL)2 ( )
If we can show that
Var{s%i(Tu)}
Cx [ [ G(2)G(y)|z — y|~*dzdyh?~*, when0<a <1
= 20x||G||3h*~* log(h), when o =1 (6.63)
Y e e x(DIGER* T, when a > 1,

where G(v) = v K (v)(i = 0,1), then both terms in the numerator of (6.62)
are of the same order. Since u; = 0, the second term is indeed of smaller
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order. Similarly, by (6.60), the first term in the denominator of (6.62) dom-
inates. Hence,

Var{g(u)} = Var{syo(Tu) {1 + o(1)},

and the result follows from (6.63).
To prove (6.63), let Vp = Var{s} ;(T'u)/h’}. Since G has a bounded
support, G, (j) vanishes when |j| > h. Using this, we have for 0 < u < 1

Vi =Y Gu(j — Tw)Gu(k — Tu)yx (j — ZGh )Gr(k)vx (5 — k).
7,k

By (6.14), for any £ > 0, there exists a large M such that for all £ > M
(1 — 5)0}(@*& < ’}/)((g) < (1 + g)cnga.
Write
Vr=> ¢ > + > )Gk + Oyx (0) = I + L.
ko Llg<m je>M

Since Gy, (k) vanishes when |k| > h,

|II|SZ Z Gh(k)Gr(k+¢)

ko e|<M
(2M + 1)(2h + 1)h~? max |G(v)|?

IN

< Ch L.

By approximating the discrete sum by the continuous integral, we have for
0<ac<l,

L < (148)) > Guk)Gn(k+0)Cxl|e™
k e>M

“+o0
146)Cx / / )Gz + y)ly|dzdy{1 + o(1)}.
y|>M

A change of variable leads to

+o00 +o0o
I < (1+)Cxh™® / GG~y dedy{1 + o1}

Therefore, letting T — oo and then € — 0, we have

—+oo +oo
limsup h*Vp < C’X/ / y)|lx — y|” *dxdy.

T—o0
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Using the same argument, we have
—+o0 —+o0
liTminf h*Vr > Cx / G(x)G(y)|r — y|” “dzdy.
— 00 _ _

This proves (6.63) for the case 0 < o < 1.
When o = 1, using arguments similar to those in the paragraph above,
we have for each ¢ > 0

“+o0
V= cx/ / GG )yl dndy{1 +o(1)
= 20x |G|k log(h){1 + o(1)}.

This proves (6.63).
For the case a > 1, write

oo

Ve= Y yx(j) Y Gu(k)Gu(k +0).

{=—00 k
By approximating the discrete sum by an integral, we have for each given
J
ZGh )Gk +5) = h™H|GI5{1 + o(1)}.
Since ), [yx (j)| < oo, we have

oo

Ve =h~" Y ax (OG5 +o(h ™).

l=—o0

This completes the proof. [

6.6.2 Conditions and Proof of Theorem 6.3

As explained in Figure 5.4, the conditions imposed on the mixing coefficient
and bandwidth h should be related. This is more precisely described in
Condition 1(iv) below.

Condition 1:

(i) The kernel K is bounded with a bounded support.
(ii) The conditional density fx, x,|v,,v, (%0, Te|yo,ye) < A1 < 00, VL > 1.

(iii) For p-mixing processes, we assume that

Zp(é) < oo, EY§ < oc;
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for a-mixing processes, we assume that for some 6 > 2 and a >
1-2/4,

> (0] < oo, EYo|® < 00, fxypy,(@ly) < Az < oo
l

(iv) For p-mixing and strongly mixing processes, we assume, respectively,
that there exists a sequence of positive integers satisfying s — oo
and s7 = o{(nhz)'/?} such that

(n/h)?p(sy) = 0 and (n/hp)Y?a(sp) = 0as T — oc.

(v) o2(-) and f(-) are continuous at the point z and f(z) > 0.

Proof. Let m = {m(X,),--- ,m(X7)}" and 8; = mU)(z)/j!. Write

~

Bla) = folz) = (XTWX)'XTW{m —Xf()}
+HXITWX) ' XTW (y — m)
= b+t. (6.64)

The main idea is to show that the bias vector b converges in probability
to a vector and that the centralized vector t is asymptotically normal.

We first establish the asymptotic behavior of the bias vector b. By Tay-
lor’s expansion of m(X;) around the point z, we have

b =S, {Bp11(Srpi1, - Srapi1)” +op(BPT)}, (6.65)
where S7 = X"WX and Sr; is defined in (6.24). By (6.28), we have
b = 3,11 (HSH) 'Hc,h? ™ {1+ op(1)}, (6.66)

with H = diag(1,h,--- , hP).
We next consider the joint asymptotic normality of t. By (6.28),

t=f Y x)H 'S hu{l +op(1)}, (6.67)

where u = T"'H ' XTW (y — m). Thus, we need to establish the asymp-
totic normality of u. Consider an arbitrary linear combination ¢’ u. Simple
algebra shows that

Qr=c’u= 1 Z Z;, (6.68)

where with C(u) = 37%_, cju! K (u) and Cp(u) = C(u/h)/h,

The problem reduces to proving the asymptotic normality of Q.
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We will show that

VThQr 2 N {0,6%(x)}, (6.69)
where o
0?(x) = o?(x) f(x) 3 C*(z)dx = o*(x) f(x)c” S*c.

From this, it follows that
VThu 25 N{0, 0% (2) f(z)S*}.
Hence
VThHt 25 N{0,02(2)f(2)S™'S*S ™1},

Using this and (6.66), we obtain Theorem 6.3.

The proof of (6.69) requires some extra work. We divide the proof into
two steps: computation of the variance of Q7 and showing the asymptotic
normality of Q.

Computation of the variance of Qr
Note that

Var(Z;) = % {6*(z) +o(1)}. (6.70)

By stationarity, we have

!

-1
(]. - E/T)COV(Zl, Zg+1).
1

Var(Qr) = %Var(Zl) + %

o~
I

Let d — oo be a sequence of integers such that drhr — 0. Define

dr—1 T-1
Jl = Z |COV(Zl,Zg+1)|, Jg = Z |COV(Zl7Zg+1)|.
(=1 {=dr

Let B = maxxeq+p m(X). By conditioning on (Y7, Yr) and using Condition
1(ii), we obtain

|Cov(Zn, Zy)|
= IBI{Y: — m(X)}HY: — m(X)}Ca(X: — 2)Ca(Xe — )]
too 2
B+ v+ ) ([ I olau)
< D,

IN

for some D > 0. It follows that J; < drD = o(1/h7). We now consider the
contribution of Jy. For p-mixing processes, we have from (6.70) that

oo

Jo < Var(Z1) Y p(€) = o(1/hr).
{=dr
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For strongly mixing processes, we use Davydov’s lemma (see Hall and
Heyde 1980, Corollary A2) and obtain

|Cov(Zy, Zysa)| < 8a(6)]' > [B|Z1|°]7°.

By conditioning on Y7 and using Condition 1(iii), we have
+oo
E|Zi° < Ay B(|Ya| + B)ﬁ/ |Ch(2 — u)|® < Dhpt!

for some D > 0. Combining the last two inequalities leads to
5 (oo}
2/6—2 _
Jy < 5D2/6hT/ Z [a(é)]l 2/68
t=dr

5D2/6h2T/6_2d;a Z Y [a(g)]l—Z/é
{=dr

IN

= O(I/hT)

by taking h1*2/5d§2 = 1. This choice of dr satisfies the requirement that
drhr — 0. Using the properties of J; and J, we conclude that

T-1

> " 1Cov(Z1, Zes1)| = o(1/hr) (6.71)
/=1

and that Thy Var(Qr) — 0%(x).

Asymptotic normality of Qr
The proof of this step is the same for p-mixing and strongly mixing pro-
cesses. We only concentrate on p-mixing processes.

We employ so-called small-block and large-block arguments. Partition

the set {1,--- ,T} into subsets with large blocks of size r = rp and small
blocks of size s = sp. A large block is followed by a smaller block. Let
k=kr = [ﬁ] be the number of blocks. Let Zp,; = VhZ, i 1. Then
VThQr = T~V 12" Zp 4. By (6.70) and (6.71),
T—1
Var(Zr,0) = 0°(@){1+o(1)}, Y [Cov(Zro, Zrs)l =o(1).  (6.72)
t=1

Let the random variables n; and &; be the sum over the jth large-block
and the jth small-block, respectively; that is,

J(rs)+r—1 G+1)(r+s)—1

=Y. Zre, &= Y. Zra

t=j(r+s) t=j(r+s)+r
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and ( = ZtT;kl(r_s_s) Zr+ be the sum over the residual block. Then

= k-1
VThQr = T ;m+;@+@

1
= ﬁ{Q’/TJ'_QIZI“"i_Q/Y/!}'
We will show that as T" — oo,
1 1
TE( )2 =0, TE( 2 =0, (6.73)
k—1
E [exp(itQ})] — [ [ E lexp(itn;)]| — 0, (6.74)
=0
1 k—1
- S E () — 0*(x), (6.75)
j=0
1 k—1
O E [nfl{\m > eﬁ(x)\/f}} 0, (6.76)
j=0

for every € > 0. Statement (6.73) implies that the sums over small and resid-
ual blocks QY. and QY are asymptotically negligible. Result (6.74) reveals
that the summands in the large blocks {7;} in Q7 are asymptotically inde-
pendent, and (6.75) and (6.76) are the standard Lindberg-Feller conditions
for the asymptotic normality of @/ under the independence assumption.
Expressions (6.73)—(6.76) entail the asymptotic normality (6.69).

We now establish (6.73)—(6.76). We first choose the block sizes. Condition
1(iv) implies that there exist constants ¢gr — oo such that

qrst = o(NTh);  qp(T/h)?a(sp) — 0.
Define the large block size rr = [(Thr)'/?/qr]. Then, it can easily be shown
that
1/2 T
ST/TT — O, ’I‘T/T — 0, ’I‘T/(ThT) — 0, TOL(ST) — 0. (677)
T

We now establish (6.73) and (6.74). First, by stationarity and (6.72), we
find

Var(§;) = s6%(2){1 + o(1)}.
By (6.72) and (6.77), we have

T-1
E(Q7)* = kVar(&;) + O (T Z |Cov(Zr,, ZT,t)|> =o(T).

t=0
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The same argument leads to the second part of (6.73) and (6.74).
Note that the indices in n; and n; 4 are at least sy apart. Hence, applying
Proposition 2.6 with V; = exp(itn;), we find

k—1

EexpitQy) — [] Elexp(itn;)]| < 16ka(sz) ~ 16—a(sr),
=0 T

which tends to zero by (6.77). This proves (6.74).

It remains to establish (6.76). We employ a truncation argument as fol-
lows. Let Yz, = Y, I{]Y;| < L}, where L is a fixed truncation point. Cor-
respondingly, let us add the superscript L to indicate the quantities that
involve {Y7, ;} instead of {V;}. Then Qr = Q% + Q%, where

T
QF =T7"Y (2 - Z}).
t=1

Using the fact that C'(-) is bounded (since K is bounded with a compact
support), we have |Z%,t| < D/h!/? for some constant D. Then, using (6.77),
it follows that

max |7]]L|/\/T§ Drrp/v/Thy — 0.

0<j<k—1

Hence, when T is large, the set {|nJL\ > 01, (2)eV/T} becomes an empty set,
and hence (6.76) holds. Consequently, we have the following asymptotic
normality:

VThrQE 25 N{0,02(2)}. (6.78)

In order to complete the proof (i.e., to establish (6.69)), it suffices to show
that as first T'— oo and then L — oo, we have

ThVar (Q%) - 0. (6.79)
Indeed, from this, we proceed as follows:
’E exp(itVThQr) — exp{—t26%(x) /2}\
< EBlexp(itVThQs){exp(itvVThQ%) — 1}
+ ]Eexp(it\/Tth) — oxp{ 1262 () /2}]
+ |exp{—t*67 (z)/2} — exp{—t?6*(x)/2}|.
The first term is bounded by

E|exp(itVThQ%) — 1| = O{Var(VThQ%)}.
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Letting T — oo, the first term converges to zero by (6.79) as first 7' — oo
and then L — oo, the second term goes to zero by (6.78) for every L > 0,
and the third term goes to zero as L — oo by the dominated convergence
theorem. Therefore, it remains to prove (6.79). Note that Q:I,i has the same
structure as Q7. Hence, by (6.72), we obtain
+oo
Jim ThVar (Q%) = Var(YI[|[Y| > L]|X = 2)f(z) C2(u)du.

— 00

By dominated convergence, the right-hand side converges to 0 as L — oo.
This establishes (6.79) and completes the proof of Theorem 6.3. |

6.6.3 Proof of Lemma 6.1

The idea of proving this lemma is a combination of the techniques used
in Mack and Silverman (1982) and Theorem 5.3. Recall that C' denotes
a generic constant, which can vary from one place to another. The proof
consists of the following three steps.

(a) (Discretization). Let Qp(x) = T! Z?:l K (z — X;)Y;. Partition the
interval [a,b] into N = [(T'/h)'/?] subintervals {I;} of equal length.
Let {z;} be the centers of I;. Then

sup |Qn (@) — EQn(x)| < max |Qn(z;) — EQn(x;)| + C(Th) /2.
z€[a,b] 1<j<N

(6.80)

(b) (Truncation). Let QP (z) = T—! Zthl Kp(z — X))V I(|Yy] < By) for

an increasing sequences By satisfying >, B, * < oo. Then, with prob-
ability 1,

sup |Qn(x) — QF (z) — E{Qn(z) — QF(2)}| = O(By ). (6.81)

z€[a,b]

(¢) (Maximum deviation for discretized and truncated series). For ep =
(alog T/Th)'/? with sufficiently large a,

P (107 (0) - EQE (2] > =r )
_ O{BIQH.5T—5/2+0.75h—ﬁ/z—o.75(logT)ﬁ/2+0.25}7 (6.82)
provided that Brep — 0.

Suppose that the results in (a)—(c) are correct. Then, by taking By =
T +9) for some 6 > 0, we deduce from (6.81) that

sup |Qn(z) — QF (z) — E{Qn(z) — Q% (2)}| = o(T™/?),

z€Ja,b]
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which is negligible. This and (6.80) entail

sup [Qn(x)~EQn(x)| < max |QF (z;)~EQF (x;)|+C(Th)""/?. (6.83)

z€[a,b] SRS

By the condition of this lemma, Brer — 0 and the probability given (6.82)
tends to zero. Hence

max [QF (2)) = EQF ()| = Op{(logT/Th)"/2},

The result follows from (6.83). It remains to prove the results in parts

(a)—(c).
The proof of part (a) is very similar to that given in the proof of Theo-
rem 5.3. By using the Lipschitz condition of K, we have

|Qn(x) — Qh(x/”

IN

T
Ch7 Yo — 2|77 |y
t=1

IN

Ch™ |z —a'|E|Y]. (6.84)
Similarly, using the first equality in (6.84), we have
|E{Qn(z) = Qu(z)}| < Ch7lz—2'|EJY].

This and (6.84) prove part (a).
The proof of part (b) is quite similar to that in Mack and Silverman
(1982). Note that

S P{|Yy| > B} <> B °E|Y]" < <.
t t

By the Borel-Cantelli lemma, with probability 1, |Y;| < B; for sufficiently
large t. Hence, for all sufficiently large T,
Y| < By forallt<T.

This implies that sup,c(, ) |@n(2) — QF ()] is eventually zero with proba-
bility 1. It remains to bound the expectation term. By using the fact that

sup / ylf (@, y)dy < CBL,
|ly|>Br

z€la,b]
we have
ElQu(z) — QE(x)| < / Kz — )|yl (s y)dydu
|ly|>Br
< swp / Iyl f (@, y)dy / K ()
z€la,b] J|y|>Br
< OB *.
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Combining the two results above, we prove part (b).
We now prove part (c¢). Let

Zy = Kp(x — Xy)Y:I(|Yy] < Br) — EKp(x — Xp)YiI(|Y:| < Br).

Then || Zi||lcc < CBr/h. By using the exponential inequality (Theorem
2.18), we have for any ¢ > 0 and each integer ¢ € [1,7/2],

P{|Qy (z) — EQj; (x)] > €}

2 4B 1/2
< dexp (— 5 qq ) +22{1+T} qa(p), (6.85)

he
where p = [T/(2q)],
v?(q) = 20%(q)/p* + CBre/h

and

2
o*(q) = OS%aQilVar{Yij + o Yrnp )

By the proof of Theorem 6.3, when 7T is sufficiently large, o2(q) < Cp/h.
Hence, by taking p = [(Brer)~!], by (6.85) and some simple algebra, we
have
P{|QF; (x) — BEQy (z)| > er}
< 4dexp(—Ce2Th) + CB§+1'5Th_1/25§1+0'5. (6.86)

Rewrite ¢2 = alogT/(CTh) for the sufficiently large a. Expression (6.86)
is bounded by

AT~ 4 CBF?H'5T_5/2+0'75h_ﬁ/2_0'75 (log T)5/2+0'25.
Consequently,

P(max [QF () — EQF(z))| > <)

< N{4T’“+B?*O'E’T*ﬁ/%o'mh’5/2’0'75(logT)5/2+0'25}.

