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PREFACE 

 This chapter has two sections. Part A presents a fairly brief history of the interaction of 
forecasting and decision theory, and Part B presents some more recent results. 

PART A:   HISTORY OF THE FIELD 

A.1  Introduction 

 A decision maker (either a private agent or a public policy maker) must inevitably consider 
the future, and this requires forecasts of certain important variables. There also exist forecasters 
–such as scientists or statisticians – who may or may not be operating independently of a 
decision maker. In the classical situation, forecasts are produced by a single forecaster, and there 
are several potential users, namely the various decision makers. In other situations, each decision 
maker may have several different forecasts to choose between. 

 A decision maker will typically have a payoff or utility function U(x,α), which depends upon 
some uncertain variable or vector x which will be realized and observed at a future time T,  
as well as some decision variable or vector α which must be chosen out of a set A at some 
earlier time t < T. The decision maker can base their choice of α  upon a current scalar forecast 
(“point forecast”) xt of the variable x, and make the choice α (xt) ≡ argmaxα ∈A U(xt,α). Given the 
realized value xT, the decision maker’s ex post utility U(xT,α (xt)) can be compared with the 
maximum possible utility they could have attained, namely U(xT,α (xT)). This shortfall can be 
averaged over a number of such situations, to obtain the decision maker’s average loss in terms 
of foregone payoff or utility. If one is forecasting in a stochastic environment, perfect forecasting 
will not be possible and this average long-term loss will be strictly positive. In a deterministic 
world, it could be zero. 

 Given some measure of the loss arising from an imperfect forecast, different forecasting 
methods can be compared, or different combinations selected. 

 In his 1961 book Economic Forecasts and Policy, Henri Theil outlined many versions of the 
above type of situation, but paid more attention to the control activities of the policy maker. He 
returned to these topics in his 1971 volume Applied Economic Forecasting, particularly in the 
general discussion of Chapter 1 and the mention of loss functions in Chapter 2. These two books 
cover a wide variety of topics in both theory and applications, including discussions of certainty 
equivalence, interval and distributional forecasts, and non-quadratic loss functions. This 
emphasis on the links between decision makers and forecasters was not reflected by other writers 
for at least another quarter of a century, which shows how farsighted Theil could be. An 
exception is an early contribution by White (1966). 

 Another major development was Bayesian decision analysis, with important contributions by 
DeGroot (1970) and Berger (1985), and later by West and Harrison (1989,1997). Early in their 
book, on page 14, West and Harrison state “A statistician, economist or management scientist 
usually looks at a decision as comprising a forecast or belief, and a utility, or reward, function.”  
Denoting Y as the outcome of a future random quantity which is “conditional on your decision α 
expressed through a forward or probability function P(Y |α). A reward function u(Y,α) expresses 
your gain or loss if Y happens when you take decision α.” In such a case, the expected reward is 

(1) ( ) ( , ) ( | )r u Y dP Yα α α= ⋅∫  



and the optimal decision is taken to be the one that maximizes this expected reward. The parallel 
with the “expected utility” literature is clear. 

 The book continues by discussing a dynamic linear model (denoted DLM) using a state-
space formulation. There are clear similarities with the Kalman filtering approach but the 
development is quite different. Although West and Harrison continue to develop the “Bayesian 
maximum reward” approach, according to their index the words “decision” and “utility” are only 
used on page 14, as mention above. Although certainly important in Bayesian circles, it was less 
influential elsewhere. This also holds for the large body of work known as “statistical decision 
theory,” which is largely Bayesian. 

 The later years of the Twentieth Century produced a flurry of work, published around the 
year 2000. Chamberlain (2000) was concerned with the general topic of econometrics and 
decision theory – in particular, with the question of how econometrics can influence decisions 
under uncertainty – which leads to considerations of distributional forecasts or “predictive 
distributions.” Naturally, one needs a criterion to evaluate procedures for constructing predictive 
distributions, and Chamberlain chose to use risk robustness and to minimize regret risk.  
To construct predictive distributions, Bayes methods were used based on parametric models. 
One application considered an individual trying to forecast their future earnings using their 
personal earnings history and data on the earnings trajectories of others. 

 

A.2  The Cambridge Papers 

Three papers from the Department of Economics at the University of Cambridge moved the 
discussion forward. The first, by Granger and Pesaran (2000a), first appeared as a working paper 
in 1996. The second, also by Granger and Pesaran (2000b), appeared as a working paper in 1999. 
The third, by Pesaran and Skouras (2002), appeared as a working paper in 2000. 

 Granger and Pesaran (2000a) consider a standard situation in which there are two states of 
the world, called “bad” and “good” for convenience. A forecaster provides a probability forecast 
π̂ t that the bad event will happen, so that 1–π̂ t is the probability that the good event will happen.  
A decision maker can decide to take some action depending on this forecast, and a completely 
general cost or profit function is considered. The notation is illustrated in the following table: 

  State 
  Bad Good 

Yes Y11 –  C Y12 –  C 
Action  

No Y21 Y22

  
C is the cost of undertaking some preventative action, the Y ’s are the values of the states in the 
various cases, and we assume Y12 = Y22. A simple example of states is that a road becoming icy 
and dangerous is a bad state, whereas a good state is that the road stays free of ice. The action 
could be to add sand to the road, or not. If π̂ t is the forecast probability of the bad event, then the 
preventive action will be undertaken if 

(2) 11 21ˆ ( )t C Y Y .π > −  

 2
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This case of two states with predicted probabilities of π̂ t and 1–π̂ t is the simplest possible 
example of a predictive distribution. An alternative type of forecast, which might be called an 
“event forecast,” consists of the forecaster simply announcing the event that is judged to have the 
highest probability. The paper shows that using an event forecast will be suboptimal compared to 
using a predictive distribution. Although the present example is a very simple special case, the 
advantages of using an economic cost function along with a decision-theoretic approach, rather 
than some statistical measure such as least squares, are clearly illustrated. 

 Granger and Pesaran (2000b) continue their consideration of this type of model, but turn to 
loss functions suggested for the evaluation of the meteorological forecasts. Of particular interest 
is the Kuipers Score (KS) defined by 
(3) KS  =  H – F 
where H is the fraction (over time) of bad events that were correctly forecast to occur, known as 
the “hit rate,” and F is the fraction of good events that had been incorrectly forecast to have come 
out bad, known as the “false alarm rate.” Random forecasts would produce an average KS value 
of zero. Although this score is a useful and interpretable, it is a statistical evaluation measure, 
and in general there is no simple one-to-one relationship between it and any economic value 
measure. The paper also examines the relationship between statistical measures of forecast 
accuracy and tests of stock market timing, and with a detailed application to stock market data. 
Models for stock market returns have emphasized expected risk-adjusted returns rather than 
least-squares fits – that is, an economic rather than a statistical measure of quality of the model. 

 Pesaran and Skouras (2002) is a survey paper, starting with the above types of results and 
then extending them to predictive distributions, with a particular emphasis on decision-based 
forecast evaluation. The paper obtains closed-form results for a variety of random specifications 
and cost or utility functions, such as Gaussian distributions combined with negative exponential 
utility. Attention is given to a general survey of the use of cost functions with predictive 
distributions, with mention of the possible use of scoring rules, as well as various measures taken 
from meteorology. 

 Although many of the above results are well known in the Bayesian decision theory 
literature, they were less known in the forecasting area, where the use of the whole distribution 
rather than just the mean, and an economic cost function linked with a decision maker, were not 
usually emphasized. 

 

A.3  Statistical Decision Theory 

As mentioned above, there is a large neighboring field known as “statistical decision theory,” 
which we do not attempt to cover here. It is largely concerned with decision making in a purely 
statistical context, such as when estimating scientific parameters, testing scientific hypotheses, or 
deciding between alternative scientific models. It is an important field, but it is not specifically 
concerned with forecasting and optimal decisions, and does not take an economic perspective.  
It may be relevant for finding a model that provides forecasts, but this chapter is more concerned 
with the use and evaluation of such forecasts once available. 
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PART B:   FORECASTING WITH DECISION-BASED LOSS FUNCTIONS 

B.1  Background 

In practice, statistical forecasts are typically produced by one group of agents (“forecasters”) and 
consumed by a different group (“clients”), and the procedures and desires of the two groups 
typically do not interact. After the fact, alternative forecasts or forecast methods are typically 
evaluated by means of statistical loss functions, which are often chosen primarily on grounds of 
statistical convenience, with little or no reference to the particular goals or preferences of the 
client. 

 But whereas statistical science is like any other science in seeking to conduct a “search for 
truth” that is uninfluenced by the particular interests of the end user, statistical decisions are like 
other decisions in that they should be driven by the goals and preferences of the particular 
decision maker. Thus, if one forecasting method has a lower bias but higher average squared 
error than a second one, clients with different goals or preferences may disagree on which of the 
two techniques is “best” – or at least, which one is best for them. Here we examine the process of 
forecast evaluation from the point of view of serving clients who have a need or use for such 
information in making some upcoming decision. Each such situation will generate its own loss 
function, which is called a decision-based loss function. 

 Although it serves as a sufficient construct for forecast evaluation, a decision-based loss 
function is not simply a direct representation of the decision maker’s underlying preferences.  
A decision maker’s ultimate goal is not to “set the loss to zero,” but rather, to maximize utility or 
payoff (or expected utility or expected payoff). Furthermore, such loss functions are not derived 
from preferences alone: Any decision problem involves maximizing utility or payoff (or its 
expectation) is subject to certain opportunities or constraints, and the nature or extent of these 
opportunities or constraints will be reflected in its resulting decision-based loss function. 

 The goal here is to provide a systematic examination of the relationship between decision 
problems and their associated loss functions. We ask general questions, such as “Can every 
statistical loss function be derived from some well-specified decision problem?” or “How big is 
the family of decision problems that generate a given loss function?” We can also ask more 
specific questions, such as “What does the use of squared-error loss reveal or imply about  
a decision maker’s underlying decision problem (i.e. their preferences and/or constraints)?”  
In addressing such questions, we hope to develop a better understanding of the use of loss 
functions as tools in forecast evaluation and parameter estimation. 

 The following section lays out a framework and derives some of the basic categories and 
properties of decision-based loss functions. Section B.3 treats the reverse question of deriving 
the family of underlying decision problems that would generate a given loss function, as well as 
the restrictions on preferences that are implicitly imposed by the selection of specific functional 
forms, such as squared-error loss, general error-based loss or additively-separable loss. Given 
that these restrictions turn out to be stronger than we would typically choose to impose, Section 
B.4 describes a more general, “location-dependent” approach to the analysis of general loss 
functions, which preserves most of the intuition of the standard cases. Section B.5 examines the 
above types of questions when we replace point forecasts of an uncertain variable with 
distribution forecasts. Potentially one can extend the approach to partial distribution forecasts 
such as moment or quantile forecasts, but these topics are not considered here. 



B.2  Framework and Basic Analysis 

Decision Problems, Forecasts and Decision-Based Loss Functions 

A decision maker would only have a material interest in forecasts of some uncertain variable x if 
such information led to “planning benefits” – that is, if their optimal choice in some intermediate 
decision might depend upon this information. To represent this, we assume the decision maker 
has an objective function (either a utility or a profit function) U(x,α) that depends upon the 
realized value of x (assumed to lie in some closed interval X ⊂ R1), as well as upon some choice 
variable α to be selected out of some closed interval A  ⊂ R1 after the forecast is learned, but 
before x is realized. We thus define a decision problem to consist of the following components: 

(4) 
1

uncertain variable
choice variable and choice set

objective function ( , ) :

x

U R
α

∈
∈

⋅ ⋅ × →

X
A

X A
 

 Forecasts of x can take several forms. A forecast consisting of a single value xF  ∈X is termed 
a point forecast. For such forecasts, the decision maker’s optimal action function α (⋅) is given by  

(5) ( ) arg max ( , )x U
α

xα α
∈

≡F
A

F  all xF ∈ X 

The objective function U(⋅,⋅) can be measured in either utils or dollars. When U(⋅,⋅) is posited 
exogenously (as opposed from being derived from a loss function as in Theorem 1), we assume it 
is such that (5) has interior solutions α (xF), and also that it satisfies the following conditions on 
its second and cross-partial derivatives, which ensure that α (xF) is unique and is increasing in xF : 

(6) Uαα (x,α)  <  0           Uxα (x,α)  >  0 all x ∈X,  all α ∈A 

 Forecasts are invariably subject to error. Intuitively, the “loss” arising from a forecast value 
of xF , when x turns out to have a realized value of xR , is simply the loss in utility or profit due to 
the imperfect prediction, or in other words, the amount by which utility or profit falls short of 
what it would have been if the decision maker had instead possessed “perfect information” and 
been able to exactly foresee the realized value xR . Accordingly, we define the point-forecast /  
point-realization loss function induced by the decision problem (4) by 

(7) ( ) ( )( , ) , ( ) , ( )L x x U x x U x xα α≡ −R F R R R F  all  xR, xF ∈ X 

 Note that in defining the loss arising from the imperfection of forecasts, the realized utility or 
profit level U(xR,α(xF)) is compared with what it would have been if the forecast had instead 
been equal to the realized value (that is, compared with U(xR,α(xR))), and not with what utility or 
profit would have been if the realization had instead been equal to the forecast (that is, with 
U(xF,α(xF))). For example, given that a firm faces a realized output price of xR, it would have 
been best if it had had this same value as its forecast, and we measure loss relative to this 
counterfactual. But given that it received and planned on the basis of a price forecast of xF, it is 
not best that the realized price also come in at xF, since any higher realized output price would 
lead to still higher profits. Thus, there is no reason why L(xR ,xF) should necessarily be symmetric 
(or skew-symmetric) in xR and xF. Under our assumptions, the loss function L(xR ,xF) from (7) 
satisfies the following properties 
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(8) 

( , ) 0, ( , ) 0

( , ) is increasing in  for all  
( , ) is decreasing in  for all  

x xL x x L x x

L x x x x x
L x x x x x

=≥ =

>

<

R FR F R F

R F F F R

R F F F R

 

 As noted, forecasts of x can take several forms. Whereas a point forecast xF conveys 
information on the general “location” of x, it conveys no information as to x’s potential 
variability. On the other hand, forecasters who seek to formally communicate their own extent of 
uncertainty, or alternatively, who seek to communicate their knowledge of the stochastic 
mechanism that generates x, would report a distribution forecast FF(⋅) consisting of a cumulative 
distribution function over the interval X . A decision maker receiving a distribution forecast, and 
who seeks to maximize expected utility or expected profits, would have an optimal action 
function α (⋅) defined by  

(9) ( ) arg max ( , ) ( )F U x dF x
α

α
∈

≡ ∫
A

F α ⋅ F  all FF(⋅) over X 

and a distribution-forecast /point-realization loss function defined by 

(10) ( ) ( ( ))( , ) , ( ) ,L x F U x x U x Fα α≡ −R F R R R F  all 
all ( ) over 

x
F

∈
⋅F

X
X

 

 Under our previous assumptions on U(⋅,⋅), each distribution forecast FF(⋅) has a unique point-
forecast equivalent xF(FF) that satisfies α (xF(FF)) = α (FF) (e.g. Pratt, Raiffa and Schlaifer 
(1995, 24.4.2)). Since the point-forecast equivalent xF(FF) generates the same optimal action as 
the distribution forecast FF(⋅), it will lead to the same loss, so that we have L(xR , xF(FF)) ≡ 
L(xR , FF) for all xR∈X  and all distributions FF(⋅) over X. 

 Under our assumptions, the loss function L(xR,FF) from (10) satisfies the following 
properties, where “increasing or decreasing in FF(⋅)” is with respect to first order stochastically 
dominating changes in FF(⋅): 

(11) 
( )

( , ) 0, ( , ) 0

( , ) is increasing in ( ) for all ( ) such that ( )
( , ) is decreasing in ( ) for all ( ) such that ( )

x x F
L x F L x F

L x F F F x F x
L x F F F x F x

=≥ =

⋅ ⋅ >

⋅ ⋅ <

R F F
R F R F

R F F F F F R

R F F F F F R

 

It should be noted that throughout, these loss functions are quite general in form, and are not 
being constrained to any specific class. 

Derivatives of Decision-Based Loss Functions 

For point forecasts, the optimal action function α (⋅) from (5) satisfies the first order conditions 

(12) Uα ( x,α (x))   ≡x     0 

Differentiating this identity with respect to x yields 

(13) ( ) ( )( ) , ( ) , ( )xx U x x U x xα ααα α α′ ≡ −  

and hence 
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(14) 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( )
(

2

2

2

2

, ( ) , ( ) , ( ) , ( )( )
, ( )

, ( ) , ( ) , ( ) , ( ) ( )
, ( )

, ( ) , ( ) , ( ) , ( ) , ( )2
, ( ) , ( ) , (

xx x x

x x

xx x x x

U x x U x x U x x U x xx
U x x

U x x U x x U x x U x x x
U x x

U x x U x x U x x U x x U x x
U x x U x x U x

α αα α αα

αα

αα αα α ααα

αα

α α αα α ααα

αα αα αα

α α α αα
α

α α α α α
α

α α α α
α α α

⋅ − ⋅′′ ≡ −

⋅ − ⋅ ′− ⋅

⋅ ⋅
≡ − + ⋅ −

)
α

3)x

 

By (7) and (12), the derivative of L(xR , xF) with respect to small departures from a perfect 
forecast is 

(15) 0( , ( ))( , ) ( )x x x xx xU x xL x x x xα α α= == ′≡ − ⋅∂ ∂
F R F RF R

R FR F F F ≡  

Calculating L(xR , xF)’s derivatives at general values of xR  and xF  yields 

(16)  

( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) (

2 2

2

2

( , ) , ( ) , ( ) ( ) , ( )

( , ) , ( ) ( )

( , ) , ( ) , ( ) ( ) , ( ) ( )

, ( ) ( ) , ( ) ( ) , ( )

x x

xx x x

xx

L x x x U x x U x x x U x x

L x x x U x x x

L x x x U x x U x x x U x x x

U x x x U x x x U x x

α

α

α α

αα α

α α α α

α α

α α α α

α α α α α )
α

′∂ ∂ ≡ + ⋅ −

′∂ ∂ ≡ − ⋅

′ ′∂ ∂ ≡ + ⋅ + ⋅

′ ′′+ ⋅ + ⋅ −

∂

R F R R R R R R R F

R F F R F F

R F R R R R R R R R R

R R R R R R R F

( )

( ) ( )2 2 2

( , ) , ( ) ( )

( , ) , ( ) ( ) , ( ) ( )

xL x x x x U x x x

L x x x U x x x U x x x

α

αα α

α α

α α α α

′∂ ∂ ≡ − ⋅

′ ′′∂ ∂ ≡ − ⋅ − ⋅

R F R F R F F

R F F R F F R F F

 

Inessential Transformations of a Decision Problem 

One can potentially learn a lot about decision problems or families of decision problems by 
asking what changes can be made to them without altering certain features of their solution. This 
section presents a relevant application of this approach. 

 A transformation of any decision problem (4) is said to be inessential if it does not change its 
implied loss function, even though it may change other attributes, such as the formula for its 
optimal action function or the formula for its ex post payoff or utility. For point-forecast loss 
functions L(⋅,⋅), there exist two types of inessential transformations: 

 Inessential Relabelings of the Choice Variable: Given a decision problem with objective 
function U(⋅,⋅) : X ×A → R1, any one-to-one mapping ϕ (⋅) from  A  to an arbitrary space  B will 
generate what we term an inessential relabeling β  = ϕ (α) of the choice variable, with 
objective function U*(⋅,⋅) : X ×B* → R1 and choice set B* ⊆ B  defined by 

(17)         U*(x,β )   ≡   U(x,ϕ 
–1(β )),          B*  =  ϕ (A )  =  {ϕ (α) |α ∈ A } 

The optimal action function β(⋅):X  → B* for this transformed decision problem is related to 
that of the original problem by 

(18) 
( )

1

* *
( ) arg max *( , ) arg max ( , ( ))

arg max ( , ) ( ( ))

x U x U x

U x x
β β

α

β β ϕ

ϕ α ϕ α

−

∈ ∈

∈

≡ ≡

≡ ≡

F F

F F

B B

A

β
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The loss function for the transformed problem is the same as for the original problem, since 

(19)          1 1

*( , ) * , ( ) * , ( )

, ( ) , ( )

, ( ) , ( ) ( , )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
L x x U x x U x x

U x x U x x

U x x U x x L x x

β β

ϕ β ϕ β

α α

− −

≡ −

≡ −

≡ − ≡

R F R R R F

R R R F

R R R F R F

While any one-to-one mapping ϕ (⋅) will generate an inessential transformation of the original 
decision problem, there is a unique “most natural” such transformation, namely the one 
generated by the mapping ϕ (⋅) = α 

–1(⋅), which relabels each choice α with the forecast value 
xF that would have led to that choice (we refer to this labeling as the forecast-equivalent 
labeling of the choice variable). Technically, the map α 

–1(⋅) is not defined over the entire 
space A , but just over the subset {α (x) | x ∈X } ⊆ A of actions that are optimal for some x. 
However, that suffices for the following decision problem to be considered an inessential 
transformation of the original decision problem: 

(20)         Û(x, xF)   ≡   U(x,α(xF))              B̂  =  ϕ (A )  =  {ϕ (α) | α ∈ A } 

We refer to (20) as the canonical form of the original decision problem, note that its optimal 
action function is given by α̂  (xF) ≡ xF , and observe that Û(x, xF) can be interpreted as the 
formula for the amount of ex post utility (or profit) resulting from a realized value of x when 
the decision maker had optimally responded to a point forecast of xF. 

 Inessential Transformations of the Objective Function: A second type of inessential transfor-
mation consists of adding an arbitrary function ξ(⋅) : X  →  R1 to the original objective function, 
to obtain a new function U**(x,α) ≡ U(x,α)  + ξ(x). Since Uα(xF ,α) ≡ Uα**(xF ,α), the first order 
condition (12) is unchanged, so the optimal action functions α**(⋅) and α (⋅) for the two 
problems are identical. But since the ex post utility levels for the two problems are related by 
U**(x,α**(xF)) ≡ U(x,α (xF)) + ξ(x), their canonical forms are related by Û**(x, xF) ≡ 
Û(x, xF)  + ξ(x) and B̂ = A, which would, for example, allow Û**(x, xF) to be increasing in x 
when Û(x, xF) was decreasing in x, or vice versa. However, the loss functions for the two 
problems are identical, since: 

(21) 
**( , ) ** , **( ) ** , **( )

, ( ) , ( ) ( , )
( ) ( )

( ) ( )
L x x U x x U x x

U x x U x x L x x
α α

α α
≡ −

≡ − ≡
R F R R R F

R R R F R F

 

 Theorem 1 below will imply that inessential relabelings of the choice variable and inessential 
additive transformations of the objective function exhaust the class of loss-function-preserving 
transformations of a decision problem. 

B.3  Recovery of Decision Problems from Loss Functions 

In practice, loss functions are typically not derived from an underlying decision problem as in 
the previous section, but rather, are postulated exogenously. But since we have seen that 
decision-based loss functions inherit certain necessary properties, it is worth asking precisely 
when a given loss function (or functional form) can or can not be viewed as being derived from 
an underlying decision problem. In cases when they can, it is then worth asking about the 
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restrictions this loss function or functional form implies about the underlying utility or profit 
function or constraints. 
Recovery from Point-Forecast Loss Functions 

For an arbitrary point-forecast/point-realization loss function L(⋅,⋅) satisfying (8), the class of 
objective functions that generate L(⋅,⋅) is given by the following result: 

THEOREM 1: For arbitrary function L(⋅,⋅) that satisfies the properties (8), an objective 
function U(⋅,⋅) : X ×A → R1 with strictly monotonic optimal action function α (⋅) will 
generate L(⋅,⋅) as its loss function if and only if it takes the form 

(22) U(x,α)   ≡   ƒ(x)  –  L(x, g(α)) 
for some function ƒ(⋅): X  → R1 and monotonic function g(⋅): A → X. 

This theorem states that an objective function U(x,α) and choice space A  are consistent with the 
loss function L(xR , xF) if and only if they can be obtained from the function  – L(xR , xF)  by one or 
both of the two types of inessential transformations described in the previous section. This result 
serves to highlight the close, but not unique, relationship between decision makers’ loss 
functions and their underlying decision problems. 

 To derive the canonical form of the objective function (22) for given choice of ƒ(⋅) and g(⋅), 
recall that each loss function L(xR , xF) is minimized with respect to xF when xF is set equal to xR, 
so that the optimal action function for the objective function (22) takes the form α (x) ≡ g–1(x). 
This in turn implies that its canonical form Û(x, xF) is given by 

(23) Û(x, xF)    ≡    U(x,α (xF))    ≡    ƒ(x)  –  L(x, g(α (xF)))    ≡    ƒ(x)  –  L(x, xF) 

Implications of Squared-Error Loss 

The most frequently used loss function in statistics is unquestionably the squared-error form 

(24) LSq(xR , xF )   ≡   k ⋅(xR  – xF)2 k > 0 
which is seen to satisfy the properties (8). Theorem 1 thus implies the following result: 

THEOREM 2: For arbitrary squared-error function LSq(xR , xF) ≡ k ⋅(xR  – xF)2 with k > 0,  
an objective function U(⋅,⋅) : X ×A → R1 with strictly monotonic optimal action function 
α (⋅) will generate LSq(⋅,⋅) as its loss function if and only if it takes the form 

(25) U(x,α)   ≡   ƒ(x)  –  k ⋅(x – g(α))2

for some function ƒ(⋅): X  → R1 and monotonic function g(⋅): A → X. 

 Since utility or profit functions of the form (25) are not particularly standard, it is worth 
describing some of their properties. One property, which may or may not be realistic for a 
decision setting, is that changes in the level of the choice variable α  do not affect the curvature 
(i.e. the second or higher order derivatives) of U(x,α) with respect to x, but only lead to uniform 
changes in the level and slope with respect to x – that is to say, for any pair of values α1,α2 ∈A , 
the difference U(x,α1) – U(x,α2) is an affine function of x.1  

 A more direct property of the form (25) is revealed by adopting the forecast-equivalent 
labeling of the choice variable to obtain its canonical form Û(x, xF) from (20), which as we have 
seen, specifies the level of utility or profit resulting from an actual realized value of x and the 

 
1  Specifically, (25) implies U(x,α 1) – U(x,α 2) ≡ – k ⋅[g(α 1)2 – g(α 2)2] + 2⋅k ⋅[g(α 1) – g(α 2)]⋅x. 



action that would have been optimal for a realized value of xF. Under this labeling, the objective 
function implied by the squared-error loss function LSq(xR , xF) is seen (by (23)) to take the form 
(26) Û(x, xF)   ≡   ƒ(x)  –  LSq(x, xF)   ≡   ƒ(x)  –  k⋅(x – xF)2

In terms of our earlier example, this states that when a firm faces a realized output price of x, its 
shortfall from optimal profits due to having planned for an output price of xF only depends upon 
the difference between x and xF (and in particular, upon the square of this difference), and not 
upon how high or how low the two values might both be. Thus, the profit shortfall from having 
underpredicted a realized output price of $10 by one dollar is the same as the profit shortfall 
from having underpredicted a realized output price of $2 by one dollar. This is clearly unrealistic 
in any decision problem which exhibits “wealth effects” or “location effects” in the uncertain 
variable, such as a firm which could make money if the realized output price was $7 (so there 
would be a definite loss in profits from having underpredicted the price by $1), but would want 
to shut down if the realized output price was only $4 (in which case there would be profit loss at 
all from having underpredicted the price by $1). 

Are Squared-Error Loss Functions Appropriate as “Local Approximations”? 

One argument for the squared-error form LSq(xR , xF ) ≡ k ⋅(xR  – xF)2 is that if the forecast errors 
xR  – xF are not too big – that is, if the forecaster is good enough at prediction – then this 
functional form is the natural second-order approximation to any smooth loss function that 
exhibits the necessary properties of being zero when xR  = xF (from (8)) and having zero first-
order effect for small departures from a perfect forecast (from (15)). 

xF

xR

L = 0 

xR – xF = + ε 

xR – xF = – ε

L = 3 

L = 3 L = 2 L = 1 

L = 2 
L = 1 

Figure 1 
Level Curves of a General Loss Function L(xR , xF ) and the Band |xR  – xF | ≤ ε 

 However, the fact that xR  – xF may always be close to zero does not legitimize the use of the 
functional form k ⋅(xR  – xF)2 as a second-order approximation to a general smooth bivariate loss 
function L(xR , xF ), even one that satisfies L(0, 0) = 0 and ∂L(xR , xF )/∂xF | xR = xF = 0. Consider Figure 
1, which illustrates the level curves of some smooth loss function L(xR , xF), along with the region 
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where | xR  – xF | is less than or equal to some small value ε , which is seen to constitute a constant-
width band about the 45° line. This region does not constitute a small neighborhood in R2, even 
as ε → 0. In particular, the second order approximation to L(xR , xF ) when xR  and xF are both 
small and approximately equal to each other is not the same as the second-order approximation 
to L(xR , xF ) when xR  and xF are both large and approximately equal to each other. Legitimate 
second-order approximations to L(xR , xF ) can only be taken in over small neighborhoods of 
points in R2, and not over bands (even narrow bands) about the 45° line. The “quadratic 
approximation” LSq(xR , xF ) ≡ k ⋅(xR  – xF)2 over such bands is not justified by Taylor’s Theorem. 
 

Implications of Error-Based Loss 

By the year 2000, virtually all stated loss functions were of the form (27) – that is, any function 
of the forecast error xR  – xF which satisfies the properties (8): 

(27) Lerr(xR , xF )   ≡   H(xR  – xF)  ( ) 0, (0) 0,
( ) quasiconcave

H H
H

⋅ ≥ =
⋅

Consider the restrictions imposed by the condition that L(⋅,⋅) takes this general error-based form: 

THEOREM 3 For arbitrary error-based function Lerr(xR , xF )  ≡  H(xR  – xF) satisfying (27),  
an objective function U(⋅,⋅) : X ×A → R1 with strictly monotonic optimal action function 
α (⋅) will generate Lerr(⋅,⋅) as its loss function if and only if it takes the form 

(28) U(x,α)   ≡   ƒ(x)  –  H(x – g(α)) 

for some function ƒ(⋅): X  → R1,  and monotonic function g(⋅): A → X. 

Formula (28) highlights the fact that the use of an error-based loss function of the form (27) 
implicitly assumes that the decision maker’s underlying problem is again “location-independent” 
in the sense that the utility loss from having made an ex post nonoptimal choice α ≠ g–1(xR) only 
depends upon the difference between the values xR  and g(α), and does not depend upon their 
general levels (i.e., whether they are both large or are both small). This location-independence is 
even more starkly illustrated in formula (28)’s canonical form Û(x, xF) ≡ ƒ(x) – H(x – xF). 
 

B.4  Location-Dependent Loss Functions 

Given a loss function L(xR , xF) which location-dependent and hence does not take the form (27), 
we can nevertheless retain most of our error-based intuition by defining e = xR  – xF and defining 
L(xR , xF)’s associated location-dependent error-based form by 

(29) H(xR ,e)   ≡   L(xR , xR  – e) 

which implies 

(30) L(xR , xF)   ≡   H(xR ,xR  – xF) 

In this case Theorem 1 implies that the utility function (22) takes the form 

(31) U(x,α)   ≡   ƒ(x)  –  H(x,  x – g(α)) 

for some ƒ(⋅) and monotonic g(⋅). This is seen to be a generalization of Theorem 3, where the 
error-based function H(x – g(α)) is replaced by a location-dependent form H(x,  x – g(α)). Such a 
function, with canonical form Û(x, xF) ≡ ƒ(x) – H(x, x – xF), would be appropriate when the 
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decision maker’s sensitivity to a unit error was different for prediction errors about high values 
of the variable x than for prediction errors about low values of this variable. 

B.5  Distribution-Forecast and Distribution-Realization Loss Functions 

Although the traditional form of forecast used was the point forecast, there has recently been 
considerable interest in the use of distribution forecasts. As motivation, consider “forecasting” 
the number that will come up on a biased (i.e. “loaded”) die. There is little point to giving a 
scalar point forecast – rather, since there will be irreducible uncertainty, the forecaster is better 
off studying the die (e.g. rolling it many times) and reporting the six face probabilities. We refer 
to such a forecast as a distribution forecast. The decision maker bases their optimal action upon 
the distribution forecast FF(⋅) by solving the first order condition 

(32)  ( , ) ( ) 0U x dF xα α ⋅ =∫ F

to obtain the optimal action function 
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dF x(33)  ( ) arg max ( , ) ( )F U x
α

α α
∈

≡ ⋅∫F F
A

 For the case of a distribution forecast FF(⋅), the reduced-form payoff function takes the form 

(34) ( ) ( )( , ) ,arg max ( , ) ( ) , ( )R x F U x U x dF x U x F
α

α α
∈

≡ ⋅ ≡∫R F R F R F
A

 

Recall that the point-forecast equivalent is defined as the value xF(FF)  that satisfies 

(35) α(xF(FF))   =   α(FF) 
and in the case of a single realization xR , the distribution-forecast /point-realization loss function 
is given by 

(36) ( ( )) ( )( , ) , , ( )L x F U x x U x Fα α≡ −R F R R R F  

 In the case of T successive throws of the same loaded die, there is a sense in which the “best 
case scenario” is when the forecaster has correctly predicted each of the successive realized 
values xR 1,...,xR T . However, when it is taken as given that the successive throws are independent, 
and when the forecaster is restricted to offering single distribution forecast FF(⋅) which must be 
provided prior to any of the throws, then the “best case” distribution forecast is the one that turns 
out to match the empirical distribution FR(⋅) of the sequence of realizations, which we can call its 
“histogram.” We thus define the distribution-forecast /distribution-realization loss function by 

(37)  ( ( )) ( ( ))( , ) , ( ) , ( )L F F U x F dF x U x F dF xα α≡ ⋅ − ⋅∫ ∫R F R R F R

and observe that much of the above point-realization based analysis can be extended to such 
functions. 



APPENDIX 

PROOF OF THEOREM 1: 

U(x,α) ≡ ƒ(x) – L(x, g(α)) for some ƒ(⋅) and monotonic g(⋅)  ⇒  U(⋅,⋅)’s loss function is L(⋅,⋅): 
Since (8) implies that L(x,⋅) is minimized when its second argument is set equal to its first, 
U(x,α)’s optimal action function is α(x) ≡ g–1(x). The formula for U(x,α)’s loss function is thus 
given by 

(A.1)    
( , ( )) ( , ( )) ƒ( ) ( , ( ( ))) ƒ( ) ( , ( ( )))

( , ) ( , ) ( , )
U x x U x x x L x g x x L x g x

L x x L x x L x x
α α α− ≡ − − +

≡ − + ≡
R R R F R R R R R F

R R R F R F

α
 

U(⋅,⋅)’s loss function is L(⋅,⋅)  ⇒  U(x,α) ≡ ƒ(x) – L(x, g(α)) for some ƒ(⋅) and monotonic g(⋅): 
Since U(x,α)’s optimal action function α(⋅) is strictly monotonic, we can define the monotonic 
function g(⋅) ≡ α–1(⋅) and adopt the inessential relabeling α̂ ≡ g(α) to obtain Û(x,α̂) ≡ U(x,g–

1(α̂)) and α̂(x) ≡ g(α(x)) ≡ x. 

Since Û(x,α̂) generates the same loss function L(xR , xF) as does U(x,α), equations (16) continue 
to hold when U(x,α) and α(x) are replaced by Û(x,α̂) and α̂(x). These equations and the identity 
α̂(x) ≡ x imply 

(A.2)     ˆ
ˆ( , ) ( , )L x x x U x xα∂ ∂ ≡ −R F F R F  

Defining ƒ(x) ≡ Û(x,x) and defining the notation LxF
(xR , xF) ≡ ∂L(xR , xF)/∂xF, we then have 

(A.3)      

ˆ
ˆ ˆ0 0

ˆ

0 0

ˆ ˆ ˆ ˆˆ( , ) ( , ) ( , ) ( , )

ƒ( ) ( , ) ( , )

ˆƒ( ) [ ( , ) ( ,0)] [ ( , ) ( ,0)]

ˆƒ( ) ( , )

x

x
x x

U x U x x U x d U x d

x L x d L x d

x L x x L x L x L x

x L x

α
α α

α

α ω ω ω ω

ω ω ω ω

α

α

≡ − ⋅ + ⋅

≡ + ⋅ − ⋅

≡ + − − −

≡ −

∫ ∫
∫ ∫F F  

so that 

(A.4)               U(x,α)   ≡   Û(x ,g(α))   ≡   ƒ(x)  –  L(x, g(α))  

 

 

Theorems 2 and 3 follow directly from Theorem 1. 
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ABSTRACT

This chapter summarizes recent literature on asymptotic inference about forecasts.  Both
analytical and simulation based methods are discussed.  The emphasis is on techniques applicable when
the number of competing models is small.  Techniques applicable when a large number of models is
compared to a benchmark are also briefly discussed.
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1. INTRODUCTION

This chapter reviews asymptotic methods for inference about moments of functions of predictions

and prediction errors.  The methods may rely on conventional asymptotics or they may be bootstrap

based.  The relevant class of applications are ones in which the investigator uses a long time series of

predictions and prediction errors as a model evaluation tool.  Typically the evaluation is done

retrospectively rather than in real time.  A classic example is Meese and Rogoff’s (1983) evaluation of

exchange rate models.  

In most applications, the investigator aims to compare two or more models.   Measures of relative

model quality might include ratios or differences of mean, mean-squared or mean-absolute prediction

errors; correlation between one model’s prediction and another model’s realization (also known as

forecast encompassing); or comparisons of utility or profit-based measures of predictive ability.  In other

applications, the investigator focuses on a single model, in which case measures of model quality might

include correlation between prediction and realization, lack of serial correlation in one step ahead

prediction errors, ability to predict direction of change, or bias in predictions. 

Predictive ability has long played a role in evaluation of econometric models.  An early example

of a study that retrospectively set aside a large number of observations for predictive evaluation is Wilson

(1934, pp307-308).   Wilson, who studied monthly price data spanning more than a century, used

estimates from the first half of his data to forecast the next twenty years.  He then evaluated his model by

computing the correlation between prediction and realization.1  Growth in data and computing power has

led to widespread use of similar predictive evaluation techniques, as is indicated by the applications cited

below. 

To prevent misunderstanding, it may help to stress that the techniques discussed here are

probably of little relevance to studies that set aside one or two or a handful of observations for out of

sample evaluation.  The reader is referred to textbook expositions about confidence intervals around a

prediction, or to proposals for simulation methods such as Fair (1980).  As well, the paper does not cover



2

density forecasts.  Inference about such forecasts is covered in the handbook chapter by Corradi and

Swanson (2004b).  Finally, the paper takes for granted that one wishes to perform out of sample analysis. 

My purpose is to describe techniques that can be used by researchers who have decided, for reasons not

discussed in this chapter, to use a non-trivial portion of their samples for prediction.   See recent work by

Chen (2004), Clark and McCracken (2005) and Inoue and Kilian (2004a, 2004b) for different takes on the

possible power advantages of using out of sample tests.  

Much of the paper uses tests for equal mean squared prediction error (MSPE) for illustration. 

MSPE is not only simple, but it is also arguably the most commonly used measure of predictive ability.  

The focus on MSPE, however, is done purely for expositional reasons.  This paper is intended to be

useful for practitioners interested in a the wide range of functions of predictions and prediction errors that

have appeared in the literature.  Consequently, results that are quite general are presented.  Because the

target audience is practitioners, I do not give technical details.  Instead, I give examples, summarize

findings and present guidelines.

Section 2 illustrates the evolution of the relevant methodology.   Sections 3 through 8 discuss

inference when the number of models under evaluation is small.  “Small” is not precisely defined, but in

sample sizes typically available in economics suggests a number in the single digits.   Section 3 discusses

inference in the unusual, but conceptually simple, case in which none of the models under consideration

rely on estimated regression parameters to make predictions.  Sections 4 and 5 relax this assumption, but

for reasons described in those sections assume that the models under consideration are nonnested.  

Section 4 describes when reliance on estimated regression parameters is irrelevant asymptotically, so that

section 3 procedures may still be applied.  Section 5 describes how to account for reliance on estimated

regression parameters.  Section 6 and 7 considers nested models.   Section 6 focuses on MSPE, section 7

other loss functions.  Section 8 summarizes the results of previous sections.  Section 9 briefly discusses

inference when the number of models being evaluated is large, possibly larger than the sample size. 
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Section 10 concludes.

2. A BRIEF HISTORY

I begin the discussion with a brief history of methodology for inference, focusing on mean

squared prediction errors (MSPE).  

Let e1t and e2t denote one step ahead prediction errors from two competing models.   Let their

corresponding second moments be 

F2
1/Ee2

1t and F2
2/Ee2

2t.  

(For reasons explained below, the assumption of stationarity–the absence of a t subscript on F2
1 and F2

2–is

not always innocuous.  See below.  For the moment, I maintain it for  consistency with the literature about

to be reviewed.)  One wishes to test the null 

H0:F2
1-F2

2=0, 

or perhaps construct a confidence interval around the point estimate of F2
1-F2

2. 

Observe that E(e1t-e2t)(e1t+e2t)=F
2
1-F2

2.  Thus F2
1-F2

2=0 if and only if the covariance or correlation

between e1t-e2t and e1t+e2t is zero.  Let us suppose initially that (e1t,e2t) is i.i.d..  Granger and Newbold

(1977) used this observation to suggest testing H0:F2
1-F2

2=0 by testing for zero correlation between e1t-e2t

and e1t+e2t.  This procedure was earlier proposed by Morgan (1939) in the context of testing for equality

between variances of two normal random variables.  Granger and Newbold (1977) assumed that the

forecast errors had zero mean, but Morgan (1939) indicates that this assumption is not essential.   The

Granger and Newbold test was extended to multistep, serially correlated and possibly non-normal

prediction errors by Meese and Rogoff (1988) and Mizrach (1995).

Ashley et al. (1980) proposed a test of equal MSPE in the context of nested models.  For nested

models, equal MSPE is theoretically equivalent to a test of Granger non-causality.  Ashley et al. (1980)

proposed executing a standard F-test, but with out of sample prediction errors used to compute restricted
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and unrestricted error variances.  Ashley et al. (1980) recommended that tests be one-sided, testing

whether the unrestricted model has smaller MSPE than the restricted (nested) model: it is not clear what it

means if the restricted model has a significantly smaller MSPE than the unrestricted model.

The literature on predictive inference that is a focus of this chapter draws on now standard central

limit theory introduced into econometrics research by Hansen (1982)–what I will call “standard results” in

the rest of the discussion.   Perhaps the first explicit use of standard results in predictive inference is

Christiano (1989).  Let ft=e2
1t-e

2
2t.  Christiano observed that we are interested in the mean of ft, call it Eft /

F2
1-F2

2.2  And there are standard results on inference about means–indeed, if ft is i.i.d. with finite variance,

introductory econometrics texts describe how to conduct inference about Eft given a sample of {ft}.  A

random variable like e2
1t-e

2
2t may be non-normal and serially correlated.  But results in Hansen (1982)

apply to non-i.i.d. time series data.  (Details below.)   

One of Hansen’s (1982) conditions is stationarity.  Christiano acknowledged that standard results

might not apply to his empirical application because of a possible failure of stationarity.  Specifically,

Christiano compared predictions of models estimated over samples of increasing size: the first of his 96

predictions relied on models estimated on quarterly data running from 1960 to 1969, the last from 1960 to

1988.  Because of increasing precision of estimates of the models, forecast error variances might decline

over time.  (This is one sense in which the assumption of stationarity was described as “not obviously

innocuous” above.) 

West et al. (1993) and West and Cho (1995) independently used standard results to compute test

statistics.  The objects of interest were MSPEs and a certain utility based measure of predictive ability.  

Diebold and Mariano (1995) proposed using the same standard results, also independently, but in a

general context that allows one to be interested in the mean of a general loss or utility function.  As

detailed below, these papers explained either in context or as a general principle how to allow for

multistep, non-normal, and conditionally heteroskedastic prediction errors.
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The papers cited in the preceding two paragraphs all proceed without proof.  None directly

address the possible complications from parameter estimation noted by Christiano (1989).  A possible

approach to allowing for these complications in special cases is in Hoffman and Pagan (1989) and

Ghysels and Hall (1990).  These papers showed how standard results from Hansen (1982) can be

extended to account for parameter estimation in out of sample tests of instrument residual orthogonality

when a fixed parameter estimate is used to construct the test.  (Christiano (1989), and most of the

forecasting literature, by contrast updates parameter estimate as forecasts progress through the sample.) 

A general analysis was first presented in West (1996), who showed how standard results can be extended

when a sequence of parameter estimates is used, and for the mean of a general loss or utility function. 

Further explication of developments in inference about predictive ability requires me to start

writing out some results.  I therefore call a halt to the historical summary.  The next section begins the

discussion of analytical results related to the papers cited here. 

3. A SMALL NUMBER OF NONNESTED MODELS, PART I

Analytical results are clearest in the unusual (in economics) case in which predictions do not rely

on estimated regression parameters, an assumption maintained in this section but relaxed in future

sections.  

Notation is as follows.  The object of interest is Eft, an (m×1) vector of moments of predictions or

prediction errors.  Examples include MSPE, mean prediction error, mean absolute prediction error,

covariance between one model’s prediction and another model’s prediction error, mean utility or profit,

and means of loss functions that weight positive and negative errors asymmetrically as in Elliott and

Timmermann (2003).   If one is comparing models, then the elements of Eft are expected differences in

performance.  For MSPE comparisons, and using the notation of the previous section, for example,

Eft=Ee2
1t-Ee2

2t.  As stressed by Diebold and Mariano (1995), this framework also accommodates general
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loss functions or measures of performance.  Let Egit be the measure of performance of model i–perhaps

MSPE, perhaps mean absolute error, perhaps expected utility.  Then when there are two models, m=1 and

Eft=Eg1t-Eg2t.

We have a sample of predictions of size P.  Let  'f */ P-13t ft denote the m×1 sample mean of ft. 

(The reason for the “*” superscript will become apparent below.)   If we are comparing two models with

performance of model i measured by Egit , then of course 'f */ P-13t(g1t-g2t) / 'g1- 'g2 = the difference in

performance of the two models, over the sample.  For simplicity and clarity, assume covariance

stationarity–neither the first nor second moments of ft depend on t.  At present (predictions do not depend

on estimated regression parameters), this assumption is innocuous.  It allows simplification of formulas. 

The results below can be extended to allow moment drift as long as time series averages converge to

suitable constants.  See Giacomini and White (2003).   Then under well understood and seemingly weak

conditions, a central limit theorem holds:

(3.1) qP('f *-Eft) -A N(0,V *), V */3 j
4

=-4E(ft-Eft)(ft-j-Eft)N.

See, for example, White (1984) for the “well understood” phrase of the sentence prior to (3.1); see below

for the “seemingly weak” phrase.  Equation (3.1) is the “standard result” referenced above.  The m×m

positive semidefinite matrix V* is sometimes called the long run variance of ft.  If ft is serially uncorrelated

(perhaps i.i.d.), then V*=E(ft-Eft)(ft-Eft)N.  If, further, m=1 so that ft is a scalar, V*=E(ft-Eft)
2.

Suppose that V* is positive definite.  Let ^V* be a consistent estimator of V*.  Typically ^V* will be

constructed with a heteroskedasticity and autocorrelation consistent covariance matrix estimator.  Then

one can test the null 

(3.2) H0: Eft=0

with a Wald test:
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(3.3) b f *N ^V*-1b f * -A P2(m).

If m=1 so that ft is a scalar, one can test the null with a t-test:

(3.4) 'f * / [ ^V */P]½ -A N(0,1),  ^V * 6p V
* /3 j

4
=-4E(ft-Eft)(ft-j-Eft).

Confidence intervals can be constructed in obvious fashion from [ ^V*/P]½. 

As noted above, the example of the previous section maps into this notation with m=1,  ft=e2
1t-e

2
2t, 

Eft=F
2
1-F2

2, and the null of equal predictive ability is that Eft=0, i.e., F2
1=F2

2.   Testing for equality of MSPE

in a set of m+1 models for m>1 is straightforward, as described in the next section.  To give an illustration

or two of other possible definitions of ft, sticking for simplicity with m=1: If one is interested in whether a

forecast is unbiased, then ft=e1t and Eft=0 is the hypothesis that the model 1 forecast error is unbiased.  If

one is interested in mean absolute error,  ft=|e1t|-|e2t|, and Eft=0 is the hypothesis of equal mean absolute

prediction error.   Additional examples are presented in a subsequent section below. 

For concreteness, let me return to MSPE, with m=1,  ft=e2
1t-e

2
2t, 

'f */ P-13t(e
2
1t-e

2
2t).  Suppose first

that (e1t,e2t) is i.i.d.  Then so, too, is e2
1t-e

2
2t, and V *=E(ft-Eft)

2 = variance(e2
1t-e

2
2t).  In such a case, as the

number of forecast errors P64 one can estimate V * consistently with ^V * = P-13t (ft-
'f *)2.  Suppose next

that (e1t,e2t) is a vector of J step ahead forecast errors whose (2×1) vector of Wold innovations is i.i.d. . 

Then (e1t,e2t) and e2
1t-e

2
2t follow MA(J-1) processes, and V* = 3 j

J-
=

1
-J+1E(ft-Eft)(ft-j-Eft).  One possible

estimator of V* is the sample analogue.  Let ^
'j=P-13t>|j| (ft-

'f *)(ft-|j|-
'f *) be an estimate of E(ft-Eft)(ft-j-Eft),

and set ^V*=3 j
J-
=

1
-J+1

^
'j.  It is well known, however, that this estimator may not be positive definite if J>0. 

Hence one may wish to use an estimator that is both consistent and positive semidefinite by construction 

(Newey and West (1987, 1994), Andrews (1991), Andrews and Monahan (1994), den Haan and Levin

(2000)).   Finally, under some circumstances, one will wish to use a heteroskedasticity and

autocorrelation consistent estimator of V* even when (e1t,e2t) is a one step forecast error.  This will be the
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case if the second moments follow a GARCH or related process, in which case there will be serial

correlation in ft=e2
1t-e

2
2t even if there is no serial correlation in (e1t,e2t).

But such results are well known, for ft a scalar or vector, and for ft relevant for MSPE or other

moments of predictions and prediction errors.  The “seemingly weak” conditions referenced above

equation (3.1) allow for quite general forms of dependence and heterogeneity in forecasts and forecast

errors.  I use the word “seemingly” because of some ancillary assumptions that are not satisfied in some

relevant applications.   First, the number of models m must be “small” relative to the number of

predictions P.  In an extreme case in which m>P , conventional estimators will yield ^V * that is not of full

rank.  As well, and more informally, one suspects that conventional asymptotics will yield a poor

approximation if m is large relative to P.  Section 9 briefly discusses alternative approaches likely to be

useful in such contexts.

Second, and more generally, V* must be full rank.  When the number of models m=2, and MSPE

is the object of interest, this rules out e2
1t=e2

2t with probability 1 (obviously).  It also rules out pairs of

models in which qP( ^
F2

1- ^
F2

2) 6p 0.  This latter condition is violated in applications in which one or both

models make predictions based on estimated regression parameters, and the models are nested. This is

discussed in sections 6 and 7 below.

4. A SMALL NUMBER OF NONNESTED MODELS, PART II

In the vast majority of economic applications, one or more of the models under consideration rely

on estimated regression parameters when making predictions.  To spell out the implications for inference,

it is necessary to define some additional notation.  For simplicity, assume that one step ahead prediction

errors are the object of interest.  Let the total sample size be T+1.  The last P observations of this sample

are used for forecast evaluation.  The first R observations are used to construct an initial set of regression

estimates that are then used for the first prediction.  We have R+P=T+1.  Schematically:
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R observations P observations  
(4.1) |__________________________|_______________________|

1 R   T+1=R+P

 Division of the available data into R and P is taken as given.

In the forecasting literature, three distinct schemes figure prominently in how one generates the

sequence of regression estimates necessary to make predictions.  Asymptotic results differ slightly for the

three, so it is necessary to distinguish between them.  Let $ denote the vector of regression parameters

whose estimates are used to make predictions.  In the recursive scheme, the size of the sample used to

estimate $ grows as one makes predictions for successive observations.  One first estimates $ with data

from 1 to R and uses the estimate to predict observation R+1 (recall that I am assuming one step ahead

predictions, for simplicity); one then estimates $ with data from 1 to R+1, with the new estimate used to

predict observation R+2; ....; finally, one estimate $ with data from 1 to T, with the final estimate used to

predict observation T+1.  In the rolling scheme, the sequence of $’s is always generated from a sample of

size R.   The first estimate of $ is obtained with a sample running from 1 to R, the next with a sample

running from 2 to R+1, ..., the final with a sample running from T-R+1 to T.  In the fixed scheme, one

estimates $ just once, using data from 1 to R.  In all three schemes, the number of predictions is P and the

size of the smallest regression sample is R.   Examples of applications using each of these schemes

include Faust et al. (2004) (recursive), Cheung et al. (2003) (rolling) and Ashley et al. (1980) (fixed).  

The fixed scheme is relatively attractive when it is computationally difficult to update parameter

estimates.  The rolling scheme is relatively attractive when one wishes to guard against moment or

parameter drift that is difficult to model explicitly.

It may help to illustrate with a simple example.  Suppose one model under consideration is a

univariate zero mean AR(1): yt=$
*yt-1+e1t.  Suppose further that the estimator is ordinary least squares.

Then the sequence of P estimates of $* are generated as follows for t=R, ... , T:
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(4.2) recursive: ^
$t=[3s

t
=1(y2

s-1)]-1 [3s
t
=1ys-1ys];

rolling: ^
$t=[3s

t
=t-R+1(y2

s-1)]-1 [3s
t
=t-R+1 ys-1ys];

fixed: ^
$t=[3R

s=1 (y2
s-1)]-1 [3R

s=1ys-1ys].

In each case, the one step ahead prediction error is ^et+1 / yt+1-yt
^
$t.  Observe that for the fixed scheme

^
$t=

^
$R for all t, while ^

$t changes with t for the rolling and recursive schemes.

I will illustrate with a simple MSPE example comparing two linear models.  I then introduce

notation necessary to define other moments of interest, sticking with linear models for expositional

convenience.  An important asymptotic result is then stated.  The next section outlines a general

framework that covers all the simple examples in this section, and allows for nonlinear models and

estimators.

So suppose there are two least squares models models, say yt=X1tN$
*
1+e1t and yt=X2tN$

*
2+e2t.  (Note

the dating convention: X1t and X2t can be used to predict yt, for example X1t=yt-1 if model 1 is an AR(1).)

The population MSPEs are F2
1 / Ee2

1t and F2
2 / Ee2

2t.  (Absence of a subscript t on the MSPEs is for

simplicity and without substance.)  Define the sample one step ahead forecast errors and sample MSPEs

as

(4.3) ^e1t+1 / yt+1-X1t+1N
^
$1t, 

^e2t+1 / yt+1-X2t+1N
^
$2t, 

^
F2

1 = P-13 t
T

=R
^e2

1t+1, ^
F2

2 = P-13 t
T

=R
^e2

2t+1.

With MSPE the object of interest, one examines the difference between the sample MSPEs ^
F2

1 and ^
F2

2.  Let

(4.4) ^ft / ^e2
1t - 

^e2
2t,  

'f / P-13 t
T

=R
^ft+1 / ^

F2
1- ^
F2

2.

Observe that 'f defined in (4.4) differs from 'f * defined above (3.1) in that 'f relies on ^e’s, whereas 'f * relies

on e’s.

The null hypothesis is F2
1-F2

2=0.  One way to test the null would be to substitute ^e1t and ^e2t for e1t
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and e2t in the formulas presented in the previous section.  If (e1t, e2t)N is i.i.d., for example, one would set

^V* = P-13 t
T

=R(^ft+1-'f)2 , compute the t-statistic

(4.5)  'f/[ ^V*/P]½ 

and use standard normal critical values.  (I use the “*” in ^V* for both P-13 t
T

=R(^ft+1-'f)2 [this section] and for

P-13 t
T

=R(ft+1-'f)2 [previous section] because under the asymptotic approximations described below, both are

consistent for the long run variance of ft+1.)

Use of (4.5) is not obviously an advisable approach.  Clearly, ^e2
1t-

^e2
2t is polluted by error in

estimation of  $1 and $2.  It is not obvious that sample averages of ^e2
1t-

^e2
2t (i.e., 'f) have the same asymptotic

distribution as those of e2
1t-e

2
2t (i.e., 'f *).  Under suitable conditions (see below), a key factor determining

whether the asymptotic distributions are equivalent is whether or not the two models are nested.   If they

are nested, the distributions are not equivalent.  Use of (4.5) with normal critical values is not advised. 

This is discussed in a subsequent section.

If the models are not nested, West (1996) showed that when conducting inference about MSPE,

parameter estimation error is aymptotically irrelevant.  I put the phrase in italics because I will have

frequent recourse to it in the sequel: “asymptotic irrelevance” means that one conduct inference by

applying standard results to the mean of the loss function of interest, treating parameter estimation error

as irrelevant. 

To explain this result, as well as to illustrate when asymptotic irrelevance does not apply, requires

some–actually, considerable–notation.  I will phase in some of this notation in this section, with most of

the algebra deferred to the next section.   Let $* denote the k×1 population value of the parameter vector

used to make predictions.  Suppose for expositional simplicity that the model(s) used to make predictions

are linear,

(4.6a) yt=XtN$
*+et 
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if there is a single model,

(4.6b)  yt=X1tN$
*
1+e1t, yt=X2tN$

*
2+e2t, $

*/($*
1N, $

*
2N)N, 

if there are two competing models.   Let ft($
*) be the random variable whose expectation is of interest. 

Then leading scalar (m=1) examples of ft($
*) include:

(4.7a) ft($
*) = e2

1t-e
2
2t = (yt-X1tN$

*
1)2 - (yt-X2tN$

*
2)2, (Eft =0 means equal MSPE);

(4.7b) ft($
*) = et = yt-XtN$

* (Eft = 0 means zero mean prediction error);

(4.7c) ft($
*) = e1tX2tN$

*
2 = (yt-X1tN$

*
1)X2tN$

*
2 (Eft =0 means zero correlation between one model’s prediction

error and another model’s prediction, an implication of forecast encompassing proposed by Chong and

Hendry (1986));

(4.7d) ft($
*) = e1t(e1t-e2t) = (yt-X1tN$

*
1)[(yt-X1tN$

*
1)-(yt-X2tN$

*
2)] (Eft =0 is an implication of forecast

encompassing proposed by Harvey et al. (1998));

(4.7e) ft($
*) = et+1et = (yt+1-Xt+1N$

*)(yt-XtN$
*) (Eft =0 means zero first order serial correlation);

(4.7f) ft($
*) = etXtN$

* = (yt-XtN$
*)XtN$

* (Eft =0 means the prediction and prediction error are uncorrelated);

(4.7g) ft($
*) = |e1t| - |e2t| = |yt-X1tN$

*
1| - |yt-X2tN$

*
2|, (Eft = 0 means equal mean absolute error).

More generally, ft($
*) can be per period utility or profit, or differences across models of per period utility

or profit, as in Leitch and Tanner (1991) or West et al. (1993). 

Let ^ft+1 /ft+1(^
$t) denote the sample counterpart of ft+1($*), with 'f / P-13 t

T
=R

^ft+1 the sample mean

evaluated at the series of estimates of $*.  Let 'f*= P-13 t
T

=Rft+1($*) denote the sample mean evaluated at $*.  

Let F denote the (1×k) derivative of the expectation of ft, evaluated at $*:N

(4.8) F = MEft($
*)/M$.

For example, F = -EXtN for mean prediction error (4.7b).  

Then under mild conditions,
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(4.9) qP('f-Eft) = qP('f*-Eft) + F × (P/R )½ × [Op(1) terms from  the sequence of estimates of $*] + op(1).

Some specific formulas are in the next section.  Result (4.9) holds not only when ft is a scalar, as I have

been assuming, but as well when ft is a vector.  (When ft is a vector of dimension (say) m, F has

dimension m×k.)

Thus, uncertainty about the estimate of Eft can be decomposed into uncertainty that would be

present even if $* were known and, possibly, additional uncertainty due to estimation of $*.  The qualifier

“possibly” results from at least three sets of circumstances in which error in estimation of $* is

asymptotically irrelevant: (1)F=0; (2)P/R 6 0;  (3)the variance of the terms due to estimation of $* is

exactly offset by the covariance between these terms and qP('f*-Eft).  For cases (1) and (2), the middle term

in (4.9) is identically zero (F=0) or vanishes asymptotically (P/R 6 0), implying that qP('f-Eft) - qP('f*-Eft)

6p 0; for case (3) the asymptotic variances of qP('f-Eft) and qP('f*-Eft) happen to be the same.  In any of the

three sets of circumstances, inference can proceed as described in the previous section. This is important

because it simplifies matters if one can abstract from uncertainty about $* when conducting inference.

To illustrate each of the three circumstances:

1. For MSPE in our linear example F = (-2EX1tNe1t, 2EX2tNe2t)N.  So F=01×k if the predictors are

uncorrelated with the prediction error.3  Similarly, F=0 for mean absolute prediction error (4.7g)

(E[|e1t|-|e2t|]) when the prediction errors have a median of zero, conditional on the predictors.  (To prevent

confusion, it is to be emphasized that MSPE and mean absolute error are unusual in that asymptotic

irrelevance applies even when P/R is not small.  In this sense, my focus on MSPE is a bit misleading.)

Let me illustrate the implications with an example in which ft is a vector rather than a scalar.

Suppose that we wish to test equality of MSPEs from m+1 competing models, under the assumption that

the forecast error vector (e1t,...,em+1,t)N is i.i.d..  Define the m×1 vectors

(4.10)  ft / (e2
1t-e

2
2t, ... e

2
1t-e

2
m+1,t)N,  

^ft = (^e2
1t-

^e2
2t, ... , 

^e2
1t-

^e 2
m+1,t)N,  

'f=P-13 t
T

=R
^ft+1.
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The null is that Eft=0m×1.   (Of course, it is arbitrary that the null is defined as discrepancies from model

1's squared prediction errors; test statistics are identical regardless of the model used to define ft.)  Then

under the null

(4.11)  'fN ^V*-1'f -A P2(m), ^V* 6p V
* /3 j

4
=-4E(ft-Eft)(ft-j-Eft)N,

where , as indicated, ^V* is a consistent estimate of the m×m  long run variance of ft.  If ft / (e2
1t-e

2
2t, ...,

e2
1t-e

2
m+1,t)N is serially uncorrelated (sufficient for which is that (e1t,...,em+1,t)N is i.i.d.), then a possible

estimator of V is simply

^V*=P-13 t
T

=R(^ft+1-'f)(^ft+1-'f)N.

If the squared forecast errors display persistence (GARCH and all that), a robust estimator of the

variance-covariance matrix should be used (West and Cho (1995)).

2. One can see in (4.9) that asymptotic irrelevance holds quite generally when P/R 6 0.  The

intuition is that the relatively large sample (big R) used to estimate $ produces small uncertainty relative

to uncertainty that would be present in the relatively small sample (small P) even if one knew $.  The

result was noted informally by Chong and Hendry (1986).  Simulation evidence in West (1996, 2001),

McCracken (2004)  and Clark and McCracken (2001) suggests that P/R < .10 more or less justifies using

the asymptotic approximation that assumes asymptotic irrelevance.

3. This fortunate cancellation of variance and covariance terms occurs for certain moments and loss

functions, when estimates of parameters needed to make predictions are generated by the recursive

scheme (but not by the rolling or fixed schemes), and when forecast errors are conditionally

homoskedastic.  These loss functions are: mean prediction error; serial correlation of one step ahead

prediction errors; zero correlation between one model’s forecast error and another model’s forecast.  This

is illustrated in the discussion of equation (7.2) below.

To repeat: When asymptotic irrelevance applies, one can proceed as described in section 3.  One
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need not account for dependence of forecasts on estimated parameter vectors.  When asymptotic

irrelevance does not apply, matters are more complicated.  This is discussed in the next sections.

5. A SMALL NUMBER OF NONNESTED MODELS, PART III

Asymptotic irrelevance fails in a number of important cases, at least according to the asymptotics

of West (1996).   Under the rolling and fixed schemes, it fails quite generally.  For example, it fails for

mean prediction error, correlation between realization and prediction, encompassing, and zero correlation

in one step ahead prediction errors (West and McCracken (1998)).  Under the recursive scheme, it

similarly fails for such moments when prediction errors are not conditionally homoskedastic.  In such

cases, asymptotic inference requires accounting for uncertainty about parameters used to make

predictions.

The general result is as follows.  One is interested in an (m×1) vector of moments Eft, where ft

now depends on observable data through a (k×1) unknown parameter vector $*.  If moments of predictions

or prediction errors of competing sets of regressions are to be compared, the parameter vectors from the

various regressions are stacked to form $*.  It is assumed that Eft is differentiable in a neighborhood

around $*.  Let ^$t denote an estimate of $* that relies on data from period t and earlier.  Let J$1 be the

forecast horizon of interest; J=1 has been assumed in the discussion so far.  Let the total sample available

be of size T+J.  The estimate of Eft is constructed as

(5.1) 'f = P-13 t
T

=Rft+J(
^
$t) / P-13 t

T
=R

^ft+J.

The models are assumed to be parametric.  The estimator of the regression parameters satisfies

(5.2) ^
$t-$

* = B(t)H(t),

where B(t) is k×q, H(t) is q×1 with
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(a)B(t) 
a
6
.s.

 B, B a matrix of rank k; 

(b)H(t)=t-13 t
s=1hs($*) (recursive), H(t)=R-13s

t
=t-R+1hs($

*) (rolling), H(t)=R-13s
R

=1hs($
*) (fixed), for a

(q×1) orthogonality condition hs($
*) orthogonality condition that satisfies 

(c)Ehs($
*)=0.  

Here,  ht is the score if the estimation method is maximum likelihood, or the GMM orthogonality

condition if GMM is the estimator.  The matrix B(t) is the inverse of the Hessian (ML) or linear

combination of orthogonality conditions (GMM), with large sample counterpart B.  In exactly identified

models, q=k.  Allowance for overidentified GMM models is necessary to permit prediction from the

reduced form of simultaneous equations models, for example.  For the results below, various moment and

mixing conditions are required.  See West (1996) and Giacomini and White (2003) for details. 

It may help to pause to illustrate with linear least squares examples.   For the least squares model

(4.6a), in which yt=XtN$
*+et,

(5.3a) ht = Xtet.

In (4.6b), in which there are two models  yt=X1tN$
*
1+e1t, yt=X2tN$

*
2+e2t, $

*/($*
1N, $

*
2N)N, 

(5.3b) ht=(X1tNe1t, X2tNe2t)N ,

where ht=ht($
*) is suppressed for simplicity.   The matrix B is k×k:

(5.4) B=(EX1tX1tN)
-1 (model 4.6a), B=diag[(EX1tX1tN)

-1, (EX2tX2tN)
-1] (model 4.6b).

If one is comparing two models with Egit and 'gi  the expected and sample mean performance measure for

model i, i=1,2, then Eft=Eg1t-Eg2t and 'f= 'g1- 'g2.

To return to the statement of results, which require conditions such as those in West (1996),

which are noted in the bullet points at the end of this section.  Assume a large sample of both predictions

and prediction errors,

(5.5) P64, R64, lim T64 PR = B, 0#B<4.



17

An expansion of 'f around 'f* yields

(5.6) qP('f-Eft) = qP('f*-Eft) + F(P/R)½[BR½ 'H] + op(1).) 

which may also be written

(5.6)N P-½3 t
T

=R[f(^
$t+1)-Eft]  = P-½3 t

T
=R[ft+1($*)-Eft ] + F(P/R)½[BR½ 'H] + op(1)

The first term on the right hand side of (5.6) and (5.6)N–henceforth (5.6), for short–represents uncertainty

that would be present even if predictions relied on the population value of the parameter vector $*.  The

limiting distribution of this term was given in (3.1).   The second term on the right hand side of (5.6)

results from reliance on of predictions on estimates of $*.  To account for the effects of this second term

requires yet more notation.  Write the long run variance of (ft+1N, htN)N as

U V* Sfh  [
(5.7) S = /        /.

I SfhN Shh O

Here, V*/3 j
4

=-4E(ft-Eft)(ft-j-Eft)Nis m×m, Sfh=3 j
4

=-4E(ft-Eft)ht-jN is m×k, and Shh/3 j
4

=-4Ehtht-jNis k×k, and ft and

ht are understood to be evaluated at $*.  The asymptotic (R64) variance-covariance matrix of the estimator

of $* is

(5.8) V$ /BShhBN.

With B defined in (5.5), define the scalars 8fh, 8hh and 8/(1+8hh-28fh)
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(5.9) Sampling scheme 8fh     8hh 8

recursive 1-B-1ln(1+B) 2[1-B-1ln(1+B)] 1

rolling, B#1 B
2     B-B

2

3 1-B
2

3
rolling, B>1     1- 12B    1- 13B

2
3B

fixed 0       B 1+B

Finally, define the m×k matrix F as in (4.8), F /MEft($
*)/M$.

Then P-½3 t
T

=R[f(^
$t+1)-Eft] is asymptotically normal with variance-covariance matrix 

(5.10) V = V* + 8fh(FBSfhN+SfhBNFN) + 8hhFV$FN.

V* is the long run variance of  P-½[3 t
T

=Rft+1($*)-Eft ] and is the same object as V* defined in (3.1) ,

8hhFV$FN is the long run variance of F(P/R)½[BR½ 'H], and 8fh(FBSfhN+SfhBNFN) is the covariance between

the two.

This completes the statement of the general result.  To illustrate the expansion (5.6) and the

asymptotic variance (5.10), I will temporarily switch from my example of comparison of MSPEs to one in

which one is looking at mean prediction error.  The variable ft is thus redefined to equal the prediction

error,  ft=et, and Eft is the moment of interest.  I will further use a trivial example, in which the only

predictor is the constant term, yt = $*+et.  Let us assume as well, as in the Hoffman and Pagan (1989) and

Ghysels and Hall (1990) analysis of predictive tests of instrument-residual orthogonality, that the fixed

scheme is used and predictions are made using a single estimate of $*. This single estimate is the least

squares estimate on the sample running from 1 to R, ^
$R/R-13s

R
=1ys.  Now,  ^et+1 = et+1 - (^

$R-$*) = et+1 -

R-13s
R

=1es.  So

(5.11) P-½3 t
T

=R
^et+1 = P-½3 t

T
=Ret+1 - (P/R)½(R-½3s

R
=1es).

This is in the form (4.9) or (5.6)N, with: F=-1, R-½3s
R

=1es = [Op(1) terms due to the sequence of estimates of

$
*], B/1, 'H=(R-13s

R
=1es) and the op(1) term identically zero. 
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If et is well behaved, say i.i.d. with finite variance F2, the bivariate vector (P-½3 t
T

=Ret+1, R
-½3s

R
=1es)N

is asymptotically normal with variance covariance matrix F2I2.  It follows that

(5.12) P-½3 t
T

=Ret+1 - (P/R)½(R-½3s
R

=1es) -A N(0,(1+B)F2).

The variance in the normal distribution is in the form (5.10), with 8fh=0, 8hh=B, V*=FV$FN=F
2.  Thus use

of ^
$R rather than $* in predictions inflates the asymptotic variance of the estimator of mean prediction

error by a factor of 1+B. 

In general, when uncertainty about $* matters asymptotically, the adjustment to the standard error

that would be appropriate if predictions were based on population rather than estimated parameters is

increasing in: 

•The ratio of number of predictions P to number of observations in smallest regression sample R.  Note

that in (5.10) as B60, 8fh60 and 8hh60; in the specific example (5.12) we see that if P/R is small, the

implied value of B is small and the adjustment to the usual asymptotic variance of F2 is small; otherwise

the adjustment can be big. 

•The variance-covariance matrix of the estimator of the parameters used to make predictions.  

Both conditions are intuitive.  Simulations in West (1996, 2001), West and McCracken (1998),

McCracken (2000), Chao et al. (2001)  and Clark and McCracken (2001, 2003) indicate that with

plausible parameterizations for P/R and uncertainty about $*, failure to adjust the standard error can result

in very substantial size distortions.  It is possible that V < V* – that is, accounting for uncertainty about

regression parameters may lower the asymptotic variance of the estimator.4  This happens in some leading

cases of practical interest, when the rolling scheme is used.  See the discussion of equation (7.2) below for

an illustration.

A consistent estimator of V results from using the obvious sample analogues.  A possibility is to

compute 8fh and 8hh from (5.10) setting B=P/R.  (See Table 1 for the implied formulas for 8fh, 8hh and 8.) 
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As well, one can estimate F from the sample average of Mf (^
$t)/M$, ^F = P-13 t

T
=R Mf (^

$t)/M$;5 estimate V$ and

B from one of the sequence of estimates of $*.  For example, for mean prediction error, for the fixed

scheme, one might set

^F = -P-13 t
T

=RXt+1N, 
^B = (R-1 3s

R
=1XsXsN)

-1, ^V$ /(R-1 3s
R

=1XsXsN)
-1(R-1 3s

R
=1XsXsN

^e2
s)(R

-1 3s
R

=1XsXsN)
-1.

Here, ^es 1#s#R is the in-sample least squares residual associated with the parameter vector ^
$R that is used

to make predictions and the formula for ^V$ is the usual heteroskedasticity consistent covariance matrix for

^
$R.  (Other estimators are also consistent, for example sample averages running from 1 to T.)  Finally, one

can combine these with an estimate of the long run variance S constructed using a heteroskedasticity and

autocorrelation consistent covariance matrix estimator  (Newey and West (1987, 1994), Andrews (1991),

Andrews and Monahan (1994), den Haan and Levin (2000)).  

Alternatively, one can compute a smaller dimension long run variance as follows.  Let us assume

for the moment that ft and hence V are scalar.  Define the (2×1) vector ^gt as

U    ^ft [
(5.13) ^gt = /           /.

I  ^F ^B^ht O

Let gt be the population counterpart of ^gt, gt /(ft, FBht)N. Let S be the (2×2) long run variance of gt, S /

3 j
4

=-4Egtgt-jN.  Let ^
S be an estimate of S.  Let ^

Sij be the (i,j) element of ^
S.  Then one can consistently

estimate V with

(5.14) ^V = ^
S11 + 28fh

^
S12 + 8hh

^
S22.

The generalization to vector ft is straightforward.  Suppose ft is say m×1 for m$1.  Then 

U    ft [
gt = /           /

I  FBht O

is 2m×1, as is ^gt;  S and ^
S are 2m×2m.  One divides ^

S into four (m×m) blocks, and computes
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(5.15)  ^V = ^
S(1,1) + 8fh[ ^

S(1,2)+ ^
S(2,1)] + 8hh

^
S(2,2).

In (5.15), ^
S(1,1) is the m×m block in the upper left hand corner of ^

S, ^
S(1,2) is the m×m block in the upper

right hand corner of ^
S, and so on.

Alternatively, in some common problems, and if the models are linear, regression based tests can

be used.  By judicious choice of additional regressors (as suggested for in-sample tests by Pagan and Hall

(1983), Davidson and McKinnon (1984) and Wooldridge (1990)), one can “trick” standard regression

packages into computing standard errors that properly reflect uncertainty about $*.  See West and

McCracken (1998) and Table 3 below for details, Hueng and Wong (2000), Avramov (2002) and Ferreira

(2004) for applications.

Conditions for the expansion (5.6) and the central limit result (5.10) include the following. 

•Parametric models and estimators of $ are required.  Similar results may hold with nonparametric

estimators, but, if so, these have yet to be established.  Linearity is not required.  One might be basing

predictions on nonlinear time series models, for example, or restricted reduced forms of simultaneous

equations models estimated by GMM. 

•At present, results with I(1) data are restricted to linear models (Corradi et al.  (2001), Rossi (2003)).

Asymptotic irrelevance continues to apply when F=0 or B=0.  When those conditions fail, however, the

normalized estimator of Eft typically is no longer asymptotically normal.  (By I(1) data, I mean I(1) data

entered in levels in the regression model.  Of course, if one induces stationarity by taking differences or

imposing cointegrating relationships prior to estimating $*, the theory in the present section is applicable

quite generally.)

•Condition (5.5) holds.  Section 7 discusses implications of an alternative asymptotic approximation due

to Giacomini and White (2003) that holds R fixed.

•For the recursive scheme, condition (5.5) can be generalized to allow B=4, with the same asymptotic

approximation. (Recall that B is the limiting value of P/R.)  Since B<4 has been assumed in existing
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theoretical results for rolling and fixed, researchers using those schemes should treat the asymptotic

approximation with extra caution if P>>R.

•The expectation of the loss function f must be differentiable in a neighborhood of $*.  This rules out

direction of change as a loss function.

•A full rank condition on the long run variance of (ft+1N, (Bht)N)N. A necessary condition is that the long

run variance of ft+1 is full rank.  For MSPE, and i.i.d. forecast errors, this means that the variance of e2
1t-e

2
2t

is positive (note the absence of a “^” over e2
1t and e2

2t).  This condition will fail in applications in which the

models are nested, for in that case e1t/e2t.  Of course, for the sample forecast errors, ^e1t…
^e2t (note the “^”)

because of sampling error in estimation of $*
1 and $*

2.  So the failure of the rank condition may not be

apparent in practice.   McCracken’s (2004) analysis of nested models shows that under the conditions of

the present section apart from the rank condition, qP( ^
F2

1- ^
F2

2) 6p 0.   The next two sections discuss inference

for predictions from such nested models.

6. A SMALL NUMBER OF MODELS, NESTED: MPSE

Analysis of nested models  per se does not invalidate the results of the previous sections.  A rule

of thumb is: if the rank of the data becomes degenerate when regression parameters are set at their

population values, then a rank condition assumed in the previous sections likely is violated.   When only

two models are being compared, “degenerate” means identically zero.  

Consider, as an example, out of sample tests of Granger causality (e.g., Stock and Watson (1999,

2002)).  In this case model 2 might be a bivariate VAR, model 1 a univariate AR that is nested in model 2

by imposing suitable zeroes in the model 2 regression vector.  If the lag length is 1, for example:

(6.1a) Model 1:   yt = $10 + $11yt-1 + e1t / X1tN$
*
1 + e1t, X1t/(1,yt-1)N, $*

1/($10,$11)N;

(6.1b) Model 2:   yt = $20 + $21yt-1 + $22xt-1 + e2t / X2tN$
*
2 + e2t, X2t/(1,yt-1,xt-1)N, $*

2/($20,$21,$22)N.
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Under the null of no Granger causality from x to y, $22=0 in model 2.  Model 1 is then nested in model 2. 

Under the null, then, 

$*
2N=($*

1N, 0), X1tN$
*
1=X2tN$

*
2, 

and the disturbances of model 2 and model 1 are identical: e2
2t-e

2
1t/0, e1t(e1t-e2t)=0 and |e1t|-|e2t|=0 for all t. 

So the theory of the previous sections does not apply if MSPE, cov(e1t,e1t-e2t) or mean absolute error is

the moment of interest.  On the other hand, the random variable e1t+1xt is nondegenerate under the null, so

one can use the theory of the previous sections to examine whether Ee1t+1xt=0.  Indeed, Chao et al. (2001)

show that (5.6) and (5.10) apply when testing  Ee1t+1xt =0 with out of sample prediction errors. 

The remainder of this section considers the implications of a test that does fail the rank condition

of the theory of the previous section–specifically, MSPE in nested models.  This is a common occurrence

in papers on forecasting asset prices, which often use MSPE to test a random walk null against models

that use past data to try to predict changes in asset prices.  It is also a common occurrence in macro

applications, which, as in example (6.1), compare univariate to multivariate forecasts.   In such

applications, the asymptotic results described in the previous section will no longer apply.  In particular,

and under essentially the technical conditions of that section (apart from the rank condition), when ^
F2

1- ^
F2

2

is normalized so that its limiting distribution is non-degenerate, that distribution is non-normal. 

Formal characterization of limiting distributions has been accomplished in McCracken (2004)

and Clark and McCracken (2001, 2003, 2005a, 2005b).  This characterization relies on restrictions not

required by the theory discussed in the previous section.  These restrictions include:

(6.2a) The objective function used to estimate regression parameters must be the same quadratic as that

used to evaluate prediction.  That is

•The estimator must be nonlinear least squares (ordinary least squares of course a special case).

•For multistep predictions, the “direct” rather than “iterated” method must be used.6

(6.2b)A pair of models is being compared.  That is, results have not been extended to multi-model
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comparisons along the lines of (3.3).

McCracken (2004) shows that under such conditions, qP( ^
F2

1- ^
F2

2) 6p 0, and derives the asymptotic

distribution of P( ^
F2

1- ^
F2

2) and certain related quantities.  (Note that the normalizing factor is the prediction

sample size P rather than the usual qP.)  He writes test statistics as functionals of Brownian motion.  He

establishes limiting distributions that are asymptotically free of nuisance parameters under certain

additional conditions:

(6.2c)one step ahead predictions and conditionally homoskedastic prediction errors, or 

(6.2d)the number of additional regressors in the larger model is exactly 1 (Clark and McCracken

(2005a)).

Condition (6.2d) allows use of the results about to be cited, in conditionally heteroskedastic as well as

conditionally homoskedastic environments, and for multiple as well as one step ahead forecasts.  Under

the additional restrictions (6.2c) or (6.2d), McCracken (2004) tabulates the quantiles of P( ^
F2

1- ^
F2

2)/ ^
F2

2. 

These quantiles depend on the number of additional parameters in the larger model and on the limiting

ratio of P/R.  For conciseness, I will use “(6.2)” to mean

(6.2) Conditions (6.2a) and (6.2b) hold, as does either or both of conditions (6.2c) and (6.2d).

Simulation evidence in Clark and McCracken (2001, 2003, 2005b), McCracken (2004), Clark and

West (2005a, 2005b)) and Corradi and Swanson (2005) indicates that in MSPE comparisons in nested

models the usual statistic (4.5) is non-normal not only in a technical but in an essential practical sense:

use of standard critical values usually results in very poorly sized tests, with far too few rejections.  As

well, the usual statistic has very poor power.  For both size and power, the usual statistic performs worse

the larger the number of irrelevant regressors included in model 2.   The evidence relies on one-sided

tests, in which the alternative to H0: Ee2
1t-Ee2

2t=0 is
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(6.3) HA: Ee2
1t-Ee2

2t>0.

Ashley et al. (1980) argued that in nested models, the alternative to equal MSPE is that the larger model

outpredicts the smaller model: it does not make sense for the population MSPE of the parsimonious

model to be smaller than that of the larger model.

To illustrate the sources of these results, consider the following simple example.  The two models

are:

(6.4) Model 1: yt=et; Model 2: yt=$
*xt+et; $

*=0; et a martingale difference sequence with respect to past

y’s and x’s.

In (6.4), all variables are scalars.  I use xt instead of X2t to keep notation relatively uncluttered.  For

concreteness, one can assume xt=yt-1, but that is not required.  I write the disturbance to model 2 as et

rather than e2t because the null (equal MSPE) implies $*=0 and hence that the disturbance to model 2 is

identically equal et.  Nonetheless, for clarity and emphasis I use the “2” subscript for the sample forecast

error from model 2, ^e2t+1/yt+1-xt+1
^
$t.  In a finite sample, the model 2 sample forecast error differs from the

model 1 forecast error, which is simply yt+1.  The model 1 and model 2 MSPEs are

(6.5) ^
F2

1 / P-1GT
t=Ry2

t+1, ^
F2

2 / P-1GT
t=R

^e2
2t+1/ P-1GT

t=R(yt+1-xt+1
^
$t)

2 

Since

^ft+1 / y2
t+1 - (yt+1-xt+1

^
$t)

2 = 2yt+1xt+1
^
$t - (xt+1

^
$t)

2

we have

(6.6) 'f / ^
F2

1 - ^
F2

2 = 2(P-1GT
t=Ryt+1xt+1

^
$t) - [P

-1GT
t=R(xt+1

^
$t)

2].

Now, 
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- [P-1GT
t=R(xt+1

^
$t)

2] # 0

and under the null (yt+1=et+1~i.i.d.) 

2(P-1GT
t=Ryt+1xt+1

^
$t) . 0.

So under the null it will generally be the case that

(6.7) 'f / ^
F2

1 - ^
F2

2 <0

or: the sample MSPE from the null model will tend to be less than that from the alternative model.

The intuition will be unsurprising to those familiar with forecasting.  If the null is true, the

alternative model introduces noise into the forecasting process: the alternative model attempts to estimate

parameters that are zero in population.   In finite samples, use of the noisy estimate of the parameter will

raise the estimated MSPE of the alternative model relative to the null model.  So if the null is true, the

model 1 MSPE should be smaller by the amount of estimation noise.   

To illustrate concretely, let me use the simulation results in Clark and West (2004).  As stated in

(6.3), one tailed tests were used.  That is, the null of equal MSPE is rejected at (say) the 10 percent level

only if the alternative model predicts better than model 1:

(6.8) 'f/[ ^V*/P]½ = ( ^
F2

1 - ^
F2

2)/[ ^V*/P]½  > 1.282,

^V* = estimate of long run variance of ^
F2

1- ^
F2

2,

say, ^V* = P-1GT
t=R(^ft+1-'f)2 =  P-1GT

t=R[^ft+1-( ^
F2

1- ^
F2

2)]2 if et is i.i.d..

Since (6.8) is motivated by an asymptotic approximation in which ^
F2

1- ^
F2

2 is centered around zero, we see

from (6.7) that the test will tend to be undersized (reject too infrequently).  Across 48 sets of simulations,

with DGPs calibrated to match key characteristics of asset price data, Clark and West (2004) found that

the median size of a nominal 10% test using the standard result (6.8) was less than 1%.  The size was

better with bigger R and worse with bigger P.  (Some alternative procedures (described below) had
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median sizes of 8%-13%.)  The power of tests using “standard results” was poor: rejection of about

9%,versus 50%-80% for alternatives.7  Non-normality also applies if one normalizes differences in

MSPEs by the unrestricted MSPE to produce an out of sample F-test.  See Clark and McCracken (2001,

2003), and McCracken (2004) for analytical and simulation evidence of marked departures from

normality.  

Clark and West (2005a, 2005b) suggest adjusting the difference in MSPEs to account for the

noise introduced by the inclusion of irrelevant regressors in the alternative model.  If the null model has a

forecast ^y1t+1, then (6.6), which assumes ^y1t+1=0, generalizes to

(6.9) ^
F2

1- ^
F2

2 = -2P-13 t
T

=R
^e1t+1(^y1t+1-^y2t+1)  - P-13 t

T
=R(^y1t+1-^y2t+1)2.

To yield a statistic better centered around zero, Clark and West (2005a, 2005b) propose adjusting for the

negative term -P-13 t
T

=R(^y1t+1-^y2t+1)2 .   They call the result MSPE-adjusted:

(6.10) P-13 t
T

=R
^e2

1t+1 - [P-13 t
T

=R
^e2

2t+1-P-13 t
T

=R(^y1t+1-^y2t+1)2 ] / ^
F2

1-( ^
F2

2-adj.).

^
F2

2-adj, which is smaller than ^
F2

2 by construction, can be thought of as the MSPE from the larger model,

adjusted downwards for estimation noise attributable to inclusion of irrelevant parameters. 

Viable approaches to testing equal MSPE in nested models include the following (with the first

two summarizing the previous paragraphs): 

1.  Under condition (6.2), use critical values from Clark and McCracken (2001) and McCracken

(2004), (e.g., Lettau and Ludvigson (2001)).

2.  Under condition (6.2), or when the null model is a martingale difference, adjust the differences in

MSPEs as in (6.10), and compute a standard error in the usual way.  The implied t-statistic can be

obtained by regressing ^e2
1t+1-[^e2

2t+1-(^y1t+1-^y2t+1)2] on a constant and computing the t-statistic for a

coefficient of zero.  Clark and West (2005a, 2005b) argue that standard normal critical values are
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approximately correct, even though the statistic is non-normal according to asymptotics of Clark and

McCracken (2001).

It remains to be seen whether the approaches just listed in points 1 and 2 perform reasonably well

in more general circumstances–for example, when the larger model contains several extra parameters, and

there is conditional heteroskedasticity.  But even if so other procedures are possible.

3.  If P/R 6 0, Clark and McCracken (2001) and McCracken (2004) show that asymptotic irrelevance

applies.  So for small P/R, use standard critical values (e.g., Clements and Galvao (2003)).  Simulations in

various papers suggest that it generally does little harm to ignore effects from estimation of regression

parameters if P/R # 0.1.  Of course, this cutoff is arbitrary.  For some data, a larger value is appropriate,

for others a smaller value.

4.  For MSPE and one step ahead forecasts, use the standard test if it rejects: if the standard test

rejects, a properly sized test most likely will as well (e.g., Shintani (2004)).8

5. Simulate/bootstrap your own standard errors (e.g., Mark (1995), Sarno et al. (2004)).  Conditions

for the validity of the bootstrap are established in Corradi and Swanson (2005).

Alternatively, one can swear off MSPE.  This is discussed in the next section.

7. A SMALL NUMBER OF MODELS, NESTED, PART II

Leading competitors of MSPE for the most part are encompassing tests of various forms. 

Theoretical results for the first two statistics listed below require condition (6.2), and are asymptotically

non-normal under those conditions.  The remaining statistics are asymptotically normal, and under

conditions that do not require (6.2).

1. Of various variants of encompassing tests, Clark and McCracken (2001) find that power is best

using the Harvey et al. (1998) version of an encompassing test, normalized by unrestricted variance.  So

for those who use a non-normal test, Clark and McCracken (2001) recommend the statistic that they call 
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“Enc-new:”

 P-13 t
T

=R
^e1t+1(^e1t+1-^e2t+1)                                      (7.1) Enc-new =  'f =                                          ,   ^

F2
2/P-13 t

T
=R

^e2
2t+1.  ^

F2
2

2. It is easily seen that MSPE-adjusted (6.10) is algebraically identical to 2P-13 t
T

=R
^e1t+1(^e1t+1-^e2t+1). 

This is the sample moment for the Harvey et al. (1998) encompassing test (4.7d).  So the conditions

described in point (2) at the end of the previous section are applicable.

3. Test whether model 1's prediction error is uncorrelated with model 2's predictors or the subset of

model 2's predictors not included in model 1 (Chao et al. (2001)), ft=e1tX2tNin our linear example or

ft=e1txt-1 in example (6.1).  When both models use estimated parameters for prediction (in contrast to

(6.4), in which model 1 does not rely on estimated parameters), the Chao et al. (2001) procedure requires

adjusting the variance-covariance matrix for parameter estimation error, as described in section 5.  Chao

et al. (2001) relies on the less restricted environment described in the section on nonnested models; for

example, it can be applied in straightforward fashion to joint testing of multiple models.

4. If $*
2…0, apply an encompassing test in the form (4.7c), 0=Ee1tX2tN$

*
2.  Simulation evidence to date

indicates that in samples of size typically available, this statistic performs poorly with respect to both size

and power (Clark and McCracken (2001), Clark and West (2005a)).  But this statistic also neatly

illustrates some results stated in general terms for nonnested models.  So to illustrate those results: With

computation and technical conditions similar to those in West and McCracken (1998), it may be shown

that when 'f = P-13 t
T

=R
^e1t+1X2t+1N

^
$2t, $

*
2…0, and the models are nested, then

(7.2) qP'f -A N(0,V), V / 8V*, 8 defined in (5.9), V* / 3 j
4

=-4Eetet-j(X2tN$
*
2)(X2t-jN$

*
2).

Given an estimate of  V*, one multiplies the estimate by 8 to obtain an estimate of the asymptotic variance

of qP'f .  Alternatively, one divides the t-statistic by q8.

Observe that 8=1 for the recursive scheme: this is an example in which there is the cancellation of
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variance and covariance terms noted in point 3 at the end of section 4.  For the fixed scheme, 8>1, with 8

increasing in P/R.  So uncertainty about parameter estimates inflates the variance, with the inflation factor

increasing in the ratio of the size of the prediction to regression sample.  Finally, for the  rolling scheme

8<1.  So use of (6.8) will result in smaller standard errors and larger t-statistics than would use of a

statistic that ignores the effect of uncertainty about $*.  The magnitude of the adjustment to standard

errors and t-statistics is increasing in the ratio of the size of the prediction to regression sample. 

5. If $*
2=0, and if the rolling or fixed (but not the recursive) scheme is used, apply the encompassing

test just discussed, setting 'f = P-13 t
T

=Re1t+1X2t+1N
^
$2t.  Note that in contrast to the discussion just completed,

there is no “^” over e1t+1: because model 1 is nested in model 2, $*
2=0 means $*

1=0, so e1t+1=yt+1 and e1t+1

is observable.  One can use standard results–asymptotic irrelevance applies.  The factor of 8 that appears

in (7.2) resulted from estimation of $*
1, and is now absent.  So V=V*; if, for example, e1t is i.i.d., one can

consistently estimate V with ^V = P-13 t
T

=R(e1t+1X2t+1N
^
$2t)

2.9  

6. If the rolling or fixed regression scheme is used, construct a conditional rather than unconditional

test (Giacomini and White (2003)).  This paper makes both methodological and substantive contributions. 

The methodological contributions are twofold.  First, the paper explicitly allows data heterogeneity (e.g.,

slow drift in moments).  This seems to be a characteristic of much economic data.  Second, while the

paper’s conditions are broadly similar to those of the work cited above, its asymptotic approximation

holds R fixed while letting P64.  

The substantive contribution is also twofold.  First, the objects of interest are moments of ^e1t and

^e2t rather than et.  (Even in nested models, ^e1t and ^e2t are distinct because of sampling error in estimation

of regression parameters used to make forecasts.)  Second, and related, the moments of interest are

conditional ones, say E( ^
F2

1- ^
F2

2|lagged y’s and x’s).  The Giacomini and White (2003) framework allows

general conditional loss functions, and may be used in nonnested as well as nested frameworks.  
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8. SUMMARY ON SMALL NUMBER OF MODELS

Let me close with a summary.  An expansion and application of the asymptotic analysis of the

preceding four sections is given in Tables 2 and 3.  The rows of Table 2 are organized by sources of

critical values.  The first row is for tests that rely on standard results.  As described in sections 3 and 4,

this means that asymptotic normal critical values are used without explicitly taking into account

uncertainty about regression parameters used to make forecasts.  The second row is for tests that rely on

asymptotic normality, but only after adjusting for such uncertainty as described in section 5 and in some

of the final points of this section.  The third row is for tests for which it would be ill-advised to use

asymptotic normal critical values, as described in preceding sections.  

The panels of Table 3 are organized by class of application, panel A for a single model, panel B

for a pair of nonnested models, panel C for a pair of nested models.  Within each panel, rows are

organized by the moment being studied.

Tables 2 and 3 aim to make specific recommendations.  While the tables are self-explanatory,

some qualifications should be noted.  First, the rule of thumb that asymptotic irrelevance applies when

P/R <0.1 (point A1 in Table 2, note to Table 3A) is just a rule of thumb.   Second, as noted in section 4,

asymptotic irrelevance for MSPE or mean absolute error (point A2 in Table 2, B1 and B2 in Table 3)

requires that the prediction error is uncorrelated with the predictors (MSPE) or that the disturbance is

symmetric conditional on the predictors (mean absolute error).  Otherwise, one will need to account for

uncertainty about parameters used to make predictions.  Third, some of the results in A3 and A4 (Table 2)

and the regression results in Table 3A, rows 1-3, and Table 3B, row 3, have yet to be noted.  They are

established in West and McCracken (1998).  Fourth, the suggestion to run a regression on a constant and

compute a HAC t-stat (e.g., Table 3, panel B, row 1) is just one way to operationalize a recommendation

to use standard results.  This recommendation is given in non-regression form in equation (4.5).  Finally,

the tables are driven mainly by asymptotic results.  The reader should be advised that simulation evidence



32

to date seems to suggest that in seemingly reasonable sample sizes the asymptotic approximations

sometimes work poorly.  The approximations generally work poorly for long horizon forecasts (e.g.,

Clark and McCracken (2003), Clark and West (2005a)), and also sometimes work poorly even for one

step ahead forecasts (e.g., rolling scheme, forecast encompassing [Table 3B, line (3) and Table 3C line

(3)], West and McCracken (1998), Clark and West (2005a)). 

9. LARGE NUMBER OF MODELS

Sometimes an investigator will wish to compare a large number of models.  There is no precise

definition of large.  But for samples of size typical in economics research, procedures in this section

probably have limited appeal when the number of models is say in the single digits, and have a great deal

of appeal when the number of models is into double digits or above.  White’s (2000) empirical example

examined 3654 models using a sample of size 1560.  An obvious problem is controlling size, and,

independently, computational feasability.

I divide the discussion into (A)applications in which there is a natural null model, and

(B)applications in which there is no natural null.

(A)Sometimes one has a natural null, or benchmark, model, which is to be compared to an array

of competitors.  The leading example is a martingale difference model for an asset price, to be compared

to a long list of methods claimed in the past to help predict returns.  Let model 1 be the benchmark model. 

Other notation is familiar: For model i, i=1,...m+1, let ^git be an observation on a prediction or prediction

error whose sample mean will measure performance.  For example, for MPSE, one step ahead predictions

and linear models, ^git=
^e2

it=(yt-XitN
^
$i,t-1)2.   Measure performance so that smaller values are preferred to

larger values–a natural normalization for MSPE, and one that can be accomplished for other measures

simply by multiplying by -1 if necessary.  Let ^fit=
^g1t-

^gi+1, t be the difference in period t between the

benchmark model and model i+1.
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One wishes to test the null that the benchmark model is expected to perform at least as well as

any other model.  One aims to test

(9.1) H0: max i=1,...,m Egit #0

against

(9.2) HA: max i=1,...,m Egit >0.

