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Preface

Among many exciting developments in statistics over the last two decades,
nonlinear time series and data-analytic nonparametric methods have greatly
advanced along seemingly unrelated paths. In spite of the fact that the ap-
plication of nonparametric techniques in time series can be traced back to
the 1940s at least, there still exists healthy and justified skepticism about
the capability of nonparametric methods in time series analysis. As en-
thusiastic explorers of the modern nonparametric toolkit, we feel obliged
to assemble together in one place the newly developed relevant techniques.
The aim of this book is to advocate those modern nonparametric techniques
that have proven useful for analyzing real time series data, and to provoke
further research in both methodology and theory for nonparametric time
series analysis.

Modern computers and the information age bring us opportunities with
challenges. Technological inventions have led to the explosion in data col-
lection (e.g., daily grocery sales, stock market trading, microarray data).
The Internet makes big data warehouses readily accessible. Although clas-
sic parametric models, which postulate global structures for underlying
systems, are still very useful, large data sets prompt the search for more
refined structures, which leads to better understanding and approximations
of the real world. Beyond postulated parametric models, there are infinite
other possibilities. Nonparametric techniques provide useful exploratory
tools for this venture, including the suggestion of new parametric models
and the validation of existing ones.

In this book, we present an up-to-date picture of techniques for analyz-
ing time series data. Although we have tried to maintain a good balance
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among methodology, theory, and numerical illustration, our primary goal
is to present a comprehensive and self-contained account for each of the
key methodologies. For practical relevant time series models, we aim for
exposure with definition, probability properties (if possible), statistical in-
ference methods, and numerical examples with real data sets. We also in-
dicate where to find our (only our!) favorite computing codes to implement
these statistical methods. When soliciting real-data examples, we attempt
to maintain a good balance among different disciplines, although our per-
sonal interests in quantitative finance, risk management, and biology can
be easily seen. It is our hope that readers can apply these techniques to
their own data sets.

We trust that the book will be of interest to those coming to the area
for the first time and to readers more familiar with the field. Application-
oriented time series analysts will also find this book useful, as it focuses on
methodology and includes several case studies with real data sets. We be-
lieve that nonparametric methods must go hand-in-hand with parametric
methods in applications. In particular, parametric models provide explana-
tory power and concise descriptions of the underlying dynamics, which,
when used sensibly, is an advantage over nonparametric models. For this
reason, we have also provided a compact view of the parametric methods
for both linear and selected nonlinear time series models. This will also
give new comers sufficient information on the essence of the more classical
approaches. We hope that this book will reflect the power of the integration
of nonparametric and parametric approaches in analyzing time series data.
The book has been prepared for a broad readership—the prerequisites are
merely sound basic courses in probability and statistics. Although advanced
mathematics has provided valuable insights into nonlinear time series, the
methodological power of both nonparametric and parametric approaches
can be understood without sophisticated technical details. Due to the in-
nate nature of the subject, it is inevitable that we occasionally appeal to
more advanced mathematics; such sections are marked with a “*”. Most
technical arguments are collected in a “Complements” section at the end
of each chapter, but key ideas are left within the body of the text.

The introduction in Chapter 1 sets the scene for the book. Chapter 2
deals with basic probabilistic properties of time series processes. The high-
lights include strict stationarity via ergodic Markov chains (§2.1) and mix-
ing properties (§2.6). We also provide a generic central limit theorem for
kernel-based nonparametric regression estimation for α-mixing processes.
A compact view of linear ARMA models is given in Chapter 3, including
Gaussian MLE (§3.3), model selection criteria (§3.4), and linear forecasting
with ARIMA models (§3.7). Chapter 4 introduces three types of paramet-
ric nonlinear models. An introduction on threshold models that emphasizes
developments after Tong (1990) is provided. ARCH and GARCH models
are presented in detail, as they are less exposed in statistical literature.
The chapter concludes with a brief account of bilinear models. Chapter 5
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introduces the nonparametric kernel density estimation. This is arguably
the simplest problem for understanding nonparametric techniques. The re-
lation between “localization” for nonparametric problems and “whitening”
for time series data is elucidated in §5.3. Applications of nonparametric
techniques for estimating time trends and univariate autoregressive func-
tions can be found in Chapter 6. The ideas in Chapter 5 and §6.3 provide a
foundation for the nonparametric techniques introduced in the rest of the
book. Chapter 7 introduces spectral density estimation and nonparametric
procedures for testing whether a series is white noise. Various high-order au-
toregressive models are highlighted in Chapter 8. In particular, techniques
for estimating nonparametric functions in FAR models are introduced in
§8.3. The additive autoregressive model is exposed in §8.5, and methods for
estimating conditional variance or volatility functions are detailed in §8.7.
Chapter 9 outlines approaches to testing a parametric family of models
against a family of structured nonparametric models. The wide applicabil-
ity of the generalized likelihood ratio test is emphasized. Chapter 10 deals
with nonlinear prediction. It highlights the features that distinguish non-
linear prediction from linear prediction. It also introduces nonparametric
estimation for conditional predictive distribution functions and conditional
minimum volume predictive intervals.
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The interdependence of the chapters is depicted above, where solid di-
rected lines indicate prerequisites and dotted lines indicate weak associ-
ations. For lengthy chapters, the dependence among sections is not very
strong. For example, the sections in Chapter 4 are fairly independent, and
so are those in Chapter 8 (except that §8.4 depends on §8.3, and §8.7 de-
pends on the rest). They can be read independently. Chapter 5 and §6.3
provide a useful background for nonparametric techniques. With an under-
standing of this material, readers can jump directly to sections in Chapters
8 and 9. For readers who wish to obtain an overall impression of the book,
we suggest reading Chapter 1, §2.1, §2.2, Chapter 3, §4.1, §4.2, Chapter 5,
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§6.3, §8.3, §8.5, §8.7, §9.1, §9.2, §9.4, §9.5 and §10.1. These core materials
may serve as the text for a graduate course on nonlinear time series.

Although the scope of the book is wide, we have not achieved complete-
ness. The nonparametric methods are mostly centered around kernel/local
polynomial based smoothing. Nonparametric hypothesis testing with struc-
tured nonparametric alternatives is mainly confined to the generalized like-
lihood ratio test. In fact, many techniques that are introduced in this
book have not been formally explored mathematically. State-space mod-
els are only mentioned briefly within the discussion on bilinear models and
stochastic volatility models. Multivariate time series analysis is untouched.
Another noticeable gap is the lack of exposure of the variety of paramet-
ric nonlinear time series models listed in Chapter 3 of Tong (1990). This
is undoubtedly a shortcoming. In spite of the important initial progress,
we feel that the methods and theory of statistical inference for some of
those models are not as well-established as, for example, ARCH/GARCH
models or threshold models. Their potential applications should be further
explored.

Extensive effort was expended in the composition of the reference list,
which, together with the bibliographical notes, should guide readers to a
wealth of available materials. Although our reference list is long, it merely
reflects our immediate interests. Many important papers that do not fit
our presentation have been omitted. Other omissions and discrepancies are
inevitable. We apologize for their occurrence.

Although we both share the responsibility for the whole book, Jianqing
Fan was the lead author for Chapters 1 and 5–9 and Qiwei Yao for Chapters
2–4 and 10.

Many people have been of great help to our work on this book. In partic-
ular, we would like to thank Hong-Zhi An, Peter Bickel, Peter Brockwell,
Yuzhi Cai, Zongwu Cai, Kung-Sik Chan, Cees Diks, Rainer Dahlhaus, Li-
udas Giraitis, Peter Hall, Wai-Keung Li, Jianzhong Lin, Heng Peng, Liang
Peng, Stathis Paparoditis, Wolfgang Polonik, John Rice, Peter Robinson,
Richard Smith, Howell Tong, Yingcun Xia, Chongqi Zhang, Wenyang Zhang,
and anonymous reviewers. Thanks also go to Biometrika for permission
to reproduce Figure 6.10, to Blackwell Publishers Ltd. for permission to
reproduce Figures 8.8, 8.15, 8.16, to Journal of American Statistical As-
sociation for permission to reproduce Figures 8.2 – 8.5, 9.1, 9.2, 9.5, and
10.4 – 10.12, and to World Scientific Publishing Co, Inc. for permission to
reproduce Figures 10.2 and 10.3.

Jianqing Fan’s research was partially supported by the National Sci-
ence Foundation and National Institutes of Health of the USA and the
Research Grant Council of the Hong Kong Special Administrative Region.
Qiwei Yao’s work was partially supported by the Engineering and Physical
Sciences Research Council and the Biotechnology and Biological Sciences
Research Council of the UK. This book was written while Jianqing Fan was
employed by the University of California at Los Angeles, the University of
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North Carolina at Chapel Hill, and the Chinese University of Hong Kong,
and while Qiwei Yao was employed by the University of Kent at Canterbury
and the London School of Economics and Political Science. We acknowl-
edge the generous support and inspiration of our colleagues. Last but not
least, we would like to take this opportunity to express our gratitude to all
our collaborators for their friendly and stimulating collaboration. Many of
their ideas and efforts have been reflected in this book.

December 2002 Jianqing Fan
Qiwei Yao
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1
Introduction

In attempts to understand the world around us, observations are frequently
made sequentially over time. Values in the future depend, usually in a
stochastic manner, on the observations available at present. Such depen-
dence makes it worthwhile to predict the future from its past. Indeed, we
will depict the underlying dynamics from which the observed data are gen-
erated and will therefore forecast and possibly control future events. This
chapter introduces some examples of time series data and probability mod-
els for time series processes. It also gives a brief overview of the fundamental
ideas that will be introduced in this book.

1.1 Examples of Time Series

Time series analysis deals with records that are collected over time. The
time order of data is important. One distinguishing feature in time series
is that the records are usually dependent. The background of time series
applications is very diverse. Depending on different applications, data may
be collected hourly, daily, weekly, monthly, or yearly, and so on. We use
notation such as {Xt} or {Yt} (t = 1, · · · , T ) to denote a time series of
length T . The unit of the time scale is usually implicit in the notation
above . We begin by introducing a few real data sets that are often used in
the literature to illustrate time series modeling and forecasting.

Example 1.1 (Sunspot data) The recording of sunspots dates back as far
as 28 B.C., during the Western Han Dynasty in China (see, e.g., Needham
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FIGURE 1.1. Annual means of Wolf’s sunspot numbers from 1700 to 1994.

1959, p. 435 and Tong, 1990, p. 419). Dark spots on the surface of the
Sun have consequences in the overall evolution of its magnetic oscillation.
They also relate to the motion of the solar dynamo. The Zurich series
of sunspot relative numbers is most commonly analyzed in the literature.
Izenman (1983) attributed the origin and subsequent development of the
Zurich series to Johann Rudolf Wolf (1816–1893). Let Xt be the annual
means of Wolf’s sunspot numbers, or simply the sunspot numbers in year
1770 + t. The sunspot numbers from 1770 to 1994 are plotted against time
in Figure 1.1. The horizontal axis is the index of time t, and the vertical
axis represents the observed value Xt over time t. Such a plot is called a
time series plot . It is a simple but useful device for analyzing time series
data.

Example 1.2 (Canadian lynx data) This data set consists of the annual
fur returns of lynx at auction in London by the Hudson Bay Company for
the period 1821–1934, as listed by Elton and Nicolson (1942). It is a proxy
of the annual numbers of the Canadian lynx trapped in the Mackenzie
River district of northwest Canada and reflects to some extent the popu-
lation size of the lynx in the Mackenzie River district. Hence, it helps us
to study the population dynamics of the ecological system in that area.
Indeed, if the proportion of the number of lynx being caught to the pop-
ulation size remains approximately constant, after logarithmic transforms,
the differences between the observed data and the population sizes remain
approximately constant. For further background information on this data
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FIGURE 1.2. Time series for the number (on log10 scale) of lynx trapped in the
MacKenzie River district over the period 1821–1934.

set, we refer to §7.2 of Tong (1990). Figure 1.2 depicts the time series plot
of

Xt = log10(number of lynx trapped in year 1820 + t), t = 1, 2, · · · , 114.

The periodic fluctuation displayed in this time series has profoundly influ-
enced ecological theory. The data set has been constantly used to examine
such concepts as “balance-of-nature”, predator and prey interaction, and
food web dynamics, for example, see Stenseth et al. (1999) and the refer-
ences therein.

Example 1.3 (Interest rate data) Short-term risk-free interest rates play
a fundamental role in financial markets. They are directly related to con-
sumer spending, corporate earnings, asset pricing, inflation, and the overall
economy. They are used by financial institutions and individual investors
to hedge the risks of portfolios. There is a vast amount of literature on in-
terest rate dynamics, see, for example, Duffie (1996) and Hull (1997). This
example concerns the yields of the three-month, six-month, and twelve-
month Treasury bills from the secondary market rates (on Fridays). The
secondary market rates are annualized using a 360-day year of bank in-
terest and quoted on a discount basis. The data consist of 2,386 weekly
observations from July 17, 1959 to September 24, 1999, and are presented
in Figure 1.3. The data were previously analyzed by Andersen and Lund
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FIGURE 1.3. Yields of Treasury bills from July 17, 1959 to December 31, 1999
(source: Federal Reserve): (a) Yields of three-month Treasury bills; (b) yields of
six-month Treasury bills; and (c) yields of twelve-month Treasury bills.
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FIGURE 1.4. The Standard and Poor’s 500 Index from January 3, 1972 to De-
cember 31, 1999 (on the natural logarithm scale).

(1997) and Gallant and Tauchen (1997), among others. This is a multivari-
ate time series. As one can see in Figure 1.3, they exhibit similar structures
and are highly correlated. Indeed, the correlation coefficients between the
yields of three-month and six-month and three-month and twelve-month
Treasury bills are 0.9966 and 0.9879, respectively. The correlation matrix
among the three series is as follows:




1.0000 0.9966 0.9879
0.9966 1.0000 0.9962
0.9879 0.9962 1.0000


 .

Example 1.4 (The Standard and Poor’s 500 Index) The Standard and
Poor’s 500 index (S&P 500) is a value-weighted index based on the prices
of the 500 stocks that account for approximately 70% of the total U.S.
equity market capitalization. The selected companies tend to be the lead-
ing companies in leading industries within the U.S. economy. The index is
a market capitalization-weighted index (shares outstanding multiplied by
stock price)—the weighted average of the stock price of the 500 compa-
nies. In 1968, the S&P 500 became a component of the U.S. Department
of Commerce’s Index of Leading Economic Indicators, which are used to
gauge the health of the U.S. economy. It serves as a benchmark of stock
market performance against which the performance of many mutual funds
is compared. It is also a useful financial instrument for hedging the risks
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FIGURE 1.5. Time series plots for the environmental data collected in Hong
Kong between January 1, 1994 and December 31, 1995: (a) number of hospital
admissions for circulatory and respiratory problems; (b) the daily average level
of sulfur dioxide; (c) the daily average level of nitrogen dioxide; and (d) the daily
average level of respirable suspended particulates.

of market portfolios. The S&P 500 began in 1923 when the Standard and
Poor’s Company introduced a series of indices, which included 233 compa-
nies and covered 26 industries. The current S&P 500 Index was introduced
in 1957. Presented in Figure 1.4 are the 7,076 observations of daily clos-
ing prices of the S&P 500 Index from January 3, 1972 to December 31,
1999. The logarithm transform has been applied so that the difference is
proportional to the percentage of investment return.
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Example 1.5 (An environmental data set) The environmental condition
plays a role in public health. There are many factors that are related to
the quality of air that may affect human circulatory and respiratory sys-
tems. The data set used here (Figure 1.5) comprises daily measurements of
pollutants and other environmental factors in Hong Kong between January
1, 1994 and December 31, 1995 (courtesy of Professor T.S. Lau). We are
interested in studying the association between the level of pollutants and
other environmental factors and the number of total daily hospital admis-
sions for circulatory and respiratory problems. Among pollutants that were
measured are sulfur dioxide, nitrogen dioxide, and respirable suspended
particulates (in µg/m3). The correlation between the variables nitrogen
dioxide and particulates is quite high (0.7820). However, the correlation
between sulfur dioxide and nitrogen dioxide is not very high (0.4025). The
correlation between sulfur dioxide and respirable particulates is even lower
(0.2810). This example distinguishes itself from Example 1.3 in which the
interest mainly focuses on the study of cause and effect.

Example 1.6 (Signal processing—deceleration during car crashes) Time
series often appear in signal processing. As an example, we consider the
signals from crashes of vehicles. Airbag deployment during a crash is ac-
complished by a microprocessor-based controller performing an algorithm
on the digitized output of an accelerometer. The accelerometer is typically
mounted in the passenger compartment of the vehicle. It experiences de-
celerations of varying magnitude as the vehicle structure collapses during a
crash impact. The observed data in Figure 1.6 (courtesy of Mr. Jiyao Liu)
are the time series of the acceleration (relative to the driver) of the vehi-
cle, observed at 1.25 milliseconds per sample. During normal driving, the
acceleration readings are very small. When vehicles are crashed or driven
on very rough and bumpy roads, the readings are much higher, depend-
ing on the severity of the crashes. However, not all such crashes activate
airbags. Federal standards define minimum requirements of crash condi-
tions (speed and barrier types) under which an airbag should be deployed.
Automobile manufacturers institute additional requirements for the airbag
system. Based on empirical experiments using dummies, it is determined
whether a crash needs to trigger an airbag, depending on the severity of
injuries. Furthermore, for those deployment events, the experiments de-
termine the latest time (required time) to trigger the airbag deployment
device. Based on the current and recent readings, dynamical decisions are
made on whether or not to deploy airbags.

These examples are, of course, only a few of the multitude of time se-
ries data existing in astronomy, biology, economics, finance, environmental
studies, engineering, and other areas. More examples will be introduced
later. The goal of this book is to highlight useful techniques that have
been developed to draw inferences from data, and we focus mainly on non-
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FIGURE 1.6. Time series plots for signals recorded during crashes of four vehicles.
The acceleration (in a) is plotted against time (in milliseconds) after crashes. The
top panels are the events that require no airbag deployments. The bottom panels
are the events that need the airbag triggered before the required time.

parametric and semiparametric techniques that deal with nonlinear time
series, although a compact and largely self-contained review of the most
frequently used parametric nonlinear and linear models and techniques is
also provided. We aim to accomplish a stochastic model that will represent
the data well in the sense that the observed time series can be viewed as a
realization from the stochastic process. The model should reflect the under-
lying dynamics and can be used for forecasting and controlling whenever
appropriate. The observed time series are typically regarded as a realiza-
tion from the stochastic process. An important endeavor is to unveil the
unknown probability laws that describe well the underlying process. Once
such a model has been established, it can be used for various purposes such
as understanding and interpreting the mechanisms that generated the data,
forecasting, and controlling the future.
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1.2 Objectives of Time Series Analysis

The objectives of time series analysis are diverse, depending on the back-
ground of applications. Statisticians usually view a time series as a realiza-
tion from a stochastic process. A fundamental task is to unveil the prob-
ability law that governs the observed time series. With such a probability
law, we can understand the underlying dynamics, forecast future events, and
control future events via intervention. Those are the three main objectives
of time series analysis.

There are infinitely many stochastic processes that can generate the same
observed data, as the number of observations is always finite. However,
some of these processes are more plausible and admit better interpretation
than others. Without further constraints on the underlying process, it is
impossible to identify the process from a finite number of observations. A
popular approach is to confine the probability law to a specified family and
then to select a member in that family that is most plausible. The former
is called modeling and the latter is called estimation, or more generally
statistical inference. When the form of the probability laws in a family
is specified except for some finite-dimensional defining parameters, such a
model is referred to as a parametric model. When the defining parameters lie
in a subset of an infinite dimensional space or the form of probability laws
is not completely specified, such a model is often called a nonparametric
model . We hasten to add that the boundary between parametric models
and nonparametric models is not always clear. However, such a distinction
helps us in choosing an appropriate estimation method. An analogy is that
the boundary between “good” and “bad”, “cold” and “hot”, “healthy” and
“unhealthy” is moot, but such a distinction is helpful to characterize the
nature of the situation.

Time series analysis rests on proper statistical modeling. Some of the
models will be given in §1.3 and §1.5, and some will be scattered throughout
the book. In selecting a model, interpretability, simplicity, and feasibility
play important roles. A selected model should reasonably reflect the physi-
cal law that governs the data. Everything else being equal, a simple model
is usually preferable. The family of probability models should be reason-
ably large to include the underlying probability law that has generated the
data but should not be so large that defining parameters can no longer be
estimated with reasonably good accuracy. In choosing a probability model,
one first extracts salient features from the observed data and then chooses
an appropriate model that possesses such features. After estimating pa-
rameters or functions in the model, one verifies whether the model fits the
data reasonably well and looks for further improvement whenever possi-
ble. Different purposes of the analysis may also dictate the use of different
models. For example, a model that provides a good fitting and admits nice
interpretation is not necessarily good for forecasting.
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It is not our goal to exhaust all of the important aspects of time se-
ries analysis. Instead, we focus on some recent exciting developments in
modeling and forecasting nonlinear time series, especially those with non-
parametric and semiparametric techniques. We also provide a compact and
comprehensible view of both linear time series models within the ARMA
framework and some frequently used parametric nonlinear models.

1.3 Linear Time Series Models

The most popular class of linear time series models consists of autoregres-
sive moving average (ARMA) models, including purely autoregressive (AR)
and purely moving-average (MA) models as special cases. ARMA models
are frequently used to model linear dynamic structures, to depict linear
relationships among lagged variables, and to serve as vehicles for linear
forecasting. A particularly useful class of models contains the so-called au-
toregressive integrated moving average (ARIMA) models , which includes
stationary ARMA - processes as a subclass.

1.3.1 White Noise Processes
A stochastic process {Xt} is called white noise , denoted as {Xt} ∼WN(0,
σ2), if

EXt = 0, Var(Xt) = σ2, and Cov(Xi, Xj) = 0, for all i �= j.

White noise is defined by the properties of its first two moments only.
It serves as a building block in defining more complex linear time series
processes and reflects information that is not directly observable. For this
reason, it is often called an innovation process in the time series literature.
It is easy to see that a sequence of independent and identically distributed
(i.i.d.) random variables with mean 0 and finite variance σ2 is a special
white noise process. We use the notation IID(0, σ2) to denote such a se-
quence.

The probability behavior of a stochastic process is completely deter-
mined by all of its finite-dimensional distributions. When all of the finite-
dimensional distributions are Gaussian (normal), the process is called a
Gaussian process . Since uncorrelated normal random variables are also in-
dependent, a Gaussian white noise process is, in fact, a sequence of i.i.d.
normal random variables.

1.3.2 AR Models
An autoregressive model of order p ≥ 1 is defined as

Xt = b1Xt−1 + · · ·+ bpXt−p + εt, (1.1)
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A realization from an AR(2) model

FIGURE 1.7. A length of 114 time series from the AR(2) model
Xt = 1.07 + 1.35Xt−1 − 0.72Xt−2 + εt with {εt} ∼i.i.d. N(0, 0.242). The pa-
rameters are taken from the AR(2) fit to the lynx data.

where {εt} ∼ WN(0, σ2). We write {Xt} ∼ AR(p). The time series {Xt}
generated from this model is called the AR(p) process.

Model (1.1) represents the current state Xt through its immediate p past
values Xt−1, · · · , Xt−p in a linear regression form. The model is easy to
implement and therefore is arguably the most popular time series model in
practice. Comparing it with the usual linear regression models, we exclude
the intercept in model (1.1). This can be absorbed by either allowing εt to
have a nonzero mean or deleting the mean from the observed data before
the fitting. The latter is in fact common practice in time series analysis.

Model (1.1) explicitly specifies the relationship between the current value
and its past values. This relationship also postulates the way to generate
such an AR(p) process. Given a set of initial values X−t0−1, · · · , X−t0−p,
we can obtain Xt for t ≥ −t0 iteratively from (1.1) by generating {εt}
from, for example, the normal distribution N(0, σ2). Discarding the first
t0 + 1 values, we regard {Xt, t ≥ 1} as a realization of the process defined
by (1.1). We choose t0 > 0 sufficiently large to minimize the artifact due
to the arbitrarily selected initial values. Figure 1.7 shows a realization of a
time series of length 114 from an AR(2)-model.

We will also consider nonlinear autoregressive models in this book. We
adopt the convention that the term AR-model always refers to a linear
autoregressive model of the form (1.1) unless otherwise specified.
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1.3.3 MA Models
A moving average process with order q ≥ 1 is defined as

Xt = εt + a1εt−1 + · · ·+ aqεt−q, (1.2)

where {εt} ∼WN(0, σ2). We write {Xt} ∼ MA(q).
An MA-model expresses a time series as a moving average of a white

noise process. The correlation between Xt and Xt−h is due to the fact
that they may depend on the same εt−j ’s. Obviously, Xt and Xt−h are
uncorrelated when h > q.

Because the white noise {εt} is unobservable, the implementation of an
MA-model is more difficult than that of an AR - model. The usefulness
of MA models may be viewed from two aspects. First, they provide par-
simonious representations for time series exhibiting MA-like correlation
structure. As an illustration, we consider a simple MA(1)-model

Xt = εt − 0.9εt−1.

It can be proved that Xt admits the equivalent expression

Xt +
∞∑
j=1

(0.9)jXt−j = εt.

(The infinite sum above converges in probability.) Note that 0.920 = 0.1216.
Therefore, if we model a data set generated from this MA(1) process in
terms of an AR(p) - model, then we need to use high orders such as p > 20.
This will obscure the dynamic structure and will also render inaccurate
estimation of the parameters in the AR(p) model.

The second advantage of MA models lies in their theoretical tractability.
It is easy to see from the representation of (1.2) that the exploration of
the first two moments of {Xt} can be transformed to that of {εt}. The
white noise {εt} can be effectively regarded as an “i.i.d.” sequence when
we confine ourselves to the properties of the first two moments only. We
will see that a routine technique in linear time series analysis is to represent
a more general time series, including the AR-process, as a moving average
process, typically of infinite order (see §2.1).

A moving average series is very easy to generate. One first generates a
white noise process {εt} ∼ WN(0, σ2) from, for example, normal distri-
bution N(0, σ2) and then computes the observed series {Xt} according to
(1.2).

1.3.4 ARMA Models
The AR and MA classes can be further enlarged to model more complicated
dynamics of time series. Combining AR and MA forms together yields the
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popular autoregressive moving average (ARMA) model defined as

Xt = b1Xt−1 + · · ·+ bpXt−p + εt + a1εt−1 + · · ·+ aqεt−q, (1.3)

where {εt} ∼WN(0, σ2), p, q ≥ 0 are integers, and (p, q) is called the order
of the model. We write {Xt} ∼ ARMA(p, q). Using the backshift operator,
the model can be written as

b(B)Xt = a(B)εt,

where B denotes the backshift operator, which is defined as

BkXt = Xt−k, k = ±1,±2, · · · ,
and a(·) and b(·) are polynomials defined as

b(z) = 1− b1z − · · · − bpzp, a(z) = 1 + a1z + · · ·+ aqz
q.

ARMA models are one of the most frequently used families of parametric
models in time series analysis. This is due to their flexibility in approximat-
ing many stationary processes. However, there is no universal key that can
open every door. The ARMA models do not approximate well the nonlinear
phenomena described in §1.4 below. enddocument

1.3.5 ARIMA Models
A useful subclass of ARMA models consists of the so-called stationary mod-
els defined in §2.1. The stationarity reflects certain time-invariant proper-
ties of time series and is somehow a necessary condition for making a statis-
tical inference. However, real time series data often exhibit time trend (such
as slowly increasing) and/or cyclic features that are beyond the capacity of
stationary ARMA models. The common practice is to preprocess the data
to remove those unstable components. Taking the difference (more than
once if necessary) is a convenient and effective way to detrend and desea-
sonalize. After removing time trends, we can model the new and remaining
series by a stationary ARMA model. Because the original series is the in-
tegration of the differenced series, we call it an autoregressive integrated
moving average (ARIMA) process.

A time series {Yt} is called an autoregressive integrated moving average
(ARIMA) process with order p, d, and q, denoted as {Yt} ∼ ARIMA(p, d, q),
if its d-order difference Xt = (1−B)dYt is a stationary ARMA(p, q) process,
where d ≥ 1 is an integer, namely, b(B)(1−B)dYt = a(B)εt.

It is easy to see that an ARIMA(p, d, q) model is a special ARMA(p+d, p)
model that is typically nonstationary since b(B)(1 − B)d is a polynomial
of order p+ d. As an illustration, we have simulated a time series of length
200 from the ARIMA(1, 1, 1) model

(1− 0.5B)(1−B)Yt = (1 + 0.3B)εt, {εt} ∼i.i.d N(0, 1). (1.4)
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FIGURE 1.8. (a) A realization of a time series from ARIMA(1, 1, 1) given by
(1.4). The series exhibits an obvious time trend. (b) The first-order difference of
the series.

The original time series is plotted in Figure 1.8(a). The time trend is clearly
visible. Figure 1.8(b) presents the differenced series {Yt − Yt−1}. The de-
creasing time trend is now removed, and the new series appears stable.

1.4 What Is a Nonlinear Time Series?

From the pioneering work of Yule (1927) on AR modeling of the sunspot
numbers to the work of Box and Jenkins (1970) that marked the maturity of
ARMA modeling in terms of theory and methodology, linear Gaussian time
series models flourished and dominated both theoretical explorations and
practical applications. The last four decades have witnessed the continuous
popularity of ARMA modeling, although the original ARMA framework
has been enlarged to include long-range dependence with fractionally in-
tegrated ARMA (Granger and Joyeux 1980, Hosking 1981), multivariate
VARMA and VARMAX models (Hannan and Deistler 1988), and random
walk nonstationarity via cointegration (Engle and Granger 1987). It is safe
to predict that in the future the ARMA model, including its variations,
will continue to play an active role in analyzing time series data due to its
simplicity, feasibility, and flexibility.

However, as early as the 1950s, P.A.P. Moran, in his classical paper (i.e.,
Moran 1953) on the modeling of the Canadian lynx data, hinted at a lim-
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itation of linear models. He drew attention to the “curious feature” that
the residuals for the sample points greater than the mean were signifi-
cantly smaller than those for the sample points smaller than the mean.
This, as we now know, can be well-explained in terms of the so-called
“regime effect” at different stages of population fluctuation (§7.2 of Tong
1990; Stenseth et al.1999). Modeling the regime effect or other nonstandard
features is beyond the scope of Gaussian time series models. (Note that a
stationary purely nondeterministic Gaussian process is always linear; see
Proposition 2.1.) Those nonstandard features, which we refer to as nonlin-
ear features from now on, include, for example, nonnormality, asymmetric
cycles, bimodality, nonlinear relationship between lagged variables, vari-
ation of prediction performance over the state-space, time irreversibility,
sensitivity to initial conditions, and others. They have been well-observed
in many real time series data, including some benchmark sets such as the
sunspot, Canadian lynx, and others. See Tong (1990, 1995) and Tjøstheim
(1994) for further discussion on this topic.

The endeavors to model the nonlinear features above can be divided
into two categories—implicit and explicit. In the former case, we retain the
general ARMA framework and choose the distribution of the white noise
appropriately so that the resulting process exhibits a specified nonlinear
feature (§1.5 of Tong 1990 and references therein). Although the form of
the models is still linear, conditional expectations of the random variables
given their lagged values, for example, may well be nonlinear. Thanks to the
Wold decomposition theorem (p. 187 of Brockwell and Davis 1991), such a
formal linear representation exists for any stationary (see §2.1 below) time
series with no deterministic components. Although the modeling capacity
of this approach is potentially large (Breidt and Davis 1992), it is difficult
in general to identify the “correct” distribution function of the white noise
from observed data. It is not surprising that the research in this direction
has been surpassed by that on explicit models that typically express a
random variable as a nonlinear function of its lagged values. We confine
ourselves in this book to explicit nonlinear models.

Beyond the linear domain, there are infinitely many nonlinear forms to be
explored. The early development of nonlinear time series analysis focused
on various nonlinear parametric forms (Chapter 3 of Tong 1990; Tjøstheim
1994 and the references therein). The successful examples include, among
others, the ARCH-modeling of fluctuating volatility of financial data (En-
gle 1982; Bollerslev 1986) and the threshold modeling of biological and
economic data (§7.2 of Tong 1990; Tiao and Tsay 1994). On the other
hand, recent developments in nonparametric regression techniques provide
an alternative to model nonlinear time series (Tjøstheim 1994; Yao and
Tong 1995 a, b; Härdle, Lütkepohl, and Chen 1997; Masry and Fan 1997).
The immediate advantage of this is that little prior information on model
structure is assumed, and it may offer useful insights for further parametric
fitting. Furthermore, with increasing computing power in recent years, it



16 1. Introduction

has become commonplace to access and to attempt to analyze time series
data of unprecedented size and complexity. With these changes has come
an increasing demand for nonparametric and semiparametric data-analytic
tools that can identify the underlying structure and forecast the future ac-
cording to a new standard of accuracy. The validity of a parametric model
for a large real data set over a long time span is always questionable. All of
these factors have led to a rapid development of computationally intensive
methodologies (see, e.g., Chapter 8) that are designed to identify compli-
cated data structures by exploring local lower-dimensional structures.

1.5 Nonlinear Time Series Models

In this section, we introduce some nonlinear time series models that we will
use later on. This will give us some flavor for nonlinear time series models.
For other parametric models, we refer to Chapter 3 of Tong (1990). We
always assume {εt} ∼ IID(0, σ2) instead of WN(0, σ2) when we introduce
various nonlinear time series models in this section. Technically, this as-
sumption may be weakened when we proceed with theoretical explorations
later on. However, as indicated in a simple example below, a white noise
process is no longer a pertinent building block for nonlinear models, as we
have to look for measures beyond the second moments to characterize the
nonlinear dependence structure.

1.5.1 A Simple Example
We begin with a simple example. We generate a time series of size 200 from
the model

Xt = 2Xt−1/(1 + 0.8X2
t−1) + εt, (1.5)

where {εt} is a sequence of independent random variables uniformly dis-
tributed on [−1, 1]. Figure 1.9(a) shows the 200 data points plotted against
time. The scatterplot of Xt against Xt−1 appears clearly nonlinear; see Fig-
ure 1.9(b). To examine the dependence structure, we compute the sample
correlation coefficient ρ(k) between the variables Xt and Xt−k for each k
and plot it against k in Figure 1.9(c). It is clear from Figure 1.9(c) that
ρ(k) does not appear to die away at least up to lag 50, although the data
are generated from a simple nonlinear autoregressive model with order 1.
In fact, to reproduce the correlation structure depicted in Figure 1.9(c),
we would have to fit an ARMA(p, q) model with p + q fairly large. This
indicates that correlation coefficients are no longer appropriate measures
for the dependence of nonlinear time series.



1.5 Nonlinear Time Series Models 17

•

•
•

•

•
•

•
•

•
•

•

•

•
•
•

•

•

•

•
•

•
•

•

•
•

•

•
•
•••

••

•

•

•

•

•

•

•

•
•
•
•

•

•

•

•••
••

•

•

•

•

•

•

•
•

•

•

•

•

•
••

•

•

•

•

••

•

•

•
•

•

•

•

•

••

•

•

•
•

•

•

•

•

••
•
•

•

•

•

••
•

•

•

•
•
•
••
•
•

•

•••

•

•

•

•

•
•

•

•

•

•

•
•

•
•

••

•

•
••

•

•

•
•

•

•
•

••

•

••

•

•

••

•
•

•

•
•

•

•

••

•
•

•

•

••
••
••

•

•

•

•
•

•

•

••

•

•

•

•••

•

•

•

•
•

•

•
•

•
•
•

•

•

•

•
•

0 50 100 150 200

-2
-1

0
1

2

A simulated time series

(a)

•
•

•

•
•

•
•

•
•

•

•

•
•

•

•

•

•

•
•

•
•

•

•
•

•

•
•

• ••

••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

• ••
••

•

•

•

•

•

•

•
•

•

•

•

•

•
••

•

•

•

•

••

•

•

•
•

•

•

•

•

• •

•

•

•
•

•

•

•

•

• •
•

•

•

•

•

• •

-2 -1 0 1 2

-2
-1

0
1

2

Nonlinear one-step prediction

(b)

(c)
Lag

0 20 40 60 80 100

-0
.4

0.
0

0.
4

0.
8

Autocorrelation function

FIGURE 1.9. (a) A realization of a time series from model (1.5). (b) Scatter plot
of the variable {Xt−1} against {Xt}. (c) The sample autocorrelation function;
the two dashed lines are approximate 95%-confidence limits around 0.

1.5.2 ARCH Models
An autoregressive conditional heteroscedastic (ARCH) model is defined as

Xt = σtεt and σ2
t = a0 + b1X

2
t−1 + · · ·+ bqX

2
t−q, (1.6)
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where a0 ≥ 0, bj ≥ 0, and {εt} ∼ IID(0, 1).
ARCH models were introduced by Engle (1982) to model the varying

(conditional) variance or volatility of time series. It is often found in eco-
nomics and finance that the larger values of time series also lead to larger in-
stability (i.e., larger variances), which is termed (conditional) heteroscedas-
ticity . For example, it is easy to see from Figure 1.3 that the yields of
Treasury bills exhibit the largest variation around the peaks. In fact, the
conditional heteroscedasticity is also observed in the sunspot numbers in
Figure 1.1 and the car crash signals in Figure 1.6.

Bollerslev (1986) introduced a generalized autoregressive conditional het-
eroscedastic (GARCH) model by replacing the second equation in (1.6)
with

σ2
t = a0 + a1σ

2
t−1 + · · ·+ apσ

2
t−p + b1X

2
t−1 + · · ·+ bqX

2
t−q, (1.7)

where aj ≥ 0 and bj ≥ 0.

1.5.3 Threshold Models
The threshold autoregressive (TAR) model initiated by H. Tong assumes
different linear forms in different regions of the state-space. The division of
the state-space is usually dictated by one threshold variable, say, Xt−d, for
some d ≥ 1. The model is of the form

Xt = b
(i)
0 + b

(i)
1 Xt−1 + · · ·+ b(i)p Xt−p + ε

(i)
t , if Xt−d ∈ Ωi (1.8)

for i = 1, · · · k, where {Ωi} forms a (nonoverlapping) partition of the real
line, and {ε(i)t } ∼ IID(0, σ2

i ). We refer the reader to §5.2 and Tong (1990)
for more detailed discussion on TAR models.

The simplest thresholding model is the two-regime (i.e. k = 2) TAR
model with Ω1 = {Xt−d ≤ τ}, where the threshold τ is unknown. As an
illustration, we simulated a time series from the two-regime TAR(2)-model

Xt =
{

0.62 + 1.25Xt−1 − 0.43Xt−2 + εt, Xt−2 ≤ 3.25
2.25 + 1.52Xt−1 − 1.24Xt−2 + ε′

t, Xt−2 > 3.25, (1.9)

where εt ∼ N(0, 0.22) and ε′
t ∼ N(0, 0.252). This model results from a

two-regime TAR fit to the lynx data with a prescribed threshold variable
Xt−2; see §7.2.6 of Tong (1990). Figure 1.10 depicts the simulated data and
their associated sample autocorrelation function. Although the form of the
model above is simple, it effectively captures many interesting features of
the lynx dynamics; see §7.2 of Tong (1990).

1.5.4 Nonparametric Autoregressive Models
Nonlinear time series have infinite possible forms. We cannot entertain
the thought that one particular family would fit all data well. A natural
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FIGURE 1.10. (a) A realization of a time series of length 200 from model (1.9).
(b) and (c) The sample autocorrelation functions for the simulated data and the
lynx data: two lines are approximate 95%-confidence limits around 0.

alternative is to adopt a nonparametric approach. In general, we can assume
that

Xt = f(Xt−1, . . . , Xt−p) + σ(Xt−1, . . . , Xt−p)εt, (1.10)
where f(·) and σ(·) are unknown functions, and {εt} ∼ IID(0, 1). Instead
of imposing concrete forms on functions f and σ, we only make some qual-
itative assumptions, such as that the functions f and σ are smooth. Model
(1.10) is called a nonparametric autoregressive conditional heteroscedastic
(NARCH) model or nonparametric autoregressive (NAR) model if σ(·) is
a constant.

Obviously, model (1.10) is very general, making very few assumptions on
how the data were generated. It allows heteroscedasticity. However, such a
model is only useful when p = 1 or 2. For moderately large p, the functions
in such a “saturated” nonparametric form are difficult to estimate unless
the sample size is astronomically large. The difficulty is intrinsic and is often
referred to as the “curse of dimensionality” in the nonparametric regression
literature; see §7.1 of Fan and Gijbels (1996) for further discussion.
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There are many useful models between parametric models and nonpara-
metric models (1.10). For example, an extension of the thresholding model
results is the so-called function-coefficient autoregressive (FAR) form

Xt = f1(Xt−d)X1 + · · ·+ fp(Xt−d)Xt−p + σ(Xt−d)εt, (1.11)

where d > 0 and f1(·), · · · , fp(·) are unknown coefficient functions. We write
{Xt} ∼ FAR(p). Obviously, a FAR(p) model is more flexible than a TAR(p)
model. The coefficient functions in FAR models can be well-estimated with
moderately large samples.

A powerful extension of (1.11) is to replace the “threshold” variable by
a linear combination of the lagged variables of Xt with the coefficients de-
termined by the data. This will enlarge the class of models substantially.
Furthermore, it is of important practical relevance. For example, in model-
ing population dynamics it is of great biological interest to detect whether
the population abundance or the population growth dominates the nonlin-
earity. We will discuss such a generalized FAR model in §8.4.

Another useful nonparametric model, which is a natural extension of the
AR(p) model, is the following additive autoregressive model :

Xt = f1(X1) + · · ·+ fp(Xt−p) + εt. (1.12)

Denote it by {Xt} ∼ AAR(p). Again, this model enhances the flexibil-
ity of AR models greatly. Because all of the unknown functions are one-
dimensional, the difficulties associated with the curse of dimensionality can
be substantially eased.

1.6 From Linear to Nonlinear Models

Nonlinear functions may well be approximated by either local lineariza-
tion or global spline approximations. We illustrate these fundamental ideas
below in terms of models (1.11) and (1.12). On the other hand, a goodness-
of-fit test should be carried out to assess whether a nonparametric model
is necessary in contrast to parametric models such as AR or TAR. The
generalized likelihood ratio statistic provides a useful vehicle for this task.
We briefly discuss the basic idea below. These topics will be systematically
presented in Chapters 5–9.

1.6.1 Local Linear Modeling
Due to a lack of knowledge of the form of functions f1, · · · , fp in model
(1.11), we can only use their qualitative properties: these functions are
smooth and hence can be locally approximated by a constant or a lin-
ear function. To estimate the functions f1, · · · , fp at a given point x0, for
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simplicity of discussion we approximate them locally by a constant

fj(x) ≈ aj , for x ∈ (x0 − h, x0 + h), (1.13)

where h is the size of the neighborhood that the constant approximations
hold. The local parameter aj corresponds to fj(x0). This leads to the local
AR(p) model

Xt ≈ a1Xt−1 + · · ·+ apXt−p + σ(x0)εt, Xt−d ∈ x0 ± h.
Using only the subset of data

{(Xt−p, · · · , Xt) : Xt−d ∈ x0 ± h, t = p+ 1, · · · , T},
we can fit an AR(p) model via the least squares method by minimizing

T∑
t=p+1

(
Xt − a1Xt−1 − · · · − apXt−p

)2
I(|Xt−d − x0| ≤ h), (1.14)

where I(·) is the indicator function. The minimizer depends on the point
x0, which is denoted by (â1(x0), · · · , âp(x0)). This yields an estimator of
f1, · · · , fp at the point x0:

f̂1(x0) = â1(x0), · · · , f̂p(x0) = âp(x0).

Because x0 runs over an interval [a, b], we obtain estimated functions over
[a, b]. To plot them, the estimated functions are frequently evaluated on a
grid of points on [a, b]. Depending on the resolution needed, the number of
grid points typically ranges from 100 to 400. Most of the graphs plotted in
this book use 101 grid points.

The idea above can be improved in two ways. First, the local constant
approximations in (1.13) can be improved by using the local linear approx-
imations:

fj(x) ≈ aj + bj(x− x0) for x ∈ x0 ± h. (1.15)

The local parameter bj corresponds to the local slope of fj at the point x0.
This leads to the following approximate model:

Xt ≈ {a1 + b1(Xt−d − x0)}Xt−1 − · · · − {ap + bp(Xt−d − x0)}Xt−p
+σ(x0)εt for Xt−d ∈ x0 ± h.

Second, the uniform weights in (1.14) can be replaced by the weighting
scheme K((Xt−d − x0)/h) using a nonnegative unimodal function K. This
leads to the minimization of the locally weighted squares

T∑
t=p+1

[
Xt − {a1 + b1(Xt−d − x0)}Xt−1 − · · ·

−{ap + bp(Xt−d − x0)}Xt−p
]2
K

(
Xt−d − x0

h

)
, (1.16)
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FIGURE 1.11. Fitted coefficient functions for the simulated data given in Fig-
ure 1.10(a). Dashed curves are estimated functions and solid curves are true
functions.

which attributes the weight for each term according to the distance between
Xt−d and x0. When K has a support on [−1, 1], the weighted regression
(1.16) uses only the local data points in the neighborhood Xt−d ∈ x0 ± h.
In general, weight functions need not have bounded supports, as long as
they have thin tails. The weight function K is called the kernel function
and the size of the local neighborhood h is called the bandwidth in the
literature of nonparametric function estimation.

As an illustration, we fit a FAR(2)-model with d = 2 to the simulated
data presented in Figure 1.10(a). Note that model (1.9) can be written as
the FAR(2) model with

f̂0
1 (x) =

{
1.25, x ≤ 3.25,
1.52, x > 3.25,

and

f̂0
2 (x) =

{
0.62/x− 0.43, x ≤ 3.25,
2.25/x− 1.24 x > 3.25.

Figure 1.11 depicts the resulting estimates using the Epanechnikov kernel

K(t) =
3
4
(1− t2)+

and bandwidth h = 1.5. Here, x+ is the positive part of x, taking value x
when x ≥ 0 and 0 otherwise. The discontinuity of the underlying functions
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around 3.25 can easily be detected by using nonparametric change-point
techniques. Thus, we fit FAR(2) for two subsets of data with Xt−2 < 3.25
and Xt−2 ≥ 3.25. Even though we do not assume any specific forms of the
coefficient functions, the resulting estimates are quite close to the true func-
tions. After inspecting the nonparametric fitting, one can now postulate a
parameter model such as a TAR(2) to analyze the data further.

The combination of nonparametric and parametric methods has been
proven fruitful. Nonparametric estimates attempt to find a good estimate
among a large class of functions. This reduces the risk of modeling biases
but at the expense of obtaining crude estimates. These estimates provide
us guidance in choosing an appropriate family of parametric models. Para-
metric methods can be used to refine the fitting, which leads to easily
interpretable estimators for the underlying dynamics. This is another rea-
son why we introduce both parametric and nonparametric methods in this
book.

1.6.2 Global Spline Approximation
Local linear modeling cannot be directly employed to fit the additive au-
toregressive model (1.12). To approximate unknown functions f1, · · · , fp
locally at the point (x1, · · · , xp), we need to localize simultaneously in the
variables Xt−1, · · · , Xt−p. This yields a p-dimensional hypercube, which
contains hardly any data points, unless the local neighborhood is very large.
When the local neighborhood is too large to contain enough data points,
the errors in the approximation will be large. This is the key problem un-
derlying the curse of dimensionality. As we will see in §8.5, the local linear
method can be applied to the AAM models by incorporating the backfitting
algorithm .

To attenuate the problem, we approximate nonlinear functions by, for ex-
ample, piecewise linear functions. The positions where piecewise linear func-
tions can possibly change their slopes are called knots . Let tj,1, · · · , tj,mj

be the knots for approximating the unknown function fj (j = 1, · · · , p).
Then

fj(x) ≈ bj,0 + bj,1x+ bj,2(x− tj,1)+ + · · ·+ bj,mj+1(x− tj,k)+. (1.17)

Denote by fj(x,bj) the piecewise linear function on the right-hand side of
(1.17). When the knots are fine enough in the interval [a, b], the resulting
piecewise linear functions can approximate the smooth function fj quite
well. This is an example of polynomial spline modeling. After the spline
approximation with the given knots, one can estimate parameters by the
least squares method: minimize the following sum-of-square errors with
respect to b:

T∑
t=p

{Xt − f1(Xt−1,b1)− · · · − fp(Xt−p,bp)}2. (1.18)
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The estimated functions are simply

f̂j(x) = fj(x, b̂j).

The global spline modeling approach solves one large parametric prob-
lem (1.8). In contrast, the local modeling approaches solve many small
parametric problems.

1.6.3 Goodness-of-Fit Tests
After fitting nonparametric models, we frequently ask whether a parametric
model is adequate. Similarly, after fitting a parametric model, one asks
whether the parametric model has excessive modeling biases. In the latter
case, we can embed the parametric model into a larger family of models,
such as nonparametric models. In both situations, we test a parametric
hypothesis against a nonparametric alternative.

As an example, we consider different models for the simulated data pre-
sented in Figure 1.10(a). To test whether an AR(2) model

H0 : Xt = b1Xt−1 + b2Xt−2 + εt

fits the data, we employ the FAR(2) model

Xt = f1(Xt−2)Xt−1 + f2(Xt−2)Xt−2 + εt

as the alternative hypothesis. One can now compute the residual sum of
squares (RSS) under both null and alternative models; namely,

RSS0 =
T∑
t=3

{
Xt − b̂1Xt−1 − b̂2Xt−2

}2
(1.19)

and

RSS1 =
T∑
t=3

{
Xt − f̂1(Xt−2)Xt−1 − f̂2(Xt−2)Xt−2

}2
. (1.20)

For these particular data, RSS0 = 13.82 and RSS1 = 10.60. Now, define
the generalized likelihood ratio (GLR) statistic as

GLR =
T − 2

2
log(RSS0/RSS1) = 26.25.

The null distribution of the GLR statistic can be found either by the
generalized likelihood theory developed in Fan, Zhang, and Zhang (2001)
or via a bootstrap method. By applying the bootstrap approach, we obtain
the p-value 0% based on 1,000 bootstrap replications. The method will be
detailed in §9.3. This provides strong evidence against the null hypothesis.
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The result is again consistent with the fact that the data were simulated
from (1.9).

Consider now whether the TAR(2) model (1.9) adequately fits the data.
Again, we use the nonparametric FAR(2) model above as the alternative
hypothesis. In this case, the RSS under the null model is given by

RSS0 =
T∑
t=3

{
Xt − f̂0

1 (Xt−2)Xt−1 − f̂0
2 (Xt−2)Xt−2

}2
,

where f̂0
1 and f̂0

2 are simply the (estimated) coefficient functions in model
(1.9). For these particular data, RSS0 = 9.260 and RSS1 = 10.60. This
is possible because the fitting methods under the null and alternative hy-
potheses are not the same. This leads to the generalized likelihood ratio
statistic

GLR =
T − 2

2
log(RSS0/RSS1) = −13.41.

This means that the null model (1.9) fits even better than the nonparamet-
ric alternative model. This is not surprising because the data were drawn
from (1.9).

By applying the bootstrap approach, we obtain the p-value 0.523 based
on 1,000 bootstrap replications. This provides little evidence against H0. In
other words, both the TAR(2) and FAR(2) models provide indistinguish-
able fitting to these simulated data.

1.7 Further Reading

This book does not intend to exhaust all aspects of nonlinear time series
analysis. Instead, we mainly focus on various commonly-used nonparamet-
ric and parametric techniques. The techniques for modeling linear time
series within the ARMA framework are presented in a compact and com-
prehensible manner for the sake of comparison and complement.

There are many excellent books on time series written at different levels
for different purposes. Almost all of them are on parametric models. Box
and Jenkins (1970) is the first book systematically dealing with time series
analysis within the ARMA framework. Many examples used in the book
are now classic. It is a good guide into the practical aspects. Brockwell and
Davis (1996) is a modern textbook with a comprehensive and user-friendly
package ITSM. It also includes state-space models and multivariate mod-
els. Shumway and Stoffer (2000) provide an ideal text for graduate courses
for nonmathematics/statistics students. It has wide coverage, with numer-
ous interesting real data examples. Chatfield (1996) and Cryer (1986) offer
alternatives for more compact courses. Brockwell and Davis (1991) discuss
the theory of time series in depth, which should be ideal for serious theo-
rists. Their work contains a lucid discussion of continuous-time AR models
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and analysis of heavy-tailed time series. The book by Anderson (1971) has
been written specifically to appeal to mathematical statisticians trained
in the more classical parts of statistics. Taniguchi and Kakizawa (2000)
present a wealth of modern asymptotic theory of inference for various time
series models, including (linear) ARMA processes, long-memory processes,
nonlinear time series, continuous-time processes, nonergodic processes, dif-
fusion processes, and others. Brillinger (1981) and Priestley (1981) offer
wide coverage as well as in-depth accounts of the spectral analysis of
time series. Early monographs on nonlinear time series include Priestley
(1988). Tong (1990) provides comprehensive coverage of parametric non-
linear time series analysis. It also initiates the link between nonlinear time
series and nonlinear dynamic systems (chaos). The state-space modeling
of time series data, making judicious use of the celebrated Kalman filters
and smoothers, is well-presented by Harvey (1990), Kitagawa and Ger-
sch (1996), and more recently by Durbin, and Koopman (2001). West and
Harrison (1989) deal with dynamic models based on Bayesian methods.
Golyandina, Nekrutkin and Zhigljavsky (2001) summarize the techniques
based on singular-spectrum analysis. Analysis of multivariate time series is
systematically presented by Hannan (1970), Lütkepohl (1993), and Reinsel
(1997). Diggle (1990) specializes in applications to biological and medical
time series. Tsay (2002) assembles the techniques for analyzing financial
time series. Akaike and Kitagawa (1999) and Xie (1993) collect some inter-
esting case studies for practical problems in diverse fields. Monographs on
more specific topics include those by Gouriéroux (1997) on ARCH/GARCH
models, Subba-Rao and Gabr (1984) and Terdik (1999) on bilinear mod-
els, Tong (1983) on threshold models, Nicholls and Quinn (1982) on ran-
dom coefficient autoregressive models, and Beran (1995) on long-memory
processes. For nonparametric approaches, Györfi, Härdle, Sarda, and Vieu
(1989) and Bosq (1998) are concerned with the asymptotic theory of ker-
nel estimation for time series data and provide useful techniques (such as
mixing and exponential inequalities) for further exploration of theoretical
properties of nonparametric time series models.

Nonparametric modeling is a very large and dynamic field. It keeps ex-
panding due to the demand for nonlinear approaches and the availability
of modern computing power. Indeed, most parametric models and tech-
niques have their nonparametric counterparts. Many excellent books have
been written in this very dynamic area. There are three basic approaches
to nonparametric modeling: kernel-local polynomial, spline, and orthogonal
series methods. For kernel density estimation and regression, see Devroye
and Györfi (1985), Silverman (1986), Müller (1988), Härdle (1990), Scott
(1992), Wand and Jones (1995), and Simonoff (1996). Local polynomial
methods are extensively discussed by Fan and Gijbels (1996). Work on
spline modeling has been published by Wahba (1990), Green and Silverman
(1994), and Eubank (1999). Hastie and Tibshirani (1990) outline nonpara-
metric additive modeling. For orthogonal series methods such as Fourier
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series and wavelets , see Ogden (1997), Efromovich (1999), and Vidakovic
(1999), among others. Nonparametric hypothesis testing can be found in
the books by Bowman and Azzalini (1997) and Hart (1997). Applications
of nonparametric methods to functional data can be found in the work of
Ramsay and Silverman (1997).

1.8 Software Implementations

Part of the computation in this book was carried out using the software
package S-Plus. A large part of linear modeling was performed using the
ITSM package of Brockwell and Davis (1996), estimation for GARCH mod-
els was carried out in S+GARCH. The procedures that are computation-
ally more demanding were implemented in the C language. Most of the one-
dimensional smoothing described in this book can easily be implemented by
using existing software. Local linear smoothing with automatic bandwidth
selection was programmed in C-code. Varying-coefficient models (1.11) can
be implemented using any package with a least-squares function by intro-
ducing weights. Most of the graphics in this book are plotted using S-Plus.

It is our hope that readers will be stimulated to use the methods de-
scribed in this book for their own applications and research. Our aim is to
provide information in sufficient detail so that readers can produce their
own implementations. This will be a valuable exercise for students and
readers who are new to the area. To assist this endeavor, we have placed
all of the data sets and codes used in this book on the following web site.

http://www.stat.unc.edu/faculty/fan/nls.html
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2
Characteristics of Time Series

Statistical inference is about learning something that is unknown from the
known. Time series analysis is no exception in this aspect. In order to
achieve this, it is necessary to assume that at least some features of the un-
derlying probability law are sustained over a time period of interest. This
leads to the assumptions of different types of stationarity, depending on
the nature of the problem at hand. The dependence in the data marks the
fundamental difference between time series analysis and classical statisti-
cal analysis. Different measures are employed to describe the dependence
at different levels to suit various practical needs. In this chapter, we intro-
duce the most commonly used definitions for stationarity and dependence
measures. We also make comments on when those definitions and measures
are most relevant in practice.

2.1 Stationarity

2.1.1 Definition
We introduce two types of stationarity, namely (weak) stationarity and
strict stationarity, in this section. Both of them require that time series
exhibit certain time-invariant behavior.

Definition 2.1 A time series {Xt, t = 0,±1,±2, · · · } is stationary if
E(X2

t ) <∞ for each t, and

(i) E(Xt) is a constant, independent of t, and
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(ii) Cov(Xt, Xt+k) is independent of t for each k.

Definition 2.2 A time series {Xt, t = 0,±1,±2, · · · } is strictly stationary
if (X1, · · · , Xn) and (X1+k, · · · , Xn+k) have the same joint distributions for
any integer n ≥ 1 and any integer k.

The stationarity, which is often referred to as the weak stationarity in
textbooks, assumes that only the first two moments of time series are time-
invariant and is generally weaker than the strict stationarity, provided that
the process has finite second moments. Weak stationarity is primarily used
for linear time series, such as ARMA processes, where we are mainly con-
cerned with the linear relationships among variables at different times. In
fact, the assumption of stationarity suffices for most linear time series anal-
ysis, such as in spectral analysis. In contrast, we have to look beyond the
first two moments if our focus is on nonlinear relationships. This explains
why strict stationarity is often required in the context of nonlinear time
series analysis.

2.1.2 Stationary ARMA Processes
It is obvious that a white noise process WN(0, σ2) is stationary but not
necessarily strictly stationary; see §1.3.1. In view of the discussion above,
it is natural to use WN(0, σ2) as a building block for general linear time
series. For Gaussian time series, we need only to focus on the properties of
the first two moments, too. A stationary Gaussian process is also strictly
stationary.

First, we consider moving average models. It is easy to see from (1.2) that
any MA(q) process with finite q is stationary. Let us consider an MA(∞)
model defined as

Xt =
∞∑
j=0

ajεt−j for all t, (2.1)

where {εt} ∼WN(0, σ2) and
∑∞
j=0 |aj | <∞. Therefore

E|Xt| ≤ E|ε1|
∞∑
j=0

|aj | <∞.

This implies that the infinite sum on the right-hand side of (2.1) converges
in probability, and also in mean of order 1 as well as order 2, as the condition∑
j |aj | < ∞ implies

∑
j a

2
j < ∞. (Under the additional condition that

{εt} is independent, the infinite sum also converges almost surely due to
the Loève theorem; see Corollary 3, p. 117 of Chow and Teicher 1997.)
Furthermore, EXt = 0, and

Cov(Xt, Xt+k) =
∞∑
j,l=0

ajakE(εt−j , εt+k−l) = σ2
∞∑
j=0

ajaj+|k|, (2.2)
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which is independent of t. Hence, such an MA(∞) model also defines a
stationary process. Obviously, it {εt} are i.i.d and E|εt| <∞. The process
{Xt} defined by (2.1) is strictly stationary.

For a general ARMA (p, q) model defined in (1.3), we may express the
process in a compact form in terms of backshift operator B as:

b(B)Xt = a(B)εt for all t, (2.3)

where B is the backshift operator defined as

BkXt = Xt−k k = 0,±1,±2, · · · ,
and b(·) and a(·) are polynomials given by

b(z) = 1− b1z − · · · − bpzp, a(z) = 1 + a1z + · · ·+ aqz
q. (2.4)

Remark 2.1 For ARMA models as defined in (2.3), we always assume
that polynomials b(·) and a(·) do not have common factors. Otherwise, a
process so defined is effectively equivalent to the process with orders smaller
than (p, q) after removing those common factors.

Theorem 2.1 The process {Xt, t = 0,±1,±2, · · · } given by (2.3) is sta-
tionary if b(z) �= 0 for all complex numbers z such that |z| ≤ 1.

Proof. Let z1, · · · , zp be the roots of b(z) = 0. Then |zj | > 1 and b(z) =∏
1≤j≤p(1− z/zj). It follows from some simple Taylor expansions that for

any |z| ≤ 1,

b(z)−1 =
p∏
j=1

(
1− z/zj

)−1 =
p∏
j=1

{ ∞∑
k=0

(z/zj)k
}
≡

∞∑
j=0

cjz
j .

Note that
∞∑
j=0

|cj | ≤
p∏
j=1

{ ∞∑
k=0

1/|zj |k
}

=
p∏
j=1

(
1− 1/|zj |

)−1
<∞.

Now, write c(z) =
∑
j≥0 cjz

j . Then c(z) b(z) ≡ 1. Therefore

Xt = c(B)b(B)Xt = c(B)a(B)εt = d(B)εt, (2.5)

where d(z) = c(z)a(z) =
∑∞
j=0 djz

j with
∑∞
j=0 |dj | < ∞. This indicates

that {Xt} is effectively an MA(∞) process defined as in (2.1) and is there-
fore stationary.

Another important concept in time series is causality.

Definition 2.3 A time series {Xt} is causal if for all t

Xt =
∞∑
j=0

djεt−j ,
∞∑
j=0

|dj | <∞,

where {εt} ∼WN(0, σ2).
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Causality means that Xt is caused by the white noise process (from the
past) up to time t and is effectively an MA(∞) process. For the ARMA
process defined in (2.3), causality is equivalent to the condition that b(z) �=
0 for all |z| ≤ 1 (p. 83 of Brockwell and Davis 1996), and therefore it implies
stationarity, but the converse is not true. In fact, the model (2.3) admits a
unique stationary solution if and only if b(z) �= 0 for all complex numbers
z on the unit cycle |z| = 1 (p. 82 of Brockwell and Davis 1996). However,
it may be shown that under the condition b(z) �= 0 for all |z| ≥ 1, the
stationary solution of (2.3) with q = 0, for example, is of the form

Xt =
∞∑
j=0

djεt+j ,

which is not causal. One may argue whether such a process should be called
a time series since Xt depends on ‘future’ noise εt+j for j ≥ 1. However,
any stationary noncausal ARMA process can be represented as a causal
ARMA process (with the same orders) in terms of a newly defined white
noise, and both processes have identical first two moments (Proposition
3.5.1 of Brockwell and Davis 1991). Therefore, we lose no generality by
restricting our attention to the subset of causal processes in the class of
stationary ARMA processes. But we should be aware of the fact that even
if the original process is defined in terms of an i.i.d. process {εt}, the white
noise in the new representation is no longer i.i.d.

In Theorem 2.1, the condition that the process {Xt} is doubly infinite in
time is important. For example, the process defined by

Xt = 0.5Xt−1 + εt

for t = 0,±1,±2, · · · is stationary (also strictly stationary), where {εt}
∼i.i.d. N(0, 1). However, the process defined by the equation above for
t = 1, 2, · · · only and initiated at X0 ∼ U(0, 1) is no longer stationary since
EXt = 0.5t+1 for all t ≥ 0. The process {Xt, t = 1, 2, · · · } will be (strictly)
stationary if and only if we start the process with X0 ∼ N(0, 1/0.75), which
is in fact the stationary distribution of the Markov chain defined by the
AR(1) model above (see Theorem 2.2 below).

2.1.3 Stationary Gaussian Processes
A time series {Xt} is said to be Gaussian if all its finite-dimensional dis-
tributions are normal. If {εt} ∼i.i.d. N(0, σ2) and b(z) �= 0 for all |z| ≤ 1,
{Xt} defined by (2.3) is a stationary Gaussian process (and therefore also
strictly stationary). On the other hand, it follows from the Wold decompo-
sition theorem (p. 187 of Brockwell and Davis 1991) that for any stationary
Gaussian process {Xt} with mean 0, it holds that

Xt =
∞∑
j=0

ajεt−j + Vt, (2.6)
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where
∑
j a

2
j < ∞, {εt} and {Vt} are two independent normal processes,

{εt} ∼i.i.d. N(0, σ2), and {Vt} is deterministic in the sense that, for any t,
Vt is entirely determined by its lagged values Vt−1, Vt−2, · · · (i.e., Vt is Ft−1-
measurable, where Ft is the σ-algebra generated by {Vt−k, k = 1, 2, · · · }).
When Vt ≡ 0, we call {Xt} purely nondeterministic . Therefore, a purely
nondeterministic stationary Gaussian process is always linear in the sense
that it can be written as an MA(∞) process with normal white noise.

A particularly simple case is a q-dependent stationary Gaussian process
in the sense that Xt and Xt+k are independent for all k > q. This implies
that Vt ≡ 0 and aj = 0 for all j > q in (2.6). Therefore {Xt} ∼ MA(q).

On the other hand, if, given {Xt−1, · · · , Xt−p}, Xt is independent of
{Xt−k, k > p}, it is easy to see that

εt ≡ Xt − E(Xt|Xt−1, · · · , Xt−p)

is independent of {Xt−k, k ≥ 1} since Cov(εt, Xt−k) = 0 for k ≥ 1. There-
fore εt is also independent of {εt−k, k ≥ 1} since εt−k is a function of
{Xt−k, Xt−k−1, · · · } only. Hence {εt} ∼i.i.d. N(0, σ2). Due to the normal-
ity, E(Xt|Xt−1, · · · , Xt−p) is a linear function of Xt−1, · · · , Xt−p:

E(Xt|Xt−1, · · · , Xt−p) = b1Xt−1 + · · ·+ bpXt−p

for some coefficients b1, · · · , bp. This implies that {Xt} ∼ AR(p) since

Xt = E(Xt|Xt−1, · · · , Xt−p) + εt

= b1Xt−1 + · · ·+ bpXt−p + εt.

The results above are summarized as follows.

Proposition 2.1 Let {Xt} be a stationary Gaussian time series.
(i) {Xt} ∼ MA(∞) if it is a purely nondeterministic process.
(ii) {Xt} ∼ MA(q) if, it is a q-dependent process.
(iii) {Xt} ∼ AR(p) if, given {Xt−1, · · · , Xt−p}, Xt is independent of
{Xt−k, k > p}.

2.1.4 Ergodic Nonlinear Models∗

It is relatively straightforward to check stationarity in linear time series
models. However, it is by no means easy to check whether a time series de-
fined by a nonlinear model is strictly stationary. It remains open to prove
(or disprove) that some simple nonlinear models (such as quadratic func-
tions) may generate a strictly stationary process. The common practice is
to represent a time series as a (usually vector-valued) Markov chain and
to establish that the Markov chain is ergodic. Stationarity follows from the
fact that an ergodic Markov chain is stationary.

First, we give a brief introduction of Markov chains. A vector-valued
stochastic process {Xt} is called a Markov chain if it fulfills the Markovian
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property that the conditional distribution of Xt+1 given {Xt,Xt−1, · · · }
depends on Xt only for all t. The Markovian property requires that, given
the present and the past, the future depends on the present only. The
conditional distribution of Xt+1 given Xt is called the transition distribu-
tion at time t. If the transition distribution is independent of time t, the
Markov chain is called homogeneous. In this book, we consider homoge-
neous Markov chains only. Therefore, we simply call them Markov chains.

We consider a general form of nonlinear AR model

Xt = f(Xt−1, · · · , Xt−p) + εt, (2.7)

where {εt} is a sequence of i.i.d. random variables. When a time series
model is defined with an i.i.d. noise, we always assume implicitly that εt is
independent of {Xt−k, k ≥ 1}. This condition is natural when the process
{Xt} is generated from the model in the natural time order.

Define
Xt = (Xt, · · · , Xt−p+1)τ , εt = (εt, 0, · · · , 0)τ ,

and for x = (x1, · · · , xp)τ ∈ Rp,

f(x) = (f(x1), x1, · · · , xp−1)τ .

Then, it follows from (2.7) that {Xt} is a Markov chain defined as

Xt = f(Xt−1) + εt. (2.8)

LetG(·) be the distribution function of εt, and let Fn(·|x) be the conditional
distribution of Xn given X0 = x. It follows from (2.8) that, for n ≥ 2,

Fn(y|x) =
∫
G{y − f(u)}Fn−1(du|x) (2.9)

and F1(y|x) = G{y − f(x)}, which is in fact the transition distribution of
the Markov chain.

The (Harris) ergodicity introduced below is defined in terms of the con-
vergence of probability distributions in the norm of total variation. For two
probability distributions P1 and P2 defined on the same sample space, the
total variation of (P1 − P2) is defined as

||P1 − P2|| = sup
∑
j

|P1(Aj)− P2(Aj)|,

where the supremum is taken over all measurable partitions {Aj} of the
sample space. If Pi has probability density function pi (i = 1, 2), it may be
shown that

||P1 − P2|| =
∫
|p1(x)− p2(x)|dx.
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Definition 2.4 If there exists a distribution F and a constant ρ ∈ (0, 1]
such that

ρ−n||Fn(·|x)− F (·)|| → 0 for any x, (2.10)

the Markov model (2.8) is called ergodic when ρ = 1 and geometrically er-
godic when ρ < 1. F is called the stationary distribution. In the expression
above, || · || denotes the total variation.

Obviously, geometric ergodicity implies ergodicity. The ergodicity of a
Markov chain depends entirely on its transition distribution. If the tran-
sition distribution is strictly positive and regular, the process is “weakly”
ergodic in the sense that Fn → F at all continuous points of F , and further-
more the process initiated from F is strictly stationary; see, for example,
§8.7 of Feller (1971). Unfortunately, the processes as defined in (2.8) do not
fulfill those conditions. The Harris ergodicity adopted here strengthens the
convergence in terms of the total variation, which effectively ensures the
required stationarity. For further discussion on Harris ergodicity, we refer
the reader to Chan (1990a, 1993b).

Theorem 2.2 Suppose that the Markov model (2.8) is ergodic. Then there
exists a stationary (p-dimensional) distribution F such that the time series
{Xt, t = 1, 2, · · · } defined by (2.7) and initiated at (X0, X−1, · · · , X−p+1)τ

∼ F is strictly stationary .

Proof. Let n→∞ on both sides of (2.9), it then follows from the fact that
the total variation of (Fn − F ) converges to 0 that

F (·) =
∫
G(· − f(y))F (dy).

Note that G(·− f(y)) is the conditional distribution of Xt+1 given Xt = y.
The equation above indicates that if Xt ∼ F , then Xt+1 ∼ F . Therefore,
all of the random variables {Xt+k for k ≥ 2} share the same marginal
distribution F . The Markovian property implies that the joint distribution
of (Xt,Xt+1, · · · ,Xt+k) is completely determined by the transition density
and the marginal distribution of Xt. Hence, the Markov chain {Xt, t =
1, 2, · · · } defined by (2.8) and initiated at X0 ∼ F is strictly stationary. By
considering the first component of Xt’s only, we obtain the theorem.

For ergodic Markov chains, the law of large numbers always holds, ir-
respective of initial distributions. The theorem below was proved in Chan
(1993a).

Theorem 2.3 Suppose that model (2.8) is ergodic with stationary distri-
bution F . For {Xt, t = 1, 2, · · · } defined by (2.7) with any initial variables
(X0, X−1, · · · , X−p+1),

1
n

n∑
t=1

g(Xt)
a.s.−→ EF {g(Xt)}
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provided EF |g(Xt)| <∞.

It is by no means easy to derive a general condition under that (2.8) is
(Harris) ergodic. We list a few simple criteria below that are often used
to check whether a nonlinear model is ergodic. For x = (x1, · · · , xp)τ , we
write ||x|| = (x2

1 + · · ·+ x2
p)

1/2.

Theorem 2.4 Suppose that in model (2.7) f(·) is measurable and εt has
a positive density function and Eεt = 0. The induced Markov model (2.8)
is geometrically ergodic if one of the following three conditions holds.

(i) f is bounded on bounded sets and

lim
||x||→∞

|f(x)− (b1x1 + · · ·+ bpxp)|/||x|| = 0, (2.11)

where b1, · · · , bp are some constants satisfying the condition that 1− b1z −
· · · − bpzp �= 0 for all complex z satisfying |z| ≤ 1.

(ii) There exist constants λ ∈ (0, 1) and c for which

|f(x)| ≤ λmax{|x1|, · · · , |xp|}+ c.

(iii) There exist constants ρ ∈ (0, 1), c, and ai ≥ 0, and a1 + · · ·+ap = 1
such that

|f(x)| ≤ ρ(a1|x1|+ · · ·+ ap|xp|) + c. (2.12)

In the above, (i) and (ii) were obtained by An and Huang (1996), and
(iii) was proved by Bhattacharya and Lee (1995). An and Chen (1997)
extended the condition (2.12) to the case where ρ = 1. An and Huang
(1996) also derived a condition for the case where f(·) in (2.7) is continuous.
To simplify statements, we call model (2.7) (geometrically) ergodic if the
induced Markov model (2.8) is (geometrically) ergodic.

Example 2.1 (TAR-model) Consider the TAR model with k regimes [see
also (1.8)],

Xt =
k∑
i=1

{bi0 + bi1Xt−1 + · · ·+ bi,piXt−pi}

× I(ri−1 ≤ Xt−d < ri) + εt, (2.13)

where {εt} satisfies the condition in Theorem 2.4, −∞ = r0 < r1 < · · · <
rk =∞, and d, p1, · · · , pk are some positive integers. It follows from Theo-
rems 2.4 and 2.2 that there exists a strictly stationary solution {Xt} from
the model above if either max1≤i≤k

∑pi

j=1 |bij | < 1, which entails condition
(ii) of Theorem 2.4, or max1≤i≤k |bij | < aj and a1 + · · · + ap = 1, where
p = max1≤i≤k pi which implies condition (iii).
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The conditions imposed above are unfortunately more stringent than
necessary. It remains as a challenge to derive the necessary and sufficient
condition for model (2.13) to be ergodic. Chan and Tong (1985) proved
that the simple TAR model

Xt =
{
α+Xt−1 + εt, Xt−1 ≤ 0,
β +Xt−1 + εt, Xt−1 > 0 (2.14)

is ergodic if and only if α < 0 < β. Note that, for this model, condition
(2.12) holds with ρ = 1.

From Theorems 2.2 and 2.4, we may derive some sufficient conditions for
AAR model (1.12) or FAR model (1.11) admitting a strictly stationary
solution. In general, (2.7) admits a strictly stationary solution if f(x) grows
slower than ‖x‖ as ‖x‖ → ∞, since (2.11) holds with all bi = 0. On the
other hand, if f(·) in (2.7) is a polynomial function with order greater than
1, which is unbounded, the condition that εt be compactly supported is
necessary for ergodicity when p = 1 (Chan and Tong 1994). Finally, we
note that a causal AR(p) model with i.i.d. white noise is geometrically
ergodic, which can be seen easily from Theorem 2.4(i).

2.1.5 Stationary ARCH Processes
We introduce a general form of ARCH(∞) model

Yt = ρtξt, ρt = a+
∞∑
j=1

bjYt−j , (2.15)

where {ξt} is a sequence of nonnegative i.i.d. random variables with Eξt = 1
and a ≥ 0 and bj ≥ 0. Obviously, the model above includes the standard
ARCH model (1.6) as a special case if we let Yt = X2

t (the standard model
allows observing the sign of {Xt}, which, however, contains no information
on the variance of the series). It also contains the GARCH model (1.7)
if the coefficients {ai} in (1.7) fulfill certain conditions; for example, all
ai ≥ 0 and

∑
i≥1 ai < 1. In this case, (1.7) admits the expression σ2

t =
a0 +

∑∞
j=1 cjX

2
t−j with a0 ≥ 0 and cj ≥ 0.

Theorem 2.5 (i) Under the condition
∑∞
j=1 bj < 1, model (2.15) has a

unique strictly stationary solution {Yt, t = 0,±1,±2, · · · } for which

EYt = a/


1−

∞∑
j=1

bj


 .

Furthermore the unique solution is Yt ≡ 0 for all t if a = 0.
(ii) Suppose that Eξ2t <∞ and

max{1, (Eξ2t )1/2}
∞∑
j=1

bj < 1. (2.16)
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Then, model (2.15) has a unique strictly stationary solution {Yt} with EY 2
t

<∞.

The theorem above was established by Giraitis, Kokoszka, and Leipus
(2000) through a Volterra expansion of Yt in terms of {ξt−k, k ≥ 0}. We
reproduce its proof for part (i) in §2.7.1 below. Note that an ARCH process
is not a linear process in the sense that it cannot be expressed as an
MA(∞) process defined in terms of an i.i.d. white noise. In fact, the Volterra
expansion contains multiplicative terms of ξj , which makes the theoretical
investigation more complicated. But, on the other hand, the fact that all
of the quantities involved (such as c, bj , and ξj) are nonnegative does bring
appreciable convenience to the analytic derivations; see §2.7.1.

It follows from Theorem 2.5 that the ARCH model (1.6) admits a strictly
stationary solution if

∑q
j=1 bj < 1. Giraitis, Kokoszka, and Leipus (2000)

also established the central limit theorem below. A stochastic process W (t)
is called a Brownian motion or Wiener process if it is a Gaussian process
starting at zero with mean zero and covariance function EW (t)W (τ) =
min(t, τ).

Theorem 2.6 Suppose that {Yt} is the strictly stationary process defined
by (2.15) for which condition (2.16) holds. Define for t ∈ [0, 1]

S(t) =
1√
nσ

[nt]∑
j=1

(Yj − EYj),

where σ2 =
∑∞
t=−∞ Cov(Yt, Y0) < ∞. Then, for any k ≥ 1 and 0 ≤ t1 <

· · · < tk ≤ 1,

{S(t1), · · · , S(tk)} D−→ {W (t1), · · · ,W (tk)},

where {W (t), 0 ≤ t ≤ 1} is the standard Wiener process with mean 0 and
covariance E{W (t)W (s)} = min(t, s).

The theorem above indicates that the stochastic process {S(t), 0 < t ≤
1} converges in distribution to the Brownian motion {W (t), 0 < t ≤ 1}.

2.2 Autocorrelation

For linear time series {Xt}, we are interested in the linear relationships
among the random variables at different time points t. The autocorrelation
coefficient measures the linear dependence between Xt+k and Xt. The
partial autocorrelation coefficient is the correlation between the residual of
Xt+k and that of Xt after regressing both linearly on Xt+1, · · · , Xt+k−1.
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2.2.1 Autocovariance and Autocorrelation
For stationary time series {Xt}, it follows from Definition 2.1 that

Cov(Xt+k, Xt) = Cov(Xk, X0) for any k.

That means that the correlation between Xt and Xs depends on the abso-
lute time difference |t− s| only.

Definition 2.5 Let {Xt} be a stationary time series. The autocovariance
function (ACVF) of {Xt} is

γ(k) = Cov(Xt+k, Xt), k = 0,±1,±2, · · · .

The autocorrelation function (ACF) of {Xt} is

ρ(k) = γ(k)/γ(0) = Corr(Xt+k, Xt), k = 0,±1,±2, · · · .

From the definition above, we can see that both γ(·) and ρ(·) are even
functions, namely

γ(−k) = γ(k) and ρ(−k) = ρ(k).

The theorem below presents the necessary and sufficient condition for a
function to be an ACVF of a stationary time series.

Theorem 2.7 (Characterization of ACVF) A real-valued function γ(·) de-
fined on the integers is the ACVF of a stationary time series if and only if
it is even and nonnegative definite in the sense that

n∑
i,j=1

aiajγ(i− j) ≥ 0 (2.17)

for any integer n ≥ 1 and arbitrary real numbers a1, · · · , an.

The necessity of the theorem above follows from the fact that the sum
in (2.17) is the variance of random variable

∑n
j=1 ajXj . Hence, the sum

is nonnegative. The proof of the sufficiency uses Kolmogorov’s existence
theorem; see p. 27 of Brockwell and Davis (1991).

We now examine the properties of ACVFs and ACFs for stationary
ARMA processes. First, it is obvious that a process is a white noise if
and only if ρ(k) = 0 for all k �= 0.

For MA(∞) process

Xt =
∞∑
j=0

ajεt−j ,
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where {εt} ∼WN(0, σ2), a0 = 1 and
∑∞
j=0 |aj | <∞. It is easy to see from

(2.2) that

γ(k) = σ2
∞∑
j=0

ajaj+|k|, ρ(k) =

∑∞
j=0 ajaj+|k|∑∞

j=0 a
2
j

. (2.18)

Therefore, if {Xt} ∼ MA(q) (i.e., aj = 0 for all j > q), the formulas above
reduce to

γ(k) = σ2
q−|k|∑
j=0

ajaj+|k| and ρ(k) =

∑q−|k|
j=0 ajaj+|k|∑q

j=0 a
2
j

for |k| ≤ q, (2.19)

and γ(k) and ρ(k) are 0 for all |k| > q. We say that the ACF of an MA(q)
process cuts off at q. This is a benchmark property for MA processes.

For causal ARMA(p, q) process

Xt = b1Xt−1 + · · ·+ bpXt−p + εt + a1εt−1 + · · ·+ aqεt−q,

where {εt} ∼ WN(0, σ2), we may calculate the ACVF and ACF through
their MA(∞) representation

Xt =
∞∑
j=0

djεt−j ,

where dj ’s are the coefficients of polynomial b(z)−1a(z) (see (2.5)), which
may be evaluated recursively as:

d0 = a0 (= 1),
d1 = a1 + d0b1,

d2 = a2 + d0b2 + d1b1,

· · · · · ·

and, in general,

dk = ak +
k−1∑
j=0

djbk−j , k ≥ 1. (2.20)

We assume that aj = 0 for j > q and bi = 0 for i > p in the recursion above.
Now, both the ACVF and ACF are given as in (2.18), with aj replaced by
dj . It is easy to see from (2.18) and (2.20) that, for causal ARMA processes,
the ACF depends on the coefficients {bj} and {aj} only and is independent
of the variance of white noise σ2. (Of course, the ACVF depends on σ2.)
This indicates that the autocorrelation of an ARMA process is dictated by
the coefficients in the model and is independent of the amount of white
noise injected into the model.
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The approach above does not lead to a simple closed-form solution. It
provides little information on the asymptotic behavior of ρ(k) as k → ∞,
which reflects the “memory” of the ARMA(p, q) process. To investigate
this asymptotic behavior, we calculate the covariance of both sides of an
ARMA(p, q) model with Xt−k for k > q. By (2.3),

Cov{b(B)Xt, Xt−k} = Cov{a(B)εt, Xt−k} = 0

since εt, · · · , εt−q are independent of Xt−k for k > q. This leads to the
Yule–Walker equation

γ(k)− b1γ(k − 1)− · · · − bpγ(k − p) = 0, k > q. (2.21)

It is easy to see that the general solution of this equation is

γ(k) = α1z
−k
1 + · · ·+ αpz

−k
p , (2.22)

where α1, · · · , αp are arbitrary constants and z1, · · · , zp are the p roots of
equation

1− b1z − · · · − bpzp = 0.

The condition for causality implies |zj | > 1 for all j. Therefore, it follows
from (2.22) that γ(k) converges to 0 at an exponential rate as |k| → ∞.

We summarize the findings above in the proposition below.

Proposition 2.2 (i) For causal ARMA processes, ρ(k) → 0 at an expo-
nential rate as |k| → ∞.

(ii) For MA(q) processes, ρ(k) = 0 for all |k| > q.

2.2.2 Estimation of ACVF and ACF
Given a set of observations {X1, · · · , XT } from a stationary time series, we
may estimate the ACVF by the sample autocovariance function defined as

γ̂(k) =
1
T

T−k∑
t=1

(Xt − X̄T )(Xt+k − X̄T ), k = 0, 1, · · · , T − 1, (2.23)

where X̄T = 1
T

∑T
t=1Xt. This also leads to estimating the ACF by the

sample autocorrelation function

ρ̂(k) = γ̂(k)/γ̂(0), k = 0, 1, · · · , T − 1.

It is impossible to estimate γ(k) and ρ(k) for k ≥ T from observed data
X1, · · · , XT . Even for k slightly smaller than T , the estimates γ̂(k) and
ρ̂(k) are unreliable since there are only a few pairs (Xt, Xt+k) available.
A useful guide proposed by Box and Jenkins (1970 p. 30) requires T ≥ 50
and k ≤ T/4.
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A natural alternative for estimating ACVF and ACF is to replace the
divisor T in (2.23) by T−k. The resulting estimators could be substantially
different for large k and are less biased. However, it is fair to say that ρ̂(k)
and γ̂(k) defined with the divisor T are more preferable in practice, as
reflected by the fact that they have been implemented as default estimators
in most time series packages. This may be due to the fact that in time
series analysis we are more interested in estimating the ACF as a whole
function rather than ρ(k) for some fixed k. It may be shown that {γ̂(k)},
and therefore also {ρ̂(k)}, is a nonnegative-definite function if we define
γ̂(−k) = γ̂(k) for k ≥ 1 and γ̂(k) = 0 for |k| ≥ T . This property may be
lost if we replace the divisor T by T − k. Furthermore, when k becomes
large relative to T , the smaller variance of γ̂(k) compensates for its larger
bias.

The sample ACF plays an active role in model identification. For exam-
ple, the ACF of an MA(q) process cuts off at q. But, its sample ACF will
not have a clear cutoff at lag q due to random fluctuations. The proper
statistical inference rests on the sampling distributions of the statistics in-
volved. Let ρ(k) = (ρ(1), · · · , ρ(k))τ and ρ̂(k) be defined in the same way.
The theorem below presents the asymptotic normality of sample mean X̄T ,
sample variance γ̂(0), and sample ACF when the sample size T → ∞. Its
proof relies on the central limit theorem for m-dependent sequences; see,
for example, Theorem 6.4.2 of Brockwell and Davis (1991). The basic idea
is to approximate the double infinite MA process (2.24) by a finite MA
process. We refer to §7.3 of Brockwell and Davis (1991) for the detailed
technical derivations.

Theorem 2.8 Let {Xt} be a stationary process defined as

Xt = µ+
∞∑

j=−∞
ajεt−j , (2.24)

where {εt} ∼ IID(0, σ2) and
∑∞
j=−∞ |aj | <∞.

(i) If
∑∞
j=−∞ aj �= 0,

√
T (X̄T − µ) D−→ N(0, ν2

1), where

ν2
1 =

∞∑
j=−∞

γ(j) = σ2




∞∑
j=−∞

aj




2

.

(ii) If Eε4t <∞,
√
T{γ̂(0)− γ(0)} D−→ N(0, ν2

2), where

ν2
2 = 2σ2

∞∑
j=−∞

ρ(j)2 = 2σ2


1 + 2

∞∑
j=1

ρ(j)2


 . (2.25)
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(iii) If Eε4t < ∞,
√
T{ρ̂(k) − ρ(k)} D−→ N(0,W), where W is a k × k

matrix with its (i, j)th element given by Bartlett’s formula

wij =
∞∑

t=−∞
{ρ(t+ i)ρ(t+ j) + ρ(t− i)ρ(t+ j) + 2ρ(i)ρ(j)ρ(t)2

− 2ρ(i)ρ(t)ρ(t+ j)− 2ρ(j)ρ(t)ρ(t+ i)}. (2.26)

From (2.25), the sample variance γ̂(0) has the asymptotic variance 2σ2{1+
2
∑
j≥1 ρ(j)

2}/T . When {Xt} is an i.i.d. sequence (i.e., aj = 0 for all j �= 0
in (2.24)), this asymptotic variance becomes 2σ2/T . Comparing these two
quantities, as far as the estimation of γ(0) = Var(Xt) is concerned, we may
call

T ′ = T
/

1 +

∞∑
j=1

ρ(j)2




the equivalent number of independent observations, which reflects the loss
of information due to the correlation in the data.

If {Xt} is an MA(q) process (i.e., aj = 0 for all j < 0 and j > q), it
follows from Theorem 2.8(iii) that

√
T ρ̂(j) D−→ N

(
0, 1 + 2

∑q
t=1 ρ(q)

2
)
, j > q. (2.27)

This is a very useful result for the estimation of the order q for an MA-
process. In particular, if {Xt} ∼WN(0, σ2), then

√
T ρ̂(j) D−→ N (0, 1) , for j �= 0.

Hence, there is an approximately 95% chance that ρ̂(j) falls in the interval
±1.96T−1/2.

2.2.3 Partial Autocorrelation
The ACF ρ(k) measures the correlation between Xt and Xt−k regardless
of their relationship with the intermediate variables Xt−1, · · ·Xt−k+1. The
order determination in fitting an AR model relies on the correlation, con-
ditioned on immediate variables; see, for example, Proposition 2.1 (iii). We
will only include a further lagged variable Xt−k in the model for Xt if Xt−k
makes a genuine and additional contribution toXt in addition to those from
Xt−1, · · · , Xt−k+1. The partial autocorrelation coefficient (PACF) is used
for measuring such a relationship.

Definition 2.6 Let {Xt} be a stationary time series with EXt = 0. The
PACF is defined as π(1) = Corr(X1, X2) = ρ(1) and

π(k) = Corr(R1|2,··· ,k, Rk+1|2,··· ,k) for k ≥ 2,
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where Rj|2,··· ,k is the residual from the linear regression of Xj on (X2, · · · ,
Xk), namely

Rj|2,··· ,k = Xj − (αj2X2 + · · ·+ αjkXk),

and

(αj2, · · · , αjk) = arg min
β2,··· ,βk

E{Xj − (β2X2 + · · ·+ βkXk)}2. (2.28)

In the definition above, we assume that EXt = 0 to simplify the notation.
For a Gaussian process, the partial autocorrelation is in fact equal to

π(k) = E{Corr(X1, Xk+1|X2, · · · , Xk)}.

In general, PACF is introduced in a rather indirect manner and is defined
in terms of the least square regression (2.28). Nevertheless, it follows im-
mediately from the definition that the PACF cuts off at p for causal AR(p)
processes. In general, the PACF is entirely determined by the ACF; see
(2.29) below.

Proposition 2.3 (i) For any stationary time series {Xt},

π(k) =
γ(k)− Cov(Xk+1,Xτ

2,k)Σ
−1
2,kCov(X2,k, X1)

γ(0)− Cov(X1,Xτ
2,k)Σ

−1
2,kCov(X2,k, X1)

, k ≥ 1, (2.29)

where γ(·) is the ACVF of {Xt}, X2,k = (Xk, Xk−1, · · · , X2)τ , and Σ2,k =
Var(X2,k).

(ii) For causal AR(p) models, π(k) = 0 for all k > p.

The following theorem establishes a link between PACF and AR-modeling.
It shows that π(k) is the last autoregressive coefficient in the autoregres-
sive approximation for Xt by its nearest k lagged variables. The following
theorem is proved in §2.7.3.

Theorem 2.9 Let {Xt} be a stationary time series and EXt = 0. Then
π(k) = bkk for k ≥ 1, where

(b1k, · · · , bkk) = arg min
b1,··· ,bk

E(Xt − b1Xt−1 − · · · − bkXt−k)2.

The theorem above also paves the way for the estimation of PACF—
we need to fit a sequence of AR models with order k = 1, 2, · · · in order
to estimate π(k) for k = 1, 2, · · · . More precisely, we estimate π(k) by
π̂(k) = b̂kk from the sample (X1, · · · , XT ), where (̂bk1, · · · , b̂kk) minimizes
the sum

T∑
t=k+1

(Xt − b1Xt−1 − · · · − bkXt−k)2.
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FIGURE 2.1. The sample (thin line) and the true (thick line) ACF and PACF
plots for a Gaussian white noise process.

In practice, the estimation is often carried out in terms of some standard
algorithms such as the Levinson–Durbin algorithm and the Burg algorithm;
see §3.2.3 and §5.1 of Brockwell and Davis (1996). The asymptotic prop-
erties of π̂(k) will be discussed in Chapter 3 in conjunction with those of
parameter estimation for AR models; see Proposition 3.1.

We present the direct proofs for both Proposition 2.3(i) and Theorem 2.9
in §2.7, as their proofs in textbooks are usually mixed with the algorithms
used in determining AR coefficients.

2.2.4 ACF Plots, PACF Plots, and Examples
Both ACF and PACF provide important information on the correlation
structure of time series and play active roles in model identification as well
as estimation. For example, the ACF cuts off at q for MA(q) processes and
the PACF cuts off at p for AR(p) processes. Plotting the estimated ACF
and PACF against the time lag is a simple but very useful technique in
analyzing time series data. Such an ACF plot is called a correlogram .

In Examples 2.2–2.4, we plot some estimated ACFs and PACFs (thin
lines) based on samples of size T = 100 together with the true ACFs and
PACFs (thick lines); see Figures 2.1–2.3. We also superimpose the horizon-
tal lines (dashed lines) at ±1.96/

√
T . These intervals give the pointwise

acceptance region for testing the null hypothesis H0 : ρ(k) = 0 at the 5%
significance level; see (2.27) and its subsequent discussion. They assist us
in judging whether a particular ρ(k) is statistically significantly different
from zero. We used standard Gaussian white noise {εt} ∼i.i.d. N(0, 1) in
the examples.
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(a)  Time series (b=0.7)
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(b) Time series (b=-0.7)
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FIGURE 2.2. Time series plots and the sample (thin line) and the true (thick
line) ACF and PACF plots for AR(1) models with b = 0.7 or −0.7.
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FIGURE 2.3. The sample (thin line) and the true (thick line) ACF and PACF
plots for three stationary models defined in Example 2.4.



48 2. Characteristics of Time Series

Example 2.2 (White noise ) Let Xt = εt for t = 0,±1, · · · . Then ρ(k) =
0 and π(k) = 0 for all k ≥ 1. A sample of size 100 is generated from
standard normal distribution. The estimated ACF and PACF are plotted
in Figure 2.1. The estimated ACF and PACF are almost always between
the two bounds ±1.96/

√
Tand± 0.196.

Example 2.3 Let us consider AR(1) model

Xt = bXt−1 + εt,

where |b| < 1. This process is causal (and therefore also stationary). It is
easy to see that Xt depends on its past values through Xt−1 only. From
Yule–Walker equation (2.21), we may derive that ρ(k) = b|k|. A simulated
series with length 100 is plotted against time in Figures 2.2 (a) for b = 0.7
and 2.2 (b) for b = −0.7. When b > 0, the series is more stable and
smoother in the sense that Xt tends to retain the same sign as Xt−1. In
contrast, when b < 0, the series oscillates around its mean value 0. The
similar pattern is preserved in its correlogram as shown in Figures 2.2 (c)
and (d), although the absolute value of ACF decays fast. For the AR(1)
model, π(k) = 0 for k ≥ 2. Most estimated values for π(k) (k ≥ 2) are
between ±1.96/

√
T and ±0.196.

Example 2.4 We consider three causal ARMA models:

AR(4) : Xt = 0.5Xt−1 + 0.3Xt−2 − 0.7Xt−3 + 0.2Xt−4 + εt,

MA(4) : Xt = εt + 0.6εt−1 + 0.6εt−2 + 0.3εt−3 + 0.7εt−4,

ARMA(2, 2) : Xt = 0.8Xt−1 − 0.6Xt−2 + εt + 0.7εt−1 + 0.4εt−2.

Now, the correlation structure is no longer as clear-cut as for an AR(1)
model, although ρ(k) = 0 for the MA(4) model and π(k) = 0 for the AR(4)
model for all k > 4. Nevertheless, both ACF and PACF decay to 0 fast;
see Figure 2.3. Furthermore, it tends to hold that, for large values of k,

|ρ̂(k)| > |ρ(k)|, |π̂(k)| > |π(k)|.

This is due to the fact that when the true values of ρ(k) and π(k) are
close to 0 for large k, the errors in estimation become “overwhelming”.
This phenomenon is common in the estimation of both ACF and PACF;
see also Figures 2.1 and 2.2.

2.3 Spectral Distributions

The techniques used in analyzing stationary time series may be divided into
two categories: time domain analysis and frequency domain analysis. The
former deals with the observed data directly, as in conventional statistical
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analysis with independent observations. The frequency domain analysis,
also called spectral analysis , applies the Fourier transform to the data (or
ACVF) first, and the analysis proceeds with the transformed data only. The
spectral analysis is in principle equivalent to the time domain analysis based
on ACVF. However, it provides an alternative way of viewing a process
via decomposing it into a sum of uncorrelated periodic components with
different frequencies, which for some applications may be more illuminating.
Since the properties beyond the second moments will be lost in spectral
distributions, we argue that the spectral analysis, at least in its classical
form, is not useful in handling nonlinear features. In this section, we first
introduce the concept of spectral distribution via a simple periodic process.
Spectral density is defined for stationary processes with “short memory” in
the sense that

∑
k |γ(k)| <∞. We derive a general form of spectral density

functions for stationary ARMA processes via linear filters.

2.3.1 Periodic Processes
We first consider the simple periodic process

Xt = A cos(ωt+ ϕ),

where both frequency ω and amplitude A are constant while the phase ϕ
is a random variable distributed uniformly on the interval [−π, π]. Then
EXt = 0, and

Cov(Xt, Xt+τ ) =
A2

2π

∫ π

−π
cos(ωt+ ϕ) cos(ωt+ ωτ + ϕ)dϕ

=
A2

4π

∫ π

−π
{cos(2ωt+ 2ϕ+ ωτ) + cos(ωτ)}dϕ =

A2

2
cos(ωτ), (2.30)

which depends on τ only. Therefore, {Xt} is stationary with γ(τ) = A2

2
cos(ωτ).

Now, we turn to a more general form of periodic process,

Xt =
k∑

j=−k
Aj cos(ωjt+ ϕj), (2.31)

where {ϕj} are independent random variables with the common distribu-
tion U [−π, π], {Aj} and {ωj} are constants, A0 = 0, and

0 ≤ ω1 < . . . < ωk ≤ π, ω−j = −ωj .

Furthermore for j = 1, · · · , k,

ϕ−j = −ϕj , A−j = Aj .
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By treating {Xt, t = 0,±1,±2, . . .} as observed values on regular time
intervals of a continuous wave, the process is an accumulation of 2k periodic
waves with frequencies ω−k, . . . , ωk. Note that Xt is equal to

Xt = 2
k∑
j=1

Aj cos(ωjt+ ϕj). (2.32)

Algebraic manipulation similar to (2.30) shows that {Xt} is stationary with
the ACVF

γ(τ) =
k∑

j=−k
A2
j cos(ωjτ).

It is easy to see that any linear combination of sinusoidals can be ex-
pressed as in (2.32), and therefore also as in (2.31). We use the symmetric
form (2.31) for technical convenience; see (2.33) and (2.34) below. Since we
take observations at discrete times 0,±1,±2, . . . only, waves with frequen-
cies higher than π cannot be identified. (For any Xt = cos(ωt + ϕ) with
ω > π, there exist ω′ ∈ [0, π] and ϕ′ such that Xt = cos(ω′t + ϕ′).) In
principle, we may restrict frequencies to the interval [0, π] only. We include
[−π, 0) in the frequency domain entirely for technical convenience.

Note that Var(Xt) = γ(0) =
∑k
j=−k A

2
j . Define the (unnormalized) spec-

tral distribution function

G(ω) =
∑

j:ωj≤ω
A2
j , −π ≤ ω ≤ π,

which is a discrete distribution with mass A2
j at point ωj for j = ±1, · · ·±k.

In fact, G(ω) can be viewed as the contribution to Var(Xt) from the waves
with frequencies not greater than ω. Therefore, if we regard Var(Xt) as the
total power (or energy) of the process {Xt}, G(·) reflects how this total
power is distributed over its components at different frequencies. In fact,
the ACVF γ(·) can be expressed as a Stieltjes integral

γ(τ) =
∫ π

−π
cos(ωτ)dG(ω) =

k∑
j=−k

cos(ωjτ)A2
j .

Note that the symmetry of form (2.31) ensures that the distribution of
G(·) is symmetric on the interval [−π, π]. Hence, the integral above can be
written as

γ(τ) =
∫ π

−π
{cos(ωτ) + i sin(ωτ)}dG(ω) =

∫ π

−π
eiωτdG(ω), (2.33)

where i =
√−1.
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We further normalize G and define the normalized spectral distribution
function

F (ω) = G(ω)/γ(0) = G(ω)/G(π).

Then F is a proper probability distribution that has probability mass
A2
j/γ(0) at ωj , j = ±1, · · · ,±k. It follows from (2.33) immediately that

ρ(τ) =
∫ π

−π
eiωτdF (ω). (2.34)

In summary, we have defined the spectral distribution for a time series
that is an accumulation of finite periodic waves as defined in (2.31). The
spectral distribution depicts the distribution of the total power (i.e. the
variance) over the waves at different frequencies. Further, the ACVF and
ACF can be expressed as Fourier transforms of the spectral distribution
functions in (2.33) and (2.34). This simple model is illustrative, as any
stationary time series can be viewed as an accumulation of (usually infinite)
periodic waves with different frequencies. The statements above on spectral
distributions are still valid in general.

2.3.2 Spectral Densities
We now introduce the spectral distribution or spectral density for a sta-
tionary time series through the Wiener–Khintchine theorem below. As we
will see, a spectral distribution is defined in terms of an autocovariance
function only. Therefore, it is powerless to deal with the properties beyond
the second moments of a time series.

Theorem 2.10 (Wiener–Khintchine theorem) A real-valued function de-
fined at all the integers {ρ(τ) : τ = 0,±1,±2, . . .} is the ACF of a station-
ary time series if and only if there exists a symmetric probability distribu-
tion on [−π, π] with distribution function F for which

ρ(τ) =
∫ π

−π
eiτωdF (ω), (2.35)

where F is called the normalized spectral distribution function of the time
series. If F has a density function f ,

ρ(τ) =
∫ π

−π
eiτωf(ω)dω,

and f is called the normalized spectral density function.

The theorem is also called Wold’s theorem or Herglotz’s theorem (in
slightly different forms). We give a direct proof in §2.7.4, which is almost
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the same as that on pp. 118–119 of Brockwell and Davis (1991), although
they dealt with complex-valued processes.

Since ρ(·) is real, it holds that

ρ(τ) =
∫ π

−π
cos(ωτ)dF (ω) = 2

∫ π

0
cos(ωτ)dF (ω).

Theorem 2.11 Suppose that {ρ(τ)} is the ACF of a stationary time series
and is absolutely summable in the sense that

∑∞
τ=1 |ρ(τ)| < ∞. Then the

normalized spectral density function exists and is a symmetric probability
density function on the interval [−π, π] defined as

f(ω) =
1
2π

∞∑
τ=−∞

ρ(τ)e−iτω =
1
2π

{
1 + 2

∞∑
τ=1

ρ(τ) cos(ωτ)

}
. (2.36)

Proof. Let f(ω) = 1
2π

∑∞
τ=−∞ ρ(τ)e−iτω. First, we show f ≥ 0. Define

ξ =
∑n
j=1 e

−ijωXj . Then ξ is a random variable taking complex values,
and

Var(ξ) = Cov(ξ, ξ̄) =
n∑

j,k=1

γ(j − k)e−i(j−k)ω ≥ 0,

where ξ̄ denotes the conjugate of ξ. Define fn(ω) = Var(ξ)/{2πnγ(0)} ≥ 0.
Then

fn(ω) =
1

2πn

n∑
j,k=1

ρ(j − k)e−i(j−k)ω =
1
2π

∑
|m|<n

(1− |m|/n)ρ(m)e−imω.

For any ε > 0, we may choose a large integer N > 0 such that

1
2π

∑
|m|≥N

|ρ(m)| < ε.

Then, for any n > N ,

|fn(ω)− f(ω)| ≤ 1
n

1
2π

∑
|m|<N

|mρ(m)|+ 2ε→ 2ε as n→∞.

This implies that fn(ω)→ f(ω). Therefore f(ω) ≥ 0.
Now, it holds for any integer j that

∫ π

−π
eijωf(ω)dω =

1
2π

∞∑
τ=−∞

ρ(τ)
∫ π

−π
ei(j−τ)ωdω = ρ(j).

Let j = 0 in the expression above, and we have
∫ π

−π f(ω)dω = 1. Hence
f(·) is the normalized spectral density. The second equality in (2.36) fol-
lows from the fact that ρ(·) is symmetric, which itself implies that f(·) is
symmetric.
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In some applications such as engineering, spectral decomposition of the
total power (i.e., the variance) is of primary interest. For this purpose, we
define the nonnormalized spectral distribution and density functions as

G(ω) = γ(0)F (ω), g(ω) = γ(0)f(ω),

which we simply call the spectral distribution function and the spectral
density function, respectively. It follows from Theorems 2.10 and 2.11 im-
mediately that

γ(τ) =
∫ π

−π
eiτωdG(ω) =

∫ π

−π
cos(τω)dG(ω) (2.37)

and

g(ω) =
1
2π

∞∑
τ=−∞

γ(τ)e−iτω =
1
2π

{
γ(0) + 2

∞∑
τ=1

γ(τ) cos(τω)

}
, (2.38)

provided that
∑
τ |γ(τ)| < ∞. Note that G(π) = γ(0) = Var(Xt). Hence,

if we regard {Xt} as an accumulation of periodic waves with different fre-
quencies in [−π, π],

G(ω2)−G(ω1) =
∫ ω2

ω1

g(ω)dω

could be viewed as the contributions to the total power from the waves
with the frequencies in the range (ω1, ω2]. If g is large at ω0, the waves
with frequencies around ω0 make a large contribution to the total variation
of {Xt}.

Formulas (2.36) or (2.38) may be used to calculate spectral density func-
tions when ACVFs can be evaluated explicitly. For example, we know, by
(2.38), that the spectral density for a white noise process is a constant on
[−π, π]. Further, for the MA(q) process

Xt = εt + a1εt−1 + · · ·+ aqεt−q, {εt} ∼WN(0, σ2),

the normalized spectral density is

f(ω) =
1
2π

+
1
π

q∑
k=1

∑q
j=k ajaj−k

1 +
∑q
j=1 a

2
j

cos(kω) (2.39)

(see (2.19)). However, (2.36) and (2.38) do not lead to simple solutions for
general stationary ARMA processes the explicit spectral density functions
of which can be derived in terms of a device called the linear filter, discussed
in §2.3.3 below.
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(a)  AR(1) (b>0)
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(d)  MA(q) (q=2,3,4)
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FIGURE 2.4. Spectral density functions for (a) AR(1) with b = 0.7 (solid line),
0.5 (dotted line), and 0.3 (dashed line); (b) AR(1) with b = −0.7 (solid line),
−0.5 (dotted line), and −0.3 (dashed line); (c) MA(1) model with a = 0.7 (solid
line), −0.7 (dotted line), 0.3 (dashed line), and −0.3 (long-dashed line); and (d)
MA(4) process Xt = εt +0.6εt−1 +0.6εt−2 +a3εt−3 +a4εt−4 with (a3, a4) = (0.3,
0.7) (solid line), (0.3, 0) (dotted line), and (0, 0) (dashed line).

Example 2.5 For the stationary AR(1) process

Xt = bXt−1 + εt, |b| < 1, {εt} ∼WN(0, σ2),

ρ(k) = b|k| (|b| < 1). It follows from (2.36) that the normalized spectral
density function is

f(ω) =
1
2π

{
1 + 2

∞∑
k=1

bk cos(kω)

}
=

1
2π

{
1 + 2Re

[ ∞∑
k=1

(beiω)k
]}

.
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Note that
∞∑
k=1

(beiω)k =
beiω

1− beiω =
b cosω − b2 + ib sinω

1 + b2 − 2b cosω
.

Taking the real part, we obtain that

f(ω) =
1
2π

{
1 + 2

b cosω − b2
1 + b2 − 2b cosω

}
=

1
2π

1− b2
1 + b2 − 2b cosω

. (2.40)

We plot normalized spectral density functions of some simple stationary
processes on the half interval [0, π] in Figure 2.4. Note that the normalized
spectral density function for MA processes is given by (2.39).

2.3.3 Linear Filters
Definition 2.7 For two time series {Xt} and {Yt}, we call {Xt} a filtered
version of {Yt} if

Xt =
∞∑

k=−∞
ϕkYt−k, (2.41)

where the coefficients {ϕk} are absolutely summable (i.e.,
∑∞
k=−∞ |ϕk| <

∞).

The device (2.41) is often referred to as a linear filter , in which {Yt} is
the input and {Xt} is the output. The filter can be expressed in a more
compact form in terms of the backshift operator,

Xt = ϕ(B)Yt, (2.42)

where

ϕ(z) =
∞∑

k=−∞
ϕkz

k.

We may purposely design the filter such that it will boost (or suppress) the
signals (of the input) within a certain frequency band, producing output
with the desired properties. The function

Γ(ω) ≡
∞∑

k=−∞
ϕke

−ikω = ϕ(e−iω)

is called a transfer function of the linear filter. Its squared modulus |Γ(ω)|2
is called a power transfer function . The theorem below shows that the
signal-boosting (or suppression) is controlled by the power transfer func-
tion.
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Theorem 2.12 Let {Xt} and {Yt} be two stationary processes satisfying
(2.41). Suppose that their ACFs are absolutely summable. Then

gx(ω) = gy(ω)|Γ(ω)|2, −π ≤ ω ≤ π,

where gx and gy are the spectral density functions of {Xt} and {Yt}, re-
spectively.

Proof. Without loss of generality, we let EXt = EYt = 0. Then

γx(τ) = E(XtXt+τ ) =
∞∑

j,k=−∞
ϕjϕkE(Yt−jYt+τ−k)

=
∞∑

j,k=−∞
ϕjϕkγy(τ + j − k).

Therefore

gx(ω) =
1
2π

∞∑
τ=−∞

γx(τ)e−iτω =
1
2π

∞∑
j,k,τ=−∞

ϕjϕkγy(τ + j − k)e−iτω

=
1
2π

∑
j

ϕje
ijω
∑
k

ϕke
−ikω∑

τ

γy(τ + j − k)e−i(τ+j−k)ω

=
1
2π
|Γ(ω)|2

∑
l

γy(l)e−ilω = gy(ω)|Γ(ω)|2.

The proof is completed.

Example 2.6 (A three-point moving average filter of an AR(1)) Let {Yt}
be a stationary AR(1) process defined by

Yt = bYt−1 + εt, |b| < 1, {εt} ∼WN(0, σ2).

Then Var(Yt) = σ2/(1− b2) and ρy(τ) = b|τ |. It follows from (2.40) that

gy(ω) =
1
2π

σ2

1 + b2 − 2b cos(ω)
,

which is shown in Figure 2.5(a) with b = 0.5 and −0.5 (with σ2 = 0.75).
Define a three-point moving average filter

Xt =
1
3
(Yt−1 + Yt + Yt+1). (2.43)

The transfer function is

Γ(ω) = (eiω + 1 + e−iω)/3 = {1 + 2 cos(ω)}/3.
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(a)  Spectral density for AR(1)
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(b)  Power transfer function
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(c)  Spectral density for filtered AR(1)
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FIGURE 2.5. Example 2.6. (a) Spectral density for an AR(1) process {Yt} with
b = 0.5 (solid lines) and b = −0.5 (dotted lines). (b) Power transfer function.
(c) Spectral density for the output {Xt} with b = 0.5 (solid lines) and b = −0.5
(dotted lines).
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Power transfer function of Y(t) - Y(t-3)
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FIGURE 2.6. The power transfer function of the difference filter (2.45).

The power transfer function is

|Γ(ω)|2 =
1 + 4 cos(ω) + 4 cos2(ω)

9
=

3 + 4 cos(ω) + 2 cos(2ω)
9

. (2.44)

Figure 2.5(b) shows that (2.43) is a lower-pass filter since it passes the
signals at lower frequencies and suppresses the signals at higher frequencies.
It follows from Theorem 2.12 that the spectral density of {Xt} is

gx(ω) =
σ2

18π
· 3 + 4 cos(ω) + 2 cos(2ω)

1 + b2 − 2b cos(ω)
,

which is plotted in Figure 2.5(c). Note that the AR(1) process with b = −0.5
has most power distributed in higher frequencies near π; see Figure 2.5(a).
Having passed through a lower-pass filter (2.43), those high-frequency sig-
nals are largely suppressed. This deduces a substantial power (i.e., variance)
loss in the output process.

Note that the power transfer function (2.44) is equal to 0 at ω = 2π
3 ,

so the three-point moving average filter removes the periodic components
with period 2π/ω = 3. In practice, we often adopt the difference filter

Xt = (Yt − Yt−3)/2 (2.45)

to remove those components. The power transfer function of the difference
filter above is

{1− cos(3ω)}/2,
which is shown in Figure 2.6. We can see that this difference filter passes
the signals around frequencies π/3 and π and removes signals at frequencies
0 and 2π

3 . Therefore, it is no longer a lower-pass filter. In general, we may
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use either moving average or difference filters to remove certain periodic
components. However we should be aware in the meantime of the different
impacts on the filtered series; see, for example, Figures 2.5(b) and 2.6.

Now, we derive the spectral density function for a general ARMA(p, q)
process defined by

Xt − b1Xt−1 − · · · − bpXt−p = εt + a1εt−1 + · · ·+ aqεt−q, (2.46)

or simply b(B)Xt = a(B)εt, where {εt} ∼ WN(0, σ2) and b(z) �= 0 for all
|z| ≤ 1. Define

Yt = Xt − b1Xt−1 − · · · − bpXt−p
= εt + a1εt−1 + · · ·+ aqεt−q.

Then {Yt} is a filtered version of {Xt} and also a filtered version of {εt}.
It follows from Theorem 2.12 that

gy(ω) = gx(ω)

∣∣∣∣∣∣
1−

p∑
j=1

bje
−ijω

∣∣∣∣∣∣

2

= gε(ω)

∣∣∣∣∣∣
1 +

q∑
j=1

aje
−ijω

∣∣∣∣∣∣

2

.

Since gε(ω) = σ2/(2π), it holds that

gx(ω) =
σ2

2π
|1 +

∑q
j=1 aje

−ijω|2
|1−∑p

j=1 bje
−ijω|2 =

σ2

2π
|a(e−iω)|2
|b(e−iω)|2 . (2.47)

Letting b1 = · · · = bp = 0 in the expression above and comparing it with
(2.39), we obtain that

∣∣∣∣∣∣
1 +

q∑
j=1

aje
−ijω

∣∣∣∣∣∣

2

∝ 1 + 2
q∑

k=1

∑q
j=k ajaj−k

1 +
∑q
j=1 a

2
j

cos(kω).

Combining this with (2.47), we obtain the following proposition showing
that the spectral density of a stationary ARMA(p, q) process is of the form

A0 +A1 cos(ω) + · · ·+Aq cos(qω)
B0 +B1 cos(ω) + · · ·+Bq cos(pω)

, (2.48)

where {Aj} and {Bj} are constants. In fact, it is easy to see that this
spectral density can be expressed more explicitly as follows.

Proposition 2.4 For a stationary ARMA(p, q) process defined as in (2.46),
the spectral density function is given as in (2.47). Furthermore,

gx(ω) =
σ2

2π
1 +

∑q
j=1 a

2
j + 2

∑q
k=1{

∑q
j=k ajaj−k} cos(kω)

1 +
∑p
j=1 b

2
j + 2

∑p
k=1{

∑p
j=k b

′
jb

′
j−k} cos(kω)

,

where a0 = b′0 = 1 and b′k = −bk for 1 ≤ k ≤ p.
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Example 2.7 Let {Xt} ∼ AR(1) be stationary, and

Yt = Xt + et, {et} ∼WN(0, σ2
e),

and {et} is uncorrelated with {Xt}. It is easy to see that {Yt} is stationary
and γy(τ) = γx(τ) for τ �= 0 and γx(τ) + σ2

e for τ = 0. Hence, it follows
from (2.48) that

gy(ω) = gx(ω) +
σ2
e

2π
=

A

B + C cosω
+
σ2
e

2π
=
A′ +B′ cosω
C ′ +D′ cosω

.

This spectral density looks similar to that of an ARMA(1, 1) process and
hence seems to suggest that {Yt} is an ARMA(1, 1) process. Indeed, if we
write Xt − aXt−1 = εt, we have an explicit expression for Yt as follows

Yt − aYt−1 = et − aet−1 + εt.

Note that the term εt is invisible from the form of the spectral density of
{Yt}.

2.4 Periodogram

The periodogram is a powerful tool for statistical inference for time series in
the frequency domain. This is largely due to the fact that the periodogram
ordinates for a stationary ARMA process are asymptotically independent
and exponentially distributed. The periodogram is defined in terms of the
discrete Fourier transform of observed data.