This proves part (c) and hence the lemma. |

6.6.4 Proof of Theorem 6.5

We use the notation for the proof of Theorem 6.3. By using Lemma 6.1
with Y; = 1, each element St ; converges uniformly to its asymptotic coun-
terpart with stochastic error of order {Th/log(T)}~'/? and bias o(1). By
(6.65), we have

b = By1(HSH) " Heph? ' {1+ o(1) + Op({Th/log(T)}'/?)}

uniformly for z € [a,b]. Note that each element of u in (6.67) is of the
form given in Lemma 6.1. By Lemma 6.1, it is of order {Th/log(1/h)}~1/2
uniformly in € [a,b]. The result of Theorem 6.5 follows directly from
(6.64) and the results above. |
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6.6.5 Proof for Theorems 6.6 and 6.7
Condition 2:

(i) The kernel functions W and K are symmetric and bounded with
bounded supports.

(ii) The process {X;,Y;} is p-mixing with ), p(¢{) < oo. Furthermore,
assume that there exists a sequence of positive integers s,, — oo such
that s, = o{(nh1h)'/?} and {n/(hi1h2)}*?p(s,) — 0.

(iii) The function f(y|z) has bounded and continuous third order deriva-
tives at point (z,y), and f(-) is continuous at point x.

(iv) The joint density of the distinct elements of (Xo, Yy, Xy, Ye) (¢ > 0)
is bounded by a constant that is independent of 4.

Note that the p-mixing conditions above can easily be modified for the
o-mixing process.

Proof. The proof of Theorem 6.6 is similar to that of Theorem 6.7. The
latter uses the same techniques as the proof of Theorem 6.3, so we only

outline the proof of Theorem 6.7.
Let m(z,y) = E{Kpn,(Y; — y)|X: = 2}, H = diag(1, h1, h?), and

8= (mo(x,y),mi(z,y), ma(z,9))",
where mg(x,y) = m(x,y) and for j > 1,

1 97
mj(a;,y) = ﬁ@m(x,y).

Using matrix notation and simple algebra, we obtain from (6.23) and (6.54)
that

H(ﬁ— B) = S5 H(Uro,Ur1,Ur2)" + (vr.0s 11, v72) " 1, (6.87)

where S7 is a 3 x 3 matrix with the (i, j)-element St . 5,

T
1 Xt—x
UT,j = T;( Iy ) Whl(Xt—ﬂf) {Khz(Yt ) m<Xtay)}>
T .
1 X —z\’
’yT,j = Z( thl ) Whl(Xt —IIJ) X

t=1

(X: —x)Q}’

m(Xe, y) —m(z,y) —mi(z,y)(X; — ) —ma(z,y)—

T
T
N 1 Xy —x
ST,j = Tz ( ! ) Whl(Xt _SIJ)

t=1
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Let S and ¥ be 3 x 3 matrices with (¢, j)-elements ;4,2 and vy o,
respectively, and v = (u3, pta, pi5)* . We will establish that
(a) Sk converges to f(x)S in probability.

(b) AT (vr0,vr,1,vr,2)T converges to 671 ()10 f(y]2)/02° in proba-
bility.

(¢) (Thihe)'?(Uro,Ur1,Urs) is asymptotically normal with mean 0
and variance f(ylx)f(z)vovi 2.

Combining these with (6.87), we have

@hite) {3 - )~ gt 0D
s N (0, f(ylo)rorSTIES T/ f(x)) .

o))

(6.88)

It follows from the Taylor expansion that

&2 f (yl)
0xI Oy?

0 f(ylx 1
mj(z,y) = #H + §h§MK

+ o(h2).
Using this expansion and considering the marginal distribution of (6.88),
we obtain the result.

Conclusion (a) has already been shown in (6.28). For (b), by Taylor’s
expansion, we have

<Xth: w>j+3 Wi, (X: — 2){1+o(1)}.

Using (6.67) again, we have

hyPyry — ma(, y) f(2) 43

This establishes (b).
To prove (c), we consider arbitrary linear combinations of Ur; with
constant coefficients n; (j = 0,1,2). Let

Qr = (Th1h2)1/2(770UT,0 +mUr1 + n2Ur2)
T
T=Y2N " (hiha) Dy, (Xy — ) {Kny (Y — y) — m(X, 9)},
t=1

where D(u) = (o + mu + neu?)W(u). Write Qr = T~Y2(Zro + ... +
Zpr_1). Note that Qrp is the sum of a stationary mixing sequence. Its
asymptotic normality follows from the small-block and large-block argu-
ments, as shown in the proof of Theorem 6.3. [
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6.7 Bibliographical Notes

Smoothing in time series is closely related to density estimation and other
related problems such as spectral density estimation. It is an extension of
the smoothing techniques for independent data and their nonparametric
counterparts. See Sections 5.8 and 7.6 for related references. In this sec-
tion, we mainly focus on some important developments for dependent data.

Nonparametric regression for an independent sample

There are many interactions between the developments of nonparametric
density estimation and nonparametric regression. The kernel regression was
independently proposed by Nadaraya (1964) and Watson (1964). Other
variants include the ones in Priestley and Chao (1972) and Gasser and
Miiller (1979). Chu and Marron (1991b) compared the merits of various
versions of the kernel regression estimator. The optimal rates of conver-
gence were established by Stone (1980, 1982). Mack and Silverman (1982)
established uniform consistency for kernel regression. The asymptotic dis-
tribution of the maximum deviation between the estimated regression func-
tion and the true one was derived in Gruet (1996). The result was indepen-
dently extended to varying coefficient models by Xia and Li (1999b) and
Fan and Zhang (2000) using different estimators. Extensive treatments of
kernel regression estimators can be found in the books by Miiller (1988),
Hérdle (1990), and Eubank (1999).

Local polynomial fitting

Local polynomial regression is very useful for estimating regression func-
tions and their derivatives. It has been thoroughly treated in the book by
Fan and Gijbels (1996) and the references therein. The idea of local ap-
proximation appeared in Woolhouse (1870) and Macaulay (1931), but it
dates back at least as early as the time when 7 was computed. It was first
used as a tool for nonparametric regression by Stone (1977) and Cleveland
(1979). Tsybakov (1986) demonstrated the asymptotic properties of robust
local polynomial estimators. The equivalence between the local polynomial
fitting and kernel regression was demonstrated by Miiller (1987) for a fixed
design setting.

Fan (1992, 1993a) clearly demonstrated the advantages of using local
polynomial fitting for nonparametric regression and revived interest in the
local polynomial techniques. Subsequently, Fan and Gijbels (1992) and
Hastie and Loader (1993) demonstrated that the local linear fitting au-
tomatically corrects boundary biases. Ruppert and Wand (1994) extended
the results to general local polynomial fitting. Fan, Farmen, and Gijbels
(1998) laid out a blueprint for local maximum likelihood estimation, and
Carroll, Ruppert, and Welsh (1998) generalized the method further to in-
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clude local estimation equations. Data-driven bandwidth selection meth-
ods can be found in Fan and Gijbels (1995), Ruppert, Sheather, and Wand
(1995), and Ruppert (1997).

Nonparametric regression for a dependent sample

There are various nonparametric regression problems for time series: time-
domain smoothing, state-domain smoothing and estimation of conditional
density and conditional variance, among others. Yakowitz (1985) consid-
ered estimating the conditional mean and transition density for Markov
sequences. Roussas (1990) obtained a strong consistent rate for the ker-
nel regression estimator. Nonparametric regression with errors-in-variables
was studied by Fan and Masry(1992). Truong and Stone (1992) established
rates of convergence under the Ly and L., norms for local average and local
median estimators. The optimal rate of convergence was established in Tran
(1993) under some weaker conditions than in previous work. Yao and Tong
(1996) estimated conditional expectiles for dependent processes. A semi-
parametric problem was investigated by Truong and Stone (1994), where
the root-n rate was constructed. Vieu (1991) showed that all MISE, ISE,
and ASE measures are asymptotically equivalent. This is an extension of a
result by Hérdle and Marron (1985) from independent to dependent cases;
see also the study by Kim and Cox (1995). Tran, Roussas, Yakowitz, and
Truong (1996) established asymptotic normality for nonparametric regres-
sion estimators under fairly general conditions. Nonparametric multivari-
ate autoregression problems were studied by Héardle, Tsybakov, and Yang
(1998). Opsomer, Wang, and Yang (2001) give an overview of nonparamet-
ric regression with correlated errors. Jiang and Mack (2001) studied robust
local polynomial regression for dependent data, where the one-step prop-
erties have also been studied. Nonparametric regression with heavy-tailed
dependent errors was studied in Peng and Yao (2001).

Hall and Hart (1990) derived the means-square properties for both long-
memory and short-memory errors. Altman (1990) studied time-domain
smoothing and bandwidth selection for data with short-memory errors. The
rates of convergence of time domain smoothing and semiparametric estima-
tion were investigated by Truong (1991). Brillinger (1996), Wang (1996),
and Johnstone and Silverman (1997) studied nonparametric regression us-
ing wavelet thresholding estimators. The asymptotic normality for kernel
regression under both short- and long-range dependences was studied by
Csorgd and Mielniczuk (1995) and Robinson (1997). The asymptotic distri-
bution for the maximum deviation was derived in Csorgdé and Mielniczuk
(1995).

Nonparametric estimation of drift and diffusion functions were nonpara-
metrically estimated by Pham (1981), Prakasa Rao (1985), Stanton (1997),
and Fan and Yao (1998), among others. Wang (2002) investigated the
problems of the asymptotic equivalence of ARCH models and diffusions.
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Durham and Gallant (2002) studied simulated maximum likelihood esti-
mation based on a discrete sample from diffusion processes. Ait-Sahalia
(1999, 2002) derived asymptotic expansions of the transition densities for
stochastic diffusion models and investigated the properties of maximum
likelihood estimators.

Spline smoothing

The idea of the smoothing spline appeared in Wittaker (1923), Schoenberg
(1964), and Reinsch (1967). It was introduced to statistics by Kimeldorf
and Wahba (1970) and Wahba (1975). Multivariate spline approximations
were discussed by Wong (1984) and Gu (1990). The choice of smoothing
parameters was discussed by Utreras (1980) and Li (1985, 1986) in addition
to Wahba (1977). Confidence intervals can be constructed by using the
Bayesian method described in Nychka (1988).

The knot deletion idea was proposed in Smith (1982) and the book by
Breiman, Friedman, Olshen, and Stone (1984); see also its revision in 1993.
The current state-of-art of regression splines based on the knot deletion
method can be found in Stone, Hansen, Kooperberg and Truong (1997).
The method of the sieve for stationary S-mixing observations was studied
by Chen and Shen (1998). The asymptotic normality and rate of conver-
gence for nonparametric neural network estimators were established by
Chen and White (1999).

Bandwidth selection

The problem of choosing a smoothing parameter exists in virtually all
nonparametric estimation. The basic idea is to choose the parameter to
minimize either integrated squared errors or the mean integrated squares
errors. The methods can basically be classified into two categories: cross-
validation methods and plug-in methods. For a survey and development of
cross-validation for independent data, see Hall and Johnstone (1992). See
also Hall, Marron, and Park (1992) for a smoothed cross-validation method.
Most developments and studies in this area are in the i.i.d. density estima-
tion setting. For a survey, see Jones, Marron, and Sheather (1996).

The bandwidth selection for state-domain smoothing problems is very
similar to that for independent data when mixing conditions are strong
enough. For time-domain smoothing, because of local dependence, the
bandwidth selectors for independent samples do not work well. This was
observed and studied by Altman (1990), Chu and Marron (1991a), and Hart
(1991). Hart and Vieu (1990) and Hérdle and Vieu (1992) showed asymp-
totic optimality for multifold cross-validation. Hall, Lahiri, and Truong
(1995) studied properties of cross-validation and plug-in bandwidth selec-
tion with dependent data. The asymptotic normality for a cross-validation
bandwidth selector was established in Chu (1995). Kim and Cox (1997)
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studied the asymptotic convergence rate for a cross-validation bandwidth
estimator in a density estimation setting. A generalized cross-validation
was considered by Yao and Tong (1998a) for rho-mixing processes.

Robinson (1994) considered data-driven nonparametric estimation for
spectral density with singularity at point zero. Ray and Tsay (1997) pro-
posed a plug-in bandwidth selection for kernel regression with long-range
dependence, which is an extension of the method by Brockmann, Gasser,
and Herrmann (1993).
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Spectral Density Estimation and Its
Applications

7.1 Introduction

Spectral density reveals the power spectrum of a stationary time series.
It characterizes the second-moment properties of a stationary time series.
By inspecting an estimated spectral density, we may identify the frequency
ranges that contribute the most variation of data. It also helps to identify
an appropriate family of models that possess the key correlation features of
the underlying process. In particular, when an estimated spectral density
is nearly a constant, one may infer that an underlying process is a white
noise process. This is useful for model diagnostics; after fitting a certain
family of models, one wishes to verify if the family of models adequately
fits a given time series by checking whether or not the residual series is
a white noise process. The latter can be done by inspecting whether the
estimated spectral density based on residuals is nearly a constant.

The raw material for estimating spectral density is the periodogram
Ir(wy) defined in §2.4.2, where wy, = 27k/T. Let Vi, = (£2,_, + £5,)/2,
which is a sequence of independent random variables with the standard
exponential distribution. Let n = [(T" — 1)/2]. As shown in Theorem 2.14,
the periodogram can be written as

Ip(wk) = g(wi) Vi + Rr(wk), k=1, ,n, (7.1)

where Rp(wy) is asymptotically negligible and I} (wg) = Ip(wy)/(27),
which is used as a definition of periodograms by some authors. Let m(z) =



276 7. Spectral Density Estimation and Its Applications

log g(z) and Yj = log I (wg). Then, (7.1) can be written as
Ye=m(wg)+2p +1rx, k=1,---,n, (7.2)

where r, = log[1+ Rr(wk)/{g(wk) Vi }], which represents an asymptotically
negligible term, and

zr, = log(Vy) has a density exp{—exp(z) + z}. (7.3)

Thus, the spectral density estimation is basically a nonparametric regres-
sion problem with nearly independent data. Furthermore, the periodogram
I} (wy) is not a consistent estimator of g(wy) (see the discussion below The-
orem 2.14 and also Figure 7.5). Smoothing is needed in order to obtain a
good estimator of the spectral density.

The essence of the approximations above utilizes the Fourier transform.
It is a powerful tool for analyzing stationary time series. As shown in Theo-
rem 2.14, it transforms correlated stationary data into nearly independent
data. Thus, after the Fourier transform, techniques for independent data
can be employed. For example, one can estimate unknown parameters in
a stationary process by forming the likelihood based on the periodogram
ordinates, relying on an assumption that the spectral density f(w) is of a
parametric form f(w;@) with unknown parameters 6. This results in the
parametric function m(w; @). The parameters 6 can be estimated by form-
ing a parametric likelihood function from (7.2) after ignoring the term ry,
which is the Whittle likelihood; see, for example, Dahlhaus (1984, 1990a)
and Dzhaparidze (1986). This idea will be further explored in §9.3.

We begin this chapter with a brief review of traditional approaches on
the estimation of spectral density and its relation to kernel smoothing. In
§7.3, we apply the techniques introduced in Chapter 6 to estimate spectral
densities. An important question in fitting time series data is whether the
residuals of a fitted model behave like a white noise series. Nonparametric
function estimation provides useful tools for a nonparametric goodness-of-
fit test. Several useful tests are introduced in §7.4 and are illustrated by
numerical examples.

7.2 Tapering, Kernel Estimation, and
Prewhitening

The genesis of smoothing techniques comes from the need for consistent
estimates of spectral density. Traditional approaches of estimating spectral
density are to smooth periodograms directly using a kernel weight func-
tion. It is helpful to take a quick overview of the traditional techniques
before we apply the modern smoothing techniques to the problem. Chap-
ter 5 of Brillinger (1981) gives comprehensive coverage of the traditional
techniques.
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7.2.1 Tapering

The spectral density g(w) can be obtained from the autocovariance function
(2.36):

oo

gw) = > (ke .

k=—o0

The autocorrelation function can be expressed as

1 (" .
~v(k) = —/ e g(w)dw. (7.4)
2 J_,
There is much literature concerning the behavior of the partial sums
p .
Z ’Y(k)eilkwv p= 17 27 Tt (75)
k=—p

see, for example, Zygmund (1968). Fejér (1900, 1904) recognized that the
partial sums above might not be good approximations of the spectral den-
sity. He therefore introduced a convergence factor into the series above:

zp: <1 - L’f') v(k)e .

k=—p

This improves the rate of convergence as p — oo. This idea was then
generalized to a general form

P

gpw) =Y w(lkl/p)r(k)e™ ™, (7.6)

k=—p

where the function w(-) is given, and is called a convergence factor, data
windows, or tapers; see Tukey (1967). The function w(-) usually satisfies

w(0) =1, |w(x) <1, w(x)=0, for |z|>1.
Substituting (7.4) into (7.6), we obtain

s

@) = [ Wylo =gy, (17)
where .
Wolr) = 5= 3 wllkl/pe " (79)
k=—p

As p gets large, the function W), will get more and more concentrated on

the point 0 (see Figures 7.1-7.4). Hence, the function W), plays the same

role as the function Kp(-) in the kernel smoothing. In fact, it holds that
Wy(r)dr = 1.