The approach of previous sections would be as follows.  Define a  m×1 vector

(9.3)  ^ft=(^f1t, 
^f2t, ..., 

^fmt)N;

compute

(9.4)  'f/ P-13^ft / ('f1, 
'f2, ..., 'fm)N / ( 'g1- 'g2, 'g1- 'g3,..., 'g1- 'gm+1)N;

construct the asymptotic variance covariance matrix of 'f.   With small m, one could evaluate

(9.5) '
< / (max i=1,..,m qP'fi)

via the distribution of the maximum of a correlated set of normals. If P<<R, one could likely even do so

for nested models and with MSPE as the measure of performance (per note 1 in Table 2A).  But that is

computationally difficult.  And in any event, when m is large, the asymptotic theory relied upon in

previous sections is doubtful.

White’s (2000) “reality check” is a computationally convenient bootstrap method for construction

of p-values for (9.1).  It assumes asymptotic irrelevance (P<<R [though the actual asymptotic condition

requires P/R 6 0 at a sufficiently rapid rate (White (2000, p1105)]).  The basic mechanics are as follows: 

(1)Generate prediction errors, using the scheme of choice (recursive, rolling, fixed).  
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(2)Generate a series of bootstrap samples as follows.  For bootstrap repetitions j=1,...,N:

(a)Generate a new sample by sampling with replacement from the prediction errors.  There is no

need to generate bootstrap samples of parameters used for prediction because asymptotic

irrelevance is assumed to hold.  The bootstrap generally needs to account for possible dependency

of the data.  White (2000) recommends the stationary bootstrap of Politis and Romano (1994)). 

(b)Compute the difference in performance between the benchmark model and model i+1, for

i=1,...,m.  For bootstrap repetition j and model i+1, call the difference 'f*
ij.  

(c)For 'fi defined in (9.4), compute and save '
<*

j / max i=1,..,m qP('f*
ij-

'fi).

(3)To test whether the benchmark can be beaten, compare '
< defined in (9.5) to the quantiles of the '

<*
j.

While White (2000) motivates the method for its ability to tractably handle situations where the

number of models is large relative to sample size, the method can be used in applications with a small

number of models as well (e. g., Hong and Lee (2003)). 

White’s (2000) results have stimulated the development of similar procedures.  Corradi and

Swanson (2005) indicate how to account for parameter estimation error, when asymptotic irrelevance

does not apply.  Corradi, Swanson and Olivetti (2001) present extensions to cointegrated environments. 

Hansen (2003) proposes studentization, and suggests an alternative formulation that has better power

when testing for superior, rather than equal, predictive ability.  Romano and Wolf (2003) also argue that

test statistics be studentized, to better exploit the benefits of bootstrapping. 

(B)Sometimes there is no natural null.  McCracken and Sapp (2004) propose that one gauge the

“false discovery rate” of Storey (2002).  That is, one should control the fraction of rejections that are due

to type I error.  Hansen et al. (2004) propose constructing a set of models that contain the best forecasting

model with prespecified asymptotic probability.
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10. CONCLUSIONS

This paper has summarized some recent work about inference about forecasts.  The emphasis has

been on the effects of uncertainty about regression parameters used to make forecasts, when one is

comparing a small number of models.  Results applicable for a comparison of a large number of models

were also discussed.  One of the highest priorities for future work is development of asymptotically

normal or otherwise nuisance parameter free tests for equal MSPE or mean absolute error in a pair of

nested models.  At present only special case results are available.
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1.  Which, incidentally and regrettably, turned out to be negative.

2. Actually, Christiano looked a root mean squared prediction errors, testing whether F1-F2=0.  For clarity
and consistency with the rest of my discussion, I cast his analysis in terms of MSPE.

3. Of course, one would be unlikely to forecast with a model that a priori is expected to violate this
condition, though prediction is sometimes done with realized right hand side endogenous variables (e.g.,
Meese and Rogoff (1983)).   But prediction exercise do sometimes find that this condition does not hold. 
That is, out of sample prediction errors display correlation with the predictors (even though in sample
residuals often display zero correlation by construction).  So even for MSPE, one might want to account
for parameter estimation error when conducting inference.

4. Mechanically, such a fall in asymptotic variance indicates that the variance of terms resulting from
estimation of $* is more than offset by a negative covariance between such terms and terms that would be
present even if $* were known.

5. See McCracken (2000) for an illustration of estimation of F for a non-differentiable function.

6.  To illustrate these terms, consider the univariate example of forecasting yt+J using yt, assuming that
mathematical expectations and linear projections coincide.  The objective function used to evaluate
predictions is E[yt+J-E(yt+J|yt)]

2.  The “direct” method estimates yt+J = yt( + ut+J by least squares, uses yt
^
(t

to forecast, and computes a sample average of (yt+J-yt
^
(t)

2.  The “iterated” method estimates yt+1 = yt$ +
et+1, uses yt(

^
$t)

J to forecast, and computes a sample average of [yt+J-yt(
^
$t)

J]2.  Of course, if the AR(1)
model for yt is correct, then (=$J and ut+J=et+J+$ et+J-1+...+$J-1et+1.  But if the AR(1) model is incorrect,
the two forecasts may differ, even in a large sample.  See Ing (2003) and Marcellino et al. (2004) for
theoretical and empirical comparison of direct and iterated methods.

7. Note that (4.5) and the left hand side of (6.8) are identical, but that section 4 recommends the use of
(4.5) while the present section recommends against use of (6.8).  At the risk of beating a dead horse, the
reason is that section 4 assumed that models are non-nested, while the present section assumes that they
are nested.

8. The restriction to one step ahead forecasts is for the following reason.  For multiple step forecasts, the
difference between model1 and model 2 MSPEs presumably has a negative expectation.  And simulations
in Clark and McCracken (2003) generally find that use of standard critical values results in too few
rejections.  But sometimes there are too many rejections. This apparently results because of problems with
HAC estimation of the standard error of the MSPE difference (private communication from Todd Clark).

9. The reader may wonder whether asymptotic normality violates the rule of thumb enunciated at the
beginning of this section, because ft=e1tX2tN$

*
2 is identically zero when evaluated at population $*

2=0.  At
the risk of confusing rather than clarifying, let me briefly note that the rule of thumb still applies, but only
with a twist on the conditions given in the previous section.  This twist, which is due to Giacomini and
White (2003), holds R fixed as the sample size grows.   Thus in population the random variable of interest
is  ft=e1tX2tN

^
$2t, which for the fixed or rolling schemes is nondegenerate for all t.  (Under the recursive

scheme, ^
$2t6p0 as t64, which implies that ft is degenerate for large t.)  It is to be emphasized that technical

conditions (R fixed vs. R64) are not arbitrary.  Reasonable technical conditions should reasonably
rationalize finite sample behavior.  For tests of equal MSPE discussed in the previous section, a vast

FOOTNOTES
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range of simulation evidence suggests that the R64 condition generates a reasonably accurate asymptotic
approximation (i.e., non-normality is implied by the theory and is found in the simulations.)   The more
modest array of simulation evidence for the R fixed approximation suggests that this approximation might
work tolerably for the moment Ee1tX2tN$

*
2, provided the rolling scheme is used.
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Table 1

Sample Analogues for 8fh, 8hh and 8

Recursive Rolling, P#R Rolling, P>R Fixed

8fh 1-RPln(1 + 
P
R)         12 

P
R     1- 12 

R
P    0

8hh 2[1-RPln(1 + 
P
R)]      PR - 13 P

2

R2     1- 13 
R
P

   P
R

8 1      1 - 
1
3 P

2

R2        2R
3P 1 + 

P
R

Notes:

1. The recursive, rolling and fixed schemes are defined in section 4 and illustrated for an AR(1) in
equation(4.2).

2. P is the number of predictions, R the size of the smallest regression sample.  See section 4 and equation
(4.1).

3. The parameters 8fh, 8hh and 8 are used to adjust the asymptotic variance covariance matrix for
uncertainty about regression parameters used to make predictions.  See section 5 and Tables 2 and 3.



Table 2

Recommended Sources of Critical Values, Small Number of Models

Source of critical values Conditions for use

A. Use critical values associated with
asymptotic normality, abstracting from
any dependence of predictions on
estimated regression parameters, as
illustrated for scalar hypothesis test in
(4.5) and a vector test in (4.11).

1. Prediction sample size P is small relative to regression sample
size R, say P/R < 0.1 (any sampling scheme or moment, nested
or nonnested models).
2. MSPE or mean absolute error in nonnested models.
3. Sampling scheme is recursive, moment of interest is mean
prediction error or correlation between a given model’s
prediction error and prediction.
4. Sampling scheme is recursive, one step ahead conditionally
homoskedastic prediction errors, moment of interest is either:
(a)first order autocorrelation or (b)encompassing in the form
(4.7c).
5. MSPE, nested models, equality of MSPE rejects (implying
that it will also reject with an even smaller p-value if an
asymptotically valid test is used).

B. Use critical values associated with
asymptotic normality, but adjust test
statistics to account for the effects of
uncertainty about regression parameters.

1. Mean prediction error, first order autocorrelation of one step
ahead prediction errors, zero correlation between a prediction
error and prediction, encompassing in the form (4.7c) (with the
exception of point C3), encompassing in the form (4.7d) for
nonnested models.
2. Zero correlation between a prediction error and another
model’s vector of predictors (nested or nonnested) (Chao et al.
(2001)).
3. A general vector of moments or a loss or utility function that
satisfies a suitable rank condition.
4. MSPE, nested models, under condition (6.2), after adjustment
as in (6.10).

C. Use non-standard critical values. 1. MSPE or encompassing in the form (4.7d), nested models,
under condition (6.2): use critical values from McCracken
(2004) or Clark and McCracken (2001).
2. MSPE, encompassing in the form (4.7d) or mean absolute
error, nested models, and in contexts not covered by A5, B4 or
C1: simulate/bootstrap your own critical values.
3. Recursive scheme, $*

1=0, encompassing in the form (4.7c):
simulate/bootstrap your own critical values.

Note: Rows B and C assume that P/R is sufficiently large, say P/R$0.1, that there may be nonnegligible
effects of estimation uncertainty about parameters used to make forecasts.  The results in Row A, points 2
through 5, apply whether or not P/R is large.



Table 3

Recommended Procedures, Small Number of Models

A. Tests of Adequacy of a Single Model, yt=XtN$
*+et

       (1) (2)      (3)       (4)
Asymptotic

Description Null hypothesis Recommended procedure normal critical
values?

1. Mean prediction error (bias) E(yt-XtN$
*)=0, or Eet=0 Regress prediction error on a constant, divide HAC t-

stat by q8.
Y

2. Correlation between prediction error and
prediction (efficiency)

E(yt-XtN$
*)XtN$

*=0, or
EetXtN$

*=0
Regress ^et+1 on Xt+1' ^$t, divide HAC t-stat by q8, or
regress yt+1 on prediction Xt+1' ^$t, divide HAC t-stat
(for testing coefficient value of 1) by q8.

Y

3. First order correlation of one step ahead
prediction errors

E(yt+1-Xt+1N$
*)(yt-XtN$

*) =0, or
Eet+1et = 0.

a. Prediction error conditionally homoskedastic:
1. Recursive scheme: regress ^et+1 on ^et, use OLS
t-stat.

    2. Rolling or fixed schemes: regress ^et+1 on ^et and
Xt, use OLS t-tstat on coefficient on ^et.

b. Prediction error conditionally heteroskedastic:
adjust standard errors as described in section 5 above.

Y

Notes:

1. The quantity 8 is computed as described in Table 1.  “HAC” refers to a heteroskedasticity and autocorrelation consistent covariance matrix. 
Throughout, it is assumed that predictions rely on estimated regression parameters and that P/R is large enough, say P/R$0.1, that there may be
nonnegligible effects of such estimation.  If P/R is small, say P/R<0.1, any such effects may well be negligible, and one can use standard results as
described in sections 3 and 4.
2. Throughout, the alternative hypothesis is the two-sided one that the indicated expectation is nonzero (e.g., for row 1, HA: Eet…0.)



B. Tests Comparing a Pair of Nonnested Models, yt=X1tN$
*
1+e1t vs. yt=X2tN$

*
2+e2t, X1tN$

*
1…X2tN$

*
2, $*

2…0
       (1) (2)      (3)             (4)

Asymptotic
Description Null hypothesis Recommended procedure normal critical

values?

1. Mean squared prediction error (MSPE) E(yt-X1tN$
*
1)2 - E(yt-X2tN$

*
2)2=0,

or Ee2
1t-Ee2

2t=0
Regress ^e2

1t+1-^e2
2t+1 on a constant, use HAC t-stat. Y

2. Mean absolute prediction error (MAPE) E|yt-X1tN$
*
1| - E|yt-X2tN$

*
2|=0, or

E|e1t|-E|e2t|=0
Regress |^e1t|-|

^e2t| on a constant, use HAC t-stat. Y

3. Zero correlation between model 1's
prediction error and the prediction from
model 2 (forecast encompassing)

E(yt-X1tN$
*
1)X2tN$

*
2 =0, or

Ee1tX2tN$
*
2=0

a. Recursive scheme, prediction error e1t.
homoskedastic conditional on both X1t and X2t:
regress ^e1t+1 on X2t+1N

^
$2t, use OLS t-stat.

b. Recursive scheme, prediction error e1t conditionally
heteroskedastic, or rolling or fixed scheme: regress
^e1t+1 on X2t+1N

^
$2t and X1t, use HAC t-stat on

coefficient on X2t+1N
^
$2t.

Y

4. Zero correlation between model 1's
prediction error and the difference between
the prediction errors of the two models
(another form of forecast encompassing)

E(yt-X1tN$
*
1) ×

     [(yt-X1tN$
*
1)-(yt-X2tN$

*
2)] = 0,

or Ee1t(e1t-e2t)=0

Adjust standard errors as described in section 5 above
and illustrated in West (2001).

Y

5. Zero correlation between model 1's
prediction error and the model 2 predictors 

E(yt-X1tN$
*
1)X2t=0, or Ee1tX2t =0 Adjust standard errors as described in section 5 above

and illustrated in Chao et al. (2001).
Y

See notes to Table 3A.



C. Tests of Comparing a Pair of Nested Models, yt=X1tN$
*
1+e1t vs. yt=X2tN$

*
2+e2t, X1tdX2t, X2tN=(X1tN, X22tN)N

       (1) (2)      (3)       (4)
Asymptotic

Description Null hypothesis Recommended procedure normal critical
values?

1. Mean squared prediction error (MSPE) E(yt-X1tN$
*
1)2 - E(yt-X2tN$

*
2)2=0,

or Ee2
1t-Ee2

2t=0
a. If condition (6.2) applies: either (1)use critical
values from McCracken (2004), or (2)compute
MSPE-adjusted (6.10).
b. Equality of MSPE rejects (implying that it will also
reject with an even smaller p-value if an
asymptotically valid test is used).
c. Simulate/bootstrap your own critical values.

N
Y

Y

N

2. Mean absolute prediction error (MAPE) E|yt-X1tN$
*
1| - E|yt-X2tN$

*
2|=0, or

E|e1t|-E|e2t|=0
Simulate/bootstrap your own critical values. N

3. Zero correlation between model 1's
prediction error and the prediction from
model 2 (forecast encompassing)

E(yt-X1tN$
*
1)X2tN$

*
2 =0, or

Ee1tX2tN$
*
2=0

a.  $*
1…0: regress ^e1t+1 on X2t+1' ^$2t, divide HAC t-stat

by q8.
b. $*

1=0 (Y$*
2=0): (1) Rolling or fixed scheme: regress

^e1t+1 on X2t+1N
^
$2t, use  HAC t-stat. (2) $*

1=0, recursive
scheme: simulate/bootstrap your own critical values.

Y

Y
N

4. Zero correlation between model 1's
prediction error and the difference between
the prediction errors of the two models
(another form of forecast encompassing)

E(yt-X1tN$
*
1) ×

     [(yt-X1tN$
*
1)-(yt-X2tN$

*
2)] = 0

or Ee1t(e1t-e2t)=0

a. If condition (6.2) applies: either (1)use critical
values from Clark and McCracken (2001), or (2)use
standard normal critical values.
b. Simulate/bootstrap your own critical values.

N
Y

N

5. Zero correlation between model 1's
prediction error and the model 2 predictors 

E(yt-X1tN$
*
1)X22t=0, or Ee1tX22t

=0
Adjust standard errors as described in section 5 above
and illustrated in Chao et al. (2001).

Y

1. See note 1 to Table 3A.
2. Under the null, the coefficients on X22t (the regressors included in model 2 but not model 1) are zero.  Thus, X1tN$

*
1=X2tN$

*
2 and e1t=e2t.

3. Under the alternative, one or more of the coefficients on X22t are nonzero.  In rows 1-4, the implied alternative is one sided: Ee2
1t-Ee2

2t>0, E|e1t|-
E|e2t|>0, Ee1tX2tN$

*
2>0, Ee1t(e1t-e2t)>0.  In row 5, the alternative is two sided, Ee1tX22t …0.
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Abstract

Forecast combinations have frequently been found in empirical studies to produce

better forecasts on average than methods based on the ex-ante best individual forecast-

ing model. Moreover, simple combinations that ignore correlations between forecast

errors often dominate more refined combination schemes aimed at estimating the the-

oretically optimal combination weights. In this chapter we analyze theoretically the

factors that determine the advantages from combining forecasts (for example, the de-

gree of correlation between forecast errors and the relative size of the individual models’

forecast error variances). Although the reasons for the success of simple combination

schemes are poorly understood, we discuss several possibilities related to model mis-

specification, instability (non-stationarities) and estimation error in situations where

the numbers of models is large relative to the available sample size. We discuss the

role of combinations under asymmetric loss and consider combinations of point, interval

and probability forecasts.
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comments and suggestions that greatly improved the paper. Comments from seminar particpants at the
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1 Introduction

Multiple forecasts of the same variable are often available to decision makers. This could

reflect differences in forecasters’ subjective judgements due to heterogeneity in their informa-

tion sets in the presence of private information or due to differences in modelling approaches.

In the latter case, two forecasters may well arrive at very different views depending on the

maintained assumptions underlying their forecasting models, e.g. constant versus time-

varying parameters, linear versus non-linear forecasting models etc.

Faced with multiple forecasts of the same variable, an issue that immediately arises is

how best to exploit information in the individual forecasts. In particular, should a single

dominant forecast be identified or should a combination of the underlying forecasts be used

to produce a pooled summary measure? From a theoretical perspective, unless one can

identify ex ante a particular forecasting model that generates smaller forecast errors than its

competitors (and whose forecast errors cannot be hedged by other models’ forecast errors),

forecast combinations offer diversification gains that make it attractive to combine individual

forecasts rather than relying on forecasts from a single model. Even if the best model could

be identified at each point in time, combination may still be an attractive strategy due to

diversification gains, although its success will depend on how well the combination weights

can be determined.

Forecast combinations have been used successfully in empirical work in diverse areas such

as forecasting Gross National Product, currency market volatility, inflation, money supply,

stock prices, meteorological data, city populations, outcomes of football games, wilderness

area use, check volume and political risks, c.f. Clemen (1989). Summarizing the simula-

tion and empirical evidence in the literature on forecast combinations, Clemen (1989, page

559) writes “The results have been virtually unanimous: combining multiple forecasts leads

to increased forecast accuracy.... in many cases one can make dramatic performance im-

provements by simply averaging the forecasts.” More recently, Makridakis and Hibon (2000)

conducted the so-called M3-competition which involved forecasting 3003 time series and

concluded (p. 458) “The accuracy of the combination of various methods outperforms,

on average, the specific methods being combined and does well in comparison with other
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methods.”. Similarly, Stock and Watson (2001, 2004) undertook an extensive study across

numerous economic and financial variables using linear and nonlinear forecasting models and

found that, on average, pooled forecasts outperform predictions from the single best model,

thus confirming Clemen’s conclusion. Their analysis has been extended to a large European

data set by Marcellino (2004) with broadly the same conclusions.

A simple portfolio diversification argument motivates the idea of combining forecasts,

c.f. Bates and Granger (1969). Its premise is that the information set underlying the

individual forecasts is often unobserved to the forecast user, maybe because it comprises

private information. In this situation it is not feasible to pool the underlying information

sets and construct a ‘super’ model that nests each of the underlying forecasting models.

For example, suppose that we are interested in forecasting some variable, y, and that two

predictions, ŷ1 and ŷ2 of its conditional mean are available. Let the first forecast be based on

the variables x1, x2, i.e., ŷ1 = g1(x1, x2), while the second forecast is based on the variables

x3, x4, i.e., ŷ2 = g2(x3, x4). Further, suppose that all variables enter with non-zero weights

in the forecasts and that the x−variables are imperfectly correlated. If {x1, x2, x3, x4} were

observable, it would be natural to construct a forecasting model based on all four variables,

ŷ3 = g3(x1, x2, x3, x4). On the other hand, if only the forecasts, ŷ1 and ŷ2 are observed by

the forecast user−while the underlying variables are unobserved−then the only option is to

combine these forecasts, i.e. to elicit a model of the type ŷ = gc(ŷ1, ŷ2). More generally,

the forecast user’s information set, F , may comprise n individual forecasts, F = {ŷ1, ..., ŷn},

where F is often not the union of the information sets underlying the individual forecasts,

∪ni=1Fi, but a much smaller subset. Of course, the higher the degree of overlap in the

information sets used to produce the underlying forecasts, the less useful a combination of

forecasts is likely to be, c.f. Clemen (1987).

It is difficult to fully appreciate the strength of the diversification or hedging argument

underlying forecast combination. Suppose the aim is to minimize some loss function be-

longing to a family of convex loss functions, L, and that some forecast, ŷ1, stochastically

dominates another forecast, ŷ2, in the sense that expected losses for all loss functions in L are

lower under ŷ1 than under ŷ2. While this means that it is not rational for a decision maker
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to choose ŷ2 over ŷ1 in isolation, it is easy to construct examples where some combination of

ŷ1 and ŷ2 generates a smaller expected loss than that produced using ŷ1 alone.

A second reason for using forecast combinations referred to by, inter alia, Figlewski

and Urich (1983), Kang (1986), Diebold and Pauly (1987), Makridakis (1989), Sessions and

Chatterjee (1989), Winkler (1989), Hendry and Clements (2002) and Aiolfi and Timmermann

(2004) and also thought of by Bates and Granger (1969) is that individual forecasts may be

very differently affected by structural breaks caused, for example, by institutional change or

technological developments. Some models may adapt quickly and will only temporarily be

affected by structural breaks, while others have parameters that only adjust very slowly to

new post-break data. The more data is available since the most recent break, the better one

might expect stable, slowly adapting models to perform relative to fast adapting ones as the

parameters of the former are more precisely estimated. Conversely, if the data window since

the most recent break is short, the faster adapting models can be expected to produce the

best forecasting performance. Since it is typically difficult to detect structural breaks in ‘real

time’, it is plausible that on average, i.e., across periods with varying degrees of stability,

combinations of forecasts from models with different degrees of adaptability will outperform

forecasts from individual models. This intuition is confirmed in Pesaran and Timmermann

(2005).

A third and related reason for forecast combination is that individual forecasting models

may be subject to misspecification bias of unknown form, a point stressed particularly by

Clemen (1989), Makridakis (1989), Diebold and Lopez (1996) and Stock and Watson (2001,

2004). Even in a stationary world, the true data generating process is likely to be more

complex and of a much higher dimension than assumed by the most flexible and general

model entertained by a forecaster. Viewing forecasting models as local approximations, it

is implausible that the same model dominates all others at all points in time. Rather, the

best model may change over time in ways that can be difficult to track on the basis of past

forecasting performance. Combining forecasts across different models can be viewed as a

way to robustify the forecast against such misspecification biases and measurement errors in

the data sets underlying the individual forecasts. Notice again the similarity to the classical
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portfolio diversification argument for risk reduction: Here the portfolio is the combination of

forecasts and the source of risk reflects incomplete information about the target variable and

model misspecification possibly due to non-stationarities in the underlying data generating

process.

A fourth argument for combination of forecasts is that the underlying forecasts may

be based on different loss functions. This argument holds even if the forecasters observe

the same information set. Suppose, for example, that forecaster A strongly dislikes large

negative forecast errors while forecaster B strongly dislikes large positive forecast errors.

In this case, forecaster A is likely to under-predict the variable of interest (so the forecast

error distribution is centered on a positive value), while forecaster B will over-predict it. If

the bias is constant over time, there is no need to average across different forecasts since

including a constant in the combination equation will pick up any unwanted bias. Suppose,

however, that the optimal amount of bias is proportional to the conditional variance of the

variable, as in Christoffersen and Diebold (1997) and Zellner (1986). Provided that the two

forecasters adopt a similar volatility model (which is not implausible since they are assumed

to share the same information set), a forecast user with a more symmetric loss function than

was used to construct the underlying forecasts could find a combination of the two forecasts

better than the individual ones.

Numerous arguments against using forecast combinations can also be advanced. Estima-

tion errors that contaminate the combination weights are known to be a serious problem for

many combination techniques especially when the sample size is small relative to the num-

ber of forecasts, c.f. Diebold and Pauly (1990), Elliott (2004) and Yang (2004). Whereas

non-stationarities in the underlying data generating process can be an argument for using

combinations it can also lead to instabilities in the combination weights and lead to difficul-

ties in deriving a set of combination weights that performs well, c.f. Clemen and Winkler

(1986), Diebold and Pauly (1987), Figlewski and Urich (1983), Kang (1986) and Palm and

Zellner (1992). In situations where the information sets underlying the individual forecasts

are unobserved, most would agree that forecast combinations can add value. However, when

the full set of predictor variables used to construct different forecasts is observed by the
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forecast user, it is more disputed whether a combination strategy should be used or whether

a single best ‘super’ model that embeds all information should be constructed, c.f. Chong

and Hendry (1986) and Diebold (1989).

If these arguments against forecast combinations seem familiar, this is not a coincidence.

In fact, there are many similarities between the forecast combination problem and the stan-

dard problem of constructing a single econometric specification. In both cases a subset of

predictors (or individual forecasts) has to be selected from a larger set of potential forecast-

ing variables and the choice of functional form mapping this information into the forecast as

well as the choice of estimation method have to be determined. There are clearly important

differences as well. First, it may be reasonable to assume that the individual forecasts are

unbiased in which case the combined forecast will also be unbiased provided that the com-

bination weights are constrained to sum to unity and an intercept is omitted. Provided that

the unbiasedness assumption holds for each forecast, imposing such parameter constraints

can lead to efficiency gains. One would almost never want to impose this type of constraint

on the coefficients of a standard regression model since predictor variables can differ signif-

icantly in their units, interpretation and scaling. Secondly, if the individual forecasts are

generated by quantitative models whose parameters are estimated recursively there is a po-

tential generated regressor problem which could bias estimates of the combination weights.

In part this explains why using simple averages based on equal weights provides a natural

benchmark. Finally, the forecasts that are being combined need not be point forecasts but

could take the form of interval or density forecasts.

As a testimony to its important role in the forecasting literature, many high-quality

surveys of forecast combinations have already appeared, c.f. Clemen (1989), Diebold and

Lopez (1996) and Newbold and Harvey (2001). This survey differs from earlier ones in many

important ways, however. First, we put more emphasis on the theory underlying forecast

combinations, particularly in regard to the diversification argument which is common also

in portfolio analysis. Second, we deal in more depth with recent topics−some of which were

emphasized as important areas of future research by Diebold and Lopez (1996)−such as

combination of probability forecasts, time-varying combination weights, combination under
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asymmetric loss and shrinkage.

The chapter is organized as follows. We first develop the theory underlying the gen-

eral forecast combination problem in Section 2. The following section discusses estimation

methods for the linear forecast combination problem. Section 4 considers non-linear combi-

nation schemes and combinations with time-varying weights. Section 5 discusses shrinkage

combinations while Section 6 covers combinations of interval or density forecasts. Section 7

extracts main conclusions from the empirical literature and Section 8 concludes.

2 The Forecast Combination Problem

Consider the problem of forecasting at time t the future value of some target variable, y,

after h periods, whose realization is denoted yt+h. Since no major new insights arise from the

case where y is multivariate, to simplify the exposition we shall assume that yt+h ∈ R. We

shall refer to t as the time of the forecast and h as the forecast horizon. The information set

at time t will be denoted by Ft and we assume that Ft comprises an N−vector of forecasts

ŷt+h,t = (ŷt+h,t,1, ŷt+h,t,2, ..., ŷt+h,t,N)
0 in addition to the histories of these forecasts up to time

t and the history of the realizations of the target variable, i.e. Ft = {ŷh+1,1, ŷt+h,t, y1, ..., yt}.

A set of additional information variables, xt, can easily be included in the problem.

The general forecast combination problem seeks an aggregator that reduces the informa-

tion in a potentially high-dimensional vector of forecasts, ŷt+h,t ∈ RN , to a lower dimensional

summary measure, C(ŷt+h,t;ωc) ∈ Rc ⊂ RN , where ωc are the parameters associated with

the combination. If only a point forecast is of interest, then a one-dimensional aggregator will

suffice. For example, a decision maker interested in using forecasts to determine how much

to invest in a risky asset may want to use information on either the mode, median or mean

forecast, but also to consider the degree of dispersion across individual forecasts as a way to

measure the uncertainty or ‘disagreement’ surrounding the forecasts. How low-dimensional

the combined forecast should be is not always obvious. Outside the MSE framework, it is not

trivially true that a scalar aggregator that summarizes all relevant information can always

be found.

Forecasts do not intrinsically have direct value to decision makers. Rather, they become
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valuable only to the extent that they can be used to improve decision makers’ actions, which

in turn affect their loss or utility. Point forecasts generally provide insufficient information

for a decision maker or forecast user who, for example, may be interested in the degree of

uncertainty surrounding the forecast. Nevertheless, the vast majority of studies on forecast

combinations has dealt with point forecasts so we initially focus on this case. We let ŷct+h,t =

C(ŷt+h,t;ωt+h,t) be the combined point forecast as a function of the underlying forecasts

ŷt+h,t and the parameters of the combination, ωt+h,t ∈Wt, whereWt is often assumed to be

a compact subset of RN and ωt+h,t can be time-varying but is adapted to Ft. For example,

equal weights would give g(ŷt+h,t;ωt+h,t) = (1/N)
PN

j=1 ŷt+h,t. Our choice of notation reflects

that we will mostly be thinking of ωt+h,t as combination weights, although the parameters

need not always have this interpretation.

2.1 Specification of Loss Function

To simplify matters we follow standard practice and assume that the loss function only

depends on the forecast error from the combination, ect+h,t = yt+h − g(ŷt+h,t;ωt+h,t), i.e.

L = L(et+h). The vast majority of work on forecast combinations assumes this type of loss,

in part because point forecasts are far more common than distribution forecasts and in part

because the decision problem underlying the forecast situation is not worked out in detail.

However, it should also be acknowledged that this loss function embodies a set of restrictive

assumptions on the decision problem, c.f. Granger and Machina (2004) and Elliott and

Timmermann (2004). In Section 6 we cover the more general case that combines interval or

distribution forecasts.

The parameters of the optimal combination, ω∗t+h,t ∈Wt, solve the problem

ω∗t+h,t = arg min
ωt+h,t∈Wt

E
£
L
¡
ect+h,t(ωt+h,t)

¢
|ŷt+h,t

¤
. (1)

Here the expectation is taken over the conditional distribution of et+h,t given Ft. Clearly

optimality is established within the assumed family ŷct+h,t = C(ŷt+h,t;ωt+h,t). Elliott and

Timmermann (2004) show that, subject to a set of weak technical assumptions on the loss

and distribution functions, the combination weights can be found as the solution to the
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following Taylor series expansion around µet+h,t = E[et+h,t|Ft]

ω∗t+h,t = arg min
ωt+h,t∈Wt

½
L(µet+h,t) +

1

2
L00µeE[(et+h,t − µet+h,t)

2|Ft]

+
∞X

m=3

Lm
µe

mX
i=0

1

i!(m− i)!
E[em−it+h,tµ

i
et+h,t

|Ft]

)
(2)

where Lk
µe
≡ ∂kL(et+h,t)/∂

kω|et+h,t=µet+h,t . In general, the entire moment generating function

of the forecast error distribution and all higher-order derivatives of the loss function will

influence the optimal combination weights which therefore reflect both the shape of the loss

function and the forecast error distribution.

The expansion in (2) suggests that the collection of individual forecasts ŷt+h,t is useful

in as far as it can predict any of the conditional moments of the forecast error distribution

that a decision maker cares about. Hence, ŷt+h,t,i gets a non-zero weight in the combination

if for any moment, emt+h,t, for which Lm
µe
6= 0, ∂E[emt+h,t|Ft]/∂ŷt+h,t,i 6= 0. For example, if the

vector of point forecasts can be used to predict the mean, variance, skew and kurtosis but

no other moments of the forecast error distribution, then the combined summary measure

could be based on those summary measures of ŷt+h,t that predict the first through fourth

moments.

Oftentimes it is simply assumed that the objective function underlying the combination

problem is mean squared error (MSE) loss

L(yt+h, ŷt+h,t) = θ(yt+h − ŷt+h,t)
2, θ > 0. (3)

For this case, the combined or consensus forecast seeks to choose a (possibly time-varying)

mapping Ct(ŷt+h,t;ωt+h,t) from the N-vector of individual forecasts ŷt+h,t to the real line,

Yt+h,t → R that best approximates the conditional expectation, E[yt+h|ŷt+h,t].1

Two levels of aggregation are thus involved in the combination problem. The first step

summarizes individual forecasters’ private information to produce point forecasts ŷt+h,t,i.

The only difference to the standard forecasting problem is that the ‘input’ variables are

forecasts from other models or subjective forecasts. This may create a generated regressor

1To see this, take expectations of (3) and differentiate with respect to to Ct(ŷt+h,t;ωt+h,t) to get

C∗t (ŷt+h,t;ωt+h,t) = E[Yt+h|Ft].
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problem that can bias the estimated combination weights, although this aspect is often

ignored. It could in part explain why combinations based on estimated weights often do not

perform well. The second step aggregates the vector of point forecasts ŷt+h,t to the consensus

measure C(ŷt+h,t;ωt+h,t). Information is lost in both steps. Conversely, the second step is

likely to lead to far simpler and more parsimonious forecasting models when compared to a

forecast based on the full set of individual forecasts or a “super model” based on individual

forecasters’ information variables. In general, we would expect information aggregation to

increase the bias in the forecast but also to reduce the variance of the forecast error. To the

extent possible, the combination should optimally trade off these two components. This is

particularly clear under MSE loss, where the objective function equals the squared bias plus

the forecast error variance, E[e2t+h,t] = E[et+h,t]
2 + V ar(et+h,t).2

2.2 Construction of a Super Model - pooling information

Let F c
t = ∪Ni=1Fit be the union of the forecasters’ individual information sets, or the ‘super’

information set. If F c
t were observed, one possibility would be to model the conditional mean

of yt+h as a function of all these variables, i.e.

ŷt+h,t = Cs(F c
t ;θt+h,s). (4)

Individual forecasts, i, instead take the form ŷt+h,t,i = Ci(Fit;θt+h,i).3 If only the individual

forecasts ŷt+h,t,i (i = 1, .., N) are observed, whereas the underlying information sets {Fit}
2Clemen (1987) demonstrates that an important part of the aggregation of individual forecasts towards an

aggregate forecast is an assessment of the dependence among the underlying models’ (‘experts’) forecasts and

that a group forecast will generally be less informative than the set of individual forecasts. In fact, group

forecasts only provide a sufficient statistic for collections of individual forecasts provided that both the

experts and the decision maker agree in their assessments of the dependence among experts. This precludes

differences in opinion about the correlation structure among decision makers. Taken to its extreme, this

argument suggests that experts should not attempt to aggregate their observed information into a single

forecast but should simply report their raw data to the decision maker.
3Notice that we use ωt+h,t for the parameters involved in the combination of the forecasts, ŷt+h,t, while

we use θt+h,t for the parameters relating the underlying information variables in Ft to yt+h.
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are unobserved by the forecast user, the combined forecast would be restricted as follows:

ŷt+h,t,i = Cc(ŷt+h,t,1, ..., ŷt+h,t,N ;θt+h,c). (5)

Normally it would be better to pool all information rather than first filter the information sets

through the individual forecasting models, which introduces the usual efficiency loss through

the two-stage estimation and also ignores correlations between the underlying information

sources. There are several potential problems with pooling the information sets, however.

One problem is−as already mentioned−that individual information sets may not be observ-

able or too costly to combine. Diebold and Pauly (1990, p. 503) remark that “While pooling

of forecasts is suboptimal relative to pooling of information sets, it must be recognized that

in many forecasting situations, particularly in real time, pooling of information sets is either

impossible or prohibitively costly.” Furthermore, in cases with many relevant input vari-

ables and complicated dynamic and nonlinear effects, constructing a “super model” using

the pooled information set, F c
t , is not likely to provide good forecasts given the well-known

problems associated with high-dimensional kernel regressions, nearest neighbor regressions

or other non-parametric methods. Although individual forecasting models will be biased and

may omit important variables, this bias can more than be compensated for by reductions

in parameter estimation error in cases where the number of relevant predictor variables is

much greater than N , the number of forecasts.4

2.3 Linear Forecast Combinations under MSE Loss

While in general there is no closed-form solution to (1), one can get analytical results by

imposing distributional restrictions or restrictions on the loss function. Unless the map-

ping, C, from ŷt+h,t to yt+h is modeled non-parametrically, optimality results for forecast

combination must be established within families of parametric combination schemes of the

form yct+h,t = C(ŷt+h,t;ωt+h,t). The general class of combination schemes in (1) comprises

non-linear as well as time-varying combination methods. We shall return to these but for
4When the true forecasting model mapping Fc

t to yt+h is infinite-dimensional, the model that optimally

balances bias and variance may depend on the sample size with a dimension that grows as the sample size

increases.
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now concentrate on the family of linear combinations, W l
t ⊂Wt, which are more commonly

used.5 To this end we choose weights, ωt+h,t = (ωt+h,t,1, ..., ωt+h,t,N)
0 to produce a combined

forecast of the form

ŷct+h,t = ω0t+h,tŷt+h,t. (6)

Under MSE loss, the combination weights are easy to characterize in population and only

depend on the first two moments of the joint distribution of yt+h and ŷt+h,t,⎛⎝ yt+h

ŷt+h,t

⎞⎠ ∼
⎛⎝µµyt+h,t

µŷt+h,t

¶⎛⎝ σ2yt+h,t σ0yŷt+h,t

σyŷt+h,t Σŷŷt+h,t

⎞⎠⎞⎠ . (7)

Minimizing E[e2t+h,t] = E[(yt+h −ω0t+h,tŷt+h,t)2], we have

ω∗t+h,t = arg min
ωt+h,t∈Wl

t

¡
(µyt+h,t −ω0t+h,tµŷt+h,t)2 + σ2yt+h,t +ω

0
t+h,tΣŷŷt+h,tωt+h,t − 2ω0t+h,tσyŷt+h,t

¢
.

This yields the first order condition

∂E[e2t+h,t]

∂ωt+h,t
= −(µyt+h,t −ω0t+h,tµŷt+h,t)µŷt+h,t +Σŷŷt+h,tωt+h,t − σyŷt+h,t = 0.

Assuming that Σŷŷt+h,t is invertible this has the solution

ω∗t+h,t = (µŷt+h,tµ
0
ŷt+h,t +Σŷŷt+h,t)

−1(µŷt+h,tµyt+h,t + σyŷt+h,t). (8)

This solution is optimal in population whenever yt+h and ŷt+h,t are joint Gaussian since in

this case the conditional expectation E[yt+h|ŷt+h,t] will be linear in ŷt+h,t. For the moment

we ignore time-variations in the conditional moments in (8), but as we shall see later on,

the weights can facilitate such effects by allowing them to vary over time. A constant can

trivially be included as one of the forecasts so that the combination scheme allows for an

intercept term, a strategy recommended (under MSE loss) by Granger and Ramanathan

(1984) and−for a more general class of loss functions−by Elliott and Timmermann (2004).

Assuming that a constant is included, the optimal (population) values of the constant and

the combination weights, ω∗0t+h,t and ω
∗
t+h,t, simplify as follows

ω∗0t+h,t = µyt+h,t −ω∗0t+h,tµŷt+h,t,

ω∗t+h,t = Σ−1ŷŷt+h,tσyŷt+h,t. (9)

5This, of course, does not rule out that the estimated weights vary over time as will be the case when the

weights are updated recursively as more data becomes available.

12



These weights depend on the full conditional covariance matrix of the forecasts, Σŷŷt+h,t. In

general the weights have an intuitive interpretation and tend to be larger for more accurate

forecasts that are less strongly correlated with other forecasts. Notice that the constant,

ω∗0t+h,t, corrects for any biases in the weighted forecast ω
∗
t+h,tŷt+h,t.

In the following we explore some interesting special cases to demonstrate the determinants

of gains from forecast combination.

2.3.1 Diversification Gains

Under quadratic loss it is easy to illustrate the population gains from different forecast

combination schemes. This is an important task since, as argued by Winkler (1989, p. 607)

“The better we understand which sets of underlying assumptions are associated with which

combining rules, the more effective we will be at matching combining rules to forecasting

situations.” To this end we consider the simple combination of two forecasts that give rise

to errors e1 = y − ŷ1 and e2 = y − ŷ2. Without risk of confusion we have dropped the time

and horizon subscripts. Assuming that the individual forecast errors are unbiased, we have

e1 ∼ (0, σ21), e2 ∼ (0, σ22) where σ21 = var(e1), σ
2
2 = var(e2), σ12 = ρ12σ1σ2 is the covariance

between e1 and e2 and ρ12 is their correlation. Suppose that the combination weights are

restricted to sum to one, with weights (ω, 1−ω) on the first and second forecast, respectively.

The forecast error from the combination ec = y − ωŷ1 − (1− ω)ŷ2 takes the form

ec = ωe1 + (1− ω)e2. (10)

By construction this has zero mean and variance

σ2c(ω) = ω2σ21 + (1− ω)2σ22 + 2ω(1− ω)σ12. (11)

Differentiating with respect to ω and solving the first order condition, we have

ω∗ =
σ22 − σ12

σ21 + σ22 − 2σ12
, (12)

1− ω∗ =
σ21 − σ12

σ21 + σ22 − 2σ12
.

A greater weight is assigned to models producing more precise forecasts (lower forecast error

variances). A negative weight on a forecast clearly does not mean that it has no value to a

13



forecaster. In fact when ρ12 > σ2/σ1 the combination weights are not convex and one weight

will exceed unity, the other being negative, c.f. Bunn (1985).

Inserting ω∗ into the objective function (11), we get the expected squared loss associated

with the optimal weights:

σ2c(ω
∗) =

σ21σ
2
2(1− ρ212)

σ21 + σ22 − 2ρ12σ1σ2
. (13)

It can easily be verified that σ2c(ω
∗) ≤ min(σ21, σ22). In fact, the diversification gain will only

be zero in the following special cases (i) σ1 or σ2 equal to zero; (ii) σ1 = σ2 and ρ12 = 1; or

(iii) ρ12 = σ1/σ2.

It is interesting to compare the variance of the forecast error from the optimal combination

(12) to the variance of the combination scheme that weights the forecasts inversely to their

relative mean squared error (MSE) values and hence ignores any correlation between the

forecast errors:

ωinv =
σ22

σ21 + σ22
, 1− ωinv =

σ21
σ21 + σ22

. (14)

These weights result in a forecast error variance

σ2inv =
σ21σ

2
2(σ

2
1 + σ22 + 2ρ12σ1σ2)

(σ21 + σ22)
2

. (15)

After some algebra we can derive the ratio of the forecast error variance under this scheme

relative to its value under the optimal weights, σ2c(ω
∗) in (13):

σ2inv
σ2c(ω

∗)
=

µ
1

1− ρ212

¶Ã
1−

µ
2σ12

σ21 + σ22

¶2!
. (16)

If σ1 6= σ2, this exceeds unity unless ρ12 = 0. When σ1 = σ2, this ratio is always unity

irrespective of the value of ρ12 and in this case ωinv = ω∗ = 1/2 . Equal weights are optimal

when combining two forecasts provided that the two forecast error variances are identical,

irrespective of the correlation between the two forecast errors.

Another interesting benchmark is the equal-weighted combination ŷew = (1/2)(ŷ1 + ŷ2).

Under these weights the variance of the forecast error is

σ2ew =
1

4
σ21 +

1

4
σ22 +

1

2
σ1σ2ρ12 (17)
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so the ratio σ2ew/σ
2
c(ω

∗) becomes:

σ2ew
σ2c(ω

∗)
=

µ
(σ21 + σ22)

2 − 4σ212
4σ21σ

2
2(1− ρ212)

¶
, (18)

which in general exceeds unity unless σ1 = σ2.

Finally, as a measure of the diversification gain obtained from combining the two forecasts

it is natural to compare σ2c(ω
∗) to min(σ21, σ

2
2). Suppose that σ1 > σ2 and define κ = σ2/σ1

so that κ < 1. We then have

σ2c(ω
∗)

σ22
=

1− ρ212
1 + κ2 − 2ρ12κ

. (19)

Figure 1 shows this expression graphically as a function of ρ12 and κ. The diversification

gain is a complicated function of the correlation between the two forecast errors, ρ12, and

the variance ratio of the forecast errors, κ. In fact, the derivative of the efficiency gain with

respect to either κ or ρ12 changes sign even for reasonable parameter values. Differentiating

(19) with respect to ρ12, we have

∂

µ
σ2c(ω

∗)

σ22

¶
/∂ρ12 ∝ κρ212 − (1 + κ2)ρ12 + κ.

This is a second order polynomial in ρ12 with roots (assuming κ < 1)

1 + κ2 ± (1− κ2)

2κ
= (κ; 1/κ).

Only when κ = 1 (so σ21 = σ22) does it follow that the efficiency gain will be an increasing

function of ρ12 - otherwise it will change sign, being positive on the interval [−1;κ] and

negative on [κ; 1] as can be seen from Figure 1. The figure shows that diversification through

combination is more effective (in the sense that it results in the largest reduction in the

forecast error variance for a given change in ρ12) when κ = 1.

2.3.2 Effect of Bias in individual forecasts

Problems can arise for forecast combinations when one or more of the individual forecasts

is biased, the combination weights are constrained to sum to unity and an intercept is

omitted from the combination scheme. Min and Zellner (1993) illustrate how bias in one
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or more of the forecasts along with a constraint that the weights add up to unity can lead

to suboptimality of combinations. Let y − ŷ1 = e1 ∼ (0, σ2) and y − ŷ2 = e2 ∼ (µ2, σ2),

cov(e1, e2) = σ12 = ρ12σ
2, so ŷ1 is unbiased while ŷ2 has a bias equal of µ2. Then the MSE of

ŷ1 is σ2, while the MSE of ŷ2 is σ2+µ22. The MSE of the combined forecast ŷc = ωŷ1+(1−ω)ŷ2
relative to that of the best forecast (ŷ1) is

MSE(ŷc)−MSE(ŷ1) = (1− ω)σ2
µ
(1− ω)

³µ2
σ

´2
− 2ω(1− ρ12)

¶
,

so MSE(ŷc) > MSE(ŷ1) if ³µ2
σ

´2
>
2ω(1− ρ12)

1− ω
.

This condition always holds if ρ12 = 1. Furthermore, the larger the bias, the more likely it

is that the combination will not dominate the first forecast. Of course the problem here is

that the combination is based on variances and not the mean squared forecast errors which

would account for the bias.

2.4 Optimality of Equal weights - general case

Equally weighted combinations occupy a special place in the forecast combination literature.

They are frequently either imposed on the combination scheme or used as a point towards

which the unconstrained combination weights are shrunk. Given their special role, it is

worth establishing more general conditions under which they are optimal in a population

sense. This sets a benchmark that proves helpful in understanding their good finite-sample

performance in simulations and in empirical studies with actual data.

LetΣe = E[ee0] be the covariance matrix of the individual forecast errors where e = ιy−ŷ

and ι is an N×1 column vector of ones. Again we drop time and horizon subscripts without

any risk of confusion. From (7) the vector of forecast errors has second moment

Σe = E[y2ιι0 + ŷŷ0 − 2yιŷ0] (20)

= (σ2y + µ2y)ιι
0 + µyµ

0
y +Σyy − 2ισ0yy − 2µyιµ0y.

Consider minimizing the expected forecast error variance subject to the constraint that
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the weights add up to one:

minω0Σeω (21)

s.t. ω0ι = 1.

The constraint ensures unbiasedness of the combined forecast provided that µ =µyι so that

µ2yιι
0 + µyµ

0
y − 2µyιµ0y = 0.

The Lagrangian associated with (21) is

L = ω0Σeω − λ(ω0ι−1)

which yields the first order condition

Σeω =
λ

2
ι. (22)

Assuming that Σe is invertible, after pre-multiplying by Σ−1e ι0 and recalling that ι0ω = 1

we get λ/2 = (ι0Σ−1e ι)
−1

. Inserting this in (22) we have the frequently cited formula for the

optimal weights:

ω∗ = (ι0Σ−1e ι)−1Σ−1e ι. (23)

Now suppose that the forecast errors have the same variance, σ2, and correlation, ρ.

Then we have

Σ−1e =
1

σ2(1− ρ)

µ
I− ρ

1 + (N − 1)ριι
0
¶

=
1

σ2(1− ρ)(1 + (N − 1)ρ) ((1 + (N − 1)ρ)I− ριι0) ,

where I is the N ×N identity matrix. Inserting this in (23) we have

Σ−1e ι =
ι

σ2(1 + (N − 1)ρ)

(ι0Σ−1e ι)−1 =
σ2(1 + (N − 1)ρ)

N
,

so

ω∗ =

µ
1

N

¶
ι. (24)
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Hence equal-weights are optimal in situations with an arbitrary number of forecasts when the

individual forecast errors have the same variance and identical pair-wise correlations. Notice

that the property that the weights add up to unity only follows as a result of imposing the

constraint ι0ω = 1 and need not otherwise hold more generally.

2.5 Optimal Combinations under Asymmetric Loss

Recent work has seen considerable interest in analyzing the effect of asymmetric loss on

optimal predictions, c.f., inter alia, Christoffersen and Diebold (1997), Granger and Pesaran

(2000) and Patton and Timmermann (2004). These papers show that the standard properties

of an optimal forecast under MSE loss−lack of bias, absence of serial correlation in the

forecast error at the single-period forecast horizon and increasing forecast error variance

as the horizon grows−cease to hold under asymmetric loss. It is therefore not surprising

that asymmetric loss also affects combination weights. To illustrate the significance of the

shape of the loss function for the optimal combination weights, consider linex loss. The

linex loss function is convenient to use since it allows us to characterize the optimal forecast

analytically. It takes the form, c.f. Zellner (1986),

L(et+h,t) = exp(aet+h,t)− aet+h,t + 1, (25)

where a is a scalar that controls the aversion towards either positive (a > 0) or negative

(a < 0) forecast errors and et+h,t = (yt+h − ω0h − ω0hbyt+h,t). First, suppose that the target
variable and forecast are joint Gaussian with moments given in (7). Using the well-known

result that if X ∼ N(µ, σ2), then E[ex] = exp(µ + σ2/2), the optimal combination weights

(ω∗0t+h,t,ω
∗
t+h,t) which minimize the expected loss E[L(et+h,t)|Ft], solve

min
ω0t+h,t,ωt+h,t

exp(a(µyt+h,t − ω0t+h,t − ω0t+h,tµŷt+h,t) +
a2

2
(σ2yt+h,t +ω

0
t+h,tΣŷŷt+h,tωt+h,t−2ω0t+h,tσyŷt+h,t))

−a(µyt+h,t − ω0t+h,t − ω0t+h,tµŷt+h,t).
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Taking derivatives, we get the first order conditions

exp(a(µyt+h,t − ω0t+h,t − ω0t+h,tµŷt+h,t) +
a2

2
(σ2yt+h,t +ω

0
t+h,tΣŷŷt+h,tωt+h,t−2ω0t+h,tσyŷt+h,t)) = 1

(−aµŷt+h,t +
a2

2
(2Σŷŷt+h,tωt+h,t−2σyŷt+h,t))+aµŷt+h,t = 0,

(26)

It follows that ω∗t+h,t = Σ−1ŷŷt+h,tσyŷt+h,t which when inserted in the first equation gives the

optimal solution

ω0t+h,t = µyt+h,t −ω∗0t+h,tµŷt+h,t+
a

2
(σ2yt+h,t −ω∗0t+h,tσyŷt+h,t),

ω∗t+h,t = Σ−1ŷŷt+h,tσyŷt+h,t. (27)

Notice that the optimal combination weights, ω∗t+h,t, are unchanged from the case with MSE

loss, (9), while the intercept accounts for the shape of the loss function and depends on the

parameter a. In fact, the optimal combination will have a bias, a
2
(σ2yt+h,t − ω∗0t+h,tσyŷt+h,t),

that reflects the dispersion of the forecast error evaluated at the optimal combination weights.

Next, suppose that we allow for a non-Gaussian forecast error distribution by assuming

that the joint distribution of (yt+h ŷ0t+h,t)
0 is a mixture of two Gaussian distributions driven

by a state variable, St+h, which can take two values, i.e. st+h = 1 or st+h = 2 so that⎛⎝ yt+h

ŷt+h,t

⎞⎠ ∼ N

⎛⎝⎛⎝ µyst+h

µyst+h

⎞⎠ ,

⎛⎝ σ2yst+h σ0yyst+h

σyyst+h Σyyst+h

⎞⎠⎞⎠ . (28)

Furthermore, suppose that P (St+h = 1) = p, while P (St+h = 2) = 1 − p. The two regimes

could correspond to recession and expansion states for the economy (Hamilton (1989)) or

bull and bear states for financial markets, c.f. Guidolin and Timmermann (2005).

Under this model,

et+h,t = yt+h − ω0t+h,t −ω0t+h,tŷt+h,t

∼ N
³
µyst+h − ω0t+h,t −ω0t+h,tµyst+h , σ

2
yst+h

+ω0t+h,tΣyst+hωt+h,t−2ω0t+h,tσyyst+h

´
.

Dropping time and horizon subscripts, the expected loss under this distribution, E[L(et+h,t)|byt+h,t],
19



is proportional to

p

½
exp(a(µy1 − ω0 −ω0µy1) +

a2

2
(σ2y1 +ω

0Σyy1ω−2ω0σyy1))− a(µy1 − ω0 − ω0µy1)
¾

+(1− p)

½
exp(a(µy2 − ω0 −ω0µy2) +

a2

2
(σ2y2 +ω

0Σyy2ω−2ω0σyy2))− a(µy2 − ω0 −ω0µy2)
¾
.

Taking derivatives, we get the following first order conditions for ω0 and ω

p(exp(ξ1)− 1) + (1− p)(exp(ξ2)− 1) = 0,

p
³
exp(ξ1)(−µy1 +

a

2
(Σyy1ω − σyy1)) + µy1

´
+

(1− p)
³
exp(ξ2)(−µy2 +

a

2
(Σyy2ω − σyy2)) + µy2

´
= 0,

where ξst+1 = a(µyst+1 − ω0 − ω0µyst+1) + a2

2
(σ2yst+1 + ω0Σyyst+1ω−2ω0σyyst+1). In general

this gives a set of N + 1 highly non-linear equations in ω0 and ω. The exception is when

µy1 = µy2, in which case (using the first order condition for ω0) the first order condition for

ω simplifies to

p exp(ξ1)(Σyy1ω − σyy1) + (1− p) exp(ξ2)(Σyy2ω − σyy2) = 0.

When Σyy2 = ϕΣyy1 and σyy2 = ϕσyy1, the solution to this equation again corresponds to

the optimal weights for the MSE loss function, (9):

ω∗= Σ−1yy1σyy1
. (29)

This restriction represents a very special case and ensures that the joint distribution of

(yt+h, ŷt+h,t) is elliptically symmetric−a class of distributions that encompasses the multi-

variate Gaussian. This is a special case of the more general result by Elliott and Timmermann

(2004) that if the joint distribution of (yt+h ŷ0t+h,t)
0 is elliptically symmetric and the expected

loss can be written as a function of the mean and variance of the forecast error, µe and σ2e,

i.e., E[L(et)] = g(µe, σ
2
e), then the optimal forecast combination weights, ω

∗, take the form

(29) and hence do not depend on the shape of the loss function (other than for certain tech-

nical conditions), while conversely the constant (ω0) reflects this shape. Thus, under fairly

general conditions on the loss functions, a forecast enters into the optimal combination with
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a non-zero weight if and only if its optimal weight under MSE loss is non-zero. Conversely, if

elliptical symmetry fails to hold, then it is quite possible that a forecast may have a non-zero

weight under loss functions other than MSE loss but not under MSE loss and vice versa.

The latter case is likely to be most relevant empirically since studies using regime switching

models often find that although the mean parameters may be constrained to be identical

across regimes, the variance-covariance parameters tend to be very different across regimes,

c.f., e.g. Guidolin and Timmermann (2005).

This example can be used to demonstrate that a forecast that does not add value most

of the time (in the sense that it is uncorrelated with the outcome variable) but does so only

a small part of the time when other forecasts break down will be included in the optimal

combination. We set all mean parameters equal to one, µy1 = µy2 = 1, µy1 = µy2 = ι, so

bias can be ignored, while the variance-covariance parameters are chosen as follows

σy1 = 3; σy2 = 1,

Σyy1 = 0.8× σ2y1 × I ; Σyy2 = 0.5× σ2y2 × I

σyy1 = σy1 ×
q
diag(Σyy1)¯

µ
0.9

0.2

¶
,

σyy2 = σy2 ×
q
diag(Σyy2)¯

µ
0.0

0.8

¶
,

where ¯ is the Hadamard or element by element multiplication operator.

In Table 1 we show the optimal weight on the two forecasts as a function of p for two

different values of a, namely a = 1, corresponding to strongly asymmetric loss, and a = 0.1,

representing less asymmetric loss. When p = 0.05 and a = 1 , so there is only a five percent

chance that the process is in state 1, the optimal weight on model 1 is 35%. This is lowered

to only 8% when the asymmetry parameter is reduced to a = 0.1. Hence the low probability

event has a greater effect on the optimal combination weights the higher the degree of

asymmetry in the loss function and the higher the variability of such events.
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Table 1: Optimal combination weights under asymmetric loss

a = 1 a = 0.1

p ω∗1 ω∗2

0.05 0.346 0.324

0.10 0.416 0.314

0.25 0.525 0.297

0.50 0.636 0.280

0.75 0.744 0.264

0.90 0.842 0.249

p ω∗1 ω∗2

0.05 0.081 0.365

0.10 0.156 0.353

0.25 0.354 0.323

0.50 0.620 0.283

0.75 0.831 0.250

0.90 0.940 0.234

This example can also be used to demonstrate why forecast combinations may work when

the underlying predictors are generated under different loss functions. Suppose that two

forecasters have linex loss with parameters a1 > 0 and a2 < 0 and suppose that both have

access to the same information set and use the same model to forecast the mean and variance

of Y , µ̂yt+1,t, σ̂
2
yt+1,1. Their forecasts are then computed as (c.f., Christoffersen and Diebold

(1997))

ŷt+1,t,1 = µ̂yt+1,t +
a1
2
σ̂2yt+1,t,

ŷt+1,t,2 = µ̂yt+1,t +
a2
2
σ̂2yt+1,t.

Each forecast includes an optimal bias whose magnitude is time-varying. For a forecast

user with symmetric loss, neither of these forecasts is particularly useful as each is biased.

Furthermore, the bias cannot simply be taken out by including a constant in the forecast

combination regression since the bias is time-varying. However, in this simple case, there

exists an exact linear combination of the two forecasts that is unbiased:

ŷct+1,t = ωŷt+1,t,1 + (1− ω)ŷt+1,t,2

ω =
−a2

a1 − a2
.

Of course this is a special case, but it nevertheless does show how biases in individual

forecasts can either be eliminated or reduced in a forecast combination.
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2.6 Combining as a Hedge against Non-stationarities

Hendry and Clements (2002) argue that forecast combinations may work so well empirically

because they provide insurance against what they refer to as extraneous (deterministic)

structural breaks. They consider a wide array of simulation designs for the break and find

that combinations work well under a shift in the intercept of a single variable in the data

generating process or when two or more positively correlated predictor variables are subject

to shifts in opposite directions - in which case forecast combinations can be expected to lead

to even larger reductions in the MSE. Their analysis considers the case where a break occurs

after the estimation period and does not affect the parameter estimates of the individual

forecasting models. They establish conditions on the size of the post-sample break ensuring

that an equal-weighted combination out-performs the individual forecasts.6

In support of the interpretation that structural breaks or model instability may explain

the good average performance of forecast combination methods, Stock and Watson (2004)

report that the performance of combined forecasts tends to be far more stable than that of the

individual constituent forecasts entering in the combinations. Interestingly, however, many

of the combination methods that attempt to build in time-variations in the combination

weights (either in the form of discounting of past performance or time-varying parameters)

have generally not proved to be successful, although there have been exceptions.

It is easy to construct examples of specific forms of non-stationarities in the underlying

data generating process for which simple combinations work better than the forecast from

the best single model. Aiolfi and Timmermann (2004) study the following simple model for

changes or shifts in the data generating process:

yt = Stf1t + (1− St)f2t + εyt,

ŷ1t = f1t + ε1t, (30)

ŷ2t = f2t + ε2t.

All variables are assumed to be Gaussian with factors f1t ∼ N(µ1, σ
2
f1
), f2t ∼ N(µ2, σ

2
f2
)

6See also Winkler (1989) who argues (p. 606) that “... in many situations there is no such thing as a

‘true’ model for forecasting purposes. The world around us is continually changing, with new uncertainties

replacing old ones.”
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and innovations εyt ∼ N(0, σ2εy), ε1t ∼ N(0, σ2ε1), ε2t ∼ N(0, σ2ε2). Innovations are mutually

uncorrelated and uncorrelated with the factors, while Cov(f1t, f2t) = σf1f2 . In addition, the

state transition probabilities are constant: P (St = 1) = p, P (St = 0) = 1− p. Let β1 be the

population projection coefficient of yt on ŷ1t while β2 is the population projection coefficient

of ŷt on ŷ2t, so that

β1 =
pσ2f1 + (1− p)σf1f2

σ2f1 + σ2ε1
,

β2 =
(1− p)σ2f2 + pσ2f1

σ2f2 + σ2ε2
.

The first and second moments of the forecast errors eit = yt− ŷit, can then be characterized

as follows:

Conditional on St = 1 :⎛⎝ e1t

e2t

⎞⎠ ∼ N

⎛⎝⎛⎝ (1− β1)µ1

µ1−β2µ2

⎞⎠ ,

⎛⎝ (1− β1)
2σ2f1+β

2
1σ
2
ε1
+σ2εy (1− β1)σ

2
f1
+σ2εy

(1− β1)σ
2
f1
+σ2εy σ2f1+β

2
2σ
2
f2
+β22σ

2
ε2
+σ2εy

⎞⎠⎞⎠ .

Conditional on St = 0 :⎛⎝ e1t

e2t

⎞⎠ ∼ N

⎛⎝⎛⎝ µ2−β1µ1
(1− β2)µ2

⎞⎠ ,

⎛⎝ β21σ
2
f1
+σ2f2+β

2
1σ
2
ε1
+σ2εy (1− β2)σ

2
f2
+σ2εy

(1− β2)σ
2
f2
+σ2εy (1− β2)

2σ2f2+β
2
2σ
2
ε2
+σ2εy

⎞⎠⎞⎠ .

Under the joint model for (yt, ŷ1t, ŷ2t) in (30), Aiolfi and Timmermann (2004) show

that the population MSE of the equal-weighted combined forecast will be lower than the

population MSE of the best model provided that the following condition holds:

1

3

µ
p

1− p

¶2
(1 + ψ2)

(1 + ψ1)
<

σ2f2
σ2f1

< 3

µ
p

1− p

¶2
(1 + ψ2)

(1 + ψ1)
. (31)

Here ψ1 = σ2ε1/σ
2
f1
, ψ2 = σ2ε2/σ

2
f2
are the noise-to-signal ratios for forecasts one and two,

respectively. Hence if p = 1− p = 1/2 and ψ1 = ψ2, the condition in (31) reduces to

1

3
<

σ2f2
σ2f1

< 3,

suggesting that equal-weighted combinations will provide a hedge against ‘breaks’ for a wide

range of values of the relative factor variance. How good an approximation this model
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provides for actual data can be debated, but regime shifts have been widely documented

for first and second moments of, inter alia, output growth, stock and bond returns, interest

rates and exchange rates.

Conversely, when combination weights have to be estimated, instability in the data gener-

ating process may cause underperformance relative to that of the best individual forecasting

model. Hence we can construct examples where combination is the dominant strategy in the

absence of breaks or other forms of non-stationarities, but becomes inferior in the presence

of breaks. This is likely to happen if the conditional distribution of the target variable given

a particular forecast is stationary, whereas the correlations between the forecasts changes.

In this case the combination weights will change but the individual models’ performance

remain the same.

3 Estimation

Forecast combinations, while appealing in theory, have the disadvantage over using a sin-

gle forecast that they introduce parameter estimation error in cases where the combination

weights need to be estimated. This is an important point - so much so, that seemingly

suboptimal combination schemes such as equal-weighting have widely been found to dom-

inate combination methods that would be optimal in the absence of parameter estimation

errors. Finite-sample errors in the estimates of the combination weights can lead to poor

performance of combination schemes that dominate in large samples.7

3.1 To Combine or not to Combine

The first question to answer in the presence of multiple forecasts of the same variable is

of course whether or not to combine the forecasts or rather simply attempt to identify the

7Yang (2004) demonstrates theoretically that linear forecast combinations can lead to far worse per-

formance than those from the best single forecasting model due to large variability in estimates of the

combination weights and proposes a range of recursive methods for updating the combination weights that

ensure that combinations achieve a performance similar to that of the best individual forecasting method up

to a constant penalty term and a proportionality factor.
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single best forecasting model. Here it is important to distinguish between the situation

where the information sets underlying the individual forecasts is observed from that where

they are unobserved to the forecast user. When the information sets are unobserved it is

often justified to combine forecasts provided that the private (non-overlapping) parts of the

information sets are sufficiently important. Whether this is satisfied can be difficult to assess,

but diagnostics such as the correlation between forecasts or forecast errors can be considered.

When forecast users do have access to the full information set used to construct the

individual forecasts, Chong and Hendry (1986) and Diebold (1989) argue that combinations

may be less justified in the sense that successful combination indicates misspecification of

the individual models and so a better individual model should be sought. Finding a ‘best’

model may of course be rather difficult if the space of models included in the search is

high dimensional and the time-series short. As Clemen (1989) nicely puts it: “Using a

combination of forecasts amounts to an admission that the forecaster is unable to build a

properly specified model. Trying ever more elaborate combining models seems to add insult

to injury as the more complicated combinations do not generally perform that well.”

Simple tests of whether one forecast dominates another forecast are neither sufficient nor

necessary for settling the question of whether or not to combine. This follows since we can

construct examples where (in population) forecast ŷ1 dominates forecast ŷ2 (in the sense

that it leads to lower expected loss), yet it remains optimal to combine the two forecasts.8

Similarly, we can construct examples where forecast ŷ1 and ŷ2 generate identical expected

loss, yet it is not optimal to combine them−most obviously if they are perfectly correlated,

but also due to estimation errors in the combination weights.

What is called for more generally is a test of whether one forecast−or more generally a set

of forecasts−encompasses all information contained in another forecast (or sets of forecasts).

In the context of MSE loss functions, forecast encompassing tests have been developed by

Chong and Henry (1986). Point forecasts are sufficient statistics under MSE loss and a test

8Most obviously, under MSE loss, when σ(y−ŷ1) > σ(y−ŷ2), and cor(y−ŷ1, y−ŷ2) 6= σ(y−ŷ2)/σ(y−ŷ1),
it will generally be optimal to combine the two forecasts, c.f. Section 2.
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of pair-wise encompassing can be based on the regression

yt+h = β0 + β1ŷt+h,t,1 + β2ŷt+h,t,2 + et+h,t, t = 1, 2, ...T − h. (32)

Forecast 1 encompasses forecast 2 when the parameter restriction (β0 β1 β2) = (0 1 0) holds,

while conversely if forecast 2 encompasses forecast 1 we have (β0 β1 β2) = (0 0 1). All other

outcomes mean that there is some information in both forecasts which can then be usefully

exploited. Notice that this is an argument that only holds in population. It is still possible

in small samples that ignoring one forecast can lead to better out-of-sample forecasts even

though, asymptotically, the coefficient on the omitted forecast in (32) differs from zero.

More generally, a test that some model, e.g., model 1, forecast encompasses all other

models can be based on a test of β2 = ... = βN in the regression

yt+h − ŷt+h,t,1 = β0 +
NX
i=2

βiŷt+h,t,i + et+h,t.

Inference is complicated by whether forecasting models are nested or non-nested, c.f.

West (2005) and the references therein.

In situations where the data is not very informative and it is not possible to identify a

single dominant model, it makes sense to combine forecasts. Makridakis and Winkler (1983)

explain this well (page 990): “When a single method is used, the risk of not choosing the best

method can be very serious. The risk diminishes rapidly when more methods are considered

and their forecasts are averaged. In other words, the choice of the best method or methods

becomes less important when averaging.” They demonstrate this point by showing that the

forecasting performance of a combination strategy improves as a function of the number of

models involved in the combination, albeit at a decreasing rate.

Swanson and Teng (2001) propose to use model selection criteria such as the SIC to choose

which subset of forecasts to combine. This approach does not require formal hypothesis

testing so that size distortions due to the use of sequential pre-tests, can be avoided although,

of course, consistency of the selection approach must be established in the context of the

particular sampling experiment appropriate for a given forecasting situation. In empirical

work reported by these authors the combination chosen by SIC appears to provide the best
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overall performance and rarely gets dominated by other methods in out-of-sample forecasting

experiments.

Once it has been established whether to combine or not, there are various ways in which

the combination weights, ω̂t+h,t, can be estimated. We will discuss some of these methods in

what follows. A theme that is common across estimators is that estimation errors in forecast

combinations are generally important especially in cases where the number of forecasts, N ,

is large relative to the length of the time-series, T .

3.2 Least Squares Estimators of the Weights

It is common to assume a linear-in-weights model and estimate combination weights by

ordinary least squares, regressing realizations of the target variable, yτ on the N-vector of

forecasts, ŷτ using data over the period τ = h, ..., t:

ω̂t+h,t = (
t−hX
τ=1

ŷτ+h,τ ŷ
0
τ+h,τ )

−1
t−hX
τ=1

ŷτ+h,τyτ+h. (33)

Different versions of this basic least squares projection have been proposed. Granger and

Ramanathan (1984) consider three regressions

(i) yt+h = ω0h +ω
0
hŷt+h,t + εt+h

(ii) yt+h = ω0hŷt+h,t + εt+h (34)

(iii) yt+h = ω0hŷt+h,t + εt+h, s.t. ω0hι = 1.

The first and second of these regressions can be estimated by standard least squares, the

only difference being that the second equation omits an intercept term. The third regression

omits an intercept and can be estimated through constrained least squares. The first, and

most general, regression does not require that the individual forecasts are unbiased since

any bias can be adjusted through the intercept term, ω0h. In contrast, the third regression

is motivated by an assumption of unbiasedness of the individual forecasts. Imposing that

the weights sum to one then guarantees that the combined forecast is also unbiased. This

specification may not be efficient, however, as the latter constraint can lead to efficiency

losses as E[ŷt+h,tεt+h] 6= 0. One could further impose convexity constraints 0 ≤ ωh,i ≤ 1,
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i = 1, .., N to rule out that the combined forecast lies outside the range of the individual

forecasts.

Another reason for imposing the constraint ω0hι = 1 has been discussed by Diebold

(1988). He proposes the following decomposition of the forecast error from the combination

regression:

ect+h,t = yt+h − ω0h − ω0hŷt+h,t (35)

= −ω0h + (1−ω0hι)yt+h +ω0h(yt+hι− ŷt+h,t)

= −ω0h + (1−ω0hι)yt+h +ω0het+h,t,

where et+h,t is the N × 1 vector of h-period forecast errors from the individual models.

Oftentimes the target variable, yt+h, is quite persistent whereas the forecast errors from the

individual models are not serially correlated even when h = 1. It follows that unless it

is imposed that 1 − ω0hι =0, then the forecast error from the combination regression will

typically be serially correlated and hence be predictable itself.

3.3 Relative Performance Weights

Estimation errors in the combination weights tend to be particularly large due to difficulties

in precisely estimating the covariance matrix, Σe. One answer to this problem is to simply

ignore correlations across forecast errors. Combination weights that reflect the performance

of each individual model relative to the performance of the average model, but ignore corre-

lations across forecasts have been proposed by Bates and Granger (1969) and Newbold and

Granger (1974). Both papers argue that correlations can be poorly estimated and should be

ignored in situations with many forecasts and short time-series. This effectively amounts to

treating Σe as a diagonal matrix, c.f. Winkler and Makridakis (1983).

Stock and Watson (2001) propose a broader set of combination weights that also ignore

correlations between forecast errors but base the combination weights on the models’ relative

MSE performance raised to various powers. Let MSEt+h,t,i = (1/v)
Pt

τ=t−v e
2
τ,τ−h,i be the

ith forecasting model’s MSE at time t, computed over a window of the previous v periods.
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Then

ŷct+h,t =
NX
i=1

ω̂t+h,t,iŷt+h,t,i

ω̂t+h,t,i =
(1/MSEκ

t+h,t,i)PN
j=1(1/MSEκ

t+h,t,j)
. (36)

Setting κ = 0 assigns equal weights to all forecasts, while forecasts are weighted by the inverse

of their MSE when κ = 1. The latter strategy has been found to work well in practice as

it does not require estimating the off-diagonal parameters of the covariance matrix of the

forecast errors. Such weights therefore disregard any correlations between forecast errors and

so are only optimal in large samples provided that the forecast errors are truly uncorrelated.

3.4 Moment Estimators

Outside the quadratic loss framework one can base estimation of the combination weights

directly on the loss function, c.f. Elliott and Timmermann (2004). Let the realized loss in

period t+ h be

L(et+h;ω) = L(ω|yt+h, byt+h,t,ψL),

where ψL are the (given) parameters of the loss function. Then ω̃h = (ω0h ω
0
h)
0 can be

obtained as an M-estimator based on the sample analog of E[L(et+h)] using a sample of

T − h observations {yτ , byτ,τ−h}Tτ=h+1:
L̄(ω) = (T − h)−1

TX
τ=h+1

L(eτ,τ−h(ω̃h);θL).

Taking derivatives, one can use the generalized method of moments (GMM) to estimate

ωT+h,t from the quadratic form

min
ωT+h,T

Ã
TX

τ=h+1

L0(eτ,τ−h(ω̃h);ψL)

!0
Λ−1

Ã
TX

τ=h+1

L0(eτ,τ−h(ω̃h);ψL)

!
, (37)

where Λ is a (positive definite) weighting matrix and L0 is a vector of derivatives of the mo-

ment conditions with respect to ω̃h. Consistency and asymptotic normality of the estimated

weights is easily established under standard regularity conditions.
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3.5 Non-parametric Combination Schemes

The estimators considered so far require stationarity at least for the moments involved in the

estimation. To be empirically successful, they also require a reasonably large data sample

(relative to the number of models, N) as they otherwise tend not to be robust to outliers, c.f.

Gupta and Wilton (1987) p. 358: “...combination weights derived using minimum variance

or regression are not robust given short data samples, instability or nonstationarity. This

leads to poor performance in the prediction sample.” In many applications the number of

forecasts, N , is large relatively to the length of the time-series, T . In this case, it is not

feasible to estimate the combination weights by OLS. Simple combination schemes such as

an equal-weighted average of forecasts yewt+h,t = ι0ŷt+h,t/N or weights based on the inverse

MSE-values offer are an attractive option in this situation.

Simple, rank-based weighting schemes can also be constructed and have been used with

some success in mean-variance analysis in finance, c.f. Wright and Satchell (2003). These

take the form ωt+h,t = f(Rt,t−h,1, ...,Rt,t−h,N), where Rt,t−h,i is the rank of the ith model

based on its h−period performance up to time t. The most common scheme in this class is

to simply use the median forecast as proposed by authors such as Armstrong (1989), Hendry

and Clements (2002) and Stock and Watson (2001, 2003). Alternatively one can consider a

triangular weighting scheme that lets the combination weights be inversely proportional to

the models’ rank, c.f. Aiolfi and Timmermann (2004):

ω̂t+h,t,i = R−1t+h,t,i/(
NX
i=1

R−1t+h,t,i). (38)

Again this combination ignores correlations across forecast errors. However, since ranks are

likely to be less sensitive to outliers, this weighting scheme can be expected to be more robust

than the weights in (33) or (36).

Another example in this class is spread combinations. These have been proposed by

Aiolfi and Timmermann (2004) and consider weights of the form

ω̂t+h,t,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+ω̄
αN

if Rt+h,t,i ≤ αN

0 if αN < Rt+h,t,i < (1− α)N

−ω̄
αN

if Rt+h,t,i ≤ (1− α)N

, (39)
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where α is the proportion of top models that - based on performance up to time t - gets

a weight of (1 + ω̄)/αN . Similarly, a proportion α of models gets a weight of −ω̄/αN .

The larger the value of α, the wider the set of top and bottom models that are used in

the combination. Similarly, the larger is ω̄, the bigger the difference in weights on top and

bottom models. The intuition for such spread combinations can be seen from (12) when

N = 2 so α = 1/2. Solving for ρ12 we see that ω
∗ = 1 + ω̄ provided that

ρ12 =
1

2ω̄ + 1

µ
σ2
σ1

ω̄ +
σ1
σ2
(1 + ω̄)

¶
.

Hence if σ1 ≈ σ2, spread combinations are close to optimal provided that ρ12 ≈ 1. The

second forecast provides a hedge for the performance of the first forecast in this situation.

In general, spread portfolios are likely to work well when the forecasts are strongly collinear.

Gupta and Wilton (1987) propose an odds ratio combination approach based on a matrix

of pair-wise odds ratios. Let πij be the probability that the ith forecasting model outperforms

the jth model out-of-sample. The ratio oij = πij/πji is then the odds that model i will

outperform model j and oij = 1/oji. Filling out the N × N odds ratio matrix O with i, j

element oij requires specifying N(N − 1)/2 pairs of probabilities of outperformance, πij.

An estimate of the combination weight ω is obtained from the solution to the system of

equations (O−NI)ω = 0. Since O has unit rank with a trace equal to N , ω can be found

as the normalized eigenvector associated with the largest (and only non-zero) eigenvalue of

O. This approach gives weights that are insensitive to small changes in the odds ratio and

so does not require large amounts of data. Also, as it does not account for dependencies

between the models it is likely to be less sensitive to changes in the covariance matrix than

the regression approach. Conversely, it can be expected to perform worse if such correlations

are important and can be estimated with sufficient precision.9

9Bunn (1975) proposes a combination scheme with weights reflecting the probability that a model pro-

duces the lowest loss, i.e.

pt+h,t,i = Pr(L(et+h,t,i) < L(et+h,t,j)) for all j 6= i

ŷct+h,t =
NX
i=1

pt+h,t,iŷt+h,t,i.

Bunn discusses how pt+h,t,i can be updated based on a model’s track historical record using the proportion
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3.6 Pooling, Clustering and Trimming

Rather than combining the full set of forecasts, it is often advantageous to discard the

models with the worst performance (trimming). Combining only the best models goes under

the header ‘use sensible models’ in Armstrong (1989). This is particularly important when

forecasting with nonlinear models whose predictions are often implausible and can lie outside

the empirical range of the target variable. One can base whether or not to trim−and by how

much to trim−on formal tests or on more lose decision rules.

To see why trimming can be important, suppose a fraction α of the forecasting models

contain valuable information about the target variable while a fraction 1−α is pure noise. It

is easy to see in this extreme case that the optimal forecast combination puts zero weight on

the pure noise forecasts. However, once combination weights have to be estimated, forecasts

that only add marginal information should be dropped from the combination since the cost

of their inclusion−increased parameter estimation error−is not matched by similar benefits.

The ‘thick modeling’ approach−thus named because it seeks to exploit information in a

cross-section (thick set) of models−proposed by Granger and Jeon (2004) is an example of a

trimming scheme that removes poorly performing models in a step that precedes calculation

of combination weights. Granger and Jeon argue that “an advantage of thick modeling is

that one no longer needs to worry about difficult decisions between close alternatives or

between deciding the outcome of a test that is not decisive.”

Grouping or clustering of forecasts can be motivated by the assumption of a common

factor structure underlying the forecasting models. Consider the factor model

Yt+h = µy + β
0
yft+h + εyt+h, (40)

ŷt+h,t = µŷ +Bf t+h + εt+h,

where ft+h is an nf×1 vector of factor realizations satisfyingE[ft+hεyt+h] = 0, E[ft+hε0t+h] = 0

and E[ft+hf 0t+h] = Σf . βy is an nf × 1 vector while B is an N ×nf matrix of factor loadings.

For simplicity we assume that the factors have been orthogonalized. This will obviously hold

if they are constructed as the principal components from a large data set and can otherwise

of times up to the current period where a model outperformed its competitors.
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be achieved through rotation. Furthermore, all innovations ε are serially uncorrelated with

zero mean, E[ε2yt+h] = σ2εy , E[εyt+hεt+h] = 0 and the noise in the individual forecasts is

assumed to be idiosyncratic (model specific), i.e.,

E[εit+hεjt+h] =

⎧⎨⎩ σ2εi if i = j

0 if i 6= j
.

We arrange these values on a diagonal matrix E[εt+hε
0
t+h] = Dε. This gives the following

moments ⎛⎝ yt+h

ŷt+h,t

⎞⎠ ∼
⎛⎝⎛⎝ µy

µŷ

⎞⎠ ,

⎛⎝ β0yΣfβy + σ2εy β0yΣfB
0

BΣfβy BΣfB
0+Dε

⎞⎠⎞⎠ .

Also suppose either that µŷ= 0, µy = 0 or a constant is included in the combination scheme.

Then the first order condition for the optimal weights is, from (8),

ω∗ = (BΣfB
0+Dε)

−1BΣfβy. (41)

Further suppose that theN forecasts of the nf factors can be divided into appropriate groups

according to their factor loading vectors bi such that
Pnf

i=1 dim(bi) = N :

B =

⎛⎜⎜⎜⎜⎜⎜⎝
b1 0 · · · 0

0 b2 0 · · ·
... 0

. . . 0

0 · · · 0 bnf

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then the first term on the right hand side of (41) is given by

BΣfB
0+Dε =

⎛⎜⎜⎜⎜⎜⎜⎝
b1b

0
1 0 · · · 0

0 b2b
0
2 0 · · ·

... 0
. . . 0

0 · · · 0 bnfb
0
nf

⎞⎟⎟⎟⎟⎟⎟⎠Dσ2F
+Dε, (42)

where DσF is a diagonal matrix with σ2f1 in its first n1 diagonal places followed by σ2f2

in the next n2 diagonal places and so on and Dε is a diagonal matrix with V ar(εit) as

the ith diagonal element. Thus the matrix in (42) and its inverse will be block diagonal.

Provided that the forecasts tracking the individual factors can be grouped and have similar
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factor exposure (bi) within each group, this suggests that little is lost by pooling forecasts

within each cluster and ignoring correlations across clusters. In a subsequent step, sample

counterparts of the optimal combination weights for the grouped forecasts can be obtained

by least-squares estimation. In this way, far fewer combination weights (nf rather than N)

have to be estimated. This can be expected to decrease forecast errors and thus improve

forecasting performance.

Building on these ideas Aiolfi and Timmermann (2004) propose to sort forecasting models

into clusters using a K-mean clustering algorithm based on their past MSE performance.

As the previous argument suggests, one could alternatively base clustering on correlation

patterns among the forecast errors.10 Their method identifies K clusters. Let ŷkt+h,t be the

pk × 1 vector containing the subset of forecasts belonging to cluster k, k = 1, 2, ..,K. By

ordering the clusters such that the first cluster contains models with the lowest historical

MSFE values, Aiolfi and Timmermann consider three separate strategies. The first simply

computes the average forecast across models in the cluster of previous best models:

ŷCPBt+h,t = (ι
0
p1
/p1)ŷ

1
t+h,t (43)

A second combination strategy identifies a small number of clusters, pools forecasts within

each cluster and then estimates optimal weights on these pooled predictions by least squares:

ŷCLSt+h,t =
KX
k=1

ω̂t+h,t,k

£
(ι0pk/pk)ŷ

k
t+h,t

¤
, (44)

where ω̂t+h,t,k are least-squares estimates of the optimal combination weights for the K

clusters. This strategy is likely to work well if the variation in forecasting performance within

each cluster is small relative to the variation in forecasting performance across clusters.

Finally, the third strategy pools forecasts within each cluster, estimates least squares

combination weights and then shrinks these towards equal weights in order to reduce the

effect of parameter estimation error

ŷCSWt+h,t =
KX
k=1

ŝt+h,t,k
£
(ι0pk/pk)ŷ

k
t+h,t

¤
,

10The two clustering methods will be similar if σFi varies significantly across factors and the factor exposure

vectors, bi, and error variances σ2εi are not too dissimilar across models. In this case forecast error variances

will tend to cluster around the factors that the various forecasting models are most exposed to.
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where ŝt+h,t,k are the shrinkage weights for the K clusters computed as ŝt+h,t,k = λω̂t+h,t,k +

(1 − λ) 1
K
, λ = max

©
0, 1− κ

¡
K

t−h−K
¢ª
. The higher is κ, the higher the shrinkage towards

equal weights.

4 Time-varying and Nonlinear combination Methods

So far our analysis has concentrated on forecast combination schemes that assumed constant

and linear combination weights. While this follows naturally in the case with MSE loss

and a time-invariant Gaussian distribution for the forecasts and realization, outside this

framework it is natural to consider more general combination schemes. Two such families of

special interest that generalize (6) are linear combinations with time-varying weights:

ŷct+h,t = ω0t+h,t +ω
0
t+h,tbyt+h,t, (45)

where ω0t+h,t, ω0t+h,t are adapted to Ft, and non-linear combinations with constant weights:

ŷct+h,t = C(byt+h,t,ω), (46)

where C(.) is some function that is nonlinear in the parameters, ω, in the vector of fore-

casts, byt+h,t, or in both. There is a close relationship between time-varying and nonlinear
combinations. For example, non-linearities in the true data generating process can lead

to time-varying covariances for the forecast errors and hence time-varying weights in the

combination of (misspecified) forecasts.

We next describe some of the approaches within these classes that have been proposed

in the literature.

4.1 Time-varying Weights

When the joint distribution of (yt+h ŷ0t+h,t)
0−or at least its first and second moments−vary

over time, it can be beneficial to let the combination weights change over time. Indeed,

Bates and Granger (1969) and Newbold and Granger (1974) suggested either assigning a

disproportionately large weight to the model that has performed best most recently or using
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an adaptive updating scheme that puts more emphasis on recent performance in assigning

the combination weights. Rather than explicitly modeling the structure of the time-variation

in the combination weights, Bates and Granger proposed five adaptive estimation schemes

based on exponential discounting or the use of rolling estimation windows.

The first combination scheme uses a rolling window of the most recent v observations

based on the forecasting models’ relative performance11

ω̂BG1
t,t−h,i =

¡Pt
τ=t−v+1 e

2
τ,τ−h,i

¢−1PN
j=1

¡Pt
τ=t−v+1 e

2
τ,τ−h,j

¢−1 . (47)

The shorter is v, the more weight is put on the models’ recent track record and the larger

the part of the historical data that is discarded. If v = t, an expanding window is used and

this becomes a special case of (36). Correlations between forecast errors are ignored by this

scheme.

The second rolling window scheme accounts for such correlations across forecast errors

but, again, only uses the most recent v observations for estimation:

ω̂BG2
t,t−h = Σ̂−1et,t−hι/(ι

0Σ̂−1et,t−hι), (48)

Σ̂et,t−h[i, j] = v−1
tX

τ=t−v+1
eτ,τ−h,ieτ,τ−h,j.

The third combination scheme uses adaptive updating captured by the parameter α ∈ (0; 1),

which tends to smooth the time-series evolution in the combination weights:

ω̂BG3
t,t−h,i = αω̂t−1,t−h−1,i + (1− α)

¡Pt
τ=t−v+1 e

2
τ,τ−h,i

¢−1PN
j=1

¡Pt
τ=t−v+1 e

2
τ,τ−h,j

¢−1 . (49)

The closer to unity is α, the smoother the weights will generally be.

The fourth and fifth combination methods are based on exponential discounting versions

of the first two methods and take the form

ω̂BG4
t,t−h,i =

¡Pt
τ=1 λ

τe2τ,τ−h,i
¢−1PN

j=1

¡Pt
τ=1 λ

τe2τ,τ−h,j
¢−1 , (50)

11While we write the equations for the weights for general h, adjustments can be made when h ≥ 2 which
induces serial correlation in the forecast errors.
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where λ ≥ 1 and higher values of λ correspond to putting more weight on recent data. This

scheme does not put a zero weight on any of the past forecast errors whereas the rolling

window methods entirely ignore observations more than v periods old. If λ = 1, there is no

discounting of past performance and the formula becomes a special case of (36). However, it

is common to use a discount factor such as λ = 0.95 or λ = 0.90, although the chosen value

will depend on factors such as data frequency, evidence of instability, forecast horizon etc.

Finally, the fifth scheme estimates the variance and covariance of the forecast errors using

exponential discounting:

ω̂BG5
t,t−h = Σ̂−1et,t−hι/(ι

0Σ̂−1et,t−hι), (51)

Σ̂et,t−h[i, j] =
tX

τ=1

λτeτ,τ−h,ieτ,τ−h,j.

Putting more weight on recent data means reducing the weight on past data and tends to

increase the variance of the parameter estimates. Hence it will typically lead to poorer perfor-

mance if the underlying data generating process is truly covariance stationary. Conversely,

the underlying time-variations have to be quite strong to justify not using an expanding

window. See Pesaran and Timmermann (2005) for further analysis of this point.

Diebold and Pauly (1987) embed these schemes in a general weighted least squares setup

that chooses combination weights to minimize the weighted average of forecast errors from

the combination. Let ect,t−h = yt−ω0ŷt,t−h be the forecast error from the combination. Then

one can minimize
TX

t=h+1

TX
τ=h+1

γt,τe
c
t,t−he

c
τ,τ−h, (52)

or equivalently, ec0Γec, where Γ is a (T − h)× (T − h) matrix with [t, τ ] element ωt,τ and ec

is a T − h× 1 vector of errors from the forecast combination. Assuming that Γ is diagonal,

equal-weights on all past observations correspond to γtt = 1 for all t, linearly declining

weights can be represented as γtt = t, and geometrically declining weights take the form

γtt = λT−t, 0 < λ ≤ 1. Finally, Diebold and Pauly introduce two new weighting schemes,

namely nonlinearly declining weights, γtt = tλ, λ ≥ 0 and the Box-Cox transform weights

γtt =

⎧⎨⎩ (tλ − 1)/λ if 0 < λ ≤ 1

ln(t) if λ = 0
.
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These weights can be either declining at an increasing rate or at a decreasing rate, depending

on the sign of λ−1. This is clearly an attractive feature and one that, e.g., the geometrically

declining weights do not have.

Diebold and Pauly also consider regression-based combinations with time-varying pa-

rameters. For example, if both the intercept and slope of the combination regression are

allowed to vary over time,

ŷt+h =
NX
i=0

(git + µit)ŷt+h,t,i,

where gi(t) + µit represent random variation in the combination weights. This approach

explicitly models the evolution in the combination weights as opposed to doing this indirectly

through the weighting of past and current forecast errors.

Instead of using adaptive schemes for updating the parameter estimates, an alternative

is to explicitly model time-variations in the combination weights. A class of combination

schemes considered by, e.g., Sessions and Chatterjee (1989), Zellner, Hong and Min (1991)

and Lesage and Magura (1992) lets the combination weights evolve smoothly according to a

time-varying parameter model:

yt+h = eω0t+h,tzt+h + εt+h, (53)

eωt+h,t = eωt,t−h + ηt+h,

where zt+h = (1 by0t+h,t)0 and eωt+h,t = (ω0t+h,t ω
0
t+h,t)

0. It is typically assumed that (for h = 1)

εt+h ∼ iid(0, σ2ε),ηt+h ∼ iid(0,Σ2
η) and Cov(εt+h,ηt+h) = 0.

Changes in the combination weights may instead occur more discretely, driven by some

switching indicator, Ie, c.f. Deutsch, Granger and Terasvirta (1994):

yt+h = Iet∈A(ω01 +ω
0
1byt+h,t) + (1− Iet∈A)(ω02 +ω

0
2byt+h,t) + εt+h. (54)

Here et = ιyt − byt,t−h is the vector of period-t forecast errors; Iet∈A is an indicator function
taking the value unity when et ∈ A and zero otherwise, for A some pre-defined set defining

the switching condition. This provides a broad class of time-varying combination schemes

as Iet∈A can depend on past forecast errors or other variables in a number of ways. For

example, Iet∈A could be unity if the forecast error is positive, zero otherwise.
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Engle, Granger and Kraft (1984) propose time-varying combining weights that follow a

bivariate ARCH scheme and are constrained to sum to unity. They assume that the distri-

bution of the two forecast errors et+h,t = (et+h,t,1 et+h,t,2)0 is bivariate Gaussian N(0,Σt+h,t)

where Σt+h,t is the conditional covariance matrix.

A flexible mixture model for time-variation in the combination weights has been proposed

by Elliott and Timmermann (2003). This approach is able to track both sudden and discrete

as well as more gradual shifts in the joint distribution of (yt+h ŷ0t+h,t). Suppose that the joint

distribution of (yt+h ŷ0t+h,t) is driven by an unobserved state variable, St+h, which assumes

one of ns possible values, i.e. St+h ∈ (1, ..., ns). Conditional on a given realization of the

underlying state, St+h = st+h, the joint distribution of yt+h and ŷt+h is assumed to be

Gaussian ⎛⎝ yt+h

ŷt+h,t

⎞⎠¯̄̄̄¯̄
st+h

∼ N

⎛⎝⎛⎝ µyst+h

µyst+h

⎞⎠ ,

⎛⎝ σ2yst+h σ0yyst+h

σyyst+h Σyyst+h

⎞⎠⎞⎠ . (55)

This is similar to (7) but now conditional on St+h, which is important. This model generalizes

(28) to allow for an arbitrary number of states. State transitions are assumed to be driven

by a first-order Markov chain P = Pr(St+h = st+h|St = st)

P =

⎛⎜⎜⎜⎜⎜⎜⎝
p11 p12 · · · p1ns

p21 p22 · · · ...
...

... · · · pns−1ns

pns1 · · · pnsns−1 pnsns

⎞⎟⎟⎟⎟⎟⎟⎠ . (56)

Conditional on St+h = st+h, the expectation of yt+h is linear in the prediction signals, ŷt+h,t,

and thus takes the form of state-dependent intercept and combination weights:

E[yt+h|ŷt+h,t, st+h] = µyst+h + σ
0
yyst+h

Σ−1yyst+h(byt+h,t − µyst+h). (57)

Accounting for the fact that the underlying state is unobservable, the conditionally expected

loss given current information, Ft, and state probabilities, πst+h,t, becomes:

E
£
e2t+h|πst+h,t,Ft

¤
=

nsX
st+h=1

πst+h,t

n
µ2est+h + σ2est+h

o
, (58)
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where πst+h,t = Pr(St+h = st+h|Ft) is the probability of being in state st+h in period t + h

conditional on current information, Ft. Assuming a linear combination conditional on Ft,

πst+h,t the optimal combination weights, ω
∗
0t+h,t,ω

∗
t+h,t become (c.f. Elliott and Timmermann

(2003))

ω∗0t+h,t =
nsX

st+h=1

πst+h,tµyst+h − (
nsX

st+h=1

πst+h,tµ
0
yst+h

)ωth ≡ µ̄yt + µ̄
0
ytωth,

ω∗t+h,t =

⎛⎝ nsX
st+h=1

πst+h,t
³
µyst+hµ

0
yst+h

+Σyst+h

´
− µ̄ytµ̄0yt

⎞⎠−1

×

⎛⎝ nsX
st+h=1

πst+h,t(µyst+hµyst+h + σyyst+h)− µ̄ytµ̄yt

⎞⎠ , (59)

where µ̄yt =
Pns

st+h=1
πst+h,tµyst+h and µ̄yt =

Pns
st+h=1

πst+h,tµyst+h. The standard weights in

(8) can readily be obtained by setting ns = 1.

It follows from (59) that the (conditionally) optimal combination weights will vary as the

state probabilities vary over time as a function of the arrival of new information provided

that P is of rank greater than one.

4.2 Nonlinear Combination Schemes

Two types of non-linearities can be considered in forecast combinations. First, non-linear

functions of the forecasts can be used in the combination which is nevertheless linear in the

unknown parameters:

ŷct+h,t = ω0 +ω
0C(byt+h,t). (60)

Here C(byt+h,t) is a function of the underlying forecasts that typically includes a lead term
that is linear in byt+h,t in addition to higher order terms similar to a Volterra or Taylor series
expansion. The nonlinearity in (60) only enters through the shape of the transformation

C(.) so the unknown parameters can readily be estimated by OLS although the small-sample

properties of such estimates could be an issue due to possible outliers. A second and more

general combination method considers non-linearities in the combination parameters, i.e.

ŷct+h,t = C(byt+h,t,ω). (61)
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There does not appear to be much work in this area, possibly due to the fact that estimation

errors already appear to be large in linear combination schemes and can be expected to

be even larger for non-linear combinations whose parameters are generally less robust and

more sensitive to outliers than those of the linear schemes. Techniques from the Handbook

chapter by White (2005) could be readily used in this context, however.