2.4.1 Discrete Fourier Transforms
Let {X1, · · · , XT } be T successive observations of a time series. Thinking of
the underlying process as being periodic with the period T , we can express
those Xt’s as linear combinations of sinusoidals. To this end, we define
Fourier frequencies

ωk =
2πk
T

, k = −
[
T − 1

2

]
, . . . ,−1, 0, 1, . . . ,

[
T

2

]
,

where [y] denotes the integer part of y (i.e., the largest integer not greater
than y). Let

ek =
1√
T




eiωk

e2iωk

...
eTiωk


 , k = −

[
T − 1

2

]
, . . . ,−1, 0, 1, . . . ,

[
T

2

]
. (2.49)
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Then, the T components of ek may be viewed as the observed values at T
discrete time points of a periodic wave at the frequency ωk. Note that {ek}
are orthonormal in the sense that

ēτj ek = T−1
T∑
l=1

exp{il(ωk − ωj)}

= T−1 [exp{iT (ωk − ωj)} − 1] exp{i(ωk − ωj)}
exp{i(ωk − ωj)} − 1

=
{

1 if k = j
0 if k �= j,

where ēτj = T− 1
2 (e−iωj , . . . , e−Tiωj ) is the conjugate of ej . Therefore {ek}

is a base of the T -dimensional complex space in the sense that any T -
dimensional complex vector can be expressed as a linear combination of
ej ’s. Hence, there exist T (complex) numbers αk’s such that

X ≡




X1
...
XT


 =

[ T
2 ]∑

k=−[ T −1
2 ]

αkek. (2.50)

This decomposes the series {Xt} into linear combinations of periodic waves
ek with frequency ωk. The magnitude |αk| represents the energy of {Xt}
at the frequency ωk. Due to the orthonormality of {ek}, it is easy to see,
by multiplying ēτk on both sides, that

αk = ēτkX =
1√
T

T∑
t=1

Xte
−itωk (2.51)

and
T∑
t=1

X2
t =

[ T
2 ]∑

k=−[ T −1
2 ]

|αk|2. (2.52)

We call {αk} the discrete Fourier transform of {Xt}.
Since we only deal with real Xt’s, the equation (2.50) reduces to

Xt =
1√
T

[ T
2 ]∑

k=−[ T −1
2 ]

αke
itωk (2.53)

=
1√
T
α0 +

2√
T

[ T −1
2 ]∑

k=1

{αk,1 cos(ωkt) + αk,2 sin(ωkt)}+ (−1)T/2
1√
T
αT/2
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for t = 1, · · · , T . In the expression above the last term on the right-hand
side is defined to be 0 if T is odd, and

αk,1 =
1√
T

T∑
t=1

Xt cos(ωkt), αk,2 =
1√
T

T∑
t=1

Xt sin(ωkt). (2.54)

2.4.2 Periodogram
Definition 2.8 The periodogram of a set of real numbers {X1, · · · , XT }
is defined as

IT (ωk) =
1
T

∣∣∣∣∣
T∑
t=1

Xte
−itωk

∣∣∣∣∣
2

= |αk|2, k = −
[
T − 1

2

]
, . . . ,−1, 0, 1, . . . ,

[
T

2

]
,

where ωk = 2πk/T is the Fourier frequency, and αk is given in (2.51).

Obviously,
IT (ωk) = α2

k,1 + α2
k,2,

where αk,1 and αk,2 are defined in (2.54). Further, it follows from (2.52)
immediately that

T∑
t=1

X2
t =

[ T
2 ]∑

k=−[ T −1
2 ]

IT (ωk).

The periodic representation (2.53) distributes the total energy
∑T
t=1X

2
t

of the original data {X1, · · · , XT } over T periodic waves ek with different
frequencies ωk and energy I(ωk). When IT (ωk) is large, the waves at (or
around) the frequency ωk have large energy. The theorem below establishes
the link between periodogram and spectral density function. Its proof is
given in §2.7.5.

Theorem 2.13 For k = −[T−1
2 ], . . . , [T2 ] and k �= 0,

IT (ωk) =
T−1∑

τ=−(T−1)

γ̂(τ)e−iτωk ,

where γ̂(·) is the sample ACVF defined as in (2.23).

The theorem above defines a natural estimator for spectral density func-
tion

ĝ(ω) = IT (ω)/(2π), ω ∈ (−π, π);

see (2.36). However, this naive substitution estimator is inconsistent and
is therefore not that useful in practice since Var{IT (ω)} converges to a
nonzero constant; see Theorem 2.14 below.
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Theorem 2.14 Suppose that {X1, · · · , XT } is a sample from the station-
ary process defined as

Xt =
∞∑

j=−∞
ajεt−j , {εt} ∼ IID(0, σ2), and

∞∑
j=−∞

|aj | <∞.

Let n = [(T − 1)/2]. For k = 1, · · · , n, define

ξ2k−1 =
√

2√
T σ

T∑
t=1

εt cos(ωkt), ξ2k =
√

2√
T σ

T∑
t=1

εt sin(ωkt).

(i) Because T →∞, {ξk, k = 1, · · · , 2n} is a sequence of asymptotically
independent and standard normal random variables in the sense that for
any fixed c1, · · · , cr ∈ R and r ≥ 1,

∑r
j=1 cjξkj

D−→ N(0,
∑r
j=1 c

2
j ) for any

1 ≤ k1 < · · · < kr ≤ 2n.
(ii) For k = 1, · · · , n,

IT (ωk) = 2πg(ωk)
ξ22k−1 + ξ22k

2
+RT (ωk),

where g(·) is the spectral density of {Xt} and max1≤k≤nE|RT (ωk)| → 0 as
T →∞.

The proof of Theorem 2.14 is given in §2.7.6. It follows from Theo-
rem 2.14(i) that ξ22k−1 +ξ22k is asymptotically χ2 with 2 degrees of freedom.
Hence, the limit distribution of random variable (ξ22k−1 + ξ22k)/2 is expo-
nential with mean 1. By Theorem 2.14(ii), we could approximately regard

IT (ωk)/{2πg(ωk)} for k = 1, · · · , n
as n i.i.d. standard exponential random variables when the sample size T is
large. It can also be proved that under some additional conditions on aj ’s
and εt

Var{IT (ωk)} = 4π2g2(ωk) +O(T−1/2), k = 1, · · · , n;

see Theorem 10.3.2 of Brockwell and Davis (1991). Note that in the theorem
above we only consider periodogram ordinates IT (ωk) with ωk ∈ (0, π). It
is easy to see from Definition 2.8 that

IT (ω) = IT (−ω), ω ∈ (0, π).

The symmetry above is in alignment with the symmetry of spectral den-
sity functions. However, in most applications, we use periodogram ordinate
IT (ω) with positive ω only.

To overcome the inconsistency problem in practice, tapering or other
smoothing techniques are often applied in calculating the periodogram; see
Brillinger (1981), Dahlhaus (1990b), Chen, Dahlhaus and Wu (2000), and
also §7.2 and §7.3.
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(a) Difference
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FIGURE 2.7. ACF plots for (a) the differences {Yt − Yt−1} and (b) the absolute
differences {|Yt − Yt−1|} of S&P 500 Index data reported in Example 1.4.

2.5 Long-Memory Processes∗

It follows from Proposition 2.2(i) (see also (2.22)) that the ACF of a sta-
tionary ARMA process satisfies the inequality

|ρ(k)| ≤ Crk, k = 1, 2, · · · ,

where C > 0 and r ∈ (0, 1) are some constants. Therefore
∑∞
k=0 |ρ(k)| <∞.

A process with the absolutely summable ACF is often referred to as a short-
memory process. There exists another type of stationary process for which
the ACF decays to 0 at a much slower rate; for example, it exhibits the
asymptotic behavior

ρ(k) ∼ Ck2d−1 as k →∞,

where C �= 0 and d < 0.5. We refer to the feature above as the long-memory
phenomenon. In other words, the ACF of a long-memory process decays to
0 at the slower rate k2d−1, and

∑∞
k=0 |ρ(k)| =∞ when d ∈ (0, 0.5).

The long-memory features have been observed in diverse fields such as hy-
drology, economics, and finance. Figure 2.7 displays the ACF plots for both
differenced series {Yt−Yt−1} and absolutely differenced series {|Yt−Yt−1|},
where {Yt} is the S&P 500 Index time series reported in Example 1.4. There
seems to exist overwhelming evidence of the long-memory feature in the ab-
solute differences {|Yt − Yt−1|}. In this section, we present an introduction
to fractionally integrated ARMA processes, which form the most frequently
used class of long-memory processes. We refer the reader to Beran (1995)
for a systematic treatment of long-memory processes.
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2.5.1 Fractionally Integrated Noise
For any real number d > −1, define the difference operator by means of
the binomial expansion

∇d ≡ (1−B)d =
∞∑
j=0

ϕjB
j ,

where ϕ0 = 1, for j ≥ 1

ϕj =
Γ(j − d)

Γ(j + 1)Γ(−d) =
∏

0<k≤j

k − 1− d
k

,

and Γ(·) is the gamma function defined as

Γ(x) =




∫∞
0 tx−1e−tdt, x > 0,
∞ x = 0,
x−1Γ(1 + x), −1 < x < 0.

Definition 2.9 A zero-mean stationary process {Xt, t = 0,±1,±2, · · · } is
said to be an ARIMA(0, d, 0) process with d ∈ (−0.5, 0.5) and d �= 0 if

∇dXt = εt, {εt} ∼WN(0, σ2). (2.55)

{Xt} is often called fractionally integrated noise.

It can be shown that for d ∈ (−0.5, 0.5),
∑
ϕ2
j < ∞. This ensures that

∇dXt =
∑∞
j=0 ϕjXt−j converges in mean square. The theorem below guar-

antees the existence of fractionally integrated noise processes; see §13.2 of
Brockwell and Davis (1991) for its proof.

Theorem 2.15 For d ∈ (−0.5, 0.5) and d �= 0, there exists a unique purely
nondeterministic, zero-mean, and stationary process

Xt = ∇−dεt =
∞∑
j=0

ψjεt−j , t = 0,±1,±2, · · · ,

which satisfies (2.55), where ψ0 = 1, and

ψj =
Γ(j + d)

Γ(j + 1)Γ(d)
=

∏
0<k≤j

k − 1 + d

k
, j = 1, 2, · · · .

Furthermore, Var(Xt) = γx(0) = σ2Γ(1− 2d)/Γ2(1− d), the ACF of {Xt}
is of the form

ρ(k) =
Γ(k + d)Γ(1− d)
Γ(k − d+ 1)Γ(d)

=
∏

0<j≤k

j − 1 + d

j − d , k = 1, 2, · · · ,
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the PACF π(k) = d/(k − d) (k ≥ 1), and the spectral density function of
{Xt} may be written as

g(ω) =
σ2

2π
|1− e−iω|−2d =

σ2

2π
|2 sin(ω/2)|−2d.

By Stirling’s formula Γ(x) ∼ √2πe−x+1(x − 1)x−1/2 (x → ∞), we may
see that the ACF of a fractionally integrated noise process admits the
asymptotic expression

ρ(k) ∼ k2d−1Γ(1− d)/Γ(d) as k →∞.
Thus

∑
k |ρ(k)| = ∞ for d > 0. This tail behavior of the ACF is reflected

in its spectral density around the origin as:

g(ω) ∼ σ2

2π
ω−2d as ω → 0,

which has an infinite pole at the origin when d > 0. (Note that sin(x) ∼
x as x → 0.) Fractionally integrated noise processes themselves are of
limited value in modeling long-memory data since the two parameters d
and σ2 allow little flexibility. They serve as building blocks to generate a
much more general class of long-memory processes—fractionally integrated
ARMA processes.

2.5.2 Fractionally Integrated ARMA processes
Definition 2.10 A zero-mean stationary process {Xt, t = 0,±1,±2, · · · }
is said to be a FARIMA(p, d, q) process with d ∈ (−0.5, 0.5) and d �= 0 if

∇dXt ∼ ARMA(p, q).

{Xt} is also called a fractionally integrated ARMA process.

Let {Xt} ∼ FARIMA(p, d, q). The definition above implies that

b(B)∇dXt = a(B)εt, {εt} ∼WN(0, σ2), (2.56)

where b(z) = 1 − b1z − · · · − bpzp, a(z) = 1 + a1z + · · · + aqz
q. Note that

a−1(B), b(B), and ∇d are polynomials of operators B. Since the terms in
a product of those polynomials are exchangeable, it holds that

∇da−1(B)b(B)Xt = εt.

Let Yt = a−1(B)b(B)Xt. Then ∇dYt = εt (i.e., {Yt} is a fractionally inte-
grated noise). Note that

b(B)Xt = a(B)Yt.
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Thus, a FARIMA(p, d, q) process can be viewed as an ARMA(p, q) process
driven by a fractionally integrated noise FARIMA(0, d, 0). The theorem
below guarantees the existence of fractionally integrated ARMA processes;
see §13.2 of Brockwell and Davis (1991) for its proof.

Theorem 2.16 Let d ∈ (−0.5, 0.5) and d �= 0, and a(z) = 0 and b(z) = 0
have no common roots. If b(z) �= 0 for all |z| ≤ 1, equation (2.56) defines
a unique nondeterministic stationary solution

Xt =
∞∑
j=0

ψj∇−dεt−j ,

where ψ(z) =
∑∞
j=0 ψjz

j = a(z)/b(z). Furthermore, the ACF and the spec-
tral density function of {Xt} exhibit the asymptotic properties

ρ(k) ∼ Ck2d−1 as k →∞,

where C �= 0, and

g(ω) =
σ2

2π
|a(e−iω)|2
|b(e−iω)|2 |1− e

−iω|−2d ∼ σ2

2π
[a(1)/b(1)]2ω−2d as ω → 0.

As we pointed out earlier, a long-memory process FARIMA(p, d, q) is an
ARMA process driven by a fractionally integrated noise FARIMA(0, d, 0).
Theorem 2.16 indicates that the FARIMA(p, d, q) exhibits the same long-
memory behavior as the FARIMA(0, d, 0), reflected by the asymptotic prop-
erties of both the ACF (as k → ∞) and spectral density (as ω → 0); see
also Theorem 2.15.

2.6 Mixing∗

The classical asymptotic theory in statistics is built on the central limit
theorem and the law of large numbers for the sequences of independent
random variables. In the study of the asymptotic properties for linear time
series that are the sequences of dependent random variables, the conven-
tional approach is to express a time series in terms of an MA process in
which the white noise {εt} is assumed to be i.i.d.; see, for example, The-
orems 2.8 and 2.14. Unfortunately, the MA representation such as (2.24)
is no longer relevant in the context of nonlinear time series, where more
complicated dependence structures will be encountered. We need to im-
pose certain asymptotic independence in order to appreciate large sample
properties of nonlinear time series inferences. A mixing time series can be
viewed as a sequence of random variables for which the past and distant
future are asymptotically independent.
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For mixing sequences, both the law of large numbers (i.e., ergodic theo-
rem) and central limit theorem can be established. In this section, we intro-
duce different mixing conditions. Since the α-mixing is the weakest among
the most frequently used mixing conditions, we state some limit theorems
and probability inequalities for α-mixing processes. They play important
roles in the development of asymptotic theory for nonlinear time series.
For a more detailed discussion on mixing conditions, we refer the reader
to Bradley (1986) and Doukhan (1994). Finally, we present a central limit
theorem for a generic form that is constantly encountered in nonparametric
regression based on kernel smoothing.

2.6.1 Mixing Conditions
To simplify the notation, we only introduce mixing conditions for strictly
stationary processes (in spite of the fact that a mixing process is not neces-
sarily stationary). The idea is to define mixing coefficients to measure the
strength (in different ways) of dependence for the two segments of a time
series that are apart from each other in time. Let {Xt, t = 0,±1,±2, · · · }
be a strictly stationary time series. For n = 1, 2, · · · , define

α(n) = sup
A∈F0

−∞, B∈F∞
n

|P (A)P (B)− P (AB)|,

β(n) = E

{
sup
B∈F∞

n

|P (B)− P (B|X0, X−1, X−2, · · · )|
}
,

ρ(n) = sup
X∈L2(F0

−∞), Y ∈L2(F∞
n )
|Corr(X,Y )|,

ϕ(n) = sup
A∈F0

−∞,B∈F∞
n ,P (A)>0

|P (B)− P (B|A)|,

ψ(n) = sup
A∈F0

−∞,B∈F∞
n ,P (A)P (B)>0

|1− P (B|A)/P (B)|, (2.57)

where Fji denotes the σ-algebra generated by {Xt, i ≤ t ≤ j}, and L2(Fji )
consists of Fji -measurable random variables with finite second moment.
(Readers are referred to Chapter 1 of Chow and Teicher (1997) for the
definitions of σ-algebra and measurable functions.) Intuitively, Fji assem-
bles all information on the time series collected between time i and time j.
When at least one of the mixing coefficients converges to 0 as n→∞, we
may say that the process {Xt} is asymptotically independent. Note that
F∞
n+1 ⊂ F∞

n for any n ≥ 1. Thus, all of the mixing coefficients defined
above are monotonically nonincreasing.

Definition 2.11 The process {Xt} is said to be α-mixing if α(n)→
0,
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β-mixing if β(n)→ 0,
ρ-mixing if ρ(n)→ 0,
ϕ-mixing if ϕ(n)→ 0,

and
ψ-mixing if ψ(n)→ 0 as n→∞.

Some basic facts on mixing conditions are now in order.

(i) The diagram below illustrates the relationships among the five mixing
conditions:

ψ-mixing −→ ϕ-mixing
↗ β-mixing ↘
↘ ρ-mixing ↗ α-mixing;

see, for example, Bradley (1986). Further, it is well-known that

α(k) ≤ 1
4
ρ(k) ≤ 1

2
ϕ1/2(k).

The α-mixing, also called strong mixing, is the weakest among the five,
which is implied by any one of the four other mixing conditions. On the
other hand, ψ-mixing is the strongest. In general, β-mixing (also called ab-
solute regular) and ρ-mixing do not imply each other. However, for Gaussian
processes, ρ-mixing is equivalent to α-mixing and therefore is weaker than
β-mixing. See §1.3.2 of Doukhan (1994) for examples of time series with
various mixing properties.

(ii) The mixing properties are hereditary in the sense that, for any mea-
surable function m(·), the process {m(Xt)} possesses the mixing property
of {Xt}.

(iii) Consider the MA(∞) process

Xt =
∞∑
j=0

ajεt−j ,

where aj → 0 exponentially fast (note that causal ARMA(p, q) processes
fulfill this condition), and {εt} is an i.i.d. sequence. If the probability density
function of εt exists (such as normal, Cauchy, exponential, and uniform
distributions), then {Xt} is β-mixing with β(n) → 0 exponentially fast
(Pham and Tran 1985). However, this result does not always hold when εt
is discrete. For example, the process Xt+1 = 0.5Xt + εt is not α-mixing
when εt has a binomial distribution; see Andrews (1984).

(iv) If {Xt} is a strictly stationary Markov chain, the mixing coefficients
are effectively defined with (F0

−∞,F∞
n ) replaced by (σ(X0), σ(Xn)), where

σ(Xt) denotes the σ-algebra generated by the single random variable Xt

only (Theorem 4.1 of Bradley 1986). Further, the mixing coefficients decay
to 0 exponentially fast if {Xt} is ρ-, φ-, or ψ-mixing (Theorem 4.2 of Bradley
1986).
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(v) It follows from (iv) above and Lemma 1.3 in Bosq (1998) that if {Xt}
is a strictly stationary and α-mixing Markov chain, the mixing coefficient
is bounded by

α(n) ≤ 1
2

∫
|f0,n(x, y)− f(x)f(y)|dxdy,

where f is the marginal density function of Xt, and f0,n is the joint density
of (X0, Xn).

(vi) Davydov (1973) showed that, for a strictly stationary Markov chain
{Xt},

β(n) =
∫
||Fn(·|x)− F (·)||F (dx), (2.58)

where F is the marginal distribution of Xt, Fn(·|x) is the conditional dis-
tribution of Xn given X0 = x, and || · || denotes the total variation. If {Xt}
is geometrically ergodic satisfying the additional condition that

||Fn(·|x)− F (·)|| ≤ A(x)ηn (2.59)

almost surely with respect to the distribution F (·), where η ∈ (0, 1) is a
constant and

∫
A(x)F (dx) < ∞ (see also (2.10)), it follows immediately

from (2.58) that {Xt} is β-mixing with exponentially decaying coefficients.
Nummelin and Tuominen (1982) provided some sufficient conditions under
which (2.59) holds; see also §2.4 of Doukhan (1994).

(vii) We may define a “one-side-infinite” process {Xt, t ≥ 1} to be,
for example, α-mixing if α(n) → 0, where α(n) is defined as in (2.57)
with “supA∈F0

−∞,B∈F∞
n

” replaced by “maxk≥1 supA∈Fk
1 ,B∈F∞

n+k
”. Then, a

strictly stationary process {Xt, t = 0,±1,±2, · · · } is α-mixing if and only if
its “positive half” {Xt, t = 1, 2, · · · } is α-mixing. This remark also applies
to the four other mixing conditions.

(viii) A GARCH(p, q) process defined by (1.7) and (1.6) is α-mixing with
exponentially decaying coefficients if (i)

∑
1≤i≤p ai +

∑
1≤j≤q bj < 1 and

(ii) the density function of εt is positive in an interval containing 0; see
Theoerm 3.1 and Remark 3.2 of Basrak, Davis and Mikosch (2002).

(ix) Any sequence of independent (or m-dependent) random variables is
mixing in all of the types defined in Definition 2.11. On the other hand, a
sequence generated by a deterministic equation such as

Xt+1 = m(Xt), t = 0,±1,±2, · · ·
is not α-mixing, where m(·) is a nonlinear function. Intuitively, Xt+n is
completely determined by Xt. Hence, their dependence cannot vanish even
when n→∞. To appreciate this, assume that the process defined above is
stable in the sense that it admits an invariant probability measure

P (Xt ∈ A) = lim
n→∞

1
n

n∑
j=1

I(Xj ∈ A), for all t ≥ 1 and measurable A.
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Take a point x0 such that c ≡ P (A) = P (X1 ≤ x0) > 0 and let

A0 = {m(n)(X0) ≤ x0} ∈ F0
−∞, B0 = {Xn ≤ x0} ∈ F∞

n ,

where m(n) denotes the nth fold of m. Then A0 = B0 since Xn = m(n)(X0).
Thus

α(n) ≥ |P (AB)− P (A)P (B)| = P (A){1− P (A)} = c(1− c) > 0

for all n ≥ 1. Therefore α(n) does not converge to 0.
In the rest of this book, we mainly deal with the α-mixing processes. The

discussion above indicates that such a condition is likely to hold for strictly
stationary time series, including ARMA processes and geometrically er-
godic Markov chains. On the other hand, it is by no means easy in general
to check whether a nonlinear time series is, for example, α-mixing. The spe-
cial properties for Markov chains stated in (iv)–(vi) above certainly make
the theoretical investigation easier. In this vein, mixing properties for non-
linear AR and nonlinear ARCH(1) processes have been established; see, for
example, §2.4.2 of Doukhan (1994). Unfortunately, the required conditions
on underlying distributions are difficult to check in general. This partially
explains why it is a common practice to assume a certain mild asymp-
totic independence (such as α-mixing) as a precondition in the context of
asymptotic theory of statistical analysis for nonlinear time series.

2.6.2 Inequalities
We introduce three types of inequalities, namely covariance inequalities,
moment inequalities for partial sums, and exponential inequalities for tail
probabilities. They will serve as basic tools in the development of asymp-
totic theory in nonlinear time series analysis; see, for example, the proof of
Theorem 2.21 in §2.6.3. The exponential inequalities are required to derive
uniform convergence rates for nonparametric estimators.

(a) Covariance inequalities

Let X and Y be two real random variables. Define

α = sup
A∈σ(X), B∈σ(Y )

|P (A)P (B)− P (AB)|.

Proposition 2.5 below presents the bound for Cov(X,Y ) in terms of the
dependence measure α. Its proof can be found in §1.2.2 of Doukhan (1994).

Proposition 2.5 (i) If E{|X|p + |Y |q} <∞ for some p, q ≥ 1 and 1/p+
1/q < 1, it holds that

|Cov(X,Y )| ≤ 8α1/r{E|X|p}1/p{E|Y |q}1/q,
where r = (1− 1/p− 1/q)−1.
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(ii) If P (|X| ≤ C1) = 1 and P (|Y | ≤ C2) = 1 for some constants C1 and
C2, it holds that

|Cov(X,Y )| ≤ 4αC1C2.

Note that if we allow X and Y to be complex-valued random variables,
Proposition 2.5(ii) still holds, with the coefficient “4” on the right-hand side
of the inequality replaced by “16”. Using this modified inequality (k − 1)
times, we obtain the following proposition, which plays an important role
in the proof of central limit theorems for mixing sequences. The result was
first proved by Volkonskii and Rozanov (1959).

Proposition 2.6 Let Fji and α(·) be the same as in (2.57). Let ξ1, · · · , ξk
be complex-valued random variables measurable with respect to the σ- alge-
bras Fj1i1 , · · · ,Fjkik , respectively. Suppose il+1 − jl ≥ n for l = 1, · · · , k − 1,
and jl ≥ il and P (|ξl| ≤ 1) = 1 for l = 1, · · · , k. Then

|E(ξ1 · · · ξk)− E(ξ1) · · ·E(ξk)| ≤ 16(k − 1)α(n).

(b) Moment inequalities

Let {Xt} be a sequence of random variables with mean 0. For any integers
r ≥ 0 and q ≥ 2, define

Mr,q = sup |Cov(Xt1 · · ·Xtp , Xtp+1 · · ·Xtq )|, (2.60)

where the supremum is taken over all 1 ≤ t1 ≤ · · · ≤ tq and 1 ≤ p < q with
tp+1− tp = r. The proposition below provides the bounds for the moments
of the partial sum Sn ≡ X1 + · · ·+Xn.

Theorem 2.17 If, for some fixed q ≥ 2, Mr,q = O(r−q/2) as r →∞, then
there exists a positive constant C independent of n for which

|E(Sqn)| ≤ Cnq/2. (2.61)

The theorem above is Theorem 1 of Doukhan and Louhichi (1999).
Proposition 2.7 below specifies some conditions under which (2.61) holds
for α-mixing processes. A sharper condition can be found in Lemma 7 of
Doukhan and Louhichi (1999).

Proposition 2.7 Let {Xt} be a strictly stationary and α-mixing process
with mean 0. Let α(·) be the mixing coefficient defined in (2.57) and q ≥ 2.
Then (2.61) holds if one of the following two conditions holds:

(i) E|Xt|δ <∞ for some δ > q, and α(n) = O(n− δq
2(δ−q) ),

(ii) P (|Xt| < C1) = 1 for some constant C1, and α(n) = O(n−q/2).

Proof. We give a proof for case (i) only. It follows from Proposition 2.5(i)
that

|Cov(Xt1 · · ·Xtp , Xtp+1 · · ·Xtq )|
≤ α(r)1− q

δ {E|Xt1 · · ·Xtp |
δ
p } p

δ {E|Xtp+1 · · ·Xtq |
δ

q−p } q−p
δ .
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By using the Hölder inequality successively, we have that

{E|Xt1 · · ·Xtp |
δ
p } p

δ ≤ {E|Xt1 |δ}
1
δ {E|Xt2 · · ·Xtp |

δ
p−1 } p−1

δ

≤ · · · ≤ {E|X1|δ}
p
δ .

Thus

|Cov(Xt1 · · ·Xtp , Xtp+1 · · ·Xtq )| ≤ α(r)1− q
δ {E|X1|δ}

q
δ .

This implies that Mr,q ≤ α(r)1−q/δ{E|X1|δ}q/δ. Now (2.61) follows from

Theorem 2.17, and condition α(r) = O
(
r− δq

2(δ−q)

)
.

(c) Exponential inequalities

Let {Xt} be a strictly stationary process with mean 0 and Sn = X1 + · · ·+
Xn. Let α(·) be defined as in (2.57). The two theorems below follow from
Theorems 1.3 and 1.4 of Bosq (1998) directly.

Theorem 2.18 Suppose that P (|Xt| ≤ b) = 1. Then
(i) For each q = 1, · · · , [n/2] and ε > 0,

P (|Sn| > nε) ≤ 4 exp
(
−ε

2q

8b2

)
+ 22

(
1 +

4b
ε

) 1
2

q α

([
n

2q

])
.

(ii) For each q = 1, · · · , [n/2] and ε > 0,

P (|Sn| > nε) ≤ 4 exp
(
− ε2q

8ν2(q)

)
+ 22

(
1 +

4b
ε

) 1
2

q α

([
n

2q

])
,

where ν2(q) = 2σ2(q)/p2 + bε/2, p = n/(2q), and

σ2(q) = max
0≤j≤2q−1

E{([jp] + 1− jp)X1 +X2 + · · ·
+ X[(j+1)p]−[jp] + (jp+ p− [jp+ p])X[(j+1)p]−[jp]+1}2.

Theorem 2.19 Suppose that Cramer’s condition is fulfilled, that is, for
some constant C > 0,

E|Xt|k ≤ Ck−2k!EX2
t <∞, k = 3, 4, · · · . (2.62)

Then, for any n ≥ 2, k ≥ 3, q ∈ [1, n/2], and ε > 0,

P (|Sn| > nε) ≤ 2{1 + n/q + µ(ε)} e−qµ(ε)

+ 11n{1 + 5ε−1(EXk
t )

1
2k+1 }α

([
n

q + 1

]) 2k
2k+1

,

where µ(ε) = ε2/(25EX2
t + 5Cε).
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2.6.3 Limit Theorems for α-Mixing Processes
Let {Xt} be a strictly stationary and α-mixing process. Define Sn = X1 +
· · ·+Xn. Let γ(·) be the ACVF of {Xt} whenever it exists.

Proposition 2.8 Suppose that E|Xt| < ∞. Then as n → ∞, Sn/n
a.s.−→

EXt.

Proposition 2.8 is an ergodic theorem for α-mixing processes. It follows
from the fact that an α-mixing sequence is mixing in the sense of ergodic
theory; see Theorem 10.2.1 of Doob (1953) and also Theorem 17.1.1 of
Ibragimov and Linnik (1971).

Theorem 2.20 Suppose that one of the following two conditions holds:
(i) E|Xt|δ <∞ and

∑
j≥1 α(j)1−2/δ <∞ for some constant δ > 2,

(ii) P (|Xt| < C) = 1 for some constant C > 0, and
∑
j≥1 α(j) <∞.

Then
∑
j≥1 |γ(j)| <∞, and

1
n

Var(Sn)→ γ(0) + 2
∞∑
j=1

γ(j). (2.63)

The proof for case (i) can be found in §1.5 of Bosq (1998) (where the
law of the iterated logarithm for α-mixing processes is also presented). We
present the proof for case (ii) below.

Proof of Theorem 2.20(ii). It follows from Proposition 2.5(ii) that
|γ(j)| ≤ 4α(j){E|X1|}2. This implies that

∑
j |γ(j)| <∞. For any n ≥ 2,

1
n

Var(Sn) =
1
n

n∑
j=1

Var(Xj) +
2
n

∑
1≤i<j≤n

Cov(Xi, Xj)

= γ(0) + 2
n−1∑
l=1

(
1− l

n

)
γ(l).

Now (2.63) follows from the dominated convergence theorem.

Theorem 18.4.1 of Ibragimov and Linnik (1971) specified the necessary
and sufficient conditions of the central limit theorem (CLT) for α-mixing
processes. Peligrad (1986) and §1.5 of Doukhan (1994) provided collections
of the CLTs under different conditions for α- and other mixing processes.
The result presented in Theorem 2.21 below follows directly from Theorem
1.7 of Peligrad (1986). The key idea in the proof of CLTs for dependent
processes is to adopt the standard small-block and large-block arguments
due to Bernstein (1926); see the proof for Theorem 18.4.1 of Ibragimov and
Linnik (1971). We also attach a proof for part of Theorem 2.21 below to
illustrate this key idea.
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Theorem 2.21 Assume that EXt = 0, and σ2 = γ(0) + 2
∑∞
j=1 γ(j) is

positive. Then
Sn/
√
n

D−→ N(0, σ2)

if one of the following two conditions holds:
(i) E|Xt|δ <∞ and

∑
j≥1 α(j)1−2/δ <∞ for some constant δ > 2;

(ii) P (|Xt| < c) = 1 for some constant c > 0 and
∑
j≥1 α(j) <∞.

Proof. We only present the proof for case (ii). To employ the small-block
and large-block arguments, we partition the set {1, · · · , n} into 2kn + 1
subsets with large blocks of size ln and small blocks of size sn and the last
remaining set of size n−kn(ln+sn), where ln and sn are selected such that

sn →∞, sn/ln → 0, ln/n→ 0, and kn ≡ [n/(ln + sn)] = O(sn).

For example, we may choose ln = O(n
r−1

r ) and sn = O(n1/r) for any r > 2.
Then kn = O(n1/r) = O(sn). For j = 1, · · · , kn, define

ξj =
jln+(j−1)sn∑

i=(j−1)(ln+sn)+1

Xi, ηj =
j(ln+sn)∑

i=jln+(j−1)sn+1

Xi,

and ζ =
∑n
i=kn(ln+sn)+1Xi. Note that α(n) = o(n−1) and knsn/n→ 0. It

follows from Proposition 2.7(ii) that

1
n
E




kn∑
j=1

ηj




2

→ 0,
1
n
Eζ2 → 0.

Thus

1√
n
Sn =

1√
n




kn∑
j=1

ξj +
kn∑
j=1

ηj + ζ


 =

1√
n

kn∑
j=1

ξj + op(1). (2.64)

It follows from Proposition 2.6 that as n→∞
∣∣∣∣∣∣
E


exp


 it√

n

kn∑
j=1

ξj




−

kn∏
j=1

E{exp(itξj/
√
n)}
∣∣∣∣∣∣

≤ 16 (kn − 1)α(sn) → 0. (2.65)

Now, applying Theorem 2.20(ii), we have l−1
n Eξ21 → σ2, which implies

the Feller condition

1
n

kn∑
j=1

Eξ2j =
kn ln
n
· 1
ln
Eξ21 → σ2.
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By Proposition 2.7(ii),

E{ξ21I(|ξ1| ≥ εσn
1
2 )} ≤ {Eξ41}

1
2 P{|ξ1| ≥ εσn 1

2 }
≤ Cln · 1

nε2σ2Eξ
2
1 = O(l2n/n).

Consequently,

1
n

kn∑
j=1

E{ξ2j I(|ξj | ≥ εσn
1
2 )} = O(knl2n/n

2) = O(ln/n)→ 0,

which is the Lindberg condition. Using the standard argument for the proof
of CLTs (see, for example, p. 315 of Chow and Teicher 1997), we have

kn∏
j=1

E{exp(itξj/
√
n)} → e−t2σ2/2.

(Note that the convergence above would follow directly from the CLT for
the sum of independent random variables if the random variables {ξj} were
independent.) This, together with (2.65) and (2.64), entails the required
CLT.

2.6.4 A Central Limit Theorem for Nonparametric Regression
In this section, we present a central limit theorem that can be used di-
rectly to derive the asymptotic distributions of nonparametric regression
estimators based on kernel smoothing for α-mixing processes.

Let {(et, Xt)} be a two-dimensional stochastic process. Let x be a fixed
real number, W (·) be a given function, and h = h(n) > 0 be a constant
depending on n. Define the triangular array

Yt,n ≡ Yt,n(x) = etW
(Xt − x

h

)
, t = 1, · · · , n; n ≥ 1. (2.66)

We will establish the central limit theorem for the partial sum

Sn(x) =
n∑
t=1

Yt,n (2.67)

under the following regularity conditions.

(C1) {(et, Xt)} is a strictly stationary process with E(et|Xt) =
0, E(e2t |Xt) = σ(Xt)2, and E(|et|δ) < ∞ for some δ > 2. Fur-
thermore, the function σ(·)2 and the marginal density function
p(·) of Xt are continuous at x.
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(C2) The conditional density function of (X1, Xj) given (e1, ej)
is bounded by a positive constant C0 independent of j > 1.

(C3) {(et, Xt)} is α-mixing with the mixing coefficients satisfy-
ing the condition

∑
t≥1 t

λα(t)1−2/δ <∞ for some λ > 1− 2/δ.

(C4) W (·) is a bounded function, and
∫ |W (u)|kdu < ∞ for

k = 1, 2.

(C5) n→∞, h→ 0, and nh
λ+2−2/δ

λ+2/δ = O(nεo) for some constant
εo > 0.

Conditions (C1)–(C5) are standard in nonparametric regression. In par-
ticular, (C5) is implied by the condition that nh3 → ∞ and h → 0 (since
λ > 1 − 2/δ). Note that although the mixing conditions were introduced
for univariate processes in §2.6.1, they are readily applicable to the case
where Xt = Xt is a vector-valued process.

The partial sums of forms (2.67) and (2.66) are constantly encountered
in nonparametric regression estimation. They differ from the conventional
partial sums (such as those treated in Theorem 2.21) in two aspects. First,
each Yt,n depends on n through h = h(n). Furthermore, due to the localiza-
tion dictated byW (·/h), only the terms withXt close to x on the right-hand
side of (2.67) are effectively counted asymptotically. This changes the con-
vergence rate from the standard n1/2 to (nh)1/2. For further discussion on
this type of localization, see Chapters 5 and 6.

Due to the differences stated above, the limit theorems such as Propo-
sition 2.8 and Theorem 2.21 are not directly applicable to the partial sum
Sn(x), although similar results can be established in a similar manner with
additional regularity conditions. Note that the (weak) laws of large num-
bers may be derived relatively easily from the exponential inequalities in
Theorems 2.18 and 2.19. We only present a central limit theorem below.

Theorem 2.22 Under conditions (C1)–(C5), it holds that

1√
nh

Sn(x)
D−→ N

(
0, σ(x)2p(x)

∫
W (u)2du

)
.

The proof of the theorem above is presented in §2.7.7. It is similar to
the proof of Theorem 2.21 in spirit. The conditions and the proof of The-
orem 2.22 have been used in Masry and Fan (1997). See also the proof of
Theorem 6.3.
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2.7 Complements

2.7.1 Proof of Theorem 2.5(i)
It follows from (2.15) that, for any integer k ≥ 1,

Yt = aξt +
∞∑
i=1

biξtξt−iρt−i = aξt + a

∞∑
i=1

biξtξt−i +
∞∑

i,j=1

bibjξtξt−iYt−i−j

= aξt + a

k∑
l=1

∑
1≤j1,··· ,jl<∞

bj1 · · · bjlξtξt−j1 · · · ξt−j1−···−jl

+
∑

1≤j1,··· ,jk+1<∞
bj1 · · · bjk+1ξtξt−j1 · · · ξt−j1−···−jkYt−j1−···jk+1 . (2.68)

Define

Y ′
t = aξt + a

∞∑
l=1

∑
1≤j1,··· ,jl<∞

bj1 · · · bjlξtξt−j1 · · · ξt−j1−···−jl .

Note that all of the terms on the right-hand side of the expression above
are nonnegative, and for any l ≥ 1,

E




∑
1≤j1,··· ,jl<∞

bj1 · · · bjlξtξt−j1 · · · ξt−j1−···−jl




=
∑

1≤j1,··· ,jl<∞
bj1 · · · bjl =




∞∑
j=1

bj




l

.

Thus 0 ≤ Y ′
t < ∞ a.s., E(Y ′

t ) = a/(1 −∑j bj), and therefore {Y ′
t } is

strictly stationary. It is easy to verify that Y ′
t fulfills (2.15).

To prove the uniqueness, let {Yt} be a strictly stationary solution of
(2.15) with |EYt| < ∞. We will show below that Yt = Y ′

t a.s. for any
fixed t.

Let t be fixed now. It follows from (2.68) that for any k ≥ 1

|Yt − Y ′
t | ≤

∑
1≤j1,··· ,jk+1<∞

bj1 · · · bjk+1ξtξt−j1 · · · ξt−j1−···−jk |Yt−j1−···jk+1 |

+ a
∞∑

l=k+1

∑
1≤j1,··· ,jl<∞

bj1 · · · bjlξtξt−j1 · · · ξt−j1−···−jl .

The expectation of the right-hand side of the above is not greater than

{
E|Y1|+ a/

(
1−

∞∑
i=1

bi

)}


∞∑
j=1

bj



k+1

.



2.7 Complements 79

Let Ak = {|Yt − Y ′
t | > 1/k}. Then

P (Ak) ≤ kE|Yt − Y ′
t | ≤ k

{
E|Y1|+ a/

(
1−

∞∑
i=1

bi

)}


∞∑
j=1

bj



k+1

.

Thus
∑
k≥1 P (Ak) < ∞. It follows from the Borel–Cantelli lemma (see,

e.g., Theorem 3.2.1 in Chow and Teicher 1997) that P{Ak, i.o.} = 0. Since
Ak ⊂ Ak+1, it holds that P (Ak) = 0 for any k (i.e., Yt = Y ′

t a.s.).

2.7.2 Proof of Proposition 2.3(i)
Let γ2,k;j = Cov(X2,k, Xj). First we derive an explicit expression for
α ≡ (α2, · · · , αk)τ defined in (2.28) for j = 1. Note that for any β ≡
(β2, · · · , βk)τ ,

E(X1 − βτX2,k)2 = E(X1 −ατX2,k)2 + E{(α− β)τX2,k}2
+ 2E{(X1 −ατX2,k)Xτ

2,k}(α− β). (2.69)

Hence E(X1 − βτX2,k)2 ≥ E(X1 − ατX2,k)2 for any β if and only if the
third term on the right-hand side of the expression above is 0 (for any β).
This is equivalent to

E{(X1 −ατX2,k)Xτ
2,k} = 0. (2.70)

This normal equation leads to the least squares solution α = Σ−1
2,kγ2,k;1.

Hence, we haveR1|2,··· ,k = X1−γτ2,k;1Σ
−1
2,kX2,k. In the same vein,Rk+1|2,··· ,k

= Xk+1 − γτ2,k;k+1Σ
−1
2,kX2,k. It follows from (2.70) that

Cov(Rk+1|2,··· ,k, R1|2,··· ,k) = Cov(Xk+1, R1|2,··· ,k)

= γ(k)− γτ2,k;1Σ
−1
2,kγ2,k;k+1.

The conclusion follows from the fact that

Var(R1|2,··· ,k) = γ(0)− γτ2,k;1Σ
−1
2,kγ2,k;1

and Var(Rk+1|2,··· ,k) = Var(R1|2,··· ,k). (Note that {Xt} is time-reversible
as far as its first two moments properties are concerned.)

2.7.3 Proof of Theorem 2.9
It may be shown in terms of a decomposition similar to (2.69) that




b11
...
bkk


 =

(
Σ2,k γ2,k;1
γτ2,k;1 γ(0)

)−1(
γ2,k;k+1
γ(k)

)
.
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It follows from the matrix partition inverse formula (p. 33 of Rao 1973)
that
(

Σ2,k γ2,k;1
γτ2,k;1 γ(0)

)−1

=
(

Σ−1
2,k(I + γ2,k;1γ

τ
2,k;1Σ

−1
2,k)/ν −Σ−1

2,kγ2,k;1/ν

−γτ2,k;1Σ
−1
2,k/ν ν−1

)
,

where ν = γ(0)− γτ2,k;1Σ
−1
2,kγ2,k;1. Combining the two expressions above ,

we have
bkk = {γ(k)− γτ2,k;1Σ

−1
2,kγ2,k;k+1}/ν,

which is the same as the right-hand side of (2.29).

2.7.4 Proof of Theorem 2.10
Suppose that (2.35) holds. Then for any a1, · · · , an ∈ R,

n∑
j,k=1

ajakρ(j − k) =
∫ π

−π

n∑
j,k=1

ajake
iω(j−k)dF (ω)

=
∫ π

−π
|
n∑
j

aje
iωj |2dF (ω) ≥ 0.

It follows from Theorem 2.7 that {ρ(k)} is the ACF of a stationary time
series.

Conversely, suppose that {ρ(k)} is the ACF of a stationary time series
{Xt}. Define, for ω ∈ [−π, π],

fn(ω) =
1

2πn

n∑
j,k=1

e−iω(j−k)ρ(j − k) =
1

2πn

∑
|m|<n

(n− |m|)ρ(m)e−iωm.

Then fn(ω) = Var(ξ) = Cov(ξ, ξ̄) ≥ 0, where ξ =
∑n
j=1 e

−iωjXj/
√

2πγ(0)
is a complex-valued random variable and ξ̄ denotes its conjugate. Let

Fn(ω) =
∫ ω

−π
fn(ω)dω, ω ∈ [−π, π].

Then, for any integer j,
∫ π

−π
eijωdFn(ω) =

1
2π

∑
|m|<n

(1− |m|/n)ρ(m)
∫ π

−π
ei(j−m)ωdω.

Note that the integral on the right-hand side of the expression above is
nonzero (i.e., 2π) if and only if j = m. Therefore

∫ π

−π
eijωdFn(ω) =

{
(1− |j|/n)ρ(j), |j| < n,
0, otherwise. (2.71)
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Since {Fn(·)} is a sequence of probability distribution functions defined on
the finite interval [−π, π], it follows from Helly’s selection theorem (see, e.g.,
Lemma 8.2.2 of Chow and Teicher 1997) that there exists a subsequence of
{Fn} that converges in distribution to a probability distribution function
F . Taking the limit as n→∞ in (2.71) for that subsequence, we conclude
from the Helly–Bray theorem (Corollary 8.1.6 of Chow and Teicher 1997)
that ∫ π

−π
eijωdF (ω) = ρ(j).

2.7.5 Proof of Theorem 2.13
Note that e0 is a vector with 1 as all of its components. Hence, for k �= 0,

T∑
t=1

eitωk = eτ0ek = 0,
T∑
t=1

e−itωk = eτke0 = 0.

Therefore

IT (ωk) =
1
T

T∑
t=1

Xte
−itωk

T∑
s=1

Xse
isωk

=
1
T

T∑
t=1

T∑
s=1

(Xt − X̄T )(Xs − X̄T )e−i(t−s)ωk .

By a change of variable, τ = t − s, and then an exchange of summation,
we have

I(ωk) =
1
T

T∑
t=1

t−T∑
τ=t−1

(Xt − X̄T )(Xt−τ − X̄T )e−iτωk

=
T−1∑

τ=−(T−1)

1
T

T−|τ |∑
t=1

(Xt − X̄T )(Xt+|τ | − X̄T )e−iτωk

=
T−1∑

τ=−(T−1)

γ̂(τ)e−iτωk .

2.7.6 Proof of Theorem 2.14
First, we prove (i). To simplify the notation, we write

∑r
j=1 cjξkj

=
∑2n
l=1 blξl,

where bl = cj for l = kj and 0 otherwise. It is easy to see that E(
∑2n
l=1 blξl) =
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0 and

r∑
j=1

cjξkj
=
√

2√
T σ

T∑
k=1

εk

n∑
j=1

{b2j−1 cos(ωjk) + b2j sin(ωjk)}.

This is a sequence of the linear combinations of independent random vari-
ables, and the central limit theorem (CLT) will be employed. We now cal-
culate the variance of the sum above . To this end, note that

1
T

T∑
k=1

cos(ωjk) cos(ωlk) = (ej + e−j)τ (el + e−l)/4 = δj,l/2,

where ej is defined as in (2.49), and δj,l = 1 if j = l and 0 otherwise. In
the same vein, we have

1
T

T∑
k=1

sin(ωjk) sin(ωlk) = δj,l/2,
1
T

T∑
k=1

cos(ωjk) sin(ωlk) = 0.

Hence

Var




r∑
j=1

cjξkj




=
2
Tσ2 Var




T∑
k=1

εk

n∑
j=1

{b2j−1 cos(ωjk) + b2j sin(ωjk)}



=
2
T

T∑
k=1




n∑
j=1

{b2j−1 cos(ωjk) + b2j sin(ωjk)}



2

=
2n∑
j=1

b2j =
r∑
j=1

c2j .

Write dk =
∑n
j=1{b2j−1 cos(ωjk) + b2j sin(ωjk)}. It is easy to see that

|dk| ≤ rmaxj |cj | for all 1 ≤ k ≤ 2n. Hence, for any η > 0,

1
T

T∑
k=1

E{ε2kd2
kI(|εkdk| > ηT 1/2)} ≤ C2E{ε21I(|ε1| > ηT 1/2/C1)} → 0,

where C1 and C2 are some positive constants. It follows from the CLT for
double arrays of random variables (see, e.g. p. 31 of Serfling 1980) that∑r
j=1 cjξkj

D−→ N(0,
∑r
j=1 c

2
j ).
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To prove (ii), note that the discrete Fourier transform of {Xt} can be
expressed as

αk =
1√
T

T∑
t=1

Xte
−iωkt

=
1√
T

∞∑
j=−∞

aje
−iωkj

T∑
t=1

εt−je−iωk(t−j)

=
1√
T

∞∑
j=−∞

aje
−iωkj

(
T∑
t=1

εte
−iωkt + UTj

)

= a(e−iωk)αk,ε + YT (ωk),

where a(z) =
∑∞
j=−∞ ajz

j , αk,ε = T−1/2∑T
t=1 εte

−iωkt is the discrete
Fourier transform of {εt}, and

UTj =
T−j∑
t=1−j

εte
−iωkt −

T∑
t=1

εte
−iωkt, YT (ωk) = T−1/2

∞∑
j=−∞

aje
−iωkjUTj .

Note that |αk,ε|2 = σ2(ξ22k−1 + ξ22k)/2. Hence

IT (ωk) = |αk|2 = |a(e−iwk)|2|αk,ε|2 +RT (ωk)
= 2πg(ωk)(ξ22k−1 + ξ22k) +RT (ωk),

where g(ωk) = |a(e−iwk)|2σ2/(2π) is the spectral density function of {Xt}
(see Theorem 2.12), and

RT (ωk) = |YT (ωk)|2 + a(e−iωk)αk,εYT (−ωk) + a(eiωk)ᾱk,εYT (ωk). (2.72)

Note that if |j| < T , UTj is a sum of 2|j| independent random variables,
whereas if |j| ≥ T , UTj is a sum of 2T independent random variables. Thus,
E|UTj |2 ≤ 2 min(|j|, T )σ2. Therefore, for any fixed positive integer l and
T > l,

E|YT (ωk)|2 ≤ 1
T




∞∑
j=−∞

|aj |(EU2
Tj)

1/2




2

≤ 2σ2

T




∞∑
j=−∞

|aj |{min(|j|, T )}1/2



2

≤ 2σ2


 1√

T

∑
|j|≤l
|aj | |j|1/2 +

∑
|j|>l
|aj |




2

.
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Note that the right-hand side of the expression above is independent of k
and can be smaller than any given positive constant (by choosing l large
enough accordingly) as T →∞. Hence, max1≤k≤nE|YT (ω)|2 → 0. On the
other hand, |a(e±iωk)| ≤ ∑j |aj | < ∞ and E|αk,ε|2 = σ2. Application of
the Cauchy–Schwartz inequality to (2.72) gives max1≤k≤nE|RT (ωk)| → 0.

2.7.7 Proof of Theorem 2.22
First, we calculate the variance of Sn(x). Let Zt = Yt,n/

√
h. It is easy to

see that E(Zt) = 0, and

1
nh

Var{Sn(x)} = E(Z2
1 ) + 2

n−1∑
j=1

(1− j/n)E(Z1Zj+1).

Condition (C1) implies that

E(Z2
1 ) =

1
h

∫
E(e21|X1 = y)p(y)W

(y − x
h

)2
dy

=
∫
σ(x+ hu)2p(x+ hu)W (u)2du

→ σ(x)2p(x)
∫
W (u)2du ≡ ν(x), (2.73)

as h→ 0. By conditioning on (e1, ej+1), it follows from (C2) that

|E(Z1Zj+1)| =
1
h

∣∣∣∣E
{
e1ej+1W

(
X1 − x
h

)
W

(
Xj+1 − x

h

)}∣∣∣∣

≤ C0h
−1E|e1ej+1|

{∫
W

(
y − x
h

)
dy
}2

≤ C0hE(e21)
{∫

W (u)du
}2

= O(h).

Therefore ∣∣∣∣∣∣
mn∑
j=1

E(Z1Zj+1)

∣∣∣∣∣∣
= O(mnh). (2.74)

By Proposition 2.5(i),

|E(Z1Zj+1)| ≤ Cα(j)1−2/δh2/δ−1.

Let mn = [ 1
h| log h| ]. Then mn →∞, mnh→ 0, and

n−1∑
j=mn+1

|E(Z1Zj+1)| ≤ Ch
2/δ−1

mλ
n

n∑
j=mn+1

jλα(j)1−2/δ → 0;
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see condition (C3). Combining this with (2.74), we have

n−1∑
j=1

E(Z1Zj+1)→ 0. (2.75)

Now, it follows from (2.73) and (2.75) that

1
nh

Var{Sn(x)} = ν(x){1 + o(1)}. (2.76)

To prove the CLT, we employ the small-block and large-block arguments
as follows. We partition the set {1, · · · , n} into 2kn + 1 subsets with large
blocks of size ln, small blocks of size sn, and the last remaining set of size
n− kn(ln + sn) and write accordingly

Sn(x) =
kn∑
j=1

ξj +
kn∑
j=1

ηj + ζ, (2.77)

where

ξj =
jln+(j−1)sn∑

i=(j−1)(ln+sn)+1

Yi,n, ηj =
j(ln+sn)∑

i=jln+(j−1)sn+1

Yi,n,

and ζ =
∑n
i=kn(ln+sn)+1 Yi,n. Put

ln =
[√
nh
/

log n
]
, sn =

[(√
n/h log n

) 1−2/δ
λ+1

]
.

It follows from condition (C5) that sn/ln → 0. Therefore

kn = [n/(ln + sn)] = O(
√
n/h log n).

Note that condition (C3) implies n
λ+1

1−2/δα(n)→ 0. Hence

knα(sn)→ 0. (2.78)

It follows from (2.76) that

1
nh
E(ζ2) ≤ ln + sn

n
· 1
(ln + sn)h

Var(ζ)→ 0,

and E(η2
j ) = snhν(x){1 + o(1)}. Hence

1
nh
E




kn∑
j=1

ηj




2

=
knsn
n

ν(x){1 + o(1)}+
1
h

∣∣∣∣∣∣
kn−1∑
j=1

Cov(η1, ηj+1)

∣∣∣∣∣∣

≤ knsn
n

ν(x){1 + o(1)}+
n−1∑
j=1

|E(Z1Zj+1)|

→ 0. (2.79)
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The limit on the right-hand side of (2.79) makes use of (2.75). Now, by
(2.77),

1√
nh

Sn(x) =
1√
nh

kn∑
j=1

ξj + op(1) ≡ 1√
nh
Qn + op(1). (2.80)

Similar to (2.79), it holds that

1
nh

Var(Qn) =
1
nh
E(Q2

n) =
knln
n

ν(x) + o(1)→ ν(x). (2.81)

We employ a truncation argument now. Write eLt = etI(|et| ≤ L) and
eRt = etI(|et| > L) for a fixed constant L > 0. Write

QLn =
kn∑
j=1

ξLj , QRn =
kn∑
j=1

ξRj ,

where ξLj and ξRj are defined in the same manner as ξj with et replaced,
respectively, by eLt and eRt . Similar to (2.81), we have that

1
nh

Var(QLn)→ Var{e1I(|e1| ≤ L)|X1 = x}p(x)
∫
W (u)2du ≡ νL(x)

(2.82)
and

1
nh

Var(QRn )→ Var{e1I(|e1| > L)|X1 = x}p(x)
∫
W (u)2du. (2.83)

Define
Mn =

∣∣E exp(itQn/
√
nh)− exp{−t2ν(x)/2}∣∣,

where i =
√−1 now. Then, the required result follows from the statement

that
lim
n→∞Mn < ε (2.84)

for any given ε > 0. Note that

Mn ≤ E
∣∣∣exp(itQLn/

√
nh){exp(itQRn /

√
nh)− 1}

∣∣∣

+

∣∣∣∣∣∣
E exp(itQLn/

√
nh)−

kn∏
j=1

E(itξLj /
√
nh)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
kn∏
j=1

E(itξLj /
√
nh)− exp{−t2νL(x)/2}

∣∣∣∣∣∣
+

∣∣exp{−t2νL(x)/2} − exp{−t2ν(x)/2}∣∣ .
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Note that the first term on the right-hand side of the expression above is
bounded by

E
∣∣ exp(itQRn /

√
nh)− 1

∣∣ = O{Var(QRn )/(nh)}

which may be smaller than ε/2 by choosing large L ; see (2.83). The last
term may also be smaller than ε/2 by choosing large L as well; see (2.82).
By Proposition 2.6, the second term is bounded by 16(kn− 1)α(sn), which
converges to 0 due to (2.78). To prove that the third term converges to 0
is equivalent to proving that

1√
nh

QLn
D−→ N

(
0, νL(x)

)

while treating {ξLj } as a sequence of independent random variables. The
latter is implied by the Lindberg condition

1
nh

kn∑
j=1

E
[
(ξLj )2I{|ξLj | > ωνL(x)

√
nh}]→ 0

for any ω > 0; see, for example, p. 315 of Chow and Teicher (1997). Note
that ln/

√
nh → 0. When n is large enough, {|ξLj | > ωνL(x)

√
nh} is an

empty set for all j. Hence the limit above holds. Therefore, we have shown
that (2.83) holds for any ε > 0. The proof is completed.

2.8 Additional Bibliographical Notes

The literature on strict stationarity and ergodicity of nonlinear time series
(2.7) may be divided into two categories: general cases and special cases. In
addition to those presented in Theorem 2.4, Tweedie (1975, 1976), Num-
melin (1984), Chan and Tong (1985), Chan (1990a), Tjøstheim (1990),
Meyn and Tweedie (1993, 1994) derived various useful tools to identify
the (geometric) ergodicity of model (2.7). The research on ergodicity for
some individual models includes Petruccelli and Woolford (1984), Chan,
Petruccelli, Tong and Woolford (1985), Chen and Tsay (1991) and Guo
and Petruccelli (1991)on various TAR models and Chen and Tsay (1993)
for FAR models.

The general framework leading to model (2.15) was introduced by Robin-
son (1991b). Work on stationarity on ARCH and GARCH models includes,
among others, Nelson (1990), Bougerol and Picard(1992a, b), Nelson and
Cao (1992), and Kokoszka and Leipus (2000).

Dahlhaus (1997) introduced the class of local stationary time series in
terms of a spectral representation. The class provides, for example, an ar-
bitrarily close approximation to an AR model with the coefficients varying
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with respect to time; see also Neumann and von Sachs (1997) and Adak
(1998). The time-domain approach for local stationarity can be traced back
at least to Ozaki and Tong (1975) and Kitagawa and Akaike (1978). They
proposed the concept of interval-wise stationarity, which divides a time se-
ries into several time intervals and fits a stationary model on each interval.

Withers (1981) introduced the l-mixing condition, which is weaker than
α-mixing. Unfortunately, the l-mixing property is not hereditary in the
sense that {Xt} being l-mixing does not guarantee {g(Xt)} being l-mixing
for nonlinear g(·). Doukhan and Louhichi (1999) provide a unifying ap-
proach dealing with mixing, association, Gaussian sequences and Bernoulli
shifts. The limit theorems and various inequalities were established un-
der a unifying weak dependence condition. Yoshihara (1976) and Denker
and Keller (1983) provided asymptotic theory of U -statistics for β-mixing
processes. A central limit theorem on degenerate U -statistics under the
β-mixing condition can be found in Hjellvik, Yao, and Tjøstheim (1998).



3
ARMA Modeling and Forecasting

Fitting an appropriate ARMA(p, q) model to an observed time series data
set involves two interrelated problems, namely determining the order (p, q)
(which is usually referred to as model identification) and estimating pa-
rameters in the model. Further, the postfitting diagnostic checking on the
validity of the fitted model is equally important.

In this chapter, we first present a comprehensive account on the (Gaus-
sian) maximum likelihood approach for parameter estimation, which covers
the methodology, the algorithms and the asymptotic properties. Then we
outline some routine procedures for model identification and diagnostic
checking, paying particular attention to the Akaike information criterion
and its variants. Although fitting a time series model is always in the or-
der of model identification, parameter estimation, and diagnostic checking,
we deal with the problem of estimation first since almost all identifica-
tion methods involve estimating parameters. Finally, we briefly discuss the
forecasting methods based on nonstationary ARMA models. The methods
presented there are practically applicable for ARIMA models.

3.1 Models and Background

Let X1, · · · , XT be observations from a causal ARMA(p, q) process defined
by

Xt − b1Xt−1 − · · · − bpXt−p = εt + a1εt−1 + · · ·+ aqεt−q, (3.1)
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where {εt} ∼WN(0, σ2). Our goal is to determine the AR-order p and the
MA-order q and to estimate the AR coefficients {bj}, the MA coefficients
{aj}, and the variance of the white noise σ2.

In the setting above, we let EXt = 0. In practice, we subtract the sample
mean from the data before the fitting; see Theorem 2.8(i) for the asymptotic
property of the sample mean.

We assume that model (3.1) is causal (see Definition 2.3). This is equiva-
lent to the condition b(z) ≡ 1− b1z−· · ·− bpzp �= 0 for all |z| ≤ 1. To avoid
ambiguity, we also assume that {ai} and σ2 have been adjusted (without
changing the ACVF of the model) to ensure that

a(z) ≡ 1 + a1z + · · ·+ aqz
q �= 0 for all |z| < 1. (3.2)

This condition rules out the possibility that two different causal ARMA
models share the same ACVF; see Proposition 4.4.2 of Brockwell and Davis
(1991). In practice, the assumption above implies that whenever we en-
counter more than one set of solutions, we always pick those estimated AR
coefficients such that the fitted model is causal and those estimated MA
coefficients such that condition (3.2) holds.

In the case q = 0, model (3.1) reduces to a pure AR model, which is in
the form of a linear regressive model. Therefore, standard procedures for
linear regression estimation, such as the least squares method , are readily
applicable. An alternative approach is to replace the ACVF in (2.21) by its
sample version. Then, the estimators for the bj ’s are obtained by solving
the equations with k = 1, · · · , p. This leads to the well-known Yule–Walker
estimators ; see §8.1 of Brockwell and Davis (1991). Both methods admit
simple and closed-form solutions. However, they are not directly applica-
ble for MA and ARMA models. The modified Yule–Walker estimators for
ARMA models are typically inefficient. Therefore, we focus on the (Gaus-
sian) maximum likelihood method, which in principle is applicable to any
stationary time series. In fact, Theorem 3.2 below shows that Gaussian
maximum likelihood estimators for ARMA models with i.i.d. white noise
{εt} are always asymptotically normal, with the variance independent of
the distribution of εt.

Due to the dependence in the data, the Gaussian likelihood function for
an ARMA model involves the inverse of a T × T covariance matrix and
does not admit an explicit maximum likelihood estimator. This posed dif-
ficulties in implementing the method in practice at early stages. Various
ad hoc methods, aiming for approximating the exact maximum likelihood
approach, have been proposed to ease the computational burden; see Sec-
tion 5.4 of Priestley (1981) and the references therein. For example, for
an AR(p) model with Gaussian white noise, the conditional distribution
function of Xp+1, · · · , XT given the first p observations X1, · · · , Xp is

(2πσ2)−(T−p)/2 exp

{
− 1

2σ2

T∑
t=p+1

(Xt − b1Xt−1 − · · · − bpXt−p)2
}
,



3.2 The Best Linear Prediction—Prewhitening 91

from which we can easily derive the conditional maximum likelihood estima-
tors for bi’s and σ2. By doing this, we effectively reduce the sample size from
T to T − p. The full likelihood is the product of the conditional density of
Xp+1, · · · , XT given X1, · · · , Xp and the density of X1, · · · , Xp. Thus, the
conditional likelihood function contains nearly all of the information in the
data except that contained in the density function of X1, · · · , Xp. On the
other hand, with modern computer power coupled with efficient algorithms,
we argue that it is ready now for us to use the exact maximum likelihood
(either the full likelihood or, more conveniently, the conditional likelihood)
estimation as a benchmark procedure for the estimation of ARMA models.
The estimation is in fact implemented in most modern time series packages
such as the ITSM of Brockwell and Davis (1996).

3.2 The Best Linear Prediction—Prewhitening

In order to avoid computing the inverse of large matrices in likelihood
functions, we prewhiten the data first, which is effectively equivalent to
evaluating the best linear predictor for Xt based on Xt−1, · · · , X1 for t ≥ 2.

Definition 3.1 Let {Xt} be a stationary process with mean zero. We call

X̂k+1 = ϕk1Xk + · · ·+ ϕkkX1 (3.3)

the best linear predictor for Xk+1 based on Xk, · · · , X1 if

E(Xk+1 − X̂k+1)2 = min
{ψj}

E


Xk+1 −

k∑
j=1

ψjXk−j+1




2

. (3.4)

Taking the derivatives with respect to ψj and setting them to zero, we
obtain a system of equations:

E


Xk+1 −

k∑
j=1

ϕkjXk−j+1


Xk−i+1 = 0.

This yields the following theorem.

Theorem 3.1 A set of coefficients {ϕkj} satisfies (3.3) and (3.4) if and
only if

k∑
j=1

ϕkjγ(i− j) = γ(i), i = 1, · · · , k, (3.5)

where γ(·) is the ACVF of {Xt}.
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Proof. For any {ψj},

E


Xk+1 −

k∑
j=1

ψjXk−j+1




2

(3.6)

= E(Xk+1 − X̂k+1)2 + E




k∑
j=1

(ϕkj − ψj)Xk−j+1




2

+ 2B,

where

B = E





Xk+1 −

k∑
j=1

ϕkjXk+1−j




k∑
i=1

(ϕki − ψi)Xk+1−i




=
k∑
i=1

(ϕki − ψi)

γ(i)−

k∑
j=1

ϕkjγ(i− j)

 .

It is easy to see from (3.6) that E(Xk+1 −
∑k
j=1 ψjXk−j+1)2 ≥ E(Xk+1 −

X̂k+1)2 for any {ψj} if B = 0. The latter is equivalent to condition (3.5).
On the other hand, suppose that there exists an i (1 ≤ i ≤ k) for which
C1 ≡ γ(i)−

∑k
j=1 ϕkjγ(i− j) �= 0. Let ψi = ϕki + C2 and ψj = ϕkj for all

j �= i. Then

E(Xk+1 −
k∑
j=1

ψjXk−j+1)2 = E(Xk+1 − X̂k+1)2 + C2
2Var(Xt)− 2C2C1.

Choosing C2 such that C2C1 > 0 and |C2| < 2|C1|/Var(Xt) entails that
E(Xk+1 −

∑k
j=1 ψjXk−j+1)2 < E(Xk+1 − X̂k+1)2, which contradicts the

definition of the best linear predictor. Therefore (3.5) is also a necessary
condition for (3.4).

From the proof above we can see that

Cov(X̂k+1 −Xk+1, Xi) = 0, i = 1, · · · , k.
Since Xi− X̂i is a linear combination of Xi, · · · , X1 only, we conclude that
{Xt − X̂t, t = 1, · · · , T} is a sequence of uncorrelated random variables,
where we define X̂1 ≡ 0. Transforming the original data {Xt, t = 1, · · · , T}
to the uncorrelated sequence {Xt−X̂t, t = 1, · · · , T} is called prewhitening.
It is easy to see that E(Xt − X̂t) = 0 and

νt ≡ Var(Xt+1 − X̂t+1) = E{(Xt+1 − X̂t+1)Xt+1}

= γ(0)−
t∑

j=1

ϕtjγ(j). (3.7)
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Note that, for causal ARMA processes, ACVF can be easily evaluated
numerically based on its MA(∞)-representation; see (2.20). Based on the
ACVF, the predictive errors {Xt − X̂t} and their variances {νt} can be
calculated through the innovation algorithm described below. For its proof,
we refer to Proposition 5.2.2 of Brockwell and Davis (1991).

Innovation algorithm: Set ν0 = γ(0). Based on the cross-recursive equa-
tions

θk,k−j = ν−1
j

{
γ(k − j)−

j−1∑
i=0

θj,j−iθk,k−iνi

}
,

νk = γ(0)−
k−1∑
j=0

θ2k,k−jνj ,

compute the values of {θij} and {νj} in the order

θ11, ν1,

θ22, θ21, ν2,

θ33, θ32, θ31, ν3,

· · · · · ·
θT−1,T−1, θT−1,T−2, · · · , θT−1,1, νT−1.

The best linear predictors are given by X̂1 = 0 and

X̂k+1 =
k∑
j=1

θkj(Xk+1−j − X̂k+1−j), k = 1, · · · , T − 1. (3.8)

3.3 Maximum Likelihood Estimation

3.3.1 Estimators
Let XT = (X1, · · · , XT )τ and X̂T = (X̂1, · · · , X̂T )τ . It follows from (3.8)
that X̂T = Θ(XT − X̂T ), where

Θ =




0 0 0 · · · 0
θ11 0 0 · · · 0
θ22 θ21 0 · · · 0
...

...
... · · · 0

θT−1,T−1 θT−1,T−2 θT−1,T−3 · · · 0



.

Hence, we may write XT = C(XT − X̂T ), where C = Θ + IT is a lower-
triangular matrix with all main diagonal elements 1, and IT is the T × T
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identity matrix. Let D be the diagonal matrix D = diag(ν0, · · · , νT−1).
Since EXT = 0, it follows from (3.7) that

Σ ≡ Var(XT ) = CDCτ and |Σ| = |D| =
T−1∏
j=0

νj .

Note that the matrices Σ, C, and D depend on the parameters a and b
(see the innovation algorithm). Hence, if {Xt} is a Gaussian causal ARMA
process defined by (3.1), the likelihood function is of the form (the density
of multivariate normal distribution)

L(b,a, σ2) ∝ |Σ|−1/2 exp
{
−1

2
Xτ
TΣ−1XT

}

= (ν0 · · · νT−1)−1/2 exp


−

1
2

T∑
j=1

(Xj − X̂j)2/νj−1




= σ−T (r0 · · · rT−1)−1/2 exp


−

1
2σ2

T∑
j=1

(Xj − X̂j)2/rj−1


 , (3.9)

where b = (b1, · · · , bp)τ , a = (a1, . . . , aq)τ , and rj = νj/σ
2. Maximizing

this likelihood function, we obtain the maximum likelihood estimator

(b̂, â, σ̂2) = arg min
(b,a)∈B,σ2>0

L(b,a, σ2), (3.10)

where
B = {(b,a) : b(z) · a(z) �= 0 for all |z| ≤ 1}. (3.11)

In the definition above, we require the estimator to be in the set B to ensure
that the fitted model is causal and invertible . We call the ARMA(p, q)
model (3.1) invertible if a(z) �= 0 for all complex numbers z with |z| ≤ 1.
From the proof of Theorem 2.1, we can see that the invertibility implies
that {Xt} can be expressed as an AR(∞) process.

We can see from (2.19), (3.5), and (3.7) that {ri} and {ϕji} do not
depend on σ2. Maximizing over σ first, by (3.9), the maximum likelihood
estimators can be expressed as

(b̂, â) = arg min
(b,a)∈B


log{S(b,a)}+ T−1

T∑
j=1

log rj−1


 , σ̂2 = S(b̂, â)/T,

(3.12)
where

S(b,a) =
T∑
j=1

(Xj − X̂j)2/rj−1. (3.13)
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Equality (3.9) shows that we can avoid calculating the inverse of the
covariance matrix Σ through prewhitening , which reduces a great deal of
the computational burden in searching for (b̂, â). In numerical implemen-
tation, we often drop the constraint (b,a) ∈ B in (3.12) and solve the
unconstrained minimization problem first. Let b̃j ’s and ãi’s be the uncon-
strained minimizers. As long as they do not entertain a unit root in the
sense that (1 −∑p

j=1 b̃jz
j)(1 +

∑q
i=1 ãiz

i) �= 0 for all |z| = 1, the con-
strained minimizer (b̂, â) ∈ B can be obtained as follows. Let z1, · · · , zp be
the roots of 1−∑p

j=1 b̃jz
j = 0, that is,

1−
p∑
j=1

b̃jz
j =

p∏
j=1

(1− z/zj).

(See §9.5 of Press et al. (1992) for the algorithms to find the roots’ zi’s.)
Without loss of generality, we assume that |zj | < 1 for 1 ≤ j ≤ k and
|zj | > 1 for k < j ≤ p. Then, the desired estimators’ b̂j ’s are defined by the
equation

1−
p∑
j=1

b̂jz
j =

k∏
j=1

(1− zjz)
p∏

i=k+1

(1− z/zi);

see Proposition 4.4.2 of Brockwell and Davis (1991) and the discussion on
causality below Definition 2.3. The estimators’ âi’s may be obtained in a
similar manner. Furthermore, the estimator σ̂2 defined in (3.12) should be
calculated based on (b̂, â) instead of (b̃, ã). Note that (b̂, â) and (b̃, ã)
share the same ACF. Thus, it holds that S(b̂, â) = S(b̃, ã). From (3.12),
we can see that the likelihood function admits the same values at (b̂, â) and
(b̃, ã). Hence (b̂, â) obtained above is the genuine constrained maximum
likelihood estimator within the set B.

The maximum likelihood estimation has been implemented in most mod-
ern time series packages, such as the ITSM of package Brockwell and Davis
(1996). In general, some nonlinear optimization programs will be used in
conjunction with the innovation algorithm in the search. One common opti-
mization routine for this purpose is the Newton–Raphson procedure, which
computes the estimator in an iterative manner. To illustrate the basic idea
of the procedure, we write β = (bτ ,aτ )τ and

�(β) = log
{
S(b,a)

}
+ T−1

T∑
j=1

log rj−1.

Let β̂ be the maximum likelihood estimator for β. It is easy to see from
(3.12) that �̇(β̂) = 0, where �̇ denotes the derivative of � with respect to β.
When the sample size T is large, it is reasonable to expect that β̂ is close
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to the true value β0. Hence, a simple Taylor expansion entails

−�̇(β0) ≈ �̈(β0)(β̂ − β0),

where �̈ denotes the Hessian matrix. Based on this, we may define the
iterative estimators

β̂k+1 = β̂k −
{
�̈(β̂k)

}−1
�̇(β̂k), k = 0, 1, · · · .

With a carefully selected initial value β̂0, the iterative estimators β̂k may
converge to a limit that is taken as the maximum likelihood estimator β̂
since �̇(β̂) ≈ 0. Although this idea is very simple, the actual implementation
is much more complicated and involves quite a few fine technical details; see,
for example, §9.4 and §9.6 of Press et al. (1992). A good initial estimator
plays an important role in ensuring a secure and fast convergence. On
the other hand, more sophisticated optimization algorithms, such as those
presented in Chapter 10 of Press et al. (1992), may also be used for this
purpose.

Although we advocate the maximum likelihood estimation method, some
preliminary estimation based on relatively simple or ad hoc methods pro-
vides good initial values for the algorithms searching for the maximum
likelihood estimators, which practically constitute an important part of the
maximum likelihood estimation procedure. We refer the reader to §8.1–§8.4
of Brockwell and Davis (1991) for detailed discussion on various prelimi-
nary estimation methods. Those methods have also been incorporated in
the package ITSM.

In fact, the method described above may be applied to compute the max-
imum likelihood estimators for any Gaussian processes. On the other hand,
when {Xt} is not Gaussian, we may still regard (3.9) as a measure of good-
ness of fit to the data and choose the parameters that maximize this mea-
sure. We will always refer to (3.9) as the Gaussian likelihood function and
estimators derived from maximizing the Gaussian likelihood as maximum
pseudolikelihood estimators or simply maximum likelihood estimators, re-
gardless of the underlying distribution. Theorem 3.2 below shows that the
maximum likelihood estimators so defined are asymptotically distribution-
free as long as {εt} ∼ IID(0, σ2). However, when εt is not Gaussian, the
maximum pseudolikelihood estimators (b̂, â) are typically inefficient. Fur-
thermore, when εt has heavy tails in the sense that Var(εt) =∞, Gaussian
likelihood (as well as the least squares approach) may lead to inconsistent
estimators. Some robust methods are more adaptive to heavy-tailed data;
see, for example, Davis, Knight, and Liu (1992) and Hall, Peng, and Yao
(2002).
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3.3.2 Asymptotic Properties
We first introduce some notation. Let {Wt} ∼WN(0, 1). Define

b(B)Ut = Wt and a(B)Vt = Wt.

Namely, {Ut} is an AR(p) process defined in terms of the AR-coefficients
in model (3.1) and {Vt} is an AR(q) process defined in terms of the MA-
coefficients in model (3.1), and the two processes are correlated with each
other since they are defined in terms of the same white noise process {Wt}.
Let Z = (U−1, · · · , U−p, V−1, · · · , V−q)τ , and

W(b,a) = {Var(Z)}−1. (3.14)

Theorem 3.2 Let {Xt} be the ARMA process defined in (3.1) in which
{εt} ∼ IID(0, σ2) with σ2 > 0 and the true value (b0,a0) ∈ B defined in
(3.11). Then, as T →∞,

T
1
2

(
b̂− b0
â− a0

)
D−→ N

(
0,W(b0,a0)

)

and σ̂2 P−→ σ2, where (b̂, â) and σ̂2 are defined in (3.12), and W(·) is
defined in (3.14).

The theorem above shows that the asymptotic distributions of the esti-
mators are independent of σ2. In this sense, the quality of the estimators
for causal and invertible ARMA models is not affected by the magnitude
of the white noise. This is due to the fact that the ratio of signal to noise
in a causal ARMA model is independent of σ2. For example, for the AR(1)
model Xt = bXt−1 + εt with {εt} ∼WN(0, σ2), we have

Var(Xt) = b2Var(Xt−1) + σ2.

Due to stationarity,

Var(Xt) = Var(Xt−1) and Var(Xt) = σ2/(1− b2).

Hence, the ratio of signal to noise is

{Var(Xt)/Var(εt)}1/2 = (1− b2)−1/2,

which does not depend on σ2. In fact, this conclusion holds for general
causal ARMA processes.

The theorem above was first obtained by Hannan (1973) based on some
sophisticated frequency-domain arguments; see §10.8 of Brockwell and Davis
(1991). A time-domain proof was given in Yao and Brockwell (2001). Note
that we do not even need the condition that E(εt)4 <∞ (see Theorem 2.8).
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This is due to the fact that under the condition (b0,a0) ∈ B, {Xt} is ef-
fectively an AR(∞) process. Therefore, the asymptotic behavior can be
established similarly to that of the estimator in a linear regression model.
In fact, the condition that {εt} ∼ IID(0, σ2) in the theorem above can be
replaced by {εt} being merely a sequence of martingale differences with
constant conditional variance σ2 <∞; see Hannan (1973).

The covariance matrix W(·) is dictated by two correlated AR processes.
We list below concrete forms of W(·) for some simple models to illustrate
the usefulness of this asymptotic result.

(i) AR(p) models

For autoregressive models with order p, Z = (Up, · · · , U1)τ . Since the scale
of Z is a factor of σ as large as (Xp, · · · , X1), Var(Z) = Γp/σ2, where Γp
is a p× p matrix with γ(i− j) as its (i, j)th element. Thus, the asymptotic
variance of b̂ = (̂b1, · · · , b̂q)τ is σ2Γ−1

p /T . In the special cases p = 1 and 2,
we have

AR(1) : Var(̂b1) ≈ (1− b21)/T,

AR(2) : Var

(
b̂1
b̂2

)
≈ 1
T

(
1− b22 −b1(1 + b2)

−b1(1 + b2) 1− b22

)
.

For an AR(p) model, the least squares estimator , the Yule–Walker esti-
mator, and the conditional maximum likelihood estimator share the same
asymptotic distribution as the maximum likelihood estimator b̂; see The-
orem 10.8.2 of Brockwell and Davis (1991). This can be understood as fol-
lows. Note that an AR(p) model may be regarded as an AR(k) model for
any k > p with bj = 0 for p < j ≤ k. It can be proved that, for any causal
AR(p) model and k > p, the (k, k)th element of Γ−1

k is |Γk−1|/|Γk| = σ−2.
Thus b̂k is asymptotically normal with mean 0 and variance 1/T . Applying
this result in the context of the estimation of partial autocorrelation func-
tion π(·) (see §2.2.3), we obtain the following proposition, which will play
an important role in identifying purely autoregressive models.

Proposition 3.1 Suppose that {X1, · · · , XT } is a sample from a causal
AR(p) model defined with IID(0, σ2) white noise and σ2 > 0. Then, as
T →∞,

T−1/2 π̂(k) D−→ N(0, 1) for any k > p,

where π̂(k) ≡ b̂k is an estimator for bk in fitting an AR(k) model to the
data {X1, · · · , XT } using the (conditional) maximum likelihood method, the
least squares method, or the Yule–Walker estimation method.

(ii) MA(q) models

For moving average models with order q, the asymptotic variance of â =
(â1, · · · , âq)τ is (Γ∗

q)
−1/T , and Γ∗

q is a q × q matrix with γ∗(i − j) as its
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(i, j)th element, where γ∗(·) is the ACVF of the AR(q) process a(B)Yt = et
and {et} ∼WN(0, 1). In the special cases of q = 1 and 2, we have

MA(1) : Var(â1) ≈ (1− a2
1)/T,

MA(2) : Var
(
â1
â2

)
≈ 1
T

(
1− a2

2 a1(1− a2)
a1(1− a2) 1− a2

2

)
.

(iii) ARMA(1,1) models

For model Xt − bXt−1 = εt + aεt−1, it can be computed that

Var
(
b̂
â

)
≈ 1 + ab

T (a+ b)2

(
(1− b2)(1 + ab) (b2 − 1)(1− a2)
(b2 − 1)(1− a2) (1− a2)(1 + ab)

)
.

3.3.3 Confidence Intervals
The asymptotic variance matrix W(b,a) given in (3.14) may be used to
calculate the standard errors of the maximum likelihood estimators for
parameters in causal and invertible ARMA models. For example, the stan-
dard errors for b̂j and âi are (wjj/T )1/2 and (wp+i,p+i/T )1/2, respectively,
where wii is the (i, i)th element of W(b̂, â). Most time series packages auto-
matically provide the values of standard errors when calculating estimates.

On the other hand, approximate confidence regions for parameters in
ARMA models can be easily constructed in terms of the limit distribution
in Theorem 3.2. For example, an approximate (1−α) confidence region for
the AR coefficient vector b is obtained as

{b = (b1, · · · , bp)τ : (b̂− b)τŴ−1
1 (b̂− b) ≤ χ2

1−α(p)/T},

where Ŵ1 is the p × p upper-left submatrix of W(b̂, â), and χ2
p(1 − α) is

the 100αth percentile of the χ2-distribution with p degrees of freedom. An
approximate (1−α) confidence interval for the single parameter bj is given
as

{bj : |̂bj − bj | ≤ T−1/2w
1/2
jj z1−α/2},

where zα denotes the 100αth percentile of the standard normal distribution.

3.4 Order Determination

In this section, we first introduce general principles for determining the
order (p, q) in ARMA modeling, namely AIC, BIC, and FPE. In the end,
we outline a general routine procedure for model identification.
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3.4.1 Akaike Information Criterion
Akaike’s information criterion (AIC) (Akaike 1973, 1974) is used to select
the optimum parametric model based on observed data. It has been re-
garded as one of the important breakthroughs in statistics in the twentieth
century. The basic idea of the AIC can be described as follows. Suppose
that we use a probability density function f to approximate an unknown
density g. The Kullback–Leibler information

I(g; f) =
∫
g(x) log g(x)dx−

∫
g(x) log f(x)dx (3.15)

provides a measure for the lack of the approximation. It is easy to see that

I(g; f) = E log{g(X)/f(X)}, with X ∼ g.
By Jensen’s inequality, we have

I(g; f) = −E log
{
f(X)/g(X)

} ≥ − log
(
E
{
f(X)/g(X)

})

= − log
(∫

f(x)/g(x)g(x)dx
)

= 0,

with equality holding if and only if f = g. A good approximation should
make the measure I(g; f) as small as possible. Note that the first term
on the right-hand side of (3.15) does not depend on f . Hence, we should
choose f that minimizes

−
∫
g(x) log f(x)dx = −Eg{log f(X)}.

Since we do not know g, we have only a set of observations {X1, · · · , XT }
from g. Naturally, we will replace the expectation above by its unbiased
estimator

− 1
T

T∑
j=1

log f(Xj).

Typically, we would choose f from among a set of parametric family
{fm(·|θm)} indexed by m. The form of fm is typically given for each m.
For example, in the context of time series analysis fm may stand for an
ARMA family with the order m ≡ (p, q), and θm = (b1, · · · , bp, a1, · · · , aq).
The best approximation would minimize

− 1
T

T∑
j=1

log fm(Xj |θm). (3.16)

Note that this is a two-step optimization: searching for the minimizer of θm
for fixed m and then searching for the global minimum over different values
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of m. Obviously, the minimizer in the first step is the maximum likelihood
estimator θ̂m. The second step involves searching for m that minimizes

− 1
T

T∑
j=1

log fm(Xj |θ̂m).

However, there is a serious drawback in this approach: the expression above
is no longer an unbiased estimator for −Eg{log fm(X|θm)} due to the over-
fitting caused by the double use of the same data for the estimation of the
expected log-likelihood and the estimation of the parameter θm. Akaike
(1973) proposed to rectify this problem by adding the bias

−Eg{log fm(X|θm)}+
1
T

T∑
j=1

Eg{log fm(Xj |θ̂m)}

to the sample likelihood function. He showed that the bias can asymptoti-
cally be approximated as

−Eg{log fm(X|θm)}+
1
T

T∑
j=1

Eg{log fm(Xj |θ̂m)} ≈ pm/T,

where pm denotes the number of estimated parameters; see also §2.1.3 of
Kitagawa and Gersch (1996). Thus, a term pm/T should be added to (3.16)
in order to correct the bias, leading to

− 1
T

T∑
j=1

log fm(Xj |θ̂m) + pm/T.

Multiplying by a factor of 2T , which does not affect the choice of m, we
define the following Akaike information criterion (AIC):

AIC(m) = −2
T∑
j=1

log fm(Xj |θ̂m) + 2 pm (3.17)

= −2(maximized log likelihood) + 2(No. of estimated parameters).

On the right-hand side of the expression above, the first term reflects the
lack of fit; increasing the complexity (e.g., number of parameters pm) of the
model is likely to make this term decrease. However, the model complexity
is penalized by the second term. The optimum model that minimizes the
AIC is a trade-off between the two terms, that is similar to the bias and
variance trade-off in nonparametric estimation (see Chapter 5).

In the context of fitting an ARMA model to time series data, if we regard
the Gaussian likelihood (3.9) as the true likelihood function, the AIC is of
the form (after discarding some constants)

AIC(p, q) = −2 log{L(b̂, â, S(b̂, â)/T )}+ 2(p+ q + 1), (3.18)
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where b̂ and â are the maximum likelihood estimators for (b1, · · · , bp)τ and
(a1, · · · , aq)τ defined in (3.10) and S(·, ·) is defined in (3.13). Hurvich and
Tsai (1989) argued that a better bias correction could be obtained if we
replaced (p + q + 1) by an asymptotically equivalent quantity T (p + q +
1)/(T −p−q−2); see also pp. 303–304 of Brockwell and Davis (1991). This
leads to a modified criterion

AICC(p, q) = −2 log{L(b̂, â, S(b̂, â)/T )}+
2(p+ q + 1)T
T − p− q − 2

. (3.19)

In view of the fact that the AIC tends to overestimate the orders (Akaike
1970, Jones 1975; Shibata 1980), AICC places a heavier penalty for large
values of p and q to counteract the overfitting tendency of the AIC.

Suppose now that we fit a pure AR model with order 1 ≤ p ≤ L with
L ≥ 1 prescribed. Let T ′ = T − L. Based on the conditional Gaussian
likelihood function

(2π)T
′
σ−T ′

exp

{
− 1

2σ2

T∑
t=L+1

(Xt − b1Xt−1 − · · · − bpXt−p)2
}
,

which is the full likelihood function divided by the density function of
X1, · · · , Xp, we may define the following simpler versions of the AIC and
AICC:

AIC(p) = T ′ log(σ̂2
p) + 2(p+ 1), (3.20)

AICC(p) = T ′ log(σ̂2
p) +

2(p+ 1)T ′

T ′ − p− 2
, (3.21)

where

σ̂2
p =

1
T ′

T∑
t=L+1

(Xt − b̂1Xt−1 − · · · − b̂pXt−p)2. (3.22)

We select the order p that minimizes AIC(p) or AICC(p) defined above.
The conditional argument above effectively reduces the sample size from
T to T ′ = T − L. When T is large relative to L, the selected orders differ
little from those derived from (3.18) and (3.19).

3.4.2 FPE Criterion for AR Modeling
An alternative procedure for the order determination in AR modeling is the
final prediction error criterion due to Akaike (1969). The basic idea is very
simple. We have a hypothetical set of observations {X̃1, · · · , X̃T } that are
from the same underlying process as the real observations {X1, · · · , XT }.
Then, we estimate the AR coefficients from {Xt} and select the order such
that the prediction errors on the fictitious data {X̃t} obtain the minimum.
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Namely, we choose p that minimizes

σ̃2
p ≡

1
T ′

T∑
t=L+1

(X̃t − b̂1X̃t−1 − · · · − b̂pX̃t−p)2,

where b̂j ’s are the MLE of bj ’s based on {X1, · · · , XT }.
If the underlying process is a stationary AR(p) process with IID(0, σ2)

white noise, the asymptotic approximations

E(σ̃2
p) ≈ σ2(1 + p/T ′), E(σ̂2

p) ≈ σ2(1− p/T ′),

hold,where σ̂2
p is defined in (3.22). Therefore, we may use σ̂2

p(T
′+p)/(T ′−p)

as an approximation for the unobservable σ̃2
p. Now, the final prediction error

is defined as

FPE(p) = σ̂2
p

T ′ + p

T ′ − p .

The FPE criterion selects p that minimizes FPE(p).
Note that

T ′ log{FPE(p)} = T ′ log(σ̂2
p) + T ′ log

(
1 +

2p
T ′ − p

)

= T ′ log(σ̂2
p) + T ′ 2p

T ′ − p +O(1/T ′).

Comparing this with (3.20) and (3.21), we have

AIC(p) = AICC(p) +O

(
1
T ′

)
= T ′ log{FPE(p)}+O

(
1
T ′

)
.

In this sense, the AIC, AICC, and FPE are asymptotically equivalent.

3.4.3 Bayesian Information Criterion
Since the AIC (also AICC and FPE) does not lead to a consistent order
selection (Akaike 1970; Shibata 1980; Woodroofe 1982), various procedures
have been proposed to modify the criterion in order to obtain consistent
estimators. As a popular alternative to AIC, the Bayesian information
criterion (BIC) defines the optimum model that minimizes

−2(maximized log likelihood) + log T × (No. of estimated parameters).

Comparing this with (3.17), BIC increases the penalty for the model com-
plexity by replacing the factor 2 by log(T ). This ensures that the estimated
order is consistent (Hannan 1980). In the context of ARMA models, we have

BIC(p, q) = −2 log{L(b̂, â, S(b̂, â)/T )}+ (p+ q + 1) log T. (3.23)
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In the same vein as (3.20) and (3.21), we may define the BIC for fitting
AR models as

BIC(p) = T ′ log(σ̂2
p) + (p+ 1) log T ′. (3.24)

In the expressions above, all of the estimators are derived from the maxi-
mum likelihood method or its asymptotic equivalents.

The name BIC is due to the fact that the criterion was derived from di-
verse Bayesian arguments, see for example, Akaike (1977), Kashyap (1977),
and Schwarz (1978). In fact, it can also be derived from a non-Bayesian ar-
gument such as in Rissanen (1980).

3.4.4 Model Identification
It is a general philosophy in model identification to allow modelers certain
flexibility in exercising their subjective judgment. It is a fact of life that
there rarely exists a true model in practice. A good practice of model iden-
tification should end with a selected model that is statistically sound and
practically meaningful. A parsimonious model is always preferable when
two candidate models appear about equally good. Below, we list a routine
guideline from a purely data-analytic point of view.

Step 1. Examination of time-series plot
The first step is to produce a time-series plot; namely, to plot Xt against
t and examine the plot to identify obvious trends, seasonal components,
and outliers. These components should be removed through differencing,
moving-averaging, or other appropriate methods (see §6.2).

Step 2. Examination of correlogram
Trend and seasonal components may show up in a correlogram (i.e., the plot
of sample ACF ρ̂(k) against k). A slowly damping correlogram is indicative
of a slowly varying trend component. A periodic fluctuating correlogram
is indicative of a periodic component (with the same period). Taking the
difference at appropriate time lags may remove those nonstationary com-
ponents.

Step 3. Determining the MA-order from the ACF and the AR-order from
the PACF
If the data appear stationary in both the time-series plot and correlogram,
we may try to identify the order (p, q) from the sample ACF {ρ̂(k)} and
the sample PACF {π̂(k)} first. As a rule of thumb, we fit an AR(p) model
to the data if

|π̂k| ≤ 1.96/
√
T (3.25)
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for about 95% of k’s among all k > p (see Proposition 3.1), and we fit an
MA(q) model to the data if

|ρ̂(k)| ≤ 1.96


1 + 2

q∑
j=1

ρ̂(j)2




1/2

/
√
T (3.26)

for about 95% of k’s among all k > q (see (2.27)). (We ignore the correlation
among π̂(k)’s and ρ̂(k)’s for different k in the heuristic argument above.)
Unfortunately, the simple patterns above are seldom observed in real data
analysis. On the other hand, it is always recommended to estimate (or
double-check) the order using the formal procedures in Step 4 below (see,
for example, Example 3.2 below).

Step 4. Determining the orders using AIC or other information criteria
Since Akaike’s pioneering work on AIC , various information criteria have
been developed; see Choi (1992) for a survey. Each method has its own
merit. A practically relevant question is when to use what, although a gen-
eral answer to this question is inconceivable. The choice should depend on
the nature and the aim of the data analysis. Empirical experience suggests
that AIC is a good starting point. If we prefer a simple model that reflects
the main and interpretable features, we may also try BIC, for example. On
the other hand, forecasting based on an AR model with a slightly overesti-
mated order does little harm. Shibata (1980) and Hurvich and Tsai (1989)
showed that AIC, AICC, and FPE are asymptotically efficient, while BIC
is not. The asymptotic efficiency is a desirable property defined in terms of
the one-step mean square prediction error achieved by the fitted model. The
AIC was not designed to be consistent, nor is its inconsistency necessarily
a defect (Hannan 1986).

It is easy to see from (3.5) and (3.7) that the likelihood function (3.9)
depends on the coefficients {bj} and {aj} only through the ACF. There
may exist quite a few different ARMA models that provide almost equally
good approximations to the sample ACF of the observed data set; see Ex-
ample 3.3 below. Therefore, we may consider the models with AIC values
within a small distance from the minimum AIC value as competitive candi-
dates. Selection among the competitive models may be based on interpre-
tation, simplicity, or diagnostic checking using the techniques described in
§3.5 and/or §7.4. Formal statistical tests may also be employed if a choice
has to be made, for example, between two candidate models.

To gain insights on the various criteria, we illustrate the methods through
some simulated examples below. Estimation was carried out using the
package ITSM of Brockwell and Davis (1996). ITSM evaluates the maxi-
mum likelihood estimate based on a ‘preliminary estimate’ that is obtained
through the Yule–Walker method or other methods. Note that the ITSM
calculates the BIC based on a different formula (p. 171 of Brockwell and
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FIGURE 3.1. Example 3.1—Fitting an AR(p) model. Plots of AIC(p) (labeled
“a”), AICC(p) (labeled “c”), BIC(p) (labeled “b”), and αFPE(p)+β (labeled “f”)
against p for sample size (a) T = 100 and (b) T = 50. [(α, β) = (100, 120) in (a)
and (50, 50) in (b)]. Lines labeled with k are −2 log(maximum likelihood). (c)
and (d) are ACF and PACF plots for a sample of size 50.

Davis 1996). The BIC values reported below were calculated based on (3.23)
directly.

Example 3.1 (Fitting AR models) We draw a sample of 100 observations
from the model

Xt = 0.5Xt−1 + 0.3Xt−2 − 0.7Xt−3 + 0.2Xt−4 + εt, {εt} ∼i.i.d. N(0, σ2).

Assuming that the data are drawn from an AR model with an unknown
order p, we fit a causal AR model with the order determined by the data.
The sample PACF plotted in Figure 2.3(b) shows that π̂(k)’s for k > 4
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are almost always between the bounds ±1.96/
√
T (see (3.25)). This sug-

gests that AR(p) with p = 4 might be a suitable candidate model. On
the other hand, the sample ACF plotted in Figure 2.3(a) does not appear
to have a clear cutoff. We apply AIC, AICC, BIC, and FPE to estimate
the order p. The results are displayed in Figure 3.1(a). We also plot the
−2log(maximum likelihood) (i.e., the first term on the right hand side of
(3.18), (3.19), and (3.23)), which decreases as the order p increases, al-
though the decrease became slow and steady after the model reached the
order 3. Nevertheless, this shows that the penalty for the model complexity
is necessary for model selection. The difference between AIC and AICC is
small for small values of p and only shows up when p is large. Due to the
larger penalty on complex models, BIC increases faster than both AIC and
AICC, as p increases. AIC, AICC and FPE chose the correct order 4 for
the given sample, whereas BIC prefers orders 3 to 4 by a narrow numerical
margin of 0.21. We repeated the exercise with a sample of size 50 and ob-
tained similar results; see Figure 3.1(b). The PACF plot in Figure 3.1(d)
suggests the order p = 3. Both AIC and FPE choose the correct order 4 for
the given sample, whereas both AICC and BIC prefer orders 3 to 4 by nu-
merical margins 0.18 and 1.62, respectively. The models with orders 3 and
4 could be regarded as competitive models. With sample size T = 50, the
maximum likelihood estimates for the AR coefficients in the AR(4) model
are

0.36, 0.29, −0.69, and 0.22,

with the standard errors 0.14, 0.11, 0.11, and 0.14, respectively. The esti-
mate for the variance of the white noise is 0.94.

Example 3.2 (Fitting MA models) We generate a sample of 100 from the
model

Xt = εt + 0.6εt−1 + 0.6εt−2 + 0.3εt−3 + 0.7εt−4, {εt} ∼i.i.d. N(0, 1)

with σ = 1. Assuming that the data are drawn from an MA model with
an unknown order q, we determine the order and estimate MA coefficients
from the data. The sample ACF plotted in Figure 2.3(c) shows that ρ̂(k)’s
for k > 4 are almost always within the bounds ±1.96/

√
T and therefore also

within the bounds ±1.96{1 + 2
∑4
j=1 ρ̂

2(j)}1/2/√T (see (3.26)). This sug-
gests that MA(4) might be a suitable candidate model. We apply AIC,
AICC, BIC, and FPE to estimate q. The results are displayed in Fig-
ure 3.2(a). In general, we see a similar pattern as in the previous example.
All of the AIC, AICC, and BIC select the correct order q = 4. We repeat
the exercise with a sample of size T = 50. The order q = 4 is still selected
by all of the three information criteria; see Figure 3.2(b). With T = 50, the
maximum likelihood estimates for the MA coefficients are

0.56, 0.54, 0.17, and 0.71,
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FIGURE 3.2. Example 3.2—Fitting an MA(q) model. Plots of AIC(q) (labeled
“a”), AICC(q) (labeled “c”) and BIC(q) (labeled “b”) against q for sample size (a)
T = 100 and (b) T = 50. Lines labeled with k are −2 log(maximum likelihood).
(c) and (d) are ACF and PACF plots for a sample of size 50.

with the standard errors 0.12, 0.14, 0.20, and 0.18, respectively. The esti-
mate for the variance of the white noise is 1.08. Note that with the sample
size 50 the PACF plot in Figure 3.2(d) seems to suggest that the AR(1)
model would be a reasonable alternative. However, the corresponding AIC
value is 169.09, which is substantially larger than 161.43—the AIC value
corresponding to the fitted MA(4) model. The difference is in the same
order of magnitude as the difference of the AIC from order 3 to order 4. In
fact, AR(1) is the best AR-model for the data according to AIC. However, it
is a poor fitting overall. For example, the estimated variance for the white
noise is 1.58, greatly exceeding the true value 1. This example indicates
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FIGURE 3.3. Example 3.3—Fitting an ARMA(p, q) model. Plots of AIC(p, q)
(labeled “a”), AICC(p, q) (labeled “c”) and BIC(p, q) (labeled “b”) against (p, q).
The four segments of curves correspond to p = 0 and 1 ≤ q ≤ 6, p = 1 and
0 ≤ q ≤ 6, p = 2 and 0 ≤ q ≤ 3, and p = 3 and 0 ≤ q ≤ 3, respectively.

that heuristic order selection based on PACF and ACF could sometimes
be misleading.

Example 3.3 (Fitting ARMA models) We generate a sample of 100 from
the model

Xt = 0.8Xt−1 − 0.6Xt−2 + εt + 0.7εt−1 + 0.4εt−2, {εt} ∼i.i.d. N(0, 1).

Assuming that the true model is unknown, we will fit the data with an
appropriate causal and invertible ARMA model. The sample ACF and
PACF plotted in Figures 2.3 (e) and (f) show that ρ̂(k) for k > 6 and π̂(j)
for j > 3 are not significantly different from 0. Thus, we search for the
optimum ARMA(p, q) model with 0 ≤ p ≤ 3 and 0 ≤ q ≤ 6. The results
are displayed in Figure 3.3. Both AIC and AICC select the true model with
p = q = 2 whereas, BIC favors AR(3). Note that the values of AIC, AICC,
or BIC for those two models are very close; see Figure 3.3. We regard both
as “competitive models”. The fitted ARMA(2, 2) model from the maximum
likelihood method is

Xt = 0.72Xt−1 − 0.64Xt−2 + εt + 0.74εt−1 + 0.41εt−2, (3.27)
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with Var(εt) = 0.96. The fitted AR(3) model is

Xt = 1.29Xt−1 − 1.10Xt−2 + 0.34Xt−3 + εt, (3.28)

with Var(εt) = 1.01. We will revisit this example in §3.5.

3.5 Diagnostic Checking

In view of the fact that a statistical model is only an approximation to
reality, it is important to conduct postfitting diagnostic checking to see
whether the fitted model explains the data well. In this section, we outline
some standard methods for model diagnostics. The most frequently used
techniques are residual-based methods that are designed to test whether the
residuals derived from the fitted model behave like a white noise process.
Some nonparametric tests to be introduced in §7.4 are also designed for this
purpose. It is useful to bear in mind that the residual-based methods usually
have little power to detect overfitting. Therefore, it is important to select
an appropriate order, using criteria that penalize the model complexity.

3.5.1 Standardized Residuals
First, we define the standardized residuals from a fitted ARMA(p, q) model
as follows. Based on the form of the likelihood function (3.9), the standard-
ized residuals should be the estimates of the WN(0, 1) random variables

Rj = (Xj − X̂j)/(σ2rj−1)1/2, j = 1, · · · , T.

Note that both X̂j and rj−1 depend on the unknown parameters b =
(b1, · · · , bp)τ and a = (a1, · · · , aq)τ . Replacing them (as well as σ2) by the
maximum likelihood estimators defined in (3.12), we obtain the standard-
ized residuals

R̂j = {Xj − X̂j(b̂, â)}/{σ̂2 rj−1(b̂, â)}1/2, j = 1, · · · , T. (3.29)

In the expression above, we write both X̂j and rj−1 explicitly as functions
of b̂ and â to indicate that they are approximated from the fitted model.
If the model is correct, {R̂j} should resemble {Rj}, which is a WN(0, 1)
process. Furthermore {R̂j} should resemble an i.i.d. N(0, 1) sequence if
{εt} in the model is Gaussian.

3.5.2 Visual Diagnostic
A simple and powerful diagnostic tool is to look at the time-series plot of
{R̂j}, and the plots of R̂j against the regressors (one in each time). Those
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plots should resemble “purely random” pattern of the WN(0, 1) process if
the fitted model is adequate. The inadequacy may be indicated by a sys-
tematic pattern such as deviation of the mean from zero, changing variation
over time or over the regions of regressors, the existence of trend and cyclic
components, and so on. We may superimpose the horizontal lines at ±1.96
in the plots, and expect that about 95% of the residuals are within the two
lines if the model fits the data.

The correlogram of {R̂j} may also be revealing. If the model is correct,
we expect the sample ACF of {R̂j} to fall within the bounds ±1.96/

√
T

at about 95% of time lags. Box and Pierce (1970) modified the bounds
±1.96/

√
T to take into account the dependence of the sample ACF of {R̂j}

at different time lags; see also §9.4 of Brockwell and Davis (1991).

3.5.3 Tests for Whiteness
There are an abundance of tests for whiteness that can be applied to
test whether {R̂j} is a white noise process. The tests presented in §7.4
are designed to test the whiteness based on the spectral density of the
residuals. All of the tests are approximately valid, giving approximately
correct levels of tests, since the parameters under the null hypothesis are
typically estimated with rate OP (T−1/2).

Example 3.3 (Continued) We conduct a diagnostic check for both the
fitted ARMA(2, 2) model (3.27) and AR(3) model (3.28). The standardized
residuals calculated according to the formula (3.29) from both models are
plotted in Figures 3.4 (a) and (b), and their ACFs and PACFs are plotted
in Figures 3.4 (c)–(f). All of the plots provide stark evidence to support
that the residuals from both models behave like a white noise process.

By applying the tests in §7.4, the p-values for the Fisher test (7.33), the
generalized likelihood ratio test (7.37), the adaptive Neyman test (7.43),
and the χ2-test (7.40) are 0.66, 0.89 (with 8 d.f.), 0.89, and 0.36 (with 46
d.f.) for model (3.27) and .78, 0.84 (with 8 d.f.), 0.93, and 0.57 (with 47 d.f.)
for model (3.28). Those tests lend further support to both fitted models.

Note that in principle two seemingly different ARMA models could effec-
tively be the same if their MA(∞)- or AR(∞)-representations were almost
the same. However, the two fitted models above are really different. Because
model (3.27) is invertible, it can be represented as

Xt = εt +
∞∑
j=1

djXt−j ,

in which |dj | ≥ 0.15 for 1 ≤ j ≤ 6, and the first three dj ’s are −1.46, 1.31
and −0.38, respectively. This indicates that model (3.27) is substantially
different from (3.28). This example illustrates that there could be two or
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(b) Residuals from AR(3)
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FIGURE 3.4. Example 3.3—analyzing residuals. Time-series plot, correlogram,
and PACF plot for the standardized residuals from the fitted ARMA(2, 2) model
(3.27) are displayed in (a), (c), and (e), respectively. Those for the standardized
residuals from the fitted AR(3) model (3.28) are displayed in (b), (d), and (f).
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more fundamentally different models that fit a given finite series almost
equally well.

3.6 A Real Data Example—Analyzing German
Egg Prices

Figure 3.5(a) displays the weekly egg prices at a German agricultural mar-
ket between April 1967 and May 1990. The series is of length 300 and
is the first quarter of a longer series extensively analyzed in Finkenstädt
(1995). The sample mean and variance are 12.38 and 6.77, respectively.
Since the data exhibit a clear nonstationary feature (see also its correlo-
gram in Figure 3.5(c)), we take the first-order difference of the series. The
differenced series are plotted in Figure 3.5(b), which looks more stationary-
like. A scrutiny of Figures 3.5 (d) and (f) suggests that we may fit an
ARMA(p, q) model with p ≤ 7 and q ≤ 7. Note |ρ̂(k)| or |π̂(k)| ≥ 1.96/

√
T

for k = 18, 22, 25, and a few other larger values. But with sample size 300,
we prefer to fit the data with some small-order models first. We subtract
the sample mean −0.015 from the data before the fitting. We select the
model based on AICC simply because it is implemented in ITSM.

The optimum AR model based on AICC is AR(7) with the AICC-value
698.24. The estimated AR-coefficients b̂1, · · · , b̂7 are

0.322, −0.159, 0.021, −0.004, −0.055, −0.023 and − 0.163.

The ratios b̂j/{SE(̂bj)} for j = 1, · · · , 7 are

5.651, −2.666, 0.035, −0.071, −0.906, −0.378, and − 2.869,

where SE(̂bj) stands for the standard error of b̂j (see §3.3.3). The small
values (<< 1.96) of |̂bj/SE(̂bj)| are the significant supporting evidence to
the hypothesis bj = 0. Therefore, we fit the data with the same model again
with the constraints b3 = b4 = 0. The fitted model becomes

Xt = 0.321Xt−1 − 0.160Xt−2 − 0.057Xt−5 − 0.023Xt−6 − 0.165Xt−7 + εt,
(3.30)

where {εt} ∼ N(0, 0.567). By leaving out the terms Xt−3 and Xt−4, the
AICC-value has been reduced to 694.04.

On the other hand, we fit an MA(7) model to the data. The estimated
MA-coefficients â1, · · · , â7 are

0.320, −0.038, −0.054, −0.023, −0.048, −0.046, and − 0.195.

The ratios âj/SE(âj) for j = 1, · · · , 8 are

5.541, −0.629, −0.896, −0.386, −0.790, −0.757, and − 3.210.
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(a) Egg prices
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(b) Differenced egg prices
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FIGURE 3.5. (a) Time plot of weekly German egg prices over a period of 300
weeks. (b) Lag-1 differenced series. (c) and (e) are ACF and PACF plots of the
series displayed in (a). (d) and (f) are ACF and PACF plots of the differenced
series displayed in (b).
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Note that five out of seven of these ratios are smaller than 1 in absolute
value. We use AICC to select the optimum model among the MA(7) family
with at least one of a2, a3, a4, a5, and a6 equal to 0. The selected model is

Xt = εt + 0.345εt−1 − 0.173εt−7 (3.31)

with σ̂2 = 0.570 and the standard errors of the two coefficients in the model
above 0.054 and 0.051 in order. The corresponding AICC-value is 689.34,
which is noticeably smaller than that of model (3.30).

Looking at the AR-coefficients in model (3.30), we search for an optimum
ARMA(p, q) model with p = 1 or 2 and 1 ≤ q ≤ 7. The model selected by
AICC is the ARMA(1, 2)

Xt = 0.906Xt−1 + εt − 0.619εt−1 − 0.381εt−2, (3.32)

with σ̂2 = 0.563 and AICC= 690.58. The standard errors for the three
coefficients in the model are 0.022, 0.053, and 0.052 in that order.

According to AICC, both models (3.31) and (3.32) are comparable with
each other. We conduct diagnostic checking on both of them. The standard-
ized residuals and their ACF and PACF plots are depicted in Figure 3.6.
Slightly more than 5% (but ≤ 6%) of residuals from both models are be-
yond the bounds ±1.96. But both ACF and PACF plots show that there
still exists weak but significant autocorrelation in the residuals at some
discrete lags. To see whether there is a genuine lack of fitting, we fit AR
models to both residuals. In both cases AICC picks the optimum order
p = 0, which indicates that the residuals are fairly white. By applying
the tests in §7.4, the p-values for the Fisher test (7.33), the generalized
likelihood ratio test (7.37), the adaptive Neyman test (7.43) and the χ2-
test (7.40) are 0.22, 0.82 (with 8 d.f.), 0.04, and 0.00 (with 50 d.f.) for
model (3.31) and 0.22, 0.53 (with 9 d.f.), 0.01, and 0.00 (with 50 d.f.) for
model(3.32). While both fittings passed the Fisher test and the generalized
likelihood ratio test comfortably, they failed in the χ2-test and model(3.32)
also failed the adaptive Neyman test. This reflects the fact that there still
exists some significant autocorrelation in the residuals; see Figures 3.5 (c)
and (d). In fact, we set aT equal to 50 in the adaptive Neyman test (7.43).
The maximum value of T ∗

AN was obtained at m = 42 for both models (3.31)
and(3.32). One possible remedy is to include variables at the lags at which
(partial) autocorrelation is significant. However it is in general difficult to
interpret the resulting model. For example, it is hard to argue why the egg
price at present depends more on the price 42 weeks ago rather than those
in the last couple of weeks. Therefore, we decide to leave our fitted models
unchanged.

Converting models (3.31) and (3.32) to the original egg price data {Yt},
we obtain the two competitive ARIMA models

Yt = Yt−1 + εt + 0.345εt−1 − 0.173εt−7, {εt} ∼WN(0, 0.570),
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(a) Residuals from MA(7)
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(b) Residuals from ARMA(1,2)
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FIGURE 3.6. Fitting German egg price data. (a) Standardized residuals from
fitted MA(7) model (3.31). (b) Standardized residuals from fitted ARMA(1, 2)
model (3.32). (c) and (e) are the ACF-plot and PACF-plot of residuals from the
MA(7) model. (d) and (f) are the ACF-plot and PACF-plot of residuals from the
ARMA(1, 2) model.
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and

Yt = −0.001 + 1.906Yt−1 − 0.906Yt−2

+ εt − 0.619εt−1 − 0.381εt−2, {εt} ∼WN(0, 0.563).

3.7 Linear Forecasting

In this section, we discuss the forecasting for nonstationary ARMA (such
as ARIMA) time series. We assume that the time series has mean 0 over
all time. The practical implication of this assumption is that the mean
function can be dealt with easily such that either the time series has a
constant mean or we have fairly substantial prior knowledge on the way
in which the mean function varies. It is intuitively clear that we can only
forecast the future if the underlying process sustains certain stability over
time.

First, we present a definition for the least squares m-step-ahead pre-
dictor, which is typically a linear predictor for linear time series. When
the time series follows an AR equation (such as ARIMA(p, 0, 0) processes),
the m-step-ahead predictor can be recursively computed based on the AR
equation (see (3.35) below). The mean squared predictive error can also be
calculated in a recursive manner. The stationarity is not required.

For a general ARMA(p, q) process with q > 0, we need to assume that
the process is invertible (although not necessarily stationary). This is an
essential assumption that enables us to recover white noise signals {εt, t ≤
T} from observations {Xt, t ≤ T}.

Although we will proceed with a general form of the ARMA model with-
out the assumption of stationarity, we assume that both the form of the
model and the coefficients in the model are known and remain unchanged,
so we can predict the future based on the stable form of the model (in-
stead of stationarity). The techniques presented are practically applicable
to ARIMA models for which the parameters can be replaced by their esti-
mators obtained from the differenced observations.

3.7.1 The Least Squares Predictors
Suppose that we have observations X1, · · · , XT from a time series {Xt}.
We forecast a future observation XT+m for some m ≥ 1 based on the
observations XT , · · · , X1. The time series is not necessarily stationary. But
we assume that EXt = 0 and E(X2

t ) <∞ for all t.

Definition 3.2 For m > −T , we call XT (m), a (measurable) function of
XT , · · · , X1, the least squares predictor for XT+m based on XT , · · · , X1 if

XT (m) = arg inf
f
E(XT+m − f)2,
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where the infimum is taken over all the (measurable) functions of XT , · · · ,
X1.

In the definition above, we allow m to be nonpositive for technical con-
venience. It is easy to see that XT (m) = XT−|m| when −T < m ≤ 0.

Proposition 3.2 XT (m) = E(XT+m|XT , · · · , X1).

Proof. Let XT = (XT , · · · , X1)τ . For any measurable f = f(XT ),

E(XT+m − f)2 = E{XT+m − E(XT+m|XT )}2
+ E{E(XT+m|XT )− f}2 + 2B,

where

B = E[{XT+m − E(XT+m|XT )}{E(XT+m|XT )− f}]
= EE[{XT+m − E(XT+m|XT )}{E(XT+m|XT )− f}|XT ]
= E[{E(XT+m|XT )− f}E{XT+m − E(XT+m|XT )|XT }]
= E[{E(XT+m|XT )− f}{E(XT+m|XT )− E(XT+m|XT )}]
= 0.

Thus E(XT+m − f)2 ≥ E{XT+m − E(XT+m|XT )}2.

3.7.2 Forecasting in AR Processes
Suppose that {Xt} is defined by an autoregressive model (not necessarily
stationary)

Xt = b1Xt−1 + · · ·+ bpXt−p + εt, (3.33)

where {εt} ∼WN(0, σ2) and

E(εt|Xt−1, Xt−2, · · · ) = 0 for all t. (3.34)

The proposition below shows thatXT (m) is a linear function ofXT , · · · , X1.
Therefore XT (m) is also the best linear predictor which is discussed, for
example, in §9.5 of Brockwell and Davis (1991).

Proposition 3.3 Let {Xt} be a process defined by (3.33) and T ≥ p. Then

XT (m) = b1XT (m− 1) + · · ·+ bpXT (m− p), m = 1, 2, · · · . (3.35)

Furthermore, XT (m) is a linear function

XT (m) = ϕ
(m)
1 XT + · · ·+ ϕ

(m)
T X1, m = 1, 2, · · · ,

where {ϕ(m)
j } are some constants.
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The proof of the proposition is trivial, as (3.35) follows from (3.33), (3.34)
and Proposition 3.2, and the linearity follows from (3.35) and an obvious
induction argument.

Let {Xt} be an ARIMA(p′, d, 0) process now, that is

Yt ≡ ∇dXt =
d∑
j=0

d!
j!(d− j)! (−1)jXt−j , t = 0,±1,±2, · · ·

is a stationary AR(p′) process, where d is an integer. Therefore {Xt} follows
formally the AR equation with order p = p′ + d,

d∑
j=0

d!
j!(d− j)! (−1)jXt−j = εt +

p′∑
k=1

bk

d∑
j=0

d!
j!(d− j)! (−1)jXt−k−j ,

where {εt} ∼ WN(0, σ2). Thus, Xt can be expressed in an autoregres-
sive form. With the observations {X1, · · · , XT }, XT (m) for m ≥ 1 can be
evaluated recursively based on the equation above; see (3.35). In practice
we replace b1, · · · , bp′ by their maximum likelihood estimators, which are
obtained based on the (T − d) “observations” {∇dXj , j = d+ 1, · · · , T}.

3.7.3 Mean Squared Predictive Errors for AR Processes
For the process {Xt} defined by the autoregressive equation (3.33), it can
be proved by induction that

Xt =
k∑
j=0

djεt−j +
k+p∑
j=k+1

k∑
i=0

dibj−iXt−j , k = 0, 1, 2, · · · , (3.36)

where dj ’s are obtained recursively by (2.20) with d0 = 1 and aj = bp+j = 0
for all j ≥ 1. Let t = T +m and k = m − 1 in the expression above, and
we obtain that, for T ≥ p,

XT+m =
m−1∑
j=0

djεT+m−j +
p−1∑
l=0

m−1∑
i=0

dibm+l−iXT−l.

By Proposition 3.2, XT (m) is equal to the second sum (i.e., the double
sum) on the right-hand side of the expression above:

XT (m) =
p−1∑
l=0

m−1∑
i=0

dibm+l−iXT−l.