—T
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Dirichelet kernels

T T T T
-3 -2 2 3
X

FIGURE 7.1. The Dirichlet kernels with p = 20 (solid curve) and p = 5 (dashed
curve).

The function W), is called a frequency window or a kernel. Here are a few
useful examples of the taper functions.

Example 7.1 (Rectangular or truncated window). This taper function has
the form w(z) = 1 if # < 1 and 0 otherwise. This corresponds to the partial
sum series (7.5). The frequency window is

sin((p+1/2)7)

Wo(r) = =5, sin(r/2)

(7.9)
which is called the Dirichlet kernel (see Figure 7.1). Observe that W, (7)
can be negative for certain values of 7. This may lead to negative estimates
of the spectral density at certain frequencies. ]

Example 7.2 (The Bartlett or triangular window). This convergence fac-
tor is given by w(x) = (1 — |z|)+, and the corresponding frequency window
is given by the Fejer kernel (see Figure 7.2),

.2
sin”(pr/2)
WP(T> = 2 .
27psin®(7/2)
This kernel is nonnegative and is indeed a second-order kernel. [

Example 7.3 (The Blackman—Tukey window). This taper function admits
the general form

w(z) = 1—-2a+2acosz, |z|<1
0, otherwise
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Parzen kernels

15 20 25

1.0

0.0

FIGURE 7.2. The Bartlett kernels with p = 20 (solid curve) and p = 5 (dashed
curve).

Tukey-Hanning kernels

. AN /\/\/\ /\f\/\/\/\ O
3 » y 1 2 3

X

FIGURE 7.3. The Tukey—Hanning kernels with p = 20 (solid curve) and p = 5
(dashed curve).

The corresponding kernel function is given by
Wy(7) = aDp(T — w/r) + (1 — 2a)Dp(7) + aD, (T + /1),

where D, is the Dirichlet kernel given by (7.9). The cases with a = 0.23
and a = 0.25 are frequently referred to as the Tukey—Hamming and Tukey—
Hanning windows (see Figure 7.3). |
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Parzen kernels

1.0 1.5 2.0

0.5

0.0

FIGURE 7.4. The Parzen kernels with p = 20 (solid curve) and p = 5 (dashed

curve).

Example 7.4 (The Parzen window). In this case,

1 -6z + 6|z, |z|<1/2
w(z) =< 2(1—|z|)3, 1/2<z<1
0, otherwise

The corresponding kernel is given by

6 sin* (pr/4)
ap3sin(r/2)
Figure 7.4 depicts the kernel function.

Wy(r) =

The choice of convergence factors is very much like the choice of a kernel
function. The bandwidth parameter in (7.8) is implicitly defined. It is re-
lated to the parameter p. Several proposals have been suggested to define
the measure of bandwidth explicitly so that one gets an idea of how large
a window size has been used for different converging factors. For example,

Grenander (1951) suggested the measure

{/7; T2W,,(T)d7}1/2,

Parzen (1961) used the measure
I 2m
W (0)  w(|kl/p)’

and Brillinger (1981, p. 56) was in favor of the measure

—T

([0 emmmiinar} = -ty
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Although different authors have different measures of the bandwidth, this

does not affect the practical usage of the method. In practice, one would

tune the parameter p to get a good estimate of the spectral density.
Expression (7.6) suggests the following substitution estimator

p

Gp(w) = > w(lkl/p)A(k)e ™, (7.10)

k=—p

where 7(k) is the sample autocovariance function given in §2.2.2. Note that
this is a real function and is called the lag window estimator. It is obvious
that (7.10) admits an expression similar to (7.7). To see this, we define

Ip(w) = > Ak)e ",

|k|<T

This is an extension of the periodogram to all frequencies. Then

- 1™ s
(k) = ﬂ/ e Ip(7)dr.

—T

Substituting this into (7.10), we obtain easily that

~ 1 [" =
gp(w) = o Wy(w — 7)Ip(7)dr. (7.11)
The smoothing parameter p can be chosen either subjectively by time
series analysts or objectively by data. Bithlmann (1996) proposed a local
data-driven choice of the parameter p based on an idea of Brockmann,
Gasser, and Herrmann (1993).

7.2.2  Smoothing the Periodogram

Partitioning the interval [—m, 7] at the Fourier frequencies {wy,} and replac-
ing the integral in (7.11) by the corresponding Riemann sum, we obtain

G(w) ~ % S Wyw— wk)fT(wk)Q%. (7.12)

|k|<n

When p is sufficiently large, W), is concentrated around the origin. Hence,
the summation above is a local average of the periodogram Ir(w) around
the frequency wy ~ w. It holds that

1 21 4
o Z Wp(w—wk)? R~ Wy(w —7)dr = 1.
|k|<n -
This makes the connection to the kernel smoothing in the frequency do-
main.
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Starting directly from (5.1), one can obtain an estimate of the spectral
density as

_ Ykt Kn(w — wi) I (wi)
Dt Kn(w — wp)

where Kp(u) = K(u/h)/h, with K being a kernel function and h being a
bandwidth. This is the kernel smoothing technique applied to the bivariate
data {(wg, I5(wk)),k = 1,--- ,n}, resulting in a smoothed periodogram.
The kernel estimator can be regarded as an extension of the class of esti-
mators in (7.12).

The smoothing parameters p and h are usually chosen to balance the
bias and variance trade-off. For example, a large bandwidth results in a
larger window of averaging. This reduces sampling variance but at the same
time increases biases. One can achieve the bias and variance trade-off either
subjectively via visualization or objectively by data-driven techniques. The
latter will be discussed in §7.3 in the context of the local linear estimator.

Gr(w) (7.13)

7.2.8  Prewhitening and Bias Reduction

When the underlying spectral density contains sharp peaks, direct appli-
cations of smoothing techniques will widen the peaks and reduce the mag-
nitudes of the peaks unless the bandwidth is very small. However, a small
bandwidth will not be able to reduce enough variances of the estimate,
resulting in wiggly estimates, particularly at flat regions. A common tech-
nique to resolve this problem is prewhitening. The basic idea is to apply a
linear filter to the series {X;}, resulting in

oo
Yo=Y oxXik,

k=—oc0

and estimate the spectral density of the filtered series {Y;}. This filtered
series has the spectral density (see Theorem 2.12)

gy (w) = gx (W)|D(w)P,

where
INw) = Z pre”
k=—o0

is a transfer function. Suppose that the filter can be chosen so that the
spectral density gy of the series {Y;} is nearly constant, namely, the series
{Y;} is nearly a white noise series. Applying the smoothing techniques to
{Y;} will not create large biases. Hence, the estimate

x (W) = D)y (w) (7.14)
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will have more acceptable biases. This idea is referred to as the spectral
density estimate by prefiltering or prewhitening. It was proposed by Press
and Tukey (1956).

The choice of filter is very critical for achieving the goal of the bias
reduction. Inspecting (7.14), if gy (-) is nearly a constant, then the function
IT'(w)|~2 should be nearly proportional to gx(w), which is unknown to us.
Typically, the filter has been determined by ad hoc methods, which aim at
reducing sharp peaks of the spectral density gx. A data-driven procedure

is to find coefficients a1, - - - ,a, that minimize
T
Z(Xt — alXt_l — = CLpXt_p)Q
t=p

and then to form the filtered series
Yi=Xi—a1Xyo1—-—apXy—p fort=p+1,---,7T.

When the series {X;} can be approximated by an AR(p) model, the series
{Y:} is basically noise. Hence, the filter achieves the stated objective.

A procedure of similar character, but not requiring any filtering of the
data, is as follows. Observe that (7.13) can be approximated as

-2 Doy Kn(w — wie) I (wi )T (wi)?
22:1 Khp(w —wy) ’

noting that when wy =~ w, I'(wg) & T'(w). This in essence estimates the
spectral density of Y directly by

Gy (w) = 22:1 Kp(w— wk)I:’;(wk)p(wk)z'
ZZ:l Kh(w — wk)

The spectral density gx is estimated via (7.14).

The idea of prewhitening was extended by Hjort and Glad (1995), Efron
and Tibshirani (1996), Glad (1998), and Mays, Birch and Starnes (2000)
to reduce biases in estimating density and regression functions.

gn(w) ~ [T(w)

7.3 Automatic Estimation of Spectral Density

There are three commonly-used ways to estimate the spectral density. To
motivate the procedures, we ignore the negligible terms Rr(wy) and ry in
(7.1) and (7.2). For (7.1), this leads to

BlIp(wi) = g(wr), Var{I(wk)} = g(wr)®.

Thus, the model (7.1) can be regarded as a heteroscedastic nonparamet-
ric regression problem based on the data {(w, I (wg))}. This results in
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smoothing on the periodogram {I}(wy)}. The procedure will be called a
(least-square) smoothed periodogram. The second approach is to regard
model (7.2) as a homoscedastic nonparametric regression model. This re-
sults in an estimate of the log-spectral density m(-) by smoothing the
log-periodogram {Y}}. We will refer to this procedure as a (least-square)
smoothed log-periodogram. Note that the distribution of zj in (7.2) is given
in (7.3) and is skewed. The least-squares-based estimator is in fact ineffi-
cient. To gain efficiency, we will employ the maximum likelihood approach,
resulting in a local likelihood estimator. The likelihood function is con-
structed from model (7.2) by regarding r, = 0 and is often called the
Whittle likelihood (Whittle 1962). Note that the Whittle likelihood based
on model (7.2) is the same as that based on model (7.1).

Most of the traditional approaches are based on the smoothed peri-
odogram. See Brillinger (1981) and Priestley (1981) and references therein.
Because of high heteroscedasticity when g(-) varies significantly, smooth-
ing on a periodogram using only a constant bandwidth is not effective.
On the other hand, the least squares smoothing for a log-periodogram, as
pointed out above, is not efficient because of the nonnormal distribution.
We recommend using the local likelihood estimator as a spectral density
estimator.

7.3.1 Least-Squares Estimators and Bandwidth Selection

The smoothed periodogram applies a smoothing method directly to the
data {(wg,I}(wk))}, ignoring the heteroscedasticity of the data. Asymp-
totically, the heteroscedasticity does not play any important role since
smoothing is conducted locally and hence the data in a small window are
nearly homoscedastic. However, this asymptotic theory does not necessar-
ily kick in because the local smoothing window can be reasonably large.
In other words, the heteroscedasticity influences somewhat the efficiency of
the smoothing for finite sample sizes.

We apply the local linear smoother to the data {(wg, I}-(wg))} for sim-
plicity. Since the design points {wy} are equally spaced over [0, 7], the key
advantage of the local linear fit is its boundary behavior, compared with
the traditional kernel approach (7.13). As in (6.26), for a given point w, let
K7 be the effective kernel of the local linear fit (p = 1 and v = 0); namely,

- l ) ST,Q(CL)) — htSTJ(UJ)
Kr(t,w) = B Sro(e)Sra@) - S%’I(W)K(t) (7.15)
with

St.j(w) = ZKh(wk —w)(wr —w), (j=0,1,2).
k=1
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The smoothed periodogram is then given by

gors(w ZKT (w i ) I7(w;), (7.16)

which is the local linear fit to the data {(wx, I (wi))}-

To implement the smoothed periodogram estimator (7.16), one needs to
choose the bandwidth h. Since many interesting periodograms admit differ-
ent degrees of smoothness around different frequencies, variable bandwidth
methods are more effective. An automatic scheme for selecting a variable
bandwidth is given in Fan and Gijbels (1995) and is implemented by Fan
and Kreutzberger (1998) for the spectral density estimation.

For each given w, ignoring the term Ry (wy), by (6.30) and noting that the
design density of {wy} is f(w) = 771, one can easily obtain the asymptotic
normality of gprs(w). The next theorem formally shows that the term
Ry (wy) is indeed negligible.

Theorem 7.1 Under Conditions (i), (iii), and (i) in §7.5.1, if g(w) > 0,
then

Vah{Gprs(w) — g(w) — h2g" (W)na(K) /2 + o(h?)} 25 N{0,vo(K)g?(w)}

forw € (0,7), where us(K) = fjoo w? K (u)du and vo(K f+oo K?(u)du.

o0

To obtain the smoothed log-periodogram, we first note that
E(zx) = Co = —0.57721 and Var(z) = 7°/6, (7.17)

where Cy is Euler’s constant; see Davis and Jones (1968). Thus, the log-
periodogram is a biased estimator for the log-spectral density, and the bias
does not vanish even when T' — oo. They differ by an amount —Cj. Ignoring
the term 7y, in (7.1) and correcting the bias —Cj leads to

Y — Co = m(w) + (2 — Cp). (7.18)

Model (7.18) is a canonical nonparametric regression model with a uniform
design density on [0, 7] and a homogeneous variance 72/6. Thus, one can
apply the local linear estimator to the data {(wg,Yr — Co)} to obtain an
estimate of m(-). This leads to the estimator

Prs(e Zm(“’ =) (% - G (7.19)

Applying (6.30) to the model (7.18) and using (7.17), we have the fol-
lowing theorem.
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Theorem 7.2 Under the conditions in §7.5.1, we have, for each 0 < w <
7-[-7

Vah{if,g(w) — m(w) = h*m" (W)p2(K)/2 + o(h?)}
L5 N{0, (7% /6)1o(K)}
The result above is rigorously proved by Fan and Kreutzberger (1998)

and will be reproduced in §7.5.4. Both Theorems 7.1 and 7.2 are applicable
to a boundary point wj = ch. To this end, let p; . = [©__#/K(t)dt and

IS oo (p2.e = peat)? K2(t) dt
(:U’O,CMQ,C - /’L%,c)z

2
K3 e — H1,cH3,
pa(K,0) = =22 yy(K,¢) =
Ho,cH2,c — Ml,c

We then have

Vnh{iys(wy) —m(wy) — B*m" (04)p2(K, ¢)/2 + o(h?)}
2 N{0, (72/6)vo (K, ¢)7}.
A similar extension for the estimator gprg(w*) can easily be made.

The asymptotically optimal bandwidth for mpg, which minimizes the in-
tegrated asymptotic squared bias and variance, is given by (see also (6.33))

()6 17 s

p3(K) Jg {m" (w) }2dw

his, opT = (7.20)

This bandwidth can be estimated by using the preasymptotic substitution
method in §6.3.5, yielding an automatic procedure for estimating spectral
densities. Here, a constant bandwidth is used. We recommend using a con-
stant bandwidth because its data-driven version can be estimated more
reliably and, furthermore, the log-spectral densities usually do not vary as
dramatically as the spectral densities themselves.

7.8.2  Local Mazimum Likelihood Estimator

The smoothed periodogram estimator myg is not efficient because the dis-
tribution zx is not normal. In fact, the Fisher information for the location
model (7.18) is 1, while the variance is 72/6 = 1.645; see (7.17). Thus, the
efficiency of the least-squares method can be improved by a factor of 72/6
by using the likelihood method.

By (7.3), model (7.18) gives the log-likelihood

Z[— exp{Yr — m(wg)} + Y — m(wyi)].
k=1



7.3 Automatic Estimation of Spectral Density 287

This likelihood is equivalent to the Whittle likelihood based on the expo-
nential distribution model

I7(wy) ~ Exponential{g(wy)}

(see (7.1)). Using the local data around a given point w and the local linear
model m(wy) ~ a + B(wy — w), we form the local log-likelihood

Lo, B) = Z exp{Vy —a—fB(wp —w)} + Y — a— B(wr —w)| Kp (wg —w),
k=1
(7.21)
where Kj,(-) = K(-/h)/h. Let @ and 3 be the maximizers of (7.21). The
proposed local likelihood estimator for m(w) is myk(w) = @.

The local likelihood (7.21) is strictly concave in o and 3, so the maximizer
exists and is unique. The maximizer can be found by the Newton—Raphson
algorithm or the Fisher scoring method. Let B = (a, )T and L'(3) and
L"(B8) be the gradient vector and the Hessian matrix of the function £(3).
Then, the local likelihood estimator solves the likelihood equation E’(B) =
0. For a given initial value BO, by Taylor’s expansion,

L'(B) = L' (By) + L"(Bo)(B — Bo)-
Hence, after ignoring the approximation error,
B =By —L"(Bo) "L (Bo)-

The Newton-Raphson algorithm simply iterates the equation above, while
the Fisher scoring method replaces the Hessian matrix L”(8y) by its expec-
tation (namely, the negative Fisher information matrix) in the iteration.
The estimator mps(w) and its associated derivative estimator from the lo-
cal linear fit can serve as good initial values for the algorithm. Indeed,
according to Fan and Chen (1999), with the initial value mpg(w) and its
associated derivative estimator, the estimator obtained by only one-step
iteration from the Newton—Raphson algorithm is efficient. This is an ex-
tension of a result by Bickel (1975).

The following result, due to Fan and Kreutzberger (1998), will be proved
in §7.5.5.

Theorem 7.3 Under the conditions in §7.5.1, for each 0 < w < 7,
Vah{ip i (w) — m(w) — B*m” (w)p2(K) /2 + o(h?)}
25 N{0, vo(K)m}
and, for a boundary point w;. = ch, we have
Vah{ip g (wy) — mwy) = Bm" (0+)pa (K, ¢)/2 + o(h?)}
2, N{0, (K, c)r}.
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The maximum likelihood estimator for the spectral density is given by

grk (w) = exp{mrk(w)}.