One paper that does estimate nonlinear combination weights is the study by Donaldson

and Kamstra (1996). This uses artificial neural networks to combine volatility forecasts from

a range of alternative models. Their combination scheme takes the form

ŷct+h,t = β0 +
NX
j=1

βj ŷt+h,t,j +

pX
i=1

δig(zt+h,tγi), (62)

g(zt+h,tγi) = (1 + exp(−(γ0,i +
NX
j=1

γ1,jzt+h,t,j)))
−1

zt+h,t,j = (ŷt+h,t,j − ȳt+h,t)/σ̂yt+h,t,

p ∈ {0, 1, 2, 3}.

Here ȳt+h,t is the sample estimate of the mean of y across the forecasting models while σ̂yt+h,t

is the sample estimate of the standard deviation using data up to time t. This network uses

logistic nodes. The linear model is nested as a special case when p = 0 so no nonlinear

terms are included. In an out-of-sample forecasting experiment for volatility in daily stock

returns, Donaldson and Kamstra find evidence that the neural net combination applied

to two underlying forecasts (a moving average variance model and a GARCH(1,1) model)

outperforms traditional combination methods.

5 Shrinkage Methods

In cases where the number of forecasts, N , is large relative to the sample size, T , the sample

covariance matrix underlying standard combinations is subject to considerable estimation

uncertainty. Shrinkage methods aim to trade off bias in the combination weights against

reduced parameter estimation error in estimates of the combination weights. Intuition for

how shrinkage works is well summarized by Ledoit and Wolf (2004 page 2): “The crux
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of the method is that those estimated coefficients in the sample covariance matrix that

are extremely high tend to contain a lot of positive error and therefore need to be pulled

downwards to compensate for that. Similarly, we compensate for the negative error that

tends to be embedded inside extremely low estimated coefficients by pulling them upwards.”

This problem can partially be resolved by imposing more structure on the estimator in a

way that reduces estimation error although the key question remains how much and which

structure to impose. Shrinkage methods let the forecast combination weights depend on the

sample size relative to the number of cross-sectional models to be combined.

Diebold and Pauly (1990) propose to shrink towards equal-weights. Consider the stan-

dard linear regression model underlying most forecast combinations and for simplicity drop

the time and horizon subscripts:

y = ŷω + ε, ε ∼N(0,σ2I), (63)

where y and ε are T × 1 vectors, ŷ is the T × N matrix of forecasts and ω is the N × 1

vector of combination weights. The standard normal-gamma conjugate prior σ2 ∼ IG(s20, v0),

ω|σ ∼ N(ω0,M) implies that

P0(ω, σ) ∝ σ−N−v0−1 exp(
−(v0s20 + (ω −ω0)0M(ω −ω0))

2σ2
) (64)

Under normality of ε the likelihood function for the data is

L(ω, σ|y, ŷ) ∝ σ−T exp(
−(y− ŷω)0(y− ŷω)

2σ2
). (65)

These results can be combined to give the marginal posterior for ω with mean

ω̄ = (M+ ŷ0ŷ)−1(Mω0 + ŷ
0ŷω̂), (66)

where ω̂ = (ŷ0ŷ)−1ŷ0ŷ is the least squares estimate of ω. Using a prior for M that is

proportional to ŷ0ŷ,M = gŷ0ŷ, we get

ω̄ = (gŷ0ŷ+ ŷ0ŷ)−1(gŷ0ŷω0 + ŷ
0ŷω̂),

which can be used to obtain

ω̄ = ω0 +
ω̂ −ω0
1 + g

. (67)
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Clearly, the larger the value of g, the stronger the shrinkage towards the mean of the prior,

ω0, whereas small values of g suggest putting more weight on the data.

Alternatively, empirical Bayes methods can be used to estimate g. Suppose the prior for

ω conditional on σ is Gaussian N(ω0, τ
2A−1). Then the posterior for ω is also Gaussian,

N(ω̄, τ−2A + σ−2ŷ0ŷ) and σ2 and τ 2 can be replaced by the estimates (c.f. Diebold and

Pauly (1990))

σ̂2 =
(y− ŷω̂)0(y− ŷω̂)

T

τ̂ 2 =
(ω̂ −ω0)0(ω̂ −ω0)

tr(ŷ0ŷ)−1
− σ̂2.

This gives rise to an empirical Bayes estimator of ω whose posterior mean is

ω̄ = ω0 +

µ
τ̂ 2

σ̂2 + τ̂ 2

¶
(ω̂ −ω0). (68)

The empirical Bayes combination shrinks ω̂ towards ω0 and amounts to setting g = σ̂2/τ̂ 2 in

(67). Notice that if σ̂2/τ̂ 2 → 0, the OLS estimator is obtained while if σ̂2/τ̂ 2 →∞, the prior

estimate ω0 is obtained as a special case. Diebold and Pauly argue that the combination

weights should be shrunk towards the equal-weighted (simple) average so the combination

procedure gives a convex combination of the least-squares and equal weights.

Stock and Watson (2004) also propose shrinkage towards the arithmetic average of fore-

casts. Let ω̂T,T−h,i be the least-squares estimator of the weight on the ith model in the

forecast combination based on data up to period T . The combination weights considered by

Stock and Watson take the form (assuming T > h+N + 1)

ωT,T−h,i = ψω̂T,T−h,i + (1− ψ)(1/N),

ψ = max(0, 1− κN/(T − h−N − 1)),

where κ regulates the strength of the shrinkage. Stock and Watson consider values κ =

1/4, 1/2 or 1. As the sample size, T , rises relative to N , the least squares estimate gets a

larger weight. Indeed, if T grows at a faster rate than N , the least squares weight will, in

the limit, get a weight of unity.
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5.1 Shrinkage and factor structure

In a portfolio application Ledoit and Wolfe (2003) propose to shrink the weights towards

a point implied by a single factor structure common from finance.12 Suppose that the

individual forecast errors are affected by a single common factor, fet

eit = αi + βifet + εit. (69)

where the idiosyncratic residuals, εit, are assumed to be orthogonal across forecasting models

and uncorrelated with fet. This single factor model has a long tradition in finance but is also

a natural starting point for forecasting purposes since forecast errors are generally strongly

positively correlated. Letting σ2fe be the variance of fet, the covariance matrix of the forecast

errors becomes

Σef = σ2feββ
0 +Dε, (70)

where β = (β1 · · ·βN)0 is the vector of factor sensitivities, whileDε is a diagonal matrix with

the individual values of V ar(εit) on the diagonal. Estimation of Σef requires determining

12The problem of forming mean-variance efficient portfolios in finance is mathematically equivalent to that

of combining forecasts, c.f. Dunis, Timmermann and Moody (2001). In finance, the standard optimization

problem minimizes the portfolio variance ω0Σω subject to a given portfolio return, ω0µ = µ0, where µ is a

vector of mean returns while Σ is the covariance matrix of asset returns. Imposing also the constraint that

the portfolio weights sum to unity, we have

min
ω

ω0Σω

s.t. ω0ι = 1,

ω0µ = µ0 .

This problem has the solution

ω∗ = Σ−1(µ ι)
£
(µ ι)

0
Σ−1(µ ι)

¤−1⎛⎝ µ0

1

⎞⎠ .

In the forecast combination problem the constraint ω0ι = 1 is generally interpreted as guaranteeing an

unbiased combined forecast−assuming of course that the individual forecasts are also unbiased. The only
difference to the optimal solution from the forecast combination problem is that a minimum variance portfolio

is derived for each separate value of the mean portfolio return, µ0.
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only 2N + 1 parameters. Consistent estimates of these parameters are easily obtained by

estimating (69) by OLS, equation by equation, to get

Σ̂ef = σ̂2feβ̂β̂
0
+ D̂ε.

Typically this covariance matrix is biased due to the assumption that Dε is diagonal. For

example, there may be more than a single common factor in the forecast errors and some

forecasts may omit the same relevant variable in which case blocks of forecast errors will be

correlated. Though biased, the single factor covariance matrix is typically surrounded by

considerably smaller estimation errors than the unconstrained matrix, E[ee0], which can be

estimated by

Σ̂e =
1

T − h

TX
τ=h

eτ,τ−he
0
τ,τ−h,

where eτ,τ−h is an N × 1 matrix of forecast errors. This estimator requires estimating

N(N + 1)/2 parameters. Using Σ̂ef as the shrinkage point, Ledoit and Wolf (2003) propose

minimizing the following quadratic loss as a function of the shrinkage parameter, α,

L(α) = ||αΣ̂ef + (1− α)Σ̂e −Σe||2,

where ||.||2 is the Frobenius norm, i.e. ||Z||2 = trace(Z2), Σ̂e=(1/T )e(I− ιι0/T )e0 is the

sample covariance matrix and Σe is the true matrix of squared forecast errors, E[e0e], where

e is a T ×N matrix of forecast errors . Letting f̂ij be the (i, j) entry of Σ̂ef , σ̂ij the (i, j)

element of Σ̂e and φij the (i, j) element of the single factor covariance matrix, Σef , while σij

is the (i, j) element of Σe, they demonstrate that the optimal shrinkage takes the form

α∗ =
1

T

π − ρ

γ
+O(

1

T 2
),

where

π =
NX
i=1

NX
j=1

AsyV ar(
√
Tσ̂ij),

ρ =
NX
i=1

NX
j=1

AsyCov(
√
T f̂ij,

√
T σ̂ij),

γ =
NX
i=1

NX
j=1

(φij − σij)
2.
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Hence, π measures the (scaled) sum of asymptotic variances of the sample covariance matrix

(Σ̂e), p measures the (scaled) sum of asymptotic covariances of the single-factor covariance

matrix (Σ̂ef), while γ measures the degree of misspecification (bias) in the single factor

model. Ledoit and Wolf propose consistent estimators π̂, ρ̂ and γ̂ under the assumption of

IID forecast errors.13

5.2 Constraints on Combination Weights

Shrinkage bears an interesting relationship to portfolio weight constraints in finance. It

is commonplace to consider minimization of portfolio variance subject to a set of equality

and inequality constraints on the portfolio weights. Portfolio weights are often constrained

to be non-negative (due to no short selling) and not to exceed certain upper bounds (due

to limits on ownership in individual stocks). Reflecting this, let Σ̂ be an estimate of the

covariance matrix for some cross-section of asset returns with row i, column j element Σ̂[i, j]

and consider the optimization program

ω∗ = argmin
ω

1

2
ω0Σ̂ω (71)

s.t. ω0ι = 1

ωi ≥ 0, i = 1, ..., N

ωi ≤ ω̄, i = 1, ..., N.

This gives a set of Kuhn-Tucker conditions:X
j

Σ̂[i, j]ωj − λi + δi = λ0 ≥ 0 i = 1, ..., N

λi ≥ 0 and λi = 0 if ωi > 0

δi ≥ 0 and δi = 0 if ωi < ω̄

Lagrange multipliers for the lower and upper bounds are collected in the vectors λ =

(λ1, ..., λN)
0 and δ = (δ1, ..., δN)0; λ0 is the Lagrange multiplier for the constraint that the

weights sum to one.
13It is worth pointing out that the assumption that e is IID is unlikely to hold for forecast errors which

could share common dynamics in first, second or higher order moments or even be serially correlated, c.f.

Diebold (1988).
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Constraints on combination weights effectively have two effects. First, they shrink the

largest elements of the covariance matrix towards zero. This reduces the effects of estimation

error that can be expected to be strongest for assets with extreme weights. The second effect

is that it may introduce specification errors to the extent that the true population values of

the optimal weights actually lie outside the assumed interval.

Jagannathan and Ma (2003) show the following result. Let

Σ̃ = Σ̂+ (δι0 + ιδ0)− (λι0 + ιλ0). (72)

Then Σ̃ is symmetric and positive semi-definite. Constructing a solution to the inequality

constrained problem (71) is shown to be equivalent to finding the optimal weights for the

unconstrained quadratic form based on the modified covariance matrix in (72) Σ̃ = Σ̂ +

(δι0 + ιδ0)− (λι0 + ιλ0).

Furthermore, it turns out that Σ̃ can be interpreted as a shrinkage version of Σ̂. To

see this, consider the weights that are affected by the lower bound so Σ̃ = Σ̂− (λι0 + ιλ0).

When the constraint for the lower bound is binding (so a combination weight would have

been negative), the covariances of a particular forecast error with all other errors are reduced

by the strictly positive Lagrange multipliers and its variance is shrunk. Imposing the non-

negativity constraints shrinks the largest covariance estimates that would have resulted in

negative weights. Since the largest estimates of the covariance are more likely to be the

result of estimation error, such shrinkage can have the effect of reducing estimation error

and have the potential to improve out-of-sample performance of the combination.

In the case of the upper bounds, those forecasts whose unconstrained weights would

have exceeded ω̄ are also the ones for which the variance and covariance estimates tend

to be smallest. These forecasts have strictly positive Lagrange multipliers on the upper

bound constraint, meaning that their forecast error variance will be increased by 2δi while

the covariances in the modified covariance matrix Σ̃ will be increased by δi+ δj. Again this

corresponds to shrinkage towards the cross-sectional average of the variances and covariances.
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6 Combination of Interval and Probability Distribu-

tion Forecasts

So far we have focussed on combining point forecasts. This, of course, reflects the fact that

the vast majority of academic studies on forecasting only report point forecasts. However,

there has been a growing interest in studying interval and probability distribution forecasts

and an emerging literature in economics is considering the scope for using combination

methods for such forecasts. This is preceded by the use of combined probability forecasting

in areas such as meteorology, c.f. Sanders (1963). Genest and Zidek (1986) present a broad

survey of various techniques in this area.

6.1 The Combination Decision

As in the case of combinations of point forecasts it is natural to ask whether the best

strategy is to use only a single probability forecast or a combination of these. This is

related to the concept of forecast encompassing which generalizes from point to density

forecasts as follows. Suppose we are considering combining N distribution forecasts f1, ..., fN

whose joint distribution with y is P (y, f1, f2, ...., fN). Factoring this into the product of the

conditional distribution of y given f1, ..., fN , P (y|f1, ..., fN), and the marginal distribution

of the forecasts, P (f1, ..., fN), we have

P (y, f1, f2, ..., fN) = P (y|f1, ..., fN)P (f1, ..., fN). (73)

A probability forecast that does not provide information about y given all the other proba-

bility density forecasts is referred to as extraneous by Clemen, Murphy and Winkler (1995).

If the ith forecast is extraneous we must have

P (y|f1, f2, ..., fN) = P (y|f1, f2, .., fi−1, fi+1, ..., fN). (74)

If (74) holds, probability forecast fi does not contain any information that is useful for

forecasting y given the other N − 1 probability forecasts. Only if forecast i does not satisfy

(74) does it follow that this model is not encompassed by the other models. Interestingly,
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adding more forecasting models (i.e. increasingN) can lead a previously extraneous model to

become non-extraneous if it contains information about the relationship between the existing

N − 1 methods and the new forecasts.

For pairwise comparison of probability forecasts, Clemen et al (1995) define the concept

of sufficiency. This concept is important because if forecast 1 is sufficient for forecast 2, then

its forecasts will be of greater value to all users than forecast 2. Conversely, if neither model

is sufficient for the other we would expect some forecast users to prefer model 1 while others

prefer model 2. To illustrate this concept, consider two probability forecasts, f1 = P1(x = 1)

and f2 = P2(x = 1) of some event, X, where x = 1 if the event occurs while it is zero

otherwise. Also let v1(f) = P (f1 = f) and v2(g) = P (f2 = g), where f, g ∈ G, and G is the

set of permissible probabilities. Forecast 1 is then said to be sufficient for forecast 2 if there

exists a stochastic transformation ζ(g|f) such that for all g ∈ G,X
f

ζ(g|f)v1(f) = v2(g),X
f

ζ(g|f)fv1(f) = gv2(g).

The function ζ(g|f) is said to be a stochastic transformation provided that it lies between

zero and one and integrates to unity. It represents an additional randomization that has the

effect of introducing noise into the first forecast.

6.2 Combinations of Probability Density Forecasts

Combinations of probability density or distribution forecasts impose new requirements be-

yond those we saw for combinations of point forecasts, namely that the combination must be

convex with weights confined to the zero-one interval so that the probability forecast never

becomes negative and always sums to one.

This still leaves open a wide set of possible combination schemes. An obvious way

to combine a collection of probability forecasts {Ft+h,t,1, ..., Ft+h,t,N} is through the convex

combination (“linear opinion pool”):

F̄ c =
NX
i=1

ωt+h,t,iF,t+h,t,i, (75)
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with 0 ≤ ωt+h,t,i ≤ 1 (i = 1, ..., N) and
PN

i=1 ωt+h,t,i = 1 to ensure that the combined

probability forecast is everywhere non-negative and integrates to one. The generalized linear

opinion pool adds an extra probability forecast, Ft+h,t,0, and takes the form

F̄ c =
NX
i=0

ωt+h,t,iFt+h,t,i. (76)

Under this scheme the weights are allowed to be negative ω0, ω1, ..., ωn ∈ [−1, 1] although

they still are restricted to sum to unity:
PN

i=0 ωt+h,t,i = 1.Ft+h,t,0 can be shown to exist under

conditions discussed by Genest and Zidek (1986).

Alternatively, one can adopt a logarithmic combination of densities

f̄ l =
NY
i=1

f
ωt+h,t,i
t+h,t,i /

Z NY
i=1

f
ωt+h,t,i
t+h,t,i dµ, (77)

where {ωt+h,t,1, ..., ωt+h,t,N} are weights chosen such that the integral in the denominator is

finite and µ is the underlying probability measure. This combination is less dispersed than

the linear combination and is also unimodal, c.f. Genest and Zidek (1986).

6.3 Bayesian Methods

Bayesian approaches have been widely used to construct combinations of probability fore-

casts. For example, Min and Zellner (1993) propose combinations based on posterior odds

ratios. Let p1 and p2 be the posterior probabilities of two models (a fixed parameter and

a time-varying parameter model in their application) while k = p1/p2 is the posterior odds

ratio of the two models. Assuming that the two models, M1 and M2, are exhaustive the

proposed combination scheme has a conditional mean of

E[y] = p1E[y|M1] + (1− p1)E[y|M2]

=
k

1 + k
E[y|M1] +

1

1 + k
E[y|M2]. (78)

Palm and Zellner (1992) propose a combination method that accounts for the full cor-

relation structure between the forecast errors. They model the forecast errors from the

individual models as follows (ignoring the subscript tracking the forecast horizon)

yt+1 − ŷit+1,t = θi + εit+1 + ηt+1, (79)
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where θi is the bias in the ith model’s forecast−reflecting perhaps the forecaster’s asymmet-

ric loss, c.f. Zellner (1986)− εit+1 is an idiosyncratic forecast error and ηt+1 is a common

component in the forecast errors reflecting an unpredictable component of the outcome vari-

able. It is assumed that both εit+1 ∼ N(0, σ2i ) and ηt+1 ∼ N(0, σ2η) are serially uncorrelated

(as well as mutually uncorrelated) Gaussian variables with zero mean.

For the case with zero bias (θi = 0), Winkler (1981) shows that when εit+1 + ηt+1 (i =

1, ..., N) has known covariance matrix, Σ0, the predictive density function of yt+1 given an

N-vector of forecasts ŷt+1,t = (ŷt+1,t,1, ..., ŷt+1,t,N)0 is Gaussian with mean ι0Σ−10 ŷt+1,t/ι
0Σ0ι

and variance ι0Σ−10 ι. When the covariance matrix of the N time-varying parts of the forecast

errors εit+1 + ηt+1, Σ, is unknown but has an inverted Wishart prior IW (Σ|Σ0, δ0, N) with

δ0 ≥ N , the predictive distribution of yT+1 given FT = {y1, ..., yT , ŷ2,1, ..., ŷT,T−1, ŷT+1,T )

is a univariate student-t with degrees of freedom parameter δ0 + N − 1, mean m∗ =

ι0Σ−10 ŷT+1,T/ι
0Σ−10 ι and variance (δ0 +N − 1)s∗2/(δ0 + N − 3), where s∗2 = (δ0 + (m∗ι −

ŷT+1,T )
0Σ−10 (m

∗ι− ŷT+1,T ))/(δ0 +N − 1)ι0Σ−10 ι.

Palm and Zellner (1992) extend these results to allow for a non-zero bias. Given a set of

N forecasts ŷt+1,t over T periods they express the forecast errors yt − ŷt,t−1,i = θi + εit + ηt

as a T ×N multivariate regression model:

Y = ιθ +U.

Suppose that the structure of the forecast errors (79) is reflected in a Wishart prior for Σ−1

with v degrees of freedom and covariance matrix Σ0 = Σε0+σ2η0ιι
0 (with known parameters

v,Σε0, σ
2
η0):

P (Σ−1) ∝ |Σ−1|(v−N−1)/2|Σ−10 |−v/2 exp(−
1

2
tr(Σ0Σ

−1)).

Assuming a sample of T observations and a likelihood function

L(θ,Σ−1|FT ) ∝ |Σ−1|−T/2 exp(−
1

2
tr(SΣ−1)− 1

2
tr((θ − θ̂)ι0ι(θ − θ̂)0Σ−1)),

where θ̂ = (ι
0
ι)−1ι0Y and S =(Y − ιθ̂0)0(Y − ιθ̂0), Palm and Zellner derives the predictive

distribution function of yT+1 given FT :

P (yT+1|FT ) ∝
£
1 + (yT+1 − µ̄)2/(T − 1)s∗∗2

¤−(T+v)/2
,
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where µ̄ = ι0S̄−1µ̂/ι0S̄−1ι, s∗∗2 =
£
T + 1 + T (µ̄ι− µ̂)0S̄−1(µ̄ι− µ̂)

¤
/(T (T−1)ι0S̄−1ι), µ̂ = ŷT+1−

θ̂ and S̄ = S+Σ0. This approach provides a complete solution to the forecast combination

problem that accounts for the joint distribution of forecast errors from the individual models.

6.3.1 Bayesian Model Averaging

Bayesian Model Averaging methods have been proposed by, inter alia, Leamer (1978), Rafter

et al (1997) and Hoeting et al. (1999) and are increasingly used in empirical studies, see e.g.

Jackson and Karlsson (2004). Under this approach, the predictive density can be computed

by averaging over a set of models, i = 1, ..., N , each characterized by parameters θi :

f (yt+h |Ft ) =
NX
i=1

Pr (Mi |Ft ) fi (yt+h,θi |Ft ) , (80)

where Pr (Mi |Ft ) is the posterior probability of model Mi obtained from the model priors

Pr (Mi), the priors for the unknown parameters, Pr (θi |Mi ), and the likelihood functions

of the models under consideration. fi (yt+h,θi |Ft ) is the predictive density of yt+h and θi

under the ith model, given information at time t, Ft. Note that unlike the combination

weights used for point forecasts such as (12), these weights do not account for correlations

between forecasts. However, the approach is quite general and does not require the use of

conjugate families of distributions. More details are provided in the handbook chapter by

Geweke and Whiteman (2005).

6.4 Combinations of Quantile Forecasts

Combinations of quantile forecasts do not pose any new issues except for the fact that

the associated loss function used to combine quantiles is typically no longer continuous and

differentiable. Instead predictions of the αth quantile can be related to the ‘tick’ loss function

Lα(et+h,t) = (α− 1et+h,t<0)et+h,t,

where 1et+h,t<0 is an indicator function taking a value of unity if et+h,t < 0, and is otherwise

zero, c.f. Giacomini and Komunjer (2005). Given a set of quantile forecasts qt+h,t,1, ...., qt+h,t,N ,
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quantile forecast combinations can then be based on formulas such as

qct+h,t =
NX
i=1

ωiqt+h,t,i,

possibly subject to constraints such as
PN

i=1 ωi = 1.

More caution should be exercised when forming combinations of interval forecasts. Sup-

pose that we have N interval forecasts each taking the form of a lower and an upper limit

{lt+h,t,i;ut+h,t,i}. While weighted averages {l̄ct+h,t,i; ūct+h,t,i}

l̄ct+h,t,i =
NX
i=1

ωl
t+h,t,ilt+h,t,i,

ūct+h,t,i =
NX
i=1

ωu
t+h,t,iut+h,t,i, (81)

may seem natural, they are not guaranteed to provide correct coverage rates. To see this,

consider the following two 97% confidence intervals for a normal mean

[ȳ − 2.58σ
T
, ȳ + 1.96

σ

T
],

[ȳ − 1.96σ
T
, ȳ + 2.58

σ

T
].

The average of these confidence intervals, [ȳ − 2.27 σ
T
, ȳ + 2.27 σ

T
] has a coverage of 97.7%.

Combining confidence intervals may thus change the coverage rate.14 The problem here is

that the underlying end-points for the two forecasts (i.e. ȳ − 2.58 σ
T
and ȳ − 1.96 σ

T
) are

not estimates of the same quantiles. While it is natural to combine estimates of the same

α−quantile, it is less obvious that combination of forecast intervals makes much sense unless

one can be assured that the end-points are lined up and are estimates of the same quantiles.

7 Empirical Evidence

The empirical literature on forecast combinations is voluminous and includes work in several

areas such as management science, economics, operations research, meteorology, psychology

and finance. The work in economics dates back to Reid (1968) and Bates and Granger

14I am grateful to Mark Watson for suggesting this example.
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(1969). Although details and results vary across studies, it is possible to extract some broad

conclusions frommuch of this work. Such conclusions come with a stronger than usual caveat

emptor since for each point it is possible to construct counter examples. This is necessarily

the case since findings depend on the number of models, N , (as well as their type), the

sample size, T , the extent of instability in the underlying data set and the structure of the

covariance matrix of the forecast errors (e.g., diagonal or with similar correlations).

Nevertheless, empirical findings in the literature on forecast combinations broadly suggest

that (i) simple combination schemes are difficult to beat. This is often explained by the im-

portance of parameter estimation error in the combination weights. Consequently, methods

aimed at reducing such errors (such as shrinkage or combination methods that ignore corre-

lations between forecasts) tend to perform well; (ii) forecasts based exclusively on the model

with the best in-sample performance often leads to poor out-of-sample forecasting perfor-

mance; (iii) trimming of the worst models and clustering of models with similar forecasting

performance prior to combination can yield considerable improvements in forecasting perfor-

mance, especially in situations involving large numbers of forecasts; (iv) shrinkage to simple

forecast combination weights often improves performance; and (v) some time-variation or

adaptive adjustment in the combination weights (or perhaps in the underlying models being

combined) can often improve forecasting performance. In the following we discuss each of

these points in more detail. The Section finishes with a brief empirical application to a large

macroeconomic data set from the G7 economies.

7.1 Simple Combination Schemes are hard to beat

It has often been found that simple combinations−that is, combinations that do not require

estimating many parameters such as arithmetic averages or weights based on the inverse

mean squared forecast error−do better than more sophisticated rules relying on estimating

optimal weights that depend on the full variance-covariance matrix of forecast errors, c.f.

Bunn (1985), Clemen and Winkler (1986), Dunis, Laws and Chauvin (2001), Figlewski and

Urich (1983) and Makridakis and Winkler (1983).

Palm and Zellner (1992, p. 699) concisely summarize the advantages of adopting a simple
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average forecast:

“1. Its weights are known and do not have to be estimated, an important advantage if

there is little evidence on the performance of individual forecasts or if the parameters of the

model generating the forecasts are time-varying;

2. In many situations a simple average of forecasts will achieve a substantial reduction

in variance and bias through averaging out individual bias;

3. It will often dominate, in terms of MSE, forecasts based on optimal weighting if proper

account is taken of the effect of sampling errors and model uncertainty on the estimates of

the weights.”

Despite the impressive empirical track record of equal-weighted forecast combinations

we stress that the theoretical justification for this method critically depends on the ratio of

forecast error variances not being too far away from unity and also depends on the correlation

between forecast errors not varying too much across pairs of models. Consistent with this,

Gupta and Wilton (1987) find that the performance of equal weighted combinations depends

strongly on the relative size of the variance of the forecast errors associated with different

forecasting methods. When these are similar, equal weights perform well, while when larger

differences are observed, differential weighting of forecasts is generally required.

Another reason for the good average performance of equal-weighted forecast combina-

tions is related to model instability. If model instability is sufficiently important to render

precise estimation of combination weights nearly impossible, equal-weighting of forecasts

may become an attractive alternative as pointed out by Figlewski and Urich (1983), Clemen

and Winkler (1986), Kang (1986), Diebold and Pauly (1987) and Palm and Zellner (1992).

Results regarding the performance of equal-weighted forecast combinations may be sen-

sitive to the loss function underlying the problem. Elliott and Timmermann (2003) find

in an empirical application that the optimal weights in a combination of inflation survey

forecasts and forecasts from a simple autoregressive model strongly depend on the degree of

asymmetry in the loss function. In the absence of loss asymmetry, the autoregressive forecast

does not add much information. However, under asymmetric loss (in either direction), both

sets of forecasts appear to contain information and have non-zero weights in the combined
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forecast. Their application confirms the frequent finding that equal-weights outperform esti-

mated optimal weights under MSE loss. However, it also shows very clearly that this result

can be overturned under asymmetric loss where use of estimated optimal weights may lead

to smaller average losses out-of-sample.

7.2 Choosing the forecast with the best track record is often a

bad idea

Many studies have found that combination dominates the best individual forecast in out-

of-sample forecasting experiments. For example, Makridakis et al (1982) report that a

simple average of six forecasting methods performed better than the underlying individual

forecasts. In simulation experiments Gupta andWilton (1987) also find combination superior

to the single best forecast. Makridakis and Winkler (1983) report large gains from simply

averaging forecasts from individual models over the performance of the best model. Hendry

and Clements (2002) explain the better performance of combination methods over the best

individual model by misspecification of the models caused by deterministic shifts in the

underlying data generating process. Naturally, the models cannot be misspecified in the

same way with regard to this source of change, or else diversification gains would be zero.

In one of the most comprehensive studies to date, Stock and Watson (2001) consider

combinations of a range of linear and nonlinear models fitted to a very large set of US

macroeconomic variables. They find strong evidence in support of using forecast combination

methods, particularly the average or median forecast and the forecasts weighted by their

inverse MSE. The overall dominance of the combination forecasts holds at the one, six and

twelve month horizons. Furthermore, the best combination methods combine forecasts across

many different time-series models.

Similarly, in a time-series simulation experiment, Winkler and Makridakis (1983) find

that a weighted average with weights inversely proportional to the sum of squared errors

or a weighted average with weights that depend on the exponentially discounted sum of

squared errors perform better than the best individual forecasting model, equal-weighting

or methods that require estimation of the full covariance matrix for the forecast errors.
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Aiolfi and Timmermann (2004) find evidence of persistence in the out-of-sample perfor-

mance of linear and non-linear forecasting models fitted to a large set of macroeconomic

time-series in the G7 countries. Models that were in the top and bottom quartiles when

ranked by their historical forecasting performance have a higher than average chance of re-

maining in the top and bottom quartiles, respectively, in the out-of-sample period. They

also find systematic evidence of ‘crossings’, where the previous best models become the worst

models in the future or vice versa, particularly among the linear forecasting models. They

find that many forecast combinations produce lower out-of-sample MSE than a strategy of se-

lecting the previous best forecasting model irrespective of the length of the backward-looking

window used to measure past forecasting performance.

7.3 Trimming of the worst models is often required

Trimming of forecasts can occur at two levels. First, it can be adopted as a form of outlier

reduction rule (c.f. Chan, Stock and Watson (1999)) at the initial stage that produces

forecasts from the individual models. Second it can be used in the combination stage where

models deemed to be too poor may be discarded. Since the first form of trimming has

more to do with specification of the individual models underlying the forecast combination,

we concentrate on the latter form of trimming which has been used successfully in many

studies. Most obviously, when many forecasts get a weight close to zero, improvements due

to reduced parameter estimation errors can be gained by dropping such models.

Winkler and Makridakis (1983) find that including very poor models in an equal-weighted

combination can substantially worsen forecasting performance. Stock and Watson (2003)

also find that the simplest forecast combination methods such as trimmed equal weights

and slowly moving weights tend to perform well and that such combinations do better than

forecasts from a dynamic factor model.

In their thick modeling approach, Granger and Jeon (2004) recommend trimming five or

ten percent of the worst models, although the extent of the trimming will depend on the

application at hand.

More aggressive trimming has also been proposed. In a forecasting experiment involving
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the prediction of stock returns by means of a large set of forecasting models, Aiolfi and

Favero (2003) investigate the performance of a large set of trimming schemes. Their findings

indicate that the best performance is obtained when the top 20% of the forecasting models is

combined in the forecast so that 80% of the models (ranked by their R2-value) are trimmed.

7.4 Shrinkage often improves performance

By and large shrinkage methods have performed quite well in empirical studies. In an

empirical exercise containing four real-time forecasts of nominal and real GNP, Diebold

and Pauly (1990) report that shrinkage weights systematically improve upon the forecasting

performance over methods that select a single forecast or use least squares estimates of the

combination weights. They direct the shrinkage towards a prior reflecting equal weights and

find that the optimal degree of shrinkage tends to be large. Similarly, Stock and Watson

(2003) find that shrinkage methods perform best when the degree of shrinkage (towards

equal weights) is quite strong.

Aiolfi and Timmermann (2004) explore persistence in the performance of forecasting

models by proposing a set of combination strategies that first pre-select models into either

quartiles or clusters on the basis of the distribution of past forecasting performance across

models, pool forecasts within each cluster and then estimate optimal combination weights

that are shrunk towards equal weights. These conditional combination strategies lead to

better average forecasting performance than simpler strategies in common use such as using

the single best model or averaging across all forecasting models or a small subset of these.

Elliott (2004) undertakes a simulation experiment where he finds that although shrinkage

methods always dominate least squares estimates of the combination weights, the perfor-

mance of the shrinkage method can be quite sensitive to the shrinkage parameter and that

none of the standard methods for determining this parameter work particularly well.

Given the similarity of the mean-variance optimization problem in finance to the forecast

combination problem, it is not surprising that empirical findings in finance mirror those in the

forecast combination literature. For example, it has generally been found in applications to

asset returns that sample estimates of portfolio weights that solve a standard mean-variance
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optimization problem are extremely sensitive to small changes in sample means. In addition

they are highly sensitive to variations in the inverse of the covariance matrix estimate, Σ̂−1.

Jobson and Korkie (1980) show that the sample estimate of the optimal portfolio weights

can be characterized as the ratio of two estimators, each of whose first and second moments

can be derived in closed form. They use Taylor series expansions to derive an approximate

solution for the first two moments of the optimal weights, noting that higher order mo-

ments can be characterized under additional normality assumptions. They also derive the

asymptotic distribution of the portfolio weights for the case where N is fixed and T goes to

infinity. In simulation experiments they demonstrate that the sample estimates of the port-

folio weights are highly volatile and can take extreme values that lead to poor out-of-sample

performance.

It is widely recognized in finance that imposing portfolio weight constraints generally

leads to improved out-of-sample performance of mean-variance efficient portfolios. For ex-

ample, Jagannathan and Ma (2003) find empirically that once such constraints are imposed

on portfolio weights, other refinements of covariance matrix estimation have little additional

effect on the variance of the optimal portfolio. Since they also demonstrate that portfolio

weight constraints can be interpreted as a form of shrinkage, these findings lend support to

using shrinkage methods as well.

Similarly, Ledoit and Wolf (2003) report that the out-of-sample standard deviation of

portfolio returns based on a shrunk covariance matrix is significantly lower than the standard

deviation of portfolio returns based on more conventional estimates of the covariance matrix.

Notice that shrinkage and trimming tend to work in opposite directions - at least if the

shrinkage is towards equal weights. Shrinkage tends to give more similar weights to all

models whereas trimming completely discards a subset of models. If some models produce

extremely poor out-of-sample forecasts, shrinkage can be expected to perform poorly if the

combined forecast is shrunk too aggressively towards an equal-weighted average. For this

reason, shrinkage preceded by a trimming step may work well in many situations.
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7.5 Limited time-variation in the combination weights may be

helpful

Empirical evidence on the value of allowing for time-varying combinations in the combination

weights is somewhat mixed. Time-variations in forecasts can be introduced either in the

individual models underlying the combination or in the combination weights themselves and

both approaches have been considered. The idea of time-varying forecast combinations goes

back to the advent of the combination literature in economics. Bates and Granger (1969)

used combination weights that were adaptively updated as did many subsequent studies

such as Winkler and Makridakis (1983). Newbold and Granger (1974) considered values

of the window length, v, in (47) and (48) between one and twelve periods and values of

the discounting factor, λ, in (50) and (51) between 1 and 2.5. Their results suggested

that there is an interior optimum around v = 6, α = 0.5 for which the adaptive updating

method (49) performs best whereas the rolling window combinations generally do best for

the longest windows, i.e., v = 9 or v = 12, and the best exponential discounting was found

for λ around 2 or 2.5. This is consistent with the finding by Bates and Granger (1969)

that high values of the discounting factor tend to work best. A method that combines a

Holt-Winters and stepwise autoregressive forecast was found to perform particularly well.

Winkler and Makridakis (1983) report similar results and also find that the longer windows,

v, in equations such as (47) and (48) tend to produce the most accurate forecasts, although

in their study the best results among the discounting methods were found for relatively low

values of the discount factor.

In a combination of forecasts from the Survey of Professional Forecasters and forecasts

from simple autoregressive models applied to six macroeconomic variables, Elliott and Tim-

mermann (2003) investigate the out-of-sample forecasting performance produced by different

constant and time-varying forecasting schemes such as (57). Compared to a range of other

time-varying forecast combination methods, a two-state regime switching method produces a

lower MSFE for four or five out of six cases. They argue that the evidence suggests that the

best forecast combination method allows the combination weights to vary over time but in a

mean-reverting manner. Unsurprisingly, allowing for three states leads to worse forecasting
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performance for four of the six variables under consideration.

Stock and Watson (2004) report that the combined forecasts that perform best in their

study are the time-varying parameter (TVP) forecast with very little time variation, the

simple mean and a trimmed mean. They conclude that “the results for the methods designed

to handle time variation are mixed. The TVP forecasts sometimes work well but sometimes

work quite poorly and in this sense are not robust; the larger the amount of time variation,

the less robust are the forecasts. Similarly, the discounted MSE forecasts with the most

discounting.... are typically no better than, and sometimes worse than, their counterparts

with less or no discounting.”

This leads them to conclude that “This “forecast combination puzzle” - the repeated

finding that simple combination forecasts outperform sophisticated adaptive combination

methods in empirical applications - is, we think, more likely to be understood in the context

of a model in which there is widespread instability in the performance of individual forecast,

but the instability is sufficiently idiosyncratic that the combination of these individually

unstably performing forecasts can itself be stable.”

7.6 Empirical Application

To demonstrate the practical use of forecast combination techniques, we consider an empirical

application to the seven-country data set introduced in Stock and Watson (2004). This data

comprises up to 43 quarterly time series for each of the G7 economies (Canada, France,

Germany, Italy, Japan, UK, and the US) over the period 1959.I — 1999.IV. Observations on

some variables are only available for a shorter sample. The 43 series include the following

categories: Asset returns, interest rates and spreads; measures of real economic activity;

prices and wages; and various monetary aggregates. The data has been transformed as

described in Stock and Watson (2004) and Aiolfi and Timmermann (2004) to deal with

seasonality, outliers and stochastic trends, yielding between 46 and 71 series per country.

Forecasts are generated from bivariate autoregressive models of the type

yt+h = c+A (L) yt +B (L)xt + t+h, (82)
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where xt is a regressor other than yt. Lag lengths are selected recursively using the BIC with

between 1 and 4 lags of xt and between 0 and 4 lags of yt. All parameters are estimated

recursively using an expanding data window. For more details, see Aiolfi and Timmermann

(2004). The average number of forecasting models entertained ranges from 36 for France,

through 67 for the US.

We consider three trimmed forecast combination schemes that take simple averages over

the top 25%, top 50% and top 75% of forecast models ranked recursively by means of the

forecasting performance up to the point in time of the forecast. In addition we report

the performance of the simple average (mean) forecast, the median forecast, the triangular

forecast combination scheme (38) and the discounted mean squared forecast combination

(50) with λ = 1 so the forecasting models get weighted by the inverse of their MSFE-values.

Out-of-sample forecasting performance is reported relative to the forecasting performance of

the previous best (PB) model selected according to the forecasting performance up to the

point where a new out-of-sample forecast is generated. This means that numbers below one

indicate better MSFE performance while numbers above one indicate worse performance

relative to this benchmark. The out-of-sample period is 1970Q1-199Q4.

Table 2 reports the results.15 This table shows results averaged across variables but not

across countries. We show results for four forecast horizons, namely h = 1, 2, 4 and 8. For

each country it is clear that the simple trimmed forecast combinations perform very well

and generally are better the fewer models that get included, i.e. the more aggressive the

trimming. Furthermore, gains can be quite large−on the order of 10-15% relative to the

forecast from the previous best model. The median forecast performs better on average than

the previous best model, but is generally worse compared to some of the other combination

schemes as is the discounted mean squared forecast error weighting scheme. Results are

quite consistent across the seven economies.

Table 3 shows results averaged across countries but for the four separate categories of

variables. The results suggest that the gains from combination tends to be greater for the

economic activity variables and somewhat smaller for the monetary aggregates. There is

15I am grateful to Marco Aiolfi for carrying out these calculations.
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also a systematic tendency that the forecasting performance of the combinations relative to

the best single model improves as the forecast horizon is extended from one-quarter to two

or more quarters.

How consistent are these results across countries and variables? To investigate this ques-

tion, Tables 4, 5 and 6 show disaggregate results for the US, Japan and France. Considerable

variations in gains from forecast combinations emerge across countries, variables and hori-

zons. Table 4 shows that gains in the US are very large for the economic activity variables

but somewhat smaller for returns and interest rates and monetary aggregates. Compared

to the US results, in Japan the best combinations perform relatively worse for economic

activity variables and prices and wages but relatively better for the monetary aggregates

and returns and interest rates. Finally in the case of France, we uncover a number of cases

where, for the forecasts of monetary aggregates, in fact none of the combinations beat the

previous best model.

8 Conclusion

In his classical survey of forecast combinations, Clemen (1989, p. 567) concluded that “Com-

bining forecasts has been shown to be practical, economical and useful. Underlying theory

has been developed, and many empirical tests have demonstrated the value of composite

forecasting. We no longer need to justify this methodology.”

In the early days of the combination literature the set of forecasts was often taken as

given, but recent experiments undertaken by Stock and Watson (2001, 2004) and Marcellino

(2004) let the forecast user control both the number of forecasting models as well as the

types of forecasts that are being combined. This opens a whole new set of issues: is it best

to combine forecasts from linear models with different regressors or is it better to combine

forecasts produced by different families of models, e.g. linear and nonlinear, or maybe

the same model using estimators with varying degrees of robustness? The answer to this

depends of course on the type of misspecification or instability the model combination can

hedge against. Unfortunately this is typically unknown so general answers are hard to come

by.
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Since then, combination methods have gained even more ground in the forecasting litera-

ture, largely because of the strength of the empirical evidence suggesting that these methods

systematically perform better than alternatives based on forecasts from a single model. Sta-

ble, equal weights have so far been the workhorse of the combination literature and have

set a benchmark that has proved surprisingly difficult to beat. This is surprising since−on

theoretical grounds−one would not expect any particular combination scheme to be domi-

nant, since the various methods incorporate restrictions on the covariance matrix that are

designed to trade off bias against reduced parameter estimation error. The optimal bias

can be expected to vary across applications, and the scheme that provides the best trade-off

is expected to depend on the sample size, the number of forecasting models involved, the

ratio of the variance of individual models’ forecast errors as well as their correlations and

the degree of instability in the underlying data generating process.

Current research also provides encouraging pointers towards modifications of this simple

strategy that can improve forecasting. Modest time-variations in the combination weights

and trimming of the worst models have generally been found to work well, as has shrinkage

towards equal weights or some other target requiring the estimation of a relatively mod-

est number of parameters, particularly in applications with combinations of a large set of

forecasts.
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Table 2: Linear Models: Out-of-sample forecasting performance of combination
schemes applied to linear models. Each panel reports the out-of-sample MSFE - rela-
tive to that of the previous best model using an expanding window - averaged across
variables, for different combination strategies, countries and forecast horizons (h).

h=1

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.88 0.89 0.90 0.90 0.93 0.90 0.91 1.00
UK 0.91 0.91 0.92 0.92 0.93 0.91 0.92 1.00
Germany 0.92 0.93 0.93 0.92 0.95 0.92 0.92 1.00
Japan 0.93 0.94 0.94 0.94 0.97 0.94 0.94 1.00
Italy 0.90 0.90 0.91 0.91 0.93 0.90 0.91 1.00
France 0.93 0.93 0.94 0.94 0.96 0.93 0.94 1.00
Canada 0.91 0.91 0.92 0.92 0.94 0.91 0.92 1.00

h=2

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.85 0.86 0.86 0.86 0.88 0.86 0.86 1.00
UK 0.90 0.90 0.90 0.91 0.92 0.90 0.91 1.00
Germany 0.90 0.90 0.91 0.91 0.93 0.90 0.91 1.00
Japan 0.90 0.91 0.92 0.92 0.94 0.91 0.92 1.00
Italy 0.89 0.89 0.89 0.89 0.90 0.89 0.89 1.00
France 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
Canada 0.90 0.90 0.91 0.90 0.94 0.90 0.90 1.00

h=4

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.87 0.87 0.87 0.87 0.90 0.87 0.87 1.00
UK 0.86 0.86 0.86 0.86 0.87 0.86 0.86 1.00
Germany 0.90 0.90 0.91 0.91 0.92 0.90 0.91 1.00
Japan 0.91 0.93 0.95 0.96 0.98 0.94 0.97 1.00
Italy 0.86 0.85 0.85 0.85 0.86 0.85 0.85 1.00
France 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
Canada 0.85 0.85 0.86 0.86 0.88 0.85 0.86 1.00

h=8

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

US 0.85 0.85 0.86 0.86 0.88 0.85 0.86 1.00
UK 0.88 0.88 0.89 0.89 0.91 0.88 0.89 1.00
Germany 0.90 0.91 0.91 0.91 0.92 0.90 0.91 1.00
Japan 0.85 0.85 0.85 0.85 0.86 0.85 0.85 1.00
Italy 0.89 0.89 0.90 0.90 0.91 0.89 0.90 1.00
France 0.90 0.90 0.90 0.90 0.92 0.90 0.90 1.00
Canada 0.86 0.87 0.87 0.87 0.88 0.86 0.86 1.00



Table 3: Linear Models Out-of-sample forecasting performance of combination
schemes applied to linear models. Each panel reports the out-of-sample MSFE -
relative to that of the previous best model using an expanding window - averaged
across countries, for different combination strategies, categories of economic vari-
ables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.91 0.92 0.92 0.92 0.94 0.92 0.92 1.00
h=2 0.89 0.89 0.89 0.89 0.91 0.89 0.90 1.00
h=4 0.88 0.88 0.88 0.88 0.90 0.88 0.89 1.00
h=8 0.87 0.88 0.88 0.88 0.90 0.88 0.88 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.92 0.92 0.92 0.92 0.94 0.92 0.92 1.00
h=2 0.89 0.90 0.90 0.90 0.91 0.90 0.90 1.00
h=4 0.88 0.89 0.89 0.89 0.91 0.88 0.89 1.00
h=8 0.87 0.87 0.87 0.87 0.89 0.87 0.87 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.89 0.91 0.92 0.93 0.95 0.91 0.93 1.00
h=2 0.86 0.88 0.89 0.89 0.93 0.88 0.90 1.00
h=4 0.85 0.88 0.89 0.89 0.93 0.88 0.90 1.00
h=8 0.87 0.89 0.90 0.91 0.95 0.89 0.90 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.90 0.91 0.91 0.91 0.93 0.91 0.91 1.00
h=2 0.89 0.89 0.89 0.89 0.91 0.89 0.89 1.00
h=4 0.86 0.86 0.87 0.87 0.88 0.86 0.87 1.00
h=8 0.87 0.86 0.86 0.86 0.88 0.86 0.86 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.91 0.92 0.93 0.93 0.96 0.92 0.93 1.00
h=2 0.89 0.89 0.89 0.89 0.90 0.89 0.89 1.00
h=4 0.90 0.90 0.90 0.89 0.90 0.89 0.89 1.00
h=8 0.90 0.90 0.90 0.90 0.91 0.90 0.90 1.00



Table 4: Linear Models: US Out-of-sample forecasting performance of combina-
tion schemes applied to linear models. Each panel reports the out-of-sample MSFE
- relative to that of the previous best model using an expanding window - aver-
aged across variables, for different combination strategies, categories of economic
variables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.88 0.89 0.90 0.90 0.93 0.90 0.91 1.00
h=2 0.85 0.86 0.86 0.86 0.88 0.86 0.86 1.00
h=4 0.87 0.87 0.87 0.87 0.90 0.87 0.87 1.00
h=8 0.85 0.85 0.86 0.86 0.88 0.85 0.86 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.89 0.89 0.89 0.89 0.91 0.89 0.89 1.00
h=2 0.87 0.87 0.88 0.88 0.90 0.87 0.88 1.00
h=4 0.90 0.90 0.90 0.90 0.92 0.90 0.90 1.00
h=8 0.86 0.86 0.86 0.86 0.87 0.86 0.86 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.86 0.90 0.91 0.92 0.94 0.90 0.92 1.00
h=2 0.77 0.80 0.81 0.82 0.87 0.80 0.82 1.00
h=4 0.80 0.83 0.84 0.84 0.90 0.83 0.84 1.00
h=8 0.82 0.86 0.88 0.90 0.98 0.86 0.88 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.86 0.86 0.87 0.87 0.90 0.86 0.87 1.00
h=2 0.84 0.85 0.84 0.85 0.86 0.84 0.85 1.00
h=4 0.83 0.83 0.83 0.82 0.83 0.83 0.82 1.00
h=8 0.80 0.79 0.79 0.79 0.81 0.79 0.79 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.92 0.95 0.97 0.98 1.03 0.96 0.98 1.00
h=2 0.88 0.88 0.87 0.87 0.88 0.87 0.88 1.00
h=4 0.87 0.88 0.88 0.88 0.90 0.88 0.88 1.00
h=8 0.93 0.92 0.93 0.93 0.94 0.92 0.93 1.00



Table 5: Linear Models: Japan Out-of-sample forecasting performance of com-
bination schemes applied to linear models. Each panel reports the out-of-sample
MSFE - relative to that of the previous best model using an expanding window - av-
eraged across variables, for different combination strategies, categories of economic
variables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.93 0.94 0.94 0.94 0.97 0.94 0.94 1.00
h=2 0.90 0.91 0.92 0.92 0.94 0.91 0.92 1.00
h=4 0.91 0.93 0.95 0.96 0.98 0.94 0.97 1.00
h=8 0.85 0.85 0.85 0.85 0.86 0.85 0.85 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.94 0.95 0.96 0.96 1.00 0.95 0.96 1.00
h=2 0.92 0.93 0.93 0.93 0.95 0.93 0.94 1.00
h=4 0.91 0.93 0.94 0.95 0.98 0.93 0.96 1.00
h=8 0.81 0.81 0.82 0.82 0.83 0.81 0.82 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.97 0.99 1.00 1.00 1.02 0.99 1.00 1.00
h=2 0.91 0.93 0.94 0.95 0.96 0.93 0.95 1.00
h=4 0.99 1.00 1.03 1.05 1.06 1.01 1.06 1.00
h=8 0.89 0.88 0.88 0.89 0.89 0.88 0.88 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.90 0.92 0.93 0.92 0.94 0.92 0.92 1.00
h=2 0.91 0.93 0.93 0.93 0.97 0.92 0.93 1.00
h=4 0.90 0.95 0.98 0.99 1.03 0.96 1.00 1.00
h=8 0.90 0.90 0.89 0.89 0.91 0.89 0.90 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.89 0.90 0.89 0.89 0.91 0.89 0.89 1.00
h=2 0.85 0.85 0.85 0.85 0.86 0.85 0.85 1.00
h=4 0.87 0.87 0.87 0.87 0.88 0.87 0.86 1.00
h=8 0.84 0.83 0.83 0.83 0.83 0.83 0.83 1.00



Table 6: Linear Models: France Out-of-sample forecasting performance of com-
bination schemes applied to linear models. Each panel reports the out-of-sample
MSFE - relative to that of the previous best model using an expanding window - av-
eraged across variables, for different combination strategies, categories of economic
variables and forecast horizons (h).

All

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.93 0.93 0.94 0.94 0.96 0.93 0.94 1.00
h=2 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
h=4 0.88 0.88 0.88 0.88 0.89 0.88 0.88 1.00
h=8 0.90 0.90 0.90 0.90 0.92 0.90 0.90 1.00

Returns and Interest Rates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.94 0.94 0.95 0.94 0.97 0.94 0.95 1.00
h=2 0.89 0.89 0.89 0.89 0.89 0.89 0.89 1.00
h=4 0.89 0.89 0.89 0.89 0.90 0.89 0.89 1.00
h=8 0.89 0.89 0.90 0.89 0.91 0.89 0.90 1.00

Economic Activity

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.80 0.80 0.81 0.82 0.85 0.80 0.83 1.00
h=2 0.75 0.76 0.77 0.77 0.79 0.76 0.77 1.00
h=4 0.78 0.77 0.77 0.78 0.78 0.77 0.77 1.00
h=8 0.84 0.84 0.84 0.84 0.86 0.83 0.84 1.00

Prices and Wages

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.96 0.96 0.96 0.97 0.98 0.96 0.97 1.00
h=2 0.90 0.90 0.91 0.90 0.92 0.90 0.90 1.00
h=4 0.86 0.85 0.85 0.85 0.86 0.85 0.85 1.00
h=8 0.91 0.90 0.90 0.91 0.93 0.90 0.91 1.00

Monetary Aggregates

TMB25% TMB50% TMB75% Mean Median TK DMSFE PB

h=1 0.88 0.89 0.91 0.91 0.94 0.90 0.91 1.00
h=2 0.85 0.86 0.86 0.87 0.90 0.86 0.87 1.00
h=4 1.06 1.07 1.08 1.09 1.11 1.07 1.09 1.00
h=8 0.99 1.01 1.01 1.01 1.05 1.00 1.01 1.00
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Abstract 
 

We review key aspects of forecasting using nonlinear models. Because economic models 
are typically misspecified, the resulting forecasts provide only an approximation to the 
best possible forecast. Although it is in principle possible to obtain superior 
approximations to the optimal forecast using nonlinear methods, there are some 
potentially serious practical challenges. Primary among these are computational 
difficulties, the dangers of overfit, and potential difficulties of interpretation. In this 
chapter we discuss these issues in detail. Then we propose and illustrate the use of a new 
family of methods (QuickNet) that achieves the benefits of using a forecasting model that 
is nonlinear in the predictors while avoiding or mitigating the other challenges to the use 
of nonlinear forecasting methods.  
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1. Introduction 
 
In this chapter we focus on obtaining a point forecast or prediction of a “target variable” 
Yt given a k × 1 vector of “predictors” Xt (with k a finite integer). For simplicity, we take 
Yt to be a scalar. Typically, Xt is known or observed prior to the realization of Yt, so the 
“t” subscript on Xt designates the observation index for which a prediction is to be made, 
rather than the time period in which Xt is first observed. The discussion to follow does not 
strictly require this time precedence, although we proceed with this convention implicit. 
Thus, in a typical time-series application, Xt may contain lagged values of Yt, as well as 
values of other variables known prior to time t. 
 
Although we use the generic observation index t throughout, it is important to stress that 
our discussion applies quite broadly, and not just to pure time-series forecasting. An 
increasingly important use of prediction models involves cross-section or panel data. In 
these applications, Yt denotes the outcome variable for a generic individual t and Xt 
denotes predictors for the individual’s outcome, observable prior to the outcome. Once 
the prediction model has been constructed using the available cross-section or panel data, 
it is then used to evaluate new cases whose outcomes are unknown.  
 
For example, banks or other financial institutions now use prediction models extensively 
to forecast whether a new applicant for credit will be a good risk or not. If the prediction 
is favorable, then credit will be granted; otherwise, the application may be denied or 
referred for further review. These prediction models are built using cross-section or panel 
data collected by the firm itself and/or purchased from third party vendors. These data 
sets contain observations on individual attributes Xt, corresponding to information on the 
application, as well as subsequent outcome information Yt, such as late payment or 
default. The reader may find it helpful to keep such applications in mind in what follows 
so as not to fall into the trap of interpreting the following discussion too narrowly. 
 
Because of our focus on these broader applications of forecasting, we shall not delve very 
deeply into the purely time-series aspects of the subject. Fortunately, the chapter in this 
volume by Terasvirta (in press) contains an excellent treatment of these issues. In 
particular, there are a number of interesting and important issues that arise when 
considering multi-step-ahead time-series forecasts, as opposed to single-step-ahead 
forecasts. In time-series application of the results here, we implicitly operate with the 
convention that multi-step forecasts are constructed using the direct approach in which a 
different forecast model is constructed for each forecast horizon. The reader is urged to 
consult Terasvirta’s chapter for a wealth of time-series material complementary to the 
present chapter. 
 
There is a vast array of methods for producing point forecasts, but for convenience, 
simplicity, and practical relevance we restrict our discussion to point forecasts 
constructed as approximations to the conditional expectation (mean) of Yt given Xt,  
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µ (Xt) ≡  E(Yt | Xt). 

 
It is well known that µ (Xt)  provides the best possible prediction of Yt given Xt in terms 
of prediction mean squared error (PMSE), provided Yt has finite variance. That is, the 
function µ  solves the problem 
 

min m ∈  M  E[ (Yt – m(Xt))2 ],    (1) 
 
where M is the collection of functions m of Xt having finite variance, and E is the 
expectation taken with respect to the joint distribution of Yt and Xt. 
 
By restricting attention to forecasts based on the conditional mean, we neglect forecasts 
that arise from the use of loss functions other than PMSE, such as prediction mean 
absolute error, which yields predictions based on the conditional median, or its 
asymmetric analogs, which yield predictions based on conditional quantiles (e.g., 
Koenker and Basset, 1978; Kim and White, 2003). Although we provide no further 
explicit discussion here, the methods we describe for obtaining PMSE-based forecasts do 
have immediate analogs for other such important loss functions. 
 
Our focus on PMSE leads naturally to methods of least-squares estimation, which 
underlie the vast majority of forecasting applications, providing our discussion with its 
intended practical relevance. 
 
If µ were known, then we could finish our exposition here in short order: µ  provides the 
PMSE-optimal method for constructing forecasts and that is that. Or, if we knew the 
conditional distribution of Yt given Xt, then µ  would again be known, as it can be 
obtained from this distribution. Typically, however, we do not have this knowledge. 
Confronted with such ignorance, forecasters typically proceed by specifying a model for 
µ, that is, a collection M (note our notation above) of functions of Xt. If µ  belongs to 
M, then we say the model is “correctly specified.” (So, for example, if Yt has finite 
variance, then the model M of functions m of Xt having finite variance is correctly 
specified, as µ is in fact such a function.) If M is sufficiently restricted that µ  does not 
belong to M, then we say that the model is “misspecified.”  
 
Here we adopt the pragmatic view that either out of convenience or ignorance (typically 
both) we work with a misspecified model for µ. By taking M to be as specified in (1), 
we can generally avoid misspecification, but this is not necessarily convenient, as the 
generality of this choice poses special challenges for statistical estimation. (This choice 
for M leads to nonparametric methods of statistical estimation.) Restricting M leads to 
more convenient estimation procedures, and it is especially convenient, as we do here, to 
work with parametric models for µ. Unfortunately, we rarely have enough information 
about µ  to correctly specify a parametric model for it.   
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When one’s goal is to make predictions, the use of a misspecified model is by no means 
fatal. Our predictions will not be as good as they would be if µ  were accessible, but to 
the extent that we can approximate µ  more or less well, then our predictions will still be 
more or less accurate. As we discuss below, any model M provides us with a means of 
approximating µ, and it is for this reason that we declared above that our focus will be on 
“forecasts constructed as approximations” to µ. The challenge then is to choose M 
suitably, where by “suitably,” we mean in such a way as to conveniently provide a good 
approximation to µ. Our discussion to follow elaborates our notions of convenience and 
goodness of approximation. 
 
2. Linearity and Nonlinearity 
 
2.1 Linearity 
 
Parametric models are models that are indexed by a finite dimensional parameter vector. 
An important and familiar example is the linear parametric model. This model is 
generated by the function  l(x, β) ≡  x’β. We call β  a “parameter vector,” and, as β 
conforms with the predictors (represented here by x), we have β  belonging to the 
“parameter space” Rk, k-dimensional real Euclidean space. The linear parametric model 
is then the collection of functions 
 

L  { m: R≡ k  R |   m(x) = l(x, β) → ≡  x’β,  β ∈  Rk }. 
 
We call the function l the “model parameterization,” or simply the “parameterization.” 
We see here that each model element l( ., β) of L is a linear function of x. It is standard to 
set the first element of x to the constant unity, so in fact l( ., β) is an affine function of the 
non-constant elements of x. For simplicity, we nevertheless refer to l( ., β) in this context 
as “linear in x,” and we call forecasts based on a parameterization linear in the predictors  
a “linear forecast.”  
 
For fixed x, the parameterization l( x, . ) is also linear in the parameters. In discussing 
linearity or nonlinearity of the parameterization (equivalently, of the parametric model), 
it is important generally to specify to whether one is referring to the predictors x or to the 
parameters β. Here, however, this doesn’t matter, as we have linearity either way. 
 
Solving problem (1) with M = L, that is, solving 
 

min m ∈  L  E[ (Yt – m (Xt))2 ], 
 

yields l( ., β*), where 
 

β* = argmin β ∈  R
k   E [(Yt – Xt’β )2 ] .          (2) 
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We call β* the “PMSE-optimal coefficient vector.” This delivers not only the best 
forecast for Yt given Xt  based on the linear model L, but also the optimal linear 
approximation to µ, as discussed by White (1980). 
 
To establish this optimal approximation property, observe that 
 
         E [(Yt – Xt’β )2 ] = E [(Yt – µ ( Xt) +  µ ( Xt) – Xt’β )2 ] 
 

= E [(Yt – µ ( Xt))2 ] + E [(µ ( Xt) – Xt’β )2 ] + 2 E [(Yt – µ ( Xt)) (µ ( Xt) – Xt’β ) ] 
 

= E [(Yt – µ ( Xt))2 ] + E [(µ ( Xt) – Xt’β )2 ]. 
 
The final equality follows from the fact that for all β 
 

E [(Yt – µ ( Xt)) (µ ( Xt) – Xt’β ) ] 
 

   = E [ E[ (Yt – µ ( Xt)) (µ ( Xt) – Xt’β ) | Xt] ] 
 

   = E [ E[ (Yt – µ ( Xt)) |  Xt] (µ ( Xt) – Xt’β ) ] 
 

   = 0, 
 
because E[ (Yt – µ ( Xt)) |  Xt] = 0. Thus, 
 

E [(Yt – Xt’β )2 ] = E [(Yt – µ ( Xt))2 ] + E [(µ ( Xt) – Xt’β )2 ] 
 

   =   + 2
*σ ∫ ( µ (x) – x’β )2 dH(x),          (3) 

 
where dH denotes the joint density of Xt and denotes the  “pure PMSE,”  E [(Y2

*σ 2
*σ ≡ t – 

µ ( Xt))2 ]. 
 

From (3) we see that the PMSE can be decomposed into two components, the pure PMSE 
, associated with the best possible prediction (that based on µ ), and the 

approximation mean squared error (AMSE), 

2
*σ

∫ ( µ (x) – x’β )2 dH(x),  for x’β  as an 

approximation to µ(x) . The AMSE is weighted by dH, the joint density of Xt, so that the 
squared approximation error is more heavily weighted in regions where Xt is likely to be 
observed and less heavily weighted in areas where Xt is less likely to be observed. This 
weighting forces the optimal approximation to be better in more frequently observed 
regions of the distribution of Xt, at the cost of being less accurate in less frequently 
observed regions of the distribution of Xt. 
 
It follows that to minimize PMSE it is necessary and sufficient to minimize AMSE. That 
is, because β* minimizes PMSE, it also satisfies 
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β* = argmin β ∈  R

k  ∫ ( µ (x) – x’β )2 dH(x). 
 
This shows that β* is the vector delivering the best possible approximation of the form 
x’β  to the PMSE-best predictor µ (x) of Yt given Xt = x, where the approximation is best 
in the sense of AMSE. For brevity, we refer to this as the “optimal approximation 
property.” 
 
Note that AMSE is non-negative. It is minimized at zero if and only if for some β ο, µ (x) 
= x’β ο (a.s-H), that is, if and only if L is correctly specified. In this case,  β* = β ο.  
 
An especially convenient property of β* is that it can be represented in closed form. The 
first order conditions for β* from problem (2) can be written as 
 

E ( Xt Xt’) β* - E ( Xt Yt ) = 0. 
 
Define M  E ( X≡ t Xt’) and L ≡  E ( Xt Yt ). If M is nonsingular then we can solve for β* 
to obtain the desired closed form expression  
 

β* = M -1 L. 
 

The optimal point forecast based on the linear model L given predictors Xt is then given 
simply by 
 

Yt* = l( Xt, β*) = Xt’β*. 
 
 
In forecasting applications we typically have a sample of data that we view as 
representative of the underlying population distribution generating the data (the joint 
distribution of Yt and Xt) , but the population distribution is  itself unknown. Typically, 
we do not even know the expectations M and L required to compute β*, so the optimal 
point forecast Yt* is also unknown. Nevertheless, we can obtain a computationally 
convenient estimator of β* from the sample data using the “plug-in principle.” That is, 
we replace the unknown M and L by sample analogs ≡M̂ ∑ =

− =
n

t tt XXn
1

1 ' X’X / n and 

≡L̂ ∑ =
− =

n

t ttYXn
1

1  X’Y / n, where X is the n ×  k matrix with rows Xt’, Y is the n ×  1 
vector with elements Yt, and n is the number of sample observations available for 
estimation. This yields the estimator 
 

LM ˆˆˆ 1−≡β  , 
 
which we immediately recognize to be the  ordinary least squares (OLS) estimator.  
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To keep the scope of our discussion tightly focused on the more practical aspects of the 
subject at hand, we shall not pay close attention to technical conditions underlying the 
statistical properties of  or the other estimators we discuss, and we will not state formal 
theorems here. Nevertheless, any claimed properties of the methods discussed here can be 
established under mild regularity conditions relevant for practical applications. In 
particular, under conditions ensuring that the law of large numbers holds (i.e. M 
a.s., L a.s.), it follows that as n 

β̂

→M̂
→L̂ ,∞→   a.s., that is,  consistently 

estimates β*. Asymptotic normality can also be straightforwardly established for under 
conditions sufficient to ensure the applicability of a suitable central limit theorem. (See 
White (2001, chs.2-5) for treatment of these issues.) 

*ˆ ββ → β̂
β̂

 
For clarity and notational simplicity, we operate throughout with the implicit 
understanding that the underlying regularity conditions ensure that our data are generated 
by an essentially stationary process that has suitably controlled dependence. For cross-
section or panel data, it suffices that the observations are independent and identically 
distributed (i.i.d.). In time series applications, stationarity is compatible with considerable 
dependence, so we implicitly permit only as much dependence as is compatible with the 
availability of suitable asymptotic distribution theory. Our discussion thus applies 
straightforwardly to unit root time-series processes after first differencing or other 
suitable transformations, such as those relevant for cointegrated processes. For simplicity, 
we leave explicit discussion of these cases aside here. Relaxing the implicit stationarity 
assumption to accommodate heterogeneity in the data generating process is 
straightforward, but the notation necessary to handle this relaxation is more cumbersome 
than is justified here. 
 
Returning to our main focus, we can now define the point forecast based on the linear 
model L using  for an out-of-sample predictor vector, say Xβ̂ n+1. This is computed 
simply as 
 

β̂'ˆ
11 ++ = nn XY . 

 
We italicized “out-of-sample” just now to emphasize the fact that in applications, 
forecasts are usually constructed based on predictors Xn+1 not in the estimation sample, as 
the associated target variable (Yn+1) is not available until after Xn+1 is observed, as we 
discussed at the outset. The point of the forecasting exercise is to reduce our uncertainty 
about the as yet unavailable Yn+1. 

 
2.2 Nonlinearity 
 
A nonlinear parametric model is generated from a nonlinear parameterization. For this, 
let l  be a finite integer and let the parameter space Θ be a subset of  R . Let  f  be a 
function mapping R

l

 k  Θ into R. This generates the parametric model ×
 

N  { m: R≡ k →  R |   m(x) = f(x, θ ),  θ ∈ Θ }. 
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The parameterization  f (equivalently, the parametric model N) can be nonlinear in the 
predictors only, nonlinear in the parameters only, or nonlinear in both. Models that are 
nonlinear in the predictors are of particular interest here, so for convenience we call the 
forecasts arising from such models “nonlinear forecasts.” For now, we keep our 
discussion at the general level and later pay more particular attention to the special cases.  
 
Completely parallel to our discussion of linear models, we have that solving problem (1) 
with M = N, that is, solving 
 

min m ∈  N  E[ (Yt – m (Xt))2 ] 
 

yields the optimal forecasting function  f ( ., θ*), where 
 

θ* = argmin θ ∈  Θ   E [(Yt – f(Xt, θ ))2 ].          (4) 
 
Here θ* is the PMSE-optimal coefficient vector. This delivers not only the best forecast 
for Yt given Xt  based on the nonlinear model N, but also the optimal nonlinear 
approximation to µ (see e.g., White, 1981). Now we have 
  

θ* = argmin θ ∈  Θ  ∫ ( µ (x) – f(x, θ ))2 dH(x). 
 
The demonstration is completely parallel to that for β*, simply replacing  x’β  with  f(x, 
θ ). Now θ* is the vector delivering the best possible approximation of the form f(x, θ )  
to the PMSE-best predictor µ (x) of Yt given Xt = x, where, as before, the approximation 
is best in the sense of AMSE, where the weight is again dH, the density of the Xt’s.  
 
The optimal point forecast based on the nonlinear model N given predictors Xt is thus 
given explicitly by 
 

Yt* = f( Xt, θ*). 
 
The advantage of using a nonlinear model N is that nonlinearity in the predictors can 
afford greater flexibility and thus, in principle, greater forecast accuracy. Provided the 
nonlinear model nests the linear model (i.e., L  N), it follows that ⊂
 

min m ∈  N  E[ (Yt – m (Xt))2 ]   ≤    min m ∈  L  E[ (Yt – m (Xt))2 ], 
 

that is, the best PMSE for the nonlinear model is always at least as good as the best 
PMSE for the linear model. (The same relation also necessarily holds for AMSE.) A 
simple means of ensuring that N nests L is to include a linear component in f, for 
example, by specifying 
 

f(x, θ) = x’α + g(x, β), 
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where g is some function nonlinear in the predictors. 
 
Against the advantage of theoretically better forecast accuracy, using a nonlinear model 
has a number of potentially serious disadvantages relative to linear models: (1) the 
associated estimators can be much more difficult to compute; (2) nonlinear models can 
easily overfit the sample data, leading to inferior performance in practice; and (3) the 
resulting forecasts may appear more difficult to interpret. It follows that the more 
appealing nonlinear methods will be those that retain the advantage of flexibility but that 
mitigate or eliminate these disadvantages relative to linear models. We now discuss 
considerations involved in constructing forecasts with these properties. 
 
 
3. Linear, Nonlinear, and Highly Nonlinear Approximation 
 
When a parameterization is nonlinear in the parameters, there generally does not exist a 
closed form expression for the PMSE-optimal coefficient vector θ*. One can nevertheless 
apply the plug-in principle in such cases to construct a potentially useful estimator  by 
solving the sample analog of the optimization problem (4) defining θ*, which yields 

θ̂

 

∑
=

− −Θ∈≡
n

t
tt XfYn

1

21 )),((argmin ˆ θθθ  

 
The point forecast based on the nonlinear model N using  for an out-of-sample 
predictor vector X

θ̂
n+1, is computed simply as 

 
)ˆ,(ˆ

11 θ++ = nn XfY . 
 

The challenge posed by attempting to use  is that its computation generally requires an 
iterative algorithm that may require considerable fine-tuning and that may or may not 
behave well, in that the algorithm may or may not converge, and, even with considerable 
effort, the algorithm may well converge to a local optimum instead of to the desired 
global optimum. These are the computational difficulties alluded to above. 

θ̂

 
As the advantage of flexibility arises entirely from nonlinearity in the predictors and the 
computational challenges arise entirely from nonlinearity in the parameters, it makes 
sense to restrict attention to parameterizations that are “series functions” of the form 
 

f(x, θ ) = x’α + ,          (5) ∑
=

q

j
jj x

1
)( βψ

 
where q is some finite integer and the “basis functions” ψj are nonlinear functions of x. 
This provides a parameterization nonlinear in x, but linear in the parameters θ  (α', 
β')', β  (β

≡
≡ 1,…,βq)', thus delivering flexibility while simultaneously eliminating the 
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computational challenges arising from nonlinearity in the parameters. The method of 
OLS can now deliver the desired sample estimator  for θ*. θ̂
 
Restricting attention to parameterizations having the form (5) thus reduces the problem of 
choosing a forecasting model to the problem of jointly choosing the basis functions ψj 
and their number, q. With the problem framed in this way, an important next question is, 
“What choices of basis functions are available, and when should one prefer one choice to 
another?”  
 
There is a vast range of possible choices of basis functions; below we mention some of 
the leading possibilities. Choosing among these depends not only on the properties of the 
basis functions, but also on one’s prior knowledge about µ, and one’s empirical 
knowledge about µ, that is, the data. 
 
Certain broad requirements help narrow the field. First, given that our objective is to 
obtain as good an approximation to µ  as possible, a necessary property for any choice of 
basis functions is that this choice should yield an increasingly better approximation to µ 
as q increases. Formally, this is the requirement that the span (the set of all linear 
combinations) of the basis functions {ψj, j = 1,2,…} should be dense in the function 
space inhabited by µ. Here, this space is M ≡  L2( Rk-1, dH), the separable Hilbert space 
of functions m on Rk-1 for which ∫ m(x) 2 dH(x) is finite. (Recall that x contains the 
constant unity, so there are only k-1 variables.) Second, given that we are fundamentally 
constrained by the amount of data available, it is also necessary that the basis functions 
should deliver a good approximation using as small a value for q as possible. 
 
Although the denseness requirement narrows the field somewhat, there is still an 
overwhelming variety of choices for {ψj} that have this property. Familiar examples are 
algebraic polynomials in x of degree dependent on  j, and in particular the related special 
polynomials, such as Bernstein, Chebyshev, or Hermite, etc.; and trigonometric 
polynomials in x, that is, sines and cosines of linear combinations of  x corresponding to 
pre-specified (multi-) frequencies, delivering Fourier series. Further, one can combine 
different families, as in Gallant’s (1981) flexible Fourier form, which includes 
polynomials of first and second order, together with sine and cosine terms for a range of 
frequencies. 
 
Important and powerful extensions of the algebraic polynomials are the classes of 
piecewise polynomials and splines (e.g., Wahba and Wold, 1975; Wahba, 1990). Well-
known types of splines are linear splines, cubic splines, and B-splines. 
 
The basis functions for the examples given so far are either orthogonal or can be made so 
with straightforward modifications. Orthogonality is not a necessary requirement, 
however. A particularly powerful class of basis functions that need not be orthogonal is 
the class of “wavelets,” introduced by Daubechies (1988, 1992). These have the form 
ψj(x) = Ψ(Aj(x)),  where Ψ is a “mother wavelet,” a given function satisfying certain 
specific conditions, and Aj(x) is an affine function of x that shifts and rescales x according 
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to a specified dyadic schedule analogous to the frequencies of Fourier analysis. For a 
treatment of wavelets from an economics perspective, see Gencay, Selchuk, and 
Whitcher (2001). 
 
Recall that a vector space is linear if (among other things) for any two elements of the 
space f and g, all linear combinations af + bg also belong to the space, where a and b are 
any real numbers. All of the basis functions mentioned so far define spaces of functions 
gq(x, β)  that are linear in this sense, as taking a linear combination of 

two elements of this space gives 

≡ ∑ =

q

j jj x
1

)( βψ

 

a [ ] + b [ ] = , ∑
=

q

j
jj x

1
)( βψ ∑

=

q

j
jj x

1
)( γψ ∑

=

+
q

j
jjj bax

1
][)( γβψ

 
which is again a linear combination of the first q of the ψj’s.  
 
Significantly, the second requirement mentioned above, namely that the basis should 
deliver a good approximation using as small a value for q as possible, suggests that we 
might obtain a better approximation by not restricting ourselves to the functions gq(x, β), 
which force the inclusion of the ψj’s in a strict order (e.g., zero order polynomials first, 
followed by first order polynomials, followed by second order polynomials, and so on), 
but instead consider functions of the form 
 

gΛ(x, β) ≡ ∑
Λ∈j

jj x βψ )( , 

 
where Λ  is a set of natural numbers (“indexes”) containing at most q elements, not 
necessarily the integers 1,…, q. The functions gΛ are more flexible than the functions gq, 
in that gΛ admits gq as a special case. The key idea is that by suitably choosing which 
basis functions to use in any given instance, one may obtain a better approximation for a 
given number of terms q. 
 
The functions gΛ define a nonlinear space of functions, in that linear combinations of the 
form a gΛ + b gΚ , where Κ also has q elements, generally have up to 2q terms, and are 
therefore not contained in the space of  q-term linear combinations of the ψj’s. 
Consequently, functions of the form gΛ are called nonlinear approximations in the 
approximation theory literature. Note that the nonlinearity referred to here is the 
nonlinearity of the function spaces defined by the functions gΛ. For given Λ, these 
functions are still linear in the parameters βj, which preserves their appeal for us here. 
 
Recent developments in the approximation theory literature have provided considerable 
insight into the question of which functions are better approximated using linear 
approximation (functions of the form gq), and which functions are better approximated 
using nonlinear approximation (functions of the form gΛ). The survey of DeVore (1998) 
is especially comprehensive and deep, providing a rich catalog of results permitting a 
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comparison of these approaches. Given sufficient a priori knowledge about the function 
of interest, µ, DeVore’s results may help one decide which approach to take. 
 
To gain some of the flavor of the issues and results treated by DeVore (1998) that are 
relevant in the present context, consider the following approximation root mean squared 
errors: 
 

σq(µ,ψ)  inf ≡ β  [ ∫ ( µ (x) – gq(x, β))2 dH(x) ]1/2

 
σΛ (µ,ψ)  inf ≡ Λ,β [ ∫ ( µ (x) – gΛ (x, β))2 dH(x) ]1/2. 

 
These are, for linear and nonlinear approximation respectively, the best possible 
approximation root mean squared errors (RMSEs) using q ψj’s. (For simplicity, we are 
ignoring the linear term x’α previously made explicit; alternatively, imagine we have 
absorbed it into µ.) DeVore devotes primary attention to one of the central issues of 
approximation theory, the “degree of approximation” question:  “Given a positive real 
number a, for what functions µ does the degree of approximation (as measured here by 
the above approximation RMSE’s) behave as O(q-a)?” Clearly, the larger is a, the more 
quickly the approximation improves with q.  
 
In general, the answer to the degree of approximation question depends on the 
smoothness and dimensionality (k-1) of µ, quantified in precisely the right ways. For 
linear approximation, the smoothness conditions typically involve the existence of a 
number of derivatives of µ and the finiteness of their moments (e.g., second moments), 
such that more smoothness and smaller dimensionality yield quicker approximation. The 
answer also depends on the particular choice of the ψj’s; suffice it to say that the details 
can be quite involved.  
 
In the nonlinear case, familiar notions of smoothness in terms of derivatives generally no 
longer provide the necessary guidance. To describe the smoothness notion relevant in this 
context, suppose for simplicity that {ψj} forms an othonormal basis for the Hilbert space 
in which µ  lives. Then the optimal coefficients βj* are given by 
 

βj* = ∫ ψj (x) µ (x)  dH(x). 
 

As DeVore (1998, p.135) states, “smoothness for [nonlinear] approximation should be 
viewed as decay of the coefficients with respect to the basis [i.e., the βj*’s]” (emphasis 
added). In particular, let τ = 1/(a + ½). Then according to DeVore (1998, theorem 4) 
σΛ(µ,ψ) =  O(q-a) if  and only if  there exists a finite constant M such that #{ j: βj* > z } 

 M ≤ τ z−τ. For example, σΛ (µ,ψ) =  O(q-1/2)  if  for some M  we have #{ j: βj* > z } ≤  M 
z−1. 
 
An important and striking aspect of this view of smoothness is that it is relative to the 
basis. A function that is not at all smooth with respect to one basis may be quite smooth 
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with respect to another. Another striking feature of results of this sort is that the 
dimensionality of µ no longer plays an explicit role, seemingly suggesting that nonlinear 
approximation may somehow hold in abeyance the “curse of dimensionality” (the 
inability to well approximate functions in high-dimensional spaces without inordinate 
amounts of data). A more precise interpretation of this situation seems to be that 
smoothness with respect to the basis also incorporates dimensionality, such that a given 
decay rate for the optimal coefficients is a stronger condition in higher dimensions. 
 
In some cases, theory alone can inform us about the choice of basis functions. For 
example, it turns out, as DeVore (1998, p.106) discusses, that with respect to nonlinear 
approximation, rational polynomials have approximation properties essentially equivalent 
to those of piecewise polynomials. In this sense, there is nothing to gain or lose in 
selecting one of these bases over another. In other cases, the helpfulness of the theory in 
choosing a basis depends on having quite specific knowledge about µ, for example, that it 
is very smooth (in the familiar sense) in some places and very rough in others or that it 
has singularities or discontinuities. For example, Dekel and Leviatan (2003) show that in 
this sense, wavelet approximations do not perform well in capturing singularities along 
curves, whereas nonlinear piecewise polynomial approximations do.  
 
Usually, however, we economists have little prior knowledge about the familiar 
smoothness properties of µ, let alone their smoothness with respect to any given basis. As 
a practical matter, then, it may make sense to consider a collection of different bases, and 
let the data guide us to the best choice. Such a collection of bases is called a library. An 
example is the wavelet packet library proposed by Coifman and Wickerhauser (1992). 
 
Alternatively, one can choose the ψj’s from any suitable subset of the Hilbert space. Such 
a subset is called a dictionary; the idea is once again to let the data help decide which 
elements of the dictionary to select. Artificial neural networks (ANNs) are an example of 
a dictionary, generated by letting ψj(x) = Ψ(x’γj) for a given “activation function” Ψ, 
such as the logistic cdf (Ψ(z) = 1/(1 + exp(-z))), and with γj any element of Rk. For a 
discussion of artificial neural networks from an econometric perspective, see Kuan and 
White  (1994). Trippi and Turban (1992) contains a collection of papers applying ANNs 
to economics and finance. 
 
Approximating a function µ  using a library or dictionary is called highly nonlinear 
approximation, as not only is there the nonlinearity associated with choosing q basis 
functions, but there is the further choice of the basis itself or of the elements of the 
dictionary. Section 8 of DeVore’s (1998) comprehensive survey is devoted to a 
discussion of the so far somewhat fragmentary degree of approximation results for 
approximations of this sort. Nevertheless, some powerful results are available. 
Specifically, for sufficiently rich dictionaries D (e.g., artificial neural networks as 
above), DeVore and Temlyakov (1996) show (see DeVore, 1998, theorem 7) that for a  
½ and sufficiently smooth functions µ  

≥

 
σq(µ, D) ≤  Ca q−a, 
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where Ca is a constant quantifying the smoothness of µ  relative to the dictionary, and, 
analogous to the case of nonlinear approximation, we define 
 

σq(µ, D)  inf ≡ D,β  [ ∫ ( µ (x) – gD (x, β))2 dH(x) ]1/2

 

gD (x, β) ≡ ∑
∈D

jj
j

x
ψ

βψ )( , 

 
where D is a q element subset of D. DeVore and Temlyakov’s result generalizes an 
earlier  result for a = ½ of Maurey (see Pisier, 1980). Jones (1992) provides a “greedy 
algorithm” and a “relaxed greedy algorithm” achieving a = ½ for a specific dictionary 
and class of functions µ, and Devore (1998) discusses further related algorithms. 
 
The cases discussed so far by no means exhaust the possibilities. Among other notable 
choices for the ψj’s relevant in economics are radial basis functions (Powell, 1987; 
Lendasse, et. al., 2003) and ridgelets (Candes, 1998, 1999a, 1999b, 2003). 
 
Radial basis functions arise by taking 
 

    ψj(x) = )),(( 2 jxp γΨ ,           
 
where  p2(x, γj) is a polynomial of (at most) degree 2 in x with coefficients γj, and Ψ is 
typically taken to be such that, with the indicated choice of p2(x,γj), Ψ( p2(x,γj))  is 
proportional to a density function. Standard radial basis functions treat the γj’s as free 
parameters, and restrict  p2(x,γj)  to have the form 
 

p2(x,γj) =  − (x − γ1j)’ γ2j (x − γ1j) / 2, 
 
where  γj  (γ≡ 1j’, vech’ γ2j )’, so that γ1j acts as a centering vector, and γ2j is a k x k 
symmetric positive semi-definite matrix acting to scale the departures of x from γ1j . A 
common choice for Ψ is Ψ= exp, which delivers Ψ(p2(x,γj))  proportional to the 
multivariate normal density with mean γ1j and with γ2j a suitable generalized inverse of a 
given covariance matrix. Thus, standard radial basis functions have the form of a linear 
combination of multivariate densities, accommodating a mixture of densities as a special 
case. Treating the γj’s as free parameters, we may view the radial basis functions as a 
dictionary, as defined above. 
 
Candes’s ridgelets can be thought of as a very carefully constructed special case of 
ANNs. Ridgelets arise by taking  
 

ψj( x) = )/]~[( 102
2/1

1 jjjj x γγγγ −′Ψ− , 
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where x~  denotes the vector of non-constant elements of x (i.e., x = (1, x ′~ )’), γ0 j is real, 
γ 1j > 0, and γ2j belongs to Sk-2, the unit sphere in Rk-1. The activation function Ψ is 
taken to belong to the space of rapidly decreasing functions (Schwartz space, a subset of 

) and to satisfy a specific admissibility property on its Fourier transform (see Candes, 
1999a definition 1), essentially equivalent to the moment conditions   

∞C

 

∫ z j Ψ(z) dz = 0           j = 0, …, (k/2) – 1. 
 
This condition ensures that Ψ oscillates, has zero average value, zero average slope, etc. 
For example, Ψ = Dhφ, the hth derivative of the standard normal density φ, is readily 
verified to be admissible with h =  (k/2). 
 
The admissibility of the activation function has a number of concrete benefits, but the 
chief benefit for present purposes is that it leads to the explicit specification of a 
countable sequence { γ j = (γ0 j, γ1j, γ 2 j’)’} such that any function  f  square integrable 
on a compact set has an exact representation of the form 
 

f(x) ≡ ∑
∞

=1

*)(
j

jj x βψ . 

 
The representing coefficients  are such that good approximations can be obtained 
using g

*
jβ

q(x, β) or gΛ(x, β) as above. In this sense, the ridgelet dictionary that arises by 
letting the γj’s be free parameters (as in the usual ANN approach) can be reduced to a 
countable subset that delivers a basis with appealing properties. 
 
As Candes (1999b) shows, ridgelets turn out to be optimal for representing otherwise 
smooth multivariate functions that may exhibit linear singularities, achieving a rate of 
approximation of  O(q-a) with a = s/(k-1), provided the sth derivatives of f exist and are 
square integrable. This is in sharp contrast to Fourier series or wavelets, which can be 
badly behaved in the presence of singularities. Candes (2003) provides an extensive 
discussion of the properties of ridgelet regression estimators, and, in particular, certain 
shrinkage estimators based on thresholding coefficients from a ridgelet regression. (By 
thresholding is meant setting to zero estimated coefficients whose magnitude does not 
exceed some pre-specified value.) In particular, Candes (2003) discusses the superiority 
in multivariate contexts of ridgelet methods to kernel smoothing and wavelet 
thresholding methods. 
 
In DeVore’s (1998) survey, Candes’s papers, and the references cited there, the interested 
reader can find a wealth of further material describing the approximation properties of a 
wide variety of different choices for the ψj’s. From a practical standpoint, however, these 
results do not yield hard and fast prescriptions about how to choose the ψj’s, especially in 
the circumstances commonly faced by economists, where one may have little prior 
information about the smoothness of the function of interest. Nevertheless, certain helpful 
suggestions emerge. Specifically: 
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(i) nonlinear approximations are an appealing alternative to linear 

approximations; 
(ii) using a library or dictionary of basis functions may prove useful; 
(iii) ANNs, and ridgelets in particular, may prove useful. 

  
These suggestions are simply things to try. In any given instance, the data must be the 
final arbiter of how well any particular approach works. In the next section, we provide a 
concrete example of how these suggestions may be put into practice and how they 
interact with other practical concerns. 
 
4. Artificial Neural Networks 
 
4.1 General Considerations 
 
In the previous section, we introduced artificial neural networks (ANNs) as an example 
of an approximation dictionary supporting highly nonlinear approximation. In this 
section, we consider ANNs in greater detail. Our attention is motivated not only by their 
flexibility and the fact that many powerful approximation methods can be viewed as 
special cases of ANNs (e.g., Fourier series, wavelets, and ridgelets), but also by two 
further reasons. First, ANNs have become increasingly popular in economic applications. 
Second, despite their increasing popularity, the application of ANNs in economics and 
other fields has often run into serious stumbling blocks, precisely reflecting the three key 
challenges articulated at the outset to the use of nonlinear methods. In this section we 
explore some further properties of ANNs that may help in mitigating or eliminating some 
of these obstacles, permitting both their more successful practical application and a more 
informed assessment of their relative usefulness. 
 
Artificial neural networks comprise a family of flexible functional forms posited by 
cognitive scientists attempting to understand the behavior of biological neural systems. 
Kuan and White (1994) provide a discussion of their origins and an econometric 
perspective. Our focus here is on the ANNs introduced above, that is, the class of “single 
hidden layer feedforward networks,” which have the functional form 
 

f(x, θ ) = x’α + ,          (6) ∑
=

Ψ
q

j
jjx

1
)'( βγ

 
where Ψ is a given activation function, and θ ≡  (α', β', γ')', β ≡  (β1,…,βq)', γ ≡  
(γ1',…,γq')'. Ψ( x’γj ) is called the “activation” of “hidden unit”  j. 
 
Except for the case of ridgelets, ANNs generally take the γj’s to be free parameters, 
resulting in a parameterization nonlinear in the parameters, with all the attendant 
computational challenges that we would like to avoid. Indeed, these difficulties have been 
formalized by Jones (1997) and Vu (1998), who prove that optimizing such an ANN is an 
NP-hard problem. It turns out, however, that by suitably choosing the activation function 
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Ψ, it is possible to retain the flexibility of ANNs without requiring the γj’s to be free 
parameters and without necessarily imposing the ridgelet activation function or schedule 
of γj values, which can be somewhat cumbersome to implement in higher dimensions .  
 
This possibility is a consequence of results of Stinchcombe and White (1998) (“SW”), as 
foreshadowed in earlier results of Bierens (1990). Taking advantage of these results leads 
to parametric models that are nonlinear in the predictors, with the attendant advantages of 
flexibility, and linear in the parameters, with the attendant advantages of computational 
convenience. These computational advantages create the possibility of mitigating the 
difficulties formalized by Jones (1997) and Vu (1998). We first take up the results of SW 
that create these opportunities and then describe a method for exploiting them for 
forecasting purposes. Subsequently, we perform some numerical experiments that shed 
light on the extent to which the resulting methods may succeed in avoiding the 
documented difficulties of nonlinearly parameterized ANNs. 
 
 
4.2 Generically Comprehensively Revealing Activation Functions  
 
In work proposing new specification tests with the property of consistency (that is, the 
property of having power against model misspecification of any form) Bierens (1990) 
proved a powerful and remarkable result. This result states essentially that for any 
random variable εt and random vector Xt, under general conditions E( εt | Xt)  0 with 
non-zero probability implies E( exp(X

≠
t’γ) εt ) ≠  0 for almost every γ  ∈  Γ, where Γ  is 

any non-empty compact set. Applying this result to the present context with εt = Yt – f(Xt, 
θ* ), Bierens’s result implies that if (with non-zero probability) 
 

E( Yt – f(Xt, θ* ) | Xt ) = µ(Xt) – f(Xt, θ* )) ≠  0 , 
 
then for almost every γ  ∈  Γ  we have 
 

E( exp (Xt’γ) (Yt – f(Xt, θ* )) ≠  0. 
 

That is, if the model N is misspecified, then the prediction error εt = Yt – f(Xt, θ* ) 
resulting from the use of model N is correlated with  exp (Xt’γ) for essentially any 
choice of γ . Bierens exploits this fact to construct a specification test based on a choice 
for γ  that maximizes the sample correlation between exp (Xt’γ) and the sample 
prediction error tε̂ = Yt – f(Xt,  ). θ̂
 
Stinchcombe and White (1998) show that Bierens’s (1990) result holds more generally, 
with the exponential function replaced by any Ψ belonging to the class of generically 
comprehensively revealing (GCR) functions. These functions are “comprehensively 
revealing” in the sense that they can reveal arbitrary model misspecifications  (µ(Xt) – 
f(Xt, θ* ) ≠  0 with non-zero probability); they are generic in the sense that almost any 
choice for γ  will reveal the misspecification.  
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An important class of functions that SW demonstrate to be GCR is the class of non-
polynomial real analytic functions (functions that are everywhere locally given by a 
convergent power series), such as the logistic cumulative distribution function (cdf) or 
the hyperbolic tangent function, tanh. Among other things, SW show how the GCR 
functions can be used to test for misspecification in ways that parallel Bierens’s 
procedures for the regression context, but that also extend to specification testing beyond 
the regression context, such as testing for equality of distributions. 
 
Here, we exploit SW’s results for a different purpose, namely to obtain flexible 
parameterizations nonlinear in predictors and linear in parameters. To proceed, we 
represent a q hidden unit ANN more explicitly as 
 

fq(x, ) = x’  + , *
qθ *

qα ∑
=

Ψ
q

j
jqjx

1

*)*'( βγ

where Ψ is GCR, and we let 
 

εt = Yt – fq(x, ). *
qθ

 

If, with non-zero probability, µ(Xt) – fq(x, ) *
qθ ≠  0, then for almost every γ  ∈  Γ  we 

have 
 

E( Ψ(Xt’γ ) εt ) ≠  0. 
 

As Γ is compact, we can pick  such that *
1+qγ

 

| corr( Ψ(Xt’ ), ε*
1+qγ t ) |    | corr( Ψ(X≥ t’γ ), εt ) | 

 
for all γ  ∈  Γ , where corr( ., . ) denotes the correlation of the indicated variables. Let Γm 
be a finite subset of  Γ  having m elements  whose neighborhoods cover Γ. With Ψ 
chosen to be continuous, the continuity of the correlation operator then ensures that, with 
m sufficiently large, one can achieve correlations nearly as great as by optimizing over 
Γ  by instead optimizing over Γm. Thus one can avoid full optimization over Γ at 
potentially small cost by instead picking  *

1+qγ ∈  Γm  such that 
 

| corr( Ψ(Xt’ ), ε*
1+qγ t ) |    | corr( Ψ(X≥ t’γ ), εt ) | 

 
for all γ  ∈  Γm. This suggests a  process of adding hidden units in a stepwise manner, 
stopping when | corr( Ψ(Xt’ ), ε*

1+qγ t ) | (or some other suitable measure of the predictive 
value of the marginal hidden unit) is sufficiently small. 
 

 18



 
5. QuickNet 
 
We now propose a family of algorithms based on these considerations that can work well 
in practice, called “QuickNet.” The algorithm requires specifying a priori a maximum 
number of hidden units, say q , a GCR activation function Ψ, an integer m specifying the 
cardinality of Γm, and a method for choosing the subsets Γm.  
 
In practice, initially choosing q  to be on the order of 10 or 20 seems to work well; if the 
results indicate there is additional predictability not captured using q  hidden units, this 
limit can always be relaxed. (For concreteness and simplicity, suppose for now that q < 

. More generally, one may take ∞ q = nq , with ∞→nq  as ∞→n .) A common choice 
for Ψ is the logistic cdf, Ψ(z) = 1/(1 + exp(-z)). Ridgelet activation functions are also an 
appealing option.   
 
Choosing m to be 500-1000 often works well with Γm consisting of a range of values 
(chosen either deterministically or, especially with more than a few predictors, randomly) 
such that the norm of γ is neither too small nor too large. As we discuss in greater detail 
below, when the norm of  γ  is too small, Ψ(Xt’γ ) is approximately linear in Xt, whereas 
when the norm of  γ is too large, Ψ(Xt’γ ) can become approximately constant in Xt, both 
situations to be avoided. This is true not only for the logistic cdf but also for many other 
nonlinear choices for Ψ. In any given instance, one can experiment with these choices to 
observe the sensitivity or robustness of the method to these choices.  
 
Our approach also requires a method for selecting the appropriate degree of model 
complexity, so as to avoid overfitting, the second of the key challenges to the use of 
nonlinear models identified above. For concreteness, we first specify a prototypical 
member of the QuickNet family using cross-validated mean squared error (CVMSE) for 
this purpose. Below, we also briefly discuss possibilities other than CVMSE. 
 
5.1 A Prototype QuickNet Algorithm 
 
We now specify a prototype QuickNet algorithm. The specification of this section is 
generic, in that for succinctness we do not provide details on the construction of Γm or the 
computation of CVMSE. We provide further specifics on these aspects of the algorithm 
in Sections 5.2 and 5.3. 
 