Hence, the residual is XT+m −XT (m) =
∑

1≤j<m djεT+m−j . This entails
the proposition below immediately.
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Proposition 3.4 Let {Xt} be a process defined by (3.33) and T ≥ p. Then,
the mean squared predictive error of XT (m) for m ≥ 1 is given by

σ2
T (m) ≡ E{XT+m −XT (m)}2 = σ2

m−1∑
j=0

d2
j ,

where dj’s are obtained recursively by (2.20) with d0 = 1 and aj = bp+j = 0
for all j ≥ 1. Furthermore, if for any i, j ≥ 1 and any integer t,

E(εt+iεt+j |Xt, Xt−1, · · · ) = E(εt+iεt+j), (3.37)

σ2
T (m) is also equal to the conditional mean squared prediction error, namely

σ2
T (m) = E

[{XT+m −XT (m)}2∣∣XT , XT−1, · · ·
]
.

When {Xt} is causal ,
∑
j |dj | <∞. In this case,

σ2
T (m)→ σ2

∞∑
j=0

d2
j = Var(Xt) as m→∞

(see §2.2.1). This is the same as the noise level and implies that XT (m)→
E(XT+m) = 0, which indicates that a long-term forecasting is nearly im-
possible.

Condition (3.37) is very mild. For example, it holds if, in addition, {εt}
is a sequence of independent random variables and εt is independent of
{Xt−k, k ≥ 1} for any t. Hence, the proposition above also shows that the
conditional predictive error for those processes is independent of the values
of XT , · · · , X1. This illustrates the fact that the forecast based on linear
time series models does not reflect the common knowledge that the risk of
a prediction depends on the current state (i.e., XT , · · · , X1). We will see in
Chapter 10 that the dependence of prediction on its initial condition may
be naturally captured in nonlinear time series models.

3.7.4 Forecasting in ARMA Processes
Suppose that {Xt} is defined by an ARMA equation (not necessarily sta-
tionary)

Xt =
p∑
j=1

bjXt−j + εt +
q∑
j=1

ajεt−j , (3.38)

where {εt} ∼ WN(0, σ2) and condition (3.34) holds. It is easy to see that
when T ≥ max{p, q},

XT (m) =
p∑
j=1

bjXT (m− j) +
q∑
j=1

ajεT (m− j), (3.39)
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where εT (i) = E(εT+i|XT , · · · , X1). Obviously, εT (i) = 0 for all i ≥ 1.
In order to evaluate those εT (i)’s in (3.38) with i ≤ 0, we make two

further assumptions. First, we assume that model (3.38) is invertible in
the sense that

1 + a1z + · · ·+ aqz
q �= 0 for all |z| ≤ 1.

Under this condition, model (3.38) admits an AR(∞) expression

Xt = εt +
∞∑
j=1

cjXt−j ,
∞∑
j=1

|cj | <∞, (3.40)

where c0 = 1 and ck = bk −
∑k−1
j=0 cjak−j for k ≥ 1 (see (2.20)). In the

recursive calculation of ck’s, we let bp+j = aq+j = 0 for all j ≥ 1.
We also assume that we have all of the observations from time T back

to negative infinite. Therefore, the least squares predictor based on all
observations is

XT (m) = E(XT+m|XT , XT−1 · · · ),
and εT (j) is defined accordingly as

εT (j) = E(εT+j |XT , XT−1 · · · ) =
{

0 j ≥ 1,
εT+j j ≤ 0.

In practice, we assume that Xj = 0 for all j ≤ 0. We expect that the
modification has little impact as long as T is large relative to p and q since
then the dependence between XT+j (j > 0) and its remote past would be
weak or very weak. Summarizing the findings above, we obtain the following
propositions. Note that (3.41) can be established in the same manner as
Proposition 3.4.

Proposition 3.5 Let {Xt} be defined by model (3.38) which is invertible.
Then the least squares predictor for XT+m based on XT , XT−1, · · · is de-
fined recursively by (3.39), in which εT (j) = 0 for j ≥ 1 and εT+j given by
(3.40) for j ≤ 0. Furthermore, the mean-square prediction error is given
by

σ2
T (m) ≡ E{XT+m −XT (m)}2 = σ2

m−1∑
j=0

d2
j , (3.41)

where dj’s are obtained recursively by (2.20) with aq+j = bp+j = 0 for all
j ≥ 1. Under the additional condition (3.37), it holds that

σ2
T (m) = E

[{XT+m −XT (m)}2∣∣XT , XT−1, · · ·
]
.



122 3. ARMA Modeling and Forecasting

Example 3.4 Let us consider the invertible ARIMA(0, 1, 1) model

Xt −Xt−1 = εt − aεt−1, {εt} ∼WN(0, σ2),

where |a| < 1 and E(εt|Xt−1, Xt−2, · · · ) = 0 for any t. Since |a| < 1, we
have the infinite series expansion

(1− az)−1 =
∞∑
j=0

ajzj , |z| < 1/a.

Note that the model can be written as (1−B)Xt = (1− aB)εt. Hence

εt = (1− aB)−1(1−B)Xt =
∞∑
j=0

ajBj(1−B)Xt

= Xt − (1− a)
∞∑
j=1

aj−1Xt−j .

It follows from Proposition 3.5 that

X̂T+1 ≡ XT (1) = (1− a)
∞∑
j=0

ajXT−j , (3.42)

and for m ≥ 2

XT (m) = (1− a)
∞∑
j=0

ajXT (m− j − 1)

= XT (m− 1)− a

XT (m− 1)− (1− a)

∞∑
j=1

aj−1XT (m− j − 1)




= XT (m− 1)− a{XT (m− 1)−XT (m− 1)} = XT (m− 1).

The latter follows also directly from (3.39).
Note that the predictor X̂T+1 defined in (3.42) is a moving average of

all of its lagged values with the coefficients exponentially decaying. If we
define X̂t = E(Xt|Xt−1, Xt−2, · · · ) for all t, it follows from (3.42) that

X̂t+1 = (1− a)
∞∑
j=0

ajXt−j = (1− a)Xt + aX̂t

= Xt + a(X̂t −Xt).

The predictor X̂t+1, giving weight (1 − a) to the most recent observation
Xt and weight a to its predicted value, is referred to as the exponential
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smoothing , which is one of the most frequently used methods in forecast-
ing. The example above shows that it is optimal if {Xt} is an invertible
ARIMA(0, 1, 1) process. However, as a heuristic algorithm, the exponential
smoothing (with 0 < a < 1) has been widely used in practical forecasting.
For example, it plays an important role in volatility forecasting for financial
time series; see (8.54). In fact, the exponential smoothing may be viewed as
a special type of kernel smoothing (see §6.2.5). This indicates that it is ro-
bust against model misspecification. For further discussion on exponential
smoothing, see Gardner (1985).

All of the forecasting techniques described in this section are model-based
in the sense that they are the best if the assumed model is correct and
the parameters in the model are known. Practical experience shows that
some heuristic forecasting algorithms, such as the exponential smoothing
mentioned above, are well worth serious consideration; see Chapter 9 of
Brockwell and Davis (1996).
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4
Parametric Nonlinear Time Series
Models

The long-lasting popularity of ARMA models convincingly justifies the use-
fulness of linear models for analyzing time series data. Nevertheless, in view
of the fact that any statistical model is an approximation to the real world,
a linear model is merely a first step in representing an unknown dynamic re-
lationship in terms of a mathematical formula. The truth is that the world
is nonlinear! Therefore, it is not surprising that there exists an abundance
of empirical evidence indicating the limitation of the linear ARMA fam-
ily. To model a number of nonlinear features such as dependence beyond
linear correlation, we need to appeal to nonlinear models. In this chapter,
we present some parametric nonlinear time series models and their statis-
tical inferences. §4.1 provides an introduction to the threshold modeling
for conditional mean functions. §4.2 is devoted to ARCH modeling of non-
constant conditional variance functions—a phenomenon called conditional
heteroscedasticity . A brief account on bilinear models is given in §4.3.

4.1 Threshold Models

Linear approximation serves as a powerful tool in quantitative scientific
investigation in almost all disciplines. However, when we tackle nonlinear
problems such as modeling nonlinear dynamics, a global linear law is often
inappropriate. For example, it seems naive to assume that, in an economy
or an animal population, the expanding phase is governed by the same
linear dynamics as the contracting phase. Since a global quadratic (or a
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higher-order) autoregressive form is typically unstable, a natural alterna-
tive would be to break a global linear approximation into several, each on
a subset of the state-space. Under the umbrella of the threshold princi-
ple (§3.3 of Tong 1990), there is a class of nonlinear time series models
that models nonlinear dynamics based on a “piecewise” linear approxima-
tion via partitioning a state-space into several subspaces. The partition is
typically dictated by a so-called “threshold” variable. In this section, we
present a simple but frequently used form—the threshold autoregressive
model ; focusing on the developments after Tong (1990). We introduce the
techniques for estimation, testing, and model identification and illustrate
those techniques through a real data example.

4.1.1 Threshold Autoregressive Models
Definition 4.1 A threshold autoregressive (TAR) model with k (k ≥ 2)
regimes is defined as

Xt =
k∑
i=1

{bi0 + bi1Xt−1 + · · ·+ bi,pi
Xt−pi

+ σiεt}I(Xt−d ∈ Ai), (4.1)

where {εt} ∼ IID(0, 1), d, p1, · · · , pk are some unknown positive integers,
σi > 0 and bij are unknown parameters, and {Ai} forms a partition of
(−∞,∞) in the sense that ∪ki=1Ai = (−∞,∞) and Ai ∩ Aj = ∅ for all
i �= j.

In the model above, we fit on each Ai a linear form. The partition
is dictated by the threshold variable Xt−d, and d is called a delay pa-
rameter. It is often (but not always) the case that Ai = (ri−1, ri] with
−∞ = r0 < r1 < · · · < rk = ∞. In this case, ri’s are called thresh-
olds. This model, first introduced by H. Tong in 1977, is in fact a special
type of threshold model called self-exciting threshold model; see Tong and
Lim (1980) and Tong (1990). It has been widely used to model nonlin-
ear phenomena in diverse areas, including economics (Tiao and Tsay 1994;
Hansen 1999), environmental sciences (Mélard and Roy 1988), neural sci-
ence (Brillinger and Segundo 1979), finance (Li and Lam 1995), hydrology
(Tong and Lim 1980), physics (Pemberton 1985), and population dynamics
(Stenseth et al. 1999). Its success partially lies in its simplicity in terms of
both model-fitting and, perhaps more importantly, model-interpretation.
By modeling the nonlinearity via partitioning the state-space, the station-
arity may be preserved. This is in marked contrast to change-point models
for which the regime-switch happens according to time, resulting in non-
stationary processes. Unfortunately, our knowledge of the TAR model is
still developing. We do not have a comprehensive theory and methodology
as we do for linear ARMA models.

It is easy to see from Theorem 2.4 that model (4.1) admits a strictly sta-
tionary solution if (a) σ1 = · · · = σp and (b) either max1≤i≤k

∑pi

j=1 |bij | < 1
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or
∑p
j=1 max1≤i≤k |bij | ≤ 1 with p = max1≤i≤k pi. Note that these condi-

tions are sufficient but not necessary; see model (2.14).
The linear correlation of two random variables is explicitly defined. Con-

sequently, autocorrelation of a time series is well-captured by its autocor-
relation function (ACF), which, as we have witnessed in Chapter 3, plays
a key role in modeling the autolinear relationship. (Note that a PACF is
a function of the corresponding ACF; see Proposition 2.3.) Unfortunately,
there exists no analog of the ACF to represent nonlinear dependence in
general. Various attempts have been made to define appropriate measures
for nonlinear dependence/association, either localized or global. But none
of them are as simple and illustrative as the ACF and PACF in analyz-
ing linear relationships. We have in fact a paradox here; a nonlinear phe-
nomenon is typically more complex and more difficult to model than a
linear one, and the available tools are much less comprehensive and less
effective. Therefore data-exploratory and data-analytic techniques such as
various plots (§5.2 of Tong 1990), background information, and nonpara-
metric and semi-parametric techniques play important roles in identifying
an appropriate (parametric) form in nonlinear modeling. A statistical test
for linearity is a routine practice to testify to nonlinearity. We will illustrate
some of those ideas in case studies in §4.1.4 below.

For fitting a low-dimensional structure, the scatter plots that plot a time
series variable against its lagged values are almost as insightful as any more
sophisticated tools. To illustrate this idea, we consider a simple TAR model
with two regimes as follows:

Xt =
{ −0.7Xt−1 + εt, Xt−1 ≥ r,

0.7Xt−1 + εt, Xt−1 < r,
(4.2)

where εt’s are independent N(0, 0.52) variables. We generate four sample
series (of length 500 for each) from the model above with r equal to, respec-
tively, −∞,−1,−0.5, and 0. Figure 4.1 presents the scatter plots of those
four sample series. For r = −∞, the model reduces to a linear AR(1). For
all three other cases, the nonlinearity is clearly displayed in those plots.
On the other hand, ACF and PACF plots, although still useful, cannot be
taken as ultimate measures for the dependence. For example, Figures 4.2 (a)
and (d) indicate that there is hardly any significant autocorrelation when
r = −1 in spite of the intimate dependence between Xt and Xt−1 defined
by (4.2).

It is worth pointing out that the usefulness of TAR models is due to
the fact that the class of piecewise linear functions may typically provide a
simple and easy-to-handle approximation to a more sophisticated nonlinear
function. Figure 4.3 displays some examples for which different nonlinear
functions can be approximated by piecewise linear functions with two, three
or four regimes, which may be viewed as linear splines with two, three or
four knots; see §6.4. In practice, a good fitting from a TAR model does
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(a) Linear AR
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(b) TAR, r=-1
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(c) TAR, r=-0.5
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(d) TAR, r=0
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FIGURE 4.1. Scatter plots of the samples generated from TAR model (4.2) with
(a) r = −∞, (b) r = −1, (c) r = −0.5, and (d) r = 0. The solid lines are the
true regression functions.

not necessarily imply that the underlying process is exactly piecewise lin-
ear. But a practically meaningful interpretation is often entertained when
each regime in a fitted model represents a different characteristic of the
underlying nonlinear dynamic. To illustrate this point, we report below the
fitted TAR model for the quarterly U.S. real GNP data due to Tiao and
Tsay (1994) in which the regimes are defined in terms of two (instead of
one) threshold variables.

Let Y0, Y1, · · · , Y176 denote the quarterly US real GNP from February
1947 to January 1991, a total of 177 observations. Figure 4.4 is the time
series plot of the growth rate series

Xt ≡ log(Yt)− log(Yt−1), t = 1, · · · , 176.
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(f) PACF, r=0

FIGURE 4.2. Sample ACF and PACF plots for time series generated from the
TAR model (4.2).

Tiao and Tsay (1994) fitted the growth rates with the following TAR mod-
els with four regimes (discarding the two insignificant intercepts):

Xt =




−0.015− 1.076Xt−1 + ε1,t, Xt−1 ≤ Xt−2 ≤ 0,
0.630Xt−1 − 0.756Xt−2 + ε2,t Xt−1 > Xt−2, Xt−2 ≤ 0,
0.006 + 0.438Xt−1 + ε3,t Xt−1 ≤ Xt−2, Xt−2 > 0,
0.443Xt−1 + ε4,t, Xt−1 > Xt−2 > 0.

(4.3)

This model can be interpreted as follows.

The first regime (i.e., Xt−1 ≤ Xt−2 ≤ 0) denotes a recession
period in which the economy changed from a contraction to an
even worse one. Only six observations were from this recession
phase. Furthermore it is reassuring to see the negative explosive
nature of the regression function in this regime, indicating that
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FIGURE 4.3. Piecewise linear approximations (dotted lines) to nonlinear func-
tions (solid curves): (a) x2, (b) exp{−(x− 1)2}, and (c) sin(πx).
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FIGURE 4.4. Time plot of growth of U.S. quarterly real GNP (February
1947–January 1991).

the economy usually recovers quickly from the recession period.
In fact, within given series there were only three occasions in
which two consecutive negative growth periods were observed.

The second regime (i.e., Xt−1 > Xt−2 and Xt−2 ≤ 0) corre-
sponds to a period in which the economy was in contraction
but also improving. In this phase, the regression function tends
to be positive, suggesting that the economy is more likely to
grow continuously out of recession once a recovery has started.

The third regime (i.e., Xt−1 ≤ Xt−2 and Xt−2 > 0) denotes
a period in which the economy was reasonable but the growth
declined. The fourth regime (i.e., Xt−1 > Xt−2 > 0) denotes an
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expansion period in which the economy became stronger. The
fitted linear forms in these two regimes are similar, both with
an autoregressive coefficient around 0.44.

All of the coefficients in model (4.3) are statistically significant.
For a detailed statistical analysis of this model, see Tiao and
Tsay (1994).

4.1.2 Estimation and Model Identification
Suppose that X1, · · · , XT are observed values from model (4.1) with k
given. Based on these observations, we estimate the parameters’ bij ’s, σi’s,
and d and determine the orders’ pi’s and the partition {Ai}.

First, we assume that the partition {Ai} and the orders pi’s are known.
To simplify the notation, we assume d ≤ p ≡ max1≤i≤k pi. Then, the least
squares estimators for the autoregressive coefficients bi ≡ (bi0, bi1, · · · ,
bi,pi)

τ , i = 1, · · · , k, are defined as b̃i’s, where b̃1, · · · , b̃k and d̃ minimize

k∑
i=1

L(bi, d;Ai) (4.4)

over all possible real values of bij ’s and integer values 1 ≤ d ≤ p, in which

L(bi, d;Ai) ≡
∑

Xt−d∈Ai
p<t≤T

{Xt − (bi0 + bi1Xt−1 + · · ·+ bi,piXt−pi)}2. (4.5)

The minimization above may be viewed as a two-step process: for each fixed
d, we first minimize (4.5) for i = 1, · · · , k and then choose d̃ to minimize
(4.4). Note that, for a fixed d, the minimizer b̃i(d) of (4.5) is an ordinary
least squares estimator of a linear regression model, and it therefore can be
obtained explicitly. In case there exists more than one minimizer, we always
choose the smallest d as our estimator for the delay parameter. Now, an
estimator for the variance σ2

i is defined as

σ̃2
i =

1
Ti
L(b̃i, d̃;Ai), (4.6)

where Ti is the number of elements in the set {t : p < t ≤ T and Xt−d̃ ∈
Ai}, i = 1, · · · k.

If we assume that εt is Gaussian, the least squares estimation derived
above is not necessarily asymptotically equivalent to the conditional max-
imum likelihood estimation. In fact, the conditional maximum likelihood
estimators for bi’s, σ′

is and d can be obtained from maximizing

−1
2

k∑
i=1

L(bi, d;Ai)/σ2
i −

1
2

k∑
i=1

Ti log σi.
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For a given d, bi is obtained by minimizing L(bi, d;Ai), as in (4.4). However,
d is obtained by minimizing

k∑
i=1

L(bi, d;Ai)/σ2
i

instead of (4.4). For a given b̃i and d̃, the conditional MLE for σi is ob-
tained by (4.6). The schematic algorithm is as follows. For each given d,
via the least-squares method, we obtain b̃i and σ̃2

i from (4.6). This yields
a sequence of the conditional likelihood

k∑
i=1

L(b̃i, d;Ai)/σ̃2
i ,

indexed by d, from which an estimate of d can be obtained. We do not
pursue this further since the efficiency-gain over the least squares estimation
is significant only if the discrepancy among σ2

i ’s is large.
In practice, the partition {Ai} is often unknown and is often assumed

to be of the form Ai = (ri−1, ri] with −∞ = r0 < r1 < · · · < rk = ∞.
In theory, we may determine the partition in the manner of an exhausting
search as follows: for a given collection of partitions {Ai}, let L({Ai}) =∑

1≤i≤k L(b̃i, d̃;Ai), the minimal value of (4.4); we search for the partition
{Âi} that minimizes L({Ai}). In practice, k often takes a small value such
as 2, 3, or 4, and threshold ri’s are searched within certain inner sample
ranges. For example when k = 2, we may search for r1 within, for example,
the 60% inner sample range.

Now, we define the least squares estimators that minimize (4.4) with
Ai = Âi as b̂i and d̂ and define

σ̂2
i =

1
Ti
L(b̂i, d̂; Âi), i = 1, · · · , k. (4.7)

To determine the autoregressive order pi’s, we may define a generalized
AIC as:

AIC({pi}) =
k∑
i=1

[Ti log{σ̂2
i (pi)}+ 2(pi + 1)],

where σ̂2
i (pi) ≡ σ̂2

i is given by (4.7). We choose {pi} such that the corre-
sponding AIC-value obtains the minimum. The penalty for the number of
regimes is reflected in the sum over pi in the expression above. Of course,
the criteria such as BIC or AICC can be adopted in the same manner in
this context; see §3.4.

To consider the asymptotic properties of the estimators, we assume that
{Xt} generated by (4.1) is strictly stationary and ergodic with finite sec-
ond moment. It can be shown that if the partition {Ai} and the delay
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parameter d are given in model (4.1), the least squares estimator for bi is
asymptotically normal in the sense that

T
1/2
i {b̃i(d)− bi} D−→ N(0, σ2

iW
−1
i ), (4.8)

where

Wi =
(

1 µ1τ

µ1 E(ξiξ
τ
i )

)
, ξi = (ξ1, · · · , ξpi)

τ ,

1 is the pi × 1 vector with common components 1, µ = Eξt, and

ξt = bi0 + bi1ξt−1 + · · ·+ bi,piξt−pi + et, {et} ∼WN(0, 1)

(see also Theorem 3.2). Unfortunately, {Ai} and d are typically unknown in
practice. The asymptotic properties of the estimators are more complicated,
depending on whether the regression function E(Xt|Xt−k = xt−k, k ≥ 1)
is continuous (such as in Figure 4.1(d)) or not (such as in Figures 4.1 (b)
and (c)). Intuitively, the discontinuity displayed in Figure 4.1(b) makes the
estimation of the threshold r easier than that in a continuous case such as
in Figure 4.1(d). Theorem 4.2 below, due to Chan (1993a), shows that the
estimator for the threshold converges at the rate T−1 (in contrast to the
conventional rate T−1/2) when the regression function is discontinuous. For
the asymptotic properties for continuous cases, see Chan and Tsay (1998).

The two theorems below concern a special case of model (4.1) with k = 2
and p1 = p2 = p given. In this case the estimation of the partition {Ai}
reduces to the estimation of the single threshold r ≡ r1. We denote its
estimator as r̂.

Theorem 4.1 (Chan 1993a) Suppose that {Xt} satisfies (4.1) with k =
2 and p1 = p2 = p is ergodic and strictly stationary with finite second
moments. Suppose that the joint density function (X1, · · · , Xp) is positive
everywhere. Then, all of the estimators b̂1, b̂2, σ̂2

1, σ̂
2
2, r̂, and d̂ are strongly

consistent.

Theorem 4.2 (Chan 1993a) In additional to the condition of Theorem 4.1,
we assume that:

(i) The Markov chain Xt = (Xt, Xt−1, · · · , Xt−p+1)τ is geo-
metrically ergodic .

(ii) εt has a positive and uniformly continuous density function,
and E(ε4t +X4

t ) <∞.

(iii) The autoregressive function is discontinuous (i.e., there
exists z = (1, zp−1, zp−2, · · · , z0)τ with zp−d = r such that
zτ (b1 − b2) �= 0).

Then T (r̂− r) = Op(1), and (r̂− r) is asymptotically independent of (b̂1−
b1, b̂2−b2). Furthermore

√
Ti(b̂i−bi) is asymptotically normal with mean

0 and variance σ2
iW

−1
i defined in (4.8), i = 1, 2.
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Note that d̂ takes only integer values. Therefore, it holds almost surely
that d̂ is equal to d eventually for all large T ; see Theorem 4.1. Theorem 4.2
shows that due to the discontinuity, r̂− r converges to 0 faster by a factor
T−1/2 than b̂i−b does. (The asymptotic distribution of T (r̂−r) is given in
Chan 1993a.) Therefore, both d and r may be viewed as known as far as the
asymptotic distributions of b̂i’s are concerned; see Theorem 4.2 and (4.8).
Thus, approximate confidence intervals for the coefficients bij may be easily
constructed based on (4.8). On the other hand, the required geometrical
ergodicity condition in Theorem 4.2 holds if (a) σ1 = σ2 and (b) either
max1≤i≤2

∑pi

j=1 |bij | < 1 or
∑2
j=1 max1≤i≤k |bij | ≤ 1 with p = max1≤i≤k pi;

see Example 2.1 and Theorem 2.4.

4.1.3 Tests for Linearity
Since there is a lack of a general measure of nonlinear dependence, test-
ing for linearity becomes a routing exercise to check nonlinearity in fitting
nonlinear models. There are now more than a dozen of such tests available
(§5.3 of Tong 1990), which may be divided into two categories: portman-
teau tests, which test for departure from linear models without specifying
alternative models, and the tests designed for some specific alternatives.
More recently, the tests that make use of nonparametric and semiparamet-
ric fitting have received considerable attention; see Chapter 9. We introduce
below the likelihood ratio test for a linear model against a TAR alternative
with two regimes due to Chan and Tong (1990) and Chan (1990b). Al-
though the test is designed for a specified alternative, it may be applied to
test for a departure to a general smooth nonlinear function since a piece-
wise linear function will provide a better approximation than that from
a (global) linear function. This is in the same spirit as Cox (1981), who
suggested the use of quadratic or cubic regression for testing nonlinearity.

Let X1, · · · , XT be observations from a strictly stationary process. We
test the null hypothesis that {Xt} is from a linear AR(p) model,

H0 : Xt = θ0 +
p∑
j=1

θjXt−j + εt,

against the alternative,

H1 : Xt = θ0 +
p∑
j=1

θjXt−j + I(Xt−d ≤ r)

ϕ0 +

p∑
j=1

ϕjXt−j


+ εt,

which specifies a TAR model with two regimes. In the expression above
{εt} ∼i.i.d. N(0, σ2) with σ2 ∈ (0,∞), and p and d are known positive in-
tegers. Further, we assume that the threshold r lies inside a known bounded
closed interval Ir.
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Since {εt} is Gaussian, the likelihood ratio test will reject H0 for large
values of the test statistic

{T −max(p, d)} log(σ̂2
0/σ̂

2),

which is equivalent to the F -test

ST = {T −max(p, d)}(σ̂2 − σ̂2
0)/σ̂2, (4.9)

where the factor T ′ = {T −max(p, d)} is a normalizing constant,

σ̂2 = inf
r∈Ir,{θi},{ϕi}

1
T ′

T∑
t=max(p,d)+1


Xt − θ0 −

p∑
j=1

θjXt−j

−I(Xt−d ≤ r)

ϕ0 +

p∑
j=1

ϕjXt−j






2

,

σ̂2
0 = inf

{θi}
1
T ′

T∑
t=max(p,d)+1


Xt − θ0 −

p∑
j=1

θjXt−j




2

.

Based on a Poisson clumping heuristic, Chan (1991) developed the following
approximation for the significance levels (when y is large) of the above test:

P{ST > y|H0} ≈ 1 − exp

{
−2χ2

p+1(y)
(

y

p+ 1
− 1
) p+1∑
i=1

∫

Ir

hi(x)dx

}
,

(4.10)
where χ2

j (·) denotes the probability density function of the χ2-distribution
with j degrees of freedom, hi(x) = dJi(x)/dx, m2 = E0(X2

t ) and

Ji(x) =
1
2

log
{
P0(Xt ≤ x)
P0(Xt > x)

}
, 1 ≤ i < p,

Jp(x) and Jp+1(x) are the roots of the equation y2 − by + c = 0 with
b = E0{(1 +X2

t /m2)I(Xt ≤ x)}, and

c =
1
m2

[P0(Xt ≤ x)E0{X2
t I(Xt ≤ x)} − {E0(XtI(Xt ≤ x))}2].

In the expressions above, P0 and E0 denote, respectively, the probability
law and the expectation under H0.

Based on (4.10), we can tabulate the approximate upper percentage
points for the null distribution of ST . Tables 4.1 and 4.2 were extracted
from Chan (1991). Percentage points for some other values of the order p
may be approximately obtained by interpolation.

The approximation for the significance levels of the likelihood ratio tests
can also be obtained via the bootstrap; see §9.2.3.
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TABLE 4.1. Upper percentage points for the asymptotic null distribution of ST ,
with Ir being the 50% inner sample range.

order p 10% 5% 2.5% 1% 0.1%
0 6.12 7.75 9.33 11.36 16.33
1 9.27 11.18 12.94 15.16 20.45
2 11.34 13.38 15.26 17.60 23.13
3 13.25 15.42 17.39 19.83 25.57
4 15.07 17.33 19.39 21.93 27.87
5 16.80 19.16 21.30 23.93 30.04
6 18.48 20.93 23.14 25.58 32.13
9 23.28 25.96 28.36 31.29 38.01

12 27.83 30.70 33.27 36.39 43.50
15 32.20 35.25 37.97 41.26 48.72
18 36.45 39.67 42.52 45.96 53.74

TABLE 4.2. Upper percentage points for the asymptotic null distribution of ST ,
with Ir being the 80% inner sample range.

order p 10% 5% 2.5% 1% 0.1%
0 7.61 9.21 10.77 12.80 17.75
1 11.05 12.85 14.55 16.72 21.94
2 13.26 15.18 16.98 19.25 24.69
3 15.30 17.31 19.19 21.57 27.20
4 17.22 19.32 21.28 23.73 29.54
5 19.05 21.23 23.26 25.79 31.77
6 20.82 23.07 25.16 27.77 33.90
9 25.84 28.30 30.55 33.36 39.90

12 30.58 33.20 35.61 38.59 45.49
15 35.13 37.91 40.44 43.58 50.81
18 39.54 42.45 45.11 48.39 55.92

4.1.4 Case Studies with Canadian Lynx Data
The annual record of the numbers of the Canadian lynx trapped in the
Mackenzie River district of northwest Canada plotted in Figure 1.2 has
been featured in several textbooks on time series. The periodic fluctuation
displayed in this series has profoundly influenced ecological theory. It has
also become a benchmark series to test new statistical methodology for
time series analysis. The first time series model built for this particular
data set was probably that of Moran (1953). Moran fitted the following
linear AR(2) model to the logarithm of the lynx data:

Xt = 1.05 + 1.41Xt−1 − 0.77Xt−2 + εt, (4.11)
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(a) Time plot of lynx data
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(b) Reversed-time plot of lynx data
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FIGURE 4.5. (a) Time plot of Canadian lynx data; (b) reversed time series plot
of lynx data.

where {εt} ∼ IID(0, 0.04591). In fact, Moran immediately realized the lim-
itation of the linear fitting, as he pointed out in the same paper a “curious
feature”—the sum of squares of residuals corresponding to values of Xt

greater than the mean is 1.781, whereas the sum of squares of residuals
corresponding to values of Xt smaller than the mean is 4.007. The ratio of
the two sums is 2.250, which would be judged significant at the 1% level
(F-test) against the null hypothesis that the two sets of residuals are ran-
dom samples from the same normal population. Later, we will demonstrate
how to fit a TAR model to this data set step-by-step, including exploratory
analysis using various plots and nonparametric smoothing and statistical
tests for linearity. This part of the analysis is partially extracted from §7.2
of Tong (1990). We always refer the lynx data to the log10-transformed
data displayed in Figure 1.2.

(a) Plots and nonparametric smoothing

As in fitting linear time series models, a judiciously constructed data-plot
can be very informative and revealing. Figure 4.5 plots the lynx time series
in the conventional as well as the reversed time order. It is clear that the
lynx population exhibits a periodic-like fluctuation with most cycles around
nine or ten years. It is also clear that there exists some characteristic in
this series that is not time-reversible. For example, the population cycle
is asymmetric; it took about six years to reach a peak from a trough and
took only three or four years to drop from a peak to a trough.

Is the lack of time-reversibility suggestive of nonlinearity? The answer
is not necessarily affirmative in general. However, if we look for a statis-
tical model that will reproduce a time-irreversible characteristic, we may
appeal for nonlinear modeling. The (linear) ARMA models discussed in
Chapter 3 focus on linear autocorrelation, which, by virtue of its nature, is
time-reversible. Furthermore, if an ARMA process is defined in terms of a
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FIGURE 4.6. Two histograms of Canadian lynx data with different bin-sizes,
together with the estimated density function (solid curve).
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FIGURE 4.7. Directed scatter diagrams at lags 1 and 2 for Canadian lynx data.

Gaussian white noise, its entire probability distribution is time-reversible.
Although we do not impose the normality explicitly in an ARMA model,
we treat it implicitly as a Gaussian model, as we often look into its first
two moment properties only. The spectral analysis is a typical example in
point. Such a treatment is entirely legitimate only for Gaussian processes.
Therefore, once we have identified some non-Gaussian properties, we may
be prepared to entertain a nonlinear model. In this sense, nonnormality
may be viewed as nonlinearity (see also Proposition 2.1).

Figure 4.6 presents two histograms of the lynx data with different bin-
sizes, which clearly indicate that the marginal distribution is at least bi-
modal. The nonparametric estimator for the probability density function
(see §5.2) produced by the standard S-Plus function “density” with the
default setting reinforces this non-Gaussian property.
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A directed scatter diagram at lag k plots Xt against Xt−k with adjacent
points (such as (Xt−k, Xt) and (Xt−k+1, Xt+1)) linked by straight lines. It
is basically a scatter plot presented in a more informative manner. A direct
scatter diagram is another powerful graphical tool in analyzing nonlinear
time series. For the lynx data, Figure 4.7 shows that there is clearly a
void in the center of the diagram at both lags 1 and 2. This indicates
convincingly that the joint distributions of (Xt−k, Xt), for k = 1, 2, are not
Gaussian since a two-dimensional normal distribution cannot have a hole
in the center of its sample space. This is also consistent with the marginal
density shown in Figure 4.6. If {Xt} is a Gaussian process, its marginal
distribution of Xt is also Gaussian.

The scatter plots in Figures 4.8(a)–(d) display Xt against Xt−k for
k = 1, 2, 3, and 4, together with nonparametric estimators for the lag regres-
sion E(Xt|Xt−k = x), produced by the standard S-Plus function “ksmooth”
with the default setting. (The estimated curves are undersmoothed. How-
ever, we decide not to increase the amount of smoothness since the estima-
tors merely serve as explanatory devices at this stage. For a comprehen-
sive account on nonparametric smoothing, see §6.3.) Like most real data,
the lag regression at lag 1 is pretty linear. However, E(Xt|Xt−k = x) for
k = 2, 3, and 4 are unlikely to be linear (in x), lending further support that
{Xt} is not a Gaussian process. Inspired by the linearity portrayed in Fig-
ure 4.8(a), we fitted a linear regression of Xt on Xt−1, leading to the model
X̂t = 0.620 + 0.788Xt−1. We plot the residuals Xt − X̂t against Xt−1 and
Xt−2, respectively, in Figures 4.8 (e) and (f). As expected, Xt−1 contains
little information on the residuals as the regression curve in Figure 4.8(e) is
virtually zero. However, Xt−2 does contain some additional information. In
Figure 4.8(f), except for a few “outliers” the residual points spread almost
evenly on both sides of the regression curve, which is clearly nonlinear. This
indicates the nonlinear dependence of Xt on its lagged value Xt−2.

In summary, by plotting the data in various manners coupled with non-
parametric smoothing, we have identified some nonlinear features such as
time-irreversibility, nonnormality, and nonlinear autodependence.

(b) Testing for linearity

We apply the likelihood ratio test (4.9) for the null hypothesis-H0: {Xt} is
a linear AR(2) process-against the alternative-H1: {Xt} follows TAR model
(4.1) with two regimes and p1 = p2 = d = 2. Now T = 114 and σ̂2

0 = 0.0586.
Setting Ir equal to the 90% inner sample range, we have σ̂2 = 0.0441. Thus
ST = (T − 2)(σ̂2

0 − σ̂2)/σ̂2 = 36.825. According to Table 4.2, we reject the
null hypothesis of a linear AR(2) model even at the level 0.1%.

(c) A simple TAR model with biological interpretation

For many biological populations, birth rates depend on population sizes-
for example, due to competition for the resources of habitat, the limitation
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(a) Scatter plot at lag 1
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(b) Scatter plot at lag 2
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(c) Scatter plot at lag 3
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(d) Scatter plot at lag 4
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(e) Residual against X(t-1)
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(f) Residual against X(t-2)
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FIGURE 4.8. Scatter plots of Xt against (a) Xt−1, (b) Xt−2, (c) Xt−3, and (d)
Xt−4 for Canadian lynx data together with kernel regression estimators (solid
curves) for E(Xt|Xt−k = x) and scatter plots of the residual from the linear
regression X̂t = 0.620 + 0.788Xt−1 against (e) Xt−1 and (f) Xt−2. Solid curves
are nonparametric regression estimators.

of food, the predator–prey interaction and other factors. Typically, the
birth rate will increase in the early stage, called an increasing phase, in
a population cycle, and it will decrease when the population is oversized
in the latter stage, leading to a decreasing phase. A population decrease
for one species will lead, in due course, to a population decrease of its
predators and the population increase of its prey and also the abundance
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of resources. This in turn will lead to a new increasing phase. Therefore, it
seems very appealing to model population dynamics in terms of a threshold
model in which different regimes would reflect different phases or stages in
population cycles. Having incorporated the biological evidence, H. Tong
fitted the following TAR model with two regimes with delay variable d = 2
to the lynx data:

Xt =

{
0.62 + 1.25Xt−1 − 0.43Xt−2 + ε

(1)
t , Xt−2 ≤ 3.25,

2.25 + 1.52Xt−1 − 1.24Xt−2 + ε
(2)
t , Xt−2 > 3.25;

(4.12)

see Tong (1990, p. 377). Let us rewrite the model above, discarding the
error terms, as follows:

Xt −Xt−1 =
{

0.62 + 0.25Xt−1 − 0.43Xt−2, Xt−2 ≤ 3.25,
−(1.24Xt−2 − 2.25) + 0.52Xt−1, Xt−2 > 3.25. (4.13)

In the upper regime (i.e., Xt−2 > 3.25), Xt − Xt−1 tends to be negative,
implying a population decrease. In the lower regime (i.e., Xt−2 ≤ 3.25),
Xt−Xt−1 tends to be marginally positive, implying slow population growth.
In fact, a sequence {Xt} generated by (4.13) will converge to a stable limit
cycle of period 9 consisting of an ascent phase of length 6 and a descent
phase of length 3. This is in agreement with the observed asymmetric cycles
in Figure 4.5.

Stenseth et al. (1999) gave a nice interpretation of model (4.12) in terms
of the well-known predator (lynx) and prey (hare) interaction model in
ecology. As we pointed out above, the lower regime corresponds roughly
to the population increase phase, and the upper regime corresponds to the
population decrease phase. Note that the coefficients of Xt−1 in (4.12) are
significantly positive but less so during the increase phase. The coefficients
of Xt−2 are significantly negative and more so during the decline phase.
The signs of those coefficients reflect that lynx and hares relate with each
other in a specified prey–predator interactive manner. The difference of
the coefficients in increasing and decreasing phases represents the so-called
phase-dependence and density-dependence in ecology, which can only be re-
flected in a nonlinear model. The phase-dependence means that the both
lynx and the hare behave differently (in hunting or escaping) when the lynx
population increases or decreases. The density-dependence implies that the
reproduction rates of animals as well as their behavior depend on the abun-
dance of the population. For further discussion on the biological meaning of
TAR fitting for the lynx data, we refer the reader to Stenseth et al. (1999).
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(d) The model selected by AIC

Setting k = 2, 1 ≤ p1, p2 ≤ 10, and 1 ≤ d ≤ 6, the AIC selected for the
lynx data the following TAR model

Xt =




0.546 + 1.032Xt−1 − 0.173Xt−2 + 0.171Xt−3 − 0.431Xt−4

+0.332Xt−5 − 0.284Xt−6 + 0.210Xt−7 + ε
(1)
t , Xt−2 ≤ 3.116,

2.632 + 1.492Xt−1 − 1.324Xt−2 + ε
(2)
t , Xt−2 > 3.116;

(4.14)
see Tong (1990, p. 387). The estimated threshold is r̂ = 3.116, which is the
turning point of the regression estimator in Figure 4.8(f). The estimated
variances for ε(1)t and ε(2)t are 0.0259 and 0.0505, respectively. The standard
errors of the eight estimated coefficients in the lower regime, calculated
based on (4.8) (see also Theorem 4.2), are, respectively, 0.275, 0.094, 0.156,
0.149, 0.153, 0.170, 0.167, and 0.101 in order of their appearance in the
model. The standard errors of the three estimated coefficients in the upper
regime are, respectively, 0.655, 0.102, and 0.195.

Model (4.14) preserves the basic dynamics of the simpler model (4.12).
For example, the sequence {Xt} generated by (4.14) (discarding the error
terms) also converges to a limit cycle of period 9 with an increase phase
of length 6 and a decrease phase of length 3. In terms of statistical fitting,
model (4.14) represents an improvement over (4.12). However its more com-
plex form also makes biological interpretation less clear. The choice between
the two models rests on the purpose of the analysis. Obviously, model (4.12)
would be preferable if we aim to model lynx population fluctuation and re-
flect different characteristics at different phases of the population cycles.
On the other hand, model (4.14) entertains better statistical properties,
providing better fitting to the original data. Furthermore, it may provide
a better forecasting for further values.

It is a good practice to look into several models selected by different cri-
teria such as AIC, BIC, and others, or, say, the best three models selected
by the same criterion. The choice of the final model depends on the statis-
tical and/or physical properties of the models, dictated by the purpose of
the data analysis. Table 7.6 of Tong (1990, p. 386) listed six selected mod-
els for lynx data. Model (4.14) was singled out as the one with both good
statistical fitting and adequate resemblance to lynx population fluctuation.

(e) Diagnostic checking

Like all statistical fitting, it is important to conduct a diagnostic check
for a fitted nonlinear time series model, although some diagnostic ideas
have already been incorporated into the modern modeling techniques. For
example, a model selected by BIC is usually free from overfitting.

Similar to fitting linear models, the residual-based methods remain as the
most frequently used diagnostic tools; see §3.5. The residuals from model
(4.14) passed most of those tests comfortably. It is also helpful to compare
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some characteristics of the original data with those of the simulated data
from a fitted model. For example, as we mentioned above, both models
(4.12) and (4.14) can reproduce the asymmetric population cycle success-
fully.

4.2 ARCH and GARCH Models

In contrast to traditional time series analysis, which focuses on modeling
the conditional first moment, ARCH and GARCH models specifically take
the dependency of the conditional second moments into modeling consid-
eration. This, hopefully, would accommodate the increasingly important
demand to explain and to model risk and uncertainty in, for example, fi-
nancial time series. In this section, we first present basic probabilistic prop-
erties of ARCH and GARCH models. The most frequently used statistical
inference methods for ARCH/GARCH modeling will also be introduced.
We also briefly mention the application of ARCH/GARCH modeling with
financial time series. Further, we illustrate the methodology of GARCH
modeling through a real data set. These methods have been implemented
in S+GARCH, an add-on module to the S-Plus system. Finally, we give
a brief introduction on stochastic volatility models. For a comprehensive
account of ARCH and GARCH modeling, see Gouriéroux (1997).

4.2.1 Basic Properties of ARCH Processes
Definition 4.2 An autoregressive conditional heteroscedastic (ARCH)
model with order p (≥ 1) is defined as

Xt = σtεt and σ2
t = c0 + b1X

2
t−1 + · · ·+ bpX

2
t−p, (4.15)

where c0 ≥ 0, bj ≥ 0 are constants, {εt} ∼ IID(0, 1), and εt is independent
of {Xt−k, k ≥ 1} for all t. A stochastic process {Xt} defined by the equations
above is called an ARCH(p) process.

The ARCH model was first introduced by Engle (1982) for modeling
the predictive variance for U.K. inflation rates. Since then, it has been
widely used to model volatility of financial and economic time series. The
basic idea behind the construction of (4.15) is quite intuitive: the predictive
distribution of Xt based on its past is a scale-transform of the distribution
of εt, with the scaling constant σt depending on the past of the process.
Therefore, conditional quantiles of Xt given its past, which play important
roles in financial risk management (see Part (e) of §4.2.8 and §8.5.6 below),
can also be evaluated easily. For example, if εt ∼ N(0, 1), the predictive
distribution is N(0, σ2

t ), with the variance σ2
t depending on the conditions

on which the prediction was made. Further, a large predictive variance will



144 4. Parametric Nonlinear Time Series Models

be caused by the large absolute values of observations in the immediate
past. This is in marked contrast to the prediction based on linear models
for which the conditional mean squared predictive errors are constants; see
Proposition 3.4.

Theorem 4.3 (i) The necessary and sufficient condition for (4.15) defin-
ing a unique strictly stationary process {Xt, t = 0,±1,±2, · · · } with EX2

t <
∞ is

∑p
j=1 bj < 1. Furthermore,

EXt = 0 and EX2
t = c0/


1−

p∑
j=1

bj


 ,

and Xt ≡ 0 for all t if c0 = 0.
(ii) If Eε4t <∞ and

max{1, (Eε4t )1/2}
p∑
j=1

bj < 1, (4.16)

the strictly stationary solution of (4.15) has the finite fourth moment,
namely EX4

t <∞.

Proof. The sufficiency of (i) and (ii) follows from Theorem 2.5 immediately.
By (4.15) and stationarity, EXt = 0 and

EX2
t = c0 + b1EX

2
t−1 + · · ·+ bpEX

2
t−p = c0 +

p∑
j=1

bjEX
2
t

or
EX2

t =
c0

1−∑p
j=1 bj

.

The necessity of (i) follows from Theorem 1 of Bollerslev (1986), which
shows that the condition

∑
j bj < 1 is also necessary for (4.15) having a

(weakly) stationary solution. (Note that Theorem 1 in Bollerslev’s paper
does not depend on the assumed normality.) Indeed, EX2

t > 0 entails that∑p
j=1 bj < 1.

It is easy to see from (4.15) that any stationary ARCH process {Xt}
is also a white noise WN(0, c0/(1 −

∑p
j=1 bj)); see also Theorem 4.3(i).

Furthermore, we may write

X2
t = c0 + b1X

2
t−1 + · · ·+ bpX

2
t−p + et, (4.17)

where et = (ε2t − 1){c0 +
∑p
j=1 bjX

2
t−j}. It is easy to see that

E(et|Xt−k, Xt−k−1, · · · ) = 0 for any k ≥ 1. (4.18)
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Hence, for any k > p, by (4.17) and (4.18)

E(X2
t+k|Xt−m,m ≥ 0) = c0 +

p∑
j=1

bjE(X2
t+k−j |Xt−m,m ≥ 0)

or

Var(Xt+k|Xt−m, m ≥ 0) = c0 +
p∑
j=1

bjVar(Xt+k−j |Xt−m, m ≥ 0). (4.19)

More generally, for k ≥ 1,

Var(Xt+k|Xt−m, m ≥ 0) = c0 +
k−1∑
j=1

bjVar(Xt+k−j |Xt−m, m ≥ 0)

+
p∑
j=k

bjX
2
t+k−j . (4.20)

The two equations above reflect the fact that the high risk in forecasting
will be sustained over a period before it dies away; a phenomenon called
volatility clustering in financial time series analysis.

It follows from Theorem 4.3(ii) that under the additional condition (4.16),
{et} ∼WN(0, σ2

e) with

σ2
e = Var(ε2t )E


c0 +

p∑
j=1

bjX
2
t−j




2

<∞.

Note that under the condition
∑p
j=1 bj < 1,

∣∣∣∣∣∣
p∑
j=1

bjz
j

∣∣∣∣∣∣
≤

p∑
j=1

bj |zj | ≤
p∑
j=1

bj < 1 for all |z| ≤ 1.

Thus 1 −∑p
j=1 bjz

j �= 0 for all |z| ≤ 1. This means that {X2
t } is a causal

AR(p) process. Therefore, the ACF (and also ACVF) of the process {X2
t }

can be easily calculated in terms of (2.20) and (2.18). Furthermore, it is
easy to see from those formulas that, for all τ , Corr(X2

t , X
2
t+τ ) > 0 if∑p

j=1 bj > 0, although Corr(Xt, Xt+τ ) = 0.
If we adopt kurtosis as a measure for heavy tails of distribution, the

ARCH process {Xt} has heavier tails than those of the white noise {εt}
on which {Xt} is defined. To this end, denote by κε = E(ε4t )/(Eε

2
t )

2 the
kurtosis of the distribution of εt. Then

E(X4
t |Xt−1, · · · , Xt−p) = σ4

tEε
4
t = κεσ

4
t (Eε

2
t )

2

= κε{E(X2
t |Xt−1, · · · , Xt−p)}2.
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Now, it follows from Jensen’s inequality that

E(X4
t ) = κεE{E(X2

t |Xt−1, · · · , Xt−p)}2 ≥ κε(EX2
t )

2. (4.21)

Hence κx ≡ E(X4
t )/(EX

2
t )

2 ≥ κε. In the case where εt is normal and
κx > κε = 3, Xt has leptokurtosis (i.e., fat tails).

We summarize the findings above in the proposition below.

Proposition 4.1 Let {Xt} be the strictly stationary ARCH(p) process
defined by (4.15) with c0 > 0 and

∑p
j=1 bj < 1. Then

(i) {Xt} ∼WN(0, c0/(1−
∑p
j=1 bj)), and the conditional variance func-

tion fulfills equation (4.19).
Under the additional condition (4.16),
(ii) {X2

t } is a (linear) causal AR(p) process, and its ACF is always
positive if

∑p
j=1 bj > 0, and

(iii) Xt exhibits heavier tails than those of εt in the sense that κx ≥ κε.
Example 4.1 Consider the strictly stationary ARCH(1) process

Xt = σtεt, and σ2
t = c0 + b1X

2
t−1, (4.22)

where {εt} ∼ IID(0, 1), c0 > 0, and b1 ∈ (0, 1). Then EX2
t = c0/(1 − b1),

and for k > 1,

Var(Xt+k|Xt−j , j ≥ 0) = Var(Xt+k|Xt)
= c0 + b1Var(Xt+k−1|Xt). (4.23)

Iteratively, using (4.23), we have

Var(Xt+k|Xt−j , j ≥ 0) =
c0(1− bk1)

1− b1 + bk1X
2
t ,

which indicates that a large value of |Xt| will lead to large predictive risk
(i.e., conditional variance) and that the risk will be sustained for a while
in the immediate future.

Suppose that εt ∼ N(0, 1). Then, the condition (4.16) reduces to 3b21 < 1
(i.e., b1 < 0.577). Under this condition, Corr(X2

t , X
2
t+τ ) = b

|τ |
1 , and {X2

t }
follows a causal AR(1) equation

X2
t = c0 + b1X

2
t−1 + et,

where et = (ε2t − 1)(c0 + b1Xt−1). Hence, by multiplying the term X2
t and

taking the expectation on the both sides of the equation above, we have

EX4
t = c0EX

2
t + b1E(X2

tX
2
t−1) + E(X2

t et)
= c0EX

2
t + b1{b1Var(X2

t ) + (EX2
t )

2}+ E(e2t )

= (1− b1)(EX2
t )

2 + b1{b1EX4
t + (1− b1)(EX2

t )
2}+

2
3
EX4

t .
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The last equality makes use of the fact that c0 = (1 − b1)EX2
t . It is easy

to see now that
EX4

t

(EX2
t )2

=
3(1− b21)
(1− 3b21)

> 3.

Hence Xt has leptokurtosis (fat tails).
We generate a series of length 1000 from (4.22) with c0 = 1.5, b1 = 0.9

and normal εt. The first 250 sample points Xt are shown in Figure 4.9(a).
Figure 4.9(c) is the plot of corresponding conditional standard deviations
σt, which clearly indicates that the large values of |Xt| and σt are lined
together. Both histograms of the sample in Figure 4.9(b) and the plot
(against normal) in Figure 4.9(d) show that the tails of the distribution of
Xt are heavier than a normal distribution. Figures 4.9 (e) and (f) are the
sample ACFs of {Xt} and {X2

t }.
We repeat the exercise above in Figure 4.10 with reduced value b1 = 0.4.

Comparing Figures 4.10 (a) and (b) with Figures 4.9 (a) and (b), the volatil-
ity is more prominent for larger values of b1. Figure 4.9(d) shows that the
tails of the distribution of Xt are still heavier than a normal distribution,
although not as much so as in the case of b1 = 0.9. Note now that {X2

t }
is a causal AR(1) model with the ACF ρ(k) = 0.4k; see Figure 4.10(f).
In contrast, in Figure 4.9(f) with b1 = 0.9, there is a substantial discrep-
ancy between ρ̂(k) and 0.9k for k = 1, 2, · · · . This is due to the fact that
EX4

t =∞ when b1 = 0.9. Therefore, the ACVF is not well-defined.

4.2.2 Basic Properties of GARCH Processes
The ARCH model has been extended in a number of directions, some dic-
tated by economic consideration, others by broadly statistical ideas. The
most important of these is the extension to include moving average parts,
namely the generalized ARCH (GARCH) model due to Bollerslev (1986)
and Taylor (1986).

Definition 4.3 A generalized autoregressive conditional heteroscedastic (GARCH
) model with order p(≥ 1) and q(≥ 0) is defined as

Xt = σtεt and σ2
t = c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j , (4.24)

where c0 ≥ 0, bi ≥ 0, and aj ≥ 0 are constants, {εt} ∼ IID(0, 1), and εt is
independent of {Xt−k, k ≥ 1} for all t. A stochastic process {Xt} defined
by the equations above is called a GARCH (p, q) process.

Empirical work has shown that the simple ARCH(p) model defined in
(4.15) will provide a reasonable fit to financial time series only if the or-
der p is large. Since the rationale for the definition of (4.15) is to take a
weighted average of the past squared observations as an approximation to
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(a) ARCH(1) time series
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FIGURE 4.9. Example 4.1 — A sample of 1,000 was generated from the ARCH(1)
model with b1 = 0.9: (a) and (c) time series plots of the first 250 Xt and σt;
(b) normalized histogram and the normal density function with the same mean
and variance; (d) plot: the sample quantiles versus the quantiles of N(0, 1); (e)
and (f) sample ACFs of {Xt} and {X2

t }, respectively.
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(a) ARCH(1) time series
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(c) Conditional STD
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(d) QQ-plot
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FIGURE 4.10. Example 4.1 — A sample of 1,000 was generated from the
ARCH(1) model with b1 = 0.4: (a) and (c) time series plots of the first 250
Xt and σt; (b) normalized histogram and the normal density function with the
same mean and variance; (d) plot: the sample quantiles versus the quantiles of
N(0, 1); (e) and (f) sample ACFs of {Xt} and {X2

t }, respectively.
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the conditional variance σ2
t , it is quite natural to define σ2

t as a weighted
average of not only past X2

j ’s but also past σ2
j ’s. This leads to the GARCH

model (4.24), which in fact entertains an interesting link to ARMA models,

X2
t = c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j + et

= c0 +
p∨q∑
i=1

(bi + ai)X2
t−i + et −

q∑
j=1

ajet−j , (4.25)

where bp+j = aq+j = 0 for j ≥ 1, p ∨ q = max{p, q}, and

et = X2
t − σ2

t = (ε2t − 1)


c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j


 . (4.26)

Thus, formally {X2
t } follows an ARMA(p∨q, q) model. Note that an invert-

ible ARMA(p, q) model with finite p and q is effectively an AR(∞) model.
This explains why simple GARCH models, such as GARCH(1, 1), may
provide a parsimonious representation for some complex autodependence
structure of {X2

t }, that can only be accommodated by an ARCH(p) model
with large p; see also (4.17). In fact, the GARCH(1, 1) model has been
tremendously successful in empirical work and is regarded as the bench-
mark model by many econometricians.

Theorem 4.4 The necessary and sufficient condition for (4.24) defining
a unique strictly stationary process {Xt, t = 0,±1,±2, · · · } with EX2

t <∞
is

p∑
i=1

bi +
q∑
j=1

aj < 1. (4.27)

Furthermore, EXt = 0 and

var(Xt) =
c0

1−∑p
i=1 bi −

∑q
j=1 aj

, Cov(Xt, Xt−k) = 0 for any k �= 0.

In addition, EX4
t <∞, provided

max{1, (Eε4t )
1/2}

∑p
i=1 bi

1−∑q
j=1 aj

< 1. (4.28)

Proof. Note that the second equation in (4.24) can be formally written as

1−

q∑
j=1

ajB
j


σ2

t = c0 +
p∑
i=1

biB
iX2

t .
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Condition (4.27) implies that 1−∑q
j=1 ajz

j �= 0 for all |z| ≤ 1. Hence

σ2
t =


1−

q∑
j=1

ajB
j




−1{
c0 +

p∑
i=1

biB
iX2

t

}

= c0/


1−

q∑
j=1

aj


+

∞∑
i=1

diX
2
t−i,

where di’s are determined by the equation
∑∞
i=1 diz

i =
∑p
i=1 biz

i/(1 −∑q
j=1 ajz

j). Hence, by taking z = 1,

∞∑
i=1

di =
p∑
i=1

bi/


1−

q∑
j=1

aj


 .

Similar to (2.20), di’s can be calculated recursively where d1 = b1 and, for
i ≥ 2,

di = bi +
i−1∑
k=1

akdi−k.

In the expression above, we assume that bp+j = aq+j = 0 for j ≥ 1.
By an inductive argument, we may show di ≥ 0 for all i > 0. Now, the
theorem follows from Theorem 2.5 and Bollerslev (1986); see the proof
of Theorem 4.3. Under stationarity, the variance and covariance can be
calculated as

EX2
t = Eσ2

t = c0 +
p∑
i=1

biEX
2
t +

q∑
j=1

ajEσ
2
t .

This implies that

EX2
t = c0 +




p∑
i=1

bi +
q∑
j=1

aj


EX2

t ;

that is,
EX2

t =
c0

1−∑p
i=1 bi −

∑q
j=1 aj

.

Furthermore, for k > 0, using the double expectation formula,

EXtXt−k = E{Xt−kE(Xt|Xt−1, Xt−2, · · · )} = 0.

This completes the proof.
Theorem 4.4 presents a necessary and sufficient condition for model

(4.24) defining a strictly stationary process with a finite second moment.
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Bougerol and Picard (1992b) established a necessary and sufficient condi-
tion for the existence of a strictly stationary solution that does not nec-
essarily have a finite second moment; see also Kazakevičius and Leipus
(2001). The condition is defined in terms of Lyapunov exponents for some
random matrices associated with the model and is in general difficult to
check in practice; therefore, it is not presented here.

Under condition (4.27), {Xt} ∼WN(0, c0/(1−
∑p
i=1 bi−

∑q
j=1 aj)), and

the ARMA representation (4.25) is causal and invertible (although Ee2t is
not necessarily finite). Thus EX2

t = Eε2t Eσ
2
t = Eσ2

t and

E(Xt|Xt−1, Xt−2, · · · ) = 0.

From (4.26), it holds that

Eet = E(et|Xt−1, Xt−2, · · · ) = 0.

Consequently,

Var(Xt|Xt−1, Xt−2, · · · ) = E(X2
t |Xt−1, Xt−2, · · · )

= c0 +
p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j = σ2

t .

Thus σ2
t defined in (4.24) is the conditional variance of Xt given its infinite

past.
If {Xt} is a strictly stationary GARCH(p, q) process and condition (4.28)

holds, Eσ4
t = EX4

t /Eε
4
t < ∞. Hence Ee4t < ∞. In this case, {X2

t } is a
causal and invertible ARMA(p ∨ q, q) process defined in (5.8). In contrast
to ARCH processes, the ACF of {X2

t } is not necessarily always positive.
Note that the kurtosis inequality (4.21) still holds if we use the condi-

tional expectations given the whole lagged values instead of only p lagged
values. Hence, the following proposition holds.

Proposition 4.2 (i) A stationary GARCH(p, q) process {Xt} defined in
(4.24) is a white noise, and σ2

t is the conditional variance of Xt given its
infinite past.

(ii) If {Xt} is a strictly stationary GARCH(p, q) defined in (4.24) for
which condition (4.28) holds, {X2

t } is a causal and invertible ARMA(p ∨
q, q) process. Furthermore Xt exhibits heavier tails than those of εt in the
sense that κx ≥ κε.

Example 4.2 Consider the stationary GARCH(1, 1) process

Xt = σtεt and σ2
t = c0 + b1X

2
t−1 + a1σ

2
t−1, (4.29)

where c0, b1, and a1 are positive, b1 + a1 < 1, and {εt} ∼ IID(0, 1). Then
EX2

t = c0/(1− b1 − a1). Since (1− a1B)σ2
t = c0 + b1X

2
t−1, it holds that

σ2
t =

∞∑
j=0

aj1B
j(c0 + b1X

2
t−1) =

c0
1− a1

+ b1

∞∑
j=0

aj1X
2
t−j−1.
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(a) GARCH(1,1) time series
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(c) Conditional STD
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FIGURE 4.11. Example 4.2. A sample of 1,000 was generated from the GARCH(1,
1) model with b1 = 0.6 and a1 = 0.3: (a) and (c) time series plots of the first 250
Xt and σt; (b) normalized histogram and the normal density function with the
same mean and variance; (d) plot: the sample quantiles versus the quantiles of
N(0, 1); (e) and (f) sample ACFs of {Xt} and {X2

t }, respectively.
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(a) GARCH(1,1) time series
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(b) Histogram
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(c) Conditional STD
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(d) QQ-plot
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(f) ACF of squared series

FIGURE 4.12. Example 4.2. A sample of 1,000 was generated from the GARCH(1,
1) model with b1 = 0.3 and a1 = 0.3: (a) and (c) time series plots of the first 250
Xt and σt; (b) normalized histogram and the normal density function with the
same mean and variance; (d) plot: the sample quantiles versus the quantiles of
N(0, 1); (e) and (f) sample ACFs of {Xt} and {X2

t }, respectively.
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Hence

Var(Xt|Xt−k, k ≥ 1) =
c0

1− a1
+ b1

∞∑
j=0

aj1X
2
t−j−1,

which depends on the infinite past of Xt. This is a marked difference from
the ARCH(1) process for which Var(Xt|Xt−k, k ≥ 1) depends onXt−1 only;
see (4.23). This also indicates that the volatility cluster is more persistent
for GARCH processes than for ARCH processes.

Nelson (1990) showed that the necessary and sufficient condition for ex-
istence of a strictly stationary GARCH(1, 1) process (with possible infinite
second moment) is

E{log(b1ε2t + a1)} < 0.

By Jensen’s inequality, E{log(b1ε2t +a1)} ≤ logE(b1ε2t +a1) = log(b1 +a1).
Hence, the condition b1 + a1 < 1 is sufficient to ensure that {Xt, t =
0,±1, · · · } defined in (4.29) is strictly stationary. It becomes also a neces-
sary condition if we require the strictly stationary solution to be also weakly
stationary (having a finite second moment). Under the additional condi-
tion (4.28), EX4

t <∞. Now, define et = (ε2t − 1)(c0 + b1X
2
t−1 + a1σ

2
t−1). It

follows from (4.25) that

X2
t = c0 + (b1 + a1)X2

t−1 + et − a1et−1;

that is, {X2
t } is a causal and invertible ARMA(1, 1) process. Its ACF is

Corr(X2
t , X

2
t+k) =

(1− a2
1 − a1b1)b1

1− a2
1 − 2a1b1

(b1 + a1)k−1, k ≥ 1. (4.30)

We generated a series of length 1,000 from (4.29) with c0 = 1.5, b1 =
0.6, a1 = 0.3, and εt ∼ N(0, 1). The first 250 sample points Xt together
with their conditional standard deviation σt are shown in Figures 4.11 (a)
and (c), respectively. Note that the GARCH(1, 1) process generated here
has the same (unconditional) variance as the ARCH(1) process presented
in Figure 4.9. However, the conditional variance of the GARCH process is
much more volatile; compare Figures 4.9 (a) and (c) and Figure 4.11 (a)
and (c). Furthermore, the GARCH process has more persistent volatility
clusters. Figures 4.11 (b) and (d) show that the marginal distribution of
Xt has leptokurtosis . The sample ACF indicates some significant autocor-
relation in the squared Xt but not Xt itself.

We repeat the exercise above with a reduced b1 = 0.3. Now EX4
t < ∞.

The ACF of {X2
t } is well-defined. The sample ACF of {X2

t } plotted in
Figure 4.12(f) provides a reasonable estimator for the true ACF, which
is 0.337, 0.202, and 0.120 for k = 1, 2, and 3, respectively, obtained from
(4.30). In contrast, when b1 = 0.6, the ACVF of {X2

t } is not well-defined.
The sample ACF plotted in Figure 4.11(f) does not resemble the function
defined in (4.30). We also notice that, for the smaller b1 = 0.3, the heavier
tail property is no longer pronounced; see Figures 4.12 (b) and (d).
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Although the kurtosis κx is a simple and intuitive measure to use in
practice, it does not give a direct description of the heaviness of the tails
of a distribution. A much more pertinent measure would be the tail index
introduced by Kesten (1973). For the GARCH(1, 1) model defined in (4.29)
with a1 +b1 < 1, we assume that ε2t has a probability density function with
unbounded support, and there exists a constant β0 ≤ ∞ such that

E(a1 + b1ε
2
t )
β <∞ for all β < β0 and E(a1 + b1ε

2
t )
β0 =∞.

Then, the equation
E(a1 + b1ε

2
t )
γ/2 = 1 (4.31)

defines a unique positive constant γ that is called a tail index in the sense
that, as x→∞,

P{|Xt| > x} ∼ E|εt|γP (σt > x) ∼ Cx−γ , (4.32)

where {Xt} is a strictly stationary solution of (4.29) and σt = Xt/εt. In the
expression above, the sign “∼” implies that the ratio of the two quantities
on both sides has the limit 1, and C > 0 is a constant. Obviously, the
estimation of γ is a difficult task. For further discussion on the tail index,
see Kesten (1973), Goldie (1991), and de Haan, Resnick, Rootzen and de
Vries (1989).

Before the end of this section, we point out that the condition (4.27) is not
necessary for the existence of a strictly stationary solution for GARCH(p, q)
model (4.24). In fact, Bougerol and Picard (1992b) proved that if the dis-
tribution of εt has unbounded support and has no atom at zero, and

p∑
i=1

bi +
q∑
j=1

aj = 1, (4.33)

there exists a unique strictly stationary process {Xt} satisfying (4.24) and
EX2

t = ∞. In analogy with integrated ARMA (ARIMA) processes (i.e.,
processes with unit roots), Engle and Bollerslev (1986) coined the name
integrated GARCH(p, q) (IGARCH ) for the GARCH(p, q) processes for
which (4.33) holds. It is perhaps worth mentioning the possible confusion
here: ARIMA processes are always nonstationary, whereas, as we have seen
above, an IGARCH process may be strictly stationary.

4.2.3 Estimation
We always assume that {Xt} is a strictly stationary solution of the GARCH
model

Xt = σtεt and σ2
t = c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j , (4.34)



4.2 ARCH and GARCH Models 157

where p ≥ 1, q ≥ 0, c0, bi, aj > 0,
∑p
i=1 bi +

∑q
j=1 aj < 1, and {εt} ∼

IID(0, 1). Based on the observations X1, · · · , XT , we discuss various meth-
ods for estimating parameters in the models. Our task here is to estimate
conditional second moments, which, by virtue of their nature, are more
difficult to estimate than conditional means. The likelihood functions, even
when correctly specified, tend to be rather flat. Large sample sizes are often
required in order to obtain reliable estimates.

We will introduce three types of estimators for parameters c0, bi, and
aj . They are the conditional maximum likelihood estimator, Whittle’s es-
timator, and the least absolute deviation estimator. The first one is the
benchmark estimator that has been widely used in the banking industry.
The last one is appealing for the models with heavy-tailed errors.

(a) Conditional maximum likelihood estimators

Similar to the estimation for ARMA models (see §3.3.1), the most frequently-
used estimators for ARCH/GARCH models are those derived from a (con-
ditional) Gaussian likelihood function. For example, if εt is normal in model
(4.34) and q = 0 (i.e., a pure ARCH model), the negative logarithm of the
(conditional) likelihood function based on observations X1, · · · , XT , ignor-
ing constants, is

T∑
t=p+1

(
log σ2

t +X2
t /σ

2
t

)
,

where σ2
t = c0 +

∑p
j=1 bjX

2
t−j . The (Gaussian) maximum likelihood esti-

mators are defined as the minimizers of the function above. Note that this
likelihood function is based on the conditional probability density func-
tion of Xp+1, · · · , XT , given Xp, · · · , X1, since the unconditional proba-
bility density function, which involves the joint density of X1, · · · , Xp, is
unattainable.

For a general GARCH model (i.e., q > 0 in model (4.34)) the conditional
variance σ2

t cannot be expressed in terms of a finite number of the past
observations Xt−1, Xt−2, · · · . Some truncation is inevitable. By induction,
we may derive that

σ2
t =

c0
1−∑q

j=1 aj
+

p∑
i=1

biX
2
t−i (4.35)

+
p∑
i=1

bi

∞∑
k=1

q∑
j1=1

· · ·
q∑

jk=1

aj1 · · · ajkX2
t−i−j1−···−jk ,

where the multiple sum vanishes if q = 0. Note that the multiple sum above
converges with probability 1 since each bi and aj is nonnegative, and since
the expected value of the multiple series is finite. In practice, we replace
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the expression above by a truncated version

σ̃2
t =

c0
1−∑q

j=1 aj
+

p∑
i=1

biX
2
t−i +

p∑
i=1

bi

∞∑
k=1

q∑
j1=1

· · ·
q∑

jk=1

aj1 · · · ajk (4.36)

× X2
t−i−j1−···−jkI(t− i− j1 − · · · − jk ≥ 1), t > p.

Note that when q = 0, σ̃2
t = σ2

t = c0 +
∑p
i=1 biX

2
t−i. Let b = (b1, · · · , bp)2

and a = (a1, · · · , aq)τ . The (conditional) maximum likelihood estimator
(b̂, â, ĉ0) is defined by minimizing

lν(c0,b,a) =
T∑
t=ν

(
log σ̃2

t +X2
t /σ̃

2
t

)
, (4.37)

where ν > p is an integer.
The numerical calculation of the conditional maximum likelihood estima-

tors above may be carried out by using the S+GARCH function “garch”,
which in fact can also compute the estimators derived from t-distributions
and generalized Gaussian distributions. In general, suppose that f(·) is
the probability density function of εt and is known. Then, the maximum
likelihood estimators will be derived from minimizing

lν(c0,b,a) =
T∑
t=ν

{log σ̃t − log f(Xt/σ̃t)} (4.38)

instead of (4.37). Apart from the normal distribution, some frequently used
forms of f(·) are:

• t-distribution with v degrees of freedom:

f(x) =
Γ((v + 1)/2)
(πv)1/2Γ(v/2)

(
v

v − 2

)1/2(
1 +

x2

v − 2

)− (v+1)
2

,

where v > 2 may be treated as a continuous parameter.

• Generalized Gaussian distribution :

f(x) = v{λ 21+1/vΓ(1/v)}−1 exp
{
−1

2

∣∣x
λ

∣∣v
}
,

where λ = {2− 2
v Γ( 1

v )/Γ( 3
v )}

1
2 and 0 < v < 2.

When v = 1, the generalized Gaussian distribution reduces to the double
exponential distribution f(x) = exp{−√2|x|}/√2. All of the distributions
above have been normalized to have mean 0 and variance 1, and all of them
have heavier tails than normal distributions. For example, E(|εt|v) = ∞
if εt ∼ tv.
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S+GARCH may also compare two or more fitted models using the func-
tion “compare”, which will print out the AIC and BIC values for all of the
models. For model (4.34),

AIC = lν(ĉ0, b̂, â) + 2(p+ q + 1), (4.39)

and
BIC = lν(ĉ0, b̂, â) + (p+ q + 1) log(T − ν + 1), (4.40)

where lν(·) is defined in (4.38) (see §3.4.1 and §3.4.3).

(b) Whittle’s estimator

For GARCH(p, q) defined in (4.34), the conditional variance can be written
as

σ2
t = c0/


1−

q∑
j=1

aj


+

∞∑
j=1

djX
2
t−j ,

where dj ≥ 0 and
∑∞
j=1 dj =

∑p
i=1 bi/(1 −

∑q
j=1 aj); see the proof of

Theorem 4.4. Suppose that {Xt} is fourth-order stationary in the sense
that its first four moments are all time-invariant (see the condition (4.28)
in Theorem 4.4). Let Yt = X2

t . Then {Yt} is a stationary AR(∞) process
satisfying

Yt = c0
/

1−

q∑
j=1

aj


+

∞∑
j=1

djYt−j + et, (4.41)

where et is a martingale difference

et = (ε2t − 1)


c0

/

1−

q∑
j=1

aj


+

∞∑
j=1

djYt−j




with σ2
e ≡ Var(et) <∞. Therefore, the spectral density of the process {Yt}

is

g(ω) =
σ2
e

2π

∣∣∣∣∣∣
1−

∞∑
j=1

dje
ijω

∣∣∣∣∣∣

−2

;

see Theorem 2.12. Based on (4.41), Giraitis and Robinson (2001) proposed
the Whittle’s estimators for bi and aj by minimizing

T−1∑
j=1

IT (ωj)/g(ωj),

where IT (·) is the periodogram of {Yt} (see Definition 2.8), and ωj =
2πj/T ; see also Theorem 2.14. Giraitis and Robinson (2001) also estab-
lished the asymptotic normality for the estimators. Mikosch and Strau-
mann (2000) investigated the Whittle estimation for a heavy-tailed GARCH(1,
1) model.
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Whittle’s estimators suffer from the lack of efficiency, as et is unlikely
to be normal even when εt is normal. Furthermore the condition (4.28) is
hardly fulfilled in financial applications.

(c) L1-estimation

Both estimators discussed in (a) and (b) above are derived from maxi-
mizing a Gaussian likelihood or an approximate Gaussian likelihood. In
this sense, they are L2-estimators. It is well-known that L1-estimators are
more robust with respect to heavy-tailed distributions than L2-estimators.
Empirical evidence suggests that some financial time series exhibit heavy-
tailed behavior and that the models based on distributions with heavier
tails than those of a normal distribution would be more appropriate; see
Mandelbrot (1963), Fama (1965), Mittnik, Rachev, and Paolella (1998),
and Mittnik and Rachev (2000)

Based on this consideration, Peng and Yao (2002) proposed least absolute
deviations estimators for c0, bi, and aj in model (4.34) that minimize

T∑
t=ν

∣∣log(X2
t )− log(σ̃2

t )
∣∣ , (4.42)

where σ̃2
t is defined in (4.36) and ν = p+ 1 if q = 0 and ν > p+ 1 if q > 0.

The idea behind (4.42) implies implicitly a reparameterization of model
(4.34) such that Eεt = 0 and the median (instead of variance) of ε2t is
equal to 1. Now, under this new setting, the parameters c0 and the bi’s
differ from those in the old setting by a common constant factor, whereas
aj ’s are unchanged. Note that in the regression model

log(X2
t ) = log(σ2

t ) + log(ε2t ),

the errors log(ε2t ) are i.i.d. with median 0. This naturally leads to the es-
timators derived from minimizing (4.42). In fact, Peng and Yao (2002)
showed that under very mild conditions, the least absolute deviations esti-
mators are asymptotically normal with the standard convergence rate T 1/2

regardless of whether the distribution of εt has heavy tails or not. This
is in marked contrast to the conditional maximum likelihood estimators
derived from (4.37), which will suffer from slow convergence when εt is
heavy-tailed; see Theorem 4.6 in §4.2.4.

Simulation comparisons between the least absolute deviations estima-
tor and the conditional Gaussian maximum likelihood estimator were con-
ducted for ARCH(2) and GARCH(1, 1) models, with εt being normal and
t-distributed with 3 and 4 degrees of freedom in Peng and Yao (2002). The
numerical results suggested that for models with very heavy-tailed errors
(i.e., εt ∼ t3), the least absolute deviations estimator performed much bet-
ter than the Gaussian maximum likelihood estimator. In contrast, when
the error εt was normal, the Gaussian maximum likelihood estimator was
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preferred. When εt ∼ t4, the performance of the two methods was compara-
ble. In fact, the performance of the Gaussian maximum likelihood estimator
decreases when the heaviness of the tails increases. However, this is not al-
ways the case for the least absolute deviations estimator, as it is robust
against heavy tails.

4.2.4 Asymptotic Properties of Conditional MLEs∗

As discussed in the previous section, conditional maximum likelihood es-
timation remains as one of the most frequently-used methods in fitting
GARCH models. In practice, the distribution of εt is typically unknown.
The estimator derived from a Gaussian likelihood is often employed. Hall
and Yao (2003) established the asymptotic properties of this estimator,
ranging from nonheavy-tailed to heavy-tailed errors. The results will be
presented below in a compact manner. For further mathematical rigors,
see Hall and Yao (2003).

Let {Xt} be the strictly stationary solution from GARCH(p, q) model
(4.34) in which εt may not be normal. We assume that p ≥ 1, q ≥ 0,
c0 > 0, bj > 0 for j = 1, · · · , p, and ai > 0 for i = 1, · · · , q when q > 0. Let
(ĉ0, b̂, â) be the estimator derived from minimizing (4.37), which should
be viewed as a (conditional) quasimaximum likelihood estimator. We also
assume that in (4.37) ν = ν(T ) diverges to infinite at a rate sufficiently
slow to ensure ν/T → 0 as T → ∞. Theorems 4.5 and 4.6 below present,
respectively, its asymptotic distributions for the case of nonheavy-tailed
errors and the case of heavy-tailed errors. To this end, we introduce some
notation first.

Let θ = (c0,bτ ,aτ )τ , θ̂ = (ĉ0, b̂τ , âτ )τ , and Ut = ∂σ2
t

∂θ . It may be shown
that Ut/σ

2
t has all of its moments finite. We assume that the matrix

M ≡ E (UtUτ
t /σ

4
t

)
> 0

is positive-definite. Let {Vt} be a sequence of independent random vari-
ables with the same distribution as M−1U1/σ

2
1 . Let Y1, Y2, . . . represent

the infinite extension of the multivariate joint extreme-value distribution
of the first type, with exponent α. In other words, for each k, the distri-
bution of (Y1, . . . , Yk) is the limiting joint distribution, as n → ∞, of the
k largest values of a sample of size n drawn from a distribution in the
domain of attraction of the first type of extreme-value distribution, after
appropriate normalization for scale. More precisely, we assume that the
normalization is chosen such that Y1 has distribution function exp(−y−α)
for y > 0. Hall (1978) formulated a representation of the distribution of the
full process Y1, Y2, · · · . We assume that {Vk} and {Yk} are independent of
each other. Put

W0 =
∞∑
k=1

{YkVk − E(Yk)E(V1)}.
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Now, Theorems 4.5 and 4.6 hold under the conditions assumed above.
For their proofs, see Hall and Yao (2003). Part (i) of Theorem 4.5 below
shows that the finite fourth moment of εt will ensure asymptotic normality.
Part (ii) shows that the condition can be relaxed so that ε2t is in the domain
of attraction of the normal distribution. In general, a distribution G is said
to be in the domain of attraction of a distribution F if

a−1
n (Sn − bn) D−→ F, as n→∞,

where Sn =
∑n
i=1 ξi, {ξi} ∼i.i.d. G, and an > 0 and bn are some constants.

See §6.1 of Feller (1971).

Theorem 4.5 (Hall and Yao 2003)
(i) If E(ε4t ) <∞,

T 1/2

{E(ε4t )− 1}1/2 (θ̂ − θ) D−→ N(0,M−1).

(ii) If E(ε4t ) =∞ and the distribution of ε2t is in the domain of attraction
of the normal distribution, then

T

λT
(θ̂ − θ) D−→ N(0,M−1),

where
λT = inf[λ > 0 : E{ε41I(ε21 ≤ λ)} ≤ λ2/T ].

Intimately related to the concept of domain of attraction is the distri-
bution family of stable laws. Let {ηi} ∼i.i.d. F and Sn =

∑n
i=1 ηi. A

nondegenerate distribution F is stable if, for each n ≥ 2, there exist some
constants α > 0, γn such that the distributions of Sn and nαη1 + γn are
the same, where α is called the exponent of the stable law. It measures
the tail-heaviness of a distribution; the smaller the value of α, the heavier
the tails. It is known that α ∈ (0, 2] and α = 2 corresponds to normal
distributions. Furthermore, a distribution is stable if and only if it has a
non-empty domain of attraction; see also §17.5 of Feller (1971). Now, we
are ready to state the asymptotic properties of θ̂ when ε2t has a heavy-tailed
distribution.

Theorem 4.6 (Hall and Yao 2003)
If the distribution of ε2t is in the domain of attraction of a stable law with

the exponent α ∈ (1, 2), then

T

λT
(θ̂ − θ) D−→W0,

where
λT = inf{λ > 0 : TP (ε21 > λ) ≤ 1}.
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Note that if the distribution of a random variable ξ belongs to the do-
main of attraction of a stable law with exponent α, E|ξ|α+ε = ∞ and
E|ξ|α−ε <∞ for any ε > 0. Furthermore, the λT , defined in Theorem 4.6,
increases as α increases. Therefore, the convergence rate of the estimator θ̂
is dictated by the distribution tails of ε2t ; the heavier the tails, the slower the
convergence. When a classic central limit theorem holds and the limiting
distribution is normal, all of the terms in the partial sums are equally im-
portant and none of them dominates the others. This is no longer the case
for a heavy-tailed the distribution with, typically, infinite second moment
(i.e., E{(ε2t )2} =∞ in the current setting). For heavy-tailed distributions,
the partial sums are dominated by a few extremely large values from the
tails; see the definition of {Yt} above. Therefore, it will take considerably
longer before the partial sums settle, resulting in slower convergence rates.

4.2.5 Bootstrap Confidence Intervals
Theorems 4.5 and 4.6 indicate that the range of possible limit distributions
for a (conditional) Gaussian maximum likelihood estimator is extraordinar-
ily vast. In particular, the limit laws are not restricted to a class that can be
described by a finite number of parameters. Rather, they depend intimately
on the error distribution in its entirety. This makes it impossible (in the
heavy-tailed cases) to perform statistical tests or interval estimation based
on asymptotic distributions in any conventional sense. Bootstrap methods
seem the best option for tackling these problems.

However, it is well known that in the settings where the limiting distribu-
tion of a statistic is not normal, standard bootstrap methods are generally
not consistent when used to approximate the distribution of the statistic;
see, for example, Mammen (1992). To some extent, subsampling methods
can be used to overcome the problem of inconsistency; see Bickel, Götze,
and van Zwet (1995). However, although this approach consistently approx-
imates the distribution of a statistic, it does so only for a value of sample
size that has to be an order of magnitude less than the true sample size.
As a result, a confidence interval based on the subsample bootstrap can
be very conservative. In the absence of an accurate method for adjusting
scale, which typically depends on the convergence rate, subsampling can
be unattractive. In this section, we introduce a percentile-t form of the
subsampling method introduced by Hall and Yao (2003), which gives con-
sistent confidence intervals for parameters in GARCH models. Note that
the percentile-t method is usually employed in order to attain a high order
of accuracy in approximations where the limiting distribution is normal.
That is not the main goal in this context. Instead, it is used to avoid the
rescaling of the distribution from subsamplings.
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By Theorems 4.5 and 4.6, it holds that

T

λT
(θ̂ − θ) D−→W, (4.43)

provided that the distribution of ε2t is in the domain of attraction of a
stable law with exponent α ∈ (1, 2], where W has a proper nondegenerate
distribution, and the convergence rate T

λT
is unknown and it may depend

on the underlying distribution intimately. To get rid of the influence of this
unknown convergence rate, we define

τ̂2 =
1
T

T∑
t=1

ε̃4t −
(

1
T

T∑
t=1

ε̃2t

)2

, (4.44)

the sample standard deviation of {ε̃2t}, where ε̃t = Xt/σ̃t(θ̂). It may be
proved (Hall and Yao 2003) that

λ−1
T {T (θ̂ − θ), T 1/2τ̂} D−→ (W,S),

where S is a random variable with P (0 < S < ∞) = 1. The studentized
statistic is defined as the ratio of the two statistics on the left-hand side of
the expression above, which admits the asymptotic distribution

T
1
2

(θ̂ − θ)
τ̂

D−→W/S (4.45)

with the known convergence rate T
1
2 .

Let ε̃t = Xt/σ̃(θ̂) for t = ν, · · · , T , and let ε̂ν , · · · , ε̂T be the standardized
version of {ε̃t} such that the sample mean is zero and the sample variance
is 1. Now, we draw ε∗

t with replacement from {ε̂t} and define X∗
t = σ∗

t ε
∗
t

for t = ν, · · · ,m with

(σ∗
t )

2 = ĉ0 +
p∑
i=1

b̂i(X∗
t−i)

2 +
q∑
j=1

âj(σ∗
t−j)

2

and form the statistic (θ̂
∗
, τ̂∗) based on {X∗

ν , · · · , X∗
m} in the same way as

(θ̂, τ̂) based on {Xν , · · · , XT }. Hall and Yao (2003) proved that as T →∞,
m→∞, and m/T → 0, it holds for any convex set C that
∣∣∣∣∣P
{
√
m

(θ̂
∗ − θ̂)
τ̂∗ ∈ C

∣∣∣∣∣X1, · · ·XT

}
− P

{√
T

(θ̂ − θ)
τ̂

∈ C
}∣∣∣∣∣→ 0.

Based on this, a one-sided bootstrap confidence interval for, for example,
θk, the kth component of θ with the confidence level π ∈ (0, 1) is defined
as [

θ̂k − T− 1
2 τ̂ ûπ, ∞

)
, (4.46)
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where

ûπ = inf
{
u : P

[
m1/2(τ̂∗)−1(θ̂∗

k − θ̂k) ≤ u
∣∣X1, · · · , XT

] ≥ π
}
. (4.47)

Both left-sided intervals and two-sided intervals may be constructed in a
similar manner. The simulation results reported in Hall and Yao (2003)
indicated that the procedure worked reasonably well for ARCH(2) and
GARCH(1, 1) models with heavy or nonheavy-tailed errors and is insensi-
tive to the choice of the values of m in the range of 50%–80% of the original
sample size T .

In the heavy-tailed case, the limit properties of the maximum likelihood
estimators are dictated by the behavior of extreme order statistics. The
reason that the full-sample (i.e., T -out-of-T ) bootstrap fails to be consistent
is that it does not accurately model relationships among extreme order
statistics in the sample. For example, for each fixed k ≥ 2, the probability
that the k largest values in a resample are equal does not converge to 0
in the T -out-of-T bootstrap. The probability does converge to 0 for the
m-out-of-T bootstrap, provided m/T → 0, and of course it converges to 0
for the sample itself.

In principle, we may construct confidence intervals in terms of a boot-
strap approximation for the distribution of θ̂ − θ directly. Since we have
to use a subsampling bootstrap, the intervals so constructed will be for
the sample size m. Those intervals would have to be converted to those for
the sample size T according to the unknown convergence rate T/λT , which
is practically infeasible. The statistic τ̂ defined in (4.44) was introduced
to studentize θ̂ − θ. Note that the studentized statistic (θ̂ − θ)/τ̂ has a
known convergence rate T

1
2 ; see (4.45). Therefore, the conversion can be

done with ease; see (4.46) and (4.47). Of course, we lose some precision in
the estimation due to the introduction of random quantity τ̂ .

4.2.6 Testing for the ARCH Effect
It becomes a routine practice in analyzing financial data, for example, to
test the existence of conditional heteroscedasticity. Neglect of the con-
ditional heteroscedasticity may lead to a loss in asymptotic efficiency of
parameter estimation (Engle 1982) and can result in overparameterization
of an ARMA model (Weiss 1984). It may also cause overrejection of con-
ventional tests, such as (7.29), for serial correlation in mean (Milhoj 1985;
Taylor 1986). In principle, we may test the hypotheses of the parameters
ai and bj based on the bootstrap confidence intervals developed in the
last section. We introduce in this section some methods based on more
traditional parametric methods that model conditional heteroscedasticity
in terms of an ARCH specification. Those methods may be more efficient
when additional information on the distribution of εt is available and εt
has finite high order (≥ 4) moments.
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Suppose that {Xt} is a strictly stationary process defined by

Xt = σtεt, σ2
t = c0 +

p∑
i=1

bjX
2
t−i, (4.48)

where c0 > 0 and aj ≥ 0. We are interested in testing the null hypothesis
of no ARCH effects, which can be formulated as

H0 : b1 = · · · = bp = 0, (4.49)

against the alternative hypothesis

H1 : bj �= 0 for at least one j.

It is easy to see that, under H0, the conditional variance σ2
t ≡ c0 is a

constant. If the density function f(·) of εt in (4.48) is known, a natural
approach is to use the (conditional) likelihood ratio test based on the test
statistic

ST,1 =
T∏

t=p+1

σt(ĉ0, b̂)−1f{Xt/σt(ĉ0, b̂)}
σt(c̃0, 0)−1f{Xt/σt(c̃0, 0)} , (4.50)

where (ĉ0, b̂) is the maximum (conditional) likelihood estimator for model
(4.48) and c̃0 is the constrained maximum (conditional) likelihood estima-
tor under the null hypothesis (4.49). It is well-known that under the null
hypothesis H0

2 log(ST,1)
D−→ χ2

p,

provided that the density function f(·) is smooth enough and the Fisher
information matrix

I(c0,b) ≡
(
I11(c0,b) I12(c0,b)
I21(c0,b) I22(c0,b)

)
= E{�̇(Xt; c0,b)�̇(Xt; c0,b)τ}

(4.51)
exists and is positive-definite; see §4.4.4 of Serfling (1980). (Those condi-
tions are fulfilled for ARCH models with εt ∼ N(0, 1).) In the expression
above,

�̇(Xt; c0,b) =
(
�̇1(Xt; c0,b)
�̇2(Xt; c0,b)

)
=
(

∂
∂c0

log[σ−1
t f(Xt/σt)]

∂
∂b log[σ−1

t f(Xt/σt)]

)
.

Furthermore, the asymptotic distribution under the null hypothesis is also
shared by both the score test (4.52) advocated by Engle (1982) and the
Wald test (4.54) below.

The score test is also called the Rao test or the Lagrange multiplier test.
It is based on the fact that the gradient of a log-likelihood function should
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be close to 0 under a null hypothesis. More precisely, it can be shown that
under H0,

1√
T − p

T∑
t=p+1

�̇2(Xt; c̃0,0) D−→ N
(
0, I22(c0,0)

)
,

where I22 is defined in (4.51). The score statistic is defined as

ST,2 =
1

T − p

{ ∑
t=p+1

�̇2(Xt; c̃0,0)

}τ {
I22(c̃0,0)

}−1 ∑
t=p+1

�̇2(Xt; c̃0,0).

(4.52)
An advantage of the score test is that it does not require computation of
ĉ0 and b̂.

If εt in (4.48) is normal, Engle (1982) has shown that the score test
may be performed in terms of the statistic TR2, which is asymptotically
equivalent to ST,2, where R2 is the multiple correlation coefficient of X2

t

and (X2
t−1, · · · , X2

t−p), namely

R2 = Xτ
p+1X (X τX )−1X τXp+1/(Xτ

p+1Xp+1), (4.53)

where Xk = (X2
k , X

2
k+1, · · · , X2

T−p−1+k)
τ , X = (1,Xp,Xp−1, · · · ,X1), and

1 is a vector with all components 1. Although the asymptotic equivalence
is justified for the models with normal errors only, the statistic TR2 has
been used also for nonnormal cases. Since R2 is the percentage of the part
of the variation of X2

t that can be explained in terms of its p lagged val-
ues, the large values of R2 are indicative of a linear dependence of X2

t

on X2
t−1, · · · , X2

t−p. Therefore, it is a sound test statistic for testing the
ARCH effect. However, its asymptotic properties are less clear when εt is
not normal.

The Wald test directly compares the MLE b̂ with b = 0, the parameter
value under the null hypothesis H0. Note that under H0, (T − p) 1

2 b̂ D−→
N(0, I22(c0,0)), where I22 is the lower p × p submatrix of {I(c0,b)}−1,
which equals to

I22(c0,b) = {I22(c0,b)− I21(c0,b)I11(c0,b)−1I12(c0,b)}−1.

The Wald statistic is defined as

ST,3 = (T − p) b̂τ{I22(ĉ0, b̂)}−1b̂. (4.54)

Section 4.4.4 of Serfling (1980) discussed the asymptotic properties of the
three tests defined above. Although all three statistics 2 log(ST,1), ST,2, and
ST,3 share the same asymptotic distribution χ2

p under H0, there are some
practical differences in the use of these tests. For example, it is anticipated
that they will not have the same power at fixed alternatives. Likelihood
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ratio tests are invariant to one-to-one transformations for both random
variables and parameters, a property not shared by score tests and Wald
tests. On the other hand, the score statistic is potentially simpler from a
computational point of view since it depends on the estimator c̃0 only; see
(4.52).

Based on truncation (4.36), we may extend the test above for testing H0
against a GARCH(p, q) alternative. This is effectively to test H0 against
an ARCH(∞) alternative. Since our primary interest in this practice is
to detect the existence of conditional heteroscedasticity, we may simply
test H0 against an ARCH(p) alternative in which the choice of p is not so
critical. Once the null hypothesis H0 is rejected, we may select an adequate
model in terms of AIC or BIC; see (4.39) and (4.40).

Note that in forming the test statistic (4.50) we did not make use of the
information that bj ≥ 0. (If the estimator b̂j ’s are restricted to be non-
negative, the χ2-asymptotic approximation stated above is not necessarily
valid since the parameter value bj = 0 is at the boundary rather than
the interior of the parameter space). Literature concerning testing for H0
against a one-sided alternative (i.e., H1 : bj > 0 for some j) includes Lee
and King (1993) and Hong (1997).

4.2.7 ARCH Modeling of Financial Data
The direct motivation for introducing ARCH models is to evaluate and/or
to forecast risk in financial time series in the form of conditional het-
eroscedasticity. Standard examples of financial time series are the prices
of company-shares quoted at major stock exchanges, interest rates set by
governments or major national banks, and foreign exchange rates among
different currencies. For stock prices, data sets can be intra-daily “tick-by-
tick” trade data. This means that every trade in a specific stock is recorded
together with the time when the trade took place. However, most data an-
alyzed in terms of statistical models (such as GARCH) are daily data for
which only a single number is recorded for each day. Most commonly ana-
lyzed daily stock prices contain only daily closing prices.

Since financial data typically have the autocorrelation coefficient close to
1 at lag 1 (e.g., the exchange rate between the U.S. dollar and pounds ster-
ling hardly changes from today to tomorrow), it is much more interesting
and also practically more relevant to model the returns of a financial series
rather than the series itself. Let {Yt} be a stock price series, for example.
The returns are typically defined as

Xt = log Yt − log Yt−1 or Xt =
Yt − Yt−1

Yt−1
,
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which measure the relative changes of price. Note that the two forms above
are approximately the same as

log Yt − log Yt−1 = log
(

1 +
Yt − Yt−1

Yt−1

)
≈ (Yt − Yt−1)/Yt−1.

Rydberg (2000) summarizes some important stylized features of financial
return series, which have been repeatedly observed in all kinds of assets
including stock prices, interest rates, and foreign exchange rates. We list
below some of those features for daily data.

(i) Heavy tails. It has been generally accepted that the distribu-
tion of the return Xt has tails heavier than the tails of a normal
distribution. Typically, it is assumed that Xt only has a finite
number of finite moments, although it is still an ongoing de-
bate how many moments actually exist. Nevertheless, it seems
a general agreement nowadays to assume that the daily return
has a finite second moment (i.e. EX2

t <∞). This also serves as
a prerequisite for ARCH/GARCH modeling.

(ii) Volatility clustering. The term volatility clustering refers
to the fact that large price changes occur in clusters. Indeed,
large volatility changes tend to be followed by large volatility
changes, and periods of tranquillity alternate with periods of
high volatility; see, for example, Figure 4.16(a) below.

(iii) Asymmetry. There is evidence that the distribution of stock
returns is slightly negatively skewed. One possible explanation
could be that traders react more strongly to negative informa-
tion than positive information.

(iv) Aggregational Gaussianity . When the sampling frequency
decreases, the central limit law sets in and the distribution of
the returns over a long time-horizon tends toward a normal
distribution. Note that a return over k days is simply the ag-
gregation of k daily returns:

log Yk − log Y0 =
k∑
t=1

(log Yt − log Yt−1) =
k∑
t=1

Xt.

(v) Long range dependence. The returns themselves of all kinds
of assets hardly show any serial correlation, which, however,
does not mean that they are independent. In fact, both squared
returns and absolute returns often exhibit persistent autocor-
relations, indicating possible long-memory dependence in those
transformed return series; see, for example, Figure 2.7.
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ARCH and GARCH models may catch three out of the five stylized fea-
tures listed above, namely (i), (ii), and (iv). First, ARCH and GARCH
processes defined in terms of normal errors are innately heavy-tailed; see
Propositions 4.1(iii) and 4.2(ii). The models with heavy-tailed errors such
as εt ∼ tk for k = 4 or 3 have been used to model very heavy-tailed data in
practice. However we should not overlook the fact that a GARCH model
with normal errors may be very heavy-tailed as well; see (4.31) and (4.32).
Further, the volatility clustering is also portrayed naturally in ARCH and
GARCH models; see (4.20). Note that a GARCH(p, q) process is effec-
tively an ARCH(∞) process (see (4.35)). Therefore (4.20) also holds for
a GARCH process with p = ∞, indicating even more persistent volatil-
ity clustering. Finally, a strictly stationary GARCH process {Xt} with
EX2

t < ∞ is also a sequence of martingale differences. Therefore, it may
hold that T 1/2∑T

t=1Xt is asymptotically normal; see Theorem 4 on p. 511
of Shiryayev (1984). Therefore, the aggregational Gaussianity holds.

However, GARCH models, in their classic form, fail to catch the styl-
ized features (iii) asymmetry and (v) long-range dependence. Extension
of the classic GARCH form to model these, and also other, stylized fea-
tures received ample attention in the literature. We list below a few ex-
tended GARCH models (in their simplest forms) that are often used in
practice. Shephard (1996) provides a more comprehensive survey on ex-
tended GARCH models.

(a) EGARCH

Nelson (1991) introduced an exponential GARCH (EGARCH) model that
specifies the model

Xt = εt exp(ht/2), ht = γ0 + γ1ht−1 + g(εt−1),

where
g(x) = ωx+ λ(|x| − E|x|). (4.55)

In contrast to the form of σt in the GARCH model, the value of the func-
tion g(·) depends on both the size and the sign of its argument. As a re-
sult, EGARCH responds nonsymmetrically to random shocks εt. Although
(4.55) looks somewhat complicated, it is rather straightforward to identify
the properties of the process {ht} and therefore also those of {Xt}. Note
that {g(εt)} is i.i.d. provided {εt} is i.i.d. Therefore {ht} is a causal linear
AR(1) process if |γ1| < 1. For further discussion on EGARCH models, see
Bollerslev, Engle, and Nelson (1994).

(b) FIARCH

In order to model the persistent correlations in squared returns, attempts
have been made to construct long-memory ARCH type models. Similar
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to FARIMA models defined in §2.5.2, we define a fractionally integrated
ARCH (FIARCH) model as

Xt = σtεt, σ2
t = c0 + {1− (1−B)d}X2

t−1 = c0 + b(B)X2
t−1,

where d ∈ (−0.5, 0.5), and b(·) is a polynomial with hyperbolically (rather
than exponentially) decaying coefficients. Although a FIARCH model is
in the form of ARCH(∞), the slow-decaying coefficients cause the long-
term autocorrelation in the series {X2

t }. For further discussion on FI-
ARCH processes, see Baillie, Bollerslev and Mikkelsen (1996), Ding and
Granger (1996), Robinson and Zaffaroni (1998), and Mikosch and Stǎricǎ
(1999).

(c) ARCH-M

In finance theory, the relationship between risk and return plays a pre-
dominant role. If we take conditional deviation as a measure for risk, it is
possible to use risk as a regressor in modeling returns. Engle, Lilien, and
Robins (1987) proposed the ARCH in mean (ARCH-M) model

Xt = g(σ2
t ,θ) + εtσt, σ2

t = c0 + b{Xt−1 − g(σ2
t−1,θ)}2.

A commonly used parameterization is the linear one: g(y,θ) = θ0 + θ1y.
See Hong (1991) for its statistical properties.

Finally, we point out that many different types of models have been
proposed for the modeling of financial data, including the ARCH/GARCH
model discussed in this section. The stochastic volatility models (Shephard
1996; also §4.3.3 below) form another class of popular statistical models.
See also Rydberg (2000) for references on various models in the category
of mathematical finance.

4.2.8 A Numerical Example: Modeling S&P 500 Index
Returns

We illustrate the GARCH modeling techniques in terms of the daily S&P
500 index data from January 3, 1972 to December 31, 1999 introduced in
Example 1.4. We define the returns

Xt = 100(log Yt − log Yt−1),

where Yt is the index at time t. The sample size is T = 7075. Numerical
fitting of GARCH models was performed using the S+GARCH function
garch.

(a) Graphical investigation

The S&P 500 returns are plotted in Figure 4.16(a), in which the large
sparks around t = 4, 000 correspond to the stock market crash in October
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FIGURE 4.13. Histogram of the S&P 500 returns and a normal density function
with the same mean and variance.
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(b) ACF of squared returns

FIGURE 4.14. Correlogram of (a) the S&P 500 returns, and (b) the squared
returns.

1987. The histogram in Figure 4.13 has a long stretch on its left due to
the single large negative return. However, if we discard this single “out-
lier”, the marginal distribution seems fairly symmetric but not normal.
The correlogram in Figure 4.14 shows that there is almost no significant
autocorrelation in the return series {Xt} itself, but such an autocorrelation
does exist in the squared series {X2

t }. Figure 4.15 presents the plots of the
returns versus the normal distribution and Student’s t-distributions with
degrees of freedom ranging from 7 to 3. (The plots against t-distributions
were produced by the S+GARCH function “aqqplot”). Those plots are in-
formative for identifying the moment condition. For example, both tails of
the empirical distribution of the returns are heavier than those of the nor-
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(b) Returns vs t(7)
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(f) Returns vs t(3)
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FIGURE 4.15. Sample quantiles of the S&P 500 returns are plotted against,
respectively, quantiles of N(0, 1) and t-distributions with degrees of freedom be-
tween 7 and 3.
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mal distribution, and t-distributions with 7 and 6 degrees of freedom are
considerably lighter than t-distribution with 3 degrees of freedom. There-
fore, it seems reasonable to assume that E(X6

t ) =∞ and E(|Xt|3−ε) <∞
for any ε > 0.

(b) Testing for conditional heteroscedasticity

Following the argument in J.P. Morgan’s RiskMetrics (J.P. Morgan 1996,
p. 92), we fixed the conditional mean for the daily returns at 0. This leads
to the fitting of the data with a GARCH specification (4.48). Figure 4.14(b)
indicates a clear autocorrelation in the series {X2

t }. To reinforce this obser-
vation, we applied the likelihood ratio test (4.50) to test for the existence
of the ARCH-effect (i.e., conditional heteroscedasticity). The test has been
implemented in the S+GARCH code “archtest.s”, which simultaneously
carries out the tests with normal εt and tk-distributed εt, respectively, for
3 ≤ k ≤ 8. For the S&P 500 returns, the null hypothesis (4.49) was always
rejected with p-value virtually 0 for all of the assumed error distributions
with order p between 1 and 4. As we pointed out in §4.2.6, the choice of the
order p is not important. Since we tend to reject a null hypothesis when the
sample size is extremely large, we also applied the test for different sections
of original series with length varying between 200 and 1,000. The evidence
for rejecting the homoscedasticity hypothesis (4.49) was still overwhelming.

(c) Fitting a GARCH model with Gaussian error

To model the conditional heteroscedasticity, we fitted a GARCH(p, q) model
with Gaussian error [i.e., {εt} ∼i.i.d. N(0, 1)] based on the conditional
maximum likelihood method presented in §4.2.3. Among the candidate
models with p ≥ 1 and q ≥ 0, both AIC (4.39) and BIC (4.40) selected a
GARCH(1, 3) model with the estimated conditional standard deviation

σ̂2
t = 0.015 + 0.112X2

t−1 + 0.492σ2
t−1 − 0.034σ2

t−2 + 0.420σ2
t−3. (4.56)

For this selected model, AIC= 17792.2 and BIC= 17826.5. The standard
errors of the five estimated coefficients on the right-hand side of the equa-
tions above are 0.002, 0.004, 0.070, 0.083, and 0.055, respectively, and were
calculated based on the asymptotic normal distribution of the estimator;
see Theorem 4.5(i). The coefficient −0.034 in the model above is not signif-
icant since the corresponding p-value of the t-test is 0.341. Therefore, the
term containing σ2

t−2 may be removed from the model.
Figure 4.16(b) plots the estimated standard deviations σ̂2

t given in (4.56).
Compared with Figure 4.16(a), (4.56) models the volatility in the original
return series very well. Figure 4.16(c) shows that the “residuals” ε̂t, defined
as ε̂t ≡ Xt/σ̂t, are not necessarily always smaller than the original data Xt,
but they certainly look much less volatile. Indeed, apart from a few large
downward sparks, the variation of the residuals seems fairly homogeneous.
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(a) Returns of the S&P 500 Index
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FIGURE 4.16. Time plots of (a) the S&P 500 returns {Xt}, (b) the esti-
mated conditional standard deviations {σ̂t} given in (4.56), and (c) the residual
{ε̂t = Xt/σ̂t}. The estimates were derived based on a GARCH(1, 3) model with
εt ∼ N(0, 1).

Figures 4.17 (a) and (b) indicate that there seems to be no significant auto-
correlation in both the residual sequence and its squared sequence. In fact,
the residuals pass the likelihood ratio test (4.50) with normal conditional
density for the null hypothesis (4.49) comfortably for all attempted values
of p (i.e., 1 ≤ p ≤ 4), indicating that there exists no significant conditional
heteroscedasticity in the residual series. We also applied both Fisher’s test
(7.33) and the adaptive Neyman test (7.43) for testing the hypothesis that
the residuals are from a white noise process. Fisher’s test was passed with
the p-value 0.364, whereas the adaptive Neyman test was failed with the p-



176 4. Parametric Nonlinear Time Series Models

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Residuals

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Sq-residuals

•
•

•
•
•
•
••••••
••••••••
••••••••••••••••••
•••••••••••••••••••••
•••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••

••••••••••••••••
••••••••••••

•
••

•

(c) QQ-plot
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FIGURE 4.17. Correlogram of (a) the residuals from fitted model (4.56) and (b)
the squared residuals. (c) plot of the residuals versus a normal distribution.

value virtually equal to 0. Note that if the fitting is perfectly adequate, the
residuals should behave like Gaussian white noise. However, Figure 4.17(c)
clearly indicates that both tails of the empirical distribution of the residu-
als are heavier than those of a normal distribution. This suggests that we
may explore the possibility of fitting a GARCH model with heavy-tailed εt
to this data set.

(d) Fitting a GARCH model with t-distributed error

Based on the analysis in (c) above, we fitted a GARCH model with {εt} ∼i.i.d.
td with degree of freedom d, together with other parameters in the model,
estimated by the (conditional) maximum likelihood method. Now, both
AIC and BIC selected a GARCH(1, 1) model with estimated conditional
standard deviation

σ̂2
t = 0.007 + 0.047X2

t−1 + 0.945σ2
t−1. (4.57)

For this selected model, AIC= 17411.7 and BIC= 17439.2. The estimated
degrees of freedom is d̂ = 7.41 with the standard error 0.487. By treating
d as a continuous parameter, the estimator is asymptotically normal. The
standard errors for the three parameters on the right-hand side of (4.57)
are 0.001, 0.005, and 0.005. All the three coefficients are significantly away
from zero according to the t-tests. Figure 4.18(b) shows that the conditional
standard deviation σ̂t catches the heteroscedasticity in the original data se-
ries, plotted again in Figure 4.18(a), very well. The residuals ε̂t ≡ Xt/σ̂t
depicted in Figure 4.18(c) are obviously less volatile than the original re-
turns. We applied both Fisher’s test (7.33) and the adaptive Neyman test
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(a) Returns of the S&P 500 Index
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FIGURE 4.18. Time plots of (a) the S&P 500 returns {Xt}, (b) the esti-
mated conditional standard deviations {σ̂t} given in (4.57), and (c) the residual
{ε̂t = Xt/σ̂t}. The estimates were derived based on a GARCH(1, 1) model with
t-distributed εt with the estimated degrees of freedom 7.41.

(7.43) for testing the hypothesis that the residuals are from white noise.
Fisher’s test was passed with the p-value 0.346, whereas the adaptive Ney-
man test was failed with the p-value virtually equal to 0. Figures 4.19
(a) and (b) indicate that there is hardly any significant autocorrelation in
both the residual series and its squared series. Now, the residuals seem more
agreeable to the distribution specified by the model, although the left-tail
of its empirical distribution is still heavier than that of the t-distribution
with 7.41 degrees of freedom; see Figure 4.19(c).
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FIGURE 4.19. Correlogram of (a) residuals from fitted model (4.57) and (b) the
squared residuals. (c) qN − q plot of the residuals versus the t-distribution with
d.f.=7.41.

(e) Estimation of VaR – value at risk

As we pointed out earlier, one of direct motivation for ARCH/GARCH
modeling is to estimate the predictive distribution for Xt given its lagged
values {Xt−k, k ≥ 1}. If we assume that Xt follows a specific GARCH
model with a known f(·) as the density function of error εt, the required
predictive density function is just σ−1

t f(·/σt). Then, the task boils down
to the estimation of the parameters in the function σ2

t . Often, in financial
applications, we are interested in extreme quantiles of this distribution,
which are called value at risk (VaR). For α ∈ (0, 1), the 100α% (conditional)
quantile is defined as

xα = inf{x : P (Xt ≤ x|Xt−k, k ≥ 1) ≥ α}. (4.58)

(See Example 8.14 for further discussion.) An extreme high quantile xα
with α very close to 1 (or an extreme low quantile xα with α very close to
0) represents the potential loss at the probability α (or 1−α). The VaR is
arguably the most frequently used measure for risk management in finance.
For a GARCH process, an estimator for xα can be easily constructed as

x̂α = σ̂t xα,0, (4.59)

where xα,0 is the 100α% quantile of εt, namely
∫ ∞

xα,0

f(x)dx = α.

Obviously, a misspecification of the distribution of εt may lead to a con-
siderable error in the estimator (4.59).
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For the S&P 500 return data, the fitted GARCH(1, 3) model (4.56) with
Gaussian error is inappropriate for a VaR estimation since it seriously mis-
specifies the tail behavior at both ends of the error distribution; see Fig-
ure 4.17(c). The GARCH(1, 1) model (4.57) with t-distributed error would
be better for estimating xα when α is close to 1 since the t-distribution with
7.41 degrees of freedom models the right tail of the error fairly well; see Fig-
ure 4.19(c). For α = 0.95, 0.99, 0.995, and 0.999, xα,0 = 1.879, 2.952, 3.434,
and 4.656, respectively, for the t-distribution with 7.41 degrees of free-
dom. Due to the symmetry, −1.879,−2.952,−3.434, and −4.656 are the
low quantiles with α = 0.05, 0.01, 0.005, and 0.001, respectively. However,
the method (4.59) may underestimate the low quantiles of the returns,
as the left tail of the error distribution may be heavier than that of the t-
distribution; see Figure 4.19(c) again. This means that although a carefully
selected GARCH model may well catch the conditional heteroscedasticity
behavior of the S&P 500 returns, and may well forecast the risk associ-
ated with high quantiles, it will unfortunately underforecast the loss due to
market crashes of the scale similar to that in October 1987. An EGARCH
model will accommodate the asymmetric tail-behavior into the model, but
it still cannot forecast the extremely large losses in financial markets, which
remains a gigantic challenge to all time series modelers.

For further discussion on the VaR estimation in terms of nonparametric
methods, including the methods prescribed by the RiskMetrics Technical
Document of J.P. Morgan (1996), see Example 8.14.

4.2.9 Stochastic Volatility Models
In this subsection, we give a brief account of stochastic volatility models.
This class of models is not within the ARCH/GARCH family, but it of-
fers an alternative for modeling conditional heteroscedasticity of financial
returns. An excellent survey on stochastic volatility models is available in
Shephard (1996).

A general form of stochastic volatility model may be written as

Xt = εtg(ht) and ht = a0 + a1ht−1 + et,

where {εt} ∼ IID(0, 1), {et} ∼ IID(0, σ2
e), {εt} and {et} are independent,

and g(·) > 0 is a known function. In contrast to a GARCH model, the
heteroscedastic variation of Xt is expressed in terms of function g(ht)2,
which depends on a (unobservable) latent process {ht} instead of a lagged
value of Xt. The basic idea is that the latent ht may represent the random
and uneven flow of new information that is too complex to be modeled as
a function of the lagged values Xt−1, Xt−2, · · · only. (Unfortunately, this
statement itself is often true in the real world!) It is easy to see that when
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|a1| < 1, the latent process {ht} is strictly stationary with

µh ≡ E(ht) =
a0

1− a1
and γh(k) ≡ Cov(ht, ht−k) =

σ2
e

1− a2
1
a

|k|
1 . (4.60)

This, in turn, also ensures that {Xt} is a strict stationarity process.
The most popular form of stochastic volatility model is due to Tay-

lor (1986), which specifies

Xt = εt exp(ht/2), ht = a0 + a1ht−1 + et, (4.61)

where both {εt} and {et} are Gaussian white noise. Now {ht} is a Gaussian
AR(1) process. Therefore, we may derive that, for all k ≥ 1,

E(X2k
t ) = E(ε2kt )E{exp(kht)} =

(2k)! exp{kµh + k2σ2
h/2}

2kk!
,

where µh and σ2
h = γh(0) are given in (4.60). Consequently, the kurtosis of

Xt fulfills the inequality

κx = E(X4
t )/{E(X2

t )}2 = 3 exp{σ2
h} > κε = 3.

This indicates that the distribution of Xt has heavier tails than that of εt
—a property also shared by ARCH/GARCH processes.

It follows from (4.61) that

logX2
t = ht + log ε2t . (4.62)

Since {ht} is an AR(1) process and {log ε2t} is white noise, {logX2
t } is an

ARMA(1, 1) process as far as its first two moment properties are concerned;
see Example 2.7. Note that the causality of {ht} implies that {ht} and {εt}
are independent of each other. Based on the normality of {ht}, it holds
that

Cov(X2
t , X

2
t−k) = E{exp(ht + ht−k)} − E(eht)E(eht−k)

= exp(2µh + σ2
h){exp(σ2

ha
|k|
1 )− 1}.

Therefore

Corr(X2
t , X

2
t−k) =

exp(σ2
ha

|k|
1 )− 1

exp(σ2
h)− 1

≈ σ2
h

exp(σ2
h)− 1

a
|k|
1 .

The approximation holds for large |k|, which may be justified by a Taylor
expansion. Note that the term on the right-hand side of the expression
above is an ACF for an ARMA(1, 1) process. In this sense a stochastic
volatility process behaves in a manner similar to a GARCH(1, 1) process;
see (4.30).
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In spite of the simple theoretical properties stated above, stochastic
volatility models, unfortunately, do not facilitate a straightforward statisti-
cal estimation and inferences. The main difficulty is that, unlike ARCH and
GARCH models, it is not immediately clear how to evaluate the likelihood,
as the conditional distribution of Xt given its lagged values is specified
implicitly only, due to the presence of latent variable ht. Simple estimators
for parameters may be derived in terms of generalized method-of-moments
(Hamilton, 1989, Chapter 14). In order to estimate the latent process {ht},
which is necessary for modeling conditional heteroscedasticity, a Kalman
filter based on a linear state-space representation for the non-Gaussian
process {logX2

t }, given in (4.62), may be employed; see Melino and Turn-
bull (1990) and Harvey, Ruiz, and Shephard (1994). Some approximate
likelihood methods coupled with Markov chain Monte Carlo methods have
also been developed for the estimation of stochastic volatility models; see
Shephard (1996) and references within.

4.3 Bilinear Models

Perhaps the most natural way to introduce nonlinearity into a linear ARMA
model is to add product terms. By restricting to products of time series
variable Xt−j and innovation εt−i, we end with a model of the form

Xt =
p∑
j=1

bjXt−j + εt +
q∑

k=1

akεt−k +
P∑
j=1

Q∑
k=1

cjkXt−jεt−k, (4.63)

where εt ∼ IID(0, σ2), and bj , ak and cjk are unknown parameters. This
model is called a bilinear model with order (p, q, P,Q). For the process
{Xt} defined by the model above, we write {Xt} ∼ BL(p, q, P,Q). Bilinear
time series models were introduced by Granger and Anderson (1978a). The
name of “bilinear” came from the fact that the model is linear in Xj as well
as in εi. The appeal of this class is at least partially due to the fact that
a bilinear model goes beyond a simple linear form and yet retains much
of the simple structure of linear ARMA models. Indeed, we may argue
that we understand the probabilistic properties and are able to carry out
analytic computations for bilinear models more than any other nonlinear
time series models. In terms of potential applications, bilinear models are
known to be able to model occasional outbursts in time series (see Fig-
ure 4.20), which might be useful for modeling seismological data such as
records for explosions and earthquakes. However, successful applications
are still rare. Furthermore, the performance of statistical inference is less
well-understood. The asymptotic distribution of the maximum likelihood
estimators is still unknown. Invertibility is essential for understanding the
asymptotic properties of the estimators and yet it is almost uncheckable.