By a Taylor expansion, one can easily see that

gk (W) — g(w) = g(w){Mmrk (w) — m(w)}.
Hence

Vnh{gik (@) — g(w) — h*m" (w)g(w)us(K)/2 + o(h*)}
L N{0,1(K)g*(w)r}. (7.22)

Compared with 7ipgs, the asymptotic variance of My is a factor of 72 /6
smaller, while both estimators share the same asymptotic bias. In other
words, Mmrs is asymptotically inadmissible. On the other hand, the maxi-
mum likelihood estimator for the spectral density has the same asymptotic
variance as that of the smoothed periodogram grs(w). However, their biases
are different. Using

9" (w) = glw)m” (W) + g(w){m' (@)},

gprs has larger biases than gk at convex regions of m, namely where
m” (w) > 0. Furthermore, as pointed out before, the inhomogeneous de-
gree of smoothness of the spectral densities and heteroscedasticity of the
periodograms make it hard for smoothed periodograms to estimate the un-
derlying spectral densities efficiently. In addition, the estimate around the
peak regions is very unstable. Indeed, the tail of the exponential distri-
bution is not that light, and hence the variability of the periodograms at
the peak region is also large. Thus, outliers can often be observed around
peaks, which impact significantly on the local least-squares estimate.

The comparisons above provide stark evidence for using the local likeli-
hood estimator mpk (w). Its bandwidth can be selected via the least-squares
method. From Theorem 7.3, the asymptotically optimal bandwidth for mpx
is given by

hix, opr = (6/7%)1/° his, opT = 0.9053 hrs, opr, (7.23)

where hrg, opr is given by (7.20). Thus, an obvious estimator for hrk, opr
is
hik, opt = 0.9053 his, opT,

where /i\st, opt is the preasymptotic substitution bandwidth estimator.
In summary, the local maximum likelihood estimators for spectral and
log-spectral densities are recommended. To implement them, first treat
the data {(wk,Yr — Co)} as an independent sample and apply the local
linear techniques to obtain the estimate mys(w), its associated derivative
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estimator, and the optimal bandwidth EL& opT- Now, use the bandwidth
ELK, opt = 0.9053 ELS’ opT to obtain an estimate mpk(w) using mps(w)
and its associated derivative estimator as an initial values. Indeed, theoret-
ically, one-step iteration starting from mps(w) suffices.

We now use the data on yields of the three-month Treasury bill in Ex-
ample 1.3 to illustrate the proposed procedure. The computation was done
with the C-code “spectrum.c”. The logarithm of the periodogram is de-
picted in Figure 7.5 (a). The line there is the pointwise 95% confidence
upper limit for the log-spectral density m(wy) above the level of the spec-
tral density log(2/(27)), which is computed as

52
log (27r> + log(—1og(0.05)),
where o is the sample standard deviation of the data. The bandwidth
his, opr = 0.034 was selected. The pointwise confidence interval was con-
structed according to (7.26) below. Clearly, most of the energy is con-
centrated at the very low frequencies. To examine the rate of decay, in
Figure 7.5 (c¢) we plot the log-periodogram against the log-frequency for
small frequency values. The pattern is reasonably linear. From the least-
squares fit, it suggests that the estimated spectral density behaves as g(w) =
exp(—3.93)w™1%7 around w = 0. This behavior can be understood as fol-
lows. The weekly change in interest rates is very small. Thus, the interest
rate is a relatively smooth process that contains high energy at low fre-
quencies. We will analyze the difference series in the next section.

We now examine the spectral densities for the acceleration readings dur-
ing the crashes of vehicles. The first 50 readings (corresponding to the
first 76 ms since the crash) of Figures 1.6 (a) and (c) are used to esti-
mate spectral densities. The remaining readings are unlikely to be related
to the severity of crashes. The estimated spectral densities are depicted in
Figure 7.6. It appears that both spectral densities are similar. However,
the spectral density for the crash that does not require deployment of an
airbag has higher energy at low frequencies. This in turn suggests that the
acceleration readings oscillate less. Thus, oscillation may be one of the fea-
tures that differentiate between deployment and nondeployment crashes of
vehicles.

7.8.83  Confidence Intervals

Confidence intervals are useful for assessing sampling variability and for
testing whether a given series is white noise. By ignoring the bias (see §6.3.4
for more discussion), it follows from Theorem 7.3 that an approximate level
1 — « confidence interval for m(w) is

N K||2n
mrk(w) £ 21-a/21/ % (7.24)
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Log-periodogram for 3-month T-bill

0.0 0.5 1.0 1.5 2.0 2.5 3.0
(a)
Log-spectral density for 3-month T-bill

(b)

5.5 -5.0 -45 -4.0 -35
(c)

FIGURE 7.5. (a) Log-periodogram of {Yx — Co} against its Fourier frequency
{wi}. The bar indicates a 95% confidence upper limit above log(g). (b) Esti-
mated log-spectral density by the local likelihood method mpk (solid curve) and
the least-squares method miy,g (thick dashed-curve) along with the 95% point-
wise confidence intervals (7.26) (long dashed-curve). (c¢) The scatterplot of the
log-periodogram of {Yx —Co} against {log(wx)} at low frequencies wi < 307/2112
along with the least-squares fit (dashed line). The solid curve is the plot of the
estimated log-spectral density against its log-frequency.
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Spectral density for a nondeployment event

(@)
Spectral density for a deployment event

FIGURE 7.6. Estimated spectral densities (thick curves) for car crashes data
presented in Figures 1.6 (a) and (c). The dots are the periodogram {Y%} against
its Fourier frequency {wy}. The thin curves are 95% confidence intervals.

Note that this width is known and independent of data. The value of || K||?
can be found in Table 5.1. By (7.22), after ignoring the bias term, an
approximate level 1 — « confidence interval is

gk (w) {1 + 21-a/21 ”[;H%W} : (7.25)

The two formulas (7.24) and (7.25) above apply only to interior points:
w=+h € [0,7]. For boundary points, one needs to replace | K| by vo(K, c).

The formulas (7.24) and (7.25) are based on the asymptotic variances. As
discussed in §6.3.4, the asymptotic variance can also be obtained via (6.34).
Translating this formula into the current setting leads to an estimate for
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the variance of myg(w):
’/T2 i K W —wj 2
— — w
6 ="\ h

Indeed, this formula can be obtained directly from (7.19) by regarding {Y; }
as an independent sample. Thus, an alternative asymptotic level 1 — «
confidence interval for m(w) is

1/2

n 2
. W — wj
MLk (W) £ 21-a/2 E Kr ( W z ,w) (7.26)
i=1

since the asymptotic variance of Mk (w) is a factor of 72/6 smaller than
ms(w). Similarly, an approximate level 1 — « confidence interval for g(w)
is 1o

n 2
~ w — Wy
Juk(w) |1£21_a)2 ;KT( - J,w) . (7.27)

Confidence intervals (7.26) and (7.27) are both applicable for interior points
and boundary points. Note that the confidence interval for g(w) can also
be obtained directly by exponentiation of the confidence interval (7.26),
leading to

1/2

n 2
. W — wj
exp | MLk (w) £ 21_q/2 ZKT< - J’w>
j=1

By Taylor’s expansion, one can easily see that this interval is approximately
the same as that given by (7.27). However, when the width of the interval
is wide, they may not be equivalent. The latter interval has the advantage
that the confidence lower limit is always nonnegative. For this reason, it is
implemented in this book.

An application of estimating the spectral density is to examine whether a
given time series is a white noise process. Suppose that a series is white noise
so that its spectral density is g(w) = 02/(27). Under this null hypothesis,
Mmo(w) = log?/(27) should fall in the confidence interval (7.24) or (7.26)
with probability approximately 1 — «, where ¢ is the sample standard
deviation of the series. This is equivalent to checking whether mpk(w) falls
in the interval

K 2
log3%/(27) £ 2102 |5 Tl5m (7.28)
nh
or
1/2
n WO — ws 2
log52/(27) £ 21_ a2 ZKT< - ],w> : (7.29)

j=1
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If one needs to apply the test above to frequencies {w;,j =1,---,q} si-
multaneously, simultaneous confidence intervals for {m(wy),j = 1,---,q}
are needed. This is usually done by the Bonferroni adjustments. The idea
is very simple. Suppose that I; (j = 1,---,q) is a level 1 — «; confidence

interval for a parameter 6;; namely,
P(HJ € [7) >1- Q.

Then, we have the following probability for simultaneous confidence inter-
vals:

Py €y, - ,0,€1,) 1—P(U;{0; ¢ I;})

1—zq:P{9j ¢ 1;}

j=1

q
1-— ZO&j.
Jj=1

v

Y

By taking a; = /g, we have that 6; falls in I; simultaneously with proba-
bility at least 1 — . By using this and (7.24), we obtain the following 1 — «
simultaneous confidence intervals for {m(wj),j =1, -+ ,q}

_ . [IK|3m .
mLK(wj) + 21—a/(2q) %v Jj=1-,q

In turn, this leads to checking whether all mpx (w;) fall simultaneously in

the intervals
o’ [K3r .
IOg % + Z1—a/(2q) Y j=1--,q (730)

One can also extend (7.29) to the situation with multiple comparisons,
leading to

1/2

52 - wi—wr L\° ,

log%izla/@q){ZKT (Jh,wj) , j=1,---,q. (7.31)
k=1

We now revisit the spectral aspect of the interest rate data. As discussed
in the last section, large spectrum values at low frequencies are mainly
due to the relatively small weekly changes of interest rates. This leads to
considering the difference series and to examining whether the difference
series is white noise. Figure 7.7(a) shows the estimated spectral density as
well as 95% associated confidence intervals for testing whether the series is
a white noise series. The bandwidth 0.034 was selected by our software. On
a large portion of regions, the estimated spectral density lies outside the
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Spectral density for difference series
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(a)
Spectral density for the difference before Oct. 6, 1979
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Spectral density for the difference after Oct. 6, 1979
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FIGURE 7.7. Estimated spectral densities (thick curves) for the differenced yields
of the 3-month Treasury bill and their associated 95% pointwise confidence in-
tervals (7.29) (dashed curves) and 95% simultaneous confidence intervals (7.31)
(thin curves) at ¢ = 15 different locations for testing whether the difference series
is white noise; (a) for the difference series from July 17, 1959 to December 31,
1999; (b) for the difference series from July 17, 1959 to October 5, 1979; (c) for
the difference series from October 12, 1979 to December 31, 1999; (d) for the
difference series from July 17, 1959 to October 5, 1979 using the same bandwidth
as in (c).
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simultaneous confidence bands. This provides strong evidence to reject the
null hypothesis that the difference series is a white noise process. In fact,
the literature on the interest modeling is abundant, see, for example, Cox,
Ingersoll and Ross (1985), Chan, Karolyi, Longstaff, and Sanders (1992),
and Stanton (1997). None of these models suggest that the difference series
is a white noise process. In fact, the variance of the difference series depends
on the level of the current interest rate.

The Federal Reserve changed its monetary policy in October 6, 1979
when its newly appointed chairman, Paul Volcker, initiated money sup-
ply targeting and abandoned interest rate targeting. The interest rate in
the two years following October, 1979 was five times greater than that in
the prior two years. To examine whether the interest rate dynamics have
changed, we divide the series into two halves. The first half consists of the
20-year data from July 17, 1959 to October 5, 1979, and the second half
consists of the 20-year data from October 12, 1979 to December 31, 1999.
The volatility over the last twenty years has increased 54%, from 0.172%
(the standard deviation of the first twenty years) to 0.265% (the SD of
the second twenty years). The estimated spectral densities are presented
in Figure 7.7. The spectral density for the second period is higher, which
provides further evidence that the interest rate volatility is higher since
October, 1979. For the second period of data, there are more significant
spectral densities at high frequencies than in the first period. This means
that the data in the second period oscillates more than in the first period.
The bandwidths 0.342 and 0.026 were selected by the automatic smooth-
ing software for the first and the second periods of data, respectively. This
makes the estimated spectral density much smoother for the first period
of data. To compare the two estimated densities using the same amount
of smoothing, Figure 7.7(d) shows the estimated spectral density for the
first period of data using the bandwidth 0.026. The qualitative comments
above continue to apply. From the estimated spectral densities and their
associated confidence bands, we may conclude that both subseries are not
white noise.

In estimating the spectral densities above and their associated confidence
intervals, one implicitly assumes that the underlying time series is station-
ary, which, however, may not be true. If the series is not stationary, the
confidence bands are not meaningful. Nevertheless, an estimated spectral
density, as a descriptive statistic and a device of spectral decomposition,
still provides useful information on the energy distribution over different
frequencies for a time series.
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7.4 Tests for White Noise

A statistical model is at best only an approximation to the true underlying
process that generates the observed data. After fitting a model, one needs
to verify various aspects of the assumption. This is usually accomplished by
both graphical tools and formal statistical tests. It is a generally accepted
principle that a good statistical model is one such that at least the resid-
uals from the fitting behave like a white noise process. In other words, a
time series, after extracting the structural part, becomes an unpredictable
white noise. For example, after fitting the AR(p) model (1.1), one would
expect that the residual series {&;} is a white noise process. Systematic de-
parture from this assumption implies the inadequacy of the assumed form
of the model. Thus, it is important to develop formal procedures for testing
whether a series is white noise.

Different tests explore different aspects of departure from the null hy-
pothesis. Hence, they have different powers against different alternatives.
This section aims at introducing some simple and powerful nonparametric
procedures. Other related ideas will be further explored in Chapter 9.

We assume throughout this section that the time series {X,;} is station-
ary. Let g(w) be its spectral density. Note that {X;} is white noise if and
only if its spectral density is constant. Therefore, we only need to test the
hypotheses

2 2

Hy: g(w) = ;’7 —  Hy:gw) # ;’7 (7.32)
where o2 is the variance of { X;}. This is a parametric versus nonparametric
testing problem. The important raw material is the rescaled periodogram
{IF(wg)} in (7.1).

In this section, we outline some techniques for testing the problem (7.32).
Testing the spectral density of other parametric forms can be found in §9.3.
The methods in that section are also applicable to the problem (7.32).

A word of caution: The observed significance level, or the p-value, de-
pends on the sample size. When the sample size is large, a small departure
from the null hypothesis may result in a very small p-value. Thus, a small p-
value with a large sample size does not necessarily mean that the departure
of the model from the null hypothesis is serious.

7.4.1 Fisher’s Test

Fisher’s test is based on the fact that under Hy the maximum of the
spectral density and its average should be the same. Thus, the large values
of the test statistic

maxji<k<n I(wk)

TT,.F = n
h n=t Y L (wk)

(7.33)
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indicate the departure from Hy. Hence, we would reject Hy when T,  is too
large. To obtain the critical value, we need to derive the null distribution
(i.e., the distribution of the test statistic T}, p under the null hypothesis
Hy). The result is summarized as follows.

Theorem 7.4 Suppose that the conditions of Theorem 2.14 hold. Then,
under Hy,

P{T, r —logn <z} — exp(—exp(—z)), —oo <z < 0.

Proof. Let go = % be the spectral density under the null hypothesis. By
(7.1) and Theorem 2.14, we have

max Ir(wk)/(2m) = go A Vi +op(1)

and, by the law of large numbers,

n

nhY Ip(wn)/(2m) = gon ™'Y Vi +0p(1) = go + op(1).

k=1 k=1
Hence
Tn,F = max Vi + Op(l). (734)
1<k<n
For any x > —logn, we have
P {12152( Vi —logn < x} = PV, <log{nexp(z)}"

= (I1—exp(=z)/n)"
—  exp(—exp(—z)).
The conclusion follows from (7.34). |

The exact null distribution of T},  can be obtained when {X,} is a Gaus-
sian white noise process; see page 339 of Brockwell and Davis (1991). For
simplicity and brevity, we use the asymptotic distribution, which admits
a more explicit formula and applies to more general stationary processes.
From Theorem 7.4, we have

P{TmF < logn —log(—log(1 — a))} ~1-oa.
Thus, an approximate level « test based on T;, r is given by
T, r > logn —log(—log(1 — «)). (7.35)

Suppose that, based on the available data {z:,t = 1,---,T}, the Fisher
statistic is £, robs. Then, the observed significance level or p-value based
on the Fisher test for the problem (7.32) is

P{Tn,p > tn,F,obs} ~1-— exp (—n exp(—tn’p,obs)) . (736)
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The Fisher test is expected to be powerful against the alternatives with
energy concentrated around one frequency, namely, the underlying spectral
density has a very sharp peak. It is not expected to be powerful for detecting
alternatives with more spread energy.

7.4.2  Generalized Likelithood Ratio Test

After ignoring smaller-order terms in (7.2), the problem is basically a non-
parametric testing problem with a smoothed alternative. Thus, one can ap-
ply the generalized likelihood ratio test, recently developed by Fan, Zhang,
and Zhang (2001), to our setting. A comprehensive overview of this subject
is given in §9.2.