Our prototypical QuickNet algorithm is a form of relaxed greedy algorithm consisting of 
the following steps: 
 
Step 0: Compute 0α̂   and t0ε̂  (t = 1,…, n) by OLS: 0α̂ = (X’X)-1X’Y , t0ε̂ = Yt - Xt’ 0α̂ . 
Compute CVMSE(0) (cross-validated mean squared error for Step 0; details are provided 
below), and set q = 1. 
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Step 1a: Pick Γm, and find qγ̂ such that  
 

qγ̂ = argmax γ  ∈  mΓ    [ r̂ ( Ψ(Xt’γ ), tq ,1ˆ −ε  ) ]2, 
 
where r̂  denotes the sample correlation between the indicated random variables. To 
perform this maximization, one simply regresses tq ,1ˆ −ε   on a constant and Ψ(Xt’γ ) for 
each γ  ∈  Γm, and picks as qγ̂  the γ  that yields the largest R2. 
 
Step 1b: Compute qα̂ ,  ( ,…, )’  by OLS, regressing Yqβ̂ ≡ 1

ˆ
qβ qqβ̂ t on Xt and Ψ(Xt’ jγ̂  ),  

j = 1,…, q, and compute  tqε̂  (t = 1,…, n) as  
 

tqε̂  = Yt - Xt’ qα̂  - ∑ . 
=

Ψ
q

j
qjjtX

1

ˆ)ˆ'( βγ

 
Compute CVMSE(q) and set q = q + 1. If  q > q , stop. Otherwise, return to Step 1a. 
 
Step 2: Pick  such that  q̂

 
    q  = argmin ˆ q ∈{1,…, q } CVMSE(q), 
 

and set the estimated parameters to be those associated with : q̂
 

)''ˆ,...,'ˆ,'ˆ,'ˆ(ˆ
ˆ1ˆˆˆ qqqq γγβαθ ≡ . 

 
Step 3 (Optional): Perform nonlinear least squares for Yt using the functional form 
 

),( ˆˆ qq xf θ  = x’α  + , ∑
=

Ψ
q

j
jjx

ˆ

1
)'( βγ

 
starting the nonlinear iterations at . q̂θ̂
 
 
For convenience in what follows, we let  denote the parameter estimates obtained via 
this QuickNet algorithm (or any other members of the family, discussed below). 

θ̂

 
QuickNet’s most obvious virtue is its computational simplicity. Steps 0 through 2 involve 
only OLS regression; this is essentially a consequence of exploiting the linearity of  fq in 
α and β. Although a potentially large number (m) of regressions are involved in Step 1a, 
these regressions only involve a single regressor plus a constant. These can be computed 
so quickly that this is not a significant concern. Moreover, the user has full control 
(through specification of m) over how intense a search is performed in Step 1a. 
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The only computational headache posed by using OLS in Steps 0-2 results from 
multicollinearity, but this can easily be avoided by taking proper care to select predictors 
Xt at the outset that vary sufficiently independently (little, if any, predictive power is lost 
in so doing), and by avoiding (either ex ante or ex post) any choice of  γ in Step 1a that 
results in too little sample variation in Ψ(Xt’γ ). (See Section 5.2 below for more on this 
issue.) Consequently, execution of Steps 0 through 2 of QuickNet can be fast, justifying 
our name for the algorithm. 
 
Above, we referred to QuickNet as a form of relaxed greedy algorithm. QuickNet is a 
greedy algorithm, because in Step 1a it searches for a single best additional term. The 
usual greedy algorithms add one term at a time, but specify full optimization over γ. In 
contrast, by restricting attention to Γm, QuickNet greatly simplifies computation, and by 
using a GCR activation function Ψ, QuickNet ensures that the risk of missing 
predictively useful nonlinearities is small. QuickNet is a relaxed greedy algorithm 
because it permits full adjustment of the estimated coefficients of all the previously 
included terms, permitting it to take full predictive advantage of these terms as the 
algorithm proceeds. In contrast, typical relaxed greedy algorithms permit only modest 
adjustment in the relative contributions of the existing and added terms.  
 
The optional Step 3 involves an optimization nonlinear in parameters, so here one may 
seem to lose the computational simplicity motivating our algorithm design. In fact, 
however, Steps 0-2 set the stage for a relatively simple computational exercise in Step 3. 
A main problem in the brute-force nonlinear optimization of ANN models is, for given q, 
finding a good (near global optimum) value for θ, as the objective function is typically 
non-convex in nasty ways. Further, the larger is q, the more difficult this becomes and the 
easier it is to get stuck at relatively poor local optima. Typically, the optimization bogs 
down fairly early on (with the best fits seen for relatively small values of q), preventing 
the model from taking advantage of its true flexibility. (Our example in Section 7 
illustrates these issues.) 
 
In contrast,  produced by Steps 0-2 of QuickNet typically delivers much better fit than 
estimates produced by brute-force nonlinear optimization, so that local optimization in 
the neighborhood of  produces a potentially useful refinement of . Moreover, the 
required computations are particularly simple, as optimization is done only with a fixed 
number  of hidden units, and the iterations of the nonlinear optimization can be 
computed as a sequence of OLS regressions. Whether or not the refinements of Step 3 are 
helpful can be assessed using the CVMSE. If CVMSE improves after Step 3, one can use 
the refined estimate; otherwise one can use the unrefined (Step 2) estimate. 

θ̂

θ̂ θ̂

q̂

 
5.2 Constructing Γm
 
The proper choice of Γm in Step 1a can make a significant difference in QuickNet’s 
performance. The primary consideration in choosing Γm is to avoid choices that will 
result in candidate hidden unit activations that are collinear with previously included 
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predictors, as such candidate hidden units will tend to be uncorrelated with the prediction 
errors, tq ,1ˆ −ε  and therefore have little marginal predictive power. As previously included 
predictors will typically include the original Xt’s, particular care should be taken to avoid 
choosing Γm so that it contains elements Ψ(Xt’γ ) that are either approximately constant 
or approximately proportional to Xt’γ .  
 
To see what this entails in a simple setting, consider the case of logistic cdf activation 
function Ψ and a single predictor, tX~ , having mean zero. We denote a candidate 

nonlinear predictor as Ψ(γ1 tX~ + γ0). If γ0 is chosen to be large in absolute value relative to 

γ1 tX~ , then Ψ(γ1 tX~ + γ0) behaves approximately as Ψ(γ0), that is, it is roughly constant. 

To avoid this, γ0 can be chosen to be roughly the same order of magnitude as sd(γ1 tX~ ), 

the standard deviation of γ1 tX~ . On the other hand, suppose γ1 is chosen to be small 

relative to sd( tX~ ). Then Ψ(γ1 tX~ + γ0) varies approximately proportionately to γ1 tX~ + γ0. 

To avoid this, γ1 should be chosen to be at least of the order of magnitude of sd( tX~ ).  
 
A simple way to ensure these properties is to pick γ0 and γ1 randomly, independently of 
each other and of tX~ . We can pick γ1 to be positive, with a range spanning modest 

multiples of sd( tX~ ) and pick γ0 to have mean zero, with a variance that is roughly 

comparable to that of γ1 tX~ . The lack of non-negative values for γ1 is of no consequence 
here, given that Ψ is monotone. Randomly drawing m such choices for (γ0, γ1) thus 
delivers a set Γm that will be unlikely to contain elements that are either approximately 
constant or collinear with the included predictors. With these precautions, the elements of 
Γm are nonlinear functions of tX~  and, as can be shown, are generically not linearly 

dependent on other functions of tX~ , such as previously included linear or nonlinear 
predictors. Choosing Γm  in this way thus generates a plausibly useful collection of 
candidate nonlinear predictors. 
  
In the multivariate case, similar considerations operate. Here, however, we replace γ1 tX~  

with γ1( tX~ ’γ2 ), where γ2 is a direction vector, that is, a vector on Sk-2, the unit sphere 
in Rk-1, as in Candes’s ridgelet parameterization. Now the magnitude of γ0 should be 
comparable to sd(γ1( tX~ ’γ2 )), and the magnitude of γ1 should be chosen to be at least of 

the order of magnitude of sd( tX~ ’γ2 ). One can proceed by picking a direction γ2 on the 
unit sphere (e.g., γ2 = Z/( Z’Z)1/2 is distributed uniformly on the unit sphere, provided Z is 
k-1-variate unit normal). Then chose γ1 to be positive, with a range spanning modest 
multiples of sd( tX~ ’γ2 ) and pick γ0 to have mean zero, with a variance that is roughly 

comparable to that of γ1( tX~ ’γ2 ). Drawing m such choices for (γ0, γ1, γ2’) thus delivers a 
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set Γm that will be unlikely to contain elements that are either approximately constant or 
collinear with the included predictors, just as in the univariate case. 
 
These considerations are not specific to the logistic cdf activation Ψ, but operate 
generally. The key is to avoid choosing a Γm that contains elements that are either 
approximately constant or proportional to the included predictors. The strategies just 
described are broadly useful for this purpose and can be fine tuned for any particular 
choice of activation function.  
 
 
5.3 Controlling Overfit 
 
The advantageous flexibility of nonlinear modeling is also responsible for the second key 
challenge noted above to the use nonlinear forecasting models, namely the danger of 
over-fitting the data.  Our prototype QuickNet uses cross-validation to choose the meta-
parameter q  indexing model complexity, thereby attempting to control the tendency of 
such flexible models to overfit the sample data. This is a common method, with a long 
history in statistical and econometric applications. Numerous other members of the 
QuickNet family can be constructed by replacing CVMSE with alternate measures of 
model fit, such as AIC (Akaike, 1970, 1973), Cp (Mallows, 1973), BIC (Schwarz, 1978; 
Hannan and Quinn, 1979), Minimum Description Length (MDL) (Rissanen, 1978), 
Generalized Cross-Validation (GCV) (Craven and Wahba, 1979), and others. We have 
specified CVMSE for concreteness and simplicity in our prototype, but, as results of 
Shao (1993, 1997) establish, the family members formed by using alternate model 
selection criteria in place of CVMSE have equivalent asymptotic properties under 
specific conditions, as discussed further below. 
 
The simplest form of cross-validation is “delete 1” cross-validation (Allen, 1974; Stone, 
1974), which computes CVMSE as 

CVMSE(1)(q) = , ∑
=

−
−

n

t
tqtn

1

2
)(

1 ε̂

 
where )(ˆ tqt −ε  is the prediction error for observation t computed using estimators )(0ˆ t−α  

and , j = 1,…, q, obtained by omitting observation t from the sample, that is, )(
ˆ

tqj −β
 

)(ˆ tqt −ε  = Yt - Xt’ )(0ˆ t−α  - . ∑
=

−Ψ
q

j
tqjjtX

1
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ˆ)ˆ'( βγ

 
Alternatively, one can calculate the “delete d” cross-validated mean squared error, 
CVMSE(d) (Geisser, 1975). For this, let S be a collection of N subsets s of {1,…, n} 
containing d elements. Let )(ˆ sqt −ε  be the prediction error for observation t computed using 

estimators )(0ˆ s−α  and , j = 1,…, q, obtained by omitting observations in the set s 
from the estimation sample. Then CVMSE

)(
ˆ

sqj −β

(d) is computed as  
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Shao (1993, 1997) analyzes the model selection performance of these cross-validation 
measures and relates their performance to the other well-known model selection 
procedures in a context that accommodates cross-section but not time-series data. Shao 
(1993, 1997) gives general conditions establishing that given model selection procedures 
are either “consistent” or “asymptotically loss efficient”. A consistent procedure is one 
that selects the best q term (now q = qn) approximation with probability approaching one 
as n increases. An asymptotically loss efficient procedure is one that selects a model such 
that the ratio of the sample mean squared error of the selected q term model to that of the 
truly best q term model approaches one in probability. Consistency of selection is a 
stronger property than asymptotic loss efficiency. 
 
The performance of the various procedures depends crucially on whether the model is 
misspecified (Shao’s “Class 1”) or correctly specified (Shao’s “Class 2”). Given our 
focus on misspecified models, Class 1 is that directly relevant here, but the comparison 
with performance under Class 2 is nevertheless of interest. Put succinctly, Shao (1997) 
show that for Class 1 under general conditions, CVMSE(1) is consistent for model 
selection, as is CVMSE(d), provided d/n →  0 (Shao, 1997, theorem 4; see also p.234). 
These methods behave asymptotically equivalently to AIC, GCV, and Mallows’ Cp. 
Further, for Class 1, CVMSE(d)  is asymptotically loss efficient given d/n →1 and q/(n-d) 

 0 (Shao, 1997, theorem 5). With these weaker conditions on d, CVMSE→ (d) behaves 
asymptotically equivalently to BIC. 
 
In contrast, for Class 2 (correctly specified models) in which the correct specification is 
not unique (e.g., there are terms whose optimal coefficients are zero), under Shao’s 
conditions, CVMSE(1) and its equivalents (AIC, GCV, Cp) are asymptotically loss 
efficient but not consistent, as they tend to select more terms than necessary. In contrast, 
CVMSE(d)  is consistent provided d/n 1 and q/(n-d) →  0, as is BIC (Shao, 1997, 
theorem 5). The interested reader is referred to Shao (1993, 1997) and to the discussion 
following Shao (1997) for details and additional guidance and insight. 

→

 
Given these properties, it may be useful as a practical procedure in cross-section 
applications to compute CVMSE(d) for a substantial range of values of d to identify an 
interval of values of  d  for which the model selected is relatively stable, and use that 
model for forecasting purposes. 
 
In cross-section applications, the subsets of observations s used for cross-validation can 
be populated by selecting observations at random from the estimation data. In time series 
applications, however, adjacent observations are typically stochastically dependent, so 
random selection of observations is no longer appropriate. Instead, cross-validation 
observations should be obtained by removing blocks of contiguous observations in order 
to preserve the dependence structure of the data. A straightforward analog of CVMSE(d) 
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is “h-block” cross-validation (Burman, Chow, and Nolan, 1994), whose objective 
function CVMSEh can be expressed as 
 

CVMSEh (q) = , ∑
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where ):(ˆ htqt −ε  is the prediction error for observation t computed using estimators ):(0ˆ ht−α  

and ,  j = 1,…, q, obtained by omitting a block of  h  observations on either side 
of observation t from the estimation sample, that is,  
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Racine (2000) shows that with data dependence typical of economic time series, 
CVMSEh is inconsistent for model selection in the sense of Shao (1993, 1997). An 
important contributor to this inconsistency, not present in the framework of Shao (1993, 
1997), is the dependence between the observations of the omitted blocks and the 
remaining observations. 
 
As an alternative, Racine (2000) introduces a provably consistent model selection method 
for Shao’s Class 2 (correctly specified) case that he calls “hv-block” cross validation. In 
this method, for given t one removes v “validation” observations on either side of that 
observation  (a block of nv = 2v + 1 observations) and computes the mean-squared error 
for this validation block using estimates obtained from a sample that omits not only the 
validation block, but also an additional block of h observations on either side of the 
validation block. Estimation for a given t is thus performed for a set of  ne = n  – 2h – 2v 
–1 observations. (The size of the estimation set is somewhat different for t near 1 or near 
n.)   
 
One obtains CVMSEhv by averaging the CVMSE for each validation block over all n – 2v 
available validation blocks, indexed by t = v + 1, …, n – v. With suitable choice of h 
(e.g., h = int(n1/4), as suggested by Racine, 2000), this approach can be proven to induce 
sufficient independence between the validation block and the remaining observations to 
ensure consistent variable selection. Although Racine (2000) finds that h = int(n1/4) 
appears to work well in practice, practical choice of h is still an interesting area 
warranting further research.  
 
Mathematically, we can represent CVMSEhv as 
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(Note that a typo appears in Racine’s article; the first summation above must begin at v + 
1, not v.) Here ),:(ˆ vhtq −τε  is the prediction error for observation τ computed using 

estimators ),:(0ˆ vht−α  and ,  j = 1,…, q, obtained by omitting a block of  h + v  
observations on either side of observation t from the estimation sample, that is,  

)::(
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Racine shows that CVMSEhv leads to consistent variable selection for Shao’s Class 2 case 
by taking h to be sufficiently large (controlling dependence) and taking  
 

v = (n – int( nδ ) – 2h –1)/2, 
 

where  int( nδ ) denotes the integer part of  nδ , and δ  is chosen such that  ln( q ) / ln( n ) < 
δ  < 1. In some simulations, Racine observes good performance taking h = int (nγ ) with γ 
= .25 and  δ  = .5. Observe that analogous to the requirement d/n  1 in Shao’s Class 2 
case, Racine’s choice analogously leads to 2 v/n  1. 

→
→

 
Although Racine does not provide results for Shao’s Class 1 (misspecified) case, it is 
quite plausible that for Class 1, asymptotic loss efficiency holds with the behavior for h 
and v as specified above, and that consistency of selection holds with h as above and with 
v/n  0, parallel to Shao’s requirements for Class 1. In any case, the performance of 
Racine’s hv-block bootstrap generally and in QuickNet in particular is an appealing topic 
for further investigation. Some evidence on this point emerges in our examples of Section 
7. 

→

 
Although hv-block cross validation appears conceptually straightforward, one may have 
concerns about the computational effort involved, in that, as just described, on the order 
of n2 calculations are required. Nevertheless, as Racine (1997) shows, there are 
computational shortcuts for block cross-validation of linear models that make this 
exercise quite feasible, reducing the computations to order nh2, a very considerable 
savings. (In fact, this can be further reduced to order n.) For models nonlinear in the 
parameters the same shortcuts are not available, so not only are the required computations 
of order n2, but the computational challenges posed by non-convexities and non-
convergence are further exacerbated by a factor of approximately n. This provides 
another very strong motivation for working with models linear in the parameters. We 
comment further on the challenges posed by models nonlinear in the parameters when we 
discuss our empirical examples in Section 7. 
 
The results described in this section are asymptotic results. For example, for Shao’s 
results, q = qn may depend explicitly on n, with qn ∞→ , provided qn /(n – d) →  0. In 
our discussion of previous sections, we have taken q ≤  q  < ∞ , but this has been simply 
for convenience. Letting q  = nq  such that  nq  ∞→  with suitable restrictions on the rate 
at which  nq  diverges, one can obtain formal results describing the asymptotic behavior 
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of the resulting nonparametric estimators via the method of sieves. The interested reader 
is referred to Chen (2005) for an extensive survey of sieve methods. 
  
Before concluding this section, we briefly discuss some potentially useful variants of the 
prototype algorithm specified above. One obvious possibility is to use CVMSEhv to select 
the linear predictors in Step 0, and then to select more than one hidden unit term in each 
iteration of Step 1, replacing the search for the maximally correlated hidden unit term 
with a more extensive variable selection procedure based on CVMSEhv. 
 
By replacing CVMSE with AIC, Cp, GCV, or other consistent methods for controlling 
model complexity, one can easily generate other potentially appealing members of the 
QuickNet family, as noted above. It is also of interest to consider the use of more recently 
developed methods for automated model building, such as PcGets (Hendry and Krolzig, 
2001) and RETINA (Perez-Amaral, Gallo, and White, 2003, 2005). Using either (or both) 
of these approaches in Step 1 results in methods that can select multiple hidden unit terms 
at each iteration of Step 1. In these members of the QuickNet family, there is no need for 
Step 2; one simply iterates Step 1 until no further hidden unit terms are selected. 
 
Related to these QuickNet family members are methods that use multiple hypothesis 
testing to control the family-wise error rate (FWER, see Westfall and Young, 1993), the 
false discovery rate (FDR, Benjamini and Hochberg, 1995 and Williams, 2003), the false 
discovery proportion (FDP, see Lehmann and Romano, 2005)  in selecting linear 
predictors in step 0 and multiple hidden unit terms at each iteration of Step 1. (In so 
doing, care must be taken to use specification-robust standard errors, such as those of 
Goncalves and White, 2005.) Again, Step 2 is unnecessary; the algorithm stops when no 
further hidden unit terms are selected. 
 
 
6. Interpretational Issues 
 
The third challenge identified above to the use of nonlinear forecasts is the apparent 
difficulty of interpreting the resulting forecasts. This is perhaps an issue not so much of 
difficulty, but rather an issue more of familiarity. Linear models are familiar and 
comfortable to most practitioners, whereas nonlinear models are less so. Practitioners 
may thus feel comfortable interpreting linear forecasts, but somewhat adrift interpreting 
nonlinear forecasts. 
 
The comfort many practitioners feel with interpreting linear forecasts is not necessarily 
well founded, however. Forecasts from a linear model are commonly interpreted on the 
basis of the estimated coefficients of the model, using a standard interpretation for these 
estimates, namely that any given coefficient estimate is the estimate of the ceteris paribus 
effect of that coefficient’s associated variable, that is, the effect of that variable holding 
all other variables constant. The forecast is then the net result of all of the competing 
effects of the variables in the model. 
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Unfortunately, this interpretation has validity in only in highly specialized circumstances 
that are far removed from the context of most economic forecasting applications. 
Specifically, this interpretation can be justified essentially only in ideal circumstances 
where the predictors are error-free measures of variables causally related to the target 
variable, the linear model constitutes a correct specification of the causal relationship, the 
observations used for estimation have been generated in such a way that unobservable 
causal factors vary independently of the observable causal variables, and the forecaster 
(or some other agency) has, independently of the unobservable causal factors, set the 
values of the predictors that form the basis for the current forecast. 
 
The familiar interpretation would fail if even one of these ideal conditions failed; 
however, in most economic forecasting contexts, none of these conditions hold. In almost 
all cases, the predictors are error-laden measurements of variables that may or may not be 
causally related to the target variable, so there is no necessary causal relationship 
pertinent to the forecasting exercise at hand. At most, there is a predictive relationship, 
embodied here by the conditional mean µ, and the model for this predictive relationship 
(either linear or nonlinear) is, as we have acknowledged above, typically misspecified. 
Moreover, the observations used for estimation have been generated outside the 
forecaster’s (or any other sole agency’s) control, as have the values of the predictors for 
the current forecast. 
 
Faced with this reality, the familiar and comfortable interpretation thought to be available 
for linear forecasts cannot credibly be maintained. How, then, should one interpret 
forecasts, whether based on linear or nonlinear models? We proceed to give detailed 
answers to this question. Ex post, we hope the answers will appear to be obvious. 
Nevertheless, given the frequent objection to nonlinear models on the grounds that they 
are difficult to interpret, it appears to be worth some effort to show that there is nothing 
particularly difficult or mysterious about nonlinear forecasts: the interpretation of both 
linear and nonlinear forecasts is essentially similar. Further, our discussion highlights 
some important practical issues and methods that can be critical to the successful use of 
nonlinear models for forecasting. 
 
6.1 Interpreting Approximation-Based Forecasts 
 
There are several layers available in the interpretation of our forecasts. The first and most 
direct interpretation is that developed in Sections 1 and 2 above: our forecasts are optimal 
approximations to the MSE-optimal prediction of the target variable given the predictors, 
namely the conditional mean. The approximation occurs on two levels. One is a 
functional approximation arising from the likely misspecification of the parameterized 
model. The other is a statistical approximation arising from our use of sample 
distributions instead of population distributions. This interpretation is identical for both 
linear and nonlinear models.  
 
In the familiar, comfortable, and untenable interpretation for linear forecasts described 
above, the meaning of the estimated coefficients endows the forecast with its 
interpretation. Here the situation is precisely opposite: the interpretation of the forecast 
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gives the estimated coefficients their meaning: the estimated coefficients are simply those 
that deliver the optimal approximation, whether linear or nonlinear.  
 
6.2 Explaining Remarkable Forecast Outcomes 
 
It is, however, possible to go further and to explain why a forecast takes a particular 
value, in a manner parallel to the explanation afforded by the familiar linear interpretation 
when it validly applies. As we shall shortly see, this understanding obtains in a manner 
that is highly parallel for the linear and nonlinear cases, although the greater flexibility in 
the nonlinear case does lead to some additional nuances. 
 
To explore this next layer of interpretation, we begin by identifying the circumstance to 
be explained. We first consider the circumstance that a forecast outcome is in some sense 
remarkable. For example, we may be interested answering the question, “Why is our 
forecast quite different than the simple expectation of our target variable?”  
 
When put this way, the answer quickly becomes obvious. Nevertheless, it is helpful to 
consider this question in a little detail, from both the population and the sample point of 
view. This leads not only to useful insights but also to some important practical 
procedures. We begin with the population view for clarity and simplicity. The 
understanding obtained here then provides a basis for understanding the sample situation. 
 
6.2.1 Population-based forecast explanation 
 
Because our forecasts are generated by our parameterization, for the population setting 
we are interested in understanding how the difference 
 

≡)(* tXδ   f(Xt, θ*) - µ  
 

arises, where µ  is the unconditional mean of the target variable, µ ≡E(Yt). If this 
difference is large or otherwise unusual, then there is some explaining to do and 
otherwise not. 
 
We distinguish between values that, when viewed unconditionally, are unusual and 
values that are extreme. We provide a formal definition of these concepts below. For 
now, it suffices to work with the heuristic understanding that extreme values are 
particularly large magnitude values of either sign and that unusual values are not 
necessarily extreme, but (unconditionally) have low probability density. (Consider a 
bimodal density with well separated modes – values lying between the modes may be 
unusual although not extreme in the usual sense.) Extreme values may well be unusual, 
but are not necessarily so. For convenience, we call values that are either extreme or 
unusual “remarkable.” 
 
Put this way, the explanation for remarkable forecasts outcomes clearly lies in the 
conditioning. That is, what would otherwise be remarkable is no longer remarkable 
(indeed, is least remarkable in a precise sense), once one accounts for the conditioning. 
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Two aspects of the conditioning are involved: the behavior of Xt (that is, the conditions 
underlying the conditioning) and the properties of  f*( . ) ≡   f( . , θ*) (the conditioning 
relationship and our approximation to it).  
 
With regard to the properties of  f*, for present purposes it is more relevant to distinguish 
between parameterizations monotone or non-monotone in the predictors than to 
distinguish between parameterizations linear or nonlinear in the predictors. We say that f* 
is monotone if  f* is (weakly) monotone in each of its arguments (as is true if  f* (Xt) is in 
fact linear in Xt); we say that f* is non-monotone if  f*  is not monotone (either strongly 
or weakly) in at least one of its arguments.  
 
If  f* is monotone, remarkable values of δ*(Xt) must arise from remarkable values of Xt. 
The converse is not true, as remarkable values of different elements of Xt can cancel one 
another out and yield unremarkable values for δ*(Xt).  
 
If  f* is not monotone, then extreme values of δ*(Xt) may or may not arise from extreme 
values of  Xt. Values for δ*(Xt) that are unusual but not extreme must arise from unusual 
values for Xt, but the converse is not true, as non-monotonicities permit unusual values 
for Xt to nevertheless result in common values for δ*(Xt). 
 
From these considerations, it follows that insight into the genesis of a particular instance 
of  δ*(Xt) can be gained by comparing δ*(Xt) to its distribution and Xt  to its distribution, 
and observing whether one, both, or neither of these exhibits unconditionally extreme or 
unusual values. 
 
There is thus a variety of distinct cases, with differing interpretations. As the 
monotonicity of  f* is either known a priori (as in the linear case) or in principle 
ascertainable given  θ* (or its estimate, as below), it is both practical and convenient to 
partition the cases according to whether or not  f*  is monotone. We have the following 
straightforward taxonomy. 
 

Explanatory Taxonomy of Prediction 
 
Case I:  f* monotone 
 
A. δ*(Xt) not remarkable and Xt not remarkable: 
 Nothing remarkable to explain 
 
B. δ*(Xt) not remarkable and Xt remarkable: 

Remarkable values for Xt cancel out to produce an unremarkable forecast 
 
C. δ*(Xt) remarkable and Xt not remarkable: 
 Ruled out 
 
D. δ*(Xt) remarkable and Xt remarkable: 
 Remarkable forecast explained by remarkable values for predictors 
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Case II:  f* not monotone 
 
A. δ*(Xt) not remarkable and Xt not remarkable: 
 Nothing remarkable to explain 
 
B. δ*(Xt) not remarkable and Xt remarkable: 

Either remarkable values for Xt cancel out to produce an unremarkable forecast, or 
(perhaps more likely) non-monotonicities operate to produce an unremarkable 
forecast 

 
C.1 δ*(Xt) unusual but not extreme and Xt not remarkable 
 Ruled out 
 
C.2 δ*(Xt) extreme and Xt not remarkable 
 Extreme forecast explained by non-monotonicities 
 
D.1 δ*(Xt) unusual but not extreme and Xt unusual but not extreme 
 Unusual forecast explained by unusual predictors 
 
D.2 δ*(Xt) unusual but not extreme and Xt extreme: 
 Unusual forecast explained by non-monotonicities 
 
D.3 δ*(Xt) extreme and Xt unusual but not extreme: 
 Extreme forecast explained by non-monotonicities 
 
D.4 δ*(Xt) extreme and Xt extreme: 
 Extreme forecast explained by extreme predictors 
 
 
In assessing which interpretation applies, one first determines whether or not f* is 
monotone and then assesses whether δ*(Xt) is extreme or unusual relative to its 
unconditional distribution, and similarly for Xt. In the population setting this can be done 
using the respective probability density functions. In the sample setting, these densities 
are not available, so appropriate sample statistics must be brought to bear. We discuss 
some useful approaches below. 
 
We also remind ourselves that when unusual values for Xt underlie a given forecast, then 
the approximation  f*(Xt)  to µ(Xt) is necessarily less accurate by construction. (Recall 
that AMSE weighs the approximation squared error by dH, the joint density of Xt.) This 
affects interpretations I.B, I.D, II.B, and II.D. 
 
6.2.2 Sample-based forecast explanation 
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In practice, we observe only a sample from the underlying population, not the population 
itself. Consequently, we replace the unknown population value θ* with an estimator , 
and the circumstance to be explained is the difference 

θ̂

 
≡+ )(ˆ 1nXδ   f(Xn+1, ) - θ̂ Y  

 
between our point forecast  f(Xn+1, ) and the sample mean θ̂ Y ∑ =

−≡
n

t tYn
1

1 , which 
provides a consistent estimator of the population mean µ . Note that the generic 
observation index t used for the predictors in our discussion of the population situation 
has now been replaced with the out-of-sample index n+1, to emphasize the out-of-sample 
nature of the forecast.  
 
The taxonomy above remains identical, however, simply replacing population objects 
with their sample analogs, that is, by replacing  f* with , δ* with , and 
the generic X

)ˆ,()(ˆ θ⋅=⋅ ff δ̂
t  with the out-of-sample Xn+1. With these replacements, we have the sample 

version of the Explanatory Taxonomy of Prediction. There is no need to state this 
explicitly. 
 
In forecasting applications, one may be interested in explaining the outcomes of one or 
just a few predictions, or one may have a relatively large number of predictions (a hold-
out sample) that one is potentially interested in explaining. In the former situation, the 
sample relevant for the explanation is the estimation sample; this is the only available 
basis for comparison in this case. In the latter situation, the hold-out sample is that 
relevant for comparison, as it is the behavior of the predictors in the hold-out sample that 
is responsible for the behavior of the forecast outcomes. 
  
Application of our taxonomy thus requires practical methods for identifying extreme and 
unusual observations relative either to the estimation or to the hold-out sample. The 
issues are identical in either case, but for concreteness, it is convenient to think in terms 
of the hold-out sample in what follows. 
 
One way to proceed is to make use of estimates of the unconditional densities of Yt  and 
Xt. As Yt is univariate, there are many methods available to estimate this density 
effectively, both parametric and nonparametric. Typically Xt is multivariate, and it is 
more challenging to estimate this multivariate distribution without making strong 
assumptions. Li and Racine (2003) give a discussion of the issues involved and a 
particularly appealing practical approach to estimating the density of multivariate Xt.  
 
Given density estimates, one can make the taxonomy operational by defining precisely 
what is meant by “extreme” and “unusual” in terms of these densities. For example, one 
may define “α-extreme” values as those lying outside the smallest connected region 
containing no more than probability mass 1 – α. Similarly one may define α – unusual 
values as those lying in the largest region of the support containing no more than 
probability mass α. 
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Methods involving probability density estimates can be computationally intense, so it is 
also useful to have more “quick and dirty” methods available that identify extreme and 
unusual values according to specific criteria. For random scalars such as Yt or , it is 
often sufficient to rank order the sample values and declare any values in the upper or 
lower α/2 tails to be α -extreme. A quick and dirty way to identify extreme values of 
random vectors such as X

f̂

t is to construct a sample norm Zt = || Xt || such as 
 

2/11 )](ˆ)'[(|||| XXXXX ttt −Σ−= − , 
 
where X  is the sample mean of the Xt’s and Σ̂  is the sample covariance of the  Xt’s. The 
α-extreme values can be taken to be those that lie in the upper α tail of the sample 
distribution of the scalar Zt. 
 
Even more simply, one can examine the predictors individually, as remarkable values for 
the predictors individually are sufficient but not necessary for remarkable values for the 
predictors jointly. Thus, one can examine the standardized values of the individual 
predictors for extremes. Unusual values of the individual predictors can often be 
identified on the basis of the spacing between their order statistics, or, equivalently, on 
the average distance to a specified number of neighbors. This latter approach of 
computing the average distance to a specified number of neighbors may also work well in 
identifying unusual values of random vectors Xt. 
 
An interesting and important phenomenon that can and does occur in practice is that 
nonlinear forecasts can be so remarkable as to be crazy. Swanson and White (1995) 
observed such behavior in their study of forecasts based on ANNs and applied an 
“insanity filter” to deal with such cases. Swanson and White’s insanity filter labels 
forecasts as “insane” if they are sufficiently extreme and replaces insane forecasts with 
the unconditional mean. An alternative procedure is to replace insane forecasts with a 
forecast from a less flexible model, such as a linear forecast.  
 
Our explanatory taxonomy explains insane forecasts as special cases of II.C.2, II.D.3 and 
II.D.4; non-monotonicities are involved in the first two cases, and both non-
monotonicities and extreme values of the predictors can be involved in the last case. 
Users of nonlinear forecasts should constantly be aware of the possibility of remarkable 
and, particularly, insane forecasts, and have methods ready for their detection and 
replacement, such as the insanity filter of Swanson and White (1995) or some variant. 
 
6.3 Explaining Adverse Forecast Outcomes 
 
A third layer of interpretational issues impacting both linear and nonlinear forecasts 
concerns “reasons” and “reason codes.” The application of sophisticated prediction 
models is increasing in a variety of consumer-oriented industries, such as consumer 
credit, mortgage lending, and insurance. In these applications, a broad array of 
regulations governs the use of such models. In particular, when prediction models are 
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used to approve or deny applicants credit or other services or products, the applicant 
typically has a legal right to an explanation of the reason for the adverse decision. 
Usually these explanations take the form of one or more reasons, typically expressed in 
the form of  “reason codes” that provide specific grounds for denial (e.g., “too many 
credit lines,” “too many late payments,” etc.)  
 
In this context, concern about the difficulty of interpreting nonlinear forecasts translates 
into a concern about how to generate reasons and reason codes from such forecasts. 
Again, these concerns are perhaps due not so much to the difficulty of generating 
meaningful reason codes from nonlinear forecasts, but due rather to a lack of experience 
with such forecasts. In fact, there are a variety of straightforward methods for generating 
reasons and reason codes from nonlinear forecasting models. We now discuss briefly a 
straightforward approach for generating these from either linear or nonlinear forecasts. 
As the application areas for reasons and reason codes almost always involve cross-section 
or panel data, it should be understood that the approach described below is targeted 
specifically to such data. Analogous methods may be applicable to time-series data, but 
we leave their discussion aside here. 
 
As in the previous section, we specify the circumstance to be explained, which is now an 
adverse forecast outcome. In our example, this is a rejection or denial of an application 
for a consumer service or product. For concreteness, consider an application for credit. 
Commonly in this context, approval or denial may be based on attaining a sufficient 
“credit score,” which is often a prediction from a forecasting model based on admissible 
applicant characteristics. If the credit score is below a specified cut-off level, the 
application will be denied. Thus, the circumstance to be explained is a forecast outcome 
that lies below a given target threshold. 
 
A sound conceptual basis for explaining a denial is to provide a reasonable alternative set 
of applicant characteristics that would have generated the opposite outcome, an approval. 
(For example, “had there not been so many late payments in the credit file, the 
application would have been approved.”) The notion of reasonableness can be formally 
expressed in a satisfactory way in circumstances where the predictors take values in a 
metric space, so that there is a well-defined notion of distance between predictor values. 
Given this, reasonableness can be equated to distance in the metric (although some 
metrics may be more appropriate in a given context than others). The explanation for the 
adverse outcome can now be formally specified as the fact that the predictors (e.g., 
applicant attributes) differ from the closest set of predictor values that generates the 
favorable outcome. 
 
This approach, while conceptually appealing, may present challenges in applications. 
One set of challenges arises from the fact that predictors are often categorical in practice, 
and it may or may not be easy to embed categorical predictors in a metric space. Another 
set of challenges arises from the fact that even when metrics can be applied, they can, if 
not wisely chosen, generate explanations that may invoke differences in every predictor. 
As the forecast may depend on potentially dozens of variables, the resultant explanation 
may be unsatisfying in the extreme. 
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The solution to these challenges is to apply a metric that is closely and carefully tied to 
the context of interest. When properly done, this makes it possible to generate a 
prioritized list of reasons for the adverse outcome (which can then be translated into 
prioritized reason codes) that is based on the univariate distance of specific relevant 
predictors from alternative values that generate favorable outcomes. To implement this 
approach, it suffices to suitably perturb each of the relevant predictors in turn and observe 
the behavior of the forecast outcome.  
 
Clearly, this approach is equally applicable to linear or nonlinear forecasts. For 
continuous predictors, one increases or decreases each predictor until the outcome 
reaches the target threshold. For binary predictors, one “flips” the observed predictor to 
its complementary value and observes whether the forecast outcome exceeds the target 
threshold. For categorical predictors, one perturbs the observed category to each of its 
possible values and observes for which (if any) categories the outcome exceeds the target 
threshold.  
 
If this process generates one or more perturbations that move the outcome past the target 
threshold, then these perturbations represent sufficient reasons for denial. We call these 
“sufficient perturbations” to indicate that if the predictor had been different in the 
specified way, then the score would have been sufficient for an approval. The sufficient 
perturbations can then be prioritized, and corresponding reasons and reason codes 
prioritized accordingly. 
 
When this univariate perturbation approach fails to generate any sufficient perturbations, 
one can proceed to identify joint perturbations that can together move the forecast 
outcome past the target threshold. A variety of approaches can be specified, but we leave 
these aside so as not to stray too far from our primary focus here.    
 
 Whether one uses a univariate or joint perturbation approach, one must next prioritize 
the perturbations. Here the chosen metric plays a critical role, as this is what measures the 
closeness of the perturbation to the observed value for the individual. Specifying a metric 
may be relatively straightforward for continuous predictors, as here one can, for example, 
measure the number of (unconditional) standard deviations between the observed and 
sufficient perturbed values. One can then prioritize the perturbations in order of 
increasing distance in these univariate metrics. 
 
 A straightforward way to prioritize binary/categorical variables is in order of the 
closeness to the threshold delivered by the perturbation. Those perturbations that deliver 
scores closer to the threshold can then be assigned top priority. This makes sense, 
however, as long as perturbations that make the outcome closer to the threshold are in 
some sense “easier” or more accessible to the applicant. Here again the underlying metric 
plays a crucial role, and domain expertise must play a central role in specifying this. 
 
Given that domain expertise is inevitably required for achieving sensible prioritizations 
(especially as between continuous and binary/categorical predictors), we do not delve 
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into further detail here. Instead, we emphasize that this perturbation approach to the 
explanation of adverse forecast outcomes applies equally well to both linear and 
nonlinear forecasting models. Moreover, the considerations underlying prioritization of 
reasons are identical in either instance. Given these identities, there is no necessary 
interpretational basis with respect to reasons and reason codes for preferring linear over 
nonlinear forecasts. 
 
 
7. Empirical Examples 
 
7.1 Estimating Nonlinear Forecasting Models 
 
In order to illustrate some of the ideas and methods discussed in the previous sections, we 
now present two empirical examples, one using real data and another using simulated 
data.  
 
We first discuss a forecasting exercise in which the target variable to be predicted is the 
one day percentage return on the S&P 500 index. Thus,  
 

Yt = 100 (Pt – Pt-1) / Pt-1, 
 
where Pt is the closing index value on day t for the S&P 500. As predictor variables Xt, 
we choose three lags of  Yt, three lags of  |Yt | (a measure of volatility), and three lags of 
the daily range expressed in percentage terms, 
 

Rt = 100 (Hit – Lot) / Lot, 
 

where Hit is the maximum value of the index on day t and Lot is the minimum value of 
the index on day t. Rt thus provides another measure of market volatility. With these 
choices we have 
 

Xt = ( Yt-1, Yt-2, Yt-3, | Yt-1 |, | Yt-2 |, | Yt-3 |, Rt-1, Rt-2, Rt-3 )’. 
 
 
We do not expect to be able to predict S&P 500 daily returns well, if at all, as standard 
theories of market efficiency imply that excess returns in this index should not be 
predictable using publicly available information, provided that, as is plausible for this 
index, transactions costs and non-synchronous trading effects do not induce serial 
correlation in the log first differences of the price index and that time-variations in risk 
premia are small at the daily horizon (cf. Timmermann and Granger, 2004). Indeed, 
concerted attempts to find evidence against this hypothesis have found none. (See, e.g., 
Sullivan, Timmermann, and White, 1999).  For simplicity, we do not adjust our daily 
returns for the risk free rate of return, so we will not formally address the efficient 
markets hypothesis here. Rather, our emphasis is on examining the relative behavior of 
the different nonlinear forecasting methods discussed above in a challenging 
environment.  
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Of course, any evidence of predictability found in the raw daily returns would certainly 
be interesting: even perfect predictions of variation in the risk free rate would result in 
extremely low prediction r-squares, as the daily risk free rate is on the order of .015% 
with miniscule variation over our sample compared to the variation in daily returns. Even 
if there is in fact no predictability in the data, examining the performance of various 
methods reveals their ability to capture patterns in the data. As predictability hinges on 
whether these patterns persist outside the estimation sample, applying our methods to this 
challenging example thus reveals the necessary capability of a given method to capture 
patterns, together with that method’s ability to assess whether the patterns captured are 
“real” (present outside the estimation data) or not. 
 
Our data set consists of daily S&P 500 index values for a period beginning on July 22, 
1996 and ending on July 21, 2004. Data were obtained from http://finance.yahoo.com. 
We reserved the data from July 22, 2003 through July 21, 2004 for out-of-sample 
evaluation. Dropping the first four observations needed to construct the three required 
lags leaves 2008 observations in the data set, with n = 1,755 observations in the 
estimation sample and 253 observations in the evaluation hold-out sample. 
 
For all of our experiments we use hv-block cross-validation, with v = 672 chosen 
proportional to n1/2 and h = 7 = int( n1/4 ), as recommended by Racine (2000). Our 
particular choice for v was made after a little experimentation showed stable model 
selection behavior. The choice for h is certainly adequate, given the lack of appreciable 
dependence exhibited by the data. 
 
For our first experiment, we use a version of standard Newton-Raphson-based NLS to 
estimate the coefficients of ANN models for models with from zero to q  = 50 hidden 
units, using the logistic cdf activation function. We first fit a linear model (zero hidden 
units) and then add hidden units one at a time until 50 hidden units have been included. 
For a given number of hidden units, we select starting values for the hidden unit 
coefficients at random and from there perform Newton-Raphson iteration. 
 
This first approach represents a naïve brute force approach to estimating the ANN 
parameter values, and, as the model is nonlinear in parameters, we experience (as 
expected) difficulties in obtaining convergence. Moreover, these become more frequent 
as more complex models are estimated. In fact, the frequency with which convergence 
problems arise is sufficient to encourage use of the following modest stratagem: for a 
given number of hidden units, if convergence is not achieved (as measured by a 
sufficiently small change in the value of the NLS objective function), then the hidden unit 
coefficients are frozen at the best values found by NLS and OLS is then applied to 
estimate the corresponding hidden-to-output coefficients (the β’s). In fact, we find it 
helpful to apply this final step regardless of whether convergence is achieved by NLS. 
This is useful not only because one usually observes improvement in the objective 
function using this last step, but also because it facilitates a feasible computation of an 
approximation to the cross-validated MSE. 
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Although we touched on this issue only briefly above, it is now necessary to confront 
head-on the challenges for cross-validation posed by models nonlinear in the parameters. 
This challenge is that in order to compute exactly the cross-validated MSE associated 
with any given nonlinear model, one must compute the NLS parameter estimates 
obtained by holding out each required validation block of observations. There are roughly 
as many validation blocks as there are observations (thousands here). This multiplies by 
the number of validation blocks the difficulties presented by the convergence problems 
encountered in a single NLS optimization over the entire estimation data set. Even if this 
did not present a logistical quagmire (which it surely does), this also requires a huge 
increase in the required computations (a factor of approximately 1700 here). Some means 
of approximating the cross-validated MSE is thus required. 
 
Here we adopt the expedient of viewing the hidden unit coefficients obtained by the 
initial NLS on the estimation set as identifying potentially useful predictive transforms of 
the underlying variables and hold these fixed in cross-validation. Thus we only need to 
re-compute the hidden-to-output coefficients by OLS for each validation block. As 
mentioned above, this can be done in a highly computationally efficient manner using 
Racine’s (1997) feasible block cross-validation method. This might well result in overly 
optimistic cross-validated estimates of MSE, but without some such approximation, the 
exercise is not feasible. (The exercise avoiding such approximations might be feasible on 
a supercomputer, but, as we see shortly, this brute force NLS approach is dominated by 
QuickNet, so the effort is not likely justified.) 
 
Table 1 reports a subset of the results for this first exercise. Here we report two summary 
measures of goodness of fit: mean squared error (MSE) and r-squared (R2). 
We report these measures for the estimation sample, the cross-validation sample (CV), 
and the hold-out sample (Hold-Out). For the estimation sample, R2 is the standard 
multiple correlation coefficient. For the cross-validation sample, R2 is computed as one 
minus the ratio of the cross-validated MSE to the estimation sample variance of the 
dependent variable. For the hold-out sample, R2 is computed as one minus the ratio of the 
hold-out MSE to the hold-out sample variance of the dependent variable about the 
estimation sample mean of the dependent variable. Thus, we can observe negative values 
for the CV and Hold-Out R2’s. A positive value for the Hold-Out R2 indicates that the 
out-of-sample predictive performance for the estimated model is better than that afforded 
by the simple constant prediction provided by the estimation sample mean of the 
dependent variable. 
 
From Table 1 we see that, as expected, the estimation R2 is never very large, ranging 
from a low of about 0.0089 to a high of about 0.0315. For the full experiment, the 
greatest estimation sample R2 is about 0.0647, occurring with 50 hidden units (not 
shown). This apparently good performance is belied by the uniformly negative CV R2’s. 
Although the best CV R2  or MSE (indicated by “*”) identifies the model with the best 
Hold-Out R2 (indicated by “^”), that is, the model with only linear predictors (zero 
hidden units), this model has a negative Hold-Out R2, indicating that it does not even 
perform as well as using the estimation sample mean as a predictor in the hold-out 
sample. 
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This unimpressive prediction performance is entirely expected, given our earlier 
discussion of the implications of the efficient market hypothesis, but what might not have 
been expected is the erratic behavior we see in the estimation sample MSEs. We see that 
as we consider increasingly flexible models, we do not observe increasingly better in-
sample fits. Instead, the fit first improves for hidden units one and two, then worsens for 
hidden unit three, then at hidden units four and five improves dramatically, then worsens 
for hidden unit six, and so on, bouncing around here and there. Such behavior will not be 
surprising to those with prior ANN experience, but it can be disconcerting to those not 
previously inoculated. 
 
The erratic behavior we have just observed is in fact a direct consequence of the 
challenging non-convexity of the NLS objective function induced by the nonlinearity in 
parameters of the ANN model, coupled with our choice of a new set of random starting 
values for the coefficients at each hidden unit addition. This behavior directly reflects and 
illustrates the challenges posed by parameter nonlinearity pointed out earlier. 
 
This erratic estimation performance opens the possibility that the observed poor 
predictive performance could be due not to the inherent unpredictability of the target 
variable, but rather to the poor estimation job done by the brute force NLS approach. We 
next investigate the consequences of using a modified NLS that is designed to eliminate 
this erratic behavior. This modified NLS method picks initial values for the coefficients 
at each stage in a manner designed to yield increasingly better in-sample fits as flexibility 
increases. We simply use as initial values the final values found for the coefficients in the 
previous stage and select new initial coefficients at random only for the new hidden unit 
added at that stage; this implements a simple homotopy method. 
 
We present the results of this next exercise in Table 2. Now we see that the in-sample 
MSE’s behave as expected, decreasing nicely as flexibility increases. On the other hand, 
whereas our naïve brute force approach found a solution with only five hidden units 
delivering an estimation sample R2 of  0.0293, this second approach requires 30 hidden 
units (not reported here) to achieve a comparable in-sample fit. Once again we have the 
best CV performance occurring with zero hidden units, corresponding to the best (but 
negative) out-of-sample R2. Clearly, this modification to naïve brute force NLS does not 
resolve the question of whether the so far unimpressive results could be due to poor 
estimation performance, as the estimation performance of the naïve method is better, 
even if more erratic. Can QuickNet provide a solution? 
 
Table 3 reports the results of applying QuickNet to our S&P 500 data, again with the 
logistic cdf activation function. At each iteration of Step 1, we selected the best of m = 
500 candidate units and applied cross-validation using OLS, taking the hidden unit 
coefficients as given. Here we see much better performance in the CV and estimation 
samples than we saw in either of the two NLS approaches. The estimation sample MSEs 
decrease monotonically, as we should expect. Further, we see CV MSE first decreasing 
and then increasing as one would like, identifying an optimal complexity of eleven 
hidden units for the nonlinear model. The estimation sample R2 for this CV-best model is 

 39



0.0634, much better than the value of  0.0293 found by the CV-best model in Table 1, 
and the CV MSE is now 1.751, much better than the corresponding best CV MSE of 
1.800 found in Table 1. 
 
Thus QuickNet does a much better job of fitting the data, in terms of both estimation and 
cross-validation measures. It is also much faster. Apart from the computation time 
required for cross-validation, which is comparable between the methods, QuickNet 
required 30.90 seconds to arrive at its solution, whereas naïve NLS required 600.30 
seconds and modified NLS required 561.46 seconds respectively to obtain inferior 
solutions in terms of estimation and cross-validated fit. 
 
Another interesting piece of evidence related to the flexibility of ANNs and the relative 
fitting capabilities of the different methods applied here is that QuickNet delivered a 
maximum estimation R2 of .1727, compared to 0.0647 for naïve NLS and .0553 for 
modified NLS, with 50 hidden units (not shown) generating each of these values. 
Comparing these and other results, it is clear that QuickNet rapidly delivers much better 
sample fits for given degrees of model complexity, just as it was designed to do. 
 
A serious difficulty remains, however: the CV-best model identified by QuickNet is not 
at all a good model for the hold-out data, performing quite poorly. It is thus important to 
warn that even with a principled attempt to avoid overfit via cross-validation, there is no 
guarantee that the CV-best model will perform well in real-world hold-out data. One 
possible explanation for this is that, even with cross validation, the sheer flexibility of 
ANNs somehow makes them prone to over-fitting the data, viewed from the perspective 
of pure hold-out data. 
 
Another strong possibility is that real world hold-out data can differ from the estimation 
(and thus cross-validation) data in important ways. If the relationship between the target 
variable and its predictors changes between the estimation and hold-out data, then even if 
we have found a good prediction model using the estimation data, there is no reason for 
that model to be useful on the hold-out data, where a different predictive relationship may 
hold. A possible response to handling such situations is to proceed recursively for each 
out-of-sample observation, refitting the model as each new observation becomes 
available. For simplicity, we leave aside an investigation of such methods here.  
 
This example underscores the usefulness of an out-of-sample evaluation of predictive 
performance. Our results illustrate that it can be quite dangerous to simply trust that the 
predictive relationship of interest is sufficiently stable to permit building a model useful 
for even a modest post-sample time frame. 
 
Below we investigate the behavior of our methods in a less ambiguous environment, 
using artificial data to ensure (1) that there is in fact a nonlinear relationship to be 
uncovered and (2) that the predictive relationship in the hold-out data is identical to that 
in the estimation data. Before turning to these results, however, we examine two 
alternatives to the standard logistic ANN applied so far. The first alternative is a ridgelet 
ANN, and the second is a non-neural network method that uses the familiar algebraic 
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polynomials. The purpose of these experiments is to compare the standard ANN 
approach with a promising but less familiar ANN method and to contrast the ANN 
approaches with a more familiar benchmark. 
 
In Table 4, we present an experiment identical to that of Table 3, except that instead of 
using the standard logistic cdf activation function, we instead use the ridgelet activation 
function 
 

Ψ(z) = D5φ(z) = (-z5 + 10z3 – 15z) φ(z). 
 
The choice of h = 5 is dictated by the fact that k =10 for the present example. As this is a 
non-polynomial analytic activation function, it is also GCR, so we may expect QuickNet 
to perform well in sample. We emphasize that we are simply performing QuickNet with a 
ridgelet activation function and are not implementing any estimation procedure specified 
by Candes. The results given here thus do not necessarily put ridgelets in their best light, 
but are nevertheless of interest as they do indicate what can be achieved with some fairly 
simple procedures. 
 
Examining Table 4, we see results qualitatively similar to those for the logistic cdf 
activation function, but with the features noted there even more pronounced. Specifically, 
the estimation sample fit improves with additional complexity, but even more quickly, 
suggesting that the ridgelets are even more successful at fitting the estimation sample 
data patterns. The estimation sample R2 reaches a maximum of .2534 for 50 hidden units 
(not shown), an almost 50% increase over the best value for the logistic. The best CV 
performance occurs with 39 hidden units, with a CV R2 that is actually positive (.0273). 
As good as this performance is on the estimation and CV data, however, it is quite bad on 
the hold-out data. The Hold-out R2 with 39 ridgelet units is -.643, reinforcing our 
comments above about the possible mismatch between the estimation predictive 
relationship and the importance of hold-out sample evaluation.    
 
In recent work, Hahn (1998) and Hirano and Imbens (2001) have suggested using 
algebraic polynomials for nonparametric estimation of certain conditional expectations 
arising in the estimation of causal effects. These polynomials thus represent a familiar 
and interesting benchmark against which to contrast our previous ANN results. In Table 5 
we report the results of nonlinear approximation using algebraic polynomials, performed 
in a manner analogous to QuickNet. The estimation algorithm is identical, except that 
instead of randomly choosing m candidate hidden units as before, we now randomly 
choose m candidate monomials from which to construct polynomials.  
 
For concreteness and to control erratic behavior that can result from the use of 
polynomials of too high a degree, we restrict ourselves to polynomials of degree less than 
or equal to 4. As before, we always include linear terms, so we randomly select candidate 
monomials of degree between 2 and 4. The candidates were chosen as follows. First, we 
randomly selected the degree of the candidate monomial such that degrees 2, 3, and 4 had 
equal (1/3) probabilities of selection. Let the randomly chosen degree be denoted d. Then 
we randomly selected d indexes with replacement from the set {1,…,9} and constructed 

 41



the candidate monomial by multiplying together the variables corresponding to the 
selected indexes. 
 
The results of Table 5 are interesting in several respects. First, we see that although the 
estimation fits improve as additional terms are added, the improvement is nowhere near 
as rapid as it is for the ANN approaches. Even with 50 terms, the estimation R2 only 
reaches .1422 (not shown). Most striking, however, is the extremely erratic behavior of 
the CV MSE. This bounces around, but generally trends up, reaching values as high as 
41. As a consequence, the CV MSE ends up identifying the simple linear model as best, 
with its negative Hold-out R2. The erratic behavior of the CV MSE is traceable to 
extreme variation in the distributions of the included monomials. (Standard deviations 
can range from 2 to 150; moreover, simple rescaling cannot cure the problem, as the 
associated regression coefficients essentially undo any rescaling.) This variation causes 
the OLS estimates, which are highly sensitive to leverage points, to vary wildly in the 
cross-validation exercise, creating large CV errors and effectively rendering CV MSE 
useless as an indicator of which polynomial model to select. 
 
Our experiments so far have revealed some interesting properties of our methods, but 
because of the extremely challenging real-world forecasting environment to which they 
have been applied, we have not really been able to observe anything of their relative 
forecasting ability. To investigate the behavior of our methods in a more controlled 
environment, we now discuss a second set of experiments using artificial data in which 
we ensure (1) that there is in fact a nonlinear relationship to be uncovered and (2) that the 
predictive relationship in the hold-out data is identical to that in the estimation data.  
 
We achieve these goals by generating artificial estimation data according to the nonlinear 
relationship 
 

*
tY = a ( fq(Xt, ) + .1 ε*

qθ t), 
 
with q = 4, where Xt = ( Yt-1, Yt-2, Yt-3, | Yt-1 |, | Yt-2 |, | Yt-3 |, Rt-1, Rt-2, Rt-3 )’, as in the 
original estimation data (note that  Xt  contains lags of the original Yt  and not lags of ). 
In particular, we take Ψ to be the logistic cdf  and set 
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where εt = Yt - fq(x, ), and with  obtained by applying QuickNet (logistic) to the 

original estimation data with four hidden units. We choose a to ensure that  exhibits 
the same unconditional standard deviation in the simulated data as it does in the actual 
data. The result is an artificial series of returns that contains an “amplified” nonlinear 
signal relative to the noise constituted by ε

*
qθ *

qθ
*

tY

t. We generate hold-out data according to the 
same relationship using the actual Xt’s, but now with εt generated as i.i.d. normal with 
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mean zero and standard deviation equal to that of the errors in the estimation sample. The 
maximum possible hold-out sample R2 turns out to be .574, which occurs when the model 
uses precisely the right set of coefficients for each of the four hidden units. The 
relationship is decidedly nonlinear, as using a linear predictor alone delivers a  
Hold-Out R2 of only .0667. The results of applying the precisely right hidden units are 
presented in Table 6. 
 
First we apply naïve NLS to these data, parallel to the results discussed of Table 1. Again 
we choose initial values for the coefficients at random. Given that the ideal hidden unit 
coefficients are located in a 40-dimensional space, there is little likelihood of stumbling 
upon these, so even though the model is in principle correctly specified for specifications 
with four or more hidden units, whatever results we obtain must be viewed as an 
approximation to an unknown nonlinear predictive relationship.  
 
We report our naïve NLS results in Table 7. Here we again see the bouncing pattern of 
in-sample MSEs first seen in Table 1, but now the CV-best model containing eight 
hidden units also identifies a model that has locally superior hold-out sample 
performance. For the CV-best model, the estimation sample R2 is 0.6228, the CV sample 
R2 is  0.5405, and the Hold-Out R2 is  0.3914. We also include in Table 7 the model that 
has the best Hold-Out R2, which has 49 hidden units. For this model the Hold-Out R2 is 
.4700; however, the CV sample R2 is only .1750, so this even better model would not 
have appeared as a viable candidate. Despite this, these results are encouraging, in that 
now the ANN model identifies and delivers rather good predictive performance, both in 
and out of sample. 
 
Table 8 displays the results using the modified NLS procedure parallel to Table 2. Now 
the estimation sample MSEs decline monotonically, but the CV MSEs never approach 
those seen in Table 7. The best CV R2 is .4072, which corresponds to a Hold-Out R2 of 
.286. The best Hold-Out R2 of .3879 occurs with 41 hidden units, but again this would 
not have appeared as a viable candidate, as the corresponding CV R2 is only .3251. 
 
Next we examine the results obtained by QuickNet, parallel to the results of Table 3. In 
Table 9 we observe quite encouraging performance. The CV-best configuration has 33 
hidden units, with a CV R2 of .6484 and corresponding Hold-Out R2 of .5430. This is 
quite close to the maximum possible value of .574 obtained by using precisely the right 
hidden units. Further, the true best hold-out performance has a Hold-Out R2 of .5510 
using 49 hidden units, not much different from that of the CV-best model.  The 
corresponding CV R2 is .6215, also not much different from that observed for the CV 
best model.  
 
The required estimation time for QuickNet here is essentially identical to that reported 
above (about 31 seconds), but now naïve NLS takes 788.27 seconds and modified NLS 
requires 726.10 seconds. 
 
In Table 10, we report the results of applying QuickNet with a ridgelet activation 
function. Given that the ridgelet basis is less smooth relative to our target function than 
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the standard logistic ANN, which is ideally smooth in this sense, we should not expect 
results as good as those seen in Table 9. Nevertheless, we observe quite good 
performance. The best CV MSE performance occurs with 50 hidden units, corresponding 
to a respectable hold-out R2 of .471. Moreover, CV MSE appears to be trending 
downward, suggesting that additional terms could further improve performance. 
 
Table 11 shows analogous results for the polynomial version of QuickNet. Again we see 
that additional polynomial terms do not improve in-sample fit as rapidly as do the ANN 
terms. We also again see the extremely erratic behavior of CV MSE, arising from 
precisely the same source as before, rendering CV MSE useless for polynomial model 
selection purposes. Interestingly, however, the hold-out R2 of the better-performing 
models isn’t bad, with a maximum value of .390. The challenge is that this model could 
never be identified using CV MSE. 
 
We summarize these experiments with the following remarks. Compared to the familiar 
benchmark of algebraic polynomials, the use of ANNs appears to offer the ability to more 
quickly capture nonlinearities; and the alarmingly erratic behavior of CV MSE for 
polynomials definitely serves as a cautionary note. In our controlled environment, 
QuickNet, either with logistic cdf or ridgelet activation function, performs well in rapidly 
extracting a reliable nonlinear predictive relationship. Naïve NLS is better than a simple 
linear forecast, as is modified NLS. The lackluster performance of the latter method does 
little to recommend it, however. Nor do the computational complexity, modest 
performance, and somewhat erratic behavior of naïve NLS support its routine use. The 
relatively good performance of QuickNet seen here suggests it is well worth application, 
further study, and refinement. 
 
7.2 Explaining Forecast Outcomes 
 
In this section we illustrate application of the explanatory taxonomy provided in Section 
6.2. For conciseness, we restrict attention to examining the out-of-sample predictions 
made with the CV MSE-best nonlinear forecasting model corresponding to Table 9. This 
is an ANN with logistic cdf activation and 33 hidden units, achieving a hold-out R2 of  
.5493. 
 
The first step in applying the taxonomy is to check whether the forecast function  is 
monotone or not. A simple way to check this is to examine the first partial derivatives of 

with respect to the predictors, x, which we write D  = (D

f̂

f̂ f̂ 1 f̂ ,..., D9 f̂ ), 

Dj f̂ jxf ∂∂≡ /ˆ . If any of these derivatives change sign over the estimation or hold-out 

samples, then  is not monotone. Note that this is a necessary and not sufficient 

condition for monotonicity. In particular, if  is non-monotone over regions not covered 
by the data, then this simple check will not signal non-monotonicity. In such cases, 
further exploration of the forecast function may be required. In Table 12 we display 
summary statistics including the minimum and maximum values of the elements of D  

f̂

f̂

f̂
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over the hold-out sample. The non-monotonicity is obvious from the differing signs of 
the maxima and minima. We are thus in Case II of the taxonomy. 
 
The next step is to examine  =  - δ̂ f̂ Y for remarkable values, that is, values that are 
either unusual or extreme. When one is considering a single out-of-sample prediction, the 
comparison must be done relative to the estimation data set. Here, however, we have a 
hold-out sample containing a relatively large number of observations, so we can conduct 
our examination relative to the hold-out data. For this, it is convenient to sort the hold-out 
observations in order of  (equivalently ) and examine the distances between the order 
statistics. Large values for these distances identify potentially remarkable values. In this 
case we have that the largest values between order statistics occur only in the tail, so the 
only remarkable values are the extreme values. We are thus dealing with cases II.C.2, 
II.D.3, or II.D.4. 

δ̂ f̂

 
The taxonomy resolves the explanation once we determine whether the predictors are 
remarkable or not, and if remarkable in what way (unusual or extreme). The comparison 
data must be the estimation sample if there are only a few predictions, but given the 
relatively large hold-out sample here, we can assess the behavior of the predictors relative 
to the hold-out data. As mentioned in Section 6.2, a quick and dirty way to check for 
remarkable values is to consider each predictor separately. A check of the order statistic 
spacings for the individual predictors does not reveal unusual values in the hold-out data, 
so in Table 13 we present information bearing on whether or not the values of the 
predictors associated with the five most extreme ’s are extreme. We provide both 
actual values and standardized values, in terms of (hold-out) standard deviations from the 
(hold-out) mean. 

f̂

 
The largest and most extreme prediction (  = 3.0871) has associated predictor values 
that are plausibly extreme: x

f̂
1 and x4 are approximately two standard deviations from their 

hold-out sample means, and x7 is at 1.67 standard deviations. This first example therefore 
is plausibly case II.D.4: an extreme forecast explained by extreme predictors. This 
classification is also plausible for examples 2 and 4, as predictors x2, x7, and x9 are 
moderately extreme for example 2 and predictor x8 is extreme for example 4. On the 
other hand, the predictors for examples 3 and 5 do not appear to be particularly extreme, 
As we earlier found no evidence of unusual non-extreme predictors, these examples are 
plausibly classified as case II.C.2: extreme forecasts explained by non-monotonicities. 
 
It is worth emphasizing that the discussion of this section is not definitive, as we have 
illustrated our explanatory taxonomy using only the most easily applied tools. This is 
certainly relevant, as these tools are those most accessible to practitioners, and they 
afford a simple first cut at understanding particular outcomes. They are also helpful in 
identifying cases for which further analysis, and in particular application of more 
sophisticated tools, such as those involving multivariate density estimation, may be 
warranted. 
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8. Summary and Concluding Remarks 
 
In this chapter, we have reviewed key aspects of forecasting using nonlinear models. In 
economics, any model, whether linear or nonlinear, is typically misspecified. 
Consequently, the resulting forecasts provide only an approximation to the best possible 
forecast. As we have seen, it is possible, at least in principle, to obtain superior 
approximations to the optimal forecast using a nonlinear approach. Against this 
possibility lie some potentially serious practical challenges. Primary among these are 
computational difficulties, the dangers of overfit, and potential difficulties of 
interpretation.  
 
As we have seen, by focusing on models linear in the parameters and nonlinear in the 
predictors, it is possible to avoid the main computational difficulties and retain the 
benefits of the additional flexibility afforded by predictor nonlinearity. Further, use of 
nonlinear approximation, that is using only the more important terms of a nonlinear 
series, can afford further advantages. There is a vast range of possible methods of this 
sort. Choice among these methods can be guided to only a modest degree by a priori 
knowledge. The remaining guidance must come from the data. Specifically, careful 
application of methods for controlling model complexity, such as Geisser’s (1975) delete-
d cross validation for cross-section data or Racine’s (2000) hv-block cross-validation for 
time-series data, is required in order to properly address the danger of overfit. A careful 
consideration of the interpretational issues shows that the difficulties there lie not so 
much with nonlinear models as with their relative unfamiliarity; as we have seen, the 
interpretational issues are either identical or highly parallel for linear and nonlinear 
approaches. 
 
In our discussion here, we have paid particular attention to nonlinear models constructed 
using artificial neural networks (ANNs), using these to illustrate both the challenges to 
the use of nonlinear methods and effective solutions to these challenges. In particular, we 
propose QuickNet, an appealing family of algorithms for constructing nonlinear forecasts 
that retains the benefits of using a model nonlinear in the predictors while avoiding or 
mitigating the other challenges to the use of nonlinear forecasting models. In our limited 
example with artificial data, we saw some encouraging performance from QuickNet, both 
in terms of computational speed relative to more standard ANN methods and in terms of 
resulting forecasting performance relative to more familiar polynomial approximations. 
In our real-world data example, we also saw that building useful forecasting models can 
be quite challenging. There is no substitute for a thorough understanding of the strengths 
and weaknesses of the methods applied; nor can the importance of a thorough 
understanding of the domain being modeled be over-emphasized.  
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Abstract

Bayesian forecasting is a natural product of a Bayesian approach to
inference. The Bayesian approach in general requires explicit formulation
of a model, and conditioning on known quantities, in order to draw in-
ferences about unknown ones. In Bayesian forecasting, one simply takes
a subset of the unknown quantities to be future values of some variables
of interest. This paper presents the principles of Bayesian forecasting,
and describes recent advances in compuational capabilities for applying
them that have dramatically expanded the scope of applicability of the
Bayesian approach. It describes historical developments and the analytic
compromises that were necessary prior to recent developments, the appli-
cation of the new procedures in a variety of examples, and reports on two
long-term Bayesian forecasting exercises.

...in terms of forecasting ability, ... a good Bayesian will beat a non-Bayesian,
who will do better than a bad Bayesian.

(C.W.J. Granger, 1986, p. 16)

1 Introduction
Forecasting involves the use of information at hand–hunches, formal models,
data, etc.–to make statements about the likely course of future events. In
technical terms, conditional on what one knows, what can one say about the
future? The Bayesian approach to inference, as well as decision-making and
forecasting, involves conditioning on what is known to make statements about
what is not known. Thus “Bayesian Forecasting” is a mild redundancy, because
forecasting is at the core of the Bayesian approach to just about anything. The
parameters of a model, for example, are no more known than future values of the
data thought to be generated by that model, and indeed the Bayesian approach
treats the two types of unknowns in symmetric fashion. The future values of
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an economic time series simply constitute another function of interest for the
Bayesian analysis.
Conditioning on what is known, of course, means using prior knowledge of

structures, reasonable parameterizations, etc., and it is often thought that it is
the use of prior information that is the salient feature of a Bayesian analysis.
While the use of such information is certainly a distinguishing feature of a
Bayesian approach, it is merely an implication of the principles that one should
fully specify what is known and what is unknown, and then condition on what
is known in making probabilistic statements about what is unknown.
Until recently, each of these two principles posed substantial technical ob-

stacles for Bayesian analyses. Conditioning on known data and structures gen-
erally leads to integration problems whose intractability grows with the realism
and complexity of the problem’s formulation. Fortunately, advances in numer-
ical integration that have occurred during the past fifteen years have steadily
broadened the class of forecasting problems that can be addressed routinely in a
careful yet practical fashion. This development has simultaneously enlarged the
scope of models that can be brought to bear on forecasting problems using ei-
ther Bayesian or non-Bayesian methods, and significantly increased the quality
of economic forecasting. This chapter provides both the technical foundation for
these advances, and the history of how they came about and improved economic
decision-making.
The chapter begins in Section 2 with an exposition of Bayesian inference,

emphasizing applications of these methods in forecasting. Section 3 describes
how Bayesian inference has been implemented in posterior simulation methods
developed since the late 1980’s. The reader who is familiar with these topics at
the level of Koop(2003) or Lancaster (2004) will find that much of this material
is review, except to establish notation, which is quite similar to Geweke (2005).
Section 4 details the evolution of Bayesian forecasting methods in macroeco-
nomics, beginning from the seminal work of Zellner (1971). Section 5 provides
selectively chosen examples illustrating other Bayesian forecasting models, with
an emphasis on their implementation through posterior simulators. The chapter
concludes with some practical applications of Bayesian vector autoregressions.

2 Bayesian inference and forecasting: a primer
Bayesian methods of inference and forecasting all derive from two simple prin-
ciples.

1. Principle of explicit formulation. Express all assumptions using formal
probability statements about the joint distribution of future events of in-
terest and relevant events observed at the time decisions, including fore-
casts, must be made.

2. Principle of relevant conditioning. In forecasting, use the distribution of
future events conditional on observed relevant events and an explicit loss
function.
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The fun (if not the devil) is in the details. Technical obstacles can limit
the expression of assumptions and loss functions or impose compromises and
approximations. These obstacles have largely fallen with the advent of poste-
rior simulation methods described in Section 3, methods that have themselves
motivated entirely new forecasting models. In practice those doing the techni-
cal work with distributions (investigators, in the dichotomy drawn by Hildreth
(1963)) and those whose decision-making drives the list of future events and
the choice of loss function (Hildreth’s clients) may not be the same. This poses
the question of what investigators should report, especially if their clients are
anonymous, an issue to which we return in Section 3.3. In these and a host of
other tactics, the two principles provide the strategy.
This analysis will provide some striking contrasts for the reader who is

both new to Bayesian methods and steeped in non-Bayesian approaches. Non-
Bayesian methods employ the first principle to varying degrees, some as fully
as do Bayesian methods, where it is essential. All non-Bayesian methods vi-
olate the second principle. This leads to a series of technical difficulties that
are symptomatic of the violation: no treatment of these difficulties, no matter
how sophisticated, addresses the essential problem. We return to the details of
these difficulties below in Sections 2.1 and 2.2. At the end of the day, the fail-
ure of non-Bayesian methods to condition on what is known rather than what
is unknown precludes the integration of the many kinds of uncertainty that is
essential both to decision making as modeled in mainstream economics and as
it is understood by real decision-makers. Non-Bayesian approaches concentrate
on uncertainty about the future conditional on a model, parameter values, and
exogenous variables, leading to a host of practical problems that are once again
symptomatic of the violation of the principle of relevant conditioning. Section
3.3 details these difficulties.

2.1 Models for observables

Bayesian inference takes place in the context of one or more models that describe
the behavior of a p×1 vector of observable random variables yt over a sequence
of discrete time units t = 1, 2, . . .. The history of the sequence at time t is
given by Yt = {ys}ts=1. The sample space for yt is ψt, that for Yt is Ψt, and
ψ0 = Ψ0 = {∅}. A model, A, specifies a corresponding sequence of probability
density functions

p (yt | Yt−1,θA, A) (1)

in which θA is a kA×1 vector of unobservables, and θA ∈ ΘA ⊆ Rk. The vector
θA includes not only parameters as usually conceived, but also latent variables
convenient in model formulation. This extension immediately accommodates
non-standard distributions, time varying parameters, and heterogeneity across
observations; Albert and Chib (1993), Carter and Kohn (1994), Fruhwirth-
Schnatter (1994) and DeJong and Shephard (1995) provide examples of this
flexibility in the context of Bayesian time series modeling.
The notation p (·) indicates a generic probability density function (p.d.f.)
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with respect to Lebesgue measure, and P (·) the corresponding cumulative dis-
tribution function (c.d.f.). We use continuous distributions to simplify the nota-
tion; extension to discrete and mix-continuous discrete distrubtions is straight-
forward using a generic measure ν. The probability density function (p.d.f.) for
YT , conditional on the model and unobservables vector θA, is

p (YT | θA, A) =
TY
t=1

p (yt | Yt−1,θA, A) . (2)

When used alone, expressions like yt and YT denote random vectors. In
equations (1) and (2) yt and YT are arguments of functions. These uses
are distinct from the observed values themselves. To preserve this distinction
explicitly, denote observed yt by yot and observed YT by Yo

T . In general, the
superscript o will denote the observed value of a random vector. For example,
the likelihood function is L (θA;Yo

T , A) ∝ p (Yo
T | θA, A).

2.1.1 An example: vector autoregressions

Following Sims (1980) and Litterman (1979) (which are discussed below), vector
autoregressive models have been utilized extensively in forecasting macroeco-
nomic and other time series owing to the ease with which they can be used for
this purpose and their apparent great success in implementation. Adapting the
notation of Litterman (1979), the VAR specification for

p (yt | Yt−1,θA, A)

is given by

yt = BDDt +B1yt−1 +B2yt−2 + ...+Bmyt−m + εt (3)

where A now signifies the autoregressive structure, Dt is a deterministic com-

ponent of dimension d, and εt
iid∼ N(0,Ψ). In this case,

θA = (BD,B1, ...,Bm,Ψ) .

2.1.2 An example: stochastic volatility

Models with time-varying volatility have long been standard tools in portfo-
lio allocation problems. Jacquier, Polson and Rossi (1994) developed the first
fully Bayesian approach to such a model. They utilized a time series of latent
volatilities h =(h1, . . . , hT )

0:

h1 |
¡
σ2η, φ,A

¢
∼ N

£
0, σ2η/

¡
1− φ2

¢¤
, (4)

ht = φht−1 + σηηt (t = 2, . . . , T ) . (5)

An observable sequence of asset returns y =(y1, . . . , yT )
0 is then conditionally

independent,
yt = β exp (ht/2) εt; (6)
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(εt, ηt)
0 | A iid∼ N (0, I2). The (T + 3)× 1 vector of unobservables is

θA =
¡
β, σ2η, φ, h1, . . . , hT

¢0
. (7)

It is conventional to speak of
¡
β, σ2η, φ

¢
as a parameter vector and h as a vector

of latent variables, but in Bayesian inference this distinction is a matter only of
language, not substance. The unobservables h can be any real numbers, whereas
β > 0, ση > 0, and φ ∈ (−1, 1). If φ > 0 then the observable sequence

©
y2t
ª

exhibits the positive serial correlation characteristic of many sequences of asset
returns.

2.1.3 The forecasting vector of interest

Models are means, not ends. A useful link between models and the purposes for
which they are formulated is a vector of interest, which we denote ω ∈Ω ⊆ Rq.
The vector of interest may be unobservable, for example the monetary equivalent
of a change in welfare, or the change in an equilibrium price vector, following
a hypothetical policy change. In order to be relevant, the model must not only
specify (1), but also

p (ω | YT ,θA, A) . (8)

In a forecasting problem, by definition,
©
y0T+1, . . . ,y

0
T+F

ª
∈ ω0 for some

F > 0. In some cases ω0 =
¡
y0T+1, . . . ,y

0
T+F

¢
and it is possible to express

p (ω | YT ,θA) ∝ p (YT+F | θA, A) in closed form, but in general this is not so.
Suppose, for example, that a stochastic volatility model of the form (5)-(6) is
a means to the solution of a financial decision making problem with a 20-day
horizon so that ω =(yT+1, . . . , yT+20)

0. Then there is no analytical expression
for p (ω | YT ,θA, A) with θA defined as it is in (7). If ω is extended to include
(hT+1, . . . , hT+20)

0 as well as (yT+1, . . . , yT+20)
0, then the expression is simple.

Continuing with an analytical approach then confronts the original problem
of integrating over (hT+1, . . . , hT+20)

0 to obtain p (ω | YT ,θA, A). But it also
highlights the fact that it is easy to simulate from this extended definition of ω
in a way that is, today, obvious:

ht |
¡
ht−1, σ

2
η, φ,A

¢
∼ N

¡
φht−1, σ

2
η

¢
, yt | (ht, β,A) ∼ N

£
0, β2 exp (ht)

¤
(t = T + 1, . . . , T + 20).

Since this produces a simulation from the joint distribution of (hT+1, . . . , hT+20)
0

and (yT+1, . . . , yT+20)
0, the “marginalization” problem simply amounts to dis-

carding the simulated (hT+1, . . . , hT+20)
0
.

A quarter-century ago, this idea was far from obvious. Wecker (1979), in
a paper on predicting turning points in macroeconomic time series, appears
to have been the first to have used simulation to access the distribution of a
problematic vector of interest ω or functions of ω. His contribution was the
first illustration of several principles that have emerged since and will appear
repeatedly in this survey. One is that while producing marginal from joint
distributions analytically is demanding and often impossible, in simulation it
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simply amounts to discarding what is irrelevant. (In Wecker’s case the future
yT+s were irrelevant in the vector that also included indicator variables for
turning points.) A second is that formal decision problems of many kinds, from
point forecasts to portfolio allocations to the assessment of event probabilities
can be solved using simulations of ω. Yet another insight is that it may be much
simpler to introduce intermediate conditional distributions, thereby enlarging
θA, ω, or both, retaining from the simulation only that which is relevant to
the problem at hand. The latter idea was fully developed in the contribution of
Tanner and Wong (1987).

2.2 Model completion with prior distributions

The generic model for observables (2) is expressed conditional on a vector of
unobservables, θA, that includes unknown parameters. The same is true of the
model for the vector of interest ω in (8), and this remains true whether one
simulates from this distribution or provides a full analytical treatment. Any
workable solution of a forecasting problem must, in one way or another, address
the fact that θA is unobserved. A similar issue arises if there are alternative
models A–different functional forms in (2) and (8)–and we return to this
matter in Section 2.3.

2.2.1 The role of the prior

The Bayesian strategy is dictated by the first principle, which demands that we
work with p (ω | YT , A). Given that p (YT | θA, A) has been specified in (2)
and p (ω | YT ,θA) in (8), we meet the requirements of the first principle by
specifying

p (θA | A) , (9)

because then

p (ω | YT , A) ∝
Z
ΘA

p (θA | A) p (YT | θA, A) p (ω | YT ,θA, A) dθA.

The density p (θA | A) defines the prior distribution of the unobservables. For
many practical purposes it proves useful to work with an intermediate distrib-
ution, the posterior distribution of the unobservables whose density is

p (θA | Yo
T , A) ∝ p (θA | A) p (Yo

T | θA, A)

and then p (ω | Yo
T , A) =

R
ΘA

p (θA | Yo
T , A) p (ω | Y

o
T ,θA, A) dθA.

Much of the prior information in a complete model comes from the speci-
fication of (1): for example, Gaussian disturbances limit the scope for outliers
regardless of the prior distribution of the unobservables; similarly in the stochas-
tic volatility model outlined in Section 2.1.2 there can be no “leverage effects”
in which outliers in period T + 1 are more likely following a negative return in
period T than following a positive return of the same magnitude. The prior
distribution further refines what is reasonable in the model.
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There are a number of ways that the prior distribution can be articulated.
The most important, in Bayesian economic forecasting, have been the closely re-
lated principles of shrinkage and hierarchical prior distributions, which we take
up shortly. Substantive expert information can be incorporated, and can im-
prove forecasts. For example DeJong, Ingram and Whiteman (2000) and Ingram
and Whiteman (1994) utilize dynamic stochastic general equilibrium models to
provide prior distributions in vector autoregressions to the same good effect that
Litterman (1979) did with shrinkage priors (see Section 4.3 below). Chulani et
al. (1999) construct a prior distribution, in part, from expert information and
use it to improve forecasts of the cost, schedule and quality of software under de-
velopment. Heckerman (1997) provides a closely related approach to expressing
prior distributions using Bayesian belief networks.

2.2.2 Prior predictive distributions

Regardless of how the conditional distribution of observables and the prior dis-
tribution of unobservables are formulated, together they provide a distribution
of observables with density

p (YT | A) =
Z
ΘA

p (θA | A) p (YT | θA) dθA, (10)

known as the prior predictive density. It summarizes the whole range of phenom-
ena consistent with the complete model and it is generally very easy to access
by means of simulation. Suppose that the values θ(m)A are drawn i.i.d. from the

prior distribution, an assumption that we denote θ(m)A
iid∼ p (θA | A), and then

successive values of y(m)t are drawn independently from the distributions whose
densities are given in (1),

y
(m)
t

id∼ p
³
yt | Y(m)

t−1,θ
(m)
A , A

´
(t = 1, . . . , T ; m = 1, . . . ,M) . (11)

Then the simulated samples Y(m)
T

iid∼ p (YT | A). Notice that so long as prior
distributions of the parameters are tractable, this exercise is entirely straight-
forward. The vector autoregression and stochastic volatility models introduced
above are both easy cases.
The prior predictive distribution summarizes the substance of the model and

emphasizes the fact that the prior distribution and the conditional distribution
of observables are inseparable components, a point forcefully argued a quarter-
century ago in a seminal paper by George Box (1980). It can also be a very
useful tool in understanding a model — one that can greatly enhance research
productivity, as emphasized in recent papers by Geweke (1998), Geweke and Mc-
Causland (2001) and Gelman (2003) as well as in recent Bayesian econometrics
texts by Lancaster (2004, Section 2.4) and Geweke (2005, Section 5.3.1). This
is because simulation from the prior predictive distribution is generally much
simpler than formal inference (Bayesian or otherwise) and can be carried out
relatively quickly when a model is first formulated. One can readily address the
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question of whether an observed function of the data g (Yo
T ) is consistent with

the model by checking to see whether it is within the support of p [g (YT ) | A]
which in turn is represented by g

³
Y
(m)
T

´
(m = 1, . . .M). The function g could,

for example, be a unit root test statistic, a measure of leverage, or the point
estimate of a long-memory parameter.

2.2.3 Hierarchical priors and shrinkage

A common technique in constructing a prior distribution is the use of interme-
diate parameters to facilitate expressing the distribution. For example suppose
that the prior distribution of a parameter µ is Student-t with location parameter
µ, scale parameter h−1 and ν degrees of freedom. The underscores, here, denote
parameters of the prior distribution, constants that are part of the model defin-
ition and are assigned numerical values. Drawing on the familiar genesis of the
t-distribution, the same prior distribution could be expressed (ν/h)h ∼ χ2 (ν),
the first step in the hierarchical prior, and then µ | h ∼ N

¡
µ, h−1

¢
, the second

step . The unobservable h is an intermediate device useful in expressing the
prior distribution; such unobservables are sometimes termed hyperparameters
in the literature. A prior distribution with such intermediate parameters is a
hierarchical prior, a concept introduced by Lindley and Smith (1972) and Smith
(1973). In the case of the Student-t distribution this is obviously unnecessary,
but it still proves quite convenient in conjunction with the posterior simulators
discussed in Section 3.
In the formal generalization of this idea the complete model provides the

prior distribution by first specifying the distribution of a vector of hyperpara-
meters θ∗A, p (θ

∗
A | A), and then the prior distribution of a parameter vector θA

conditional on θ∗A, p (θA | θ∗A, A). The distinction between a hyperparameter
and a parameter is that the distribution of the observable is expressed, directly,
conditional on the latter: p (YT | θA, A). Clearly one could have more than one
layer of hyperparameters and there is no reason why θ∗A could not also appear
in the observables distribution.
In other settings hierarchical prior distributions are not only convenient, but

essential. In economic forecasting important instances of hierarchical prior arise
when there are many parameters, say θ1, . . . , θr, that are thought to be similar
but about whose common central tendency there is less information. To take the
simplest case, that of a multivariate normal prior distribution, this idea could be
expressed by means of a variance matrix with large on-diagonal elements h−1,
and off-diagonal elements ρ, with ρ close to 1. Equivalently, this idea could be
expressed by introducing the hyperparameter θ∗, then taking

θ∗ | A ∼ N
¡
0, ρh−1

¢
(12)

followed by

θi | (θ∗, A) ∼ N
£
θ∗,
¡
1− ρ

¢
h−1

¤
, (13)

yt | (θ1, . . . , θr, A) ∼ p (yt | θ1, . . . , θr) (t = 1, . . . , T ) . (14)
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This idea could then easily be merged with the strategy for handling the Student-
t distribution, allowing some outliers among θi (a Student-t distribution condi-
tional on θ∗), thicker tails in the distribution of θ∗, or both.
The application of hierarchical priors in (12)-(13) is an example of shrinkage.

The concept is familiar in non-Bayesian treatments as well (for example, ridge
regression) where its formal motivation originated with James and Stein (1961).
In the Bayesian setting shrinkage is toward a common unknown mean θ∗, for
which a posterior distribution will be determined by the data, given the prior.
This idea has proven to be vital in forecasting problems in which there are

many parameters. Section 4 reviews its application in vector autoregressions
and its critical role in turning mediocre into superior forecasts in that model.
Zellner and Hong (1989) used this strategy in forecasting growth rates of output
for 18 different countries, and it proved to minimize mean square forecast error
among eight competing treatments of the same model. More recently Tobias
(2001) applied the same strategy in developing predictive intervals in the same
model. Zellner and Chen (2001) approached the problem of forecasting US real
GDP growth by disaggregating across sectors and employing a prior that shrinks
sector parameters toward a common but unknown mean, with a payoff similar
to that in Zellner and Hong (1989). In forecasting long-run returns to over
1,000 initial public offerings Brav (2000) found a prior with shrinkage toward
an unknown mean essential in producing superior results.

2.2.4 Latent variables

Latent variables, like the volatilities ht in the stochastic volatility model of Sec-
tion 2.1.2, are common in econometric modelling. Their treatment in Bayesian
inference is no different from the treatment of other unobservables, like parame-
ters. In fact latent variables are, formally, no different from hyperparameters.
For the stochastic volatility model equations (5)-(5) provides the distribution
of the latent variables (hyperparameters) conditional on the parameters, just as
(12) provides the hyperparameter distribution in the illustration of shrinkage.
Conditional on the latent variables {ht}, (6) indicates the observables distrib-
ution, just as (14) indicates the distribution of observables conditional on the
parameters.
In the formal generalization of this idea the complete model provides a con-

ventional prior distribution p (θA | A), and then the distribution of a vector of
latent variables z conditional on θA, p (z | θA, A). The observables distribution
typically involves both z and θA: p (YT | z,θA, A). Clearly one could also have
a hierarchical prior distribution for θA in this context as well.
Latent variables are convenient, but not essential, devices for describing the

distribution of observables, just as hyperparameters are convenient but not es-
sential in constructing prior distributions. The convenience stems from the fact
that the likelihood function is otherwise awkward to express, as the reader can
readily verify for the stochastic volatility model. In these situations Bayesian
inference then has to confront the problem that it is impractical, if not impossi-
ble, to evaluate the likelihood function or even to provide an adequate numeri-

9



cal approximation. Tanner and Wong (1987) provided a systematic method for
avoiding analytical integration in evaluating the likelihood function, through a
simulation method they described as data augmentation. Section 5.2.2 provides
an example.
This ability to use latent variables in a routine and practical way in conjunc-

tion with Bayesian inference has spawned a generation of Bayesian time series
models useful in prediction. These include state space mixture models (see
Carter and Kohn (1994, 1996) and Gerlach et al. (2000)), discrete state models
(see Albert and Chib (1993) and Chib (1996)), component models (see West
(1995) and Huerta and West (1999)) and factor models (see Geweke and Zhou
(1996) and Aguilar and West (2000)). The last paper provides a full application
to the applied forecasting problem of foreign exchange portfolio allocation.

2.3 Model combination and evaluation

In applied forecasting and decision problems one typically has under consider-
ation not a single model A, but several alternative models A1, . . . , AJ . Each
model is comprised of a conditional observables density (1), a conditional den-
sity of a vector of interest ω (8) and a prior density (9). For a finite number of
models, each fully articulated in this way, treatment is dictated by the principle
of explicit formulation: extend the formal probability treatment to include all
J models. This extension requires only attaching prior probabilities p (Aj) to
the models, and then conducting inference and addressing decision problems
conditional on the universal model specification©

p (Aj) , p
¡
θAj | Aj

¢
, p
¡
YT | θAj , Aj

¢
, p
¡
ω | YT ,θAj , Aj

¢ª
(j = 1, . . . , J) .

(15)
The J models are related by their prior predictions for a common set of

observables YT and a common vector of interest ω. The models may be quite
similar: some, or all, of them might have the same vector of unobservables
θA and the same functional form for p (YT | θA, A), and differ only in their
specification of the prior density p (θA | Aj). At the other extreme some of
the models in the universe might be simple or have a few unobservables, while
others could be very complex with the number of unobservables, which include
any latent variables, substantially exceeding the number of observables. There
is no nesting requirement.

2.3.1 Models and probability

The penultimate objective in Bayesian forecasting is the distribution of the
vector of interest ω, conditional on the data Yo

T and the universal model spec-
ification A = {A1, . . . , AJ}. Given (15) the formal solution is

p (ω | Yo
T , A) =

JX
j=1

p (ω | Yo
T , Aj) p (Aj | Yo

T ) , (16)
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known as model averaging. In expression (16),

p (Aj | Yo
T , A) = p (Yo

T | Aj) p (Aj | A) /p (Yo
T | A) (17)

∝ p (Yo
T | Aj) p (Aj | A) . (18)

Expression (17) is the posterior probability of model Aj . Since these proba-
bilities sum to 1, the values in (18) are sufficient. Of the two components in
(18) the second is the prior probability of model Aj . The first is the marginal
likelihood

p (Yo
T | Aj) =

Z
ΘAj

p
¡
Yo
T | θAj , Aj

¢
p
¡
θAj | Aj

¢
dθAj . (19)

Comparing (19) with (10), note that (19) is simply the prior predictive density,
evaluated at the realized outcome Yo

T — the data.
The ratio of posterior probabilities of the models Aj and Ak is

P (Aj | Yo
T )

P (Ak | Yo
T )
=

P (Aj)

P (Ak)
· p (Y

o
T | Aj)

p (Yo
T | Ak)

, (20)

known as the posterior odds ratio in favor of model Aj versus model Ak. It
is the product of the prior odds ratio P (Aj | A) /P (Ak | A), and the ratio of
marginal likelihoods p (Yo

T | Aj) /p (Y
o
T | Ak), known as the Bayes factor. The

Bayes factor, which may be interpreted as updating the prior odds ratio to
the posterior odds ratio, is independent of the other models in the universe
A = {A1, . . . , AJ}. This quantity is central in summarizing the evidence in
favor of one model, or theory, as opposed to another one, an idea due to Jeffreys
(1939). The significance of this fact in the statistics literature was recognized
by Roberts (1965), and in econometrics by Leamer (1978). The Bayes factor
is now a practical tool in applied statistics; see the reviews of Draper (1995),
Chatfield (1995), Kass and Raftery (1995) and Hoeting et al. (1999).

2.3.2 A model is as good as its predictions

It is through the marginal likelihoods p (Yo
T | Aj) (j = 1, . . . , J) that the ob-

served outcome (data) determines the relative contribution of competing mod-
els to the posterior distribution of the vector of interest ω. There is a close
and formal link between a model’s marginal likelihood and the adequacy of its
out-of-sample predictions. To establish this link consider the specific case of a
forecasting horizon of F periods, with ω0=

¡
y0T+1, . . . ,y

0
T+F

¢
. The predictive

density of yT+1, . . . ,yT+F , conditional on the data Yo
T and a particular model

A is
p (yT+1, . . . ,yT+F | Yo

T , A) . (21)

The predictive density is relevant after formulation of the model A and observ-
ingYT = Y

o
T , but before observing yT+1, . . . ,yT+F . Once yT+1, . . . ,yT+F are

known, we can evaluate (21) at the observed values. This yields the predictive
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likelihood of yoT+1, . . . ,y
o
T+F conditional on Y

o
T and the model A, the real num-

ber p
¡
yoT+1, . . . ,y

o
T+F | Yo

T , A
¢
. Correspondingly, the predictive Bayes factor

in favor of model Aj , versus the model Ak, is

p
¡
yoT+1, . . . ,y

o
T+F | Yo

T , Aj

¢
/p
¡
yoT+1, . . . ,y

o
T+F | Yo

T , Ak

¢
.

There is an illuminating link between predictive likelihood and marginal
likelihood that dates at least to Geisel (1975). Since

p (YT+F | A) = p (YT+F | YT , A) p (YT | A)
= p (yT+1, . . . ,yT+F | YT , A) p (YT | A) ,

the predictive likelihood is the ratio of marginal likelihoods

p
¡
yoT+1, . . . ,y

o
T+F | Yo

T , A
¢
= p

¡
Yo
T+F | A

¢
/p (Yo

T | A) .

Thus the predictive likelihood is the factor that updates the marginal likelihood,
as more data become available.
This updating relationship is quite general. Let the strictly increasing se-

quence of integers {sj , (j = 0, . . . , q)} with s0 = 1 and sq = T partition T
periods of observations Yo

T . Then

p (Yo
T | A) =

qY
τ=1

p
³
yosτ−1+1, . . . ,y

o
sτ | Y

o
sτ−1 , A

´
. (22)

This decomposition is central in the updating and prediction cycle that

1. Provides a probability density for the next sτ − sτ−1 periods

p
³
ysτ−1+1, . . . ,ysτ | Yo

sτ−1 , A
´
,

2. After these events are realized evaluates the fit of this probability density
by means of the predictive likelihood

p
³
yosτ−1+1, . . . ,y

o
sτ | Y

o
sτ−1 , A

´
,

3. Updates the posterior density

p
¡
θA | Yo

sτ , A
¢
∝ p

³
θA | Yo

sτ−1 , A
´
p
³
yosτ−1+1, . . . ,y

o
sτ | Y

o
sτ−1 ,θA, A

´
,

4. Provides a probability density for the next sτ+1 − sτ periods

p
¡
ysτ+1, . . . ,ysτ+1 | Yo

sτ , A
¢

=

Z
ΘA

p
¡
θA | Yo

sτ , A
¢
p
¡
ysτ+1, . . . ,ysτ+1 | Yo

sτ ,θA, A
¢
dθA.
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This system of updating and probability forecasting in real time was termed
prequential (a combination of probability forecasting and sequential prediction)
by Dawid (1984). Dawid carefully distinguished this process from statistical
forecasting systems that do not fully update: for example, using a “plug-in”
estimate of θA, or using a posterior distribution for θA that does not reflect all
of the information available at the time the probability distribution over future
events is formed.
Each component of the multiplicative decomposition in (22) is the realized

value of the predictive density for the following sτ − sτ−1 observations, formed
after sτ−1 observations are in hand. In this, well-defined, sense the marginal like-
lihood incorporates the out-of-sample prediction record of the model A. Equa-
tions (16), (18) and (22) make precise the idea that in model averaging, the
weight assigned to a model is proportional to the product of its out-of-sample
predictive likelihoods.