182 4. Parametric Nonlinear Time Series Models

4.3.1 A Simple Example
Although we are able to explore a fair amount of the analytical properties of
bilinear models, the calculation is typically clouded with cumbersome no-
tation. To illustrate some basic ideas and methods associated with bilinear
models, we start with a simple BL(1, 0, 1, 1) model

Xt = bXt−1 + εt + cXt−1εt−1, (4.64)

where {εt} ∼ IID(0, σ2). Note that the model is not in the form of the
general autoregressive model (2.7). Therefore, we cannot use Theorem 2.4
to deduce the conditions for existence of a strictly stationary solution.
However, since the model is so close to a linear form, we may express
it in a kind of “moving average” with infinite order as we do for linear AR
or ARMA processes; see (2.5). Indeed, by iterating (4.64) n times, we have

Xt =

{
n∏
k=1

(b+ cεt−k)

}
Xt−n + εt +

n−1∑
j=1

{
j∏

k=1

(b+ cεt−k)

}
εt−j . (4.65)

If the sum on the right-hand side of the expression above converges in
probability as n → ∞, it must also hold that

∏n
k=1(b + cεt−k)

P−→ 0. In
this case, Xt may be expressed as

Xt = εt +
∞∑
j=1

{
j∏

k=1

(b+ cεt−k)

}
εt−j , (4.66)

which is in the form of MA(∞) with “random coefficients” given in the
curly brackets. Since {εt} is i.i.d., {Xt} given in (4.66) is a strictly station-
ary solution of model (4.65). Pham and Tran (1991) showed that under
the condition that E(ε4t ) < ∞, the sum on the right-hand side of (4.65)
converges in mean squares if and only if b2 + c2σ2 < 1. This is also the nec-
essary and sufficient condition for model (4.65) to define a unique strictly
stationary solution with E(X2

t ) <∞, provided that E(ε4t ) <∞.
It follows from (4.66) that

µx = EXt =
∞∑
j=1

bj−1cE(ε2t−j) =
σ2c

1− b .

Furthermore, the variance Var(Xt) may be derived from (4.66) as well, al-
though the expression is cumbersome and not particularly inspiring. Nev-
ertheless, it is clear that the condition E(ε4t ) <∞ is necessary for E(X2

t ) <
∞. By (4.64), it holds that E(Xtεt) = σ2. Centering all of the terms in
(4.64), we have

Xt − µx = b(Xt−1 − µx) + εt + c(Xt−1εt−1 − σ2).
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 BL(1,0,1,1) time series
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FIGURE 4.20. A time series of length 500 generated from bilinear model (4.64)
with b = 0.75, c = 0.6, and εt ∼ N(0, 1). The horizontal line indicates the mean
(2.4) of the process.
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FIGURE 4.21. (a) ACF plot, (b) PACF plot, and (c) qN − q plot versus normal
distribution for bilinear time series displayed in Figure 4.20.

Multiplying both sides by Xt−k for k ≥ 2 and taking the expectation, we
derive a Yule–Walker equation

γ(k) = bγ(k − 1), k ≥ 2,

where γ(·) denotes the ACVF of {Xt}. Thus, we may define an ARMA(1,
1) model with the autoregressive coefficient b and the moving average coef-
ficient and the variance of white noise selected such that the model’s ACVF
is the same as the ACVF of {Xt} at both lags 0 and 1. This indicates that
a BL(1, 0, 1, 1) process is effectively an ARMA(1, 1) process as far as its
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first two moment properties are concerned. In fact, this is true for general
bilinear models; see Part (b) of §4.3.3 below.

Figure 4.20 depicts a time series of length 500 generated from the BL(1,
0, 1, 1) model (4.64) with b = 0.75, c = 0.6, and standard normal inno-
vations. The series exhibits occasional sharp spikes. Figures 4.21 (a) and
(b) indicate that the sample ACF decays fairly fast and that the sample
PACF is virtually only significant at lag 1, resembling the properties of an
ARMA(1, 1) process. Due to those occasional bursts, the marginal distri-
bution exhibits heavy tails; see the qN − q plot versus normal distribution
in Figure 4.21(c). In general, a bilinear process does not necessarily have
all moments finite.

4.3.2 Markovian Representation
The algebraic complication in manipulating bilinear models can be sup-
pressed under their state-space representation in which state vectors are
defined by random-coefficient autoregressive models with order 1 and are
therefore Markov chains. Accordingly, the representation is also called Marko-
vian representation. The stationarity of bilinear processes and their proba-
bilistic properties can then be deduced from those of state vector processes.

It is instructive to consider first the subdiagonal models for which cjk = 0
for all j < k in (4.63). We reparameterize a subdiagonal bilinear model as

Xt =
p∑
j=1

bjXt−j + εt +
q∑

k=1

akεt−k +
P∑
j=0

Q∑
k=1

cjkXt−j−kεt−k. (4.67)

Now, parameters P , Q, and cjk are different from those in (4.63). Let n =
max{p, P+q, P+Q}, m = n−max{q,Q}, and bp+j = aq+j = cP+i,Q+j = 0
for all i, j ≥ 1. It has been established by Pham (1985, 1993) thatXt defined
by (4.67) has the state-space representation

Xt = hτZt−1 + εt, (4.68)

and
Zt = (A + Bεt)Zt−1 + cεt + dε2t , (4.69)

where the state-space variable Zt is an n× 1 vector with Xt−m+i as its ith
component for i = 1, · · · ,m and

m∑
k=j

bkXt+j−k +
n−m∑
k=j

{
ak +

P∑
l=0

clkXt+j−k−l

}
εt+j−k

as its (m + j)th element for j = 1, · · · , n −m, h is an n × 1 vector with
the (m + 1)-th element 1 and all others 0, c is an n × 1 vector with the
first m − 1 elements 0 followed by 1, b1 + a1, · · · , bn−m + an−m, d is an
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n × 1 vector with the first m elements 0 followed by c01, · · · , c0,n−m, B is
an n× n matrix with




cm1 · · · c01
...

...
...

cm,n−m · · · c0,n−m




as the (n−m)× (m+1) submatrix at the bottom-left corner and all of the
other elements 0, and A is an n× n matrix with 1 as its (i, i+ 1) element
for i = 1, · · · , n− 1, bj as its (m+ j,m+ 1) element for j = 1, · · · , n−m,
and bn−1+k as its (n, k)th element for k = 1, · · · ,m+ 1 and 0 as all of the
other elements.

The representation (4.68) and (4.69) can be checked by direct computa-
tion. The state-variable equation (4.69) is in the form of the AR(1) model
with a random coefficient. Note that Zt consists of the lagged values Xt−1,
Xt−2, · · · . Therefore, in (4.69) “regressor” Zt−1 is independent of both “co-
efficient” (A + Bεt) and “noise” (cεt + dε2t ) if the bilinear process {Xt} is
causal in the sense that Xt is determined by {εt, εt−1, εt−2, · · · } only. Fur-
thermore {Zt} is a Markov chain. In fact, the Markovian representation of
this nature is also available for the general bilinear model (4.63) with much
more added complexity in notation; see Pham (1985, 1993). In general, for
{Xt} defined in (4.63), it holds that

Xt = hτZt−1 + εt (4.70)

and
Zt = A(εt)Zt−1 + c(εt), (4.71)

where Zt is an appropriately defined state-space random vector, h is a
constant vector, and A(·) and c(·) are constant matrix and vector functions,
respectively.

4.3.3 Probabilistic Properties∗

(a) Stationarity

For a bilinear process {Xt} defined in (4.63), if the state-space process
{Zt} specified in (4.71) is strictly stationary, {Xt} is also strictly stationary
because of (4.70) and the fact that {εt} is i.i.d. Therefore, we only need to
derive the conditions under which the state-space equation (4.71) admits
a strictly stationary solution. Actually, the form of A(·) and c(·) is not
important. We are thus led to consider a general random coefficient model

Zt = AtZt−1 + ct, (4.72)

where At is a random matrix and ct is a random vector, and {(At, ct)}
i.i.d. In comparison with the random-coefficient autoregressive models con-
sidered by Nicholls and Quinn (1982), At is not assumed to be independent
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of ct in the model above. For this reason, (4.72) is called a generalized ran-
dom coefficient autoregressive model (Pham 1986).

Since (4.72) is in the form of AR(1), it holds that for any n ≥ 1

Zt = At · · ·At+1−nZt−n + ct +
n−1∑
j=1

At · · ·At+1−jct−j . (4.73)

Thus, a sufficient condition for the existence of a stationary solution of
(4.73) is that the series

∑n−1
j=1 At · · ·At+1−jct−j converge in probability.

Since {At} is i.i.d., it holds that

1
2j

log{λmax(Aτ
t+1−j · · ·Aτ

tAt · · ·At+1−j)} a.s.−→ λ0 ∈ [−∞,∞]

as j → ∞, where λmax(A) denotes the maximal eigenvalue of matrix A;
the limit λ0, which may take infinite values, is called the upper Lyapunov
exponent of the sequence {At}; see, for example, Cohen, Kesten, and New-
man (1986). When λ0 < 0, it holds that for some fixed ρ > 0 and all
sufficiently large j,

|λmax(Aτ
t+1−j · · ·Aτ

tAt · · ·At+1−j)| ≤ e−2jρ.

Consequently,
||At · · ·At+1−jct−j || ≤ e−jρ||ct−j ||

for all large j, where the matrix norm || · || is defined as

||A||2 = sup
x	=0

xτAτAx/xτx,

which reduces to the conventional Euclidean norm when A is a vector. Note
that

∥∥∥∥∥∥
n−1∑
j=1

At · · ·At+1−jct−j

∥∥∥∥∥∥
≤
n−1∑
j=1

||At · · ·At+1−jct−j ||

≤ C

n−1∑
j=1

e−jρ||ct−j || ≤ C


n−1∑
j=1

e−2jρ




1/2

n−1∑
j=1

||ct−j ||2



1/2

,

where C > 0 is a constant. Hence (4.73) has the unique strictly stationary
solution

Xt = ct +
∞∑
j=1

At · · ·At+1−jct−j , (4.74)

provided
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(i) the upper Lyapunov exponent of the sequence {At} is neg-
ative, and

(ii) E{||ct||2} <∞.

The infinite sum on the right-hand side of (4.74) converges in mean square.
This result was first obtained by Pham (1986) and Brandt (1986). In fact,
under some mild additional conditions on the underlying distribution, con-
dition (i) above is also necessary for the existence of a stationary solu-
tion; see Theorem 2.5 of Bougerol and Picard (1992a). Theorem 2.1 of
Pham (1993) presented the necessary and sufficient condition for the ex-
istence of a causal, strictly stationary solution {Zt} of (4.71) for which
E{||Zt||2} <∞. This requires, among other things, the condition E(ε4t ) <
∞.

(b) Moment properties

Suppose that {Xt} is a strictly stationary solution of the BL(p, q, P,Q)
model (4.63) that admits the state-space representation (4.70) and (4.71)
where the state-space process {Zt} can be written as

Zt = c(εt) +
∞∑
j=1

A(εt) · · ·A(εt+1−j)c(εt−j);

see (4.74). The equation above indicates that Zt is causal, as it depends on
{εt−k, k ≥ 0} only. Therefore, in the AR model (4.71), the “regressor” Zt−1
is independent of both the “coefficient” A(εt) and the “noise” c(εt). The
moments of Zt can be evaluated based on (4.71). Based on the moments
Zt, the moments of Xt can be easily obtained through (4.70). Note that
Xt is also causal in the sense that Xt is a function of {εt, εt−1, · · · } only.

An important feature of the bilinear model is that not all moments exist.
It is easy to see from (4.69) and (4.68) that the condition E(ε4t ) < ∞ is
necessary for a subdiagonal (and also general) bilinear linear process having
finite second moment. The required conditions become more stringent when
the order of moment increases. See Pham (1993) for further discussions on
those conditions.

Now, let E{X2
t } <∞. Then, as far as only the first two moment proper-

ties are concerned, {Xt} is in fact an ARMA(p, q′) process with the same
bjs as in (4.63) as its autoregressive coefficients, where q′ = max{q,Q}. To
this end, define

Yt ≡ Xt −
p∑
j=1

bjXt−j − µ

= εt +
q∑

k=1

akεt−k +
P∑
j=1

Q∑
k=1

cjkXt−jεt−k − µ, (4.75)
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where µ = (1 −∑p
j=1 bj)EXt. The last equality in the expression above

follows from (4.63). Then {Yt} is stationary with EYt = 0 and

Cov(Yt, Yt−k) = 0 for all k > q′ = max{q,Q}. (4.76)

For each t, let

Ŷt =
∞∑
j=1

φjYt−j (4.77)

be the best linear predictor for Yt based on Yt−1, Yt−2, · · · in the sense that

E(Yt − Ŷt)2 = minE


Yt −

∞∑
j=1

ψjYt−j




2

,

where the minimum is taken over all {ψj} for which the infinite sum on the
right-hand side of the expression above converges in mean square. Write
et = Yt − Ŷt. Then, the least square property above implies that {et} is
a sequence of uncorrelated random variables; that is, {et} ∼ WN(0, σ2

e).
Similar to (3.8), it holds that for each t

Ŷt =
∞∑
i=1

θiet−i.

Consequently,

Yt = et + Ŷt = et +
∞∑
i=1

θiet−i.

It is easy to see from (4.75) and (4.76) that Cov(Yt, et−k) = 0 for any
k > q′. Hence

θk = Cov(Yt, et−k)/σ2
e = 0 for all k > q′.

Therefore {Yt} is an MA(q′) process. By (4.75), it holds now that

Xt −
p∑
j=1

bjXt−j − µ = et +
q′∑
i=1

aiet−i (4.78)

(i.e., {Xt} is an ARMA(p, q′) process).

(c) Mixing

The mixing properties of bilinear processes may be established in terms
of their Markovian representation (4.70) and (4.71). Since {εt} is i.i.d.,
the bilinear process {Xt} shares the mixing properties possessed by the
Markov chain {Zt}. Therefore, the ergodicity of {Zt} ensures that {Xt}
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is β-mixing; see (2.58). Furthermore, the geometric ergodicity implies the
β-mixing with exponentially decaying mixing-coefficients; see (2.59).

There exists a fairly large literature dealing with ergodicity of Markov
chains; see, for example, Nummelin and Tuominen (1982) and Tweedie (1983).
Unfortunately conditions for the ergodicity are not always easy to check in
practice. But those conditions are typically very mild. Therefore, we may
hope that they will be satisfied in most practical situations.

4.3.4 Maximum Likelihood Estimation
Fitting a bilinear model consists of at least two aspects: determination of
the order (p, q, P,Q) and estimation of the parameters bj , ak, cjk, and σ2.
The order determination is usually carried out in terms of some well-known
model selection criteria such as AIC and BIC. However, the performance of
those procedures in the context of bilinear models is not well-understood.
This is due to the lack of asymptotic theory for maximum likelihood esti-
mation for bilinear models.

However, if the order (p, q, P,Q) is given, the standard method for ap-
proximating a Gaussian likelihood function for time series may be applied
to derive approximate maximum likelihood estimators. Let X1, · · · , XT be
observations from a strictly stationary BL(p, q, P,Q) process defined by
(4.63) in which εt ∼ N(0, σ2). Let θ = (θτ1 ,θ

τ
2)τ , where

θ1 = (b1, · · · , bp, a1, · · · , aq)τ , θ2 = (c11, · · · , c1Q, c21 · · · , cPQ)τ .

The (conditional) log likelihood function may be approximated by

l(θ, σ2) = −N − p
′

2
log σ2 − 1

2σ2

T∑
t=p′+1

ε̂t(θ)2,

where p′ = max{p, P}, and ε̂p′(θ), ε̂p′+1(θ), · · · are computed recursively
from model (4.63) with some (arbitrarily) specified initial values for εp′−1,
· · · , εp′−q′ , and q′ = max{q,Q}.

4.3.5 Bispectrum
Suppose that {Xt} is a stationary process with mean 0. Furthermore, we
assume that its third moments are also time-invariable in the sense that

C(j, k) ≡ E(XtXt+jXt+k)

is independent of t for any j and k. Such a process may be referred to as
third-order stationary.

The bispectral density function of {Xt} is defined as

g(ω1, ω2) =
1

4π2

∞∑
j=1

∞∑
k=1

C(j, k) exp{−i(jω1 + kω2)}, ω1, ω2 ∈ [−π, π].
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It is easy to see that g is well-defined if
∞∑
j=1

∞∑
k=1

|C(j, k)| <∞.

On the other hand, it holds by inversion that

C(j, k) =
∫

[−π,π]2
exp{i(jω1 + kω2)}g(ω1, ω2)dω1dω2.

Hence,

E(X3
t ) = C(0, 0) =

∫

[−π,π]2
g(ω1, ω2)dω1dω2.

Note that a spectral density depends only on the second moments of the
process; see §2.3.2. Likewise, the bispectral density defined above depends
on the third moments of {Xt} only. Based on the fact that a stationary
BL(p, q, P,Q) process is also a stationary ARMA(p,max{q,Q}) as far as
the covariance structure is concerned, its nonlinearity will only show up in
its bispectral density but not in its spectral density (see (4.78)). Although
in principle for bilinear processes bispectral density functions may be eval-
uated explicitly, the derivation is typically tedious and the formulas always
appear cumbersome; see §2.6 of Subba Rao and Gabr (1984) for an example
with simple BL(1, 0, 1, 1) processes.

For two third-order stationary processes {Xt} and {Yt}, if {Xt} is a
filtered version of {Yt}, namely

Xt =
∞∑

k=−∞
ϕkYt−k,

∞∑
k=−∞

|ϕk| <∞,

we may show, in the same manner as the proof of Theorem 2.12, that

gx(ω1, ω2) = gy(ω1, ω2)ϕ(e−iω1)ϕ(e−iω2)ϕ(ei(ω1+ω2)), (4.79)

where gx, gy denote, respectively, the bispectral densities of {Xt} and {Yt},
and ϕ(z) =

∑
k ϕkz

k.
Suppose now that {Xt} is a purely nondeterministic and zero-mean sta-

tionary process. The Wold decomposition entails

Xt = εt +
∞∑
j=1

ϕkεt−k, {εt} ∼WN(0, σ2). (4.80)

The process {Xt} is called linear if {εt} ∼ IID(0, σ2). For example, a
stationary bilinear process entertains the expression (4.80), but {εt} is not
an i.i.d. sequence; see (4.78). The spectral density of {Xt} in (4.80) is equal
to

g(ω) =
σ2

2π
ϕ(e−iω)ϕ(eiω). (4.81)
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When {Xt} is linear (i.e., {εt} ∼ IID(0, σ2)), it follows from (4.79) that
the bispectral density of {Xt} is equal to

g(ω1, ω2) =
µ3

4π2ϕ(e−iω1)ϕ(e−iω2)ϕ(ei(ω1+ω2)), (4.82)

where µ3 = E(ε3t ). Combining this with (4.81), we have

K(ω1, ω2) ≡ 2π |g(ω1, ω2)|2
g(ω1)g(ω2)g(ω1 + ω2)

= µ2
3/σ

6.

Thus, we may test for the linearity in terms of a test for the hypothesis that
the function K(·, ·) is a constant; see §4.4 of Subba Rao and Gabr (1984),
Hinich(1982), and Subba Rao (1983) for the development of the tests for
linearity based on this idea.

4.4 Additional Bibliographical notes

The developments on threshold models up to the late 1980s were system-
atically presented in Tong (1990), which also dealt with other paramet-
ric nonlinear models not covered in this book. Tsay (1989) proposed an
alternative strategy for TAR modeling that selected the delay parame-
ter, number of regimes, and thresholds based on some F - and t-statistics.
Threshold models with continuous regression functions were studied in
Chan and Tsay (1998). Stramer, Tweedie, and Brockwell (1996) dealt with
continuous-time threshold models. Double threshold models that impose
threshold structure on both conditional means and conditional variances
were proposed by Li and Li (1996).

Lawrance and Lewis (1980, 1985) introduced a class of exponential ARMA
models in which coefficients change according to a sequence of independent
random variables. Autoregressive models with regime-switch controlled by
a Markov chain mechanism were suggested in Tong and Lim (1980, p.285
line −12), and studied by Tyssedal and Tjøstheim (1988) and Hamil-
ton (1989).

Asymptotic properties of maximum likelihood estimators for stationary
Markov chains can be found in Billingsley (1961), Basawa and Prakasa
Rao (1980), and Hall and Heyde (1980).

Strict stationarity was first established for GARCH(1, 1) models by Nel-
son (1991), and for GARCH(p, q) processes by Bougerol and Picard (1992b).
The conditions for the existence of a strictly stationary GARCH process
that is also (weakly) stationary is much simpler; see Giraitis, Kokoszka
and Leipus (2000). The extremal behavior of ARCH(1) processes was pre-
sented in §8.4.3 of Embrechts, Klüppelberg, and Mikosch (1997), and see
also Zhang and Tong (2001).
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Under the assumption that E(ε4t ) <∞ but εt may be non-Gaussian, the
asymptotic normality for Gaussian conditional maximum likelihood esti-
mators was established for the ARCH(p) models by Weiss (1986), and for
GARCH(1,1) models by Lee and Hansen (1994) and Lumsdaine (1996).
Hall and Yao (2003) established the comprehensive asymptotic theory for
Gaussian conditional maximum likelihood estimators for general GARCH
(p, q) models including heavy-tailed cases. On the other hand, estimation
for ARCH(p) models adaptive to unknown error distributions was consid-
ered by Linton (1993). Whittle estimation for a general ARCH(∞) process
was studied by Giraitis and Robinson (2001).

The most popular ARCH test in the literature is Engle’s (1982) Lagrange
multiplier test (LMT) TR2; see (4.53). Lee (1991) showed that a modified
LMT for GARCH(p, q) is the same as the LMT for ARCH(p). McLeod
and Li (1983) applied the portmanteau tests of (7.29) due to Box and
Pierce (1970) and Ljung and Box (1978) in the context of ARCH/GARCH
models, which are asymptotically equivalent to the LMT (Granger and
Terasvirta 1993, pp.93–94). Other ARCH tests include those of Weiss (1986),
Robinson (1991b), and Bera and Higgins (1992). The literature on non-
parametric tests for the ARCH effect includes Chen and An (1997) and
Läib (2002); see also Koul and Stute (1999).

The early developments on bilinear models are summarized in Subba Rao
and Gabr (1984). An excellent survey on both basic properties and statisti-
cal inference for bilinear models is available in Pham (1993). Terdik (1999)
is a modern account on the frequency-domain approach for bilinear models
based on chaotic Wiener–Itô spectral representation.

The stationarity of bilinear processes was also studied by, among others,
Hannan (1982), Liu and Brockwell (1982),Quinn (1982), Bhaskara Rao,
Subba Rao and Walker (1983), Pham (1986), and Liu (1990, 1992). The
stationarity for random coefficient autoregressive models was studied by
Pham (1986) and Bougerol and Picard (1992a). The invertibility of bilin-
ear models was discussed, for example, in Granger and Andersen (1978b),
Subba Rao (1981), Quinn (1982), Guegan and Pham (1989), and Pham
(1993).

Method-of-moments estimation for simple bilinear models can be found
in Kim, Billard, and Nasawa (1990) and Liu and Chen (1991). Sesay and
Subba Rao (1992) proposed a Whittle-like estimator for bilinear models.
Various statistical tests for linearity were assembled in §5.3 of Tong (1990).
Saikkonen and Luukkonen (1991) and Guegan and Pham (1992) studied
score tests for bilinear models.



5
Nonparametric Density Estimation

5.1 Introduction

Smoothing is one of the most fundamental techniques in nonparamet-
ric function estimation. It usually refers to one-dimensional scatterplot
smoothing and density estimation. It serves as a useful building block for
nonparametric estimation in a multidimensional setting. Smoothing arose
first from spectral density estimation in time series. In a discussion of the
seminal paper by Bartlett (1946), Henry E. Daniels suggested that a possi-
ble improvement on spectral density estimation could be made by smoothed
periodograms. The theory and techniques were then systematically devel-
oped by Bartlett (1948, 1950). Thus, smoothing techniques were already
prominently featured in time series analysis over half a century ago.

Smoothing problems arise frequently from various aspects of time series
analysis. Smoothing techniques provide useful graphic tools for summa-
rizing the marginal distribution of a given time series. They can also be
applied to estimate and a remove slowly varying time trend. This results in
time domain smoothing. The need to study the associations between a time
series and its lagged series leads to state domain smoothing. These tech-
niques can easily be extended to estimate the conditional variance (volatil-
ity) of a time series. To examine cyclic patterns and other features, such as
the power spectrum in a time series, smoothing techniques are frequently
employed to estimate spectral density. An important question in fitting
time series data is whether or not the residuals of a fitted model behave
like white noise. Nonparametric function estimation provides useful tools
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Kernel density estimation redistributes point masses

FIGURE 5.1. Kernel density estimation redistributes the point mass, depicted
by a solid vertical bar, at each datum point and adds the redistributed masses
together to get the final estimate.

for this kind of nonparametric goodness-of-fit test. These subjects will be
discussed in this and the next two chapters.

The simplest nonparametric function estimation problem is probably the
density estimation. This simple setup provides useful ingredients for our
understanding of more complicated problems in nonparametric modeling
and inferences. This motivates us to devote this chapter to nonparametric
density estimation.

5.2 Kernel Density Estimation

What is the distribution of the yields of Treasury bills? Use of a histogram
is a classical method of answering this question. An improvement of the
histogram method is the kernel density estimation. It is used to examine the
overall distribution of a data set. This includes the number and locations of
peaks and troughs as well as the symmetry of a density. It is the simplest
setting to reveal the basic ingredients of nonparametric function estimation.
The comprehensive account of density estimation and its applications is
given in Devroye and Györfi (1985), Silverman (1986), and Scott (1992).
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Given T data points X1, · · · , XT , their empirical distribution function is
obtained by putting mass 1/T at each observed datum:

F̂ (x) =
1
T

T∑
t=1

I(Xt ≤ x).

This cumulative distribution function is nondecreasing and is not that use-
ful for examining the overall structure of the underlying distribution. When
one refers to distributions, one often has density functions in mind. How-
ever, the density of the empirical distribution does not exist. An improve-
ment over the empirical distribution function is to smoothly redistribute
the mass 1/T at each datum point to its vicinity (see Figure 5.1). This is
usually accomplished by introducing a kernel function K, which is usually
a nonnegative symmetric, unimodal probability density function. Let h be
a bandwidth parameter representing the window size in Figure 5.1 (indeed,
it is the standard deviation of density functions plotted in dashed lines).
Then, the kernel density estimate is defined by

f̂h(x) = T−1
T∑
t=1

1
h
K

(
Xt − x
h

)
=
∫
Kh(u− x)dF̂ (u), (5.1)

where Kh(·) = K(·/h)/h.
Commonly used kernel functions include the Gaussian kernel

K(u) = (
√

2π)−1 exp(−u2/2)

and the symmetric Beta family

Kγ(u) =
1

Beta(1/2, γ + 1)
(1− u2)γI(|u| ≤ 1).

The choices γ = 0, 1, 2, and 3 correspond to the uniform, the Epanech-
nikov, the biweight , and the triweight kernel functions, respectively. When
γ is large, by appropriate rescaling, the symmetric gamma kernel is ap-
proximately the same as the Gaussian kernel function. Note that different
kernel functions have different support. For example, the uniform kernel
has effective support [−1, 1], while the triweight kernel has much shorter
effective support (due to a smaller weight at tails) and the Gaussian ker-
nel has much longer effective support (see Figure 5.2). Thus, even with
the same bandwidth, different kernels use different amounts of information
provided by the local data points around x. Formula (5.7) below attempts
to relate the equivalent amount of smoothing using two different kernels.
The concept of canonical kernels introduced by Marron and Nolan (1988)
attenuates this problem.

To employ the kernel density estimator, one needs to choose the kernel
function and the bandwidth. It is well-known both empirically and theo-
retically that the choice of kernel functions is not very important to the
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FIGURE 5.2. Commonly used kernel functions normalized to have maximum
height 1 to facilitate the presentation. The thick curve is the Gaussian kernel,
which has a much longer effective support than other kernels.

kernel density estimator. As long as they are symmetric and unimodal, the
resulting kernel density estimator performs nearly the same when the band-
width h is optimally chosen (see Table 5.1 in §5.4). Thus, as demonstrated
in Figure 5.3, a large bandwidth h produces an oversmooth estimate, leav-
ing out possible details such as multimodalities and underestimating the
density at peaks. In other words, the estimate can create large biases when
a large bandwidth is used. When a small bandwidth is applied, there are
not many local data points available to reduce the variance of the estimate.
This can result in a wiggly curve. Trial-and-error is needed in order to pro-
duce satisfactory results. A data-driven choice of bandwidth can assist us in
determining the optimal amount of smoothing (see §5.4 for more details).

As an illustration, Figure 5.3 depicts the estimated distributions for the
yields of 3-month Treasury bills using the Gaussian kernel with bandwidths
h = 0.61/3, 0.61, and 3× 0.61. The S-Plus function “density” was used to
compute the kernel density estimator. The bandwidth h = 0.61 was deter-
mined by the normal reference bandwidth selector (5.9) below. It is clear
that a small bandwidth results in an undersmoothed estimator, creating a
wiggly density function with artificial modes, while a large bandwidth leads
to an oversmoothed curve, obscuring fine structure of the underlying dis-
tribution. The simple reference bandwidth h = 0.61, which is often viewed
as an initial choice for h, gives a reasonable amount of smoothing for this
example, although the resulting curve appears somewhat oversmoothed.
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Distribution for the yields of 3-month Treasury bills

FIGURE 5.3. Estimated densities for the yields (in percent) of 3-month Treasury
bills using the Gaussian kernel with bandwidths h = 0.61/3 (short-dashed curve),
0.61 (solid curve), and 3 × 0.61(long-dashed curve). A factor of 3 is intentionally
used to illustrate the effects of undersmoothing and oversmoothing.

As shown in Figure 5.3, the distribution of the interest rates has a long
right tail. The median and mode are about 5.34%, while the mean is 5.97%.
The interest rate at the beginning of the 1980s was as high as over 15%.

5.3 Windowing and Whitening

If the data {Xt}Tt=1 are a realization from a stationary process with marginal
density f , then by a change of variable,

Ef̂h(x) = EKh(Xt − x) =
∫ +∞

−∞
K(u)f(x+ hu)du. (5.2)

Thus, the bias of the estimator, defined as Ef̂h(x)−f(x), does not depend
on the dependent structure of the data. It is the same as that for the in-
dependent sample. The variance of the estimator can, however, be affected
by the dependent structure.

To gain further insights, let us consider the case where K has a bounded
support [−1, 1]. Then, the kernel density estimator (5.1) uses only the local
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Distribution of the lynx data

FIGURE 5.4. (a) Lag 1 scatterplot of the lynx data. (b) Lag 1 scatterplot of
those data {Yj , j = 1, · · · , J} falling in the local neighborhood 2.7 ± 0.2. The
point Xt(j) is plotted against Xt(j−1) using the number t(j) to indicate the point
(Xt(j−1), Xt(j)). (c) Kernel density estimate for the lynx data using the bandwidth
h = 0.14 (solid) and 0.23 (dashed).

data points within the local window x± h:

f̂h(x) = T−1
J∑
j=1

Kh(Xt(j) − x),

where t(j) is the jth data point falling in the interval x ± h and J is
the total number of local data points. Although the data in the original
sequence can be highly correlated, the dependence for the new series {Yj =
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Xt(j), j = 1, · · · , J} in the local window around x can be much weaker.
This is due to the fact that the time sequence {t(j), j = 1, · · · , J} is quite
far apart for small bandwidth h (see Figure 5.4 for an illustration). The lag
1 autocorrelation for the lynx data is much stronger than that for the data
in the local window, 2.7±0.2. Indeed, the local data look like those from an
independent sample. Hence, one would expect that the asymptotic variance
for the kernel density estimator is the same as that for the independent
observations when certain mixing conditions are imposed. This intuition
is elucidated by Hart (1996). Because of the whitening property by local
windowing in the state domain, the kernel density estimators for mixing
processes behave very much like those for independent samples. Hence, all
techniques for independent samples can be extended to mixing stationary
processes. We will develop some of the basic theory in §5.6. The effect
of dependence structure on the kernel density estimation was thoroughly
studied recently by Claeskens and Hall (2002).

5.4 Bandwidth Selection

When the data {Xt} are a realization from a stationary process, by Theo-
rem 5.1 below, the mean square error (MSE) of the kernel density estimator
can be expressed as

MSE(x) ≡ E{f̂h(x)− f(x)}2

≈ 1
4

{∫ +∞

−∞
u2K(u)du

}2

{f ′′(x)}2h4 +
∫ +∞

−∞
K2(u)du

f(x)
Th

(5.3)

for x in the interior of the support of f . Here and hereafter, “≈” means
that both sides have the same leading terms. This is a pointwise measure.
A global measure can be obtained by using a mean integrated square error
(MISE):

MISE ≡ E
∫ +∞

−∞
{f̂h(x)− f(x)}2dx

≈ 1
4

{∫ +∞

−∞
u2K(u)du

}2 ∫ +∞

−∞
{f ′′(x)}2dxh4 +

∫ +∞

−∞
K2(u)du

1
Th

. (5.4)

Minimizing the asymptotic MISE with respect to the bandwidth parameter
h results in a bandwidth, called the asymptotically optimal bandwidth or
simply the optimal bandwidth , which is given by

hopt = α(K)‖f ′′‖−2/5
2 T−1/5, (5.5)

where ‖g‖22 =
∫ +∞

−∞ g(u)2du is the L2-norm, µ2(K) =
∫ +∞

−∞ u2K(u)du is the
variance of K, and

α(K) = µ2(K)−2/5‖K‖2/52
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TABLE 5.1. Some useful constants related to the kernel functions.

Functional Gaussian Uniform Epanechnikov Biweight Triweight
µ2(K) 1 0.3333 0.2000 0.1429 0.1111
‖K‖22 0.2821 0.5000 0.0600 0.7143 0.8159
α(K) 0.7764 1.3501 1.7188 2.0362 2.3122
β(K) 0.3633 0.3701 0.3491 0.3508 0.3529

is a known constant. With this asymptotically optimal bandwidth, the
optimal MISE is given by

5
4
β(K)‖f ′′(x)‖2/52 T−4/5, (5.6)

where
β(K) = µ2(K)2/5‖K‖8/52 .

It follows from (5.5) that the optimal bandwidths for the two different
kernel functions K1 and K2 satisfy

hopt(K1) =
α(K1)
α(K2)

hopt(K2),

where hopt(K1) and hopt(K2) are, respectively, the optimal bandwidths as-
sociated with the kernel functionsK1 andK2. Table 5.1 below tabulates the
values of these useful functions for a few commonly-used kernel functions.
From this table, different choices of kernels using their optimal bandwidth
perform nearly the same (see the row with β(K)). Therefore, the kernel K2
using the bandwidth h2 performs nearly the same as the kernel K1 using
the bandwidth

h1 =
α(K1)
α(K2)

h2. (5.7)

This is the idea behind the concept of the canonical kernel (Marron and
Nolan 1988). It allows two investigators to compare the amount of smooth-
ing even though they used two different kernels.

The optimal bandwidth (5.5) is not directly usable since it depends on
the unknown parameter ‖f ′′‖2. When f is a Gaussian density with standard
deviation σ, one can easily deduce from (5.5) that

hopt,T = (8
√
π/3)1/5α(K)σT−1/5. (5.8)

The normal reference bandwidth selector (see, for example, Bickel and Dok-
sum 1977; Silverman 1986) is the one obtained by replacing the unknown
parameter σ in (5.8) by the sample standard deviation s. In particular, after
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calculating the constant α(K) numerically, we have the following normal
reference bandwidth selector:

ĥopt,n =
{

1.06sT−1/5 for the Gaussian kernel
2.34sT−1/5 for the Epanechnikov kernel

. (5.9)

An improved rule can be obtained by writing an Edgeworth expansion
for f around the Gaussian density. Such a rule is provided in Hjort and
Jones (1996b) and is given by

ĥ∗
opt,T = ĥopt,T

(
1 +

35
48
γ̂4 +

35
32
γ̂2
3 +

385
1024

γ̂2
4

)−1/5

,

where γ̂3 and γ̂4 are, respectively, the sample skewness and kurtosis, defined
by

γ̂3 = (T − 1)−1
T∑
t=1

(Xt − X̄)3/s3,

γ̂4 = (T − 1)−1
T∑
t=1

(Xt − X̄)4/s4 − 3.

The normal reference bandwidth selector is only a simple rule of thumb.
It is a good selector when the data are nearly Gaussian-distributed and is
often reasonable in many applications. However, it can lead to oversmooth-
ing when the underlying distribution is asymmetric or multimodal. In that
case, one can either subjectively tune the bandwidth or select the band-
width by more sophisticated bandwidth selectors. One can also transform
data first to make their distribution closer to normal, then estimate the
density using the normal reference bandwidth selector, and then apply the
inverse transform to obtain an estimated density for the original data. Such
a method is called the transformation method; see (5.12) below. For the
asymmetric distribution suggested by Figure 5.3, the normal reference gives
a somewhat oversmooth estimate. For the bimodal data in Figure 5.4(c),
the normal reference bandwidth selector gives ĥ = 0.23 and results in an
oversmooth estimate. We hence reduce the amount of smoothing until a
reasonable estimate (solid curve in Figure 5.4) is obtained.

There are quite a few important techniques for selecting the bandwidth,
such as cross-validation (CV) and plug-in bandwidth selectors. A con-
ceptually simple technique, with theoretical justification and good empiri-
cal performance, is the plug-in technique . This technique relies on finding
an estimate of the functional ‖f ′′‖22 in (5.5). A good implementation of
this approach is proposed by Sheather and Jones (1991). An overview on
the progress of bandwidth selection can be found in Jones, Marron, and
Sheather (1996); see also §6.3.5.
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Kernel density estimate for simulated data

FIGURE 5.5. Kernel density estimate for a random sample of size n = 200 drawn
from the standard exponential distribution; the solid curve is the true curve, and
the dashed curve is the estimated curve. The boundary effect can easily be seen.

5.5 Boundary Correction

In many situations, the density f is known to have a bounded support. For
example, the interest rate cannot be less than zero. It is natural to assume
that the interest rate has support [0,∞). In fact, over the last forty years,
the lowest short-term interest rate is 2.11% and the highest interest rate
is 16.76%, so it is not unreasonable to assume that the short-term interest
rate has a support interval [2%, 17%]. However, because a kernel density
estimator spreads point masses smoothly around the observed data points,
some of those near the boundary of the support are distributed outside
the support of the density (see Figure 5.3). As a result, the kernel density
estimator underestimates the density in the boundary regions. As shown
in Figure 5.3, the problem is more severe for large bandwidths and for the
left boundary, where the density is high. Therefore, some adjustments are
needed.

To gain some further insights, let us assume without loss of generality
that the density function f has a bounded support [0, 1] and we deal with
the density estimate at the left boundary. For simplicity, suppose that K
has a support [−1, 1]. Then, the point x = ch(0 ≤ c < 1) is a left boundary
point. It can easily be seen that as h→ 0,

Ef̂h(ch) =
∫ ∞

−c
f(ch+ hu)K(u)du = f(0)

∫ ∞

−c
K(u)du+ o(1). (5.10)
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In particular, Ef̂h(0) = f(0)/2+o(1) for symmetric kernels. In other words,
the estimator at the left boundary point estimates only half of its true
density. To illustrate this point, a random sample of size 200 was drawn
from the standard exponential distribution f(x) = exp(−x)I(x ≥ 0), and
the density is estimated based on the kernel density estimator using the
Gaussian kernel with bandwidth 0.344 obtained from (5.9). It is apparent
that the estimate at point x = 0 is only about half of the true value.

There are several methods to deal with the density estimation at bound-
ary points. Possible approaches include the boundary kernel, reflection,
transformation, and local polynomial fitting. Here, we introduce two simple
approaches: reflection and transformation methods.

The reflection method is to construct the kernel density estimate based
on the “reflected” data {−Xt, t = 1, · · · , T} and the original data {Xt, t =
1, · · · , T}. This results in the estimate

f̂�h(x) =
1
T

{
T∑
t=1

Kh(Xt − x) +
T∑
t=1

Kh(−Xt − x)
}

for x ≥ 0. (5.11)

Note that when x is away from the boundary, the second term in (5.11) is
negligible. Hence, it only corrects the estimate in the boundary region; see
Schuster (1985) and Hall and Wehrly (1991). This estimator is twice the
kernel density estimate based on the synthetic data {±Xt, t = 1, · · · , T}.
In general, if the left boundary point is x0 (instead of 0), the synthetic data
are

{−(Xt − x0), Xt, t = 1, · · · , T},
leading to the estimate

f̂�h(x) =
1
T

{
T∑
t=1

Kh(Xt − x) +
T∑
t=1

Kh(x0 −Xt − x)
}
, for x ≥ x0.

For the simulated data given in Figure 5.5, Figure 5.6(a) depicts the es-
timate based on this method. The Gaussian kernel and bandwidth 0.344
were used.

Another simple method is first to transform the data by

Yi = g(Xi), i = 1, · · · , n,

where g is a given monotone increasing function ranging from −∞ to ∞.
Now, apply the kernel density estimator (5.1) to this transformed data set
to obtain the estimate f̂Y (y), and apply the inverse transform to obtain
the density of X. This results in

f̂X(x) = g′(x)f̂Y (g(x)) = g′(x)T−1
T∑
t=1

Kh(g(x)− g(Xt)), (5.12)
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Transformation method

FIGURE 5.6. (a) Kernel density estimation using the reflection method. (b) Ker-
nel estimate using the transformation method; the solid curve is the true curve,
and the dashed curve is the estimated curve.

where g′(·) is the derivative function of g(·). Figure 5.6(b) illustrates this
idea using the logarithmic transform to the data given in Figure 5.5. We
first apply the kernel density to the transformed data {− log(Xt), t =
1, · · · , 200} to obtain f̂Y (y). The normal reference bandwidth selector gives
h = 0.344 for the transformed data using the Gaussian kernel. Hence, the
estimated density is f̂X(x) = f̂Y (log x)/x, or f̂X(exp(x)) = exp(−x)f̂Y (x).
Thus, the estimated density can be obtained by plotting exp(x) against
exp(−x)f̂Y (x). The density at x = 0 corresponds to the tail density of the
transformed data since log(0) = −∞, which cannot usually be estimated
well due to the lack of data at tails. Except at this point, the transformation
method does a fairly good job.

5.6 Asymptotic Results�

We now derive the asymptotic bias and variance of the kernel density esti-
mator as the sample size T →∞. Necessarily, the bandwidth h depends on
T and tends to zero. The idea used here can be extended to more sophis-
ticated settings such as nonparametric regression. We begin with a simple
lemma that is useful for deriving asymptotic bias.

Lemma 5.1 Let f have the pth bounded derivative that is continuous at
an interior point x of the support of f . Assume that K is a function such
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that
∫ +∞

−∞ |upK(u)|du <∞. Then, as h→ 0, we have
∫ +∞

−∞
f(x+ hu)K(u)du =

p∑
i=0

µi(K)f (i)(x)hi/i! + o(hp),

where µi(K) =
∫ +∞

−∞ uiK(u)du.

Proof. Let D =
∫ +∞

−∞ f(x+ hu)K(u)du−∑p
i=0 µi(K)f (i)(x)hi/i!. Then

D =
∫ +∞

−∞

{
f(x+ hu)−

p∑
i=0

f (i)(x)(hu)i/i!

}
K(u)du.

By the Taylor expansion,

D =
hp

p!

∫ +∞

−∞
{f (p)(x+ ξT )− f (p)(x)}upK(u)du,

where ξT lies between 0 and hu. By a simple application of the Lebesgue
dominated convergence theorem, we have

D/hp → 0 as h→ 0.

This completes the proof.

Note that when the kernel function K has a bounded support, the in-
tegration above takes place only around a neighborhood of x. Hence, it
suffices to assume that the density f has a pth continuous derivative at
the point x. For this reason, the bounded support of K is frequently im-
posed for the sake of simplicity. It can be removed at the cost of lengthier
arguments. In particular, the Gaussian kernel is allowed.

By using the lemma above and (5.2) for the kernel function satisfying
∫ +∞

−∞
K(u)du = 1,

∫ +∞

−∞
uK(u)du = 0,

we obtain immediately that the bias of the kernel density estimator is

µ2(K)
2

f ′′(x)h2 + o(h2),

provided that f has a continuous second derivative. If f has a higher-order
derivative, a bias of order O(hp) can be obtained by requiring

µ0(K) = 1, µj(K) = 0, j = 1, · · · , p− 1, (5.13)

but the gain usually is not substantial for practical sample sizes. A kernel
satisfying (5.13) is called a pth order kernel . When p > 2, K can no longer
be nonnegative since µ2(K) = 0.

We now turn to computing the variance component. For this, we assume
that the process {Xt} is a stationary process with α-mixing coefficient α(k).
Furthermore, let g�(x, y) be the joint density between X1 and X�+1.



206 5. Nonparametric Density Estimation

Theorem 5.1 Let {Xt} be an α-mixing process with the mixing coefficient
|α(�)| ≤ C�−β for some c > 0 and β > 2. Assume further that ‖g�‖∞ =
sup(x,y) g�(x, y) is bounded. Suppose that K is a bounded kernel function
with a bounded support and µ1(K) = 0 and that h→ 0 in such a way that
Th → ∞. If f has the continuous second derivative at an interior point x
of the support of f , then

Ef̂h(x) = f(x) +
µ2(K)

2
f ′′(x)h2 + o(h2)

and

Var{f̂h(x)} =
f(x)
Th
‖K‖22 + o

(
1
Th

)
.

Proof. The bias expression follows directly from Lemma 5.1. Thus, we
only need to derive the asymptotic expression for the variance term. Let
Zt = Kh(Xt − x). Then, by the stationarity of {Xt}, we have

Var(f̂h(x)) =
1
T

Var(Z1) +
2
T

T−1∑
�=1

(1− �/T )Cov(Z1, Z�+1).

Note that EZ1 = Ef̂h(x) = O(1). By a change of variables and Lemma 5.1,
we have

Var(Z1) = EK2
h(Xt − x)− (EZ1)2

= h−1
∫ +∞

−∞
K2(u)f(x+ hu)dx− (EZ1)2

= h−1f(x)‖K‖22 + o(h−1).

Thus, we need only to show that

T−1∑
�=1

|Cov(Z1, Z�+1)| = o(h−1). (5.14)

By using Billingsley’s inequality (Proposition 2.5 (ii)), we have

|Cov(Z1, Z�+1)| ≤ 4α(�)‖Z1‖∞‖Z�+1‖∞ ≤ 4α(�)‖K‖2∞/h2. (5.15)

On the other hand,

|Cov(Z1, Z�+1)| = |EZ1Z�+1 − (EZ1)2|

≤
∫ +∞

−∞

∫ +∞

−∞
Kh(u− x)Kh(v − x)g�(u, v)dudv

+(EZ1)2

≤ ‖g�‖∞ + (EZ1)2. (5.16)



5.6 Asymptotic Results� 207

Hence, the covariance is bounded by a constant C.
We now verify (5.14). Let dT → ∞ be a sequence of integers. Then, by

(5.16),
dT −1∑
�=1

|Cov(Z1, Z�+1)| ≤ CdT .

Using (5.15) and the assumption on the mixing coefficient, we have

T−1∑
�=dT

|Cov(Z1, Z�+1)| ≤ D
∞∑

�=dT

�−β/h2 = O(d−β+1
T /h2),

for some constant D. By taking dT = h−2/β , we have
T−1∑
�=1

|Cov(Z1, Z�+1)| = O(h−2/β) = o(1/h)

for β > 2. Hence (5.14) follows. This completes the proof.

The pointwise mean square error admits the following bias and variance
decomposition:

MSE(x) = E{f̂h(x)− f(x)}2
= {Ef̂h(x)− f(x)}2 + Var{f̂h(x)}.

By Theorem 5.1, an approximation of the MSE is given by (5.3). Mini-
mizing the right-hand side of (5.3) with respect to h yields the asymptotic
pointwise optimal bandwidth

hopt(x) = α(K){f ′′(x)}−2/5f(x)1/5T−1/5,

provided that f ′′(x) �= 0. The minimum (ideal) risk, which is the minimizer
of the main order approximation of MSE(x), is given by

5
4
β(K)f ′′(x)2/5f(x)4/5T−4/5, (5.17)

where β(K) is given in (5.6). Similarly, minimizing the right-hand side of
(5.4) gives the optimal bandwidth (5.5) and the minimum (ideal) MISE
in (5.6). Therefore, by taking the square-root, the kernel density estima-
tor can achieve the rate of convergence T−2/5. This rate is achievable as
long as h = cT−1/5 for some c > 0. This is the best possible rate for esti-
mating the density function among the class of functions with the second
bounded derivative, according to Farrell (1972), Hasminskii (1978), and
Stone (1980).

The asymptotic normality of the kernel density estimator also holds.
We state the theorem without a proof. The proof is very similar to that
of Theorem 6.3. We leave it as an exercise to the reader. The condition
Th5/3 → ∞ can be relaxed if the mixing condition α(�) ≤ c|�|−β with
β > 2 is strengthened.
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Theorem 5.2 Under the conditions of Theorem 5.1, if Th5/3 →∞, then
we have

√
Th

{
f̂h(x)− f(x)− µ2(K)

2
f ′′(x)h2 + o(h2)

}
D−→ N

(
0, f(x)‖K‖22

)
.

The kernel density estimator possesses various nice properties. See Chap-
ter 2 of Bosq (1998) for some of them. We prove a result that is similar to
Theorem 2.2 of Bosq (1998), but the geometric mixing condition there is
significantly relaxed.

Theorem 5.3 Assume that the mixing coefficient of the process {Xt} sat-
isfies α(�) ≤ c�−β with β > 5/2. Suppose that the density f of Xt is bounded
on an interval [a, b] and that K satisfies a Lipschitz condition. Then

sup
x∈[a,b]

|f̂h(x)− Ef̂h(x)| = OP

{(
log T
Th

)−1/2
}
,

provided that h→ 0 in such a way that

T 2β−5h2β+5(log T )−(2β+1)/4 →∞.

As a corollary of Theorem 5.3, when the process is geometrically mixing
α(�) < cρ� for some c > 0 and some ρ ∈ [0, 1), Theorem 5.3 holds for
h = dT−γ for any γ ∈ (0, 1) and d > 0.

Theorem 5.3 controls uniformly the stochastic errors of the kernel density
estimator. The bias term Ef̂h(x)− f(x) is deterministic and can easily be
bounded uniformly by using Lemma 5.1. It is of order O(h2). By choosing
h = O((log T/T )1/5), one obtains

sup
x∈[a,b]

|f̂h(x)− f(x)| ≤ sup
x∈[a,b]

|Ef̂h(x)− f(x)|+ sup
x∈[a,b]

|f̂h(x)− Ef̂h(x)|

= OP {(log T/T )2/5}

when α(�) ≤ c�−β with β > 15/4. This rate is optimal according to Has-
minskii (1978).

A more precise description of the uniform convergence is given by Bickel
and Rosenblatt (1973), who derived the asymptotic distribution of the nor-
malized statistic

MT = sup
0≤x≤1

[f(x)‖K‖22/(Th)]−1/2(f̂h(x)− Ef̂h(x))

for independent samples. We would expect the result to hold for a station-
ary process under certain mixing conditions. Here, the interval [0, 1] is used
for convenience. It can be replaced by any other intervals in the support
of f . We require that the density f be continuous and positive on [0, 1]
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and that f ′(x)/f1/2(x) and f ′′(x) be bounded on [0, 1]. Assume that K is
bounded and symmetric about 0. Moreover, K either vanishes outside an
interval [−A,A] and is absolutely continuous on [−A,A] with derivative
K ′ or is absolutely continuous on (−∞,∞) such that µ2(K), µ2(K ′), and
‖K ′‖2 are finite.

Theorem 5.4 Under the conditions above, if X1, · · · , XT are indepen-
dently and identically distributed, we have

P
{

(−2 log h)1/2(MT − dT ) < x
}
→ exp(−2 exp(−x)),

provided that h = cT−δ for 0 < δ < 1/2 and c > 0, where

dT = (−2 log h)1/2 + (−2 log h)−1/2{log c(K)/π1/2 − 0.5 log log h}
if c(K) = K2(A)/‖K‖22 > 0 and otherwise

dT = (−2 log h)1/2 + (−2 log h)−1/2 log
‖K ′‖22

4π‖K‖22
.

A corollary of Theorem 5.4 is that MT = Op{(− log h)1/2}. This entails
that

sup
0≤x≤1

{f̂h(x)− Ef̂h(x)} = OP [{−(log h)/(Th)}1/2],

the same order as that given in Theorem 5.3. An application of Theorem 5.4
is to construct simultaneous confidence intervals for all {f(x), x ∈ [0, 1]}.
Indeed, by Theorem 5.4, with approximate probability 1− α,

MT ≤ dT − (−2 log h)−1/2 log
{
−1

2
log(1− α)

}
≡ c(α, h).

The expression above is equivalent to

Ef̂h(x) ∈ f̂h(x)± c(α, h)[f(x)‖K‖22/(Th)]1/2, ∀x ∈ [0, 1].

Using Theorem 5.1, Ef̂h(x) = f(x)+O(h2). Substituting this into the last
expression and replacing f(x) by its estimate, we have an approximate level
(1− α) confidence interval

f(x) ∈ f̂h(x)± c(α, h)[f̂h(x)‖K‖22/(Th)]1/2, ∀x ∈ [0, 1],

if h = o{(T log T )−1/5}.
Finally, we would like to make some notes on the optimal kernel. Optimal

theory on the choices of kernel functions can be found in Gasser, Müller,
and Mammitzsch (1985) and Müller(1991, 1993). The ideal pointwise MSE
(5.17) and the ideal MISE (5.6) depend on K through β(K) given in (5.6).
Theorem 5.5 shows that the optimal kernel is the Epanechnikov kernel.
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The result is due to Epanechnikov (1969) for the kernel density estimation.
But this result has already appeared in the robust regression literature (see
p. 384 of Lehmann 1983, and references therein). Such a kernel has been
used as a converging factor in the Fourier transform by Bochner (1936)
and in spectral density estimation by Parzen (1961). With the known op-
timal kernel, it can easily be computed that the values of β(K) for other
commonly-used kernels are close to optimal. See row β(K) of Table 5.1.

Theorem 5.5 The nonnegative probability density function K that mini-
mizes β(K) is a rescaling of the Epanechnikov kernel :

Kopt(u) =
3
4a

(1− u2/a2)+ for any a > 0.

Proof. First, we note that β(Kh) = β(K) for any h > 0. Let K0 be
the Epanechnikov kernel. For any other nonnegative K, by rescaling if
necessary, we assume that µ2(K) = µ2(K0). Thus, we need only to show
that ‖K0‖ ≤ ‖K‖. Let δ = K −K0. Then

∫ +∞

−∞
δ(u)du = 0,

∫ +∞

−∞
u2δ(u)du = 0,

which implies that
∫ +∞

−∞
(1− u2)δ(u)du = 0.

Using this and the fact that K0 has the support [−1, 1], we have

∫ +∞

−∞
δ(u)K0(u)du =

∫

|u|≤1
δ(u)(1− u2)du

= −
∫

|u|>1
δ(u)(1− u2)du

=
∫

|u|>1
K(u)(u2 − 1)du.

Since K is nonnegative, so is the last term. Therefore

∫ +∞

−∞
K2(u)du =

∫ +∞

−∞
K2

0 (u)du+ 2
∫ +∞

−∞
K0(u)δ(u)du+

∫ +∞

−∞
δ2(u)du

≥
∫ +∞

−∞
K2

0 (u)du,

which proves that K0 is the optimal kernel.
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5.7 Complements—Proof of Theorem 5.3

Throughout this section, we use C to denote a generic constant, which may
vary from line to line.

We first reduce the problem from the supremum over the interval [a, b] to
the maximum over a grid of points on that interval. To this end, partition
the interval [a, b] into N subintervals {Ij} of equal length. Let {xj} be the
centers of Ij . By the Lipschitz condition on K, we have with probability
tending to 1

|f̂h(x)− f̂h(x′)| ≤ T−1
T∑
t=1

|Kh(x−Xt)−Kh(x′ −Xt)| ≤ Ch−1|x− x′|.

This entails that

|Ef̂h(x)− Ef̂h(x′)| ≤ E|f̂h(x)− f̂h(x′)| ≤ Ch−1|x− x′|.

Using these, we have

sup
x∈Ij

|f̂h(x)− Ef̂h(x)| ≤ |f̂h(xj)− Ef̂h(xj)|+ C(Nh)−1.

Thus

sup
x∈[a,b]

|f̂h(x)− Ef̂h(x)| ≤ max
1≤j≤N

|f̂h(xj)− Ef̂h(xj)|+ C(Nh)−1.

By taking N = (T/h)1/2, we have

sup
x∈[a,b]

|f̂h(x)− Ef̂h(x)| ≤ max
1≤j≤N

|f̂h(xj)− Ef̂h(xj)|+ C(Th)−1/2. (5.18)

We now bound the tail probability for f̂h(x)−Ef̂h(x). Let Yt = Kh(x−
Xt)−EKh(x−Xt). Then ‖Yt‖∞ < Ch−1. By using the exponential inequal-
ity (Theorem 2.18), we have for any ε > 0, and each integer q ∈ [1, T/2],

P{|f̂h(x)− Ef̂h(x)| > ε} ≤ 4 exp
(
− ε2q

8v2(q)

)

+ 22
{

1 +
4C
hε

}1/2

qα

([
T

2q

])
, (5.19)

where
v2(q) = 2σ2(q)/p2 + Cε/(2h)

with p = [T/(2q)] and

σ2(q) = max
0≤j≤2q−1

Var{Yjp+1 + · · ·+ Y(j+1)p+1}.
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By Theorem 5.1, σ2(q) ≤ Cph−1. Thus, by taking q = Tε,

v2(q) ≤ C(ph)−1 + Cεh−1 ≤ Cεh−1.

This and (5.19) imply that

P{|f̂h(x)− Ef̂h(x)| > ε} ≤ 4 exp(−CThε2) + CTh−1/2εβ+0.5. (5.20)

We now prove the theorem. By taking ε2 = a log T/(CTh) for a suffi-
ciently large a, the right-hand side of (5.20) is bounded by

4T−a + CT−β/2+0.75h−β/2−0.75(log T )β/2+0.25.

Consequently,

P

(
max

1≤j≤N
|f̂h(xj)− Ef̂h(xj)| > ε

)

≤ N{4T−a + T−β/2+0.75h−β/2−0.75(log T )β/2+0.25}
= o(1) +O

{
(Th)−(2β−5)/4h−5/2(log T )(2β+1)/4},

which tends to zero. This entails that

max
1≤j≤N

|f̂h(xj)− Ef̂h(xj)| = Op

{(
log T
Th

)1/2
}
,

which together with (5.18) proves the theorem.

5.8 Bibliographical Notes

The literature on nonparametric smoothing is vast. It includes kernel den-
sity estimation, nonparametric regression, time-domain smoothing, spec-
tral density estimation, and applications to other statistical estimations.
Indeed, most parametric problems have their nonparametric counterpart.
Most nonparametric results can be generalized from independent data to
dependent data. Nonparametric function estimation has been one of the
most active areas over the last three decades. Many new techniques have
been invented, and many new phenomena have been unveiled. It is impos-
sible to give a complete survey of this vast area. Rather, we sample only a
small fraction of references from this active area. They are not even repre-
sentative of the many important contributions in the field. In this section,
we mainly outline the key developments for dependent data. Books on non-
parametric function estimation listed in §1.7 give more detailed accounts
of the work on independent data. Related literature can be found in §6.7
and §7.6.
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Extensive treatments of nonparametric function estimation for depen-
dent data can be found in the monographs by Györfi, Härdle, Sarda, and
Vieu (1989), Rosenblatt (1991), and Bosq (1998). They mainly focus on
the theoretical developments in univariate nonparametric smoothing.

Density estimation for independent data

There is much literature on kernel density estimation. Most of the work
focuses on independent random samples. The basic idea of kernel density
estimation appeared in a technical report by Fix and Hodges (1951). The
asymptotic mean square errors and mean integrated square errors were
studied by Rosenblatt (1956), Parzen (1962), and Watson and Leadbetter
(1963). There are a number of books on kernel density estimation. These
include Devroye and Györfi (1985), Silverman (1986), Scott (1992) and
Wand and Jones (1995). Various properties of kernel density estimators
can be found in the books by Prakasa Rao (1983) and Nadaraya (1989).

The properties of kernel density estimation have been widely studied.
The idea of using higher-order kernels for bias reduction dates back to
Parzen (1962) and Bartlett (1963). Davis (1975) used the sinc kernel to
obtain a near root-n consistent estimator for supersmooth densities. Theory
on optimal kernels has been extensively developed by Gasser, Müller, and
Mammitzsch (1985), Granovsky and Müller (1991), and Müller (1993).

Optimal rates of convergence for density estimation were studied by Far-
rell (1972). They were further investigated by Hasminskii (1978) and Stone
(1980, 1982). Ibragimov and Hasminskii (1984), Donoho and Liu (1991a,
b), Fan (1993b), and Low (1993) expanded the scope of the minimax study.
Sharp asymptotic minimax risks over Sobolov spaces were established by
Pinsker (1980), Efromovich and Pinsker (1982), and Nussbaum (1985).
These optimal rates of convergence depend on the smoothness of unknown
functions. Adaptive procedures have been constructed so that they are
nearly optimal for each given class of functions; see, for example, Efro-
movich (1985), Lepski (1991, 1992), Donoho and Johnstone (1995, 1996,
1998), Donoho, Johnstone, Kerkyacharian, and Picard (1995), Brown and
Low (1996), and Tsybakov (1998). Adaptive estimation based on penal-
ized least-squares can be found in Barron, Birgé, and Massart (1999) and
Antoniadis and Fan (2001). Minimax results on nonlinear functionals can
be found in Bickel and Ritov (1988), Fan (1991), and Birgé and Massart
(1995), among others.

There are a number of variations and modifications of kernel density es-
timators. Local likelihood estimation of a density can be found in Loader
(1996) and Hjort and Jones (1996a). Parametric guided nonparametric den-
sity and regression estimation was proposed in Hjort and Glad (1995),
Efron and Tibshirani (1996), and Glad (1998). Transformation methods
for kernel density estimation were studied by Wand, Marron, and Ruppert
(1991) and Yang and Marron (1999). The idea of using variable band-
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widths can be found in Breiman, Meisel, and Purcell (1977), Abramson
(1982), Hall and Marron (1988), and Hall (1990), among others. Many pa-
pers in the literature deal with possible approaches for reducing boundary
biases. Boundary kernel methods were introduced and studied by Gasser
and Müller (1979) and Gasser, Müller, and Mammitzsch (1985). Schucany
and Sommers (1977) and Rice (1984a) suggested a linear combination of
two kernel estimators with different bandwidths to reduce biases. Bound-
ary correction methods for smoothing splines have been studied by Rice
and Rosenblatt (1981) and Eubank and Speckman (1991), among others.

Density estimation for dependent data

Early references on kernel density estimation for dependent data are Rous-
sas (1967, 1969) and Rosenblatt (1970), where the local asymptotic nor-
mality is established. Strong consistency for estimating transition prob-
ability densities was established in Yakowitz (1979). Ahmad (1979, 1982)
studied consistent properties for estimating the density of an α-mixing pro-
cess using an orthogonal theory method. Masry (1983) derived asymptotic
expressions for the bias and covariance of discrete-time estimates for the
marginal probability density function of continuous-time processes; see also
Robinson (1983). Density estimation for time series residuals was investi-
gated by Robinson (1987). Cheng and Robinson (1991) established various
properties of density estimation for strongly dependent data. The uniform
strong consistent rate was established by Pham and Tran (1991) and Cai
and Roussas (1992). Györfi and Masry (1990) proved the strong consistency
of recursive density estimation for dependent data. Kim and Cox (1995)
gave useful moment bounds for mixing random variables. Density estima-
tion for random fields was investigated by Roussas (1995), Carbon, Hallin,
and Tran (1996), and Bradley and Tran (1999), among others. Györfi and
Lugosi (1992) gave an interesting example where the kernel density esti-
mate is inconsistent. Adams and Nobel (1998) studied density estimation
of ergodic processes. The impact of dependence on the MISE, ISE, and
optimal bandwidths of the kernel density estimation has been thoroughly
studied by Claeskens and Hall (2002).



6
Smoothing in Time Series

6.1 Introduction

Having introduced the basic concept of nonparametric function estima-
tion in the last chapter, we are now ready to apply it to other important
smoothing problems in time series. Smoothing techniques are useful graphic
tools for estimating slowly-varying time trends, resulting in time domain
smoothing (§6.2). Nonparametric inferences on the associations between
future events and their associated present and past variables lead to state
domain smoothing in §6.3. Spline methods, introduced in §6.4, are useful
alternatives to the local polynomial techniques in §6.3. These techniques
can easily be extended to estimate the conditional variance (volatility) of
a time series and even the whole conditional distribution; see §6.5.

6.2 Smoothing in the Time Domain

6.2.1 Trend and Seasonal Components
The first step in the analysis of time series is to plot the data. This allows
one to inspect visually whether a series resembles a realization of a station-
ary stochastic process. Should a trend or seasonal pattern be observed, it
is usually removed before the analysis of the series.

Suppose that a time series {Yt} can be decomposed as

Yt = ft + st +Xt, (6.1)
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FIGURE 6.1. The difference of the logarithmic transform of the S&P 500 Index
from January 3, 1972 to December 31, 1999 (top panel) and from January 4, 1999
to December 31, 1999 (bottom panel).

where ft represents a slowly varying function known as a trend component,
st is a periodic function referred to as a “seasonal component” and Xt is a
stochastic component, which is assumed to be stationary with mean zero.
A variance-stabilizing transformation or the Box–Cox transform may be
applied before using the decomposition. This family of power transform
admits the form

g(u) =
{
uλ, for λ �= 0
log(u), for λ = 0 (6.2)

indexed by the parameter λ, or in the form having continuity at λ = 0,

g(u) = (uλ − 1)/λ.

This class of transformation was considered by Box and Cox (1964). Note
that a translation transform might be needed before using the power trans-
form since the data in the power transform must be nonnegative.

Our objective is to estimate and extract the deterministic components
ft and st. It is hoped that the residual component Xt will be stationary
and can be further analyzed by using linear and nonlinear time series tech-
niques. An alternative approach, developed extensively by Box and Jenkins
(1970), is to repeatedly apply difference operators to the time series {Yt}
until the differenced series appears stationary. The differenced series is then
processed further by using stationary time series techniques. As an illustra-
tion of the Box and Jenkins approach, we took the logarithmic transform
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FIGURE 6.2. The S&P 500 Index from January 4, 1999 to December 31, 1999
and its 21 (thick curve) and 41-(dashed curve) trading day moving averages.

of the S&P 500 Index and then computed the first-order difference. Fig-
ure 6.1 presents this preprocessed series. The resulting series is basically
the percentage of daily price changes in the index. It appears stationary
except for a few outliers (e.g., 20.47% market corruption on October 19,
1987, called “Black Monday” in the financial markets). This transform is
related to discretization of the geometric Brownian motion model popularly
employed for asset pricing in the financial industry.

We first focus on the situation without the seasonal component, namely

Yt = ft +Xt, EXt = 0. (6.3)

We then return to estimate the trend and seasonal components in §6.3.8.

6.2.2 Moving Averages
Averaging is the most commonly-used technique to reduce stochastic noise.
Assume that the trend is slowly-varying so that it can be approximated by
a constant in a local time window of size h, namely

Yt+i ≈ ft +Xt+i for −h ≤ i ≤ h. (6.4)

Then ft can be estimated by the local average around this window:

f̂t = (2h+ 1)−1
h∑

i=−h
Yt+i. (6.5)
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As the center t changes, the local time window moves. For example, the
estimate at t = 50 with h = 20 is the average of the data in that first
window depicted in Figure 6.2. The centers of the windows are moved to
new points to form estimates at these points. As the local window slides
from the left to the right, it traces a moving average curve. This is the
simplest form of the moving average smoothing. It is frequently used to
examine the trend of a time series. Figure 6.2 depicts the one-month and
two-month moving averages for the S&P 500 Index from January 4, 1999
to December 31, 1999.

A convention for the moving average estimator at the boundary is to
ignore the data beyond the observed time range. For example, f2 is simply
estimated by using the average of data Y1, · · · , Y2+h (more data to the right
of the time point 2 than to the left). This asymmetric average may create
an unappealing boundary bias . This boundary effect is more pronounced
when the trend at the boundary is steep and the window size is large. As
shown in Figure 6.2, the moving average underestimates the trend at the
right boundary. The problem can be attenuated by using the local linear
smoothing (see §6.2.6) or other boundary correction methods, such as the
boundary kernel method (Gasser and Müller 1979; Müller 1993) and the
data-sharpening method (Choi, Hall, and Rousson 2000).

The moving average series (6.5) utilizes both sides of data around the
time t. It depends also on the data after time t. To facilitate prediction,
the one-sided moving average series

f̂∗
t = h−1

h∑
i=1

Yt−i (6.6)

is also frequently used to examine the time trend. The series employs only
the past data up to time t− 1.

6.2.3 Kernel Smoothing
An improved version of the moving average estimator is to introduce a
weighting scheme. This allows data near the given time point to receive
larger weights. This leads to the kernel regression estimator , defined by

f̂t0 =
∑T
t=1 YtK

(
t−t0
h

)
∑T
t=1K

(
t−t0
h

) . (6.7)

This estimator is also called the Nadaraya–Watson estimator; see Nadaraya
(1964) and Watson (1964). When the uniform kernel K(u) = 0.5I(|u| ≤
1) is employed, the kernel estimator above becomes the moving average
estimator (6.5). When the kernel function has a bounded support [−1, 1],
the kernel regression estimator is a weighted average of local (2h+ 1) data
points around the time point t0. When the kernel K(t) is unimodal with



6.2 Smoothing in the Time Domain 219

the mode at zero, the data points near t0 receive more weight. In general,
the kernel function is not required to have a bounded support as long as
its tails are thin (e.g., a density function that has a second moment). The
nonnegativity requirement of K can also be dropped. The bandwidth h
does not need to be an integer.

Note that the normalization constants in the definition of the Gaussian
kernel and the symmetric Beta family of kernels are merely used to make
the function K a probability density function. They play no roles in ker-
nel regression estimation. In computation, we often normalize the various
kernel functions such that they have the same maximum value 1 as in Fig-
ure 5.2. With this normalization, (6.7) can be intuitively understood as
the effective average of

∑T
t=1K{(t − t0)/h} data points. When the kernel

function has a support in (−∞, 0) (such a kernel is also referred to as a
one-sided kernel), the kernel regression estimator uses only the data up to
time t0 − 1. This is an extension of the one-sided moving average (6.6).

As in the kernel density estimation, the bandwidth h is a critical param-
eter in kernel regression estimation. As demonstrated in Figure 6.2, a large
bandwidth h produces an oversmooth estimate, leaving out possible details
of the trend and underestimating the magnitude of peaks and troughs.
Specifically, the estimator can create large biases when a large bandwidth
is used. When a small bandwidth is applied, there are only a few local
data points available to reduce the variance of the estimator. This results
in a wiggly curve. For example, with h = 0, the moving average estimator
(6.5) simply reproduces the original series. Trial-and-error is needed in or-
der to produce satisfactory results. A data-driven choice of bandwidth can
assist us in determining the amount of smoothness required . As shown in
§6.2.9, the asymptotic variance depends critically on the correlation struc-
ture of the underlying process. Hence, the data-driven bandwidth selectors
designed for independent data perform poorly in time-domain smoothing.
Indeed, Altman (1990), Chu and Marron (1991a), and Hart (1991) reported
that the ordinary leave-one-out cross-validation method performs poorly
for the dependent data. Several modifications were proposed by these au-
thors. The plug-in approaches for bandwidth selection were proposed by
Ray and Tsay (1997) and Beran and Feng (2001).

The observation above can also be understood by calculating the bias and
variance of the kernel regression estimator. Following direct calculation,
under model (6.3), the bias of the kernel estimator is

Ef̂t0 − ft0 =
∑T
t=1(ft − ft0)K

(
t−t0
h

)
∑T
t=1K

(
t−t0
h

) .

This does not depend on the error process. It is purely an approximation
error. When the bandwidth is small, the approximation errors ft − ft0 are
small and so is the bias term. On the other hand, when h is large, many
of the approximation errors ft − ft0 can be large due to the large distance
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between t and t0, and hence the bias can be large. The variance of this
linear estimator,

f̂t0 =
T∑
t=1

wtYt, wt =
K
(
t−t0
h

)
∑T
t=1K

(
t−t0
h

) ,

can also be computed. Let γX(t) be the autocovariance function of the
process X(t). Then

Var(f̂t0) =
T∑
i=1

T∑
j=1

γX(|i− j|)wiwj . (6.8)

The variance depends on the autocorrelation function. Further simplifica-
tion needs asymptotic analysis. We will discuss this in §6.2.9. It will be
shown that the asymptotic variance depends on the behavior of γX(k) as
k →∞. Suffice it to say that when the bandwidth is small, the variance of
the kernel smoothing is large due to the limited amount of the local data
point.

6.2.4 Variations of Kernel Smoothers
There are a number of variations of the kernel smoothers. The denominator
in (6.7) is not convenient for taking derivatives with respect to t and for
mathematical analysis. Instead, assigning the heights of a kernel function
as weights, we can also use the areas under the kernel function as weights.
Since the total area under the kernel function is one, no denominator is
needed. This is the basic idea behind the Gasser–Müller estimator.

In the current context, let st = (2t+1)/2(t = 1, · · · , T−1) with s0 = −∞
and sT =∞. Gasser and Müller (1979) proposed the following estimator:

f̂t0 =
T∑
t=1

∫ st

st−1

Kh(u− t0)duYt.

No denominator is needed since the total weight is

T∑
t=1

∫ st

st−1

Kh(u− t0) =
∫ ∞

−∞
Kh(u− t0)du = 1.

The Gasser–Müller estimator is a modification of an earlier version of
Priestley and Chao (1972), which is defined as

f̂t0 =
T∑
t=1

Kh(t− t0)Yt.
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This estimator simply drops the denominator of the Nadaraya–Watson es-
timator. Approximating the Riemann sum by an integral and by a change
of the variable, we have the total weight

T∑
t=1

Kh(t− t0) ≈
∫ T

1
Kh(t− t0)dt =

∫ (T−t0)/h

−(t0−1)/h
K(u)du

for proper choices of h. If t0 is not too close to the boundaries and h is
small relative to T so that (t0− 1)/h and (T − t0)/h are large, the integral
above is approximately the same as

∫ ∞

−∞
K(u)du = 1.

In fact, this holds exactly as long as the support of K is contained in the
interval [−(t0 − 1)/h, (T − t0)/h]. In other words, for t0 that is not in the
boundary region, the total weight is approximately 1. The argument above
relies on the fact that the design points are equispaced. In fact, the Priestley
and Chao estimator can only be applied to the equispace setting. It will
not be applicable to the state-domain smoothing in §6.3.

6.2.5 Filtering
The kernel regression is a special convolution filter used by engineers. In
general, a linear filter of length 2h+ 1 is defined by

f̂t =
h∑

i=−h
wiYt+i. (6.9)

The kernel regression corresponds to wi = K(i/h)/
∑h
j=−hK(j/h) when

K has the support [−1, 1]. Filters {wi} can be designed to possess various
properties. For example, they can be designed to remove high-frequency
signals (low-pass filter) or low-frequency signals (high-pass filter) or signals
outside a certain range of frequencies (bandpass filter); see §2.3.3. The
kernel smoothing is a low-pass filter.

A linear filter can also be defined via a recursion. For example, a one-
sided moving average f̂t can also be defined via

f̂t = bYt + (1− b)f̂t−1, t = 2, · · · , T,
for some b < 1. This is equivalent to using the following weighted moving
average of Y1, · · · , Yt:

f̂t = bYt + b(1− b)Yt−1 + · · ·+ b(1− b)t−2Y2 + b(1− b)t−1Y1.

Since the weights decrease exponentially fast, the filter above effectively
uses only the local data near time t. The effective size of the smoothing
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depends on the parameter b. This method is referred to as exponential
smoothing .

The exponential smoothing is a special case of kernel smoothing using
Kh(x) = λxI(x ≥ 0) with λ1/h = 1−b. This is a one-sided kernel smoothing.
It uses only the data up to the current time t. Further discussion on this
subject can be found in Gijbels, Pope, and Wand (1999).

The recursive and convolution filterings can be combined to yield a much
richer family of linear filters used in the engineering literature. The idea is
very similar to combining AR and MA processes to enlarge the scope of
linear processes.

6.2.6 Local Linear Smoothing
The local constant approximation (6.4) can be improved if the local linear
approximation is used. Let us approximate the trend fi as a function of i
locally by a linear function

Yi ≈ ft + f ′
t(i− t) +Xi for |i− t| ≤ h.

Thus ft is approximately the intercept of the locally linear model above.
See Figure 6.3 for an illustration at t = 200. The data inside the window are
fitted by a linear regression. Using the least squares method for the data
around the local window, we can estimate the local intercept via minimizing

T∑
i=1

{Yi − a− b(i− t)}2Kh(i− t)

with respect to a and b. Here, the kernel weights are introduced to weigh
down the contributions of the data that are remote from the given time
point t. Let ât and b̂t be the least-squares solutions. Here, the subscript t is
used to indicate the fact that the solution depends on the given time point
t. Then ft is estimated by the local intercept ât, which admits the explicit
expression

f̂t = â =
T∑
i=1

wt,iYi/

T∑
i=1

wt,i, wt,i = Kh(i− t){ST,2(t)− (i− t)ST,1(t)},
(6.10)

where ST,j(t) =
∑T
i=1Kh(i − t)(i − t)j . The whole trend function is esti-

mated when t runs from 1 to T . Thus, the local linear smoother is really a
running linear regression method. As illustrated in Figure 6.3, the estimate
at t = 80 is found by forming a new local least-squares problem. The linear
fit in each data window is shown as a solid line. The local intercepts-the val-
ues of the estimate-are the intersections between the dashed vertical lines
and the local linear lines. The local slopes are estimates of the derivatives
of the time trend. Further, these local windows can also overlap with each
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FIGURE 6.3. Local linear fit for the S&P 500 Index from January 4, 1999 to
December 31, 1999, using the Epanechnikov kernel and bandwidth h = 20. The
dashed parabola in each window indicates the weight that each local data point
receives.

other (see Figure 6.2). The S-Plus function “ lls.s” was programmed and
used to compute the smoothed curve in Figure 6.3. This S-Plus function
can be obtained from the Web site of this book.

The local linear smoothing can easily be extended to the local polyno-
mial smoothing. A thorough treatment of local polynomial fitting and its
applications can be found in Fan and Gijbels (1996). The merits of the local
polynomial fitting will be summarized in §6.3.3. Note that weights wt,i in
(6.11) satisfy

T∑
i=1

wt,i(i− t) = ST,1(t)ST,2(t)− ST,2(t)ST,1(t) = 0. (6.11)

This implies that if the trend is linear, ft = αt+β, the local linear smoother
is unbiased:

Ef̂t =
T∑
i=1

wt,i(αi+ β)/
T∑
i=1

wt,i = αt+ β.

In other words, the local linear smoother is unbiased for estimating lin-
ear trends, no matter how steep they are. This holds for t in the interior
as well as near the boundary. In other words, the local linear estimator
would have a small bias for estimating a steep trend. Kernel smoothers, on
the other hand, would have large biases for estimating steep trends near
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boundary regions because the equation similar to (6.11) does not hold, even
approximately.

6.2.7 Other Smoothing Methods
There are many other variations of the kernel local linear smoother. For
example, Gasser and Müller (1979) use different weighting schemes from
the kernel and local linear weights, and Jones (1997) introduces variations
to the local linear smoothing. Chapter 2 of Fan and Gijbels (1996) gives an
overview on various smoothing techniques, including splines and orthogonal
series methods.

The kernel regression and the local polynomial modeling are based on
local approximations at many grid points. Global approximation methods
such as splines can also be applied to the time domain smoothing. These
ideas will be introduced in the state-domain smoothing in §6.4.

For equispaced designs such as the time domain smoothing, orthogonal
series methods are also very handy to use. The basic idea is first to trans-
form data using an orthogonal matrix and then selectively set coefficients
at high frequencies to zero (or shrink them toward zero). The smoothed es-
timate can be obtained by the inverse transform of the tapered coefficients.
Commonly used orthogonal transforms include the Fourier transform and
the wavelet transform. For their statistical applications, see recent books
by Ogden (1997), Efromovich (1999), and Vidakovic (1999).

6.2.8 Seasonal Adjustments
There are many ad hoc procedures for seasonal adjustments. We just outline
one here to indicate the flavor.

Suppose that the period of the seasonal component in (6.1) is p; namely,

sk+jp = sk,

p∑
k=1

sk = 0. (6.12)

The last constraint is an identifiability condition. Without this constraint,
one can add a constant to the trend component ft and subtract the same
constant on the seasonal component. Due to the constraint (6.12), the
trend can be conveniently estimated by using the moving average (6.5) with
h = (p−1)/2 when p is an odd number. The seasonal component is averaged
out in (6.5) and hence does not contribute to the trend estimate. When the
period p is even, one can estimate the trend with a slight modification:

f̂t = (0.5Yt−d + Yt−d+1 + · · ·+ Yt+d−1 + 0.5Yt+d)/p, d = p/2.

The seasonal component can be estimated as follows. For the sake of
argument, we assume that we deal with monthly data and that the seasonal
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component has period p = 12. The value of the seasonal component in, say,
March can be well-approximated by the average of all of the observations
made in March, after removing the trend component. This leads to the
estimate

ŝ∗
k =

[(T−d−k)/p]∑
j=[(d−k)/p]+1

(Yk+jp − f̂k+jp)/{[(T − d− k)/p]− [(d− k)/p] + 1},

where [a] indicates the integer part of a and d = [p/2]. The limits in the
summation above are imposed so that the data are not too close to the
boundary so as to minimize the boundary effect in trend estimation. This
preliminary estimate may not exactly satisfy the constraint (6.12). This
can easily be modified by using

ŝk = ŝ∗
k − d−1

d∑
i=1

ŝ∗
i , k = 1, · · · , p

to estimate the seasonal component {sk}.
The technique above is also applicable in the absence of the trend com-

ponent ft. In this case, one does not need to remove the trend–namely,
setting f̂t = 0.

6.2.9 Theoretical Aspects�

The theoretical formulation of problem (6.3) should be made with care.
One simple way is to think of the observed time series {Yt} as a discretized
sample path from a continuous process

Y (t) = f(t) +X(t).

This formulation is frequently used in financial time series modeling. The
time unit is usually years and weekly data (say) are regarded as the data
sampled from a continuous process at the rate ∆ = 1/52. The formulation
is very powerful for option pricing and risk management in finance. How-
ever, it has some drawbacks in the time domain smoothing. First, to be
able to estimate f(t) consistently, we need to localize the data around a
given time t0 with window size h→ 0. However, as long as the process X(t)
is continuous, all local data {Y (t) : t ∈ t0 ± h} are highly correlated, with
the correlation tending toward 1 as h → 0. This implies that local data
do not vary much, and hence local smoothing is not needed. As shown in
Figure 6.2, local data do vary substantially, and the local smoothing does
improve the trend estimation. Thus, the formulation above seems patho-
logical from the theoretical point of view. Secondly, under the formulation
above, the trend f(t) and the stochastic error X(t) have similar degrees
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of smoothness (both of them are continuous). Hence, there is no hope of
separating the trend part from the stochastic part in Y (t).

An alternative formulation involves extending the nonparametric regres-
sion model for equispace design to the time series setup. One assumes that
the observed time series is a realization from the model

Yt = g(t/T ) +Xt, t = 1, · · · , T (6.13)

for a smooth time trend function g and a stationary process {Xt} with
EXt = 0. Under this formulation, we can now separate the smooth trend
from the noisy stochastic error via smoothing techniques. One minor draw-
back is that the smooth trend f(t) = g(t/T ) depends on the number of
observations T . This problem appears already in the literature of nonpara-
metric regression with fixed designs. It is not really a serious issue. After
all, the asymptotic theory is only a means of providing a simplified struc-
ture for our understanding of theoretical properties. Modeling the trend as
g(t/T ) is a simple technical device for capturing the feature that the trend
is much more slowly varying than the noise.

The selection between the two formulations above depends on the prob-
lems under study. In longitudinal data analysis and functional data anal-
ysis, Hart and Wehrly (1986) and Silverman (1996) basically used the
first formulation: one observes many independent series from the model
Y (t) = f(t) + X(t). This formulation is suitable for their problems. For
time domain smoothing, model (6.13) is frequently assumed; see, for ex-
ample, Hall and Hart (1990), Johnstone and Silverman (1997), and Robin-
son(1997). This enables one to capture the feature that the time trend
is much smoother than the underlying stochastic noise. Furthermore, it
enables one to consistently estimate the time trend.

With the formulation (6.13), the asymptotic properties for the kernel
and the local linear smoothers can be obtained. The bias for estimating
g is the same as that for the independent sample with a uniform design.
The variances for the kernel and the local linear estimators can also be
computed with extra effort. They depend on the covariance structure of
the noise process {Xt}. In general, we assume that the autocorrelation
function of {Xt} behaves as

γX(k) ≡ Cov(Xt, Xt+k) ∼ CXk−α, as k →∞, (6.14)

for some α > 0 and some constant CX . Fractional ARIMA processes defined
in §2.5.2 satisfy (6.14).

We now consider the bias and variance of the local linear estimator (6.10)
under the model (6.13). We rewrite the estimator (6.10) as ĝ(t/T ). For any
u = t/T ∈ (0, 1), using EYi = g(i/T ) and (6.11), we have the bias

Eĝ(u)− g(u) =
∑T
i=1 wTu,i{g(i/T )− g(u)− g′(u)(i/T − u)}∑T

i=1 wTu,i
. (6.15)
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Note that this bias does not depend on the error process {X(t)}. It is purely
the approximation error of the local linear fit.

For simplicity of technical arguments, we assume that K has a bounded
support. This assumption can be weakened at the expense of lengthier
arguments. In particular, light-tail kernels such as the Gaussian kernel are
allowed. Denote

∫ +∞
−∞ vjK(v)dv by µj .

We summarize the asymptotic bias and variance in the following Theo-
rem, which will be proved in §6.6.1. Note that because of our scale of time
unit, h/T is the same as the bandwidth used for conventional nonparamet-
ric regression.

Theorem 6.1 Suppose that K has a bounded support, satisfying µ0(K) =
1 and µ1(K) = 0, and the bandwidth h→∞ in such a way that h/T → 0.

(a) If g′′(·) exists and is continuous at the point u, then

Eĝ(u)− g(u) =
1
2
µ2(K)g′′(x)(h/T )2 + o{(h/T )2}.

(b) If the autocovariance γX satisfies (6.14), we have

Var{ĝ(u)} =




CX
∫ ∫

K(x)K(y)|x− y|−αdxdyh−α, 0 < α < 1
2CX‖K‖22h−1 log(h), when α = 1∑∞
j=−∞ γX(j)‖K‖22h−1, when α > 1

(6.16)

Theorem 6.1 shows that the asymptotic variance is strongly influenced
by the covariance structure of the process of {Xt}. This in turn affects the
asymptotic optimal bandwidth and explains why data-driven bandwidth
selectors for independent data cannot be applied directly to the dependent
data.

The result similar to Theorem 6.1 for the kernel estimator was proved by
Hall and Hart (1990). It was recently extended to local polynomial fitting
by Beran and Feng (2001) using technical arguments different from those
given in §6.6.1. It was also shown there that the asymptotic variance is of
order h−1−2d for antipersistent processes.

The asymptotic normality for the local linear estimator can also be es-
tablished. If the error process {Xt} is Gaussian, then its weighted average
estimator (6.10) is also Gaussian. Thus, the asymptotic normality of the
local linear estimator follows directly from Theorem 6.1. Furthermore, un-
der the normality assumption, Csörgö and Mielniczuk (1995) established
the asymptotic distribution for the maximum deviation that is similar to
Theorem 5.4. However, the normality assumption on {Xt} is not critical.
It can be removed as demonstrated in Robinson (1997). Here we outline
the technical device used in that paper.

Let {εt} be a martingale difference with respect to its natural σ-fields,
namely

E(εt|{εj , j < t}) = 0, a.s.
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Assume that {Xt} is a doubly infinite-order moving average process

Xt =
∞∑

j=−∞
ajεt−j , with

∞∑
j=−∞

a2
j <∞,

and that the {ε2t} are uniformly integrable, satisfying

E(ε2t |{εj , j < t}) = 1, a.s.

Fractional ARIMA processes satisfy these assumptions. Consider the weighted
sum

ST =
T∑
t=1

wT,tXt =
∞∑

j=−∞

(
T∑
t=1

wT,tat−j

)
εj ,

which is the sum of the martingale difference. Using the martingale prop-
erty,

Var(ST ) =
∞∑

j=−∞

(
T∑
t=1

wT,tat−j

)2

,

which is assumed to exist. The following result is due to Robinson (1997).
A similar theorem can be found in Ibragimov and Linnik (1971).

Theorem 6.2 Under the conditions just stated,

Var(ST )−1/2ST
D−→ N(0, 1),

provided that

max
j

∣∣∣∣∣
T∑
t=1

wT,tat−j

∣∣∣∣∣ = o
(
Var(ST )−1/2

)
.

Now, for the local linear estimator (6.10), one can easily see that

f̂t − Ef̂t =
T∑
i=1

wt,iXi/

T∑
i=1

wt,i.

The asymptotic normality becomes a matter of checking the conditions
stated in Theorem 6.2. We omit the details.

6.3 Smoothing in the State Domain

6.3.1 Nonparametric Autoregression
Smoothing in the state domain is strongly related to nonparametric pre-
diction. Consider a stationary time series {Xt}. For simplicity, we consider
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the prediction based on the variable Xt−1 only. The best prediction of Xt

based on Xt−1 = x is the conditional expectation of Xt given Xt−1 = x,

m(x) = E(Xt|Xt−1 = x),

which minimizes the MSE

E{Xt − g(Xt−1)}2

among all prediction rules g. This function is also called the autoregression
function of order 1. When {Xt} is a stationary Gaussian process with mean
0, this conditional mean is linear m(x) = ax and the conditional variance
is constant. This leads to an AR(1)-model

Xt = aXt−1 + εt.

In general, the function m(x) is not necessarily linear and the conditional
variance is not necessarily homoscedastic. However, we can always express
the data in the form

Xt = m(Xt−1) + σ(Xt−1)εt, (6.17)

where σ2(x) = Var(Xt|Xt−1 = x). Here εt has conditional zero mean and
unit variance

E(εt|Xt−1) = 0, Var(εt|Xt−1) = 1.

Nonparametric smoothing techniques can be applied beyond the estima-
tion of the autoregression function. Consider a bivariate sequence {(Xt, Yt) :
t = 1, · · · , T} that can be regarded as a realization from a stationary
process. We are interested in estimating the regression function m(x) =
E(Yt|Xt = x). To facilitate comprehension, we write

Yt = m(Xt) + σ(Xt)εt, (6.18)

where σ2(x) = Var(Yt|Xt = x) and εt satisfies

E(εt|Xt) = 0, Var(εt|Xt) = 1.

Clearly, this setup includes estimating the autoregression function as a
specific example by taking Yt = Xt+1. Here are three useful examples.

Example 6.1 Consider a stationary time series {Zt}. One takes Yt =
(Zt)k and Xt = Zt−1 for a given k. Then, the target function becomes

mk(x) = E(Zkt |Zt−1 = x).

The conditional variance can be estimated by using m̂2(x) − m̂1(x)2. In
particular, when m1(x) is small, such as the difference among the interest
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rate data given in Example 1.1, m2(x) is basically the same as the condi-
tional variance function. In other words, the mean regression function for
the data given in Figure 6.4 below is the square of the volatility function

σ(x) =
√

Var(Xt|Xt−1 = x).

This forms the basis of the volatility estimator given in Stanton (1997) and
Fan and Yao (1998).

Example 6.2 Consider again the stationary time series {Zt}. One takes
Yt = I(a < Zt ≤ b), the indicator function on the interval (a, b], and
Xt = Zt−1. Then, the target function becomes

m(x) = P (a < Zt ≤ b|Zt−1 = x).

In particular, if a = −∞, we are estimating the conditional distribution.
Furthermore, if a = y − δ and b = y + δ, then m(x)/(2δ) is basically the
same as the conditional density of Zt given Zt−1 = x when δ is small.
This conditional density function is very useful for the summary of the
distribution of Zt given Zt−1 = x. In particular, the autoregression function
is the center of this distribution, and the volatility function is the spread of
this distribution. The idea forms the genesis of the methods used by Fan,
Yao, and Tong (1996) for estimating conditional densities (§6.5) and their
related functionals (§10.3), by Hall, Wolff, and Yao (1999) for estimating
conditional distribution functions (§10.3), and by Polonik and Yao (2000)
for estimating minimum-volume predictive regions (§10.4).

Example 6.3 For a given time series {Zt}, multistep forecasting can be
accomplished by setting Yt = Zt+d and Xt = Zt, where d is the number of
steps. In this case, we estimate nonparametrically

m(x) = E(Zt+d|Zt = x),

the best d-step predictor based on the variable Zt. Figure 6.6 below depicts
the one-step and two-step predictions for the lynx data. By combining this
method with the techniques in Examples 6.1 and 6.2, we can estimate
conditional variance and conditional density for multistep forecasting.

6.3.2 Local Polynomial Fitting
Local polynomial fitting is a widely used nonparametric technique. It pos-
sesses various nice statistical properties. For a detailed account on the sub-
ject, see Fan and Gijbels (1996).

Let m(ν)(x) be the νth derivative of the regression function defined in
(6.18). The local polynomial technique is very convenient to use for estimat-
ing m(ν)(x), including the regression function itself, m(x) = m(0)(x). Since
the form of the function m(·) is not specified, a remote data point from x0
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provides very little information about m(x0). Hence, we can only use the
local data points around x0. Assume that m(x) has the (p+ 1) derivative
at the point x0. By Taylor’s expansion, for x in the local neighborhood of
x0, we have

m(x) = m(x0) +m′(x0)(x− x0) +
m′′(x0)

2!
(x− x0)2

+ · · ·+ m(p)(x0)
p!

(x− x0)p +O
{
(x− x0)p+1} . (6.19)

In terms of statistical modeling, locally around x0, we model m(x) as

m(x) ≈
p∑
j=0

βj (x− x0)
j
. (6.20)

The parameters {βj} depend on x0 and are called local parameters. Clearly,
the local parameter βν = m(ν)(x0)/ν!. Fitting the local model (6.20) using
the local data, one minimizes

T∑
t=1


Yt −

p∑
j=0

βj (Xt − x0)
j




2

Kh(Xt − x0), (6.21)

where h is a bandwidth controlling the size of the local neighborhood.
As an illustration, we took Yt = (Xt −Xt−1)2, where Xt is the yield of

the 12-month Treasury bill. The bandwidth h = 3.06 was used, which was
selected by the preasymptotic substitution method (see §6.3.5) using the
C-code “lls.c”. At the point x0 = 12 (percent), a line (p = 1) was fitted for
the local data in the shaded area x0 ± h, with weights for each data point
indicated by the dashed curve (corresponding to the Epanechnikov kernel).
The local intercept β0 at the point x0 is the intersection between the fitted
line and the vertical line. This forms an estimate of the regression function
(ν = 0) at the point x0 = 12. Sliding this window along the horizontal
axis, we obtain an estimated curve on the interval [3, 14]. The conditional
standard deviation is shown in Figure 6.4(b). The residual-based method
for estimating the conditional variance, proposed by Fan and Yao (1998)
and computed by the C-code “autovar.c” (see also §8.7.2), is shown in the
short-dashed curve for comparison. The parametric model m(x) = αxβ is
frequently used to model the volatility of interest rate dynamics, which is
shown in the long-dashed curve. As one can see, there are still substantial
differences between the parametric and the nonparametric methods, and
the question of adequacy of the parametric fitting arises. The preasymp-
totic substitution method of Fan and Gijbels (1995) was employed to select
bandwidths; see §6.3.5.

Denote by β̂j , j = 0, . . . , p, the solution to the least squares problem
(6.21). The local polynomial estimator for m(ν)(x0) is m̂ν(x0) = ν!β̂ν ,
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FIGURE 6.4. Local linear fit for estimating conditional variance for the yields
of the 12-month Treasury bill. (a) Illustration of the local linear fit with the
Epanechnikov kernel and bandwidth h = 3.06; (b) estimated conditional standard
deviation by using the local linear fit (solid curve), the residual-based method of
Fan and Yao (1998) (short-dashed curve), and the parametric model σ(x) = αxβ

(long-dashed curve) with α = 0.143 and β = 1.324.

(ν = 0, 1, · · · , p). Here, we do not use the notation m̂(ν)(x0) in order to
avoid confusion with the νth derivative function of the estimated regression
m̂(x0). In fact, the derivative m′(x) is estimated by the local slope rather
than the derivative of the estimated regression function.
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When p = 0, the local polynomial fit reduces to the kernel regression
estimator

m(x) =
∑T
t=1 YtKh(Xt − x)∑T
t=1Kh(Xt − x)

,

which is also called the Nadaraya–Watson estimator. Hence, from the local
approximation point of view, the kernel regression estimator is based on
the local constant approximation; see (6.19).

It is more convenient to work with matrix notation. Denote by X the
design matrix of problem (6.21),

X =




1 (X1 − x0) · · · (X1 − x0)p
...

...
...

1 (XT − x0) · · · (XT − x0)p


 ,

and put

y =




Y1
...
YT


 and β̂ =




β̂0
...
β̂p


 .

Then, the weighted least squares problem (6.21) can be written as

min
β

(y −Xβ)TW(y −Xβ), (6.22)

with β = (β0, · · · , βp)T , where W is the diagonal matrix whose ith element
is Kh(Xi − x0). The solution vector is given by

β̂ = (XTWX)−1XTWy. (6.23)

To implement the local polynomial estimator, one needs to choose the
order p, the bandwidth h, and the kernel K. These parameters are of course
related each other. When h = ∞, the local polynomial fitting becomes a
global polynomial fitting and the order p determines the model complexity.
Unlike in the parametric models, the complexity of local polynomial fits is
primarily controlled by the bandwidth. Hence p is usually small, and the
issue of choosing p becomes less critical. If the objective is to estimate m(ν),
the local polynomial fitting automatically corrects the boundary bias when
p−ν is odd. Furthermore, when p−ν is odd, compared with the order p−1
fit (so that p− ν − 1 is even), the order p fit contains one extra parameter
without increasing the variance for estimating m(ν). But this extra param-
eter creates opportunities for bias reduction, particularly in the boundary
regions; see Fan (1992), Fan and Gijbels (1992), Hastie and Loader (1993),
and Ruppert and Wand (1994). For these reasons, the odd order fits (the
order p is chosen so that p− ν is odd) outperforms the even order fits (the
order (p− 1) fit so that p− ν is even). Based on theoretical and practical
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considerations, the order p = ν + 1 is recommended in Fan and Gijbels
(1996). If the primary objective is to estimate the regression function, one
uses the local linear fit, and if the target function is the first-order deriva-
tive, one uses the local quadratic fit, and so on. On the other hand, the
choice of the bandwidth h plays an important role in the local polynomial
fitting. Too large a bandwidth causes oversmoothing, creating excessive
modeling bias, whereas too small a bandwidth results in undersmoothing,
obtaining noisy estimates. The bandwidth can be subjectively chosen by
users by visually inspecting resulting estimates or automatically chosen by
data by minimizing an estimated theoretical risk (see §6.3.5). Since the es-
timate is based on the local regression (6.21), it is reasonable to require a
nonnegative weight function K. It is shown by Fan et al.(1996) that, for all
choices of p and ν, the optimal weight function is K(z) = 3

4 (1− z2)+, the
Epanechnikov kernel. Thus, it is a universal weighting scheme and provides
a useful benchmark to compare with other kernels. As shown in §5.5, other
kernels have nearly the same efficiency for practical use of p and ν. Hence,
the choice of the kernel function is not critical.

The local polynomial estimator compares favorably with other estima-
tors, including the Nadaraya–Watson estimator, the Gasser and Müller
estimator, and the Priestley and Chao estimator. Indeed, it was shown by
Fan (1993a) that the local linear fitting is asymptotically minimax among
all linear estimators and is nearly minimax among all possible estimators.
This minimax property is extended by Fan et al. (1996) to more general
local polynomial fitting.

6.3.3 Properties of the Local Polynomial Estimator
Throughout this section, we assume that (X1, Y1), · · · , (XT , YT ) are a sta-
tionary sequence. Let Fki be the σ-algebra of events generated by the ran-
dom variables {(Xj , Yj), i ≤ j ≤ k}. Let α(k) and ρ(k) be their correspond-
ing α- and ρ-mixing coefficients. Denote by eν+1 the unit vector with 1 at
the (ν + 1) position. Let

ST,j =
T∑
t=1

Kh(Xt − x0)(Xt − x0)j (6.24)

and ST = XTWX be the (p+ 1)× (p+ 1) matrix, whose (i, j)th element
is ST,i+j−2.

First, one can easily show that the estimator β̂ν can be written as

β̂ν = eTν+1β̂ =
T∑
t=1

WT
ν

(
Xt − x0

h

)
Yt, (6.25)
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where the effective kernel WT
ν is the multiplication of the kernel K with a

polynomial function, defined as

WT
ν (t) = eTν+1S

−1
T {1, th, · · · , (th)p}TK(t)/h. (6.26)

The expression above reveals that the estimator β̂ν looks like a conventional
kernel estimator except that the “kernel” WT

ν depends on the design points
{X1, · · · , XT } and locations x0. This explains why the local polynomial fit
can adapt automatically to various designs and to boundary estimation.
Figure 6.5 presents the effective kernel functions for the local constant fit
(p = 0) and the local linear fit (p = 1) at x0 = 0.05 and x0 = 0.5 for the
Epanechnikov kernel K. They satisfy the following moment property:

Proposition 6.1 The effective kernel WT
ν satisfies the following finite mo-

ment properties

T∑
t=1

(Xt − x0)qWT
ν

(
Xt − x0

h

)
= δν,q 0 ≤ ν, q ≤ p,

where δν,q = 0 if ν �= q and 1, otherwise.

Proof. By the definition of ST ,

T∑
t=1

(Xt − x0)qWT
ν

(
Xt − x0

h

)

= eTν+1S
−1
T

T∑
t=1

(Xt − x0)q




1
Xt − x0

...
(Xt − x0)p


Kh(Xt − x0)

= eTν+1S
−1
T ST eq+1 = δν,q.

The conclusion follows.

As a consequence of Proposition 6.1, the local polynomial estimator is
unbiased for estimating βν when the true regression function m(x) is a
polynomial of order p. To gain more insights about the effective kernel, we
provide its asymptotic form. We first introduce some notation. Let S be
the (p + 1) × (p + 1) matrix whose (i, j) element is µi+j−2, where µj =∫ +∞

−∞ ujK(u)du. Define the equivalent kernel by

K∗
ν (t) = eTν+1S

−1(1, t, · · · , tp)TK(t) =

(
p∑
�=0

Sν�t�
)
K(t), (6.27)

where Sν� is the (ν + 1, �+ 1)-element of S−1.
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FIGURE 6.5. Effective weights assigned to local data points at an interior point
x0 = 0.5 (weights denoted by �) and a boundary point x0 = 0.05 (weights de-
noted by ◦) for the local constant fit (p = 0) and the local linear fit (p = 1),
with K being the Epanechnikov kernel. The horizontal solid and dashed lines are
the heights of true and estimated functions at x0 = 0.05 and x0 = 0.5, respec-
tively. Their differences are biases at these two points. (a) The Nadaraya–Watson
estimator; (b) the local linear fit. For clarity, the data (♦) contain no noise.

Proposition 6.2 Under the conditions of Theorem 5.3, if the marginal
density f of X has a continuous derivative at point x0, then

WT
ν (t) =

1
Thν+1f(x0)

K∗
ν (t){1 +OP (aT )}
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uniformly in x0 ∈ [a, b] and t, where aT = h+(log T/Th)1/2. The equivalent
kernel satisfies the following moment condition for a higher-order kernel :

∫ +∞

−∞
uqK∗

ν (u)du = δν,q 0 ≤ ν, q ≤ p.

Proof. Note that ST,j/(Thj) is basically the same as the kernel density es-
timator with the induced kernel K∗(x) = xjK(x). Hence, by Theorem 5.3,

(Thj)−1ST,j = f(x0)µj +OP (aT ) (6.28)

uniformly in x0 ∈ [a, b]. From this, one obtains immediately by substituting
(6.28) into each element of ST that

T−1H−1STH−1 = f(x0)S{1 +OP (aT )},
or equivalently,

ST = Tf(x0)HSH{1 +OP (aT )},
where H = diag(1, h, · · · , hp). Hence, substituting this into the definition
of W ν

T , we find that

WT
ν (t) =

1
Thν+1f(x0)

eTν+1S
−1(1, t, · · · , tp)TK(t){1 + oP (aT )}.

This proves the first conclusion. The second conclusion follows from the
same proof as that of Proposition 6.1.

From (6.25) and Proposition 6.2,

β̂ν =
1

Thν+1f(x0)

T∑
t=1

K∗
ν

(
Xt − x0

h

)
Yt{1 +OP (aT )}. (6.29)

Hence, the local polynomial estimator works like a kernel regression estima-
tor with a known design density f . This explains why the local polynomial
fit adapts to various design densities. In contrast, the kernel regression
estimator has a large bias at the region where the derivative of f is large;
namely, it cannot adapt to highly-skewed designs. To see this, imagine that
the true regression function has large slope in this region. Since the deriva-
tive of the design density is large, for a given x0, there are more points
on one side of x0 than the other. When the local average is taken, the
Nadaraya–Watson estimate is biased toward the side with more local data
points because the local data are asymmetrically distributed. This issue
is more pronounced at the boundary regions since the local data are even
more asymmetric (see Figure 6.5). On the other hand, the local polynomial
fit creates asymmetric weights, if needed, to compensate for this kind of
design bias (Figure 6.5 (b)). Hence, it is adaptive to various design densities
and to the boundary regions.
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We now give the asymptotic bias and variance expression for local poly-
nomial estimators. For independent data, we can obtain the bias and vari-
ance expression via conditioning on the design matrix X. However, for
time series data such as those in Examples 6.1–6.3, conditioning on X
would mean conditioning on nearly the entire series. Hence, we derive the
asymptotic bias and variance using the asymptotic normality rather than
conditional expectation. As explained in §5.3, localizing in the state domain
weakens the dependent structure for the local data. Hence, one would ex-
pect that the result for the independent data continues to hold for the
stationary process with certain mixing conditions. The mixing condition
and the window size should be related. A rigorous statement of this is
given in Condition 1(iv) in §6.6.2. The proof of the following theorem, due
to Masry and Fan (1997), will be outlined in §6.6.2.

Theorem 6.3 Under Condition 1 in §6.6.2, if h = O
(
T 1/(2p+3)

)
and

m(p+1)(·) is continuous at the point x, then as T →∞,

√
Th

[
diag(1, · · · , hp){β̂(x)− β0(x)} − hp+1m(p+1)(x)

(p+ 1)!
S−1cp

]

D−→ N{0, σ2(x)S−1S∗S−1/f(x)},

where β0(x) =
(
m(x), · · · ,m(p)(x)/p!

)T , S∗ is a (p + 1) × (p + 1) matrix
whose element (i, j) is νi+j−2 =

∫ +∞
−∞ ti+j−2K2(t)dt, and cp is a (p + 1)-

dimensional vector with i element µp+2−i.

Note that from the definition of the equivalent kernel, one can easily see
that ∫ +∞

−∞
tp+1K∗

ν (t)dt = eTν+1S
−1cp

and ∫ +∞

−∞
K∗
ν (t)

2dt = eTν+1S
−1S∗S−1eν+1.

Hence, an immediate consequence of Theorem 6.1 is that the derivative
estimator m̂ν(x) is asymptotically normal:

√
Th2ν+1

{
m̂ν(x)−m(ν)(x)−

∫
tp+1K∗

ν (t)dt
ν!m(p+1)(x)

(p+ 1)!
hp+1−ν

}

D−→ N

{
0,

(ν!)2σ2(x)
∫
K∗2
ν (t)dt

f(x)

}
. (6.30)

When ν = 0, (6.30) gives the asymptotic normality of m̂(x) itself.
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The asymptotic bias and the asymptotic variance for the local polynomial
estimator are naturally defined as

AB(x) =
∫
tp+1K∗

ν (t)dt
ν!m(p+1)(x)

(p+ 1)!
hp+1−ν , (6.31)

AV(x) =
(ν!)2σ2(x)

∫
K∗2
ν (t)dt

Th2ν+1f(x)
. (6.32)

The ideal choice of bandwidth is the one that minimizes with respect to h
∫ +∞

−∞
{AB2(x) + AV(x)}w(x)dx

for a given weight function w. This leads to the asymptotic optimal band-
width

hopt = Cν,p(K)
[ ∫

σ2(x)w(x)/f(x)dx∫ {m(p+1)(x)}2w(x)dx

]1/(2p+3)

T−1/(2p+3), (6.33)

where

Cν,p(K) =
[

(p+ 1)!2(2ν + 1)
∫
K∗2
ν (t)dt

2(p+ 1− ν){∫ tp+1K∗
ν (t)dt}2

]1/(2p+3)

.

However, this ideal bandwidth is not directly usable since it depends on
unknown functions. We will propose methods to estimate this in §6.3.5.

As mentioned in the last section, local polynomial fits adapt automat-
ically to boundary regions when p − ν is odd. To demonstrate this, we
follow the formulation of Gasser and Müller (1979). Suppose that Xt has a
bounded support, say, [0, 1]. Then x = ch(0 ≤ c < 1) is a right boundary
point when the kernel K has a bounded support [0, 1]. We now consider
the behavior of m̂ν(x) at the boundary point x = ch. To this end, let

µj,c =

∞∫

−c
ujK(u)du and νj,c =

∞∫

−c
ujK2(u)du.

Define Sc, S∗
c , and cp,c similarly to S, S∗, and cp, with µj and νj replaced

by µj,c and νj,c, respectively. Similarly, one defines the equivalent kernel at
the boundary by

K∗
ν,c(t) = eTν+1S

−1
c (1, t, . . . , tp)TK(t).

Then, we have the following result, whose proof is very analogous to that
of Theorem 6.3.

Theorem 6.4 Suppose that Condition 1 in §6.6.2 holds and f(0) > 0. If
h = O

(
T 1/(2p+3)

)
and m(p+1) and σ2f are right-continuous at the point 0,
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then as T →∞,

√
Th

[
diag(1, · · · , hp){β̂(ch)− β0(0)} − hp+1m(p+1)(0)

(p+ 1)!
S−1
c cp,c

]

D−→ N{0, σ2(0)S−1
c S∗

cS
−1
c /f(0+)},

where β0(0) =
(
m(0), · · · ,m(p)(0)/p!

)T .

As a consequence of Theorem 6.4, we have the asymptotic bias and vari-
ance at the boundary point x = ch as

AB(x) =
∫ ∞

−c
tp+1K∗

ν,c(t)dt
ν!m(p+1)(0+)

(p+ 1)!
hp+1−ν

and

AV(x) =
(ν!)2σ2(0+)

∫∞
−cK

∗2
ν,c(t)dt

Th2ν+1f(0+)
.

Compare them with (6.31) and (6.32). Note that when K is symmetric
and p − ν is even, it can be shown (Ruppert and Wand 1994) that the
coefficient in (6.31) is zero. Hence, the bias is of smaller order at an interior
point than that at a boundary point. This is referred to as a boundary
effect. When p − ν is odd, the biases at interior and boundary points
are of the same order. Indeed, they are even continuous at the point c =
1, the boundary between interior and boundary points. Hence, the local
polynomial fit does not create excessive boundary bias when p− ν is odd.
Assume that p − ν is odd and K is symmetric. It can be shown that the
asymptotic variance for the local polynomial fit of order p−1 has the same
asymptotic variance as that for the order p fit (see §3.3 of Fan and Gijbels,
1996). However, the latter has one more parameter, which reduces modeling
biases, particularly at boundary regions. This is the theoretical background
for our recommendation to use odd order fits. It is indeed an odd world!

The following lemma is very useful for deriving uniform convergence of
the local polynomial estimator. It is an extension of a result due to Mack
and Silverman (1982).

Lemma 6.1 Let (X1, Y1), · · · , (XT , YT ) be a stationary sequence satisfying
the mixing condition |α(�)| ≤ c�−β for some c > 0 and β > 5/2. Assume
further that for some s > 2 and interval [a, b],

E|Y |s <∞ and sup
x∈[a,b]

∫
|y|sf(x, y)dy <∞,

where f denotes the joint density of (X,Y ). In addition, we assume that
Conditions 1 (ii) and (iii) in §6.6.2 hold. Let K be a bounded function with
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a bounded support, satisfying the Lipschitz condition. Then

sup
x∈[a,b]

|T−1
T∑
t=1

{Kh(Xt−x)Yt−E[Kh(Xt−x)Yt]}| = OP [{Th/ log(T )}−1/2],

provided that h→ 0, for some δ > 0, T 1−2s−1−2δh −→∞ and

T (β+1.5)(s−1+δ)−β/2+5/4h−β/2−5/4 → 0.

Note that since T 1−2s−1−2δh −→ ∞, when the mixing coefficient is ex-
ponentially decays, the last condition of Lemma 6.1 holds automatically. In
general, when β is sufficiently large, the last condition in the lemma above
will hold.

We now state and prove the uniform convergence result for the local
polynomial estimator.

Theorem 6.5 Suppose that the conditions of Lemma 6.1 hold and the de-
sign density f is uniformly continuous on [a, b] with infx∈[a,b] f(x) > 0.
Then

sup
x∈[a,b]

[
diag(1, · · · , hp){β̂(x)− β0(x)} − hp+1m(p+1)(x)

(p+ 1)!
S−1cp

]

= OP [{Th/ log(1/h)}−1/2].

By taking the (ν + 1)th element from Theorem 6.5, we have

sup
x∈[a,b]

∣∣∣∣m̂ν(x)−m(ν)(x)−
∫
tp+1K∗

ν (t)dt
ν!m(p+1)(x)

(p+ 1)!
hp+1−ν

∣∣∣∣
= OP [{Th2ν+1/ log(T )}−1/2].

In particular, the local polynomial estimator has the following uniform
convergence:

sup
x∈[a,b]

|m̂(x)−m(x)| = OP [hp+1 + {Th/ log(1/h)}−1/2].

6.3.4 Standard Errors and Estimated Bias
The standard errors for local polynomial estimators are useful for con-
structing confidence intervals. To derive them, let us temporarily assume
that {(Xi, Yi)} are an independent sample from a population. Then, from
(6.23),

Var(β̂|X) = (XTWX)−1XTWVar(y|X)WX(XTWX)−1.



242 6. Smoothing in Time Series

Note that Var(Yi|Xi) = σ2(Xi). Since all operations are conducted locally
for Xi ≈ x0, the conditional variance above is nearly constant, σ2(x0).
Using this local homoscedasticity, we have

Var(y|X) = diag
(
σ2(X1), · · · , σ2(Xn)

)
≈ σ2(x0)In.

This approximation holds of course only for those Xi ≈ x0, but those are
exactly the data points involved in calculating the variance. Using this, we
have

Var(β̂|X) ≈ σ2(x0)(XTWX)−1XTW2X(XTWX)−1.

The conditional variance σ2(x0) can be estimated by smoothing using a
pilot bandwidth h∗ and the square residuals {(Xt, ε̂

2
t )}, where ε̂t = Yt −

m̂(Xt). This results in an estimate of the covariance matrix

Σ̂(x0) = σ̂2(x0)(XTWX)−1XTW2X(XTWX)−1. (6.34)

This is a preasymptotic substitution method for estimating conditional vari-
ance, proposed in Fan and Gijbels (1995). In contrast, many authors use an
asymptotic substitution method, which substitutes estimates into asymp-
totic expressions such as (6.31) and (6.32). This not only creates more
unknown functions to estimate but also decreases the accuracy of the esti-
mate.

Recall the definition of β0 in Theorem 6.3. Following the same argument
as above, the bias of the local polynomial estimator for an independent
sample is

E(β|X)− β0 = (XTWX)−1XTWr,

where r = m−Xβ0, with the ith element given by

ri = m(Xi)−
p∑
j=1

m(j)(x0)
j!

(Xi − x0)j

=
m(p+1)(x0)

(p+ 1)!
(Xi − x0)p+1 +

m(p+2)(x0)
(p+ 2)!

(Xi − x0)p+2.

The preasymptotic substitution method of Fan and Gijbels (1995) is to
estimate m(p+1)(x0) and m(p+2)(x0) first by using a local polynomial fit
with order p + 2 and the pilot bandwidth h∗. This gives an estimate of r
and the estimated bias vector

B̂ias(x0) = (XTWX)−1XTWr̂. (6.35)

For dependent data, the arguments above do not hold. However, as
demonstrated in §5.3, the local data behave very much like local indepen-
dent data. Thus, the estimates (6.34) and (6.35) give a consistent estimate
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for the asymptotic bias and asymptotic variance under some mixing con-
ditions. Indeed, by using (6.28) and a similar expression for the kernel K2,
one can easily show that the bias and variance estimators are consistent.

The bias of m̂(ν)(x0) is estimated by the (ν + 1)-element of B̂ias(x0),
denoted by B̂ν(x0). Similarly, the (ν+1) diagonal element of Σ̂(x0), denoted
by V̂ν(x0), is the estimated variance of m̂(ν)(x0). By using Theorem 6.3,
an approximate (1− α) pointwise confidence interval for m(ν)(x0) is

m̂ν(x0)− B̂ν(x0)± z1−α/2V̂ν(x0)1/2, (6.36)

where z1−α/2 is the (1−α/2) quantile of the standard normal distribution.
The estimated bias involves estimation of higher-order derivatives, which

usually cannot be estimated well with moderate sample sizes. For this rea-
son, the bias is often ignored in the construction of the confidence intervals.
Some even argue that the confidence intervals in parametric models also ig-
nore biases since parametric models are at best approximately correct. For
simplicity, we will still call intervals (6.36) with B̂(x0) = 0 pointwise confi-
dence intervals. As an illustration, Figure 6.6 depicts the estimated regres-
sion functions m1(x0) = E(Xt+1|Xt = x0) and m2(x0) = E(Xt+2|Xt = x0)
and their associated pointwise confidence intervals.

6.3.5 Bandwidth Selection
As explained in §5.3, for stationary sequences of data under certain mixing
conditions, state-domain smoothing performs very much like nonparametric
regression for independent data because windowing reduces dependency
among local data. Partially because of this, there are not many studies
on bandwidth selection for state-domain smoothing problems. However,
it is reasonable to expect the bandwidth selectors for independent data
to continue to work for dependent data with certain mixing conditions.
Below, we summarize a few useful approaches. When data do not have
strong enough mixing, the general strategy is to increase bandwidth in
order to reduce the variance.