The basic idea of the generalized likelihood ratio statistic is to find a
suitable estimate for m(w) in (7.2) under Hy and Hj, respectively, and then
to form a likelihood ratio statistic. A reasonable nonparametric estimator
of m(w) is the local likelihood estimator 7k (w). Then, the log-likelihood
with given mpk(w) is

n
log L(Hl) = Z {— eXp(Yk — ﬁzLK(wk)) +Yr — T/I’\lLK(wk)}
k=1

after ignoring the term ry in (7.2). Using a similar expression for the log-
likelihood under Hy, we obtain the generalized likelihood ratio statistic

An = log L(H:) —log L(Ho)

>~ {exp(¥i = fing) = exp(Yi = i () + o — k(i) |,
k=1
(7.37)

where mg(w) = log %, with 52 being the sample variance.

The generalized likelihood ratio statistic above is a natural extension of
the maximum likelihood ratio tests for parametric models. However, there
are also several fundamental differences. First, the nonparametric estimate
mpk () is not the (nonparametric) maximum likelihood estimate. Because
of this, there is some chance that A, can be negative. Indeed, the param-
eter space under the full model is an infinite-dimensional function space.
The (nonparametric) maximum likelihood estimator for m(-) usually does
not exist. Even if it exists, it is hard to compute. Furthermore, it is shown
by Fan, Zhang, and Zhang (2001) that the maximum likelihood ratio tests
for infinite-dimensional problems are not efficient. This is another remark-
able difference from the parametric setting. The generalized likelihood ratio
statistic, on the other hand, is shown to be asymptotically optimal, with a
proper choice of bandwidth, in the sense that it achieves the asymptotic op-
timal rate of convergence for testing problems formulated by Ingster (1993)
and Spokoiny (1996).
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TABLE 7.1. Values of rx and ck in (7.38). Adapted from Fan, Zhang, and Zhang
(2001).
Kernel Uniform Epanechnikov  Biweight Triweight  Gaussian
rK 1.2000 2.1153 2.3061 2.3797 2.5375
CK 0.2500 0.4500 0.5804 0.6858 0.7737

Let h be the bandwidth used in constructing mpx and K be the kernel
function. Denote by K % K the convolution function of K. Assuming that
rr = 0, by Theorem 10 of Fan, Zhang, and Zhang (2001), if h — 0 and
nh3/2 — o0, we have

P X (7.38)

where
_ K(0) - [IK]2/2
|K — K x K/2|]2"

o = 5 LK) = [IK]?/2}, rc

«@ s

Here “~” means “distributed approximately.” Note that the normalizing
constant is rx, rather than 2 in the classical Wilks theorem. Note further
that the degree of freedom tends to be infinite since h — 0. Formally, (6.27)
means that

TKAn — TKMn D

— N(0,1).
S (0,1)

Table 7.1 shows the value of constants 7 and cx = K(0) — || K|?/2.

The result above has two practical uses for hypothesis testing. First,
an approximate level « for the testing problem (7.32) is to reject the null
hypothesis when

PEAL 2 Xy, (1= @), (7.39)

where X2, (1 — a) is the (1 — a) quantile of the x* distribution with
degrees of freedom [rgp,], the rounding of rxpu, to its nearest integer.
Secondly, it permits one to use the bootstrap to obtain the null distribution.
In this parametric setting, the bootstrap method is indeed the same as the
simulation method. Since the asymptotic distribution does not depend on
o, we can take it to be 1. Generate a random sample of size n from the
standard exponential distribution. Create a synthetic periodogram by using
(7.1); namely, regarding the random sample as a periodogram under the
null hypothesis (7.32). Compute the generalized test statistic A,. Repeat
the simulation above 1,000 times (say) to obtain 1,000 realizations of the
generalized likelihood ratio test statistic A,,. The 95th sample percentile of
the realizations can be used as the critical value. Furthermore, the p-value
can be estimated as the upper quantile of the observed test statistic in the
empirical distribution of these 1,000 realizations. In other words, if there
are m realizations of ), that are larger than the observed test statistic,
then the p-value is simply estimated by m/1, 000.
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7.4.8 x?-Test and the Adaptive Neyman Test

A stationary process is white noise if and only if its autocorrelation func-
tion is zero for lag 1 and above. This naturally leads to the test statistic
T e, p(k)?. A better approximation can be achieved by using

m
Ty T+2Z

k=1

ﬁ)

(7.40)

'ﬂ

k

for a given parameter m; see Box and Pierce (1970) and Ljung and Box
(1978). By Theorem 2.8 (see also Box and Pierce 1970; Li, W.K. 1992),
when {X;} is an i.i.d. sequence, {p(k)?} are asymptotically independent
with mean zero and variance T—!. Thus, for a given m, under the null
hypothesis that {X;} is an i.i.d. sequence, we have

T ~ X2, (7.41)

The test statistic T}, examines only the first m autocorrelation coefficients.
To make the procedure consistent among a large class of alternatives, we
have to make m depend on T and, furthermore, m — oo as T — o0.
Furthermore, p(k) is not a good estimate of p(k) when k is near T

The parameter m can be regarded as a smoothing parameter. Its choice
would affect the power of the test. For stationary time series, we have prior
knowledge that the autocorrelation function is small when the lag is large.
Thus, testing on all autocorrelation coefficients (namely, taking m = T'—1)
will accumulate stochastic error in 7T,, and deteriorate its power. Hence
m =T — 1 is not a good choice.

The test statistic T;,, is equivalent to its normalized form:

Twm —m
Vom
Different values of m result in different test statistics. A natural way to

combine these test statistics is to use the multiscale test

Ty —m
Tiy = max ——

1<m<ar ~2m

for some upper limit ap. This test statistic was introduced by Fan (1996)
in a somewhat different context based on power considerations. Fan called
it the adaptive Neyman test and showed that under the null hypothesis

P(Tan < x) = exp(—exp(—z)) asn — oo, (7.42)
where

Tan = /2loglogarTiy — {2loglogar + 0.5logloglogar — 0.51log(47)}.
(7.43)
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TABLE 7.2. The o upper quantiles of the distribution J;. Taken from Fan and
Lin (1998).
n\a 0.001 0.0025 0.005 0.01 0.025 0.05 0.10 0.25 0.50
) 7.80 6.74 5.97 5.21 4.23 3.50 2.77 1.77 0.96
10 9.13 773 677 578 457 3.67 274 149 040
20 9.83 826 716 6.07 4.75 3.77 2.78 141 0.18
30 10.11 8.47 7.29 6.18 4.82 3.83 281 1.39 0.11
40 10.34 8.65 741 6.22 4.87 3.85 282 1.39 0.08
50 10.32 8.67 7.43 6.28 4.89 3.86 2.84 1.39 0.07
60 10.56 8.80 7.51 6.32 491 3.88 2.85 1.39 0.07
70 10.59 8.81 755 6.34 492 388 2.85 1.40 0.06
80 10.54 8.81 7.57 637 493 3.89 2.85 1.40 0.06
90 10.79 895 7.65 6.40 494 390 2.86 1.40 0.06
100 10.80 8.95 7.65 6.40 4.94 3.90 2.86 1.40 0.06
120 10.87 8.96 7.65 6.41 495 3.90 2.87 1.41  0.05
140 10.80 9.00 7.66 6.42 495 390 2.86 1.41 0.05
160  10.88 895 769 6.42 495 391 287 141 0.06
180 11.02 9.10 777 6.47 495 390 287 1.41 0.06
200 11.10 9.08 7.72  6.43 4.95 3.89 2.86 1.42  0.06
The results are based on 1,000,000 simulations. The relative errors are expected

to be around 0.3%—-3%.

Hence, an approximate level « test based on T4y is to reject the indepen-
dent noise assumption when T4y > —log(—log(1l — «)).

Fan (1996) noted that the asymptotic distribution in (7.42) is not a
good approximation to T4 . Let us denote the exact distribution of T4y
under the null hypothesis by J,,, depending on the parameter a;. This
distribution does not depend on any unknown parameters and can easily
be computed by statistical simulation. We have a C-code “aneyman.table.c”
available for computing p-values. Table 7.2 is an excerpt from Fan and Lin
(1998).

When the adaptive Neyman test above is applied to residuals based on
a parametric model (e.g., an ARMA model), some slight modifications
are needed. In the ARMA (p, ¢), Box and Pierce (1970) show that T, ~
X12n—p—q' Thus, one can modify 77 ; accordingly as

T —(m—p—q)
max .
ptgt+l<m<ar 2(m—p—q)

* p—
TAN -

This modified version would have a better approximation of the null dis-
tribution.

In a somewhat different setup, Fan, Zhang, and Zhang (2001) show that
the adaptive Neyman test is an adaptively optimal test in the sense that
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A realization from Gaussian white noise

o
0 50 100 150 200
(@
A realization from AR(1) with b=0.4
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(b)
A realization from AR(1) with b=0.3
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FIGURE 7.8. A realization of length T' = 200 from (a) a Gaussian white noise
model, (b) an AR(1) model with b = 0.4, and (c) an AR(1) model with b = 0.3.

it achieves adaptively the optimal rate of convergence for nonparametric
hypothesis testing with unknown degree of smoothness.

7.4.4  Other Smoothing-Based Tests

After ignoring the smaller order term in (7.2), the problem (7.32) becomes
testing whether the regression function in (7.2) is a constant. This problem
has been extensively studied; see the books by Bowman and Azzalini (1997)
and Hart (1997) and the references therein. The techniques there can also
be applied to the current setting. Note that the noise term in (7.2) is not
Gaussian, orthogonal transformation methods such as the Neyman test and
its various adaptive versions are not very convenient to apply.
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TABLE 7.3. Results of testing for a Gaussian white noise model based on three
simulated data sets.

Fisher G-likelihood A-Neyman y*-test

White noise statistic ~ 7.177 13.12 1.4728 53.80
p-value  0.074 0.069 0.239 0.331

d.f. 7 50
AR(1),b=04 statistic 7.847 34.96 27.29 99.48
p-value  0.038 0.000 0.000 0.001

d.f. 8 50
AR(1), b=0.3 statistic 5.778 16.71 8.314 59.54
p-value  0.266 0.010 0.003 0.167

d.f. 6 50

7.4.5 Numerical Fxamples

To gain insights on the various tests, we first simulate three time series of
length T' = 200 from the three models

White noise: Xy =&y,
AR(1) with b= 0.4: Xy =04X,_1 + &y,
AR(l) with b = 0.3: Xt = 0.3Xt,1 + Et,

where {e;} is a sequence of i.i.d. random variables having the standard nor-
mal distribution. Figure 7.8 presents a realization from the three models
above. Consider the testing problem (7.32) and the following testing pro-
cedures: the Fisher test (7.33), the generalized likelihood ratio test (7.37),
the adaptive Neyman test (7.43), and the y>-test (7.40) with m = 50. In
the C-code “spectrum.c,” the results of the Fisher test and the generalized
likelihood ratio test are reported. We have the S-Plus codes “aneyman.s”
and “fishertest.s” for computing the adaptive Neyman test and the Fisher
test. The p-value of the adaptive Neyman test can be found by using the
C-code “aneyman.table.c” or Table 7.2.

The results of the four testing procedures above are reported in Table 7.3.
The generalized-likelihood test and the adaptive Neyman test have higher
discriminant power, making right decisions at the significance level 5%.
Furthermore, the small p-values for the two AR(1) models provide further
evidence to support the claim above. On the other hand, as discussed be-
fore, the Fisher test and the y?-test are less powerful. For the AR(1) model
with b = 0.3, both made wrong decisions at the significance level 5%.

We now apply the four procedures above to test whether the three dif-
ference series in Figure 7.7 are white noise. The results are summarized in
Table 7.4. These tests provide further evidence against the hypothesis of
white noise. Further, the p-value for the Fisher test is not nearly as small
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TABLE 7.4. Testing the Gaussian white noise model for difference series of the
yields of the three-month Treasury bill.

Fisher G-likelihood A-Neyman y>-test

Whole series statistic ~ 10.81  586.4 (d.f.=99) 173.9 478.7
p-value  0.0211 0.000 0.0000 0.0000
Before 1979  statistic  10.03  284.3 (d.f.=126) 58.75 177.9
p-value  0.0230 0.000 0.0000 0.0000
After 1979  statistic  10.97  491.7 (d.f.=128) 94.65 404.9
p-value  0.0090 0.000 0.0000 0.0000

as the three other tests. This is again due to the fact that the Fisher test
is less capable of discriminating the alternatives of a nonuniform but more
spread-out spectrum (see Figure 7.7).

7.5 Complements

7.5.1 Conditions for Theorems 7.1—-7.3
We first state the technical conditions for Theorems 7.1—7.3. They are
imposed to facilitate technical proofs and are not the minimum possible.
Conditions

(i) The process {X;} is a linear Gaussian process given by

o0
Xt = E Aj€t—j

Jj=—o00
with 3, laj|j? < oo, where g; ~ i.i.d. N(0,02?).
(ii) The spectral density function g(-) > 0 on [0,7].

(iii) The kernel function K is a symmetric probability density function
and has a compact support.

(iv) (logT)*hr — 0 in such a way that Thr — oo.
It follows from Condition 1(i) and Theorem 2.12 that the spectral density
function of {X;} is given by
2 o? 2
9x (@) = [AW)[ fe(w) = - |AW)[,
where

Alw) = Z a; exp(—ijw).

j=—o00
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It has a bounded second derivative. We first give two lemmas showing that
Ry (wg) in (7.1) and 7 in (7.2) are indeed negligible.

7.5.2  Lemmas
Lemma 7.1 Under Condition (i), we have
logT
. ()] =0 (255)

almost surely.

Proof. We follow the notation and the proof of Theorem 2.14. By (2.60),
the remainder term can be expressed as

Rr(wi) = |Yr(wi)|? + Alwp) o Yr(—wi) + A(wg)ag.Yr(wr).  (7.44)

As shown in Theorem 2.14, {ay .} and {Y7(wg)} are independently nor-
mally distributed with mean 0 and variance O(1) and O(T 1), respectively.
Recall that the maximum of n i.i.d. Gaussian white noise is asymptotically
equal to v/2logn almost surely. It follows that

logT
mlilx|ak75|:O(\/logT) and m§X|YT(wk)|=O< O?)

almost surely. Substituting these into (7.44) and using the fact that
max |A(w)] < oo,
w
we obtain Lemma 7.1. n

Lemma 7.2 Under Conditions (i) and (i), we have for any sequence cr,

10gT> I(Vk > CT)
VT Vi

uniformly for 1 < k < n, where Vi, are i.i.d. random variables having the
standard exponential distribution.

r. < Op ( —|—Op(10gT)I(Vk < CT)

Proof. Recall that

ne=tog {14 ZEEIL

9(wr)Vi
Using the inequality log(1 + x) < z for > 0 and dividing the state-space
into Vi > ¢r and Vj, < cr for a given sequence cr, we get that

| R (wg)|
< - 770
=) Vi

maxy | Ry (wg)|

(Vi > er) + 1og{1 + }I(Vk < er).

(7.45)

min,, g(w) ming Vi
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Obviously,
P ( min V > T_2> = exp(—n/T?) — 1.

1<k<n

Thus (ming Vi) ™! = Op(T?). Substituting this term into (7.45) and using
Lemma 7.1, we obtain

logT

VT

This completes the proof of Lemma 7.2. [

r. < Op ( > I(Vk > CT)Vk_l + Op(log T)I(V},C < CT).

7.5.83  Proof of Theorem 7.1
First, by (7.1) and (7.16),

. = w— wj
goLs(w) = ZKT (h]#ﬂ) 9(w;)V;
j=1

+Z:KT (“’ _ ,w) Ra(w;). (7.46)

Regarding g(w;)V; as a response variable Yj, the first term is the local linear
fit based on the data {(w;,Y;)}. Applying (6.30), we obtain Theorem 7.2 if

we can show that the second term in (7.46) is of order l‘z/g’g. By Lemma 7.1,

this in turn requires us to show

é’KT (w _hwj’w) ‘ = Op(1). (7.47)

By (7.15), the left-hand side of (7.47) is bounded by

Sra(w)Srow) + iy Kn(ws = w)lwr — w])?
STyg(w)STvo(w) — STJ(W)Q '

By the Cauchy—Schwartz inequality, this is bounded by

25T72(W)ST70(Q))
STyg(W)STvo(w) — ST’l(w)Q '

By (6.28), the quantity above tends to 2. This proves (7.47) and the theo-
rem.
|
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7.5.4  Proof of Theorem 7.2
We will show that

N " w—wj , log®> T
fLs(w) =Y Kr < J ,w) Y/ 4+ Op ( > , (7.48)
j=1 h ! \/T

where Y, = m(w;) + € with €} = &; — Co. By applying (6.30) to the first
term in (7.48), we obtain the result.
We now establish (7.48). Using Lemma 7.2, the remainder term in (7.48)

is bounded by

- W —wj log T
;‘KT <hjw> ri|=Op (\%) Bra+Op(logT)Brya, (7.49)
where
BT,l = Z‘KT< h -77“))‘[(‘/] >CT)‘/J‘ 1
j=1
BT,2 = ;‘KT< = 37(4))’[(‘/]' SCT).

Note that when ¢ — 0,

1 e’}
E{I(V; > cr)V; '} g/ t‘ldt—i—/ exp(—t)dt = O(log c;")
cr 1

and
EI(V; <ecr) =1—exp(—ecr) = O(er).