2.3.3 Posterior predictive distributions

Model combination completes the Bayesian structure of analysis, following the
principles of explicit formulation and relevant conditioning set out at the start
of this section (p. 2). There are many details in this structure important for
forecasting, yet to be described. A principal attraction of the Bayesian structure
is its internal logical consistency, a useful and sometimes distinguishing property
in applied economic forecasting. But the external consistency of the structure
is also critical to successful forecasting: a set of bad models, no matter how
consistently applied, will produce bad forecasts. Evaluating external consis-
tency requires that we compare the set of models with unarticulated alternative
models. In so doing we step outside the logical structure of Bayesian analysis.
This opens up an array of possible procedures, which cannot all be described
here. One of the earliest, and still one of the most complete descriptions of these
possible procedures is the seminal 1980 paper by Box (1980) that appears with
comments by a score of discussants. For a similar more recent symposium, see
Bayarri and Berger (1998) and their discussants.
One of the most useful tools in the evaluation of external consistency is the

posterior predictive distribution. Its density is similar to the prior predictive
density, except that the prior is replaced by the posterior:

p
³eYT | Yo

T , A
´
=

Z
ΘA

p (θA | Yo
T , A) p

³eYT | Yo
T ,θA, A

´
dθA. (23)

In this expression eYT is a random vector: the outcomes, given model A and
the data Yo

T , that might have occurred but did not. Somewhat more precisely,
if the time series “experiment” could be repeated, (23) would be the predictive
density for the outcome of the repeated experiment. Contrasts between eYT

and Yo
T are the basis of assessing the external validity of the model, or set of

models, upon which inference has been conditioned. If one is able to simulate
unobservables θ(m)A from the posterior distribution (more on this in Section 3)
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then the simulation eY(m)
T follows just as the simulation of Y(m)

T in (11).
The process can be made formal by identifying one or more subsets S of the

range ΨT of YT . For any such subset P
³eYT ∈ S | Yo

T , A
´
can be evaluated us-

ing the simulation approximationM−1
PM

m=1 IS

³eY(m)
T

´
. If P

³eYT ∈ S | Yo
T , A

´
= 1 − α, α being a small positive number, and Yo

T /∈ S, there is evidence of
external inconsistency of the model with the data. This idea goes back to the
notion of “surprise” discussed by Good (1956): we have observed an event that
is very unlikely to occur again, were the time series “experiment” to be re-
peated, independently, many times. The essentials of this idea were set out
by Rubin (1984) in what he termed “model monitoring by posterior predictive
checks.” As Rubin emphasized, there is no formal method for choosing the set
S (see, however, Section 2.4.1 below). If S is defined with reference to a scalar

function g as
neYT : g1 ≤ g

³eYT

´
≤ g2

o
then it is a short step to reporting a

“p-value” for g (Yo
T ). This idea builds on that of the probability integral trans-

form introduced by Rosenblatt (1952), stressed by Dawid (1984) in prequential
forecasting, and formalized by Meng (1994); see also the comprehensive survey
of Gelman et al. (1995).
The purpose of posterior predictive exercises of this kind is not to conduct

hypothesis tests that lead to rejection or non-rejection of models; rather, it is
to provide a diagnostic that may spur creative thinking about new models that
might be created and brought into the universe of models A = {A1, . . . , AJ}.
This is the idea originally set forth by Box (1980). Not all practitioners agree:
see the discussants in the symposia in Box (1980) and Bayarri and Berger (1998),
as well as the articles by Edwards et al. (1963) and Berger and Delampady

(1987). The creative process dictates the choice of S, or of g
³eYT

´
, which can be

quite flexible, and can be selected with an eye to the ultimate application of the
model, a subject to which we return in the next section. In general the function
g
³eYT

´
could be a pivotal test statistic (e.g., the difference between the first

order statistic and the sample mean, divided by the sample standard deviation,
in an i.i.d. Gaussian model) but in the most interesting and general cases it will
not (e.g., the point estimate of a long-memory coefficient). In checking external
validity, the method has proven useful and flexible; for example see the recent
work by Koop (2001) and Geweke and McCausland (2001) and the texts by
Lancaster (2004, Section 2.5) and Geweke (2005, Section 5.3.2). Brav (2000)
utilizes posterior predictive analysis in examining alternative forecasting models
for long-run returns on financial assets.
Posterior predictive analysis can also temper the forecasting exercise when

it is clear that there are features g
³eYT

´
that are poorly described by the com-

bination of models considered. For example, if model averaging consistently

under- or overestimates P
³eYT ∈ S | Yo

T , A
´
, then this fact can be duly noted

if it is important to the client. Since there is no presumption that there exists
a true model contained within the set of models considered, this sort of analy-
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sis can be important. For more details, see Draper (1995) who also provides
applications to forecasting the price of oil.

2.4 Forecasting

To this point we have considered the generic situation of J competing models
relating a common vector of interest ω to a set of observablesYT . In forecasting
problems

¡
y0T+1, . . . ,y

0
T+F

¢
∈ ω. Sections 2.1 and 2.2 showed how the principle

of explicit formulation leads to a recursive representation of the complete prob-
ability structure, which we collect here for ease of reference. For each model Aj ,
a prior model probability p (Aj | A), a prior density p

¡
θAj | Aj

¢
for the unob-

servables θAj in that model, a conditional observables density p
¡
YT | θAj , Aj

¢
,

and a vector of interest density p
¡
ω | YT ,θAj , Aj

¢
imply

p
©£
Aj ,θAj (j = 1, . . . , J)

¤
,YT ,ω |A

ª
=

JX
j=1

p (Aj |A) · p
¡
θAj | Aj

¢
· p
¡
YT | θAj , Aj

¢
· p
¡
ω | YT ,θAj , Aj

¢
.

The entire theory of Bayesian forecasting derives from the application of the
principle of relevant conditioning to this probability structure. This leads, in
order, to the posterior distribution of the unobservables in each model

p
¡
θAj | Yo

T , Aj

¢
∝ p

¡
θAj | Aj

¢
p (Yo

T | θAj , Aj) (j = 1 . . . , J) , (24)

the predictive density for the vector of interest in each model

p (ω | Yo
T , Aj) =

Z
ΘAj

p
¡
θAj | Yo

T , Aj

¢
p
¡
ω | Yo

T ,θAj
¢
dθAj , (25)

posterior model probabilities

p (Aj | Yo
T , A)

∝ p (Aj | A) ·
Z
ΘAj

p
¡
Yo
T | θAj , Aj

¢
p
¡
θAj | Aj

¢
dθAj (j = 1 . . . , J) , (26)

and, finally, the predictive density for the vector of interest,

p (ω | Yo
T , A) =

JX
j=1

p (ω | Yo
T , Aj) p (Aj | Yo

T , A) . (27)

The density (25) involves one of the elements of the recursive formulation
of the model and consequently, as observed in Section 2.2.2, simulation from
the corresponding distribution is generally straightforward. Expression (27)
involves not much more than simple addition. Technical hurdles arise in (24)
and (26), and we shall return to a general treatment of these problems using
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posterior simulators in Section 3. Here we emphasize the incorporation of the
final product (27) in forecasting — the decision of what to report about the
future. In Sections 2.4.1 and 2.4.2 we focus on (24) and (25), suppressing the
model subscripting notation. Section 2.4.3 returns to issues associated with
forecasting using combinations of models.

2.4.1 Loss functions and the subjective decision maker

The elements of Bayesian decision theory are isomorphic to those of the classi-
cal theory of expected utility in economics. Both Bayesian decision makers and
economic agents associate a cardinal measure with all possible combinations of
relevant random elements in their environment — both those that they cannot
control, and those that they do. The latter are called actions in Bayesian deci-
sion theory and choices in economics. The mapping to a cardinal measure is a
loss function in the Bayesian decision theory and a utility function in economics,
but except for a change in sign they serve the same purpose. The decision maker
takes the Bayes action that minimizes the expected value of his loss function;
the economic agent makes the choice that maximizes the expected value of her
utility function.
In the context of forecasting the relevant elements are those collected in the

vector of interest ω, and for a single model the relevant density is (25). The
Bayesian formulation is to find an action a (a vector of real numbers) that
minimizes

E [L (a,ω) | Yo
T , A] =

Z
Ω

Z
ΘA

L (a,ω) p (ω | Yo
T , A) dω. (28)

The solution of this problem may be denoted a (Yo
T , A). For some well-known

special cases these solutions take simple forms; see Bernardo and Smith (1994,
Section 5.1.5) or Geweke (2005, Section 2.5). If the loss function is quadratic,
L (a,ω) = (a− ω)0Q (a− ω), where Q is a positive definite matrix, then
a (Yo

T , A) = E (a | Yo
T , A) ; point forecasts that are expected values assume

a quadratic loss function. A zero-one loss function takes the form L (a,ω;ε) =
1−

R
Nε(a)

(ω), where Nε (a) is an open ε-neighborhood of a. Under weak regu-
larity conditions, as ε→ 0, a→ argmaxω p (ω | Yo

T , A).
In practical applications asymmetric loss functions can be critical to effective

forecasting; for one such application see Section 6.2 below. One example is the
linear-linear loss function, defined for scalar ω as

L (a, ω) = (1− q) · (a− ω) I(−∞,a) (ω) + q · (ω − a) I(a,∞) (ω) , (29)

where q ∈ (0, 1); the solution in this case is a = P−1 (q | Yo
T , A), the q’th

quantile of the predictive distribution of ω. Another is the linear-exponential
loss function studied by Zellner (1986):

L (a, ω) = exp [r (a− ω)]− r (a− ω)− 1,
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where r 6= 0; then (28) is minimized by

a = −r−1 log {E [exp (−rω)] | Yo
T , A} ;

if the density (25) is Gaussian, this becomes

a = E (ω | Yo
T , A)− (r/2) var (ω | Yo

T , A) .

The extension of both the quantile and linear-exponential loss functions to the
case of a vector function of interest ω is straightforward.
Forecasts of discrete future events also emerge from this paradigm. For

example, a business cycle downturn might be defined as ω = yT+1 < yoT > yoT−1
for some measure of real economic activity yt. More generally, any future event
may be denoted Ω0 ⊆ Ω. Suppose there is no loss given a correct forecast, but
loss L1 in forecasting ω ∈ Ω0 when in fact ω /∈ Ω0, and loss L2 in forecasting
ω /∈ Ω0 when in fact ω ∈ Ω0. Then the forecast is ω ∈ Ω0 if

L1
L2

<
P (ω ∈ Ω0 | Yo

T , A)

P (ω /∈ Ω0 | Yo
T , A)

and ω /∈ Ω0 otherwise. For further details on event forecasts and combinations
of event forecasts with point forecasts see Zellner et al. (1990).
In simulation-based approaches to Bayesian inference a random sample ω(m)

(m = 1, . . . ,M) represents the density p (ω | Yo
T , A). Shao (1989) showed that

argmax
a

M−1
MX
m=1

L
³
a,ω(m)

´
a.s.→ argmax

a
E [L (a,ω) | Yo

T , A]

under weak regularity conditions that serve mainly to assure the existence and
uniqueness of argmaxaE [L (a,ω) | Yo

T , A]. See also Geweke (2005, Theorems
4.1.2, 4.2.3 and 4.5.3). These results open up the scope of tractable loss functions
to those that can be minimized for fixed ω.
Once in place, loss functions often suggest candidates for the sets S or func-

tions g
³eYT

´
used in posterior predictive distributions as described in Sec-

tion 2.3.3. A generic set of such candidates stems from the observation that a
model provides not only the optimal action a, but also the predictive density of
L (a,ω) | (Yo

T , A) associated with that choice. This density may be compared
with the realized outcomes L (a,ωo) | (Yo

T , A). This can be done for one fore-
cast, or for a whole series of forecasts. For example, amight be the realization of
a trading rule designed to minimize expected financial loss, and L the financial
loss from the application of the trading rule; see Geweke (1989b) for an early
application of this idea to multiple models.
Non-Bayesian formulations of the forecasting decision problem are super-

ficially similar but fundamentally different. In non-Bayesian approaches it is
necessary to introduce the assumption that there is a data generating process
f (YT | θ) with a fixed but unknown vector of parameters θ, and a correspond-
ing generating process for the vector of interest ω, f (ω | YT ,θ). In so doing

17



these approaches condition on unknown quantities, sewing the seeds of internal
logical contradiction that subsequently re-emerge, often in the guise of interest-
ing and challenging problems. The formulation of the forecasting problem, or
any other decision-making problem, is then to find a mapping from all possible
outcomes YT , to actions a, that minimizes

E {L [a (YT ) ,ω]} =
Z
Ω

Z
ΨT

L [a (YT ) ,ω] f (YT | θ) f (ω | YT ,θ) dYT dω.

(30)
Isolated pedantic examples aside, the solution of this problem invariably involves
the unknown θ. The solution of the problem is infeasible because it is ill-posed,
assuming that which is unobservable to be known and thereby violating the
principle of relevant conditioning. One can replace θ with an estimator bθ (YT )
in different ways and this, in turn, has led to a substantial literature on an array
of procedures. The methods all build upon, rather than address, the logical
contradictions inherent in this approach. Geisser (1993) provides an extensive
discussion; see especially Section 2.2.2.

2.4.2 Probability forecasting and remote clients

The formulation (24)-(25) is a synopsis of the prequential approach articulated
by Dawid (1984). It summarizes all of the uncertainty in the model (or collec-
tion of models, if extended to (27)) relevant for forecasting. From these densi-
ties remote clients with different loss functions can produce forecasts a. These
clients must, of course, share the same collection of (1) prior model probabil-
ities, (2) prior distributions of unobservables, and (3) conditional observables
distributions, which is asking quite a lot. However, we shall see in Section 3.3.2
that modern simulation methods allow remote clients some scope in adjusting
prior probabilities and distributions without repeating all the work that goes
into posterior simulation. That leaves the collection of observables distributions
p
¡
YT | θAj , Aj

¢
as the important fixed element with which the remote client

must work, a constraint common to all approaches to forecasting.
There is a substantial non-Bayesian literature on probability forecasting and

the expression of uncertainty about probability forecasts; see Corradi and Swan-
son CHAPTER IN THIS VOLUME. It is necessary to emphasize the point
that in Bayesian approaches to forecasting there is no uncertainty about the
predictive density p (ω | Yo

T ) given the specified collection of models; this is
a consequence of consistency with the principle of relevant conditioning. The
probability integral transform of the predictive distribution P (ω | Yo

T ) provides
candidates for posterior predictive analysis. Dawid (1984, Section 5.3) pointed
out that not only is the marginal distribution of P−1 (ω | YT ) uniform on (0, 1),
but in a prequential updating setting of the kind described in Section 2.3.2 these

outcomes are also i.i.d. This leads to a wide variety of functions g
³eYT

´
that

might be used in posterior predictive analysis. (Kling (1987) and Kling and
Bessler (1989) applied this idea in their assessment of vector autoregression
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models.) Some further possibilities were discussed in recent work by Christof-
fersen (1998) that addressed interval forecasts; see also Chatfield (1993).
Non-Bayesian probability forecasting addresses a superficially similar but

fundamentally different problem, that of estimating the predictive density in-
herent in the data generating process, f (ω | Yo

T ,θ). The formulation of the
problem in this approach is to find a mapping from all possible outcomes YT

into functions p (ω | YT ) that minimizes

E {L [p (ω | YT ) , f (ω | YT ,θ)]}

=

Z
Ω

Z
ΨT

L [p (ω | YT ) , f (ω | YT ,θ)]

·f (YT | θ) f (ω | YT ,θ) dYT dω. (31)

In contrast with the predictive density, the minimization problem (31) requires
a loss function, and different loss functions will lead to different solutions, other
things the same, as emphasized by Weiss (1996).
The problem (31) is a special case of the frequentist formulation of the

forecasting problem described at the end of Section 2.4.1. As such, it inherits
the internal inconsistencies of this approach, often appearing as challenging
problems. In their recent survey of density forecasting using this approach Tay
and Wallis (2000, p. 248) pinpointed the challenge, if not its source: “While
a density forecast can be seen as an acknowledgement of the uncertainty in a
point forecast, it is itself uncertain, and this second level of uncertainty is of
more than casual interest if the density forecast is the direct object of attention
.... How this might be described and reported is beginning to receive attention.”

2.4.3 Forecasts from a combination of models

The question of how to forecast given alternative models available for the pur-
pose is a long and well-established one. It dates at least to the 1963 work of
Barnard (1963) in a paper that studied airline data. This was followed by a se-
ries of influential papers by Granger and coauthors (Bates and Granger (1969),
Granger and Ramanathan (1984), Granger (1989)); Clemen (1989) provides a
review of work before 1990. The papers in this and the subsequent forecast
combination literature all addressed the question of how to produce a superior
forecast given competing alternatives. The answer turns in large part on what
is available. Producing a superior forecast, given only competing point fore-
casts, is distinct from the problem of aggregating the information that produced
the competing alternatives (see Granger and Ramanathan (1984, p. 198)) and
Granger (1989, pp. 168-169)). A related, but distinct, problem is that of com-
bining probability distributions from different and possibly dependent sources,
taken up in a seminal paper by Winkler (1981).
In the context of Section 2.3, forecasting from a combination of models is

straightforward. The vector of interest ω includes the relevant future observ-
ables (yT+1, . . . ,yT+F ) , and the relevant forecasting density is (16). Since the
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minimand E [L (a,ω) | Yo
T , A] in (28) is defined with respect to this distribu-

tion, there is no substantive change. Thus the combination of models leads to a
single predictive density, which is a weighted average of the predictive densities
of the individual models, the weights being proportional to the posterior prob-
abilities of those models. This predictive density conveys all uncertainty about
ω, conditional on the collection of models and the data, and point forecasts and
other actions derive from the use of a loss function in conjunction with it.
The literature acting on this paradigm has emerged rather slowly, for two

reasons. One has to do with computational demands, now largely resolved and
discussed in the next section; Draper (1995) provides an interesting summary
and perspective on this aspect of prediction using combinations of models, along
with some applications. The other is that the principle of explicit formulation
demands not just point forecasts of competing models, but rather (1) their
entire predictive densities p (ω | Yo

T , Aj) and (2) their marginal likelihoods. In-
terestingly, given the results in Section 2.3.2, the latter requirement is equiv-
alent to a record of the one-step-ahead predictive likelihoods p

¡
yot | Yo

t−1, Aj

¢
(t = 1, . . . , T ) for each model. It is therefore not surprising that most of the
prediction work based on model combination has been undertaken using models
also designed by the combiners. The feasibility of this approach was demon-
strated by Zellner and coauthors (Palm and Zellner (1992), Min and Zellner
(1993)) using purely analytical methods. Petridis et al. (2001) provide a suc-
cessful forecasting application utilizing a combination of heterogeneous data and
Bayesian model averaging.

2.4.4 Conditional forecasting

In some circumstances, selected elements of the vector of future values of y
may be known, making the problem one of conditional forecasting. That is,
restricting attention to the vector of interest ω = (yT+1, . . . ,yT+F )

0, one may
wish to draw inferences regarding ω treating

¡
S1y

0
T+1, . . . , SFy

0
T+F

¢
≡ Sω as

known for q × p “selection” matrices (S1, . . . , SF ) , which could select elements
or linear combinations of elements of future values. The simplest such situation
arises when one or more of the elements of y become known before the others,
perhaps because of staggered data releases. More generally, it may be desirable
to make forecasts of some elements of y given views that others follow particular
time paths as a way of summarizing features of the joint predictive distribution
for (yT+1, . . . ,yT+F ).
In this case, focusing on a single model, A, (25) becomes

p (ω | Sω,Yo
T , A) =

Z
ΘA

p (θA | Sω,Yo
T , A) p (ω | Sω,Y

o
T ,θA) dθA (32)

As noted by Waggoner and Zha (1999), this expression makes clear that the
conditional predictive density derives from the joint density of θA and ω. Thus
it is not sufficient, for example, merely to know the conditional predictive density
p (ω | Yo

T ,θA) , because the pattern of evolution of (yT+1, . . . ,yT+F ) carries
information about which θA are likely, and vice versa.
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Prior to the advent of fast posterior simulators, Doan, Litterman, Sims
(1984) produced a type of conditional forecast from a Gaussian vector autore-
gression (see (3)) by working directly with the mean of p

¡
ω | Sω,Yo

T , θ̄A
¢
,

where θ̄A is the posterior mean of p (θA | Yo
T , A) . The former can be obtained

as the solution of a simple least squares problem. This procedure of course
ignores the uncertainty in θA.
More recently, Waggoner and Zha (1999) developed two procedures for cal-

culating conditional forecasts from VARs according to whether the conditions
are regarded as “hard” or “soft”. Under “hard” conditioning, Sω is treated
as known, and (32) must be evaluated. Waggoner and Zha (1999) develop a
Gibbs sampling procedure to do so. Under “soft” conditioning, Sω is regarded
as lying in a pre-specified interval, which makes it possible to work directly
with the unconditional predictive density (25), obtaining a sample of Sω in the
appropriate interval by simply discarding those samples Sω which do not. The
advantage to this procedure is that (25) is generally straightforward to obtain,
whereas p (ω | Sω,Yo

T ,θA) may not be.
Robertson, Tallman, and Whiteman (2005) provide an alternative to these

conditioning procedures by approximating the relevant conditional densities.
They specify the conditioning information as a set of moment conditions (e.g.,
ESω = ω̂S; E(Sω − ω̂S)(Sω − ω̂S)0 = Vω), and work with the density (i) that
is closest to the unconditional in an information-theoretic sense and that also
(ii) satisfies the specified moment conditions. Given a sample {ω(m)} from the
unconditional predictive, the new, minimum-relative-entropy density is straight-
forward to calculate; the original density serves as an importance sampler for
the conditional. Cogley, Morozov, and Sargent (2005) have utilized this proce-
dure in producing inflation forecast fan charts from a time-varying parameter
VAR.

3 Posterior simulation methods
The principle of relevant conditioning in Bayesian inference requires that one be
able to access the posterior distribution of the vector of interest ω in one or more
models. In all but simple illustrative cases this cannot be done analytically.
A posterior simulator yields a pseudo-random sequence

©
ω(1), . . . ,ω(M)

ª
that

can be used to approximate posterior moments of the form E [h (ω) | Yo
T , A]

arbitrarily well: the larger is M , the better is the approximation. Taken to-
gether, these algorithms are known generically as posterior simulation methods.
While the motivating task, here, is to provide a simulation representative of
p (ω | Yo

T , A), this section will both generalize and simplify the conditioning, in
most cases, and work with the density p (θ |I), θ ∈ Θ ⊆ Rk, and p (ω | θ,I),
ω ∈ Ω ⊆ Rq, I denoting “information.” Consistent with the motivating prob-
lem, we shall assume that there is no difficulty in drawing ω(m) iid∼ p (ω | θ,I).
The methods described in this section all utilize as building blocks the set

of distributions from which it is possible to produce pseudo-i.i.d. sequences of
random variables or vectors. We shall refer to such distributions as conventional
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distributions. This set includes, of course, all of those found in standard math-
ematical applications software. There is a grey area beyond these distributions;
examples include the Dirichlet (or multivariate beta) and Wishart distributions.
What is most important, in this context, is that posterior distributions in all
but the simplest models lead almost immediately to distributions from which it
is effectively impossible to produce pseudo-i.i.d. sequences of random vectors.
It is to these distributions that the methods discussed in this section are ad-
dressed. The treatment in this section closely follows portions of Geweke (2005,
Chapter 4).

3.1 Simulation methods before 1990

The applications of simulation methods in statistics and econometrics before
1990, including Bayesian inference, were limited to sequences of independent
and identically distributed random vectors. The state of the art by the mid-
1960s is well summarized in Hammsersly and Handscomb (1964) and the early
impact of these methods in Bayesian econometrics is evident in Zellner (1971).
A survey of progress as of the end of this period is Geweke (1991) written at
the dawn of the application of Markov chain Monte Carlo (MCMC) methods
in Bayesian statistics.1 Since 1990 MCMC methods have largely supplanted
i.i.d. simulation methods. MCMC methods, in turn, typically combine several
simulation methods, and those developed before 1990 are important constituents
in MCMC.

3.1.1 Direct sampling

In direct sampling θ(m) iid∼ p (θ |I). If ω(m) ∼ p
³
ω | θ(m), I

´
is a conditionally

independent sequence, then
n
θ(m),ω(m)

o
i.i.d.∼ p (θ |I) p (ω | θ,I). Then for any

existing moment E [h (θ,ω) | I], M−1
PM

m=1 h
³
θ(m),ω(m)

´
a.s.→ E [h (θ,ω) | I];

this property, for any simulator, is widely termed simulation-consistency. An
entirely conventional application of the Lindeberg-Levy central limit theorem
provides a basis of assessing the accuracy of the approximation. The conven-
tional densities p (θ |I) from which direct sampling is possible coincide, more
or less, with those for which a fully analytical treatment of Bayesian inference
and forecasting is possible. An excellent example is the fully Bayesian and en-
tirely analytical solution of the problem of forecasting turning points by Min
and Zellner (1993).
The Min-Zellner treatment addresses only one-step-ahead forecasting. Fore-

casting successive steps ahead entails increasingly nonlinear functions that rapidly
become intractable in a purely analytical approach. This problem was taken up

1 Ironically, MCMC methods were initially developed in the late 1940’s in one of the first
applications of simulation methods using electronic computers, to the design of thermonuclear
weapons (see Metropolis et al. (1953)). Perhaps not surprisingly, they spread first to disci-
plines with the greatest access to computing power: see the application to image restoration
by Geman and Geman (1984).
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in Geweke (1988) for multiple-step-ahead forecasts in a bivariate Gaussian au-
toregression with a conjugate prior distribution. The posterior distribution, like
the prior, is normal-gamma. Forecasts F steps ahead based on a quadratic
loss function entail linear combinations of posterior moments of order F from
a multivariate Student-t distribution. This problem plays to the comparative
advantage of direct sampling in the determination of posterior expectations
of nonlinear functions of random variables with conventional distributions. It
nicely illustrates two variants on direct sampling that can dramatically increase
the speed and accuracy of posterior simulation approximations.

1. The first variant is motivated by the fact that the conditional mean of the
F -step ahead realization of yt is a deterministic function of the parameters.
Thus, the function of interest ω is taken to be this mean, rather than a
simulated realization of yt.

2. The second variant exploits the fact that the posterior distribution of the
variance matrix of the disturbances (denoted θ2, say) in this model is in-
verted Wishart, and the conditional distribution of the coefficients (θ1,
say) is Gaussian. Corresponding to the generated sequence θ(m)1 , con-

sider also eθ(m)1 = 2E
³
θ1 | θ(m)2 , I

´
−θ(m)1 . Both θ(m)0 =

³
θ
(m)0
1 ,θ

(m)0
2

´
and eθ(m)0 = µeθ(m)01 ,θ

(m)0
2

¶
are i.i.d. sequences drawn from p (θ |I).

Take ω(m)∼p
³
ω | θ(m), I

´
and eω(m)∼pµω |eθ(m), I¶. (In the forecasting

application of Geweke (1988) these latter distributions are deterministic

functions of θ(m) and eθ(m).) The sequences h ¡ω(m)¢ and h
³eω(m)´ will

also be i.i.d. and, depending on the nature of the function h, may be

negatively correlated because cov

µ
θ
(m)
1 , eθ(m)1 , I

¶
= −var

³
θ
(m)
1 | I

´
=

−var
µeθ(m)1 | I

¶
. In many cases the approximation error omcurred using

(2M)−1
PM

m=1

h
h
¡
ω(m)

¢
+ h

³eω(m)´i may be much smaller than that in-
curred using M−1

PM
m=1 h

¡
ω(m)

¢
.

The second variant is an application of antithetic sampling, an idea well
established in the simulation literature (see Hamersly and Morton (1956) and
Geweke (1996, Section 5.1)). In the posterior simulator application just de-
scribed, given weak regularity conditions and for a given function h, the se-
quences h

¡
ω(m)

¢
and h

³eω(m)´ become more negatively correlated as sample
size increases (see Geweke (1988, Theorem 1)); hence the term antithetic ac-
celeration. The first variant has acquired the monicker Rao-Blackwellization
in the posterior simulation literature, from the Rao-Blackwell Theorem, which
establishes var [E (ω | θ,I)] ≤ var (ω | I). Of course the two methods can be
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Figure 1: Acceptance sampling

used separately. For one-step ahead forecasts, the combination of the two meth-
ods drives the variance of the simulation approximation to zero; this is a close
reflection of the symmetry and analytical tractability exploited in Min and Zell-
ner (1993). For near-term forecasts the methods reduce variance by more than
99% in the illustration taken up in Geweke (1988); as the forecasting horizon
increases the reduction dissipates, due to the increasing nonlinearity of h.

3.1.2 Acceptance sampling

Acceptance sampling relies on a conventional source density p (θ |S) that ap-
proximates p (θ | I), and then exploits an acceptance-rejection procedure to rec-
oncile the approximation. The method yields a sequence θ(m) iid∼ p (θ | I); as
such, it renders the density p (θ | I) conventional, and in fact acceptance sam-
pling is the “black box” that produces pseudo-random variables in most math-
ematical applications software; for a review see Geweke (1996).
Figure 1 provides the intuition of acceptance sampling. The heavy curve is

the target density p (θ | I), and the lower bell-shaped curve is the source density
p (θ |S). The ratio p (θ | I) /p (θ |S) is bounded above by a constant a. In Figure
1, p (1.16 | I) /p(1.16 | S) = a = 1.86, and the lightest curve is a · p (θ |S). The
idea is to draw θ∗ from the source density, which has kernel a · p (θ∗ | S), but
to accept the draw with probability p (θ∗) /a · p (θ∗ | S). For example if θ∗ = 0,
then the draw is accepted with probability 0.269, whereas if θ∗ = 1.16 then the
draw is accepted with probability 1. The accepted values in fact simulate i.i.d.
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drawings from the target density p (θ | I).
While Figure 1 is necessarily drawn for scalar θ it should be clear that the

principle applies for vector θ of any finite order. In fact this algorithm can be im-
plemented using a kernel k (θ | I) of the density p (θ | I) i.e., k (θ | I) ∝ p (θ | I),
and this can be important in applications where the constant of integration is
not known. Similarly we require only a kernel k (θ |S) of p (θ | S), and let
ak = supθ∈Θ k (θ | I) /k (θ | S). Then for each draw m the algorithm works as
follows.

1. Draw u uniform on [0, 1].

2. Draw θ∗ ∼ p (θ | S).

3. If u > k (θ∗ | I) /akk (θ∗ | S) return to step 1.

4. Set θ(m)= θ∗.

To see why the algorithm works, let Θ∗ denote the support of p (θ |S); a <∞
implies Θ ⊆ Θ∗. Let cI = k (θ | I) /p (θ | I) and cS = k (θ |S) /p (θ | S). The
unconditional probability of proceeding from step 3 to step 4 isZ

Θ∗
{k (θ | I) / [akk (θ | S)]} p (θ | S) dθ = cI/akcS . (33)

Let A be any subset of Θ. The unconditional probability of proceeding from
step 3 to step 4 with θ ∈A isZ

A

{k (θ | I) / [akk (θ | S)]} p (θ | S) dθ =
Z
A

k (θ | I) dθ/akcS . (34)

The probability that θ ∈A, conditional on proceeding from step 3 to step 4, is
the ratio of (34) to (33), which is

R
A
k (θ | I) dθ/cI =

R
A
p (θ | I) dθ.

Regardless of the choices of kernels the unconditional probability in (33) is
cI/akcS = infθ∈Θ p (θ | S) /p (θ | I). If one wishes to generateM draws of θ us-
ing acceptance sampling, the expected number of times one will have to draw u,
draw θ∗, and compute k (θ∗ | I) / [akk (θ∗ | S)] isM · supθ∈Θ p (θ | I) /p (θ | S).
The computational efficiency of the algorithm is driven by those θ for which
p (θ | S) has the greatest relative undersampling. In most applications the
time consuming part of the algorithm is the evaluation of the kernels k (θ | S)
and k (θ | I), especially the latter. (If p (θ | I) is a posterior density, then eval-
uation of k (θ | I) entails computing the likelihood function.) In such cases this
is indeed the relevant measure of efficiency.

Since θ(m) iid∼ p (θ | I), ω(m) iid∼ p (ω | I) =
R
Θ
p (θ | I) p (ω | θ,I) dθ. Accep-

tance sampling is limited by the difficulty in finding an approximation p (θ |S)
that is efficient, in the sense just described, and by the need to find ak =
supθ∈Θ k (θ | I) /k (θ | S). While it is difficult to generalize, these tasks are
typically more difficult the greater the number of elements of θ.
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3.1.3 Importance sampling

Rather than accept only a fraction of the draws from the source density, it
is possible to retain all of them, and consistently approximate the posterior
moment by appropriately weighting the draws. The probability density function
of the source distribution is then called the importance sampling density, a term
due to Hammersly and Handscomb (1964), who were among the first to propose
the method. It appears to have been introduced to the econometrics literature
by Kloek and van Dijk (1978).
To describe the method, denote the source density by p (θ | S) with support

Θ∗, and an arbitrary kernel of the source density by k (θ | S) = cS · p (θ | S)
for any cS 6= 0. Denote an arbitrary kernel of the target density by k (θ | I) =
cI ·p (θ | I) for any cI 6= 0, the i.i.d. sequence θ(m) ∼ p (θ | S), and the sequence
ω(m) drawn independently from p

³
ω | θ(m), I

´
. Define the weighting function

w (θ) = k (θ | I) /k (θ | S). Then the approximation of h = E [h (ω) | I] is

h
(M)

=

PM
m=1w

³
θ(m)

´
h
¡
ω(m)

¢
PM

m=1w
³
θ(m)

´ . (35)

Geweke (1989a) showed that if E [h (ω) | I] exists and is finite, andΘ∗ ⊇ Θ, then
h
(M) a.s.→ h. Moreover if var [h (ω) | I] exists and is finite, and if w (θ) is bounded
above on Θ, then the accuracy of the approximation can be assessed using
the Lindeberg-Levy central limit theorem with an appropriately approximated
variance (see Geweke (1989a, Theorem 2) or Geweke (2005, Theorem 4.2.2)).
In applications of importance sampling, this accuracy can be summarized in

terms of the numerical standard error of h
(M)

, its sampling standard deviation
in independent runs of length M of the importance sampling simulation, and in

terms of the relative numerical efficiency of h
(M)

, the ratio of simulation size
in a hypothetical direct simulator to that required using importance sampling
to achieve the same numerical standard error. These summaries of accuracy
can be used with other simulation methods as well, including the Markov chain
Monte Carlo algorithms described in Section 3.2.
To see why importance sampling produces a simulation-consistent approxi-

mation of E [h (ω) | I], notice that

E [w (θ) | S] =
Z
Θ

k (θ | I)
k (θ | S)p (θ | S) dθ =

cI
cS
≡ w.

Since
©
ω(m)

ª
is i.i.d. the strong law of large numbers implies

M−1
MX
m=1

w
³
θ(m)

´
a.s.→ w. (36)
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The sequence
n
w
³
θ(m)

´
, h

¡
ω(m)

¢o
is also i.i.d., and

E [w (θ)h (ω) | I] =

Z
Θ

w (θ)

∙Z
Ω

h (ω) p (ω | θ,I) dω
¸
p (θ |S) dθ

= (cI/cS)

Z
Θ

Z
Ω

h (ω) p (ω | θ,I) p (θ |I) dωdθ

= (cI/cS)E [h (ω) | I] = w · h.

By the strong law of large numbers,

M−1
MX
m=1

w
³
θ(m)

´
h
³
ω(m)

´
a.s.→ w · h. (37)

The fraction in (35) is the ratio of the left side of (37) to the left side of (36).
One of the attractive features of importance sampling is that it requires

only that p (θ |I) /p (θ |S) be bounded, whereas acceptance sampling requires
that the supremum of this ratio (or that for kernels of the densities) be known.
Moreover the known supremum is required in order to implement acceptance
sampling, whereas the boundedness of p (θ |I) /p (θ |S) is utilized in importance
sampling only to exploit a central limit theorem to assess numerical accuracy.
An important application of importance sampling is in providing remote clients
with a simple way to revise prior distributions, as discussed below in Section
3.3.2.

3.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are generalizations of direct sam-

pling. The idea is to construct a Markov chain
n
θ(m)

o
with continuous state

space Θ and unique invariant probability density p (θ |I). Following an initial
transient or burn-in phase, the distribution of θ(m) is approximately that of the
density p (θ |I). The exact sense in which this approximation holds is impor-
tant. We shall touch on this only briefly; for full detail and references see Geweke
(2005, Section 3.5). We continue to assume that ω can be simulated directly

from p (ω | θ,I), so that given
n
θ(m)

o
the corresponding ω(m) ∼ p

³
ω | θ(m), I

´
can be drawn.
Markov chain methods have a history in mathematical physics dating back

to the algorithm of Metropolis et al. (1953). This method, which was de-
scribed subsequently in Hammersly and Handscomb (1964, Section 9.3) and
Ripley (1987, Section 4.7), was generalized by Hastings (1970), who focused on
statistical problems, and was further explored by Peskun (1973). A version
particularly suited to image reconstruction and problems in spatial statistics
was introduced by Geman and Geman (1984). This was subsequently shown
to have great potential for Bayesian computation by Gelfand and Smith (1990).
Their work, combined with data augmentation methods (see Tanner and Wong
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(1987)) has proven very successful in the treatment of latent variables in econo-
metrics. Since 1990 application of MCMC methods has grown rapidly: new
refinements, extensions, and applications appear constantly. Accessible intro-
ductions are Gelman et al. (1995), Chib and Greenberg (1995) and Geweke
(2005); a good collection of applications is Gilks et al. (1996). Section 5 pro-
vides several applications of MCMC methods in Bayesian forecasting models.

3.2.1 The Gibbs sampler

Most posterior densities p (θA | Yo
T , A) do not correspond to any conventional

family of distributions. On the other hand, the conditional distributions of
subvectors of θA often do, which is to say that the conditional posterior dis-
tributions of these subvectors are conventional. This is partially the case in
the stochastic volatility model described in Section 2.1.2. If, for example, the
prior distribution of φ is truncated Gaussian and those of β2 and σ2η are inverted
gamma, then the conditional posterior distribution of φ is truncated normal and
those of β2 and σ2η are inverted gamma. (The conditional posterior distributions
of the latent volatilities ht are unconventional, and we return to this matter in
Section 5.5.)
This motivates the simplest setting for the Gibbs sampler. Suppose θ0 =¡

θ01,θ
0
2

¢
has density p (θ1,θ2 | I) of unconventional form, but that the condi-

tional densities p (θ1 | θ2, I) and p (θ2 | θ1, I) are conventional. Suppose (hypo-
thetically) that one had access to an initial drawing θ(0)2 taken from p (θ2 | I),
the marginal density of θ2. Then after iterations θ

(m)
1 ∼ p

³
θ1 | θ(m−1)2 , I

´
,

θ
(m)
2 ∼ p

³
θ2 | θ(m)1 , I

´
(m = 1, . . . ,M) one would have a collection θ(m) =³

θ
0(m)
1 ,θ

0(m)
2

´0
∼ p (θ |I). The extension of this idea to more than two compo-

nents of θ, given a blocking θ0 =
¡
θ01, . . .θ

0
B

¢
and an initial θ(0) ∼ p (θ |I), is

immediate, cycling through

θ
(m)
b ∼ p

h
θ(b) | θ(m)a (a < b) ,θ(m−1)a (a > b) , I

i
(b = 1, . . . , B; m = 1, 2, . . .) .

(38)
Of course, if it were possible to make an initial draw from this distribution,

then independent draws directly from p (θ |I) would also be possible. The
purpose of that assumption here is to marshal an informal argument that the
density p (θ |I) is an invariant density of this Markov chain: that is, if θ(m) ∼
p (θ |I), then θ(m+s) ∼ p (θ |I) for all s > 0.
It is important to elucidate conditions for θ(m) to converge in distribu-

tion to p (θ |I) given any θ(0) ∈ Θ. Note that even if θ(0) were drawn from
p (θ |I), the argument just given demonstrates only that any single θ(m) is
also drawn from p (θ |I). It does not establish that a single sequence

n
θ(m)

o
is representative of p (θ |I). Consider the example shown in Figure 2(a), in
which Θ = Θ1

S
Θ2, and the Gibbs sampling algorithm has blocks θ1 and

θ2. If θ(0) ∈ Θ1, then θ(m) ∈ Θ1 for m = 1, 2, . . .. Any single θ(m) is
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Figure 2: Two examples in which a Gibbs sampling Markov chain will be re-
ducible

just as representative of p (θ |I) as is the single drawing θ(0), but the same
cannot be said of the collection

n
θ(m)

o
. Indeed,

n
θ(m)

o
could be highly

misleading. In the example shown in Figure 2(b), if θ(0) is the indicated
point at the lower left vertex of the triangular closed support of p (θ |I), then
θ(m) = θ(0) ∀ m. What is required is that the Gibbs sampling Markov

chain
n
θ(m)

o
with transition density p

³
θ(m) | θ(m−1), G

´
defined in (38) be

ergodic. That is, if ω(m) ∼ p (ω | θ,I) and E [h (θ,ω) | I] exists, then we re-
quire M−1

PM
m=1 h

³
θ(m),ω(m)

´
a.s.→ E [h (θ,ω) | I]. Careful statement of the

weakest sufficient conditions demands considerably more theoretical apparatus
than can be developed here; for this, see Tierney (1994). Somewhat stronger,
but still widely applicable, conditions are easier to state. For example, if for any
Lebesgue measurable A with

R
A
p (θ | I) dθ > 0 it is the case that in the Markov

chain (38) P
³
θ(m+1) ∈ A | θ(m), G

´
> 0 for any θ(m) ∈ Θ, then the Markov

chain is ergodic. (Clearly neither example in Figure 2 satisfies this condition.)
For this and other simple conditions see Geweke (2005, Section 4.5).

3.2.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is defined by a probability density function
p (θ∗ | θ,H) indexed by θ ∈ Θ and with density argument θ∗. The random
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vector θ∗ generated from p
³
θ∗ | θ(µ−1),H

´
is a candidate value for θ(m). The

algorithm sets θ(m) = θ∗ with probability

α
³
θ∗ | θ(m−1),H

´
= min

⎧⎨⎩ p (θ∗ | I) /p
³
θ∗ | θ(m−1),H

´
p
³
θ(m−1) | I

´
/p
³
θ(m−1) | θ∗,H

´ , 1
⎫⎬⎭ ; (39)

otherwise, θ(m) = θ(m−1). Conditional on θ = θ(m−1) the distribution of θ∗

is a mixture of a continuous distribution with density given by u (θ∗ | θ,H)
= p (θ∗ | θ,H)α (θ∗ | θ,H), corresponding to the accepted candidates, and a
discrete distribution with probability mass r (θ |H) = 1−

R
Θ
u (θ∗ | θ,H) dθ∗ at

the point θ, which is the probability of drawing a θ∗ that will be rejected. The
entire transition density can be expressed using the Dirac delta function as

p
³
θ(m) | θ(m−1),H

´
= u

³
θ(m) | θ(m−1),H

´
+ r

³
θ(m−1) | H

´
δθ(m−1)

³
θ(m)

´
.

(40)
The intuition behind this procedure is evident on the right side of (39), and

is in many respects similar to that in acceptance and importance sampling. If
the transition density p (θ∗ | θ,H) makes a move from θ(m−1) to θ∗ quite likely,
relative to the target density p (θ |I) at θ∗, and a move back from θ∗ to θ(m−1)

quite unlikely, relative to the target density at θ(m−1), then the algorithm will
place a low probability on actually making the transition and a high probability
on staying at θ(m−1). In the same situation, a prospective move from θ∗ to
θ(m−1) will always be made because draws of θ(m−1) are made infrequently
relative to the target density p (θ |I).
This is the most general form of the Metropolis-Hastings algorithm, due

to Hastings (1970). The Metropolis et al. (1953) form takes p (θ∗ | θ,H) =
p (θ | θ∗,H), which in turn leads to a simplification of the acceptance probability:
α
³
θ∗ | θ(m−1),H

´
= min

h
p (θ∗ | I) /p

³
θ(m−1) | I

´
, 1
i
. A leading example

of this form is the Metropolis random walk, in which p (θ∗ | θ,H) = p (θ∗−θ |H)
and the latter density is symmetric about 0, for example that of the multi-
variate normal distribution with mean 0. Another special case is the Metropo-
lis independence chain (see Tierney (1994)) in which p (θ∗ | θ,H) = p (θ∗ | H).
This leads to α

³
θ∗ | θ(m−1),H

´
= min

h
w (θ∗) /w

³
θ(m−1)

´
, 1
i
, where w (θ) =

p (θ |I) /p (θ |H). The independence chain is closely related to acceptance sam-
pling and importance sampling. But rather than place a low probability of
acceptance or a low weight on a draw that is too likely relative to the target
distribution, the independence chain assigns a low probability of transition to
that candidate.
There is a simple two-step argument that motivates the convergence of the

sequence
n
θ(m)

o
, generated by the Metropolis-Hastings algorithm, to the dis-

tribution of interest. (This approach is due to Chib and Greenberg (1995).)

First, note that if a transition probability density function p
³
θ(m) | θ(m−1), T

´
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satisfies the reversibility condition

p
³
θ(m−1) | I

´
p
³
θ(m) | θ(m−1), T

´
= p

³
θ(m) | I

´
p
³
θ(m−1) | θ(m), T

´
with respect to p (θ |I), thenZ

Θ

p
³
θ(m−1) | I

´
p
³
θ(m) | θ(m−1), T

´
dθ(m−1)

=

Z
Θ

p
³
θ(m) | I

´
p
³
θ(m−1) | θ(m), T

´
dθ(m−1) (41)

= p
³
θ(m) | I

´Z
Θ

p
³
θ(m−1) | θ(m), T

´
dθ(m−1) = p

³
θ(m) | I

´
.

Expression (41) indicates that if θ(m−1) ∼ p (θ |I), then the same is true of θ(m).
The density p (θ |I) is an invariant density of the Markov chain with transition
density p

³
θ(m) | θ(m−1), T

´
.

The second step in this argument is to consider the implications of the re-

quirement that the Metropolis-Hastings transition density p
³
θ(m) | θ(m−1),H

´
be reversible with respect to p (θ |I),

p
³
θ(m−1)|I

´
p
³
θ(m) | θ(m−1),H

´
= p

³
θ(m)|I

´
p
³
θ(m−1) | θ(m),H

´
.

For θ(m−1) = θ(m) the requirement holds trivially. For θ(m−1) 6= θ(m) it implies
that

p
³
θ(m−1) | I

´
p
³
θ∗ | θ(m−1),H

´
α
³
θ∗ | θ(m−1),H

´
= p (θ∗ | I) p

³
θ(m−1) | θ∗,H

´
α
³
θ(m−1) | θ∗,H

´
. (42)

Suppose without loss of generality that

p
³
θ(m−1) | I

´
p
³
θ∗ | θ(m−1),H

´
> p (θ∗ | I) p

³
θ(m−1) | θ∗,H

´
.

If α
³
θ(m−1) | θ∗,H

´
= 1 and

α
³
θ∗ | θ(m−1),H

´
=

p (θ∗ | I) p
³
θ(m−1) | θ∗,H

´
p
³
θ(m−1) | I

´
p
³
θ∗ | θ(m−1),H

´ ,
then (42) is satisfied.

3.2.3 Metropolis within Gibbs

Different MCMC methods can be combined in a variety of rich and interesting
ways that have been important in solving many practical problems in Bayesian
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inference. One of the most important in econometric modelling has been the
Metropolis within Gibbs algorithm. Suppose that in attempting to implement
a Gibbs sampling algorithm, a conditional density p

£
θ(b) | θ(a) (a 6= b)

¤
is in-

tractable. The density is not of any known form, and efficient acceptance
sampling algorithms are not at hand. This occurs in the stochastic volatility
example, for the volatilities h1, . . . , hT .
This problem can be addressed by applying the Metropolis-Hastings algo-

rithm in block b of the Gibbs sampler while treating the other blocks in the

usual way. Specifically, let p
³
θ∗(b) | θ,Hb

´
be the density (indexed by θ) from

which candidate θ∗(b) is drawn. At iteration m, block b, of the Gibbs sampler

draw θ∗(b) ∼ p
³
θ∗(b) | θ(m)a (a < b) ,θ(m−1)a (a ≥ b) ,Hb

´
, and set θ(m)(b) = θ∗(b) with

probability

α
h
θ∗(b) | θ(m)a (a < b) ,θ(m−1)a (a ≥ b) ,Hb

i
= min

⎧⎨⎩ p
h
θ(m)a (a < b) ,θ∗b ,θ

(m−1)
a (a > b) | I

i
p
h
θ∗(b) | θ(m)a (a < b) ,θ(m−1)a (a ≥ b) ,Hb

i/
p
h
θ(m)a (a < b) ,θ(m−1)a (a ≥ b) | I

i
p
h
θ(m)a (a < b) ,θ∗b ,θ

(m−1)
a (a > b) ;θ

(m−1)
b ,Hb

i , 1

⎫⎬⎭ .
If θ(m)(b) is not set to θ

∗
(b), then θ

(m)
(b) = θ

(m−1)
(b) . The procedure for θ(b) is exactly

the same as for a standard Metropolis step, except that θa (a 6= b) also enters the
density p (θ |I) and transition density p (θ |H). It is usually called a Metropolis
within Gibbs step.
To see that p (θ |I) is an invariant density of this Markov chain, consider

the simple case of two blocks with a Metropolis within Gibbs step in the second
block. Adapting the notation of (40), describe the Metropolis step for the
second block by

p
³
θ∗(2) | θ(1),θ(2),H2

´
= u

³
θ∗(2) | θ(1),θ(2),H2

´
+r
¡
θ(2) | θ(1),H2

¢
δθ(2)

³
θ∗(2)

´
where

u
³
θ∗(2) | θ(1),θ(2),H2

´
= α

³
θ∗(2) | θ(1),θ(2),H2

´
p
³
θ∗(2) | θ(1),θ(2),H2

´
and

r
¡
θ(2) | θ(1),H2

¢
= 1−

Z
Θ2

u
³
θ∗(2) | θ(1),θ(2),H2

´
dθ∗(2). (43)

The one-step transition density for the entire chain is

p (θ∗ | θ,G) = p
³
θ∗(1) | θ(2), I

´
p
³
θ∗(2) | θ(1),θ(2),H2

´
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Then p (θ |I) is an invariant density of p (θ∗ | θ,G) ifZ
Θ

p (θ |I) p (θ∗ | θ,G) dθ = p (θ∗ | I) . (44)

To establish (44), begin by expanding the left side,Z
Θ

p (θ |I) p (θ∗ | θ,G) dθ =
Z
Θ2

Z
Θ1

p
¡
θ(1),θ(2)|I

¢
dθ(1)p

³
θ∗(1) | θ(2), I

´
·
h
u
³
θ∗(2) | θ∗(1),θ(2),H2

´
+ r

³
θ(2) | θ∗(1),H2

´
δθ(2)

³
θ∗(2)

´i
dθ(2)

=

Z
Θ2

p
¡
θ(2) | I

¢
p
³
θ∗(1) | θ(2) | I

´
u
³
θ∗(2) | θ∗(1),θ(2),H2

´
dθ(2) (45)

+

Z
Θ2

p
¡
θ(2) | I

¢
p
³
θ∗(1) | θ(2) | I

´
r
³
θ(2) | θ∗(1),H2

´
δθ(2)

³
θ∗(2)

´
dθ(2). (46)

In (45) and (46) we have used the fact that

p
¡
θ(2) | I

¢
=

Z
Θ1

p
¡
θ(1),θ(2) | I

¢
dθ(1).

Using Bayes rule (45) is the same as

p
³
θ∗(1) | I

´Z
Θ2

p
³
θ(2) | θ∗(1), I

´
u
³
θ∗(2) | θ∗(1),θ(2),H2

´
dθ(2). (47)

Carrying out the integration in (46) yields

p
³
θ∗(2) | I

´
p
³
θ∗(1) | θ∗(2) | I

´
r
³
θ∗(2) | θ∗(1),H2

´
. (48)

Recalling the reversibility of the Metropolis step,

p
³
θ(2) | θ∗(1), I

´
u
³
θ∗(2) | θ∗(1),θ(2),H2

´
= p

³
θ∗(2) | θ∗(1), I

´
u
³
θ(2) | θ∗(1),θ∗(2),H2

´
and so (47) becomes

p
³
θ∗(1) | I

´
p
³
θ∗(2) | θ∗(1), I

´Z
Θ2

u
³
θ(2) | θ∗(1),θ∗(2),H2

´
dθ(2). (49)

We can express (48) as

p
³
θ∗(1),θ

∗
(2) | I

´
r
³
θ∗(2) | θ∗(1),H2

´
. (50)

Finally, recalling (43), the sum of (49) and (50) is p
³
θ∗(1),θ

∗
(2) | I

´
, thus estab-

lishing (44).
This demonstration of invariance applies to the Gibbs sampler with b blocks,

with a Metropolis within Gibbs step for one block, simply through the conven-
tion that Metropolis within Gibbs is used in the last block of each iteration.
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Metropolis within Gibbs steps can be used for several blocks, as well. The
argument for invariance proceeds by mathematical induction, and the details
are the same.
Sections 5.2.1 and 5.5 provide applications of Metropolis within Gibbs in

Bayesian forecasting models.

3.3 The full Monte

We are now in a position to complete the practical Bayesian agenda for fore-
casting by means of simulation. This process integrates several sources of uncer-
tainty about the future. These are summarized from a non-Bayesian perspective
in the most widely used graduate econometrics textbook (Greene (2003, p 576))
as

1. Uncertainty about parameters (“which will have been estimated”);

2. Uncertainty about forecasts of exogenous variables; and

3. Uncertainty about unobservables realized in the future;

To these most forecasters would add, along with Diebold (1998, pp 291-292
who includes (1) and (3) but not (2) in his list),

4. Uncertainty about the model itself.

Greene (2003) points out that for the non-Bayesian forecaster, “In practice
handling the second of these errors is largely intractable while the first is merely
extremely difficult.” The problem with parameters in non-Bayesian approaches
originates in the violation of the principle of relevant conditioning, as discussed
in the conclusions of Sections 2.4.2 and 2.4.3. The difficulty with exogenous
variables is grounded in violation of the principle of explicit formulation: a
so-called exogenous variable in this situation is one whose joint distribution
with the forecasting vector of interest ω should have been expressed explicitly,
but was not.2 This problem is resolved every day in decision-making, either
formally or informally, in any event. If there is great uncertainty about the joint
distribution of some relevant variables and the forecasting vector of interest, that
uncertainty should be incorporated in the prior distribution, or in uncertainty
about the appropriate model.
We turn first to the full integration of the first three sources of uncertainty

using posterior simulators (Section 3.3.1) and then to the last source (Section
3.3.2).

2The formal problem is that “exogenous variables” are not ancillary statistics when the
vector of interest includes future outcomes. In other applications of the same model, they
may be. This distinction is clear in the Bayesian statistics literature; see, e.g. Bernardo and
Smith (1994, Section 5.1.4) or Geweke (2005, Section 2.2.2).
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3.3.1 Predicitve distributions and point forecasts

Section 2.4 summarized the probability structure of the recursive formulation
of a single model A: the prior density p (θA | A), the density of the observables
p (YT | θA, A), and the density of future observables ω, p (ω | YT ,θA, A). It
is straightforward to simulate from the corresponding distributions, and this
is useful in the process of model formulation as discussed in Section 2.2. The
principle of relevant conditioning, however, demands that we work instead with
the distribution of the unobservables (θA and ω) conditional on the observables,
YT , and the assumptions of the model, A:

p (θA,ω | YT , A) = p (θA | YT , A) p (ω | θA,YT , A) .

Substituting the observed values (data) Yo
T for YT , we can access this distri-

bution by means of a posterior simulator for the first component on the right,
followed by simulation from the predictive density for the second component:

θ
(m)
A ∼ p (θA | Yo

T , A) , ω
(m) ∼ p

³
ω | θ(m)A ,Yo

T , A
´
. (51)

The first step, posterior simulation, has become practicable for most models
by virtue of the innovations in MCMC methods summarized in Section 3.2.
The second simulation is relatively simple, because it is part of the recursive
formulation. The simulations θ(m)A from the posterior simulator will not neces-
sarily be i.i.d. (in the case of MCMC) and they may require weighting (in the
case of importance sampling) but the simulations are ergodic: i.e., so long as
E [h (θA,ω) | Yo

T , A] exists and is finite,PM
m=1w

(m)h
³
θ
(m)
A ,ω(m)

´
PM

m=1w
(m)

a.s.→ E [h (θA,ω) | Yo
T , A] . (52)

The weights w(m) in (52) come into play for importance sampling. There is
another important use for weighted posterior simulation, to which we return in
Section 3.3.2.
This full integration of sources of uncertainty by means of simulation appears

to have been applied for the first time in the unpublished thesis of Litterman
(1979) as discussed in Section 4. The first published full applications of simu-
lation methods in this way in published papers appear to have been Monahan
(1983) and Thompson and Miller (1986), which built on Thompson (1984). This
study applied an autoregressive model of order 2 with a conventional improper
diffuse prior (see Zellner (1971, p 195)) to quarterly US unemployment rate
data from 1968 through 1979, forecasting for the period 1980 through 1982.
Section 4 of their paper outlines the specifics of (51) in this case. They com-
puted posterior means of each of the 12 predictive densities, corresponding to a
joint quadratic loss function; predictive variances; and centered 90% predictive
intervals. They compared these results with conventional non-Bayesian proce-
dures (see Box and Jenkins (1976)) that equate unknown parameters with their
estimates, thus ignoring uncertainty about these parameters. There were several
interesting findings and comparisons.
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1. The posterior means of the parameters and the non-Bayesian point esti-
mates are similar: yt = .441 + 1.596yt−1 − 0.669yt−2 for the former and
yt = 0.342 + 1.658yt−1 − 0.719yt−2 for the latter.

2. The point forecasts from the predictive density and the conventional non-
Bayesian procedure depart substantially over the 12 periods, from un-
employment rates of 5.925% and 5.904%, respectively, one-step-ahead, to
6.143% and 5.693%, respectively, 12 steps ahead. This is due to the fact
that an F -step-ahead mean, conditional on parameter values, is a polyno-
mial of order F in the parameter values: predicting farther into the future
involves an increasingly non-linear function of parameters, and so the dis-
crepancy between the mean of the nonlinear function and the non-linear
function of the mean also increases.

3. The Bayesian 90% predictive intervals are generally wider than the corre-
sponding non-Bayesian intervals; the difference is greatest 12 steps ahead,
where the width is 5.53% in the former and 5.09% in the latter. At 12
steps ahead the 90% intervals are (3.40%, 8.93%) and (3.15%, 8.24%)

4. The predictive density is platykurtic; thus a normal approximation of the
predictive density (today a curiosity, in view of the accessible represen-
tation (51)) produces a 90% predictive density that is too wide, and the
discrepancy increases for predictive densities farther into the future: 5.82%
rather than 5.53%, 12 steps ahead.

Thompson and Miller did not repeat their exercise for other forecasting
periods, and therefore had no evidence on forecasting reliability. Nor did they
employ the shrinkage priors that were, contemporaneously, proving so important
in the successful application of Bayesian vector autoregressions at the Federal
Reserve Bank of Minneapolis. We return to that project in Section 6.1.

3.3.2 Model combination and the revision of assumptions

Incorporation of uncertainty about the model itself is rarely discussed, and less
frequently acted upon; Greene (2003) does not even mention it. This lacuna is
rational in non-Bayesian approaches: since uncertainty cannot be integrated in
the context of one model, it is premature, from this perspective, even to con-
template this task. Since model-specific uncertainty has been resolved, both as
a theoretical and as a practical matter, in Bayesian forecasting, the problem of
model uncertainty is front and center. Two variants on this problem are inte-
grating uncertainty over a well-defined set of models, and bringing additional,
but similar, models into such a group in an efficient manner.
Extending the expression of uncertainty to a set of J specified models is

straightforward in principle, as detailed in Section 2.3. From (24)-(27) it is clear
that the additional technical task is the evaluation of the marginal likelihoods

p (Yo
T | Aj) =

Z
ΘAj

p
¡
Yo
T | θAj , Aj

¢
p
¡
θAj | Aj

¢
dθAj (j = 1, . . . .J) .
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With few exceptions simulation approximation of the marginal likelihood is not
a special case of approximating a posterior moment in the model Aj . One such
exception of practical importance involves models Aj and Ak with a common
vector of unobservables θA and likelihood p (Yo

T | θA, Aj) = p (Yo
T | θA, Ak) but

different prior densities p (θA | Aj) and p (θA | Ak). (For example, one model
might incorporate a set of inequality restrictions while the other does not.) If
p (θA | Ak) /p (θA | Aj) is bounded above on the support of p (θA | Aj), and if
θ
(m)
A ∼ p (θA | Yo

T , Aj) is ergodic then

M−1
MX
m=1

p
³
θ
(m)
A | Ak

´
/p
³
θ
(m)
A | Aj

´
a.s.→ p (Yo

T | Ak) /p (Y
o
T | Aj) ; (53)

see Geweke (2005, Section 5.2.1).
For certain types of posterior simulators, simulation-consistent approxima-

tion of the marginal likelihood is also straightforward: see Geweke (1989b, Sec-
tion 5 or Geweke (2005, Section 5.2.2) for importance sampling, Chib (1995)
for Gibbs sampling, Chib and Jeliazkov (2001) for the Metropolis-Hastings al-
gorithm, and Meng and Wong (1996) for a general theoretical perspective. An
approach that is more general, but often computationally less efficient in these
specific cases, is the density ratio method of Gelfand and Dey (1994), also de-
scribed in Geweke (2005, Section 5.2.4). These approaches, and virtually any
conceivable approach, require that it be possible to evaluate or approximate
with substantial accuracy the likelihood function. This condition is not nec-
essary in MCMC posterior simulators, and this fact has been central to the
success of these simulations in many applications, especially those with latent
variables. This, more or less, defines the rapidly advancing front of attack on
this important technical issue at the time of this writing.
Some important and practical modifications can be made to the set of models

over which uncertainty is integrated, without repeating the exercise of posterior
simulation. These modifications all exploit reweighting of the posterior simula-
tor output. One important application is updating posterior distributions with
new data. In a real-time forecasting situation, for example, one might wish to
update predictive distributions minute-by-minute, whereas as a full posterior
simulation adequate for the purposes at hand might take more than a minute
(but less than a night). Suppose the posterior simulation utilizes data through
time T , but the predictive distribution is being formed at time T ∗ > T . Then

p (ω | Yo
T∗ , A) =

Z
ΘA

p (θA | Yo
T∗ , A) p (ω | θA,Yo

T∗ , A) dθA

=

Z
ΘA

p (θA | Yo
T , A)

p (θA | Yo
T∗ , A)

p (θA | Yo
T , A)

p (ω | θA,Yo
T∗ , A) dθA

∝
Z
ΘA

p (θA | Yo
T , A) p

¡
yoT+1, . . . ,y

o
T∗ | θA, A

¢
·p (ω | θA,Yo

T∗ , A) dθA.

This suggests that one might use the simulator output θ(m) ∼ p (θA | Yo
T , A),
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taking ω(m)∼p
³
ω | θ(m)A ,Yo

T∗ , A
´
but reweighting the simulator output to ap-

proximate E [h (ω) | Yo
T∗ , A] by

MX
m=1

p
³
yoT+1, . . . ,y

o
T∗ | θ

(m)
A , A

´
h
³
ω(m)

´
/

MX
m=1

p
³
yoT+1, . . . ,y

o
T∗ | θ

(m)
A , A

´
.

(54)
This turns out to be correct; for details see Geweke (2000). One can show that
(54) is a simulation-consistent approximation of E [h (ω) | Yo

T∗ , A] and in many
cases the updating requires only spreadsheet arithmetic. There are central limit
theorems on which to base assessments of the accuracy of the approximations;
these require more advanced, but publicly available, software; see Geweke (1999)
and Geweke (2005, Sections 4.1 and 5.4).
The method of reweighting can also be used to bring into the fold models

with the same likelihood function but different priors, or to explore the effect
of modifying the prior, as (53) suggests. In that context Ak denotes the new
model, with a prior distribution that is more informative in the sense that
p (θA | Ak) /p (θA | Aj) is bounded above on the support of ΘAj . Reweight-

ing the posterior simulator output θ(m)Aj
∼ p

¡
θAj | Yo

T , Aj

¢
by p

³
θ
(m)
Aj

| Ak

´
/

p
³
θ
(m)
Aj

| Aj

´
provides the new simulation-consistent set of approximations.

Moreover, the exercise yields the marginal likelihood of the new model almost
as a by-product, because

M−1
MX
m=1

p
³
θ
(m)
Aj

| Ak

´
/p
³
θ
(m)
Aj

| Aj

´
a.s.→ p (Yo

T | Ak) /p (Y
o
T | Aj) (55)

This suggests a pragmatic reason for investigators to use prior distributions
p (θA | Aj) that are uninformative, in this sense: clients can tailor the simulator
output to their more informative priors p (θA | Ak) by reweighting.

4 ’Twas not always so easy: a historical per-
spective

The procedures outlined in the previous section accommodate, at least in prin-
ciple (and much practice), very general likelihood functions and prior distribu-
tions, primarily because numerical substitutes are available for analytic evalua-
tion of expectations of functions of interest. But prior to the advent of inexpen-
sive desktop computing in the mid-1980’s, Bayesian prediction was an analytic
art. The standard econometric reference for Bayesian work of any such kind was
Zellner (1971), which treats predictive densities at a level of generality similar
to that in Section 1.2 above, and in detail for Gaussian location, regression, and
multiple regression problems.
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4.1 In the beginning, there was diffuseness, conjugacy,
and analytic work

In these specific examples, Zellner’s focus was on the diffuse prior case, which
leads to the usual normal-gamma posterior. To illustrate his approach to pre-
diction in the normal regression model, let p = 1 and write the model (a version
of equation (1)) as

YT = XTβ + uT (56)

where
XT = a T × k matrix, with rank k, of observations on the independent

variables,
β = a k × 1 vector of regression coefficients,
uT = a T × 1 vector of error terms, assumed Gaussian with mean zero and

variance matrix σ2IT .
Zellner (1971, Section 3.2) employs the “diffuse” prior specification p(β,σ) ∝

1
σ .With this prior, the joint density for the parameters and the q-step prediction
vector Ỹ = {ys}T+qs=T+1, assumed to be generated by

Ỹ = X̃β + ũ,

(a version of (8)) is given by

p(Ỹ,β,σ|YT ,XT , X̃) = p(Ỹ|β,σ, X̃)p(β,σ|YT ,XT )

which is the product of the conditional Gaussian predictive for Ỹ given the
parameters, and independent variables and the posterior density for β and σ,
which is given by

p(β,σ|YT ,XT ) ∝ σ−(T+1) exp{−(YT −XTβ)
0(YT −XTβ)/2σ

2} (57)

and which in turn can be seen to be the product of a conditional Gaussian
density for β given σ and the data and an inverted gamma density for σ given
the data. In fact, the joint density is

p(Ỹ,β,σ|YT ,XT , X̃) ∝ σ−(T+q+1) exp
©£
(YT −XTβ)

0(YT −XTβ)

+(Ỹ − X̃β)0(Ỹ − X̃β)
i
/2σ2

o
To obtain the predictive density (21), p(Ỹ,|YT ,XT , X̃), Zellner marginalizes
analytically rather than numerically. He does so in two steps: first, he integrates
with respect to σ to obtain

p(Ỹ,β|YT ,XT , X̃)

∝ [(YT −XTβ)
0
(YT −XTβ) + (Ỹ − X̃β)

0
(Ỹ − X̃β)]

−(T+q)/2
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and then completes the square in β, rearranges, integrates and obtains

p(Ỹ,|YT ,XT , X̃) ∝
h
Y0
TYT + Ỹ

0Ỹ

−(X0
TYT + X̃

0Ỹ)
0
M−1(X0

TYT + X̃
0Ỹ)

i−(T−k+q)/2
where M = X0

TXT + X̃
0X̃. After considerable additional algebra to put this

into “a more intelligible form”, Zellner obtains

p(Ỹ,|YT ,XT , X̃) ∝ [T − k + (Ỹ − X̃β̂)0H(Ỹ − X̃β̂)]−(T−k+q)

where β̂ = (X
0
TXT )

−1X0
TYT is the in-sample ordinary least squares estimator,

H = (1/s2)(I − X̃M−1X̃0), and s2 = 1
T−k (YT−XT β̂)

0
H(YT−XT β̂). This

formula is then recognized as the multivariate Student-t density, meaning that
Ỹ is distributed as such with mean X̃β̂ (provided T − k > 1) and covariance
matrix T−k

T−k−2H
−1 (provided T−k > 2). Zellner notes that a linear combination

of the elements of Ỹ (his example of such a function of interest is a discounted
sum) will be distributed as univariate Student-t, so that expectations of such
linear combinations can be calculated as a matter of routine, but he does not
elaborate further. In the multivariate regression model (Zellner, 1971, Section
8.2), similar calculations to those above lead to a generalized or matrix Student-t
predictive distribution.
Zellner’s treatment of the Bayesian prediction problem constituted the state

of the art at the beginning of the 1970’s. In essence, linear models with Gaussian
errors and flat priors could be utilized, but not much more generality than
this was possible. Slightly greater generality was available if the priors were
conjugate. Such priors leave the posterior in the same form as the likelihood.
In the Gaussian regression case, this means a normal-gamma prior (normal for
the regression coefficients, inverted gamma for the residual standard deviation)
and a normal likelihood. As Section 2 makes clear, there is no longer need for
conjugacy and simple likelihoods, as developments of the past 15 years have
made it possible to replace “integration by Arnold Zellner” with “integration
by Monte Carlo,” in some cases using MC methods developed by Zellner himself
(e.g., Zellner and Min, 1995; Zellner and Chen, 2001)..

4.2 The dynamic linear model

In 1976, P. J. Harrison and C. F. Stevens (Harrison and Stevens, 1976) read
a paper with a title that anticipates ours before the Royal Statistical Society
in which they remarked that “[c]ompared with current forecasting fashions our
views may well appear radical”. Their approach involved the dynamic linear
model (see also HARVEY CHAPTER IN THIS VOLUME), which is a
version of a state-space observer system:

yt = x0tβt+ut;

βt = Gβt−1 +wt
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with ut
iid∼ N(0,Ut) andwt

iid∼ N(0,Wt). Thus the slope parameters are treated
as latent variables, as in Section 2.2.4. As Harrison and Stevens note, this
generalizes the standard linear Gaussian model (one of Zellner’s examples) by
permitting time variation in β and the residual covariance matrix. Starting from
a prior distribution for β0 Harrison and Stevens calculate posterior distributions
for βt for t = 1, 2, ... via the (now) well-known Kalman filter recursions. They
also discuss prediction formulae for yT+k at time T under the assumption (i)
that xT+k is known at T , and (ii) xT+k is unknown at T . They note that their
predictions are “distributional in nature, and derived from the current parameter
uncertainty” and that “[w]hile it is natural to think of the expectations of the
future variate values as “forecasts” there is no need to single out the expectation
for this purpose ... if the consequences of an error in one direction are more
serious that an error of the same magnitude in the opposite direction, then the
forecast can be biased to take this into account” (cf Section 2.4.1).
Harrison and Stevens take up several examples, beginning with the stan-

dard regression model, the “static case”. They note that in this context, their
Bayesian—Kalman filter approach amounts to a

computationally neat and economical method of revising regression
coefficient estimates as fresh data become available, without effec-
tively re-doing the whole calculation all over again and without any
matrix inversion. This has been previously pointed out by Plackett
(1950) and others but its practical importance seems to have been
almost completely missed. (p. 215)

Other examples they treat include the linear growth model, additive sea-
sonal model, periodic function model, autoregressive models, and moving av-
erage models. They also consider treatment of multiple possible models, and
integrating across them to obtain predictions, as in Section 2.3.
Note that the Harrison-Stevens approach generalized what was possible using

Zellner’s 1971 book, but priors were still conjugate, and the underlying structure
was still Gaussian. The structures that could be handled were more general,
but the statistical assumptions and nature of prior beliefs accommodated were
quite conventional. Indeed, in his discussion of Harrison-Stevens, Chatfield
(1976) remarks that

... you do not need to be Bayesian to adopt the method. If, as the
authors suggest, the general purpose default priors work pretty well
for most time series, then one does not need to supply prior infor-
mation. So, despite the use of Bayes’ theorem inherent in Kalman
filtering, I wonder if Adaptive Forecasting would be a better descrip-
tion of the method. (p.231)

The fact remains, though, that latent-variable structure of the forecasting
model does put uncertainty about the parameterization on a par with the un-
certainty associated with the stochastic structure of the observables themselves.
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4.3 The Minnesota revolution

During the mid- to late-1970’s, Christopher Sims was writing what would be-
come “Macroeconomics and Reality”, the lead article in the January 1980 issue
of Econometrica. In that paper, Sims argued that identification conditions in
conventional large-scale econometric models that were routinely used in (non
Bayesian) forecasting and policy exercises, were “incredible” — either they were
normalizations with no basis in theory, or “based” in theory that was empirically
falsified or internally inconsistent. He proposed, as an alternative, an approach
to macroeconomic time series analysis with little theoretical foundation other
than statistical stationarity. Building on the Wold decomposition theorem, Sims
argued that, exceptional circumstances aside, vectors of time series could be rep-
resented by an autoregression, and further, that such representations could be
useful for assessing features of the data even though they reproduce only the
first and second moments of the time series and not the entire probabilistic
structure or “data generation process.”
With this as motivation, Robert Litterman (1979) took up the challenge

of devising procedures for forecasting with such models that were intended to
compete directly with large-scale macroeconomic models then in use in fore-
casting. Betraying a frequentist background, much of Litterman’s effort was
devoted to dealing with “multicollinearity problems and large sampling errors
in estimation”. These “problems” arise because in (3), each of the equations
for the p variables involves m lags of each of p variables, resulting in mp2 coef-
ficients in B1, ...,Bm. To these are added the parameters BD associated with
the deterministic components, as well as the p(p+ 1) distinct parameters in Ψ.
Litterman (1979) treats these problems in a distinctly classical way, introduc-

ing “restrictions in the form of priors” in a subsection on “Biased Estimation”.
While he notes that “each of these methods may be given a Bayesian interpre-
tation,” he discusses reduction of sampling error in classical estimation of the
parameters of the normal linear model (56) via the standard ridge regression
estimator (Hoerl and Kennard, 1970)

βkR = (X
0
TXT + Ik)

−1X0
TYT ,

the Stein (1974) class

βkS = (X
0
TXT + X0

TXT )
−1X0

TYT ,

and, following Maddala (1977), the “generalized ridge”

βkS = (X
0
TXT + ∆−1)−1(X0

TYT + ∆−1θ). (58)

Litterman notes that the latter “corresponds to a prior distribution on β of
N(θ, λ2∆) with = σ2/λ2.” (Both parameters σ2 and λ2 are treated as known.)
Yet Litterman’s next statement is frequentist: “The variance of this estimator
is given by σ2(X0

TXT + ∆
−1)−1”. It is clear from his development that he has

the “Bayesian” shrinkage in mind as a way of reducing the sampling variability
of otherwise frequentist estimators.
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Anticipating a formulation to come, Litterman considers two shrinkage priors
(which he refers to as “generalized ridge estimators”) designed specifically with
lag distributions in mind. The canonical distributed lag model for scalar y and
x is given by

yt = α+ β0xt + β1xt−1+...+βlxt−m + ut. (59)

The first prior, due to Leamer (1972), shrinks the mean and variance of the lag
coefficients at the same geometric rate with the lag, and covariances between the
lag coefficients at a different geometric rate according to the distance between
them:

Eβi = υρi

cov(βi, βj) = λ2ω|i−j|ρi+j−2

with 0 < ρ, ω < 1. The hyperparameters ρ, and ω control the decay rates, while
υ and λ control the scale of the mean and variance. The spirit of this prior lives
on in the “Minnesota” prior to be discussed presently.
The second prior is Shiller’s (1973) “smoothness” prior, embodied by

R[β1...βm]
0 = w; w ∼ N(0, σ2wIm−2) (60)

where the matrix R incorporates smoothness restrictions by “differencing” ad-
jacent lag coefficients; for example, to embody the notion that second differences
between lag coefficients are small (that the lag distribution is quadratic), R is
given by

R =

⎡⎢⎢⎢⎣
1 −2 1 0 0 ... 0
0 1 −2 1 0 0 ... 0

. . .
0 ... 1 −2 1

⎤⎥⎥⎥⎦
Having introduced these priors, Litterman dismisses the latter, quoting Sims:

“... the whole notion that lag distributions in econometrics ought to be smooth
is ... at best weakly supported by theory or evidence” (Sims, 1974, p. 317).
In place of a smooth lag distribution, Litterman (1979, p. 20) assumed that
“a reasonable approximation of the behavior of an economic variable is a ran-
dom walk around an unknown, deterministic component.” Further, Litterman
operated equation by equation, and therefore assumed that the parameters for
equation i of the autoregression (3) were centered around

yit = yi,t−1 + dit + εit.

Litterman goes on to describe the prior:

The parameters are all assumed to have means of zero except the
coefficient on the first lag of the dependent variable, which is given a
prior mean of one. The parameters are assumed to be uncorrelated
with each other and to have standard deviations which decrease the
further back they are in the lag distributions. In general, the prior
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distribution on lag coefficients of the dependent variable is much
looser, that is, has larger standard deviations, than it is on other
variables in the system. (p. 20)

A footnote explains that while the prior represents Litterman’s opinion, “it
was developed with the aid of many helpful suggestions from Christopher Sims.”
(Litterman, 1979, p. 96.) Inasmuch as these discussions and the prior devel-
opment took place during the course of Litterman’s dissertation work at the
University of Minnesota under Sims’s direction, the prior has come to be known
as the “Minnesota” or “Litterman” prior. Prior information on deterministic
components is taken to be diffuse, though he does use the simple first order
stationary model

y1t = α+ βy1,t−1 + ε1t

to illustrate the point that the meanM1 = E(y1t) and persistence (β) are related
by M1 = α/(1 − β), indicating that priors on the deterministic components
independent of the lag coefficients are problematic. This notion was taken up
by Schotman and Van Dijk (1991) in the unit root literature.
The remainder of the prior involves the specification of the standard devia-

tion of the coefficient on lag l of variable j in equation i: δlij . This is specified
by

δlij =

⎧⎨⎩
λ
lγ1 if i = j

λγ2σ̂i
lγ1 σ̂j

if i 6= j
(61)

where γ1 is a hyperparameter greater than 1.0, γ2 and λ are scale factors, and σ̂i
and σ̂j are the estimated residual standard deviations in unrestricted ordinary
least squares estimates of equations i and j of the system. (In subsequent
work, e.g., Litterman, 1986, the residual standard deviation estimates were from
univariate autoregressions.) Alternatively, the prior can be expressed as

Riβi = ri + vi; vi ∼ N(0, λ2Imp) (62)

where βi represents the lag coefficients in equation i (the i
th row of B1, B2,..., Bl

in equation (3)), Ri is a diagonal matrix with zeros corresponding to determin-
istic components and elements λ/δlij corresponding to the lth lag of variable
j, and ri is a vector of zeros except for a one corresponding to the first lag of
variable i. Note that specification of the prior involves choosing the prior hyper-
parameters for “overall tightness” λ, the “decay” γ1, and the “other’s weight”
γ2. Subsequent modifications and embellishments (encoded in the principal
software developed for this purpose, RATS) involved alternative specifications
for the decay rate (harmonic in place of geometric), and generalizations of the
meaning of “other” (some “others” are more equal than others).
Litterman is careful to note that the prior is being applied equation by

equation, and that he will “indeed estimate each equation separately.” Thus the
prior was to be implemented one equation at a time, with known parameter
values in the mean and variance; this meant that the “estimator” corresponded
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to Theil’s (1963) mixed estimator, which could be implemented using the gen-
eralized ridge formula (58). With such an estimator, B̃ = (B̃D, B̃1, ..., B̃m),
forecasts were produced recursively via (3). Thus the one-step-ahead forecast
so produced will correspond to the mean of the predictive density, but ensuing
steps will not owing to the nonlinear interactions between forecasts and the Bjs.
(For an example of the practical effect of this phenomenon, see Section 3.3.1.)
Litterman noted a possible loss of “efficiency” associated with his equation-

by-equation treatment, but argued that the loss was justified because of the
“computational burden” of a full system treatment, due to the necessity of in-
verting the large cross-product matrix of right-hand-side variables. This refers
to the well-known result that equation-by-equation ordinary least squares es-
timation is sampling-theoretic efficient in the multiple linear regression model
when the right-hand-side variables are the same in all equations. Unless Ψ
is diagonal, this does not hold when the right-hand-side variables differ across
equations. This, coupled with the way the prior was implemented led Litterman
to reason that a system method would be more “efficient”. To see this, suppose
that p > 1 in (3), stack observations on variable i in the T × 1 vector YiT , the
T × pm+ d matrix with row t equal to (D0

t, y
0
t−1, ..., y

0
t−m) as XT and write the

equation i analogue of (56) as

YiT = XTβi+uiT . (63)

Obtaining the posterior mean associated with the prior (62) is straightforward
using a “trick” of mixed estimation: simply append “dummy variables” ri to
the bottom of YiT and Ri to the bottom of XT , and apply OLS to the resulting
system. This produces the appropriate analogue of (58). But now the right-
hand-side variables for equation i are of the form∙

XT

Ri

¸
which are of course not the same across equations. In a sampling-theory context
with multiple equations with explanatory variables of this form, the “efficient”
estimator is the seemingly-unrelated-regression (see Zellner, 1971) estimator,
which is not the same as OLS applied equation-by-equation. In the special
case of diagonal Ψ, however, equation-by-equation calculations are sufficient to
compute the posterior mean of the VAR parameters. Thus Litterman’s (1979)
"loss of efficiency" argument suggests that a perceived computational burden in
effect forced him to make unpalatable assumptions regarding the off-diagonal
elements of Ψ.
Litterman also sidestepped another computational burden (at the time) of

treating the elements of the prior as unknown. Indeed, the use of estimated
residual standard deviations in the specification of the prior is an example of the
“empirical” Bayesian approach. He briefly discussed the difficulties associated
with treating the parameters of the prior as unknown, but argued that the
required numerical integration of the resulting distribution (the diffuse prior
version of which is Zellner’s (57) above) was “not feasible.” As is clear from
Section 2 above (and 5 below), ten years later, feasibility was not a problem.
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Litterman implemented his scheme on a three-variable VAR involving real
GNP, M1, and the GNP price deflator using a quarterly sample from 1954:1
to 1969:4, and a forecast period 1970:1 to 1978:1. In undertaking this effort,
he introduced a recursive evaluation procedure. First, he estimated the model
(obtained B̃) using data through 1969:4 and made predictions for 1 through K
steps ahead. These were recorded, the sample updated to 1970:1, the model
re-estimated, and the process was repeated for each quarter through 1977:4.
Various measures of forecast accuracy (mean absolute error, root mean squared
error, and Theil’s U—the ratio of the root mean squared error to that of a
no-change forecast) were then calculated for each of the forecast horizons 1
through K. Estimation was accomplished by the Kalman filter, though it was
used only as a computational device, and none of its inherent Bayesian features
were utilized. Litterman’s comparison to McNees’s (1975) forecast performance
statistics for several large-scale macroeconometric models suggested that the
forecasting method worked well, particularly at horizons of about two to four
quarters.
In addition to traditional measures of forecast accuracy, Litterman also de-

voted substantial effort to producing Fair’s (1980) “estimates of uncertainty”.
These are measures of forecast accuracy that embody adjustments for changes
in the variances of the forecasts over time. In producing these measures for his
Bayesian VARs, Litterman anticipated much of the essence of posterior simu-
lation that would be developed over the next fifteen years. The reason is that
Fair’s method decomposes forecast uncertainty into several sources, of which
one is the uncertainty due to the need to estimate the coefficients of the model.
Fair’s version of the procedure involved simulation from the frequentist sampling
distribution of the coefficient estimates, but Litterman explicitly indicated the
need to stochastically simulate from the posterior distribution of the VAR pa-
rameters as well as the distribution of the error terms. Indeed, he generated 50
(!) random samples from the (equation-by-equation, empirical Bayes’ counter-
part to the) predictive density for a six variable, four-lag VAR. Computations
required 1024 seconds on the CDC Cyber 172 computer at the University of
Minnesota, a computer that was fast by the standards of the time.
Doan, Litterman, Sims (DLS, 1984) built on Litterman, though they retained

the equation-by-equation mode of analysis he had adopted. Key innovations
included accommodation of time variation via a Kalman filter procedure like
that used by West and Harrison (1976) for the dynamic linear model discussed
above, and the introduction of new features of the prior to reflect views that sums
of own lag coefficients in each equation equal unity, further reflecting the random
walk prior. (Sims, 1992, subsequently introduced a related additional feature of
the prior reflecting the view that variables in the VAR may be cointegrated.)
After searching over prior hyperparameters (overall tightness, degree of time

variation, etc.) DLS produced a “prior” involving small time variation and
some “bite” from the sum-of-lag coefficients restriction that improved psuedo-
real time forecast accuracy modestly over univariate predictions for a large (10
variable) model of macroeconomic time series. They conclude the improvement
is “... substantial relative to differences in forecast accuracy ordinarily turned
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up in comparisons across methods, even though it is not large relative to total
forecast error.” (pp. 26-27)

4.4 After Minnesota: subsequent developments

Like DLS, Kadiyala and Karlsson (1993) studied a variety of prior distribu-
tions for macroeconomic forecasting, and extended the treatment to full system-
wide analysis. They began by noting that Litterman’s (1979) equation-by-
equation formulation has an interpretation as a multivariate analysis, albeit
with a Gaussian prior distribution for the VAR coefficients characterized by a
diagonal, known, variance-covariance matrix. (In fact, this “known” covariance
matrix is data determined owing to the presence of estimated residual standard
deviations in equation (61).) They argue that diagonality is a more troublesome
assumption (being “rarely supported by data”) than the one that the covariance
matrix is known, and in any case introduce four alternatives that relax them
both.
Horizontal concatenation of equations of the form (63) and then vertically

stacking (vectorizing) yields the Kadiyala-Karlsson (1993) formulation

yT = (Ip⊗XT )b+UT (64)

where now yT = vec(Y1T ,Y2T , ...,YpT ), b = vec(β1,β2, ...,βp), and UT =
vec(u1T ,u2T , ...,upT ). Here UT ∼ N(0,Ψ⊗ IT ). The Minnesota prior treats
var(uiT ) as fixed (at the unrestricted OLS estimate σ̂i) and Ψ as diagonal, and
takes, for autoregression model A,

βi|A ∼ N(β
i
,Σi)

where β
i
and Σi are the prior mean and covariance hyperparameters. This

formulation results in the Gaussian posteriors

βi|yT , A ∼ N(β̄i, Σ̄i)

where (recall (58))
β̄i = Σ̄i(Σ

−1
i β

i
+ σ̂−1i X

0

TYiT )

Σ̄i = (Σ
−1
i + σ̂−1i X

0

TXT )
−1.

Kadiyala and Karlsson’s first alternative is the “normal-Wishart” prior,
which takes the VAR parameters to be Gaussian conditional on the innova-
tion covariance matrix, and the covariance matrix not to be known but rather
given by an inverted Wishart random matrix:

b|Ψ ∼N(b,Ψ⊗Ω) (65)

Ψ ∼IW (Ψ,α)

where the inverse Wishart density for Ψ given degrees of freedom parameter α
and “shape” Ψ is proportional to |Ψ|−(α+p+1)/2 exp{−0.5trΨ−1Ψ} (see, e.g.,
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Zellner, 1971, p. 395.) This prior is the natural conjugate prior for b, Ψ. The
posterior is given by

b|Ψ,yT,A∼N(b̄,Ψ⊗ Ω̄)
Ψ|yT,A∼IW (Ψ̄,T + α)

where the posterior parameters b̄, Ω̄, and Ψ̄ are simple (though notationally
cumbersome) functions of the data and the prior parameters b, Ω, and Ψ.
Simple functions of interest can be evaluated analytically under this posterior,
and for more complicated functions, evaluation by posterior simulation is trivial
given the ease of sampling from the inverted Wishart (see, e.g., Geweke, 1988).
But this formulation has a drawback, noted long ago by Rothenberg (1963),

that the Kronecker structure of the prior covariance matrix enforces an unfor-
tunate symmetry on ratios of posterior variances of parameters. To take an
example, suppress deterministic components (d = 0) and consider a 2-variable,
1-lag system (p = 2, m = 1) :

y1t = B1,11y1t−1 +B1,12y2t−1 + ε1t

y2t = B1,21y1t−1 +B1,22y2t−1 + ε2t

LetΨ = [ψij ] and Ω̄ = [σ̄ij ]Then the posterior covariance matrix for b = (B1,11
B1,12 B1,21 B1,22)

0 is given by

Ψ⊗ Ω̄ =

⎡⎢⎢⎣
ψ11σ̄11 ψ11σ̄12 ψ12σ̄11 ψ12σ̄12
ψ11σ̄21 ψ11σ̄22 ψ12σ̄21 ψ12σ̄22
ψ21σ̄11 ψ21σ̄12 ψ22σ̄11 ψ22σ̄12
ψ21σ̄21 ψ21σ̄22 ψ22σ̄21 ψ22σ̄22

⎤⎥⎥⎦ ,
so that

var(B1,11)/var(B1,21) = ψ11σ̄11/ψ22σ̄11

= var(B1,12)/var(B1,22) = ψ11σ̄22/ψ22σ̄22.

That is, under the normal-Wishart prior, the ratio of the posterior variance of
the “own” lag coefficient in equation 1 to that of the “other” lag coefficient in
equation 2 is identical to the ratio of the posterior variance of the “other” lag
coefficient in equation 1 to the “own” lag coefficient in equation 2: ψ11/ψ22
This is a very unattractive feature in general, and runs counter to the spirit of
the Minnesota prior view that there is greater certainty about each equation’s
“own” lag coefficients than the “others”. As Kadiyala and Karlsson (1993) put
it, this “force(s) us to treat all equations symmetrically.”
Like the normal-Wishart prior, the “diffuse” prior

p(b,Ψ) ∝|Ψ|−(p+1)/2 (66)

results in a posterior with the same form as the likelihood, with

b|Ψ ∼N(b̂,Ψ⊗ (X0

TXT)
−1
)
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where now b̂ is the ordinary least squares (equation-by-equation, of course)
estimator of b, and the marginal density for Ψ is again of the inverted Wishart
form. Symmetric treatment of all equations is also feature of this formulation
owing to the product form of the covariance matrix. Yet this formulation has
found application (see, e.g., section 5.2) because its use is very straightforward.
With the “Normal-diffuse” prior

b ∼ N(b,Σ)

p(Ψ) ∝|Ψ|−(p+1)/2

of Zellner (1971, p. 239), Kadiyala and Karlsson (1993) relaxed the implicit sym-
metry assumption at the cost of an analytically intractable posterior. Indeed,
Zellner had advocated the prior two decades earlier, arguing that “the price is
well worth paying”. Zellner’s approach to the analytic problem was to integrate
Ψ out of the joint posterior for b, Ψ and to approximate the result (a product
of generalized multivariate Student t and multivariate Gaussian densities) using
the leading (Gaussian) term in a Taylor series expansion. This approximation
has a form not unlike (65), with mean given by a matrix-weighted average of
the OLS estimator and the prior mean. Indeed, the similarity of Litterman’s
initial attempts to treat residual variances in his prior as unknown, which he
regarded as computationally expensive at the time, to Zellner’s straightforward
approximation apparently led Litterman to abandon pursuit of a fully Bayesian
analysis in favor of the mixed estimation strategy. But by the time Kadiyala and
Karlsson (1993) appeared, initial development of fast posterior simulators (e.g.,
Drèze, 1977; Kloek and van Dijk, 1978; Drèze and Richard, 1983; and Geweke,
1989) had occurred, and they proceeded to utilize importance-sampling-based
Monte Carlo methods for this normal-diffuse prior and a fourth, extended nat-
ural conjugate prior (Drèze and Morales, 1976), with only a small apology:
“Following Kloek and van Dijk (1978), we have chosen to evaluate equation (5)
using Monte Carlo integration instead of standard numerical integration tech-
niques. Standard numerical integration is relatively inefficient when the integral
has a high dimensionality ....”
A natural byproduct of the adoption of posterior simulation is the ability

to work with the correct predictive density without resort to the approxima-
tions used by Litterman (1979), Doan, Litterman, and Sims (1984), and other
successors. Indeed, Kadiyala and Karlsson’s (1993) equation “(5)” is precisely
the posterior mean of the predictive density (our (23)) with which they were
working. (This is not the first such treatment, as production forecasts from
full predictive densities have been issued for Iowa tax revenues (see Section 6.2)
since 1990, and the shell code for carrying out such calculations in the diffuse
prior case appeared in the RATS manual in the late 1980’s.)
Kadiyala and Karlsson (1993) conducted three small forecasting “horse race”

competitions amongst the four priors, using hyperparameters similar to those
recommended by Doan, Litterman, and Sims (1984). Two experiments involved
quarterly Canadian M2 and real GNP from 1955 to 1977; the other involved
monthly data on the U.S. price of wheat, along with wheat export shipments and
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sales, and an exchange rate index for the U.S. dollar. In a small sample of the
Canadian data, the normal-diffuse prior won, followed closely by the extended-
natural-conjugate and Minnesota priors; in a larger data set, the normal-diffuse
prior was the clear winner. For the monthly wheat data, no one procedure dom-
inated, though priors that allowed for dependencies across equation parameters
were generally superior.
Four years later, Kadiyala and Karlsson (1997) analyzed the same four priors,

but by then the focus had shifted from the pure forecasting performance of the
various priors to the numerical performance of posterior samplers and associated
predictives. Indeed, Kadiyala and Karlsson (1997) provide both importance
sampling and Gibbs sampling schemes for simulating from each of the posteriors
they considered, and provide information regarding numerical efficiencies of the
simulation procedures.
Sims and Zha (1999), which was submitted for publication in 1994, and

Sims and Zha (1998), completed the Bayesian treatment of the VAR by gen-
eralizing procedures for implementing prior views regarding the structure of
cross-equation errors. In particular, they wrote (3) in the form

C0yt = CDDt +C1yt−1 +C2yt−2 + ...+Cmyt−m + ut (67)

with
Eutu

0
t = I

which accommodates various identification schemes for C0. For example, one
route for passing from (3) to (67) is via “Choleski factorization” of Σ as Σ =
Σ1/2Σ1/2

0
so that C0 = Σ−1/2 and ut = Σ−1/2εt. This results in exact identifi-

cation of parameters in C0, but other “overidentification” schemes are possible
as well. Sims and Zha (1999) worked directly with the likelihood, thus implicitly
adopting a diffuse prior for C0,CD,C1, ...,Cm. They showed that conditional
on C0, the posterior (“likelihood”) for the other parameters is Gaussian, but
the marginal for C0 is not of any standard form. They indicated how to sam-
ple from it using importance sampling, but in application used a random walk
Metropolis-chain procedure utilizing a multivariate-t candidate generator. Sub-
sequently, Sims and Zha (1998) showed how to adopt an informative Gaussian
prior for CD,C1, ...,Cm|C0 together with a general (diffuse or informative)
prior for C0 and concluded with the “hope that this will allow the transparency
and reproducibility of Bayesian methods to be more widely available for tasks
of forecasting and policy analysis.” (p. 967)

5 Some Bayesian forecasting models
The vector autoregression (VAR) is the best known and most widely applied
Bayesian economic forecasting model. It has been used in many contexts, and its
ability to improve forecasts and provide a vehicle for communicating uncertainty
is by now well established. We return to a specific application of the VAR
illustrating these qualities in Section 6. In fact Bayesian inference is now widely
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undertaken with many models, for a variety of applications including economic
forecasting. This section surveys a few of the models most commonly used
in economics. Some of these, for example ARMA and fractionally integrated
models, have been used in conjunction with methods that are not only non-
Bayesian but are also not likelihood-based because of the intractability of the
likelihood function. The technical issues that arise in numerical maximization of
the likelihood function, on the one hand, and the use of simulation methods in
computing posterior moments, on the other, are distinct. It turns out, in these
cases as well as in many other econometric models, that the Bayesian integration
problem is easier to solve than is the non-Bayesian optimization problem. We
provide some of the details in Sections 5.2 and 5.3 below.
The state of the art in inference and computation is an important determi-

nant of which models have practical application and which do not. The rapid
progress in posterior simulators since 1990 is an increasingly important influ-
ence in the conception and creation of new models. Some of these models would
most likely never have been substantially developed, or even emerged, without
these computational tools, reviewed in Section 3. An example is the stochastic
volatility model, introduced in Section 2.1.2 and discussed in greater detail in
Section 5.5 below. Another example is the state space model, often called the
dynamic linear model in the statistics literature, which is described briefly in
Section 4.2 and in more detail in ChapterHarvey chapter of this volume. The
monograph by West and Harrison (1997) provides detailed development of the
Bayesian formulation of this model, and that by Pole, West and Harrison (1994)
is devoted to the practical aspects of Bayesian forecasting.
These models all carry forward the theme so important in vector autore-

gressions: priors matter, and in particular priors that cope sensibly with an
otherwise profligate parameterization are demonstrably effective in improving
forecasts. That was true in the earliest applications when computational tools
were very limited, as illustrated in Section 4 for VARs, and here for autoregres-
sive leading indicator models (Section 5.1). This fact has become even more
striking as computational tools have become more sophisticated. The review
of cointegration and error correction models (Section 5.4) constitutes a case
study in point. More generally models that are preferred, as indicated by Bayes
factors, should lead to better decisions, as measured by ex post loss, for the
reasons developed in Sections 2.3.2 and 2.4.1. This section closes with such a
comparison for time-varying volatility models.