Cross-validation is very useful for assessing the performance of an esti-
mator via estimating its prediction error. The basic idea is to set one of
the data points aside for validation of a model and use the remaining data
to build the model. It is defined as

CV(h) = T−1
T∑
i=1

{Yi − m̂h,−i(Xi)}2, (6.37)

where m̂h,−i is the local polynomial estimator (6.25) with ν = 0 and band-
width h, but without using the ith observation. The summand in (6.37)
is a squared-prediction error of the ith data point using the training set
{(Xj , Yj) : j �= i}. This cross-validation method uses ideas of Allen (1974)
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FIGURE 6.6. Local linear fits for the lynx data. (a) One-step prediction; (b)
two-step forecasting. The dashed curves are the pointwise 95% confidence inter-
vals.

and Stone (1974) and is computationally intensive. An improved version,
in terms of computation, is the generalized cross-validation (GCV), pro-
posed by Wahba (1977) and Craven and Wahba (1979). This criterion can
be described as follows. By (6.25), the fitted values can be expressed as

(m̂(X1), · · · , m̂(XT ))T = H(h)Y,

where H(h) is a T × T hat matrix, depending on the X-variate and band-
width h, and Y = (Y1, · · · , YT )T . H(h) is called a smoothing matrix. Then,
the GCV approach selects the bandwidth h that minimizes

GCV(h) = [T−1tr{I −H(h)}]−2 MASE(h), (6.38)
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where MASE(h) = T−1∑T
i=1{Yi−m̂(Xi)}2 is the average of squared resid-

uals.
A drawback of the cross-validation method is its inherent variability (see

Hall and Johnstone 1992). Furthermore, it cannot be directly applied to
select bandwidths for estimating derivative curves. Plug-in methods avoid
these problems.

The basic idea is to find a bandwidth h that minimizes the estimated
mean integrated square error (MISE). For the preasymptotic substitution
method, the MISE is defined as

M̂ISE(h) =
∫ {

B̂ν(x)2 + V̂ν(x)
}
w(x)dx (6.39)

for a given weight function w, where B̂ν(x) and V̂ν(x) are given in (6.36).
This procedure was proposed by Fan and Gijbels (1995) and depends on
the pilot bandwidth h∗. The pilot bandwidth may be selected by a residual
squares criterion (RSC) proposed by Fan and Gijbels (1995). All automatic
bandwidths in this book are selected by this method and implemented by
using the C-code “lls.c”. This includes bandwidth selection for spectral
density estimation (§7.3) and estimation of conditional variance (§8.7).

The residual squares criterion is an automatic method for selecting a
bandwidth. Suppose that we wish to select a bandwidth for estimating
m(ν)(·) on an interval, based on the local polynomial fit of order p with
odd p− ν. Define

RSC(x0;h) = σ̂2(x0){1 + (p+ 1)V },
where V is the first diagonal element of the matrix

(XTWX)−1(XTW2X)(XTWX)−1.

By (6.34), V is the variance reduction of estimator m̂(x0), and hence V −1

is the effective number of local data points. When h is small, V is expected
to be large, and when h is large, σ̂2(x0) is large if the bias of the local fit is
large. Thus, the RSC compromises these two contradictory demands. Let

IRSC(h) =
∫

[a,b]
RSC(x;h)dx

be the integrated version of the RSC over the interval [a, b]. In practice, the
integration is replaced by summation over a fine grid of points. Denote the
minimizer of IRSC(h) by ĥ. This bandwidth works reasonably in practice.
To obtain the optimal bandwidth, some adjustments are needed. Set Cp =
µ2p+2 − cTp S−1cp, and let

adjν,p =
[

(2ν + 1)Cp
∫
K∗2
ν (t)dt

(p+ 1− ν){∫ tp+1K∗
ν (t)dt}2

∫
K∗2

0 (t)dt

]1/(2p+3)

.
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This adjusting constant depends on the kernel K and is slightly smaller
than 1. The residual squares criterion selects the bandwidth

ĥRSC
ν,p = adjν,pĥ.

More details can be found in Fan and Gijbels (1995).
The plug-in method of Ruppert, Sheather and Wand (1995) is an asymp-

totic substitution method. It estimates the derivative function m(p+1)(x),
conditional variance σ2(x), and design density f(x) first and then substi-
tutes them into the asymptotic bias and variance expressions. The band-
width is selected to minimize the estimated MISE. Pilot bandwidths are
also needed for this procedure.

The empirical bias method, proposed by Ruppert (1997), relies on a
different estimation of bias. The bias is estimated empirically by calculating
m̂ν(x0;h) at a grid of h values and then modeling it as a function of h. Let
Jb > 1 be an integer, and let h1

0, h
2
0, · · · , hJb

0 be in a neighborhood of h0.
Calculate m̂ν(x0;h�0) for � = 1, · · · , Jb. Then, for some integer a ≥ 1, fit
the model

d0(x0) + dp+1−ν(x0)hp+1−ν + · · ·+ dp+a−ν(x0)hp+a−ν (6.40)

to the synthetic data {(h�0, m̂ν(x0;h�0)) : � = 1, · · · , Jb} using ordinary
least-squares. The expression (6.40) is the asymptotic “expected value” of
m̂ν(x0;h�0) and hence is a natural model to use. An estimator for the bias
for estimating m(ν)(x0) is then

d̂p+1−ν(x0)hp+1−ν + · · ·+ d̂p+a−ν(x0)hp+a−ν . (6.41)

More details on bandwidth selections can be found in the references cited
above. They can also be found in Chapter 4 of Fan and Gijbels (1996) and
in Fan and Gijbels (2000).

6.4 Spline Methods

Spline methods are very useful for nonparametric modeling. They are based
on global approximation and are useful extensions of polynomial regression
techniques. A polynomial function, possessing all derivatives at all loca-
tions, is not very flexible for approximating functions with different de-
grees of smoothness at different locations. For example, the functions in
Figure 6.3 and Figure 6.9(a) cannot be approximated very effectively by
a polynomial function. One way to enhance the flexibility of the approxi-
mations is to allow the derivatives of the approximating functions to have
discontinuities at certain locations. This results in piecewise polynomials
called splines. The locations where the derivatives of the approximating
functions may have discontinuities are called knots . Useful reference books
on spline applications in statistics include Wahba (1990), Green and Sil-
verman (1994), and Eubank (1999).
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6.4.1 Polynomial Splines
As a brief introduction to spline methods, we use the state domain smooth-
ing as the backlog. Let t1, · · · , tJ be a sequence of given knots such that
−∞ < t1 < · · · < tJ < +∞. These knots can be chosen either by data
analysts or data themselves. A spline function of order p is a (p − 1) con-
tinuously differentiable function such that its restriction to each of the
intervals (−∞, t1], [t1, t2], · · · , [tJ−1, tJ ], [tJ ,+∞) is a polynomial function
of order p. Any spline function s(x) of order p with knots t1, · · · , tJ can be
represented as

s(x) =
J+p+1∑
j=1

βjSj(x), (6.42)

where {
Sj(x) = (x− tj)p+, j = 1, · · · , J,
SJ+j(x) = xj−1, j = 1, · · · , p+ 1. (6.43)

In other words, the space of all spline functions with knots t1, · · · , tJ is
a (J + p + 1)-dimensional linear space, and the functions {Sj(x)} are a
basis of this linear space, called the power basis . The power spline basis
has the advantage that deleting a term Sj(x)(j ≤ J) in (6.42) is the same
as deleting a knot. However, as shown in Figure 6.7, the power spline basis
may have large multiple correlation coefficients and could result in a nearly
degenerate design matrix. Another commonly used basis is the B-spline
basis (see p. 108 of de Boor (1978) for the definition), which is usually
numerically more stable (see Figure 6.7(b)). However, deleting a term from
this basis does not correspond to deleting a knot.

Frequently, cubic splines are used in practice. To facilitate the presenta-
tion, from now on, we focus on the cubic spline approximation. Substituting
(6.42) into (6.18), we have

Yt ≈
J+4∑
j=1

βjSj(Xt) + σ(Xt)εt.

Ignoring the heteroscedasticity, we estimate unknown parameters {βj} by
minimizing

min
β

T∑
t=1


Yt −

J+4∑
j=1

βjSj(Xt)




2

. (6.44)

Let β̂j (j = 1, · · · , J+4) be the least squares estimate. Then, the regression
function is estimated by the spline function m̂(x) =

∑J+4
j=1 β̂jSj(x). This is

a cubic spline function since it is a linear combination of the cubic spline
basis (6.43).

The polynomial spline method above is sensitive to the choice of knots
{tj}. One method of choosing the knots automatically is to initially place
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FIGURE 6.7. The power spline basis and B-spline basis for cubic splines with
knots 0.3, 0.7 and 0.9. Any cubic spline functions with knots 0.3, 0.7, and 0.9
must be a linear combination of these basis functions.

many knots that might be deleted in the knot selection process. These
knots are often placed at the order statistics of the X-variable. An ex-
ample of the initial knots is tj = X(3j), j = 1, · · · , [T/3]. One can now
treat problem (6.44) as an ordinary least-squares problem and apply lin-
ear regression techniques to select “significant variables” among the basis
functions {Sj(x)}. Hence, the knots are selected.

We now briefly describe the stepwise deletion method. Let β̂j be the
least-squares estimate resulting from (6.44) and SE(β̂j) be its estimated
standard error. Then, delete the j0th knot (1 ≤ j0 ≤ J) having the smallest
absolute t-statistic: |β̂j |/SE(β̂j) (1 ≤ j ≤ J). Repeat the process above
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FIGURE 6.8. Some commonly used penalty functions. (a) L1-penalty function
(dashed curve) with ω = 1 and the hard-thresholding penalty with ω = 3; (b)
smoothly clipped absolute deviation (SCAD) penalty with ω = 1.

(delete one knot at each step). We obtain a sequence of models indexed
by j (0 ≤ j ≤ J): the jth model contains J + 4 − j free parameters with
residual sum of squares RSSj . Choose the model ĵ that minimizes the
modified Mallows Cp criterion (see Mallows 1973),

Cj = RSSj + α(J + 4− j)σ̂2, (6.45)

where σ̂ is the estimated standard deviation of the initial model (full model)
and α is a smoothing parameter. Kooperberg and Stone (1991) recommend
using α = 3 instead of the more traditional value α = 2 in Akaike’s infor-
mation criterion (AIC) Akaike 1970), while Schwarz (1978) recommends
using α = log T in a different context. These kinds of knot selection ideas
are often employed by Stone and his collaborators; see, for example, Stone,
Hansen, Kooperberg, and Truong (1997) and the references therein.

6.4.2 Nonquadratic Penalized Splines
One drawback of the stepwise approach in knot selection above is the
stochastic noise accumulation in the variable selection process. The se-
lected model is not chosen from all possible submodels, and the sampling
properties of the procedures are hard to understand. To overcome these
drawbacks, Fan and Li (2001) propose the following penalized least-squares
method. Let sj be the standard deviation of {Sj(Xt) : t = 1, · · · , T}. This
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represents the scale of Sj(·). Let pω(|θ|) be a penalty function with singu-
larities at 0 (Figure 6.8), where ω is a smoothing parameter. Examples of
penalty functions include

pω(|θ|) = ω|θ|, L1-penalty,
pω(|θ|) = ω2 − {(|θ| − ω)+}2, HT-penalty,
p′
ω(θ) = ω{I(θ ≤ ω) + (aω−θ)+

(a−1)ω I(θ > ω)},
with a = 3.7, for θ > 0 SCAD-penalty,

(6.46)

which are called L1-, hard thresholding (HT), and the smoothly clipped
absolute deviation (SCAD) penalties, respectively. Note that the SCAD
penalty is smoother than the hard-thresholding function. The latter pro-
duces discontinuous solutions, resulting in unstable models. The procedure
with the L1-penalty is called LASSO by Tibshirani (1996). It creates un-
necessary bias for large coefficients β̂. See Antoniadis and Fan (2001) for a
more detailed discussion, where necessary conditions are given for the pe-
nalized least-squares estimator to have certain properties such as sparsity,
continuity, and unbiasedness. Our favorable choice of penalty function is
the SCAD, which was derived to overcome the drawbacks of the hard and
L1-penalty functions.

To account for different scales of the basis function {Sj(Xt)} for different
j, we normalize it by its standard deviation. The penalized least-squares
method minimizes

T∑
t=1

{Yt −
J+4∑
j=1

βjSj(Xt)/sj}2 +
J+4∑
j=1

pω(|βj |) (6.47)

with respect to β. Fan and Li (2001) give an extension of the Newton–
Raphson algorithm for optimizing (6.47), and Tibshirani (1996) and Fu
(1998) propose two different algorithms for the LASSO. The estimated
regression function is

m̂(x) =
J+4∑
j=1

β̂jSj(Xt)/sj , (6.48)

where {β̂j} are the estimated coefficients. Many of these estimated coeffi-
cients will be zero, according to Fan and Li (2001). Hence, only a subset of
the basis functions will be selected. Due to penalty functions in (6.47), the
choice of J can be very large and the problem is still not degenerate.

For the finite-dimensional problems, Fan and Li (2001) show that the
penalized least-squares estimator possesses the following oracle properties.
Suppose that there are (p + q) unknown parameters, p of them zero and
q nonzero unknown parameters. The penalized least-squares estimator will
estimate those p zero coefficients as zero with probability tending to 1 and
those q nonzero coefficients as efficiently as the q-dimensional submodel. In
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other words, the penalized least-squares estimator performs as well as an
oracle who knows in advance which coefficients are zero and which are not.

6.4.3 Smoothing Splines
A different approach to the regression spline and penalized least-squares
method above is the smoothing spline method. The basic idea is to find
a smooth function that minimizes the residual sum of squares. A popular
measure of roughness of a function m is ‖m′′(x)‖22. By the Lagrange mul-
tiplier method, minimizing the RSS subject to the roughness constraint
is equivalent to the following penalized least-squares problem: minimizing
with respect to m,

T∑
t=1

{Yt −m(Xt)}2 + ω

∫
{m′′(x)}2dx, (6.49)

where ω is a smoothing parameter (Lagrange’s multiplier). It is clear that
ω = 0 corresponds to interpolation, whereas ω = +∞ results in a linear
regression m(x) = α + βx. As ω ranges from zero to infinity, the esti-
mate ranges from the most complex model (interpolation) to the simplest
model (linear model). Thus, the model complexity of the smoothing spline
approach is effectively controlled by the smoothing parameter ω. The es-
timator m̂ω is a spline function and is referred to as a smoothing spline
estimator. It admits a Bayesian interpretation (Good and Gaskins 1971;
Wahba 1978). Figure 6.9 illustrates the method using the environmental
data given in Example 1.5. The method is first applied to the time domain
smoothing. It is clear that the cross-validation method gives too small a
bandwidth for the time domain smoothing (Altman 1990; Chu and Marron
1991a). The smoothing method is then applied to study the association
between the pollutant NO2 and the number of hospital admissions. The
cross-validation method in this state-domain smoothing gives about the
right amount of smoothing.

It is well-known that a solution to the minimization of (6.49) is a cubic
spline. All possible knots are the data points {X1, · · · , XT }. By using a
spline basis expansion (e.g., B-spline basis),

m(x) =
T+4∑
j=1

βjSj(x)

and ‖m′′‖22 is a quadratic function in {βj}. Hence, the problem (6.49) is
really the same as the penalized least-squares estimator with a quadratic
penalty. As a result, many estimated parameters are shrunk toward zero
but are not exactly zero. Moreover, since {β̂j} are linearly in the responses,
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FIGURE 6.9. Nonparametric regression using the smoothing spline method.
(a) Estimated trend with smoothing parameter chosen by the cross-validation
method (solid curve) and ω = 0.0001 (dashed curve). (b) Estimated regression
function between the pollutant NO2 and the number of hospital admissions.

so is m̂ω =
∑T+4
j=1 β̂jSj(x). Hence, it can be expressed as

m̂ω(x) = n−1
n∑
i=1

Wi(x, ω;X1, · · · , Xn)Yi, (6.50)

where the weight Wi does not depend on the response {Yi}. Hence, one can
use the GCV (6.38) to select the smoothing parameter ω.

There are strong connections between kernel regression and smoothing
splines; see Speckman (1981), Cox (1984) and Silverman (1984, 1985). In
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particular, for independent data, Silverman (1984) shows that the smooth-
ing spline is basically a local kernel average with a variable bandwidth.
For Xi away from the boundary, and for T large and ω relatively small
compared with T ,

Wi(x, ω;X1, · · · , Xn) ≈ f(Xi)−1h(Xi)−1Ks{(Xi − x)/h(Xi)}, (6.51)

where h(Xi) = [ω/{nf(Xi)}]1/4 and

Ks(t) = 0.5 exp(−|t|/
√

2) sin(|t|/
√

2 + π/4).

This approximation is also valid for calculating the mean and variance of
the smoothing spline estimator (see Messer 1991).

6.5 Estimation of Conditional Densities

Conditional densities provide a very informative summary of a random
variable Y given X = x. The mean regression m(x) = E(Y |X = x) is the
“center” of this distribution. The conditional standard deviation σ(x) pro-
vides the likely size with which the random variable Y would deviate away
from the conditional mean. Furthermore, the conditional density allows us
to examine the overall shape of the conditional distribution. In the context
of the k-step forecasting, one takes X = Xt and Y = Yt+k. The “center”
of the conditional density, the mean regression function m(x), provides the
predicted value, and the spread of the conditional distribution, the condi-
tional standard deviation σ(x), indicates the likely size of the prediction
error.

6.5.1 Methods of Estimation
As indicated in Example 6.2, we can estimate the conditional density f(y|x)
in the same way as the conditional mean. This can be seen via

E{(2h2)−1I(|Y − y| ≤ h2)|X = x}
= (2h2)−1{F (y + h2|x)− F (y − h2|x)} ≈ f(y|x) (6.52)

as h2 → 0, where F (y|x) is the cumulative conditional distribution of Y
given X = x. Expression (6.52) utilizes the uniform kernel. In general, by
Lemma 5.1,

E {Kh2(Y − y)|X = x} ≈ f(y|x) as h2 → 0 (6.53)

for a given probability density function K. This leads to the nonparametric
regression of the synthetic data Kh2(Y − y) on X.
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Let (X1, Y1), · · · , (XT , YT ) be a stationary sequence. Applying the local
polynomial technique to the synthetic data {(Xt,Kh2(Yt − y))} leads to

T∑
t=1


Kh2(Yt − y)−

p∑
j=0

βj (Xt − x)j



2

Wh1(Xt − x), (6.54)

where W (·) is a kernel function. Let β̂j(x, y) be the solution to the least
squares problem (6.54). Then, from §6.3.2, it is clear that f (ν)(y|x) =
∂νf(y|x)
∂xν can be estimated as

ĝν(y|x) =
∂̂νg(y|x)
∂xν

= ν!β̂ν(x, y). (6.55)

By (6.25), the estimator can be expressed as

f̂ν(y|x) = ν!
T∑
t=1

WT
ν {(Xt − x)/h1}Kh2(Yt − y). (6.56)

We rewrite f̂0(·|·) as f̂(·|·). This idea was due to Fan, Yao, and Tong (1996).
By (6.56), when K(·) has zero mean, one can easily see that

∫ +∞

−∞
yf̂ν(y|x)dy = ν!

T∑
t=1

WT
ν {(Xt − x)/h1}Yt = m̂ν(x).

Thus, the local polynomial estimation of the mean regression function is
simply the mean of the estimated conditional density f̂ν(y|x).

Estimating a bivariate conditional density is computationally intensive.
The simultaneous choice of bandwidths h1 and h2 can be difficult. A simple
rule of thumb is as follows. Choose h2 by the normal reference method
(5.8) and (5.9). Once h2 is chosen, the problem (6.54) is a standard local
polynomial regression problem. Thus, one can use a bandwidth selection
method outlined in §6.3.5 to choose an h1. In the implementation below,
the preasymptotic substitution method of Fan and Gijbels (1995) will be
used.

As an illustration, we draw a random sample from

Xt = 0.23Xt−1(16−Xt−1) + 0.4εt t ≥ 1, (6.57)

where {εt} are independent random variables having the same distribution
as the sum of 48 independent random variables, each distributed uniformly
on [−0.25, 0.25]. By the central limit theorem, εt can effectively be treated
as a standard normal variable. However, it has bounded support, which
is necessary for the stationarity of the time series (see Chan and Tong
1994). The skeleton of model (6.57) appears chaotic; see the top panel of
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FIGURE 6.10. (a) Time series plot of the skeleton xt = 0.23xt−1(16 − xt−1)
with x0 = 10 (top panel) and a simulated series from model (6.57) (bottom
panel). (b)–(d) are, respectively, the one-step, two-step, and three-step forecasting
conditional densities. (e) Conditional densities of Xt+3 given Xt = 4, 6, and 8.
Adapted from Fan, Yao, and Tong (1996).
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Figure 6.10(a). The bottom panel of Figure 6.10(a) shows a typical sim-
ulated time series. The conditional densities for the one-step-, two-step-,
and three-step-ahead predictions are depicted in Figures 6.10 (b)–(e).

For the one-step ahead prediction, the conditional density is approxi-
mately normal with constant variance (see (6.57)). This is consistent with
the shape shown in Figure 6.10(b). The quadratic ridge is the conditional
mean regression function. For the two-step and the three-step forecasts,
the true conditional density is hard to derive. Nevertheless, our method is
able to estimate their conditional densities. The two-step forecasting densi-
ties appear unimodal for all x, whereas the shape of three-step forecasting
densities is hard to determine. To help us examine the conditional density,
we plot a few slices from Figure 6.10(d). It appears that these conditional
densities are unimodal, but their variances are quite different. This noise
amplification will be further discussed in Chapter 10. An advantage of the
conditional densities approach is that it is more informative, indicating not
only the predicted value but also the likely size of prediction errors.

6.5.2 Asymptotic Properties�

We now summarize some asymptotic theory derived in Fan, Yao, and Tong
(1996). The technical device is similar to that used in Theorem 6.3. For
simplicity, we only discuss the two most useful cases: p = 1, ν = 0 (es-
timating the conditional density function) and p = 2, ν = 1 (estimating
the partial derivative function). Let µK =

∫
t2K(t)dt, νK =

∫ {K(t)}2dt,
µj =

∫
tjW (t)dt, and νj =

∫
tj{W (t)}2dt.

Theorem 6.6 For the local linear fit, under Condition 2 in §6.6.5, we have
√
Th1h2{f̂(y|x)− f(y|x)− ϑT,0} D−→ N

(
0, σ2

0
)
,

provided that the bandwidths h1 and h2 converge to zero in such a way that
Th1h2 →∞, where

ϑT,0(x, y) =
h2

1µ2

2
∂2f(y|x)
∂x2 +

h2
2µK
2

∂2f(y|x)
∂y2 + o(h2

1 + h2
2),

σ2
0(x, y) = νKν0

f(y|x)
f(x)

,

where f(x) is the marginal density of X1.

Theorem 6.7 implies that the rate of convergence of the conditional den-
sity is of order

OP

(
h2

1 + h2
2 +

1√
Th1h2

)
.

By taking h1 = h2 = O(T−1/6), one obtains the optimal rate OP (T−1/3).
To state the results for the local quadratic fit (mainly used for derivative
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estimation), we denote

ϑT,1(x, y) =
1
2
µK

∂2f(y|x)
∂y2 h2

2 + o(h3
1 + h2

2),

σ2
1(x, y) =

f(y|x)νK
f(x)

µ2
4ν0 − 2µ2µ4ν2 + µ2

2ν4
(µ4 − µ2

2)2
,

ϑT,2(x, y) =
µ4

6µ2

∂3f(y|x)
∂x3 h2

1 +
1
2
µK

∂3f(y|x)
∂x∂y2 h2

2 + o(h2
1 + h2

2),

σ2
2(x, y) =

f(y|x)νK
f(x)

ν0ν2
µ2

2
.

Theorem 6.7 Suppose that the bandwidths h1 and h2 converge to zero,
that Th3

1h2 → ∞, and that Condition 2 in §6.6.5 holds. For the local
quadratic fit, we have

√
Th1h2/2{f̂(y|x)− f(y|x)− ϑT,1} D−→ N(0, σ2

1)

and √
Th3

1h2/2
{
f̂1(y|x)− ∂

∂x
f(y|x)− ϑT,2

}
D−→ N(0, σ2

2).

Moreover, they are asymptotically jointly normal with covariance 0.

6.6 Complements

Throughout this section, we use C to denote a generic constant, which may
vary from line to line.

6.6.1 Proof of Theorem 6.1
We first establish the bias expression. Since the kernel K has a bounded
support, say [−1, 1], the weight wTu,i does not vanish only when |i−Tu| ≤
h. Since h/T → 0, by (6.15) and Taylor’s expansion, we have

Eĝ(u)− g(u) =
∑T
i=1 wTu,ig

′′(ξi)(i/T − u)2
2
∑T
i=1 wTu,i

,

where ξi lies between u and i/T . Hence, we have

max
i
|ξi − u| ≤ h/T → 0. (6.58)

Let

sT,j(t) =
T∑
i=1

Kh(i− t)(i− t)jg′′(ξi).
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Then, by the definition of the weight function wt,i, we have

Eĝ(u)− g(u) = T−2ST,2(Tu)sT,2(Tu)− ST,1(Tu)sT,3(Tu)
ST,0(Tu)ST,2(Tu)− ST,1(Tu)2 . (6.59)

We now show that for all j

ST,j(Tu) = hjµj +O(hj−1) (6.60)

and
sT,j(Tu) = hjg′′(u)µj +O(hj−1). (6.61)

Suppose that (6.60) and (6.61) hold. Substituting these two results into
(6.59), the bias result follows from the fact that µ1 = 0. It remains to
prove (6.60) and (6.61). Their arguments are quite similar, and hence we
only prove (6.61). By approximating the discrete sum by its integral, using
(6.58), we have

sT,j(Tu) = hj−1
T∑
i=1

K(i/h− Tu/h)(i/h− Tu/h)jg′′(ξi)

= hjg′′(u)
∫ +∞

−∞
K(v − Tu/h)(v − Tu/h)jdv +O(hj−1)

= hjg′′(u)µj +O(hj−1).

This completes the proof for part (a).
For part (b), denote

s∗
T,i(t) =

T∑
k=1

Kh(k − t)(k − t)iεk.

Then, we have

ĝ(u)− Eĝ(u) =
ST,2(Tu)s∗

T,0(Tu)− ST,1(Tu)s∗
T,1(Tu)

ST,0(Tu)ST,2(Tu)− ST,1(Tu)2 , (6.62)

If we can show that

Var{s∗
T,i(Tu)}

=




CX
∫ ∫

G(x)G(y)|x− y|−αdxdyh2i−α, when 0 < α < 1
2CX‖G‖22h2i−1 log(h), when α = 1∑∞
j=−∞ γX(j)‖G‖22h2i−1, when α > 1,

(6.63)

where G(v) = viK(v)(i = 0, 1), then both terms in the numerator of (6.62)
are of the same order. Since µ1 = 0, the second term is indeed of smaller
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order. Similarly, by (6.60), the first term in the denominator of (6.62) dom-
inates. Hence,

Var{ĝ(u)} = Var{s∗
T,0(Tu)}{1 + o(1)},

and the result follows from (6.63).
To prove (6.63), let VT = Var{s∗

T,i(Tu)/h
i}. Since G has a bounded

support, Gh(j) vanishes when |j| ≥ h. Using this, we have for 0 < u < 1

VT =
∑
j,k

Gh(j − Tu)Gh(k − Tu)γX(j − k) =
∑
j,k

Gh(j)Gh(k)γX(j − k).

By (6.14), for any ε > 0, there exists a large M such that for all � ≥M

(1− ε)CX�−α ≤ γX(�) ≤ (1 + ε)CX�−α.

Write

VT =
∑
k



∑

|�|≤M
+
∑

|�|>M


Gh(k)Gh(k + �)γX(�) ≡ I1 + I2.

Since Gh(k) vanishes when |k| ≥ h,

|I1| ≤
∑
k

∑
|�|≤M

Gh(k)Gh(k + �)

≤ (2M + 1)(2h+ 1)h−2 max
v
|G(v)|2

≤ Ch−1.

By approximating the discrete sum by the continuous integral, we have for
0 < α < 1,

I2 ≤ (1 + ε)
∑
k

∑
|�|>M

Gh(k)Gh(k + �)CX |�|−α

= (1 + ε)CX
∫ +∞

−∞

∫

|y|≥M
Gh(x)Gh(x+ y)|y|−αdxdy{1 + o(1)}.

A change of variable leads to

I2 ≤ (1 + ε)CXh−α
∫ +∞

−∞

∫ +∞

−∞
G(x)G(y)|x− y|−αdxdy{1 + o(1)}.

Therefore, letting T →∞ and then ε→ 0, we have

lim sup
T→∞

hαVT ≤ CX
∫ +∞

−∞

∫ +∞

−∞
G(x)G(y)|x− y|−αdxdy.
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Using the same argument, we have

lim inf
T→∞

hαVT ≥ CX
∫ +∞

−∞

∫ +∞

−∞
G(x)G(y)|x− y|−αdxdy.

This proves (6.63) for the case 0 < α < 1.
When α = 1, using arguments similar to those in the paragraph above,

we have for each c > 0

VT = CX

∫ +∞

−∞

∫

|y|>c/h
Gh(x)Gh(x+ y)|y|−1dxdy{1 + o(1)}

= 2CX‖G‖22h−1 log(h){1 + o(1)}.

This proves (6.63).
For the case α > 1, write

VT =
∞∑

�=−∞
γX(j)

∑
k

Gh(k)Gh(k + �).

By approximating the discrete sum by an integral, we have for each given
j ∑

k

Gh(k)Gh(k + j) = h−1‖G‖22{1 + o(1)}.

Since
∑
j |γX(j)| <∞, we have

VT = h−1
∞∑

�=−∞
γX(�)‖G‖22 + o(h−1).

This completes the proof.

6.6.2 Conditions and Proof of Theorem 6.3
As explained in Figure 5.4, the conditions imposed on the mixing coefficient
and bandwidth h should be related. This is more precisely described in
Condition 1(iv) below.
Condition 1:

(i) The kernel K is bounded with a bounded support.

(ii) The conditional density fX0,X�|Y0,Y�
(x0, x�|y0, y�) ≤ A1 <∞,∀� ≥ 1.

(iii) For ρ-mixing processes, we assume that
∑
�

ρ(�) <∞, EY 2
0 <∞;
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for α-mixing processes, we assume that for some δ > 2 and a >
1− 2/δ,

∑
�

�a[α(�)]1−2/δ <∞, E|Y0|δ <∞, fX0|Y0(x|y) ≤ A2 <∞.

(iv) For ρ-mixing and strongly mixing processes, we assume, respectively,
that there exists a sequence of positive integers satisfying sT → ∞
and sT = o{(nhT )1/2} such that

(n/hT )1/2ρ(sT )→ 0 and (n/hT )1/2α(sT )→ 0 as T →∞.

(v) σ2(·) and f(·) are continuous at the point x and f(x) > 0.

Proof. Let m = {m(X1), · · · ,m(XT )}T and βj = m(j)(x)/j!. Write

β̂(x)− β0(x) = (XTWX)−1XTW{m−Xβ0(x)}
+(XTWX)−1XTW(y −m)

≡ b + t. (6.64)

The main idea is to show that the bias vector b converges in probability
to a vector and that the centralized vector t is asymptotically normal.

We first establish the asymptotic behavior of the bias vector b. By Tay-
lor’s expansion of m(Xi) around the point x, we have

b = S−1
T {βp+1(ST,p+1, · · · , ST,2p+1)T + oP (hp+1)}, (6.65)

where ST = XTWX and ST,j is defined in (6.24). By (6.28), we have

b = βp+1(HSH)−1Hcphp+1{1 + oP (1)}, (6.66)

with H = diag(1, h, · · · , hp).
We next consider the joint asymptotic normality of t. By (6.28),

t = f−1(x)H−1S−1u{1 + oP (1)}, (6.67)

where u = T−1H−1XTW(y −m). Thus, we need to establish the asymp-
totic normality of u. Consider an arbitrary linear combination cTu. Simple
algebra shows that

QT ≡ cTu =
1
T

T∑
i=1

Zi, (6.68)

where with C(u) =
∑p
j=0 cju

jK(u) and Ch(u) = C(u/h)/h,

Zi = {Yi −m(Xi)}Ch(Xi − x).
The problem reduces to proving the asymptotic normality of QT .
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We will show that
√
ThQT

D−→ N
{
0, θ2(x)

}
, (6.69)

where

θ2(x) = σ2(x)f(x)
∫ +∞

−∞
C2(x)dx = σ2(x)f(x)cTS∗c.

From this, it follows that
√
Thu D−→ N{0, σ2(x)f(x)S∗}.

Hence √
ThHt D−→ N{0, σ2(x)f−1(x)S−1S∗S−1}.

Using this and (6.66), we obtain Theorem 6.3.
The proof of (6.69) requires some extra work. We divide the proof into

two steps: computation of the variance of QT and showing the asymptotic
normality of QT .

Computation of the variance of QT
Note that

Var(Zi) =
1
h

{
θ2(x) + o(1)

}
. (6.70)

By stationarity, we have

Var(QT ) =
1
T

Var(Z1) +
2
T

T−1∑
�=1

(1− �/T )Cov(Z1, Z�+1).

Let dT →∞ be a sequence of integers such that dThT → 0. Define

J1 =
dT −1∑
�=1

|Cov(Z1, Z�+1)|, J2 =
T−1∑
�=dT

|Cov(Z1, Z�+1)|.

Let B = maxX∈x±hm(X). By conditioning on (Y1, Y�) and using Condition
1(ii), we obtain

|Cov(Z1, Z�)|
= |E[{Y1 −m(X1)}{Y� −m(X�)}Ch(X1 − x)Ch(X� − x)]|

≤ A1E{(|Y1|+B)(|Y�|+B)}
(∫ +∞

−∞
|Ch(u− x)|du

)2

≤ D,

for some D > 0. It follows that J1 ≤ dTD = o(1/hT ). We now consider the
contribution of J2. For ρ-mixing processes, we have from (6.70) that

J2 ≤ Var(Z1)
∞∑

�=dT

ρ(�) = o(1/hT ).
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For strongly mixing processes, we use Davydov’s lemma (see Hall and
Heyde 1980, Corollary A2) and obtain

|Cov(Z1, Z�+1)| ≤ 8[α(�)]1−2/δ[E|Z1|δ]2/δ.

By conditioning on Y1 and using Condition 1(iii), we have

E|Z1|δ ≤ A2E(|Y1|+B)δ
∫ +∞

−∞
|Ch(x− u)|δ ≤ Dh−δ+1

T

for some D > 0. Combining the last two inequalities leads to

J2 ≤ δD2/δh
2/δ−2
T

∞∑
�=dT

[α(�)]1−2/δ

≤ δD2/δh
2/δ−2
T d−a

T

∞∑
�=dT

�a[α(�)]1−2/δ

= o(1/hT )

by taking h1−2/δdaT = 1. This choice of dT satisfies the requirement that
dThT → 0. Using the properties of J1 and J2, we conclude that

T−1∑
�=1

|Cov(Z1, Z�+1)| = o(1/hT ) (6.71)

and that ThT Var(QT )→ θ2(x).

Asymptotic normality of QT
The proof of this step is the same for ρ-mixing and strongly mixing pro-
cesses. We only concentrate on ρ-mixing processes.

We employ so-called small-block and large-block arguments. Partition
the set {1, · · · , T} into subsets with large blocks of size r = rT and small
blocks of size s = sT . A large block is followed by a smaller block. Let
k = kT = [ T

rT +sT
] be the number of blocks. Let ZT,t =

√
hZt+1. Then√

ThQT = T−1/2∑T−1
t=0 ZT,t. By (6.70) and (6.71),

Var(ZT,0) = θ2(x){1 + o(1)},
T−1∑
t=1

|Cov(ZT,0, ZT,t)| = o(1). (6.72)

Let the random variables ηj and ξj be the sum over the jth large-block
and the jth small-block, respectively; that is,

ηj =
j(r+s)+r−1∑
t=j(r+s)

ZT,t, ξj =
(j+1)(r+s)−1∑
t=j(r+s)+r

ZT,t,
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and ζk =
∑T−1
t=k(r+s) ZT,t be the sum over the residual block. Then

√
ThQT =

1√
T



k−1∑
j=0

ηj +
k−1∑
j=0

ξj + ζk




≡ 1√
T
{Q′

T +Q′′
T +Q′′′

T } .

We will show that as T →∞,

1
T
E(Q′′

T )2 → 0,
1
T
E(Q′′′

T )2 → 0, (6.73)

∣∣∣∣∣∣
E [exp(itQ′

T )]−
k−1∏
j=0

E [exp(itηj)]

∣∣∣∣∣∣
→ 0, (6.74)

1
T

k−1∑
j=0

E
(
η2
j

)→ θ2(x), (6.75)

1
T

k−1∑
j=0

E
[
η2
j I{|ηj | ≥ εθ(x)

√
T}
]
→ 0, (6.76)

for every ε > 0. Statement (6.73) implies that the sums over small and resid-
ual blocks Q′′

T and Q′′′
T are asymptotically negligible. Result (6.74) reveals

that the summands in the large blocks {ηj} in Q′
T are asymptotically inde-

pendent, and (6.75) and (6.76) are the standard Lindberg–Feller conditions
for the asymptotic normality of Q′

T under the independence assumption.
Expressions (6.73)–(6.76) entail the asymptotic normality (6.69).

We now establish (6.73)–(6.76). We first choose the block sizes. Condition
1(iv) implies that there exist constants qT →∞ such that

qT sT = o(
√
Th); qT (T/h)1/2α(sT )→ 0.

Define the large block size rT = [(ThT )1/2/qT ]. Then, it can easily be shown
that

sT /rT → 0, rT /T → 0, rT /(ThT )1/2 → 0,
T

rT
α(sT )→ 0. (6.77)

We now establish (6.73) and (6.74). First, by stationarity and (6.72), we
find

Var(ξj) = sθ2(x){1 + o(1)}.
By (6.72) and (6.77), we have

E(Q′′
T )2 = kVar(ξj) +O

(
T

T−1∑
t=0

|Cov(ZT,0, ZT,t)|
)

= o(T ).
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The same argument leads to the second part of (6.73) and (6.74).
Note that the indices in ηj and ηj+1 are at least sT apart. Hence, applying

Proposition 2.6 with Vj = exp(itηj), we find
∣∣∣∣∣∣
E exp(itQ′

T )−
k−1∏
j=0

E[exp(itηj)]

∣∣∣∣∣∣
≤ 16kα(sT ) ∼ 16

T

rT
α(sT ),

which tends to zero by (6.77). This proves (6.74).
It remains to establish (6.76). We employ a truncation argument as fol-

lows. Let YL,t = YtI{|Yt| ≤ L}, where L is a fixed truncation point. Cor-
respondingly, let us add the superscript L to indicate the quantities that
involve {YL,t} instead of {Yt}. Then QT = QLT + Q̃LT , where

Q̃LT = T−1
T∑
t=1

(Zt − ZLt ).

Using the fact that C(·) is bounded (since K is bounded with a compact
support), we have |ZLT,t| ≤ D/h1/2 for some constant D. Then, using (6.77),
it follows that

max
0≤j≤k−1

|ηLj |/
√
T ≤ DrT /

√
ThT → 0.

Hence, when T is large, the set {|ηLj | ≥ θL(x)ε
√
T} becomes an empty set,

and hence (6.76) holds. Consequently, we have the following asymptotic
normality: √

ThTQ
L
T

D−→ N{0, θ2L(x)}. (6.78)

In order to complete the proof (i.e., to establish (6.69)), it suffices to show
that as first T →∞ and then L→∞, we have

ThVar
(
Q̃LT

)
→ 0. (6.79)

Indeed, from this, we proceed as follows:
∣∣∣E exp(it

√
ThQT )− exp{−t2θ2(x)/2}

∣∣∣
≤ E| exp(it

√
ThQLT ){exp(it

√
ThQ̃LT )− 1}|

+
∣∣∣E exp(it

√
ThQLT )− exp{−t2θ2L(x)/2}

∣∣∣
+
∣∣exp{−t2θ2L(x)/2} − exp{−t2θ2(x)/2}∣∣ .

The first term is bounded by

E| exp(it
√
ThQ̃LT )− 1| = O{Var(

√
ThQ̃LT )}.
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Letting T →∞, the first term converges to zero by (6.79) as first T →∞
and then L→∞, the second term goes to zero by (6.78) for every L > 0,
and the third term goes to zero as L → ∞ by the dominated convergence
theorem. Therefore, it remains to prove (6.79). Note that Q̃LT has the same
structure as QT . Hence, by (6.72), we obtain

lim
T→∞

ThVar
(
Q̃LT

)
= Var(Y I[|Y | > L]|X = x)f(x)

∫ +∞

−∞
C2(u)du.

By dominated convergence, the right-hand side converges to 0 as L→∞.
This establishes (6.79) and completes the proof of Theorem 6.3.

6.6.3 Proof of Lemma 6.1
The idea of proving this lemma is a combination of the techniques used
in Mack and Silverman (1982) and Theorem 5.3. Recall that C denotes
a generic constant, which can vary from one place to another. The proof
consists of the following three steps.

(a) (Discretization). Let Qh(x) = T−1∑T
t=1Kh(x−Xt)Yt. Partition the

interval [a, b] into N = [(T/h)1/2] subintervals {Ij} of equal length.
Let {xj} be the centers of Ij . Then

sup
x∈[a,b]

|Qh(x)− EQh(x)| ≤ max
1≤j≤N

|Qh(xj)− EQh(xj)|+ C(Th)−1/2.

(6.80)

(b) (Truncation). Let QBh (x) = T−1∑T
t=1Kh(x −Xt)YtI(|Yt| ≤ Bt) for

an increasing sequences Bt satisfying
∑
tB

−s
t <∞. Then, with prob-

ability 1,

sup
x∈[a,b]

|Qh(x)−QBh (x)− E{Qh(x)−QB(x)}| = O(B1−s
T ). (6.81)

(c) (Maximum deviation for discretized and truncated series). For εT =
(a log T/Th)1/2 with sufficiently large a,

P

(
max

1≤j≤N
|QBh (xj)− EQBh (xj)| > εT

)

= O{Bβ+1.5
T T−β/2+0.75h−β/2−0.75(log T )β/2+0.25}, (6.82)

provided that BT εT → 0.

Suppose that the results in (a)–(c) are correct. Then, by taking BT =
T (s−1+δ) for some δ > 0, we deduce from (6.81) that

sup
x∈[a,b]

|Qh(x)−QBh (x)− E{Qh(x)−QB(x)}| = o(T−1/2),
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which is negligible. This and (6.80) entail

sup
x∈[a,b]

|Qh(x)−EQh(x)| ≤ max
1≤j≤N

|QBh (xj)−EQBh (xj)|+C(Th)−1/2. (6.83)

By the condition of this lemma, BT εT → 0 and the probability given (6.82)
tends to zero. Hence

max
1≤j≤N

|QBh (xj)− EQBh (xj)| = OP {(log T/Th)1/2}.

The result follows from (6.83). It remains to prove the results in parts
(a)—(c).

The proof of part (a) is very similar to that given in the proof of Theo-
rem 5.3. By using the Lipschitz condition of K, we have

|Qh(x)−Qh(x′)| ≤ Ch−1|x− x′|T−1
T∑
t=1

|Yt|

≤ Ch−1|x− x′|E|Y |. (6.84)

Similarly, using the first equality in (6.84), we have

|E{Qh(x)−Qh(x′)}| ≤ Ch−1|x− x′|E|Y |.
This and (6.84) prove part (a).

The proof of part (b) is quite similar to that in Mack and Silverman
(1982). Note that

∑
t

P{|Yt| > Bt} <
∑
t

B−s
t E|Y |s <∞.

By the Borel–Cantelli lemma, with probability 1, |Yt| ≤ Bt for sufficiently
large t. Hence, for all sufficiently large T ,

|Yt| ≤ BT for all t ≤ T .
This implies that supx∈[a,b] |Qh(x)−QBh (x)| is eventually zero with proba-
bility 1. It remains to bound the expectation term. By using the fact that

sup
x∈[a,b]

∫

|y|≥BT

|y|f(x, y)dy ≤ CB1−s
T ,

we have

E|Qh(x)−QBh (x)| ≤
∫

|y|≥BT

|Kh(x− u)||y|f(u, y)dydu

≤ sup
x∈[a,b]

∫

|y|≥BT

|y|f(x, y)dy
∫
|K(u)|du

≤ CB1−s
T .
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Combining the two results above, we prove part (b).
We now prove part (c). Let

Zt = Kh(x−Xt)YtI(|Yt| ≤ BT )− EKh(x−Xt)YtI(|Yt| ≤ BT ).

Then ‖Zt‖∞ < CBT /h. By using the exponential inequality (Theorem
2.18), we have for any ε > 0 and each integer q ∈ [1, T/2],

P{|QBh (x)− EQBh (x)| > ε}

≤ 4 exp
(
− ε2q

8v2(q)

)
+ 22

{
1 +

4BT
hε

}1/2

qα(p), (6.85)

where p = [T/(2q)],

v2(q) = 2σ2(q)/p2 + CBT ε/h

and
σ2(q) = max

0≤j≤2q−1
Var{Yjp+1 + · · ·+ Y(j+1)p+1}.

By the proof of Theorem 6.3, when T is sufficiently large, σ2(q) ≤ Cp/h.
Hence, by taking p = [(BT εT )−1], by (6.85) and some simple algebra, we
have

P{|QBh (x)− EQBh (x)| > εT }
≤ 4 exp(−Cε2TTh) + CBβ+1.5

T Th−1/2εβ+0.5
T . (6.86)

Rewrite ε2 = a log T/(CTh) for the sufficiently large a. Expression (6.86)
is bounded by

4T−a + CBβ+1.5
T T−β/2+0.75h−β/2−0.75(log T )β/2+0.25.

Consequently,

P ( max
1≤j≤N

|QBh (xj)− EQBh (xj)| > ε)

≤ N{4T−a +Bβ+0.5
T T−β/2+0.75h−β/2−0.75(log T )β/2+0.25}.

This proves part (c) and hence the lemma.

6.6.4 Proof of Theorem 6.5
We use the notation for the proof of Theorem 6.3. By using Lemma 6.1
with Yj ≡ 1, each element ST,j converges uniformly to its asymptotic coun-
terpart with stochastic error of order {Th/ log(T )}−1/2 and bias o(1). By
(6.65), we have

b = βp+1(HSH)−1Hcphp+1{1 + o(1) +OP ({Th/ log(T )}−1/2)}
uniformly for x ∈ [a, b]. Note that each element of u in (6.67) is of the
form given in Lemma 6.1. By Lemma 6.1, it is of order {Th/ log(1/h)}−1/2

uniformly in x ∈ [a, b]. The result of Theorem 6.5 follows directly from
(6.64) and the results above.
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6.6.5 Proof for Theorems 6.6 and 6.7
Condition 2:

(i) The kernel functions W and K are symmetric and bounded with
bounded supports.

(ii) The process {Xj , Yj} is ρ-mixing with
∑
� ρ(�) < ∞. Furthermore,

assume that there exists a sequence of positive integers sn →∞ such
that sn = o{(nh1h2)1/2} and {n/(h1h2)}1/2ρ(sn)→ 0.

(iii) The function f(y|x) has bounded and continuous third order deriva-
tives at point (x, y), and f(·) is continuous at point x.

(iv) The joint density of the distinct elements of (X0, Y0, X�, Y�) (� > 0)
is bounded by a constant that is independent of �.

Note that the ρ-mixing conditions above can easily be modified for the
α-mixing process.

Proof. The proof of Theorem 6.6 is similar to that of Theorem 6.7. The
latter uses the same techniques as the proof of Theorem 6.3, so we only
outline the proof of Theorem 6.7.

Let m(x, y) = E{Kh2(Yt − y)|Xt = x}, H = diag(1, h1, h
2
1), and

β = (m0(x, y),m1(x, y),m2(x, y))T ,

where m0(x, y) = m(x, y) and for j ≥ 1,

mj(x, y) =
1
j!
∂j

∂xj
m(x, y).

Using matrix notation and simple algebra, we obtain from (6.23) and (6.54)
that

H(β̂ − β) = S∗
T

−1{(UT,0, UT,1, UT,2)T + (γT,0, γT,1, γT,2)T }, (6.87)

where S∗
T is a 3× 3 matrix with the (i, j)-element S∗

T,i+j−2,

UT,j =
1
T

T∑
t=1

(
Xt − x
h1

)j
Wh1(Xt − x) {Kh2(Yt − y)−m(Xt, y)} ,

γT,j =
1
T

T∑
t=1

(
Xt − x
h1

)j
Wh1(Xt − x)×

{
m(Xt, y)−m(x, y)−m1(x, y)(Xt − x)−m2(x, y)

(Xt − x)2
2

}
,

S∗
T,j =

1
T

T∑
t=1

(
Xt − x
h1

)j
Wh1(Xt − x).
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Let S and Σ be 3 × 3 matrices with (i, j)-elements µi+j−2 and νi+j−2,
respectively, and γ = (µ3, µ4, µ5)T . We will establish that

(a) S∗
T converges to f(x)S in probability.

(b) h−3
1 (γT,0, γT,1, γT,2)T converges to 6−1f(x)γ∂3f(y|x)/∂x3 in proba-

bility.

(c) (Th1h2)1/2(UT,0, UT,1, UT,2) is asymptotically normal with mean 0
and variance f(y|x)f(x)ν0νKΣ.

Combining these with (6.87), we have

(Th1h2)1/2
{
H(β̂ − β)− 1

6
h3

1
∂3f(y|x)
∂x3 S−1γ

}

D−→ N
(
0, f(y|x)ν0νKS−1ΣS−1/f(x)

)
. (6.88)

It follows from the Taylor expansion that

mj(x, y) =
∂jf(y|x)
∂xj

+
1
2
h2

2µK
∂j+2f(y|x)
∂xj∂y2 + o(h2

2).

Using this expansion and considering the marginal distribution of (6.88),
we obtain the result.

Conclusion (a) has already been shown in (6.28). For (b), by Taylor’s
expansion, we have

γT,j =
m3(x, y)h3

1

T

T∑
t=1

(
Xt − x
h1

)j+3

Wh1(Xt − x){1 + o(1)}.

Using (6.67) again, we have

h−3
1 γT,j → m3(x, y)f(x)µj+3

This establishes (b).
To prove (c), we consider arbitrary linear combinations of UT,j with

constant coefficients ηj (j = 0, 1, 2). Let

QT = (Th1h2)1/2(η0UT,0 + η1UT,1 + η2UT,2)

= T−1/2
T∑
t=1

(h1h2)1/2Dh1 (Xt − x) {Kh2(Yt − y)−m(Xi, y)},

where D(u) = (η0 + η1u + η2u
2)W (u). Write QT = T−1/2(ZT,0 + . . . +

ZT,T−1). Note that QT is the sum of a stationary mixing sequence. Its
asymptotic normality follows from the small-block and large-block argu-
ments, as shown in the proof of Theorem 6.3.
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6.7 Bibliographical Notes

Smoothing in time series is closely related to density estimation and other
related problems such as spectral density estimation. It is an extension of
the smoothing techniques for independent data and their nonparametric
counterparts. See Sections 5.8 and 7.6 for related references. In this sec-
tion, we mainly focus on some important developments for dependent data.

Nonparametric regression for an independent sample

There are many interactions between the developments of nonparametric
density estimation and nonparametric regression. The kernel regression was
independently proposed by Nadaraya (1964) and Watson (1964). Other
variants include the ones in Priestley and Chao (1972) and Gasser and
Müller (1979). Chu and Marron (1991b) compared the merits of various
versions of the kernel regression estimator. The optimal rates of conver-
gence were established by Stone (1980, 1982). Mack and Silverman (1982)
established uniform consistency for kernel regression. The asymptotic dis-
tribution of the maximum deviation between the estimated regression func-
tion and the true one was derived in Gruet (1996). The result was indepen-
dently extended to varying coefficient models by Xia and Li (1999b) and
Fan and Zhang (2000) using different estimators. Extensive treatments of
kernel regression estimators can be found in the books by Müller (1988),
Härdle (1990), and Eubank (1999).

Local polynomial fitting

Local polynomial regression is very useful for estimating regression func-
tions and their derivatives. It has been thoroughly treated in the book by
Fan and Gijbels (1996) and the references therein. The idea of local ap-
proximation appeared in Woolhouse (1870) and Macaulay (1931), but it
dates back at least as early as the time when π was computed. It was first
used as a tool for nonparametric regression by Stone (1977) and Cleveland
(1979). Tsybakov (1986) demonstrated the asymptotic properties of robust
local polynomial estimators. The equivalence between the local polynomial
fitting and kernel regression was demonstrated by Müller (1987) for a fixed
design setting.

Fan (1992, 1993a) clearly demonstrated the advantages of using local
polynomial fitting for nonparametric regression and revived interest in the
local polynomial techniques. Subsequently, Fan and Gijbels (1992) and
Hastie and Loader (1993) demonstrated that the local linear fitting au-
tomatically corrects boundary biases. Ruppert and Wand (1994) extended
the results to general local polynomial fitting. Fan, Farmen, and Gijbels
(1998) laid out a blueprint for local maximum likelihood estimation, and
Carroll, Ruppert, and Welsh (1998) generalized the method further to in-
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clude local estimation equations. Data-driven bandwidth selection meth-
ods can be found in Fan and Gijbels (1995), Ruppert, Sheather, and Wand
(1995), and Ruppert (1997).

Nonparametric regression for a dependent sample

There are various nonparametric regression problems for time series: time-
domain smoothing, state-domain smoothing and estimation of conditional
density and conditional variance, among others. Yakowitz (1985) consid-
ered estimating the conditional mean and transition density for Markov
sequences. Roussas (1990) obtained a strong consistent rate for the ker-
nel regression estimator. Nonparametric regression with errors-in-variables
was studied by Fan and Masry(1992). Truong and Stone (1992) established
rates of convergence under the L2 and L∞ norms for local average and local
median estimators. The optimal rate of convergence was established in Tran
(1993) under some weaker conditions than in previous work. Yao and Tong
(1996) estimated conditional expectiles for dependent processes. A semi-
parametric problem was investigated by Truong and Stone (1994), where
the root-n rate was constructed. Vieu (1991) showed that all MISE, ISE,
and ASE measures are asymptotically equivalent. This is an extension of a
result by Härdle and Marron (1985) from independent to dependent cases;
see also the study by Kim and Cox (1995). Tran, Roussas, Yakowitz, and
Truong (1996) established asymptotic normality for nonparametric regres-
sion estimators under fairly general conditions. Nonparametric multivari-
ate autoregression problems were studied by Härdle, Tsybakov, and Yang
(1998). Opsomer, Wang, and Yang (2001) give an overview of nonparamet-
ric regression with correlated errors. Jiang and Mack (2001) studied robust
local polynomial regression for dependent data, where the one-step prop-
erties have also been studied. Nonparametric regression with heavy-tailed
dependent errors was studied in Peng and Yao (2001).

Hall and Hart (1990) derived the means-square properties for both long-
memory and short-memory errors. Altman (1990) studied time-domain
smoothing and bandwidth selection for data with short-memory errors. The
rates of convergence of time domain smoothing and semiparametric estima-
tion were investigated by Truong (1991). Brillinger (1996), Wang (1996),
and Johnstone and Silverman (1997) studied nonparametric regression us-
ing wavelet thresholding estimators. The asymptotic normality for kernel
regression under both short- and long-range dependences was studied by
Csörgö and Mielniczuk (1995) and Robinson (1997). The asymptotic distri-
bution for the maximum deviation was derived in Csörgö and Mielniczuk
(1995).

Nonparametric estimation of drift and diffusion functions were nonpara-
metrically estimated by Pham (1981), Prakasa Rao (1985), Stanton (1997),
and Fan and Yao (1998), among others. Wang (2002) investigated the
problems of the asymptotic equivalence of ARCH models and diffusions.
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Durham and Gallant (2002) studied simulated maximum likelihood esti-
mation based on a discrete sample from diffusion processes. Aït-Sahalia
(1999, 2002) derived asymptotic expansions of the transition densities for
stochastic diffusion models and investigated the properties of maximum
likelihood estimators.

Spline smoothing

The idea of the smoothing spline appeared in Wittaker (1923), Schoenberg
(1964), and Reinsch (1967). It was introduced to statistics by Kimeldorf
and Wahba (1970) and Wahba (1975). Multivariate spline approximations
were discussed by Wong (1984) and Gu (1990). The choice of smoothing
parameters was discussed by Utreras (1980) and Li (1985, 1986) in addition
to Wahba (1977). Confidence intervals can be constructed by using the
Bayesian method described in Nychka (1988).

The knot deletion idea was proposed in Smith (1982) and the book by
Breiman, Friedman, Olshen, and Stone (1984); see also its revision in 1993.
The current state-of-art of regression splines based on the knot deletion
method can be found in Stone, Hansen, Kooperberg and Truong (1997).
The method of the sieve for stationary β-mixing observations was studied
by Chen and Shen (1998). The asymptotic normality and rate of conver-
gence for nonparametric neural network estimators were established by
Chen and White (1999).

Bandwidth selection

The problem of choosing a smoothing parameter exists in virtually all
nonparametric estimation. The basic idea is to choose the parameter to
minimize either integrated squared errors or the mean integrated squares
errors. The methods can basically be classified into two categories: cross-
validation methods and plug-in methods. For a survey and development of
cross-validation for independent data, see Hall and Johnstone (1992). See
also Hall, Marron, and Park (1992) for a smoothed cross-validation method.
Most developments and studies in this area are in the i.i.d. density estima-
tion setting. For a survey, see Jones, Marron, and Sheather (1996).

The bandwidth selection for state-domain smoothing problems is very
similar to that for independent data when mixing conditions are strong
enough. For time-domain smoothing, because of local dependence, the
bandwidth selectors for independent samples do not work well. This was
observed and studied by Altman (1990), Chu and Marron (1991a), and Hart
(1991). Hart and Vieu (1990) and Härdle and Vieu (1992) showed asymp-
totic optimality for multifold cross-validation. Hall, Lahiri, and Truong
(1995) studied properties of cross-validation and plug-in bandwidth selec-
tion with dependent data. The asymptotic normality for a cross-validation
bandwidth selector was established in Chu (1995). Kim and Cox (1997)



274 6. Smoothing in Time Series

studied the asymptotic convergence rate for a cross-validation bandwidth
estimator in a density estimation setting. A generalized cross-validation
was considered by Yao and Tong (1998a) for rho-mixing processes.

Robinson (1994) considered data-driven nonparametric estimation for
spectral density with singularity at point zero. Ray and Tsay (1997) pro-
posed a plug-in bandwidth selection for kernel regression with long-range
dependence, which is an extension of the method by Brockmann, Gasser,
and Herrmann (1993).



7
Spectral Density Estimation and Its
Applications

7.1 Introduction

Spectral density reveals the power spectrum of a stationary time series.
It characterizes the second-moment properties of a stationary time series.
By inspecting an estimated spectral density, we may identify the frequency
ranges that contribute the most variation of data. It also helps to identify
an appropriate family of models that possess the key correlation features of
the underlying process. In particular, when an estimated spectral density
is nearly a constant, one may infer that an underlying process is a white
noise process. This is useful for model diagnostics; after fitting a certain
family of models, one wishes to verify if the family of models adequately
fits a given time series by checking whether or not the residual series is
a white noise process. The latter can be done by inspecting whether the
estimated spectral density based on residuals is nearly a constant.

The raw material for estimating spectral density is the periodogram
IT (ωk) defined in §2.4.2, where ωk = 2πk/T . Let Vk = (ξ22k−1 + ξ22k)/2,
which is a sequence of independent random variables with the standard
exponential distribution. Let n = [(T − 1)/2]. As shown in Theorem 2.14,
the periodogram can be written as

I∗
T (ωk) = g(ωk)Vk +RT (ωk), k = 1, · · · , n, (7.1)

where RT (ωk) is asymptotically negligible and I∗
T (ωk) = IT (ωk)/(2π),

which is used as a definition of periodograms by some authors. Let m(x) =
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log g(x) and Yk = log I∗
T (ωk). Then, (7.1) can be written as

Yk = m(ωk) + zk + rk, k = 1, · · · , n, (7.2)

where rk = log[1+RT (ωk)/{g(ωk)Vk}], which represents an asymptotically
negligible term, and

zk = log(Vk) has a density exp{− exp(x) + x}. (7.3)

Thus, the spectral density estimation is basically a nonparametric regres-
sion problem with nearly independent data. Furthermore, the periodogram
I∗
T (ωk) is not a consistent estimator of g(ωk) (see the discussion below The-

orem 2.14 and also Figure 7.5). Smoothing is needed in order to obtain a
good estimator of the spectral density.

The essence of the approximations above utilizes the Fourier transform.
It is a powerful tool for analyzing stationary time series. As shown in Theo-
rem 2.14, it transforms correlated stationary data into nearly independent
data. Thus, after the Fourier transform, techniques for independent data
can be employed. For example, one can estimate unknown parameters in
a stationary process by forming the likelihood based on the periodogram
ordinates, relying on an assumption that the spectral density f(ω) is of a
parametric form f(ω; θ) with unknown parameters θ. This results in the
parametric function m(ω; θ). The parameters θ can be estimated by form-
ing a parametric likelihood function from (7.2) after ignoring the term rk,
which is the Whittle likelihood; see, for example, Dahlhaus (1984, 1990a)
and Dzhaparidze (1986). This idea will be further explored in §9.3.

We begin this chapter with a brief review of traditional approaches on
the estimation of spectral density and its relation to kernel smoothing. In
§7.3, we apply the techniques introduced in Chapter 6 to estimate spectral
densities. An important question in fitting time series data is whether the
residuals of a fitted model behave like a white noise series. Nonparametric
function estimation provides useful tools for a nonparametric goodness-of-
fit test. Several useful tests are introduced in §7.4 and are illustrated by
numerical examples.

7.2 Tapering, Kernel Estimation, and
Prewhitening

The genesis of smoothing techniques comes from the need for consistent
estimates of spectral density. Traditional approaches of estimating spectral
density are to smooth periodograms directly using a kernel weight func-
tion. It is helpful to take a quick overview of the traditional techniques
before we apply the modern smoothing techniques to the problem. Chap-
ter 5 of Brillinger (1981) gives comprehensive coverage of the traditional
techniques.
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7.2.1 Tapering
The spectral density g(ω) can be obtained from the autocovariance function
(2.36):

g(ω) =
∞∑

k=−∞
γ(k)e−ikω.

The autocorrelation function can be expressed as

γ(k) =
1
2π

∫ π

−π
eikωg(ω)dω. (7.4)

There is much literature concerning the behavior of the partial sums
p∑

k=−p
γ(k)e−ikω, p = 1, 2, · · · ; (7.5)

see, for example, Zygmund (1968). Fejér (1900, 1904) recognized that the
partial sums above might not be good approximations of the spectral den-
sity. He therefore introduced a convergence factor into the series above:

p∑
k=−p

(
1− |k|

p

)
γ(k)e−ikω.

This improves the rate of convergence as p → ∞. This idea was then
generalized to a general form

gp(ω) =
p∑

k=−p
w(|k|/p)γ(k)e−ikω, (7.6)

where the function w(·) is given, and is called a convergence factor , data
windows, or tapers; see Tukey (1967). The function w(·) usually satisfies

w(0) = 1, |w(x)| ≤ 1, w(x) = 0, for |x| > 1.

Substituting (7.4) into (7.6), we obtain

gp(ω) =
∫ π

−π
Wp(ω − τ)g(τ)dτ, (7.7)

where

Wp(τ) =
1
2π

p∑
k=−p

w(|k|/p)e−ikτ . (7.8)

As p gets large, the function Wp will get more and more concentrated on
the point 0 (see Figures 7.1–7.4). Hence, the function Wp plays the same
role as the function Kh(·) in the kernel smoothing. In fact, it holds that

∫ π

−π
Wp(τ)dτ = 1.
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FIGURE 7.1. The Dirichlet kernels with p = 20 (solid curve) and p = 5 (dashed
curve).

The function Wp is called a frequency window or a kernel . Here are a few
useful examples of the taper functions.

Example 7.1 (Rectangular or truncated window). This taper function has
the form w(x) = 1 if x ≤ 1 and 0 otherwise. This corresponds to the partial
sum series (7.5). The frequency window is

Wp(τ) =
sin((p+ 1/2)τ)

2π sin(τ/2)
, (7.9)

which is called the Dirichlet kernel (see Figure 7.1). Observe that Wp(τ)
can be negative for certain values of τ . This may lead to negative estimates
of the spectral density at certain frequencies.

Example 7.2 (The Bartlett or triangular window). This convergence fac-
tor is given by w(x) = (1−|x|)+, and the corresponding frequency window
is given by the Fejer kernel (see Figure 7.2),

Wp(τ) =
sin2(pτ/2)

2πp sin2(τ/2)
.

This kernel is nonnegative and is indeed a second-order kernel.

Example 7.3 (The Blackman–Tukey window). This taper function admits
the general form

w(x) =
{

1− 2a+ 2a cosx, |x| ≤ 1
0, otherwise .
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FIGURE 7.2. The Bartlett kernels with p = 20 (solid curve) and p = 5 (dashed
curve).
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FIGURE 7.3. The Tukey–Hanning kernels with p = 20 (solid curve) and p = 5
(dashed curve).

The corresponding kernel function is given by

Wp(τ) = aDp(τ − π/r) + (1− 2a)Dp(τ) + aDr(τ + π/r),

where Dp is the Dirichlet kernel given by (7.9). The cases with a = 0.23
and a = 0.25 are frequently referred to as the Tukey–Hamming and Tukey–
Hanning windows (see Figure 7.3).
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FIGURE 7.4. The Parzen kernels with p = 20 (solid curve) and p = 5 (dashed
curve).

Example 7.4 (The Parzen window). In this case,

w(x) =




1− 6|x|2 + 6|x|3, |x| < 1/2
2(1− |x|)3, 1/2 ≤ x ≤ 1
0, otherwise

.

The corresponding kernel is given by

Wp(τ) =
6 sin4(pτ/4)
πp3 sin4(τ/2)

.

Figure 7.4 depicts the kernel function.

The choice of convergence factors is very much like the choice of a kernel
function. The bandwidth parameter in (7.8) is implicitly defined. It is re-
lated to the parameter p. Several proposals have been suggested to define
the measure of bandwidth explicitly so that one gets an idea of how large
a window size has been used for different converging factors. For example,
Grenander (1951) suggested the measure

{∫ π

−π
τ2Wp(τ)dτ

}1/2

,

Parzen (1961) used the measure

1
Wp(0)

=
2π∑

w(|k|/p) ,

and Brillinger (1981, p. 56) was in favor of the measure
{∫ π

−π
(1− cos τ)Wp(τ)dτ

}1/2

= {1− w(1/n)}1/2.
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Although different authors have different measures of the bandwidth, this
does not affect the practical usage of the method. In practice, one would
tune the parameter p to get a good estimate of the spectral density.

Expression (7.6) suggests the following substitution estimator

ĝp(ω) =
p∑

k=−p
w(|k|/p)γ̂(k)e−ikω, (7.10)

where γ̂(k) is the sample autocovariance function given in §2.2.2. Note that
this is a real function and is called the lag window estimator. It is obvious
that (7.10) admits an expression similar to (7.7). To see this, we define

ĨT (ω) =
∑

|k|<T
γ̂(k)e−ikω.

This is an extension of the periodogram to all frequencies. Then

γ̂(k) =
1
2π

∫ π

−π
eikτ ĨT (τ)dτ.

Substituting this into (7.10), we obtain easily that

ĝp(ω) =
1
2π

∫ π

−π
Wp(ω − τ)Ĩp(τ)dτ. (7.11)

The smoothing parameter p can be chosen either subjectively by time
series analysts or objectively by data. Bühlmann (1996) proposed a local
data-driven choice of the parameter p based on an idea of Brockmann,
Gasser, and Herrmann (1993).

7.2.2 Smoothing the Periodogram
Partitioning the interval [−π, π] at the Fourier frequencies {ωk} and replac-
ing the integral in (7.11) by the corresponding Riemann sum, we obtain

ĝp(ω) ≈ 1
2π

∑
|k|≤n

Wp(ω − ωk)ĨT (ωk)
2π
T
. (7.12)

When p is sufficiently large, Wp is concentrated around the origin. Hence,
the summation above is a local average of the periodogram ĨT (ω) around
the frequency ωk ≈ ω. It holds that

1
2π

∑
|k|≤n

Wp(ω − ωk)2π
T
≈
∫ π

−π
Wp(ω − τ)dτ = 1.

This makes the connection to the kernel smoothing in the frequency do-
main.
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Starting directly from (5.1), one can obtain an estimate of the spectral
density as

ĝh(ω) =
∑n
k=1Kh(ω − ωk)I∗

T (ωk)∑n
k=1Kh(ω − ωk) , (7.13)

where Kh(u) = K(u/h)/h, with K being a kernel function and h being a
bandwidth. This is the kernel smoothing technique applied to the bivariate
data {(ωk, I∗

T (ωk)), k = 1, · · · , n}, resulting in a smoothed periodogram.
The kernel estimator can be regarded as an extension of the class of esti-
mators in (7.12).

The smoothing parameters p and h are usually chosen to balance the
bias and variance trade-off. For example, a large bandwidth results in a
larger window of averaging. This reduces sampling variance but at the same
time increases biases. One can achieve the bias and variance trade-off either
subjectively via visualization or objectively by data-driven techniques. The
latter will be discussed in §7.3 in the context of the local linear estimator.

7.2.3 Prewhitening and Bias Reduction
When the underlying spectral density contains sharp peaks, direct appli-
cations of smoothing techniques will widen the peaks and reduce the mag-
nitudes of the peaks unless the bandwidth is very small. However, a small
bandwidth will not be able to reduce enough variances of the estimate,
resulting in wiggly estimates, particularly at flat regions. A common tech-
nique to resolve this problem is prewhitening . The basic idea is to apply a
linear filter to the series {Xt}, resulting in

Yt =
∞∑

k=−∞
φkXt−k,

and estimate the spectral density of the filtered series {Yt}. This filtered
series has the spectral density (see Theorem 2.12)

gY (ω) = gX(ω)|Γ(ω)|2,

where

Γ(ω) =
∞∑

k=−∞
φke

−ikω

is a transfer function. Suppose that the filter can be chosen so that the
spectral density gY of the series {Yt} is nearly constant, namely, the series
{Yt} is nearly a white noise series. Applying the smoothing techniques to
{Yt} will not create large biases. Hence, the estimate

ĝX(ω) = |Γ(ω)|−2ĝY (ω) (7.14)
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will have more acceptable biases. This idea is referred to as the spectral
density estimate by prefiltering or prewhitening . It was proposed by Press
and Tukey (1956).

The choice of filter is very critical for achieving the goal of the bias
reduction. Inspecting (7.14), if gY (·) is nearly a constant, then the function
|Γ(ω)|−2 should be nearly proportional to gX(ω), which is unknown to us.
Typically, the filter has been determined by ad hoc methods, which aim at
reducing sharp peaks of the spectral density gX . A data-driven procedure
is to find coefficients a1, · · · , ap that minimize

T∑
t=p

(Xt − a1Xt−1 − · · · − apXt−p)2

and then to form the filtered series

Yt = Xt − a1Xt−1 − · · · − apXt−p for t = p+ 1, · · · , T .
When the series {Xt} can be approximated by an AR(p) model, the series
{Yt} is basically noise. Hence, the filter achieves the stated objective.

A procedure of similar character, but not requiring any filtering of the
data, is as follows. Observe that (7.13) can be approximated as

ĝh(ω) ≈ |Γ(ω)|−2
∑n
k=1Kh(ω − ωk)I∗

T (ωk)Γ(ωk)2∑n
k=1Kh(ω − ωk) ,

noting that when ωk ≈ ω, Γ(ωk) ≈ Γ(ω). This in essence estimates the
spectral density of Y directly by

ĝY (ω) =
∑n
k=1Kh(ω − ωk)I∗

T (ωk)Γ(ωk)2∑n
k=1Kh(ω − ωk) .

The spectral density gX is estimated via (7.14).
The idea of prewhitening was extended by Hjort and Glad (1995), Efron

and Tibshirani (1996), Glad (1998), and Mays, Birch and Starnes (2000)
to reduce biases in estimating density and regression functions.

7.3 Automatic Estimation of Spectral Density

There are three commonly-used ways to estimate the spectral density. To
motivate the procedures, we ignore the negligible terms RT (ωk) and rk in
(7.1) and (7.2). For (7.1), this leads to

EI∗
T (ωk) = g(ωk), Var{I∗

T (ωk)} = g(ωk)2.

Thus, the model (7.1) can be regarded as a heteroscedastic nonparamet-
ric regression problem based on the data {(ωk, I∗

T (ωk))}. This results in
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smoothing on the periodogram {I∗
T (ωk)}. The procedure will be called a

(least-square) smoothed periodogram. The second approach is to regard
model (7.2) as a homoscedastic nonparametric regression model. This re-
sults in an estimate of the log-spectral density m(·) by smoothing the
log-periodogram {Yk}. We will refer to this procedure as a (least-square)
smoothed log-periodogram. Note that the distribution of zk in (7.2) is given
in (7.3) and is skewed. The least-squares-based estimator is in fact ineffi-
cient. To gain efficiency, we will employ the maximum likelihood approach,
resulting in a local likelihood estimator. The likelihood function is con-
structed from model (7.2) by regarding rk = 0 and is often called the
Whittle likelihood (Whittle 1962). Note that the Whittle likelihood based
on model (7.2) is the same as that based on model (7.1).

Most of the traditional approaches are based on the smoothed peri-
odogram. See Brillinger (1981) and Priestley (1981) and references therein.
Because of high heteroscedasticity when g(·) varies significantly, smooth-
ing on a periodogram using only a constant bandwidth is not effective.
On the other hand, the least squares smoothing for a log-periodogram, as
pointed out above, is not efficient because of the nonnormal distribution.
We recommend using the local likelihood estimator as a spectral density
estimator.

7.3.1 Least-Squares Estimators and Bandwidth Selection
The smoothed periodogram applies a smoothing method directly to the
data {(ωk, I∗

T (ωk))}, ignoring the heteroscedasticity of the data. Asymp-
totically, the heteroscedasticity does not play any important role since
smoothing is conducted locally and hence the data in a small window are
nearly homoscedastic. However, this asymptotic theory does not necessar-
ily kick in because the local smoothing window can be reasonably large.
In other words, the heteroscedasticity influences somewhat the efficiency of
the smoothing for finite sample sizes.

We apply the local linear smoother to the data {(ωk, I∗
T (ωk))} for sim-

plicity. Since the design points {ωk} are equally spaced over [0, π], the key
advantage of the local linear fit is its boundary behavior, compared with
the traditional kernel approach (7.13). As in (6.26), for a given point ω, let
KT be the effective kernel of the local linear fit (p = 1 and ν = 0); namely,

KT (t, ω) =
1
h
· ST,2(ω)− htST,1(ω)
ST,0(ω)ST,2(ω)− S2

T,1(ω)
K(t) (7.15)

with

ST,j(ω) =
n∑
k=1

Kh(ωk − ω)(ωk − ω)j , (j = 0, 1, 2).
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The smoothed periodogram is then given by

ĝDLS(ω) =
n∑
j=1

KT

(
ω − ωj
h

, ω

)
I∗
T (ωj), (7.16)

which is the local linear fit to the data {(ωk, I∗
T (ωk))}.

To implement the smoothed periodogram estimator (7.16), one needs to
choose the bandwidth h. Since many interesting periodograms admit differ-
ent degrees of smoothness around different frequencies, variable bandwidth
methods are more effective. An automatic scheme for selecting a variable
bandwidth is given in Fan and Gijbels (1995) and is implemented by Fan
and Kreutzberger (1998) for the spectral density estimation.

For each given ω, ignoring the term RT (ωk), by (6.30) and noting that the
design density of {ωk} is f(ω) = π−1, one can easily obtain the asymptotic
normality of ĝDLS(ω). The next theorem formally shows that the term
RT (ωk) is indeed negligible.

Theorem 7.1 Under Conditions (i), (iii), and (iv) in §7.5.1, if g(ω) > 0,
then
√
nh{ĝDLS(ω)− g(ω)− h2g′′(ω)µ2(K)/2 + o(h2)} D−→ N{0, ν0(K)g2(ω)π}

for ω ∈ (0, π), where µ2(K) =
∫ +∞

−∞ u2K(u)du and ν0(K) =
∫ +∞

−∞ K2(u)du.

To obtain the smoothed log-periodogram, we first note that

E(zk) = C0 = −0.57721 and Var(zk) = π2/6, (7.17)

where C0 is Euler’s constant; see Davis and Jones (1968). Thus, the log-
periodogram is a biased estimator for the log-spectral density, and the bias
does not vanish even when T →∞. They differ by an amount−C0. Ignoring
the term rk in (7.1) and correcting the bias −C0 leads to

Yk − C0 = m(ω) + (zk − C0). (7.18)

Model (7.18) is a canonical nonparametric regression model with a uniform
design density on [0, π] and a homogeneous variance π2/6. Thus, one can
apply the local linear estimator to the data {(ωk, Yk − C0)} to obtain an
estimate of m(·). This leads to the estimator

m̂LS(ω) =
n∑
j=1

KT

(
ω − ωj
h

, ω

)
(Yj − C0). (7.19)

Applying (6.30) to the model (7.18) and using (7.17), we have the fol-
lowing theorem.
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Theorem 7.2 Under the conditions in §7.5.1, we have, for each 0 < ω <
π,

√
nh{m̂LS(ω)−m(ω)− h2m′′(ω)µ2(K)/2 + o(h2)}

D−→ N{0, (π3/6)ν0(K)}.

The result above is rigorously proved by Fan and Kreutzberger (1998)
and will be reproduced in §7.5.4. Both Theorems 7.1 and 7.2 are applicable
to a boundary point ω∗

T = ch. To this end, let µj,c =
∫ c

−∞ tjK(t)dt and

µ2(K, c) =
µ2

2,c − µ1,cµ3,c

µ0,cµ2,c − µ2
1,c
, ν0(K, c) =

∫ c
−∞(µ2,c − µc,1t)2K2(t) dt

(µ0,cµ2,c − µ2
1,c)2

.

We then have
√
nh{m̂LS(ω∗

T )−m(ω∗
T )− h2m′′(0+)µ2(K, c)/2 + o(h2)}

D−→ N{0, (π2/6)ν0(K, c)π}.

A similar extension for the estimator ĝDLS(ω∗) can easily be made.
The asymptotically optimal bandwidth for m̂LS, which minimizes the in-

tegrated asymptotic squared bias and variance, is given by (see also (6.33))

hLS, OPT =

[
ν0(K)(π3/6)

µ2
2(K)

∫ π
0 {m′′(ω)}2dω

]1/5

n−1/5. (7.20)

This bandwidth can be estimated by using the preasymptotic substitution
method in §6.3.5, yielding an automatic procedure for estimating spectral
densities. Here, a constant bandwidth is used. We recommend using a con-
stant bandwidth because its data-driven version can be estimated more
reliably and, furthermore, the log-spectral densities usually do not vary as
dramatically as the spectral densities themselves.

7.3.2 Local Maximum Likelihood Estimator
The smoothed periodogram estimator m̂LS is not efficient because the dis-
tribution zk is not normal. In fact, the Fisher information for the location
model (7.18) is 1, while the variance is π2/6 = 1.645; see (7.17). Thus, the
efficiency of the least-squares method can be improved by a factor of π2/6
by using the likelihood method.

By (7.3), model (7.18) gives the log-likelihood

n∑
k=1

[− exp{Yk −m(ωk)}+ Yk −m(ωk)].



7.3 Automatic Estimation of Spectral Density 287

This likelihood is equivalent to the Whittle likelihood based on the expo-
nential distribution model

I∗
T (ωk) ∼ Exponential{g(ωk)}

(see (7.1)). Using the local data around a given point ω and the local linear
model m(ωk) ≈ α+ β(ωk − ω), we form the local log-likelihood

L(α, β) =
n∑
k=1

[− exp{Yk−α−β(ωk−ω)}+Yk−α−β(ωk−ω)]Kh(ωk−ω),

(7.21)
where Kh(·) = K(·/h)/h. Let α̂ and β̂ be the maximizers of (7.21). The
proposed local likelihood estimator for m(ω) is m̂LK(ω) = α̂.

The local likelihood (7.21) is strictly concave in α and β, so the maximizer
exists and is unique. The maximizer can be found by the Newton–Raphson
algorithm or the Fisher scoring method. Let β = (α, β)T and L′(β) and
L′′(β) be the gradient vector and the Hessian matrix of the function L(β).
Then, the local likelihood estimator solves the likelihood equation L′(β̂) =
0. For a given initial value β̂0, by Taylor’s expansion,

L′(β̂) ≈ L′(β̂0) + L′′(β̂0)(β̂ − β̂0).

Hence, after ignoring the approximation error,

β̂ = β̂0 − L′′(β̂0)
−1L′(β̂0).

The Newton–Raphson algorithm simply iterates the equation above, while
the Fisher scoring method replaces the Hessian matrix L′′(β0) by its expec-
tation (namely, the negative Fisher information matrix) in the iteration.
The estimator m̂LS(ω) and its associated derivative estimator from the lo-
cal linear fit can serve as good initial values for the algorithm. Indeed,
according to Fan and Chen (1999), with the initial value m̂LS(ω) and its
associated derivative estimator, the estimator obtained by only one-step
iteration from the Newton–Raphson algorithm is efficient. This is an ex-
tension of a result by Bickel (1975).

The following result, due to Fan and Kreutzberger (1998), will be proved
in §7.5.5.

Theorem 7.3 Under the conditions in §7.5.1, for each 0 < ω < π,
√
nh{m̂LK(ω)−m(ω)− h2m′′(ω)µ2(K)/2 + o(h2)}

D−→ N{0, ν0(K)π}
and, for a boundary point ω∗

T = ch, we have
√
nh{m̂LK(ω∗

T )−m(ω∗
T )− h2m′′(0+)µ2(K, c)/2 + o(h2)}

D−→ N{0, ν0(K, c)π}.
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The maximum likelihood estimator for the spectral density is given by

ĝLK(ω) = exp{m̂LK(ω)}.
By a Taylor expansion, one can easily see that

ĝLK(ω)− g(ω) ≈ g(ω){m̂LK(ω)−m(ω)}.
Hence

√
nh{ĝLK(ω)− g(ω)− h2m′′(ω)g(ω)µ2(K)/2 + o(h2)}

D−→ N{0, ν0(K)g2(ω)π}. (7.22)

Compared with m̂LS, the asymptotic variance of m̂LK is a factor of π2/6
smaller, while both estimators share the same asymptotic bias. In other
words, m̂LS is asymptotically inadmissible. On the other hand, the maxi-
mum likelihood estimator for the spectral density has the same asymptotic
variance as that of the smoothed periodogram ĝLS(ω). However, their biases
are different. Using

g′′(ω) = g(ω)m′′(ω) + g(ω){m′(ω)}2,
ĝDLS has larger biases than ĝLK at convex regions of m, namely where
m′′(ω) > 0. Furthermore, as pointed out before, the inhomogeneous de-
gree of smoothness of the spectral densities and heteroscedasticity of the
periodograms make it hard for smoothed periodograms to estimate the un-
derlying spectral densities efficiently. In addition, the estimate around the
peak regions is very unstable. Indeed, the tail of the exponential distri-
bution is not that light, and hence the variability of the periodograms at
the peak region is also large. Thus, outliers can often be observed around
peaks, which impact significantly on the local least-squares estimate.

The comparisons above provide stark evidence for using the local likeli-
hood estimator m̂LK(ω). Its bandwidth can be selected via the least-squares
method. From Theorem 7.3, the asymptotically optimal bandwidth for m̂LK
is given by

hLK, OPT = (6/π2)1/5 hLS, OPT = 0.9053 hLS, OPT, (7.23)

where hLS, OPT is given by (7.20). Thus, an obvious estimator for hLK, OPT
is

ĥLK, OPT = 0.9053 ĥLS, OPT,

where ĥLS, OPT is the preasymptotic substitution bandwidth estimator.
In summary, the local maximum likelihood estimators for spectral and

log-spectral densities are recommended. To implement them, first treat
the data {(ωk, Yk − C0)} as an independent sample and apply the local
linear techniques to obtain the estimate m̂LS(ω), its associated derivative
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estimator, and the optimal bandwidth ĥLS, OPT. Now, use the bandwidth
ĥLK, OPT = 0.9053 ĥLS, OPT to obtain an estimate m̂LK(ω) using m̂LS(ω)
and its associated derivative estimator as an initial values. Indeed, theoret-
ically, one-step iteration starting from m̂LS(ω) suffices.

We now use the data on yields of the three-month Treasury bill in Ex-
ample 1.3 to illustrate the proposed procedure. The computation was done
with the C-code “spectrum.c”. The logarithm of the periodogram is de-
picted in Figure 7.5 (a). The line there is the pointwise 95% confidence
upper limit for the log-spectral density m(ωk) above the level of the spec-
tral density log(σ̂2/(2π)), which is computed as

log
(
σ̂2

2π

)
+ log(− log(0.05)),

where σ̂ is the sample standard deviation of the data. The bandwidth
ĥLS, OPT = 0.034 was selected. The pointwise confidence interval was con-
structed according to (7.26) below. Clearly, most of the energy is con-
centrated at the very low frequencies. To examine the rate of decay, in
Figure 7.5 (c) we plot the log-periodogram against the log-frequency for
small frequency values. The pattern is reasonably linear. From the least-
squares fit, it suggests that the estimated spectral density behaves as g(ω) =
exp(−3.93)ω−1.87 around ω ≈ 0. This behavior can be understood as fol-
lows. The weekly change in interest rates is very small. Thus, the interest
rate is a relatively smooth process that contains high energy at low fre-
quencies. We will analyze the difference series in the next section.

We now examine the spectral densities for the acceleration readings dur-
ing the crashes of vehicles. The first 50 readings (corresponding to the
first 76 ms since the crash) of Figures 1.6 (a) and (c) are used to esti-
mate spectral densities. The remaining readings are unlikely to be related
to the severity of crashes. The estimated spectral densities are depicted in
Figure 7.6. It appears that both spectral densities are similar. However,
the spectral density for the crash that does not require deployment of an
airbag has higher energy at low frequencies. This in turn suggests that the
acceleration readings oscillate less. Thus, oscillation may be one of the fea-
tures that differentiate between deployment and nondeployment crashes of
vehicles.

7.3.3 Confidence Intervals
Confidence intervals are useful for assessing sampling variability and for
testing whether a given series is white noise. By ignoring the bias (see §6.3.4
for more discussion), it follows from Theorem 7.3 that an approximate level
1− α confidence interval for m(ω) is

m̂LK(ω)± z1−α/2

√
‖K‖22π
nh

. (7.24)
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FIGURE 7.5. (a) Log-periodogram of {Yk − C0} against its Fourier frequency
{ωk}. The bar indicates a 95% confidence upper limit above log( σ̂2

2π
). (b) Esti-

mated log-spectral density by the local likelihood method m̂LK (solid curve) and
the least-squares method m̂LS (thick dashed-curve) along with the 95% point-
wise confidence intervals (7.26) (long dashed-curve). (c) The scatterplot of the
log-periodogram of {Yk−C0} against {log(ωk)} at low frequencies ωk ≤ 30π/2112
along with the least-squares fit (dashed line). The solid curve is the plot of the
estimated log-spectral density against its log-frequency.
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FIGURE 7.6. Estimated spectral densities (thick curves) for car crashes data
presented in Figures 1.6 (a) and (c). The dots are the periodogram {Yk} against
its Fourier frequency {ωk}. The thin curves are 95% confidence intervals.

Note that this width is known and independent of data. The value of ‖K‖2
can be found in Table 5.1. By (7.22), after ignoring the bias term, an
approximate level 1− α confidence interval is

ĝLK(ω)

{
1± z1−α/2

√
‖K‖22π
nh

}
. (7.25)

The two formulas (7.24) and (7.25) above apply only to interior points:
ω±h ∈ [0, π]. For boundary points, one needs to replace ‖K‖2 by ν0(K, c).

The formulas (7.24) and (7.25) are based on the asymptotic variances. As
discussed in §6.3.4, the asymptotic variance can also be obtained via (6.34).
Translating this formula into the current setting leads to an estimate for
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the variance of m̂LS(ω):

π2

6

n∑
j=1

KT

(
ω − ωj
h

, ω

)2

.

Indeed, this formula can be obtained directly from (7.19) by regarding {Yj}
as an independent sample. Thus, an alternative asymptotic level 1 − α
confidence interval for m(ω) is

m̂LK(ω)± z1−α/2




n∑
j=1

KT

(
ω − ωj
h

, ω

)2



1/2

(7.26)

since the asymptotic variance of m̂LK(ω) is a factor of π2/6 smaller than
m̂LS(ω). Similarly, an approximate level 1− α confidence interval for g(ω)
is

ĝLK(ω)


1± z1−α/2




n∑
j=1

KT

(
ω − ωj
h

, ω

)2



1/2

 . (7.27)

Confidence intervals (7.26) and (7.27) are both applicable for interior points
and boundary points. Note that the confidence interval for g(ω) can also
be obtained directly by exponentiation of the confidence interval (7.26),
leading to

exp


m̂LK(ω)± z1−α/2




n∑
j=1

KT

(
ω − ωj
h

, ω

)2



1/2

 .

By Taylor’s expansion, one can easily see that this interval is approximately
the same as that given by (7.27). However, when the width of the interval
is wide, they may not be equivalent. The latter interval has the advantage
that the confidence lower limit is always nonnegative. For this reason, it is
implemented in this book.

An application of estimating the spectral density is to examine whether a
given time series is a white noise process. Suppose that a series is white noise
so that its spectral density is g(ω) = σ2/(2π). Under this null hypothesis,
m̂0(ω) = log σ̂2/(2π) should fall in the confidence interval (7.24) or (7.26)
with probability approximately 1 − α, where σ̂ is the sample standard
deviation of the series. This is equivalent to checking whether m̂LK(ω) falls
in the interval

log σ̂2/(2π)± z1−α/2

√
‖K‖22π
nh

(7.28)

or

log σ̂2/(2π)± z1−α/2




n∑
j=1

KT

(
ω − ωj
h

, ω

)2



1/2

. (7.29)
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If one needs to apply the test above to frequencies {ω∗
j , j = 1, · · · , q} si-

multaneously, simultaneous confidence intervals for {m(ω∗
j ), j = 1, · · · , q}

are needed. This is usually done by the Bonferroni adjustments. The idea
is very simple. Suppose that Ij (j = 1, · · · , q) is a level 1 − αj confidence
interval for a parameter θj ; namely,

P (θj ∈ Ij) ≥ 1− αj .

Then, we have the following probability for simultaneous confidence inter-
vals:

P (θ1 ∈ I1, · · · , θq ∈ Iq) = 1− P (∪j{θj �∈ Ij})

≥ 1−
q∑
j=1

P{θj �∈ Ij}

≥ 1−
q∑
j=1

αj .

By taking αj = α/q, we have that θj falls in Ij simultaneously with proba-
bility at least 1−α. By using this and (7.24), we obtain the following 1−α
simultaneous confidence intervals for {m(ω∗

j ), j = 1, · · · , q}

m̂LK(ω∗
j )± z1−α/(2q)

√
‖K‖22π
nh

, j = 1, · · · , q.

In turn, this leads to checking whether all m̂LK(ω∗
q ) fall simultaneously in

the intervals

log
σ̂2

2π
± z1−α/(2q)

√
‖K‖22π
nh

, j = 1, · · · , q. (7.30)

One can also extend (7.29) to the situation with multiple comparisons,
leading to

log
σ̂2

2π
± z1−α/(2q)

{
n∑
k=1

KT

(
ω∗
j − ωk
h

, ω∗
j

)2
}1/2

, j = 1, · · · , q. (7.31)

We now revisit the spectral aspect of the interest rate data. As discussed
in the last section, large spectrum values at low frequencies are mainly
due to the relatively small weekly changes of interest rates. This leads to
considering the difference series and to examining whether the difference
series is white noise. Figure 7.7(a) shows the estimated spectral density as
well as 95% associated confidence intervals for testing whether the series is
a white noise series. The bandwidth 0.034 was selected by our software. On
a large portion of regions, the estimated spectral density lies outside the
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FIGURE 7.7. Estimated spectral densities (thick curves) for the differenced yields
of the 3-month Treasury bill and their associated 95% pointwise confidence in-
tervals (7.29) (dashed curves) and 95% simultaneous confidence intervals (7.31)
(thin curves) at q = 15 different locations for testing whether the difference series
is white noise; (a) for the difference series from July 17, 1959 to December 31,
1999; (b) for the difference series from July 17, 1959 to October 5, 1979; (c) for
the difference series from October 12, 1979 to December 31, 1999; (d) for the
difference series from July 17, 1959 to October 5, 1979 using the same bandwidth
as in (c).
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simultaneous confidence bands. This provides strong evidence to reject the
null hypothesis that the difference series is a white noise process. In fact,
the literature on the interest modeling is abundant, see, for example, Cox,
Ingersoll and Ross (1985), Chan, Karolyi, Longstaff, and Sanders (1992),
and Stanton (1997). None of these models suggest that the difference series
is a white noise process. In fact, the variance of the difference series depends
on the level of the current interest rate.

The Federal Reserve changed its monetary policy in October 6, 1979
when its newly appointed chairman, Paul Volcker, initiated money sup-
ply targeting and abandoned interest rate targeting. The interest rate in
the two years following October, 1979 was five times greater than that in
the prior two years. To examine whether the interest rate dynamics have
changed, we divide the series into two halves. The first half consists of the
20-year data from July 17, 1959 to October 5, 1979, and the second half
consists of the 20-year data from October 12, 1979 to December 31, 1999.
The volatility over the last twenty years has increased 54%, from 0.172%
(the standard deviation of the first twenty years) to 0.265% (the SD of
the second twenty years). The estimated spectral densities are presented
in Figure 7.7. The spectral density for the second period is higher, which
provides further evidence that the interest rate volatility is higher since
October, 1979. For the second period of data, there are more significant
spectral densities at high frequencies than in the first period. This means
that the data in the second period oscillates more than in the first period.
The bandwidths 0.342 and 0.026 were selected by the automatic smooth-
ing software for the first and the second periods of data, respectively. This
makes the estimated spectral density much smoother for the first period
of data. To compare the two estimated densities using the same amount
of smoothing, Figure 7.7(d) shows the estimated spectral density for the
first period of data using the bandwidth 0.026. The qualitative comments
above continue to apply. From the estimated spectral densities and their
associated confidence bands, we may conclude that both subseries are not
white noise.

In estimating the spectral densities above and their associated confidence
intervals, one implicitly assumes that the underlying time series is station-
ary, which, however, may not be true. If the series is not stationary, the
confidence bands are not meaningful. Nevertheless, an estimated spectral
density, as a descriptive statistic and a device of spectral decomposition,
still provides useful information on the energy distribution over different
frequencies for a time series.
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7.4 Tests for White Noise

A statistical model is at best only an approximation to the true underlying
process that generates the observed data. After fitting a model, one needs
to verify various aspects of the assumption. This is usually accomplished by
both graphical tools and formal statistical tests. It is a generally accepted
principle that a good statistical model is one such that at least the resid-
uals from the fitting behave like a white noise process. In other words, a
time series, after extracting the structural part, becomes an unpredictable
white noise. For example, after fitting the AR(p) model (1.1), one would
expect that the residual series {ε̂t} is a white noise process. Systematic de-
parture from this assumption implies the inadequacy of the assumed form
of the model. Thus, it is important to develop formal procedures for testing
whether a series is white noise.

Different tests explore different aspects of departure from the null hy-
pothesis. Hence, they have different powers against different alternatives.
This section aims at introducing some simple and powerful nonparametric
procedures. Other related ideas will be further explored in Chapter 9.

We assume throughout this section that the time series {Xt} is station-
ary. Let g(ω) be its spectral density. Note that {Xt} is white noise if and
only if its spectral density is constant. Therefore, we only need to test the
hypotheses

H0 : g(ω) =
σ2

2π
←→ H1 : g(ω) �= σ2

2π
, (7.32)

where σ2 is the variance of {Xt}. This is a parametric versus nonparametric
testing problem. The important raw material is the rescaled periodogram
{I∗
T (ωk)} in (7.1).
In this section, we outline some techniques for testing the problem (7.32).

Testing the spectral density of other parametric forms can be found in §9.3.
The methods in that section are also applicable to the problem (7.32).

A word of caution: The observed significance level, or the p-value, de-
pends on the sample size. When the sample size is large, a small departure
from the null hypothesis may result in a very small p-value. Thus, a small p-
value with a large sample size does not necessarily mean that the departure
of the model from the null hypothesis is serious.

7.4.1 Fisher’s Test
Fisher’s test is based on the fact that under H0 the maximum of the
spectral density and its average should be the same. Thus, the large values
of the test statistic

Tn,F =
max1≤k≤n I(ωk)
n−1

∑n
k=1 I(ωk)

(7.33)
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indicate the departure fromH0. Hence, we would rejectH0 when Tn,F is too
large. To obtain the critical value, we need to derive the null distribution
(i.e., the distribution of the test statistic Tn,F under the null hypothesis
H0). The result is summarized as follows.

Theorem 7.4 Suppose that the conditions of Theorem 2.14 hold. Then,
under H0,

P{Tn,F − log n ≤ x} → exp(− exp(−x)), −∞ < x <∞.

Proof. Let g0 = σ2

2π be the spectral density under the null hypothesis. By
(7.1) and Theorem 2.14, we have

max
1≤k≤n

IT (ωk)/(2π) = g0 max
1≤k≤n

Vk + oP (1)

and, by the law of large numbers,

n−1
n∑
k=1

IT (ωk)/(2π) = g0n
−1

n∑
k=1

Vk + oP (1) = g0 + oP (1).

Hence
Tn,F = max

1≤k≤n
Vk + oP (1). (7.34)

For any x ≥ − log n, we have

P

{
max

1≤k≤n
Vk − log n ≤ x

}
= P [Vk ≤ log{n exp(x)}]n

= (1− exp(−x)/n)n

→ exp(− exp(−x)).
The conclusion follows from (7.34).

The exact null distribution of Tn,F can be obtained when {Xt} is a Gaus-
sian white noise process; see page 339 of Brockwell and Davis (1991). For
simplicity and brevity, we use the asymptotic distribution, which admits
a more explicit formula and applies to more general stationary processes.
From Theorem 7.4, we have

P
{
Tn,F ≤ log n− log(− log(1− α))

}
≈ 1− α.

Thus, an approximate level α test based on Tn,F is given by

Tn,F > log n− log(− log(1− α)). (7.35)

Suppose that, based on the available data {xt, t = 1, · · · , T}, the Fisher
statistic is tn,F,obs. Then, the observed significance level or p-value based
on the Fisher test for the problem (7.32) is

P{Tn,F ≥ tn,F,obs} ≈ 1− exp (−n exp(−tn,F,obs)) . (7.36)
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The Fisher test is expected to be powerful against the alternatives with
energy concentrated around one frequency, namely, the underlying spectral
density has a very sharp peak. It is not expected to be powerful for detecting
alternatives with more spread energy.

7.4.2 Generalized Likelihood Ratio Test
After ignoring smaller-order terms in (7.2), the problem is basically a non-
parametric testing problem with a smoothed alternative. Thus, one can ap-
ply the generalized likelihood ratio test , recently developed by Fan, Zhang,
and Zhang (2001), to our setting. A comprehensive overview of this subject
is given in §9.2.

The basic idea of the generalized likelihood ratio statistic is to find a
suitable estimate for m(ω) in (7.2) under H0 and H1, respectively, and then
to form a likelihood ratio statistic. A reasonable nonparametric estimator
of m(ω) is the local likelihood estimator m̂LK(ω). Then, the log-likelihood
with given m̂LK(ω) is

logL(H1) =
n∑
k=1

{− exp(Yk − m̂LK(ωk)) + Yk − m̂LK(ωk)}

after ignoring the term rk in (7.2). Using a similar expression for the log-
likelihood under H0, we obtain the generalized likelihood ratio statistic

λn = logL(H1)− logL(H0)

=
n∑
k=1

{
exp(Yk − m̂0)− exp(Yk − m̂LK(ωk)) + m̂0 − m̂LK(ωk)

}
,

(7.37)

where m0(ω) = log σ̂2

2π , with σ̂2 being the sample variance.
The generalized likelihood ratio statistic above is a natural extension of

the maximum likelihood ratio tests for parametric models. However, there
are also several fundamental differences. First, the nonparametric estimate
m̂LK(·) is not the (nonparametric) maximum likelihood estimate. Because
of this, there is some chance that λn can be negative. Indeed, the param-
eter space under the full model is an infinite-dimensional function space.
The (nonparametric) maximum likelihood estimator for m(·) usually does
not exist. Even if it exists, it is hard to compute. Furthermore, it is shown
by Fan, Zhang, and Zhang (2001) that the maximum likelihood ratio tests
for infinite-dimensional problems are not efficient. This is another remark-
able difference from the parametric setting. The generalized likelihood ratio
statistic, on the other hand, is shown to be asymptotically optimal, with a
proper choice of bandwidth, in the sense that it achieves the asymptotic op-
timal rate of convergence for testing problems formulated by Ingster (1993)
and Spokoiny (1996).
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TABLE 7.1. Values of rK and cK in (7.38). Adapted from Fan, Zhang, and Zhang
(2001).
Kernel Uniform Epanechnikov Biweight Triweight Gaussian
rK 1.2000 2.1153 2.3061 2.3797 2.5375
cK 0.2500 0.4500 0.5804 0.6858 0.7737

Let h be the bandwidth used in constructing m̂LK and K be the kernel
function. Denote by K ∗K the convolution function of K. Assuming that
rk ≡ 0, by Theorem 10 of Fan, Zhang, and Zhang (2001), if h → 0 and
nh3/2 →∞, we have

rKλn
a∼ χ2

rKµn
, (7.38)

where

µn =
π

h
{K(0)− ‖K‖2/2}, rK =

K(0)− ‖K‖2/2
‖K −K ∗K/2‖2 .

Here “ a∼” means “distributed approximately.” Note that the normalizing
constant is rK , rather than 2 in the classical Wilks theorem. Note further
that the degree of freedom tends to be infinite since h→ 0. Formally, (6.27)
means that

rKλn − rKµn√
2rKµn

D−→ N(0, 1).

Table 7.1 shows the value of constants rK and cK = K(0)− ‖K‖2/2.
The result above has two practical uses for hypothesis testing. First,

an approximate level α for the testing problem (7.32) is to reject the null
hypothesis when

rKλn ≥ χ2
rKµn

(1− α), (7.39)

where χ2
rKµn

(1 − α) is the (1 − α) quantile of the χ2 distribution with
degrees of freedom [rKµn], the rounding of rKµn to its nearest integer.
Secondly, it permits one to use the bootstrap to obtain the null distribution.
In this parametric setting, the bootstrap method is indeed the same as the
simulation method. Since the asymptotic distribution does not depend on
σ, we can take it to be 1. Generate a random sample of size n from the
standard exponential distribution. Create a synthetic periodogram by using
(7.1); namely, regarding the random sample as a periodogram under the
null hypothesis (7.32). Compute the generalized test statistic λn. Repeat
the simulation above 1,000 times (say) to obtain 1,000 realizations of the
generalized likelihood ratio test statistic λn. The 95th sample percentile of
the realizations can be used as the critical value. Furthermore, the p-value
can be estimated as the upper quantile of the observed test statistic in the
empirical distribution of these 1,000 realizations. In other words, if there
are m realizations of λn that are larger than the observed test statistic,
then the p-value is simply estimated by m/1, 000.



300 7. Spectral Density Estimation and Its Applications

7.4.3 χ2-Test and the Adaptive Neyman Test
A stationary process is white noise if and only if its autocorrelation func-
tion is zero for lag 1 and above. This naturally leads to the test statistic
T
∑m
k=1 ρ̂(k)

2. A better approximation can be achieved by using

Tm = T (T + 2)
m∑
k=1

ρ̂(k)2

T − k (7.40)

for a given parameter m; see Box and Pierce (1970) and Ljung and Box
(1978). By Theorem 2.8 (see also Box and Pierce 1970; Li, W.K. 1992),
when {Xt} is an i.i.d. sequence, {ρ̂(k)2} are asymptotically independent
with mean zero and variance T−1. Thus, for a given m, under the null
hypothesis that {Xt} is an i.i.d. sequence, we have

Tm
a∼ χ2

m. (7.41)

The test statistic Tm examines only the first m autocorrelation coefficients.
To make the procedure consistent among a large class of alternatives, we
have to make m depend on T and, furthermore, m → ∞ as T → ∞.
Furthermore, ρ̂(k) is not a good estimate of ρ(k) when k is near T .

The parameter m can be regarded as a smoothing parameter. Its choice
would affect the power of the test. For stationary time series, we have prior
knowledge that the autocorrelation function is small when the lag is large.
Thus, testing on all autocorrelation coefficients (namely, taking m = T −1)
will accumulate stochastic error in Tm and deteriorate its power. Hence
m = T − 1 is not a good choice.

The test statistic Tm is equivalent to its normalized form:

Tm −m√
2m

.

Different values of m result in different test statistics. A natural way to
combine these test statistics is to use the multiscale test

T ∗
AN = max

1≤m≤aT

Tm −m√
2m

,

for some upper limit aT . This test statistic was introduced by Fan (1996)
in a somewhat different context based on power considerations. Fan called
it the adaptive Neyman test and showed that under the null hypothesis

P (TAN < x)→ exp(− exp(−x)) as n→∞, (7.42)

where

TAN =
√

2 log log aTT ∗
AN − {2 log log aT + 0.5 log log log aT − 0.5 log(4π)}.

(7.43)
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TABLE 7.2. The α upper quantiles of the distribution J†
n. Taken from Fan and

Lin (1998).
n\α 0.001 0.0025 0.005 0.01 0.025 0.05 0.10 0.25 0.50

5 7.80 6.74 5.97 5.21 4.23 3.50 2.77 1.77 0.96
10 9.13 7.73 6.77 5.78 4.57 3.67 2.74 1.49 0.40
20 9.83 8.26 7.16 6.07 4.75 3.77 2.78 1.41 0.18
30 10.11 8.47 7.29 6.18 4.82 3.83 2.81 1.39 0.11
40 10.34 8.65 7.41 6.22 4.87 3.85 2.82 1.39 0.08
50 10.32 8.67 7.43 6.28 4.89 3.86 2.84 1.39 0.07
60 10.56 8.80 7.51 6.32 4.91 3.88 2.85 1.39 0.07
70 10.59 8.81 7.55 6.34 4.92 3.88 2.85 1.40 0.06
80 10.54 8.81 7.57 6.37 4.93 3.89 2.85 1.40 0.06
90 10.79 8.95 7.65 6.40 4.94 3.90 2.86 1.40 0.06

100 10.80 8.95 7.65 6.40 4.94 3.90 2.86 1.40 0.06
120 10.87 8.96 7.65 6.41 4.95 3.90 2.87 1.41 0.05
140 10.80 9.00 7.66 6.42 4.95 3.90 2.86 1.41 0.05
160 10.88 8.95 7.69 6.42 4.95 3.91 2.87 1.41 0.06
180 11.02 9.10 7.77 6.47 4.95 3.90 2.87 1.41 0.06
200 11.10 9.08 7.72 6.43 4.95 3.89 2.86 1.42 0.06
The results are based on 1,000,000 simulations. The relative errors are expected

to be around 0.3%–3%.

Hence, an approximate level α test based on TAN is to reject the indepen-
dent noise assumption when TAN > − log(− log(1− α)).

Fan (1996) noted that the asymptotic distribution in (7.42) is not a
good approximation to TAN . Let us denote the exact distribution of TAN
under the null hypothesis by JaT

, depending on the parameter aT . This
distribution does not depend on any unknown parameters and can easily
be computed by statistical simulation. We have a C-code “aneyman.table.c”
available for computing p-values. Table 7.2 is an excerpt from Fan and Lin
(1998).

When the adaptive Neyman test above is applied to residuals based on
a parametric model (e.g., an ARMA model), some slight modifications
are needed. In the ARMA (p, q), Box and Pierce (1970) show that Tm ∼
χ2
m−p−q. Thus, one can modify T ∗

AN accordingly as

T ∗
AN = max

p+q+1≤m≤aT

Tm − (m− p− q)√
2(m− p− q) .

This modified version would have a better approximation of the null dis-
tribution.

In a somewhat different setup, Fan, Zhang, and Zhang (2001) show that
the adaptive Neyman test is an adaptively optimal test in the sense that
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FIGURE 7.8. A realization of length T = 200 from (a) a Gaussian white noise
model, (b) an AR(1) model with b = 0.4, and (c) an AR(1) model with b = 0.3.

it achieves adaptively the optimal rate of convergence for nonparametric
hypothesis testing with unknown degree of smoothness.

7.4.4 Other Smoothing-Based Tests
After ignoring the smaller order term in (7.2), the problem (7.32) becomes
testing whether the regression function in (7.2) is a constant. This problem
has been extensively studied; see the books by Bowman and Azzalini (1997)
and Hart (1997) and the references therein. The techniques there can also
be applied to the current setting. Note that the noise term in (7.2) is not
Gaussian, orthogonal transformation methods such as the Neyman test and
its various adaptive versions are not very convenient to apply.
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TABLE 7.3. Results of testing for a Gaussian white noise model based on three
simulated data sets.

Fisher G-likelihood A-Neyman χ2-test
White noise statistic 7.177 13.12 1.4728 53.80

p-value 0.074 0.069 0.239 0.331
d.f. 7 50

AR(1), b = 0.4 statistic 7.847 34.96 27.29 99.48
p-value 0.038 0.000 0.000 0.001

d.f. 8 50
AR(1), b = 0.3 statistic 5.778 16.71 8.314 59.54

p-value 0.266 0.010 0.003 0.167
d.f. 6 50

7.4.5 Numerical Examples
To gain insights on the various tests, we first simulate three time series of
length T = 200 from the three models

White noise: Xt = εt,

AR(1) with b = 0.4: Xt = 0.4Xt−1 + εt,

AR(1) with b = 0.3: Xt = 0.3Xt−1 + εt,

where {εt} is a sequence of i.i.d. random variables having the standard nor-
mal distribution. Figure 7.8 presents a realization from the three models
above. Consider the testing problem (7.32) and the following testing pro-
cedures: the Fisher test (7.33), the generalized likelihood ratio test (7.37),
the adaptive Neyman test (7.43), and the χ2-test (7.40) with m = 50. In
the C-code “spectrum.c,” the results of the Fisher test and the generalized
likelihood ratio test are reported. We have the S-Plus codes “aneyman.s”
and “fishertest.s” for computing the adaptive Neyman test and the Fisher
test. The p-value of the adaptive Neyman test can be found by using the
C-code “aneyman.table.c” or Table 7.2.

The results of the four testing procedures above are reported in Table 7.3.
The generalized-likelihood test and the adaptive Neyman test have higher
discriminant power, making right decisions at the significance level 5%.
Furthermore, the small p-values for the two AR(1) models provide further
evidence to support the claim above. On the other hand, as discussed be-
fore, the Fisher test and the χ2-test are less powerful. For the AR(1) model
with b = 0.3, both made wrong decisions at the significance level 5%.

We now apply the four procedures above to test whether the three dif-
ference series in Figure 7.7 are white noise. The results are summarized in
Table 7.4. These tests provide further evidence against the hypothesis of
white noise. Further, the p-value for the Fisher test is not nearly as small
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TABLE 7.4. Testing the Gaussian white noise model for difference series of the
yields of the three-month Treasury bill.

Fisher G-likelihood A-Neyman χ2-test
Whole series statistic 10.81 586.4 (d.f.=99) 173.9 478.7

p-value 0.0211 0.000 0.0000 0.0000
Before 1979 statistic 10.03 284.3 (d.f.=126) 58.75 177.9

p-value 0.0230 0.000 0.0000 0.0000
After 1979 statistic 10.97 491.7 (d.f.=128) 94.65 404.9

p-value 0.0090 0.000 0.0000 0.0000

as the three other tests. This is again due to the fact that the Fisher test
is less capable of discriminating the alternatives of a nonuniform but more
spread-out spectrum (see Figure 7.7).

7.5 Complements

7.5.1 Conditions for Theorems 7.1—-7.3
We first state the technical conditions for Theorems 7.1—-7.3. They are
imposed to facilitate technical proofs and are not the minimum possible.

Conditions

(i) The process {Xt} is a linear Gaussian process given by

Xt =
∞∑

j=−∞
ajεt−j

with
∑
j |aj |j2 <∞, where εj ∼ i.i.d. N(0, σ2).

(ii) The spectral density function g(·) > 0 on [0, π].

(iii) The kernel function K is a symmetric probability density function
and has a compact support.

(iv) (log T )4hT → 0 in such a way that ThT →∞.

It follows from Condition 1(i) and Theorem 2.12 that the spectral density
function of {Xt} is given by

gX(ω) = |A(ω)|2fε(ω) =
σ2

2π
|A(ω)|2,

where

A(ω) =
∞∑

j=−∞
aj exp(−ijω).
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It has a bounded second derivative. We first give two lemmas showing that
RT (ωk) in (7.1) and rk in (7.2) are indeed negligible.

7.5.2 Lemmas
Lemma 7.1 Under Condition (i), we have

max
1≤k≤n

|RT (ωk)| = O

(
log T√
T

)

almost surely.

Proof. We follow the notation and the proof of Theorem 2.14. By (2.60),
the remainder term can be expressed as

RT (ωk) = |YT (ωk)|2 +A(ωk)αk,εYT (−ωk) +A(ωk)ᾱk,εYT (ωk). (7.44)

As shown in Theorem 2.14, {αk,ε} and {YT (ωk)} are independently nor-
mally distributed with mean 0 and variance O(1) and O(T−1), respectively.
Recall that the maximum of n i.i.d. Gaussian white noise is asymptotically
equal to

√
2 log n almost surely. It follows that

max
k
|αk,ε| = O(

√
log T ) and max

k
|YT (ωk)| = O

(√
log T
T

)

almost surely. Substituting these into (7.44) and using the fact that

max
ω
|A(ω)| <∞,

we obtain Lemma 7.1.

Lemma 7.2 Under Conditions (i) and (ii), we have for any sequence cT ,

rk ≤ OP
(

log T√
T

)
I(Vk > cT )

Vk
+OP (log T )I(Vk ≤ cT )

uniformly for 1 ≤ k ≤ n, where Vk are i.i.d. random variables having the
standard exponential distribution.

Proof. Recall that

rk = log
{

1 +
RT (ωk)
g(ωk)Vk

}
.

Using the inequality log(1 + x) ≤ x for x > 0 and dividing the state-space
into Vk > cT and Vk ≤ cT for a given sequence cT , we get that

rk ≤ |RT (ωk)|
g(ωk)Vk

I(Vk > cT ) + log
{

1 +
maxk |RT (ωk)|

minω g(ω) mink Vk

}
I(Vk ≤ cT ).

(7.45)
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Obviously,

P

(
min

1≤k≤n
Vk > T−2

)
= exp(−n/T 2)→ 1.

Thus (mink Vk)−1 = OP (T 2). Substituting this term into (7.45) and using
Lemma 7.1, we obtain

rk ≤ OP
(

log T√
T

)
I(Vk > cT )V −1

k +OP (log T )I(Vk ≤ cT ).

This completes the proof of Lemma 7.2.

7.5.3 Proof of Theorem 7.1
First, by (7.1) and (7.16),

ĝDLS(ω) =
n∑
j=1

KT

(
ω − ωj
h

, ω

)
g(ωj)Vj

+
n∑
j=1

KT

(
ω − ωj
h

, ω

)
RT (ωj). (7.46)

Regarding g(ωj)Vj as a response variable Yj , the first term is the local linear
fit based on the data {(ωj , Yj)}. Applying (6.30), we obtain Theorem 7.2 if
we can show that the second term in (7.46) is of order log T√

T
. By Lemma 7.1,

this in turn requires us to show

n∑
j=1

∣∣∣KT

(
ω − ωj
h

, ω

)∣∣∣ = OP (1). (7.47)

By (7.15), the left-hand side of (7.47) is bounded by

ST,2(ω)ST,0(ω) + (
∑n
k=1Kh(ωk − ω)|ωk − ω|)2

ST,2(ω)ST,0(ω)− ST,1(ω)2
.

By the Cauchy–Schwartz inequality, this is bounded by

2ST,2(ω)ST,0(ω)
ST,2(ω)ST,0(ω)− ST,1(ω)2

.

By (6.28), the quantity above tends to 2. This proves (7.47) and the theo-
rem.



7.5 Complements 307

7.5.4 Proof of Theorem 7.2
We will show that

m̂LS(ω) =
n∑
j=1

KT

(
ω − ωj
h

, ω

)
Y ′
j +OP

(
log2 T√

T

)
, (7.48)

where Y ′
j = m(ωj) + ε′

j with ε′
j = εj − C0. By applying (6.30) to the first

term in (7.48), we obtain the result.
We now establish (7.48). Using Lemma 7.2, the remainder term in (7.48)

is bounded by
n∑
j=1

∣∣∣KT

(
ω − ωj
h

, ω

)
rj

∣∣∣ = OP

(
log T√
T

)
BT,1 +OP (log T )BT,2, (7.49)

where

BT,1 =
n∑
j=1

∣∣∣KT

(
ω − ωj
h

, ω

)∣∣∣I(Vj > cT )V −1
j

BT,2 =
n∑
j=1

∣∣∣KT

(
ω − ωj
h

, ω

)∣∣∣I(Vj ≤ cT ).