Using the last two expressions and (7.47), we find
E|Br;| = O(logcy') and E|Brs| = O(ecr).
Substituting these into (7.49), we conclude that (7.49) is of order

0 (logchlogT logQT)
"Uvr VT

by taking cp = T71. B

) +0p <CT logT) = Op(

7.5.5  Proof of Theorem 7.3

We need the following quadratic approximation lemma, due to Fan, Heck-
man, and Wand (1995), to prove Theorem 7.3. The lemma takes advantage
of the fact that the target function £(«, 3) in (7.21) is concave. The point-
wise convergence of £(«, 3) implies automatically the uniform convergence
over a compact set. The essence of the following lemma is that it requires
only pointwise convergence for the concave target functions. This is much
easier to establish than the uniform convergence.
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Lemma 7.3 (Quadratic approzimation lemma) Let {\,(0): 6 € O} be a
sequence of random concave functions defined on a conver open subset ©
of R. Let F and G be nonrandom matrices, with F positive-definite, and
let U,, be a stochastically bounded sequence of random wvectors. Lastly, let
oy, be a sequence of constants tending to zero. Write

An(8) = UTH — %HT(F +anG)O+ fo(6).
If, for each 6 € ©, f,(0) = op(1), then
0, =F'U, +op(1),

where 0, (assumed to exist) mazimizes Ao(-). If, in addition, f'(6) =
op(aw) and fl/(0) = op(an) uniformly in 0 in a neighborhood of 0,,, then

§n =F'U, - o, F 'GF U, + op(an).

Proof of Theorem 7.3. The idea of the proof is to reduce the problem for
dependent data to that for i.i.d. exponentially distributed random variables.
The latter can be proved using the first part of the quadratic approximation
lemma. R

Let B = ay'[a@ — m(w), h{B — m/(w)}]T, where ap = (nh)~'/2. Define

Lk(kaﬂ) = - eXp{Yk - m(w7wk) - aT/BTQk}
+Yy, — m(w,wy) — arB’ U,

where m(w, wy) = m(w) +m/(w)(wp —w) and Qg = {1, (wr, —w)/h}T. Then,
it can easily be seen via a linear transform that 3 maximizes

Z Ly (Y, B)Kp(wr — w),
=1

or equivalently ,£A3 maximizes
(r(B) = h > _{Lk(Ye, B) — Li(Yi, 0)} Kp (wi — w).
k=1

Let Y, = m(wk) + 2k, the main term of (7.2). Then, we can write

lr(B) =ti7(B)+ Ur

where ¢1 7(3) is defined in the same way as ¢7(3) with Y}, replaced by Y},
and

n

Ur = thRT(wk){eXp{fm(w,wk)faTBTQk}
k=1

—exp{—m(w, wk)}} Kp(wi — w).
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By using Taylor’s expansion and Lemma 7.2, for each fixed 3,
UT = Op(h -ar - T- IOgT/\/T) = Op(l).
Thus, we have
br(B) = L1,7(B) +op(1). (7.50)

We now deal with the term ¢; (), which is the logarithm of the likeli-
hood based on exp(Y}), an independent sample from exponential distribu-
tions. By Taylor’s expansion around the point 0,

Li(Y.,B) — Lp(YL,0) = ap[exp{Y} — m(w,wi)} — 1187 Q%
— L exp{¥{ — m(w, w) }(BT ) {1 + o(1)}.
Thus 1
br(B) =WrB - QBTATB{I +o(1)}, (7.51)
where

Wr = aThZ [exp{Y} — m(w,wr)} — 1] Kp(wg — w)
k=1

and

Zexp{Y,C m(w, wi) } Q% K (wr — w).

Note that each element in W and A7 is a sum of independent random
variables of kernel form. Their asymptotic behaviors are relatively easy to
characterize. Basically, we will show that W is asymptotically normal and
A7 converges in probability to a matrix. We now outline the key ideas of
the proof. Since K has a bounded support, all effective wy’s are in a local
neighborhood of w. By Taylor’s expansion,

m(w,wy) ~ %m”(w)(wk —w)?

Note that exp(Y})) has an exponential distribution with the mean exp{m
(wk)}. Using these terms, one can easily show that

Elexp{Y] —m(w,w)} —1] = %m”(w)(wk —w)?+o(1), (7.52)
Var[exp{Y}, — m(w,wr)} —1] = 1+0(1). (7.53)

Approximating the discrete sum below by its integration, it follows from
(7.52) that

1 n
EAT = ﬁzﬂkﬂkKh(wk_w)
k=1
= A+o(1),
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where A = —7~!diag{1, ua(K)}. Similarly, by using (7.53), one can show
that each element of Ar has variance of order O(ar). Thus

Ar=A+op(l). (7.54)

Combining (7.50), (7.51) and (7.54) leads to

(r(8) = W8+ %BTAB +o0p(1). (7.55)

To apply the quadratic approximation lemma, we need to establish the
asymptotic normality of Wr. First, by (7.52),

EWp = aThZ%m”(w)(wkfw)zﬂkKh(wkfw){lJro(l)}
k=1
_ a;l%m”(w)w_l ( N2E)K) >+o(aT1h2).

Similarly, it follows from (7.53) that we have

Var(Wrp) = a%h? Z Q.07 K (wr — w)
k=1
= B+o(1),
where B = - 'diag{vo(K), [ t? K?(t)dt}. Since W is the sum of indepen-

dent random variables, one can easily verify that it satisfies the Lindeberg
condition. Hence,

Wr —ap! {”@hZW—l{MQ(K),o}T + oP(hQ)} 2, N(0,B). (7.56)

The quadratic approximation lemma and (7.55) lead to
B=—-A""Wr+op(1).

By (7.56), B is asymptotically normal. Hence, its first element is asymp-
totically normal. This proves the theorem. ]

7.6 Bibliographical Notes

Spectral density estimation is closely related to state domain smoothing.
Some related references can also be found in §6.7.

Spectral density estimation
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The suggestion that an improved spectral estimate might be obtained by
smoothing the periodogram was made by Daniels (1946); see also Bartlett
(1948, 1950). Brillinger and Rosenblatt (1967) considered estimation of
higher-order spectra. The asymptotic normality of higher-order cumulant
spectral density estimates was established by Lii and Rosenblatt (1990).
Asymptotic properties of spectral estimates were studied by Brillinger (1969).
Lii (1978) established the asymptotic normality for the Ls-norm between
estimated density and true density. The problem of estimating the spec-
tral density for stationary symmetric a-stable processes was considered by
Masry and Cambanis (1984). Nonparametric high-resolution estimation of
spectral density was studied by Dahlhaus (1990b). Lii and Masry (1995)
studied selection of sampling schemes for spectral density estimation. Lii
and Rosenblatt (1998) showed that it is generally impossible to have con-
sistent estimates of spectral mass for a harmonizable process and hence line
spectrum was estimated.

Recent advances in smoothing techniques enrich the techniques of spec-
tral density estimation. Wahba (1980) used smoothing splines to smooth
a log-periodogram. Extensive efforts have been made in selecting appro-
priate smoothing parameters for spectral density estimators; see, for ex-
ample, Swanepoel and van Wyk (1986), Beltrao and Bloomfield (1987),
Hurvich and Beltrao (1990), and Franke and Hérdle (1992). For multivari-
ate spectral density estimation, Robinson (1991a) considered nonparamet-
ric and semiparametric estimation of spectral density with data-dependent
bandwidth. A plug-in method for selecting bandwidths for spectral density
estimation was proposed in Park, Cho, and Kang (1994). Based on the
penalized Whittle likelihood, Pawitan and O’Sullivan (1994) used smooth-
ing splines to estimate the spectral density. Kooperberg, Stone, and Truong
(1995a, b) developed log-spline spectral density estimates. Kato and Masry
(1999) applied wavelet techniques to spectral density estimation.

Test of independence

Test for independence is usually based on the autocorrelation function and
periodogram of a time series. Different tests detect different aspects of devi-
ation from a null hypothesis and hence are powerful for certain given alter-
natives. Brillinger (1974) derived the asymptotic distribution for testing pe-
riodicities. Skaug and Tjgstheim (1993) generalized the idea of Blum, Kiefer
and Rosenblatt (1961) for testing serial independence. Robinson (1991b)
proposed tests for strong serial correlation and conditional heteroscedas-
ticity. Some recent work on the subject can be found in Deo (2000) and
Deo and Chen (2000a,b). A survey and development on various measures
of dependence can be found in Tjgstheim (1996) and the references therein.

As mentioned in §7.4 for a stationary time series, testing for white noise
in the time domain is equivalent to testing whether spectral density is
constant based on nearly independent periodograms. This is basically a
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parametric null hypothesis versus nonparametric smooth alternative hy-
pothesis. There is much literature studying this kind of problem. An early
paper is Bickel and Rosenblatt (1973), where the asymptotic null distri-
butions were derived. A few new tests were proposed in Bickel and Ritov
(1992). Azzalini and Bowman (1993) introduced the F-type test statistic for
testing parametric models. Hiardle and Mammen (1993) studied nonpara-
metric tests based on an Ls-distance. Various recent testing procedures
are motivated by Neyman (1937). They basically focus on selecting the
smoothing parameters of the Neyman test and studying the properties of
the resulting procedures; see, for example, Eubank and Hart (1992), Eu-
bank and LaRiccia (1992), Inglot, Kallenberg and Ledwina (1994), Kallen-
berg and Ledwina (1994), and Kuchibhatla and Hart (1996), among others.
Fan (1996) proposed simple and powerful methods for constructing tests
based on Neyman’s truncation and wavelet thresholding. It was shown in
Spokoiny (1996) that wavelet thresholding tests are nearly adaptively min-
imax and in Fan, Zhang, and Zhang (2001) that Fan’s version of the adap-
tive Neyman test is asymptotically adaptively minimax. The asymptotic
optimality of data-driven Neyman’s tests was also studied by Inglot and
Ledwina (1996).

There are various extensions of nonparametric tests to multivariate set-
tings. The largest challenge is how to handle the so-called “curse of di-
mensionality” in multivariate nonparametric regression. This refers to the
fact that a local neighborhood in multidimensional space contains very few
data points. Aerts, Claeskens, and Hart (2000) constructed tests based on
orthogonal series for a bivariate nonparametric regression problem. Fan
and Huang (2001) proposed various testing techniques based on the adap-
tive Neyman test for various alternative models in a multiple regression
setting. A generally applicable method, generalized likelihood ratio tests,
was proposed and studied by Fan, Zhang, and Zhang (2001). Horowitz
and Spokoiny (2001) studied the problem of adaptive minimax rates for
multivariate nonparametric testing problems.



8

Nonparametric Models

8.1 Introduction

Parametric time series models provide powerful tools for analyzing time se-
ries data when the models are correctly specified. However, any parametric
models are at best only an approximation to the true stochastic dynam-
ics that generates a given data set. The issue of modeling biases always
arises in parametric modeling. One conventional technique is to expand
the parametric models from a smaller family to a larger family. This eases
the concerns on modeling biases but is not necessarily the most effective
way to deal with them. As mentioned in §1.3.3, a good fitting for a simple
MA series by an AR model may require a high order. Similarly, a simple
nonlinear series might require a high order of ARMA model to reasonably
approximate it. Thus, the choice for the form of a parametric model is very
critical.

Many data in applications exhibit nonlinear features such as nonnormal-
ity, asymmetric cycles, bimodality, nonlinearity between lagged variables,
and heteroscedasticity. They require nonlinear models to describe the law
that generates the data. However, beyond the linear time series models,
there are infinitely many nonlinear forms that can be explored. This would
be an undue task for any time series analysts to try one model after another.
A natural alternative is to use nonparametric methods. The most flexible
nonparametric model is the saturated (full) nonparametric model, which
does not impose any particular form on autoregression functions. This satu-
rated nonparametric model is certainly flexible in reducing modeling biases.
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Yet, in the multivariate setting with more than two lagged variables, its
underlying autoregressive function cannot be estimated with reasonable ac-
curacy due to the so-called “curse of dimensionality” of Bellman (1961).
The curse of dimensionality problem has been clearly illustrated in many
books, including Silverman (1986), Héardle (1990), Hastie and Tibshirani
(1990), Scott (1992), and Fan and Gijbels (1996).

There are many possibilities between parametric models and saturated
nonparametric models. Certain forms are typically imposed on the autore-
gressive functions. The resulting models are usually generalizations of cer-
tain parametric families; see, for example, the functional-coefficient autore-
gressive (FAR) model (1.11) and the additive autoregressive (AAR) model
(1.12). They are better able to reduce possible modeling biases than their
parametric counterparts. On the other hand, they are much smaller than
the saturated nonparametric model. As a result, the unknown parameters
and functions can be estimated with reasonable accuracy.

In this chapter, we will introduce a few nonsaturated nonparametric
models. These include functional-coefficient autoregressive (FAR) models,
adaptive FAR models, additive autoregressive models, and models for con-
ditional variance. Different models impose different nonparametric forms
on the autoregressive regression function and explore different aspects of
the data. They together form powerful tools for time-series data analysis.

8.2 Multivariate Local Polynomial Regression

Local polynomial fitting can readily be extended to the multivariate setting.
Due to the curse of dimensionality, direct use of the multivariate nonpara-
metric regression is not viable. However, its functionals can be useful for
other related problems. For completeness, we briefly outline the idea of the
extension of the local polynomial fitting to a multivariate setting.

8.2.1 Multivariate Kernel Functions

To localize data in the p-dimension, we need a multivariate kernel. Gener-
ally speaking, a multivariate kernel function refers to a p-variate function

satisfying
“+o0 +oo
/ e K(x)dx = 1.

— 00

Moment conditions similar to (5.13) can be imposed to ameliorate biases.
For example, a second-order kernel requires

/,TiK(X)dX:O, 1=1,---,p.
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and the finite second-moment condition. Here and hereafter, we use “[” to
indicate multivariate integration over the p-dimensional Euclidean space.

There are two common approaches for constructing multivariate kernels.
For a univariate kernel x, the product kernel is given by

K(x) = H K(24),

and the spherically symmetric kernel is defined as
K(x) = cop K([[x]),

where ¢, , = {[ K(||x|)dx} ! is a normalization constant and ||x| = (2% +
cee xf,)l/ 2. Popular choices of K include the standard p-variate normal
density

K(z) = (2m) 7" exp(—|x]*/2)

and the spherical Epanechnikov kernel

K (x) = {p(p +2)0(p/2)/(47"/%) (1 ~ |Ix]*)+

The latter is the optimal kernel, according to Fan et al. (1996).

The localization in multivariate nonparametric regression is frequently
carried out by the kernel weighting. Let H be a symmetric positive-definite
matrix called a bandwidth matriz. The localization scheme at a point =
assigns the weight

Ku(X; —x), with Kg(x)=|H'KH 'x),

where |H| is the determinant of the matrix H. The bandwidth matrix is
introduced to accommodate the dependent structure in the independent
variables. For practical implementations, one frequently takes the band-
width matrix H to be a diagonal matrix. This will accommodate different
scales in different independent variables. A further simplification is to take
the bandwidth matrix H = hI, with I, being the identity matrix of or-
der p, assuming that the independent variables have the same scale (e.g.,
through some normalizations).

For the spherical Epanechnikov kernel with the bandwidth matrix H =
hI,, the nonvanishing weights are only those X;’s that fall in the ball
centered at x with radius h. Such a ball has a size of order O(h?), which gets
smaller and smaller as p increases. For such a small ball, there are not many
local data points there. This is the essence of the curse of dimensionality.
In order to get a sufficient amount of local data points, the neighborhood
has to increase, which introduces an unacceptable level of bias.
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8.2.2  Multivariate Local Linear Regression

The best predictor for X; based on its lag variables X;_q, -+, X;_, is
G(Xi—1, -, Xi—p) = BE(Xe| Xy—1, -+, Xip)-
Such an autoregressive function minimizes the prediction error
E{X; —g(Xi—1,-- , Xip)}?
among the class of measurable functions g. In fact, one can easily see that

E{Xt - g(Xt—la T 7Xt—p)}2 = E{Xt - G(Xt—h T 7Xt—p)}2
+E{G(Xt—1a e 7Xt—p) - g(Xt—la e 7Xt—p)}2'
To estimate the autoregressive function, let X;_1 = (X;—1,- -+, Xs—p)7.

Then, the multivariate kernel estimator is basically the locally weighted
average:

_ ZtT:p+1 XiKu(Xi-1 —x)
Yty Ku (X1 —x)

The kernel estimator is based on the local constant approximation. It can
be improved by using the local linear approximation

G(x)

G(X) = G(x) + &' (x)T(X —x),

for X in a local neighborhood of x. This leads to the following least-squares
problem:

T
3 {Xt —a-bT (X1 — x)}QKH(Xt_l —x).
t=p+1

Let a(x) and lA)(x) be the minimizers. Then, the local linear estimate of G
is simply G(x) = @(x) and the local lincar estimate of the gradient vector
G'(x) is G'(x) = b(x).

The asymptotic biases and variances can be established along the same
lines of argument as those in §6.3 under some regularity conditions. In
particular, the asymptotic bias of G(x) is

27 Mr {G“(x)HHT / K(u)uquu} ,

with G”(-) the Hessian matrix of the function G, and the asymptotic vari-

ance is given by
o*(x) / 2
———— [ K*(u)du,
TG0 |
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TABLE 8.1. Sample sizes required for p-dimensional nonparametric regres-
sion to have a performance comparable with that of one-dimensional non-
parametric regression using size 100.

dimension 2 3 4 5 6 7 8 9
sample size 250 630 1580 3,980 10,000 25,000 63,000 158,000

where 02(x) = Var(X;|X;_1 = x), and f(x) is the joint density of X;_1.