5.1 Autoregressive leading indicator models

In a series of papers (Garcia-Ferrer et al. (1987), Zellner and Hong (1989),
Zellner et al. (1990), Zellner et al. (1991), Min and Zellner (1993)) Zellner and
coauthors investigated the use of leading indicators, pooling, shrinkage, and
time-varying parameters in forecasting real output for the major industrialized
countries. In every case the variable modeled was the growth rate of real output;
there was no presumption that real output is cointegrated across countries.
The work was carried out entirely analytically, using little beyond what was
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available in conventional software at the time, which limited attention almost
exclusively to one-step-ahead forecasts. A principal goal of these investigations
was to improve forecasts significantly using relatively simple models and pooling
techniques.
The observables model in all of these studies is of the form

yit = α0 +
3X

s=1

αsyi,t−s + β0zi,t−1 + εit, εit
iid∼ N

¡
0, σ2

¢
, (68)

with yit denoting the growth rate in real GNP or real GDP between year t− 1
and year t in country i. The vector zi,t−1 comprises the leading indicators. In
Garcia-Ferer et al. (1987) and Zellner and Hong (1989) zit consisted of real
stock returns in country i in years t − 1 and t, the growth rate in the real
money supply between years t− 1 and t, and world stock return defined as the
median real stock return in year t over all countries in the sample. Attention
was confined to nine OECD countries in Garcia-Ferer et al. (1987). In Zellner
and Hong (1989) the list expanded to 18 countries but the original group was
reported separately, as well, for purposes of comparison.
The earliest study, Garcia-Ferer et al. (1987), considered five different fore-

casting procedures and several variants on the right-hand-side variables in (68).
The period 1954-1973 was used exclusively for estimation, and one-step-ahead
forecast errors were recorded for each of the years 1974 through 1981, with es-
timates being updated before each forecast was made. Results for root mean
square forecast error, expressed in units of growth rate percentage, are as fol-
lows.

Summary of forecast RMSE for 9 countries in Garcia-Ferer et al. (1987)
Estimation method: (None) OLS TVP Pool Shrink 1

Growth rate = 0 3.09
Random walk growth rate 3.73
AR(3) 3.46
AR(3)-LI1 2.70 2.52 3.08
AR(3)-LI2 2.39 2.62
AR(3)-LI3 2.23 1.82 2.22 1.78

The model LI1 includes only the two stock returns in zit; LI2 adds the world
stock return and LI3 adds also the growth rate in the real money supply. The
time varying parameter (TVP) model utilizes a conventional state-space rep-
resentation in which the variance in the coefficient drift is σ2/2. The pooled
models constrain the coefficients in (68) to be the same for all countries. In the
variant “Shrink 1” each country forecast is an equally- weighted average of the
own country forecast and the average forecast for all nine countries; unequally-
weighted averages (unreported here) produce somewhat higher root mean square
error of forecast.
The subsequent study by Zellner and Hong (1989) extended this work by

adding nine countries, extending the forecasting exercise by three years, and
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considering an alternative shrinkage procedure. In the alternative, the coefficient
estimates are taken to be a weighted average of the least squares estimates for
the country under consideration, and the pooled estimates using all the data.
The study compared several weighting schemes, and found that a weight of one-
sixth on the country estimates and five-sixths on the pooled estimates minimized
the out-of-sample forecast root mean square error. These results are reported
in the column “Shrink 2” in the following table.

Summary of forecast RMSE for 18 countries in Zellner and Hong (1989)
Estimation method: (None) OLS Pool Shrink 1 Shrink 2

Growth rate = 0 3.07
Random walk growth rate 3.02
Growth rate = Past average 3.09
AR(3) 3.00
AR(3)-LI3 2.62 2.14 2.32 2.13

Garcia-Ferer et al. (1987) and Zellner and Hong (1989) demonstrated the
returns both to the incorporation of leading indicators and to various forms
of pooling and shrinkage. Combined, these two methods produce root mean
square errors of forecast somewhat smaller than those of considerably more
complicated OECD official forecasts (see Smyth (1983)), as described in Garcia-
Ferer et al. (1987) and Zellner and Hong (1989). A subsequent investigation by
Min and Zellner (1993) computed formal posterior odds ratios between the most
competitive models. Consistent with the results described here, they found that
odds rarely exceeded 2:1 and that there was no systematic gain from combining
forecasts.

5.2 Stationary linear models

Many routine forecasting situations involve linear models of the form yt = β0xt+
εt, in which εt is a stationary process, and the covariates xt are ancillary — for
example they may be deterministic (e.g., calendar effects in asset return models),
they may be controlled (e.g. traditional reduced form policy models), or they
may be exogenous and modelled separately from the relationship between xt
and yt.

5.2.1 The stationary AR(p) model

One of the simplest models of serial correlation in εt is an autoregression of order
p. The contemporary Bayesian treatment of this problem (see Chib and Green-
berg (1994) or Geweke (2005, Section 4.8)) exploits the structure of MCMC
posterior simulation algorithms, and the Gibbs sampler in particular, by de-
composing the posterior distribution into manageable conditional distributions
for each of several groups of parameters.
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Suppose

εt =

pX
s=1

φsεt−s + ut, ut | (εt−1, εt−2, . . .) iid∼ N
¡
0, h−1

¢
,

and φ =
¡
φ1, . . . , φp

¢0 ∈ Sp = {φ : |1−
Pp

s=1 φsz
s| 6= 0 ∀ z : |z| ≤ 1} ⊆ Rp.

There are three groups of parameters: β,φ, and h. Conditional on φ, the
likelihood function is of the classical generalized least squares form and reduces
to that of ordinary least squares by means of appropriate linear transformations.
For t = p + 1, . . . , T these transformations amount to y∗t = yt −

Pp
s=1 φsyt−s

and x∗t = xt −
Pp

s=1 xt−sφs. For t = 1, . . . , p the p Yule-Walker equations⎡⎢⎢⎢⎣
1 ρ1 . . . ρp−1
ρ1 1 · · · ρp−2
...

...
. . .

...
ρp−1 ρp−2 · · · 1

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

φ1
φ2
...
φp

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
ρ1
ρ2
...
ρp

⎞⎟⎟⎟⎠
can be inverted to solve for the autocorrelation coefficients ρ =

¡
ρ1, . . . , ρp

¢0
as

a linear function of φ. Then construct the p × p matrix Rp (φ) =
h
ρ|i−j|

i
,

let Ap (ρ) be a Choleski factor of [Rp (φ)]
−1, and then take

¡
y∗1 , . . . , y

∗
p

¢0
=

Ap (ρ) (y1, . . . , yp)
0. Creating x∗1, . . . ,x

∗
p by means of the same transformation,

the linear model y∗t = β0x∗t+ε
∗
t satisfies the assumptions of the textbook normal

linear model. Given a normal prior for β and a gamma prior for h, the condi-
tional posterior distributions come from these same families; variants on these
prior distributions are straightforward; see Geweke (2005, Sections 2.1 and 5.3).
On the other hand, conditional on β, h, X and yo,

e =

⎛⎜⎜⎜⎝
εp+1
εp+2
...
εT

⎞⎟⎟⎟⎠ and E =

⎡⎢⎢⎢⎣
εp · · · ε1
εp+1 · · · ε2
...

...
εT−1 · · · εT−p

⎤⎥⎥⎥⎦
are known. Further denoting Xp = [x1, . . . ,xp]

0 and yp = (y1, . . . , yp)
0, the

likelihood function is

p (yo| X,β,φ,h) = (2π)−T/2 hT/2 exp
£
−h (e−Eφ)0 (e−Eφ) /2

¤
(69)

· |Rp (φ)|−1/2 exp
h
−h

¡
yop −Xpβ

¢0
Rp (φ)

−1 ¡
yop −Xpβ

¢
/2
i
. (70)

The expression (69), treated as a function of φ, is the kernel of a p-variate
normal distribution. If the prior distribution of φ is Gaussian, truncated to
Sp, then the same is true of the product of this prior and (69). (Variants on
this prior can be accommodated through reweighting as discussed in Section
3.3.2.) Denote expression (70) as r (β,h,φ), and note that, interpreted as a
function of φ, r (β,h,φ) does not correspond to the kernel of any tractable
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multivariate distribution. This apparent impediment to an MCMC algorithm
can be addressed by means of a Metropolis within Gibbs step, as discussed in
Section 3.2.3. At iteration m a Metropolis within Gibbs step for φ draws a
candidate φ∗ from the Gaussian distribution whose kernel is the product of the
untruncated Gaussian prior distribution of φ and (69), using the current values
β(m) of β and h(m) of h. From (70) the acceptance probability for the candidate
is

min

⎡⎣r
³
β(m), h(m),φ∗

´
ISp (φ

∗)

r
³
β(m), h(m),φ(m−1)

´ , 1

⎤⎦ .
5.2.2 The stationary ARMA(p,q) model

The incorporation of a moving average component

εt =

pX
s=1

φsεt−s +

qX
s=1

θsut−s + ut

adds the parameter vector θ =(θ1, . . . , θq)
0 and complicates the recursive struc-

ture. The first broad-scale attack on the problem was Monahan (1983) who
worked without the benefit of modern posterior simulation methods and was
able to treat only p + q ≤ 2. Nevertheless he produced exact Bayes factors for
five alternative models, and obtained up to four-step ahead predictive means
and standard deviations for each model. He applied his methods in several ex-
amples developed originally in Box and Jenkins (1976). Chib and Greenberg
(1994) and Marriott et al. (1996) approached the problem by means of data
augmentation, adding unobserved pre-sample values to the vector of unobserv-
ables. In Marriott et al. (1996) the augmented data are ε0 = (ε0, . . . , ε1−p)

0

and u0 = (u0, . . . , u1−q)
0. Then (see Marriott et al. (1996, pp. 245-246))

p (ε1, . . . , εT | φ,θ,h, ε0,u0) = (2π)−T/2 hT/2 exp
"
−h

TX
t=1

(εt − µt)
2 /2

#
(71)

with

µt =

pX
s=1

φsεt−s −
t−1X
s=1

θs
¡
εt−s − µt−s

¢
−

qX
s=t

θsεt−s; (72)

(The second summation is omitted if t = 1, and the third is omitted if t > q.)
The data augmentation scheme is feasible because the conditional posterior

density of u0 and ε0,
p (ε0,u0 | φ,θ,h,XT ,yT ) (73)

is that of a Gaussian distribution and is easily computed (see Newbold (1974)).
The product of (73) with the density corresponding to (71)-(72) yields a Gaussian
kernel for the presample ε0 and u0. A draw from this distribution becomes one
step in a Gibbs sampling posterior simulation algorithm. The presence of (73)
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prevents the posterior conditional distribution of φ and θ from being Gaussian.
This complication may be handled just as it was in the case of the AR(p) model,
using a Metropolis within Gibbs step.
There are a number of variants on these approaches. Chib and Greenberg

(1994) show that the data augmentation vector can be reduced to max (p, q + 1)
elements, with some increase in complexity. As an alternative to enforcing sta-
tionarity in the Metropolis within Gibbs step, the transformation of φ to the cor-
responding vector of partial autocorrelations (see Barndorff-Nielsen and Schou
(1973)) may be inverted and the Jacobian computed (see Monahan (1984)), thus
transforming Sp to a unit hypercube. A similar treatment can restrict the roots
of 1−

Pq
s=1 θsz

s to the exterior of the unit circle (see Marriott et al. (1996)).
There are no new essential complications introduced in extending any of

these models or posterior simulators from univariate (ARMA) to multivariate
(VARMA) models. On the other hand, VARMA models lead to large numbers
of parameters as the number of variables increases, just as in the case of VAR
models. The BVAR (Bayesian Vector Autoregression) strategy of using shrink-
age prior distributions appears not to have been applied in VARMA models.
The approach has been, instead, to utilize exclusion restrictions for many pa-
rameters, the same strategy used in non-Bayesian approaches. In a Bayesian
set-up, however, uncertainty about exclusion restrictions can be incorporated
in posterior and predictive distributions. Ravishanker and Ray (1997a) do ex-
actly this, in extending the model and methodology of Marriott et al. (1996) to
VARMA models. Corresponding to each autoregressive coefficient φijs there is
a multiplicative Bernoulli random variable γijs, indicating whether that coeffi-
cient is excluded, and similarly for each moving average coefficient θijs there is
a Bernoulli random variable δijs:

yit =
nX
j=1

pX
s=1

γijsφijsyj,t−s +
nX
j=1

qX
s=1

θijsδijsεj,t−s + εit (i = 1, . . . , n) .

Prior probabilities on these random variables may be used to impose parsimony,
both globally and also differentially at different lags and for different variables;
independent Bernoulli prior distributions for the parameters γijs and δijs, em-
bedded in a hierarchical prior with beta prior distributions for the probabilities,
are the obvious alternatives to ad hoc non-Bayesian exclusion decisions, and are
quite tractable. The conditional posterior distributions of the γijs and δijs are
individually conditionally Bernoulli. This strategy is one of a family of similar
approaches to exclusion restrictions in regression models (see George and Mc-
Culloch (1993) or Geweke (1996b)) and has also been employed in univariate
ARMA models (see Barnett et al. (1996)). The posterior MCMC sampling al-
gorithm for the parameters φijs and δijs also proceeds one parameter at a time;
Ravishanker and Ray (1997a) report that this algorithm is computationally ef-
ficient in a three-variable VARMA model with p = 3, q = 1, applied to a data
set with 75 quarterly observations.
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5.3 Fractional integration

Fractional integration, also known as long memory, first drew the attention of
economists because of the improved multi-step-ahead forecasts provided by even
the simplest variants of these models as reported in Granger and Joyeux (1980)
and Porter-Hudak (1982). In a fractionally integrated model (1− L)d yt = ut,
where

(1− L)
d
=
∞X
j=0

µ
d
j

¶
(−L)j =

∞X
j=1

(−1)j Γ (d− 1)
Γ (j − 1)Γ (d− j − 1)L

j

and ut is a stationary process whose autocovariance function decays geometri-
cally. The fully parametric version of this model typically specifies

φ (L) (1− L)d (yt − µ) = θ (L) εt, (74)

with φ (L) and θ (L) being polynomials of specified finite order and εt being se-

rially uncorrelated; most of the literature takes εt
iid∼ N

¡
0, σ2

¢
. Sowell (1992a,

1992b) first derived the likelihood function and implemented a maximum likeli-
hood estimator. Koop et al. (1997) provided the first Bayesian treatment, em-
ploying a flat prior distribution for the parameters in φ (L) and θ (L), subject to
invertibility restrictions. This study used importance sampling of the posterior
distribution, with the prior distribution as the source distribution. The weight-
ing function w (θ) is then just the likelihood function, evaluated using Sowell’s
computer code. The application in Koop et al. (1997) used quarterly US real
GNP, 1947-1989, a standard data set for fractionally integrated models, and
polynomials in φ (L) and θ (L) up to order 3. This study did not provide any
evaluation of the efficiency of the prior density as the source distribution in the
importance sampling algorithm; in typical situations this will be poor if there
are a half-dozen or more dimensions of integration. In any event, the computing
times reported3 indicate that subsequent more sophisticated algorithms are also
much faster.
Much of the Bayesian treatment of fractionally integrated models originated

with Ravishanker and coauthors, who applied these methods to forecasting.
Pai and Ravishanker (1996) provided a thorough treatment of the univariate
case based on a Metropolis random-walk algorithm. Their evaluation of the
likelihood function differs from Sowell’s. From the autocovariance function r (s)
corresponding to (74) given in Hosking (1981) the Levinson-Durbin algorithm
provides the partial regression coefficients φkj in

µt = E (yt | Yt−1) =
t−1X
j=1

φt−1j yt−j . (75)

The likelihood function then follows from

yt | Yt−1 ∼ N
¡
µt, ν

2
t

¢
, ν2t =

£
r (0) /σ2

¤ t−1Y
j=1

∙
1−

³
φjj

´2¸
. (76)

3Contrast Koop et al. (1997, footnote 12) with Pai and Ravishanker (1996, p. 74).
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Pai and Ravishanker (1996) computed the maximum likelihood estimate as dis-
cussed in Haslett and Raftery (1989). The observed Fisher information matrix
is the variance matrix used in the Metropolis random-walk algorithm, after inte-
grating µ and σ2 analytically from the posterior distribution. The study focused
primarily on inference for the parameters; note that (75)-(76) provide the basis
for sampling from the predictive distribution given the output of the posterior
simulator.
A multivariate extension of (74), without cointegration, may be expressed

Φ (L)D (L) (yt − µ) = Θ (L) εt

in which yt is n× 1, D (L) = diag
h
(1− L)d1 , . . . , (1− L)dn

i
, Φ (L) and Θ (L)

are n×n matrix polynomials in L of specified order, and εt
iid∼ N (0,Σ). Ravis-

hanker and Ray (1997, 2002) provided an exact Bayesian treatment and a fore-
casting application of this model. Their approach blends elements of Marriott
et al. (1996) and Pai and Ravishanker (1996). It incorporates presample values
of zt = yt−µ and the pure fractionally integrated process at = D (L)−1 εt as la-
tent variables. The autocovariance function Ra (s) of at is obtained recursively
from

ra (0)ij = σij
Γ (1− di − dj)

Γ (1− di)Γ (1− dj)
, ra (s)ij = −

1− di − s

s− dj
ra (s− 1)ij .

The autocovariance function of zt is then

Rz (s) =
∞X
i=1

∞X
j=0

ΨiR
a (s+ i− j)Ψ0j

where the coefficients Ψj are those in the moving average representation of the
ARMA part of the process. Since these decay geometrically, truncation is not
a serious issue. This provides the basis for a random walk Metropolis-within-
Gibbs step constructed as in Pai and Ravishanker (1996). The other blocks in
the Gibbs sampler are the pre-sample values of zt and at, plus µ and Σ. The
procedure requires on the order of n3T 2 operations and storage of order n2T 2;
T = 200 and n = 3 requires a gigabyte of storage. If likelihood is computed
conditional on all presample values being zero the problem is computationally
much less demanding, but results differ substantially.
Ravishanker and Ray (2002) provide details of drawing from the predictive

density, given the output of the posterior simulator. Since the presample values
are a by-product of each iteration, the latent vectors at can be computed by
means of at = −

Pp
i=1Φizt−i +

Pq
i=1Θrat−r. Then sample at forward using

the autocovariance function of the pure long-memory process, and finally apply
the ARMA recursions to these values. The paper applies a simple version of
the model (n = 3; q = 0; p = 0 or 1) to sea temperatures off the California
coast. The coefficients of fractional integration are all about 0.4 when p = 0;
p = 1 introduces the usual difficulties in distinguishing between long memory
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and slow geometric decay of the autocovariance function. There are substantial
interactions in the off-diagonal elements of Φ (L), but the study does not take
up fractional cointegration.

5.4 Cointegration and error correction

Cointegration restricts the long-run behavior of multivariate time series that are
otherwise nonstationary; see OTHER CHAPTERS for details. Error correc-
tion models (ECMs; ANOTHER REFERENCE TO OTHER CHAP-
TERS) provide a convenient representation of cointegration, and there is by
now an enormous literature on inference in these models. By restricting the be-
havior of otherwise nonstationary time series, cointegration also has the promise
of improving forecasts, especially at longer horizons. Coming hard on the heels
of Bayesian vector autoregressions, ECMs were at first thought to be competi-
tors of VARs:

One could also compare these results with estimates which are obvi-
ously misspecified such as least squares on differences or Litterman’s
Bayesian Vector Autoregression which shrinks the parameter vector
toward the first difference model which is itself misspecified for this
system. The finding that such methods provided inferior forecasts
would hardly be surprising. (Engle and Yoo (1987, pp. 151-152))

Shoesmith (1995) carefully compared and combined the error correction
specification and the prior distributions pioneered by Litterman, with illumi-
nating results. He used the quarterly, six-lag VAR in Litterman (1980) for real
GNP, the implicit GNP price deflator, real gross private domestic investment,
the three-month treasury bill rate and the money supply (M1). Throughout
the exercise, Shoesmith repeatedly tested for lag length and the outcome con-
sistently indicated six lags. The period 1959:1 through 1981:4 was the base
estimation period, followed by 20 successive five-year experimental forecasts:
the first was for 1982:1 through 1986:4; and the last was for 1986:4 through
1991:3 based on estimates using data from 1959:1 through 1986:3. Error correc-
tion specification tests were conducted using standard procedures (see Johansen
(1988)). For all the samples used, these procedures identified the price deflator
as I(2), all other variables as I(1), and two cointegrating vectors.
Shoesmith compared forecasts from Litterman’s model with six other models.

One, VAR/I1, was a VAR in I(1) series (i.e., first differences for the deflator and
levels for all other variables) estimated by least squares, not incorporating any
shrinkage or other prior. The second, ECM, was a conventional ECM, again with
no shrinkage. The other four models all included the Minnesota prior. One of
these models, BVAR/I1, differs from Litterman’s model only in replacing the
deflator with its first difference. Another, BECM, applies the Minnesota prior
to the conventional ECM, with no shrinkage or other restrictions applied to
the coefficients on the error correction terms. Yet another variant, BVAR/I0,
applies the Minnesota prior to a VAR in I(0) variables (i.e., second differences
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for the deflator and first differences for all other variables). The final model,
BECM/5Z, is identical to BECM except that five cointegrating relationships are
specified, an intentional misreading of the outcome of the conventional procedure
for determining the rank of the error correction matrix.
The paper offers an extensive comparison of root mean square forecasting

errors for all of the variables. These are summarized here, by first forming
the ratio of mean square error in each model to its counterpart in Litterman’s
model, and then averaging the ratios across the six variables.

Comparison of forecast RMSE in Shoesmith (1995)
Horizon: 1 quarter 8 quarters 20 quarters

VAR/I1 1.33 1.00 1.14
ECM 1.28 0.89 0.91
BVAR/I1 0.97 0.96 0.85
BECM 0.89 0.72 0.45
BVAR/I0 0.95 0.87 0.59
BECM/5Z 0.99 1.02 0.88

The most notable feature of the results is the superiority of the BECM forecasts,
which is realized at all forecasting horizons but becomes greater at more distant
horizons. The ECM forecasts, by contrast, do not dominate those of either the
original Litterman VAR or the BVAR/I1, contrary to the conjecture in Engle
and Yoo (1987). The results show that most of the improvement comes from
applying the Minnesota prior to a model that incorporates stationary time series:
BVAR/I0 ranks second at all horizons, and the ECMwithout shrinkage performs
poorly relative to BVAR/I0 at all horizons. In fact the VAR with the Minnesota
prior and the error correction models are not competitors, but complementary
methods of dealing with the profligate parameterization in multivariate time
series by shrinking toward reasonable models with fewer parameters. In the
case of the ECM the shrinkage is a hard, but data driven, restriction, whereas
in the Minnesota prior it is soft, allowing the data to override in cases where the
more parsimoniously parameterized model is less applicable. The possibilities
for employing both have hardly been exhausted. Shoesmith (1995) suggested
that this may be a promising avenue for future research.
This experiment incorporated the Minnesota prior utilizing the mixed esti-

mation methods described in Section 4.3, appropriate at the time to the inves-
tigation of the relative contributions of error correction and shrinkage in im-
proving forecasts. More recent work has employed modern posterior simulators.
A leading example is Villani (2001), which examined the inflation forecasting
model of the central bank of Sweden. This model is expressed in error correction
form

∆yt = µ+αβ0yt−1 +

pX
s=1

Γs∆yt−s + εt, εt
iid∼ N (0,Σ) . (77)

It incorporates GDP, consumer prices and the three-month treasury rate, both
Swedish and weighted averages of corresponding foreign series, as well as the
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trade-weighted exchange rate. Villani limits consideration to models in which β
is 7× 3, based on the bank’s experience. He specifies four candidate coefficient
vectors: for example, one based on purchasing power parity and another based
on a Fisherian interpretation of the nominal interest rate given a stationary real
rate. This forms the basis for competing models that utilize various combina-
tions of these vectors in β, as well as unknown cointegrating vectors. In the
most restrictive formulations three vectors are specified and in the least restric-
tive all three are unknown. Villani specifies conventional uninformative priors
for α, β and Σ, and conventional Minnesota priors for the parameters Γs of
the short-run dynamics. The posterior distribution is sampled using a Gibbs
sampler blocked in µ, α, β, {Γs} and Σ.
The paper utilizes data from 1972:2 through 1993:3 for inference. Of all of

the combinations of cointegrating vectors, Villani finds that the one in which all
three are unrestricted is most favored. This is true using both likelihood ratio
tests and an informal version (necessitated by the improper priors) of posterior
odds ratios. This unrestricted specification (“β empirical” in the table below),
as well as the most restricted one (“β specified”), are carried forward for the
subsequent forecasting exercise. This exercise compares forecasts over the pe-
riod 1994 - 1998, reporting forecast root mean square errors for the means of
the predictive densities for price inflation (“Bayes ECM”). It also computes
forecasts from the maximum likelihood estimates, treating these estimates as
known coefficients (“ML unrestricted ECM”), and finds the forecast root mean
square error. Finally, it constrains many of the coefficients to zero, using con-
ventional stepwise deletion procedures in conjunction with maximum likelihood
estimation, and again finds the forecast root mean square error. Taking aver-
ages of these root mean square errors over forecasting horizons of one to eight
quarters ahead yields the following comparison:

β: Specified Empirical
Bayes ECM 0.485 0.488
ML unrestricted ECM 0.773 0.694
ML restricted ECM 0.675 0.532

The Bayesian ECM produces by far the lowest root mean square error of forecast,
and results are about the same whether the restricted or unrestricted version of
the cointegrating vectors are used. The forecasts based on restricted maximum
likelihood estimates benefit from the additional restrictions imposed by stepwise
deletion of coefficients, which is a crude from of shrinkage. In comparison with
Shoesmith (1995), Villani (2001) has the further advantage of having used a
full Monte Carlo simulation of the predictive density, whose mean is the Bayes
estimate given a squared-error loss function.
These findings are supported by other studies that have made similar com-

parisons. An earlier literature on regional forecasting, of which the seminal
paper is LeSage (1990), contains results that are broadly consistent but not
directly comparable because of the differences in variables and data. Amisano
and Serati (1999) utilized a three-variable VAR for Italian GDP, consumption
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and investment. Their approach was closer to mixed estimation than to full
Bayesian inference. They employed not only a conventional Minnesota prior for
the short-run dynamics, but also applied a shrinkage prior to the factor loading
vector α in (77). This combination produced a smaller root mean square error,
for forecasts from one to twenty quarters ahead, than either a traditional VAR
with a Minnesota prior, or an ECM that shrinks the short-run dynamics but
not α.

5.5 Stochastic volatility

In classical linear processes, for example the vector autoregression (3), condi-
tional means are time varying but conditional variances are not. By now it is
well established that for many time series, including returns on financial as-
sets, conditional variances in fact often vary greatly. Moreover, in the case of
financial assets, conditional variances are fundamental to portfolio allocation.
The ARCH family of models provides conditional variances that are functions
of past realizations, likelihood functions that are relatively easy to evaluate,
and a systematic basis for forecasting and solving the allocation problem. Sto-
chastic volatility models provide an alternative approach, first motivated by
autocorrelated information flows (see Tauchen and Pitts (1983)) and as discrete
approximations to diffusion processes utilized in the continuous time asset pric-
ing literature (see Hull and White (1987)). The canonical univariate model,
introduced in Section 2.1.2, is

yt = β exp (ht/2) εt; ht = φht−1 + σηηt; (78)

h1 ∼ N
£
0, σ2η/

¡
1− φ2

¢¤
; (εt, ηt)

0 iid∼ N (0, I2) .

Only the return yt is observable. In the stochastic volatility model there are two
shocks per time period, whereas in the ARCH family there is only one. As a
consequence the stochastic volatility model can more readily generate extreme
realizations of yt. Such a realization will have an impact on the variance of
future realizations if it arises because of an unusually large value of ηt, but
not if it is due to large εt. Because ht is a latent process not driven by past
realizations of yt, the likelihood function cannot be evaluated directly. Early
applications like Taylor (1986) and Melino and Turnbull (1990) used method of
moments rather than likelihood-based approaches.
Jacquier et al. (1994) were among the first to point out that the formulation

of (78) in terms of latent variables is, by contrast, very natural in a Bayesian
formulation that exploits a MCMC posterior simulator. The key insight is that
conditional on the sequence of latent volatilities {ht}, the likelihood function
for (78) factors into a component for β and one for σ2η and φ. Given an inverted
gamma prior distribution for β2 the posterior distribution of β2 is also inverted
gamma, and given an independent inverted gamma prior distribution for σ2η and
a truncated normal prior distribution for φ, the posterior distribution of

¡
σ2η, φ

¢
is the one discussed at the start of Section 5.2. Thus, the key step is sampling
from the posterior distribution of {ht} conditional on {yot } and the parameters
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¡
β, σ2η, φ

¢
. Because {ht} is a first order Markov process, the conditional distrib-

ution of a single ht given {hs, s 6= t}, {yt} and
¡
β, σ2η, φ

¢
depends only on ht−1,

ht+1, yt and
¡
β, σ2η, φ

¢
. The log-kernel of this distribution is

− (ht − µt)
2

2σ2η/
¡
1 + φ2

¢ − ht
2
− y2t exp (−ht)

2β2
(79)

with

µt =
φ (ht+1 + ht−1)

1 + φ2
−

σ2η

2
¡
1 + φ2

¢ .
Since the kernel is non-standard, a Metropolis-within-Gibbs step can be used
for the draw of each ht. The candidate distribution in Jacquier et al. (1994) is
inverted gamma, with parameters chosen to match the first two moments of the
candidate density and the kernel.
There are many variants on this Metropolis-within-Gibbs step. Shephard

and Pitt (1997) took a second-order Taylor series expansion of (79) about ht =
µt, and then used a Gaussian proposal distribution with the corresponding mean
and variance. Alternatively, one could find the mode of (79) and the second
derivative at the mode to create a Gaussian proposal distribution. The practical
limitation in all of these approaches is that sampling the latent variables ht one
at a time generates serial correlation in the MCMC algorithm: loosely speaking,
the greater is |φ|, the greater is the serial correlation in the Markov chain. An
example in Shephard and Pitt (1997), using almost 1,000 daily exchange rate
returns, showed a relative numerical efficiency (as defined in Section 3.1.3) for
φ of about 0.001; the posterior mean of φ is 0.982. The Gaussian proposal
distribution is very effective, with a high acceptance rate. The difficulty is in
the serial correlation in the draws of ht from one iteration to the next.
Shephard and Pitt (1997) pointed out that there is no reason, in princi-

ple, why the latent variables ht need to be drawn one at a time. The con-
ditional posterior distribution of a subset {ht, . . . , ht+k} of {ht}, conditional
on {hs, s < t, s > t+ k}, {yt}, and

¡
β, σ2η, φ

¢
depends only on ht−1, ht+k+1,

(yt, . . . , yt+k) and
¡
β, σ2η, φ

¢
. Shephard and Pitt derived a multivariate Gaussian

proposal distribution for {ht, . . . , ht+k} in the same way as the univariate pro-
posal distribution for ht. As all of the {ht} are blocked into subsets {ht, . . . , ht+k}
that are fewer in number but larger in size the conditional correlation between
the blocks diminishes, and this decreases the serial correlation in the MCMC
algorithm. On the other hand, the increasing dimension of each block means
that the Gaussian proposal distribution is less efficient, and the proportion of
draws rejected in each Metropolis-Hastings step increases. Shephard and Pitt
discussed methods for choosing the number of subsets that achieves an overall
performance near the best attainable. In their exchange rate example 10 or 20
subsets of {ht}, with 50 to 100 latent variables in each subset, provided the
most efficient algorithm. The relative numerical efficiency of φ was about 0.020
for this choice.
Kim et al. (1998) provided yet another method for sampling from the pos-

terior distribution. They began by noting that nothing is lost by working with
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log
¡
y2t
¢
= log (β) + ht + log ε

2
t . The disturbance term has a log-χ2 (1) distrib-

ution. This is intractable, but can be well-approximated by a mixture of seven
normal distributions. Conditional on the corresponding seven latent states,
most of the posterior distribution, including the latent variables {ht}, is jointly
Gaussian, and the {ht} can therefore be marginalized analytically. Each itera-
tion of the resulting MCMC algorithm provides values of the parameter vector¡
β, σ2η, φ

¢
; given these values and the data, it is straightforward to draw {ht}

from the Gaussian conditional posterior distribution. The algorithm is very
efficient, there now being seven rather than T latent variables. The unique in-
variant distribution of the Markov chain is that of the posterior distribution
based on the mixture approximation rather than the actual model. Conditional
on the drawn values of the {ht} it is easy to evaluate the ratio of the true to
the approximate posterior distribution. The approximate posterior distribution
may thus be regarded as the source distribution in an importance sampling al-
gorithm, and posterior moments can be computed by means of reweighting as
discussed in Section 3.1.3.
Bos et al. (2000) provided an interesting application of stochastic volatility

and competing models in a decision-theoretic prediction setting. The decision
problem is hedging holdings of a foreign currency against fluctuations in the
relevant exchange rate. The dollar value of a unit of foreign currency holdings
in period t is the exchange rate St. If held to period t+1 the dollar value of these
holdings will be St+1. Alternatively, at time t the unit of foreign currency may
be exchanged for a contract for forward delivery of Ft dollars in period t+1. By
covered interest parity, Ft = St exp

³
rht,t+1 − rft,t+1

´
, where rht,τ and r

f
t,τ are the

risk-free home and foreign currency interest rates, respectively, each at time t
with a maturity of τ periods. Bos et al. considered optimal hedging strategy in
this context, corresponding to a CRRA utility function U (Wt) = (W

γ
t − 1) /γ.

Initial wealth isWt = St, and the fraction Ht is hedged by purchasing contracts
for forward delivery of dollars. Taking advantage of the scale-invariance of
U (Wt), the decision problem is

max
Ht

γ−1 hE {[(1−Ht)St+1 +HtFt] /St | Φt}γ − 1i .

Bos et al. took Φt = {St−j (j ≥ 0)} and constrained Ht ∈ [0, 1]. It is sufficient
to model the continuously compounded exchange rate return st = log (St/St−1),
because

[(1−Ht)St+1 +HtFt] /St = (1−Ht) exp (st+1) +Ht exp
³
rht − rft

´
.

The study considered eight alternative models, all special cases of the state
space model

st = µt + εt, εt ∼
¡
0, σ2ε,t

¢
µt = ρµt−1 + ηt, ηt

iid∼ N
¡
0, σ2η

¢
.

The two most competitive models are GARCH(1,1)-t,

σ2ε,t = ω + δσ2ε,t−1 + αε2t−1, εt ∼ t
£
0, (ν − 2)σ2ε,t, ν

¤
,
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and the stochastic volatility model

σ2ε,t = µh + φ
¡
σ2ε,t−1 − µh

¢
+ ζt, ζt ∼ N

¡
0, σ2ζ

¢
.

After assigning similar proper priors to the models, the study used MCMC
to simulate from the posterior distribution of each model. The algorithm for
GARCH(1,1)-t copes with the Student-t distribution by data augmentation as
proposed in Geweke (1993). Conditional on these latent variables the likelihood
function has the same form as in the GARCH(1,1) model. It can be evaluated
directly, and Metropolis-within-Gibbs steps are used for ν and the block of
parameters

¡
σ2ε, δ, α

¢
. The Kim et al. (1998) algorithm is used for the stochastic

volatility model.
Bos et al. applied these models to the overnight hedging problem for the

dollar and Deutschmark. They used daily data from January 1, 1982 through
December 31, 1997 for inference, and the period from January 1, 1998 through
December 31, 1999 to evaluate optimal hedging performance using each model.
The log-Bayes factor in favor of the stochastic volatility model is about 15.
(The log-Bayes factors in favor of the stochastic volatility model, against the
six models other than GARCH(1,1)-t considered, are all over 100.) Given the
output of the posterior simulators, solving the optimal hedging problem is a
simple and straightforward calculus problem, as described in Section 3.3.1. The
performance of any sequence of hedging decisions {Ht} over the period T +
1, . . . , T + F can be evaluated by the ex post realized utility

T+FX
t=T+1

Ut = γ−1
T+FX
t=T+1

[(1−Ht)St+1 +HtFt] /St.

The article undertook this exercise for all of the models considered as well as
some benchmark ad hoc decision rules. In addition to the GARCH(1,1)-t and
stochastic volatility models, the exercise included a benchmark model in which
the exchange return st is Gaussian white noise. The best-performing ad hoc
decision rule is the random walk strategy, which sets the hedge ratio to one
(zero) if the foreign currency depreciated (appreciated) in the previous period.
The comparisons are as follows:

Realized utility for alternative hedging strategies
White noise GARCH-t Stoch. vol. RW hedge

Marginal likelihood -4305.9 -4043.4 -4028.5P
Ut (γ = −10) -2.24 -0.01 3.10 3.35P
Ut (γ = −2) 0.23 7.42 7.69 6.73P
Ut (γ = 0) 5.66 7.40 9.60 7.56

The stochastic volatility model leads to higher realized utility than does the
GARCH-t model in all cases, and it outperforms the random walk hedge model
except for the most risk-averse utility function. Hedging strategies based on the
white noise model are always inferior. Model combination would place almost
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all weight on the stochastic volatility model, given the Bayes factors, and so
the decision based on model combination, discussed in Sections 2.4.3 and 3.3.2,
leads to the best outcome.

6 Practical experience with Bayesian forecasts
This section describes two long-term experiences with Bayesian forecasting: The
Federal Reserve Bank of Minneapolis national forecasting project, and The Iowa
Economic Forecast produced by The University of Iowa Institute for Economic
Research. This is certainly not an exhaustive treatment of the production usage
of Bayesian forecasting methods; we describe these experiences because they
are well documented (Litterman, 1986; McNees, 1986; Whiteman, 1996) and
because we have personal knowledge of each.

6.1 National BVAR forecasts: The Federal Reserve Bank
of Minneapolis

Litterman’s thesis work at the University of Minnesota (“the U”) was coinci-
dent with his employment as a research assistant in the Research Department
at the Federal Reserve Bank of Minneapolis (the “Bank”). In 1978 and 1979, he
wrote a computer program, “Predict” to carry out the calculations described in
Section 4. At the same time, Thomas Doan, also a graduate student at the U
and likewise a research assistant at the Bank, was writing code to carry out re-
gression, ARIMA, and other calculations for staff economists. Thomas Turner,
a staff economist at the Bank, had modified a program written by Christopher
Sims, “Spectre”, to incorporate regression calculations using complex arithmetic
to facilitate frequency-domain treatment of serial correlation. By the summer
of 1979, Doan had collected his own routines in a flexible shell and incorporated
the features of Spectre and Predict (in most cases completely recoding their
routines) to produce the program RATS (for “Regression Analysis of Time Se-
ries”). Indeed, Litterman (1979) indicates that some of the calculations for his
paper were carried out in RATS. The program subsequently became a successful
Doan-Litterman commercial venture, and did much to facilitate the adoption of
BVAR methods throughout academics and business.
It was in fact Litterman himself who was responsible for the Bank’s focus on

BVAR forecasts. He had left Minnesota in 1979 to take a position as Assistant
Professor of Economics at M.I.T., but was hired back to the Bank two years
later. Based on work carried out while a graduate student and subsequently at
M.I.T., in 1980 Litterman began issuing monthly forecasts using a six-variable
BVAR of the type described in Section 4. The six variables were: real GNP, the
GNP price deflator, real business fixed investment, the 3-month Treasury bill
rate, the unemployment rate, and the money supply (M1). Upon his return to
the Bank, the BVAR for these variables (described in Litterman, 1986) became
known as the “Minneapolis Fed model.”
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In his description of five years of monthly experience forecasting with the
BVAR model, Litterman (1986) notes that unlike his competition at the time—
large, expensive commercial forecasts produced by the likes of Data Resources
Inc. (DRI), Wharton Econometric Forecasting Associates (WEFA), and Chase—
his forecasts were produced mechanically, without judgemental adjustment. The
BVAR often produced forecasts very different from the commercial predictions,
and Litterman notes that they were sometimes regarded by recipients (Litter-
man’s mailing list of academics, which included one of us—Whiteman) as too
“volatile” or “wild”. Still, his procedure produced real time forecasts that were
“at least competitive with the best forecasts commercially available.” (Litter-
man, 1986, p. 35.) McNees’s (1986) independent assessment, which also in-
volved comparisons with an even broader collection of competitors was that
Litterman’s BVAR was “generally the most accurate or among the most accu-
rate” for real GNP, the unemployment rate, and investment. The BVAR price
forecasts, on the other hand, were among the least accurate.
Subsequent study by Litterman resulted in the addition of an exchange rate

measure and stock prices that improved, at least experimentally, the perfor-
mance of the model’s price predictions. Other models were developed as well;
Litterman (1984) describes a 46-variable monthly national forecasting model,
while Amirizaheh and Todd (1984) describe a five-state model of the 9th Fed-
eral Reserve District (that of the Minneapolis Fed) involving 3 or 4 equations
per state. Moreover, the models were used regularly in Bank discussions, and
reports based on them appeared regularly in the Minneapolis Fed Quarterly
Review (e.g., Litterman, 1984a; Litterman, 1985).
In 1986, Litterman left the Bank to go to Goldman-Sachs. This required

dissolution of the Doan-Litterman joint venture, and Doan subsequently formed
Estima, Inc. to further develop and market RATS. It also meant that forecast
production fell to staff economists whose research interests were not necessarily
focused on the further development of BVARs (e.g., Miller and Roberds, 1987;
Runkle, 1988; Miller and Runkle, 1989; Runkle, 1989; Runkle, 1990; Runkle,
1991). This, together with the pain associated with explaining the inevitable
forecast errors, caused enthusiasm for the BVAR effort at the Bank to wane over
the ensuing half dozen years, and the last Quarterly Review “ outlook” article
based on a BVAR forecast appeared in 1992 (Runkle, 1992). By the spring
of 1993, the Bank’s BVAR efforts were being overseen by a research assistant
(albeit a quite capable one), and the authors of this paper were consulted by
the leadership of the Bank’s Research Department regarding what steps were
required to ensure academic currency and reliability of the forecasting effort.
The cost—our advice was to employ a staff economist whose research would be
complementary to the production of forecasts—was regarded as too high given
the configuration of economists in the department, and development of the
forecasting model and procedures at the Bank effectively ceased.
Cutting-edge development of Bayesian forecasting models reappeared rela-

tively soon within the Federal Reserve System. In 1995, Tao Zha, who had
written a Minnesota thesis under the direction of Chris Sims, moved from the
University of Saskatchewan to the Federal Reserve Bank of Atlanta, and began
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implementing the developments described in Sims and Zha (1998, 1999) to pro-
duce regular forecasts for internal briefing purposes. These efforts, which utilize
the over-identified procedures described in Section 4.4, are described in Robert-
son and Tallman (1999a,b) and Zha (1998), but there is no continuous public
record of forecasts comparable to Litterman’s “Five Years of Experience”.

6.2 Regional BVAR forecasts: economic conditions in Iowa

In 1990, Whiteman became Director of the Institute for Economic Research
at the University of Iowa. Previously, the Institute had published forecasts of
general economic conditions and had produced tax revenue forecasts for internal
use of the state’s Department of Management by judgmentally adjusting the
product of a large commercial forecaster. These forecasts had not been especially
accurate and were costing the state tens of thousands of dollars each year. As
a consequence, an “Iowa Economic Forecast” model was constructed based on
BVAR technology, and forecasts using it have been issued continuously each
quarter since March 1990.
The Iowa model consists of four linked VARs. Three of these involve income,

real income, and employment, and are treated using mixed estimation and the
priors outlined in Litterman (1979) and Doan, Litterman, and Sims (1984). The
fourth VAR, for predicting aggregate state tax revenue, is much smaller, and
fully Bayesian predictive densities are produced from it under a diffuse prior.
The income and employment VARs involve variables that were of interest

to the Iowa Forecasting Council, a group of academic and business economists
that met quarterly to advise the Governor on economic conditions. The nominal
income VAR includes total nonfarm income and four of its components: wage
and salary disbursements, property income, transfers, and farm income. These
five variables together with their national analogues, four lags, of each, and a
constant and seasonal dummy variables complete the specification of the model
for the observables. The prior is Litterman’s (1979) (recall specifications (61)
and (62)), with a generalization of the “other’s weight” that embodies the notion
that national variables are much more likely to be helpful in predicting Iowa
variables than the converse. Details can be found in Whiteman (1996) and
Otrok and Whiteman (1998a). The real income VAR is constructed in parallel
fashion after deflating each income variable by the GDP deflator.
The employment VAR is constructed similarly, using aggregate Iowa em-

ployment (nonfarm employment) together with the state’s population and five
components of employment: durable and nondurable goods manufacturing em-
ployment, and employment in services and wholesale and retail trade. National
analogues of each are used for a total of 14 equations. Monthly data available
from the U.S. Bureau of Labor Statistics and Iowa’s Department of Workforce
Development are aggregated to a quarterly basis. As in the income VAR, four
lags, a constant, and seasonal dummies are included. The prior is very similar
to the one employed in the income VARs.
The revenue VAR incorporates two variables: total personal income and total

tax receipts (on a cash basis.) The small size was dictated by data availability
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at the time of the initial model construction: only seven years’ of revenue data
were available on a consistent accounting standard as of the beginning of 1990.
Monthly data are aggregated to a quarterly basis; other variables include a
constant and seasonal dummies. Until 1997, two lags were used; thereafter,
four were employed. The prior is diffuse, as in (66).
Each quarter, the income and employment VARs are “estimated” (via mixed

estimation), and (as in Litterman, 1979, and Doan, Litterman, and Sims, 1984)
parameter estimates so obtained are used to produce forecasts using the chain
rule of forecasting for horizons of 12 quarters. Measures of uncertainty at each
horizon are calculated each quarter from a psuedo-real time forecasting experi-
ment (recall the description of Litterman’s (1979) experiment) over the 40 quar-
ters immediately prior to the end of the sample. Forecasts and uncertainty
measures are published in the “Iowa Economic Forecast”.
Production of the revenue forecasts involves normal-Wishart sampling. In

particular, each quarter, the Wishart distribution is sampled repeatedly for in-
novation covariance matrices; using each such sampled covariance matrix, a
conditionally Gaussian parameter vector and a sequence of Gaussian errors is
drawn and used to seed a dynamic simulation of the VAR. These quarterly
results are aggregated to annual figures and used to produce graphs of predic-
tive densities and distribution functions. Additionally, asymmetric linear loss
forecasts (see equation (29)) are produced. As noted above, this amounts to re-
porting quantiles of the predictive distribution. In the notation of (29), reports
are for integer “loss factors” (ratios (1 − q)/q); an example from July 2004 is
given below:

Iowa Revenue Growth Forecasts
Loss Factor FY05 FY06 FY07 FY08

1 1.9 4.4 3.3 3.6
2 1.0 3.5 2.5 2.9
3 0.6 3.0 2.0 2.4
4 0.3 2.7 1.7 2.1
5 0.0 2.5 1.5 1.9

The forecasts produced by the income, employment, and revenue VARs are
discussed by the Iowa Council of Economic Advisors (which replaced the Iowa
Economic Forecast Council in 2004) and also the Revenue Estimating Confer-
ence (REC). The latter body consists of three individuals, of whom two are
appointed by the Governor and the third is agreed to by the other two. It
makes the official state revenue forecast using whatever information it chooses
to consider. Regarding the use and interpretation of a predictive density fore-
cast by state policymakers, one of the members of the REC during the 1990s,
Director of the Department of Management, Gretchen Tegler remarked, “It lets
the decision-maker choose how certain they want to be.” (Cedar Rapids Gazette,
2004.) By law, the official estimate is binding in the sense that the governor
cannot propose, and the legislature may not pass, expenditure bills that exceed
99% of revenue predicted to be available in the relevant fiscal year. The estimate
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is made by December 15 of each year, and conditions the Governor’s “State of
the State” address in early January, and the legislative session that runs from
January to May.
Whiteman (1996) reports on five years of experience with the procedures.

Although there are not competitive forecasts available, he compares forecasting
results to historical data revisions and expectations of policy makers. During the
period 1990-1994, personal income in the state ranged from about $50 billion to
$60 billion. Root mean squared one-step ahead forecast errors relative to first re-
leases of the data averaged $1 billion. The data themselves were only marginally
more accurate: root mean squared revisions from first release to second release
averaged $864 million. The revenue predictions made for the on-the-run fiscal
year prior to the December REC meeting had root mean squared errors of 2%.
Tegler’s assessment: “If you are within 2 percent, you are phenomenal.” (Cedar
Rapids Gazette, 2004.) Subsequent difficulties in forecasting during fiscal years
2000 and 2001 (in the aftermath of a steep stock market decline and during an
unusual national recession), which were widespread across the country in fact
led to a reexamination of forecasting methods in the state in 2003-2004. The
outcome of this was a reaffirmation of official faith in the approach, perhaps
reflecting former State Comptroller Marvin Seldon’s comment at the inception
of BVAR use in Iowa revenue forecasting: “If you can find a revenue forecaster
who can get you within 3 percent, keep him.” (Seldon, 1990)
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1 Introduction and Overview

In this chapter linear models for the conditional mean of a stochastic process are consid-

ered. These models are useful for producing linear forecasts of time series variables. Even

if nonlinear features may be present in a given series and, hence, nonlinear forecasts are

considered, linear forecasts can serve as a useful benchmark against which other forecasts

may be evaluated. As pointed out by Teräsvirta (2006) in this Handbook, they may be more

robust than nonlinear forecasts. Therefore, in this chapter linear forecasting models and

methods will be discussed.

Suppose that K related time series variables are considered, y1t, . . . , yKt, say. Defining

yt = (y1t, . . . , yKt)
′, a linear model for the conditional mean of the data generation process

(DGP) of the observed series may be of the vector autoregressive (VAR) form,

yt = A1yt−1 + · · ·+ Apyt−p + ut, (1.1)

where the Ai’s (i = 1, . . . , p) are (K × K) coefficient matrices and ut is a K-dimensional

error term. If ut is independent over time (i.e., ut and us are independent for t 6= s), the

conditional mean of yt, given past observations, is

yt|t−1 ≡ E(yt|yt−1, yt−2, . . . ) = A1yt−1 + · · ·+ Apyt−p.

Thus, the model can be used directly for forecasting one period ahead and forecasts with

larger horizons can be computed recursively. Therefore, variants of this model will be the

basic forecasting models in this chapter.

For practical purposes the simple VAR model of order p may have some disadvantages,

however. The Ai parameter matrices will be unknown and have to be replaced by estimators.

For an adequate representation of the DGP of a set of time series of interest a rather large

VAR order p may be required. Hence, a large number of parameters may be necessary for

an adequate description of the data. Given limited sample information this will usually

result in low estimation precision and also forecasts based on VAR processes with estimated

coefficients may suffer from the uncertainty in the parameter estimators. Therefore it is

useful to consider the larger model class of vector autoregressive moving-average (VARMA)

models which may be able to represent the DGP of interest in a more parsimonious way

because they represent a wider model class to choose from. In this chapter the analysis of

models from that class will be discussed although special case results for VAR processes will

occasionally be noted explicitly. Of course, this framework includes univariate autoregressive

(AR) and autoregressive-moving average (ARMA) processes. In particular, for univariate

series the advantages of mixed ARMA models over pure finite order AR models for forecasting
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was found in early studies (e.g., Newbold & Granger (1974)). The VARMA framework

also includes the class of unobserved component models discussed by Harvey (2006) in this

Handbook who argues that these models forecast well in many situations.

The VARMA class has the further advantage of being closed with respect to linear trans-

formations, that is, a linearly transformed finite order VARMA process has again a finite

order VARMA representation. Therefore linear aggregation issues can be studied within

this class. In this chapter special attention will be given to results related to forecasting

contemporaneously and temporally aggregated processes.

VARMA models can be parameterized in different ways. In other words, different param-

eterizations describe the same stochastic process. Although this is no problem for forecasting

purposes because we just need to have one adequate representation of the DGP, nonunique

parameters are a problem at the estimation stage. Therefore the echelon form of a VARMA

process is presented as a unique representation. Estimation and specification of this model

form will be considered.

These models have first been developed for stationary variables. In economics and also

other fields of applications many variables are generated by nonstationary processes, however.

Often they can be made stationary by considering differences or changes rather than the

levels. A variable is called integrated of order d (I(d)) if it is still nonstationary after

taking differences d − 1 times but it can be made stationary or asymptotically stationary

by differencing d times. In most of the following discussion the variables will be assumed to

be stationary (I(0)) or integrated of order 1 (I(1)) and they may be cointegrated. In other

words, there may be linear combinations of I(1) variables which are I(0). If cointegration is

present, it is often advantageous to separate the cointegration relations from the short-run

dynamics of the DGP. This can be done conveniently by allowing for an error correction or

equilibrium correction (EC) term in the models and EC echelon forms will also be considered.

The model setup for stationary and integrated or cointegrated variables will be presented

in the next section where also forecasting with VARMA models will be considered under the

assumption that the DGP is known. In practice it is, of course, necessary to specify and

estimate a model for the DGP on the basis of a given set of time series. Model specification,

estimation and model checking are discussed in Section 3 and forecasting with estimated

models is considered in Section 4. Conclusions follow in Section 5.

Historical Notes

The successful use of univariate ARMA models for forecasting has motivated researchers to

extend the model class to the multivariate case. It is plausible to expect that using more
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information by including more interrelated variables in the model improves the forecast

precision. This is actually the idea underlying Granger’s influential definition of causality

(Granger (1969a)). It turned out, however, that generalizing univariate models to multi-

variate ones is far from trivial in the ARMA case. Early on Quenouille (1957) considered

multivariate VARMA models. It became quickly apparent, however, that the specification

and estimation of such models was much more difficult than for univariate ARMA models.

The success of the Box-Jenkins modelling strategy for univariate ARMA models in the 1970s

(Box & Jenkins (1976), Newbold & Granger (1974), Granger & Newbold (1977, Sec. 5.6))

triggered further attempts of using the corresponding multivariate models and developing es-

timation and specification strategies. In particular, the possibility of using autocorrelations,

partial autocorrelations and cross-correlations between the variables for model specification

was explored. Because modelling strategies based on such quantities had been to some ex-

tent successful in the univariate Box-Jenkins approach, it was plausible to try multivariate

extensions. Examples of such attempts are Tiao & Box (1981), Tiao & Tsay (1983, 1989),

Tsay (1989a, b), Wallis (1977), Zellner & Palm (1974), Granger & Newbold (1977, Chapter

7), Jenkins & Alavi (1981). It became soon clear, however, that these strategies were at best

promising for very small systems of two or perhaps three variables. Moreover, the most useful

setup of multiple time series models was under discussion because VARMA representations

are not unique or, to use econometric terminology, they are not identified. Important early

discussions of the related problems are due to Hannan (1970, 1976, 1979, 1981), Dunsmuir

& Hannan (1976) and Akaike (1974). A rather general solution to the structure theory for

VARMA models was later presented by Hannan & Deistler (1988). Understanding the struc-

tural problems contributed to the development of complete specification strategies. By now

textbook treatments of modelling, analyzing and forecasting VARMA processes are available

(Lütkepohl (2005), Reinsel (1993)).

The problems related to VARMA models were perhaps also relevant for a parallel de-

velopment of pure VAR models as important tools for economic analysis and forecasting.

Sims (1980) launched a general critique of classical econometric modelling and proposed

VAR models as alternatives. A short while later the concept of cointegration was developed

by Granger (1981) and Engle & Granger (1987). It is conveniently placed into the VAR

framework as shown by the latter authors and Johansen (1995a). Therefore it is perhaps not

surprising that VAR models dominate time series econometrics although the methodology

and software for working with more general VARMA models is nowadays available. A recent

previous overview of forecasting with VARMA processes is given by Lütkepohl (2002). The

present review draws partly on that article and on a monograph by Lütkepohl (1987).
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Notation, Terminology, Abbreviations

The following notation and terminology is used in this chapter. The lag operator also some-

times called backshift operator is denoted by L and it is defined as usual by Lyt ≡ yt−1. The

differencing operator is denoted by ∆, that is, ∆yt ≡ yt − yt−1. For a random variable or

random vector x, x ∼ (µ, Σ) signifies that its mean (vector) is µ and its variance (covariance

matrix) is Σ. The (K × K) identity matrix is denoted by IK and the determinant and

trace of a matrix A are denoted by det A and trA, respectively. For quantities A1, . . . , Ap,

diag[A1, . . . , Ap] denotes the diagonal or block-diagonal matrix with A1, . . . , Ap on the diag-

onal. The natural logarithm of a real number is signified by log. The symbols Z, N and C

are used for the integers, the positive integers and the complex numbers, respectively.

DGP stands for data generation process. VAR, AR, MA, ARMA and VARMA are used

as abbreviations for vector autoregressive, autoregressive, moving-average, autoregressive

moving-average and vector autoregressive moving-average (process). Error correction is ab-

breviated as EC and VECM is short for vector error correction model. The echelon forms

of VARMA and EC-VARMA processes are denoted by ARMAE and EC-ARMAE, respec-

tively. OLS, GLS, ML and RR abbreviate ordinary least squares, generalized least squares,

maximum likelihood and reduced rank, respectively. LR and MSE are used to abbreviate

likelihood ratio and mean squared error.

2 VARMA Processes

2.1 Stationary Processes

Suppose the DGP of the K-dimensional multiple time series, y1, . . . , yT , is stationary, that

is, its first and second moments are time invariant. It is a (finite order) VARMA process if

it can be represented in the general form

A0yt = A1yt−1 + · · ·+Apyt−p +M0ut +M1ut−1 + · · ·+Mqut−q, t = 0,±1,±2, . . . , (2.1)

where A0, A1, . . . , Ap are (K ×K) autoregressive parameter matrices while M0,M1, . . . , Mq

are moving average parameter matrices also of dimension (K×K). Defining the VAR and MA

operators, respectively, as A(L) = A0−A1L−· · ·−ApL
p and M(L) = M0+M1L+· · ·+MqL

q,

the model can be written in more compact notation as

A(L)yt = M(L)ut, t ∈ Z. (2.2)

Here ut is a white-noise process with zero mean, nonsingular, time-invariant covariance

matrix E(utu
′
t) = Σu and zero covariances, E(utu

′
t−h) = 0 for h = ±1,±2, . . . . The zero-
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order matrices A0 and M0 are assumed to be nonsingular. They will often be identical,

A0 = M0, and in many cases they will be equal to the identity matrix, A0 = M0 = IK . To

indicate the orders of the VAR and MA operators, the process (2.1) is sometimes called a

VARMA(p, q) process. Notice, however, that so far we have not made further assumptions

regarding the parameter matrices so that some or all of the elements of the Ai’s and Mj’s

may be zero. In other words, there may be a VARMA representation with VAR or MA

orders less than p and q, respectively. Obviously, the VAR model (1.1) is a VARMA(p, 0)

special case with A0 = IK and M(L) = IK . It may also be worth pointing out that there

are no deterministic terms such as nonzero mean terms in our basic VARMA model (2.1).

These terms are ignored here for convenience although they are important in practice. The

necessary modifications for deterministic terms will be discussed in Section 2.5.

The matrix polynomials in (2.2) are assumed to satisfy

det A(z) 6= 0, |z| ≤ 1, and det M(z) 6= 0, |z| ≤ 1 for z ∈ C. (2.3)

The first of these conditions ensures that the VAR operator is stable and the process is

stationary. Then it has a pure MA representation

yt =
∞∑

j=0

Φiut−i (2.4)

with MA operator Φ(L) = Φ0 +
∑∞

i=1 ΦiL
i = A(L)−1M(L). Notice that Φ0 = IK if A0 = M0

and in particular if both zero order matrices are identity matrices. In that case (2.4) is just

the Wold MA representation of the process and, as we will see later, the ut are just the

one-step ahead forecast errors. Some of the forthcoming results are valid for more general

stationary processes with Wold representation (2.4) which may not come from a finite order

VARMA representation. In that case, it is assumed that the Φi’s are absolutely summable

so that the infinite sum in (2.4) is well-defined.

The second part of condition (2.3) is the usual invertibility condition for the MA operator

which implies the existence of a pure VAR representation of the process,

yt =
∞∑
i=1

Ξiyt−i + ut, (2.5)

where A0 = M0 is assumed and Ξ(L) = IK − ∑∞
i=1 ΞiL

i = M(L)−1A(L). Occasionally

invertibility of the MA operator will not be a necessary condition. In that case, it is assumed

without loss of generality that det M(z) 6= 0, for |z| < 1. In other words, the roots of the

MA operator are outside or on the unit circle. There are still no roots inside the unit circle,

however. This assumption can be made without loss of generality because it can be shown
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that for an MA process with roots inside the complex unit circle an equivalent one exists

which has all its roots outside and on the unit circle.

It may be worth noting at this stage already that every pair of operators A(L), M(L)

which leads to the same transfer functions Φ(L) and Ξ(L) defines an equivalent VARMA

representation for yt. This nonuniqueness problem of the VARMA representation will become

important when parameter estimation is discussed in Section 3.

As specified in (2.1), we are assuming that the process is defined for all t ∈ Z. For

stable, stationary processes this assumption is convenient because it avoids considering issues

related to initial conditions. Alternatively, one could define yt to be generated by a VARMA

process such as (2.1) for t ∈ N, and specify the initial values y0, . . . , y−p+1, u0, . . . , u−p+1

separately. Under our assumptions they can be defined such that yt is stationary. Another

possibility would be to define fixed initial values or perhaps even y0 = · · · = y−p+1 = u0 =

· · · = u−p+1 = 0. In general, such an assumption implies that the process is not stationary

but just asymptotically stationary, that is, the first and second order moments converge

to the corresponding quantities of the stationary process obtained by specifying the initial

conditions accordingly or defining yt for t ∈ Z. The issue of defining initial values properly

becomes more important for the nonstationary processes discussed in Section 2.2.

Both the MA and the VAR representations of the process will be convenient to work with

in particular situations. Another useful representation of a stationary VARMA process is

the state space representation which will not be used in this review, however. The relation

between state space models and VARMA processes is considered, for example, by Aoki

(1987), Hannan & Deistler (1988), Wei (1990) and Harvey (2006) in this Handbook.

2.2 Cointegrated I(1) Processes

If the DGP is not stationary but contains some I(1) variables, the levels VARMA form

(2.1) is not the most convenient one for inference purposes. In that case, det A(z) = 0 for

z = 1. Therefore we write the model in EC form by subtracting A0yt−1 on both sides and

re-arranging terms as follows:

A0∆yt = Πyt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1

+M0ut + M1ut−1 + · · ·+ Mqut−q, t ∈ N,
(2.6)

where Π = −(A0 − A1 − · · · − Ap) = −A(1) and Γi = −(Ai+1 + · · ·+ Ap) (i = 1, . . . , p− 1)

(Lütkepohl & Claessen (1997)). Here Πyt−1 is the EC term and r = rk(Π) is the cointe-

grating rank of the system which specifies the number of linearly independent cointegration

relations. The process is assumed to be started at time t = 1 from some initial values
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y0, . . . , y−p+1, u0, . . . , u−p+1 to avoid infinite moments. Thus, the initial values are now of

some importance. Assuming that they are zero is convenient because in that case the pro-

cess is easily seen to have a pure EC-VAR or VECM representation of the form

∆yt = Π∗yt−1 +
t−1∑
j=1

Θj∆yt−j + A−1
0 M0ut, t ∈ N, (2.7)

where Π∗ and Θj (j = 1, 2, . . . ) are such that

IK∆− Π∗L−
∞∑

j=1

Θj∆Lj = A−1
0 M0M(L)−1(A0∆− ΠL− Γ1∆L− · · · − Γp−1∆Lp−1).

A similar representation can also be obtained if nonzero initial values are permitted (see

Saikkonen & Lütkepohl (1996)). Bauer & Wagner (2003) present a state space representation

which is especially suitable for cointegrated processes.

2.3 Linear Transformations of VARMA Processes

As mentioned in the introduction, a major advantage of the class of VARMA processes is that

it is closed with respect to linear transformations. In other words, linear transformations of

VARMA processes have again a finite order VARMA representation. These transformations

are very common and are useful to study problems of aggregation, marginal processes or

averages of variables generated by VARMA processes etc.. In particular, the following result

from Lütkepohl (1984) is useful in this context. Let

yt = ut + M1ut−1 + · · ·+ Mqut−q

be a K-dimensional invertible MA(q) process and let F be an (M ×K) matrix of rank M .

Then the M -dimensional process zt = Fyt has an invertible MA(q̆) representation with q̆ ≤ q.

An interesting consequence of this result is that if yt is a stable and invertible VARMA(p, q)

process as in (2.1), then the linearly transformed process zt = Fyt has a stable and invertible

VARMA(p̆, q̆) representation with p̆ ≤ (K − M + 1)p and q̆ ≤ (K − M)p + q (Lütkepohl

(1987, Chapter 4) or Lütkepohl (2005, Corollary 11.1.2)).

These results are directly relevant for contemporaneous aggregation of VARMA processes

and they can also be used to study temporal aggregation problems. To see this suppose we

wish to aggregate the variables yt generated by (2.1) over m subsequent periods. For instance,

m = 3 if we wish to aggregate monthly data to quarterly figures. To express the temporal
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aggregation as a linear transformation we define

yϑ =




ym(ϑ−1)+1

ym(ϑ−1)+2

...

ymϑ




and uϑ =




um(ϑ−1)+1

um(ϑ−1)+2

...

umϑ




(2.8)

and specify the process

A0yϑ = A1yϑ−1 + · · ·+APyϑ−P +M0uϑ +M1uϑ−1 + · · ·+MQuϑ−Q, (2.9)

where

A0 =




A0 0 0 . . . 0

−A1 A0 0 . . . 0

−A2 −A1 A0
...

...
...

...
. . .

−Am−1 −Am−2 −Am−3 . . . A0




,

Ai =




Aim Aim−1 . . . Aim−m+1

Aim+1 Aim . . . Aim−m+2

...
...

. . .
...

Aim+m−1 Aim+m−2 . . . Aim




, i = 1, . . . , P,

with Aj = 0 for j > p and M0, . . . ,MQ defined in an analogous manner. The order

P = min{n ∈ N|nm ≥ p} and Q = min{n ∈ N|nm ≥ q}. Notice that the time subscript of

yϑ is different from that of yt. The new time index ϑ refers to another observation frequency

than t. For example, if t refers to months and m = 3, ϑ refers to quarters.

Using the process (2.9), temporal aggregation over m periods can be represented as a

linear transformation. In fact, different types of temporal aggregation can be handled. For

instance, the aggregate may be the sum of subsequent values or it may be their average.

Furthermore, temporal and contemporaneous aggregation can be dealt with simultaneously.

In all of these cases the aggregate has a finite order VARMA representation if the original

variables are generated by a finite order VARMA process and its structure can be ana-

lyzed using linear transformations. For another approach to study temporal aggregates see

Marcellino (1999).

2.4 Forecasting

In this section forecasting with given VARMA processes is discussed to present theoretical

results that are valid under ideal conditions. The effects of and necessary modifications due

to estimation and possibly specification uncertainty will be treated in Section 4.
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2.4.1 General Results

When forecasting a set of variables is the objective, it is useful to think about a loss function

or an evaluation criterion for the forecast performance. Given such a criterion, optimal fore-

casts may be constructed. VARMA processes are particularly useful for producing forecasts

that minimize the forecast MSE. Therefore this criterion will be used here and the reader is

referred to Granger (1969b) and Granger & Newbold (1977, Section 4.2) for a discussion of

other forecast evaluation criteria.

Forecasts of the variables of the VARMA process (2.1) are obtained easily from the pure

VAR form (2.5). Assuming an independent white noise process ut, an optimal, minimum

MSE h-step forecast at time τ is the conditional expectation given the yt, t ≤ τ ,

yτ+h|τ ≡ E(yτ+h|yτ , yτ−1, . . . ).

It may be determined recursively for h = 1, 2, . . . , as

yτ+h|τ =
∞∑
i=1

Ξiyτ+h−i|τ , (2.10)

where yτ+j|τ = yτ+j for j ≤ 0. If the ut do not form an independent but only uncorrelated

white noise sequence, the forecast obtained in this way is still the best linear forecast although

it may not be the best in a larger class of possibly nonlinear functions of past observations.

For given initial values, the ut can also be determined under the present assumption of a

known process. Hence, the h-step forecasts may be determined alternatively as

yτ+h|τ = A−1
0 (A1yτ+h−1|τ + · · ·+ Apyτ+h−p|τ ) + A−1

0

q∑

i=h

Miuτ+h−i, (2.11)

where, as usual, the sum vanishes if h > q.

Both ways of computing h-step forecasts from VARMA models rely on the availability

of initial values. In the pure VAR formula (2.10) all infinitely many past yt are in principle

necessary if the VAR representation is indeed of infinite order. In contrast, in order to use

(2.11), the ut’s need to be known which are unobserved and can only be obtained if all

past yt or initial conditions are available. If only y1, . . . , yτ are given, the infinite sum in

(2.10) may be truncated accordingly. For large τ , the approximation error will be negligible

because the Ξi’s go to zero quickly as i → ∞. Alternatively, precise forecasting formulas

based on y1, . . . , yτ may be obtained via the so-called Multivariate Innovations Algorithm of

Brockwell & Davis (1987, §11.4).

Under our assumptions, the properties of the forecast errors for stable, stationary pro-

cesses are easily derived by expressing the process (2.1) in Wold MA form,

yt = ut +
∞∑
i=1

Φiut−i, (2.12)
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where A0 = M0 is assumed (see (2.4)). In terms of this representation the optimal h-step

forecast may be expressed as

yτ+h|τ =
∞∑

i=h

Φiuτ+h−i. (2.13)

Hence, the forecast errors are seen to be

yτ+h − yτ+h|τ = uτ+h + Φ1uτ+h−1 + · · ·+ Φh−1uτ+1. (2.14)

Thus, the forecast is unbiased (i.e., the forecast errors have mean zero) and the MSE or

forecast error covariance matrix is

Σy(h) ≡ E[(yτ+h − yτ+h|τ )(yτ+h − yτ+h|τ )
′] =

h−1∑
j=0

ΦjΣuΦ
′
j.

If ut is normally distributed (Gaussian), the forecast errors are also normally distributed,

yτ+h − yτ+h|τ ∼ N(0, Σy(h)). (2.15)

Hence, forecast intervals etc. may be derived from these results in the familiar way under

Gaussian assumptions.

It is also interesting to note that the forecast error variance is bounded by the covariance

matrix of yt,

Σy(h) →h→∞ Σy ≡ E(yty
′
t) =

∞∑
j=0

ΦjΣuΦ
′
j. (2.16)

Hence, forecast intervals will also have bounded length as the forecast horizon increases.

The situation is different if there are integrated variables. The formula (2.11) can again be

used for computing the forecasts. Their properties will be different from those for stationary

processes, however. Although the Wold MA representation does not exist for integrated

processes, the Φj coefficient matrices can be computed in the same way as for stationary

processes from the power series A(z)−1M(z) which still exists for z ∈ C with |z| < 1. Hence,

the forecast errors can still be represented as in (2.14) (see Lütkepohl (2005, Chapters 6 and

14)). Thus, formally the forecast errors look quite similar to those for the stationary case.

Now the forecast error MSE matrix is unbounded, however, because the Φj’s in general do

not converge to zero as j →∞. Despite this general result, there may be linear combinations

of the variables which can be forecast with bounded precision if the forecast horizon gets

large. This situation arises if there is cointegration. For cointegrated processes it is of course

also possible to base the forecasts directly on the EC form. For instance, using (2.6),

∆yτ+h|τ = A−1
0 (Πyτ+h−1|τ +Γ1∆yτ+h−1|τ +· · ·+Γp−1∆yτ+h−p+1|τ )+A−1

0

q∑

i=h

Miuτ+h−i, (2.17)
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and yτ+h|τ = yτ+h−1|τ + ∆yτ+h|τ can be used to get a forecast of the levels variables.

As an illustration of forecasting cointegrated processes consider the following bivariate

VAR model which has cointegrating rank 1:

 y1t

y2t


 =


 0 1

0 1





 y1,t−1

y2,t−1


 +


 u1t

u2t


 . (2.18)

For this process

A(z)−1 = (I2 − A1z)−1 =
∞∑

j=0

Aj
1z

j =
∞∑

j=0

Φjz
j

exists only for |z| < 1 because Φ0 = I2 and

Φj = Aj
1 =


 0 1

0 1


 , j = 1, 2, . . . ,

does not converge to zero for j →∞. The forecast MSE matrices are

Σy(h) =
h−1∑
j=0

ΦjΣuΦ
′
j = Σu + (h− 1)


 σ2

2 σ2
2

σ2
2 σ2

2


 , h = 1, 2, . . . ,

where σ2
2 is the variance of u2t. The conditional expectations are yk,τ+h|τ = y2,τ (k = 1, 2).

Assuming normality of the white noise process, (1−γ)100% forecast intervals are easily seen

to be

y2,τ ± c1−γ/2

√
σ2

k + (h− 1)σ2
2, k = 1, 2,

where c1−γ/2 is the (1− γ/2)100 percentage point of the standard normal distribution. The

lengths of these intervals increase without bounds for h →∞.

The EC representation of (2.18) is easily seen to be

∆yt =


 −1 1

0 0


 yt−1 + ut.

Thus, rk(Π) = 1 so that the two variables are cointegrated and some linear combinations can

be forecasted with bounded forecast intervals. For the present example, multiplying (2.18)

by

 1 −1

0 1




gives

 1 −1

0 1


 yt =


 0 0

0 1


 yt−1 +


 1 −1

0 1


 ut.
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Obviously, the cointegration relation zt = y1t − y2t = u1t − u2t is zero mean white noise

and the forecast intervals for zt, for any forecast horizon h ≥ 1, are of constant length,

zτ+h|τ ± c1−γ/2σz(h) or [−c1−γ/2σz, c1−γ/2σz]. Note that zτ+h|τ = 0 for h ≥ 1 and σ2
z =

Var(u1t) + Var(u2t)− 2Cov(u1t, u2t) is the variance of zt.

As long as theoretical results are discussed one could consider the first differences of the

process, ∆yt, which also have a VARMA representation. If there is genuine cointegration,

then ∆yt is overdifferenced in the sense that its VARMA representation has MA unit roots

even if the MA part of the levels yt is invertible.

2.4.2 Forecasting Aggregated Processes

We have argued in Section 2.3 that linear transformations of VARMA processes are often of

interest, for example, if aggregation is studied. Therefore forecasts of transformed processes

are also of interest. Here we present some forecasting results for transformed and aggregated

processes from Lütkepohl (1987) where also proofs and further references can be found. We

begin with general results which have immediate implications for contemporaneous aggrega-

tion. Then we will also present some results for temporally aggregated processes which can

be obtained via the process representation (2.9).

Linear Transformations and Contemporaneous Aggregation

Suppose yt is a stationary VARMA process with pure, invertible Wold MA representation

(2.4), that is, yt = Φ(L)ut with Φ0 = IK , F is an (M ×K) matrix with rank M and we are

interested in forecasting the transformed process zt = Fyt. It was discussed in Section 2.3

that zt also has a VARMA representation so that the previously considered techniques can

be used for forecasting. Suppose that the corresponding Wold MA representation is

zt = vt +
∞∑
i=1

Ψivt−i = Ψ(L)vt. (2.19)

From (2.13) the optimal h-step predictor for zt at origin τ , based on its own past, is then

zτ+h|τ =
∞∑

i=h

Ψivτ+h−i, h = 1, 2, . . . (2.20)

Another predictor may be based on forecasting yt and then transforming the forecast,

zo
τ+h|τ ≡ Fyτ+h|τ , h = 1, 2, . . . (2.21)

Before we compare the two forecasts zo
τ+h|τ and zτ+h|τ it may be of interest to draw

attention to yet another possible forecast. If the dimension K of the vector yt is large, it
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may be difficult to construct a suitable VARMA model for the underlying process and one

may consider forecasting the individual components of yt by univariate methods and then

transforming the univariate forecasts. Because the component series of yt can be obtained by

linear transformations, they also have ARMA representations. Denoting the corresponding

Wold MA representations by

ykt = wkt +
∞∑
i=1

θkiwk,t−i = θk(L)wkt, k = 1, . . . , K, (2.22)

the optimal univariate h-step forecasts are

yu
k,τ+h|τ =

∞∑

i=h

θkiwk,τ+h−i, k = 1, . . . , K, h = 1, 2, . . . (2.23)

Defining yu
τ+h|τ = (yu

1,τ+h|τ , . . . , y
u
K,τ+h|τ )

′, these forecasts can be used to obtain an h-step

forecast

zu
τ+h|τ ≡ Fyu

τ+h|τ (2.24)

of the variables of interest.

We will now compare the three forecasts (2.20), (2.21) and (2.24) of the transformed

process zt. In this comparison we denote the MSE matrices corresponding to the three

forecasts by Σz(h), Σo
z(h) and Σu

z (h), respectively. Because zo
τ+h|τ uses the largest information

set, it is not surprising that it has the smallest MSE matrix and is hence the best one out

of the three forecasts,

Σz(h) ≥ Σo
z(h) and Σu

z (h) ≥ Σo
z(h), h ∈ N, (2.25)

where “≥” means that the difference between the left-hand and right-hand matrices is pos-

itive semidefinite. Thus, forecasting the original process yt and then transforming the fore-

casts is generally more efficient than forecasting the transformed process directly or trans-

forming univariate forecasts. It is possible, however, that some or all of the forecasts are

identical. Actually, for I(0) processes, all three predictors always approach the same long-

term forecast of zero. Consequently,

Σz(h), Σo
z(h), Σu

z (h) → Σz ≡ E(ztz
′
t) as h →∞. (2.26)

Moreover, it can be shown that if the one-step forecasts are identical, then they will also be

identical for larger forecast horizons. More precisely we have,

zo
τ+1|τ = zτ+1|τ ⇒ zo

τ+h|τ = zτ+h|τ h = 1, 2, . . . , (2.27)
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zu
τ+1|τ = zτ+1|τ ⇒ zu

τ+h|τ = zτ+h|τ h = 1, 2, . . . , (2.28)

and, if Φ(L) and Θ(L) are invertible,

zo
τ+1|τ = zu

τ+1|τ ⇒ zo
τ+h|τ = zu

τ+h|τ h = 1, 2, . . . . (2.29)

Thus, one may ask whether the one-step forecasts can be identical and it turns out that this

is indeed possible. The following proposition which summarizes results of Tiao & Guttman

(1980), Kohn (1982) and Lütkepohl (1984), gives conditions for this to happen.

Proposition 1. Let yt be a K-dimensional stochastic process with MA representation as

in (2.12) with Φ0 = IK and F an (M × K) matrix with rank M . Then, defining Φ(L) =

IK +
∑∞

i=1 ΦiL
i, Ψ(L) = IK +

∑∞
i=1 ΨiL

i as in (2.19) and Θ(L) = diag[θ1(L), . . . , θK(L)]

with θk(L) = 1 +
∑∞

i=1 θkiL
i (k = 1, . . . , K), the following relations hold:

zo
τ+1|τ = zτ+1|τ ⇐⇒ FΦ(L) = Ψ(L)F, (2.30)

zu
τ+1|τ = zτ+1|τ ⇐⇒ FΘ(L) = Ψ(L)F (2.31)

and, if Φ(L) and Θ(L) are invertible,

zo
τ+1|τ = zu

τ+1|τ ⇐⇒ FΦ(L)−1 = FΘ(L)−1. (2.32)

¤

There are several interesting implications of this proposition. First, if yt consists of

independent components (Φ(L) = Θ(L)) and zt is just their sum, i.e., F = (1, . . . , 1), then

zo
τ+1|τ = zτ+1|τ ⇐⇒ θ1(L) = · · · = θK(L). (2.33)

In other words, forecasting the individual components and summing up the forecasts is

strictly more efficient than forecasting the sum directly whenever the components are not

generated by stochastic processes with identical temporal correlation structures. Second,

forecasting the univariate components of yt individually can be as efficient a forecast for yt

as forecasting on the basis of the multivariate process if and only if Φ(L) is a diagonal matrix

operator. Related to this result is a well-known condition for Granger-noncausality. For a

bivariate process yt = (y1t, y2t)
′, y2t is said to be Granger-causal for y1t if the former variable

is helpful for improving the forecasts of the latter variable. In terms of the previous notation

this may be stated by specifying F = (1, 0) and defining y2t as being Granger-causal for y1t

if zo
τ+1|τ = Fyτ+1|τ = yo

1,τ+1|τ is a better forecast than zτ+1|τ . From (2.30) it then follows that
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y2t is not Granger-causal for y1t if and only if φ12(L) = 0, where φ12(L) denotes the upper

right hand element of Φ(L). This characterization of Granger-noncausality is well-known in

the related literature (e.g., Lütkepohl (2005, Section 2.3.1)).

It may also be worth noting that in general there is no unique ranking of the forecasts

zτ+1|τ and zu
τ+1|τ . Depending on the structure of the underlying process yt and the trans-

formation matrix F , either Σz(h) ≥ Σu
z (h) or Σz(h) ≤ Σu

z (h) will hold and the relevant

inequality may be strict in the sense that the left-hand and right-hand matrices are not

identical.

Some but not all the results in this section carry over to nonstationary I(1) processes.

For example, the result (2.26) will not hold in general if some components of yt are I(1)

because in this case the three forecasts do not necessarily converge to zero as the forecast

horizon gets large. On the other hand, the conditions in (2.30) and (2.31) can be used for

the differenced processes. For these results to hold, the MA operator may have roots on the

unit circle and hence overdifferencing is not a problem.

The previous results on linearly transformed processes can also be used to compare

different predictors for temporally aggregated processes by setting up the corresponding

process (2.9). Some related results will be summarized next.

Temporal Aggregation

Different forms of temporal aggregation are of interest, depending on the types of variables

involved. If yt consists of stock variables, then temporal aggregation is usually associated

with systematic sampling, sometimes called skip-sampling or point-in-time sampling. In other

words, the process

sϑ = ymϑ (2.34)

is used as an aggregate over m periods. Here the aggregated process sϑ has a new time index

which refers to another observation frequency than the original subscript t. For example, if

t refers to months and m = 3, then ϑ refers to quarters. In that case the process sϑ consists

of every third member of the yt process. This type of aggregation contrasts with temporal

aggregation of flow variables where a temporal aggregate is typically obtained by summing

up consecutive values. Thus, aggregation over m periods gives the aggregate

zϑ = ymϑ + ymϑ−1 + · · ·+ ymϑ−m+1. (2.35)

Now if, for example, t refers to months and m = 3, then three consecutive observations are

added to obtain the quarterly value. In the following we again assume that the disaggregated
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process yt is stationary and invertible and has a Wold MA representation as in (2.12),

yt = Φ(L)ut with Φ0 = IK . As we have seen in Section 2.3, this implies that sϑ and zϑ are

also stationary and have Wold MA representations. We will now discuss forecasting stock

and flow variables in turn. In other words, we consider forecasts for sϑ and zϑ.

Suppose first that we wish to forecast sϑ. Then the past aggregated values {sϑ, sϑ−1, . . . }
may be used to obtain an h-step forecast sϑ+h|ϑ as in (2.13) on the basis of the MA repre-

sentation of sϑ. If the disaggregate process yt is available, another possible forecast results

by systematically sampling forecasts of yt which gives so
ϑ+h|ϑ = ymϑ+mh|mϑ. Using the results

for linear transformations, the latter forecast generally has a lower MSE than sϑ+h|ϑ and the

difference vanishes if the forecast horizon h → ∞. For special processes the two predictors

are identical, however. It follows from relation (2.30) of Proposition 1 that the two predictors

are identical for h = 1, 2, . . . , if and only if

Φ(L) =

( ∞∑
i=0

ΦimLim

) (
m−1∑
i=0

ΦiL
i

)
(2.36)

(Lütkepohl (1987, Proposition 7.1)). Thus, there is no loss in forecast efficiency if the MA

operator of the disaggregate process has the multiplicative structure in (2.36). This condition

is, for instance, satisfied if yt is a purely seasonal process with seasonal period m such that

yt =
∞∑
i=0

Φimut−im. (2.37)

It also holds if yt has a finite order MA structure with MA order less than m. Interestingly,

it also follows that there is no loss in forecast efficiency if the disaggregate process yt is a

VAR(1) process, yt = A1yt−1 + ut. In that case, the MA operator can be written as

Φ(L) =

( ∞∑
i=0

Aim
1 Lim

)(
m−1∑
i=0

Ai
1L

i

)

and, hence, it has the required structure.

Now consider the case of a vector of flow variables yt for which the temporal aggregate

is given in (2.35). For forecasting the aggregate zϑ one may use the past aggregated values

and compute an h-step forecast zϑ+h|ϑ as in (2.13) on the basis of the MA representation

of zϑ. Alternatively, we may again forecast the disaggregate process yt and aggregate the

forecasts. This forecast is denoted by zo
ϑ+h|ϑ, that is,

zo
ϑ+h|ϑ = ymϑ+mh|mϑ + ymϑ+mh−1|mϑ + · · ·+ ymϑ+mh−m+1|mϑ. (2.38)

Again the results for linear transformations imply that the latter forecast generally has a

lower MSE than zϑ+h|ϑ and the difference vanishes if the forecast horizon h → ∞. In this
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case equality of the two forecasts holds for small forecast horizons h = 1, 2, . . . , if and only

if

(1 + L + · · ·+ Lm−1)

( ∞∑
i=0

ΦiL
i

)

=

( ∞∑
j=0

(Φjm + · · ·+ Φjm−m+1)L
jm

) (
m−1∑
i=0

(Φ0 + Φ1 + · · ·+ Φi)L
i

)
, (2.39)

where Φj = 0 for j < 0 (Lütkepohl (1987, Proposition 8.1)). In other words, the two forecasts

are identical and there is no loss in forecast efficiency from using the aggregate directly if

the MA operator of yt has the specified multiplicative structure upon multiplication by

(1 + L + · · ·+ Lm−1). This condition is also satisfied if yt has the purely seasonal structure

(2.37). However, in contrast to what was observed for stock variables, the two predictors are

generally not identical if the disaggregate process yt is generated by an MA process of order

less than m.

It is perhaps also interesting to note that if there are both stock and flow variables in one

system, then even if the underlying disaggregate process yt is the periodic process (2.37), a

forecast based on the disaggregate data may be better than directly forecasting the aggregate

(Lütkepohl (1987, pp. 177-178)). This result is interesting because for the purely seasonal

process (2.37) using the disaggregate process will not result in superior forecasts if a system

consisting either of stock variables only or of flow variables only is considered.

So far we have considered temporal aggregation of stationary processes. Most of the

results can be generalized to I(1) processes by considering the stationary process ∆yt instead

of the original process yt. Recall that forecasts for yt can then be obtained from those of

∆yt. Moreover, in this context it may be worth taking into account that in deriving some of

the conditions for forecast equality, the MA operator of the considered disaggregate process

may have unit roots resulting from overdifferencing. A result which does not carry over

to the I(1) case, however, is the equality of long horizon forecasts based on aggregate or

disaggregate variables. The reason is again that optimal forecasts of I(1) variables do not

settle down at zero eventually when h →∞.

Clearly, so far we have just discussed forecasting of known processes. In practice, the

DGPs have to be specified and estimated on the basis of limited sample information. In

that case quite different results may be obtained and, in particular, forecasts based on

disaggregate processes may be inferior to those based on the aggregate directly. This issue

is taken up again in Section 4.2 when forecasting estimated processes is considered.

Forecasting temporally aggregated processes has been discussed extensively in the liter-

ature. Early examples of treatments of temporal aggregation of time series are Abraham
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(1982), Amemiya & Wu (1972), Brewer (1973), Lütkepohl (1986a, b), Stram & Wei (1986),

Telser (1967), Tiao (1972), Wei (1978) and Weiss (1984) among many others. More recently,

Breitung & Swanson (2002) have studied the implications of temporal aggregation when the

number of aggregated time units goes to infinity. As mentioned previously, issues related to

aggregating estimated processes and applications will be discussed in Section 4.2.

2.5 Extensions

So far we have considered processes which are too simple in some respects to qualify as

DGPs of most economic time series. This was mainly done to simplify the exposition. Some

important extensions will now be considered. In particular, we will discuss deterministic

terms, higher order integration and seasonal unit roots as well as non-Gaussian processes.

2.5.1 Deterministic Terms

An easy way to integrate deterministic terms in our framework is to simply add them to the

stochastic part. In other words, we consider processes

yt = µt + xt,

where µt is a deterministic term and xt is the purely stochastic part which is assumed to

have a VARMA representation of the type considered earlier. The deterministic part can, for

example, be a constant, µt = µ0, a linear trend, µt = µ0 + µ1t, or a higher order polynomial

trend. Furthermore, seasonal dummy variables or other dummies may be included.

From a forecasting point of view, deterministic terms are easy to handle because by

their very nature their future values are precisely known. Thus, in order to forecast yt, we

may forecast the purely stochastic process xt as discussed earlier and then simply add the

deterministic part corresponding to the forecast period. In this case, the forecast errors and

MSE matrices are the same as for the purely stochastic process. Of course, in practice the

deterministic part may contain unknown parameters which have to be estimated from data.

For the moment this issue is ignored because we are considering known processes. It will

become important, however, in Section 4, where forecasting estimated processes is discussed.

2.5.2 More Unit Roots

In practice the order of integration of some of the variables can be greater than one and

det A(z) may have roots on the unit circle other than z = 1. For example, there may be

seasonal unit roots. Considerable research has been done on these extensions of our basic
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models. See, for instance, Johansen (1995b, 1997), Gregoir & Laroque (1994) and Haldrup

(1998) for discussions of the I(2) and higher order integration frameworks, and Johansen &

Schaumburg (1999) and Gregoir (1999a, b) for research on processes with roots elsewhere

on the unit circle. Bauer & Wagner (2003) consider state space representations for VARMA

models with roots at arbitrary points on the unit circle.

As long as the processes are assumed to be known these issues do not create additional

problems for forecasting because we can still use the general forecasting formulas for VARMA

processes. Extensions are important, however, when it comes to model specification and

estimation. In these steps of the forecasting procedure taking into account extensions in the

methodology may be useful.

2.5.3 Non-Gaussian Processes

If the DGP of a multiple time series is not normally distributed, point forecasts can be

computed as before. They will generally still be best linear forecasts and may in fact be

minimum MSE forecasts if ut is independent white noise, as discussed in Section 2.4. In

setting up forecast intervals the distribution has to be taken into account, however. If the

distribution is unknown, bootstrap methods can be used to compute interval forecasts (e.g.,

Findley (1986), Masarotto (1990), Grigoletto (1998), Kabaila (1993), Kim (1999), Clements

& Taylor (2001), Pascual, Romo & Ruiz (2004)).

3 Specifying and Estimating VARMA Models

As we have seen in the previous section, for forecasting purposes the pure VAR or MA rep-

resentations of a stochastic process are quite useful. These representations are in general of

infinite order. In practice, they have to be replaced by finite dimensional parameterizations

which can be specified and estimated from data. VARMA processes are such finite dimen-

sional parameterizations. Therefore, in practice, a VARMA model such as (2.1) or even a

pure finite order VAR as in (1.1) will be specified and estimated as a forecasting tool.

As mentioned earlier, the operators A(L) and M(L) of the VARMA model (2.2) are not

unique or not identified, as econometricians sometimes say. This nonuniqueness is prob-

lematic if the process parameters have to be estimated because a unique representation is

needed for consistent estimation. Before we discuss estimation and specification issues re-

lated to VARMA processes we will therefore present identifying restrictions. More precisely,

the echelon form of VARMA and EC-VARMA models will be presented. Then estimation

procedures, model specification and diagnostic checking will be discussed.
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3.1 The Echelon Form

Any pair of operators A(L) and M(L) that gives rise to the same VAR operator Ξ(L) =

IK −
∑∞

i=1 ΞiL
i = M(L)−1A(L) or MA operator Φ(L) = A(L)−1M(L) defines an equivalent

VARMA process for yt. Here A0 = M0 is assumed. Clearly, if we premultiply A(L) and

M(L) by some invertible operator D(L) = D0 + D1L + · · · + DqL
q satisfying det(D0) 6= 0

and det D(z) 6= 0 for |z| ≤ 1, an equivalent VARMA representation is obtained. Thus, a

first step towards finding a unique representation is to cancel common factors in A(L) and

M(L). We therefore assume that the operator [A(L) : M(L)] is left-coprime. To define

this property, note that a matrix polynomial D(z) and the corresponding operator D(L) are

unimodular if det D(z) is a constant which does not depend on z. Examples of unimodular

operators are

D(L) = D0 or D(L) =


 1 δL

0 1


 (3.1)

(see Lütkepohl (1996) for definitions and properties of matrix polynomials). A matrix oper-

ator [A(L) : M(L)] is called left-coprime if only unimodular operators D(L) can be factored.

In other words, if [A(L) : M(L)] is left-coprime and operators Ā(L), M̄(L) and D(L) exist

such that [A(L) : M(L)] = D(L)[Ā(L) : M̄(L)] holds, then D(L) must be unimodular.

Although considering only left-coprime operators [A(L) : M(L)] does not fully solve the

nonuniqueness problem of VARMA representations it is a first step in the right direction

because it excludes many possible redundancies. It does not rule out premultiplication by

some nonsingular matrix, for example, and thus, there is still room for improvement. Even

if A0 = M0 = IK is assumed, uniqueness of the operators is not achieved because there

are unimodular operators D(L) with zero-order matrix IK , as seen in (3.1). Premultiplying

[A(L) : M(L)] by such an operator maintains left-coprimeness. Therefore more restrictions

are needed for uniqueness. The echelon form discussed in the next subsections provides

sufficiently many restrictions in order to ensure uniqueness of the operators. We will first

consider stationary processes and then turn to EC-VARMA models.

3.1.1 Stationary Processes

We assume that [A(L) : M(L)] is left-coprime and we denote the kl-th elements of A(L) and

M(L) by αkl(L) and mkl(L), respectively. Let pk be the maximum polynomial degree in the

k-th row of [A(L) : M(L)], k = 1, . . . , K, and define

pkl =





min(pk + 1, pl) for k > l,

min(pk, pl) for k < l,
k, l = 1, . . . , K.
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These quantities determine the number of free parameters in the operators mkl(L) in the

echelon form. More precisely, the VARMA process is said to be in echelon form or, briefly,

ARMAE form if the operators A(L) and M(L) satisfy the following restrictions (Lütkepohl

& Claessen (1997), Lütkepohl (2002)):

mkk(L) = 1 +

pk∑
i=1

mkk,iL
i, for k = 1, . . . , K, (3.2)

mkl(L) =

pk∑
i=pk−pkl+1

mkl,iL
i, for k 6= l, (3.3)

and

αkl(L) = αkl,0 −
pk∑
i=1

αkl,iL
i, with αkl,0 = mkl,0 for k, l = 1, . . . , K. (3.4)

Here the row degrees pk (k = 1, . . . , K) are called the Kronecker indices (see Hannan &

Deistler (1988), Lütkepohl (2005)).

To illustrate the echelon form we consider the following three-dimensional process from

Lütkepohl (2002) with Kronecker indices (p1, p2, p3) = (1, 2, 1). It is easy to derive the pkl,

[pkl] =



• 1 1

1 • 1

1 2 •


 .

Using the implied operators from (3.3) and (3.4) gives the echelon form




1− α11,1L −α12,1L −α13,1L

−α21,1L− α21,2L
2 1− α22,1L− α22,2L

2 −α23,1L− α23,2L
2

−α31,1L α32,0 − α32,1L 1− α33,1L


 yt

=




1 + m11,1L m12,1L m13,1L

m21,2L
2 1 + m22,1L + m22,2L

2 m23,2L
2

m31,1L α32,0 + m32,1L 1 + m33,1L


 ut

which illustrates the kinds of restrictions imposed in the echelon form. Notice that, for

example, m12(L) = m12,2L
2 has only one free parameter because p12 = 1, although m12(L)

is a polynomial of order 2. In contrast, p32 = 2 and hence m32(L) = α32,0 +m32,1L has 2 free

parameters although it is a polynomial of order 1. Consequently, the zero order term (α32,0)
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is left unrestricted. The model can be written alternatively as




1 0 0

0 1 0

0 α32,0 1


 yt =




α11,1 α12,1 α13,1

α21,1 α22,1 α23,1

α31,1 α32,1 α33,1


 yt−1 +




0 0 0

α21,2 α22,2 α23,2

0 0 0


 yt−2

+




1 0 0

0 1 0

0 α32,0 1


 ut +




m11,1 m12,1 m13,1

0 m22,1 0

m31,1 m32,1 m33,1


 ut−1

+




0 0 0

m21,2 m22,2 m23,2

0 0 0


 ut−2.

(3.5)

The zero order matrix A0 = M0 of an echelon form is always lower triangular and, in

fact, it will often be an identity matrix. It will always be an identity matrix if the Kronecker

indices are ordered from smallest to largest. The restrictions on the zero order matrix

are determined by the pkl. Otherwise the VAR operator is just restricted by the Kronecker

indices which specify maximum row degrees. For instance, in our example the first Kronecker

index p1 = 1 and hence, the α1l(L) have degree 1 for l = 1, 2, 3 so that the first row of A2 is

zero. On the other hand, there are further zero restrictions imposed on the MA coefficient

matrices which are implied by the pkl which in turn are determined by the Kronecker indices

p1, p2, p3.

In the following we denote an echelon form with Kronecker indices p1, . . . , pK by ARMAE-

(p1, . . . , pK). Thus, (3.5) is an ARMAE(1, 2, 1). Notice that it corresponds to a VARMA(p, p)

representation in (2.1) with p = max(p1, . . . , pK). An ARMAE form may have more zero

coefficients than those specified by the restrictions from (3.2)-(3.4). In particular, there may

be models where the AR and MA orders are not identical due to further zero restrictions. For

example, if in (3.5) m21,2 = m22,2 = m23,2 = 0, we still have an ARMAE(1, 2, 1) form because

the largest degree in the second row is still 2. Yet this representation would be categorized

as a VARMA(2, 1) model in the standard terminology. Such over-identifying constraints

are not ruled out by the echelon form. It does not need them to ensure uniqueness of the

operator [A(L) : M(L)] for a given VAR operator Ξ(L) or MA operator Φ(L), however. Note

also that every VARMA process can be written in echelon form. Thus, the echelon form

does not exclude any VARMA processes.