Note that when cT → 0,

E{I(Vj > cT )V −1
j } ≤

∫ 1

cT

t−1dt+
∫ ∞

1
exp(−t)dt = O(log c−1

T )

and
EI(Vj ≤ cT ) = 1− exp(−cT ) = O(cT ).

Using the last two expressions and (7.47), we find

E|BT,1| = O(log c−1
T ) and E|BT,2| = O(cT ).

Substituting these into (7.49), we conclude that (7.49) is of order

OP

(
log c−1

T log T√
T

)
+OP

(
cT log T ) = OP (

log2 T√
T

)

by taking cT = T−1.

7.5.5 Proof of Theorem 7.3
We need the following quadratic approximation lemma , due to Fan, Heck-
man, and Wand (1995), to prove Theorem 7.3. The lemma takes advantage
of the fact that the target function L(α, β) in (7.21) is concave. The point-
wise convergence of L(α, β) implies automatically the uniform convergence
over a compact set. The essence of the following lemma is that it requires
only pointwise convergence for the concave target functions. This is much
easier to establish than the uniform convergence.



308 7. Spectral Density Estimation and Its Applications

Lemma 7.3 (Quadratic approximation lemma) Let {λn(θ): θ ∈ Θ} be a
sequence of random concave functions defined on a convex open subset Θ
of IRd. Let F and G be nonrandom matrices, with F positive-definite, and
let Un be a stochastically bounded sequence of random vectors. Lastly, let
αn be a sequence of constants tending to zero. Write

λn(θ) = UT
nθ −

1
2
θT (F + αnG)θ + fn(θ).

If, for each θ ∈ Θ, fn(θ) = oP (1), then

θ̂n = F−1Un + oP (1),

where θ̂n (assumed to exist) maximizes λn(·). If, in addition, f ′(θ) =
oP (αn) and f ′′

n (θ) = oP (αn) uniformly in θ in a neighborhood of θ̂n, then

θ̂n = F−1Un − αnF−1GF−1Un + oP (αn).

Proof of Theorem 7.3. The idea of the proof is to reduce the problem for
dependent data to that for i.i.d. exponentially distributed random variables.
The latter can be proved using the first part of the quadratic approximation
lemma.

Let β̂ = a−1
T [α̂−m(ω), h{β̂ −m′(ω)}]T , where aT = (nh)−1/2. Define

Lk(Yk,β) = − exp{Yk − m̄(ω, ωk)− aTβTΩk}
+Yk − m̄(ω, ωk)− aTβTΩk,

where m̄(ω, ωk) = m(ω)+m′(ω)(ωk−ω) and Ωk = {1, (ωk−ω)/h}T . Then,
it can easily be seen via a linear transform that β̂ maximizes

n∑
k=1

Lk(Yk,β)Kh(ωk − ω),

or equivalently β̂ maximizes

�T (β) = h

n∑
k=1

{Lk(Yk,β)− Lk(Yk, 0)}Kh(ωk − ω).

Let Y ′
k = m(ωk) + zk, the main term of (7.2). Then, we can write

�T (β) = �1,T (β) + UT

where �1,T (β) is defined in the same way as �T (β) with Yk replaced by Y ′
k,

and

UT = −h
n∑
k=1

RT (ωk)
[
exp{−m̄(ω, ωk)− aTβTΩk}

− exp{−m̄(ω, ωk)}
]
Kh(ωk − ω).
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By using Taylor’s expansion and Lemma 7.2, for each fixed β,

UT = OP (h · aT · T · log T/
√
T ) = oP (1).

Thus, we have
�T (β) = �1,T (β) + oP (1). (7.50)

We now deal with the term �1,T (β), which is the logarithm of the likeli-
hood based on exp(Y ′

k), an independent sample from exponential distribu-
tions. By Taylor’s expansion around the point 0,

Lk(Y ′
k,β)− Lk(Y ′

k, 0) = aT [exp{Y ′
k − m̄(ω, ωk)} − 1]βTΩk

−a
2
T

2
exp{Y ′

k − m̄(ω, ωk)}(βTΩk)2{1 + o(1)}.

Thus
�1,T (β) = WTβ − 1

2
βTATβ{1 + o(1)}, (7.51)

where

WT = aTh

n∑
k=1

[exp{Y ′
k − m̄(ω, ωk)} − 1]ΩkKh(ωk − ω)

and

AT =
1
n

n∑
k=1

exp{Y ′
k − m̄(ω, ωk)}ΩkΩT

kKh(ωk − ω).

Note that each element in WT and AT is a sum of independent random
variables of kernel form. Their asymptotic behaviors are relatively easy to
characterize. Basically, we will show that WT is asymptotically normal and
AT converges in probability to a matrix. We now outline the key ideas of
the proof. Since K has a bounded support, all effective ωk’s are in a local
neighborhood of ω. By Taylor’s expansion,

m̄(ω, ωk) ≈ 1
2
m′′(ω)(ωk − ω)2.

Note that exp(Y ′
k) has an exponential distribution with the mean exp{m

(ωk)}. Using these terms, one can easily show that

E[exp{Y ′
k − m̄(ω, ωk)} − 1] =

1
2
m′′(ω)(ωk − ω)2 + o(1), (7.52)

Var[exp{Y ′
k − m̄(ω, ωk)} − 1] = 1 + o(1). (7.53)

Approximating the discrete sum below by its integration, it follows from
(7.52) that

EAT =
1
n

n∑
k=1

ΩkΩkKh(ωk − ω)

= A + o(1),
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where A = −π−1diag{1, µ2(K)}. Similarly, by using (7.53), one can show
that each element of AT has variance of order O(aT ). Thus

AT = A + oP (1). (7.54)

Combining (7.50), (7.51) and (7.54) leads to

�T (β) = WT
Tβ +

1
2
βTAβ + oP (1). (7.55)

To apply the quadratic approximation lemma, we need to establish the
asymptotic normality of WT . First, by (7.52),

EWT = aTh

n∑
k=1

1
2
m′′(ω)(ωk − ω)2ΩkKh(ωk − ω){1 + o(1)}

= a−1
T

h2

2
m′′(ω)π−1

(
µ2(K)

0

)
+ o(a−1

T h2).

Similarly, it follows from (7.53) that we have

Var(WT ) = a2
Th

2
n∑
k=1

ΩkΩT
kK

2
h(ωk − ω)

= B + o(1),

where B = π−1diag{ν0(K),
∫
t2K2(t)dt}. Since WT is the sum of indepen-

dent random variables, one can easily verify that it satisfies the Lindeberg
condition. Hence,

WT − a−1
T

{
m′′(x)

2
h2π−1{µ2(K), 0}T + oP (h2)

}
D−→ N(0,B). (7.56)

The quadratic approximation lemma and (7.55) lead to

β̂ = −A−1WT + oP (1).

By (7.56), β̂ is asymptotically normal. Hence, its first element is asymp-
totically normal. This proves the theorem.

7.6 Bibliographical Notes

Spectral density estimation is closely related to state domain smoothing.
Some related references can also be found in §6.7.

Spectral density estimation
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The suggestion that an improved spectral estimate might be obtained by
smoothing the periodogram was made by Daniels (1946); see also Bartlett
(1948, 1950). Brillinger and Rosenblatt (1967) considered estimation of
higher-order spectra. The asymptotic normality of higher-order cumulant
spectral density estimates was established by Lii and Rosenblatt (1990).
Asymptotic properties of spectral estimates were studied by Brillinger (1969).
Lii (1978) established the asymptotic normality for the L2-norm between
estimated density and true density. The problem of estimating the spec-
tral density for stationary symmetric α-stable processes was considered by
Masry and Cambanis (1984). Nonparametric high-resolution estimation of
spectral density was studied by Dahlhaus (1990b). Lii and Masry (1995)
studied selection of sampling schemes for spectral density estimation. Lii
and Rosenblatt (1998) showed that it is generally impossible to have con-
sistent estimates of spectral mass for a harmonizable process and hence line
spectrum was estimated.

Recent advances in smoothing techniques enrich the techniques of spec-
tral density estimation. Wahba (1980) used smoothing splines to smooth
a log-periodogram. Extensive efforts have been made in selecting appro-
priate smoothing parameters for spectral density estimators; see, for ex-
ample, Swanepoel and van Wyk (1986), Beltrão and Bloomfield (1987),
Hurvich and Beltrão (1990), and Franke and Härdle (1992). For multivari-
ate spectral density estimation, Robinson (1991a) considered nonparamet-
ric and semiparametric estimation of spectral density with data-dependent
bandwidth. A plug-in method for selecting bandwidths for spectral density
estimation was proposed in Park, Cho, and Kang (1994). Based on the
penalized Whittle likelihood, Pawitan and O’Sullivan (1994) used smooth-
ing splines to estimate the spectral density. Kooperberg, Stone, and Truong
(1995a, b) developed log-spline spectral density estimates. Kato and Masry
(1999) applied wavelet techniques to spectral density estimation.

Test of independence

Test for independence is usually based on the autocorrelation function and
periodogram of a time series. Different tests detect different aspects of devi-
ation from a null hypothesis and hence are powerful for certain given alter-
natives. Brillinger (1974) derived the asymptotic distribution for testing pe-
riodicities. Skaug and Tjøstheim (1993) generalized the idea of Blum, Kiefer
and Rosenblatt (1961) for testing serial independence. Robinson (1991b)
proposed tests for strong serial correlation and conditional heteroscedas-
ticity. Some recent work on the subject can be found in Deo (2000) and
Deo and Chen (2000a,b). A survey and development on various measures
of dependence can be found in Tjøstheim (1996) and the references therein.

As mentioned in §7.4 for a stationary time series, testing for white noise
in the time domain is equivalent to testing whether spectral density is
constant based on nearly independent periodograms. This is basically a
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parametric null hypothesis versus nonparametric smooth alternative hy-
pothesis. There is much literature studying this kind of problem. An early
paper is Bickel and Rosenblatt (1973), where the asymptotic null distri-
butions were derived. A few new tests were proposed in Bickel and Ritov
(1992). Azzalini and Bowman (1993) introduced the F-type test statistic for
testing parametric models. Härdle and Mammen (1993) studied nonpara-
metric tests based on an L2-distance. Various recent testing procedures
are motivated by Neyman (1937). They basically focus on selecting the
smoothing parameters of the Neyman test and studying the properties of
the resulting procedures; see, for example, Eubank and Hart (1992), Eu-
bank and LaRiccia (1992), Inglot, Kallenberg and Ledwina (1994), Kallen-
berg and Ledwina (1994), and Kuchibhatla and Hart (1996), among others.
Fan (1996) proposed simple and powerful methods for constructing tests
based on Neyman’s truncation and wavelet thresholding. It was shown in
Spokoiny (1996) that wavelet thresholding tests are nearly adaptively min-
imax and in Fan, Zhang, and Zhang (2001) that Fan’s version of the adap-
tive Neyman test is asymptotically adaptively minimax. The asymptotic
optimality of data-driven Neyman’s tests was also studied by Inglot and
Ledwina (1996).

There are various extensions of nonparametric tests to multivariate set-
tings. The largest challenge is how to handle the so-called “curse of di-
mensionality” in multivariate nonparametric regression. This refers to the
fact that a local neighborhood in multidimensional space contains very few
data points. Aerts, Claeskens, and Hart (2000) constructed tests based on
orthogonal series for a bivariate nonparametric regression problem. Fan
and Huang (2001) proposed various testing techniques based on the adap-
tive Neyman test for various alternative models in a multiple regression
setting. A generally applicable method, generalized likelihood ratio tests,
was proposed and studied by Fan, Zhang, and Zhang (2001). Horowitz
and Spokoiny (2001) studied the problem of adaptive minimax rates for
multivariate nonparametric testing problems.



8
Nonparametric Models

8.1 Introduction

Parametric time series models provide powerful tools for analyzing time se-
ries data when the models are correctly specified. However, any parametric
models are at best only an approximation to the true stochastic dynam-
ics that generates a given data set. The issue of modeling biases always
arises in parametric modeling. One conventional technique is to expand
the parametric models from a smaller family to a larger family. This eases
the concerns on modeling biases but is not necessarily the most effective
way to deal with them. As mentioned in §1.3.3, a good fitting for a simple
MA series by an AR model may require a high order. Similarly, a simple
nonlinear series might require a high order of ARMA model to reasonably
approximate it. Thus, the choice for the form of a parametric model is very
critical.

Many data in applications exhibit nonlinear features such as nonnormal-
ity, asymmetric cycles, bimodality, nonlinearity between lagged variables,
and heteroscedasticity. They require nonlinear models to describe the law
that generates the data. However, beyond the linear time series models,
there are infinitely many nonlinear forms that can be explored. This would
be an undue task for any time series analysts to try one model after another.
A natural alternative is to use nonparametric methods. The most flexible
nonparametric model is the saturated (full) nonparametric model, which
does not impose any particular form on autoregression functions. This satu-
rated nonparametric model is certainly flexible in reducing modeling biases.
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Yet, in the multivariate setting with more than two lagged variables, its
underlying autoregressive function cannot be estimated with reasonable ac-
curacy due to the so-called “curse of dimensionality” of Bellman (1961).
The curse of dimensionality problem has been clearly illustrated in many
books, including Silverman (1986), Härdle (1990), Hastie and Tibshirani
(1990), Scott (1992), and Fan and Gijbels (1996).

There are many possibilities between parametric models and saturated
nonparametric models. Certain forms are typically imposed on the autore-
gressive functions. The resulting models are usually generalizations of cer-
tain parametric families; see, for example, the functional-coefficient autore-
gressive (FAR) model (1.11) and the additive autoregressive (AAR) model
(1.12). They are better able to reduce possible modeling biases than their
parametric counterparts. On the other hand, they are much smaller than
the saturated nonparametric model. As a result, the unknown parameters
and functions can be estimated with reasonable accuracy.

In this chapter, we will introduce a few nonsaturated nonparametric
models. These include functional-coefficient autoregressive (FAR) models,
adaptive FAR models, additive autoregressive models, and models for con-
ditional variance. Different models impose different nonparametric forms
on the autoregressive regression function and explore different aspects of
the data. They together form powerful tools for time-series data analysis.

8.2 Multivariate Local Polynomial Regression

Local polynomial fitting can readily be extended to the multivariate setting.
Due to the curse of dimensionality, direct use of the multivariate nonpara-
metric regression is not viable. However, its functionals can be useful for
other related problems. For completeness, we briefly outline the idea of the
extension of the local polynomial fitting to a multivariate setting.

8.2.1 Multivariate Kernel Functions
To localize data in the p-dimension, we need a multivariate kernel . Gener-
ally speaking, a multivariate kernel function refers to a p-variate function
satisfying ∫ +∞

−∞
· · ·
∫ +∞

−∞
K(x)dx = 1.

Moment conditions similar to (5.13) can be imposed to ameliorate biases.
For example, a second-order kernel requires

∫
xiK(x)dx = 0, i = 1, · · · , p.
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and the finite second-moment condition. Here and hereafter, we use “
∫

” to
indicate multivariate integration over the p-dimensional Euclidean space.

There are two common approaches for constructing multivariate kernels.
For a univariate kernel κ, the product kernel is given by

K(x) =
p∏
i=1

κ(xi),

and the spherically symmetric kernel is defined as

K(x) = cκ,pK(‖x‖),

where cκ,p = {∫ K(‖x‖)dx}−1 is a normalization constant and ‖x‖ = (x2
1+

· · · + x2
p)

1/2. Popular choices of K include the standard p-variate normal
density

K(x) = (2π)−p/2 exp(−‖x‖2/2)

and the spherical Epanechnikov kernel

K(x) = {p(p+ 2)Γ(p/2)/(4πp/2)}(1− ‖x‖2)+

The latter is the optimal kernel, according to Fan et al. (1996).
The localization in multivariate nonparametric regression is frequently

carried out by the kernel weighting. Let H be a symmetric positive-definite
matrix called a bandwidth matrix. The localization scheme at a point x
assigns the weight

KH(Xi − x), with KH(x) = |H|−1K(H−1x),

where |H| is the determinant of the matrix H. The bandwidth matrix is
introduced to accommodate the dependent structure in the independent
variables. For practical implementations, one frequently takes the band-
width matrix H to be a diagonal matrix. This will accommodate different
scales in different independent variables. A further simplification is to take
the bandwidth matrix H = hIp with Ip being the identity matrix of or-
der p, assuming that the independent variables have the same scale (e.g.,
through some normalizations).

For the spherical Epanechnikov kernel with the bandwidth matrix H =
hIp, the nonvanishing weights are only those Xi’s that fall in the ball
centered at x with radius h. Such a ball has a size of order O(hp), which gets
smaller and smaller as p increases. For such a small ball, there are not many
local data points there. This is the essence of the curse of dimensionality.
In order to get a sufficient amount of local data points, the neighborhood
has to increase, which introduces an unacceptable level of bias.
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8.2.2 Multivariate Local Linear Regression
The best predictor for Xt based on its lag variables Xt−1, · · · , Xt−p is

G(Xt−1, · · · , Xt−p) = E(Xt|Xt−1, · · · , Xt−p).

Such an autoregressive function minimizes the prediction error

E{Xt − g(Xt−1, · · · , Xt−p)}2

among the class of measurable functions g. In fact, one can easily see that

E{Xt − g(Xt−1, · · · , Xt−p)}2 = E{Xt −G(Xt−1, · · · , Xt−p)}2
+E{G(Xt−1, · · · , Xt−p)− g(Xt−1, · · · , Xt−p)}2.

To estimate the autoregressive function, let Xt−1 = (Xt−1, · · · , Xt−p)T .
Then, the multivariate kernel estimator is basically the locally weighted
average:

Ĝ(x) =

∑T
t=p+1XtKH(Xt−1 − x)
∑T
t=p+1KH(Xt−1 − x)

.

The kernel estimator is based on the local constant approximation. It can
be improved by using the local linear approximation

G(X) ≈ G(x) +G′(x)T (X− x),

for X in a local neighborhood of x. This leads to the following least-squares
problem:

T∑
t=p+1

{
Xt − a− bT (Xt−1 − x)

}2
KH(Xt−1 − x).

Let â(x) and b̂(x) be the minimizers. Then, the local linear estimate of G
is simply Ĝ(x) = â(x) and the local linear estimate of the gradient vector
G′(x) is Ĝ′(x) = b̂(x).

The asymptotic biases and variances can be established along the same
lines of argument as those in §6.3 under some regularity conditions. In
particular, the asymptotic bias of Ĝ(x) is

2−1tr
{
G′′(x)HHT

∫
K(u)uuT du

}
,

with G′′(·) the Hessian matrix of the function G, and the asymptotic vari-
ance is given by

σ2(x)
T |H|f(x)

∫
K2(u)du,
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TABLE 8.1. Sample sizes required for p-dimensional nonparametric regres-
sion to have a performance comparable with that of one-dimensional non-
parametric regression using size 100.

dimension 2 3 4 5 6 7 8 9
sample size 250 630 1580 3,980 10,000 25,000 63,000 158,000

where σ2(x) = Var(Xt|Xt−1 = x), and f(x) is the joint density of Xt−1.
To see the rate of convergence, let us take H = hIp. Then, the bias is

of order O(h2) and the variance is of order O(1/Thp). This leads to the
optimal rate of convergence O(T−2/(4+p)) by trading off the rates between
the bias and variance.

The curse of dimensionality can be quantitatively understood as follows.
To have a performance comparable with one-dimensional nonparametric
regression with T1 data points, for p-dimensional nonparametric regression,
we need

T−2/(4+p) = O(T−2/5
1 ) or T = T

(p+4)/5
1 .

Table 8.1 shows the result with T1 = 100. The increase of required sample
sizes is exponentially fast.

8.2.3 Multivariate Local Quadratic Regression
Due to the sparsity of local data in multi-dimensional space, a higher-order
polynomial is rarely used. Further, the notation becomes more cumber-
some. We use the local quadratic regression to indicate the flavor of the
multivariate local polynomial fitting. The technique can be useful for esti-
mating the gradient vector G′(·) where the local linear fit does not give a
good enough estimate.

The local quadratic approximation is as follows. By Taylor’s expansion
to the second order, we have

G(X) ≈ G(x) +G′(x)(X− x) +
1
2
(X− x)TG′′(x)(X− x).

This leads to minimizing

T∑
t=p+1

{
Xt − a− bT (Xt−1 − x)− 1

2
(X− x)TC(X− x)

}2
KH(Xt−1 − x),

with respect to a, b and C, where C is a symmetric matrix. They are an
estimate of G(x), G′(x), and G′′(x), respectively.
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8.3 Functional-Coefficient Autoregressive Model

8.3.1 The Model
The functional coefficient model, introduced by Chen and Tsay (1993),
admits the form

Xt = a1(Xt−d)X1 + · · ·+ ap(Xt−d)Xt−p + σ(Xt−d)εt, (8.1)

where {εt} is a sequence of independent random variables with zero mean
and unity variance, and εt is independent of Xt−1, Xt−2, · · · . The coeffi-
cient functions a1(·), · · · , ap(·) are unknown. The model is a special case of
the state-dependent model of Priestley (1981). For simplicity, we will call
the variable Xt−d the model-dependent variable and denote the model by
FAR(p, d) .

The state-dependent model is a natural extension of the TAR model dis-
cussed in §5.2. It allows the coefficient functions to change gradually, rather
than abruptly as in the TAR model, as the value of Xt−d varies continu-
ously. This can be appealing in many applications such as in understanding
the population dynamics in ecological studies. As the population density
Xt−d changes continuously, it is reasonable to expect that its effects on the
current population size Xt will be continuous as well.

The FAR model also includes the generalized exponential autoregressive
(EXPAR) model

Xt =
p∑
i=1

{
αi + (βi + γiXt−d) exp(−θiX2

t−d)
}
Xt−i + εt, (8.2)

where θi ≥ 0 for i = 1, . . . , p. The model was introduced and studied by
Haggan and Ozaki (1981) and Ozaki (1982). The FAR model allows other
forms for the coefficient functions.

8.3.2 Relation to Stochastic Regression
All parametric and nonparametric autoregressive models can be regarded
as stochastic regression models, so the techniques developed in regression
models can be applied to time series. The major difference here is that the
data are dependent in the context of time series. This usually has limited
impact on estimation procedures but might affect probability statements
such as confidence intervals and p-values. However, as illustrated in §5.3,
the adverse effects on probability statements for state-domain smoothing
are not severe due to the property of “whitening by windowing.”

Introduce the independent variable Y as the current observation Xt, the
ith independent variable “Xi” as the lag i variable Xt−i, and U as the lag
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d variable Xt−d. The (t− p)th observation of these induced variables is

Yt = Xt, Xt1 = Xt−1, · · · , Xtp = Xt−p, Ut = Xt−d, t = p+ 1, · · · , T.
(8.3)

Here, for simplicity, we assume that d ≤ p. With the induced variables
above, the FAR model (8.1) can be written as

Y = a1(U)X1 + · · ·+ ap(U)Xt−p + σ(U)εt (8.4)

based on the data {(Yt, Xt1, · · · , Xtp, Ut), t = p + 1, · · · , T}. To facilitate
the notation, with slight abuse of notation, we relabel the data as

{(Yi, Xi1, · · · , Xip, Ui), i = 1, · · · , n},
where n = T −p. This is indeed a stochastic regression model and has been
popularly studied in the setting of the independent observations; see, for
example, Hastie and Tibshirani (1993), Fan and Zhang (1999), and Cai,
Fan, and Li (2000), among others.

8.3.3 Ergodicity∗

One of the fundamental questions is whether the model (8.1) yields a sta-
tionary and ergodic solution. According to Theorem 2.2, we need to estab-
lish the ergodicity of the series. The following theorem was established by
Chen and Tsay (1993).

Theorem 8.1 Assume that the functions aj(·) are bounded by cj and the
density function of εt is positive everywhere on the real line. If all roots of
the characteristic function

λp − c1λp−1 − · · · − cp = 0

are inside the unit circle, then the FAR(p, d) process is geometrically er-
godic.

Before we outline the key idea of the proof, let us illustrate the theorem
above by a few examples.

Example 8.1 (AR(p) model ) The AR(p) model corresponds to an FAR(p, d)
model with

a1(·) ≡ a1, · · · , ap(·) ≡ ap and σ(·) = σ.

The condition in Theorem 8.1 is the same as that in Theorem 2.1 for the
stationarity of an AR(p) process.

Example 8.2 (EXPAR model) Consider the EXPAR model (8.2) with
γi = 0. The state-dependent coefficient function is given by

ai(u) = αi + βi exp(−θiu2).
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Since θi ≥ 0, the coefficient function ai(·) is bounded by

|ai(u)| ≤ |αi|+ |βi|.

Let ci = |αi| + |βi|. By Theorem 8.1, the process is geometrically ergodic
as long as the condition in Theorem 8.1 is fulfilled.

Example 8.3 (TAR(p) model) Consider the TAR model (1.8). It corre-
sponds to the FAR(p, d) model with

aj(u) = b
(i)
j for u ∈ Ωi, i = 1, · · · , k, j = 1, · · · , p.

The coefficient function aj(·) is bounded by cj = max{|b(1)j |, · · · , |b(k)j |},
and Theorem 8.1 is applicable.

We now outline the key idea for the proof of Theorem 8.1. The approach
is useful for other similar problems. Following the idea in §2.1.4, we express
the series as a Markov chain in the p-dimensional Euclidean space. Let

Xt = (Xt, · · · , Xt−p+1)T , εt = (εt, · · · , εt−p+1)T ,

and set

A(X) =




a1(X) a2(X) · · · ap−1(X) ap(X)
1 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0


 .

Then, we can rewrite the FAR model as

Xt = A(Xt−1)Xt−1 + εt. (8.5)

This is clearly a Markov chain in the p-dimensional Euclidean space.
We need the following concept of φ-irreducibility and aperiodicity of a

Markov chain in a topological space. Let X be a topological space equipped
with a nontrivial measure φ.

Definition 8.1 A Markov chain {Xt} is said to be φ-irreducible if for any
measurable set A with φ(A) > 0, there exists an n ≥ 0 such that

P{Xn ∈ A|X0 = x} > 0 for all x ∈ X .

The φ-irreducibility basically says, that starting from any initial value
X0 = x with positive probability, the chain will visit the set A in finite
steps. The concept of the aperiodicity is that a Markov chain cannot be
divided into cyclic subchains. There are a few equivalent definitions, and
we take the one that is simplest for description.
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Definition 8.2 A Markov chain {Xt} is aperiodic if there exists a measur-
able set A with φ(A) > 0 such that, for any subset B of A with φ(B) > 0,
there exists a positive integer n such that

P{Xn ∈ B|X0 = x} > 0 and P{Xn+1 ∈ B|X0 = x} > 0.

The following two lemmas are useful for establishing the ergodicity. The
first one is due to Tweedie (1975), and the second one is due to Tjøstheim
(1990).

Lemma 8.1 Let {Xt} be a φ-irreducible Markov chain on a normed topo-
logical space. If the transition probability P (x, ·) is strongly continuous-
namely, the transition probability P (x, A) from x to any measurable set A
is continuous in x-then a sufficient condition for the geometric ergodicity
is that there exists a compact set K and a positive constant ρ < 1 such that

E
(
‖Xt+1‖

∣∣∣Xt = x
)
<

{ ∞, for x ∈ K
ρ‖x‖, for x �∈ K.

Lemma 8.2 Let {Xt} be an aperiodic Markov chain, and let m be a pos-
itive integer. Then, the geometric ergodicity of the subsequence {Xmt} en-
tails the geometric ergodicity of the original series {Xt}.

The key idea for proving Theorem 8.1 is to show that, for a subsequence
{Xmt}, the conditions in Lemma 8.1 are fulfilled. Hence, it is geometric
ergodicity. By Lemma 8.2, the whole series must be geometrically ergodic.
The details of the proof are given in §8.8.1.

8.3.4 Estimation of Coefficient Functions
The unknown coefficient functions in (8.4) can be estimated by using a
local linear regression technique. For any given u0 and u in a neighborhood
of u0, it follows from a Taylor expansion that

aj(u) ≈ aj(u0) + a′
j(u0)(u− u0) ≡ aj + bj (u− u0), (8.6)

where aj and bj are the local intercept and slope corresponding to aj(u0)
and a′

j(u0). Using the data with Ui around u0 and the local model (8.6),
we run the following local linear regression. Minimize with respect to {aj}
and {bj}

n∑
i=1


Yi −

p∑
j=1

{aj + bj (Ui − u0)} Xij




2

Kh(Ui − u0), (8.7)

where Kh(·) = h−1K(·/h), K(·) is a kernel function, and h is a bandwidth.
Let {(âj , b̂j)} be the local least squares estimator. Then, the local linear
regression estimator is simply

âj(u0) = âj , j = 1, · · · , n. (8.8)
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The local linear regression estimator can be easily obtained. Let ej,2p
be the 2p × 1 unit vector with 1 at the jth position, X̃ denote an n × 2p
matrix with (XT

i ,X
T
i (Ui − u0)) as its ith row, and Y = (Y1, · · · , Yn)T .

Set W = diag {Kh(U1 − u0), . . . , Kh(Un − u0)}. Then, the local regression
problem (8.7) can be written as

(Y − X̃β)TW(Y − X̃β),

where β = (a1, · · · , ap, b1, · · · , bp)T . The local least squares estimator is
simply

β̂ =
(
X̃T WX̃

)−1
X̃T WY,

which entails
âj(u0) = âj = eTj,2pβ̂.

By simple algebra, it can be expressed in an equivalent kernel form as

âj(u0) =
n∑
k=1

Kn,j(Uk − u0, Xk)Yk, (8.9)

where

Kn,j(u,x) = eTj,2p
(
X̃TWX̃

)−1
(

x
ux

)
Kh(u). (8.10)

See §3.2.2 of Fan and Gijbels (1996) for similar derivations.

8.3.5 Selection of Bandwidth and Model-Dependent Variable
Various bandwidth selection techniques (see, e.g., §6.3.5) for nonparametric
regression can be extended to the FAR model. Here we introduce a simple
and quick method proposed in Cai, Fan, and Yao (2000). It can be regarded
as a modified multifold cross-validation criterion that is attentive to the
structure of stationary time series data. Let m and Q be two given positive
integers such that n > mQ. The basic idea is first to use Q subseries of
lengths n−qm (q = 1, · · · , Q) to estimate the unknown coefficient functions
and then to compute the one-step forecasting errors of the next section of
the time series of length m based on the estimated models. This idea is
schematically illustrated in Figure 8.1.

Let {âj,q(·)} be the estimated coefficients using the qth (q = 1, · · · , Q)
subseries {(Ui, Xi, Yi), 1 ≤ i ≤ n−qm} with bandwidth equal to h{n/(n−
qm)}1/5. The bandwidth h is rescaled slightly to accommodate different
sample sizes according to its optimal rate (i.e., h ∝ n−1/5). The average
prediction error using the qth subseries is given by

APEq(h) =
1
m

n−qm+m∑
i=n−qm+1


Yi −

p∑
j=1

âj,q(Ui)Xi,j




2

.
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n− 4m m m m m

time sequence (length n)

estimation pred

estimation pred

estimation pred

estimation pred

FIGURE 8.1. Illustration of data used for estimation and prediction. The data
of length n− 4m are used to construct estimated coefficients, and the prediction
errors for the next m data are computed. Then, the data of length n − 3m are
used to construct estimated coefficients, and the prediction errors for the next m
data are computed, and so on.

The overall average prediction error is given by

APE(h) = Q−1
Q∑
q=1

APEq(h). (8.11)

The proposed data-driven bandwidth is the one that minimizes APE(h).
In practical implementations, we may use m = [0.1n] and Q = 4. The
selected bandwidth does not depend critically on the choice of m and Q as
long as mQ is reasonably large so that the evaluation of prediction errors is
stable. The function APE(h) is minimized by comparing its value at a grid
of points hj = ajh0(j = 1, · · · , J). For example, one may choose a = 1.2,
J = 15 or 20, and h0 = 1.2−J(range of U). A weighted version of APE(h)
can also be used if one wishes to weight down the prediction errors at an
earlier time. The choice m = [0.1n] rather than m = 1 is taken simply to
facilitate computational expediency.

Choosing an appropriate model-dependent variable U is also very im-
portant. Knowledge of the physical background of the data may be very
helpful, as we have witnessed in modeling lynx data. Without any prior in-
formation, it is pertinent to choose U in terms of some data-driven methods
such as AIC, cross-validation, and other criteria. Let APE(h, d) be the aver-
age prediction error defined by (8.11) using the lagged variable U = Xt−d.
Here, we stress the dependence of the prediction error on the lag variable
Xt−d. A simple and practical approach is to minimize APE(h, d) simulta-
neously for h in a certain range and d over the set {1, 2, · · · , p}. The order
p can also be chosen to minimize the APE.
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8.3.6 Prediction
Based on model (8.1), the one-step-ahead predictor is given by

X̂t+1 = â1(Xt−d)Xt + · · ·+ âp(Xt−d)Xt−p+1. (8.12)

This is a predictor whether model (8.1) holds or not. For two-step-ahead
forecasting, there are two possible approaches. The iterative two-step-ahead
predictor is to use (8.12) iteratively, leading to

X̂t+2 = â1(Xt+1−d)X̂t+1 + â2(Xt+1−d)Xt + · · ·+ âp(Xt+1−d)Xt−p+2.
(8.13)

The direct two-step ahead predictor is based on fitting the model

Xt+2 = b1(Xt−d)Xt + · · ·+ bp(Xt−d)Xt−p + ε′
t, (8.14)

resulting in the estimated coefficient functions b̂1(·), · · · , b̂p(·) and the pre-
dictor

X̂t+2 = b̂1(Xt−d)Xt + · · ·+ b̂p(Xt−d)Xt−p.

Note that model (8.1) does not imply (8.14). In this sense, the direct two-
step ahead predictor explores the prediction power of the proposed model-
ing techniques when the model is misspecified. Since model (8.14) is usu-
ally not a correct model, the model-dependent variable Xt−d had better be
chosen to minimize the estimated prediction error using the techniques in
the previous section. For multistep-ahead forecasting, the two approaches
above continue to apply.

8.3.7 Examples
We now illustrate the sampling properties of the proposed methods through
two simulated and two real data examples. The performance of estima-
tors {âj(·)} can be assessed via the square-root of average squared errors
(RASE):

RASEj =


n−1

grid

ngrid∑
k=1

{âj(uk)− aj(uk)}2



1/2

,

RASE2 =
p∑
j=1

RASE2
j ,

where {uk, k = 1, . . . , ngrid} are regular grid points on an interval over
which the functions aj(·) are evaluated. We also compare the postsample
forecasting performance of the new methods with existing methods such as
the linear AR model, TAR model, and FAR model that are implemented
in Chen and Tsay (1993).

Throughout this section, the Epanechnikov kernelK(u) = 0.75
(
1− u2

)
+

is employed.
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FIGURE 8.2. Simulation results for Example 8.4. The local linear estimators
(dotted curves) for the coefficient functions a1(·) (a) and a2(·) (b) (solid curves).
Adapted from Cai, Fan, and Yao (2000).

Example 8.4 (Simulation from an EXPAR model) We drew 400 time se-
ries of length 400 from the EXPAR model

Xt = a1(Xt−1)Xt−1 + a2(Xt−1)Xt−2 + εt, (8.15)

where {εt} are i.i.d. from N
(
0, 0.22

)
and

a1(u) = 0.138 + (0.316 + 0.982u) e−3.89u2
,

a2(u) = −0.437− (0.659 + 1.260u) e−3.89u2
.

Figure 8.2 presents the estimated a1(·) and a2(·) from a typical sample.
The typical sample is selected in such a way that its RASE-value is equal
to the median in the 400 simulations. The optimal bandwidth h = 0.41 was
chosen. The proposed estimators nicely capture the underlying feature of
the true coefficient functions.

Example 8.5 (Simulation from a TAR model) Instead of using continuous
coefficient functions, we now use discontinuous step functions

a1(u) = 0.4 I(u ≤ 1)− 0.8 I(u > 1),
a2(u) = −0.6 I(u ≤ 1) + 0.2 I(u > 1).

Four hundred series of length 400 were simulated from the TAR model

Xt = a1(Xt−2)Xt−1 + a2(Xt−2)Xt−2 + εt. (8.16)
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FIGURE 8.3. Simulation results for Example 8.5. The local linear estimators
(dotted curves) for the coefficient functions a1(·) and a2(·) (solid curves). From
Cai, Fan, and Yao (2000).

TABLE 8.2. The mean and SD of AAPE based on 400 replications. Reproduced
from Cai, Fan, and Yao (2000).

One-step Iterative two-step Direct two-step
Model (8.16) 0.784(0.203) 0.904(0.273) 0.918(0.281)
Linear AR(2) 1.131(0.485) 1.117(0.496)

The resulting typical estimates from the 400 simulations are depicted in
Figure 8.3. The optimal bandwidth hn = 0.325 was used. The procedure
captures the change-point feature quite nicely. A further improvement can
be obtained by using nonparametric change-point techniques (see, e.g.,
Müller 1992, Gijbels, Hall, and Kneip 1995) or the parametric TAR model.

To compare the prediction performance of the predictors from functional-
coefficient modeling with the best-fitted linear AR(2) model

X̂t = β̂0 + β̂1Xt−1 + β̂2Xt−2,

we predict 10 postsample points in each of the 400 replicated simulations.
The mean and standard deviation (SD, in parentheses in Table 8.2) of av-
erage absolute prediction errors (AAPE) are recorded in Table 8.2. Note
that E|εt| = 0.7979 and SD(|εt|) = 0.6028 so that the average of 10 ab-
solute deviation errors has an SD of 0.1897. These are indeed very close
to the one-step AAPE and its associated SD using model (8.16) and im-
ply that the errors in estimating functions a1(·) and a2(·) are negligible in
the prediction. The FAR(2,2) model, while somewhat overparametrized in
the coefficient functions, provides relevant predictors for the given model
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(d) Observed and Fitted Values for Lynx Data

FIGURE 8.4. Canadian lynx data. (a) APE against bandwidth. (b) Local linear
estimate â1(·). (c) Local linear estimate â2(·). (d) Original series and fitted series
by using TAR model (solid) and FAR model (dashed). Adapted from Cai, Fan,
and Yao (2000).

(8.16). The direct two-step predictor based on the FAR model (8.14) per-
forms reasonably well. This in turn illustrates the flexibility of this family
of models as approximations to true stochastic dynamics.

Example 8.6 (Canadian lynx data) A natural alternative model to the
TAR model (1.8) for the Canadian lynx data is the FAR(2, 2) model. We
apply the APE criterion with Q = 4 and m = 11 to choose a band-
width. The function APE against the bandwidth h over a grid of points
hj = 0.6 + 0.05j(j = 0, · · · , 12) is plotted in Figure 8.4(a). The selected
bandwidth is h = 0.90. Using this bandwidth and the local linear regression
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(8.7), we obtain the estimated coefficients â1 and â2, which are depicted in
Figures 8.4 (b) and (c). The fitted values are presented in Figure 8.4(d). For
comparison purposes, we also plot the fitted value using the TAR model
(1.8). The fitted values are almost undifferentiable.

The resulting FAR(2, 2) model resembles some important features of the
TAR(2) model (1.8). Both models admit nice biological interpretation on
the predator (lynx) and prey (hare) interaction in ecology (Stenseth et al.,
1999). The lower regime of Xt−2 corresponds roughly to the population
increase phase, whereas the upper regime corresponds to the population
decrease phase. In the population increase phase, the coefficient functions
are nearly constant and are similar to those in the TAR(2) model. The co-
efficient of Xt−1 in the model is positive, and more so during the decrease
phase, whereas the coefficient of Xt−2 is negative, and more so during the
decrease phase. The signs of those coefficients reveal that lynx and hares
relate with each other in a specified prey–predator interactive manner. The
dependence of the coefficients on the phases of increase and decrease re-
flects the so-called phase-dependence and density-dependence in ecology
(Stenseth et al. 1999). The phase-dependence refers to the different be-
havior of preys and predators in hunting and escaping at the increasing
or decreasing phase of the population. The density-dependence implies the
dependence of reproduction rates of animals as well as their behavior on
the abundance of the population. The key difference between the FAR(2, 2)
and TAR(2) models is whether the coefficient functions should be smooth
or radical in population density. This is an issue of interpretation and belief.
In fact, as will be shown in Chapter 9, there is no statistically significant
difference between the two models. In other words, given the available data,
these two models are statistically indistinguishable.

To compare the prediction performance among various models and sev-
eral prediction procedures, we fit model (8.16), a TAR model, and a linear
AR(2) model using the first 102 data points only, leaving out the last 12
points for assessing the prediction performance. The fitted TAR(2) model
is

X̂t =
{

0.424 + 1.255Xt−1 − 0.348Xt−2, Xt−2 ≤ 2.981,
1.882 + 1.516Xt−1 − 1.126Xt−2, Xt−2 > 2.981, (8.17)

and the fitted linear AR(2) model is

X̂t = 1.048 + 1.376Xt−1 − 0.740Xt−2.

The absolute prediction errors are reported in Table 8.3. The FAR(2, 2)
model outperforms both the TAR(2) and linear AR(2) models.

Example 8.7 (Sunspot data) We use the sunspot data to illustrate how
to use the APE criterion to select the order p and the model-dependent
variable Xt−d in FAR(p, d). Following the convention in the literature,



8.3 Functional-Coefficient Autoregressive Model 329

TABLE 8.3. The postsample prediction errors for Canadian lynx data. From Cai,
Fan, and Yao (2000).

FAR(2,2) model TAR model (8.17) Linear AR(2)
Year Xt OS Iter Direct OS Iter OS Iter
1923 3.054 0.157 0.156 0.209 0.187 0.090 0.173 0.087
1924 3.386 0.012 0.227 0.383 0.035 0.269 0.061 0.299
1925 3.553 0.021 0.035 0.195 0.014 0.038 0.106 0.189
1926 3.468 0.008 0.037 0.034 0.022 0.000 0.036 0.182
1927 3.187 0.085 0.101 0.295 0.059 0.092 0.003 0.046
1928 2.723 0.055 0.086 0.339 0.075 0.015 0.143 0.148
1929 2.686 0.135 0.061 0.055 0.273 0.160 0.248 0.051
1930 2.821 0.016 0.150 0.318 0.026 0.316 0.093 0.434
1931 3.000 0.017 0.037 0.111 0.030 0.062 0.058 0.185
1932 3.201 0.007 0.014 0.151 0.060 0.043 0.113 0.193
1933 3.424 0.089 0.098 0.209 0.076 0.067 0.191 0.347
1934 3.531 0.053 0.175 0.178 0.072 0.187 0.140 0.403

AAPE 0.055 0.095 0.206 0.073 0.112 0.114 0.214

“OS” stands for one-step prediction; “Iter” for iterative two-step estimator; “Di-
rect” for direct two-step estimator.

TABLE 8.4. Selected FAR models for the Sunspot Data. Adapted from Cai, Fan,
and Yao (2000).

p 2 3 4 5 6
d 1 3 3 2 2

APE 18.69 13.46 13.90 12.26 13.93
p 7 8 9 10 11
d 3 3 5 3 5

APE 11.68 11.95 14.06 14.26 13.91

the transform Xt = 2(
√

1 + Yt − 1) was applied to the original series. In
order to compare our analysis with the previous ones by Chen and Tsay
(1993) and Ghaddar and Tong (1981), only the annual sunspot numbers
in 1700–1987 were considered. The parameters m = 28 and Q = 4 were
used to select parameters p, d, and h. For each given 2 ≤ p ≤ 11, the APE-
criterion (8.11) is applied to choose the optimal parameter d. The results
are recorded in Table 8.4. The overall optimal model is p = 7 or p = 8; the
model-dependent variable is at lag d = 3.
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FIGURE 8.5. Wolf’s sunspot data. (a)–(e) The estimated functional coefficients
in model (8.18). (f) The plot of the APE against bandwidth for model (8.18).
Taken from Cai, Fan, and Yao (2000).
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TABLE 8.5. The postsample prediction errors for sunspot data from Cai, Fan,
and Yao (2000).

FAR model (8.19) FAR model (8.18) FAR model (8.20)
Year xt OS Iter Direct Error Iter Error Iter
1980 154.7 1.4 1.4 1.4 13.8 13.8 5.5 5.5
1981 140.5 11.4 10.4 3.7 0.0 3.8 1.3 0.0
1982 115.9 15.7 20.7 12.9 10.0 16.4 19.5 22.1
1983 66.6 10.3 0.7 11.0 3.3 0.8 4.8 6.5
1984 45.9 1.0 1.5 4.3 3.8 5.6 14.8 15.9
1985 17.9 2.6 3.4 7.8 4.6 1.7 0.2 2.7
1986 13.4 3.1 0.7 1.9 1.3 2.5 5.5 5.4
1987 29.2 12.3 13.1 18.9 21.7 23.6 0.7 17.5

AAPE 7.2 6.5 7.7 7.3 8.3 6.6 9.5

“OS” stands for one-step prediction; “Iter” for iterative two-step estimator; “Di-
rect” for direct two-step estimator.

Following Table 8.4, we fit an FAR(8, 3) model. Insignificant variables
were deleted in Chen and Tsay (1993), leading to the fitted FAR model

Xt =




1.23 + (1.75− 0.17 |Xt−3 − 6.6|)Xt−1 + (−1.28+
0.27|Xt−3 − 6.6|)Xt−2 + 0.20Xt−8 + ε

(1)
t , if xt−3 < 10.3,

0.92− 0.24xt−3 + 0.87xt−1 + 0.17xt−2 − 0.06xt−6

+0.04xt−8 + ε
(2)
t , if xt−3 ≥ 10.3.

(8.18)
This and the model selection result above suggest that we fit the following
FAR model

Xt = a1(Xt−3)Xt−1 + a2(Xt−3)Xt−2 + a3(Xt−3)Xt−3

+a6(Xt−3)Xt−6 + a8(Xt−3)Xt−8 + εt. (8.19)

The local linear estimator is employed with the bandwidth h = 4.75 selected
by the APE (see Figure 8.5(f)). The estimated coefficients are reported in
Figures 8.5 (a)–(e).

Model (8.18) was fitted by using the first 280 data points (in 1700–
1979). To make fair comparisons on the prediction performance, we only
use these data to estimate the coefficient functions in (8.19). The following
TAR model (Tong 1990, p. 420)

Xt =




1.92 + 0.84Xt−1 + 0.07Xt−2 − 0.32Xt−3 + 0.15Xt−4
−0.20Xt−5 − 0.00Xt−6 + 0.19Xt−7 − 0.27Xt−8

+0.21Xt−9 + 0.01Xt−10 + 0.09Xt−11 + ε
(1)
t , if Xt−8 ≤ 11.93,

4.27 + 1.44Xt−1 − 0.84Xt−2 + 0.06Xt−3 + ε
(2)
t , if Xt−8 > 11.93,

(8.20)
resulting from the fit using the same length of data, was included for com-
parison. The results are recorded in Table 8.5. According to the average



332 8. Nonparametric Models

absolute prediction errors, the nonparametric model performs as well as
both the TAR and FAR models in the one-step-ahead prediction. Further-
more, it outperforms in two-step prediction with both iterative and direct
methods.

8.3.8 Sampling Properties∗

We first present a result on mean square convergence that serves as a
building block to our main result. It is also of independent interest. The
idea of the proof here is similar to that used in proving Theorem 6.3. We
first introduce some notation. Let

Sn = Sn(u0) =
(

Sn,0 Sn,1
Sn,1 Sn,2

)
and Tn = Tn(u0) =

(
Tn,0(u0)
Tn,1(u0)

)
,

where

Sn,j = Sn,j(u0) =
1
n

n∑
i=1

XiXT
i

(
Ui − u0

h

)j
Kh(Ui − u0)

and

Tn,j(u0) =
1
n

n∑
i=1

Xi

(
Ui − u0

h

)j
Kh(Ui − u0)Yi.

Then, the solution to (8.7) can be written as

β̂ = H−1 S−1
n Tn. (8.21)

Set H = diag (1, . . . , 1, h, . . . , h) with the first p diagonal elements ones
and the last p diagonal elements h. Denote

Ω = Ω(u0) = (ωl,m)p×p = E
(
XXT |U = u0

)
. (8.22)

Also, let f(x, u) denote the joint density of (X, U), and let fU (u) be the
marginal density of U . The following convention is needed: if U = Xj0 for
some 1 ≤ j0 ≤ p, then f(x, u) becomes f(x) — the joint density of X.
Recall that

µj =
∫ ∞

−∞
uj K(u) du, νj =

∫ ∞

−∞
uj K2(u) du.

The following result is established in Cai, Fan, and Yao (2000).

Theorem 8.2 Assume that Condition 1 in §8.8.2 holds, and f(x, u) is
continuous at the point u0. Let hn → 0 in such a way that nhn → ∞.
Then

E{Sn,j(u0)} → fU (u0) Ω(u0)µj ,

and
nhnVar{Sn,j(u0)l,m} → fU (u0) ν2j ωl,m

for all 0 ≤ j ≤ 3 and 1 ≤ l, m ≤ p.



8.4 Adaptive Functional-Coefficient Autoregressive Models 333

The proof of this theorem is similar but less involved than that of Lemma
8.4 in §8.8.3, and thus its proof is omitted.

As a consequence of Theorem 8.2, the variance of each element in Sn,j
converges to zero. Hence, each element in Sn,j converges to its expected
value in probability. As a result, we have

Sn
P−→ fU (u0)S and Sn,3

P−→ µ3 fU (u0) Ω

in the sense that each element converges in probability, where S = diag(1,
µ2) ⊗ Ω is the Kronecker product of the 2× 2 diagonal matrix diag(1, µ2)
and Ω. Denote

σ2(x, u) = Var(Y |X = x, U = u) (8.23)

and

Ω∗(u0) = E
[
XXT σ2(X, U)

∣∣U = u0
]
. (8.24)

The following result has been proved in Cai, Fan, and Yao (2000).

Theorem 8.3 Let σ2(x, u) and f(x, u) be continuous at the point u0.
Then, under Conditions 1 and 2 in §8.8.2,

√
nhn

[
â(u0)− a(u0)− h2

2
µ2a′′(u0)

]
D−→ N

(
0, Θ2(u0)

)
, (8.25)

provided that fU (u0) �= 0, where

Θ2(u0) =
ν0

fU (u0)
Ω−1(u0) Ω∗(u0) Ω−1(u0). (8.26)

Theorem 8.3 reveals that the asymptotic bias of âj(u0) is h2

2 µ2a
′′
j (u0)

and the asymptotic variance is (nhn)−1 θ2j (u0), where θ2j (u0) is the j-th
diagonal element of Θ2(u0).

8.4 Adaptive Functional-Coefficient Autoregressive
Models

The FAR model (8.1) depends critically on the choice of the model de-
pendent variable Xt−d. The model-dependent variable is one of the lagged
variables. This limits the scope of its applications. A generalization of this
class of models is to allow a linear combination of past values as a model-
dependent variable. This is also a generalization of thresholding models
with unknown thresholding directions.
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8.4.1 The Models
Let G(x1, · · · , xp) = E(Xt|Xt−1 = x1, · · · , Xt−p = xp) be the autoregres-
sive function. Then, one can write

Xt = G(Xt−1, · · · , Xt−p) + εt, (8.27)

with E{εt|Xt−1, · · · , Xt−p} = 0. The autoregressive function G is the best
prediction function in the sense that G minimizes the expected prediction
error:

min
g
E
(
Xt − g(Xt−1, · · · , Xt−p)

)2
.

As mentioned in §8.1, the saturated nonparametric function G(x1, · · · , xp)
cannot be estimated with reasonable accuracy due to the curse of dimen-
sionality. Thus, some forms on G(·) are frequently imposed. They are often
approximations to the function G(·). For example, the model (8.1) can be
viewed as searching for the best FAR model to approximate the function
G. The larger the class of the models, the smaller the approximation errors
(modeling biases) but the larger the variance of the estimated unknown
parameters/functions. Therefore, there is always a trade-off between these
two competing demands.

A generalization of the FAR model is to allow its coefficient functions to
depend on the linear combinations of past values, called indices. Let Xt−1 =
(Xt−1, · · · , Xt−p) and β be an unknown direction in the p-dimensional
space �p, namely ‖β‖ = 1. The adaptive FAR (AFAR) model approximates
the autoregressive function G by the family of functions of form

g(x) = g0(βTx) +
p∑
j=1

gj(βTx)xj . (8.28)

In particular, when the function G admits really the form (8.28), namely
G(x) = g(x), the adaptive FAR model (AFAR) is given by (see (8.27))

Xt = g0(βTXt−1) +
p∑
j=1

gj(βTXt−1)Xt−j + εt. (8.29)

In addition, it is typically assumed that εt is independent of Xt−1.
The class of AFAR models is clearly larger than the class of FAR models.

This allows one to choose the important model-dependent direction β to
reduce modeling biases. On the other hand, the extra parameters in β do
not introduce much extra difficulty in statistical estimation. Indeed, the
parameter β can usually be estimated at the root-n rate, and g can be
estimated as well as if β were known. Model (8.29) includes many useful
statistical models. Here are some examples.
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Example 8.8 (FAR model) If we let β be the unit vector with the dth
position 1 and the rest elements 0, then βTXt−1 = Xt−d. Thus, the model
(8.29) includes the FAR model (8.1) as a specific case. By searching for
the best direction β, we allow the model-dependent variable not only the
lagged variables but also their linear combinations.

Example 8.9 (Expanded variables) As in multiple linear regression, the
FAR model and its related techniques can be applied to the situations with
expanded variables such as the transformations of the lagged variables and
their interactions. For example, the techniques would allow one to handle
the model

Xt = g0(βTXt−1) +
p∑
j=1

gj(βTXt−1)Xt−j

+
p∑
i=1

p∑
j=1

gij(βTXt−1)Xt−iXt−j . (8.30)

By regarding this model as a stochastic regression model as in §8.3.2, we
introduce the dependent variable Yt = Xt and the predictors

Xt0 = 1, Xt1 = Xt−1, · · · , Xtp = Xt−p,
Xt,p+1 = X2

t−1, Xt,p+2 = Xt−1Xt−2, · · · , Xt,q = X2
t−p,

where q = p+ p(p+ 1)/2. Then, the model (8.29) can be written as

Yt = g(β1Xt1 + · · ·+ βpXtp)TX∗
t + εt,

where X∗
t is a vector of length 1+p+p(p+1)/2 containing all of the afore-

mentioned predictors, and g is a vector of their corresponding coefficient
functions. The techniques in §8.4.3–§8.4.6 continue to apply.

Example 8.10 (Single index model) By taking the rest of the coefficients
in model (8.30) as zero, the AFAR model can be used to handle the follow-
ing single-index model:

Xt = g0(βTXt−1) + εt.

This model has been popularly studied in the literature. See, for exam-
ple, Härdle, Hall, and Ichimura (1993), Ichimura (1993), Newey and Stoker
(1993), Samarov (1993), Carroll, Fan, Gijbels, and Wand (1997), and Heck-
man, Ichimura, Smith, and Todd (1998), among others.

8.4.2 Existence and Identifiability
A fundamental question arises whether there exists a unique function of
the form (8.28) such that it minimizes the prediction error

E{Xt − g(Xt−1)}2.
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By using the bias and variance decomposition,

E{Xt − g(Xt−1)}2 = E{G(Xt−1)− g(Xt−1)}2 + Var(Xt),

so the problem becomes whether there exist functions {gj} such that the
resulting AFAR model best approximates the autoregressive function G.

Another important question is whether the model (8.28) is identifiable.
First, the model as presented in (8.28) is not identifiable. If the coefficient
βp �= 0, then

Xt−p = (βTXt−1 − β1Xt−1 − · · · − βp−1Xt−p−1)/βp.

Substituting this into (8.28), g(Xt−1) can be written as

g(Xt−1) = g∗
0(βTXt−1) +

p−1∑
j=1

g∗
j (β

TXt−1)Xt−j ,

where

g∗
0(u) = g0(u) + ugp(u)/βp, g∗

j (u) = gj(u)− βjgp(u)/βp.

Thus, there is a redundant term in the model (8.28) and this term should
be eliminated. For this reason, we rewrite (8.28) as

g(x) = g0(βTx) +
p−1∑
j=1

gj(βTx)xj . (8.31)

Even after eliminating the redundant term as in (8.31), the model still may
not be identifiable. For example, if

g(x) = (βT1 x)(βT2 x),

it is of form (8.28) or (8.31). However, β is not identifiable. It can be either
β1 or β2.

To present the results on the existence and identifiability, we consider
a more general stochastic regression model in which Y is any response
variable and X = (X1, · · · , Xp)T is a vector of predictors. The following
result, due to Fan, Yao, and Cai (2002), shows that the solution to the
minimization problem

inf
α

inf
f0, ..., fp−1

E


Y − f0(α

TX)−
p−1∑
j=1

fj(αTX)Xj




2

(8.32)

exists and the model is identifiable as long as g is not in a class of the
specific quadratic functions.
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Theorem 8.4 (i) Assume that (X, Y ) has a continuous density and Var(Y )
+Var(‖X‖) < ∞. Then, there exists a g(·) of form (8.31) that mini-
mizes (8.32), provided that Var(X∗|βTX) is nondegenerate, where X∗ =
(1, X1, · · · , Xp−1).
(ii) If β = (β1, . . . , βp)T is given and βp �= 0, then the functions gj(·) (j =
0, · · · , p−1) are uniquely determined from g, namely, they are identifiable.
(iii) For any given twice-differentiable g(·) of the form (8.31), if the first
non-zero component of β is chosen to be positive, such a β with ‖β‖ = 1
is unique unless g(·) is of the form that

g(x) = αTxβTx + γTx + c (8.33)

for some constant vectors α, β, and γ and a constant c with α and β
nonparallel.

The proof of this theorem is given in §8.8.5.

8.4.3 Profile Least-Squares Estimation
The class of model (8.28) was introduced by Ichimura (1993), Xia and Li
(1999a), and Fan, Yao, and Cai (2002). For brevity, we only present the
methods used in the last paper.

Due to identifiability considerations, from now on we assume that βp �= 0
and take the model (8.31). Furthermore, we assume that g is not of form
(8.33) so that the coefficient β is identifiable. Let {(Xt, Yt), t = 1, · · · , n}
be the observed data from a stationary sequence.

The basic idea for fitting such a semiparametric method is the profile
likelihood method (more precisely, it is a profile least-squares method in
the current context). The idea has been used before by Severini and Wong
(1992), Carroll, Fan, Gijbels, and Wand (1997), and Murphy and van der
Vaart (2000), among others. In various contexts (see the aforementioned
papers), the profile likelihood estimators for parametric components are
semiparametrically efficient (see, e.g., Bickel, Klaassen, Ritov, and Wellner
1993 for a definition), and the nonparametric components are estimated as
well as if the parametric components were known. The basic idea of the
profile likelihood method is to first estimate the nonparametric functions
with a given β, resulting in estimates ĝj(·; β), and to then estimate the un-
known parameter β using the estimated nonparametric functions ĝj(·; β),
which themselves depend on β. Substituting the nonparametric estimate
into (8.31) results in a synthetic parametric model:

g(x) = ĝ0(βTx; β) +
p−1∑
j=1

gj(βTx; β)xj .

Using the least-squares method to the “synthetic parametric model,” we
can obtain an estimate β̂. The profile least-squares estimate is to use β̂ to
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estimate β and ĝj(·; β̂) to estimate the coefficient function gj(·). To ease
the computational burden on the nonlinear least-squares estimate in the
“synthetic parametric model,” an iterative scheme is frequently employed.

The idea is as follows. Given an initial estimate β̂0 of β, one obtains esti-
mated coefficient functions ĝj(·; β̂0) and the “synthetic parametric model”

g(x) = ĝ0(βTx; β̂0) +
p−1∑
j=1

gj(βTx; β̂0)xj .

Applying the least-squares method, we obtain a new estimate β̂1. This up-
dates the estimate of β. With updated β̂1, we update the nonparametric
components and obtain the estimates ĝj(·; β̂1). With the new nonparamet-
ric estimates, we can further update the estimate of parametric component
β. Keep iterating until a convergence criterion is met. We now outline the
key idea further.

A. Local linear estimators given β

From (8.32), with given α = β, the coefficient functions {gj(z)}, j =
0, · · · , p− 1 are obtained by minimizing

E





Y −

p−1∑
j=0

fj(z)Xj




2

|βTX = z




2

with respect to fj . This in turn suggests that the functions gj can be
obtained by the locally linear regression around the neighborhood βTX ≈
z. This leads to minimizing the sum

n∑
t=1


Yt −

p−1∑
j=0

{
bj + cj (βTXt − z)

}
Xtj




2

Kh(βTXt − z)w(βTXt)

(8.34)
with respect to {bj} and {cj}. Here, the weight function w(·) is introduced
to attenuate the boundary effect. Let

θ̂ ≡
(
b̂0, . . . , b̂p−1, ĉ0, . . . , ĉp−1

)T

be the solution to the local regression problem (8.34). Define the estimators
ĝj(z) = b̂j and ̂̇gj(z) = ĉj , where ̂̇gj(z) is an estimator of the derivative
function of g. In fact, for given β, model (8.31) is an FAR model with the
model-dependent variable U = βTX. This step is essentially the same as
that in the FAR model; see (8.7).

It follows from the least-squares theory that

θ̂ = Σ(z)X T (z)W(z)Y, with Σ(z) = {X T (z)W(z)X (z)}−1, (8.35)
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where Y = (Y1, . . . , Yn)T ,W(z) is an n×n diagonal matrix withKh(βTXi−
z)w(βTXi) as its ith diagonal element, X (z) is an n × 2p matrix with
(UT

i , (βTXi − z)UT
i ) as its i-th row, and Ut = (1, Xt1, . . . , Xt,p−1)T .

B. Estimate β for given g’s

The property (8.32) suggests estimating β by minimizing

R(β) =
1
n

n∑
t=1


Yt −

d−1∑
j=0

ĝj(βTXt)Xtj




2

w(βTXt), (8.36)

where Xt0 = 1. The weight w(·) is used to mitigate the influence of the non-
parametric estimate at tails of βTX. Note that estimates {ĝj} themselves
depend on β (i.e., ĝj(βTXt) is really ĝj(βTXt; β)). Directly minimizing
the profile least-squares function R(β) is an undue task. Instead, one often
uses an iterative scheme to minimize (8.36). Regarding β in the nonpara-
metric estimates {ĝj(·; β)} and weights w(βTXt) as known-namely, given
the functions {ĝj} and weights w(βTXt), one minimizes (8.36) with respect
to β-with estimated new β, one uses (8.34) to update the estimates of {gj}
and iterates between these two steps until a certain convergence criterion
is met.

Even with given functions {gj}, minimizing R(β) could still be very
expensive. Since the minimizer in the iterative scheme is only an interme-
diate estimate, we do not really need to find the actual minimizer. A simple
method is to iterate the Newton–Raphson step once or a few times to up-
date β rather than to actually minimize (8.36). The derived estimator is
expected to perform well if the initial value is reasonably good (see Bickel,
1975; Robinson 1988; Fan and Chen 1999). We outline the procedure below.

Suppose that β̂ is the minimizer of (8.36). Then Ṙ
(
β̂
)

= 0, where Ṙ(·)
denotes the derivative of R(·). For any given β(0) close to β̂, we have the
approximation

0 = Ṙ(β̂) ≈ Ṙ
(
β(0)

)
+ R̈

(
β(0)

) (
β̂ − β(0)

)
,

where R̈(·) is the Hessian matrix of R(·). The observation above leads to
the one-step iterative estimator

β(1) = β(0) −
{
R̈
(
β(0)

)}−1
Ṙ
(
β(0)

)
, (8.37)

where β(0) is an initial estimator. We rescale β(1) such that it has a unit
norm whose first nonvanishing element is positive.

In practice, the matrix R̈(·) could be singular or nearly so. A common
technique to deal with this problem is the ridge regression. For this purpose,
we propose using the estimator (8.37) with R̈ replaced by R̈r, which is
defined by replacing the matrix XtXT

t in R̈ by XtXT
t + qn Id for some

positive ridge parameter qn.
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8.4.4 Bandwidth Selection
The generalized cross-validation (GCV) method, proposed by Wahba (1977)
and Craven and Wahba (1979), is modified to choose the bandwidth h for
the estimation of {gj(·)}. The criterion is described as follows. For a given
β, let Ŷt =

∑d−1
j=0 ĝj(β

TXt)Xtj . It is easy to see that all of those pre-
dicted values are in fact the linear combinations of Y = (Y1, . . . , Yn)T with
coefficients depending on {Xt} only; namely,

(Ŷ1, . . . , Ŷn)T = H(h)Y,

where H(h) is an n × n hat matrix, independent of Y. The GCV method
selects h minimizing

GCV(h) ≡ 1
n{1− n−1tr(H(h))}2

n∑
t=1

{Yt − Ŷt}2w(βTXt),

which indeed is an estimate of the weighted mean integrated square errors.
Under some regularity conditions, it holds that

GCV(h) = a0 + a1h
4 +

a2

nh
+ op(h4 + n−1h−1).

Thus, up to the first order asymptote, the optimal bandwidth is hopt =
(a2/(4na1))1/5. The coefficients of a0, a1, and a2 will be estimated from
{GCV(hk)} via least-squares regression. This rule is inspired by the em-
pirical bias method of Ruppert (1997); see §6.3.5.

8.4.5 Variable Selection
As discussed in Example 8.9, the number of predictors in the AFAR model
can be large. Hence, it is important to select significant variables. These
variables can be chosen by using either local variable selection or global
variable selection. The global variable selection refers to testing whether
certain sets of coefficient functions are zero. A natural test statistic is to
compare the RSS of two competing nonparametric models. This kind of
idea can be found in Chapter 9. We now outline an ad hoc local variable
selection method.

The basic idea of the local variable selection is to use a stepwise deletion
technique for each given z together with a modified AIC and t-statistics.
More precisely, the least significant variable is deleted, one variable every
time, according to its t-value. This yields a sequence of new and reduced
models. The best model is selected according to the modified AIC. This
rule is simple and computationally efficient.



8.4 Adaptive Functional-Coefficient Autoregressive Models 341

For fixed βTX = z, (8.34) could be viewed as a (local) linear regression
with 2p variables. The residual sum of squares is given by

RSSp(z) =
n∑
t=1


Yt −

p−1∑
j=0

{b̂j + ĉj(βTXt − z)}Xtj




2

×Kh(βTXt − z)w(βTXt).

Let nz = tr{W(z)} and d(p, z) = tr{Σ(z)X T (z)W2(z)X (z)}. The former
may be regarded as the number of observations used in the local estimation
and the latter as the number of local parameters. The “degrees of freedom”
of RSSp(z) is f(p, z) = nz − d(p, z). Now, we define the AIC for this model
as

AICp(z) = log{RSSp(z)/f(p, z)}+ 2 d(p, z)/nz.

To delete the least significant variable amongX0, X1, . . . , Xp−1, we search
for Xk such that both gk(z) and ġk(z) are close to 0. The t-statistics for
those two variables in the (local) linear regression are

tk(z) =
ĝk(z)√

ck(z)RSS(z)/f(p, z)
and tp+k =

̂̇gk(z)√
cp+k(z)RSS(z)/f(p, z)

,

respectively, where ck(z) is the (k + 1, k + 1) element of matrix

Σ(z)X T (z)W2(z)X (z)Σ(z).

Discarding a common factor, we define

T 2
k (z) = {ĝk(z)}2/ck(z) + {̂̇gk(z)}2/cp+k(z).

Let j be the minimizer of T 2
k (z) over 0 ≤ k < p. Then, the variable Xj is

deleted from the full model (8.31) at the point z. This leads to a model
with (p − 1) “linear terms.” Repeating the process above, one obtains a
sequence of models and their corresponding AICl(z) for all 1 ≤ l ≤ p. The
selected model at the point z should be the one that attains the minimum
AIC. This local variable selection method is carried out at each grid point
where the functions {gj(·)} are computed.

8.4.6 Implementation
The outline of the algorithm is as follows.

Step 1: Standardize the data set {Xt} such that it has sample mean 0
and the sample variance and covariance matrix Ip. Specify an initial
value of β, say, the coefficient of the (global) linear fitting.
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Step 2: For each prescribed bandwidth value hk, k = 1, . . . , q, repeat (a)
and (b) below until two successive values of R(β) differ insignificantly.

(a) For a given direction β, we estimate the functions gj(·) by (8.34).

(b) For given gj(·)’s, we update direction β using (8.37).

Step 3: For k = 1, . . . , q, calculate GCV(hk) with β equal to its estimated
value. Let â1 and â2 be the solution to the least-squares problem:

q∑
k=1

{GCV(hk)− a0 − a1h
4
k − a2/(nhk)}2.

Define the bandwidth ĥ = {â2/(4n â1)}1/5 if â1 and â2 are positive
and ĥ = argminhk

GCV(hk) otherwise.

Step 4: For h = ĥ selected in Step 3, repeat (a) and (b) in Step 2 until
two successive values of R(β) differ insignificantly.

Step 5: For β = β̂ obtained from Step 4, apply the stepwise deletion
technique in the previous section to choose significant variables at
each given β̂

T
Xt = z for each fixed point z.

Here are some additional comments on the details of the implementation.

Remark 8.1 The standardization in Step 1 effectively rewrites the model
(8.31) as

p−1∑
j=0

gj

(
βT Σ̂−1/2(x− µ̂)

)
xj ,

where µ̂ and Σ̂ are the sample mean and sample variance, respectively.
In the numerical examples in §8.4.7, Σ̂−1/2β̂/||Σ̂−1/2β̂|| is reported as the
estimated value of β defined in (8.31).

Remark 8.2 The weight function w(z) = I(|z| ≤ 2 + δ) is chosen for
some small δ ≥ 0. The functions gj(·) in Steps 2 and 3 are estimated on
101 regular grids in the interval [−1.5, 1.5] first, and then the values of
the functions on this interval are estimated by the linear interpolation.
This significantly reduces the computational time. In Step 4, however, we
estimate gj(·)’s on the interval [−2, 2].

Remark 8.3 The Epanechnikov kernel is employed in the numerical ex-
amples. To select the bandwidth ĥ, one uses q = 15 and hk = 0.2× 1.2k−1

in Step 3. Recall that the data have been standardized in Step 1. The values
of bandwidth practically cover the range of 0.2 to 2.57 times the standard
deviation of the data.



8.4 Adaptive Functional-Coefficient Autoregressive Models 343

Remark 8.4 In Step 2(b), the required derivatives are estimated based
on their estimated function values at the grid points,

̂̇gj(z) = {ĝj(z1)− ĝj(z2)} /(z1 − z2), j = 0, . . . , p− 1

and

̂̈gj(z) = {ĝj(z1)− 2ĝj(z2) + ĝj(z3)} /(z1 − z2)2, j = 0, . . . , p− 1,

where z1 > z2 > z3 are three nearest neighbors of z among the 101 regular
grid points. To further stabilize the estimate of β in Step 2(b), the estimates
of gj(·) are smoothed further, using a simple moving-average technique:
replace an estimate on a grid point by a weighted average on its five nearest
neighbors with weights {1/2, 1/6, 1/6, 1/12, 1/12}. The edge points should
be adjusted accordingly. To speed up the convergence, (8.37) is iterated a
few times instead of just once.

8.4.7 Examples
In this section, the effectiveness of the proposed method is illustrated by
two examples. For more examples, see Fan, Yao, and Cai (2002). There, the
effectiveness of the local variable selection techniques is also demonstrated.
In the algorithm, the ridge version of (8.37) is iterated two to four times
to speed up the convergence. The search in Step 2 is stopped when either
the two successive values of R(β) differ less than 0.001 or the number
of replications of (a) and (b) in Step 2 exceeds 30. The ridge parameter
qn = 0.001n−1/2 is initially set and is kept doubling until the R̈r(·) is no
longer ill-conditioned with respect to the precision of computers.

Example 8.11 (Simulations) Consider a time series model

Yt = −Yt−2 exp(−Y 2
t−2/2) +

1
1 + Y 2

t−2
cos(1.5Yt−2)Yt−1 + εt,

where {εt} is a sequence of independent normal random variables with
mean 0 and variance 0.25. The model is of form (8.29) with p = 2, β =
(0, 1), and

g0(z) = −z exp(−z2/2), g1(z) = cos(1.5z)/(1 + z2).

Two simulations were conducted with sample sizes 200 and 400, respec-
tively, with 200 replications. The performance for nonparametric functions
is assessed by the mean absolute deviation error at the 101 grid points:

EMAD =
1

101 p

p−1∑
j=0

101∑
k=1

|ĝj(zk)− gj(zk)|.
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FIGURE 8.6. The boxplots of (a) the mean absolute deviation error EMAD (the
two panels on the left are based on β̂, and the two panels on the right are based
on the true β), (b) the absolute inner product |βT β̂|, (c) the selected bandwidths,
and (d) the average absolute prediction errors of the varying-coefficient models
with β and β̂, nonparametric model based on local linear regression, and linear
AR-model determined by AIC (from left to right).

The performance of the estimated direction is measured by |βT β̂|, which
is the cosine of the angles between β and β̂. For each replication, 50 post-
sample points are predicted and compared with the true observed values.

The results of the simulation are summarized in Figure 8.6. Figure 8.6(a)
displays the boxplots of the mean absolute deviation errors. For sample size
n = 400, the medians of EMAD with estimated and true β are about the
same, although the distribution of EMAD with β̂ has a long tail on the right.
Figure 8.6(b) shows that the estimator β̂ derived from the one-step iterative
algorithm is close to the true β with high frequencies in the simulation
replications. The average number of iterations in searching for β is 7.80
for n = 400 and 17.62 for n = 200. In fact, the search did not converge
within 30 iterations for 21 out of 200 replications with n = 200 and for one
out of 200 replications with n = 400. These replications produce outliers
in Figure 8.6. Figure 8.6(c) shows the boxplots of the selected bandwidths.
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FIGURE 8.7. The plot of estimated coefficient functions (thick line) and true
functions (thin line). (a) g0(z) = −ze−z2/2; (b) g1(z) = cos(1.5z)/(1 + z2). The
sample size n = 400.

The prediction performance of various models is also compared in the
simulation with the sample size n = 400. For each of 200 realizations, 50
postsample points are predicted from four different models, namely the
fitted varying-coefficient models with true and estimated β, a purely non-
parametric model based on local linear regression of Yt on (Yt−1, Yt−2) with
the bandwidth selected by the GCV-criterion, and a linear autoregressive
model with the order (≥ 2) determined by AIC. In our simulation, AIC al-
ways selected order 2 in the 200 replications. Figure 8.6(d) presents the dis-
tributions of the average absolute prediction errors across 200 replications.
The AFAR models with true and estimated β are the two best predictors
since they specify correctly the form of the true model. The median of the
prediction errors from the two-dimensional nonparametric model based on
local linear regression is about the same as that from the AFAR model,
but the variation is much larger. This is largely due to the fact that the
full nonparametric model overfits the problem. The linear autoregressive
model performs poorly in this example due to the modeling biases.

A typical example of the estimated coefficient functions is depicted in
Figure 8.7 with the sample size n = 400. The typical example was selected
in such a way that the corresponding EMAD is equal to its median among
the 200 replications in simulation. The curves are plotted on the range
from −1.5 to 1.5 times the standard deviation of βTX. For the case with
n = 400, the selected bandwidth is 0.781, and βT β̂ = 0.999. (The median
of βT β̂ in the simulation of 200 replications with n = 400 is 0.999.)

Example 8.12 (Exchange rate data) This example deals with the daily
closing bid prices of the British pound sterling in terms of the U.S. dol-
lar from January 2,1974 to December 30, 1983, consisting of a time se-
ries of length 2510. The previous analysis of this “particularly difficult”
data set can be found in Gallant, Hsieh and Tauchen (1991) and the ref-
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(a) Pound/Dollar exchange rates
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(b) ACF of returns
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(c) Moving average trading rule
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FIGURE 8.8. (a) The plot of pound/dollar exchange rate return series {Yt}. (b)
The autoregressive function of {Yt}. (c) The plot of {Ut = 10Yt/

∑9
i=0 Yt−i − 1}.

(d) The estimated coefficient functions of model (8.38) with Zt = Ut−1 and
m = 5. Thick solid lines are g0(·), thick dotted lines g1(·), thick dashed lines
g2(·), solid lines g3(·), dotted lines g4(·), and dashed lines g5(·). From Fan, Yao,
and Cai (2002).

erences therein. Let Xt be the exchange rate on the tth day and {Yt =
100 log(Xt/Xt−1)} be the return series. It is well-known that the classical
financial theory assumes that time series {Yt} is typically a martingale dif-
ference process and that Yt is unpredictable. Figures 8.8 (a) and (b) show
that there exists almost no significant autocorrelation in the series {Yt}.

Let

Ut−1 = Xt−1


L

−1
L∑
j=1

Xt−j




−1

− 1

be the moving average technical trading rule (MATR). Then, Ut−1+1 is the
ratio of the exchange rate at the time t− 1 to the average rate over a past
period of length L. Ut−1 > 0 signals the upward momentum (the position to
buy sterling) and Ut−1 < 0 indicates the downward pressure (the position
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to sell sterling). For a detailed discussion of the MATR, see the papers by
LeBaron (1997, 1999) and Hong and Lee (2002). The performance of this
technical trading rule will be evaluated by the mean trading return for the
postsample forecast (the first 2,400 data points will be used to estimate
coefficients in the AFAR model), which is defined as

MTRMA =
1

100

100∑
t=1

{I(U2410+t−1 > 0)− I(U2410+t−1 < 0)}Y2410+t.

The MTR measures the real profits in a financial market, ignoring interest
differentials and transaction costs (for the sake of simplicity). According
to Hong and Lee (2002), it is more relevant than the conventional mean
squared prediction errors or average absolute prediction errors for evalu-
ating the performance of forecasting market movements. Ideally, we would
buy sterling at time t − 1 when Yt > 0 and sell when Yt < 0. (This is not
really a trading rule.) The mean trading return for this “ideal” strategy is

MTRideal =
1

100

100∑
t=1

|Y2410+t|,

which serves as a benchmark for assessing other forecasting procedures. For
this particular data set, MTRMA/MTRideal = 12.58% if we let L = 10.

To utilize the AFAR technique, we approximate the conditional expec-
tation of Yt (given its past) by

g0(Zt) +
m∑
i=1

gi(Zt)Yt−i, (8.38)

where
Zt = β1Yt−1 + β2Yt−2 + β3Xt−1 + β4Ut−1.

Let Ŷt be defined as the predicted value by using (8.38) when g’s are es-
timated. The mean trading return for the forecasting based on the AFAR
model is defined as

MTRAFAR =
1

100

100∑
t=1

{I(Ŷ2410+t > 0)− I(Ŷ2410+t < 0)}Y2410+t.

As the first attempt, we let m = 5 and L = 10 in (8.38) (i.e., we use the
past week’s data as the “regressors” in the model and define the MATR as
the average rate in the last two weeks). The selected β is

(0.0068, 0.0077, 0.0198, 0.9998)T ,

which suggests that Ut plays an important role in the underlying nonlinear
dynamics. The ratio of the RSS of the fitted model to the sample variance of
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{Yt} is 93.67%, reflecting the presence of high-level “noise” in the financial
data. The selected bandwidth is 0.24. The ratio MTRAFAR/MTRideal =
5.53%. The predictability is much lower than that of the MATR. If we
include rates in the past two weeks as regressors in the model (i.e., m = 10
in (8.38)), the ratio MTRAFAR/MTRideal increases to 7.26%, which is still
a distance away from MTRMA/MTRideal, while the ratio of the RSS of
the fitted model to the sample variance of {Yt} is 87.96%. The selected
bandwidth is still 0.24, and β̂ = (0.0020, 0.0052, 0.0129, 0.9999)T .

The calculations above (also others not reported here) seem to suggest
that Ut could be a dominated component in the selected index. This leads
to use of the model (8.38) with prescribed Zt = Ut−1, which is actually
the model adopted by Hong and Lee (2002). For m = 5, the fitting to
the data used in estimation becomes worse; the ratio of the RSS of the
fitted model to the sample variance of {Yt} is 97.39%. But it provides
a better postsample forecast in terms of MTR: MTRAFAR/MTRideal is
23.76%. The selected bandwidth is 0.24. The plots of estimated coefficient
functions indicate a possible undersmoothing. By increasing the bandwidth
to 0.40, MTRAFAR/MTRideal is 31.35%. The estimated coefficient functions
are plotted in Figure 8.8(d). The rate of correct predictions for the direction
of market movement (sign of Yt) is 50% for the MATR and 53% and 58%
for the AFAR model with bandwidths 0.24 and 0.40, respectively.

One should not take for granted that Ut is always a good index for
forecasting. Hong and Lee (2002) conducted empirical studies with several
financial data sets with only partial success from using the FAR model-
ing techniques with Ut as the prescribed index. In fact, for this partic-
ular data set, model (8.38) with Zt = Ut and m = 10 gives a negative
value of MTRAFAR. Note that the “superdominating” position of Ut in
the selected smoothing variable β̂

T
Xt is partially due to the scaling dif-

ference between Ut and (Yt, Xt); see also Figures 8.8(a) and (c). In fact,
if we standardize Ut, Yt, and Xt separately beforehand, the resulting β̂ is
(0.59,−0.52, 0.07, 0.62)T when m = 5, which is dominated by Ut−1 and the
contrast between Yt−1 and Yt−2. (MTRAFAR/MTRideal = 1.42%. The ratio
of the residual sum of squares (RSS) of the fitted model to the sample
variance of Yt is 96.90%.) By doing this, we effectively use a different class
of models to approximate the unknown conditional expectation of Yt; see
Remark 8.1. Finally, we remark that a different modeling approach should
be adopted if our primary target is to maximize the mean trading return
rather than minimize the prediction errors.
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8.4.8 Extensions
A further extension of the AFAR model is to allow a multipleindex in the
model (8.29), leading to

Xt = g0(βT1 Xt−1, · · · ,βTdXt−1) +
p−1∑
j=1

gj(βT1 Xt−1, · · · ,βTdXt−1)Xt−j + εt.

(8.39)
where β1, · · · ,βd are unknown parameters. This is a specific case of the
multi-index model frequently studied in the literature for independent sam-
ples. The index parameters β1, · · · ,βd are not identifiable, but the linear
space spanned by these index parameters is. For example, the function
g(x1−x4, x1+x4) can be written as g∗(x1, x4). But the linear space spanned
by the vectors β1 = (1, 0, 0,−1)T and β2 = (1, 0, 0, 1)T is the same as that
spanned by β1 = (1, 0, 0, 0)T and β2 = (0, 0, 0, 1)T . Popular methods for
estimating the linear span include the sliced inverse regression (SIR) (Duan
and Li, 1991; Li, 1991), principal Hessian directions (Li, K.C. 1992; Cook
1998), the average derivative method (Härdle and Stoker 1989; Samarov
1993, Hristache, Juditsky, Polzehl, and Spokoiny 2002), and other tech-
niques (Cook 1996; Chiaromonte, Cook and Li, 2002; Cook and Li 2002).

The general model (8.39) is unlikely to be useful when d > 2. Owing
to the curse of dimensionality, the model-coefficient functions {gj} cannot
be estimated well when d > 2. Thus, for practical purposes, we consider
only the model (8.39) with two indices. The parameters β1 and β2 can be
estimated by one of the methods described in the last paragraph. However,
the resulting estimators are not necessarily efficient. The profile likelihood
method can be used to improve the efficiency for estimating these parame-
ters. In fact, the profile least-squares method can be applied readily to the
current setting. Fan, Yao, and Cai (2002) give an implementation for the
two-index AFAR model.

8.5 Additive Models

Additive models (Ezekiel 1924) are very useful for approximating the high-
dimensional autoregressive function G(·) given in (8.27). They and their
extensions have become one of the widely used nonparametric techniques
because of the exemplary monograph by Hastie and Tibshirani (1990) and
companion software as described in Chambers and Hastie (1991).

8.5.1 The Models
Direct estimation of the autoregressive function G without imposing re-
strictions faces the challenge of the curse of dimensionality, as mentioned
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in §8.1. A useful class of models are the additive models

g(xt−1, · · · , xt−p) = f1(xt−1) + · · ·+ fp(xt−p). (8.40)

The functions f1, · · · , fp are univariate and can be estimated as well as the
one-dimensional nonparametric regression problem (Stone 1985, 1986; Fan,
Härdle, and Mammen 1998). Hence, the curse of dimensionality is avoided.

Restricting ourselves to the class of additive models (8.40), the prediction
error can be written as

E{Xt − g(Xt−1, · · · , Xt−p)}2 = E{Xt −G(Xt−1, · · · , Xt−p)}2
+E{G(Xt−1, · · · , Xt−p)− g(Xt−1, · · · , Xt−p)}2, (8.41)

where G(Xt−1, · · · , Xt−p) = E(Xt|Xt−1, · · · , Xt−p). Thus, finding the best
additive model to minimize the prediction error is equivalent to finding the
one that best approximates the autoregressive function G in the sense that
g minimizes the third term of (8.41).

When the autoregressive functionG admits the additive structure, namely,
G = g, we have

Xt = f1(Xt−1) + · · ·+ fp(Xt−p) + εt. (8.42)

Denote it by {Xt} ∼ AAR(p) (see also (1.12)). This model allows us to
examine the extent of the nonlinear contribution of each lagged variable
to the variable Xt. In particular, it includes the AR(p) model as its spe-
cific case. This allows us to test whether an AR(p) model holds reasonably
for a given time series. Details for this will be given in Chapter 9. When
the model (8.42) fails, the functions f1, · · · , fp define a best additive ap-
proximation to the true autoregression function G in the sense that they
minimize the third term of (8.41).

8.5.2 The Backfitting Algorithm
The estimator f1, · · · , fp can easily be estimated by using the backfitting
algorithm. First, note that we can add a constant to a component and sub-
tract the constant from another component. Thus, the functions f1, · · · , fp
are not identifiable. To prevent ambiguity, the following identifiability con-
ditions are frequently imposed:

Efj(X) = 0, j = 1, · · · , p. (8.43)

With these constraints, EXt = 0 by (8.42). Therefore, as in many other
settings, we assume that the mean has already been removed from the series
{Xt} or add an intercept term µ to the model, resulting in

Xt = µ+ f1(Xt−1) + · · ·+ fp(Xt−p) + εt,
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with µ = EXt.
To highlight the key idea of backfitting, we first consider a spline ap-

proximation as in (1.17): fj(x) ≈ fj(x,bj). Our task is then to find the
parameters b1, · · · ,bp to minimize the prediction errors:

T∑
t=p+1

{Xt − f1(Xt−1,b1)− · · · − fp(Xt−p,bp)}2. (8.44)

This least-squares problem can be solved directly, resulting in a large para-
metric problem with an inversion of matrix of high order. Alternatively, the
optimization problem can be solved using the following iterative scheme.
Given the initial values of b2, · · · ,bp, minimize (8.44) with respect to b1.
This is a much smaller “parametric” problem and can be solved relatively
easily. With estimated b1 and values b3, · · · ,bp, we now minimize (8.44)
with respect to b2. This results in an updated estimate of b2, and so on.
When bp is updated, we can now update the parameter b1 again and then
b2, and so on. This algorithm can be run until some convergence criterion
is met. This is the basic idea of the backfitting algorithm (Ezekiel 1924;
Breiman and Friedman 1985; Buja, Hastie, and Tibshirani 1989).

Let ε̂t,k = Xt−
∑
j 	=k fj(Xt−j , b̂j) be the partial residuals without using

the lag variable Xt−k. Then, the backfitting algorithm finds bk by mini-
mizing

T∑
t=p+1

{ε̂t,k − fk(Xt−k,bk)}2.

This is a nonparametric regression problem of {ε̂t,k} on the variable {Xt−k}
using a polynomial spline method. The resulting estimate is linear in the
partial residuals {ε̂t,k}. It can be written as




fk(Xp−k+1, b̂k)
fk(Xp−k+2, b̂k)

...
fk(XT−k, b̂k)




= Sk




ε̂p+1,k
ε̂p+2,k

...
ε̂T,k


 . (8.45)

The matrix Sk is called a smoothing matrix . To facilitate the notation, we
denote the left-hand side of (8.45) as f̂k and write X = (Xp+1, · · · , XT )T .
Then, (8.45) can be written schematically as

f̂k = Sk


X−

∑
j 	=k

f̂j


 .

The example above utilizes polynomial splines as a nonparametric smoother.
The idea can be applied to any nonparametric smoother mentioned in
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Chapter 6. Let Sk be a smoothing matrix that regresses nonparametri-
cally the partial residuals {ε̂t,k} on the lagged variable {Xt−k}; namely,
(8.45) is obtained through the smoother Sk. We now outline the backfit-
ting algorithm with a generic nonparametric smoother Sk.

The backfitting algorithm estimates the functions f1, · · · , fp through the
following iterations:

(i) Initialize the functions f̂1, · · · , f̂p.
(ii) Cycle k = 1, · · · , p, and compute f̂∗

k = Sk(X −
∑
j 	=k f̂j) and center

the estimator to obtain

f̂k(·) = f̂∗
k (·)− (T − p)−1

T∑
t=p+1

f̂∗
k (Xt−k).

(iii) Repeat (ii) until convergence.

(See, for example, Hastie and Tibshirani 1990, p. 91.) The recentering in
step (ii) is to comply with the constraint (8.43). The convergence issue of
the algorithm is delicate and has been addressed via the concept of con-
curvity by Buja, Hastie, and Tibshirani (1989). Assuming that concurvity
is not present, it is shown there that the backfitting algorithm converges
and solves the following equation:




f̂1
f̂2
...
f̂p




=




I S1 · · · S1
S2 I · · · S2
...

...
. . .

...
Sp Sp · · · I




−1


S1
S2
...

Sp







Xp+1
Xp+2

...
XT


 . (8.46)

Direct calculation of the right-hand side of (8.46) involves inverting a square
matrix of order O(pT ) and can hardly be implemented on an average com-
puter for time series with moderate length. In contrast, the backfitting
does not share this drawback and is frequently used in practical implemen-
tations.

The software for multivariate additive models for cross-sectional data can
be used directly here by creating the dependent and independent variables
as in (8.3). The function “ gam()” in S can easily be used for the com-
putation here. Systematic treatments on additive models and their useful
extensions can be found in the monograph by Hastie and Tibshirani (1990).

8.5.3 Projections and Average Surface Estimators
The idea of projections, introduced by Tjøstheim and Auestad (1994a, b),
provides an explicit estimator for the additive components in model (8.40).
Assume that the additive model holds; namely G(·) = g(·). Then

EG(Xt−1,k)W (Xt−1,k) = fk(x) + c, (8.47)
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where c is a constant, and

Xt−1,k = (Xt−1, · · · , Xt−k+1, x,Xt−k−1, · · · , Xt−p)T .

This observation provides a simple and direct estimator: estimate the high-
dimensional regression surface Ĝ directly by using, for example, the kernel
or the local polynomial estimator in §8.2, and then average over the variable
Xt−1,k. Let

f̂∗
k (x) = (T − p)−1

T∑
t=p+1

Ĝ(Xt−1,k)W (Xt−1,k) (8.48)

be the average regression surface . Then, it estimates fk(x) + c, according
to (8.47). The function f̂k can be obtained by centering f̂∗

k (·) as in the
backfitting algorithm. This provides an estimator for fk.

Note that the average operation in (8.48) significantly reduces the vari-
ance inherited from Ĝ. However, it usually does not attenuate the biases in
Ĝ. Thus, a general strategy is to use a small bandwidth to obtain an un-
dersmoothed G first, which has small biases, and then to apply the average
surface estimator (8.48). However, the bandwidth h cannot be too small
since, for p-dimensional cubes of size O(hp), they are likely to contain no
data points. Therefore, the procedure has implementation difficulties when
the number of lagged variables p is large. In their simulated examples,
Tjøstheim and Auestad (1994) tested the procedure for p = 8, 12 with time
series of length T = 500. The problem of the sparsity of local data in high-
dimensional space is attenuated somewhat by using the Gaussian kernel,
which has unbounded support.

The implementation problem above can be significantly attenuated when
one uses the following projection idea. Let us for a moment focus on the
population version: minimize

E{G(Xt−1, · · · , Xt−p)− f1(Xt−1)− · · · − fp(Xt−p)}2

subject to the constraints (8.43). Let f̃1, · · · , f̃p be the solution. Then, by
the method of variation, for any g1(Xt−1) with Eg1(Xt−1) = 0 and any
parameter θ, the minimum of

E{G(Xt−1, · · · , Xt−p)− f̃1(Xt−1)− · · · − f̃p(Xt−p)− θg1(Xt−1)}2

is attained at θ = 0. Taking the derivative with respect to θ and setting it
to zero at θ = 0, we have

E{G(Xt−1, · · · , Xt−p)− f̃1(Xt−1)− · · · − f̃p(Xt−p)}g(Xt−1) = 0.

Since it holds for all univariate functions g, the equation above implies
necessarily that

E[{G(x1, Xt−2, · · · , Xt−p)− f̃1(x1)− f̃2(Xt−2)− · · ·
−f̃(Xt−p)}|Xt−1 = x1] = 0. (8.49)
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Note that

E{G(x1, Xt−2, · · · , Xt−p)|Xt−1 = x1} = E(Xt|Xt−1 = x1).

Using this and (8.49), we have

f̃1(x1) = E(Xt|Xt−1 = x1)−
p∑
k=2

E
{
f̃2(Xt−k)|Xt−1 = x1

}

= E(Xt|Xt−1 = x1)−
p∑
k=2

∫
f̃k(xk)p|1−k|(x1, xk)/p(x1)dxk

where p(x) is the density of Xt−1 and p|j−k|(xj , xk) is the joint density of
(Xt−j , Xt−k). By applying the method of variation to the other variables,
we obtain a system of equations (j = 1, · · · , p):

f̃j(xj) = E(Xt|Xt−j = xj)−
∑
k 	=j

∫
f̃k(xk)p|j−k|(xj , xk)/p(xj)dxk. (8.50)

For given functions E(Xt|Xt−j = ·), p|j−k|(·, ·), and p(·), the backfitting
algorithm can be used to solve the system of equations above.

The essence of the method of Mammen, Linton, and Nielsen (1999) is
to use the backfitting algorithm to solve the empirical version of (8.50),
although their motivations are somewhat different from ours. All unknown
functions in (8.50) are at most two-dimensional, and hence the curse-of-
dimensionality in the implementation is avoided; see also Kim, Linton, and
Hengartner (1999).

8.5.4 Estimability of Coefficient Functions
The asymptotic theory on additive models is relatively less-well-developed.
Most theory is established for an i.i.d. setting. As explained in §5.3, due to
whitening by localization, the results are expected to hold for stationary
time series under certain mixing conditions.

The additive components can be estimated as well as the one-dimensional
nonparametric problem in terms of the convergence rate (Stone 1985, 1986).
In fact, Fan, Härdle, and Mammen (1998) showed further that each additive
component can be estimated as well as if other components were known in
terms of asymptotic biases and asymptotic variances. Their procedures are
based on the projection estimator (8.48) with a suitable choice of weight
function W . In other words, in estimating the function fj , not knowing the
other components {fi, i �= j} doesnot add appreciable extra difficulty. Such
a property is frequently called an oracle property in the literature. Suppose
that there is an oracle who knows the functions {fi, i �= j}. He or she would
use the knowledge to estimate fj . Statisticians who have assistance from the
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oracle can construct an estimator for fj that performs as well as the oracle.
Similar oracle properties were obtained by Linton (1997) and Kim, Linton,
and Hengartner (1999). Their idea was to use the projection estimator as
the initial value in the backfitting algorithm and then to apply univari-
ate smoothers on the partial residuals to improve the efficiency. Mammen,
Linton, and Nielsen (1999) modified the backfitting algorithm to obtain
efficient estimators for additive components and established the asymp-
totic normality of estimators. The intuition behind this surprising oracle
phenomenon is that the local parameters {fj(x), j = 1, · · · , p} are asymp-
totically orthogonal. This can be intuitively understood as follows. For any
given point x in the p-dimensional space, owing to the continuity of the den-
sity of Xt−1, · · · , Xt−p, the joint density is nearly flat, (i.e., nearly uniform)
in a small hypercube around x; that is, the variables Xt−1, · · · , Xt−p are lo-
cally independent, and hence the local parameters {fj(x), j = 1, · · · , p} are
orthogonal. The situation is very much like that in the linear model with
orthogonal design matrices. In such a case, knowing the part of parameters
does not provide any extra information for the other part of parameters due
to the orthogonality. In summary, estimating components in the additive
models is not appreciably more difficult, in terms of statistical efficiency,
than for the one-dimensional problem.

8.5.5 Bandwidth Selection
Like all nonparametric problems, estimating additive components involves
the choice of smoothing parameters. For time series applications, since all
lagged variables are in the same order of magnitude, it is reasonable and
simple to just use one bandwidth h. For the independent data, Opsomer
and Ruppert (1997) proposed a plug-in method and obtained some nice
convergence results for the selected bandwidth. The procedure is also ap-
plicable to the current problem. However, it is quite delicate.

Here, we outline a simpler but not necessarily more effective method
than in Opsomer and Ruppert (1997). The idea is related to the multifold
cross-validation criterion for stationary time series in §8.3.5. We adopt the
notation from that section. To fix the idea, in the following discussion,
we employ the local linear estimator with bandwidth h to construct the
smoothing matrix Sk for the lag variable Xt−k.

As in §8.3.5, let {f̂j,q(·)} be the estimated additive functions using the
qth (q = 1, · · · , Q) subseries {Xt, 1 ≤ t ≤ n − qm} with bandwidth equal
to h{n/(n − qm)}1/5. The bandwidth h is rescaled slightly to accommo-
date different sample sizes according to its optimal rate (i.e., h ∝ T−1/5),
but this can also be omitted without appreciably affecting the result. The
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average prediction error using the qth subseries is given by

APEq(h) =
1
m

n−qm+m∑
t=n−qm+1


Xt −

p∑
j=1

f̂j,q(Xt−j)




2

.

The overall average prediction error is given by

APE(h) = Q−1
Q∑
q=1

APEq(h). (8.51)

The proposed data-driven bandwidth is the one that minimizes APE(h). In
practical implementations, as in §8.3.5, we may use m = [0.1n] and Q = 4.
The selected bandwidth is not expected to depend appreciably on the choice
of m and Q as long as mQ is reasonably large so that the evaluation of
prediction errors is stable. The function APE(h) is minimized by comparing
its value at a grid of points hj = ajh0(j = 1, · · · , J). For example, one may
choose a = 1.2, J = 15 or 20, and h0 = 1.2−J(range of X).

8.5.6 Examples
In this section, we illustrate the procedure using one simulated data set
and one real data set from the Standard and Poor’s 500 Index described
in Example 1.4. The former allows us to examine the performance of the
backfitting algorithm and the proposed bandwidth selection rule (8.51),
while the latter permits us to see how well the multiperiod forward volatility
can be predicted from the observed one-day and multiple-day volatilities.

Example 8.13 (Simulated data) A series of length 400 was simulated from
the AAR(2) model with

f1(Xt−1) = 4Xt−1/(1 + 0.8X2
t−1)

f2(Xt−2) = exp{3(Xt−2 − 2)}/[1 + exp{3(Xt−2 − 2)}]
and εt ∼ Uniform(−1, 1). The functions f1 and f2 are depicted in Fig-
ure 8.10 (solid curves). The resulting series is shown in Figure 8.9(a). In
Figures 8.9 (b) and (c), the scatterplots for the lag 1 and lag 2 series are
displayed. These two figures would easily mislead us to an AR(2) model
since the trends are linear. In fact, visualization of the scatterplot of the
variable Xt−1 against the variable Xt amounts to smoothing these two
variables visually; namely, estimating visually

E(Xt|Xt−1) = f1(Xt−1) + E(f2(Xt−2)|Xt−1). (8.52)

It is clear that the right hand side of (8.52) is very different from f1(Xt−1)
unless Xt−1 and Xt−2 are nearly independent. This indicates that the scat-
terplots are not very informative for visualizing the additive component
functions f1(·) and f2(·).
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FIGURE 8.9. (a) Time series plot of simulated data from an AAR(2) model. (b)
Plot of Xt−1 against Xt. (c) Plot of Xt−2 against Xt.

We now apply the backfitting algorithm, with the local linear smoother,
to find the estimates for the additive components. The smoothing parame-
ter is selected by (8.51). As noted before, the additive components can only
be identifiable within a constant. Thus, the decentered version of function
f1 (i.e., f1(Xt−1)− f̄1) is plotted against Xt−1 in Figure 8.10(a), where

f̄1 =
1

398

400∑
t=3

f1(Xt−1).

A similar remark can be made for the function f2. The resulting plots are
displayed in Figure 8.10. The relatively poor performance for f̂1 at the left
boundary is mainly due to the fact that there are not many data points in
that region. Overall, the performance is quite satisfactory.
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FIGURE 8.10. Estimated additive functions for (a) f̂1 and (b) f̂2. The bandwidth
was selected by using (8.51).

The additive model can apply not only to AAR(p) with its lag variables
but also to other stochastic regression models. We illustrate this point in
the next example.

Example 8.14 (Value at risk) In response to the infamous financial catas-
trophes of the 1990s that engulfed companies such as Barings and Daiwa
as well as Orange County, CA, and Asian countries, risk management has
become important for financial institutions, regulators, nonfinancial cor-
porations, and asset managers. Value at risk (VaR) is a fundamental tool
for measuring market risks. It measures the worst loss to be expected of
a portfolio over a given time horizon under normal market conditions at a
given confidence level. VaR has been popularly used to control and manage
various risks, including credit risk, market risk, and operational risk. Jorion
(2000) provides an informative introduction to the subject.
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Let St be the price of a portfolio at time t. Let

rt = log(St/St−1) ≈ St − St−1

St−1

be the observed return at time t. The aggregate return at time t for a
predetermined holding period τ is

Rt,τ = log(St+τ−1/St−1) = rt + · · ·+ rt+τ−1. (8.53)

The VaR measures the extreme loss Vt+1,τ , in terms of percentage, of the
portfolio over a predetermined holding period τ with a prescribed confi-
dence level 1− α, namely

P (Rt+1,τ > Vt+1,τ |Ωt) = 1− α,
where Ωt is the historical information-namely, the σ-field generated by
St, St−1, · · · .

An important contribution to the forecast of VaR is the RiskMetrics of
J.P. Morgan (1996). The RiskMetrics method consists of the following three
steps. First, it estimates the one-period volatility σ̂t by the exponential
smoothing (see §6.2.4)

σ̂2
t = (1− λ)r2t−1 + λσ̂2

t−1. (8.54)

Second, for a τ -period return, the square-root rule is used for computing
the volatilities of τ -period returns Rt,τ :

θ̂t,τ =
√
τ σ̂t. (8.55)

J.P. Morgan recommends using (8.55) with λ = 0.97 for forecasting the
monthly (τ = 25 trading days) volatilities of aggregate returns. The final
step is to forecast the VaR through the normality assumption on the stan-
dardized return process {Rt,τ/θ̂t,τ}; that is, the τ -period VaR is forecasted
as

V̂t+1,τ = Φ−1(α)θ̂t,τ . (8.56)

RiskMetrics has been scrutinized by many practitioners and regulators.
For example, the square-root rule (8.55) was criticized by Diebold, Hick-
man, Inoue, and Schuermann (1998). Fan and Gu (2001) showed that the
normal quantile in (8.56) can be improved by using a symmetric nonpara-
metric method, and the volatility estimate in Step 1 can also be amelio-
rated. In this example, we show how the additive model can be used to
improve the prediction of multiperiod volatility. To be more specific, we
will compute the monthly (τ = 25 trading days) VaR using the Standard
and Poor’s 500 Index. The in-sample period is set from January 2, 1990 to
April 30, 1996, which consists of a series of length 1,500. The confidence
level is taken to be 1− α = 0.95.
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Observed 25-day volatility versus future squared returns

FIGURE 8.11. (a) Scatterplot of θ̂t,τ versus unobserved σ̂2
t,τ along with regres-

sion lines using the least-squares fit (dashed) and the least-absolute deviation fit
(solid). (b) Scatterplot of θ̂t,τ versus aggregate squared return R2

t,τ along with
their regression lines. (c) Scatterplot of σ2

t−τ,τ against R2
t,τ along with their re-

gression lines.
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Let σ̂2
t,τ be the estimated volatility via the exponential smoothing of the

aggregate return {Rt,τ}:

σ̂2
t,τ = (1− λ)R2

t−1,τ + λσ̂2
t−1,τ .

In our illustration below, we use λ = 0.97 for computing the monthly
volatility. Note that σ̂2

t,τ is unobservable at the time t since it involves
future observations. However, the J.P. Morgan estimate θ̂t,τ in (8.55) is
observable. Figure 8.11(a) shows the relationship between these two quan-
tities using the data from January 2, 1991 (the initial year’s estimates were
discarded to avoid boundary effects) to April 30, 1996. Shown in the figure
are the regression lines using the least-squares fit and the least absolute
deviation fit. If RiskMetrics gives good estimates, then the intercept and
slope of the regression lines should be near 0 and 1, respectively. This is
nearly the case for the least-absolute deviation (L1) fit but not so for the
least-squares (L2) fit. The outliers at the upper right-hand corner are also
influential points. This pushes the least-squares estimate upward signif-
icantly. In Figure 8.11(b), we show directly the scatterplot between the
aggregated squared return R2

t,τ , which depends on future value, and the
estimated volatility θ̂t,τ .

The volatility for the aggregated return Rt,τ is also related to the ob-
served τ -period volatility σ̂2

t−τ,τ at time t. The relation between this ob-
served τ -period volatility and the future squared return R2

t,τ is depicted
in Figure 8.11(c). Clearly, the observed values θ̂2t,τ and σ̂2

t−τ,τ are very
relevant for predicting the volatility of the unobserved squared aggregate
return R2

t,τ . By collecting this information {(θ̂2t,τ , σ̂2
t−τ,τ , R

2
t,τ )} in the in-

sample period, from January 2, 1991 to April 30, 1996, we aim to build a
stochastic regression model for predicting multiple-period volatility.

As an illustration, we fit the additive regression model

R2
t,τ = µ+ f1(θ̂2t,τ ) + f2(σ̂2

t−τ,τ ) + εt. (8.57)

By using the backfitting algorithm along with the local linear fit, we obtain
the fitted functions f̂1 and f̂2 displayed in Figure 8.12. To reduce the in-
fluence of outliers, 5% of data points, whose aggregate returns are at both
tails, were discarded. This gives 1,161 data points for fitting the additive
model. The intercept µ̂ = 0.0007.

The additive model (8.57) was applied to forecast the volatility in the
in-sample period and out-sample period (May 1, 1996 to December 31,
1999, with length 1,003). The results are depicted in Figure 8.13. Shown in
Figure 8.13(b) is Rt,τ/1.645 when returns are negative. They indicate the
extent to which the negative returns exceed the forecasted VaR.

Following the recommendation by J.P. Morgan, the multiple-period VaR
is simply calculated by (8.56). This can be ameliorated by using the sym-
metric nonparametric method given by Fan and Gu (2001), but this is
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FIGURE 8.12. Estimated additive functions for model (8.57). (a) f̂1; (b) f̂2.

beyond the scope of this example. The common measure of volatility esti-
mation includes the exceedence ratio (ER), which is defined as

ER = n−1
T+n∑
t=T+1

I(Rt,τ < Φ−1(α)σ̂t,τ ),

where T +1 and T +n are the first and last days of the out-sample period.
This is to be compared with the confidence level 1− α. The measure gives
us an idea how well the volatility forecast can be used for the calculation
of VaR. An alternative criterion is the mean square error defined by

MSE = n−1
T+n∑
t=T+1

(R2
t,τ − σ̂2

t,τ )
2.
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FIGURE 8.13. Predicted 25-day volatility. (a) In-sample period from January 2,
1991 to April 30, 1996. (b) Out-sample period from May 1, 1996 to December
31, 1999. Solid curves: J.P. Morgan’s forecast; dashed curves: volatility forecast
by the additive model (8.57). The bars in (b) are −Rt,τ/1.645 when returns are
negative.

Letting σ2
t,τ = E(R2

t,τ |Ωt) be the true multiple-period volatility, the ex-
pected value can be decomposed as

E(MSE) = n−1
T+n∑
t=T+1

E(σ2
t,τ − σ̂2

t,τ )
2 + n−1

T+n∑
t=T+1

E(R2
t,τ − σ2

t,τ )
2.

The first term reflects the effectiveness of the estimated volatility, while the
second term is the size of the stochastic error, independent of estimators.
The second term is usually much larger than the first term. Thus, a small
improvement in MSE could mean substantial improvement over the esti-
mated volatility. However, due to the well-known fact that financial time
series contain outliers due to large market movements, the mean-square
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TABLE 8.6. Performance comparisons for multiple-period volatility estimates.
Exceedence ratio Mean-square error Mean absolute error

RiskMetrics 2.37% 1.161 × 10−5 2.41 × 10−3

Additive model 5.08% 1.165 × 10−5 2.25 × 10−3

error is not a robust measure. Therefore, we also used the mean-absolute
deviation error:

MADE = n−1
T+n∑
t=T+1

| R2
t,τ − σ̂2

t,τ | .

The performance of the multiple-period volatility estimates is summa-
rized in Table 8.6. In terms of the exceedence ratio, the method based on
the additive model performs much better. In fact, RiskMetrics performs
even worse for the period from January 2, 1991 to April 30, 1996, which
gives an exceedence ratio of 1%. (Note that the J.P. Morgan estimate of
multiple-period volatility θ̂t,τ does not depend on the in-sample training.)
For the same period, the multiple-period volatility produced by the addi-
tive model gives the exceedence ratio 2.37%. These results indicate that the
square-root rule (8.55) tends to overforecast the multiple-period volatility
VaR. This can easily be seen from Figure 8.13. In terms of the mean-square
errors, both methods perform approximately the same. However, the ap-
proach based on the additive model outperforms RiskMetrics in terms of
the mean absolute deviation error, which is more robust to the outliers
caused by large market movements.

8.6 Other Nonparametric Models

There are many nonparametric models for multivariate regression data.
They can be extended to the time series context to model autoregressive
functions. We highlight some of these models and techniques in the con-
text of analyzing nonlinear time series. For an overview of multivariate
nonparametric models, see Chapter 7 of Fan and Gijbels (1996).

Different models exploit different aspects of data structure. Together they
form useful tool kits for processing time series data and for checking the
adequacy of commonly-used parametric models. Some models are more
general than others. The choice of model depends critically on practical
needs. However, some general guidelines from statistical considerations are
also helpful. A larger family of nonparametric models implies, in principle,
smaller modeling biases, yet the unknown parameters and functions in such
a model may not be estimated accurately. On the other hand, a smaller
family of models may create large modeling biases, but unknown parame-
ters and functions can be estimated with reasonable accuracy. Therefore,
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a compromise between estimability and modeling biases should be reached
after careful consideration and investigation. Other considerations being
equal, parsimonious models are preferable due to their interpretability. The
discussion above indicates that the choice of models should also take into
account sample sizes, which are directly related to the estimability issue.

8.6.1 Two-Term Interaction Models
The autoregressive regression surface G can be better approximated when
the additive model (8.40) is replaced by the two-term interaction model :

Xt =
p∑
j=1

fj(Xt−j) +
∑

1≤j<k≤p
fjk(Xt−j , Xt−k) + εt. (8.58)

This is a more flexible family of models than the additive models. The
univariate components are regarded as main-effect functions, whereas the
bivariate components are interaction terms. As in §8.5, when the model
(8.58) does not hold, the effort of model (8.58) is to search a two-term
interaction model that best approximates the true autoregression surface
G.

The issue of identifiability arises naturally. In addition to the identi-
fiability of the main effect terms, the conditions on the bivariate func-
tions fjk should also be imposed. Indeed, we can add an arbitrary function
h(Xt−j) to the component fj(Xt−j) and then subtract it from the function
fjk(Xt−j , Xt−k). Thus, in addition to the constraints (8.40), the following
requirements should also be imposed on the bivariate interactions:

E{fjk(Xt−j , Xt−k)|Xt−j} = E{fjk(Xt−j , Xt−k)|Xt−k} = 0, 1 ≤ j < k ≤ d.
(8.59)

These are simple and convenient conditions for the identifiability. The back-
fitting algorithm can be extended to estimate the functions fj and fjk; see,
for example, Hastie and Tibshirani (1990) and Fan and Gijbels (1996).

By using the backfitting algorithm, only one- and two-dimensional non-
parametric smoothers are used. Hence, the curse of dimensionality is not
very severe with moderate sample sizes. In fact, according to Stone (1994),
the interaction terms can be estimated at rate O(n−s/(2s+2)) and the main-
effect functions at rate O(n−s/(2s+1)) when they have the sth derivative.
In other words, the problem (8.58) is as hard as a two-dimensional non-
parametric smoothing problem. The projection method in §8.5.3 can be
employed here as well.

A specific implementation of estimating functions in (8.58) is the regres-
sion spline method. By selecting a sequence of knots, one forms the spline
basis {Bj(·), j = 1, · · · , L}; see §6.4. Approximate the univariate functions
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by

fj(x) ≈
L∑
k=1

θjkBk(x)

and the bivariate functions by using the multivariate tensor-product spline
basis:

fij(xi, xj) ≈
L∑
k=1

L∑
l=1

θijklBk(xi)Bl(xj).

Then, the model (8.58) is approximated as

Xt ≈ α+
p∑
j=1

{
L∑
k=1

θjkBk(Xt−j)

}

+
∑

1≤i<j≤p

{
L∑
k=1

L∑
l=1

θijklBk(Xt−i)Bl(Xt−j)

}
.

With the approximations above, the problem becomes estimating the coef-
ficients θ. Friedman (1991) gives a specific implementation to the spline
method above, resulting in the multivariate adaptive regression splines
method (MARS). The techniques above have been applied to the time
series by Lewis and Stevens (1991).

8.6.2 Partially Linear Models
Partially linear models are a specific member of the FAR models and addi-
tive models. They allow us to examine whether a specific lagged variable has
nonlinear contributions to the autoregressive function G. Since the models
are more parsimonious than the FAR and additive models, the parameters
and functions can be estimated more accurately.

To facilitate the presentation, we assume, without loss of generality, that
the first component is possibly nonlinear. The partially linear models pos-
tulate the following structure on the autoregressive function:

Xt = f(Xt−1) + β2Xt−2 + · · ·+ βpXt−p + εt. (8.60)

The method of fitting is typically the profile least-squares method or, more
generally, the profile likelihood method; see, for example, §8.4.3, Speckman
(1988), Carroll, Fan, Gijbels, and Wand (1997), and Murphy and van der
Vaart (2000). The idea is as follows. Pretend, for a moment, that β2, · · · , βp
are known. Then, the function f can be estimated by the nonparametric
method in Chapter 6. Let us denote the resulting estimate by f̂(·; β), where
we stress the dependence of the estimate on

β = (β2, · · · , βp)T .
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Substituting the estimate into (8.60), we have

Xt = f̂(Xt−1,β) + β2Xt−2 + · · ·+ βpXt−p + εt. (8.61)

Now, the parameters β can be estimated by using the least-squares method
that minimizes

T∑
t=p+1

{Xt − f̂(Xt−1,β)− β2Xt−2 − · · · − βpXt−p}2. (8.62)

Let β̂ be the resulting profile least-squares estimator. Then, the nonpara-
metric component is simply estimated by f̂(·; β̂).

As an illustration, consider the kernel estimator

f̂(x,β) =

∑T
t=p+1Kh(Xt−1 − x)(Xt − β2Xt−2 − · · · − βpXt−p)∑T

t=p+1Kh(Xt−1 − x)
.

Then, model (8.61) is a linear model in the sense that it depends linearly
on β. Hence, the least-squares problem (8.62) can easily be solved. Let

gj(x) =

∑T
t=p+1Kh(Xt−1 − x)Xt−j∑T

t=p+1Kh(Xt−1 − x)
.

Then (8.62) is simply

T∑
t=p+1

[Xt − ĝ0(Xt−1)− β2{Xt−2 − ĝ2(Xt−1)} − · · ·

−βp{Xt−p − ĝp(Xt−1)}]2

and hence can easily be minimized. The approach applies to all linear
smoothers, including the local polynomial estimators and spline estima-
tors .

For the multivariate regression model, it has been shown by Speckman
(1988) that the parametric components β can be estimated at rate T−1/2,
and the nonparametric function f can be estimated as well as if β2 were
known. For a more detailed account of the partially linear model, see the
monograph by Härdle, Liang, and Gao (2000).

8.6.3 Single-Index Models
The single-index model, translated into the time series context, becomes

Xt = g(β1Xt−1 + · · ·+ βpXt−p) + εt. (8.63)
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By allowing an unknown link function g, the linear autoregressive predictor
is used to predict Xt.

This single-index model (8.63) is a specific case of the AFAR model
(8.29). The parameter β is identifiable up to a sign change if we impose
‖β‖2 = 1. The profile least-squares in §8.4.3 can be applied. Other tech-
niques mentioned in §8.4.8 can also be used to estimate the index parame-
ters. The model has been widely used in econometrics and statistics; see, for
example, Härdle, Hall and Ichimura (1993), Ichimura (1993), Newey and
Stoker (1993), Samarov (1993), Carroll, Fan, Gijbels, and Wand (1997),
and Heckman, Ichimura, Smith, and Todd (1998), among others.

8.6.4 Multiple-Index Models
A further extension of the single-indices model is to allow multiple-index
in the model (8.63), leading to

Xt = g(β11Xt−1+· · ·+β1pXt−p, · · · , βd1Xt−1+· · ·+βdpXt−p)+εt. (8.64)

The number of indices d is usually small in order to avoid the curse of di-
mensionality. The model is frequently used in an exploratory stage of study,
when time series analysts look for the possible low-dimensional structure
to approximate the autoregression surface G. As mentioned in §8.4.8, the
index parameters β are not identifiable, but the linear space spanned by
these index parameters is. Popular methods for estimating the linear span
include the sliced inverse regression, principal Hessian directions, the av-
erage derivative method, and other forward regression methods. To our
knowledge, some of these methods have not yet been applied to the time
series context.

The models in §8.6.2–§8.6.4 involve both parametric and nonparametric
parts. These kinds of models are frequently referred to as semiparametric
models. A comprehensive account of this subject can be found in Bickel,
Klaassen, Ritov, and Wellner (1993), where efficient estimation of paramet-
ric components is emphasized.