To see the rate of convergence, let us take H = hI,. Then, the bias is
of order O(h?) and the variance is of order O(1/ThP). This leads to the
optimal rate of convergence O(T~2/(4+P)) by trading off the rates between
the bias and variance.

The curse of dimensionality can be quantitatively understood as follows.
To have a performance comparable with one-dimensional nonparametric
regression with 77 data points, for p-dimensional nonparametric regression,
we need

T—2/(4+p) _ O(T172/5) or T — T1(p+4)/5.

Table 8.1 shows the result with 77 = 100. The increase of required sample
sizes is exponentially fast.

8.2.83  Multivariate Local Quadratic Regression

Due to the sparsity of local data in multi-dimensional space, a higher-order
polynomial is rarely used. Further, the notation becomes more cumber-
some. We use the local quadratic regression to indicate the flavor of the
multivariate local polynomial fitting. The technique can be useful for esti-
mating the gradient vector G’'(-) where the local linear fit does not give a
good enough estimate.

The local quadratic approximation is as follows. By Taylor’s expansion
to the second order, we have

GX) ~ G+ C/ () (X~ 1) + 5 (X —2)7G"(3)(X ~ ).

This leads to minimizing

: 1 2
tz;_l{Xt —a— bT(thl - X) - g(x — X)TC(X — X)} KH(Xt—l — X),

with respect to a, b and C, where C is a symmetric matrix. They are an
estimate of G(x), G'(x), and G”(x), respectively.
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8.3 Functional-Coefficient Autoregressive Model

8.3.1 The Model

The functional coefficient model, introduced by Chen and Tsay (1993),
admits the form

Xt = al(Xt,d)Xl + e + ap(Xt,d)Xt,p + ()'(AXVt,d)Et7 (81)

where {e;} is a sequence of independent random variables with zero mean
and unity variance, and &; is independent of X; 1, Xy o,---. The coeffi-
cient functions a1 (-),-- - , ap(-) are unknown. The model is a special case of
the state-dependent model of Priestley (1981). For simplicity, we will call
the variable X;_4 the model-dependent variable and denote the model by
FAR(p,d).

The state-dependent model is a natural extension of the TAR model dis-
cussed in §5.2. It allows the coefficient functions to change gradually, rather
than abruptly as in the TAR model, as the value of X;_4 varies continu-
ously. This can be appealing in many applications such as in understanding
the population dynamics in ecological studies. As the population density
X;_4 changes continuously, it is reasonable to expect that its effects on the
current population size X; will be continuous as well.

The FAR model also includes the generalized exponential autoregressive
(EXPAR) model

P
Xy =Y {oi+ (Bi+ v Xi—a) exp(—0; X7 g)} Xooi + &, (8.2)

i=1
where 6; > 0 for ¢ = 1, ..., p. The model was introduced and studied by

Haggan and Ozaki (1981) and Ozaki (1982). The FAR model allows other
forms for the coefficient functions.

8.3.2  Relation to Stochastic Regression

All parametric and nonparametric autoregressive models can be regarded
as stochastic regression models, so the techniques developed in regression
models can be applied to time series. The major difference here is that the
data are dependent in the context of time series. This usually has limited
impact on estimation procedures but might affect probability statements
such as confidence intervals and p-values. However, as illustrated in §5.3,
the adverse effects on probability statements for state-domain smoothing
are not severe due to the property of “whitening by windowing.”
Introduce the independent variable Y as the current observation X, the
ith independent variable “X;” as the lag ¢ variable X;_;, and U as the lag
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d variable X;_4. The (¢t — p)th observation of these induced variables is

Y:f = Xtath = thlf" ati = thant = thda t :p+ 17 aT'
(8.3)
Here, for simplicity, we assume that d < p. With the induced variables
above, the FAR model (8.1) can be written as

Y=a1(U)X1 4+ - +a,(U)X,—p + 0(U)ey (8.4)

based on the data {(Y:, Xy1, -, Xyp,Us),t = p+1,--- ,T}. To facilitate
the notation, with slight abuse of notation, we relabel the data as

{(Y;aXil»'" 7X’ip7Ui)7i = 17 un}a

where n = T —p. This is indeed a stochastic regression model and has been
popularly studied in the setting of the independent observations; see, for
example, Hastie and Tibshirani (1993), Fan and Zhang (1999), and Cai,
Fan, and Li (2000), among others.

8.3.83 Ergodicity*

One of the fundamental questions is whether the model (8.1) yields a sta-
tionary and ergodic solution. According to Theorem 2.2, we need to estab-
lish the ergodicity of the series. The following theorem was established by
Chen and Tsay (1993).

Theorem 8.1 Assume that the functions a;(-) are bounded by c¢; and the
density function of e; is positive everywhere on the real line. If all roots of
the characteristic function

)\pfcl)\pflf...fcp:()
are inside the unit circle, then the FAR(p,d) process is geometrically er-
godic.

Before we outline the key idea of the proof, let us illustrate the theorem
above by a few examples.

Example 8.1 (AR(p) model ) The AR(p) model corresponds to an FAR(p, d)
model with
a1(-) = a1, - ,ap(-) =ap and o(-) = 0.

The condition in Theorem 8.1 is the same as that in Theorem 2.1 for the
stationarity of an AR(p) process. |

Example 8.2 (EXPAR model) Consider the EXPAR model (8.2) with
v; = 0. The state-dependent coefficient function is given by

a;(u) = o + B exp(—biu?).
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Since 6; > 0, the coefficient function a,(-) is bounded by
|ai(u)] < |ai| +|6il-

Let ¢; = |ay| + |Bi]- By Theorem 8.1, the process is geometrically ergodic
as long as the condition in Theorem 8.1 is fulfilled. [

Example 8.3 (TAR(p) model) Consider the TAR model (1.8). It corre-
sponds to the FAR(p, d) model with

aj(u):b;i) forue;, i=1,---,k j=1,---,p.
The coefficient function a;(-) is bounded by ¢; = max{|b§l)|, . ,|b§k)|},
and Theorem 8.1 is applicable. [

We now outline the key idea for the proof of Theorem 8.1. The approach
is useful for other similar problems. Following the idea in §2.1.4, we express
the series as a Markov chain in the p-dimensional Euclidean space. Let

Xy = (Xt, tee aXt—p+1)Ta €t = (€t, T 7€t—p+1)T7
and set
a1(X)  az(X) ap—1(X)  ap(X)
1 0 0 0
A(X) = .
0 0 1 0

Then, we can rewrite the FAR model as
Xt = A(Xt_l)Xt_l + €. (85)

This is clearly a Markov chain in the p-dimensional Euclidean space.

We need the following concept of ¢-irreducibility and aperiodicity of a
Markov chain in a topological space. Let X be a topological space equipped
with a nontrivial measure ¢.

Definition 8.1 A Markov chain {X;} is said to be ¢-irreducible if for any
measurable set A with ¢(A) > 0, there exists an n > 0 such that

P{X, € AlXo=x}>0 forallx e X.

The ¢-irreducibility basically says, that starting from any initial value
Xy = x with positive probability, the chain will visit the set A in finite
steps. The concept of the aperiodicity is that a Markov chain cannot be
divided into cyclic subchains. There are a few equivalent definitions, and
we take the one that is simplest for description.
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Definition 8.2 A Markov chain {X} is aperiodic if there exists a measur-
able set A with ¢(A) > 0 such that, for any subset B of A with ¢(B) > 0,
there exists a positive integer n such that

P{X,eB|Xyg=2}>0 and P{X,y1 € BlXg=z}>0.

The following two lemmas are useful for establishing the ergodicity. The
first one is due to Tweedie (1975), and the second one is due to Tjgstheim
(1990).

Lemma 8.1 Let {X;} be a ¢-irreducible Markov chain on a normed topo-
logical space. If the transition probability P(x,-) is strongly continuous-
namely, the transition probability P(x, A) from x to any measurable set A
is continuous in X-then a sufficient condition for the geometric ergodicity
is that there exists a compact set K and a positive constant p < 1 such that

cK
E(X ‘X :x)<{°°’ for x
XeallXe plxl,  forx ¢ K.

Lemma 8.2 Let {X;} be an aperiodic Markov chain, and let m be a pos-
itive integer. Then, the geometric ergodicity of the subsequence {X,t} en-
tails the geometric ergodicity of the original series {X;}.

The key idea for proving Theorem 8.1 is to show that, for a subsequence
{Xmt}, the conditions in Lemma 8.1 are fulfilled. Hence, it is geometric
ergodicity. By Lemma 8.2, the whole series must be geometrically ergodic.
The details of the proof are given in §8.8.1.

8.8.4  Estimation of Coefficient Functions

The unknown coefficient functions in (8.4) can be estimated by using a
local linear regression technique. For any given ug and u in a neighborhood
of uyg, it follows from a Taylor expansion that

a; (U) ~ Q; (UO) + CL; (UO)(U — 'LLO) = aj + bj (u — UO), (86)
where a; and b; are the local intercept and slope corresponding to a;(ug)
and a’;(ug). Using the data with U; around ug and the local model (8.6),
we run the following local linear regression. Minimize with respect to {a;}
and {b;}

2
P
Y; =Y {aj +b; (Ui —uo)} Xij | Kn(Us — o), (8.7)

i=1 j=1

M-

where K, () = h"1K(-/h), K(-) is a kernel function, and h is a bandwidth.
Let {(@;,b;)} be the local least squares estimator. Then, the local linear
regression estimator is simply

aj(uo) =a;, j=1,-,n (8.8)
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The local linear regression estimator can be easily obtained. Let e; o,
be the 2p x 1 unit vector with 1 at the jth position, X denote an n x 2p
matrix with (X7, X7 (U; — ug)) as its ith row, and Y = (Y1, ---,Y;,)7T.
Set W = diag { Kx (U1 — ug), .., Kpn(Un — ug)}. Then, the local regression
problem (8.7) can be written as

(Y - XB)"W(Y - XB),

where 8 = (a1, - ,ap, b1, - 7bp)T. The local least squares estimator is
simply
. - N1~
3= (XTWX) XTWY,
which entails R
@j(uo) =@ = €] 5,0

By simple algebra, it can be expressed in an equivalent kernel form as

j(uo) =Y Kn (U — uo, X)) Vi, (8.9)
k=1
where )
S S\~ X
K, ;(u,x)= e;{Qp (XTWX) ( ux ) Ky (u). (8.10)

See §3.2.2 of Fan and Gijbels (1996) for similar derivations.

8.3.5 Selection of Bandwidth and Model-Dependent Variable

Various bandwidth selection techniques (see, e.g., §6.3.5) for nonparametric
regression can be extended to the FAR model. Here we introduce a simple
and quick method proposed in Cai, Fan, and Yao (2000). It can be regarded
as a modified multifold cross-validation criterion that is attentive to the
structure of stationary time series data. Let m and @) be two given positive
integers such that n > m@. The basic idea is first to use @ subseries of
lengths n—gm (¢ =1,--- , Q) to estimate the unknown coefficient functions
and then to compute the one-step forecasting errors of the next section of
the time series of length m based on the estimated models. This idea is
schematically illustrated in Figure 8.1.

Let {a;4(-)} be the estimated coefficients using the gth (¢ =1,---,Q)
subseries {(U;, X;, Y;), 1 <i < n—gm} with bandwidth equal to h{n/(n—
qm)}l/ 5. The bandwidth h is rescaled slightly to accommodate different
sample sizes according to its optimal rate (i.e., h oc n~1/®). The average
prediction error using the gth subseries is given by

" 2
n—gm-+m
1

P
APEq(h) = E Z Y — Zaj7Q(Ui)Xi,j
j=1

1=n—qm+1
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estimation pred
estimation pred
estimation _____ | pred
estimation ______ | pred
n —4m m m m m

time sequence (length n)

FIGURE 8.1. Illustration of data used for estimation and prediction. The data
of length n — 4m are used to construct estimated coefficients, and the prediction
errors for the next m data are computed. Then, the data of length n — 3m are
used to construct estimated coefficients, and the prediction errors for the next m
data are computed, and so on.

The overall average prediction error is given by
Q
APE(h) = Q™" ) APE,(h). (8.11)
q=1

The proposed data-driven bandwidth is the one that minimizes APE(h).
In practical implementations, we may use m = [0.1n] and @ = 4. The
selected bandwidth does not depend critically on the choice of m and Q as
long as m() is reasonably large so that the evaluation of prediction errors is
stable. The function APE(h) is minimized by comparing its value at a grid
of points h; = a’ho(j = 1,---,.J). For example, one may choose a = 1.2,
J =15 or 20, and hg = 1.277(range of U). A weighted version of APE(h)
can also be used if one wishes to weight down the prediction errors at an
earlier time. The choice m = [0.1n] rather than m = 1 is taken simply to
facilitate computational expediency.

Choosing an appropriate model-dependent variable U is also very im-
portant. Knowledge of the physical background of the data may be very
helpful, as we have witnessed in modeling lynx data. Without any prior in-
formation, it is pertinent to choose U in terms of some data-driven methods
such as AIC, cross-validation, and other criteria. Let APE(h, d) be the aver-
age prediction error defined by (8.11) using the lagged variable U = X;_g.
Here, we stress the dependence of the prediction error on the lag variable
Xi—q. A simple and practical approach is to minimize APE(h,d) simulta-
neously for h in a certain range and d over the set {1,2,--- p}. The order
p can also be chosen to minimize the APE.
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8.3.6  Prediction
Based on model (8.1), the one-step-ahead predictor is given by
Xt+1 = al (thd)Xt + et + /a\p(thd>Xt7p+1- (812)

This is a predictor whether model (8.1) holds or not. For two-step-ahead
forecasting, there are two possible approaches. The iterative two-step-ahead
predictor is to use (8.12) iteratively, leading to

)?t+2 = (Xt+1—d))?t+1 +ao(Xip1—a) Xy + -+ 8p(Xipp1-a) Xi—pta-

(8.13)

The direct two-step ahead predictor is based on fitting the model
Xt+2 = bl (thd)Xt + e + bp(thd) thp + 52, (814)
resulting in the estimated coefficient functions by (-), - - - 7Bp(-) and the pre-

dictor R R R
Xipo = b1 (Xe—a) Xe + -+ bp(Xi—a) Xi—p

Note that model (8.1) does not imply (8.14). In this sense, the direct two-
step ahead predictor explores the prediction power of the proposed model-
ing techniques when the model is misspecified. Since model (8.14) is usu-
ally not a correct model, the model-dependent variable X;_; had better be
chosen to minimize the estimated prediction error using the techniques in
the previous section. For multistep-ahead forecasting, the two approaches
above continue to apply.

8.3.7 FExamples

We now illustrate the sampling properties of the proposed methods through
two simulated and two real data examples. The performance of estima-

tors {a@;(-)} can be assessed via the square-root of average squared errors
(RASE):

Ngrid 1/2
RASE; = |ngly > {@(w) —aj(we)}?|
k=1
P
RASE* = Y RASEZ,
j=1
where {ug, k=1, ..., ngrid} are regular grid points on an interval over

which the functions a;(-) are evaluated. We also compare the postsample
forecasting performance of the new methods with existing methods such as
the linear AR model, TAR model, and FAR model that are implemented
in Chen and Tsay (1993).

Throughout this section, the Epanechnikov kernel K (u) = 0.75 (1 — u2)

) +
is employed.
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(a) a_1(u) (b) a_2(u)
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FIGURE 8.2. Simulation results for Example 8.4. The local linear estimators
(dotted curves) for the coefficient functions a1(-) (a) and az(-) (b) (solid curves).
Adapted from Cai, Fan, and Yao (2000).

Example 8.4 (Simulation from an EXPAR model) We drew 400 time se-
ries of length 400 from the EXPAR model

X =a1(Xi—1) Xio1 + ao(Xeo1) Xio + &4, (8.15)
where {&;} are i.i.d. from N (0, 0.2%) and
ar(u) = 0.138 4 (0.316 + 0.982u) e~ 389",
as(u) = —0.437 — (0.659 + 1.260 u) e~>59%".

Figure 8.2 presents the estimated a1(-) and as(-) from a typical sample.
The typical sample is selected in such a way that its RASE-value is equal
to the median in the 400 simulations. The optimal bandwidth A = 0.41 was
chosen. The proposed estimators nicely capture the underlying feature of
the true coefficient functions. [ ]

Example 8.5 (Simulation from a TAR model) Instead of using continuous
coefficient functions, we now use discontinuous step functions

a(u) = 04I(u<1)—08I(u>1),
az(u) = —0.61(u<1)4+02I(u>1).

Four hundred series of length 400 were simulated from the TAR model

Xt = al(thg)thl + GQ(thg)thz + Et. (816)
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(a) a_1(u) (b) a_2(u)
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FIGURE 8.3. Simulation results for Example 8.5. The local linear estimators
(dotted curves) for the coefficient functions a1 (+) and a2(-) (solid curves). From
Cai, Fan, and Yao (2000).