The present specification of the echelon form does not restrict the autoregressive operator

except for the maximum row degrees imposed by the Kronecker indices and the zero order

matrix (A0 = M0). Additional identifying zero restrictions are placed on the moving average
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coefficient matrices attached to low lags of the error process ut. This form of the echelon

form was proposed by Lütkepohl & Claessen (1997) because it can be combined conveniently

with the EC representation of a VARMA process, as we will see shortly. Thus, it is par-

ticularly useful for processes with cointegrated variables. It was called reverse echelon form

by Lütkepohl (2005, Chapter 14) to distinguish it from the standard echelon form which is

usually used for stationary processes. In that form the restrictions on low order lags are

imposed on the VAR coefficient matrices (e.g., Hannan & Deistler (1988), Lütkepohl (2005,

Chapter 12)).

3.1.2 I(1) Processes

If the EC form of the ARMAE model is set up as in (2.6), the autoregressive short-run

coefficient matrices Γi = −(Ai+1 + · · · + Ap) (i = 1, . . . , p − 1) satisfy similar identifying

constraints as the Ai’s (i = 1, . . . , p). More precisely, Γi obeys the same zero restrictions

as Ai+1 for i = 1, . . . , p − 1. This structure follows from the specific form of the zero

restrictions on the Ai’s. If αkl,i is restricted to zero by the echelon form this implies that

the corresponding element αkl,j of Aj is also zero for j > i. Similarly, the echelon form zero

restrictions on Π are the same as those on A0 − A1. As an example we rewrite (3.5) in EC

form as



1 0 0

0 1 0

0 α32,0 1


 ∆yt =




π11 π12 π13

π21 π22 π23

π31 π32 π33


 yt−1 +




0 0 0

γ21,1 γ22,1 γ23,1

0 0 0


 ∆yt−1

+




1 0 0

0 1 0

0 α32,0 1


 ut +




m11,1 m12,1 m13,1

0 m22,1 0

m31,1 m32,1 m33,1


 ut−1

+




0 0 0

m21,2 m22,2 m23,2

0 0 0


 ut−2.

Because the echelon form does not impose zero restrictions on A1 if all Kronecker indices

pk ≥ 1 (k = 1, . . . , K), there are no echelon form zero restrictions on Π if all Kronecker

indices are greater than zero as in the previous example. On the other hand, if there are zero

Kronecker indices, this has consequences for the rank of Π and, hence, for the integration and

cointegration structure of the variables. In fact, denoting by % the number of zero Kronecker

indices, it is easy to see that

rk(Π) ≥ %. (3.6)
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This result is useful to remember when procedures for specifying the cointegrating rank of a

VARMA system are considered.

The following three-dimensional ARMAE(0, 0, 1) model from Lütkepohl (2002) illustrates

this issue:

yt =




0 0 0

0 0 0

α31,1 α32,1 α33,1


 yt−1 + ut +




0 0 0

0 0 0

m31,1 m32,1 m33,1


 ut−1. (3.7)

Note that in this case A0 = M0 = I3 because the Kronecker indices are ordered from

smallest to largest. Two of the Kronecker indices are zero and, hence, according to (3.6), the

cointegrating rank of this system must be at least 2. Using Π = −(A0 − A1) = −IK + A1,

the EC form is seen to be

∆yt =



−1 0 0

0 −1 0

π31 π32 π33


 yt−1 + ut +




0 0 0

0 0 0

m31,1 m32,1 m33,1


 ut−1,

where π31 = α31,1, π32 = α32,1 and π33 = −1 + α33,1. The rank of

Π =



−1 0 0

0 −1 0

π31 π32 π33




is clearly at least two.

In the following we use the acronym EC-ARMAE for an EC-VARMA model which satis-

fies the echelon form restrictions. Because we now have unique representations of VARMA

models we can discuss estimation of such models. Of course, to estimate an ARMAE or EC-

ARMAE form we need to specify the Kronecker indices and possibly the cointegrating rank.

We will discuss parameter estimation first and then consider model specification issues.

Before we go on with these topics, we mention that there are other ways to achieve

uniqueness or identification of a VARMA representation. For example, Zellner & Palm

(1974) and Wallis (1977) considered a final equations form representation which also solves

the identification problem. It often results in rather heavily parameterized models (see

Lütkepohl (2005, Chapter 12)) and has therefore not gained much popularity. Tiao & Tsay

(1989) propose so-called scalar component models to overcome the identification problem.

The idea is to consider linear combinations of the variables which can reveal simplifications

of the general VARMA structure. The interested reader is referred to the aforementioned

article. We have presented the echelon form here in some detail because it often results in

parsimonious representations.
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3.2 Estimation of VARMA Models for Given Lag Orders and

Cointegrating Rank

For given Kronecker indices the ARMAE form of a VARMA DGP can be set up and esti-

mated. We will consider this case first and then study estimation of EC-ARMAE models for

which the cointegrating rank is given in addition to the Kronecker indices. Specification of

the Kronecker indices and the cointegrating rank will be discussed in Sections 3.4 and 3.3,

respectively.

3.2.1 ARMAE Models

Suppose the white noise process ut is normally distributed (Gaussian), ut ∼ N(0, Σu). Given

a sample y1, . . . , yT and presample values y0, . . . , yp−1, u0, . . . , uq−1, the log-likelihood function

of the VARMA model (2.1) is

l(θ) =
T∑

t=1

lt(θ). (3.8)

Here θ represents the vector of all parameters to be estimated and

lt(θ) = −K

2
log 2π − 1

2
log det Σu − 1

2
u′tΣ

−1
u ut,

where

ut = M−1
0 (A0yt − A1yt−1 − · · · − Apyt−p −M1ut−1 − · · · −Mqut−q).

It is assumed that the uniqueness restrictions of the ARMAE form are imposed and θ contains

the freely varying parameters only. The initial values are assumed to be fixed and if the ut

(t ≤ 0) are not available, they may be replaced by zero without affecting the asymptotic

properties of the estimators.

Maximization of l(θ) is a nonlinear optimization problem which is complicated by the

inequality constraints that ensure invertibility of the MA operator. Iterative optimization

algorithms may be used here. Start-up values for such algorithms may be obtained as follows:

An unrestricted long VAR model of order hT , say, is fitted by OLS in a first step. Denoting

the estimated residuals by ût, the ARMAE form can be estimated when all lagged ut’s are

replaced by ût’s. If A0 6= IK , then unlagged ujt in equation k (k 6= j) may also be replaced

by estimated residuals from the long VAR. The resulting parameter estimates can be used

as starting values for an iterative algorithm.

If the DGP is stable and invertible and the parameters are identified, the ML estimator

θ̂ has standard limiting properties, that is, θ̂ is consistent and

√
T (θ̂ − θ)

d→ N(0, Σθ̂),
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where
d→ signifies convergence in distribution and Σθ̂ is the Gaussian inverse asymptotic

information matrix. Asymptotic normality of the estimator holds even if the true distribution

of the ut’s is not normal but satisfies suitable moment conditions. In that case the estimators

are just quasi ML estimators, of course.

There has been some discussion of the likelihood function of VARMA models and its

maximization (Tunnicliffe Wilson (1973), Nicholls & Hall (1979), Hillmer & Tiao (1979)).

Unfortunately, optimization of the Gaussian log-likelihood is not a trivial exercise. Therefore

other estimation methods have been proposed in the literature (e.g., Koreisha & Pukkila

(1987), Kapetanios (2003), Poskitt (2003), Bauer & Wagner (2002), van Overschee & DeMoor

(1994)). Of course, it is also straightforward to add deterministic terms to the model and

estimate the associated parameters along with the VARMA coefficients.

3.2.2 EC-ARMAE Models

If the cointegrating rank r is given and the DGP is a pure, finite order VAR(p) process, the

corresponding VECM,

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (3.9)

can be estimated conveniently by RR regression, as shown in Johansen (1995a). Concentrat-

ing out the short-run dynamics by regressing ∆yt and yt−1 on ∆Y ′
t−1 = [∆y′t−1, . . . , ∆y′t−p+1]

and denoting the residuals by R0t and R1t, respectively, the EC term can be estimated by

RR regression from

R0t = αβ′R1t + uc
t . (3.10)

Because the decomposition Π = αβ′ is not unique, the estimators for α and β are not

consistent whereas the resulting ML estimator for Π is consistent. However, because the

matrices α and β have rank r, one way to make them unique is to choose

β′ = [Ir : β′(K−r)], (3.11)

where β(K−r) is a ((K−r)×r) matrix. This normalization is always possible upon a suitable

ordering of the variables. The ML estimator of β(K−r) can be obtained by post-multiplying

the RR estimator β̃ of β by the inverse of its first r rows and using the resulting last K − r

rows as the estimator β̆(K−r) of β(K−r). This estimator is not only consistent but even

superconsistent meaning that it converges at a faster rate than the usual
√

T to the true

parameter matrix β(K−r). In fact, it turns out that T (β̆(K−r)− β(K−r)) converges weakly. As
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a result inference for the other parameters can be done as if the cointegration matrix β were

known.

Other estimation procedures that can be used here as well were proposed by Ahn &

Reinsel (1990) and Saikkonen (1992). In fact, in the latter article it was shown that the

procedure can even be justified if the true DGP is an infinite order VAR process and only a

finite order model is fitted, as long as the order goes to infinity with growing sample size. This

result is convenient in the present situation where we are interested in VARMA processes,

because we can estimate the cointegration relations in a first step on the basis of a finite

order VECM without MA part. Then the estimated cointegration matrix can be used in

estimating the remaining VARMA parameters. That is, the short-run parameters including

the loading coefficients α and MA parameters of the EC-ARMAE form can then be estimated

by ML conditional on the estimator for β. Because of the superconsistency of the estimator

for the cointegration parameters this procedure maintains the asymptotic efficiency of the

Gaussian ML estimator. Except for the cointegration parameters, the parameter estimators

have standard asymptotic properties which are equivalent to those of the full ML estimators

(Yap & Reinsel (1995)). If the Kronecker indices are given, the echelon VARMA structure

can also be taken into account in estimating the cointegration matrix.

As mentioned earlier, before a model can be estimated, the Kronecker indices and possibly

the cointegrating rank have to be specified. These issues are discussed next.

3.3 Testing for the Cointegrating Rank

A wide range of proposals exists for determining the cointegrating ranks of pure VAR pro-

cesses (see Hubrich, Lütkepohl & Saikkonen (2001) for a recent survey). The most popular

approach is due to Johansen (1995a) who derives likelihood ratio (LR) tests for the cointe-

grating rank of a pure VAR process. Because ML estimation of unrestricted VECMs with a

specific cointegrating rank r is straightforward for Gaussian processes, the LR statistic for

testing the pair of hypotheses H0 : r = r0 versus H1 : r > r0 is readily available by comparing

the likelihood maxima for r = r0 and r = K. The asymptotic distributions of the LR statis-

tics are nonstandard and depend on the deterministic terms included in the model. Tables

with critical values for various different cases are available in Johansen (1995a, Chapter 15).

The cointegrating rank can be determined by checking sequentially the null hypotheses

H0 : r = 0, H0 : r = 1, . . . , H0 : r = K − 1

and choosing the cointegrating rank for which the first null hypothesis cannot be rejected in

this sequence.
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For our present purposes it is of interest that Johansen’s LR tests can be justified even

if a finite-order VAR process is fitted to an infinite order DGP, as shown by Lütkepohl &

Saikkonen (1999). It is assumed in this case that the order of the fitted VAR process goes

to infinity with the sample size and Lütkepohl & Saikkonen (1999) discuss the choice of

the VAR order in this approach. Because the Kronecker indices are usually also unknown,

choosing the cointegrating rank of a VARMA process by fitting a long VAR process is an

attractive approach which avoids knowledge of the VARMA structure at the stage where the

cointegrating rank is determined. So far the theory for this procedure seems to be available

for processes with nonzero mean term only and not for other deterministic terms such as

linear trends. It seems likely, however, that extensions to more general processes are possible.

An alternative way to proceed in determining the cointegrating rank of a VARMA process

was proposed by Yap & Reinsel (1995). They extended the likelihood ratio tests to VARMA

processes under the assumption that an identified structure of A(L) and M(L) is known.

For these tests the Kronecker indices or some other identifying structure has to be specified

first. If the Kronecker indices are known already, a lower bound for the cointegrating rank

is also known (see (3.6)). Hence, in testing for the cointegrating rank, only the sequence of

null hypotheses H0 : r = %,H0 : r = % + 1, . . . , H0 : r = K − 1, is of interest. Again, the

rank may be chosen as the smallest value for which H0 cannot be rejected.

3.4 Specifying the Lag Orders and Kronecker Indices

A number of proposals for choosing the Kronecker indices of ARMAE models were made, see,

for example, Hannan & Kavalieris (1984), Poskitt (1992), Nsiri & Roy (1992) and Lütkepohl

& Poskitt (1996) for stationary processes and Lütkepohl & Claessen (1997), Claessen (1995),

Poskitt & Lütkepohl (1995) and Poskitt (2003) for cointegrated processes. The strategies

for specifying the Kronecker indices of cointegrated ARMAE processes presented in this

section are proposed in the latter two papers. Poskitt (2003, Proposition 3.3) presents a

result regarding the consistency of the estimators of the Kronecker indices. A simulation

study of the small sample properties of the procedures was performed by Bartel & Lütkepohl

(1998). They found that the methods work reasonably well in small samples for the processes

considered in their study. This section draws partly on Lütkepohl (2002, Section 8.4.1).

The specification method proceeds in two stages. In the first stage a long reduced-

form VAR process of order hT , say, is fitted by OLS giving estimates of the unobservable

innovations ut as in the previously described estimation procedure. In a second stage the

estimated residuals are substituted for the unknown lagged ut’s in the ARMAE form. A range

of different models is estimated and the Kronecker indices are chosen by model selection
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criteria.

There are different possibilities for doing so within this general procedure. For example,

one may search over all models associated with Kronecker indices which are smaller than

some prespecified upper bound pmax, {(p1, . . . , pK)|0 ≤ pk ≤ pmax, k = 1, . . . , K}. The set

of Kronecker indices is then chosen which minimizes the preferred model selection criterion.

For systems of moderate or large dimensions this procedure is rather computer intensive

and computationally more efficient search procedures have been suggested. One idea is to

estimate the individual equations separately by OLS for different lag lengths. The lag length

is then chosen so as to minimize a criterion of the general form

Λk,T (n) = log σ̂2
k,T (n) + CT n/T , n = 0, 1, . . . , PT ,

where CT is a suitable function of the sample size T and T σ̂2
k,T (n) is the residual sum of

squares from a regression of ykt on (ûjt − yjt) (j = 1, . . . , K, j 6= k) and yt−s and ût−s

(s = 1, . . . , n). The maximum lag length PT is also allowed to depend on the sample size.

In this procedure the echelon structure is not explicitly taken into account because the

equations are treated separately. The k-th equation will still be misspecified if the lag order

is less than the true Kronecker index. Moreover, the k-th equation will be correctly specified

but may include redundant parameters and variables if the lag order is greater than the

true Kronecker index. This explains why the criterion function Λk,T (n) will possess a global

minimum asymptotically when n is equal to the true Kronecker index, provided CT is chosen

appropriately. In practice, possible choices of CT are CT = hT log T or CT = h2
T (see Poskitt

(2003) for more details on the procedure). Poskitt & Lütkepohl (1995) and Poskitt (2003)

also consider a modification of this procedure where coefficient restrictions derived from

those equations in the system which have smaller Kronecker indices are taken into account.

The important point to make here is that procedures exist which can be applied in a fully

computerized model choice. Thus, model selection is feasible from a practical point of view

although the small sample properties of these procedures are not clear in general, despite

some encouraging but limited small sample evidence by Bartel & Lütkepohl (1998). Other

procedures for specifying the Kronecker indices for stationary processes were proposed by

Akaike (1976), Cooper & Wood (1982), Tsay (1989b) and Nsiri & Roy (1992), for example.

The Kronecker indices found in a computer automated procedure for a given time series

should only be viewed as a starting point for a further analysis of the system under consid-

eration. Based on the specified Kronecker indices a more efficient procedure for estimating

the parameters may be applied (see Section 3.2) and the model may be subjected to a range

of diagnostic tests. If such tests produce unsatisfactory results, modifications are called for.
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Tools for checking the model adequacy will be briefly summarized in the following section.

3.5 Diagnostic Checking

As noted in Section 3.2, the estimators of an identified version of a stationary VARMA

model have standard asymptotic properties. Therefore the usual t- and F -tests can be

used to decide on possible overidentifying restrictions. When a parsimonious model without

redundant parameters has been found, the residuals can be checked. According to our

assumptions they should be white noise and a number of model-checking tools are tailored

to check this assumption. For this purpose one may consider individual residual series or

one may check the full residual vector at once. The tools range from visual inspection of the

plots of the residuals and their autocorrelations to formal tests for residual autocorrelation

and autocorrelation of the squared residuals to tests for nonnormality and nonlinearity (see,

e.g., Lütkepohl (2005), Doornik & Hendry (1997)). It is also advisable to check for structural

shifts during the sample period. Possible tests based on prediction errors are considered in

Lütkepohl (2005). Moreover, when new data becomes available, out-of-sample forecasts may

be checked. Model defects detected at the checking stage should lead to modifications of the

original specification.

4 Forecasting with Estimated Processes

4.1 General Results

To simplify matters suppose that the generation process of a multiple time series of interest

admits a VARMA representation with zero order matrices equal to IK ,

yt = A1yt−1 + · · ·+ Apyt−p + ut + M1ut−1 + · · ·+ Mqut−q, (4.1)

that is, A0 = M0 = IK . Recall that in the echelon form framework this representation can

always be obtained by premultiplying by A−1
0 if A0 6= IK . We denote by ŷτ+h|τ the h-step

forecast at origin τ given in Section 2.4, based on estimated rather than known coefficients.

For instance, using the pure VAR representation of the process,

ŷτ+h|τ =
h−1∑
i=1

Ξ̂iŷτ+h−i|τ +
∞∑

i=h

Ξ̂iyτ+h−i. (4.2)

Of course, for practical purposes one may truncate the infinite sum at i = τ in (4.2). For

the moment we will, however, consider the infinite sum and assume that the model represents
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the DGP. Thus, there is no specification error. For this predictor the forecast error is

yτ+h − ŷτ+h|τ = (yτ+h − yτ+h|τ ) + (yτ+h|τ − ŷτ+h|τ ),

where yτ+h|τ is the optimal forecast based on known coefficients and the two terms on the

right-hand side are uncorrelated if only data up to period τ are used for estimation. In that

case the first term can be written in terms of ut’s with t > τ and the second one contains

only yt’s with t ≤ τ . Thus, the forecast MSE becomes

Σŷ(h) = MSE(yτ+h|τ ) + MSE(yτ+h|τ − ŷτ+h|τ )

= Σy(h) + E[(yτ+h|τ − ŷτ+h|τ )(yτ+h|τ − ŷτ+h|τ )
′]. (4.3)

The MSE(yτ+h|τ − ŷτ+h|τ ) can be approximated by Ω(h)/T , where

Ω(h) = E

[
∂yτ+h|τ

∂θ′
Σθ̃

∂y′τ+h|τ
∂θ

]
, (4.4)

θ is the vector of estimated coefficients, and Σθ̃ is its asymptotic covariance matrix (see

Yamamoto (1980), Baillie (1981) and Lütkepohl (2005) for more detailed expressions for

Ω(h) and Hogue, Magnus & Pesaran (1988) for an exact treatment of the AR(1) special

case). If ML estimation is used, the covariance matrix Σθ̃ is just the inverse asymptotic

information matrix. Clearly, Ω(h) is positive semidefinite and the forecast MSE,

Σŷ(h) = Σy(h) +
1

T
Ω(h), (4.5)

for estimated processes is larger (or at least not smaller) than the corresponding quantity

for known processes, as one would expect. The additional term depends on the estimation

efficiency because it includes the asymptotic covariance matrix of the parameter estimators.

Therefore, estimating the parameters of a given process well is also important for forecasting.

On the other hand, for large sample sizes T , the additional term will be small or even

negligible.

Another interesting property of the predictor based on an estimated finite order VAR

process is that under general conditions it is unbiased or has a symmetric distribution around

zero (see Dufour (1985)). This result even holds in finite samples and if a finite order

VAR process is fitted to a series generated by a more general process, for instance, to a

series generated by a VARMA process. A related result for univariate processes was also

given by Pesaran & Timmermann (2005) and Ullah (2004, Section 6.3.1) summarizes further

work related to prediction of estimated dynamic models. Schorfheide (2005) considers VAR

forecasting under misspecification and possible improvements under quadratic loss.
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It may be worth noting that deterministic terms can be accommodated easily, as discussed

in Section 2.5. In the present situation the uncertainty in the estimators related to such terms

can also be taken into account like that of the other parameters. If the deterministic terms are

specified such that the corresponding parameter estimators are asymptotically independent

of the other estimators, an additional term for the estimation uncertainty stemming from

the deterministic terms has to be added to the forecast MSE matrix (4.5). For deterministic

linear trends in univariate models more details are presented in Kim, Leybourne & Newbold

(2004).

Various extensions of the previous results have been discussed in the literature. For

example, Lewis & Reinsel (1985) and Lütkepohl (1985b) consider the forecast MSE for the

case where the true process is approximated by a finite order VAR, thereby extending earlier

univariate results by Bhansali (1978). Reinsel & Lewis (1987), Basu & Sen Roy (1987),

Engle & Yoo (1987), Sampson (1991) and Reinsel & Ahn (1992) present results for processes

with unit roots. Stock (1996) and Kemp (1999) assume that the forecast horizon h and the

sample size T both go to infinity simultaneously. Clements & Hendry (1998, 2001) consider

various other sources of possible forecast errors. Taking into account the specification and

estimation uncertainty in multi-step forecasts, it makes also sense to construct a separate

model for each specific forecast horizon h. This approach is discussed in detail by Bhansali

(2002).

In practice, a model specification step precedes estimation and adds further uncertainty

to the forecasts. Often model selection criteria are used in specifying the model orders, as

discussed in Section 3.4. In a small sample comparison of various such criteria for choosing

the order of a pure VAR process, Lütkepohl (1985a) found that more parsimonious criteria

tend to select better forecasting models in terms of mean squared error than more profligate

criteria. More precisely, the parsimonious Schwarz (1978) criterion often selected better fore-

casting models than the Akaike information criterion (AIC) (Akaike (1973)) even when the

true model order was underestimated. Also Stock & Watson (1999), in a larger comparison of

a range of univariate forecasting methods based on 215 monthly U.S. macroeconomic series,

found that the Schwarz criterion performed slightly better than AIC. In contrast, based on

150 macro time series from different countries, Meese & Geweke (1984) obtained the opposite

result. See, however, the analysis of the role of parsimony provided by Clements & Hendry

(1998, Chapter 12). At this stage it is difficult to give well founded recommendations as

to which procedure to use. Moreover, a large scale systematic investigation of the actual

forecasting performance of VARMA processes relative to VAR models or univariate methods

is not known to this author.
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4.2 Aggregated Processes

In Section 2.4 we have compared different forecasts for aggregated time series. It was found

that generally forecasting the disaggregate process and aggregating the forecasts (zo
τ+h|τ ) is

more efficient than forecasting the aggregate directly (zτ+h|τ ). In this case, if the sample

size is large enough, the part of the forecast MSE due to estimation uncertainty will even-

tually be so small that the estimated ẑo
τ+h|τ is again superior to the corresponding ẑτ+h|τ .

There are cases, however, where the two forecasts are identical for known processes. Now

the question arises whether in these cases the MSE term due to estimation errors will make

one forecast preferable to its competitors. Indeed if estimated instead of known processes

are used, it is possible that ẑo
τ+h|τ looses its optimality relative to ẑτ+h|τ because the MSE

part due to estimation may be larger for the former than for the latter. Consider the case,

where a number of series are simply added to obtain a univariate aggregate. Then it is

possible that a simple parsimonious univariate ARMA model describes the aggregate well,

whereas a large multivariate model is required for an adequate description of the multivari-

ate disaggregate process. Clearly, it is conceivable that the estimation uncertainty in the

multivariate case becomes considerably more important than for the univariate model for the

aggregate. Lütkepohl (1987) shows that this may indeed happen in small samples. In fact,

similar situations can not only arise for contemporaneous aggregation but also for temporal

aggregation. Generally, if two predictors based on known processes are nearly identical, the

estimation part of the MSE becomes important and generally the predictor based on the

smaller model is then to be preferred.

There is also another aspect which is important for comparing forecasts. So far we

have only taken into account the effect of estimation uncertainty on the forecast MSE. This

analysis still assumes a known model structure and only allows for estimated parameters.

In practice, model specification usually precedes estimation and usually there is additional

uncertainty attached to this step in the forecasting procedure. It is also possible to explicitly

take into account the fact that in practice models are only approximations to the true DGP

by considering finite order VAR and AR approximations to infinite order processes. This

has also been done by Lütkepohl (1987). Under these assumptions it is again found that

the forecast ẑo
τ+h|τ looses its optimality and forecasting the aggregate directly or forecasting

the disaggregate series with univariate methods and aggregating univariate forecasts may

become preferable.

Recent empirical studies do not reach a unanimous conclusion regarding the value of

using disaggregate information in forecasting aggregates. For example, Marcellino, Stock

& Watson (2003) found disaggregate information to be helpful while Hubrich (2005) and
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Hendry & Hubrich (2005) concluded that disaggregation resulted in forecast deterioration

in a comparison based on euro area inflation data. Of course, there can be many reasons

for the empirical results to differ from the theoretical ones. For example, the specification

procedure is taken into account partially at best in theoretical comparisons or the data

may have features that cannot be captured adequately by the models used in the forecast

competition. Thus there is still considerable room to learn more about how to select a good

forecasting model.

5 Conclusions

VARMA models are a powerful tool for producing linear forecasts for a set of time series

variables. They utilize the information not only in the past values of a particular variable

of interest but also allow for information in other, related variables. We have mentioned

conditions under which the forecasts from these models are optimal under a MSE criterion

for forecast performance. Even if the conditions for minimizing the forecast MSE in the

class of all functions are not satisfied the forecasts will be best linear forecasts under general

assumptions. These appealing theoretical features of VARMA models make them attractive

tools for forecasting.

Special attention has been paid to forecasting linearly transformed and aggregated pro-

cesses. Both contemporaneous as well as temporal aggregation have been studied. It was

found that generally forecasting the disaggregated process and aggregating the forecasts is

more efficient than forecasting the aggregate directly and thereby ignoring the disaggregate

information. Moreover, for contemporaneous aggregation, forecasting the individual compo-

nents with univariate methods and aggregating these forecasts was compared to the other

two possible forecasts. Forecasting univariate components separately may lead to better

forecasts than forecasting the aggregate directly. It will be inferior to aggregating forecasts

of the fully disaggregated process, however. These results hold if the DGPs are known.

In practice the relevant model for forecasting a particular set of time series will not be

known, however, and it is necessary to use sample information to specify and estimate a

suitable candidate model from the VARMA class. We have discussed estimation methods

and specification algorithms which are suitable at this stage of the forecasting process for

stationary as well as integrated processes. The nonuniqueness or lack of identification of

general VARMA representations turned out to be a major problem at this stage. We have

focussed on the echelon form as one possible parameterization that allows to overcome the

identification problem. The echelon form has the advantage of providing a relatively parsi-
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monious VARMA representation in many cases. Moreover, it can be extended conveniently

to cointegrated processes by including an EC term. It is described by a set of integers called

Kronecker indices. Statistical procedures were presented for specifying these quantities. We

have also presented methods for determining the cointegrating rank of a process if some or

all of the variables are integrated. This can be done by applying standard cointegrating rank

tests for pure VAR processes because these tests maintain their usual asymptotic properties

even if they are performed on the basis of an approximating VAR process rather than the

true DGP. We have also briefly discussed issues related to checking the adequacy of a par-

ticular model. Overall a coherent strategy for specifying, estimating and checking VARMA

models has been presented. Finally, the implications of using estimated rather than known

processes for forecasting have been discussed.

If estimation and specification uncertainty are taken into account it turns out that fore-

casts based on a disaggregated multiple time series may not be better and may in fact be

inferior to forecasting an aggregate directly. This situation is in particular likely to occur if

the DGPs are such that efficiency gains from disaggregation do not exist or are small and

the aggregated process has a simple structure which can be captured with a parsimonious

model.

Clearly, VARMA models also have some drawbacks as forecasting tools. First of all,

linear forecasts may not always be the best choice (see Teräsvirta (2006) in this Handbook

for a discussion of forecasting with nonlinear models). Second, adding more variables in a

system does not necessarily increase the forecast precision. Higher dimensional systems are

typically more difficult to specify than smaller ones. Thus, considering as many series as

possible in one system is clearly not a good strategy unless some form of aggregation of the

information in the series is used. The increase in estimation and specification uncertainty

may offset the advantages of using additional information. VARMA models appear to be

most useful for analyzing small sets of time series. Choosing the best set of variables for a

particular forecasting exercise may not be an easy task. In conclusion, although VARMA

models are an important forecasting tool and automatic procedures exist for most steps in

the modelling, estimation and forecasting task, the actual success may still depend on the

skills of the user of these tools in identifying a suitable set of time series to be analyzed

in one system. Also, of course, the forecaster has to decide whether VARMA models are

suitable in a given situation or some other model class should be considered.
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ABSTRACT

Volatility has been one of the most active and successful areas of research in time series

econometrics and economic forecasting in recent decades.  This chapter provides a selective

survey of the most important theoretical developments and empirical insights to emerge from this

burgeoning literature, with a distinct focus on forecasting applications.  Volatility is inherently

latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. 

Section 2 then discusses a series of different economic situations in which volatility plays a

crucial role, ranging from the use of volatility forecasts in portfolio allocation to density

forecasting in risk management.  Sections 3, 4 and 5 present a variety of alternative procedures

for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and

realized volatility paradigms, respectively.  Section 6 extends the discussion to the multivariate

problem of forecasting conditional covariances and correlations, and Section 7 discusses

volatility forecast evaluation methods in both univariate and multivariate cases.  Section 8

concludes briefly.
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1.  Introduction

In everyday language, volatility refers to the fluctuations observed in some phenomenon over

time. Within economics, it is used slightly more formally to describe, without a specific implied

metric, the variability of the random (unforeseen) component of a time series. More precisely, or

narrowly, in financial economics, volatility is often defined as the (instantaneous) standard

deviation (or "sigma") of the random Wiener-driven component in a continuous-time diffusion

model. Expressions such as the "implied volatility" from option prices rely on this terminology.

In this chapter, we use the term volatility in the looser descriptive sense, characteristic of

economics and econometrics, rather than the precise notion often implied in finance. 

Nonetheless, much of our discussion will be motivated by the need for forecasting the volatility

of financial asset return series.

Return volatility is, of course, central to financial economics.  Indeed, as noted by Campbell, Lo

and MacKinlay (1997):

“ ... what distinguishes financial economics is the central role that uncertainty

plays in both financial theory and its empirical implementation ... Indeed in the

absence of uncertainty, the problems of financial economics reduce to exercises in

basic microeconomics”  (p. 3). 

This departure of finance from standard microeconomics is even more striking once one

recognizes that volatility is inherently unobserved, or latent, and evolves stochastically through

time. Not only is there non-trivial uncertainty to deal with in financial markets, but the level of

uncertainty is latent. This imbues financial decision making with complications rarely

contemplated within models of optimizing behavior in other areas of economics.

Depending on the data availability as well as the intended use of the model estimates and

associated forecasts, volatility models are cast either in discrete time or continuous time. It is

clear, however, that the trading and pricing of securities in many of today’s liquid financial asset

markets is evolving in a near continuous fashion throughout the trading day.  As such, it is

natural to think of the price and return series of financial assets as arising through discrete

observations from an underlying continuous-time process.  It is, however, in many situations

useful - and indeed standard practice - to formulate the underlying model directly in discrete

time, and we shall consider both approaches in the chapter. Formally, there is also no necessary

contradiction between the two strategies, as it is always, in principle, possible to deduce the

distributional implications for a price series observed only discretely from an underlying

continuous-time model.  At the same time, formulation and estimation of empirically realistic

continuous-time models often presents formidable challenges.  Thus, even though many of the

popular discrete-time models in current use are not formally consistent with an underlying

continuous-time price processes, they are typically much easier to deal with from an inferential

perspective, and as such, discrete-time models and forecasting procedures remain the method of

choice in most practical applications.
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1.1   Basic Notation and Notions of Volatility

We first introduce some notation that will allow us to formalize the discussion of the different

models and volatility concepts considered throughout the chapter.  As noted above, although it is

often natural to think about the process being forecasted as evolving in continuous time, many of

the key developments in volatility forecasting have been explicitly formulated in terms of models

for discretely sampled observations.  In the univariate case, with observations available at equally

spaced discrete points in time, we shall refer to such a process as,

yt   /  y(t)                 t = 1, 2, . . . (1.1)

where y(t) in turn may be thought of as the underlying continuously evolving process.  We shall

assume throughout that the conditional second moments of the yt process exist, and refer to the

corresponding conditional mean and variance as,

µ t|t-1   =   E [ yt | öt-1 ] , (1.2)

and,

 =   Var [ yt | öt-1 ]   =   E [(yt - µ t|t-1 )
2 | öt-1 ] , (1.3)σ

2

t*t&1

respectively, where the information set, öt-1 , is assumed to reflect all relevant information

through time t-1.  Just as the conditional mean may differ from the unconditional mean by

effectively incorporating the most recent information into the one-step-ahead forecasts,

, so will the conditional variance in many applications in macroeconomics andµ
t*t&1

… E(y
t
)

finance, .  This difference between conditional and unconditional moments is, ofσ
2

t*t&1 … Var(y
t
)

course, what underlies the success of time series based forecasting procedures more generally. 

For notational simplicity we will focus our discussion on the univariate case, but many of the

same ideas readily carry over to the multivariate case. In the case of vector processes, discussed

in detail in Section 6, we shall use the notation Yt, with the corresponding vector of conditional

means denoted by 9t|t-1 , and the conditional covariance matrix denote by St|t-1 .

As previously noted, most of the important developments and applications in volatility modeling

and forecasting have come within financial economics.  Thus, to help fix ideas, we focus on the

case of return volatility modeling and forecasting in the remainder of this section.  To facilitate 

subsequent discussions, it will sometimes prove convenient to refer to the corresponding "price"

and "return" processes by the letters p and r, respectively.  Specifically, let p(t) denote the

logarithmic price of an asset.  The return over the discrete interval [t-h,t], h > 0, is then given by,

r(t,h)  =   p(t) -  p(t-h) . (1.4)

When measuring the returns over one time unit, h = 1, indicating, say, daily returns, we will

generally drop the second indicator, so that
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 r(t)  /  r(t,1)  =  p(t) -  p(t-1) . (1.5)

 

Also, for discrete-time models and procedures, we shall follow the convention set out above,

indicating the timing of the returns by subscripts in lieu of parentheses,

rt     =    pt   -  pt-1 . (1.6)

Similarly, we shall refer to the multivariate case involving vectors of returns by the upper case

letter, Rt.

Consider the discretely sampled return process, rt .  This one-period return is readily decomposed

into an expected conditional mean return and an innovation, where the latter may be expressed as

a standardized white noise process scaled by the time-varying conditional volatility.  Specifically,

using the notation in equations (1.2) and (1.3), 

 , (1.7)r
t
' µ

t*t&1
% g

t
' µ

t*t&1
% σ

t*t&1
z

t

where zt denotes a mean zero, variance one, serially uncorrelated disturbance (white noise)

process.  This is the decomposition and volatility concept underlying the popular, and empirically

highly successful, ARCH and GARCH type models discussed in Section 3.  One reason that this

approach is very convenient and tractable is that - conditional on the null hypothesis that all

relevant information is observed and the model correctly specified - the volatility is known, or

predetermined, as of time t-1.

The assumption that all relevant information is observed and used in the formation of conditional

expectations in accordance with the true model is obviously strong, but has powerful and very

convenient implications. In contrast, if some relevant information is not directly observable, then

it is only possible to exploit a genuine subset of the full information set, say Tt-1 d öt-1 . Under

this scenario, the "true" conditional variance will be unobservable, even under correct model

specification, and the volatility process becomes genuinely latent,

 E [ ( rt - E [rt |  Tt-1 ] )
2 | Tt-1 ]   …    /   E [ ,t

2 | öt-1 ].σ
2

t*t&1

Treating the volatility process as latent effectively transforms the volatility estimation problem

into a filtering problem in which the "true" volatility cannot be determined exactly, but only

extracted with some degree of error.  This general line of reasoning is relevant for our discussion

of stochastic volatility models in Section 4, and for the relationship between continuous and

discrete-time modeling and forecasting procedures.

For now, however, we proceed under the convenient assumption that we are dealing with

correctly specified models and the associated full information sets, so that the conditional first

and second moments are directly observable and well specified.  In this situation, the one-period-

ahead volatility defined in (1.3) provides an unbiased estimate of the subsequent squared return
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innovation. Consequently, model specification and forecast evaluation tests can be constructed

by comparing the realization of the squared return innovations to the corresponding one-step-

ahead forecasts,

,t
2   =  zt

2    =     +   ( zt
2 - 1 ). (1.8)σ

2

t*t&1 σ
2

t*t&1 σ
2

t*t&1

The second term on the right-hand-side has mean zero, confirming the unbiasedness of the

conditional variance. However, there is typically a large amount of noise in the one-period

squared return innovations relative to the underlying volatility, as manifest by a large

idiosyncratic error component governed by the variance of zt
2.  In fact, for daily or weekly return

data, this variance term is an order of magnitude larger than the period-per-period variation in the

volatility process. Hence, even if the conditional variance can be seen as the proper forecasts of

the corresponding "realized volatility," as given by the squared return innovation, the latter

provides a poor ex-post indicator of the actual volatility over the period, and would consequently

not provide a very reliable way of judging the quality of the forecasts.  We return to this point

below.

Before doing so, however, it is useful to think of the returns as arising from an underlying

continuous-time process. In particular, suppose that this underlying model involves a continuous

sample path for the (logarithmic) price process.  The return process may then, under general

assumptions, be written in standard stochastic differential equation (sde) form as,

dp(t)   =   µ(t) dt  +  F(t) dW(t)        t $0 , (1.9)

where µ(t) denotes the drift, F(t) refers to the point-in-time or spot volatility, and W(t) denotes a

standard Brownian motion. We will be more specific regarding the additional properties of these

processes later on in the chapter.  Intuitively, over (infinitesimal) small time intervals, ,∆

 ,r(t,∆) / p(t) & p(t&∆) • µ (t&∆) @∆ % σ (t&∆) ∆W(t)

where .  Of course, for , and constant drift, , ∆W(t) / W(t)&W(t&∆) - N( 0 , ∆ ) ∆'1 µ(τ)/µ
t*t&1

and volatility, , for , this reduces to the discrete-time return decomposition inσ(τ)/σ
t*t&1

t&1<τ# t

(1.7) with the additional assumption that zt is i.i.d. N(0,1).  Importantly, however, the drift, µ(t),

and instantaneous volatility, F(t), for the continuous-time model in (1.9) need not be constant

over the [t-1,t] time interval, resulting in the general expression for the one-period return,

. (1.10)r(t) ' p(t)&p(t&1) ' m
t

t&1

µ(s)ds % m
t

t&1

σ(s)dW(s)

The semblance between this representation and the previous one-period return for the discrete-

time model in (1.7) is clear. The conditional mean and variance processes in the discrete

formulation are replaced by the corresponding integrated (averaged) realizations of the
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  The simulated continuous-time GARCH diffusion shown in Figure 1.1 is formally defined by dp(t) =

F(t)dW1(t) and dF2(t) = 0.035[0.636 - F2(t)]dt + 0.144F2(t)dW2(t), where W1(t) and W2(t) denote two independent

Brownian motions.  The same model has previously been analyzed in Andersen and Bollerslev (1998a), Andersen,

Bollerslev and Meddahi (2004, 2005), among others.
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(potentially stochastically time-varying) mean and variance process over the following period,

with the return innovations driven by the continuously evolving standard Brownian motion. For

full generality, the above continuous-time model can be extended with a jump process allowing

for discontinuities in the price path, as discussed further in Section 4.

Intuitively, the volatility for the continuous-time process in (1.9) over [t-1,t] is intimately related

to the evolution of the diffusive coefficient, F(t), which is also known as the spot volatility. In

fact, given the i.i.d. nature of the return innovations governed by the Brownian motion process,

the return variation should be related to the cumulative (integrated) spot variance. It is, indeed,

possible to formalize this intuition: the conditional return variation is linked closely and - under

certain conditions in an ex-post sense - equal to the so-called integrated variance (volatility),

. (1.11)IV(t) / m
t

t&1

σ2(s)ds

We provide more in-depth discussion and justification for this integrated volatility measure and

its relationship to the conditional return distribution in Section 4.  It is, however, straightforward

to motivate the association through the approximate discrete return process, , introducedr(t,∆)

above. If the variation in the drift is an order of magnitude less than the variation in the volatility

over the  [t-1,t] time interval - which holds empirically over daily or weekly horizons and is

consistent with a no-arbitrage condition - it follows, for small (infinitesimal) time intervals, ,∆

 

.Var (r(t)*ö
t&1

) • E [ j
1/∆

j'1

σ2(t& j/∆) @∆*ö
t&1

] • E [ IV(t)*ö
t&1

]

Hence, the integrated variance measure corresponds closely to the conditional variance, , forσ
2

t*t&1

discretely sampled returns. It represents the realized volatility over the same one-period-ahead

forecast horizon, and it simply reflects the cumulative impact of the spot volatility process over

the return horizon. In other words, integrated variances are ex-post realizations that are directly

comparable to ex-ante volatility forecasts. Moreover, in contrast to the one-period-ahead squared

return innovations, which, as discussed in the context of (1.8), are plagued by large idiosyncratic

errors, the integrated volatility measure is not distorted by error. As such, it serves as an ideal

theoretical ex-post benchmark for assessing the quality of ex-ante volatility forecasts.

To more clearly illustrate these differences between the various volatility concepts, Figure 1.1

graphs the simulations from a continuous-time stochastic volatility process.  The simulated

model is designed to induce temporal dependencies consistent with the popular, and empirically

successful, discrete-time GARCH(1,1) model dis\cussed in Section 3.1  The top left panel

displays sample path realization of the spot volatility or variance, , over the 2,500 "days" inσ2(t)
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the simulated sample. The top panel on the right shows the corresponding "daily" integrated

volatility or variance, IV(t).  The two bottom panels show the "optimal" one-step-ahead discrete-

time GARCH(1,1) forecasts, , along with the "daily" squared returns, .  A number ofσ
2

t*t&1 r
2

t

features in these displays are of interest.  First, it is clear that even though the "daily" squared

returns generally track the overall level of the volatility in the first two panels, as an unbiased

measure should, it is an extremely noisy proxy.  Hence, a naive assessment of the quality of the

GARCH based forecasts in the third panel based on a comparison with the ex post squared

returns in panel four invariable will suggest very poor forecast quality, despite the fact that by

construction the GARCH based procedure is the "optimal" discrete-time forecast.  We provide a

much more detailed discussion of this issue in Section 7 below.  Second, the integrated volatility

provides a mildly smoothed version of the spot volatility process. Since the simulated series has a

very persistent volatility component the differences are minor, but still readily identifiable. 

Third, the "optimal" discrete-time GARCH forecasts largely appear as smoothed versions of the

spot and integrated volatility series.  This is natural as forecasts, by construction, should be less

variable than the corresponding ex-post realizations.  Fourth, it is also transparent, however, that

the GARCH based forecasts fail to perfectly capture the nature of the integrated volatility series.

The largest spike in volatility (around the 700-750 "day" marks) is systematically underestimated

by the GARCH forecasts while the last spike (around the 2300-2350 "day" marks) is exaggerated

relative to the actual realizations. This reflects the fact that the volatility is not constant over the

"day," and as such the (realized) integrated volatility is not equal to the (optimal) forecast from

the discrete-time GARCH model which only utilizes the past "daily" return observations. 

Instead, there is a genuine random component to the volatility process as it evolves stochastically

over the "trading day." As a result, the "daily" return observations do not convey all relevant

information and the GARCH model simply cannot produce fully efficient forecasts compared to

what is theoretically possible given higher frequency "intraday" data.  At the same time, in

practice it is not feasible to produce exact real-time measures of the integrated, let alone the spot,

volatility, as the processes are latent and we only have a limited and discretely sampled set of

return observations available, even for the most liquid asset markets.  As such, an important

theme addressed in more detail in Sections 4 and 5 below involves the construction of practical

measures of ex-post realized volatility that mimic the properties of the integrated volatility series.

1.2 Final Introductory Remarks

This section has introduced some of the basic notation used in our subsequent discussion of the

various volatility forecasting procedures and evaluation methods. Our initial account also

emphasizes a few conceptual features and practical considerations. First, volatility forecasts and

measurements are generally restricted to (non-trivial) discrete-time intervals, even if the

underlying process may be thought of as evolving in continuous time. Second, differences

between ARCH and stochastic volatility models may be seen as direct consequences of

assumptions about the observable information set. Third, it is important to recognize the

distinction between ex-ante forecasts and ex-post realizations. Only under simplifying - and

unrealistic - assumptions are the two identical. Fourth, standard ex-post measurements of realized

volatility are often hampered by large idiosyncratic components. The ideal measure is instead, in
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cases of general interest, given by the so-called integrated volatility. The relationships among the

various concepts are clearly illustrated by the simulations in Figure 1.1.

The rest of the chapter unfolds as follows. Section 2 provides an initial motivating discussion of

several practical uses of volatility forecasts. Section 3, 4 and 5 present a variety of alternative

procedures for univariate volatility forecasting based on the GARCH, stochastic volatility and

realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate

problem of forecasting conditional covariances and correlations, and Section 7 discusses

practical volatility forecast evaluation techniques.  Section 8 concludes briefly.

2.  Uses of Volatility Forecasts

This section surveys how volatility forecasts are used in practical applications along with

applications in the academic literature. While the emphasis is on financial applications the

discussion is kept at a general level. Thus, we do not yet assume a specific volatility forecasting

model. The issues involved in specifying and estimating particular volatility forecasting models

will be discussed in subsequent sections.

We will first discuss a number of general statistical forecasting applications where volatility

dynamics are important. Then we will go into some detail on various applications in finance.

Lastly we will briefly mention some applications in macroeconomics and in other disciplines. 

2.1 Generic Forecasting Applications

For concreteness, assume that the future realization of the variable of interest can be written as a

decomposition similar to the one already developed in equation (1.7),

 , (2.1)y
t%1

' µ
t%1|t

% σ
t%1|t

z
t%1

, z
t%1

~ i.i.d. F

where {yt+1} denotes a discrete-time real-valued univariate stochastic process, and F refers to the

distribution of the zero-mean, unit-variance innovation, zt+1. This representation is not entirely 

general as there could be higher-order conditional dependence in the innovations. Such higher-

moment dynamics would complicate some of the results, but the qualitative insights would

remain the same.  Thus, to facilitate the presentation we continue our discussion of the different

forecast usages under slightly less than full generality.

2.1.1 Point Forecasting

We begin by defining the forecast loss function which maps the ex-ante forecasts  and theŷ
t%1|t

ex-post realization  into a loss value , which by assumption increases with they
t%1

L(y
t%1

, ŷ
t%1|t

)

discrepancy between the realization and the forecast. The exact form of the loss function

depends, of course, directly on the use of the forecast.  However, in many situations the loss
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function may reasonably be written in the form of an additive error,  as thee
t%1

/ y
t%1

& ŷ
t%1

,

argument, so that  We will refer to this as the forecast error loss function.L(y
t%1

, ŷ
t%1|t

) ' L(e
t%1

).

In particular, under the symmetric quadratic forecast error loss function, which is implicitly used

in many practical applications, the optimal point forecast is simply the conditional mean of the

process, regardless of the shape of the conditional distribution.  That is

 .ŷ
t%1|t

/ Arg min
ŷ

E[ (y
t%1

& ŷ )2*ö
t
] ' µ

t%1|t

Volatility forecasting is therefore irrelevant for calculating the optimal point forecast, unless the

conditional mean depends directly on the conditional volatility.  However, this exception is often

the rule in finance, where the expected return generally involves some function of the volatility

of market wide risk factors. Of course, as discussed further below, even if the conditional mean

does not explicitly depend on the conditional volatility, volatility dynamics are still relevant for

assessing the uncertainty of the point forecasts.

In general, when allowing for asymmetric loss functions, the volatility forecast will be a key part

of the optimal forecast. Consider for example the asymmetric linear loss function,

, (2.2)L(e
t%1

) ' a*e
t%1
*I( e

t%1
> 0 ) % b*e

t%1
*I( e

t%1
# 0 )

where a, b > 0, and I(") denotes the indicator function equal to zero or one depending on the

validity of its argument.  In this case positive and negative forecast errors have different weights

(a and b respectively) and thus different losses. Now the optimal forecast can be shown to be 

 , (2.3)ŷ
t%1|t

' µ
t%1|t

%σ
t%1|t

F &1(a/(a%b))

which obviously depends on the relative size of a and b.  Importantly, the volatility plays a key

role even in the absence of conditional mean dynamics.  Only if F -1(a/(a+b)) = 0  does the

optimal forecast equal the conditional mean. 

This example is part of a general set of results in Granger (1969) who shows that if the

conditional distribution is symmetric (so that F -1(1/2) = 0) and if the forecast error loss function

is also symmetric (so that a/(a+b) = 1/2) but not necessarily quadratic, then the conditional mean

is the optimal point forecast.

2.1.2  Interval Forecasting

Constructing accurate interval forecasts around the conditional mean forecast for inflation was a

leading application in Engle’s (1982) seminal ARCH paper. An interval forecast consists of an

upper and lower limit. One version of the interval forecast puts p/2 probability mass below and

above the lower and upper limit respectively. The interval forecast can then be written as
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. (2.4)ŷ
t%1|t

' {µ
t%1|t

% σ
t%1|t

F &1(p/2) , µ
t%1|t

% σ
t%1|t

F &1(1&p/2)}

Notice that the volatility forecast plays a key role again. Note also the direct link between the

interval forecast and the optimal point forecast for the asymmetric linear loss function in (2.3).

2.1.3  Probability Forecasting Including Sign Forecasting

A forecaster may care about the variable of interest falling above or below a certain threshold

value.  As an example, consider a portfolio manager who might be interested in forecasting

whether the return on a stock index will be larger than the known risk-free bond return. Another

example might be a rating agency forecasting if the value of a firm’s assets will end up above or

below the value of its liabilities and thus trigger bankruptcy. Yet another example would be a

central bank forecasting the probability of inflation – or perhaps an exchange rate – falling

outside its target band.  In general terms, if the concern is about a variable yt+1 ending up above

some fixed (known) threshold, c, the loss function may be expressed as 

 . (2.5)L(y
t%1

,ŷ
t%1|t

) ' (I(y
t%1

>c ) & ŷ
t%1|t

)2

Minimizing the expected loss by setting the first derivative equal to zero then readily yields

. (2.6)ŷ
t%1|t

' E[ I(y
t%1

> c )*ö
t
] ' P(y

t%1
>c*ö

t
) ' 1 & F( (c&µ

t%1|t
)/σ

t%1|t
)

Thus, volatility dynamics are immediately important for these types of probability forecasts, even

if the conditional mean is constant and not equal to c; i.e., c & µ
t%1*t … 0.

The important special case where c = 0 is sometimes referred to as sign forecasting. In this

situation,

. (2.7)ŷ
t%1|t

' 1 & F(&µ
t%1|t

/σ
t%1|t

)

Hence, the volatility dynamics will affect the forecast as long as the conditional mean is not zero,

or the conditional mean is not directly proportional to the standard deviation.

2.1.4  Density Forecasting

In many applications the entire conditional density of the variable in question is of interest.  That

is, the forecast takes the form of a probability distribution function

(2.8)ŷ
t%1|t

' f
t%1|t

(y) / f(y
t%1
' y* µ

t%1|t
, σ

t%1|t
) ' f(y

t%1
' y* ö

t
)

Of course, the probability density function may itself be time-varying, for example due to time-

varying conditional skewness or kurtosis, but as noted earlier for simplicity we rule out these
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higher order effects here.

Figure 2.1 shows two stylized density forecasts corresponding to a high and low volatility day,

respectively. Notice that the mean outcome is identical (and positive) on the two days. However,

on the high volatility day the occurrence of a large negative (or large positive) outcome is more

likely. Notice also that the probability of a positive outcome (of any size) is smaller on the high

volatility day than on the low volatility day.  Thus, as discussed in the preceding sections,

provided that the level of the volatility is forecastable, the figure indicates some degree of sign

predictability, despite the constant mean.

2.2  Financial Applications

The trade-off between risk and expected return, where risk is associated with some notion of

price volatility, constitute one of the key concepts in modern finance.  As such, measuring and

forecasting volatility is arguably among the most important pursuits in empirical asset pricing

finance and risk management. 

2.2.1  Risk management: Value-at-Risk (VaR) and Expected Shortfall (ES) 

Consider a portfolio of returns formed from a vector of N risky assets, Rt+1, with corresponding

vector of portfolio weights, Wt . The portfolio return is defined as 

, (2.9)r
w,t%1

' j
N

i'1

w
i,t

r
i,t%1

/ W
)

t R
t%1

where the w subscript refers to the fact that the portfolio distribution depends on the actual

portfolio weights. 

Financial risk managers often report the riskiness of the portfolio using the concept of Value-at-

Risk (VaR) which is simply the quantile of the conditional portfolio distribution. If we model the

portfolio returns directly as a univariate process, 

, (2.10)r
w,t%1

' µ
w,t%1|t

% σ
w,t%1|t

z
w,t%1

z
w,t%1

~ i.i.d. F
w

then the VaR is simply

. (2.11)VaR
p

t%1|t ' µ
w,t%1|t

%σ
w,t%1|t

F
&1

w (p)

This, of course, corresponds directly to the lower part of the interval forecast previously defined

in equation (2.4).

Figure 2.2 shows a typical simulated daily portfolio return time series with dynamic volatility

(solid line). The short-dashed line, which tracks the lower range of the return, depicts the true 1-

day, 1% VaR corresponding to the simulated portfolio return.  Notice that the true VaR varies

considerably over time and increases in magnitude during bursts in the portfolio volatility.  The
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relatively sluggish long-dashed line calculates the VaR using the so-called Historical Simulation

(HS) technique.  This is a very popular approach in practice.  Rather than explicitly modeling the

volatility dynamics, the HS technique calculates the VaR as an empirical quantile based on a

moving window of the most recent 250 or 500 days.  The HS VaR in Figure 2.2 is calculated

using a 500-day window. Notice how this HS VaR reacts very sluggishly to changes in the

volatility, and generally is too large (in absolute value) when the volatility is low, and more

importantly too small (in absolute value) when the volatility is high.  Historical simulation thus

underestimates the risk when the risk is high. This is clearly not a prudent risk management

practice.  As such, these systematic errors in the HS VaR clearly highlight the value of explicitly

modeling volatility dynamics in financial risk management.

The VaR depicted in Figure 2.2 is a very popular risk-reporting measure in practice, but it

obviously only depicts a very specific aspect of the risk; that is with probability p the loss will be

at least the VaR.  Unfortunately, the VaR measure says nothing about the expected magnitude of

the loss on the days the VaR is breached. 

Alternatively, the Expected Shortfall (ES) risk measure was designed to provide additional

information about the tail of the distribution.  It is defined as the expected loss on the days when

losses are larger than the VaR.  Specifically,

. (2.12)ES
p

t%1|t / E[ r
w,t%1

|r
w,t%1

<VaR
p

t%1|t ] ' µ
w,t%1|t

% σ
w,t%1|t

EF
p

w

Again, it is possible to show that if  is i.i.d., the multiplicative factor, , is constant andz
w,t

EF
p

w

depends only on the shape of the distribution, Fw.  Thus, the volatility dynamics plays a similar

role in the ES risk measure as in the VaR in equation (2.11). 

The analysis above assumed a univariate portfolio return process specified as a function of the

portfolio weights at any given time. Such an approach is useful for risk measurement but is not

helpful, for example, for calculating optimal portfolio weights. If active risk management is

warranted, say maximizing expected returns subject to a VaR constraint, then a multivariate

model is needed. If we assume that each return is modeled separately then the vector of returns

can be written as

 , (2.13)R
t%1

' Μ
t%1|t

% Ω
1/2

t%1|t Z
t%1

Z
t%1

~ i.i.d. F

where Μt+1|t and Ωt+1|t denote the vector of conditional mean returns and the covariance matrix for

the returns, respectively, and all of the elements in the vector random process, Zt, are independent

with mean zero and variance one.  Consequently, the mean and the variance of the portfolio

returns, , may be expressed as,W
)

t R
t%1

. (2.14)µ
w,t%1|t

'W
)

t Μt%1|t
σ

2

w,t%1|t'W
)

t Ωt%1|t
W

t

In the case of the normal distribution, , linear combinations of multivariate normalZ
t%1

~ N( 0 , I )
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variables are themselves normally distributed, so that , butr
w,t%1

/ W
)

t R
t%1

~ N( µ
w,t%1|t

, σ
2

w,t%1|t )

this aggregation property does not hold in general for other multivariate distributions.  Hence,

except in special cases, such as the multivariate normal, the VaR and ES measures are not known

in closed form, and will have to be calculated using Monte Carlo simulation. 

2.2.2  Covariance Risk: Time-varying Betas and Conditional Sharpe Ratios

The above discussion has focused on measuring the risk of a portfolio from purely statistical

considerations. We now turn to a discussion of the more fundamental economic issue of the

expected return on an asset given its risk profile. Assuming the absence of arbitrage opportunities

a fundamental theorem in finance then proves the existence of a stochastic discount factor, say

SDFt+1, which can be used to price any asset, say i, via the conditional expectation

. (2.15)E[SDF
t%1

(1 % r
i,t%1

)*ö
t
] ' 1

In particular, the return on the risk free asset, which pays one dollar for sure the next period, must

satisfy   It follows also directly from (2.15) that the expected excess1%r
f,t
' E[SDF

t%1
*ö

t
]&1.

return on any risky asset must be proportional to its covariance with the stochastic discount

factor,

. (2.16)E[ r
i,t%1

& r
f,t
*ö

t
] ' &(1%r

f,t
)Cov(SDF

t%1
, r

i,t%1
*ö

t
)

Now, assuming that the stochastic discount factor is linearly related to the market return, 

(2.17)SDF
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' a
t
& b

t
(1%r

M,t%1
)

it follows from  that E[SDF
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t
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where  and .  Notice that the dynamics in theµ
M,t%1*t / E[1%r

M,t%1
*ö

t
] σ

2

M,t%1*t / Var[ r
M,t%1

*ö
t
]

moments of the market return (along with any dynamics in the risk-free rate) render the

coefficients in the SDF time varying.  Also, in parallel to the classic one-period CAPM model of

Markowitz (1952) and Sharpe (1964), the conditional expected excess returns must satisfy the

relation, 

 , (2.19)E[ r
i,t%1

&r
f,t
*ö

t
] ' β

i,t
(µ

M,t%1*t&r
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)

where the conditional “beta” is defined by .  Moreover, theβ
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/ Cov(r
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t
)/σ
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M,t%1*t

expected risk adjusted return, also know as the conditional Sharpe ratio, equals 
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The simple asset pricing framework above illustrates how the expected return (raw and risk

adjusted) on various assets will be driven by the mean and volatility dynamics of the overall

market return as well as the dynamics of the covariance between the market and the individual

assets. Covariance forecasting is thus at least as important as volatility forecasting in the context

of financial asset pricing, and we discuss each in subsequent sections.

2.2.3  Asset Allocation with Time-varying Covariances

The above CAPM model imposes a very restrictive structure on the covariance matrix of asset

returns. In this section we instead assume a generic dynamic covariance matrix and study the

optimization problem of an investor who constructs a portfolio of N risky assets by minimizing

the portfolio variance subject to achieving a certain target portfolio return, µp. 

Formally, the investor chooses a vector of portfolio weights, Wt, by solving the quadratic

programming problem

 . (2.21)min W
)

t Ωt%1|t
W

t
s.t. W

)

t Μt%1|t
' µ

p

From the corresponding first order conditions, the resulting portfolio weights for the risky assets

satisfy,

 , (2.22)W
(

t '
Ω

&1

t%1|tΜt%1|t

Μ
)

t%1|t Ω
&1

t%1|tΜt%1|t

µ
p

with the optimal portfolio weight for the risk-free asset given by 

 . (2.23)w
(

f,t ' 1&j
N

i'1

w
(

i,t.

Moreover, from (2.21) the portfolio Sharpe ratio equals, 

 . (2.24)SR
t
' µ

p
/ W

(
)

t Ωt%1|t
W

(

t

Just as in the CAPM pricing model discussed above, both volatility and covariance dynamics are

clearly important for asset allocation. Notice also that even if we rule out exploitable conditional

mean dynamics, the optimal portfolio weights would still be time-varying from the second

moment dynamics alone. 

2.2.4  Option Valuation with Dynamic Volatility

The above tools are useful for the analysis of primitive securities with linear payoffs such as

stocks, bonds, foreign exchange and futures contracts. Consider now instead a European call

option which gives the owner the right but not the obligation to buy the underlying asset (say a

stock or currency) on a future date, T, at a strike price, K. The option to exercise creates a

nonlinear payoff which in turn requires a special set of tools for pricing and risk management.
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In the Black-Scholes-Merton (BSM) option pricing model the returns are assumed to be normally

distributed with constant volatility, σ, along with the possibility of (costless) continuous trading

and a constant risk free rate, rf .  In this situation, the call price of an option equals 

, (2.25)c
t
' BSM(s

t
,σ2,K,r

f
,T) ' s

t
Φ(d) & Kexp(&r

f
T)Φ(d&σ T)

where st denotes the current price of the asset, , and Φ(@) refersd ' (ln(s
t
/K)%T(r

f
%σ2/2))/(σ T )

to the cumulative normal distribution function.

Meanwhile, the constant volatility assumption in BSM causes systematic pricing errors when

comparing the theoretical prices with actual market prices.  One manifestation of this is the

famous volatility-smiles which indicate systematic underpricing by the BSM model for in- or out-

of-the-money options.  The direction of these deviations, however, are readily explained by the

presence of stochastic volatility, which creates fatter tails than the normal distribution, in turn

increasing the value of in- and out-of-the-money options relative to the constant-volatility BSM

model.

In response to this, Hull and White (1987) explicitly allow for an independent stochastic

volatility factor in the process for the underlying asset return.  Assuming that this additional

volatility risk factor is not priced in equilibrium, the Hull-White call option price simply equals

the expected BSM price, where the expectation is taken over the future integrated volatility. 

More specifically, defining the integrated volatility as the integral of the spot volatility during the

remaining life of the option,

 ,IV(T,t) ' m
T

t

σ2(u)du

where   generalizes the integrated variance concept fromIV(T,t) ' IV(T) % IV(T&1) %... % IV(t%1)

equation (1.11) to a multi-period horizon in straightforward fashion. The Hull-White option

valuation formula may then be succinctly written as

 . (2.26)C
t
' E[BSM( IV(T,t) )*ö

t
]

In discrete time, the integrated volatility may be approximated by the sum of the corresponding

one-period conditional variances,

 .IV(T,t) . j
T&1

τ't

σ
2

τ%1|τ

Several so-called realized volatility measures have also recently been proposed in the literature

for (ex-post) approximating the integrated volatility.  We will return to a much more detailed

discussion of these measures in Sections 4 and 5 below.

Another related complication that arises in the pricing of equity options, in particular, stems from

the apparent negative correlation between the returns and the volatility.  This so-called leverage

effect, as discussed further below, induces negative skewness in the return distribution and
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causes systematic asymmetric pricing errors in the BSM model.

Assuming a mean-reverting stochastic volatility process, Heston (1993) first developed an option

pricing formula where the innovations to the returns and the volatility are correlated, and where

the volatility risk is priced by the market.  In contrast to the BSM setting, where an option can be

hedged using a dynamically rebalanced stock and bond portfolio alone, in the Heston model an

additional position must be taken in another option in order to hedge the volatility risk.

Relying on Heston’s formulation, Fouque, Papanicolaou and Sircar (2000) show that the price

may conveniently be expressed as 

 , (2.27)C
t
' E[BSM(ξ

t,T
s

t
, (1&ρ2)IV(T,t) )*ö

t
]

where ρ refers to the (instantaneous) correlation between the returns and the volatility, and ξt,T 

denotes a stochastic scaling factor determined by the volatility risk premium, with the property

that .  Importantly, however, the integrated volatility remains the leading term asE[ξ
t,T
*ö

t
] ' 1

in the Hull-White valuation formula.

2.3 Volatility Forecasting in Fields Outside Finance

Although volatility modeling and forecasting has proved to be extremely useful in finance, the

motivation behind Engle’s (1982) original ARCH model was to provide a tool for measuring the

dynamics of inflation uncertainty. Tools for modeling volatility dynamics have been applied in

many other areas of economics and indeed in other areas of the social sciences, the natural

sciences and even medicine. In the following we list a few recent papers in various fields

showcasing the breath of current applications of volatility modeling and forecasting. It is by no

means an exhaustive list but these papers can be consulted for further references.

Related to Engle’s original work, the modeling of inflation uncertainty and its relationship with

labor market variables has recently been studied by Rich and Tracy (2004). They corroborate

earlier findings of an inverse relationship between desired labor contract durations and the level

of inflation uncertainty. Analyzing the inflation and output forecasts from the Survey of

Professional Forecasters, Giordani and Soderlind (2003) find that while each forecaster on

average tends to underestimate uncertainty, the disagreement between forecasters provides a

reasonable proxy for inflation and output uncertainty.  The measurement of uncertainty also plays

a crucial role in many microeconomic models. Meghir and Pistaferri (2004), for instance,

estimate the conditional variance of income shocks at the micro level and find strong evidence of

temporal variance dynamics.

Lastrapes (1989) first analyzed the relationship between exchange rate volatility and U.S.

monetary policy.  In a more recent study, Ruge-Murcia (2004) developed a model of a central

bank with asymmetric preferences for unemployment above versus below the natural rate. The

model implies an inflation bias proportional to the conditional variance of unemployment.

Empirically, the conditional variance of unemployment is found to be positively related to the
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rate of inflation. In another central banking application, Tse and Yip (2003) use volatility models

to study the effect on changes in the Hong Kong currency board on interbank market rates. 

Volatility modeling and forecasting methods have also found several interesting uses in

agricultural economics. Ramirez and Fadiga (2003), for instance, find evidence of asymmetric

volatility patterns in U.S. soybean, sorghum and wheat prices.  Building on the earlier volatility

spill-over models used in analyzing international financial market linkages in the papers by

Engle, Ito and Lin (1990) and King, Sentana and Wadhwani (1994), Buguk, Hudson and Hanson

(2003) have recently used similar methods in documenting strong price volatility spillovers in the

supply-chain of fish production. The volatility in feeding material prices (e.g. soybeans) affects

the volatility of fish feed prices which in turn affect fish farm price volatility and finally

wholesale price volatility. Also, Barrett (1999) uses a GARCH model to study the effect of real

exchange rate depreciations on stochastic producer prices in low-income agriculture.

The recent deregulation in the utilities sector has also prompted many new applications of

volatility modeling of gas and power prices.  Shawky, Marathe and Barret (2003) use dynamic

volatility models to determine the minimum variance hedge ratios for electricity futures. Linn

and Zhu (2004) study the effect of natural gas storage report announcements on intraday

volatility patterns in gas prices. They also find evidence of strong intraday patterns in natural gas

price volatility.  Batlle and Barquin (2004) use a multivariate GARCH model to simulate gas and

oil price paths, which in turn are shown to be useful for risk management in the wholesale

electricity market.

In a related context, Taylor and Buizza (2003) use weather forecast uncertainty to model

electricity demand uncertainty.  The variability of wind measurements is found to be forecastable

using GARCH models in Dripps and Dunsmuir (2003), while temperature forecasting with

seasonal volatility dynamics is explored in Campbell and Diebold (2005).  Marinova and

McAleer (2003) model volatility dynamics in ecological patents.

In political science, Maestas and Preuhs (2000) suggest modeling political volatility broadly

defined as periods of rapid and extreme change in political processes, while Gronke and Brehm

(2002) use ARCH models to assess the dynamics of volatility in presidential approval ratings.

Volatility forecasting has recently found applications even in medicine. Ewing, Piette and Payne

(2003) forecast time varying volatility in medical net discount rates which are in turn used to

determine the present value of future medical costs. Also, Johnson, Elashoff and Harkema (2003)

use a heteroskedastic time series process to model neuromuscular activation patterns in patients

with spinal cord injuries, while Martin-Guerrero et al. (2003) use a dynamic volatility model to

help determine the optimal EPO dosage for patients with secondary anemia. 

2.4 Further Reading

Point forecasting under general loss functions when allowing for dynamic volatility has been

analyzed by Christoffersen and Diebold (1996, 1997). Patton and Timmermann (2004) have
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recently shown that under general specifications of the loss function, the optimal forecast error

will have a conditional expected value that is a function of the conditional variance of the

underlying process. Methods for incorporating time-varying volatility into interval forecasts are

suggested in Granger, White and Kamstra (1989). Financial applications of probability

forecasting techniques are considered in Christoffersen and Diebold (2003).

Financial risk management using dynamic volatility models is surveyed in Christoffersen (2003)

and Jorion (2000). Berkowitz and O’Brien (2002), Pritsker (2001), and Barone-Adesi, 

Giannopoulos and Vosper (1999) explicitly document the value added from incorporating

volatility dynamics into daily financial risk management systems. 

Volatility forecasting at horizons beyond a few weeks is found to be difficult by West and Cho

(1995) and Christoffersen and Diebold (2000). However Brandt and Jones (2002) show that

using intraday information improves the longer horizon forecasts considerably. Guidolin and

Timmermann (2005a) uncover VaR dynamics at horizons of up to two years. Campbell (1987,

2003), Shanken (1990), Aït-Sahalia and Brandt (2001), Harvey (2001), Lettau and Ludvigsson

(2003) and Marquering and Verbeek (2004) find that interest rate spreads and financial ratios

help predict volatility at longer horizons.   

A general framework for conditional asset pricing allowing for time-varying betas is laid out in

Cochrane (2001). Market timing arising from time-varying Sharpe ratios is analyzed in Whitelaw

(1997), while volatility timing has been explicitly explored by Johannes, Polson and Stroud

(2004). The relationship between time-varying volatility and return has been studied in Engle,

Lilien and Robbins (1987), French, Schwert and Stambaugh (1987), Bollerslev, Engle and

Wooldridge (1988), Bollerslev, Chou and Kroner (1992), Glosten, Jagannathan and Runkle

(1993), among many others. 

The value of modeling volatility dynamics for asset allocation in a single-period setting have

been highlighted in the series of papers by Fleming, Kirby and Oestdiek (2001, 2003), with

multi-period extensions considered by Wang (2004). The general topic of asset allocation under

predictable returns is surveyed in Brandt (2004). Brandt (1999) and Aït-Sahalia and Brandt

(2001) suggest portfolio allocation methods which do not require the specification of conditional

moment dynamics.  

The literature on option valuation allowing for volatility dynamics is very large and active.  In

addition to some of the key theoretical contributions mentioned above, noteworthy empirical

studies based on continuous-time methods include Bakshi, Cao and Chen (1997), Bates (1996),

Chernov and Ghysels (2000), Eraker (2004), Melino and Turnbull (1990), and Pan (2002). 

Recent discrete-time applications, building on the theoretical work of Duan (1995) and Heston

(1993), can be found in Christoffersen and Jacobs (2004), and Heston and Nandi (2000).

3.  GARCH Volatility
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The current interest in volatility modeling and forecasting was spurred by Engle’s (1982) path

breaking ARCH paper, which set out the basic idea of modeling and forecasting volatility as a

time-varying function of current information.  The GARCH class of models, of which the

GARCH(1,1) remains the workhorse, were subsequently introduced by Bollerslev (1986), and

also discussed independently by Taylor (1986).  These models, including their use in volatility

forecasting, have been extensively surveyed elsewhere and we will not attempt yet another

exhaustive survey here.  Instead we will try to highlight some of the key features of the models

which help explain their dominant role in practical empirical applications.  We will concentrate

on univariate formulations in this section, with the extension to multivariate GARCH-based

covariance and correlation forecasting discussed in Section 6.

3.1  Rolling Regressions and RiskMetrics

Rolling sample windows arguably provides the simplest way of incorporating actual data into the

estimation of time-varying volatilities, or variances.  In particular, consider the rolling sample

variance based on the p most recent observations as of time t,

. (3.1)σ̂
2

t ' p &1 j
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i'0
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t&i

& µ̂ )2 / p &1 j
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ĝ
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Interpreting  as an estimate of the current variance of , the value of p directly determines theσ̂
2

t y
t

variance-bias tradeoff of the estimator, with larger values of p reducing the variance but

increasing the bias.  For instance, in the empirical finance literature, it is quite common to rely on

rolling samples of five-years of monthly data, corresponding to a value of  p=60, in estimating

time varying-variances, covariances, and CAPM betas.

Instead of weighting each of the most recent p observations the same, the bias of the estimator

may be reduced by assigning more weights to the most recent observations.  An exponentially

weighted moving average filter is commonly applied in doing so,

. (3.2)σ̂
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In practice, the sum will, of course, have to be truncated at I = t-1.  This is typically done by 

equating the pre-sample values to zero, and adjusting the finite sum by the corresponding

multiplication factor .  Of course, for large values of t and (1-γ)<1, the effect of this1/[1& (1&γ)t ]

truncation is inconsequential.  This approach is exemplified by RiskMetrics (J.P. Morgan, 1996),

which rely on a value of γ = 0.06 and  in their construction of daily (monthly) volatilityµ / 0

measures for wide range of different financial rates of returns.

Although it is possible to write down explicit models for  which would justify the rollingy
t

window approach and the exponential weighted moving average as the optimal estimators for the

time-varying variances in the models, the expressions in (3.1) and (3.2) are more appropriately

interpreted as data-driven filters.  In this regard, the theoretical properties of both filters as

methods for extracting consistent estimates of the current volatility as the sampling frequencies

of the underlying observations increases over fixed-length time intervals - or what is commonly
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referred to as continuous record, or fill-in, asymptotics - has been extensively studied in a series

of influential papers by Dan Nelson (these papers are collected in the edited volume of readings

by Rossi, 1996).

It is difficult to contemplate optimal volatility forecasting without the notion of a model, or data

generating process.  Of course, density or VaR forecasting, as discussed in Section 2, is even

more problematic.  Nonetheless, the filters described above are often used in place of more

formal model building procedures in the construction of  h-period-ahead volatility forecasts by

simply equating the future volatility of interest with the current filtered estimate,
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In the context of forecasting the variance of multi-period returns, assuming that the

corresponding one-period returns are serially uncorrelated so that the forecast equals the sum of

the successive one-period variance forecasts, it follows then directly that
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Hence, the multi-period return volatility scales with the forecast horizon, k.  Although this

approach is used quite frequently by finance practitioners it has, as discussed further below, a

number of counterfactual implications.  In contrast, the GARCH(1,1) model, to which we now

turn, provides empirically realistic mean-reverting volatility forecasts within a coherent and

internally consistent, yet simple, modeling framework.

3.2  GARCH(1,1)

In order to define the GARCH class of models, consider the decomposition of yt into the one-

step-ahead conditional mean, , and variance, , inµ
t*t&1

/ E(y
t
*ö

t&1
) σ

2

t*t&1 / Var(y
t
*ö

t&1
)

parallel to the expression in equation (1.7) above,
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The GARCH(1,1) model for the conditional variance is then defined by the recursive

relationship,

, (3.6)σ
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where , and the parameters are restricted to be non-negative, , ing
t
/ σ

t*t&1
z

t
ω>0, α$0, β$0

order to ensure that the conditional variance remains positive for all realizations of the z
t

process.  The model is readily extended to higher order GARCH(p,q) models by including

additional lagged squared innovations and/or conditional variances on the right-hand-side of the

equation.

By recursive substitution, the GARCH(1,1) model may alternatively be expressed as an
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ARCH(4) model,

. (3.7)σ
2

t*t&1 ' ω (1 & β )&1 % αj
4

i'1

βi&1g
2

t&i

This obviously reduces to the exponentially weighted moving average filter in (3.2) for ω = 0, α

= γ, and β = 1-γ.  The corresponding GARCH model in which α + β = 1 is also sometimes

referred to as an Integrated GARCH, or IGARCH(1,1) model.  Importantly, however, what sets

the GARCH(1,1) model, and more generally the ARCH class of models, apart from the filters

discussed above is the notion of a data generating process embedded in the distributional

assumptions for .  This means that the construction of optimal variance forecasts is a well-z
t

posed question within the context of the model. 

In particular, it follows directly from the formulation of the model that the optimal, in a mean-

square-error sense, one-step ahead variance forecasts equals .  Corresponding expressionsσ
2

t%1*t

for the longer run forecasts,  for h>1, are also easily constructed by recursive procedures. σ
2

t%h*t

To facilitate the presentation, assume that the conditional mean is constant and equal to zero, or

, and that α+β < 1 so that the unconditional variance of the process exists,µ
t*t&1

' 0

. (3.8)σ2 ' ω (1 & α & β )&1

The h-step ahead forecast is then readily expressed as

, (3.9)σ
2

t%h*t ' σ2 % (α % β )h&1 (σ
2

t%1*t & σ
2 )

showing that the forecasts revert to the long-run unconditional variance at an exponential rate

dictated by the value of α+β.

Moreover, with serially uncorrelated returns, so that the conditional variance of the sum is equal

to the sum of the conditional variances, the optimal forecast for the variance of the k-period

return may be expressed as,

. (3.10)σ
2

t:t%k|t ' kσ2 % (σ
2

t%1*t & σ
2 ) (1 & (α % β )k ) (1 & α & β )&1

Thus, the longer the forecast horizon (the higher the value of k), the less variable will be the

forecast per unit time-interval.  That is, the term-structure-of-variance, or , flattens withk &1σ
2

t:t%k|t

k.

To illustrate, consider Figure 3.1.  The left-hand panel plots the unconditional distribution of

 for the same GARCH(1,1) model depicted in Figure 1.1.  The mean of the distributionσ
2

t%1*t

equals , but there is obviously considerable variationσ2 ' 0.020(1 & 0.085 & 0.881)&1 . 0.588

around that value, with a much longer tail to the right.  The panel on the right gives the

corresponding term-structure for k = 1, 2, ..., 250, and  equal to the mean, five, and ninety-σ
2

t%1*t

five percentiles in the unconditional distribution.  The slope of the volatility-term-structure

clearly flattens with the horizon.  The figure also illustrates that the convergence to the long-run
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unconditional variance occurs much slower for a given percentage deviation of  above theσ
2

t%1*t

median than for the same percentage deviation below the median.

To further illustrate the dynamics of the volatility-term structure, Figure 3.2 graphs  fork &1σ
2

t:t%k|t

k = 1, 5, 22 and 66, corresponding to daily, weekly, monthly and quarterly forecast horizons, for

the same t = 1, 2,..., 2,500  GARCH(1,1) simulation sample depicted in Figure 1.1.  Comparing

the four different panels, the volatility-of the-volatility clearly diminishes with the forecast

horizon.

It is also informative to compare and contrast the optimal GARCH(1,1) volatility forecasts to the

common empirical practice of horizon volatility scaling by k.  In this regard, it follows directly

from the expressions in (3.9) and (3.10) that

,E(kσ
2

t%1*t ) ' kσ2 ' E(σ
2

t:t%k*t )

so that the level of the scaled volatility forecasts will be right on average.  However, comparing

the variance of the scaled k-period forecasts to the variance of the optimal forecast,

Var(kσ
2

t%1*t ) ' k 2 Var (σ
2

t%1*t ) >

,(1 & (α % β )k )2 (1 & α & β )&2 Var ( σ
2

t%1*t ) ' Var(σ
2

t:t%k*t )

it is obvious that by not accounting for the mean-reversion in the volatility, the scaled forecasts

exaggerate the volatility-of-the-volatility relative to the true predictable variation.  On tranquil

days the scaled forecasts underestimate the true risk, while the risk is inflated on volatile days. 

Obviously not a very prudent risk management procedure.

This tendency for the horizon scaled forecasts to exhibit excessive variability is also directly

evident from the term structure plots in Figure 3.2.  Consider the optimal k-period ahead variance

forecasts defined by k times the  series depicted in the last three panels.  Contrastingk &1σ
2

t:t%k|t

these correct multi-step forecasts with their scaled counterparts defined by k times the σ
2

t%1*t

series in the first panel, it is obvious, that although both forecasts will be centered around the

right unconditional value of , the horizon scaled forecasts will result in too large “day-to-kσ2

day” fluctuations.  This is especially true for the longer run “monthly” (k = 22) and “quarterly” (k

= 66) forecasts in the last two panels.

3.3  Asymmetries and “Leverage” Effects

The basic GARCH model discussed in the previous section assumes that positive and negative

shocks of the same absolute magnitude will have the identical influence on the future conditional

variances.  In contrast, the volatility of aggregate equity index return, in particular, has been

shown to respond asymmetrically to past negative and positive return shocks, with negative

returns resulting in larger future volatilities.  This asymmetry is generally referred to as a

“leverage” effect, although it is now widely agreed that financial leverage alone cannot explain
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the magnitude of the effect, let alone the less pronounced asymmetry observed for individual

equity returns.  Alternatively, the asymmetry has also been attributed to a “volatility feedback”

effect, whereby heightened volatility requires an increase in the future expected returns to

compensate for the increased risk, in turn necessitating a drop in the current price to go along

with the initial increase in the volatility.  Regardless of the underlying economic explanation for

the phenomenon, the three most commonly used GARCH formulations for describing this type

of asymmetry are the GJR or Threshold GARCH (TGARCH) models of Glosten, Jagannathan

and Runkle (1993) and Zakoïan (1994), the Asymmetric GARCH (AGARCH) model of Engle

and Ng (1993), and the Exponential GARCH (EGARCH) model of Nelson (1991).

The conditional variance in the GJR(1,1), or TGARCH(1,1), model simply augments the

standard GARCH(1,1) formulation with an additional ARCH term conditional on the sign of the

past innovation,

, (3.11)σ
2

t*t&1 ' ω % αg
2

t&1 % γg
2

t&1 I(g
t&1

<0) % βσ
2

t&1*t&2

where I(@) denotes the indicator function.  It is immediately obvious that for γ > 0, past negative

return shocks will have a larger impact on the future conditional variances.  Mechanically, the

calculation of multi-period variance forecast works exactly as for the standard symmetric

GARCH model.  In particular, assuming that , it follows readily thatP (z
t
/ σ

&1

t*t&1gt
< 0) ' 0.5

, (3.12)σ
2

t%h*t ' σ
2 % (α % 0.5γ % β )h&1 (σ

2

t%1*t & σ
2 )

where the long-run, or unconditional variance, now equals,

. (3.13)σ2 ' ω (1 & α & 0.5γ & β )&1

Although the forecasting formula looks almost identical to the one for the GARCH(1,1) model in

equation (3.9), the inclusion of the asymmetric term may materially affect the forecasts by

importantly altering the value of the current conditional variance, .σ
2

t%1*t

The news impact curve, defined by the functional relationship between and holding allσ
2

t*t&1 g
t&1

other variables constant, provides a simple way of characterizing the influence of the most recent

shock on next periods conditional variance.  In the standard GARCH model this curve is

obviously quadratic around , while the GJR model with γ > 0  has steeper slopes forg
t&1

' 0

negative values of .  In contrast, the Asymmetric GARCH, or AGARCH(1,1), model,g
t&1

, (3.14)σ
2

t*t&1 ' ω % α (g
t&1
& γ )2 % βσ

2

t&1*t&2

shifts the center of the news impact curve from zero to γ, affording an alternative way of

capturing asymmetric effects.  The GJR and AGARCH model may also be combined to achieve

even more flexible parametric formulations.

Instead of directly parameterizing the conditional variance, the EGARCH model is formulated in
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terms of the logarithm of the conditional variance, as in the EGARCH(1,1) model,

, (3.15)log(σ
2

t*t&1 ) ' ω % α (*z
t&1
*& E(*z

t&1
* ) ) % γz

t&1
% β log(σ

2

t&1*t&2 )

where as previously defined, .  As for the GARCH model, the EGARCH model isz
t
/ σ

&1

t*t&1gt

readily extended to higher order models by including additional lags on the right-hand-side.  The

parameterization in terms of logarithms has the obvious advantage of avoiding non-negativity

constraints on the parameters, as the variance implied by the exponentiated logarithmic variance

from the model is guaranteed to be positive.  As in the GJR and AGARCH models above, values

of γ > 0 in the EGARCH model directly captures the asymmetric response, or “leverage” effect. 

Meanwhile, because of the non-differentiability with respect to  at zero, the EGARCH modelz
t&1

is often somewhat more difficult to estimate and analyze numerically.  From a forecasting

perspective, the recursions defined by the EGARCH equation (3.15) readily deliver the optimal -

in a mean-square-error sense - forecast for the future logarithmic conditional variances,

.  However, in most applications the interest centers on point forecasts for ,E( log(σ
2

t%h )*ö
t
) σ

2

t%h

as opposed to .  Unfortunately, the transformation of the  forecasts tolog(σ
2

t%h ) E( log(σ
2

t%h )*ö
t
)

 generally depends on the entire h-step ahead forecast distribution, .  AsE(σ
2

t%h*öt
) f(y

t%h
*ö

t
)

discussed further in Section 3.6 below, this distribution is generally not available in closed-form,

but it may be approximated by Monte Carlo simulations from the convolution of the

corresponding h one-step-ahead predictive distributions implied by the  innovation processz
t

using numerical techniques.  In contrast, the expression for  in equation (3.12) for the GJRσ
2

t%h*t

or TGARCH model is straightforward to implement, and only depends upon the assumption that

.P(z
t
<0) ' 0.5

3.4 Long-Memory and Component Structures

The GARCH, TGARCH, AGARCH, and EGARCH models discussed in the previous sections

all imply that shocks to the volatility decay at an exponential rate.  To illustrate, consider the

GARCH(1,1) model.  It follows readily from equation (3.9) that the impulse effect of a time-t

shock on the forecast of the variance h period into the future is given by

, or more generallyMσ
2

t%h*t /Mg
2

t ' α (α % β )h&1

, (3.16)Mσ
2

t%h*t /Mg
2

t ' κ δh

where 0 < δ < 1.  This exponential decay typically works well when forecasting over short

horizons.  However, numerous studies, including Ding, Granger and Engle (1993) and Andersen

and Bollerslev (1997), have argued that the autocorrelations of squared and absolute returns

decay at a much slower hyperbolic rate over longer lags.  In the context of volatility forecasting

using GARCH models parameterized in terms of , this suggests that better long term forecastsg
2

t

may be obtained by formulating the conditional variance in such a way that the impulse effect

behaves as,

, (3.17)Mσ
2

t%h*t /Mg
2

t . κ h δ
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for large values of h, where again 0 < δ < 1.  Several competing long-memory, or fractionally

integrated, GARCH type models have been suggested in the literature to achieve this goal.

In the Fractionally Integrated FIGARCH(1,d,1) model proposed by Baillie, Bollerslev and

Mikkelsen (1996) the conditional variance is defined by,

(3.18)σ
2

t*t&1 ' ω % βσ
2

t&1*t&2 % [1 & βL & (1 & αL & βL )(1 & L )d ]g
2

t

For d = 0 the model reduces to the standard GARCH(1,1) model, but for values of 0 < d < 1

shocks to the point volatility forecasts from the model will decay at a slow hyperbolic rate.  The

actual forecasts are most easily constructed by recursive substitution in,

, (3.19)σ
2

t%h*t%h&1 ' ω (1 & β )&1 % λ(L)σ
2

t%h&1*t%h&2

with  for h<0, and the coefficients in σ
2

t%h*t%h&1 / g
2

t λ(L) / 1 & (1&βL )&1(1&αL&βL )(1 & L )d

calculated from the recursions,

 λ
1
' α % d λ

j
' βλ

j&1
% [ ( j&1&d ) j &1 & (α%β) ]δ

j&1
j ' 2, 3, . . .

 

where  refer to the coefficients in the Maclaurin series expansion of theδ
j
/ δ

j&1
( j&1&d ) j &1

fractional differencing operator, .  Higher order FIGARCH models, or volatility forecast(1 & L )d

filters, may be defined in an analogous fashion.  Asymmetries are also easily introduced into the

recursions by allowing for separate influences of past positive and negative innovations as in the

GJR or TGARCH model.  Fractional Integrated EGARCH, or FIEGARCH, models may be

similarly defined by parameterizing the logarithmic conditional variance as a fractionally

integrated distributed lag of past values.

An alternative, and often simpler, approach for capturing longer-run dependencies involves the

use of component type structures.  Granger (1980) first showed that the superposition of an

infinite number of stationary AR(1) processes may result in a true long-memory process.  In fact,

there is a long history in statistics and time series econometrics for approximating long-memory

by the sum of a few individually short-memory components.  This same idea has successfully

been used in the context of volatility modeling by Engle and Lee (1999) among others.

In order to motivate the Component GARCH model of Engle and Lee (1999), rewrite the

standard GARCH(1,1) model in (3.6) as,

, (3.20)(σ
2

t*t&1 & σ
2 )' α (g

2

t&1 & σ
2 ) % β (σ

2

t&1*t&2 & σ
2 )

where it is assumed that , so that the model is covariance stationary and the long termα % β < 1

forecasts converge to the long-run, or unconditional, variance .  Theσ2 ' ω (1 & α & β )&1

component model then extends the basic GARCH model by explicitly allowing the long-term

level to be time-varying,
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, (3.21)(σ
2

t*t&1 & ζ
2

t )' α (g
2

t&1 & ζ
2

t&1 ) % β (σ
2

t&1*t&2 & ζ
2

t&1 )

with  parameterized by the separate equation,ζ
2

t

. (3.22)ζ
2

t ' ω % ρζ
2

t&1 % φ (g
2

t&1 & σ
2

t&1*t&2 )

Hence, the transitory dynamics is governed by , while the long-run dependencies areα % β

described by .  For the model to be well defined the parameters must satisfy ,ρ 1>ρ>α%β>0

, , and .  Moreover, it is possible to show that for the model to be covarianceβ>φ>0 α>0 ω>0

stationary, and the unconditional variance to exist, the parameters must further satisfy the

condition .  Also, substituting the latter equation into the first, the component(α%β) (1&ρ) %ρ< 1

model may be expressed as the restricted GARCH(2,2) model,

σ
2

t*t&1 ' ω (1&α&β) % (α%φ)g
2

t&1 & (φ (α%β) % ρα)g
2

t&2

 .% (ρ%β&φ)σ
2

t&1*t&2 % (φ (α%β) & ρβ)σ
2

t&2*t&3

As for the GARCH(1,1) model, volatility shocks therefore eventually dissipate at the exponential

rate in equation (3.15).  However, for intermediate forecast horizons and values of  close toρ

unity, the volatility forecasts from the component GARCH model will display approximate long-

memory.

To illustrate, consider Figure 3.3 which graphs the volatility impulse response function,

, h = 1, 2, ..., 250, for the RiskMetrics forecasts, the standard GARCH(1,1) model inMσ
2

t%h*t /Mg
2

t

(3.6), the FIGARCH(1,d,1) model in (3.18), and the component GARCH model defined by

(3.21) and (3.22). The parameters for the different GARCH models are calibrated to match the

volatilities depicted in Figure 1.1.  To facilitate comparisons and exaggerate the differences

across models, the right-hand-panel depicts the logarithm of the same impulse response

coefficients.  The RiskMetrics forecasts, corresponding to an IGARCH(1,1) model with α = 0.06,

β = 1 - α = 0.94 and ω = 0, obviously results in infinitely persistent volatility shocks.  In

contrast, the impulse response coefficients associated with the GARCH(1,1) forecasts die out at

the exponential rate (0.085 + 0.881)h, as manifest by the log-linear relationship in the right-hand-

panel.  Although the component GARCH model also implies an exponential decay and therefore

a log-linear relationship, it fairly closely matches the hyperbolic decay rate for the long-memory

FIGARCH model for the first 125 steps.  However, the two models clearly behave differently for

forecasts further into the future.  Whether these differences and potential gains in forecast

accuracy over longer horizons are worth the extra complications associated with the

implementation of a fractional integrated model obviously depends on the specific uses of the

forecasts.

3.5   Parameter Estimation

The values of the parameters in the GARCH models are, of course, not known in practice and

will have to be estimated.  By far the most commonly employed approach for doing so is
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logL (θ ;y
T
, ..., y

1
) ' &

T

2
log(2π ) &

1

2
j

T

t'1

logσ
2

t*t&1(θ) & σ
&2

t*t&1(θ) (y
t
& µ

t*t&1
(θ) )2

Maximum Likelihood Estimation (MLE) under the additional assumption that the standardized

innovations in equation (3.5), , are i.i.d. normally distributed, or equivalentlyz
t
/ σ

&1

t*t&1 (y
t
&µ

t*t&1
)

that the conditional density for  takes the form,   y
t

. (3.23)f(y
t
*ö

t&1
) ' (2π )&1/2σ

&1

t*t&1 exp(&1/2σ
&2

t*t&1 (y
t
&µ

t*t&1
)2 )

In particular, let θ denote the vector of unknown parameters entering the conditional mean and

variance functions to be estimated.  By standard recursive conditioning arguments, the log-

likelihood function for the  sample is then simply given by the sum of they
T

,y
T&1

, ... ,y
1

corresponding T  logarithmic conditional densities,

(3.24)

The likelihood function obviously depends upon the parameters in a highly non-linear fashion,

and numerical optimization techniques are required in order to find the value of θ which

maximizes the function, say .  Also, to start up the recursions for calculating , pre-θ̂
T

σ
2

t*t&1(θ)

sample values of the conditional variances and squared innovations are also generally required. 

If the model is stationary, these initial values may be fixed at their unconditional sample counter

parts, without affecting the asymptotic distribution of the resulting estimates.  Fortunately, there

now exist numerous software packages for estimating all of the different GARCH formulations

discussed above based upon this likelihood approach.

Importantly, provided that the model is correctly specified and satisfies a necessary set of

technical regularity conditions, the estimates obtained by maximizing the function in (3.24)

inherit the usual optimality properties associated with MLE, allowing for standard parameter

inference based on an estimate of the corresponding information matrix.  This same asymptotic

distribution may also be used in incorporating the parameter estimation error uncertainty in the

distribution of the volatility forecasts from the underlying model.  However, this effect is

typically ignored in practice, instead relying on a simple plugin approach using  in place of theθ̂
T

true unknown parameters in the forecasting formulas.  Of course, in many financial applications

the size of the sample used in the parameter estimation phase is often very large compared to the

horizon of the forecasts, so that the additional influence of the parameter estimation error is

likely to be relatively minor compared to the inherent uncertainty in the forecasts from the model. 

Bayesian inference procedures can, of course, also be used in directly incorporating the parameter

estimation error uncertainty in the model forecasts.

More importantly from a practical perspective, the log-likelihood function in equation (3.24)

employed in almost all software packages is based on the assumption that  is i.i.d. normallyz
t

distributed.  Although this assumption coupled with time-varying volatility implies that the

unconditional distribution of  has fatter tails than the normal, this is typically not sufficient toy
t

account for all of the mass in the tails in the distributions of daily or weekly returns.  Hence, the
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likelihood function is formally misspecified.

However, if the conditional mean and variance are correctly specified, the corresponding Quasi

Maximum Likelihood Estimates (QMLE) obtained under this auxiliary assumption of conditional

normality will generally be consistent for the true value of θ.  Moreover, asymptotically valid

robust standard errors may be calculated from the so-called “sandwich-form” of the covariance

matrix estimator, defined by the outer product of the gradients post- and pre-multiplied by the

inverse of the usual information matrix estimator.  Since the expressions for the future

conditional variances for most of the GARCH models discussed above do not depend upon the

actual distribution of , as long as  and , this means thatz
t

E(z
t
*ö

t&1
) ' 0 E(z

2

t *öt&1
) ' 1

asymptotically valid point volatility forecasts may be constructed from the conditionally normal

QMLE for θ  without fully specifying the distribution of .z
t

Still, the efficiency of the parameter estimates, and therefore the accuracy of the resulting point

volatility forecasts obtained by simply substituting  in place of the unknown parameters in theθ̂
T

forecasting formulas, may be improved by employing the correct conditional distribution of . z
t

A standardized student’s t distribution with degrees of freedom  often provides a goodν>2

approximation to this distribution.  Specifically,

f(y
t
*ö

t&1
) ' Γ

ν%1

2
Γ
ν

2

&1

( (ν&2)σ
2

t*t&1 )&1/2 (1 % (ν&2)&1σ
&2

t*t&1 (y
t
&µ

t*t&1
)2 )&(ν%1)/2

(3.25)

with the log likelihood function given by the sum of the corresponding T  logarithmic densities,

and the degrees of freedom parameter ν estimated jointly with the other parameters of the model

entering the conditional mean and variance functions.  Note, that for  the distributionν64
converges to the conditional normal density in (3.23).  Of course, more flexible distributions

allowing for both fat tails and asymmetries could be, and have been, employed as well. 