To illustrate the usefulness of this class of models, we apply the model
(8.64) to the environmental data set in Example 1.5, analyzed recently by
Xia, Tong, Li, and Zhu (2002) by using the minimum average variance es-
timation (MAVE) technique. To this end, we briefly introduce their MAVE
technique. To facilitate the notation, let

B = (β1, · · · ,βd), βj = (βj1, · · · , βjp)T .

Model (8.64) is a specific case of the stochastic regression model

Yt = g(BTXt) + εt, (8.65)
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where Xt is a vector of p-covariates observed at time t. The true parameter
B0 is a solution to the problem

min
B

E{Y − E(Y |BTX)}2 = Eσ2
B(BTX), (8.66)

where
σ2
B(BTX) = E

[{Y − E(Y |BTX)}2|BTX
]

is the conditional variance. The MAVE is to find a B to minimize the
empirical version of (8.66).

To implement the idea of MAVE, we first need to estimate the conditional
variance. A more detailed study of this will be given in the next section.
Let gB(v) = E(Y |BTX = v), which is a d-variate nonparametric function.
The local linear fit can be readily applied to estimate gB(·). For a given v0,
by Taylor expansion,

gB(v) ≈ gB(v0) + g′
B(v0)(v − v0) ≡ a+ bT (v − v0).

For a given sample {(Xt, Yt) : t = 1, · · · , T}, by (8.65), we have the ap-
proximate local linear model

Yt = a+ bT (BTXt − v0) + εt (8.67)

for BTXt ≈ v0. For a given B, the local parameters a and bT can be
estimated via the local least-squares method, which minimizes

T∑
t=1

{Yt − a− bT (BTXt − v0)}2w(BTXt,v0),

where w(BTXt,v0) ≥ 0 is a weight function and typically decreases with
the distance between BTXt and v0, satisfying

T∑
t=1

w(BTXt,v0) = 1.

As an example, one can take the kernel weight:

w(BTXt,v0) = Kh(BTXt − v0)/
T∑
t′=1

Kh(BTXt′ − v0). (8.68)

Just as in the ordinary linear model, the variance σ̂2
B(v0) can be esti-

mated by the residual sum of squares

σ̂2
B(v0) = min

a,b

T∑
t′=1

{Yt′ − a− bT (BTXt′ − v0)}2w(BTXt,v0). (8.69)
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Based on (8.66), one would find a B to minimize

T∑
t=1

σ̂2
B(BTXt).

By (8.69), this is the same as minimizing with respect to B the following
function:

min
{at,bt}

T∑
t=1

T∑
t′=1

{Yt′ − at − bTt (BTXt′ −BTXt)}2w(BTXt′ ,BTXt). (8.70)

As explained above, there are multiple solutions of B. Only the space
spanned by the columns of the matrix B is identifiable.

The MAVE estimator utilizes an idea similar to the profile least-squares
method in §8.4.3. To see this, let ât and b̂t be the solutions in (8.70). Then
(8.70) can be written as

T∑
t=1

T∑
t′=1

{Yt′ − ât − b̂Tt (BTXt′ −BTXt)}2w(BTXt′ ,BTXt). (8.71)

The iterative algorithm in §8.4.3 can be employed to compute an estimate
of B with kernel weights (8.68): Given B, compute the weights (8.68) and
find the local linear estimate ât and b̂t from (8.70). For a given least-squares
estimate with kernel weights computed from the most recent estimate of
B, find a B to minimize (8.71).

Due to the local weighting scheme, the double sum in (8.71) is basically
concentrated on terms that are near the diagonal. Thus, since the effective
terms in (8.71) satisfy BTXt ≈ BTXt′ , it follows that

ât ≈ ât′ and b̂Tt (BTXt′ −BTXt) ≈ 0.

Using these approximations, (8.71) becomes

T∑
t=1

T∑
t′=1

{Yt′ − ât′}2w(BTXt′ ,BTXt) =
T∑
t′=1

{Yt′ − ât′}2, (8.72)

when
∑T
t=1 w(BTXt′ ,BTXt) = 1, which is satisfied for the kernel weights

(8.68). The minimization problem (8.72) is the profile least-squares method.
In other words, the MAVE and the profile least-squares estimate would give
approximately the same solution when h is small enough. They may differ
for a given bandwidth h.

When the dimensional d is large, both the MAVE and the profile least-
squares estimates face the challenge of the curse of dimensionality. The
inverse regression method of Li (1991) averts this kind of problem, but other
assumptions are needed that are hardly valid for nonlinear time series.
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In practical implementation, the issue of the choice of the bandwidth and
number of indices d arises. Xia, Tong, Li, and Zhu (2002) suggested a cross-
validation technique to choose the parameters d and h and established nice
sampling properties of the proposed methods.

8.6.5 An Analysis of Environmental Data
Consider the environmental data discussed in Example 1.5. The analysis
is taken from Xia, Tong, Li, and Zhu (2002). The daily number of admis-
sions (Yt) is taken as the response variable, whereas the pollutants and the
weather variables are taken as the covariates. They are the average levels of
sulfur dioxide X1t, nitrogen dioxide X2t, respirable suspended particulates
X3t, ozone X4t, temperature X5t (in oC), and relative humidity X6t (in
percent). The variables Yt, X1t, X2t, and X3t are presented in Figure 1.5.
The variables X4t, X5t, and X6t are presented in Figure 8.14.

Xia, Tong, Li, and Zhu (2002) preprocessed the response data Yt. Due
to the release of additional hospital beds to accommodate circulatory and
respiratory patients in the course of this study, the time effect is expected.
The time trend was removed by using a kernel smoother. Let the resulting
(residual) series be Y ′

t . It is also expected to have the day-of-the-week effect,
presumably due to the hospital booking system. This effect was estimated
by a simple regression method using dummy variables,

Y ′
t = β0 +

6∑
j=1

βjI(d(t) = j) + εt,

where d(t) is the day of the week for time t. Only six indicators are used
because

7∑
j=1

I(d(t) = j) = 1,

which is the same as the intercept term. Let ε̂t be the residual series. To
simplify the notation, we still use Yt to denote ε̂t, which is a series with the
time effect and the day-of-the-week effect removed. Figure 8.10(d) shows
the resulting filtered series.

Since the pollutant and weather may affect the circulatory and respi-
ratory systems with a time delay, the covariates in the last 7-days were
considered. This results in 42 covariates:

Xt = (X1,t−1, X1,t−2, · · · , X1,t−7, · · · , X6,t−1, X6,t−2, · · · , X6,t−7)′.

All variables are standardized to have a mean 0 and variance 1 before the
fitting using the multiple-index model (8.64). We use the same notation to
denote the standardized variables. Applying the MAVE method with cross-
validation, Xia, Tong, Li, and Zhu (2002) obtained three indices d = 3.
Their corresponding coefficients are shown in Table 8.7.
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FIGURE 8.14. The daily average of (a) ozone level, (b) temperature, (c) humidity,
and (d) filtered number of daily admissions of circulatory and respiratory patients
by removing the time trend and the day-of-the-week effect.

Figures 8.15 (a)–(c) showed Yt plotted against the index variable β̂
T

j Xt

(j = 1, 2, 3). Based on these plots together with Table 8.7, Xia, Tong, Li,
and Zhu (2002) suggested the following features.

• Rapid temperature changes play an important role. Notice that the
dominant coefficients in β̂1 are associated with variables X5,t and
X5,t−1.

• Among the pollutants, the most influential one seems to be the par-
ticulates. Note that the large coefficients are mainly associated with
the lag variables of X3,t.
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TABLE 8.7. Estimated coefficients β̂1, β̂2, and β̂3 (boldfaced entries have rela-
tively large absolute values). Adapted from Xia, Tong, Li, and Zhu (2002) with
permission from the Royal Statistical Society.

lags 1 2 3 4 5 6 7
x1 0.0586 −0.0854 0.0472 −0.0152 0.1083 −0.0942 0.0734
x2 0.0876 0.0313 −0.1964 0.0893 −0.0867 0.0951 −0.1068
x3 −0.2038 0.1103 0.0153 0.0740 −0.0756 0.1283 −0.0520
x4 0.0155 0.0692 0.1622 −0.2624 0.1312 0.1342 0.0976
x5 0.5065 −0.4079 0.0743 0.0859 −0.3024 −0.1734 −0.0302
x6 −0.0294 −0.0610 0.0129 −0.0392 −0.0075 0.2850 0.0513
x1 −0.1525 0.0962 −0.1112 0.1170 −0.0388 −0.0605 −0.0326
x2 −0.0029 0.1614 −0.0955 −0.1160 −0.2185 0.0826 0.1696
x3 −0.0096 −0.1874 0.2422 −0.0047 0.3272 −0.2646 −0.0041
x4 −0.0013 −0.1162 0.0673 0.2113 −0.2193 0.1235 −0.1282
x5 0.1410 0.1193 −0.1425 0.1819 −0.2793 −0.0880 −0.0325
x6 −0.0345 −0.1479 −0.0400 0.4033 0.0474 0.0899 0.1336
x1 0.0701 0.0065 −0.0535 −0.1570 −0.0553 −0.0091 −0.0363
x2 −0.0529 0.1360 0.0723 0.1045 −0.0045 −0.0200 0.0221
x3 −0.0121 −0.1189 0.0715 −0.0814 0.0112 0.0155 0.1214
x4 0.2215 0.0103 −0.3304 0.1028 0.0160 −0.1805 0.1341
x5 0.2909 −0.2372 0.0621 −0.0211 0.0950 −0.0954 0.2507
x6 0.2797 −0.1094 −0.3038 0.0452 0.1754 −0.3937 0.2597
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FIGURE 8.15. The observed series yt is plotted against (a) index βT
1 Xt; (b)

index βT
2 Xt; and (c) index βT

3 Xt. The lines are drawn simply by polynomial
regression to make the trends more visualizable. Adapted from Xia, Tong, Li,
and Zhu (2002) with permission from the Royal Statistical Society.

• The weather covariates are influential. Note the many large coeffi-
cients for the weather covariates X6,t−j , j = 1, · · · , 7 in all of the
three β̂’s.

To obtain a more parsimonious description of the model, Xia, Tong, Li,
and Zhu (2002) carried out the analysis focusing on the suspended partic-
ulates X3, the ozone X4, the temperature X5, and their associated lagged
variables. Further simplification is obtained by selecting only one lag for
each covariate. By applying the method of Yao and Tong (1994b), the
lagged variables X3,t−2, X4,t−6, X5,t−4, and X6,t−2 were selected. As indi-
cated in the analysis above, the temperature variation plays an important
role. Thus, an additional variable

Vt = SD(X5,t−j , j = 1, 2, 3, 4, 5)
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FIGURE 8.16. The observed series yt is plotted against (a) index βT
1 Zt, (b) index

βT
2 Zt, and (c) index βT

3 Zt. The lines are drawn simply by polynomial regression
to make the trends more visualizable. Adapted from Xia, Tong, Li, and Zhu
(2002) with the permission from the Royal Statistical Society.

is introduced to measure the temperature variation in the past 5 days prior
to the time t. Let Zt = (X3,t−2, X4,t−6, X5,t−4, X6,t−2, Vt)T . Applying the
multiple-index model to the data (Zt, Yt), three indices were chosen with
the following estimated coefficients:

β̂1 = (−0.1316, −0.0772, −0.8366, −0.0235, 0.5256)T ,
β̂2 = (0.4809, −0.3154, −0.5078, 0.0018, −0.6414)T ,
β̂3 = (0.0101, 0.3815, −0.0734, −0.9115, 0.1345)T .

Figures 8.16 (a)–(c) show Yt plotted against these three indices β̂
T

j Z (j =
1, 2, 3). Compared with the fit using three indices of 42 covariates, the fit
using the reduced set of five covariates decreases the variance explained by
covariates (multiple R2) from about 73% to about 66%. In return, further
insights are gained. Specifically, Xia, Tong, Li, and Zhu (2002) made the
following observations.

• The temperature and temperature variation are dominant compo-
nents in the index βT1 Zt, yet they donot seem to cause a large varia-
tion in hospital admissions; see Figure 8.16(a).

• The dominant components in the second index β̂
T

2 Zt and Figure 8.16
(b) suggest that high levels of suspended particulates and/or high
levels of ozone during cold weather tend to cause high admissions for
patients with circulatory and respiratory problems.

• The coefficients of β̂3 together with Figure 8.16(c) suggest that high
ozone levels on dry days tend to be associated with high admissions.

8.7 Modeling Conditional Variance

Conditional variance is pivotal for statistical data analysis. It can be used
to construct confidence intervals and conduct other statistical inferences.
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It can be applied to assess the size of prediction errors. In financial ap-
plications, the conditional variance is also refered to as volatility. It is
directly related to the price of financial derivatives such as options and the
measures of risks of traded assets such as value at risk.

8.7.1 Methods of Estimating Conditional Variance
A general time series model is to assume that the series is generated from

Xt = f(Xt−1, · · · , Xt−p) + σ(Xt−1, · · · , Xt−p)εt, (8.73)

where εt is a random variable, having mean zero and variance unity, inde-
pendent of {Xt−1, Xt−2, · · · }. Hence, the function f(·) is the autoregressive
function and σ2(·) is the conditional variance function.

Model (8.73) allows the autoregression and the conditional variance func-
tions to depend on different lag variables. For example, the function σ(·)
can depend only on the first q lag variables, while the function σ(·) depends
on the last r lag variables. As mentioned in §8.1, the saturated nonpara-
metric model is not very useful due to the curse of dimensionality. Thus,
some structures on f and σ should be imposed.

Suppose that we have a method to estimate f , such as those mentioned
in §8.3–§8.6. Let f̂ be an estimate and

rt = Xt − f̂(Xt−1, · · · , Xt−p). (8.74)

Denote

f̂t = f̂(Xt−1, · · · , Xt−p), and ft = f(Xt−1, · · · , Xt−p).

Then,

r2t = (f̂t − ft)2 + σ2(Xt−1, · · · , Xt−p)ε2t
−2(f̂t − ft)σ(Xt−1, · · · , Xt−p)εt. (8.75)

The cross-product term has mean approximately zero. The local average
of this cross-product term is usually of the same order as that of the first
term. Suppose that f̂t − ft = Op(bT ) for some bT → 0. Then, the errors
in estimation of f affect the estimation of σ2(·) only in OP (b2T ). This is
negligible in many cases. Consequently, without knowing the function f ,
we can estimate σ2(·) as well as if f were known-that is, as well as that
based on ideal data {Xt − ft}. The conditional variance estimator based
on these ideal data is referred to as the oracle estimator.

To elucidate the heuristic argument above, let us consider the case where
p = 1. In this case, according to Theorem 6.4, bT = h2 + 1/(Th)1/2, for
the local linear fit with bandwidth h. For a large range of choices of h,
b2T = o(T−2/5) or even b2T = o(T−1/2). Yet, the function σ2(·) can only be
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estimated at rate O(T−2/5) or O(T−1/2) if σ(·) is a constant. Thus, the
error O(b2T ) is negligible for estimating σ2(·).

The heuristic argument above also shows that the choice of smoothing
parameter for the regression f is not very critical for estimating σ(·) since,
for a large range of bandwidths, the error in estimating f̂ is negligible. The
heuristic argument applies to other models such as the FAR-model and
AAR-model .

By (8.75), we have the following model:

r2t ≈ σ2(Xt−1, · · · , Xt−p)ε2t . (8.76)

It is easy to see from (8.76) that

E(r2t |Xt−1, · · · , Xt−p) ≈ σ2(Xt−1, · · · , Xt−p). (8.77)

Thus σ2(·) can be regarded as the nonparametric regression of r2t on Xt−1,
· · · , Xt−p. The techniques introduced in §8.3–§8.6 continue to apply to
model the conditional variance function. In particular, the local least-
squares approach can be used to estimate σ2(·).

Another technique is the local pseudolikelihood method. Regarding εt ∼
N(0, 1) and after ignoring the errors in the estimation of f̂ , the conditional
density of rt given Xt−1, · · · , Xt−p is

1√
2πσ(Xt−1, · · · , Xt−p)

exp{−r2t /2σ2(Xt−1, · · · , Xt−p)}.

Taking the logarithm and adding the likelihood, we have the following
pseudolikelihood

T∑
t=p+1

{− log σ2(Xt−1, · · · , Xt−p)− r2t /σ2(Xt−1, · · · , Xt−p)}. (8.78)

Here, we have dropped a constant factor and multiplied the logarithm of
the likelihood by a factor of 2. This does not affect our estimate of σ(·).

The local least-squares method and the local pseudolikelihood approach
[a local version of (8.78), see (8.83)] are two popular procedures for estimat-
ing conditional variance. They can be applied to nonparametric estimation
of σ2(·) by either local modeling or global modeling of the conditional vari-
ance σ2(·).

8.7.2 Univariate Setting
We now use the univariate setting to illustrate the aforementioned idea.
The idea is also applicable to a more general stochastic regression setting.

Let {(Xt, Yt) : t = 1, · · · , n} be a strictly stationary process from the
model

Yt = f(Xt) + σ(Xt)εt. (8.79)
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The autoregressive model (8.73) with p = 1 corresponds to the setting with
Yt = Xt+1, n = T−1, and a slight rearrangement of the index. Let f̂ be the
local linear estimator, using the data {(Xt, Yt) : t = 1, · · · , n}, with kernel
K and bandwidth h2 (see §6.3.2). By applying the nonparametric regression
approach (8.77) using the local linear estimator with the kernel W and
bandwidth h1, we obtain an estimate of σ̂2(x) for each given x; namely,
σ2(x) is obtained by the local linear fit of the data {(Xt, r

2
t ) : t = 1, · · · , n}.

The following result was proved by Fan and Yao (1998).

Theorem 8.5 Suppose that Condition 3 in §8.8.6 is met. Then,

(nh1)
1
2 {σ̂2(x)− σ2(x)− θn}

is asymptotically normal with mean 0 and variance

p−1(x)σ4(x)λ2(x)
∫
W 2(t)dt,

where p(·) denotes the marginal density function of X, λ2(x) = E{(ε2 −
1)2|X = x}, and

θn =
h2

1

2
σ2
W σ̈

2(x)
∫
t2W (t)dt+ o(h2

1 + h2
2)

with σ̈2(x) being the second derivative of the function σ2(x).

The result above reveals that, as long as h2 = O(h1), the estimator σ̂2(·)
performs as well as the oracle estimator where the function f is known. The
condition that f is twice differentiable is not minimal. The function σ(·)
can be estimated with optimal rates under weaker smoothness conditions
on m(·); see Hall and Carroll (1989) and Müller and Stadtmüller (1993).

Theorem 8.5 permits us to take advantage of existing bandwidth selection
methods for the local linear fit (see §6.3.5). Let ĥ(X1, · · · , Xn;Y1, · · · , Yn)
be a data-driven bandwidth selection rule for local linear regression based
on the data {(X1, Y1), · · · , (Xn, Yn)}. The selected bandwidth

ĥ(X1, · · · , Xn;Y1, · · · , Yn)
is usually a consistent estimate of the asymptotic optimal bandwidth, which
is of order O(n−1/5). Our bandwidth selection rule for estimating condi-
tional variance consists of the following steps:

1. Use bandwidth h2 = ĥ(X1, · · · , Xn;Y1, · · · , Yn) in local linear regres-
sion to obtain the estimate f̂(Xi) for i = 1, · · · , n.

2. Compute squared residuals r̂2i = {Yi − f̂(Xi)}2, i = 1, · · · , n.

3. Apply bandwidth h1 = ĥ(X1, · · · , Xn; r̂21, · · · , r̂2n) in local linear re-
gression to obtain σ̂2(·).
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In the algorithm above, we keep the bandwidth selection method flexible.
In our numerical implementation below, we use the preasymptotic substi-
tution method of Fan and Gijbels (1995) (see also §6.3.5). We have written
the C-code “autovar.c” for automatic estimation of the variance function.

We now illustrate the technique above with two numerical examples.

Example 8.15 (Interest rate data) This example concerns the yields of
the three-month Treasury bill presented in Example 1.3. Let Rt be the
yield of the three-month Treasury bill at time t. There is much literature
on modeling the dynamics of the short-term rates. Famous models include
the Vasicek (1977) model

dRt = (α0 + α1Rt)dt+ σdWt,

the Cox, Ingersoll, and Ross (1985) model

dRt = (α0 + α1Rt) dt+ σR
1/2
t dWt,

and the parametric model by Chan, Karolyi, Longstaff, and Sanders (1992),

dRt = (α0 + α1Rt) dt+ σRγt dWt,

where {Wt} is a standard one-dimensional Brownian motion. By a Brown-
ian motion, we mean a zero-mean Gaussian process starting at zero with co-
variance function EW (t)W (τ) = min(t, τ). These time-homogeneous mod-
els are specific cases of the following nonparametric model:

dRt = µ(Rt)dt+ σ(Rt)dWt. (8.80)

The function µ(·) is called the instantaneous return, and σ(·) is frequently
referred to as a volatility function.

The nonparametric model (8.80) has been studied by Stanton (1997),
Fan and Yao (1998), Chapman and Pearson (2000), and Fan and Zhang
(2003), among others. There are also many time-inhomogeneous models;
see, for example, Black, Derman, and Toy (1990), Hull and White (1990),
Black, and Karasinski (1991), and Fan, Jiang, Zhang, and Zhou (2003).

Let {Xi, i = 1, . . . , n + 1} be the observed yields of the three-month
Treasury Bill at discrete time points: t1 < · · · < tn < tn+1; namely, Xi =
Rti . For the weekly data, the time unit is years, with ti = t0 + i

52 . Denote

Yi = Xi+1 −Xi, Zi = Wti+1 −Wti and �i = ti+1 − ti.
By the independent increments of the Brownian motion, {Zi} are inde-
pendently distributed as N(0,�i). The discretized version of (8.72) can be
expressed as

Yi ≈ µ(Xi)∆i + σ(Xi)Zi
= µ(Xi)∆i + σ(Xi)

√
∆iεi, i = 1, . . . , n, (8.81)
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where {εi} are independently distributed as N(0, 1). As pointed out in
Chan, Karolyi, Longstaff, and Sanders (1992) and demonstrated by Stanton
(1997), the discretized approximation error to the continuous-time model
is of second order when the data are observed within a short time gap.
Indeed, according to Stanton (1997), as long as data are sampled monthly
or more frequently, the errors introduced by using approximations rather
than true drift and diffusion are extremely small when compared with the
likely size of estimation errors.

The difference data Yi are plotted against Xi in Figure 8.17(a), where the
estimated drift function, namely the regression function, is also displayed.
Figure 8.17(b) shows the estimated drift function with its pointwise 95%
confidence intervals. The bandwidth ĥ2 = 2.61 was chosen by the program
“autovar.c.” The nonlinear appearance led Stanton (1997) to speculate that
the drift function is nonlinear. Based on empirical simulation studies, Chap-
man and Pearson (2000) suggested that the nonlinearity might be spurious
due to the boundary effect of kernel estimators and the “mean-reversion”
of the interest rate dynamic. A formal statistical test of whether the drift
function is nonlinear is presented in Fan and Zhang (2002) (see also Chapter
9).

Displayed in Figure 8.17(c) are σ̂(·) and σ̂2(·) and their associated point-
wise confidence intervals. The bandwidth ĥ1 = 3.16 was chosen by the data.
The correlation between log(x) and log{σ̂(x)} at 101 grid points is 0.93.
This suggests that we fit the parametric model

σ(x) = αxβ .

Substituting the parametric form into (8.78), we obtain the pseudolikeli-
hood

�(α, β) =
n∑
i=1

{− log(α2X2β
i )− r2i /(α2X2β

i )}, (8.82)

where ri = Yi − µ̂(Xi)∆i. For each given β, the maximum is obtained at

α̂2(β) = n−1
n∑
i=1

r2i

X2β
i

.

Thus, we need only to maximize the univariate function �(α̂(β), β). The
results are β̂ = 0.90 and α̂ = 0.046. The corresponding parametric function
is displayed in Figure 8.17(c). The figure suggests that the parametric fit
does not accurately capture the curvature of the nonparametric fit.

Example 8.16 (Motorcycle data) Presented in Figure 8.18(a) are 133 ob-
servations of motorcycle data from Schmidt, Mattern, and Schüler (1981).
The time (in milliseconds) after a simulated impact on motorcycles was
recorded and serves as the covariate Xt. The response variable Yt is the
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FIGURE 8.17. Three-month Treasury bill data. (a) The difference Yi is plotted
against Xi, the solid curve being the function µ(·)/52. (b) The estimated instan-
taneous return function in (a). (c) The estimated volatility function σ(·)/√52
(thick curve), the conditional variance function σ2(·)/52 (thin curve), and the
parametric fit of σ(·)/√52 (long-dashed curve).
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FIGURE 8.18. Motorcycle data. (a) Raw data and their estimated regression
function. (b) The residuals and the estimated volatility function.

head acceleration (in a) of a test object. We fit the data with model (8.79).
The estimated regression function f̂(·) is depicted in Figure 8.18(a) along
with 95% pointwise confidence intervals. Figure 8.18(b) describes the resid-
uals and the estimated conditional standard deviation σ̂(·). The bandwidths
selected by data for estimating the regression function and the conditional
variance function are 3.230 and 6.293, respectively. Figure 8.18(b) shows
that σ̂2(·) captures the changes of variability in the data.

Finally, we now briefly discuss how to employ the pseudolikelihood method
in estimating the volatility. For each given x and for every Xt ≈ x, approx-
imate the conditional variance function locally by a linear function

σ2(Xt) ≈ α+ β(Xt − x).
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Using the pseudolikelihood (8.78) locally, we obtain the local pseudolikeli-
hood

n∑
i=1

{− log(α+ β(Xt − x))− r2t /(α+ β(Xt − x))}Wh1(Xt − x). (8.83)

Maximizing (8.83) with respect to α and β yields the estimate σ̂2(x) = α̂.
This is the maximum local pseudo-likelihood estimator .

8.7.3 Functional-Coefficient Models
As mentioned in §8.7.1, for the multivariate case, one needs to impose the
structure on the volatility function. For example, one can impose the form

σ2(Xt−1, · · · , Xt−p) = a1(Xt−d)X2
1 + · · ·+ ap(Xt−d)X2

t−p. (8.84)

This is analogous to the FAR(p) model in (8.1). By regarding σ2(·) as the
regression function of r2t as in (8.77), one can apply the techniques in §8.3
to estimate the coefficient functions a1(·), · · · , ap(·), using the data

{(Xt−d, X2
t−p, · · · , X2

t−1, r
2
t ) : t = p+ 1, · · · , T}.

Note that the model (8.84) is a generalization of the ARCH(p) model
with the coefficient allowed to vary.

8.7.4 Additive Models
A useful application of the additive model in the regression setting leads
to the additive model

σ2(Xt−1, · · · , Xt−p) = σ1(X2
t−1) + · · ·+ σp(X2

t−p). (8.85)

By applying the backfitting algorithm or other techniques in §8.5 to the
data

{(X2
t−p, · · · , X2

t−1, r
2
t ) : t = p+ 1, · · · , T},

one can easily obtain an estimate of the functions σ1(·), · · · , σp(·).
Note that model (8.85) is a generalization of the ARCH(p) model. Thus,

it allows one to examine whether an ARCH model adequately fits a given
data set.

Example 8.17 (Standard and Poor’s 500 Index). We revisit the data an-
alyzed in Example 8.14. As in that example, let rt be the observed return
at time t. Similarly to that in Example 8.15, the conditional mean of rt is
negligible. As an illustration, we fit the additive model

r2t = {µ+ σ1(r2t−1) + · · ·+ σt−6(r2t−6)}ε2t



8.7 Modeling Conditional Variance 383

(a)

0.0 0.001 0.003 0.005

0.
0

0.
00

05
0.

00
10

0.
00

15 Lag one function

(b)

0.0 0.001 0.003 0.005

0.
0

0.
00

00
5

0.
00

01
5

Lag two function

(c)

0.0 0.001 0.003 0.005

-2
*1

0^
-5

0
10

^-
5

Lag three function

(d)

0.0 0.001 0.003 0.005

-5
*1

0^
-5

0
5*

10
^-

5
10

^-
4 Lag four function

(e)

0.0 0.001 0.003 0.005

0.
0

0.
00

04
0.

00
08

Lag Five function

(f)

0.0 0.001 0.003 0.005

-0
.0

00
4

-0
.0

00
2

0.
0

Lag Six function

FIGURE 8.19. Fitted additive functions for the conditional variance based on
the Standard and Poor’s 500 Index.
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using the data from January 3, 1990 to December 31, 1999, a series of length
2529. The fitted functions are depicted in Figure 8.19. The nonlinearity of
fitted functions is very apparent. This suggests that an ARCH(6) model is
inadequate for fitting the volatility function.

8.7.5 Product Models
The models (8.84) and (8.85) can possibly result in a negative fit of the vari-
ance function. One way to avoid this is to impose the models on log σ2(·).
For example, one can impose the model

log{σ2(Xt−1, · · · , Xt−p)} = a1(Xt−d)X1 + · · ·+ ap(Xt−d)Xt−p (8.86)

or the model

log{σ2(Xt−1, · · · , Xt−p)} = σ1(X2
t−1) + · · ·+ σp(X2

t−p). (8.87)

From the scale model (8.76), we have

log r2t ≈ log σ2(Xt−1, · · · , Xt−p) + E log ε2t + ε′
t,

where ε′
t = log ε2t − log ε2t is a random noise with mean zero. If εt ∼ N(0, 1),

then E log ε2t ≈ −1.27. Thus, models (8.86) and (8.87) correspond to the
functional-coefficient model and the additive model for the dependent
variable log r2t , respectively.

The localization idea in §8.3 and the backfitting algorithm in §8.5 can
be directly employed to estimate the one-dimensional functions in (8.86)
and (8.87), respectively. Use of the pseudolikelihood can be more effective
than the least-squares approach.

8.7.6 Other Nonparametric Models
As shown in (8.77), the conditional variance function is nothing but a mean
regression function. Thus, nonparametric techniques in §8.6 for modeling
the mean function can be applied to model the variance function. We do
not pursue this general idea further here.

8.8 Complements

8.8.1 Proof of Theorem 8.1
For a more general autoregressive model

Xt = h(Xt−1, Xt−2, · · · , Xt−p) + εt,

where εt is an i.i.d. sequence, it can also be expressed in a form of (8.5).
The following lemma is due to Chan and Tong (1985).
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Lemma 8.3 The Markov chain {Xt} is aperiodic and φ-irreducible with
φ being the Lebesgue measure if εt has an absolutely continuous component
with a positive density everywhere and h(·) is bounded over a bounded set.

Let ‖x‖ be the Euclidean norm

‖x‖ =
√
x2

1 + · · ·+ x2
p

and C be the matrix that is similar to the matrix A(X), except that the
element ai(·) is replaced by ci.

Proof of Theorem 8.1. First, by Lemma 8.3, the chain {Xt} is aperiodic
and φ-irreducible. Thus, we can apply Lemmas 8.1 and 8.2. To check the
moment condition in Lemma 8.1, we first give a bound on Cn.

Let Ip be the identity matrix of order p. Then, the determinant of λI−C
is given by (see, for example, Anderson 1971, p. 180)

|λI−C| = λp − c1λp−1 − · · · − cp.
Hence, all of the roots of the characteristic function are eigenvalues of the
matrix C. Let λmax be the maximum eigenvalue of C. Then ‖Cn‖1/n →
|λmax| < 1. Consequently, there exists a positive constant δ < 1 and an
integer m such that ‖Cm‖ < δ.

We now verify the moment condition of Lemma 8.1 for the subchain
{Xmt, t = 1, 2, · · · }. Using the iterative formula (8.5), we have

Xm(t+1) =
m−1∏
i=0

A(Xmt+i)Xmt +
m∑
i=1



m−1∏
j=i

A(Xmt+j)


 εmt+i. (8.88)

For any vector b = (b1, · · · , bp)T , let (d1, · · · , dp)T = A(X)b. Then

|d1| = |a1(X)b1 + · · ·+ ap(X)bp|
≤ c1|b1|+ · · ·+ cp|bp|

and |di| = |bi| for i = 2, · · · , p. Consequently, with the vector |b| =
(|b1|, · · · , |bp|)T , we have

‖A(X)b‖ ≤ ‖C|b|‖ .
Repeatedly applying this to (8.88), we obtain

‖X(m+1)t‖ ≤
∥∥∥Cm|Xmt|

∥∥∥+
∥∥∥
m∑
i=1

Cm−i|εmt+i|
∥∥∥.

The first term is bounded by

‖Cm‖ ‖Xmt‖ ≤ δ‖Xmt‖.
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Hence

E
{
‖Xm(t+1)‖

∣∣∣Xmt = x
}
≤ δ‖x‖+ E

∥∥∥∥∥
m∑
i=1

Cm−i|εmt+i|
∥∥∥∥∥ .

Note that the second term is bounded and is independent of x. Let D
denote the bound. Then

E
{
‖X(m+1)t‖

∣∣∣Xmt = x
}
≤ δ‖x‖+D.

Let ρ ∈ (δ, 1) and set M = D(ρ− δ)−1. Then, for all ‖x‖ > M ,

E
{
‖Xm(t+1)‖

∣∣∣Xmt

}
≤ ρ‖x‖.

Hence, by Lemma 8.1, with K = {x : ‖x‖ ≤M}, the sequence {Xmt} is ge-
ometrically ergodic. As a result, the original sequence {Xt} is geometrically
ergodic by Lemma 8.2.

8.8.2 Technical Conditions for Theorems 8.2 and 8.3

Conditions 1:

(i) The kernel function K(·) is a bounded density with the bounded
support [−1, 1]. Furthermore,

∫ +∞
−∞ uK(u)du = 0.

(ii) |f(u, v |x0, x1; l)| ≤ M < ∞, for all l ≥ 1, where f(u, v, |x0, x1; l)
is the conditional density of (U0, Ul) given (X0, Xl), and f(u |x) ≤
M <∞, where f(u |x) is the conditional density of U given X = x.

(iii) The process {(Ui, Xi, Yi)} is α-mixing with
∑
�c[α(�)]1−2/δ <∞ for

some δ > 2 and c > 1− 2/δ.

(iv) E|X|2 δ <∞, where δ is given in Condition 1(iii).

Note that the conditions imposed here are just for the convenience of
technical derivations. They are not the minimum possible. For example,
the requirement on the bounded support of the kernel K can be relaxed
at the expense of lengthier proofs. In particular, the Gaussian kernel is
allowed.

Conditions 2:

(i) For all l ≥ 1, x0, x1 ∈ �p, u and v in a neighborhood of u0,

E
{
Y 2

0 + Y 2
l |X0 = x0, U0 = u; Xl = x1, Ul = v

} ≤M <∞.
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(ii) There exists a sequence of positive integers sn such that sn → ∞,
sn = o

(
(nhn)1/2

)
, and (n/hn)1/2 α(sn)→ 0, as n→∞.

(iii) There exists a positive constant δ∗ > δ, where δ is given in Condition
1(iii), such that

E
{
|Y |δ∗ |X = x, U = u

}
≤M <∞

for all x ∈ �p and u in a neighborhood of u0, and α(n) = O
(
n−θ∗)

for some θ∗ ≥ δ δ∗/{2(δ∗ − δ)}.

(iv) E|X|2 δ∗
<∞, and n1/2−δ/4 hδ/δ

∗−1 = O(1).

We now provide a sufficient condition for the mixing coefficient α(n)
to satisfy Conditions 1(iii) and 2(ii). Suppose that hn = An−a for some
a ∈ (0, 1) and A > 0, sn = (nhn/ log n)1/2, and α(n) = O

(
n−d) for

some d > 0. Then Condition 1(iii) is satisfied for d > 2(δ − 1)/(δ − 2), and
Condition 2(ii) is satisfied if d > (1 + a)/(1 − a). Hence, both conditions
are satisfied if

α(n) = O
(
n−d) , d > max

{
1 + a

1− a,
2(δ − 1)
δ − 2

}
.

Note that the larger the order δ, the weaker the decay rate of α(n). This is
a trade-off between the order δ of the moment of Y and the rate of decay
of the mixing coefficient.

8.8.3 Preliminaries to the Proof of Theorem 8.3
To study the joint asymptotic normality of â(u0), we need to center the
vector Tn(u0) by replacing Yi with Yi − m(Xi, Ui) in the expression of
Tn,j(u0), where m(Xi, Ui) = XT

i a(Ui). Let

T∗
n,j(u0) =

1
n

n∑
i=1

Xi

(
Ui − u0

h

)j
Kh(Ui − u0) [Yi −m(Xi, Ui)]

and

T∗
n =

(
T∗
n,0

T∗
n,1

)
.

For |Ui − u0| < h, by Taylor’s expansion,

m(Xi, Ui) = XT
i a(u0) + (Ui − u0)XT

i a′(u0)

+
h2

2

(
Ui − u0

h

)2

XT
i a′′(u0) + op(h2),
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where a′(u0) and a′′(u0) are the vectors consisting of the first and the
second derivatives of the functions aj(·). Thus

Tn,0 −T∗
n,0 = Sn,0 a(u0) + hSn,1 a′(u0) +

h2

2
Sn,2 a′′(u0) + op(h2)

and

Tn,1 −T∗
n,1 = Sn,1 a(u0) + hSn,2 a′(u0) +

h2

2
Sn,3 a′′(u0) + op(h2).

As a result, we have

Tn −T∗
n = SnHβ +

h2

2

(
Sn,2
Sn,3

)
a′′(u0) + op(h2),

where β = (a(u0)T , a′(u0)T )T . Therefore, it follows from (8.21) and The-
orem 8.2 that

H
(
β̂ − β

)
= Sn(T∗

n + Tn −T∗
n)−Hβ

= f−1
U (u0)S−1 T∗

n +
h2

2
S−1

(
µ2 Ω
µ3Ω

)
a′′(u0) + op(h2).

Using S−1 = diag(1, µ−1
2 )⊗ Ω−1, we have

â(u0)− a(u0) =
Ω−1

fU (u0)
T∗
n,0 +

h2

2
µ2 a′′(u0) + op(h2). (8.89)

Expression (8.89) indicates that the asymptotic bias of â(u0) is h
2

2 µ2 a′′(u0).
Let

Qn =
1
n

n∑
i=1

Zi,

where
Zi = XiKh(Ui − u0) [Yi −m(Xi, Ui)] .

It follows from this and (8.89) that

√
nhn

[
â(u0)− a(u0)− h2

2
µ2a′′(u0) + o(h2)

]

=
Ω−1

fU (u0)

√
nhnQn.

Thus, the main task becomes establishing the asymptotic normality of Qn.
To this end, we need the following lemma.

Lemma 8.4 Under Conditions 1 and 2 and the assumption that hn → 0
and nhn → ∞, as n → ∞, if σ2(x, u) and f(x, u) are continuous at the
point u0, then we have
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(a) hn Var(Z1)→ ν0fU (u0) Ω∗(u0);

(b) hn
∑n−1
l=1 |Cov(Z1, Zl+1)| = o(1);

(c) nhn Var(Qn)→ ν0fU (u0) Ω∗(u0).

Proof: Let C be a generic constant, which may take different values at
different places. First, by conditioning on (X1, U1), we have

Var(Z1) = E
[
X1 XT

1 σ
2(X1, U1)K2

h(U1 − u0)
]

=
1
h

[fU (u0) Ω∗(u0) + o(1)] .

The result (c) follows trivially from (a) and (b) along with

Var(Qn) =
1
n

Var(Z1) +
2
n

n−1∑
l=1

(
1− l

n

)
Cov(Z1, Zl+1).

Therefore, it remains to prove part (b). To this end, let dn → ∞ be a
sequence of positive integers such that dn hn → 0. Define

J1 =
dn−1∑
l=1

|Cov(Z1, Zl+1)| and J2 =
n−1∑
l=dn

|Cov(Z1, Zl+1)|.

It remains to show that J1 = o
(
h−1

)
and J2 = o

(
h−1

)
.

We remark that since K(·) has a bounded support [−1, 1], aj(u) is
bounded in the neighborhood of u ∈ [u0 − h, u0 + h]. Let

B = max
1≤j≤p

sup
|u−u0|<h

|aj(u)| and ‖x‖1 =
p∑
j=1

|xj |.

Then sup|u−u0|<h |m(x, u)| ≤ B‖x‖1. By conditioning on (X1, U1) and
(Xl+1, Ul+1), and using Conditions 1(ii) and 2(i), we have, for all l ≥ 1,

|Cov(Z1, Zl+1)|
≤ C E

[∣∣X1 XT
l+1

∣∣ {|Y1|+B‖X1‖1}{|Yl+1|+B‖Xl+1‖1}

Kh(U1 − u0)Kh(Ul+1 − u0)
]

≤ C E
[∣∣X1XT

l+1

∣∣ {C +B2‖X1‖21
}1/2 {

C +B2‖Xl+1‖21
}1/2

Kh(U1 − u0)Kh(Ul+1 − u0)
]

≤ C E
[∣∣X1 XT

l+1

∣∣ {1 + ‖X1‖1} {1 + ‖Xl+1‖1}
]

≤ C.
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Here, the finite fourth moment of X follows from Condition 2(iv). It follows
that

J1 ≤ C dn = o
(
h−1)

by the choice of dn.
Next, we consider the upper bound of J2. To this end, by using Davydov’s

inequality (Proposition 2.5 with p = q = δ), we obtain, for all 1 ≤ j, m ≤ p
and l ≥ 1,

|Cov(Z1j , Zl+1,m)| ≤ C [α(l)]1−2/δ [E|Zj |δ
]1/δ [

E|Zm|δ
]1/δ

. (8.90)

By conditioning on (X, U) and using Conditions 1(ii) and 2(iii), we obtain

E
[|Zj |δ

] ≤ C E
[|Xj |δKδ

h(U − u0)
{|Y |δ +Bδ ‖X‖δ1

}]

≤ C E
[|Xj |δKδ

h(U − u0)
{
C +Bδ ‖X‖δ1

}]

≤ C h1−δ E
[|Xj |δ

{
C +Bδ ‖X‖δ1

}]

≤ C h1−δ. (8.91)

A combination of (8.90) and (8.91) leads to

J2 ≤ C h2/δ−2
∞∑
l=dn

[α(l)]1−2/δ

≤ C h2/δ−2 d−c
n

∞∑
l=dn

lc [α(l)]1−2/δ

= o
(
h−1)

by choosing dn such that h1−2/δ dcn = C, so that the requirement that
dn hn → 0 is satisfied.

8.8.4 Proof of Theorem 8.3
We employ the small-block and large-block techniques as in the proof of
Theorem 6.3. The basic ideas and the techniques are almost identical to that
theorem so that the notation introduced there is also used here with the
understanding that T = n and x = u0. We apply the Cramér–Wold device
to derive the asymptotic normality of Qn. For any unit vector c ∈ �p, let
Zn,i =

√
h cT Zi+1, i = 0, . . . , n− 1. Then

√
nh cT Qn =

1√
n

n−1∑
i=0

Zn,i.

By Lemma 8.4, we have

Var(Zn,0) = θ2(u0){1 + o(1)},



8.8 Complements 391

where θ2(u0) = ν0fU (u0) cT Ω∗(u0)c and

n−1∑
l=0

|Cov(Zn,0, Zn,l)| = o(1).

Recall in the proof of Theorem 6.3 that

√
nh cT Qn =

1√
n
{Q′

n +Q′′
n +Q′′′

n } .

Following the same idea as in the proof of Theorem 6.3, we need to verify
conditions (6.73)—(6.76).

First, choose the same block size as in the proof of Theorem 6.3. Observe
that

E [Q′′
n]

2 =
q−1∑
j=0

Var(ξj) + 2
∑

0≤i<j≤q−1

Cov(ξi, ξj) ≡ I1 + I2.

It follows from stationarity and Lemma 8.4 that

I1 = qn Var(ξ1) = qn Var




sn∑
j=1

Zn,j


 = qn sn [θ2(u0) + o(1)].

Let r∗
j = j(rn + sn), then r∗

j − r∗
i ≥ rn for all j > i, and we therefore have

|I2| ≤ 2
∑

0≤i<j≤q−1

sn∑
j1=1

sn∑
j2=1

∣∣Cov(Zn,r∗
i +rn+j1 , Zn,r∗

j +rn+j2)
∣∣

≤ 2
n−rn∑
j1=1

n∑
j2=j1+rn

∣∣Cov(Zn,j1 , Zn,j2)
∣∣.

By stationarity and Lemma 8.4, we obtain

|I2| ≤ 2n
n∑

j=rn+1

∣∣Cov(Zn,1, Zn,j)
∣∣ = o(n).

Hence
1
n
E[Q′′

n]
2 = O

(
qn sn n

−1)+ o(1) = o(1).

It follows from stationarity and Lemma 8.4 that

Var [Q′′′
n ] = Var



n−qn(rn+sn)∑

j=1

Zn,j


 = O(n− qn(rn + sn)) = o(n).
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The last two expressions entail (6.73). Similarly, (6.74) can be established
using the identical argument as in the proof of Theorem 6.3. As for (6.75),
by stationarity, (6.77), and Lemma 8.4, it is easily seen that

1
n

qn−1∑
j=0

E
(
η2
j

)
=
qn
n
E
(
η2
1
)

=
qn rn
n
· 1
rn

Var




rn∑
j=1

Zn,j


→ θ2(u0).

This proves (6.75).
It remains to establish (6.76). For this purpose, we employ Theorem 4.1

in Shao and Yu (1996) and Condition 2 to obtain

E
[
η2
1 I
{|η1| ≥ ε θ(u0)

√
n
}]

≤ C n1−δ/2E
(|η1|δ

)

≤ C n1−δ/2 rδ/2n

{
E
(
|Zn,0|δ∗)}δ/δ∗

. (8.92)

As in (8.91),
E
(
|Zn,0|δ∗) ≤ C h1−δ∗/2.

Therefore, by (8.92)

E
[
η2
1 I
{|η1| ≥ ε θ(u0)

√
n
}] ≤ C n1−δ/2 rδ/2n h(2−δ∗)δ/(2 δ∗).

Thus, by using Conditions 2(iii) and (iv), we obtain

1
n

q−1∑
j=0

E
[
η2
j I
{|ηj | ≥ ε θ(u0)

√
n
}] ≤ C γ1−δ/2

n n1/2−δ/4 hδ/δ
∗−1

n → 0

since γn →∞. This completes the proof of the theorem.

8.8.5 Proof of Theorem 8.4
(i) It follows from the ordinary least-squares theory that there exists a
minimum value of

E
[
{Y − f(X)}2

∣∣∣ αTX = z
]

over the class of functions of the form f(x) =
∑p−1
i=0 fi(α

τx)xi with x0 = 1.
Let f∗

0 (z), . . . , f∗
p−1(z) be the minimizer. Then

(
f∗
0 (z), . . . , f∗

p−1(z)
)T =

{
Var

(
X∗
∣∣∣αTX = z

)}−1
Cov

(
X∗, Y

∣∣∣αTX = z
)
.

By the continuity assumption, the functions f∗
0 (z), . . . , f∗

p−1(z) are contin-
uous in z. It follows immediately from the least-squares theory that

E





Y − f∗

0 (z)−
p−1∑
j=1

f∗
j (z)Xj




2
∣∣∣∣∣∣∣
αTX = z



≤ Var(Y |αTX = z).
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Consequently,

R(α) ≡ E

Y − f

∗
0 (αTX)−

p−1∑
j=1

f∗
j (αTX)Xj




2

is bounded by Var(Y ) and continuous on the compact set {α ∈ Rd :
||α|| = 1}. Hence, there exists a β in the set above such that R(α) ob-
tains its minimum. This establishes (i).

(ii) By letting x1 = · · · = xp−1 = 0 in (8.31), we have g0(u) = g(0, · · · ,
0, z/βp). Now, letting uj be the vector with xj = 1, xp = (u− βj)/βp, and
the rest xk = 0 for k �= j, p, we deduce from (8.31) that

gj(u) = g(uj)− g0(u).
Thus, the functions gj are uniquely determined from g.

(iii) Suppose that there exist two nonzero and nonparallel vectors α and
β in Rp such that

g(x) = g0(βTx) +
p−1∑
j=1

gj(βTx)xj (8.93)

= f0(αTx) +
p−1∑
j=1

fj(αTx)xj . (8.94)

By a rotation transform if necessary, without loss of generality, assume
β = (c, 0, . . . , 0)T . Then, it follows from (8.93) that ∂2g(x)/∂x2

i = 0 for
i = 2, . . . , p. Write αTx = z. Choose 2 ≤ i ≤ p fixed for which αi �= 0.
Then, from (8.94), we have that

∂2g(x)
∂x2

i

= α2
i f̈0(z) + α2

i

p−1∑
j=1

f̈j(z)xj + 2αiḟi(z) = 0,

namely,

{αif̈0(z) + zf̈i(z) + 2ḟi(z)}+ αi
∑
j 	=i

{
f̈j(z)− αj

αi
f̈i(z)

}
xj = 0. (8.95)

Letting xj = 0 for j �= i and xi = x/αi in the equation above, we have

αif̈0(x) + xf̈i(x) + 2ḟi(x) = 0. (8.96)

Hence (8.95) reduces to

∑
j 	=i

{
f̈j(z)− αj

αi
f̈i(z)

}
xj = 0.
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This entails that

f̈k(x) = f̈i(x)
αk
αi
, 1 ≤ k ≤ p− 1,

by letting xk = x/αk and all other xj = 0 for k �= i and αk �= 0, or xk �= 0,
xi = x/αi, and all other xj = 0 for k �= i and αk = 0. This implies that
fk(z) = fi(z)αkα−1

i + akz + bk with ai = bi = 0. Substituting this into
(8.94), we have

g(x) = f0(αTx) + α−1
i fi(αTx)αTx +

∑
j 	=i

(ajαTx + bj)xj

≡ f∗
0 (αTx) +

∑
j 	=i

(ajαTx + bj)xj .

Now, an application of the argument (8.96) to the last expression above
shows that f∗

0 (z) = a0z + b0. Thus

g(x) = a0α
Tx + b0 +

∑
j 	=i

(ajαTx + bj)xj .

Now, ∂2g(x)/∂xi∂xj = ajαi for any j ≥ 2, which should be 0 according
to (8.93) since β = (c, 0, . . . , 0)T . Hence, all aj (j ≥ 2) in the expression
above are zero. This implies that

g(x) = γTx + b0 + a1x1α
Tx = γTx + b0 + c−1a1β

TxαTx,

where γ = a0α + b, and b = (b1, · · · , bp)T .

8.8.6 Conditions of Theorem 8.5

Conditions 3:

(i) For a given point x, p(x) > 0, σ2(x) > 0, and the functionsE{Y k|X =
z} are continuous at x for k = 3, 4. Furthermore, f̈(z) ≡ d2f(z)/dz2

and σ̈2(z) ≡ d2{σ2(z)}/dz2 are uniformly continuous on an open set
containing the point x.

(ii) E{Y 4(1+δ)} <∞, where δ ∈ [0, 1) is a constant.

(iii) The kernel functions W and K are symmetric density functions each
with a bounded support. Furthermore, |W (x1)−W (x2)| ≤ c|x1−x2|,
|K(x1) −K(x2)| ≤ c|x1 − x2|, and also |p(x1) − p(x2)| ≤ c|x1 − x2|
for real value x1, x2.
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(iv) The strictly stationary process {(Xi, Yi)} is absolutely regular; that
is,

β(j) ≡ sup
i≥1

E

{
sup

A∈F∞
i+j

|P(A|F i1)− P(A)|
}
→ 0, as j →∞,

where Fji is the σ-field generated by {(Xk, Yk) : k = i, . . . , j}, (j ≥ i).
Furthermore, for the same δ as in (ii),

∞∑
j=1

j2β
δ

1+δ (j) <∞.

(We use the convention 00 = 0.)

(v) As n→∞, hi → 0, and lim infn→∞ nh4
i > 0 for i = 1, 2.

We impose the boundedness on the supports of K(·) and W (·) for brevity
of proofs; it may be removed at the cost of lengthier proofs. In particular,
the Gaussian kernel is allowed. The assumption of the convergence rate of
β(j) is also for technical convenience. For other types of mixing coefficients,
the result can also be established. The assumption on the convergence rates
of h1 and h2 is not the weakest possible.

When {(Xt, Yt)} are independent, condition (iv) holds with δ = 0 and
condition (ii) reduces to E(Y 4) <∞. On the other hand, if (iv) holds with
δ = 0, there are at most finitely many nonzero β(j)’s. This means that
there exists an integer 0 < j0 < ∞ for which (Xi, Yi) is independent of
{(Xj , Yj), j ≥ i+ j0}, for all i ≥ 1.

8.8.7 Proof of Theorem 8.5
We outline only the key steps of the proofs. We always assume that con-
ditions (i)—(v) hold. We say that Bn(x) = B(x) + op(bn), or Op(bn), uni-
formly for x ∈ G if

sup
x∈G
|Bn(x)−B(x)| = op(bn), or Op(bn).

We only present the proof for the cases with δ > 0. The case with δ = 0
can be dealt with in a more direct and simpler way.

The proof is based on the following lemma, which follows directly from
Lemma 2 of Yao and Tong (2000).
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Lemma 8.5 Let G ⊂ {p(x) > 0} be a compact subset for which Condition
3(i) holds. As n→∞, uniformly for x ∈ G,

σ̂2(x)− σ2(x)

=
1

nh1p(x)

n∑
i=1

W

(
Xi − x
h1

)
{r̂2i − σ2(x)− σ̇2(x)(Xi − x)}

+Op{Rn,1(x)} (8.97)

and

f̂(x)− f(x) =
1

nh2p(x)

n∑
i=1

σ(Xi)εiK
(
Xi − x
h2

)

+
h2

2σ
2
K

2
f̈(x) +Op{Rn,2(x)}, (8.98)

where σ2
K =

∫
x2K(x)dx,

Rn,1(x) =
1

np(x)

[∣∣∣∣∣
n∑
i=1

W

(
Xi − x
h1

)
{r̂2i − σ2(x)− σ̇2(x)(Xi − x)}

∣∣∣∣∣

+

∣∣∣∣∣
n∑
i=1

Xi − x
h1

W

(
Xi − x
h1

)
{r̂2i − σ2(x)− σ̇2(x)(Xi − x)}

∣∣∣∣∣

]
,

Rn,2(x) =
1

np(x)

{∣∣∣∣∣
n∑
i=1

K

(
Xi − x
h2

)
σ(Xi)εi

∣∣∣∣∣

+

∣∣∣∣∣
n∑
i=1

Xi − x
h2

K

(
Xi − x
h2

)
σ(Xi)εi

∣∣∣∣∣

}
+O(h3

2).

We are now ready to prove the results. It follows from (8.75) and (8.97)
that

σ̂2(x)− σ2(x) = I1 + I2 − I3 + I4

+Op(h1)(|I1 + I2 − I3 + I4|+ |I ′
1 + I ′

2 − I ′
3 + I ′

4|),
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where

I1 =
1

nh1p(x)

n∑
i=1

W

(
Xi − x
h1

)
{σ2(Xi)− σ2(x)− σ̇2(x)(Xi − x)},

I2 =
1

nh1p(x)

n∑
i=1

W

(
Xi − x
h1

)
σ2(Xi)(ε2i − 1),

I3 =
2

nh1p(x)

n∑
i=1

W

(
Xi − x
h1

)
σ(Xi)εi{f̂(Xi)− f(Xi)}, (8.99)

I4 =
1

nh1p(x)

n∑
i=1

W

(
Xi − x
h1

)
{f̂(Xi)− f(Xi)}2,

and I ′
j (1 ≤ j ≤ 4) is defined in the same way as Ij with one more factor

h−1
1 (Xi−x) in the ith summand. It is easy to see that the theorem follows

directly from statements (a)—(d) below.

(a) I1 = 1
2h

2
1σ̈

2(x)σ2
W + op(h2

1) and I ′
1 = op(h2

1).

(b) (nh1)
1
2 I2

D−→ N(0, σ4(x)λ2(x)
∫
W 2(t)dt/p(x)) and

(nh1)
1
2 I ′

2
D−→ N(0, σ4(x)λ2(x)

∫
t2W 2(t)dt/p(x)).

(c) I3 = op(h2
1 + h2

2) and I ′
3 = op(h2

1 + h2
2).

(d) I4 = op(h2
1 + h2

2) and I ′
4 = op(h2

1 + h2
2).

In the following, we establish the statements on Ij in (a)—(d) only. The
cases with I ′

j can be proved in the same manner.
It is easy to see that (a) follows from a Taylor expansion and a direct

application of the ergodic theorem. Conditions 3(ii) and 3(iii) imply that

E

{
W

(
Xi − x
h1

)
σ2(Xi)(ε2i − 1)

}2+δ/2

<∞.

Note that the condition of absolutely regularity implies α-mixing with
α(j) ≤ β(j). By Condition 3(iv) and Theorem 2.21, I2 is asymptotically
normal with mean 0 and variance σ2

∗/nh1, where

σ2
∗ =

1
h1
E

{
W

(
X − x
h1

)
σ2(X)
p(X)

(ε2 − 1)
}2

+
1
h1

n∑
i=2

E

{
W

(
X1 − x
h1

)
σ2(X1)
p(X1)

(ε21 − 1)

× W

(
Xi − x
h1

)
σ2(Xi)
p(Xi)

(ε2i − 1)
}
. (8.100)
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It is easy to see that the first term in the expression above converges to

σ4(x)λ2(x)
∫
W 2(t)dt/p(x).

Note that, for any i ≥ 2,

E

{
W

(
X1 − x
h1

)
σ2(X1)
p(X1)

(ε21 − 1)W
(
Xi − x
h1

)
σ2(Xi)
p(Xi)

(ε2i − 1)
}1+δ

= O(h2
1),

E

{
W

(
X − x
h1

)
σ2(X)
p(X)

(ε2 − 1)
}

= 0,

and

E

∣∣∣∣W
(
X − x
h1

)
σ2(X)
p(X)

(ε2 − 1)
∣∣∣∣
1+δ

= O(h1).

It follows from Condition (iv) and Lemma 1 of Yoshihara (1976) that
the absolute value of the second term on the right-hand side of (8.100)
is bounded above by

ch
(1−δ)/(1+δ)
1 {β δ

1+δ (1) + · · ·+ β
δ

1+δ (n− 1)} = o(1).

Hence (b) holds.
Note thatW (·) has a bounded support contained in the interval [−sw, sw],

say. Therefore, in the summation on the right-hand side of (8.99), only those
terms with Xi ∈ [x− h2sw, x+ h2sw] might not be 0. Let

ϕij = K

(
Xi −Xj

h2

)
σ(Xi)σ(Xj)εiεj

{
p−1(Xi)W

(
Xi − x
h1

)

+p−1(Xj)W
(
Xj − x
h1

)}
.
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It follows from (8.98) that we may write I3 = I31 + I32 + I33, where

I31 =
1

n2h1h2p(x)

n∑
i,j=1

ϕij

=
2

n2h1h2p(x)

∑
1≤i<j≤n

ϕij +Op

(
1
nh2

)
, (8.101)

I32 =
h2

2σ
2
K

nh1p(x)

n∑
i=1

W

(
Xi − x
h1

)
σ(Xi)εif̈(Xi) = op(h2

2),

|I33| ≤ Op(1)
n2h1

∣∣∣∣∣∣
n∑

i,j=1

W

(
Xi − x
h1

)
K

(
Xi −Xj

h2

)
σ(Xi)σ(Xj)|εi|εj

p(Xi)

∣∣∣∣∣∣

+
Op(1)
n2h1

∣∣∣∣∣∣
n∑

i,j=1

Xj −Xi

h2
W

(
Xi − x
h1

)
K

(
Xi −Xj

h2

)
σ(Xi)σ(Xj)

× |εi|εj/p(Xi)|+ op(h2
2).

It follows from Lemma A(ii) of Hjellvik, Yao, and Tjøstheim (1998) that,
for any ε0 > 0 and ε > 0,

P


n

−1(h1h2)−( 1
1+δ −ε0)/2|

∑
I<j

ϕij | > ε




≤ c(h1h2)ε0

n2 E


(h1h2)

− 1
2(1+δ)

∑
i<j

ϕij




2

= o ((h1h2)ε0) .

Therefore, the first term on the right-hand side of (8.101) is

op{n−1(h1h2)−( 1+2δ
1+δ +ε0)/2}.

Thus
I31 = op(n−1(h1h2)−( 1+2δ

1+δ +ε0)/2) +Op(n−1h−1
2 ).

Condition 3(v) implies that the terms on the right-hand side of the expres-
sion above are of order op(h2

1 +h2
2) if we choose ε0 < (1+ δ)−1. Performing

Hoeffding’s projection decomposition of U -statistics, we can prove that
I33 = op(h2

1 + h2
2) in the same way.

The proof of (d) is similar to that of (c) and therefore is omitted here.

8.9 Bibliographical Notes

Functional-coefficient models
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The functional-coefficient models are also referred to as the varying coef-
ficient models . Varying-coefficient models arise from many contexts and
have been successfully applied to multidimensional nonparametric regres-
sion, generalized linear models, nonlinear time series models, longitudinal
and functional data analysis, and interest rate modeling in finance.

Early applications of varying-coefficient models appear in Haggan and
Ozaki (1981), Ozaki (1982), and Shumway (1988, p. 245). However, the
nonparametric techniques of the varying-coefficient model were not pop-
ularized until the work of Cleveland, Grosse, and Shyu (1991), Chen and
Tsay (1993), and Hastie and Tibshirani (1993).

For the independent data, the conditional bias and variance of the esti-
mators were derived in Carroll, Ruppert, and Welsh (1998) and Fan and
Zhang (1999), where a two-step procedure is also proposed. The asymp-
totic normality and bandwidth selection were presented in Zhang and Lee
(2000). The distribution of the maximum discrepancy between the esti-
mated coefficients and true ones was discussed by Xia and Li (1999b) and
Fan and Zhang (2000).

The varying-coefficient models have been popularly used to analyze the
longitudinal data. They are a specific case of the functional linear model
discussed in Ramsay and Silverman (1997) in the context of functional data
analysis. They allow one to examine the extent to which the association
between independent and dependent variables varies over time. The kernel
and spline methods have been proposed in Brumback and Rice (1998) and
Hoover, Rice, Wu, and Yang (1998). Fan and Zhang (2000) proposed a
two-step approach to improve the efficiency of estimated coefficient func-
tions, while Wu and Chiang (2000) used a different approach. Approaches
for constructing confidence regions based on the kernel method were in-
troduced in Wu, Chiang, and Hoover (1998). Fan, Jiang, Zhang, and Zhou
(2003) use varying-coefficient models to model term structure dynamics.

Additive models

The use of additive models can be dated back at least to Ezekiel (1924). The
idea of extending additive models includes the projection pursuit model
due to Friedman and Stuetzle (1981), the transformed additive model
by Breiman and Friedman (1985), and the generalized additive model by
Hastie and Tibshirani (1986). The convergence of the backfitting algorithm
has been studied by a number of authors, including Breiman and Friedman
(1985), Buja, Hastie, and Tibshirani (1989), Härdle and Hall (1993), Ans-
ley and Kohn (1994), and Opsomer and Ruppert (1997). The asymptotic
bias and variance of the backfitting estimator using the local polynomial
fitting were investigated by Opsomer and Ruppert (1997) and Opsomer
(2000). The asymptotic normality of the backfitting estimator using the
local polynomial estimator was established by Wand (2000). Yee and Wild
(1996) extended additive models for multivariate responses. Smith, Wong,
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and Kohn (1998) considered additive nonparametric regression with auto-
correlated errors. Model selection for semiparametric and additive models
is discussed in Härdle and Tsybakov (1995) and Simonoff and Tsai (1999).

The optimal rates of convergence for additive models have been estab-
lished by Stone (1985, 1986). Further extensions of the results can be found
in Stone (1994). The efficiency issues of the additive models were studied
by Linton (1997, 2000) and Fan, Härdle, and Mammen (1998). Fan, Härdle,
and Mammen (1998) were among the first to discover the oracle property
for the additive model. Mammen, Linton, and Nielsen (1999) modified the
backfitting algorithm to construct an efficient estimator for additive mod-
els. Kim, Linton, and Hengartner (1999) provided an efficient algorithm for
obtaining efficient estimators for additive components. Diagnostic tools for
additive models were given in Breiman (1993). Linton, Chen, Wang, and
Härdle (1997) proposed additive regression models with a parametrically
transformed response variable.

The projection estimator was proposed by Tjøstheim and Auestad (1994a)
for identification of nonlinear time series models. It was applied to select-
ing significant lags in Tjøstheim and Auestad (1994b). The procedure was
further extended and studied by Masry and Tjøstheim (1995) and Cai and
Fan (2000). In the multiple regression setting, the idea was independently
proposed by Linton and Nielsen (1995) under the name of “marginal in-
tegration estimator. ” The procedure was then modified and extended by
several authors, including Linton and Härdle (1996), Linton (1997, 2000),
Fan, Härdle, and Mammen (1998), Kim, Linton, Hengartner (1999) and
Mammen, Linton, and Nielsen (1999), , among others. Nielsen and Linton
(1998) gave an optimization interpretation of integration and backfitting
estimators.

Several papers have addressed the issue of whether an additive model
reasonably fits a given data set. Additive tests for nonlinear autoregression
were proposed and studied by Chen, Liu, and Tsay (1995). For multi-
ple nonparametric regression with factorial type of designs, Eubank, Hart,
Simpson, and Stefanski (1995) studied the Tukey type of test for additivity.

Other nonparametric models

Partially linear models were introduced by Wahba (1984) and studied
further by Heckman (1986), Chen (1988), Cuzick (1992), Severini and
Staniswalis (1994) and Hunsberger (1994), among others. The idea of the
profile least-squares method for the partially linear models was proposed by
Speckman (1988). Severini and Wong (1992) gave an insightful study of the
partially linear model from the profile likelihood perspective. Carroll, Fan,
Gijbels, and Wand (1997) extended the partially linear models to gener-
alized partially single-index models and proposed semiparametric efficient
methods. The techniques have been successfully applied and extended to
the assessment of selection biases of job training programs by Heckman,
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Ichimura, Smith, and Todd (1998). The partially linear models have also
been applied to other contexts such as the errors-in-variables regression
and survival analysis (Huang 1999, Liang, Härdle, and Carroll 1999). More
references and techniques can be found in the recent monograph by Härdle,
Liang, and Gao (2000).

Several methods have been proposed for estimating the indices in the
multiple-index models. Sliced inverse regression was proposed in Duan and
Li (1991), Li (1991) and . The idea was extended to handle the predictors
that contain binary regressors by Carroll and Li (1995). Principal Hessian
directions, introduced by Li, K.C. (1992) and revisited by Cook (1998),
are alternative methods of estimating multiple indices. Hsing and Carroll
(1992) studied the asymptotic normality of the two-slice estimate of covari-
ance matrix used in the sliced inverse regression. Hall and Li (1993) studied
the shapes of low-dimensional projections from high-dimensional data. The
results broaden the scope of the applicability of the sliced inverse regres-
sion. Schott (1994) addressed the problem of determining the number of
indices. Zhu and Fang (1996) established the asymptotic normality of the
estimated covariance matrix used in sliced inverse regression.

The average derivative method is a forward regression approach for esti-
mating the indices in the multiple-index models; see, for example, Härdle
and Stoker (1989). The technique has been applied to econometric models
by Hildenbrand and Jerison (1991), Stoker (1992), and Newey and Stoker
(1993). Samarov (1993) used the average derivative method for model se-
lection and diagnostics. Chaudhuri, Doksum, and Samarov (1997) applied
the technique to estimate quantile functions. The approach has recently
been improved by Hristache, Juditsky, Polzehl, and Spokoiny (2002). Esti-
mation and optimal smoothing in single-index models have been studied by
Härdle, Hall, and Ichimura (1993). Other innovative ideas appear in Cook
(1996, 1998), Cook and Lee(1999), Cook, Chiaromonte, and Li (2002), and
Cook and Li (2002).

For a detailed treatment of classifications and regression trees, see Breiman,
Friedman, Olshen, and Stone (1993). Breiman (1993) introduced the con-
cept of hinging hyperplanes for regression, classification, and function ap-
proximation. Hastie, Tibshirani, and Buja (1994) studied nonparametric
versions of discriminant analysis with multiple linear regression replaced
by any nonparametric regression technique. Applications of tree-based re-
gression models to the health sciences can be found in the book by Zhang
and Singer (1999). Recently, Li, Lue, and Chen (2000) applied principal
Hessian directions to construct an interactive tree-structured regression.

Estimation of conditional variance

Several authors have studied the problem of estimating conditional vari-
ance in the nonparametric regression model. When the variance function
is constant, it can be estimated at a root-n rate. An early paper on the
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estimation of constant variance in a nonparametric setting is Rice (1984b).
Gasser, Sroka, and Jennen-Steinmetz (1986) proposed an estimator based
on residuals. A class of difference-based estimators of the variance was
studied by Hall, Kay, and Titterington (1990), where optimal weights are
obtained.

The problem of estimating the conditional variance function has been
extensively studied in the literature. Müller and Stadtmüller (1987) es-
tablished the uniform rate of convergence and the asymptotic normality
of a kernel estimator. Hall and Carroll (1989) examined the oracle prop-
erty of conditional variance estimation under mild smoothness conditions
on the regression function. A general class of nonparametric estimators
was studied by Müller and Stadtmüller (1993). Neumann (1994) studied
a bandwidth selection problem for the estimation of conditional variance.
The mean-square error of the local polynomial estimation of the variance
function was studied by Ruppert, Wand, Holst, and Hössjer (1997). Härdle
and Tsybakov (1997) studied nonparametric estimation of a volatility func-
tion in nonparametric autoregression using a local polynomial. Fan and Yao
(1998) studied the local linear estimation of conditional variance when data
are dependent.

Estimation of drift function and volatility function in diffusion mod-
els has also received considerable attention in the literature. Pham (1981)
and Prakasa Rao (1985) proposed nonparametric drift estimators. Florens-
Zmirou (1993) studied the problem of estimating the diffusion coefficient
from discrete observations. A similar problem for multidimensional dif-
fusion processes was studied by Genon-Catalot and Jacod (1993). Uni-
formly strong consistency for the Nadaraya–Watson kernel estimator of
the drift function was established by Arfi (1995, 1998) under ergodic con-
ditions. A semiparametric procedure for estimating the diffusion function
was proposed by Aït-Sahalia (1996). Jiang and Knight (1997) developed a
nonparametric kernel estimator for the diffusion function. Stanton (1997)
used a kernel method to estimate the volatility function. Inferences on the
volatility functions have been studied by Fan and Zhang (2003). Time-
inhomogeneous nonparametric estimation of the volatility function was
studied by Fan, Jiang, Zhang, and Zhou (2003).
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9
Model Validation

9.1 Introduction

Parametric time series models provide explanatory power and a parsimo-
nious description of stochastic dynamical systems. Yet, there is a risk that
misspecification of an underlying stochastic model can lead to misunder-
standing of the systems, wrong conclusions, and erroneous forecasting. It
is common statistical practice to check whether a parametric model fits
a given data set reasonably well. To achieve this, in the Neyman–Pearson
framework, we need to specify a class of alternative models. The traditional
approach is to use a large family of parametric models under an alternative
hypothesis. This is basically a parametric approach for model diagnostics.
The implicit assumption is that the large family of parametric models spec-
ifies the form of the true underlying dynamics correctly. However, this is
not always warranted and leads naturally to a nonparametric alternative
hypothesis. It is clear that nonparametric models will reduce the danger of
model misspecification.

As seen in Chapter 8, there are many nonparametric models that contain
parametric models as their specific examples. All can serve as alternative
models. For example, the AR(p) model can be embedded into the FAR(p, d)
model (8.1), the AAR(p) model (8.42), and the saturated nonparametric
autoregressive model (8.27). Depending on prior knowledge, we choose a
class of alternative models. As in statistical estimation, the larger the fam-
ily of models, the poorer the parameters are estimated but the less the
modeling biases. Similarly, in hypothesis testing, the larger the alternative
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models, the lower the power of tests but the smaller the danger of model
misspecification.

Despite extensive developments on nonparametric estimation techniques,
there are few generally applicable methods for nonparametric inferences.
For hypothesis testing, there are extensive developments based on the uni-
variate nonparametric model (see Bowman and Azzalini, 1997; Hart, 1997).
However, there are only a few papers on multivariate nonparametric mod-
els. Most methods are designed for some specific problems. There are virtu-
ally no developments on model validation using nonparametric techniques
for dependent data.

In this chapter, we will introduce the idea of the generalized likelihood
ratio test. This is a generally applicable method for testing against nonpara-
metric models. It has been developed for independent data. Nevertheless,
the idea is applicable to time series data, even though the theory for de-
pendent data needs to be developed. In particular, we will introduce the
technique for validating ARMA models in the spectral domain and AR
models and threshold models in the time-domain.

9.2 Generalized Likelihood Ratio Tests

We first introduce the generalized likelihood ratio statistic. The technique
will be used repeatedly. This section follows mainly the development of
Fan, Zhang, and Zhang (2001). Although their development was based on
independent data, the idea and techniques can be extended readily to the
time series setting. It is expected that under some mixing conditions, the
results should also hold for the dependent data. Extension of the results in
this section to the dependent data remains as an interesting problem for
further investigation.

9.2.1 Introduction
The maximum likelihood ratio test is a useful method that is generally
applicable to most parametric hypothesis-testing problems. The most fun-
damental property that contributes tremendously to the success of the
maximum likelihood ratio tests is that their asymptotic distributions un-
der null hypotheses are independent of nuisance parameters. This prop-
erty was referred to as the Wilks phenomenon by Fan, Zhang, and Zhang
(2001). With such a property, one can determine the null distribution of
the likelihood ratio statistic by using either the asymptotic distribution or
the Monte Carlo simulation by setting nuisance parameters at some fitted
value. The latter is also referred to as the parametric bootstrap .

The question arises naturally whether the maximum likelihood ratio test
is still applicable to the problems with nonparametric models as alternative.
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First, nonparametric maximum likelihood estimators usually do not exist.
Even when they exist, they are hard to compute. Furthermore, the result-
ing maximum likelihood ratio tests are not optimal. We use the simplest
example to illustrate the points above.

Example 9.1 (Univariate nonparametric model) Suppose that we have n
data {(Xi, Yi)} sampled from the nonparametric regression model

Yi = m(Xi) + εi, i = 1, · · · , n, (9.1)

where {εi} are a sequence of i.i.d. random variables from N(0, σ2) and Xi

has a density f with support [0, 1]. Suppose that the parameter space is

F = {m : sup
x∈[0,1]

|m′′(x)| ≤ 1}.

Consider testing the simple linear regression model

H0 : m(x) = β0 + β1x ←→ H1 : m(x) �= β0 + β1x (9.2)

with nonparametric alternative model (9.1). Then, the conditional log-
likelihood function given X1, · · · , Xn is

�(m,σ) = −n log(
√

2πσ)− 1
2σ2

n∑
i=1

(Yi −m(Xi))2. (9.3)

Let (β̂0, β̂1) be the maximum likelihood estimator (MLE) under H0 and
m̂MLE(·) be the MLE under the nonparametric model. The latter is used
to solve the following optimization problem:

min
n∑
i=1

(Yi −m(Xi))2, subject to sup
x∈[0,1]

|m′′(x)| ≤ 1.

The optimization of such a problem, even if it exists, is hard to find.
Now, let us consider the parameter space

M =
{
m :

∫ 1

0
m′′(x)2dx ≤ 1

}
.

Then, the nonparametric maximum likelihood estimator is used to find m
to minimize

n∑
i=1

(Yi −m(Xi))2 subject to
∫ 1

0
m′′(x)2dx ≤ 1.

As discussed in §6.4.3, the resulting estimator m̂MLE is a smoothing spline
(Wahba 1990; Eubank 1999), with the smoothing parameter chosen to sat-
isfy ‖m̂MLE‖22 = 1. Define the residual sum of squares RSS0 and RSS1 as
follows:

RSS0 =
n∑
i=1

(Yi − β̂0 − β̂1Xi)2, RSS1 =
n∑
i=1

{Yi − m̂MLE(Xi)}2. (9.4)
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Then, it is easy to see that the logarithm of the conditional maximum
likelihood ratio statistic for the problem (9.2) is given by

T = �n(m̂MLE, σ̂)− �(m̂0, σ̂0) =
n

2
log

RSS0

RSS1
, (9.5)

where σ̂2 = n−1RSS1, m̂0(x) = β̂0 + β̂1x, and σ̂2
0 = n−1RSS0. Even in

this simplest situation, where the nonparametric MLE exists, Fan, Zhang,
and Zhang (2001) have shown that the nonparametric maximum likelihood
ratio test is not optimal. This is due to the limited choice of the smoothing
parameter in m̂MLE, which makes it satisfy ‖m̂MLE‖ = 1. This choice is
optimal for estimating the function m but not for estimating the functional
‖m‖2.

The example above reveals that the nonparametric MLE may not ex-
ist and hence cannot serve as a generally applicable method. It illustrates
further that, even when it exists, the nonparametric MLE chooses smooth-
ing parameters automatically. This is too restrictive for the procedure to
possess the optimality of testing problems. Further, we need to know the
nonparametric space exactly. For example, the constant “one” in F and
M needs to be specified. This is an unrealistic assumption in practice. To
attenuate these difficulties, we replace the maximum likelihood estimator
under the alternative nonparametric model by any reasonable nonparamet-
ric estimator. This is the essence of the generalized likelihood ratio (GLR)
statistics. In Example 9.1, the GLR statistic is used to replace m̂MLE by, for
example, the local linear estimator m̂. This significantly enhances the flex-
ibility of the test statistic by varying the smoothing parameter. By proper
choices of the smoothing parameter, the GLR tests achieve the optimal
rates of convergence in the sense of Ingster (1993) and Lepski and Spokoiny
(1999). Further, they are applicable to both nonparametric spaces F and
M, even without knowing the exact constant (e.g., the constant “one” in
Example 9.1) in these spaces.

9.2.2 Generalized Likelihood Ratio Test
The basic idea of the generalized likelihood ratio test is as follows. Let f be
the vector of functions of main interest and η be the nuisance parameters.
Suppose that the logarithm of the likelihood of a given set of data is �(f,η).
Given η, we have a good nonparametric estimator ̂fη. The nuisance param-
eters η can be estimated by the profile likelihood by maximizing �(̂fη,η)
with respect to η, resulting in the profile likelihood estimator η̂. This gives
the profile likelihood �(̂fη̂, η̂), which is not the maximum likelihood since
̂fη is not an MLE.

Now, suppose that we are interested in testing whether a parametric
family fθ fits a given set of data. Formally, the null hypothesis is

H0 : f = fθ, θ ∈ Θ, (9.6)
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and we use the nonparametric model f as the alternative model. Let θ̂0
and η̂0 be the maximum likelihood estimator under the null model (9.6)
maximizing the function �(fθ ,η). Then �(fθ̂0

, η̂0) is the maximum likelihood
under the null hypothesis. The GLR test statistic simply compares the
log-likelihood under the two competing classes of models:

T = �(̂fη̂, η̂)− �(fθ̂0
, η̂0). (9.7)

Before we proceed further, let us revisit Example 9.1.

Example 9.2 (Example 9.1 revisited). In that example, f = m and η = σ.
The log-likelihood function �(m,σ) is given by (9.3). For a given σ, let m̂(·)
be the local linear estimator based on the data {(Xi, Yi), i = 1, · · · , n},
which is independent of σ. Substituting it into the likelihood, we obtain
the profile likelihood

−n log(
√

2πσ)− 1
2σ2 RSS1,

where RSS1 =
∑n
i=1(Yi−m̂(Xi))2. Maximizing the profile likelihood above

with respect to σ, we obtain σ̂2 = n−1RSS1 and the profile likelihood

−n
2

log(
√

2πRSS1/n)− n

2
.

Under the null hypothesis, fθ(x) = β0 + β1x. One can easily obtain the
maximum likelihood estimators β̂0 and β̂1 and hence RSS0 as in (9.4) and
σ̂2

0 = n−1RSS0. Substituting these into the definition of the GLR, we obtain

T =
n

2
log(RSS0/RSS1).

This is a GLR test statistic.

As with parametric inferences, the GLR test does not have to use the
true likelihood. For example, the test statistic T in Example 9.2 applies
to problem (9.2) whether εi is normally distributed or not. The normality
assumption is simply used to motivate the procedure. Similarly, the GLR
statistic does not have to require the MLE under the null model (9.6). In
fact, any reasonable parametric methods are applicable since they typically
have a faster rate of convergence than nonparametric methods. In addition,
as will be discussed in §9.2.6, the approach is also applicable to the case
where nuisance parameters contain nonparametric functions.

9.2.3 Null Distributions and the Bootstrap
To utilize the GLR test statistic (9.7), we need to derive the distribution
under the null hypothesis (9.6). The question arises naturally whether the
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asymptotic null distribution depends on the nuisance parameter under the
null hypothesis, namely, whether the Wilks phenomenon continues to hold
for the GLR tests with nonparametric alternatives. Furthermore, we ask
whether the resulting tests are powerful enough.

For a number of models and a number of hypotheses, studied by Fan,
Zhang, and Zhang (2001), it has been shown that the Wilks type of results
continue to hold. Like Wilks (1938), Fan, Zhang, and Zhang (2001) are not
able to show that the Wilks type of results hold for all problems, but their
results indicate that such a phenomenon holds with generality. We use the
varying-coefficient model , which is closely related to the FAR(p, d) model,
to illustrate the results.

Suppose that we have a random sample {(Ui, Xi1, · · · , Xip, Yi)}ni=1 from

Y = a1(U)X1 + · · ·+ ap(U)Xp + ε, (9.8)

where ε is independent of covariates (U,X1, · · · , Xp), having mean zero and
variance σ2. To facilitate the notation, we denote

Xi = (Xi1, · · · , Xip)T , A(U) = (a1(U), · · · , ap(U))T

and rewrite the model (9.8) as

Y = A(U)TX + ε.

Consider first the simple null hypothesis testing problem

H0 : A = A0, ←→ H1 : A �= A0 (9.9)

for a given vector of functions A0. The GLR statistic can be constructed
by using the local linear fit.

Let Â be the vector of the local linear estimator constructed by using
(8.7). Define RSS1 =

∑n
i=1(Yi − Â(Ui)TXi)2, the residual sum of squares

under the nonparametric model. Using the same derivation as in Exam-
ple 9.2, when ε ∼ N(0, σ2), the GLR test statistic is given by

Tn,1 =
n

2
log(RSS0/RSS1), (9.10)

where RSS0 =
∑n
i=1(Yi −A0(Ui)TXi)2. By Taylor’s expansion, we have

the following approximation:

Tn,1 =
n

2
log
(

1 +
RSS0 − RSS1

RSS1

)

≈ n

2
RSS0 − RSS1

RSS1
.

This approximation is valid as long as RSS0 and RSS1 are close. This is
often the case when we need the test statistics to differentiate between the
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two classes of models. For this reason, the F -type of test statistic provides a
useful variant of the GLR test statistic; see for example, Azzalini, Bowman,
and Härdle (1989).

As will be demonstrated in the next theorem, the normality assumption
on ε is merely used to motivate the testing procedure. We use the notation
cTn

a∼ χ2
an

(with an →∞) to denote a sequence of random Tn having

{2an}−1/2(cTn − an) D−→ N(0, 1).

The technical arguments for establishing the asymptotic null distribution
of Tn,1 are complicated, and we refer readers to the paper by Fan, Zhang,
and Zhang (2001) for details. Here, we only give technical conditions of the
theorem.

Condition (A)

(A1) The marginal density of U is Lipschitz continuous and bounded away
from 0. U has a bounded support Ω.

(A2) A(u) has the continuous second derivative.

(A3) The function K(t) is symmetric and bounded. Furthermore, the func-
tions t3K(t) and t3K ′(t) are bounded and

∫
t4K(t)dt <∞.

(A4) E|ε|4 <∞.

(A5) X is bounded. The p×p matrix E(XXT |U = u) is invertible for each
u ∈ Ω and Lipschitz continuous.

Theorem 9.1 Under Condition (A), if A0 is linear or nh9/2 → 0, then
as nh3/2 →∞,

rKTn,1
a∼ χ2

µn
,

where µn = rKcKp|Ω|/h, |Ω| is the length of the support of U ,

rK =
K(0)− 1

2

∫
K2(t)dt∫

(K(t)− 1
2K ∗K(t))2dt

, and cK = K(0)− 1
2

∫
K2(t)dt.

The theorem above reveals that the asymptotic null distribution is inde-
pendent of any nuisance parameters, such as σ2 and the density function of
the covariate vector (U,X1, · · · , Xp). The normalization factor is rK rather
than 2 in the parametric maximum likelihood ratio test. The degree of free-
dom depends on p|Ω|/h. This can be understood as follows. Imagine that
we partition the support of U into equispaced intervals, each with length
h. Model aj(·) by a constant in each subinterval, resulting in p|Ω|/h + 1
parameters for model (9.8). Yet the number of parameters under the null
hypothesis is 1. Hence, the degree of freedom is p|Ω|/h. Since the local
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linear estimator uses overlapping intervals, the effective number of param-
eters is slightly different from p|Ω|/h. The constant factor rKcK reflects
this difference.

The asymptotic null distribution is known and can be used to compute p-
values. Table 7.1 shows the values rK and cK . However, the asymptotic dis-
tribution does not necessarily give a good approximation for finite samples.
For example, from the asymptotic point of view, the χ2

µn+20-distribution
and the χ2

µn
-distribution are approximately the same, but for moderate µn,

they can be quite different. What this means is that we need a second order
term. Assume that the appropriate degree of freedom is µn + c for a con-
stant c. The constant c can be determined as follows. When the bandwidth
is large (h→∞), the local linear fit becomes a global linear fit. The GLR
test becomes the maximum likelihood ratio test. Hence, Tn,1

D−→ χ2
2p ac-

cording to the classical Wilks type of result. It is reasonable to expect that
the degree of freedom µn + c → 2p as h → ∞; namely c = 2p. This kind
of calibration idea appeared in Zhang (2002b). In conclusion, the χ2

µn+2p-
distribution might be a closer approximation to the null distribution of Tn,1
than that of the χ2

µn
-distribution.

A better alternative is to use the parametric conditional bootstrap. The
only nuisance parameter under the null hypothesis is σ2. For a given data
set, we are not certain whether the null model holds. Thus, we use the
fits from the alternative model, which is consistent under both classes of
models. This yields an estimate σ̂2

1 = n−1RSS1. The conditional bootstrap
method reads as follows:

1. Simulate ε∗
i from N(0, σ̂2

1) and construct the conditional bootstrap
sample:

Y ∗
i = A0(Ui)TXi + ε∗

i , i = 1, · · · , n.
2. Use the bootstrap sample {(Ui,Xi, Y

∗
i )}ni=1 to construct the GLR

statistic T ∗.

3. Repeat Steps 1 and 2 B times (say, 1,000 times) and obtain B GLR
statistics T ∗

1 , · · · , T ∗
B .

4. Use the empirical distribution

F̂B(x) = B−1
B∑
i=1

I(T ∗
i ≤ x)

as an approximation to the distribution of Tn,1 under the null hy-
pothesis.

In particular, the p-value is simply the percentage of {T ∗
i }Bi=1 greater than

Tn,1.
When the normality assumption on εi is removed, one can replace Step

1 by drawing ε∗
i from the centered residuals {ε̂i− ¯̂ε}ni=1, where {ε̂i} are the
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residuals from the alternative model and ¯̂ε is their average. This is basically
the conditional nonparametric bootstrap.

Theorem 9.1 is also applicable to testing composite null hypotheses. To
see this, let us consider the composite null hypothesis

H0 : A(u) = A(u,β). (9.11)

Let β̂ be the least-squares estimator minimizing

n∑
i=1

{Yi −A(u,β)TXi}2.

Let RSS∗
0 be the residual sum of squares under model (9.11). Then, the

GLR statistic is given by

Tn,2 =
n

2
log(RSS∗

0/RSS1).

To derive the asymptotic distribution of Tn,2, consider two fabricated test-
ing problems,

H
(1)
0 : A(u) = A(u,β0) ←→ H

(1)
1 : A(u) = A(u,β) (9.12)

and

H
(2)
0 : A(u) = A(u,β0) ←→ H

(2)
1 : A(u) �= A(u,β0), (9.13)

where β0 is the true parameter under H0. Both of them have the same
simple null hypothesis. Then, decompose

Tn,2 =
n

2
log(RSS0/RSS1)− n

2
log(RSS0/RSS∗

0). (9.14)

Note that the first term is the GLR statistic for the problem (9.9), or more
precisely (9.13), and the second term is the traditional likelihood ratio test
for the problem (9.12). Applying Theorem 9.1, rKTn,1

a∼ χ2
µn

. When β̂
is the MLE, by the traditional Wilks theorem, it has an asymptotic χ2

q-
distribution, which is stochastically bounded in the sense that it does not
diverge, where q is the number of parameters in β. Hence, the first term in
(9.14) dominates the second term. Therefore,

rKTn,2
a∼ χ2

µn
. (9.15)

The result (9.15) reveals that the asymptotic null distribution is inde-
pendent of the nuisance parameters β and σ2. Theoretically speaking, we
can set β and σ2 at any predetermined value in the conditional bootstrap
above. In practice, we use β̂ and σ̂2

1 constructed from the alternative model
(i.e., pretending A0(·) = A(·, β̂) in the conditional bootstrap above).
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9.2.4 Power of the GLR Test
We now consider the power of the GLR test for the problem (9.9). Consider
the contiguous alternatives of form

H1n : A(u) = A0(u) + Gn(u), (9.16)

where Gn(u) = (g1n(u), · · · , gpn(u))T is the deviation from the null hy-
pothesis. This class of alternative hypothesis is wider than

H1n : A(u) = A0(u) + anG(u) (9.17)

for some given an → 0 and G(·) and

H1n : A(u) = A0(u) + anG0((u− u0)/bn) + a′
nG1((u− u1)/b′n) (9.18)

for some given an, a′
n, bn, b

′
n → 0 and u0, u1,G0, and G1. In many different

contexts, the power of tests has been popularly studied under the alter-
native of form (9.17) (see, e.g., Hart 1997). Despite its popularity and its
simplicity, the class of alternatives (9.17) is limited for nonparametric ap-
plications. For example, it implies that not only does the function deviate
from the null hypothesis at rate an but also so do its derivatives. By the
proper choice of rates in (9.18), this problem can be avoided. Yet, this kind
of alternative is not included in (9.17) but in (9.16).

The power under the alternative (9.16) has been calculated by Fan,
Zhang, and Zhang (2001). In particular, they show that when the band-
width is of order n−2/9, the GLR test can detect alternatives with rate

{EGT
n (U)XXTGn(U)}1/2 ≥ n−4/9

uniformly over a large class of functions Gn that satisfy some regularity
conditions. This rate n−4/9 is optimal, according to Ingster (1993). In other
words, the GLR test is optimal in uniformly detecting a large class of al-
ternative models that deviate from the null hypothesis with rate O(n−4/9).
The optimality here is not the same as the most powerful test in the clas-
sical sense. In fact, for problems as complex as ours, the uniformly most
powerful test does not exist.

9.2.5 Bias Reduction
When the null hypothesis A(·; β) is not linear, a local linear fit will have
biases under the null hypothesis. This affects the null distribution of the
generalized likelihood statistic. This problem was handled in Theorem 9.1
by letting bandwidth go to zero sufficiently fast. Although this solves the
problem theoretically, it does not solve the bias problem in practice. In
practice, it is unknown how small the bandwidth is in order to have neg-
ligible biases. Furthermore, too small a bandwidth can have an adverse
impact on the power of the GLR.
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Our approach is quite simple. We use the framework in §9.2.2 to illustrate
the idea. Reparameterize the unknown functions as f∗ = f− fθ̂0 . Then, the
problem (9.6) becomes testing

H0 : f∗ = 0 ←→ f∗ �= 0 (9.19)

with the likelihood function �∗(f∗, η) = �(f∗ + fθ̂0 , η). Now, apply the GLR
test to this reparameterized problem with the new likelihood function �∗(f∗,
η). The bias problem in the null distribution has disappeared for this
reparame-
terized problem, since any reasonable nonparametric estimator will not
have biases when the true function is zero. This approach is related to
an idea of Härdle and Mammen (1993), Hjort and Glad (1995), and Glad
(1998).

Let f̂
∗

be a profile likelihood estimate as in §9.2.2 based on �∗(f∗, η).
Then, the bias-corrected version of the GLR test is

T ∗ = �∗(f̂∗, η̂)− �∗(0, η̂0).

Compare this with (9.17).

9.2.6 Nonparametric versus Nonparametric Models
For multivariate nonparametric models such as (9.8), we naturally ask
whether a few covariates are statistically significant. This is equivalent to
testing problems such as

H0 : a1(U) = a2(U) = 0,

corresponding to whetherX1 andX2 are statistically significant. This prob-
lem is different from (9.11) in that the null model is still a nonparametric
model since the functions a3, · · · , ap are not restricted to a parametric fam-
ily.

We use the varying-coefficient model (9.8) to illustrate the basic idea.
Consider more generally the testing problem

H ′
0 : A1 = A1,0 ←→ H ′

1 : A1 �= A1,0, (9.20)

where we partition the parameter functions as A(u) = (A1(u)T ,A2(u)T )T .
Under the null hypothesis H ′

0, the problem is still a varying-coefficient
model. Let Â2,0 be the local linear estimator using the same bandwidth h.
Define the residual sum of squares as

RSS∗∗
0 =

n∑
i=1

{Yi −A1,0(Ui)TX(1)
i − Â2,0(Ui)TX(2)

i }2,
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where Xi is partitioned as (X(1)
i

T ,X(2)
i

T )T . Following the same derivation
as in Example 9.2, we obtain the GLR statistic

Tn,3 =
n

2
log(RSS∗∗

0 /RSS1). (9.21)

Theorem 9.1 is still relevant to the derivation of the distribution of the
test statistic Tn,3 under the null hypothesis H ′

0. Decompose

Tn,3 =
n

2
log(RSS0/RSS1)− n

2
log(RSS0/RSS∗∗

0 ).

The first term is just the GLR statistic for the problem (9.9), and the
second term is the GLR statistic for the simple null hypothesis

H
(2)
0 : A2 = A2,0 ←→ H

(2)
1 A2 �= A2,0

with the function A1 = A10 being given, where A20 is the true parameter
function of A2. Using this observation, Fan, Zhang, and Zhang (2001) have
derived the following result.

Theorem 9.2 Under Condition (A), when A1,0 is linear or nh9/2 → 0,
if nh3/2 →∞, then

rKTn,3
a∼ χ2

rKcKp1|Ω|/h,

where p1 is the dimension of the vector A1.

Once again, we unveil the Wilks phenomenon for problem (9.20). Al-
though the asymptotic distribution provides a method to compute the
approximate p-value, the conditional bootstrap seems to provide better
approximations. Because of Theorem 9.2, we can in theory set the vector
of nuisance functions A2 at any reasonable value in the conditional boot-
strap since the null distribution depends sensitively on A2. In practice, we
use the estimate from the alternative model, which is a consistent estimate
of A2 under both null and alternative models. The conditional bootstrap
is identical to the one outlined above, except in Step 1, where we construct
the conditional bootstrap sample as

Y ∗
i = A10(Ui)TX(1)

i + Â20(Ui)TX(2)
i + ε∗

i ,

where Â20 is the nonparametric estimate from the alternative model. See
also §9.4.1 for a similar algorithm. The bias reduction technique in §9.2.5
should be employed if A1,0 is nonlinear.

9.2.7 Choice of Bandwidth
For each given smoothing parameter h, the GLR statistic Tn(h) is a test
statistic. This forms a family of test statistics indexed by h. In general, a
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larger choice of bandwidth is more powerful for testing smoother alterna-
tives, and a smaller choice of bandwidth is more powerful for testing less
smooth alternatives. Depending on the background of applications, one can
choose an appropriate size of bandwidth. An adaptive choice of bandwidth,
inspired by the adaptive Neyman test of Fan (1996) (see §7.4), is to choose
h to maximize the normalized test statistic

ĥ = argmaxh
Tn(h)− µn(h)√

2µn(h)

over a certain range of h, where µn(h) is the degree of freedom of the test
statistic Tn(h) (see, e.g., Theorem 9.1). This results in a multiscale GLR
test statistic

max
h

Tn(h)− µn(h)√
2µn(h)

.

The idea above appeared in Fan, Zhang, and Zhang (2001). Zhang (2002a)
further studied the properties of the multiscale test statistic. In particular,
she proposed methods to estimate the null distribution of the multiscale
GLR test.

In practical implementations, one would find the maximum in the multi-
scale GLR test over a grid of bandwidths. Zhang (2002a) calculated the
correlation between Tn(h) and Tn(ch) for some inflation factor c. The cor-
relation is quite large when c = 1.3. Thus, a simple implementation is to
choose a grid of points h = h01.5j for j = −1, 0, 1, representing “small,”
“right,” and “large” bandwidths. A natural choice of h0 is the optimal
bandwidth in the function estimation.

9.2.8 A Numerical Example
The Wilks phenomenon for the GLR statistic has been demonstrated for
distributions of an exponential family (see McCullagh and Nelder 1989)
by Fan, Zhang, and Zhang (2001) using asymptotic theory and by Cai,
Fan, and Li (2000) using various simulation models. We use one of their
examples to illustrate finite sample properties.

Example 9.3 (Logistic regression) We drew random samples of size n =
400 from the following nonparametric logistic regression model. The co-
variates X1 and X2 are standard normal random variables with correlation
coefficient 2−1/2, and U is uniformly distributed over [0, 1], independent of
X1 and X2. Given X1 and X2, the conditional probability is

P (Y = 1|X1, X2, U) = 1− P (Y = 0|X1, X2, U)

=
exp{a0(U) + a1(U)X1 + a2(U)X2}

1 + exp{a0(U) + a1(U)X1 + a2(U)X2} .
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The conditional likelihood function is

P (Y = 1|X1, X2, U)Y P (Y = 0|X1, X2, U)1−Y .

Consequently, by substituting the conditional formula into the conditional
likelihood function above, we obtain the log-likelihood as

�(a0, a1, a2) = {a0(U) + a1(U)X1 + a2(U)X2}Y
− log(1 + exp{a0(U) + a1(U)X1 + a2(U)X2}).

Consider testing the hypothesis

H0 : aj(·) = aj , j = 0, 1, 2.

The local likelihood estimator with the Epanechnikov kernel was used to
construct the nonparametric estimation of the functions a0(·), a1(·), and
a2(·). According to Table 7.1, the normalization constant rK = 2.1153.
Thus, the normalization was simply taken as Tn = 2Tn,1. To verify whether
the distributions of Tn depend sensitively on the parameters under the null
hypothesis, five different sets of values of {aj} were taken. They are quite far
apart. The distributions of Tn were estimated by using 1,000 Monte Carlo
simulations. The resulting estimates are depicted in Figure 9.1 and do not
depend sensitively on the choices of parameters under the null hypothesis.
This is consistent with the asymptotic theory.

To validate our conditional bootstrap method, five typical data sets were
actually simulated from an alternative model

a0,0(u) = exp(2u− 1), a1,0(u) = 8u(1− u), a2,0(u) = 2 sin2(2πu).

The conditional bootstrap estimates of null distributions, based on 1,000
bootstrap samples, are plotted as thin curves in Figure 9.1. They are almost
undifferentiable from the true distributions. This in turn demonstrates that
our conditional bootstrap method works very reasonably, even when the
null hypothesis is wrong.

Next, we examine the power of the GLR test. We evaluate the power of
the test under the alternative model

H1 : aj(u) = āj,0 + β(aj,0(u)− āj,0), j = 0, 1, 2,

where āj,0 = Eaj,0(U) and β is a given parameter, measuring the distance
between the null hypothesis and the alternative model. The GLR test was
performed at five different significance levels: 0.01, 0.05, 0.10, 0.25, and
0.5. Figure 9.2 shows the power, based on 1,000 simulations, of the GLR
test for various choices of β. In particular, when β = 0, the alternative hy-
pothesis becomes the null hypothesis. The power should be approximately
the same as the significance level. This was indeed the case. The powers for
five different levels of tests when β = 0 are, respectively, 0.012, 0.047, 0.101,
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FIGURE 9.1. Null distributions of the GLR statistic Tn for five different sets of
parameters (thick curves). The estimated distribution of Tn using the conditional
bootstrap for five different sets of data were also depicted (thin curves). Adapted
from Cai, Fan, and Li (2000).

0.281, and 0.532. This is another verification that the estimates using the
conditional bootstrap approximate the null distribution very well. When
the significance level is 5%, the power is approximately 0.8 when β = 0.6
and approximately 1 when β = 0.8.

9.3 Tests on Spectral Densities

ARMA models are one of the most popularly used families of models in lin-
ear time series analysis. They provide powerful prediction tools and useful
understanding on the probability law that governs the data-generation pro-
cess. Yet, models need to be verified before meaningful conclusions can be
drawn. One method for such a validation is to check whether the residuals
from an ARMA model form a white noise process using the nonparamet-
ric technique in §7.4. It checks one important aspect of the model. An
alternative method is to check whether the spectral density of the ARMA
model is significantly different from the nonparametric estimates in §7.2
and §7.3. This gives a different aspect of model diagnostics and forms the
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FIGURE 9.2. Power of the GLR statistic Tn at significance levels 0.01, 0.05, 0.10,
0.25, and 0.5 based on 1,000 simulations for different choices of β. Reproduced
from Cai, Fan, and Li (2000).

subject of this section. It checks whether the autocovariance structure of
an underlying process is consistent with that of an ARMA model.

As a generalization, we may test whether the spectral density admits a
certain specific form,

H0 : g = gθ ←→ H1 : g �= gθ, (9.22)

where gθ is a given parametric family of spectral densities. Recall that the
spectral density characterizes the autocovariance structure of a stationary
time series. It governs entirely the stochastic dynamic of a stationary time
series when the stochastic process is Gaussian. The testing problem (9.22)
is really on the issue of whether the autocovariance structure of a given
time series is of a certain specific parametric form. Note that nonlinear
time series such as GARCH and bilinear processes admit the same forms
of spectral densities as (linear) ARMA processes. Note also that if a time
series {Xt} is stationary, then its transformed series such as {X2

t } is also
stationary. Testing (9.22) based on the transformed series checks a different
model on {Xt}. Hence, the scope of the applicability is wider than what
we present here.
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9.3.1 Relation with Nonparametric Regression
Let {X1, · · · , XT } be a sequence of observed time series with spectral den-
sity g. As in §7.1, let Yk = log IT (ωk)/(2π) be the logarithm of the peri-
odogram at frequency ωk = 2πk/T . Then, from (7.2), we have

Yk = m(ωk) + zk + rk, k = 1, · · · , n, (9.23)

where m(·) = log g(·), n = [(T − 1)/2], rk is an asymptotically negligible
term, and {zk} is a sequence of i.i.d. random variables having density

fz(x) = exp(− exp(x) + x). (9.24)

Ignoring the small order rk, the model (9.23) is a nonparametric model,
with the error distribution given by (9.24). The testing problem (9.22)
becomes testing whether the “regression function” m(·) is of form mθ =
log(gθ).

Testing problem (9.22) has a number of applications. It can be applied to
testing whether an underlying stochastic process follows an ARMA model.
It can also be employed to verify other models by checking whether a
residual series follows a white noise process.

Suppose that we wish to test whether {X1, · · · , XT } follows an ARMA(p, q)
model (2.46):

Xt − b1Xt−1 − · · · − bpXt−p = εt + a1εt−1 + · · ·+ aqεt−q. (9.25)

Then, it has spectral density [see (2.47)]

gθ(ω) =
σ2

2π
|1 + a1 exp(−iω) + · · ·+ aq exp(−iqω)|2
|1− b1 exp(−iω)− · · · − bp exp(−ipω)|2 ,

where θ = (a1, · · · , aq, b1, · · · , bp, σ) is a vector of parameters. In the spec-
tral domain, validating an ARMA(p, q) model becomes the hypothesis-
testing problem (9.22). When the deviation is evidenced, it is clear that
the underlying series cannot be well-modeled by an ARMA process. If the
deviation from the null hypothesis in (9.22) is not substantiated, one can
only conclude that the series has the same autocovariance structure as the
ARMA model. This is a drawback of the procedure. However, for Gaussian
processes, the validation of H0 implies that the process is ARMA.

For a nonlinear time series, it is frequently assumed that stochastic errors
are normally distributed. Thus, the idea above can be applied to a residual
series to check whether it is a white noise series. This significantly expands
the scope of the application of this approach.

9.3.2 Generalized Likelihood Ratio Tests
We now employ the GLR test on the problem (9.22). As discussed in §9.2.5,
to reduce the biases under the null hypothesis, we need to reparameterize
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the problem. Let θ be an estimated value under the null hypothesis. For
example, it can be estimated by maximizing the Whittle likelihood

n∑
k=1

[− exp{Yk −mθ(ω)}+ Yk −mθ(ωk)]. (9.26)

This is an approximate likelihood in the frequency domain. In the case of
testing an ARMA model, we can also use the maximum likelihood method
to estimate the parameters in the ARMA(p, q) model (9.25). In general,
we require only that θ be estimated at O(n−1/2). Let gθ̂ be the estimated
spectral density gθ̂. Set

Y ∗
k = Yk − log(gθ̂(ωk)).

Then, the problem is reduced to testing

H0 : m∗(x) = 0 ←→ H1 : m∗(x) �= 0 (9.27)

based on the data

Y ∗
k ≈ m∗(ωk) + zk, k = 1, · · · , n, (9.28)

where m∗(ω) = m(ω) − log(gθ̂(ω)). Ignoring the smaller order term in
(9.28), the log-likelihood of Y ∗

1 , · · · , Y ∗
n is

�(m∗) =
n∑
k=1

[Y ∗
k −m∗(ωk)− exp{Y ∗

k −m∗(ωk)}]. (9.29)

This is in fact the same as the Whittle likelihood in §7.3.2.
As in (7.21), the function m∗ can be estimated by using the local-

likelihood fit, resulting in m̂∗. Now, the GLR statistic is simply

Tn,4 = �(m̂∗)− �(0)

=
n∑
k=1

[exp(Y ∗
k )− exp{Y ∗

k − m̂∗(ωk)} − m̂∗(ωk)]. (9.30)

The distribution of the GLR statistic can be estimated by using the con-
ditional bootstrap method outlined in §9.2. To expedite the computation,
we can simulate the sample directly from (9.28), and hence the p-value of
the test can be obtained. More precisely, the schematic algorithm goes as
follows:

1. Obtain the parametric estimate θ̂ and compute {Y ∗
k }.

2. Apply the local likelihood method in §7.3.2 to obtain an estimate m̂∗

and the selected bandwidth ĥ.



9.3 Tests on Spectral Densities 423

3. Compute the observed test statistic Tn,4 as in (9.30).

4. Generate a random sample {zk} with the density (9.24), and set the
bootstrap sample Y ∗∗

k = zk (see (9.28)).

5. Use the local likelihood method in §7.3.2 with the bandwidth ĥ, which
is independent of the bootstrap sample, to obtain the local likelihood
estimate m̂∗∗ and the bootstrap test statistic T ∗

n,4.

6. Repeat steps 4 and 5 B times (say, 1,000 times) and obtain B boot-
strap test statistics.

7. Estimate the p-value as the percentage of the bootstrap statistics that
exceed the observed statistic Tn,4.

Note that zk in step 4 can be generated from zk = log(− log(uk)), where
{uk} are a sequence of random variables uniformly distributed on (0, 1).
This expedites the computational burden. If a more precise null distribution
is needed, we can modify step 4 as follows. Generate a sequence of Gaussian
white noise with σ = 1 and length T , and compute the logarithm of the
periodogram of this series to obtain {Y ∗∗

k }. For the bootstrap samples in
step 5, we do not use the data-driven bandwidth. This avoids the variability
and possible instability of the data-driven bandwidths.

A simple alternative method is to regard (9.28) as the least-squares prob-
lem:

Y ∗
k − C0 ≈ m∗(ωk) + (zk − C0), k = 1, · · · , n,

where C0 = Ezk = −.57721 from (7.6). By using the local linear fit, we
obtain the least-squares estimate

m̂∗
LS(ω) =

n∑
j=1

KT

(
ω − ωj
h

, ω

)
(Y ∗
j − C0),

where as in (7.16) KT is the weight induced by the local linear fit. Let

RSS1 =
n∑
k=1

{Y ∗
k − C0 − m̂∗

LS(ωk)}2

be the residual sum of squares under the nonparametric model. Similarly,
let

RSS0 =
n∑
k=1

(Y ∗
k − C0)2.

Pretending that the distribution of zk is normal, we obtain the GLR

Tn,5 = log(RSS0/RSS1).
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FIGURE 9.3. Powers of the GLR statistics at significance levels 0.01, 0.05, and
0.1 based on 1,000 simulations. The left panel corresponds to the test statistics
without bias correction, and the right panel is for the tests with bias correction.
The solid lines are for the likelihood-based approach, the dotted lines are for
the least-squares-based approach, and the dashed lines are for the residual-based
approach.

According to Theorem 9.1,

rKTn,5
a∼ χ2

rKcK/h

if model (9.28) holds exactly. It is expected that the result continues to
hold even with the approximate model (9.28). A similar result is expected
to hold for the GLR statistic Tn,4. This is indeed shown in Fan and Zhang
(2002).

It is interesting to compare the power of three testing procedures: the
residual method discussed in §7.4 and the test statistics Tn,4 and Tn,5. It
will also be of interest to study the accuracy of the conditional bootstrap
method as an approximation to the null distribution. Furthermore, we may
ask whether the bias reduction technique outlined in §9.2.5 provides any
reasonable gains. These issues were studied in Fan and Zhang (2002). Their
studies show that the Whittle likelihood-based methods are more powerful
than the least-squares approaches and that the bias correction improves the
power of the tests further. The residual-based GLR test and the likelihood-
based GLR test with bias correction are the most powerful procedures
among the methods they studied.

We use a simulated example to illustrate the accuracy and the power
of the test statistics Tn,4 and Tn,5 and their bias-corrected versions. The
example is adapted from Fan and Zhang (2002).

Example 9.4 (autoregressive model) We simulated 1,000 series of length
500 from the model

Xt =
{

0.8(1− β) + βg(Xt−1)
}
Xt−1 − 0.56Xt−2 + 0.6Xt−3 + εt
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for several values of β ∈ [0, 1], where εt is a sequence of independent random
variables from N(0, 1) and

g(x) = 0.95I(x ∈ [−5, 0))− 0.18xI(x ∈ [0, 5]).

The model can be regarded as either the FAR(3,1) or AAR(3). Consider
the null hypothesis

H0 : Xt = b1Xt−1 + b2Xt−2 + b3Xt−3 + εt,

namely, testing whether the generated series was from an AR(3) model.
The test statistics Tn,4 and Tn,5 are employed. Their bias-corrected ver-
sions and residual-based method using the likelihood approach are also
employed. In computing nonparametric estimates of spectral density, we
applied the techniques in §7.3 using the Epanechnikov kernel with band-
width h = 0.23. The tests were performed at three different significance
levels: 0.01, 0.05, and 0.1. The null distributions were estimated based on
the conditional bootstrap with number of repetitions B=10,000. The power
of the test statistics is depicted in Figure 9.3 based on 1,000 simulations.
Note that when β = 0, the generated time series is from an AR(3) model,
and hence its power should be the same as the significance level. This is
indeed the case, as shown in the figure. When β is farther away from zero,
the model gets more deviated from an AR(3) model and hence its power
increases. As anticipated, the least-squares-based method is less powerful
than the likelihood-based method, while the bias-corrected version dom-
inates uncorrected counterparts. The residual-based approach has about
the same performance as the likelihood method with bias correction.

9.3.3 Other Nonparametric Methods
Regarding model (9.23) as a nonparametric regression model, problem
(9.22) is testing a family of parametric models against the nonparamet-
ric alternative. Hence, a wealth of nonparametric testing techniques can be
employed; see, for example, Bowman and Azzalini (1997) and Hart (1997)
for a good collection of procedures.

One can construct a test statistic based on a distance between a non-
parametric estimator and a parametric estimator, resulting in a family of
test statistics of form

T̂1 = ‖m̂− log(gθ̂)‖,
where m̂ is a nonparametric estimate of the log-spectral density and ‖ · ‖
is a certain norm. This family of test statistics includes

T̂2 = sup
τ∈(0,π)

|m̂(τ)− log(gθ̂(τ))|w(τ)

and
T̂3 =

∫ π

0
|m̂(τ)− log(gθ̂(τ))|2w(τ)dτ,
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where w(·) is a given weight function. This idea appears in Bickel and
Rosenblatt (1973).

As explained in §9.2.5, the estimator m̂ can be biased under the null
hypothesis. The bias correction idea can be employed. Let m̂∗(·) be the es-
timator given in §9.3.2. Then, the bias-corrected version of the test statistics
takes the form

T̂4 = ‖m̂∗‖.
In particular, when a weighted L2 distance is used, the resulting test is
basically the same as that in Härdle and Mammen (1993).

The Neyman test can also be applied to the testing problem (9.27).
We outline the basic idea of the Neyman test below. First, expand the
regression function in (9.28) into the Fourier series

m∗(ω) =
k∑
j=0

βjφj(ω),

where

φ0(ω) =
1√
π
, φ2j−1(ω) =

√
2
π

sin(2jω), φ2j(ω) =

√
2
π

cos(2jω), j = 1, 2, · · ·

is a family of the orthonormal basis in L2(0, π). Apply the least-squares
method

min
β

n∑
l=1


Y

∗
l −

k∑
j=0

βjφj(ωl)




2

to obtain the estimated coefficients β̂1, · · · , β̂k. Let X be the design matrix
with (l, j) element φj(ωl). Then, it is an orthogonal matrix with

n∑
l=1

φ2
j (ωl) =

2
π

n

2
=
n

π
.

Note that Var(Y ∗
k ) ≈ π2/6 by (7.17). Pretending that model (9.28) holds

exactly, from the least-squares theory, we have

Var(β̂) =
π2

6
(XTX)−1 =

π3

6n
Ik,

where β̂ is the vector of the least-squares coefficients and Ik is the identity
matrix of order k. Under the null hypothesis, using the asymptotic theory
of the classical linear model,

β̂j
a∼ N

(
0,
π3

6n

)
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for 0 ≤ j ≤ an, with the given sequence an diverging to infinity at a
certain rate. Further, these coefficients are asymptotically independent. The
Neyman test is to construct the χ2 statistic

T̂5(k + 1) =
6n
π3

k∑
j=0

β̂2
j ,

which aims at testing the null hypothesis

H0 : β1 = · · · = βk = 0.

The test statistic T̂5(k + 1) is called the Neyman statistic.
There is much literature on the choice of the parameter k in the Neyman

test. For example, Fan (1996) proposed the following choice of k, which
maximizes the normalized partial sum process

T̂5(k + 1)− (k + 1)√
2(k + 1)

,

leading to the adaptive Neyman test

max
0≤k≤an

T5(k + 1)− (k + 1)√
2(k + 1)

for some given sequence an; see also §7.4.3. Kuchibhatla and Hart (1996)
proposed the following adaptive version of the Neyman test:

max
0≤k≤an

T̂5(k + 1)
k + 1

.

It is shown by Fan and Huang (2001) that Fan’s version tends to test more
dimensions (selecting a larger k) than that of Kuchibhatla and Hart and
that Fan’s version is adaptively optimal in terms of the rate of conver-
gence. Proposals to use cross-validation and other model selection tech-
niques such as the AIC and BIC have also been suggested in the literature;
see, for example, Eubank and Hart (1992), Inglot and Ledwina (1996), and
Kallenberg and Ledwina (1997).

9.3.4 Tests Based on Rescaled Periodogram
The techniques in §9.3.1–§9.3.3 are based on the log-periodogram. One can
also construct tests directly based on a periodogram. To reduce the biases
for nonparametric estimates, we first employ the bias reduction technique.
In the spectral density (rather than the logarithm of the spectral density
in §9.3.3) domain, this is equivalent to considering the function

g∗(ω) = g(ω)/gθ̂(ω)
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and testing
H0 : g∗(·) = 1 ←→ g∗(·) �= 1.

The function g∗(ω) can be estimated by smoothing on the rescaled peri-
odogram I∗

T (ωk)
gθ(ωk) . Let ĝ∗ be the resulting estimate using a nonparametric

technique. Then, one can construct a test statistic of form ‖ĝ∗ − 1‖.
As an example, Paparoditis (2000) considered the estimate of g∗ − 1

based on the Priestley and Chao estimator:

ĝ∗(τ)− 1 =
1

2n+ 1

n∑
j=−n

Kh(τ − ωj)
(
I∗
T (ωk)
gθ(ωk)

− 1
)
.

He constructed a test statistic based on an L2-distance, resulting in the
following test statistic

T̂6 = (2n+ 1)
∫ π

−π
{ĝ∗(τ)− 1}2dτ.

Under certain regularity conditions, it is shown by Paparoditis (2000) that
under the null hypothesis

σ(K,h)−1{T̂6 − µ(K,h)} D−→ N(0, 1),

where µ(K,h) = 2h−1π‖K‖2 and

σ(K,h) = π−1h−1/2
∫ 2π

−2π

{∫ π

−π
K(u)K(u+ x)du

}2

dx.

Hence, an asymptotic level α test is of rejection region

T̂6 ≥ µ(K,h) + z1−ασ(K,h).

A way to avoid smoothing is to construct tests based on cumulated
rescaled spectral density:

G(x) =
∫ x

0
g(τ)/gθ̂(τ)dτ.

Under the null hypothesis, G(x) = x. Replacing the spectral density by the
periodogram, we obtain a family of test statistics of form

‖Ĝ(τ)− τĜ(π)/π‖, x ∈ [0, π],

where

Ĝ(τ) =
∫ τ

0
I∗(x)/gθ̂(x)dx.
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Here, the constant factor Ĝ(π)/π ≈ 1 makes Ĝ(τ)− τĜ(π)/π = 0 at both
end points τ = 0 and τ = π. In particular, Dzhaparidze (1986) proposed
the test statistic

T̂7 =
1

2π3T

∫ π

0

{
Ĝ(τ)− τĜ(π)/π

}2
dτ.