TABLE 8.2. The mean and SD of AAPE based on 400 replications. Reproduced
from Cai, Fan, and Yao (2000).
One-step Iterative two-step  Direct two-step
Model (8.16)  0.784(0.203) 0.904(0.273) 0.918(0.281)
Linear AR(2) 1.131(0.485) 1.117(0.496)

The resulting typical estimates from the 400 simulations are depicted in
Figure 8.3. The optimal bandwidth h, = 0.325 was used. The procedure
captures the change-point feature quite nicely. A further improvement can
be obtained by using nonparametric change-point techniques (see, e.g.,
Miiller 1992, Gijbels, Hall, and Kneip 1995) or the parametric TAR model.

To compare the prediction performance of the predictors from functional-
coefficient modeling with the best-fitted linear AR(2) model

X =Po+ 51 Xio1 4 B2 Xi o,

we predict 10 postsample points in each of the 400 replicated simulations.
The mean and standard deviation (SD, in parentheses in Table 8.2) of av-
erage absolute prediction errors (AAPE) are recorded in Table 8.2. Note
that Elei| = 0.7979 and SD(Je¢|) = 0.6028 so that the average of 10 ab-
solute deviation errors has an SD of 0.1897. These are indeed very close
to the one-step AAPE and its associated SD using model (8.16) and im-
ply that the errors in estimating functions a;(:) and as(-) are negligible in
the prediction. The FAR(2,2) model, while somewhat overparametrized in
the coefficient functions, provides relevant predictors for the given model
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(a) APE versus bandwidth (b) Estimated Coefficient Function a_1(u)
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(d) Observed and Fitted Values for Lynx Data
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FIGURE 8.4. Canadian lynx data. (a) APE against bandwidth. (b) Local linear
estimate @1 (+). (c) Local linear estimate @2(-). (d) Original series and fitted series
by using TAR model (solid) and FAR model (dashed). Adapted from Cai, Fan,
and Yao (2000).

(8.16). The direct two-step predictor based on the FAR model (8.14) per-
forms reasonably well. This in turn illustrates the flexibility of this family
of models as approximations to true stochastic dynamics. (]

Example 8.6 (Canadian lynz data) A natural alternative model to the
TAR model (1.8) for the Canadian lynx data is the FAR(2, 2) model. We
apply the APE criterion with Q@ = 4 and m = 11 to choose a band-
width. The function APE against the bandwidth A over a grid of points
hj = 0.6 4+ 0.05j(j = 0,---,12) is plotted in Figure 8.4(a). The selected
bandwidth is h = 0.90. Using this bandwidth and the local linear regression
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(8.7), we obtain the estimated coefficients @1 and @z, which are depicted in
Figures 8.4 (b) and (c). The fitted values are presented in Figure 8.4(d). For
comparison purposes, we also plot the fitted value using the TAR model
(1.8). The fitted values are almost undifferentiable.

The resulting FAR(2, 2) model resembles some important features of the
TAR(2) model (1.8). Both models admit nice biological interpretation on
the predator (lynx) and prey (hare) interaction in ecology (Stenseth et al.,
1999). The lower regime of X; o corresponds roughly to the population
increase phase, whereas the upper regime corresponds to the population
decrease phase. In the population increase phase, the coefficient functions
are nearly constant and are similar to those in the TAR(2) model. The co-
efficient of X;_1 in the model is positive, and more so during the decrease
phase, whereas the coefficient of X; o is negative, and more so during the
decrease phase. The signs of those coefficients reveal that lynx and hares
relate with each other in a specified prey—predator interactive manner. The
dependence of the coefficients on the phases of increase and decrease re-
flects the so-called phase-dependence and density-dependence in ecology
(Stenseth et al. 1999). The phase-dependence refers to the different be-
havior of preys and predators in hunting and escaping at the increasing
or decreasing phase of the population. The density-dependence implies the
dependence of reproduction rates of animals as well as their behavior on
the abundance of the population. The key difference between the FAR(2, 2)
and TAR(2) models is whether the coeflicient functions should be smooth
or radical in population density. This is an issue of interpretation and belief.
In fact, as will be shown in Chapter 9, there is no statistically significant
difference between the two models. In other words, given the available data,
these two models are statistically indistinguishable.

To compare the prediction performance among various models and sev-
eral prediction procedures, we fit model (8.16), a TAR model, and a linear
AR(2) model using the first 102 data points only, leaving out the last 12
points for assessing the prediction performance. The fitted TAR(2) model
is

¢ _ [ 0424 41255X,  —0.348X, 5, X, -» <2981,
£ 7 1.882 4+ 1.516X;_1 — 1.126X;_0,  X;_o > 2.981,

(8.17)
and the fitted linear AR(2) model is
Xy = 1.048 + 1376 X,_; — 0.740X;_».

The absolute prediction errors are reported in Table 8.3. The FAR(2, 2)
model outperforms both the TAR(2) and linear AR(2) models. |

Example 8.7 (Sunspot data) We use the sunspot data to illustrate how
to use the APE criterion to select the order p and the model-dependent
variable X;_4 in FAR(p,d). Following the convention in the literature,
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TABLE 8.3. The postsample prediction errors for Canadian lynx data. From Cai,

Fan, and Yao (2000).

FAR(2,2) model

TAR model (8.17)

Linear AR(2)

Year X OS Iter Direct (0N} Iter OS Tter
1923 3.0564 0.157 0.156 0.209 0.187 0.090 0.173  0.087
1924 3.386 0.012 0.227 0.383 0.035 0.269 0.061 0.299
1925 3.553 0.021 0.035 0.195 0.014 0.038 0.106 0.189
1926 3.468 0.008 0.037 0.034 0.022 0.000 0.036  0.182
1927 3.187 0.085 0.101 0.295 0.059 0.092 0.003  0.046
1928 2.723 0.055 0.086 0.339 0.075 0.015 0.143 0.148
1929 2.686 0.135 0.061 0.055 0.273 0.160 0.248  0.051
1930 2.821 0.016 0.150 0.318 0.026 0.316 0.093  0.434
1931 3.000 0.017 0.037 0.111 0.030 0.062 0.058 0.185
1932 3.201 0.007 0.014 0.151  0.060 0.043 0.113  0.193
1933 3.424 0.089 0.098 0.209 0.076 0.067 0.191 0.347
1934 3.531 0.053 0.175 0.178 0.072 0.187 0.140 0.403
AAPE 0.055 0.095 0.206 0.073 0.112 0.114 0.214

“OS” stands for one-step prediction; “Iter” for iterative two-step estimator; “Di-

rect” for direct two-step estimator.

TABLE 8.4. Selected FAR models for the Sunspot Data. Adapted from Cai, Fan,

and Yao (2000).

2 3 4 5 6
1 3 3 2 2
APE 18.69 13.46 13.90 12.26 13.93
7 8 9 10 11
3 3 5 3 5
APE 11.68 11.95 14.06 14.26 13.91

the transform X; = 2(v/1+Y; — 1) was applied to the original series. In
order to compare our analysis with the previous ones by Chen and Tsay
(1993) and Ghaddar and Tong (1981), only the annual sunspot numbers
in 1700-1987 were considered. The parameters m = 28 and Q = 4 were
used to select parameters p, d, and h. For each given 2 < p < 11, the APE-
criterion (8.11) is applied to choose the optimal parameter d. The results
are recorded in Table 8.4. The overall optimal model is p = 7 or p = §; the
model-dependent variable is at lag d = 3.
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FIGURE 8.5. Wolf’s sunspot data. (a)—(e) The estimated functional coefficients
in model (8.18). (f) The plot of the APE against bandwidth for model (8.18).
Taken from Cai, Fan, and Yao (2000).
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TABLE 8.5. The postsample prediction errors for sunspot data from Cai, Fan,
and Yao (2000).

FAR model (8.19) FAR model (8.18) FAR model (8.20)

Year Tt OS Iter Direct Error Iter Error Iter
1980 154.7 1.4 1.4 1.4 13.8 13.8 5.5 5.5
1981 140.5 114 104 3.7 0.0 3.8 1.3 0.0
1982 1159 15.7 20.7 12.9 10.0 16.4 19.5 22.1
1983 66.6 10.3 0.7 11.0 3.3 0.8 4.8 6.5
1984 45.9 1.0 1.5 4.3 3.8 5.6 14.8 15.9
1985 17.9 2.6 3.4 7.8 4.6 1.7 0.2 2.7
1986 13.4 3.1 0.7 1.9 1.3 2.5 5.5 5.4
1987 29.2 123 13.1 18.9 21.7 23.6 0.7 17.5
AAPE 7.2 6.5 7.7 7.3 8.3 6.6 9.5

“OS” stands for one-step prediction; “Iter” for iterative two-step estimator; “Di-
rect” for direct two-step estimator.

Following Table 8.4, we fit an FAR(8, 3) model. Insignificant variables
were deleted in Chen and Tsay (1993), leading to the fitted FAR model

1.234 (1.75 — 0.17 | X;—3 — 6.6]) X1 + (—1.28+
0.27| X5 — 6.6]) X;—2 + 020X, + e, if m_3 < 10.3,
0.92 -0.24 Ti_3 + 0.87 Ti_1 + 0.17 Tt—2 — 0.06 Tt—6
10.04 25 + 217, if 2,5 > 10.3.
(8.18)
This and the model selection result above suggest that we fit the following
FAR model

X = a1(Xi—3) Xio1 + ao(Xi—3) X2 + ag(Xi—3) Xi—3
+a6(Xt,3)Xt,6 +a8(Xt,3) thg + &¢. (819)

X, =

The local linear estimator is employed with the bandwidth h = 4.75 selected
by the APE (see Figure 8.5(f)). The estimated coefficients are reported in
Figures 8.5 (a)—(e).

Model (8.18) was fitted by using the first 280 data points (in 1700-
1979). To make fair comparisons on the prediction performance, we only
use these data to estimate the coefficient functions in (8.19). The following
TAR model (Tong 1990, p. 420)

1.92+0.84X;, 1 +0.07X; 5—0.32X; 3+0.15X; 4

—0.20X;_5—0.00X;_ 4+0.19X;, 7 —0.27 X, g

10.21 Xy_9 +0.01 X, 10+ 0.09X;_ 11+, if X, s < 11.93,

4274+ 144X, 1 —0.84 X;_5 + 0.06 X;_5 +'2, if X, g > 11.93,
(8.20)

resulting from the fit using the same length of data, was included for com-

parison. The results are recorded in Table 8.5. According to the average

X =
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absolute prediction errors, the nonparametric model performs as well as
both the TAR and FAR models in the one-step-ahead prediction. Further-
more, it outperforms in two-step prediction with both iterative and direct
methods. [ ]

8.83.8 Sampling Properties*

We first present a result on mean square convergence that serves as a
building block to our main result. It is also of independent interest. The
idea of the proof here is similar to that used in proving Theorem 6.3. We
first introduce some notation. Let

S, S, T, o(u
Su=Satu) = (50 51 )t Ta=Tutw = (3240 ),

where

L J
Sy = Sn.j(uo) ZX x7 < it ) Kin(U; — uo)

and

1 Ui — ug j
T, j(uo) = I sz h Ky (U; —up)Y;.
i=1

Then, the solution to (8.7) can be written as

B=H'S'T,. (8.21)

Set H = diag (1, ..., 1, h, ..., h) with the first p diagonal elements ones
and the last p diagonal elements h. Denote

Q= Quo) = (Wim)pxp = E (XXT|U = up) . (8.22)

Also, let f(x, u) denote the joint density of (X, U), and let fy(u) be the
marginal density of U. The following convention is needed: if U = X, for
some 1 < jo < p, then f(x, u) becomes f(x) — the joint density of X.
Recall that

= / u? K (u) du, v; = / u? K2 (u) du.

The following result is established in Cai, Fan, and Yao (2000).

Theorem 8.2 Assume that Condition 1 in §8.8.2 holds, and f(x, u) is
continuous at the point ug. Let h, — 0 in such a way that nh, — oo.
Then

E{S;,j(u0)} = fu(uo) 2uo) 1y,
and
nhy, Var{S, ;(uo)i,m} = fu(uwo) va; wim
forall0<j<3and1<Il, m<p.
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The proof of this theorem is similar but less involved than that of Lemma
8.4 in §8.8.3, and thus its proof is omitted.

As a consequence of Theorem 8.2, the variance of each element in S, ;
converges to zero. Hence, each element in S,, ; converges to its expected
value in probability. As a result, we have

S, > fu(uo) S and Sn3 L5 s Ju(uo)

in the sense that each element converges in probability, where S = diag(1,
t2) ® Q is the Kronecker product of the 2 x 2 diagonal matrix diag(1, p2)
and €. Denote

o?(x,u) = Var(Y| X = x, U = u) (8.23)

and
Q*(uo) = E [XXT 6*(X, U) | U = ue] . (8.24)

The following result has been proved in Cai, Fan, and Yao (2000).

Theorem 8.3 Let o%(x, u) and f(x, u) be continuous at the point ug.
Then, under Conditions 1 and 2 in §8.8.2,

Vnh, ﬁ(uo)—a(uo)—%uga"(uo) L5 N (0, ©%(u)),  (8.25)

provided that fy(ug) # 0, where

02(ug) = O (ug) Q2 (1) 2 (ug). (8.26)

Ju(uo)

Theorem 8.3 reveals that the asymptotic bias of @;(ug) is %2[1,2&;{ (up)
and the asymptotic variance is (nhy,) " 03 (uo), where 67 (uo) is the j-th
diagonal element of ©2(uy).

8.4 Adaptive Functional-Coefficient Autoregressive
Models

The FAR model (8.1) depends critically on the choice of the model de-
pendent variable X;_;. The model-dependent variable is one of the lagged
variables. This limits the scope of its applications. A generalization of this
class of models is to allow a linear combination of past values as a model-
dependent variable. This is also a generalization of thresholding models
with unknown thresholding directions.
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8.4.1 The Models

Let G(z1,- - ,2p) = B(X¢|X4—1 = 21, -, Xi—p = x,) be the autoregres-
sive function. Then, one can write

Xt = G(Xt_l, cee ,Xt_p) + Et, (827)

with E{e;|X;—1,---, X;—p} = 0. The autoregressive function G is the best
prediction function in the sense that G minimizes the expected prediction
€rror:

mginE(Xt —g(X1, - ,XH,))Q.

As mentioned in §8.1, the saturated nonparametric function G(z1,--- ,zp)
cannot be estimated with reasonable accuracy due to the curse of dimen-
sionality. Thus, some forms on G(+) are frequently imposed. They are often
approximations to the function G(-). For example, the model (8.1) can be
viewed as searching for the best FAR model to approximate the function
G. The larger the class of the models, the smaller the approximation errors
(modeling biases) but the larger the variance of the estimated unknown
parameters/functions. Therefore, there is always a trade-off between these
two competing demands.

A generalization of the FAR model is to allow its coefficient functions to
depend on the linear combinations of past values, called indices. Let X;_1 =
(X¢-1, -, X¢—p) and B be an unknown direction in the p-dimensional
space R?, namely ||3|| = 1. The adaptive FAR (AFAR) model approximates
the autoregressive function G by the family of functions of form

g(x) = go(BTx) + Z gj (B7x) xj. (8.28)
j=1

In particular, when the function G admits really the form (8.28), namely
G(x) = g(x), the adaptive FAR model (AFAR) is given by (see (8.27))

P
Xi=g0(B"Xe-1) + > g;(B"Xi-1) X + &1 (8.29)

j=1

In addition, it is typically assumed that &; is independent of X;_.

The class of AFAR models is clearly larger than the class of FAR models.
This allows one to choose the important model-dependent direction 3 to
reduce modeling biases. On the other hand, the extra parameters in 8 do
not introduce much extra difficulty in statistical estimation. Indeed, the
parameter 3 can usually be estimated at the root-n rate, and g can be
estimated as well as if 8 were known. Model (8.29) includes many useful
statistical models. Here are some examples.
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Example 8.8 (FAR model) If we let 8 be the unit vector with the dth
position 1 and the rest elements 0, then ,BTXt,l = X;_q4. Thus, the model
(8.29) includes the FAR model (8.1) as a specific case. By searching for
the best direction 3, we allow the model-dependent variable not only the
lagged variables but also their linear combinations. [

Example 8.9 (Ezpanded variables) As in multiple linear regression, the
FAR model and its related techniques can be applied to the situations with
expanded variables such as the transformations of the lagged variables and
their interactions. For example, the techniques would allow one to handle
the model

Xo = go(B"Xem1)+ > ;BT K1) X

j=1
p P
+3 3 0 (BT X 1) X X (8.30)
i=1 j=1
By regarding this model as a stochastic regression model as in §8.3.2, we
introduce the dependent variable Y; = X; and the predictors
Xw=1, Xn=Xi1, -, Xip=Xiy,
Xip1 = X7y, Xipr2=Xe1Xp0, o, Xpg= Xt{p,

where ¢ = p + p(p + 1)/2. Then, the model (8.29) can be written as
Y;S = g(ﬁlth + -+ ﬂpti)TXI + €,

where X} is a vector of length 1+p+p(p+1)/2 containing all of the afore-
mentioned predictors, and g is a vector of their corresponding coefficient
functions. The techniques in §8.4.3-68.4.6 continue to apply. (]

Example 8.10 (Single index model) By taking the rest of the coeflicients
in model (8.30) as zero, the AFAR model can be used to handle the follow-
ing single-index model:

X = QO(ﬁTthl) + &¢.

This model has been popul