The asymptotic distribution of T̂7 is the distribution of
∫ 1
0 {W (τ)−τW (1)}2

dτ , where {W (τ), 0 ≤ τ ≤ 1} is the Brownian motion (see Example 8.15).
This asymptotic distribution is identical to that of the Cramér–von Mises
test based on the integrated squared difference between the standardized
sample spectral distribution function and the standardized spectral distri-
bution of the model under H0; see, for example, Anderson (1993).

We now briefly describe procedures of Anderson (1993). Let

F (ω) =
1
π

{
ω + 2

∞∑
k=1

ρ(k) sin(kω)/k

}
, ω ∈ [0, π]

be the normalized spectral distribution (see also (2.35)), where ρ(k) is the
autocorrelation function. Let

F̂ (ω) =
1
π

{
ω + 2

T−1∑
k=1

ρ̂(k) sin(kω)/k

}

be an estimator of F (ω). Suppose that we wish to test

H0 : F (ω) = F0(ω)

for some given F0. Anderson (1993) considered the Cramér–von Mises test
of form

T

2πc(f0)2

∫ π

0
{F̂ (τ)− F (τ)}2f2

0 (τ)dτ,

where f0(τ) = F ′
0(τ) is a spectral density and c(f0) = 2

∫ π
0 f0(τ)2dτ , and

the Kolmogorov–Smirnov test

sup
0≤ω≤τ

√
T

2
√
πc(f0)

|F̂ (τ)− F (τ)|.

He derived the asymptotic null distribution of the test statistic.
In addition to the asymptotic distributions, as approximations to the null

distribution of test statistics, the null distributions of the test statistics can
also be approximated via the frequency domain bootstrap; see, for example,
Paparoditis (2002) and references therein.

It is important to have some general understanding of the differences
between the class of tests based on the spectral density and those based on
cumulative spectral density. In general, the former tests give more weight
to high frequency deviations from the null hypothesis, whereas the latter
class of tests focuses mainly on the local frequency components. See Fan
(1996) for more discussion on this subject.
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9.4 Autoregressive versus Nonparametric Models

After fitting the FAR(p, d) model,

Xt = a1(Xt−d)X1 + · · ·+ ap(Xt−d)Xt−p + σ(Xt−d)εt, (9.31)

we frequently ask whether the coefficient functions are really varying. This
is equivalent to testing the hypothesis

H0 : a1(·) = a1, · · · , ap(·) = ap, (9.32)

where parameters a1, · · · , ap are unspecified. Under the null hypothesis
(9.32), the series {Xt} is an AR(p) model. Thus, the problem is equivalent
to testing an AR(p) model against the FAR(p, d) model. Note that the
problem here is different from that outlined in the last section since the
alternative model in this problem is more specific. Hence, it should be
expected that the resulting test statistics are more powerful than those
introduced in the last section.

A similar question arises after fitting the autoregressive additive model :

Xt = f1(Xt−1) + · · ·+ fp(Xt−p) + εt. (9.33)

We are interested in testing whether the AR(p) model is adequate for the
given data. This is equivalent to testing

H0 : f1(x) = a1x, · · · , fp(x) = apx. (9.34)

Again, the alternative model is structured as (9.33). Thus, the tests de-
signed for this particular setting should be more powerful than those generic
tests introduced in §9.3.

An alternative view of the problems (9.32) and (9.34) is that we wish
to validate an AR(p) model, and we embed it in the structured alternative
models. One possibility is to use the FAR(p, d) model as a family of alterna-
tive models, assuming implicitly that the latter contains a model that fits a
given time series reasonably well. Another possibility is to use the additive
model as an alternative model. With the structured alternative models, one
can have higher power in discriminating the null and alternative models.

9.4.1 Functional-Coefficient Alternatives
By introducing lagged variables as the covariates as in (8.3), the FAR(p, d)
can be written as the varying-coefficient form (9.8). Hence, following §8.3.4,
one can employ the local linear fit to obtain the estimated coefficient func-
tions, resulting in â1(·), · · · , âp(·). Define

RSS1 =
T∑

t=p+1

{Xt − â1(Xt−d)Xt−1 − · · · − âp(Xt−d)Xt−p}2. (9.35)
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Similarly, let â1, · · · , âp be the estimated coefficients under the AR(p)
model using the maximum likelihood technique introduced in §3.3. Define
the residual sum of squares as

RSS0 =
T∑

t=p+1

{Xt − â1Xt−1 − · · · − âpXt−p}2. (9.36)

Then, the GLR statistic is (n/2) log(RSS0/RSS1), which under contiguous
alternatives has the approximation

log
(

RSS0

RSS1

)
= log

{
1 +

RSS0 − RSS1

RSS1

}
≈ (RSS0 − RSS1)/RSS1

by Taylor’s expansion. We therefore define the test statistic as

Tn,6 =
n

2
(RSS0 − RSS1)/RSS1, (9.37)

where n = T − p.
For theoretical and practical considerations, the functions âj(·) can not

be estimated well at the tails of the distribution of {Xt−d}. Thus, we may
wish to restrict computing RSS1 and RSS0 to those cases where Xt−d falls
in a prescribed set Ω. Following Theorem 9.1, we would expect that

rKTn,6
a∼ χ2

rKcKp|Ω|/h.

In other words, the asymptotic null distribution is independent of the nui-
sance parameters. Hence, the conditional bootstrap can be employed to
approximate the null distribution of the test statistic Tn,6.

Since we do not impose a restriction on the distribution of {εt}, we apply
the conditional nonparametric bootstrap. In the time series context, the
algorithm goes as follows.

1. Generate the bootstrap residuals {ε∗
i }ni=1 of the empirical distribution

of the centered residuals {ε̂i− ¯̂ε}ni=1 from the FAR(p, d) model, where
¯̂ε is the average of {ε̂i}. Construct the bootstrap sample: X∗

t,1 =
Xt−1, · · · , X∗

t,p = Xt−p and

Y ∗
t = â1Xt−1 + · · ·+ âpXt−p + ε∗

t

for t = p+ 1, · · · , T .

2. Calculate the test statistic T ∗
n,6 based on the bootstrap sample

{(X∗
t,1, · · · , X∗

t,p, Y
∗
t ), t = p+ 1, · · · , T}.

This step computes the test statistic T ∗
n,6 as if the data came from

a regression model. More precisely, by applying the linear regression
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FIGURE 9.4. Functions a1(·) (left-panel) and a2(·) (right-panel) for β = 0
(dashed lines), β = 0.4 (solid curves), and β = 1 (thick curves).

technique to the bootstrap sample, we obtain the residual sum of
squares RSS∗

0 under the null hypothesis; by applying the technique
as in (8.7) with U∗

t = Xt−d, we obtain the residual sum of squares
RSS∗

1 under the nonparametric model. This gives

T ∗
n,6 =

T − p
2

(RSS∗
0 − RSS∗

1)/RSS∗
1.

3. Repeat the two steps above B times, and use the empirical distribu-
tion of {T ∗

n} as an approximation to the null distribution of the GLR
statistic Tn,6.

4. Use the percentage of {T ∗
n,6} greater than the test statistic Tn,6 as an

estimate of the p-value of the test.

We now use two examples from Cai, Fan, and Yao (2000) to illustrate
the procedure.

Example 9.5 (EXPAR model ) Consider the FAR(2, 1) model with εt ∼
N(0, 0.22). We wish to examine the power of the test statistic Tn,6 for the
alternative model

aj(u) = āj + β(aj,0(u)− āj), j = 1, 2,

where {aj,0(·), j = 0, 1, 2} are the functions given in Example 8.4 and
{āj , j = 0, 1, 2} are their average heights (see Figure 9.4). Figure 9.4 dis-
plays the functions a1(·) and a2(·) for β = 0, 0.4, and 1. As in Example 9.3,
β is related to the distance between the null hypothesis and the alternative
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FIGURE 9.5. Power of the GLR statistic Tn at the significance level 5% based
on 500 simulations for different choices of β. Adapted from Cai, Fan, and Yao
(2000).

hypothesis. In particular, when β = 0, the alternative hypothesis becomes
the null hypothesis. Thus, we can examine whether the power of the GLR
test is approximately the same as the significance level 5%. This verifies
whether the conditional nonparametric bootstrap gives reasonable approx-
imations to the null distributions.

The power was computed based on 400 simulations with length T = 400.
For each realization, 500 bootstrap samples were drawn to compute the
p-value of the GLR test. The significance level was taken as 5%. When
the P-value is less than 5%, the null hypothesis is rejected. The power is
computed as the percentage chance of rejecting the null hypothesis among
400 simulations. For the nonparametric estimate, the Epanechnikov kernel
with the bandwidth h = 0.41 was employed. The results are summarized
in Figure 9.5.
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When β = 0, the power is 4.7%, which is very close to the significance
level 5%. This demonstrates that the bootstrap estimate of the null dis-
tribution gives a very good approximation of the size of the test. When
β = 0.4, the power is already 80%. The power increases rapidly to 1 as β
increases. This shows that the GLR test is very powerful. When β = 0.8,
the power is already 100%.

Example 9.6 (Canadian lynx data ) After fitting the FAR(2, 2) model to
the Canadian lynx data as in Example 8.6, we would naturally question
whether the AR(2) model is adequate for the data. Applying the GLR test
with the nonparametric estimates given by Figure 8.4, RSS1 = 4.5785. On
the other hand, under the null hypothesis, the estimated AR(2) is

Xt = 1.0732 + 1.3504Xt−1 − 0.7200Xt−2 + εt, (9.38)

where ε ∼ N(0, 0.22752), resulting in RSS0 = 5.7981. This gives the test
statistic Tn,6 = 14.9174. The estimated coefficients are slightly different
from those in Example 8.6 since the whole series, rather than only the first
102 data points, are used here. Based on 1,000 bootstrap samples, the p-
value was estimated as 0%. This provides very strong evidence against the
AR(2) model. The result reinforces the existence of nonlinearity in the lynx
data. We have written an S-Plus code “Ex96test.s” to implement the GLR
test.

9.4.2 Additive Alternatives
The aforementioned GLR test can be applied directly to test AR(p) model
(9.34) against AAR(p) model (9.33). Let f̂1, · · · , f̂p be the estimated func-
tions under the AAR(p) model using the techniques in §8.5 (e.g., the back-
fitting algorithm ). Then, the residual sum of squares under the AAR(p)
model is simply

RSS1 =
T∑

t=p+1

{Xt − f̂1(Xt−1)− · · · − f̂p(Xt−p)}2. (9.39)

The GLR test statistic is

Tn,7 = (n/2) log(RSS0/RSS1), (9.40)

where RSS0 is given by (9.36). The conditional nonparametric bootstrap
in §9.4.1 can similarly be employed here to compute the p-value of the test
statistic Tn,7.

As we mentioned in §9.1 for all hypothesis-testing problems, we implicitly
assumed that the alternative hypothesis contains a model that reasonably
fits a given data set. When this is violated, the result can be misleading.
We use the following example to elucidate the point.
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FIGURE 9.6. Estimated functions f̂1(·) (left-panel) and f̂2(·) (right-panel) for
the Canadian lynx data using the backfitting algorithm with bandwidth selected
by (8.51) (solid curves) and by the user (dashed curves).

Example 9.7 (Canadian lynx data, revisited) Following Tjøstheim and
Auestad (1994a), we are curious how well the AAR(2) model fits the Cana-
dian lynx data. We apply the backfitting technique introduced in §8.5
with bandwidth selected by (8.51) to estimate the functions f1 and f2.
The resulting estimates are plotted in Figure 9.6. The RSS of the AAR(2)
model is RSS1 = 3.3947. Compared with the FAR(2, 1) fit, which has
RSS1 = 4.5785, the AAR(2) model fits the series better, although two
models could have used different amounts of smoothing parameters. For
example, if we increase the smoothing parameter in the AAR(2) model by
75%, the RSS1 now increases to 4.1762.

Without reference to the TAR(2) model or FAR(2, 1) model, Figure 9.6
would reveal that an AR(2) model might be adequate for the lynx data.
This leads to testing the problem (9.34), resulting in the estimated AR(2)
model (9.38) with RSS0 = 5.7981. Thus Tn,7 = 29.978. By using 1,000 con-
ditional nonparametric bootstrap samples, we obtained 1,000 test statistics
T ∗
n,7. Their average and the variance are 13.2130 and 12.5158, respectively.

Normalize T ∗
n,7 as

T ′
n,7 = 2

13.2130
12.5158

T ∗
n,7 = 2.1114T ∗

n,7

so that its average is half its variance, a property possessed by the χ2-
distribution. Figure 9.7 shows the estimated distribution, using the kernel
density estimator (5.1) with the Gaussian kernel and bandwidth (5.9), of
the 1,000 normalized bootstrapped statistics T ′

n,7. Note that the average
of the 1,000 statistics T ′

n,7 is 27.8979. Thus, its distribution can be ap-
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FIGURE 9.7. Estimated density (solid curve) of 1,000 normalized GLR statistics
from bootstrap samples and the density of a χ2-distribution with 28 degrees of
freedom.

proximated by the χ2-distribution with 28 degrees of freedom. As shown in
Figure 9.7, the approximation is quite good. This supports the asymptotic
theory. The p-value is estimated as 0. Hence, the AR(2) model does not
fit the lynx data. The numerical implementation was carried out by the
S-Plus code “Ex97test.s.”

The complexity of alternative models depends on the choice of the band-
width. When the bandwidth is excessively large, the family of alternative
models becomes small and hence might not contain the true model. For the
AAR(2) model, when the bandwidth is very large, it becomes close to an
AR(2) model when the local linear fit is used since the local linear fit now
becomes basically a global linear model. In this case, the alternative family
of models may not necessarily contain the true model; for example, if we
do not use (8.51) to select the bandwidth but choose the one that is about
75% larger than the one selected by (8.51). Then, the resulting fitted func-
tions are given in Figure 9.6 (dashed curves). This gives RSS1 = 4.1762,
resulting in the test statistic Tn,7 = 18.3741. By using the conditional non-
parametric bootstrap, we obtain the estimated p-value 8.4%. Hence, we
would have concluded that the AR(2) model fits the data well. This wrong
conclusion is due to the assumption that the AAR(2) model with the given
bandwidth reasonably fits the data. A more conservative interpretation is
that the AR(2) model reasonably fits the lynx data among the family of
AAR(2) models with the bandwidth that was used.

Example 9.7 illustrates a few interesting points. First, the results of tests
depend on the choice of bandwidth in the AAR(p) model. However, the
dependence is not strong as shown here since the bandwidth was artificially
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inflated here. Second, when we embed a parametric model into a family of
alternative models (both parametric or nonparametric), we need to have
reasonable assurance that the family of alternative models is large enough
to fit the data reasonably well. Finally, it seems that the AAR(2) model
fits the lynx data reasonably well.

9.5 Threshold Models versus Varying-Coefficient
Models

As indicated in the introduction and illustrated in the last section, when
the alternative models do not contain a model that fits the data well, the
testing results can be misleading. To verify a nonlinear model, we would
naturally embed it into a nonparametric family of models. The saturated
nonparametric model would have little discriminability power. Nonsatu-
rated models provide an immediate trade-off between the two contradictory
demands: modeling biases and power of tests.

To validate threshold models, we choose FAR(p, d) as the alternative
family of models. The idea of the GLR test continues to apply. The TAR
model (4.1) can more conveniently be written as

Xt = a1(Xt−d,θ)Xt−1 + · · ·+ ap(Xt−d,θ)Xt−p + εt, (9.41)

where θ is the vector of unknown parameters. Let θ̂ be the estimated
parameters. Define the residual sum of squares as

RSS0 =
T∑

t=p+1

{Xt − a1(Xt−d, θ̂)Xt−1 − · · · − ap(Xt−d, θ̂)Xt−p}2.

Suppose that we take FAR(p, d) as the family of alternative models. Then,
RSS1 is given by (9.35). Define the GLR test statistic as

Tn,8 = (n/2) log(RSS0/RSS1) (9.42)

or its approximation

T ′
n,8 = (n/2)

RSS0 − RSS1

RSS1
, (9.43)

where n = T−p. The distribution of Tn,8 can be obtained by the conditional
nonparametric bootstrap as in §9.4.1. Hence, the p-value of the test statistic
can be estimated.

The method above applies not only to threshold models but also to other
parametric families such as the EXPAR model introduced in Example 8.2.
We now apply the procedure to the Canadian lynx data and the sunspot
data to check whether TAR models reasonably fit the data. The numerical
results are from the work of Cai, Fan, and Yao (2000).
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Example 9.8 (Canadian lynx data and TAR(2) models). The residual
sum of squares under the TAR(2) model discussed in §4.1.4 is RSS0 =
4.6367. The residual sum of squares under the FAR(2) model, which is the
same as that in Example 9.6, is RSS1 = 4.5785. This results in the GLR
statistic

Tn,8 = 114/2 log(4.6367/4.5785) = 0.7200 or T ′
n,8 = 0.7116.

By using the conditional nonparametric bootstrap with B = 500 on the
statistic T ′

n,8, the p-value is estimated as 68.7%. Hence, the evidence against
the TAR(2) model is very weak. In fact, the fitted values between the non-
parametric fit and the TAR(2) model are undifferentiable (Figures 8.4(d)).
The difference lies in the interpretation of whether the population dynamic
changes radically or gradually. Based on the available data, these two mod-
els are undifferentiable.

As illuminated in Example 9.7, the foregoing analysis does not warrant
that the TAR(2) model must be correct. It simply shows that the TAR(2)
model fits the lynx data very reasonably among the family of FAR(2, 2)
models. Given the fact that the AAR(2) model has a 35% smaller RSS than
that of the FAR(2, 2) model, both with the optimally chosen bandwidths,
it is conceivably possible that the FAR(2, 2) model does not fit the data.

Example 9.9 (Sunspot data and TAR models) The sunspot data have
been analyzed in Example 8.7. The FAR(8, 3) model was fitted. After delet-
ing insignificant variables, a specific model of FAR(8, 3) was used, leading
to model (8.19). Suppose that we wish to test whether model (8.18) is rea-
sonable using model (8.19) as the alternative. This is equivalent to testing
a TAR model against the FAR(8, 3) model with known coefficient functions
a4(·) = 0, a5(·) = 0, and a7(·) = 0. The residual sums of squares under
the null and alternative hypotheses are, respectively, RSS0 = 3.277 and
RSS1 = 2.932, resulting in the test statistic

Tn,8 = 6.1740 or T ′
n,8 = 6.531.

By applying the nonparametric bootstrap method to the statistic T ′
n,8, the

p-value was estimated as 45.4%. In other words, we have very little evidence
against the model (8.18).

The same technique has been applied to testing the TAR model (8.20)
against the FAR(11, 8) model, resulting in RSS0 = 3.685 and RSS1 = 2.077.
The test statistic is

Tn,8 = 31.8207 or T ′
n,8 = 42.9677.

Using the nonparametric bootstrap method on statistic T ′
n,8, the p-value

was estimated as 10.1%. Once again, we do not have any strong evidence
against the null model (8.20).
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Even though we have weak evidence against both TAR models, as dis-
cussed in Example 9.7, this does not imply that both TAR models correctly
capture the underlying stochastic dynamic that produced the observed se-
ries. In particular, we have not verified whether the family of the FAR
models contains a model that fits the data well. A more conservative in-
terpretation of the results is that among the family of FAR(8, 3) models,
model (8.18) seems to fit the data. Similarly, among the family of FAR(11,
8) models, the TAR model (8.20) seems quite reasonable.

9.6 Bibliographical Notes

There are many collective efforts on hypothesis testing in nonparametric
regression problems. Most of them focus on the one-dimensional setting
and cannot easily be extended to non-saturated multivariate models; §7.6
gives some bibliographical notes on the development of hypothesis testing
with nonparametric alternatives. For an overview and references, see the
books by Bowman and Azzalini (1997) and Hart (1997).

Generalized likelihood ratio tests were introduced by Fan, Zhang and
Zhang (2001). They can be applied to many nonsaturated multivariate
models. They test one aspect of models by comparing the likelihood ratios
of two competing classes of models. An alternative approach is to check
whether the residuals are of any structure. The challenge is how to use
the prior information on the nonsaturated multivariate models to improve
the power of the generic nonparametric tests. Fan and Huang (2001) have
made a start on this kind of problem.

There are other techniques designed for testing some specific nonsatu-
rated nonparametric models. Various techniques have been proposed for
testing additive structure when data points have some specific designs; see,
for example, Berry (1993), Chen, Liu, and Tsay (1995), Eubank, Hart,
Simpson, and Stefanski (1995), Gozalo and Linton (2000), and Gao, Tong,
and Wolff (2002). Fan and Li (1996) considered tests for the significance
of a subset of regressors and tests for the specification of the semiparamet-
ric functional form of the regression function. Chen, Härdle, and Li (2002)
used empirical likelihood to construct a statistic for testing against a para-
metric family of autoregressive models. Aerts, Claeskens, and Hart (2000)
constructed tests based on orthogonal series expansions using model selec-
tion criteria. Horowitz and Spokoiny (2001) studied nonparametric tests
based on L2-distances. The preceding two papers use the saturated non-
parametric alternatives. Härdle, Sperlich, and Spokoiny (2001) considered
problems of testing the form of additive components using a variation of a
multiscale test and wavelets.
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10
Nonlinear Prediction

Forecasting the future is one of the fundamental tasks of time series analy-
sis. Although linear methods, such as those introduced in §3.7, are useful,
a prediction from a nonlinear point of view is one-step closer to reality.
Anybody who has first-hand experience of the stock-market knows that we
can forecast the future better at the right moment than at another time.
Such common sense can be naturally reflected in nonlinear forecasting only!
In this chapter, we first discuss the general properties of nonlinear predic-
tion, paying particular attention to those features that distinguish nonlinear
prediction from linear prediction. The sensitivity to initial condition, a key
concept in deterministic chaos, plays an important role in understanding
nonlinearity. Three types of predictors-namely point predictors, predictive
intervals, and predictive distributions-constructed based on local regression
will be presented.

10.1 Features of Nonlinear Prediction

10.1.1 Decomposition for Mean Square Predictive Errors
Let X1, · · ·XT be observations from a time series process. Suppose that
we have no information on the underlying process. It still makes sense to
consider the problem of predicting future values XT+1, XT+2, · · · based on
the observed data XT , XT−1, · · · . To highlight what nonlinearity can do
for prediction, we temporarily ignore the problem of estimating relevant
unknown functions. This is similar to the approach in §3.7 in which we
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assumed that the coefficients in linear models were known. Furthermore,
we predict XT+m (m ≥ 1) based on the last p observed values

XT ≡ (XT , XT−1, · · · , XT−p+1)τ

only. The least squares predictor is defined as

fT,m(XT ) = arg inf
f
E{XT+m − f(XT )}2, (10.1)

where the infimum is taken over all (measurable) functions of XT . It is easy
to see that

fT,m(x) = E(XT+m|XT = x); (10.2)

see Proposition 3.2. Furthermore, the mean square predictive error of fT,m
is

E{XT+m − fT,m(XT )}2
= E[E{(XT+m − fT,m(XT ))2|XT }]
= E{Var(XT+m|XT )},

which is the average of conditional variances of XT+m given XT . If {Xt}
is a linear AR(p) process with innovations satisfying conditions (3.34) and
(3.37), the conditional variance

σ2
T,m(x) ≡ Var(XT+m|XT = x)

is a constant; see Proposition 3.4. This, however, is no longer true in general.
In practice, we are concerned with how good the prediction is based on an
observed and known value of XT . Therefore, the conditional mean square
predictive error

E[{XT+m − fT,m(x)}2|XT = x] = σ2
T,m(x)

is in fact a practically more relevant measure for the performance of the
prediction. It reflects the reality that how well we can predict depends on
where we are. We argue that this statement has a further implication that is
not always fully appreciated in statistical literature. To this end, let x be the
observed value of XT . Therefore, we predict XT+m by fT,m(x). However,
our observation is subject to an error, and the true and unobserved value of
XT is x+δ, where δ is a small drift, counting for a measurement and/or an
experimental error and so on. Now, the following decomposition theorem
holds, which was first presented in Yao and Tong (1994a).

Theorem 10.1 For the least squares m-step-ahead predictor fT,m(XT ), it
holds that

E[{XT+m − fT,m(x)}2|XT = x + δ]
= σ2

T,m(x + δ) + {fT,m(x + δ)− fT,m(x)}2
= σ2

T,m(x + δ) + {δτ ḟT,m(x)}2 + o(||δ||2), (10.3)
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where ḟT,m denotes the gradient vector of fT,m. The second equality requires
the condition that ḟT,m be continuous in a small neighborhood of x.

The proof of the theorem above is trivial. Note that the right-hand side
of (10.3) may be written as

E
(
[{XT+m − fT,m(x + δ)}+ {fT,m(x + δ)− fT,m(x)}]2∣∣XT = x + δ

)
.

Now, the first equality in (10.3) follows from the above and the fact that

E{XT+m − fT,m(x + δ)|XT = x + δ} = 0.

The decomposition (10.3) indicates that the goodness of the prediction is
dictated by two factors: (a) the error due to the randomness in the system
represented by conditional variance σ2

T,m(x + δ) and (b) the error caused
by the drift δ at the initial condition. Usually, the conditional variance

σ2
T,m(x + δ) = σ2

T,m(x) +O(||δ||)

is the dominant term. However, for some nonlinear process with very small
stochastic noise (such as operational deterministic systems, treated in Yao
and Tong 1998b), the error due to the drift δ may no longer be negligible.
We will see in §10.1.2 and §10.1.3 below that for nonlinear processes both
types of errors may be amplified rapidly at some places in the state-space.
Therefore, the prediction for the future depends crucially on where we are
at present.

To highlight the essence of nonlinearity, we assume in the rest of this
section that {Xt} is generated from a simple model

Xt = f(Xt−1) + εt, (10.4)

where {εt} ∼ IID(0, σ2), and εt is independent of {Xt−k, k ≥ 1}. Note
that we do not impose any stationarity condition on {Xt} at this stage,
which is only required when we need to estimate predictive functions later
on (see also §3.7). Now, it is easy to see that under this model, due to the
Markovian property,

fT,m(x) = E(XT+m|XT = x) ≡ fm(x) (10.5)

and
σ2
T,m(x) = Var(XT+m|XT = x) ≡ σ2

m(x), (10.6)

where x is the first component of x. In particular, fT,1(x) = f1(x) = f(x)
and σ2

T,1(x) = σ2
1(x) ≡ σ2. The decomposition (10.3) may be written as

E[{Xm − fm(x)}2|X0 = x+ δ] = σ2
m(x+ δ) + {δḟm(x)}2 + o(δ2). (10.7)
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10.1.2 Noise Amplification
For the linear AR(1) process with coefficient b and |b| < 1, it follows from
Proposition 3.4 that the mean square error of the least squares m-step-
ahead predictor is

σ2
m−1∑
j=0

b2j =
m−1∑
j=0

b2jVar(εT+1+j). (10.8)

Although it increases monotonically as m increases, the noise entering at
a fixed time decays exponentially as m increases. As we will see below, the
noise contraction is not always observed in nonlinear prediction.

To simplify the discussion, we further assume that in model (10.4) |εt| ≤
ζ almost surely, where ζ > 0 is a small constant. By Taylor expansion, it
is easy to see that for m ≥ 1

Xm = f{f(Xm−2) + εm−1}+ εm

= f (2)(Xm−2) + ḟ{f(Xm−2)}εm−1 + εm.

Note that Xm−2 = f (m−2)(X0) +O(ζ). Hence

Xm = f (2)(Xm−2) + ḟ{f (m−1)(X0)}εm−1 + εm +OP (ζ2).

By applying iteratively the Taylor expansion above, we have

Xm = f (m)(X0) + εm + ḟ{f (m−1)(X0)}εm−1 + · · ·

+

{
m−1∏
k=1

ḟ [f (k)(X0)]

}
ε1 +Op(ζ2),

where ḟ denotes the derivative of f , and f (k) denotes the k-fold composition
of f . Thus

σ2
m(x) = Var(Xm|X0 = x) = µm(x)σ2 +O(ζ3), (10.9)

where

µm(x) = 1 +
m−1∑
j=1




m−1∏
k=j

ḟ [f (k)(x)]




2

. (10.10)

The fact that σ2
m(x) varies with respect to x reflects that our ability to

predict depends critically on where we are when the prediction is made.
For linear processes, ḟ(·) is a constant. Therefore, both σ2

m(x) and µm(x)
are constants.

The noise amplification is dictated by µm(x). The values µm are deter-
mined by those of the derivative ḟ . If |ḟ(·)| > 1 defines a large subset of
the state-space, µm(·) could be large or very large for moderate or even
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small m. The rapid increase of σ2
m(x) with respect to m is a manifesta-

tion of noise amplification. In such cases, only very-short-range prediction
is practically meaningful. Thus, how far in the future we can predict also
depends on where we are. Again, this is a well-known fact among many
working forecasters, especially in fields such as meteorology.

For multistep linear prediction, the mean square predictive error mono-
tonically increases as m increases; see, for example, (10.8). However, this
is not always the case with nonlinear prediction. Note that, by (10.10), it
holds that

µm+1(x) = 1 + µm(x)ḟ{f (m)(x)}2.
Thus µm+1(x) < µm(x) if ḟ{f (m)(x)}2 < 1 − 1/µm(x). By (10.9), it is
possible that for such x and m, σ2

m(x) > σ2
m+1(x). This suggests that at

some initial value the error of an (m + 1)-step-ahead prediction could be
smaller than that of the m-step-ahead prediction.

Example 10.1 Consider a simple quadratic model

Xt = 0.235Xt−1(16−Xt−1) + εt, (10.11)

where εt are independent and uniformly distributed on the interval [−0.52,
0.52]. The scatterplots of Xt+m, for m = 2 and 3, against Xt from a sample
of size 300 are displayed in Figures 10.1 (a) and (b) together with the least
squares predictor fm(·) and the conditional variance σ2

m(·). The amount
of variation of the data varies with respect to the initial value, indicating
that the predictive error depends on the initial condition. Furthermore,
the variation is well-depicted by the conditional variance functions. For
example, both σ2

2(x) and σ2
3(x) obtain their maximum values at x = 8,

where the variation in both scatterplots is largest. Figure 10.1(c) plots
the two conditional variance functions σ2

2(x) and σ2
3(x) together. Around

x = 5.4 and 10.6, it holds that σ2
2(x) > σ2

3(x). Thus, in those areas, three-
step-ahead prediction is more accurate than two-step-ahead prediction.

10.1.3 Sensitivity to Initial Values
The sensitivity to initial conditions is the key feature for chaotic behavior of
nonlinear deterministic systems. A compact introduction on deterministic
chaos is available in Chapter 2 of Chan and Tong (2001). We examine
below the sensitivity to initial values in the context of point prediction.
More specifically, we elaborate the term {δḟm(x)}2 in (10.7) further and
reveal how it evolves in nonlinear stochastic dynamic systems. Like noise
amplification, it also boils down to the property of the derivation ḟ(·).

Suppose that {Xt(x), t ≥ 1} is a trajectory of the process {Xt} defined
by (10.4) starting at X0 = x. How will the two trajectories starting at
nearby initial values, say x and x+ δ, diverge? Since different trajectories
receive different random shocks (i.e., different realizations) from εt at each
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(a) Two-step-ahead prediction
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(b) Three-step-ahead prediction
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FIGURE 10.1. Scatterplots of Xt+m against Xt of a sample draw from model
(10.11), together with the m-step-ahead predictor fm(·) (thick solid curves) and
conditional variance function σ2

m(·) (impulses) for (a) m = 2 and (b) m = 3.
(c) Plots of σ2

m(x) against x for m = 2 (dotted curve) and m = 3 (solid curve).
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time t, it is more sensible to consider the divergence of the (conditional)
expected values of those two trajectories; namely,

E{Xm(x+ δ)|X0 = x+ δ} − E{Xm(x)|X0 = x}
= fm(x+ δ)− fm(x) = δḟm(x) + o(|δ|).

Now, we take a close look at how the derivative ḟm(x) = d
dxfm(x) evolves

when m increases. Note that

fm(x) = E{f(Xm−1)|X0 = x} = E[f{f(Xm−2) + εm−1}|X0 = x]
= E (f [· · · {f(x) + ε1}+ · · ·+ εm−1]|X0 = x) .

By assuming that the order of expectation and differentiation is inter-
changeable, it follows from the chain rule that

ḟm(x) = E

{
m∏
k=1

ḟ(Xk−1)

∣∣∣∣∣X0 = x

}
. (10.12)

By assuming that all of the factors on the right-hand side of this expres-
sion are of comparable size, it is plausible that ḟm(x) grows (or decays)
exponentially with m. Again, the values of the derivative ḟ are crucial. If
|ḟ(·)| > 1 on a large part of the state-space, ḟm(x) could be substantially
large for moderate or even small m.

Combining (10.9), (10.10), and (10.12), the first two terms on the right-
hand side of (10.7) depend critically on the behavior of the derivative ḟ(·),
which is the key factor dictating the quality of nonlinear prediction.

10.1.4 Multiple-Step Prediction versus a One-Step Plug-in
Method

In m-step-ahead prediction, a frequently used strategy in practice is to re-
peat one-step-ahead prediction m times, treating the predicted value from
the last round as the true value. We refer to this as a one-step plug-in
method. This method is justified for the model-based linear prediction pre-
sented in §3.7; see (3.33) and (3.38). However, it is different from the least
squares prediction in general. For example, for model (10.4), the one-step
plug-in predictor for XT+m based on XT is f (m)(XT ), which is of course
different from the least squares predictor fm(XT ) = E(XT+m|XT ) unless
f(·) is linear. Therefore

E[{XT+m − f (m)(XT )}2|XT ] ≥ E[{XT+m − fm(XT )}2|XT ].

Hence, the one-step plug-in method is not desirable in principle.
The comparison of the two approaches above is almost purely theoretical,

as we ought to estimate f or fm in practice. Suppose that we adopt the
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same method to estimate both f and fm, resulting in estimators f̂ (m)

and f̂m. Under standard regularity conditions, we may prove that both
f̂ (m)(XT ) − XT+m and f̂m(XT ) − XT+m will be asymptotically normal
with the same convergence rate, but the former has a constant bias and
the latter has a bias converging to 0. Therefore, again we should use the
direct multistep-ahead prediction method.

Under some circumstances, physical laws allow us to formulate f(·) into
a given functional form subject to a few unknown parameters. Such a for-
mulation, however, is hardly available for fm due to complex nonlinear
dynamics. Therefore, typically f can be estimated globally through its pa-
rameters, and its estimator enjoys the convergence rate T 1/2. On the other
hand, fm can only be estimated locally, and the estimation has to contend
with a slower convergence rate. Now, the picture is less clear. The advan-
tage of using the predictor fm(XT ) may well be evened out by the larger
errors incurred in the estimation of fm. This partially explains why the
model-based one-step plug-in method is still popular among practitioners.

It is also worth mentioning that the definition of the least squares pre-
dictor fm is model-free. Therefore, it is robust against the misspecification
of the model (i.e., f(·)) in the first place. See a relevant study in Tiao and
Tsay (1994).

In summary, the least squares m-step-ahead predictor fm(·) is the right
predictor to use in principle, although its performance may be hampered
by the lack of efficient means to identify and to estimate it effectively in
practice, especially when prediction is based on several observed lagged
values (i.e., p > 1).

10.1.5 Nonlinear versus Linear Prediction
There is no reason why real-life generating processes should all be linear.
However, time series forecasting is still very much dominated by linear pre-
diction methods in the sense that the predicted values are the linear com-
binations of their observed lagged values. (Note that we require ARMA
processes to be invertible in §3.7.4). This is partially due to both math-
ematical and practical convenience. But empirical studies indicate that
linear methods often work well despite their simplicity, and the gain from
nonlinear prediction is not always significant and sometimes is not even
guaranteed; see §3.4.1 of Chatfield (2001) and the references therein. Al-
though we should not take numerical comparisons on faith (see, §6.6.3 of
Chan and Tong 2001), the robust performance of linear forecasting meth-
ods is undeniable. Since this issue has rarely been addressed explicitly in
the literature, we provide an explanation below.

First, it is worth pointing out that the linear prediction method can in
fact be applied to any time series as long as it has finite second moments;
see §3.2. To simplify the discussion, let {Xt} be a (weakly) stationary time
series. We may seek the best linear predictor forXt based on {Xt−1, k ≥ 1}
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(i.e., the predictor that is a linear combination of {Xt−k, k ≥ 1} such
that the mean square error attains the minimum). Then, by the Wold
decomposition theorem (see, for example, (5.7.1) and (5.7.2) in Brockwell
and Davis 1991),

Xt = et +
∞∑
j=1

ψjet−j + Vt, (10.13)

where {et} ∼WN(0, σ2) and

et = Xt −
∞∑
i=1

ϕiXt−i, (10.14)

the coefficients {ψj} and {ϕi} are square-summable, and Vt is a deter-
ministic component in the sense that it is entirely determined by its lagged
values (and hence can be predicted relatively easily). Note that the AR(∞)
representation (10.14) holds for any stationary {Xt}, including those gen-
erated by nonlinear AR models of the form (10.4). In general, {et} is not
i.i.d., and further

E(Xt|Xt−k, k ≥ 1) �=
∞∑
i=1

ϕiXt−i ≡ X̂t.

However, X̂t is in fact the best linear predictor of Xt from its lagged values
in the sense that it minimizes

E

{
Xt −

∞∑
i=1

biXt−i

}2

over all square-summable coefficients {bi} (see also §3.2). The mean square
error of this linear predictor is

E(Xt − X̂t)2 = E(e2t ) = σ2.

This illustrates that it is perfectly sensible to seek the best linear predictor
for general stationary nonlinear time series. Furthermore, if the innovation
has a small variance in its Wold decomposition, the linear prediction is
reliable. Nevertheless, we emphasize that the best linear predictor is not the
least squares predictor in general and therefore is not the best estimator. In
fact, the best linear prediction can be viewed as merely the best prediction
based on the first two moment properties since it does not make use of any
properties of the process beyond the second moment. The two predictors
will be identical if the innovations {et} are i.i.d. and et is independent of
{Xt−j , j ≥ 1}. Under these conditions, {Xt} is often called a linear process.

We end this section by summarizing some general principles for predic-
tion.
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(i) Under the least squares criterion, the least squares predic-
tion is recommended, although often it is not a linear procedure
and may be hampered by the difficulties associated with the es-
timation for predictive functions. Typically, the estimation is
only possible in a nonparametric manner, although some semi-
parametric approximations could be employed (Chapter 8).

(ii) Linear prediction is easy to implement. It is reliable and
robust, as the model (10.14) is always valid for a stationary
process. Linear prediction may also provide a useful yardstick
as a basis for comparison with nonlinear methods. But the best
linear predictor is not the best predictor in general.

(iii) The prediction based on a nonlinear parametric model
will be much more efficient for one-step-ahead prediction if the
model is correctly specified. But such an approach is less ro-
bust against model misspecification. Also, the concrete para-
metric form is rarely useful for identifying multiple-step predic-
tive functions.

10.2 Point Prediction

10.2.1 Local Linear Predictors
Let X1, · · · , XT be observations from a strictly stationary time series. By
(10.1) and (10.2), the least squares predictor for XT+m based on p lagged
variables XT = x is

fm(x) = E(XT+m|XT = x),

where Xt = (Xt, Xt−1, · · · , Xt−p+1)τ . The problem of estimating the pre-
dictive function fm is a standard nonparametric regression, which may be
tackled by using the techniques presented in §8.2. As an illustration, we
simply adopt local linear regression to estimate fm and its derivative ḟm,
which is useful in calculating its mean square error; see Theorem 10.1. Let
f̂m(x) = â and ̂̇fm(x) = b̂, and (â, b̂) is the minimizer of the weighted sum

T−m∑
t=p

{Xt+m − a− bτ (Xt − x)}2K
(

Xt − x
h

)
,

where K(·) is a kernel function on Rp, and h = h(T ) is a bandwidth. Simple
calculation yields

f̂m(x) =
T0(x)− Sτ1 (x)S−1

2 (x)T1(x)
S0(x)− Sτ1 (x)S−1

2 (x)S1(x)
, (10.15)
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̂̇
fm(x) = {S2(x)− S1(x)Sτ1 (x)/S0(x)}−1{S1(x)T0(x)/S0(x)− T1(x)},

(10.16)
where

S0(x) =
T−m∑
t=p

K

(
Xt − x
h

)
, S1(x) =

T−m∑
t=p

(x−Xt)K
(

Xt − x
h

)
,

S2(x) =
T−m∑
t=p

(x−Xt)K
(

Xt − x
h

)
(x−Xt)τ ,

and

T0(x) =
T−m∑
t=p

Xt+mK

(
Xt − x
h

)
,

T1(x) =
T−m∑
t=p

(x−Xt)Xt+mK

(
Xt − x
h

)
.

The decomposition theorem (i.e., Theorem 10.1) still holds asymptoti-
cally if we replace the theoretical predictor fm by its estimator given in
(10.15). In fact, Yao and Tong (1994a) showed that under some regularity
conditions the estimator f̂m(x) is mean square consistent in the sense that

E[{fm(x)− f̂m(x)}2|XT = x + δ]→ 0

almost surely as T → ∞. Now, it follows from Theorem 10.1 and the
Cauchy–Schwarz inequality that

E[{XT+m − f̂m(x)}2|XT = x + δ]
= E[{XT+m − fm(x)}2|XT = x + δ] +RT

= σ2
m(x + δ) + {δτ ḟm(x)}2 +RT + o(||δ||2), (10.17)

where RT → 0 almost surely as T → ∞. Note that this result holds for
general strictly stationary processes, and we do not impose any model as-
sumptions on {Xt}; see §3 of Yao and Tong (1994a).

From (10.17), we need to estimate σ2
m(·) and ḟm(·) in order to gauge

how good the predictor f̂m(·) is. The estimation for conditional variance
σ2
m(·) has been discussed in detail in §8.7. The local linear regression gives

a natural estimator (10.16) for the derivative ḟm(·). Of course, if our pri-
mary goal is to estimate the first derivative, we may adopt local quadratic
regression instead; see §6.3.

10.2.2 An Example
Example 10.2 below and Figures 10.2 and 10.3 illustrate the predictor con-
structed above. More examples can be found in Yao and Tong (1994a).
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FIGURE 10.2. Example 10.2. Plots of the 200 m-step-ahead predicted values
(diamonds) and the corresponding absolute errors (impulses) against their initial
values as well as the estimated conditional variance σ̂2

m(x) (solid curves) for (a)
m = 2 (h = 0.25), (b) m = 3 (h = 0.2), and (c) m = 4 (h = 0.18). From Yao and
Tong (1995b).



10.2 Point Prediction 453

��� ���

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16

��� ���

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

FIGURE 10.3. Example 10.2. Plots of the 200 m-step-ahead predicted values (di-
amonds) and the corresponding absolute errors (impulses) against their rounded

initial values as well as the estimated function |̂̇fm(x)| (solid curves) for (a)
m = 1 (h = 0.32) and (b) m = 2. From Yao and Tong (1995b).

Example 10.2 Consider the simple one-dimensional model

Xt = 0.23Xt−1(16−Xt−1) + 0.4εt,

where {εt} is a sequence of independentN(0, 1) random variables truncated
in the interval [−12, 12]. We generate a sample of size 1,200 from this
model. Since σ2

1(x) ≡ 0.16, the one-step-ahead prediction is uniformly good
for different initial values, which we do not report here. We use the first
1,000 data to estimate predictive functions for m = 2, 3, and 4 and the
last 200 points to check the performance. The predicted values for those
200 post-sample points together with their absolute predictive errors and
estimated conditional variance σ̂2

m(x) are shown in Figure 10.2. Since the
rounding error in the calculation is below 10−6, the accuracy is dominated
by the conditional variance. For example, Figure 10.2(b) shows that the
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three-step-ahead prediction is at its worst when the initial value is around
8 and is at its best when the initial value is near 5.6 or 10.4, which is in
agreement with the profile of σ̂3(x).

To see how a small shift in the initial values affects the prediction, we
round the initial value x to the nearest value from among [x], [x]+0.5, and
[x]+1, where [x] denotes the integer part of x. Hence |δ| ≤ 0.5. Figure 10.3

shows that, for m = 1, 2, the absolute prediction error increases as |̂̇fm(x)|
increases, which is consistent with the decomposition formula (10.17).

10.3 Estimating Predictive Distributions

In any serious attempt to forecast, a point prediction is only a beginning.
A predictive interval or, more generally, a predictive set is more informa-
tive. All information on the future is of course contained in a predictive
distribution function, which is in fact a conditional distribution of a future
variable given the present state. We deal with the estimation for predictive
distribution functions in this section. Predictive intervals will be discussed
in the next section.

In general, the predictive distribution of XT+m based on XT = (XT , · · · ,
XT−p+1) is the conditional distribution of XT+m given XT . In the con-
text of linear time series models with normally distributed innovations, the
predictive distributions are normal. Therefore, the problem of estimating
predictive distributions reduces to the estimation of means and variances.
However, for nonlinear time series, the predictive distributions typically are
not normal. Furthermore even for a process generated by a parametric non-
linear model, multiple-step-ahead predictive distributions are of unknown
form and may only be estimated in a nonparametric manner. Below, we
introduce two estimation methods proposed in Hall, Wolff, and Yao (1999).
The first, local logistic distribution estimation, produces estimators of ar-
bitrarily high order that always lie strictly between 0 and 1. In spirit, this
approach is related to recently-introduced local parametric methods. The
second method is an “adjusted” version of the Nadaraya–Watson estima-
tor. It is designed to reproduce the superior bias properties of local linear
methods while preserving the property that the Nadaraya–Watson estima-
tor is always a distribution function. It is based on weighted, or biased,
bootstrap methods (Hall and Presnell 1999).

In the rest of this section, we assume that data are available in the
form of a strictly stationary stochastic process {(Xt, Yt)}, where Yt is a
scalar and Xt is a p-dimensional vector. In the time series context, Xt =
(Xt, · · · , Xt−p+1)τ typically denotes a vector of lagged values of Yt = Xt+m
for somem ≥ 1. Naturally, our setting also includes the case where the pairs
(Xt, Yt) are independent and identically distributed. We wish to estimate
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the conditional distribution function

F (y|x) ≡ P (Yt ≤ y|Xt = x).

If we write Zt = I(Yt ≤ y) then,

E(Zt|Xt = x) = F (y|x),

so our estimation problem may be viewed as regression of Zt on Xt; see also
Example 6.2. Hence F (y|x) can be estimated by the local linear technique in
§8.2. Although such an approach is useful in practice, the estimator F̂ (y|x)
is not necessarily a cumulative distribution function. This is a drawback.

To simplify discussion, we introduce our methods and develop theory
only in the case where Xt = Xt is a scalar (i.e., p = 1). The multivariate
case will be illustrated through a real data example.

10.3.1 Local Logistic Estimator
For fixed y, write P (x) = F (y|x) and assume that P has r − 1 continu-
ous derivatives. A generalized local logistic model for P (x) has the form
L(x,θ) ≡ A(x,θ)/{1+A(x,θ)}, where A(·,θ) denotes a nonnegative func-
tion that depends on a vector of parameters θ = (θ1, · · · , θr) that “repre-
sent” the values of P (x), P (1)(x), · · · , P (r−1)(x). Here, “represent” means
that, for each sequence ω1 ∈ (0, 1), ω2, · · · , ωr denoting potential values of
P (x), P (1)(x), · · · , P (r−1)(x), respectively, there exist θ1, · · · , θr such that

A(u,θ)
1 +A(u,θ)

= ω1 + ω2(u− x) + · · ·+ (r!)−1ωr(u− x)r−1 + o
(|u− x|r−1)

as u→ x. Arguably, the simplest functionA with which to work isA(u,θ) ≡
ep(u,θ), where p(u,θ) = θ1+θ2u+· · ·+θrur−1 is a polynomial of degree r−1.
Fitting this model locally to indicator-function data leads to an estimator
F̂ (y|x) ≡ L(0, θ̂), where θ̂ denotes the minimizer of

R(θ;x, y) =
T∑
t=1

{I(Yt ≤ y)− L(Xt − x,θ)}2Kh(Xt − x) , (10.18)

K is a kernel function, Kh(·) = h−1K(·/h), and h > 0 is a bandwidth.
We call this approach local logistic distribution estimation. Depending on
bandwidth choice, it also furnishes consistent estimators of the deriva-
tives F (i)(y|x) ≡ (∂/∂x)i F (y|x) in the form F̂ (i)(y|x) = L(i)(0, θ̂xy) for
i = 1, · · · , r − 1, where L(i)(x,θ) ≡ (∂/∂x)i L(x,θ). In practice, θ̂xy may
be computed using the “downhill simplex” algorithm (see §10.4 in Press
et al. 1992).

We expect the estimator F̂ (y|x) to have a bias of order hr and variance
of order (Th)−1 under an asymptotic scheme where h = h(T ) → 0 and
Th → ∞ as T → ∞. A more detailed account of this property will be
given in §10.3.5.
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10.3.2 Adjusted Nadaraya–Watson Estimator
Let pt = pt(x), for 1 ≤ t ≤ T , denote weights (functions of the data
X1, · · · , XT , as well as of x) with the property that each pt ≥ 0,

∑
t pt = 1,

and
T∑
t=1

pt(x) (Xt − x)Kh(Xt − x) = 0 . (10.19)

Of course, pt’s satisfying these conditions are not uniquely defined, and we
specify them concisely by asking that

∏
t pt be as large as possible subject

to the constraints. Define

F̃ (y|x) =
∑T
t=1 I(Yt ≤ y) pt(x)Kh(Xt − x)∑T

t=1 pt(x)Kh(Xt − x)
. (10.20)

Note particularly that 0 ≤ F̃ (y|x) ≤ 1 and F̃ is monotone in y. We will
show in §10.3.5 that F̃ is first-order equivalent to a local linear estimator,
which does not enjoy either of these properties of F̃ .

Another way of viewing the biased bootstrap estimator F̃ is as a local
linear estimator in which the weights for the least-squares step are taken
to be pt(x)Kh(Xt − x), rather than simply Kh(Xt − x), for 1 ≤ t ≤ T . To
appreciate why this is so, we refer to the definition of general local linear
estimators given by Fan and Gijbels (1996, p. 20) and note that in view of
(10.19), with the suggested change of weights, their estimator m̂0 reduces
to (see (6.10))

m̂0(x) =
{ T∑
t=1

wt(x) I(Yt ≤ y)
}/{ T∑

t=1

wt(x)
}
,

where
wt(x) = pt(x)Kh(Xt − x).

Therefore, m̂0 = F̃ (y|x).
Computation of the weights pt can be carried out via the Lagrange mul-

tiplier method. The constrained optimization reduces to maximizing

T∑
t=1

log pt + λ1

T∑
t=1

pt + λ2

T∑
t=1

pt(Xt − x)Kh(Xt − x)

with the Lagrange multipliers λ1 and λ2. By taking the derivative with
respect to pt and setting it to zero, we have

p−1
t + λ1 + λ2(Xt − x)Kh(Xt − x) = 0.

This gives the solution

pt = −λ−1
1 {1 + λ(Xt − x)Kh(Xt − x)}−1,
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where λ = λ2/λ1. The constraint on the unit total weight leads to

pt =
{1 + λ(Xt − x)Kh(Xt − x)}−1

∑T
j=1{1 + λ(Xj − x)Kh(Xj − x)}−1

.

The parameter λ (a function of the data and of x) is uniquely defined by
(10.19). It is easily computed using a Newton–Raphson argument. Now, it
follows from (10.19) that

0 =
T∑
j=1

(Xj − x)Kh(Xj − x)
1 + λ(Xj − x)Kh(Xj − x) = T −

T∑
j=1

1
1 + λ(Xj − x)Kh(Xj − x) .

Hence
pt(x) = pt = T−1{1 + λ(Xt − x)Kh(Xt − x)}−1.

10.3.3 Bootstrap Bandwidth Selection
Particularly in the time series case, deriving asymptotically optimal band-
widths for either the local logistic or biased bootstrap methods is a tedious
matter. Using plug-in methods requires explicit estimation of complex func-
tions with dependent data, and using cross-validation demands selection of
the amount of data that is left out. Instead, Hall, Wolff, and Yao (1999)
suggested a bootstrap approach, which we introduce below. We first fit a
simple parametric model such as

Yi = a0 + a1Xi + · · ·+ akX
k
i + σεi,

where εi is standard normal, a0, · · · , ak, σ are estimated from the data, and
k is determined by AIC. We form a parametric estimator F̌ (y|x) based on
the model. By Monte Carlo simulation from the model, we compute a boot-
strap version of {Y ∗

1 , · · · , Y ∗
T } based on given observations {X1, · · · , XT },

and hence a bootstrap version F̂ ∗
h (y|x) = F̂ ∗(y|x) of F̂ (y|x), derived from

(10.18) with {(Xi, Yi)} replaced by {(Xi, Y
∗
i )}. The bootstrap estimator of

the absolute deviation error of F̂ (y|x) is

M(h;x, y) = E
[
|F̂ ∗
h (y|x)− F̌ (y|x)|

∣∣∣ {(Xi, Yi)}
]
.

Choose h = ĥ(x, y) to minimize M(h;x, y). Sometimes we use the x-
dependent bandwidth ĥ(x), which minimizes

M(h;x) =
∫
M(h;x, y) F̌ (y|x) dy.

In practice, M(h;x, y) and M(h;x) are evaluated via repeated bootstrap
sampling. The approach above can also be applied to choosing h for esti-
mating F̃ (y|x).
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When we are working with time-series data (e.g., Yt = Xt+m for some
m ≥ 1), we propose an alternative resampling scheme as follows. Assume
that the data {X1, · · · , XT } represent a segment of a Gaussian autoregres-
sion:

Xt = b1Xt−1 + · · ·+ bpXt−p + εt, εt ∼ N(0, σ2).

Select the order p via AIC, and estimate its parameters b1, · · · , bp and
σ2. Resample the segment {X∗

1 , · · · , X∗
T } from the parametric model. The

bootstrap estimator F ∗
h (y|x) is calculated using this segment and then sub-

stituted into the formula above for M(h;x, y).

10.3.4 Numerical Examples
We illustrate the methodology through one simulated model and the Cana-
dian lynx data for which we also consider the conditional distributions given
two lagged values. We always use the Gaussian kernel in our calculation.

Example 10.3 We compared various estimators of the conditional distri-
bution function F (.|.) through the simulated model

Yt = 3.76Yt−1 − 0.235Y 2
t−1 + 0.3 εt, (10.21)

where the errors εt were independent with common distribution U [−√3,√
3]. The estimators concerned are the Nadaraya–Watson estimator (NW),

the local linear regression estimator (LL), the adjusted Nadaraya–Watson
estimator (ANW), and the local logistic estimators with r = 2 (LG-2).
We treated two- and three-step-ahead prediction by taking Yt = Xt+m for
m = 2 and 3. The performance of the estimator was evaluated in terms of
the Mean Absolute Deviation Error (MADE),

MADE =
∑
i |Fe(yi|xi)− F (yi|xi)| I{0.001 ≤ F (yi|xi) ≤ 0.999}∑

i I{0.001 ≤ F (yi|xi) ≤ 0.999} ,

where Fe(.|.) denotes an estimator of F (.|.), and {(xi, yi)} are grid points
with step 0.4 in the x-direction and steps 0.1 for m = 2 and 0.19 for m = 3
in the y-direction.

We conducted the simulation in two stages. First, we calculated MADEs
for the various estimators over grid points evenly distributed across the
whole sample space. For each estimator, we used the optimal bandwidth
defined by

hopt(x) =
∫
hopt(x, y)F (y|x) dy ,

where hopt(x, y) is the minimizer of the asymptotic mean squared error (up
to first order) of the estimator. This guarantees a fair comparison among
different methods. Note that the conditional distributions concerned no
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FIGURE 10.4. Example 10.3. Conditional distribution function z = F (y|x) for
(a) m = 2 and (b) m = 3. Boxplots of MADEs for the Nadaraya–Watson estimate
(NW), local linear regression estimate (LL), adjusted NW estimate (ANW), and
local logistic estimate with r = 2 (LG-2) when (c) m = 2 and (d) m = 3. From
Hall, Wolff, and Yao (1999).

longer admit simple explicit forms. In order to calculate hopt(x), we evalu-
ated the true values of F (y|x) and its derivatives by simulation, as follows.
We generated 50,000 random samples by iterating (10.21) two (or three)
times starting at a fixed value x. The relative frequency of the sample
exceeding y was regarded as the true value of F (y|x). The resulting con-
ditional distribution functions are plotted in Figures 10.4 (a) and (b). We
used kernel methods to estimate the marginal density function with a sam-
ple of size 100,000. Figures 10.4 (c) and (d) are the boxplots of MADEs for
the 400 replications. Both the ANW and LG-2 methods provide competi-
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FIGURE 10.5. Example 10.3. (a) Boxplots of the MADEs based on ĥ(x) minus
the MADEs based on hopt(x). (b) Boxplots of ĥ(x)−hopt(x). (c)—(d) The curves
representing the conditional distribution functions F (.|x): thick line, F (.|x); thin
line, adjusted Nadaraya–Watson estimate; dashed line, local logistic estimate
(r = 2). From Hall, Wolff, and Yao (1999).

tive performance relative to the LL method in terms of the absolute error
of estimation. The larger MADE values for the NW estimator are due to
its larger bias and poor boundary effect.

Second, we demonstrated the usefulness of the bootstrap scheme for
choosing bandwidth stated in §10.3.3. For each of 200 random samples
of size n = 600, we estimated the two-step-ahead predictive distribution
F (.|x) using the bandwidth ĥ(x) selected by the bootstrap scheme for
x = 4.99 and 13.71. The bootstrap resampling was conducted as follows.
We fitted a linear AR(1) model to the original data and sampled time series
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FIGURE 10.6. Example 10.4. Estimated conditional distribution z = F (y|x) of
Yt = Xt+1 given Xt = x.

(with length 600) from the fitted model. We replicated bootstrap sampling
40 times. We considered only the adjusted Nadaraya–Watson estimator and
the local logistic estimator with r = 2. We compared the estimates with
those based on the optimal bandwidth hopt(x), which is equal to 0.182 for
x = 4.99 and 0.216 for x = 13.71 in the case of the ANW estimate and
equal to 0.241 for x = 4.99 and 0.168 for x = 13.71 in the case of the LG-
2 estimate. Figure 10.5(a) presents boxplots of the differences of MADEs
based on ĥ(x) over the MADEs based on hopt(x). Figure 10.5(b) displays
boxplots of ĥ(x)−hopt(x) in the simulation with 200 replications. Since we
used a simple linear model to fit the nonlinear structure, it is not surpris-
ing that ĥ(x) always overestimates hopt(x). But the estimates for F (y|x)
remain reasonably reliable. Figures 10.5(c) and (d) depict typical examples
of the estimated conditional distribution functions F̂ (.|x) and F̃ (.|x). The
typical example was selected in such a way that the corresponding MADE
was equal to its median in the simulation with 200 replications.

Example 10.4 We illustrate our method with the Canadian lynx data
(on a natural logarithmic scale) for the years 1821–1934; see Figure 1.2.
We estimated the conditional distribution of Xt+1 given Xt by the adjusted
Nadaraya–Watson method. The bandwidths were selected by the bootstrap
scheme based on resampling the whole time series from the best-fitted linear
AR(1) model. We did 40 replications in the bootstrap resampling step. The
estimated conditional distribution function is depicted in Figure 10.6.
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TABLE 10.1. Predictive intervals for Canadian lynx in 1925–1934 based on the
data in 1821–1924. The nominal coverage probability is α = 0.9. From Hall,
Wolff, and Yao (1999).

Year
True
value

Predictor from
one lagged value ĥ(x)

Predictor from
two lagged values ĥ(x1, x2)

1925 8.18 [5.89, 8.69] 0.123 [6.86, 8.60] 0.245
1926 7.98 [5.99, 8.81] 0.340 [6.86, 8.81] 0.570
1927 7.34 [5.94, 8.75] 0.485 [6.40, 8.26] 0.715
1928 6.27 [5.43, 8.35] 0.195 [5.44, 6.86] 0.715
1929 6.18 [4.69, 7.71] 0.268 [4.60, 6.16] 1.095
1930 6.50 [4.65, 7.70] 0.340 [5.43, 7.03] 0.860
1931 6.91 [5.21, 7.72] 0.268 [5.71, 7.50] 0.860
1932 7.37 [5.37, 7.82] 0.268 [6.38, 8.12] 0.860
1933 7.88 [5.44, 8.38] 0.123 [7.17, 8.25] 0.715
1934 8.13 [5.89, 8.74] 0.485 [7.26, 8.81] 1.205

As an alternative application, we constructed the predictive interval

[F−1(0.5− 0.5α|x), F−1(0.5 + 0.5α|x)], α ∈ (0, 1), (10.22)

based on the estimated conditional distribution function. To check on per-
formance, we used the data for 1821–1924 (i.e., T = 104) to estimate F (y|x)
and the last ten data points to check the predicted values. This time, we
used the local logistic method with r = 2. The results with α = 0.9 are
reported in Table 10.1. All of the predictive intervals contain the corre-
sponding true values. The average length of the intervals is 2.80, which is
53.9% of the dynamic range of the data.

We also include in Table 10.1 the predictive intervals based on the es-
timated conditional distribution of Xt given both Xt−1 and Xt−2. To ob-
tain these results, we used the local (linear) logistic method to estimate
F (y|x1, x2). To this end, let L(x1, x2,θ) = A(x1, x2,θ)/{1 + A(x1, x2,θ)}
with A(x1, x2,θ) = exp(θ0 + θ1x1 + θ2x2). The estimator is defined as
F̂ (y|x1, x2) ≡ L(0, 0, θ̂), where θ̂ denotes the minimizer of

T∑
t=3

{I(Xt ≤ y)−L(Xt−1−x1, Xt−2−x2,θ)}2K
(
Xt−1 − x1

h1
,
Xt−2 − x2

h2

)
,

K is a symmetric probability density on R2, and h1 and h2 are bandwidths.
In our calculation, we simply chose K to be the standard Gaussian kernel
and h1 = h2. The bandwidths were selected by the bootstrap scheme based
on resampling time series from the best-fitted linear AR(2) model. Out of
ten predictive intervals, only one (for the year 1929) missed the true value,
and then only narrowly. The average length of the intervals is now reduced
to 1.63, which is 32.8% of the dynamic range of the data.
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10.3.5 Asymptotic Properties
We present the asymptotic normality for both the local logistic estimator
and adjusted Nadaraya–Watson estimator. For the local logistic estimator
F̂ (y|x), we only consider function A of exponential-polynomial type, with
r ≥ 2: A(x,θ) = exp(θ1x0+. . .+θrxr−1). Let f denote the marginal density
of Xi. We impose the following regularity conditions:

(C1) For fixed y and x, f(x) > 0, 0 < F (y|x) < 1, f is continu-
ous at x, and F (y|·) has 2[(r+1)/2] continuous derivatives
in a neighborhood of x, where [t] denotes the integer part
of t. The conditional density function of (X1, Xj) given
(Y1, Yj) is bounded by a positive constant independent of j.

(C2) The kernel K is a symmetric, compactly supported proba-
bility density satisfying |K(x1)−K(x2)| ≤ C |x1 − x2| for
x1, x2.

(C3) The process {(Xi, Yi)} is α-mixing (see Definition 2.11).
Furthermore, its α-mixing coefficients fulfill the condition

∞∑
j=1

jλα(j)γ <∞ for some γ ∈ [0, 1) and λ > γ.

(We define ab = 0 when a = b = 0.)

(C4) As T →∞, h→ 0 and lim infn→∞ Th2r > 0.

Assumption (C3) with γ = 0 implies that the process {(Xi, Yi)} is m-
dependent for some m ≥ 1. The requirement in (C2) that K be compactly
supported is imposed for the sake of brevity of proofs and can be removed
at the cost of lengthier arguments. In particular, the Gaussian kernel is
allowed. The last condition in (C4) may be relaxed if we are prepared to
strengthen (C3) somewhat. For example, if the process {(Xi, Yi)} is m-
dependent, then, for Theorem 10.2 below, we need only nh → ∞, not
nh2r bounded away from 0. However, since (C4) is always satisfied by
bandwidths of optimal size (i.e. h ≈ CT−1/(2r+1)), we will not concern
ourselves with such refinements.

Define κj =
∫
uj K(u) du and νj =

∫
uj K(u)2 du. Let S denote the r×r

matrix with (i, j)th element κi+j−2 and κ(i,j) be the (i, j)th element of
S−1. Let r1 = 2[(r + 1)/2] and put τ(y|x)2 = F (y|x) {1− F (y|x)}/f(x),

µr(x) = (r!)−1
{
F (r1)(y|x)− L(r1)(0,θ0)

} r∑
i=1

κ(1,i) κr1+i−1 ,

τ2
r =

∫ (
r∑
i=1

κ(1,i) ui−1

)2

K(u)2 du,
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where θ0 is determined by

F (i)(y|x) = L(i)(0,θ0), i = 0, 1, · · · , r − 1. (10.23)

Let N1, N2, N3 denote random variables with the standard normal distri-
bution.

Theorem 10.2 (i) Suppose that r ≥ 2 and conditions (C1)–(C4) hold.
Then, as T →∞,

F̂ (y|x)− F (y|x) (10.24)

= (Th)−1/2 τ(y|x) τrN1 + hr1µr(x) + op

{
hr1 + (Th)−1/2

}
.

(ii) Assume conditions (C1)–(C4) with r = 2. Then, as T →∞,

F̃ (y|x)− F (y|x) (10.25)

= (Th)−1/2 τ(y|x) ν1/2
0 N2 + 1

2 h
2 κ2 F

(2)(y|x) + op

{
h2 + (Th)−1/2

}
.

The theorem above was first established for β-mixing processes by Hall,
Wolff, and Yao (1999). A proof for α-mixing processes based on Theo-
rem 2.22 will be outlined in §10.5. Some remarks are now in order.

(a) Comparison of F̂ and the local polynomial estimator. To first order,
and for general x, the asymptotic variance of F̂ (y|x) is exactly the same
as in the case of local polynomial regression estimators of order r; for the
latter, see, for example, Ruppert and Wand (1994) and Fan and Gijbels
(1996). This similarity extends also to the bias term, to the extent that
for both F̂ and local polynomial estimators the bias is of order hr for even
r and hr+1 for odd r, and (to this order) does not depend on the design
density. However, the forms of bias as functionals of the “regression mean”
F are quite different. This is a consequence of the fact that, unlike a local
polynomial estimator, F̂ (y|x) is constrained to lie within (0, 1).

(b) Comparison of F̃ and the local linear estimator. It can be shown that
under conditions (C1)–(C4) for r = 2, the asymptotic formula (10.25) for
F̃ (y|x) is shared exactly by the standard local linear estimator F̂LL(y|x),
derived by minimizing

T∑
t=1

{I(Yt ≤ y)− α− β (Xt − x)}2Kh(Xt − x)

with respect to (α, β) and taking F̂LL(y|x) = α̂. Compare (10.25) with
the state-domain version of (6.10). Note, however, that, unlike F̃ , F̂LL is
constrained neither to lie between 0 and 1 nor to be monotone in y. Addi-
tionally, F̃ is somewhat more resistant against data sparseness than F̂LL.
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(c) Comparison of F̂ and F̃ . In the case r = 2, (10.24) reduces to

F̂ (y|x)− F (y|x) (10.26)

= (Th)−1/2 τ(y|x)N1 + 1
2 h

2 κ2 µ2(y|x) + op

{
h2 + (Th)−1/2

}
,

where

µ2(y|x) = F (2)(y|x)− F (1)(y|x)2 {1− 2F (y|x)}
F (y|x){1− F (y|x)}

and F (i) = (∂/∂x)iF . Comparing (10.25) and (10.26), we see that F̂ (y|x)
(with r = 2) and F̃ (y|x) have the same asymptotic variance but that
the first-order bias formula of the former contains an additional term. In
consequence, if F (y|x) < 1

2 , then F̂ (y|x) is biased downward relative to
F̃ (y|x), while if F (y|x) > 1

2 , then it is biased upward.

(d) Comparison with the Nadaraya–Watson estimator. The analog of (10.25)
and (10.26) in the case of the Nadaraya–Watson estimator,

F̂NW(y|x) =

{
T∑
t=1

I(Yt ≤ y)Kh(Xt − x)
}/{

T∑
t=1

Kh(Xt − x)
}
,

is

F̂NW(y|x)− F (y|x)
= (Th)−1/2 τ(y|x) ν1/2

0 N3 + 1
2 h

2 κ2 µ(y|x) + op

{
h2 + (Th)−1/2

}
,

where µ(y|x) = F (2)(y|x)+2 f(x)−1f ′(x)F (1)(y|x). Note particularly that,
unlike any of F̂ , F̃ , and F̂LL, F̂NW has a bias that depends to first order on
the density f of Xt. However, the variances of all four estimators (F̂ with
r = 2) are identical to first order.

(e) Continuity of F (y|x) with respect to y. Conditions (C1)–(C4) require
continuity of F (y|x) with respect only to x, not to y. In principle, we could
exploit smoothness of F (y|x) in y by taking, for example, the integral
average of F̂ (·|x) or F̃ (·|x) in the neighborhood of y, thereby obtaining an
estimator that had potentially lower variance. However, any improvement
in performance is available only to second order. To appreciate why, note
that if y1 ≤ y2, then, to first order, the covariance of F̂ (y1|x) and F̂ (y2|x)
equals (nh)−1F (y1|x) {1 − F (y2|x)} τ2

r , which, as y1, y2 → y, converges to
the first-order term in the variance of F̂ (y|x). It follows that no first-order
reductions in variance are obtainable by averaging over values of F̂ (z|x) for
z in a decreasingly small neighborhood of y. The same argument applies
to F̃ .
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10.3.6 Sensitivity to Initial Values: A Conditional
Distribution Approach

(a) Sensitivity measures Km and Dm

In §10.1.3, we dealt with the sensitivity of the conditional means to initial
values, which is relevant to nonlinear point prediction. A more informative
way is to consider the global deviation of the conditional distribution of
XT+m given XT (Yao and Tong 1995b; Fan, Yao, and Tong 1996), which
measures the error in them-step-ahead predictive distribution due to a drift
δ in the initial value. For this purpose, it is more convenient to consider
the conditional density function gm(·|x) of XT+m given XT = x instead of
the conditional distribution. Naturally, we may use the mutual information
based on the Kullback–Leibler information, which is expressed as

Km(x; δ) =
∫
{gm(y|x+ δ)− gm(y|x)} log{gm(y|x+ δ)/gm(y|x)}dy.

It may be shown that as δ → 0, Km(x; δ) has the approximation

Km(x; δ) = I1,m(x)δ2 + o(δ2), (10.27)

where
I1,m(x) =

∫
{ġm(y|x)}2/gm(y|x)dy, (10.28)

where ġm(y|x) denotes the partial derivative of gm(y|x) with respect to x.
If we treat the initial value x as a parameter of the distribution, I1,m(x)
is the Fisher’s information, which represents the information on the initial
value XT = x contained in XT+m. Therefore (10.27) may be interpreted
as that the more information XT+m contains about the initial state XT ,
the more sensitively the distribution depends on the initial condition. The
converse is also true. We will see from Proposition 10.1 below that I1,m(x)
also controls the sensitivity to initial values of predictive intervals.

We also consider a simple L2-distance defined as

Dm(x; δ) =
∫
{gm(y|x+ δ)− gm(y|x)}2dy.

It follows from Taylor’s expansion that

Dm(x; δ) = I2,m(x)δ2 + o(δ2),

where
I2,m(x) =

∫
{ġm(y|x)}2dy. (10.29)

The measures I1,m and I2,m are more informative than the measure
derived from the conditional mean approach in §10.1.3. To illustrate this
point, we consider the following one-dimensional model

Xt+1 = αXt + σ(Xt)εt+1,
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where α is a real constant, σ(·) is a positive and differentiable function,
and {εt} are i.i.d. standard normal. It is easy to see from (10.12) that
ḟm(x) = αm is a constant, which indicates that when |α| < 1, the system is
globally as well as locally stable as far as the conditional mean is concerned.
However, both I1,m(·; ·) and I2,m(·; ·) are no longer constants. For example,

I1,1(x) =
1

σ2(x)
{α2+2[σ̇(x)]2}, I2,1(x) =

1
4
√
πσ3(x)

{
α2 +

3
2
[σ̇(x)]2

}
.

Therefore, there is some variation in the sensitivity of the conditional dis-
tribution with respect to the initial value x, which is due to the presence
of the conditional heteroscedasticity in the model.

The sensitivity of conditional distribution is closely related to the sensi-
tivity of the conditional mean. In fact

I1,m(x) ≥ {ḟm(x)}2/Var(XT+m|XT = x).

(see Theorem 4.1 of Blyth 1994). This is a conditional version of the famous
Cramer–Rao inequality. Note that ḟm(x) measures the sensitivity of the
conditional expectation fm(x) = E(XT+m|XT = x) (see §10.1.3). The
relation above indicates that when the conditional variance is large, I1,m(x)
will be small. This reflects the fact that the sensitivity of the conditional
distribution will be masked by stochastic noise in the system. For very
noisy time series, the predictive errors due to a drift in initial values are
relatively negligible.

(b) Monitoring predictive intervals

Let Ωm(XT ) be a predictive set for XT+m based on XT with coverage
probability α ∈ (0, 1), namely

P{XT+m ∈ Ωm(x)|XT = x} = α. (10.30)

When Ωm(x) is an interval, it is called an interval predictor . If the ob-
servation is subject to an error, the real coverage probability may differ
adversely from α. Proposition 10.1 indicates that the deviation in the cov-
erage probability may be monitored by the measure I1,m defined in (10.28).

Proposition 10.1 Suppose that b(z) ≡ | ∫ ( ∂∂z )
2gm(y|z)dy| is bounded in

a neighborhood of x. For any predictive set Ω(·) satisfying (10.30), it holds
that

∣∣P{XT+m ∈ Ωm(x)|XT = x+ δ} − α∣∣ ≤ |δ|{α I1,m(x)}1/2 +O(δ2).
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Proof. It follows from (10.30) that

P{Ym ∈ Ωm(x)|X0 = x+ δ} =
∫

Ωm(x)
gm(y|x+ δ)dy

=
∫

Ωm(x)
{gm(y|x) + δġm(y|x)}dy +O(δ2)

= α+
∫

Ωm(x)
δġm(y|x)dy +O(δ2).

By the Cauchy–Schwarz inequality,

∣∣∣∣∣
∫

Ωm(x)
δġm(y|x)dy

∣∣∣∣∣ ≤
{∫

Ωm(x)
gm(y|x)dy

∫ {δġm(y|x)}2
gm(y|x) dy

} 1
2

≤ |δ|{αI1,m(x)} 1
2 .

(c) Estimation of I1,m(x) and I2,m(x)

The estimators for I1,m(x) and I2,m(x) may be easily constructed by plug-
ging in the estimators for gm(y|x) and ġm(y|x) presented in §6.5. Due to
the simple form of (10.29), the resulting estimator for I2,m(x) reduces to a
relatively simple explicit form (10.32) below. In contrast, the plug-in esti-
mator for I1,m(x) involves an integral of a ratio of two estimators, which is
less stable. An alternative will also be suggested. We outline those estima-
tion methods below. A more detailed account of the asymptotic properties,
bandwidth selection, and numerical illustration is available from Fan, Yao,
and Tong (1996).

Suppose thatX1, · · · , XT are observations from a strictly stationary time
series. Let p = 2 in (6.54). The resulting local quadratic estimators can be
written as ĝm(y|x) = β0(x, y) and ̂̇gm(y|x) = β1(x, y), where

β̂j(x, y) = h−1
1

T−m∑
t=1

WT
j

(
Xt − x
h1

)
Kh2(Xt+m − y), j = 0, 1. (10.31)

In the expression above, K and W are kernel functions, h1, h2 > 0 are
bandwidth,

WT
j (t) = eτjS

−1
T (1, h1t, h

2
1t

2)τ ×W (t),

with ej being the unit vector with (j + 1) element 1, and

ST =




s0 s1 s2
s1 s2 s3
s2 s3 s4


 , sj =

T−m∑
t=1

(Xt − x)jWh1(Xt − x).
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With the derivative of the conditional density estimated by (10.31), a
natural estimator for I2,m(x) is

Î2,m(x) =
∫
β̂2

1(x, y)dy =
1
h2

1

T−m∑
i=1

T−m∑
j=1

WT
1

(
Xi − x
h1

)

× WT
1

(
Xj − x
h1

)∫
Kh2(Xi+m − y)Kh2(Xj+m − y)dy.

Assume that the kernel K(·) is symmetric. Then
∫
Kh2(Xi − y)Kh2(Xj − y)dy = K∗

h2
(Xi −Xj),

where K∗ = K ∗ K is a convolution of the kernel function K with itself.
Thus, the proposed estimator can be expressed as

Î2,m(x) =
1
h2

1

T−m∑
i=1

T−m∑
j=1

WT
1

(
Xi − x
h1

)
WT

1

(
Xj − x
h1

)
K∗
h2

(Xi+m−Xj+m).

(10.32)
The asymptotic normality for the estimator above was established in Fan,
Yao, and Tong (1996).

Analogously, an estimator for I1,m(x) can be defined by

Î1,m(x) =
∫
β̂2

1(x, y)/β̂0(x, y)dy,

with the usual convention 0/0 = 0. The integration above is typically finite
under some mild conditions. However, this estimator cannot be simplified
easily.

An alternative estimator to I1,m(x) originates from the fact that

I1,m(x) = 4
∫ {

∂
√
gm(y|x)
∂x

}2

dy.

For given bandwidths h1 and h2, define

C(Xi, Xi+m) = #{(Xt, Xt+m), 1 ≤ t ≤ T −m : |Xt −Xi| ≤ h1

and |Xt+m −Xi+m| ≤ h2},
C(Xi) = #{Xt, 1 ≤ t ≤ T −m, : |Xt −Xi| ≤ h1},

for 1 ≤ i ≤ n. Then

Zt ≡ [C(Xt, Xt+m)/{C(Xt)h2}]1/2

is a natural estimate of q(x, y) ≡ {gm(y|x)}1/2 at (x, y) = (Xt, Xt+m).
Fitting it into the context of locally quadratic regression, we may estimate
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q(x, y) and its first- and second-order partial derivatives with respect to x,
which are denoted by q̇(x, y) and q̈(x, y), respectively, by using q̂(x, y) = â,
̂̇q(x, y) = b̂, and ̂̈q(x, y) = ĉ, where (â, b̂, ĉ) is the minimizer of the function

T−m∑
t=1

{Zt − a− b(Xt − x)− c(Xt − x)2/2}2H
(
Xt − x
h1

,
Xt+m − y

h2

)
,

H being a probability density function on R2. Consequently, we estimate
I1,m(x) by

Ĩ1,m(x) = 4
∫
{̂̇q(x, y)}2 dy.

10.4 Interval Predictors and Predictive Sets

For linear time series models with normally distributed errors, the predic-
tive distributions are normal. Therefore, the predictive intervals are easily
obtained using the mean plus and minus a multiple of the standard devia-
tion. The width of such an interval, even for multistep-ahead prediction, is
constant over the whole state-space. Predictive intervals constructed in this
way have also been used for some special nonlinear models, such as thresh-
old autoregressive models (see Davis, Pembertn, and Petruccelli 1988, Tong
and Moeanaddin 1988). However, the method above is no longer pertinent
when the predictive distribution is not normal, which, unfortunately, is the
case for most nonlinear time series, especially with multiple-step-ahead pre-
diction. Yao and Tong (1995b, 1996) proposed to construct predictive inter-
vals using conditional quantiles (percentiles) (see also (10.22)). However,
interval predictors so constructed are inappropriate when the predictive
distributions are asymmetric and/or multimodal.

Asymmetric distributions have been widely used in modeling economic
and financial data. Further, skewed predictive distributions may occur in
multistep-ahead prediction even though the errors in the models have sym-
metric distributions (see Figure 10.7(a) below). Multimodal phenomena
often indicate model uncertainty. The uncertainty may be caused by fac-
tors beyond the variables specified in the prediction (see Figure 10.7(b)). In
order to cope with the possible skewness and multimodality of the under-
lying predictive distribution, Polonik and Yao (2000) suggested searching
for the set with the minimum length (i.e., Lebesgue measure) among all
candidate predictive sets. We introduce their approach in this section. For
the theoretical properties of the minimum-length predictors, we refer to
Polonik and Yao (2000, 2002).



10.4 Interval Predictors and Predictive Sets 471

10.4.1 Minimum-Length Predictive Sets
Suppose that {(Yt,Xt)} is a strictly stationary process. We consider the
predictive sets for Yt based on Xt. In the time series context, Yt = Xt+m
for some m ≥ 1 fixed and Xt = (Xt, · · · , Xt−p+1). Let F (·|x) denote the
conditional distribution of Yt given Xt = x. Now, we treat F (·|x) as a
function defined on all measurable sets in R, and we adopt the convention
that

F (y|x) = F ((−∞, y]|x), y ∈ R.
A general form of predictive set is defined as in (10.30). However, in prac-
tice, we would restrict our attention to some simple types of predictive sets
only. Let C denote a class of measurable subsets of R, which defines candi-
date predictive sets. Usually, C consists of all intervals in R, or all unions
of two intervals, and so on. For α ∈ [0, 1] and x ∈ Rp, define

Cα(x) = {C ∈ C : F (C|x) ≥ α}.
The minimum length predictor may be formally defined as follows.

Definition 10.1 The set in Cα(x) with the minimum Lebesgue measure is
called the minimum length predictor for Yt based on Xt = x in C with
coverage probability α, which is denoted MC(α|x).

The minimum-length predictor depends on the current position Xt = x.
It defines a set on which the predictive distribution F (·|x) has the largest
(probability) mass concentration in the sense that it has the minimum
Lebesgue measure among all sets in a given class with the nominal coverage
probability. Suppose that the conditional density g(y|x) of Yt given Xt = x
exists. Then, it is clear that the minimum-length predictor is given by

{y : g(y|x) ≥ λα}
(i.e., the high-density region), where λα is the constant such that the pre-
diction set has coverage probability α.

The minimum-length predictor of all of the predictive intervals is the
one with the shortest length. For a symmetric and unimodal predictive
distribution, a minimum-length predictor reduces to the quantile interval

I(α|x) ≡ [F−1(0.5− 0.5α|x), F−1(0.5 + 0.5α|x) ]. (10.33)

In general, the minimum-length predictor MC(α|x) may not be unique.
Furthermore, it may not exist for some C; see Polonik and Yao (2000).
Ideally, we should specify the candidate set C according to the profile of
the predictive distribution F (·|x). For example, when F (·|x) is k modal, C
may consist of all of the unions of at most k intervals. In practice, we often
let C be the set of all (connected) intervals, or all unions of two intervals.
We denote them as

M1(α|x) = MC(α|x) for C = {[a, b] : −∞ ≤ a < b ≤ ∞} (10.34)
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FIGURE 10.7. (a) Conditional density function of Xt+3 given Xt = 8 for model
(10.36). (b) Conditional density function of Xt+1 given Xt = 0 for model (10.37).
From Polonik and Yao (2000).

and

M2(α|x) = MC(α|x) for C = {[a, b]∪[c, d] : −∞ ≤ a < b ≤ c < d ≤ ∞}.
(10.35)

The minimum-length predictor M1(α|x) is the predictive interval with the
shortest length. The predictor M2(α|x) may consist of two disconnected
intervals if F (·|x) has more than one mode.

To illustrate the basic ideas of minimum length predictors, we look into
two toy models first.

We start with a simple quadratic model

Xt = 0.23Xt−1(16−Xt−1) + 0.4εt, (10.36)

where {εt} is a sequence of independent random variables each with the
standard normal distribution truncated in the interval [−12, 12]. The con-
ditional distribution of Yt ≡ Xt+m given Xt is symmetric for m = 1 but not
necessarily so for m > 1. For example, the conditional density function at
Xt = 8 with m = 3 is depicted in Figure 10.7(a), which is obviously skewed
to the left. Based on this density function, two types of predictive inter-
vals with three different coverage probabilities are specified in Table 10.2.
For example, the quantile interval I(α|x) = [5.11, 14.96] for α = 0.95 and
x = 8. It contains some lower-density points near its left end-point due to
the skewness of the distribution; see Figure 10.7(a). The minimum-length
interval M1(α|x) = [6.50, 15.30] could be regarded as a compressed shift
to the right of the quantile interval with 10.57% reduction in its length.
Obviously, the accuracy of prediction has been substantially improved by
using the minimum-length interval.
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TABLE 10.2. Two predictive sets for Xt+3 based on Xt = 8 (i.e. x = 8) for
model (10.36). The percentage decreases in length relative to I(α|x) are recorded
in parentheses.

α = 0.95 I(α|x) [5.11, 14.96]
M1(α|x) [6.50, 15.30] (10.57%)

α = 0.70 I(α|x) [8.66, 13.95]
M1(α|x) [9.64, 14.15] (8.72%)

α = 0.50 I(α|x) [9.83, 12.95]
M1(α|x) [10.69, 13.56] (8.01%)

Now, we consider the model

Xt = 3 cos
(
πXt−1

10

)
+ Zt−1 +

1
0.8Zt−1 + 1

εt, (10.37)

where {εt} and {Zt} are two independent i.i.d. sequences with εt ∼ N(0, 1)
and P (Z1 = 0) = 0.65 = 1 − P (Z1 = 5). For the sake of illustration,
we assume that the “exogenous” variable Zt is unobservable. We predict
Yt ≡ Xt+1 from Xt only. Thus, the (theoretical) least squares conditional
point predictor is 3 cos(0.1πXt) + 1.75, which obviously is not satisfactory.
It is easy to see that the conditional distribution of Xt+1 given Xt is a
mixture of two normal distributions. Figure 10.7(b) depicts the conditional
density function at Xt = 0. For the three different values of α, Table 10.3
records the three types of predictive sets: the quantile interval I(α|x), the
minimum-length intervals M1(α|x), and the minimum-length set with at
most two intervals M2(α|x). We can see that the percentile interval fails to
do a reasonable job simply because the predictive intervals are too wide.
The improvement by using M1(α|x) is not substantial unless the cover-
age probability α is small enough that the probability mass around one
mode exceeds α. The set M2(α|x) is much shorter in length (i.e., Lebesgue
measure) and therefore offers a much more accurate prediction. All three
M2(α|x) consist of two disconnected intervals, which clearly reveals the
uncertainty in Xt+1 caused by the “hidden” variable Zt. The coverage
probabilities of the two intervals centered at 3 and 8 are 0.61 and 0.34,
0.38 and 0.32, and 0.20 and 0.30 when the global coverage probability is
0.95, 0.70, and 0.50, respectively.

The two simple examples above indicate that we should seek the minimum-
length predictive sets when the conditional distribution of Y given X is
skewed and/or multimodal. The number of intervals used in the predictor
should be equal, or at least close, to the number of modes of the conditional
distribution, subject to practical feasibility.
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TABLE 10.3. Three predictive sets for Xt+1 based on Xt = 0 (i.e., x = 0) for
model (10.37). The percentage decreases in length relative to I(α|x) are recorded
in parentheses.

I(α|x) [1.23, 8.30]
α = 0.95 M1(α|x) [1.50, 8.42] (2.12%)

M2(α|x) [1.15, 4.84]∪[7.54, 8.46] (34.79%)
I(α|x) [2.26, 8.04]

α = 0.70 M1(α|x) [2.80, 8.29] (5.02%)
M2(α|x) [2.18, 3.82]∪[7.66, 8.34] (59.86%)
I(α|x) [2.71, 7.89]

α = 0.50 M1(α|x) [1.80, 4.20] (53.67%)
M2(α|x) [2.60, 3.40]∪[7.71, 8.29] (73.36%)

10.4.2 Estimation of Minimum-Length Predictors
Constructing a minimum-length predictor involves three steps: (i) esti-
mating the conditional distribution F (·|x), (ii) specifying the set C, and
(iii) searching for MC(α|x) with F replaced by its estimator; see Defini-
tion 10.1. As we have discussed in §10.4.1, the specification of C is dictated
by the profile of F as well as practical considerations. In fact, interval pre-
dictors such as (10.34) are often preferred in practice. In this case, the
search for the minimum-length predictive interval M1(α|x) reduces to the
search for its two end points, which may be carried out, for example, in the
manner of exhaustive searching among the observed data points.

Suppose that (Yt,Xt), 1 ≤ t ≤ T , are observations from a strictly sta-
tionary process. An estimator for the conditional distribution F (C|x) may
be obtained by any local regression of I(Yt ∈ C) on Xt. For example,
the local logistic estimation or the adjusted Nadaraya–Watson estimator
of §10.3 may be adopted for this purpose. As a simple illustration, we use
the standard Nadaraya–Watson estimator

F̂ (C|x) =
T∑
t=1

I(Yt ∈ C)K
(

Xt − x
h

)/ T∑
t=1

K

(
Xt − x
h

)
,

where K(·) is a kernel function defined on Rp, and h > 0 is a bandwidth.
Replacing F (·|x) by F̂ (·|x) in Definition 10.1, we obtain an estimator for
the minimum-length predictor, which may be expressed as

M̂C(α|x) = arg min
C∈C
{Leb(C) : F̂ (C|x) ≥ α }, (10.38)

where Leb(C) denotes the Lebesgue measure of C. Its true coverage prob-
ability

α̂ ≡ F{M̂C(α|x)|x}
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converges to the nominal coverage probability α. In fact, Polonik and Yao
(2000) show that under some regularity conditions,

{Thpf(x)}1/2(α̂− α) D−→ N (0, α(1− α)ν2)

as T →∞, where ν2 =
∫
K(u)2du, and f(·) is the density function of Xt.

Furthermore,

(Thp)1/2
f(x)
µ(x)

[Leb{M̂C(α|x)} − Leb{MC(α|x)}] D−→ N (0, α(1− α)ν2) ,

where µ(x) is the partial derivative of Leb{MC(α|x)} with respect to α.
Like all local regression methods, we need to specify the smooth parame-

ter h in the estimation above. The bootstrap bandwidth selection procedure
of §10.3.3 can be adapted for this purpose. To simplify the presentation,
we outline the scheme for the case where C is the set of intervals, as defined
in (10.34).

We fit a parametric model

Yt = G(Xt) + εt, (10.39)

where G(x) denotes, for example, a polynomial function of x. We assume
that {εt} are independent N(0, σ2). The parameters in G and σ2 are esti-
mated from the data. We form a parametric estimator M̌1(α|x) based on
the above model. By Monte Carlo simulation from the model, we compute
a bootstrap version {Y ∗

1 , . . . , Y
∗
n } from (10.39) based on given observations

{X1, . . . ,Xn}, and with that a bootstrap version M̂∗
1 (α|x) of M̂1(α|x) with

{(Xi, Yi)} replaced by {(Xi, Y
∗
i )}. Define

D(h) = E[Leb{M̂∗
1 (α|x) � M̌1(α|x)}|{Xi, Yi}],

where A� B = (A − B) ∪ (B − A) is the symmetric difference of sets A
and B. Choose h = ĥ to minimize D(h). In practice, D(h) is evaluated via
repeated bootstrap sampling.

In principle, there are no difficulties in extending the idea above for es-
timation of M2(α|x) defined in (10.35). We may, for example, let εt have
a mixture of two normal distributions, although the bootstrap search for
M̂∗

2 (α|x) is computationally more expensive. Our experience suggests that
the choice between the two predictors M̂1(α|x) and M̂2(α|x) does not de-
pend on the bandwidth sensitively unless there occurs a bifurcation to the
conditional distribution F (·|x) around x. Note that our problem is differ-
ent in nature from that in Silverman’s test for multimodality (Silverman
1981). If we were interested in determining the number of modes in the
curve P (x) ≡ F (C|x), the bandwidth used in estimation would play a
critical role.

An obvious alternative to the minimum-length approach introduced above
is to construct a predictive set based on an estimated conditional density
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FIGURE 10.8. Scatterplot of Xt against Xt−1 from a sample of size 1,000 gener-
ated from model (10.40). The positions marked with a “•” are (from left to right)
(−4.5, 5.7), (1.5, 7.8), (3.9, 2.4), and (8.1, −4.7). From Polonik and Yao (2000).

function (see §6.5). Let g(·|x) be the conditional density function of Yt
given Xt = x. The minimum-length predictor may be defined as

M(α|x) = {y : g(y|x) ≥ λα},

where λα is the maximum value for which
∫

{y: g(y|x)≥λα}
g(y|x)dy ≥ α.

Note that we do not need to specify the candidate set C in this approach.
However, the estimation of g(y|x) involves smoothing in both y and x di-
rections; see §6.5. Further, we argue that minimum-length predictors in
different sets C may provide valuable information on the shape of the con-
ditional distribution of Yt given Xt; see Examples 10.5 and 10.6 in §10.4.3
below.

10.4.3 Numerical Examples
To appreciate the finite sample properties of the estimated minimum-length
predictors, we illustrate the methods via one nonlinear AR(2) model and
the rainfall and river flow data from a catchment in Wales. (This data set
was provided by Professor Peter C. Young.) We always use the Gaussian
kernel. Setting α = 0.9, we calculate estimators for the minimum-length
interval M1(α|x) of (10.34) and minimum-length predictors with at most
two intervals M2(α|x) of (10.35).
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FIGURE 10.9. Boxplots of the ratio of Leb{M̂1(α|x)∆M1(α|x)} to
Leb{M1(α|x)} for model (10.40). From Polonik and Yao (2000).

Example 10.5 First we consider the simulated model

Xt = 6.8− 0.17X2
t−1 + 0.26Xt−2 + 0.3εt, (10.40)

where {εt} is a sequence of independent random variables, each with the
standard normal distribution truncated in the interval [−12, 12]. We con-
duct the simulation in two stages to estimate the minimum-length predic-
tors for Yt ≡ Xt+1 given (i) Xt ≡ (Xt, Xt−1) and (ii) Xt, respectively.

(i) For four fixed values of Xt = (Xt, Xt−1), we repeat the simulation 100
times with sample size n =1,000. Figure 10.8 is the scatterplot of a sample
of size n =1,000. The four positions marked with a “•” are the values of
Xt = x at which the predictor M1(α|x) is estimated. Figure 10.9 presents
the boxplots of Leb{M̂1(α|x)∆M1(α|x)}/Leb{M1(α|x)}. The bandwidths
were selected by the bootstrap scheme stated in §10.4.2 based on paramet-
ric models determined by AIC. With the given sample sizes, AIC always
identified the correct model from the candidate polynomial model of order
3.

(ii) For a sample of size 1,000, we estimate both predictors M1(α|x) and
M2(α|x) for Yt ≡ Xt+1 given its first lagged value Xt = x only. We let x
range over 90% of the inner samples. We use a postsample of size 100 to
check the performance of the predictors. For estimating bandwidths using
the proposed bootstrap scheme, the parametric model selected by the AIC
is

Xt = 8.088− 0.316Xt−1 − 0.179X2
t−1 + 0.003X3

t−1 + 0.825εt.

Figure 10.10(a) displays the estimated M1(α|x) together with the 100 post-
points. Within the range of values of x on which estimation is conducted,
M̂1(α|x) contains about 90% of the postsample. Note that M̂1(α|x) has an
abrupt change in the width around x = 1.5. In fact, the predictor M1(α|x)
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FIGURE 10.10. Simulation results for model (10.40). (a) M̂1(α|x) together with
100 postsamples. (b) M̂2(α|x). The two disconnected intervals are bounded with
solid lines and dashed lines, respectively. (c) Coverage probabilities of the two
intervals in (b): solid curve is the coverage probability for the interval with a solid
boundary; dashed curve is the coverage probability for the interval with a dashed
boundary. (d) The recommended minimum-length predictor for Xt+1 given Xt,
together with 100 postsamples. From Polonik and Yao (2000).

is not satisfactory for x between 1.5 and 6 because the center of the inter-
vals is void for those x-values (see also Figure 10.8). Therefore, it is possible
to construct more accurate predictive sets (i.e., with smaller lengths) for
those x-values. The estimator M̂2(α|x) is plotted in Figure 10.10(b). Due
to sampling fluctuation, the estimator always consists of two disconnected
intervals over the whole sample space. The coverage probabilities of the two
intervals are plotted in Figure 10.10(c). From Figures 10.10 (b) and (c), we
note that when x �∈ [1.5, 6.3], the two intervals of M̂2(α|x) are almost con-
nected, and the two corresponding coverage probabilities are either erratic
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FIGURE 10.11. Hourly rainfall and river flow data from a catchment in Wales.
(a) flow (liters/sec); (b) rainfall (mm).

or very close to 0 and 0.9, respectively. Therefore, it seems plausible to use
M̂2(α|x) for x ∈ [1.5, 6.3] and M̂1(α|x) for x �∈ [1.5, 6.3]. The combined
minimum-length predictor is depicted in Figure 10.10(d) together with the
postsample. The combined predictor covers the postsample as well as the
M̂1(α|x), although its Lebesgue measure has been reduced significantly for
x ∈ [1.5, 6.3].

Example 10.6 Figure 10.11 plots the 401 hourly rainfall and river flow
data from a catchment in Wales. We predict the flow from its logged val-
ues and the rainfall data. Note that the flow data themselves are strongly
autocorrelated (Figure 10.12(a)). Figures 10.12 (b)–(d) indicate that the
point-cloud in the scatterplot of flow against rainfall with time lag 2 is
slightly thinner than those with time lags 0 and 1, which seems to suggest
that the effect of rainfall on the river flow has about a two-hour delay in
time. This is further supported by various statistical modeling procedures.
In fact, the cross-validation method (Yao and Tong 1994b) specified that
the optimal regression subset with two regressors for the flow at the (t+1)
hour Yt+1 consists of its lagged value Yt and the rainfall within the (t− 1)
hour Xt−1. This was further echoed by a fitted MARS model (Friedman
1991). We now predict Yt+1 from Yt and Xt−1 using three predictors given
in (10.33)–(10.35). We estimate the predictors using the data with sample
size n = 394 resulting from leaving out the 373rd, the 375th, and the last
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FIGURE 10.12. Hourly rainfall and river flow data from a catchment in Wales.
(a) scatterplot of flow data; (b)–(d) scatterplots of rainfall against flow at time
lags 2, 1, and 0, respectively.

five flow data (therefore also their corresponding lagged values and the rain-
fall data) in order to check the reliability of the prediction. We standardize
the observations of regressors before the fitting. We adopt the bootstrap
scheme to select the bandwidth. The parametric model determined by AIC
is

Yt+1 = −1.509 + 1.191Yt + 0.924Xt−1 + 0.102YtXt−1

−0.004Y 2
t + 7.902εt+1,

where εt is the standard normal. Table 10.4 reports the estimated predic-
tors for the seven data points that are not used in estimation. All of the
quantile intervals cover the corresponding true values. For the minimum-
length predictor M1(α|x), six out of seven intervals contain the true value.
The only exception occurs when there is a high burst of river flow at the
value 86.9. It is easy to see from Figure 10.11 that data are sparse at this
level and upward. Due to the quick river flow caused by rainfall, we expect
the predictive distributions to be skewed to the right. Therefore, the im-
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TABLE 10.4. The three predictive sets for the river flow Yt+1 from its lagged value
Yt and the lagged rainfall Xt−1. The coverage probabilities of the two intervals
in M̂2(α|x) are recorded in parentheses. From Polonik and Yao (2000).

Yt+1 (Yt, Xt−1) Î(α|x) M̂1(α|x) M̂2(α|x)
47.9 (29.1, 1.8) [3.8, 71.8] [3.3, 51.1] [3.6, 42.3]∪[65.4, 67.5]

(0.89, 0.01)
86.9 (92.4, 2.6) [3.8, 102.9] [3.3, 76.2] [3.3, 53.1]∪[62.6, 78.5]

(0.83, 0.07)
28.0 (30.7, 0.6) [5.6, 39.3] [3.8, 33.5] [4.3, 5.6]∪[6.6, 34.6]

(0.03, 0.87)
27.5 (28.0, 0.2) [4.7, 35.8] [3.8, 32.4] [4.1, 26.9]∪[30.7, 34.6]

(0.82, 0.08)
25.4 (27.5, 0.0) [4.4, 34.6] [3.8, 32.4] [3.6, 24.7]∪[30.7, 34.6]

(0.02, 0.88)
26.9 (25.4, 0.0) [7.7, 33.5] [9.3, 33.5] [9.7, 26.9]∪[29.1, 34.1]

(0.81, 0.09)
25.4 (26.9, 0.0) [4.7, 34.1] [3.6, 31.7] [3.3, 25.9]∪[30.7, 34.1]

(0.83, 0.07)

provement in prediction should be observed by using the minimum-length
predictor M1(α|x) instead of the quantile interval I(α|x). In fact, even if
we discard the case where the true Yt+1 lies outside of M̂1(α|x), the relative
decrease in length of M̂1(α|x) with respect to the quantile predictor Î(α|x)
is between 4.4% and 27.9% for the six other cases. Actually, M̂1(α|x) could
be regarded as a compressed shift of Î(α|x) to its left in six out of seven
cases. For application to data sets like this, it is pertinent to use the state-
dependent bandwidths. For example, for estimatingM1(α|x), our bootstrap
scheme selected, respectively, the quite large bandwidths 1.57 and 2.99 for
the first two cases in Table 10.4 in response to the sparseness of data in the
area with positive rainfall and quick river flow. The selected bandwidths for
the last five cases are rather stable and are between 0.33 and 0.43. There
seems little evidence suggesting multimodality, for the estimated M2(α|x)
always contains one interval with very tiny coverage probability. For this
example, we recommend using the interval predictor M1(α|x).

In the application above, we have included a single rainfall point Xt−2
in the model for the sake of simplicity. A more pertinent approach should
take into account the moisture condition of soil, which depends on prior
rainfall. For a more detailed discussion of this topic, see Young (1993) and
Young and Bevan (1994).
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10.5 Complements

We prove Theorem 10.2 now. We derive only (10.24), noting that a proof
of (10.25) is similar but simpler. We introduce a lemma first.

Lemma 10.1 Under conditions (C1) — (C4), F̂ (y|x) P−→ F (y, x), and
for i = 1, . . . r − 1,

F̂ (i)(y|x) ≡ L(i)(0, θ̂xy)
P−→ F (i)(y|x).

In fact, θ̂xy
P−→ θ(0), where θ(0) is uniquely determined by (10.23).

Proof. We only need to prove that θ̂xy
P−→ θ0; see (10.23). Since θ̂xy is

the minimizer of R(θ;x, y) defined in (10.18), Dn(x, θ̂xy) = 0, where

Dn(x,θ) =
1

nhr−1

n∑
i=1

(
1,
Xi − x
h

, . . . ,

(
Xi − x
h

)r−1
)τ

× {I(Yi ≤ y)− L(Xi − x,θ)}L(Xi − x,θ){1− L(Xi − x,θ)}
×Kh(Xi − x).

Define

D(x,θ, h) =
f(x)
hr−1

∫
(1, t, . . . , tr−1)τL(0,θ){1− L(0,θ)}K(t)

×
r−1∑
i=0

(th)i

i!
{F (i)(y|x)− L(i)(0,θ)}dt.

Obviously, D(x,θ0, h) ≡ 0. Furthermore, it can be proved that for any
compact set G,

sup
θ∈G
||Dn(x,θ)−D(x,θ, h)|| P−→ 0.

Let us assume that θ̂xy � P−→ θ0. Then, there exists a subsequence of {n},
still denoted as {n} for simplicity of notation, for which P{||θ̂xy − θ0|| >
ε} > ε for all sufficiently large n, where ε > 0 is a constant. Consequently,
inf ||θ−θ0||≤ε ||Dn(x,θ)|| � P−→ 0. Hence, we have that

inf
||θ−θ0||≤ε

||D(x,θ, h)||
≥ inf

||θ−θ0||≤ε
||Dn(x,θ)|| − sup

||θ−θ0||≤ε
||Dn(x,θ)−D(x,θ, h)||

= inf
||θ−θ0||≤ε

||Dn(x,θ)||+ op(1) � P−→ 0,

which contradicts to the fact that D(x,θ0, h) ≡ 0. Therefore, it must hold
that θ̂xy

P−→ θ0.
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Proof of Theorem 10.2. For any ε ∈ (0, 1), it follows from Lemma 10.1
that there exists ε1 ∈ (0,∞) for which P{||θ̂xy − θ(0)|| ≤ ε1} ≥ 1 − ε for
all sufficiently large n. Let G ≡ G(ε1) be the closed ball centered at θ(0)

with radius ε1. Let θ̂xy,G be the minimizer of (10.18) with θ restricted on
G. Define F̂G(y|x) = L(0|θ̂xy,G). Then P{F̂G(y|x) �= F̂ (y|x)} < ε when
n is sufficiently large. The argument above indicates that we only need to
establish (10.24) for F̂G(y|x). Therefore, we proceed with the proof below
by assuming that θ̂xy is always within a compact set G.

We consider only the case where r is even. Note that K(.) has a bounded
support. By simple Taylor expansion on L in (10.18), we have that

R(θ;x, y) =
n∑
i=1


I(Yi ≤ y)−

r−1∑
j=0

L(j)(0,θ)
j!

(Xi − x)j

− 1
r!
L(r)(ci(Xi − x),θ)(Xi − x)r

)2

Kh(Xi − x),

where ci ∈ [0, 1]. Define R∗(θ;x, y) as R(θ;x, y) with θ in L(r)(ci(Xi−x),θ)
replaced by θ̂xy. Let θ̂

∗
xy be the minimizer of R∗(θ;x, y) and F̂ ∗(y|x) =

L(0|θ̂∗
xy). In the following, we first prove that (10.24) holds for F̂ ∗(y|x).

Then, we show that

F̂ (y|x) = F̂ ∗(y|x) + op(hr). (10.41)

It is easy to see that (10.24) follows immediately from the two statements
above.

It follows from the least squares theory that

F̂ ∗(y|x)− F (y|x)

=
1
nh

n∑
i=1

Wn

(
Xi − x
h

, x

)
I(Yi ≤ y)−

r−1∑
j=0

F (j)(y|x)
j!

(Xi − x)j

− 1
r!
L(r)(ci(Xi − x), θ̂xy)(Xi − x)r

}

=
1
nh

n∑
i=1

Wn

(
Xi − x
h

, x

){
εi +

1
r!
{F (r)(y|x+ c′i(Xx − x))

− L(r)(ci(Xi − x), θ̂xy)}(Xi − x)r
}
, (10.42)

where εi = I(Yi ≤ y)− F (y|Xi), c′i ∈ [0, 1],

Wn(u, x) = (1, 0, . . . , 0)Sn(x)−1(1, u, . . . , ur−1)τK(u),

and Sn(x) is an r × r matrix with si+j−2(x) as its (i, j)th element, and

sj(x) =
1
nhj

n∑
i=1

Kh(Xi − x)(Xi − x)j .
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It follows from the ergodic theorem that Sn(x)
P−→ f(x)S = f(x)(κi+j−2).

We write

ξi =
r∑
j=1

κ(1,j)
(
Xi − x
h

)j−1

,

Ri = (r!)−1[F (r){y|x+ c′i(Xx − x)} − L(r){ci(Xi − x), θ̂xy}].

We have that

F̂ ∗(y|x)− F (y|x)

=

{
1

nhf(x)

n∑
i=1

ξiK

(
Xi − x
h

)
{εi +Ri(Xi − x)r}

}
{1 + op(x)}.

Note that we have assumed that θ̂xy ∈ G. By the ergodic theorem,

1
nhf(x)

n∑
i=1

ξiK

(
Xi − x
h

)
Ri(Xi − x)r = hrµr(x) + op(hr).

In the case where γ given in (C3) is positive, it follows from Theorem 2.22
that (nh)−1/2∑n

i=1 ξiK
(
Xi−x
h

)
εi is asymptotically normal with mean 0

and asymptotic variance

f(x)F (y|x){1− F (y|x)}τ2
r (x).

The asymptotic normality above can be established in a simpler manner
when γ = 0. We have proved that (10.24) holds for F̂ ∗(y|x).

To prove (10.41), note that all of the L(i)(0, θ̂
∗
xy) (i = 0, 1, . . . , r − 1)

have explicit expressions such as (10.42). Therefore, it is easy to prove
that L(i)(0, θ̂

∗
xy)

P−→ L(i)(0,θ0), where θ0 is determined by (10.23). This

implies that θ̂
∗
xy

P−→ θ0. Consequently, |θ̂∗
xy−θ̂xy| P−→ 0, which implies that

R(θ̂
∗
xy;x, y) = R∗(θ̂

∗
xy;x, y) + op(nh2r) because ∂R∗(θ;x,y)

∂θ = 0 at θ = θ̂
∗
xy.

Note that R(θ̂xy;x, y) = R∗(θ̂xy;x, y) and θ̂xy and θ̂
∗
xy are the minimizers

of R and R∗. From

0 < R(θ̂
∗
xy;x, y)−R(θ̂xy;x, y) = R∗(θ̂

∗
xy;x, y)−R∗(θ̂xy;x, y) + op(nh2r),

we have that

1
n
R(θ̂xy;x, y) =

1
n
R(θ̂

∗
xy;x, y) + op(h2r).
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Since ∂R(θ;x,y)
∂θ = 0 at θ = θ̂xy, the expression above implies that

h−2r(θ̂xy − θ̂
∗
xy)

τ R̃(θ̂xy)(θ̂xy − θ̂
∗
xy)

=

(
θ̂xy,1 − θ̂∗

xy,1

hr
,
θ̂xy,2 − θ̂∗

xy,2

hr−1 , . . . ,
θ̂xy,r − θ̂∗

xy,r

h

)

× R∗




θ̂xy,1−θ̂∗
xy,1

hr

θ̂xy,2−θ̂∗
xy,2

hr−1

...
θ̂xy,r−θ̂∗

xy,r

h




P−→ 0,

where R̃(θ) = 1
2n

∂2R(θ;x,y)
∂θ∂θτ and

R∗ = diag(1, h−1, . . . , h−(r−1))R(θ̂xy) diag(1, h−1, . . . , h−(r−1)).

It can be proved that R∗ P−→ f(x)F (y|x){1 − F (y|x)}S. Note that S =
(κi+j−2) is a positive-definite matrix, and we have that

θ̂xy,i = θ̂∗
xy,i + op(hr−i+1)

for i = 1, . . . , r. Now (10.41) follows from the fact that

F̂ (y|x) = exp(θ̂xy,1)/{1 + exp(θ̂xy,1)}.
We have completed the proof.

10.6 Additional Bibliographical Notes

Chatfield (2001) is a specific monograph on time series forecasting. Clements
and Hendry (1998) focuses on forecasting in economics. Yao and Tong
(1994a) appeared to be the first to address the features of nonlinear pre-
diction presented in §10.1.1–§10.1.3 in a systematic manner.

The literature on nonparametric (and nonlinear) point prediction in-
cludes Chen (1996), Matzner-Løber, Gannoun and De Gooijer (1998), and
De Gooijer and Zerom (2000) on kernel methods, Sugihara and May (1990)
and Jensen (1993) on nearest-neighbor methods, and Faraway and Chat-
field (1998) and Zhang, Patuwo, and Hu (1998) on neural networks methods
(see also Weigend and Gershenfeld 1994).

Interval prediction based on conditional quantiles was studied in Yao
and Tong (1996), De Gooijer, Gannoun and Zerom (2001), and Cai (2002).
Nonparametric estimation for conditional quantiles (for independent data)
was treated in Sheather and Marron (1990), Fan, Hu, and Truong (1994),
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and Yu and Jones (1998). Hyndman (1995, 1996) and De Gooijer and
Gannoun (2000) dealt with minimum-length predictive sets. Constrained
estimation for conditional density functions was considered in Hyndman
and Yao (2002). Hall and Yao (2002) proposed a nonparametric estima-
tion for an optimum approximation of the conditional distribution func-
tion of a scalar Y given a vector X via dimension reduction. Cai, Yao, and
Zhang (2001) dealt with nonparametric and semiparametric estimation for
conditional distributions of discrete-valued time series.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Ex-
tremal Events. Springer-Verlag, New York.

Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with es-
timates of the variance of U.K. inflation. Econometrica, 50, 987–1008.

Engle, R.F. and Granger, C.W.J. (1987). Cointegration and error cor-
rection: Representation, estimation and testing. Econometrica, 55,
251–276.

Engle, R.F. and Bollerslev, T. (1986). Modelling the persistence of condi-
tional variances. Econometric Reviews, 5, 1-50.

Epanechnikov, V.A. (1969). Nonparametric estimation of a multidimen-
sional probability density. Theory of Probability and Its Applications,
13, 153–158.

Eubank, R.L. (1999). Spline Smoothing and Nonparametric Regression
(2nd ed.). Marcel Dekker, New York.

Eubank, R.L. and Hart, J.D. (1992). Testing goodness-of-fit in regression
via order selection criteria. The Annals of Statistics, 20, 1412–1425.

Eubank, R.L., Hart, J.D., Simpson, D.G., and Stefanski, L.A. (1995).
Testing for additivity in nonparametric regression. The Annals of
Statistics, 23, 1896–1920.

Eubank, R.L. and LaRiccia, V.N. (1992). Asymptotic comparison of Cramér–
von Mises and nonparametric function estimation techniques for test-
ing goodness-of-fit. The Annals of Statistics, 20, 2071–2086.

Eubank, R.L. and Speckman, P.L. (1991). A bias reduction theorem with
applications in nonparametric regression. Scandinavian Journal of
Statistics, 18, 211–222.

Ezekiel, A. (1924). A method for handling curvilinear correlation for any
number of variables. Journal of the American Statistical Association,
19, 431–453.



502 References

Fama, E. (1965). The behaviour of stock market prices. Journal of Busi-
ness, 38, 34–105.

Fan, J. (1991). On the estimation of quadratic functionals. The Annals of
Statistics, 19, 1273–1294.

Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the
American Statistical Association, 87, 998–1004.

Fan, J. (1993a). Local linear regression smoothers and their minimax ef-
ficiency. The Annals of Statistics, 21, 196–216.

Fan, J. (1993b). Adaptively local one-dimensional subproblems with ap-
plication to a deconvolution problem. The Annals of Statistics, 21,
600–610.

Fan, J. (1996). Test of significance based on wavelet thresholding and
Neyman’s truncation. Journal of the American Statistical Associa-
tion, 91, 674–688.

Fan, J. and Chen, J. (1999). One-step local quasi-likelihood estimation.
Journal of the Royal Statistical Society, Series B, 61, 303–322.

Fan, J., Farmen, M. and Gijbels, I. (1998). Local maximum likelihood
estimation and inference. Journal of the Royal Statistical Society,
Series B, 60, 591–608.

Fan, J., Gasser, T., Gijbels, I., Brockmann, M., and Engel, J. (1996).
Local polynomial fitting: Optimal kernel and asymptotic minimax
efficiency. Annals of the Institute of Statistical Mathematics, 49, 79–
99.

Fan, J. and Gijbels, I. (1992). Variable bandwidth and local linear regres-
sion smoothers. The Annals of Statistics, 20, 2008–2036.

Fan, J. and Gijbels, I. (1995). Data-driven bandwidth selection in local
polynomial fitting: Variable bandwidth and spatial adaptation. Jour-
nal of the Royal Statistical Society, Series B, 57, 371–394.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Appli-
cations. Chapman and Hall, London.

Fan, J. and Gijbels, I. (2000). Local polynomial fitting. In Smoothing
and Regression: Approaches, Computation and Application (M.G.
Schimek, ed.). John Wiley & Sons, New York, pp. 229-276.

Fan, J. and Gu, J. (2001). Semiparametric estimation of value-at-risk.
Manuscript.



References 503
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Finkenstädt, B. (1995). Nonlinear Dynamics in Economics. Springer, Berlin.

Fix, E. and Hodges, J.L. (1951). Discriminatory analysis—nonparametric
discrimination: Consistency properties. Report No. 4, Project no. 21-
29-004. USAF School of Aviation Medicine, Randolph Field, TX.

Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from
discrete observations. Journal of Applied Probability, 30, 790–804.
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Schüler, F. 379
Schmidt, G. 379
Schoenberg, I.J. 273
Schott, J.R. 402
Schucany, W.R. 214
Schuermann, T. 359
Schuster, E.F. 203
Schwarz, G. 104, 249
Scott, D.W. 26, 194, 213, 314
Segundo, P. 126
Serfling, R.J. 82, 166–167
Sesay, S.A.O. 192
Severini, T.A. 337, 401
Shao, Q. 392
Sheather, S.J. 201, 246, 272–273,

485
Shen, X. 273
Shephard, N. 170–171, 181, 179
Shibata, R. 102–103, 105
Shiryayev, A.N. 170
Shumway, R.H. 25, 400
Shyu, W.M. 400
Silverman, B. W. 26–27, 194, 200,

213, 314, 226, 240, 246, 252–253,
266–267, 271–272, 400, 475

Simonoff, J.S. 26, 401
Simpson, D.G. 401, 439
Singer, B. 402
Skaug, H.J. 311
Smith, J. 335, 368, 402
Smith, M. 400
Smith, P.L. 273
Sommers, J.P. 214
Speckman, P.L. 214, 252, 366–367,

401, 439
Sperlich, S. 439
Spokoiny, V.G. 298, 312, 349, 402,

408, 439
Sroka, L. 403
Stadtmüller, U. 377, 403
Staniswalis, J.G. 401
Stanton, R. 230, 272, 295, 378–379,

403
Starnes, B.A. 283
Stefanski, L.A. 401, 439
Stenseth, N.C. 3, 15, 126, 141, 328
Stevens, J.G. 366
Stoffer, D.S. 25
Stoker, T.M. 335, 349, 368, 402



Author Index 543

Stone , C.J. 207, 213, 249, 271–273,
311, 350, 354, 365, 401–402

Stone, M. 244
Stramer, O. 191
Straumann, D. 159
Stuetzle, W. 400
Stute, W. 192
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