Additionally, semi-nonparametric procedures in which the parameters in  andµ
t*t&1

(θ) σ
2

t*t&1(θ)

are estimated sequentially on the basis of nonparametric kernel type estimates for the distribution

of  have also been developed to enhance the efficiency of the parameter estimates relative toẑ
t

the conditionally normal QMLEs.  From a forecasting perspective, however, the main advantage

of these more complicated conditionally non-normal estimation procedures lies not so much in

the enhanced efficiency of the plugin point volatility forecasts, , but rather in theirσ
2

T%h*T(θ̂
T
)

ability to better approximate the tails in the corresponding predictive distributions,

.  We next turn to a discussion of this type of density forecasting.f(y
T%h

*ö
T
; θ̂

T
)

3.6  Fat Tails and Multi-Period Forecast Distributions

The ARCH class of models directly specifies the one-step-ahead conditional mean and variance,

 and , as functions of the time t-1 information set, .  As such, the one-period-µ
t*t&1

σ
2

t*t&1 ö
t&1

ahead predictive density for  is directly determined by the distribution of .  In particular,y
t

z
t

assuming that  is i.i.d. standard normal,z
t
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,f
z
(z

t
) ' (2π)&1/2 exp(&1/2z

t
)

the conditional density of  is then given by the expression in equation (3.23) above, where they
t

term is associated with the Jacobian of the transformation from  to .  Thus, in thisσ
&1

t*t&1 z
t

y
t

situation, the one-period-ahead VaR at level p is readily calculated by

, where  equals the p’th quantile in the standard normalVaR
p

t%1*t ' µ
t%1*t%σt%1*t F

&1

z (p) F
&1

z (p)

distribution.

Meanwhile, as noted above the distributions of the standardized GARCH innovations often have

fatter tails than the normal distribution.  To accommodate this feature alternative conditional

error distributions, such as the student-t distribution in equation (3.25) discussed above, may be

used in place of the normal density in equation (3.23) in the construction of empirically more

realistic predictive densities.  In the context of quantile predictions, or VaR’s, this translates into

multiplication factors, , in excess of those for the normal distribution for small values of F
&1

z (p)

p.  Of course, the exact value of  will depend upon the specific parametric estimates forF
&1

z (p)

the distribution of .  Alternatively, the standardized in-sample residuals based on the simpler-z
t

to-implement QMLE for the parameters, say , may be used in non-ẑ
t
/ σ̂

&1

t*t&1 (y
t
& µ̂

t*t&1
)

parametrically estimating the distribution of , and in turn the quantiles, .z
t

F̂
&1

z
(p)

The procedures discussed above generally work well in approximating VaR’s within the main

range of support of the distribution, say 0.01 < p < 0.99.  However, for quantiles in the very far

left or right tail, it is not possible to meaningfully estimate  without imposing someF
&1

z (p)

additional structure on the problem.  Extreme Value Theory (EVT) provides a framework for

doing so.  In particular, it follows from EVT that under general conditions the tails of any

admissible distribution must behave like those of the Generalized Pareto class of distributions. 

Hence, provided that  is i.i.d., the extreme quantiles in  may be inferred exactly asz
t

f(y
t%1

*ö
t
)

above, using only the  smallest (largest) values of  in actually estimating the parameters of[rT] ẑ
t

the corresponding extreme value distribution used in calculating .  The fraction r of theF̂
&1

z
(p)

full sample T  used in this estimation dictates where the tails, and consequently the extreme value

distribution, begin.  In addition to standard MLE techniques, a number of simplified procedures,

including the popular Hill estimator, are also available for estimating the required tail parameters.

The calculation of multi-period forecast distributions is more complicated.  To facilitate the

presentation, suppose that the information set defining the conditional one-step-ahead

distribution, , and consequently the conditional mean and variance,  and f(y
t%1

*ö
t
) µ

t%1*t σ
2

t%1*t

respectively, is restricted to current and past values of .  The multi-period-ahead predictivey
t

distribution is then formally defined by the convolution of the corresponding h one-step-ahead

distributions, 

.f(y
t%h

*ö
t
) ' mm ...m f(y

t%h
*ö

t%h&1
) f(y

t%h&1
*ö

t%h&2
) ... f(y

t%1
*ö

t
)dy

t%h&1
dy

t%h&2
...dy

t%1

(3.26)

This multi-period mixture distribution generally has fatter tails than the underlying one-step-
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ahead distributions.  In particular, assuming that the one-step-ahead distributions are

conditionally normal as in (3.23) then, if the limiting value exists, the unconditional distribution,

, will be leptokurtic relative to the normal.  This is, of course, entirelyf(y
t
) ' lim

h64 f(y
t
*ö

t&h
)

consistent with the unconditional distribution of most speculative returns having fatter tails than

the normal.  It is also worth noting that even though the conditional one-step-ahead predictive

distributions, , may be symmetric, if the conditional variance depends on the pastf(y
t%1

*ö
t
)

values of  in an asymmetric fashion, as in the GJR, AGARCH or EGARCH models, the multi-y
t

step-ahead distribution,  h>1, will generally be asymmetric.  Again, this is directly inf(y
t%h

*ö
t
)

line with the negative skewness observed in the unconditional distribution of most equity index

return series.

Despite these general results, analytical expressions for the multi-period predictive density in

(3.26) are not available in closed-form.  However, numerical techniques may be used in

recursively building up an estimate for the predictive distribution, by repeatedly drawing future

values for  based on the assumed parametric distribution , or byy
t%j
' µ

t%j*t%j&1
% σ

t%j*t%j&1
z

t%j
f
z
(z

t
)

bootstrapping  from the in-sample distribution of the standardized residuals.z
t%j

Alternatively,  may be approximated by a time-invariant parametric or non-f(y
t%h

*ö
t
)

parametrically estimated distribution with conditional mean and variance,  andµ
t%h*t / E(y

t%j
*ö

t
)

, respectively.  The multi-step conditional variance is readily calculatedσ
2

t%h*t / Var(y
t%j
*ö

t
)

along the lines of the recursive prediction formulas discussed in the preceding sections.  This

approach obviously neglects any higher order dependencies implied by the convolution in (3.26). 

However, in contrast to the common approach of scaling which, as illustrated in Figure 3.2, may

greatly exaggerate the volatility-of-the-volatility, the use of the correct multi-period conditional

variance means that this relatively simple-to-implement approach for calculating multi-period

predictive distributions usually works very well in practice.

The preceding discussion has focused on one or multi-period forecast distributions spanning the

identical unit time interval as in the underlying GARCH model.  However, as previously noted,

in financial applications the forecast distribution of interest often involves the sum of  overy
t%j

multiple periods corresponding to the distribution of continuously compounded multi-period

returns, say .  The same numerical techniques used in approximatingy
t:t%h

/ y
t%h

% y
t%h&1

% ...% y
t%1

 by Monte Carlo simulations discussed above may, of course, be used inf(y
t%h

*ö
t
)

approximating the corresponding distribution of the sum, .f(y
t:t%h

*ö
t
)

Alternatively, assuming that the ‘s are serially uncorrelated, as would be approximately truey
t%j

for most speculative returns over daily or weekly horizons, the conditional variance of  isy
t:t%h

simply equal to the sum of the corresponding h variance forecasts,

. (3.27)Var(y
t:t%h

*ö
t
) / σ

2

t:t%h|t ' σ
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Thus, in this situation the conditional distribution of  may be estimated on the basis of they
t:t%h

corresponding in-sample standardized residuals, .   Now, if theẑ
t:t%h

/ σ̂
&1

t:t%h*t (y
t:t%h

& µ̂
t:t%h*t )

underlying GARCH process for  is covariance stationary, we have  andy
t

lim
h64h &1µ

t:t%h
' E(y

t
)
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.  Moreover, as shown by Diebold (1988), it follows from a version oflim
h64h &1σ

2

t:t%h ' Var(y
t
)

the standard Central Limit Theorem that .  Thus, volatility clustering disappearsz
t:t%h

Y N(0 ,1)

under temporal aggregation, and the unconditional return distributions will be increasingly better

approximated by a normal distribution the longer the return horizons.  This suggests that for

longer-run forecasts, or moderately large values of h, the distribution of  will bez
t:t%h

approximately normal.  Consequently, the calculation of longer-run multi-period VaR’s may

reasonably rely on the conventional quantiles from a standard normal probability table in place of

 in the formula .F
&1

z (p) VaR
p

t:t%h*t ' µ
t:t%h*t%σt:t%h*t F

&1

z (p)

3.7  Further Reading

The ARCH and GARCH class of models have been extensively surveyed elsewhere; see, e.g.,

review articles by Andersen and Bollerslev (1998b), Bollerslev, Chou and Kroner (1992),

Bollerslev, Engle and Nelson (1994), Diebold (2004), Diebold and Lopez (1995), Engle (2001,

2004), Engle and Patton (2001), Pagan (1996), Palm (1996), and Shephard (1996).  The models

have now also become part of the standard toolbox discussed in econometrics and empirical

oriented finance textbooks; see e.g., Hamilton (1994), Mills (1993), Franses and van Dijk (2000),

Gourieroux and Jasiak (2001), Alexander (2002), Brooks (2002), Chan (2002), Tsay (2002),

Christoffersen (2003), Enders (2004), and Taylor (2004).  A series of the most influential early

ARCH papers have been collected in Engle (1995).  A fairly comprehensive list as well as

forecast comparison of the most important parametric formulations are also provided in Hansen

and Lunde (2005).

Several different econometric and statistical software packages are available for estimating all of

the most standard univariate GARCH models, including EViews, PC-GIVE, Limdep, Microfit,

RATS, S+, SAS, SHAZAM, and TSP.  The open-ended matrix programming environments

GAUSS, Matlab, and Ox also offer easy add-ons for GARCH estimation, while the NAG library

and the UCSD Department of Economics website provide various Fortran based procedures and

programs.  Partial surveys and comparisons of some of these estimation packages and procedures

are given in Brooks (1997), Brooks, Burke and Persand (2001), and McCullough and Renfro

(1998).

The asymmetry, or “leverage” effect, directly motivating a number of the alternative GARCH

formulations were first documented empirically by Black (1976) and Christie (1982).  In addition

to the papers by Nelson (1991), Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993),

and Zakoian (1994) discussed in Section 3.3, other important studies on modeling and

understanding the volatility asymmetry in the GARCH context include Campbell and Hentschel

(1992), Hentschel (1995), and Bekaert and Wu (2000), while Engle (2001) provides an

illustration of the importance of incorporating asymmetry in GARCH-based VaR calculations.

The long-memory FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996) in Section 3.4

may be seen as a special case of the ARCH(4) model in Robinson (1991).  The FIGARCH model

also encompasses the IGARCH model of Engle and Bollerslev (1986) for d=1.  However, even

though the approach discussed here affords a convenient framework for generating point
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forecasts with long-memory dependencies, when viewed as a model the unconditional variance

does not exist, and the FIGARCH class of models has been criticized accordingly by Giraitis,

Kokoszka and Leipus (2000), among others.  An alternative formulation which breaks the link

between the conditions for second-order stationarity and long-memory dependencies have been

proposed by Davidson (2004).  Alternative long-memory GARCH formulations include the

FIEGARCH model of Bollerslev and Mikkelsen (1996), and the model in Ding and Granger

(1996) based on the superposition of an infinite number of ARCH models.  In contrast, the

component GARCH model in Engle and Lee (1999) and the related developments in Gallant,

Hsu and Tauchen (1999) and Müller et al. (1997), is based on the mixture of only a few

components; see also the earlier related results on modeling and forecasting long-run dynamic

dependencies in the mean by O’Connell (1971) and Tiao and Tsay (1994).  Meanwhile,

Bollerslev and Mikkelsen (1999) have argued that when pricing very long-lived financial

contracts, the fractionally integrated volatility approach can result in materially different prices

from the ones implied by the more standard GARCH models with exponential decay.  The

multifractal models recently advocated by Calvet and Fisher (2002, 2004) afford another

approach for incorporating long-memory into volatility forecasting.

Long-memory also has potential links to regimes and structural break in volatility. Diebold and

Inoue (2001) argue that the apparent finding of long-memory could be due to the existence of

regime switching. Mikosch and Starica (2004) explicitly uses nonstationarity as a source of long-

memory in volatility. Structural breaks in volatility is considered by Andreou and Ghysels

(2002), Lamoureux and Lastrapes (1990), Pastor and Stambaugh (2001), and Schwert (1989).

Hamilton and Lin (1996) and Perez-Quiros and Timmermann (2000) study volatility across

business cycle regimes. The connections between long-memory and structural breaks are

reviewed in Banerjee and Urga (2005); see also the chapter by Clements and Hendry in this

Handbook.

Early contributions concerning the probabilistic and statistical properties of GARCH models, as

well as the MLE and QMLE techniques discussed in Section 3.5, include Bollerslev and

Wooldridge (1992), Lee and Hansen (1994), Lumsdaine (1996), Nelson (1990), and Weiss

(1986); for a survey of this literature see also Li, Ling and McAleer (2002).  Bollerslev (1986)

discusses conditions for existence of the second moment in the specific context of the GARCH

model. Loretan and Phillips (1994) contains a more general discussion on the issue of covariance

stationarity. Bayesian methods for estimating ARCH models were first implemented by Geweke

(1989a) and they have since be developed further in Bauwens and Lubrano (1998, 1999).  The

GARCH-t model discussed in Section 3.5 was first introduced by Bollerslev (1987), while

Nelson (1991) suggested the so-called Generalized Error Distribution (GED) for better

approximating the distribution of the standardized innovations.  Engle and Gonzalez-Rivera

(1991) first proposed the use of kernel-based methods for non-parametrically estimating the

conditional distribution, whereas McNeil and Frey (2000) relied on Extreme Value Theory

(EVT) for estimating the uppermost tails in the conditional distribution; see also Embrechts,

Klüppelberg and Mikosch (1997) for a general discussion of extreme value theory.

As discussed in Section 3.6, even if the one-step-ahead conditional distribution is known (by
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assumption), the corresponding multi-period distributions are not available in closed-form and

are generally unknown.  Some of the complications that arise in this situation have been

discussed in Baillie and Bollerslev (1992), who also consider the use of a Cornish-Fisher

expansion for approximating specific quantiles in the multi-step-ahead predictive distributions. 

Numerical techniques for calculating the predictive distributions based on importance sampling

schemes were first implemented by Geweke (1989b).  Other important results related to the

distribution of temporally aggregated GARCH models include Drost and Nijman (1993), Drost

and Werker (1996), and Meddahi and Renault (2004).

4.  Stochastic Volatility

This section introduces the general class of models labeled Stochastic Volatility (SV).  In the

widest sense of the term, SV models simply allow for a stochastic element in the time series

evolution of the conditional variance process. For example, GARCH models are SV models. The

more meaningful categorization, which we adopt here, is to contrast ARCH type models with

genuine SV models. The latter explicitly includes an unobserved (non-measurable) shock to the

return variance into the characterization of the volatility dynamics. In this scenario, the variance

process becomes inherently latent so that - even conditional on all past information and perfect

knowledge about the data generating process - we cannot recover the exact value of the current

volatility state. The technical implication is that the volatility process is not measurable with

respect to observable (past) information. Hence, the assessment of the volatility state at day t

changes as contemporaneous or future information from days t+j, j $ 0, is incorporated into the

analysis. This perspective renders estimation of latent variables from past data alone (filtering) as

well as from all available, including future, data (smoothing) useful. In contrast, GARCH models

treat the conditional variance as observable given past information and, as discussed above,

typically applies (quasi-) maximum likelihood techniques for inference, so smoothing has no role

in that setting.

Despite these differences, the two model classes are closely related, and we consider them to be

complementary rather than competitors. In fact, from a practical forecasting perspective it is hard

to distinguish the performance of standard ARCH and SV models. Hence, even if one were to

think that the SV framework is appealing, the fact that ARCH models typically are easier to

estimate explains practitioners reliance on ARCH as the volatility forecasting tool of choice.

Nonetheless, the development of powerful method of simulated moments, Markov Chain Monte

Carlo (MCMC) and other simulation based procedures for estimation and forecasting of SV

models may render them competitive with ARCH over time.  Moreover, the development of the

concept of realized volatility and the associated use of intraday data for volatility measurement,

discussed in the next section, is naturally linked to the continuous-time SV framework of

financial economics. 

The literature on SV models is vast and rapidly growing, and excellent surveys are already

available on the subject, e.g., Ghysels, Harvey and Renault (1996) and Shephard (1996, 2004).

Consequently, we focus on providing an overview of the main approaches with particular
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emphasis on the generation of volatility forecasts within each type of model specification and

inferential technique.

4.1  Model Specification

Roughly speaking, there are two main perspectives behind the SV paradigm when used in the

context of modeling financial rate of returns. Although both may be adapted to either setting,

there are precedents for one type of reasoning to be implemented in discrete time and the other to

be cast in continuous time. The first centers on the Mixture of Distributions Hypothesis (MDH),

where returns are governed by an event time process that represents a transformation of the time

clock in accordance with the intensity of price relevant news, dating back to Clark (1973). The

second approach stems from financial economics where the price and volatility processes often

are modeled separately via continuous sample path diffusions governed by stochastic differential

equations. We briefly introduce these model classes and point out some of the similarities to

ARCH models in terms of forecasting procedures. However, the presence of a latent volatility

factor renders both the estimation and forecasting problem more complex for the SV models. We

detail these issues in the following subsections.

4.1.1   The Mixture-of-Distributions Hypothesis

Adopting the rational perspective that asset prices reflect the discounted value of future expected

cash flows, such prices should react almost continuously to the myriad of news that arrive on a

given trading day. Assuming that the number of news arrival is large, one may expect a central

limit theory to apply and financial returns should be well approximated by a conditional normal

distribution with the conditioning variable corresponding to the number of relevant news events.

More generally, a number of other variables associated with the overall activity of the financial

market such as the daily number of trades, the daily cumulative trading volume or the number of

quotes may well be similarly related to the information flow in the market. These considerations

inspire the following type of representation,

, (4.1)y
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t
% σ

y
s
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t z
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where yt  is the market “activity” variable under consideration, st  is the strictly positive process

reflecting the intensity of relevant news arrivals, µ y represents the mean response of the variable

per news event, σy is a scale parameter, and zt   is i.i.d. N(0,1). Equivalently, this relationship may

be written,
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This formulation constitutes a normal mixture model. If the st  process is time-varying it induces

a fat-tailed unconditional distribution, consistent with stylized facts for most return and trading

volume series. Intuitively, days with high information flow display more price fluctuations and

activity than days with fewer news releases. Moreover, if the st  process is positively correlated,

then shocks to the conditional mean and variance process for yt  will be persistent. This is
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consistent with the observed activity clustering in financial markets, where return volatility,

trading volume, the number of transactions and quotes, the number of limit orders submitted to

the market, etc., all display pronounced serial dependence.

The specification in (4.1) is analogous to the one-step-ahead decomposition given in equation

(3.5). The critical difference is that the formulation is endowed with a structural interpretation,

implying that the mean and variance components cannot be observed prior to the trading day as

the number of news arrivals is inherently random. In fact, it is usually assumed that the st  process

is unobserved by the econometrician, even during period t, so that the true mean and variance

series are both latent. From a technical perspective this implies that we must distinguish between

the full information set (st  0 öt ) and observable information (st  ó Tt ). The latter property is a

defining feature of the genuine volatility class. The inability to observe this important component

of the MDH model complicates inference and forecasting procedures as discussed below.

In the case of short horizon return series, µ y is close to negligible and can reasonably be ignored

or simply fixed at a small constant value. Furthermore, if the mixing variable st  is latent then the

scaling parameter, σy , is not separately identified and may be fixed at unity. This produces the

following return (innovation) model,

, (4.3)r
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' s

1/2

t z
t

implying a simple normal-mixture representation,
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Both univariate models for returns of the form (4.4) or multivariate systems including a return

variable along with other related market activity variables, such as trading volume or the number

of transactions, are referred to as derived from the Mixture-of-Distributions Hypothesis (MDH). 

The representation in (4.3) is of course directly comparable to that for the return innovation in

equation (3.5). It follows immediately that volatility forecasting is related to forecasts of the

latent volatility factor given the observed information,

. (4.5)Var (r
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If some relevant information is not observed and thus not included in Tt, then the expression in

(4.5) will generally not represent the actual conditional return variance, E(st+h |öt ). This point is 

readily seen through a specific example.

In particular, Taylor (1986) first introduced the log SV model by adopting an autoregressive

parameterization of the latent log-volatility (or information flow) variable,

log st+1   =     η0   +   η1   log st   +    ut  ,          ut  -  i.i.d.(0, σu
2 ), (4.6)
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where the disturbance term may be correlated with the innovation in the return equation, that is,  

ρ =  corr( ut , zt ) … 0.  This particular representation, along with a Gaussian assumption on ut, has

been so widely adopted that it has come to be known as the stochastic volatility model. Note that,

if ρ is negative, there is an asymmetric return-volatility relationship present in the model, akin to

the “leverage effect” in the GJR and EGARCH models discussed in Section 3.3, so that negative

return shocks induce higher future volatility than similar positive shocks. In fact, it is readily seen

that the log SV formulation in (4.6) generalizes the EGARCH(1,1) model by considering the

case,

, (4.7)u
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' α ( |z

t
|&E |z

t
| ) % γz
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where the parameters  η0  and  η1  correspond to ω and β in equation (3.15) respectively. Under

the null hypothesis of EGARCH(1,1), the information set, Tt, includes past asset returns, and the

idiosyncratic return innovation series, zt , is effectively observable so likelihood based analysis is

straightforward. However, if ut is not (only) a function of zt , i.e., equation (4.7) no longer holds,

then there are two sources of error in the system. In this more general case it is no longer possible

to separately identify the underlying innovations to the return and volatility processes, nor the

true underlying volatility state.

This above example illustrates both how any ARCH model may be seen as a special case of a

corresponding SV model and how the defining feature of the genuine SV model may complicate

forecasting, as the volatility state is unobserved. Obviously, in representations like (4.6), the

current state of volatility is a critical ingredient for forecasts of future volatility.  We expand on

the tasks confronting estimation and volatility forecasting in this setting in Section 4.1.3.

There are, of course, an unlimited number of alternative specifications that may be entertained

for the latent volatility process. However, Stochastic Autoregressive Volatility (SARV) of

Andersen (1994) has proven particular convenient. The representation is again autoregressive,

, (4.8)v
t
' ω % βv

t&1
% [γ%αv
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where ut denotes an i.i.d. sequence, and st  =  g(vt ) links the dynamic evolution of the state

variable to the stochastic variance factor in equation (4.3). For example, for the log SV model, 

g(vt ) = exp(vt ). Likewise, SV generalizations of the GARCH(1,1) may be obtained via g(vt ) = vt 

and an SV extension of a GARCH model for the conditional standard deviation is produced by

letting  g(vt ) =  vt
1/2.  Depending upon the specific transformation g(@) it may be necessary to

impose additional (positivity) constraints on the innovation sequence ut, or the parameters in

(4.8). Even if inference on parameters can be done, moment based procedures do not produce

estimates of the latent volatility process, so from a forecasting perspective the analysis must

necessarily be supplemented with some method of approximating the sample path realization of

the underlying state variables.

4.1.2   Continuous-Time Stochastic Volatility Models
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The modeling of asset returns in continuous time stems from the financial economics literature

where early contributions to portfolio selection by Merton (1969) and option pricing by Black

and Scholes (1973) demonstrated the analytical power of the diffusion framework in handling

dynamic asset allocation and pricing problems. The idea of casting these problems in a

continuous-time diffusion context also has a remarkable precedent in Bachelier (1900).

Under weak regularity conditions, the general representation of an arbitrage-free asset price

process is

dp(t)   =   µ(t) dt  +  F(t) dW(t) + j(t) dq(t),     t 0 [0,T], (4.9)

where µ(t) is a continuous, locally bounded variation process, the volatility process F(t) is strictly

positive, W(t) denotes a standard Brownian motion, q(t) is a jump indicator taking the values zero

(no jump) or unity (jump) and, finally, the j(t) represents the size of the jump if one occurs at

time t. (See, e.g., Andersen, Bollerslev and Diebold (2003a) for further discussion.)  The

associated one-period return is

(4.10)r(t) ' p(t)&p(t&1) ' m
t

t&1

µ(τ)dτ % m
t

t&1

σ(τ)dW(τ) % j
t&1#τ< t

κ(τ) ,

where the last sum simply cumulates the impact of the jumps occurring over the period, as we

define κ(t) = j(t) @ I(q(t) = 1), so that κ(t) is zero everywhere except when a discrete jump occurs.

In this setting a formal ex-post measure of the return variability, derived from the theory of

quadratic variation for semi-martingales, may be defined,

. (4.11)QV(t) / m
t

t&1

σ2(s)ds % j
t&1<s#t

κ2(s)

In the special case of a pure SV diffusion, the corresponding quantity reduces to the integrated

variance, as already defined in equation (1.11) in Section 1,

. (4.12)IV(t) / m
t

t&1

σ2(s)ds

These return variability measures are naturally related to the return variance. In fact, for a pure

SV diffusion (without jumps) where the volatility process, σ(τ), is independent of the Wiener

process, W(τ), we have,

(4.13)r(t) | {µ(τ), σ(τ) ; t&1#τ# t} - N ( m
t

t&1

µ(τ)dτ , m
t

t&1

σ2(τ)dτ ),

so the integrated variance is the true measure of the actual (ex-post) return variance in this

context. Of course, if the conditional variance and mean processes evolve stochastically we
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cannot perfectly predict the future volatility, and we must instead form expectations based on the

current information. For short horizons, the conditional mean variation is negligible and we may

focus on the following type of forecasts, for a positive integer h,

(4.14)Var (r (t%h) | T
t
) . E [ m

t%h

t%h&1

σ2(τ)dτ | T
t
] / E [ IV (t%h) | T

t
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The expressions in (4.13) and (4.14) generalize the corresponding equations for discrete-time SV

models in (4.4) and (4.5) respectively. Of course, the return variation arising from the conditional

mean process may need to be accommodated as well over longer horizons. Nonetheless, the

dominant term in the return variance forecast will invariably be associated with the expected

integrated variance or, more generally, the expected quadratic variation. In simple continuous-

time models, we may be able to derive closed-form expressions for these quantities, but in

empirically realistic settings they are typically not available in analytic form and alternative

procedures must be used. We discuss these issues in more detail below.

The initial diffusion models explored in the literature were not genuine SV diffusions but rather,

with a view toward tractability, cast as special cases of the constant elasticity of variance (CEV)

class of models,

dp(t)   =  ( µ - N [p(t) - µ] ) dt  +  F p(t)γ dW(t) ,     t 0 [0,T], (4.15)

where N $0 determines the strength of mean reversion toward the unconditional mean µ  in the

log-price process, while  γ  $ 0 allows for conditional heteroskedasticity in the return process.

Popular representations are obtained by specific parameter restrictions, e.g., the Geometric

Brownian motion for N = 0 and γ = 0, the Vasicek model for γ = 0, and the Cox-Ingersoll and

Ross (CIR) or square-root model for γ = ½. These three special cases allow for a closed-form

characterization of the likelihood, so the analysis is straightforward. Unfortunately, they are also

typically inadequate in terms of capturing the volatility dynamics of asset returns. A useful class

of extensions have been developed from the CIR model. In this model the instantaneous mean

and variance processes are both affine functions of the log price. The affine model class extends

the above representation with γ = ½  to a multivariate setting with general affine conditional

mean and variance specifications. The advantage is that a great deal of analytic tractability is

retained while allowing for more general and empirically realistic dynamic features.

Many genuine SV representations of empirical interest fall outside of the affine class, however.

For example, Hull and White (1987) develop a theory for option pricing under stochastic

volatility using a model much in the spirit of Taylor’s discrete-time log SV in equation (4.6).

With only a minor deviation from their representation, we may write it, for t 0 [0,T],

dp(t)   =  µ(t) dt  +  F(t) dW(t) ,    

(4.16)

dlog F2(t)  =  β (α - logF2(t)) dt  +  ν dWσ(t).
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The strength of the mean reversion in (log-) volatility is given by β and the volatility is governed

by ν. Positive but low values of  β induces a pronounced volatility persistence, while large values

of ν increase the idiosyncratic variation in the volatility series. Furthermore, the log transform

implies that the volatility of volatility rises with the level of volatility, even if ν  is time invariant.

Finally, a negative correlation, ρ < 0, between the Wiener processes W(t) and Wσ(t) will induce

an asymmetric return-volatility relationship in line with the leverage effect discussed earlier. As

such, these features allow the representation in (4.16) to capture a number of stylized facts about

asset return series quite parsimoniously.

Another popular non-affine specification is the GARCH diffusion analyzed by Drost and Werker

(1996). This representation can formally be shown to induce a GARCH type behavior for any

discretely sampled price series and it is therefore a nice framework for eliciting and assessing

information about the volatility process through data gathered at different sampling frequencies.

This is also the process used in the construction of Figure 1.1.  It takes the form,

dp(t)   =  µ dt  +  F(t) dW(t) ,

(4.17)

dF2(t)  =  $ (" - F2(t)) dt  +  < F2(t) dWF(t) ,

where the two Wiener processes are now independent.

The SV diffusions in (4.16) and (4.17) are but simple examples of the increasingly complex

multi-factor (affine as well as non-affine) jump-diffusions considered in the literature. Such

models are hard to estimate by standard likelihood or method of moments techniques. This

renders their use in forecasting particularly precarious. There is a need for both reliable parameter

estimates and reliable extraction of the values for the underlying state variables. In particular, the

current value of the state vector (and thus volatility) constitutes critical conditioning information

for volatility prediction. The usefulness of such specifications for volatility forecasting is

therefore directly linked to the availability of efficient inference methods for these models.

4.1.3   Estimation and Forecasting Issues in SV Models

The incorporation of a latent volatility process in SV models has two main consequences. First,

estimation cannot be performed through a direct application of maximum likelihood principles.

Many alternative procedures will involve an efficiency loss relative to this benchmark so model

parameter uncertainty may then be larger. Since forecasting is usually made conditional on point

estimates for the parameters, this will tend to worsen the predictive ability of model based

forecasts. Second, since the current state for volatility is not observed, there is an additional layer

of uncertainty surrounding forecasts made conditional on the estimated state of volatility. We

discuss these issues below and the following sections then review two alternative estimation and

forecasting procedures developed, in part, to cope with these challenges.

Formally, the SV likelihood function is given as follows. Let the vector of return (innovations)

and volatilities over [0,T] be denoted by  r  =  ( r1 , ... , rT ) and  s  =  ( s1 , .. , sT ), respectively. 
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Collecting the parameters in the vector θ, the probability density for the data given θ may then be

written as,

 (4.18)
f (r ;θ)'m f (r ,s ;θ)ds ' k

T

t'1

f (r
t
|T

t&1
;θ) ' k

T

t'1 m f (r
t
|s

t
;θ) f (s

t
|T

t&1
;θ)ds

t
.

For parametric discrete-time SV models, the conditional density f(rt | st, θ ) is typically known in

closed form, but  f(st |Tt-1 ;θ) is not available. Without being able to utilize this decomposition, we

face an integration over the full unobserved volatility vector which is a T-dimensional object and

generally not practical to compute given the serial dependence in the latent volatility process.

The initial response to these problems was to apply alternative estimation procedures. In his

original treatment Taylor (1986) uses moment matching. Later, Andersen (1994) shows that it is

feasible to estimate a broad class of discrete-time SV models through standard GMM procedures.

However, this is not particularly efficient as the unconditional moments that may be expressed in

closed form are quite different from the (efficient) score moments associated with the (infeasible)

likelihood function. Another issue with GMM estimates is the need to extract estimates of the

state variables if it is to serve as a basis for volatility forecasting. GMM does not provide any

direct identification of the state variables, so this must be addressed in a second step. In that

regard, the Kalman filter was often used. This technique allows for sequential estimation of

parameters and latent state variables. As such, it provides a conceptual basis for the analysis,

even if the basic Kalman filter is inadequate for general nonlinear and non-Gaussian SV models.

Nelson (1988) first suggested casting the SV estimation problem in a state space setting. We

illustrate the approach for the simplest version of the log SV model without a leverage effect, that

is, ρ = 0 in (4.4) and (4.6).  Now, squaring the expression in (4.3), takings logs and assuming

Gaussian errors in the transition equation for the volatility state in equation (4.6), it follows that

logr
2

t ' logs
t
% logz

2

t , z
t
- i.i.d.N(0,1)

log st+1  =  η0  +  η1  log st  +  ut  ,     ut  -  i.i.d. N(0, σu
2 ).

To conform with standard notation, it is useful to consolidate the constant from the transition

equation into the measurement equation for the log squared return residual.  Defining ht / log st,

we have

logr
2

t ' ω % h
t
% ξ

t
, ξ

t
- i.i.d. (0,4.93)

(4.19)

ht+1  =   η ht  +  ut  ,     ut  -  i.i.d. N(0, σu
2 ),

where ω  =  η0  +  E( log zt
2 )  =   η0  - 1.27,   η =  η1 ,  and  ξt is a demeaned log χ2 distributed

error term. The system in (4.19) is given in the standard linear state space format. The top

equation provides the measurement equation where the squared return is linearly related to the
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latent underlying volatility state and an i.i.d. skewed and heavy tailed error term. The bottom

equation provides the transition equation for the model and is given as a first-order Gaussian

autoregression. 

The Kalman filter applies directly to (4.19) by assuming Gaussian errors, see, e.g., Harvey (1989,

2004). However, the resultant estimators of the state variables and the future observations are

only minimum mean squared error for estimators that are linear combinations of past log rt
2.

Moreover, the non-Gaussian errors in the measurement equation implies that the exact likelihood

cannot be obtained from the associated prediction errors. Nonetheless, the Kalman filter may be

used in the construction of QMLEs of the model parameters for which asymptotically valid

inference is available, even if these estimates generally are fairly inefficient. Arguably, the most

important insight from the state space representation is instead the inspiration it has provided for

the development of more efficient estimation and forecasting procedures through nonlinear

filtering techniques.

The state space representation directly focuses attention on the task of making inference

regarding the latent state vector, i.e., for SV models the question of what we can learn about the

current state of volatility. A comprehensive answer is provided by the solution to the filtering

problem, i.e., the distribution of the state vector given the current information set, f(st | Tt ;θ). 

Typically, this distribution is critical in obtaining the one-step-ahead volatility forecast,

, (4.20)f (s
t
|T

t&1
;θ) ' m f (s

t
|s

t&1
;θ) f (s

t&1
|T

t&1
;θ)ds

t&1

where the first term in the integral is obtained directly from the transition equation in the state

space representation. Once the one-step-ahead distribution has been determined, the task of

constructing multiple-step-ahead forecasts is analogous to the corresponding problem under

ARCH models where multi-period forecasts also generally depend upon the full distributional

characterization of the model. A unique feature of the SV model is instead the smoothing

problem, related to ex-post inference regarding the in-sample volatility given the set of observed

returns over the full sample,  f(st | TT ;θ), where t #T. At the end of the sample, either the filtering

or smoothing solution can serve as the basis for out-of-sample volatility forecasts (for h a

positive integer),

, (4.21)f (s
T%h

|T
T
;θ) ' m f (s

T%h
|s

T
;θ) f (s

T
|T

T
;θ)ds

T

where, again, given the solution for h = 1, the problem of determining the multi-period forecasts

is analogous to the situation with multi-period ARCH-based  forecasts discussed in Section 3.6.

As noted, all of these conditional volatility distributions may in theory be derived in closed form

under the linear Gaussian state space representation via the Kalman filter. Unfortunately, even

the simplest SV model contains some non-Gaussian and/or nonlinear elements. Hence, standard

filtering methods provide, at best, approximate solutions and they have generally been found to
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perform poorly in this setting, in turn necessitating alternative more specialized filtering and

smoothing techniques. Moreover, we have deliberately focused on the discrete-time case above.

For the continuous-time SV models, the complications are more profound as even the discrete

one-period return distribution conditional on the initial volatility state typically is not known in

closed form. Hence, not only is the last term on the extreme right of equation (4.18) unknown,

but the first term is also intractable, further complicating likelihood-based analysis. We next

review two recent approaches that promise efficient inference more generally and also provide

ways of extracting reliable estimates of the latent volatility state needed for forecasting purposes.

4.2  Efficient Method of Simulated Moments Procedures for Inference and Forecasting

The Efficient Method of Moments (EMM) procedure is the prime example of a method of

simulated moments (MSM) approach that has the potential to deliver efficient inference and

produce credible volatility forecasting for general SV models. The intuition behind EMM is that,

by traditional likelihood theory, the scores (the derivative of the log-likelihood with respect to the

parameter vector) provide efficient estimating moments. In fact, maximum likelihood is simply a

just-identified GMM estimator based on the score (moment) vector. Hence, intuitively, from an

efficiency point of view, one would like to approximate the score vector when choosing the

GMM moments. Since the likelihood of SV models is intractable, the approach is to utilize a

semi-nonparametric approximation to the log-likelihood estimated in a first step to produce the

moments. Next, one seeks to match the approximating score moments with the corresponding

moments from a long simulation of the SV model. Thus, the main requirement for applicability

of EMM is that the model can be simulated effectively and the system is stationary so that the

requisite moments can be computed by simple averaging from a simulation of the system. 

Again, this idea, like the MCMC approach discussed in the next section, is, of course, applicable

more generally, but for concreteness we will focus on estimation and forecasting with SV models

for financial rate of returns.

More formally, let the sample of discretely observed returns be given by r  =  (r1 , r2, ... , rT ).

Moreover, let  xt-1 denote the vector of relevant conditioning variables for the log-likelihood

function at time t, and let x  =  (x0 , x1, ... , xT-1 ). For simplicity, we assume a long string of prior

return observations are the only components of x, but other predetermined variables from an

extended dynamic representation of the system may be incorporated as well. In the terminology

of equation (4.18), the complication is that the likelihood contribution from the t’th return is not

available, that is,  f(rt | Tt-1 ; θ) / f(rt | xt-1 ; θ) is unknown. The proposal is to instead approximate

this density by a flexible semi-nonparametric (SNP) estimate using the full data sample. Without

going into specifics, an appropriate procedure may be developed to obtain a close approximation

to this conditional density within a class of SNP densities which are analytically tractable and

allow for explicit computation of the associated score vector. The leading term will typically

consist of a GARCH type model. Essentially, the information regarding the probabilistic

structure available from the data is being encoded into an empirically tractable SNP

representation, so that, for a large enough sample, we have
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, (4.22)g (r
t
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; η̂
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where   denotes the fitted SNP density evaluated at the (pseudo) maximumg (r
t
|x

t&1
; η̂

T
)

likelihood estimate , and θ0  denotes the true (unknown) parameter vector of the modelη̂
T

generating the data under the null hypothesis.  In general, the functional form of g is entirely

different from the unknown f, and hence there is no direct compatibility between the two

parameter vectors η and θ, although we require that the dimension of η is at least as large as that

of θ. Notice how this SNP representation sidesteps the lack of a tractable expression for the

likelihood contribution as given by the middle term in the likelihood expression in (4.18).

Although the SNP density is not used for formal likelihood estimation, it is used to approximate

the “efficient” score moments.

By construction,  satisfies a set of first order conditions for the pseudo log-likelihood functionη̂
T

under the empirical measure induced by the data, that is, letting  rt  =  ( rt , xt-1 ), it holds that,
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It is clear that (4.23) takes the form of (pseudo) score moments. This representation of the data

through a set of (efficient) moment conditions is the key part of the “projection step” of EMM.

The data structure has effectively been projected onto an analytically tractable class of SNP

densities augmented, as appropriate, by a leading dynamic (GARCH) term.

Since we are working under the assumption that we have a good approximation to the underlying

true conditional density, we would intuitively expect that, for T large, 

(4.24)
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and any large artificial sample, , generated by the same assumedr̃ ' ( r̃
1
, r̃

2
, ..., r̃

N
, x̃

0
, x̃

1
, ... , x̃

M&1
)

(true) data generating process, f(rt | Tt-1 ; θ0 ), that is behind the observed return data, r. These

conjectures are formalized by Gallant and Tauchen (1996), who show how the pseudo score

moments obtained in (4.23) by fixing  can serve as valid (and efficient) moment conditions forη̂
T

estimating the parameter of interest, θ. Since no analytic expression for the expectation on the

extreme left in (4.24) is available, they propose a simulation estimator where the expectation is

approximated arbitrarily well by a very large simulated sample moment (M>>T ) from the true

underlying model.  The ability to practically eliminate the simulation error renders the EMM

estimator (in theory) independent of simulation size, M, but the uncertainty associated with the

projection step, for which the sample size is constrained by the actual data, remains and the

estimator, , is asymptotically normal with standard errors that reflects the estimationθ̂
T

uncertainty in (4.23).
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An obvious attraction of the EMM technique, beyond the potential for efficient inference, is that

there are almost no restrictions on the underlying parametric model apart from stationarity and

the ability to be able to simulate effectively from the model. This implies that the procedure can

be used for continuous-time processes, even if we only observe a set of discretely sampled data.

A seemingly important drawback,  however, is the lack of any implied estimates of the

underlying latent state variables which are critical for successful forecasting. Gallant and

Tauchen (1998) provides a solution within the EMM setting through the so-called reprojection

technique, but the procedure can be used more widely in parametric dynamic latent variable

model estimated by other means as well.

Reprojection takes the parameter estimate of the system as given, i.e., the EMM estimator for θ

in the current context.  It is then feasible to generate arbitrarily long simulated series of

observable and latent variables. These simulated series can be used for estimation of the

conditional density via a SNP density function approximation as under the projection step

described above. In other words, the identical procedure is exploited but now for a long

simulated series from the null model rather than for the observed data sample. For illustration, let

 be a long simulated series from the null model,  f(ri | öi-1 ;  ),r̃ ' ( r̃
1
, r̃

2
, ..., r̃

N
, x̃

0
, x̃

1
, ... , x̃

M&1
) θ̂

T

where we condition on the EMM estimate. We may then utilize the SNP density estimate based

on the simulated sample, in lieu of the unknown density for practical calculations,g (r̃
t
| x̃

t&1
; η̃) ,

where the point estimate, is treated as independent of the sample size M since the estimationη̃ ,

error is negligible for a sufficiently large simulated sample. In effect, the simulations integrate

out the latent variables in the representation (4.5). Given the tractability of the SNP densities, we

can now evaluate the one-step-ahead conditional mean and variance (or any other moments of

interest) directly as a function of any observed history xt-1 by simply plugging into the SNP

density estimate and perform the integration analytically - this is the reprojection step of

recombining the SNP density with the actual data. Clearly, the corresponding multi-step ahead

conditional density estimates can be constructed in an analogous fashion. Moreover, since the

simulations also generate contemporaneous values for the latent state vectors we may similarly

represent the conditional distributions of future latent state variables given the current and past

observable variables through the SNP density approximation strategy,

 (4.25)f (s̃
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This allows for direct forecasts of conditional volatility and associated quantities in a genuine SV

setting. As such, reprojection may be interpreted as a numerically intensive, simulation-based,

nonlinear Kalman filtering technique, providing a practical solution to the filtering and

forecasting problems in equations (4.20) and (4.21).

4.3  Markov Chain Monte Carlo (MCMC) Procedures for Inference and Forecasting

The MCMC method represents a Bayesian approach to the high-dimensional inference problem

implicit in the expression for the likelihood given in equation (4.18). The approach was

advocated as particularly well suited for analysis of the discrete SV model by Jacquier, Polson
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and Rossi (1994). Beyond the standard Bayesian perspective of treating the model parameters as

random variables rather than fixed coefficients, the main conceptual shift is that the entire latent

state vector is treated as additional parameters. Hence, the main focus is on the joint distribution

of the parameters and the vector of state variables, ψ = (θ, s ), conditional on the data,  f(ψ | r ),

termed the posterior distribution. This density is extremely high-dimensional and analytically

intractable. The MCMC approach instead exploits that the joint distribution can be characterized

fully through a set of associated conditional distributions where the density for a group of

parameters, or even a single parameter, is expressed conditional on the remaining parameters.

Concretely, let ψi denote the i’th group of coefficients in ψ, and ψ-i be the vector obtained from ψ

by excluding the i’th group of coefficients. The so-called Clifford-Hammersley theorem then

implies that the following set of conditional distributions determines  f(ψ | r ),

f(ψ1 | ψ-1 , r),   f(ψ2 | ψ-2 , r),  ... ,  f(ψk | ψ-k , r), (4.26)

where, as described above, ψ  = (ψ1 , ψ2 , ... , ψk ) is treated as k exclusive subsets of parameters.

The MCMC procedure starts by initializing ψ = (θ, s ) through conditioning on the observed data,

r, and drawing ψ  from the assumed prior distribution. Next, by combining the current draw for

the parameter vector with the specified SV model dynamics and the observed returns, it is often

feasible to draw the (group of) parameters sequentially conditional on the remainder of the

system and cycle through the conditional densities in (4.26). A full run through the parameter

vector is termed a sweep of the MCMC sampler. Some of these distributions may not be given in

closed form and the draws may need to be extended through an accept-reject procedure termed a

Metropolis-Hastings algorithm to ensure that the resulting Markov chain produces draws from

the invariant joint posterior target distribution. If all the conditional distributions can be sampled

directly we have a Gibbs sampler, but SV models often call for the two techniques to be used at

different stages of the sweep, resulting in a hybrid MCMC algorithm. Typically, a large number

of sweeps is necessary to overcome the serial dependence inherent in draws of any parameter

from subsequent sweeps of the sampler. Once a long sample from the joint posterior distribution

has been generated, inference on individual parameters and latent state variables can be done via 

the mode, mean and standard deviation of the posterior distribution, for example. Likewise, we

can analyze properties of functions of the state variables directly using the posterior distribution.

A key advantage of the MCMC procedure is that the distribution of the latent state vector is

obtained as an inherent part of the estimation. Moreover, the inference automatically accounts for

the uncertainty regarding model parameters, θ.  The resulting chain produces an elegant solution

to the smoothing problem of determining  f(s | r ). Of course, from a forecasting perspective, the

interest is in determining  f(st+j | xt  ), where the integer j $ 0 and  xt = (r1 , r2 , ... , rt ), rather than 

f(st+j | xT  ) which is generated by the MCMC procedure. Unfortunately, the filter related

distribution,  f(st+1 | xt  ), corresponds to the intractable term in equation (4.18) that renders the

likelihood estimation impractical for genuine SV models. The MCMC inference procedure

succeeds by sidestepping the need to compute this quantity. However, given the economic import

of the issue, recent research is actively seeking new effective ways for better handling the

filtering problem within the MCMC framework.
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For a discrete-time SV model, the possibility of filtering as well as sequential one-step-ahead

volatility forecasting is linked to the feasibility of providing an effective scheme to generate a

random sample from  f(st+1 | xt , θ  ) given an existing set of draws (or particles),  st
1, st

2, ... , st
N, 

from the preceding distribution  f(st | xt-1 , θ  ). Such an algorithm is termed a particle filter. In

order to recognize the significance of the particle filter, note that by Bayes’ law,
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The first distribution on the right hand side is typically specified directly by the SV model, so the

issue of determining the filtering distribution on the left hand side is essentially equivalent to the

task of obtaining the predictive distribution of the state variable on the extreme right. But given a

large set of particles we can approximate the latter term in straightforward fashion,

(4.28)
f (s

t%1
|x t ,θ ) ' m f (s

t%1
|s

t
,θ ) f (s

t
|x t ,θ ) ds

t
.

1

M
j
M

j'1

f (s
t%1

|s
j

t ,θ ) .

This provides a direct solution to the latent state vector forecasting problem, that in turn can be

plugged into (4.27) to provide a sequential update to the particle filter. This in essence is the

MCMC answer to the filtering and out-of-sample forecasting problems in equations (4.20) and

(4.21). The main substantive problem is how to best sample from the last distribution in (4.28),

as schemes which may appear natural can be very inefficient, see, e.g., the discussion and

suggestions in Kim, Shephard and Chib (1998).

In summary, the MCMC approach works well for many problems of significant interest, but there

are serious issues under scrutiny concerning the use of the technique for more complex settings.

When applicable, it has some unique advantages such as providing a complete solution to the

smoothing problem and accounting for inherent parameter estimation uncertainty. On the other

hand, there are systems that are more amenable to analysis under EMM and the associated

diagnostic tools and general reprojection procedures under EMM render it a formidable

contender. It is remarkable that the issues of efficient forecasting and filtering within genuine SV

models now has two attractive, albeit computationally intensive, solutions whereas just a few

years ago no serious approach to the problem existed.

4.4  Further Reading

The formal distinction between genuine stochastic volatility and ARCH models is developed in

Andersen (1992); see also Fleming and Kirby(2003). An early advocate for the Mixture-of-

Distributions-Hypothesis (MDH), beyond Clark (1973), is Praetz (1972) who shows that an i.i.d.

mixture of a Gaussian term and an inverted Gamma distribution for the variance will produce

Student-t distributed returns. However, if the variance mixture is not linked to observed

variables, the i.i.d. mixture is indistinguishable from a standard fat-tailed error distribution and

the associated volatility process is not part of the genuinely stochastic volatility class.



-46-

Many alternative representations of the driving process st have been proposed. Clark (1973)

observes that trading volume is highly correlated with return volatility and suggest that volume

may serve as a good proxy for the “activity variable,” st . Moreover, he finds volume to be

approximately lognormal (unconditionally), suggesting a lognormal-normal mixture for the

return distribution. One drawback of this formulation is that daily trading volume is assumed

i.i.d. Not only is this counterfactual for trading volume, but it also implies that the return process

is i.i.d.. This is at odds with the strong empirical evidence of pronounced temporal dependence in

return volatility. A number of natural extensions arise from the simple MDH. Tauchen and Pitts

(1983) provide a more structural interpretation, as they develop a characterization of the joint

distribution of the daily return and volume relationship governed by the underlying latent

information flow st. However, partially for tractability, they retain the temporal independence of

the information flow series. For early tests of the MDH model using high-frequency data, see,

e.g., Harris (1986, 1987), while the early return-volume literature is surveyed by Karpoff (1987).

Gallant, Rossi and Tauchen (1992) provides an extensive study of the joint conditional

distribution without imposing any MDH restrictions. Direct studies of the MDH include

Lamoureux and Lastrapes (1994) and Richardson and Smith (1994). While the latter strongly

rejects the standard MDH formulation, Andersen (1996) develops an alternative structurally

based version of the hypothesis and finds the “modified” MDH to perform much better. Further

refinements in the specification have been pursued by, e.g., Liesenfeld (1998, 2001) and

Bollerslev and Jubinsky (1999). In principle, the use of additional non-return variables along

with return data should enhance estimation efficiency and allow for a better assessment of current

market conditions. On the other hand, it is far from obvious that structural modeling of

complicated  multivariate models will prove useful in a prediction context as even minor mis-

specification of the additional series in the system may impede forecast performance. In fact,

there is no credible evidence yet that these models help improve volatility forecast performance,

even if they have importantly enhanced our understanding of the qualitative functioning of

financial markets.

SV diffusion models of the form analyzed by Hull and White (1987) were also proposed

concurrently by Johnson and Shanno (1987), Scott (1987), and Wiggins (1987). An early

specification and exploration of a pure jump continuous-time model is Merton (1976). Melino

and Turnbull (1990) were among the first to estimate SV models via GMM. The log-SV model

from (4.2)-(4.3) has emerged as a virtual testing ground for alternative inference procedures in

this context. Andersen and Sørensen (1996) provide a systematic study of the choice of moments

and weighting matrix for this particular model. The lack of efficiency is highlighted in Andersen,

Chung and Sørensen (1999) where the identical model is estimated through the scores of an

auxiliary model developed in accordance with the efficient method of moments (EMM)

procedure. Another useful approach is to apply GMM to moment conditions in the spectral

domain, see, e.g., Singleton (2001), Jiang and Knight (2002), and Chacko and Viceira (2003).

Within the QMLE Kalman filter based approach, a leverage effect may be incorporated and

allowance for the idiosyncratic return error to be conditionally Student-t distributed can be made,

as demonstrated by Harvey, Ruiz and Shephard (1994) and Harvey and Shephard (1996).

Andersen and Sørensen (1997) provides an extensive discussion of the relative efficiency of

QMLE and GMM for estimation of the discrete-time log SV model. The issue of asymptotically
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optimal moment selection for GMM estimation from among absolute or log squared returns in

the log SV model has received a near definitive treatment in Dhaene and Vergote (2004). The

standard log SV model has also been estimated through a number of other techniques by among

others Danielsson and Richard (1993), Danielsson (1994), Fridman and Harris (1998),

Monfardini (1998), and Sandman and Koopman (1998). Long-memory in volatility as discussed

in Section 3.4 can be similarly accommodated within an SV setting, see, e.g., Breidt, Crato and

de Lima (1998), Harvey (1998), Comte and Renault (1998), and Deo and Hurvich (2001). Duffie,

Pan and Singleton (2000) is a good reference for a general treatment of modeling with the so-

called affine class of models, while Piazzesi (2003) provides a recent survey of these models

with a view toward term structure applications.

EMM may be seen as a refinement of the Method of Simulated Moments (MSM) of Duffie and

Singleton (1993), representing a particular choice of indirect inference criterion, or binding

function, in the terminology of Gouriéroux, Monfort and Renault (1993). The approach also has

precedents in Smith (1990, 1993). An early application of EMM techniques to the discrete-time

SV model is Gallant, Hsieh and Tauchen (1997). Among the earliest papers using EMM for

stochastic volatility models are Andersen and Lund (1997) and Gallant and Tauchen (1997).

Extensions of the EMM approach to SV jump-diffusions are found in Andersen, Benzoni and

Lund (2002) and Chernov, Gallant, Ghysels and Tauchen (2003). As a starting point for

implementations of the EMM procedure, one may access general purpose EMM and SNP code

from a web site maintained by A. Ronald Gallant and George E. Tauchen at Duke University at

the link ftp.econ.duke.edu in the directories pub/get/emm and pub/arg/snp, respectively. In

practical applications, it is often advantageous to further refine the SNP density approximations

through specifically designed leading GARCH terms which parsimoneously capture the

dependency structure in the specific data under investigation. The benefits of doing so is further

discussed in Andersen and Lund (1997) and Andersen, Benzoni and Lund (2002).

The particle filter discussed above for the generation of filter estimates for the latent variables of

interest within the standard SV model arguably provides a more versatile approach than the

alternative importance sampling methods described by, e.g., Danielsson (1994) and Sandmann

and Koopman (1998). The extension of the MCMC inference technique to a continuous-time

setting is discussed in Elerian, Chib and Shephard (2001) and Eraker (2001). The latter also

provides one of the first examples of MCMC estimation of an SV diffusion model, while Eraker,

Johannes and Polson (2003) further introduces jumps in both prices and volatility. Johannes and

Polson (2003) offer a recent comprehensive survey of the still ongoing research on the use of the

MCMC approach in the general nonlinear jump-diffusion SV setting.

5.   Realized Volatility

The notion of realized volatility has at least two key distinct implications for practical volatility

estimation and forecasting. The first relates to the measurement of realizations of the latent

volatility process without the need to rely on an explicit model. As such, the realized volatility

provides the natural benchmark for forecast evaluation purposes. The second relates to the
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possibility of  modeling volatility directly through standard time series techniques with discretely

sampled daily observations, while effectively exploiting the information in intraday high-

frequency data.

5.1   The Notion of Realized Volatility

The most fundamental feature of realized volatility is that it provides a consistent nonparametric

estimate of the price variability that has transpired over a given discrete interval. Any log-price

process subject to a no-arbitrage condition and weak auxiliary assumptions will constitute a

semi-martingale that may be decomposed into a locally predictable mean component and a

martingale with finite second moments. Within this class, there is a unique measure for the

realized sample-path variation termed the quadratic variation. By construction the quadratic

variation cumulates the intensity of the unexpected price changes over the specific horizon and it

is thus a prime candidate for a formal volatility measure.

The intuition behind the use of realized volatility as a return variation measure is most readily

conveyed within the popular continuous-time diffusion setting (4.9) obtained by ruling out jumps

and thus reducing to the representation (1.7), reproduced here for convenience,

dp(t)   =   µ(t) dt  +  F(t) dW(t) ,     t 0 [0,T]. (5.1)

Applying a discretization of the process as in Section 1, we have for small ∆ > 0, that

 , (5.2)r(t,∆) / p(t) & p(t&∆) • µ(t&∆)∆ % σ(t&∆)∆W(t)

where .∆W(t) / W(t)&W(t&∆) - N ( 0 , ∆ )

Over short intervals the squared return and the squared return innovation are closely related as

both are largely determined by the idiosyncratic return component,

. (5.3)r 2(t,∆) • µ2(t&∆)∆2 % 2 ∆ µ(t&∆) σ(t&∆)∆W(t)% σ2(t&∆) (∆W(t))2

In particular, the return variance is (approximately) equal to the expected squared return

innovation,

. (5.4)Var [ r(t,∆) |ö
t&∆

] • E [ r 2(t,∆) |ö
t&∆

] • σ2(t&∆)∆

This suggests that we may be able to measure the return volatility directly from the squared

return observations. However, this feature is not of much direct use as the high-frequency returns

have a large idiosyncratic component that induces a sizeable measurement error into the actual

squared return relative to the underlying variance. Up to the dominant order in ∆,

, (5.5)Var [ r 2(t,∆) |ö
t&∆

] • 2 σ4(t&∆) ∆2
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where terms involving higher powers of ∆ are ignored as they become negligible for small values

of ∆. Thus, it follows that the “noise-to-signal” ratio in squared returns relative to the underlying

volatility is of the same order as volatility itself,

. (5.6)
Var [ r 2(t,∆) |ö

t&∆
]

E [ r 2(t,∆) |ö
t&∆

]
• 2 E [ r 2(t,∆) |ö

t&∆
]

This relationship cannot be circumvented when only one (squared) return observation is used as a

volatility proxy. Instead, by exploiting the fact that return innovations, under a no-arbitrage

(semi-martingale) assumption, are serially uncorrelated to construct volatility measures for lower

frequency returns we find, to dominant order in ∆,

, (5.7)j
1/∆

j'1

E [ r 2(t&1%j@∆,∆) |ö
t&1%j@∆ ] • j

1/∆

j'1

σ2(t&1%j@∆) @∆ • m
t

t&1

σ2(s)ds

where the last approximation stems from the sum converging to the corresponding integral as the

size of ∆ shrinks toward zero. Equation (5.7) generalizes (5.4) to the multi-period setting with the

second approximation in (5.7) only being meaningful for ∆ small.

The advantage of (5.7) is that the uncorrelated “measurement errors” have been effectively

smoothed away to generate a much better noise-to-signal ratio. The expression in (5.5) may be

extended in a similar manner to yield,

. (5.8)j
1/∆

j'1

Var [ r 2(t&1%j@∆,∆) |ö
t&1%j@∆ ] • 2j

1/∆

j'1

σ4(t&1%j@∆) @∆2 • 2∆ m
t

t&1

σ4(s)ds

Consequently,

, (5.9)
j
1/∆

j'1

Var [ r 2(t&1%j@∆,∆) |ö
t&1%j@∆ ]

j
1/∆

j'1

E [ r 2(t&1%j@∆,∆) |ö
t&1%j@∆ ]

• 2 ∆
m
t

t&1

σ4(s)ds

m
t

t&1

σ2(s)ds

/ 2 ∆
IQ (t)

IV (t)

where the integrated quarticity is defined through the identity on the right hand side of (5.9), with

the integrated variance, IV(t), having previously been defined in (4.12).

The fact that the “noise-to-signal” ratio in (5.9) shrinks to zero with ∆ suggests that high-

frequency returns may be very useful for estimation of the underlying (integrated) volatility

process. The notion of realized volatility is designed to take advantage of these features.

Formally, realized volatility is defined as,

. (5.10)RV (t,∆) ' j
1/∆

j'1

r 2(t&1%j @∆,∆)
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Equation (5.8) suggests that realized volatility is consistent for the integrated volatility in the

sense that finer and finer sampling of the intraday returns, ∆ 6 0, ultimately will annihilate the

measurement error and, in the limit, realized volatility measures the latent integrated volatility

perfectly, that is,

RV(t,∆)  6  IV(t) , (5.11)

as ∆ 6 0. These arguments may indeed by formalized; see, e.g., the extended discussion in

Andersen, Bollerslev and Diebold (2003a). In reality, there is a definite lower bound on the

return horizon that can be used productively for computation of the realized volatility, both

because we only observe discretely sampled returns and, more important, market microstructure

features such as discreteness of the price grid and bid-ask spreads induce gross violations of the

semi-martingale property at the very highest return frequencies. This implies that we typically

will be sampling returns at an intraday frequency that leaves a non-negligible error term in the

estimate of integrated volatility. It is natural to conjecture from (5.9) that asymptotically, as ∆60,

, (5.12)1/∆ [RV(t,∆)& IV(t) ] - N (0,2 @ IQ(t) )

which turns out to be true under quite general assumptions. Of course, the IQ(t) measure must be

estimated as well for the above result to provide a practical tool for inference. The distributional

result in (5.12) and a feasible consistent estimator for IQ(t) based purely on intraday data have

been provided by Barndorff-Nielsen and Shephard (2002, 2004b). It may further be shown that

these measurement errors are approximately uncorrelated across consecutive periods which has

important simplifying implications for time series modeling.

The consistency result in (5.11) extends to the general semi-martingale setting where the price

path may display discontinuities due to jumps, as specified in equation (4.9). The realized

volatility will still converge in the continuous-record limit (∆ 6 0) to the period-by-period

quadratic variation of the semi-martingale. However, the quadratic variation is no longer

identical to the integrated volatility but will also include the cumulative squared jumps,

. (5.13)RV(t,∆) 6 QV(t) ' m
t

t&1

σ2(s)ds % j
t&1<s#t

κ2(s)

A few comments are in order. First, QV(t) is best interpreted as the actual return variation that

transpired over the period, and as such it is the natural target for realized volatility measurement.

Second, QV(t) is the realization of a random variable which generally cannot be forecasted with

certainty at time t-1.  But it does represent the future realization that volatility forecasts for time t

should be compared against. In other words, the quadratic variation constitutes the quantity of

interest in volatility measurement and forecasting. Since the realizations of QV(t) are latent, it is

natural to use the observed RV(t,∆) as a feasible proxy. Third, financial decision making is

concerned with forecasts of volatility (or quadratic variation) rather than the QV(t) directly.

Fourth, the identification of forecasts of return volatility with forecasts of quadratic variation is

only approximate as it ignores variation in the process induced by innovations in the conditional

mean process. Over short horizons the distinction is negligible, but for longer run volatility
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prediction (quarterly or annual) one may need to pay some attention to the discrepancy between

the two quantities, as discussed at length in Andersen, Bollerslev and Diebold (2003a).

The distribution theory for quadratic variation under the continuous sample path assumption has

also been extended to cover cumulative absolute returns raised to an arbitrary power. The leading

case involves cumulating the high-frequency absolute returns. These quantities display improved

robustness properties relative to realized volatility as the impact of outliers are mitigated.

Although the limiting quantity - the power variation - is not directly linked to the usual volatility

measure of interest in finance, this concept has inspired further theoretical developments that has

led to intriguing new nonparametric tests for the presence of jumps and the identification of the

associated jump sizes, see, e.g., Barndorff-Nielsen and Shephard (2004a). Since the jumps may

have very different intertemporal persistence characteristics than the diffusion volatility, explicit

disentangling of the components of quadratic variation corresponding to jumps versus diffusion

volatility can have important implications for volatility forecasting.

In summary, the notion of realized volatility represents a model-free approach to (continuous-

record) consistent estimation of the quadratic return variation under general assumptions based

primarily upon arbitrage-free financial markets. As such it allows us to harness the information

inherent in high-frequency returns for assessment of lower frequency return volatility. It is thus

the natural approach to measuring actual (ex post) realized return variation over a given horizon.

This perspective has now gained widespread acceptance in the literature, where alternative

volatility forecast models are routinely assessed in terms of their ability to explain the

distribution of subsequent realized volatility, as defined above.

5.2   Realized Volatility Modeling

The realized volatility is by construction an observed proxy for the underlying quadratic variation

and the associated (measurement) errors are uncorrelated. This suggests a straightforward

approach where the temporal features of the series are modeled through standard time series

techniques, letting the data guide the choice of the appropriate distributional assumptions and the

dynamic representation. This is akin to the standard procedure for modeling macroeconomic data

where the underlying quantities are measured (most likely with a substantial degree of error) and

then treated as directly observed variables. 

The strategy of estimating time series models directly for realized volatility is advocated in a

sequence of papers by Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen,

Bollerslev, Diebold and Labys, henceforth ABDL, (2001, 2003). A striking finding is that the

realized volatility series share fundamental statistical properties across different asset classes,

time periods, and countries. The evidence points strongly toward a long-memory type of

dependency in volatility. Moreover, the logarithmic realized volatility series is typically much

closer to being homoskedastic and approximately unconditionally Gaussian. These features are

readily captured through an ARFIMA(p,d,0)  representation of the logarithmic realized volatility,

M(L) (1-L)d  ( log RV(t,)) - µ0 )   =   ut  ,      t = 1,2, ... T, (5.14)
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where (1-L)d denotes the fractional differencing operator, M(L) is a polynomial lag operator

accounting for standard autoregressive structure, µ0  represents the unconditional mean of the

logarithmic realized volatility, and ut is a white noise error term that is (approximately) Gaussian.

The coefficient d usually takes a value around 0.40, consistent with a stationary but highly

persistent volatility process for which shocks only decay at a slow hyperbolic rate rather than the

geometric rate associated with standard ARMA models or GARCH models for the conditional

variance. Finally, the volatility of volatility is strongly increasing in the level of volatility as log

realized volatility is approximately homoskedastic. This is, of course, reminiscent of the log SV

and the EGARCH models.

A number of practical modeling issues have been sidestepped above. One is the choice of the

sampling frequency at which the realized volatility measures are constructed. The early literature

focused primarily on determining the highest intraday frequency at which the underlying returns

satisfy the maintained semi-martingale assumption of being approximately uncorrelated. An early

diagnostic along these lines termed the “volatility signature plot” was developed by ABDL

(1999, 2000), as discussed further in Section 7 below. A simple alternative is to apply standard

ARMA filtering to the high-frequency returns in order to strip them of any “artificial” serial

correlation induced by the market microstructure noise, and then proceed with the filtered

uncorrelated returns in lieu of the raw high-frequency returns. While none of these procedures are

optimal in a formal statistical sense, they both appear to work reasonable well in many practical

situations.  Meanwhile, a number of alternative more efficient sampling schemes under various

assumptions about the market microstructure complications have recently been proposed in a

series of interesting papers, and this is still very much ongoing research.

A second issue concerns the potential separation of jumps and diffusive volatility components in

the realized volatility process. The theoretical basis for these procedures and some initial

empirical work is presented in Barndorff-Nielsen and Shephard (2004a). The issue has been

pursued empirically by Andersen, Bollerslev and Diebold (2003b), who find compelling evidence

that the diffusive volatility is much more persistent than the jump component. In fact, the jumps

appear close to i.i.d., although the jumps in equity indices display some clustering, especially in

the size of the jumps. This points to potentially important improvements in modeling and

forecasting from this type of separation of the realized volatility into sudden discrete shifts in

prices versus more permanent fluctuations in the intensity of the regular price movements.

Empirically, this is in line with the evidence favoring non-Gaussian fat-tailed return innovations

in ARCH models.

A third issue is the approach used to best accommodate the indications of “long-memory.” An

alternative to fractional integration is to introduce several autoregressive volatility components

into the model. As discussed in the context of the GARCH class of models in Section 3.4, if the

different components display strong, but varying, degrees of persistence they may combine to

produce a volatility dependency structure that is indistinguishable from long-memory over even

relatively long horizons.

5.3   Realized Volatility Forecasting
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Forecasting is straightforward once the realized volatility has been cast within the traditional time

series framework and the model parameters have been estimated. Since the driving variable is the

realized volatility we no longer face a latent variable issue. This implies that standard methods

for forecasting a time series within the ARFIMA framework is available; see, e.g., Beran (1994)

for an introduction to models incorporating long-memory features. One-step-ahead minimum

mean-squared error forecasts are readily produced, and within the linear Gaussian setting it is

then legitimate to further condition on the forecast in order to iterate forward and produce

multiple-step-ahead forecasts. There are a couple of caveats, however. First, as with most other

volatility forecasting procedures, the forecasts are, of course, conditional on the point estimate

for the model parameters. Second, if the model is formulated in terms of the logarithmic

volatility then it is also log volatility that is being predicted through the usual forecast

procedures. There is a practical problem of converting the forecast for log volatility into a “pure”

volatility forecast as the expected value of the transformed variable depends not only on the

expected log volatility, but on the entire multiple-step-ahead conditional distribution of log

volatility. For short horizons this is not an issue as the requisite correction term usually is

negligible, but for longer horizons adjustments may be necessary. This is similar to the issue that

arise in the construction of forecast form the EGARCH model. As discussed in Section 3.6, the

required correction term may be constructed by simulation based methods, but the preferred

approach will depend on the application at hand and the distributional characteristics of the

model. For additional inspiration on how to address such issues consult, e.g., the chapter on

ARMA forecasting methods by Lütkepohl (2003).

A few additional comments are in order. First, the evidence in ABDL (2003a) indicates that the

above approach has very good potential. The associated forecasts for foreign exchange rate

volatility outperform a string of alternative candidate models from the literature. This is not a

tautology as it should be preferable to generate the forecasts from the true underlying model

rather than an ad hoc time series model estimated from period-by-period observations of realized

volatility. In other words, if a GARCH diffusion is the true model then optimal forecasts would

incorporate the restrictions implied by this model. However, the high-frequency volatility process

is truly complex, possessing several periodic components, erratic short run dynamics and longer

run persistence features that combined appear beyond reach of simple parametric models. The

empirical evidence suggests that daily realized volatility serves as a simple, yet effective,

aggregator of the volatility information inherent in the intraday data.

Second, there is an issue of how to compute realized volatility for a calendar period when the

trading day is limited by an official closing. This problem is minor for the over-the-counter

foreign exchange market where 24-hour trading is observed, but this is often not the case for

equity or bond markets. For example, for a one-month-ahead equity volatility forecast there may

only be twenty-two trading days with about six-and-a-half hours of trading per day. But the

underlying price process is not stalled while the markets are closed. Oftentimes there will be

substantial changes in prices between one market close and the subsequent opening, reflecting

return volatility overnight and over the weekend. One solution is to simply rely on the intraday

returns for a realized volatility measure over the trading day and then scale this quantity up by a



-54-

factor that reflects the average ratio of volatility over the calendar day versus the trading day.

This may work quite satisfactorily in practice, but it obviously ignores the close-to-open return

for a given day entirely in constructing the realized volatility for that calendar day. Alternatively,

the volatility of the close-to-open return may be modeled by a conventional GARCH type model.

Third, we have not discussed the preferred sampling frequency of intraday returns in situations

where the underlying asset is relatively illiquid. If updated price observations are only available

intermittently throughout the trading day, many high-frequency returns may have to be computed

from prices or quotes earlier in the day. This brings up a couple of issues. One, the effective

sampling frequency is lower than the one that we are trying to use for the realized volatility

computation. Two, illiquid price series also tend to have larger bid-ask spreads and be more

sensitive to random fluctuations in order flow, implying that the associated return series will

contain a relatively large amount of noise. A simple response that will help alleviate both issues

is to lower the sampling frequency. However, with the use of less intraday returns comes a larger

measurement error in realized volatility, as evidenced by equation (5.12). Nonetheless, for an

illiquid asset it may only be possible to construct meaningful weekly rather than daily realized

volatility measures from say half-hourly or hourly return observations rather than five-minute

returns. Consequently, the intertemporal fluctuations are smoothed out so that the observed

measure carries less information about the true state of the volatility at the end of the period.

This, of course, can be critically important for accurate forecasting.

In sum, the use of the realized volatility measures for forecasting is still in its infancy and many

issues must be explored in future work. However, it is clear that the use of intraday information

has large potential to improve upon the performance of standard volatility forecast procedures

based only on daily or lower frequency data. The realized volatility approach circumvents the

need to model the intraday data directly and thus provides a great deal of simplification.

Importantly, it seems to achieve this objective without sacrificing a lot of efficiency. For

example, Andersen, Bollerslev and Meddahi (2004) find the time series approach built directly

from the realized volatility measures to be very good approximations to the theoretically optimal

procedures in a broad class of SV diffusion models that can be analyzed analytically through

newly developed tools associated with the so-called Eigenfunction SV models of Meddahi

(2001). Nonetheless, if the objective exclusively is volatility forecasting, some very recent work

suggests that alternative intraday measures may carry even more empirically relevant information

regarding future volatility, including the power variation measures constructed from cumulative

absolute returns; see, e.g., Ghysels, Santa-Clara and Valkanov (2004). This likely reflects

superior robustness features of absolute versus squared intraday returns, but verification of such

conjectures awaits future research. The confluence of compelling empirical performance, novel

econometric theory, the availability of ever more high-frequency data and computational power,

and the importance of forecast performance for decision making render this approach fertile

ground for new research.

5.4  Further Reading

The realized volatility approach has a precedent in the use of cumulative daily squared returns as
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monthly volatility measures, see, e.g., French, Schwert and Stambaugh (1987) and Schwert

(1989). Hsieh (1989) was among the first to informally apply this same procedure with high-

frequency intraday returns, while Zhou (1996) provides one of the earliest formal assessments of

the relationship between cumulative squared intraday returns and the underlying return variance,

albeit in a highly stylized setting. The pioneering work by Olsen & Associates on the use of high-

frequency data, as summarized in Dacorogna et al. (2001), also importantly paved the way for

many of the more recent empirical developments in the realized volatility area.

The use of component structures and related autoregressive specifications for approximating

long-memory dependencies within the realized volatility setting has been explored by Andersen,

Bollerslev and Diebold (2003b), Barndorff-Nielsen and Shephard (2001), Bollerslev and Wright

(2001), and Corsi (2003), among others.  The finite sample performance of alternative non-

parametric tests for jumps based on the bipower variation measure introduced by Barndorff-

Nielsen and Shephard (2004a) have been extensively analyzed by Huang and Tauchen (2004).

Andersen, Bollerslev and Diebold (2003b) demonstrate the importance of disentangling the

components of quadratic variation corresponding to jumps versus diffusion volatility for

volatility forecasting. The complexities involved in a direct high-frequency characterization of

the volatility process is also illustrated by Andersen and Bollerslev (1998c).

Ways of incorporating noisy overnight returns into the daily realized volatility measure are

discussed in Fleming, Kirby and Ostdiek (2003) and Hansen and Lunde (2004a).  The related

issue of measuring the integrated variance in the presence of market microstructure noise and

how to best use all of the available high frequency data has been addressed in a rapidly growing

recent literature. Corsi, Zumbach, Müller and Dacorogna (2001) argue for the use of exponential

moving average filtering, similar to a standard MA(1) filter for the high-frequency returns, while

other more recent procedures, including sub-sampling and ways of choosing the “optimal”

sampling frequency, have been suggested and analyzed empirically by, e.g., Aït-Sahalia,

Mykland and Zhang (2005), Bandi and Russell (2004), Barucci and Reno (2002), Bollen and

Inder (2002), Curci and Corsi (2004), and Hansen and Lunde (2004b), among others. Some of

these issues are discussed further in Section 7 below, where we also consider the robust

alternative range based volatility estimator recently explored by Alizadeh, Brandt and Diebold

(2002) for dynamic volatility modeling and forecasting.

Implied volatility provides yet another forward looking volatility measure. Implied volatilities are

based on the market’s forecasts of future volatilities extracted from the prices of options written

on the asset of interest. As discussed in Section 2.2.4 above, using a specific option pricing

formula, one may infer the expected integrated volatility of the underlying asset over the

remaining time-to-maturity of the option. The main complication associated with the use of these

procedures lies in the fact that the option prices also generally reflect a volatility risk premium in

the realistic scenario where the volatility risk cannot be perfectly hedged; see, e.g., the discussion

in Bollerslev and Zhou (2005). Nonetheless, many studies find options implied volatilities to

provide useful information regarding the future volatility of the underlying asset. At the same

time, the results pertaining to the forecast performance of implied volatilities are somewhat

mixed, and there is still only limited evidence regarding the relative predictive power of implied
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volatilities versus the realized volatility procedures discussed above. Another issue is that many

assets of interest do not have sufficiently active options markets that reliable implied volatilities

can be computed on, say, a daily basis.

6.  Multivariate Volatility

The discussion in the preceding three sections has been focused almost exclusively on univariate

forecasts.  Yet, as discussed in Section 2, in many practical situations covariance and/or

correlation forecasting plays an equal, if not even more important, role in the uses of volatility

forecasts.  Fortunately, many of the same ideas and procedures discussed in the context of

univariate forecasts are easily adapted to the multivariate setting.  However, two important

complications arise in this setting, namely the imposition of sufficient conditions to ensure that

the forecasts for the covariance matrix remain positive definite for all forecasting horizons, and,

second, maintaining an empirically realistic yet parsimoniously parameterized model.  We will

organize our discussion of the various multivariate approaches with these key concerns in mind.

Before turning to this discussion, it is worth noting that in many situations, multivariate volatility

modeling and forecasting may be conveniently sidestepped through the use of much-simpler-to-

implement univariate procedures for appropriately transformed series.  In particular, in the

context of financial market volatility forecasting, consider the leading case involving the variance

of a portfolio made up of N individual assets.  In the notation of Section 2.2.1 above,
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where  denotes the N×N covariance matrix for the returns.  A forecast for the portfolioΩ
t%1|t

return variance based upon this representation therefore requires the construction of multivariate

forecasts for the ½N(N+1) unique elements in the covariance matrix for the assets in the

portfolio.  Alternatively, define the univariate time series of artificial historical portfolio returns

constructed on the basis of the weights for the current portfolio in place,

. (6.3)r
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t R
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τ ' 1, 2, . . . , t

A univariate forecast for the variance of the returns on this artificially constructed portfolio

indirectly ensures that the covariances among the individual assets receive exactly the same

weight as in equation (6.2).  Note, that unless the portfolio weights for the actual portfolio in
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place are constantly re-balanced, the returns on this artificially constructed  portfolio will

generally differ from the actual portfolio returns, that is  for τ…t.  Asr
t

w,τ / w
)

t R
τ
† w

)

τ R
τ
/ r

w,τ

such, the construction of the variance forecasts for  requires the estimation of a newr
t

w,τ

(univariate) model each period to properly reflect the relevant portfolio composition in place at

time t.  Nonetheless, univariate volatility models are generally much easier to implement than

their multivariate counterparts, so that this approach will typically be much less computationally

demanding than the formulation of a satisfactory full scale multivariate volatility model for

, especially for large values of N.  Moreover, since the relative changes in the actualΩ
t%1|t

portfolio weights from one period to the next are likely to be small, good starting values for the

parameters in the period-by-period univariate models are readily available from the estimates

obtained in the previous period.  Of course, this simplified approach also requires that historical

returns for the different assets in the portfolio are actually available.  If that is not the case,

artificial historical prices could be constructed from a pricing model, or by matching the returns

to those of other assets with similar characteristics; see, e.g., Andersen, Bollerslev, Christoffersen

and Diebold (2005) for further discussion along these lines.

Meanwhile, as discussed in Sections 2.2.2 and 2.2.3, there are, of course, many situations in

which forecasts for the covariances and/or correlations play a direct and important role in

properly assessing and comparing the risks of different decisions or investment opportunities. 

We next turn to a discussion of some of the multivariate models and forecasting procedures

available for doing so.

6.1  Exponential Smoothing and RiskMetrics

The exponentially weighted moving average filter, championed by RiskMetrics, is arguable the

most commonly applied approach among finance practitioners for estimating time-varying

covariance matrices.  Specifically, let  denote the N×1 vector of asset returns.  TheY
t
/ R

t

estimate for the current covariance matrix is then defined by,
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This directly parallels the earlier univariate definition in equation (3.2), with the additional

assumption that the mean of all the elements in  is equal to zero.  As in the univariate case,Y
t

practical implementation is typically done by truncating the sum at  i = t-1, scaling the finite sum

by .  This approach is obviously very simple to implement in any dimension N,1/[1& (1&γ)t ]

involving only a single tuning parameter, γ, or by appealing to the values advocated by

RiskMetrics (0.06 and 0.04 in the case of daily and monthly returns, respectively) no unknown

parameters whatsoever.  Moreover, the resulting covariance matrix estimates are guaranteed to be

positive definite.

The simple one-parameter filter in (6.4) may, of course, be further refined by allowing for
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different decay rates for the different elements in .  Specifically, by using a smaller value of γΩ̂
t

for the off-diagonal, or covariance, terms in , the corresponding time-varying correlations,Ω̂
t

 , (6.5)ρ̂
ij,t

/
{Ω̂

t
}

ij

{Ω̂
t
}

1/2

ii {Ω̂
t
}

1/2

jj

will exhibit more persistent dynamic dependencies.  This slower rate of decay for the correlations

often provide a better characterization of the dependencies across assets.

Meanwhile, the h-period-ahead forecasts obtained by simply equating the future conditional

covariance matrix with the current filtered estimate,

 , (6.6)Var(Y
t%h

*ö
t
) / Ω

t%h*t . Ω̂
t

are plagued by the same counterfactual implications highlighted in the context of the

corresponding univariate filter in Sections 3.1 and 3.2.  In particular, assuming that the one-

period returns are serially uncorrelated so that the forecast for the covariance matrix of the multi-

period returns equals the sum of the successive one-period covariance forecasts,

, (6.7)Var(Y
t%k
% Y

t%k&1
% ... %Y

t%1
*ö

t
) / Ω

t:t%k|t
. k Ω̂

t

the multi-period covariance matrix scales with the forecast horizon, k, rather than incorporating

empirically more realistic mean-reversion.  Moreover, it is difficult to contemplate the choice of

the tuning parameter(s), γ, for the various elements in  without a formal model.  TheΩ̂
t

multivariate GARCH class of models provides an answer to these problems by formally

characterizing the temporal dependencies in the forecasts for the individual variances and

covariances within a coherent statistical framework.

6.2  Multivariate GARCH Models

The multivariate GARCH class of models was first introduced and estimated empirically by

Bollerslev, Engle and Wooldridge (1998).  Denoting the one-step-ahead conditional mean vector

and covariance matrix for Yt by  and , respectively,Μ
t*t&1

/ E(Y
t
*ö

t&1
) Ω

t*t&1
/ Var(Y

t
*ö

t&1
)

the multivariate version of the decomposition in (3.5) may be expressed as,

, (6.8)Y
t
' Μ

t*t&1
% Ω

1/2

t*t&1 Z
t

Z
t
- i.i.d. E(Z

t
)'0 Var(Z

t
)' I

where Zt now denotes a vector white noise process with unit variances.  The square root of the

matrix is not unique, but any operator satisfying the condition that willΩ
t*t&1

Ω
1/2

t*t&1@Ω
1/2

t*t&1 / Ω
t*t&1

give rise to the same conditional covariance matrix.
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The multivariate counterpart to the successful univariate GARCH(1,1) model in (3.6) is now

naturally defined by,

, (6.9)vech(Ω
t*t&1

) ' C % Avech(e
t&1

e
)

t&1 ) % Bvech(Ω
t&1*t&2

)

where , vech(@ ) denotes the operator that stacks the ½N(N+1) unique elements in thee
t
/ Ω

1/2

t*t&1Zt

lower triangular part of a symmetric matrix into a ½N(N+1)×1 vector, and the parameter

matrices C, A, and B, are of dimensions ½N(N+1)×1, ½N(N+1)×½N(N+1), and

½N(N+1)×½N(N+1), respectively.  As in the univariate case, the GARCH(1,1) model in (6.9) is

readily extended to higher order models by including additional lagged terms on the right-hand-

side of the equation.  Note, that for N=1 the model in (6.9) is identical to formulation in (3.6),

but for N>1 each of the elements in the covariance matrix is allowed to depend (linearly) on all

of the other lagged elements in the conditional covariance matrix as well as the cross products of

all the lagged innovations.

The formulation in (6.9) could also easily be extended to allow for asymmetric influences of past

negative and positive innovations, as in the GJR or TGARCH model in (3.11), by including the

signed cross-products of the residuals on the right-hand-side.  The most straightforward

generalized would be to simply include , but other matricesvech(min{e
t&1

,0}min{e
t&1

,0}) )

involving the cross-products of  and/or  have proven important inmax{e
t&1

,0} min{e
t&1

,0}

some empirical applications.  Of course, other exogenous explanatory variables could be

included in a similar fashion.

Meanwhile, multi-step-ahead forecasts for the conditional variances and covariances from the

linear model in (6.9) are readily generated by recursive substitution in the equation,

(6.10)vech(Ω
t%h*t%h&1

) ' C % Avech(F
t%h&1*t%h&2

) % Bvech(Ω
t%h&1*t%h&2

)

where by definition,

F
t%h*t%h&1

/ e
t%h

e
)

t%h h # 0

and,

.F
t%h*t%h&1

/ Ω
t%h*t%h&1

h$ 1

These recursions, and their extensions to higher order models, are, of course, easy to implement

on a computer.  Also, provided that the norm of all the eigenvalues of A+B are less than unity,

the long-run forecasts for  will converge to the “unconditional covariance matrix” impliedΩ
t%h*t

by the model, , at the exponential rate of decay dictated by (A+B)h.  Again, these( I&A&B )&1C

results directly mirror the univariate expressions in equations (3.8) and (3.9).

Still, nothing guarantees that the  “unconditional covariance matrix” implied by (6.9), 

, is actually positive definite, nor that the recursion in (6.10) results in positive( I&A&B )&1C

definite h-step ahead forecasts for the future covariance matrices.  In fact, without imposing any

additional restrictions on the C, A, and B parameter matrices, the forecasts for the covariance



-60-

matrices will most likely not be positive definite.  Also, the unrestricted GARCH(1,1)

formulation in (6.9) involves a total of ½N4+N3+N2+½N  unique parameters.  Thus, for N=5 the

model has 465 parameters, whereas for N=100 there is a total of 51,010,050 parameters! 

Needless to say, estimation of this many free parameters isn’t practically feasible.  Thus, various

simplifications designed to ensure positive definitness and a more manageable number of

parameters have been developed in the literature.

In the diagonal vech model the A and B matrices are both assumed to be diagonal, so that a

particular element in the conditional covariance matrix only depends on its own lagged value and

the corresponding cross product of the innovations.  This model may alternatively be written in

terms of Hadamard products, or element-by-element multiplication, as

 , (6.11)Ω
t*t&1

' C % AB (e
t&1

e
)

t&1 ) % BBΩ
t&1*t&2

where C, A, and B now denote symmetric positive definite matrices of dimension N×N.  This

model greatly reduces the number of free parameters to 3(N2+N)/2, and, importantly, covariance

matrix forecasts generated from this model according to the recursions in (6.10) are guaranteed to

be positive definite.  However, the model remains prohibitively “expensive” in terms of

parameters in large dimensions.  For instance, for N=100 there are still 15,150 free parameters in

the unrestricted diagonal vech model.

A further dramatic simplification is obtained by restricting all of the elements in the A and B

matrices in (6.11) to be the same,  

. (6.12)Ω
t*t&1

' C % α (e
t&1

e
)

t&1 ) % βΩ
t&1*t&2

This scalar diagonal multivariate GARCH representation mimics the RiskMetrics exponential

smoother in equation (6.4), except for the positive definite C matrix intercept, and the one

additional smoothing parameter.  Importantly however, provided that α+β<1, the unconditional

covariance matrix implied by the model in (6.12) equals Ω = (1-α-β)-1C, and in parallel to the

expression for the univariate GARCH(1,1) model in equation (3.9), the h-period forecasts mean

reverts to Ω according to the formula,

.Ω
t%h*t ' Ω % (α % β )h&1 (Ω

t%1*t & Ω )

This contrasts sharply with the RiskMetrics forecasts, which as previously noted show no mean

reversion, with the counter-factual implication that the multi-period covariance forecasts for

(approximately) serially uncorrelated returns scale with the forecast horizon.  Of course, the

scalar model in (6.12) could easily be refined to allow for different (slower) decay rates for the

covariances by adding just one or two additional parameters to describe the off-diagonal

elements.  Still, the model is arguably too simplistic from an empirical perspective, and we will

discuss other practically feasible multivariate models and forecasting procedures in the

subsequent sections.  Before doing so, however, we briefly discuss some of the basic principles

and ideas involved in the estimation of multivariate GARCH models.
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6.3  Multivariate GARCH Estimation

Estimation and inference for multivariate GARCH models may formally proceed along the same

lines as for the univariate models discussed in Section 3.5.  In particular, assume that the

conditional distribution of  is multivariate normal with mean, , and covariance matrix,Y
t

Μ
t*t&1

.  The log-likelihood function is given by the sum of the corresponding T  logarithmicΩ
t*t&1

conditional normal densities,

logL (θ ;Y
T
, ..., Y

1
) '

(6.13)

 ,&
TN

2
log(2π ) &

1

2
j

T

t'1

logΩ
t*t&1

(θ ) & (Y
t
&Μ

t*t&1
(θ ) ))Ω

t*t&1
(θ )&1(Y

t
&Μ

t*t&1
(θ ) )

where we have highlighted the explicit dependence on the parameter vector, θ.  Provided that the

assumption of conditional normality is true and the parametric models for the mean and

covariance matrices are correctly specified, the resulting estimates, say , will satisfy the usualθ̂
T

optimality conditions associated with maximum likelihood.  Moreover, even if the conditional

normality assumption is violated, the resulting estimates may still be given a QMLE

interpretation, with robust parameter inference based on the “sandwich-form” of the covariance

matrix estimator, as discussed in Section 3.5.

Meanwhile, as discussed in Section 2, when constructing interval or VaR type forecasts, the

whole conditional distribution becomes important.  Thus, in parallel to the discussion in Sections

3.5 and 3.6, other multivariate conditional distributions may be used in place of the multivariate

normal distributions underlying the likelihood function in (6.13).  Different multivariate

generalizations of the univariate fat-tailed student t distribution in (3.24) have proved quite

successful for many daily and weekly financial rate of returns.

The likelihood function in (6.13), or generalizations allowing for conditionally non-normal

innovations, may in principle be maximized by any of a number of different numerical

optimization techniques.  However, even for moderate values of N, say N$5, the dimensionality

of the problem for the general model in (6.9) or the diagonal vech model in (6.11) renders the

computations hopelessly demanding from a practical perspective.  As previously noted, this lack

of tractability motivates the more parsimonious parametric specifications discussed below.

An alternative approach for circumventing the curse-of-dimensionality within the context of the

diagonal vech model has recently been advocated by Ledoit, Santa-Clara and Wolf (2003). 

Instead of estimating all of the elements in the C, A and B matrices jointly, inference in their Flex

GARCH approach proceed by estimating separate bivariate models for all of the possible

pairwise combinations of the N elements in Yt .  These individual matrix estimates are then

“pasted” together to a full dimensional model in such a way that the resulting N×N matrices in

(6.11) are ensured to be positive definite.

Another practical approach for achieving more parsimonious and empirically meaningful
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multivariate GARCH forecasting models rely on so-called variance targeting techniques. 

Specifically, consider the general multivariate formulation in (6.9) obtained by replacing C with 

, (6.14)C ' ( I & A & B )vech(V )

where V denotes a positive definite matrix.   Provided that the norm of all the eigenvalues for

A+B are less than unity, so that the inverse of (I-A-B) exists, this re-parameterization implies that

the long-run forecasts for  will converge to V  for .  As such, variance targeting canΩ
t%h*t h 6 4

help ensure that the long-run forecasts are well behaved.  Of course, this doesn’t reduce the

number of unknown parameters in the model per se, as the long-run covariance matrix, V, must

now be determined.  However, an often employed approach is to fix V at the unconditional

sample covariance matrix,

 ,V̂ '
1

T
j

T

t'1

(Y
t
& M̂

t*t&1
)(Y

t
& M̂

t*t&1
))

where  denotes some first-stage estimate for the conditional mean.  This estimation of VΜ̂
t*t&1

obviously introduces an additional source of parameter estimation error uncertainty, although the

impact of this is typically ignored in practice when conducting inference about the other

parameters entering the equation for the conditional covariance matrix.

6.4  Dynamic Conditional Correlations

One commonly applied approach for large scale dynamic covariance matrix modeling and

forecasting is the Constant Conditional Correlation (CCC) model of Bollerslev (1990). 

Specifically, let  denote the N×N diagonal matrix with the conditional standard deviations,D
t*t&1

or the square root of the diagonal elements in , along the diagonal.  TheΩ
t*t&1

/ Var(Y
t
*ö

t&1
)

conditional covariance matrix may then be uniquely expressed in terms of the decomposition,

, (6.15)Ω
t*t&1

' D
t*t&1

Γ
t*t&1

D
t*t&1

where  denote the N×N  matrix of conditional correlations.  Of course, this decompositionΓ
t*t&1

does not result in any immediate simplifications from a modeling perspective, as the conditional

correlation matrix must now be estimated.  However, following Bollerslev (1990) and assuming

that the temporal variation in the covariances are driven solely by the temporal variation in the

corresponding conditional standard deviations, so that the conditional correlations are constant,

, (6.16)Γ
t*t&1

/ Γ

dramatically reduces the number of parameters in the model relative to the linear vech

specifications discussed above.  Moreover, this assumption also greatly simplifies the

multivariate estimation problem, which may now proceed in two steps.  In the first step N

individual univariate GARCH models are estimated for each of the series in Yt , resulting in an

estimate for the diagonal matrix, .  Then defining the N×1 vector of standardized residualsD̂
t*t&1

for each of the univariate series,
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, (6.17)ĝ
t

/ D̂
&1

t*t&1
(Y

t
& M̂

t*t&1
)

the elements in Γ may simply be estimated by the corresponding sample analogue,

 . (6.18)Γ̂ '
1

T
j

T

t'1

ĝ
t
ĝ
)

t

Importantly, this estimate for Γ is guaranteed to be positive definite with ones along the diagonal

and all of the other elements between minus one and one.  In addition to being simple to

implement, this approach therefore has the desirable feature that as long as the individual

variances in  are positive, the resulting covariance matrices defined by (6.15) areD̂
t*t&1

guaranteed to be positive definite.

While the assumption of constant conditional correlations may often be a reasonable

simplification over shorter time periods, it is arguable too simplistic in many situations of

practical interest.  To circumvent this, while retaining the key features of the decomposition in

(6.15), Engle (2002) and Tse and Tsui (2002) have recently proposed a convenient framework for

directly modeling any temporal dependencies in the conditional correlations.  In the most basic

version of the Dynamic Conditional Correlation (DCC) model of Engle (2002), the temporal

variation in the conditional correlation is characterized by a simple scalar GARCH(1,1) model,

along the lines of (6.12), with the covariance matrix for the standardized residuals targeted at

their unconditional value in (6.18).  That is, 

. (6.19)Q
t*t&1

' (1 & α & β ) Γ̂ % α ( ĝ
t&1
ĝ
)

t&1
) % βQ

t&1*t&2

Although this recursion guarantees that the  matrices are positive definite, the individualQ
t*t&1

elements are not necessarily between minus one and one.  Thus, in order to arrive at an estimate

for the conditional correlation matrix, the elements in  must be standardized, resulting inQ
t*t&1

the following estimate for the ij’th correlation,

 . (6.20)ρ̂
ij,t

/ { Γ̂
t*t&1

}
ij

'
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ij
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ii {Q
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Like the CCC model, the DCC model is also relatively simple to implement in large dimensions,

requiring only the estimation of N univariate models along with a choice of the two exponential

smoothing parameters in (6.19).

Richer dynamic dependencies in the correlations could be incorporated in a similar manner,

although this immediately raises some of the same complications involved in directly

parameterizing .  However, as formally shown in Engle and Sheppard (2001), theΩ
t*t&1

parameters in (6.19) characterizing the dynamic dependencies in , and in turn , may beQ
t*t&1

Γ
t*t&1

consistently estimated in a second step by maximizing the partial log likelihood function,
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)( ' &

1
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T

t'1

log*Γ
t*t&1

(θ )* & ĝ
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t
Γ

t*t&1
(θ )&1 ĝ

t

where  refers to the first step estimates defined in (6.17).  Of course, the standard errors for theĝ
t

resulting correlation parameter estimates must be adjusted to take account of the first stage

estimation errors in .  Extensions of the basic DCC structure in (6.19) and (6.20) alongD̂
t*t&1

these lines allowing for greater flexibility in the dependencies in the correlations across different

types of assets, asymmetries in the way in which the correlations respond to past negative and

positive return innovations, regime switches in the correlations, to name but a few, are currently

being actively explored by a number of researchers.

6.5  Multivariate Stochastic Volatility and Factor Models

An alternative approach for achieving a more manageable and parsimonious multivariate

volatility forecasting model entails the use of factor structures.  Factor structures are, of course,

central to the field of finance, and the Arbitrage Pricing Theory (APT) in particular.  Multivariate

factor GARCH and stochastic volatility models were first analyzed by Diebold and Nerlove

(1989) and Engle, Ng and Rothschild (1990).  To illustrate, consider a simple one-factor model

in which the commonality in the volatilities across the N×1 Rt vector of asset returns is driven by

a single scalar factor, ft,

 , (6.21)R
t
' a % bf

t
% e

t

where a and b denote N×1 parameter vectors, and et is assumed to be i.i.d. through time with

covariance matrix Λ.  This directly captures the idea that variances (and covariances) generally

move together across assets.  Now, assuming that the factor is conditionally heteroskedastic, with

conditional variance denoted by , the conditional covariance matrix for Rtσ
2

t*t&1 / Var( f
t
*ö

t&1
)

takes the form,

. (6.22)Ω
t*t&1

/ Var(R
t
*ö

t&1
) ' bb )σ

2

t*t&1 % Λ

Compared to the unrestricted GARCH models discussed in Section 6.2, the factor GARCH

representation greatly reduces the number of free parameters.  Moreover, the conditional

covariance matrix in (6.22) is guaranteed to be positive definite.

To further appreciate the implications of the factor representation, let bi and λij denote the i’th and

ij’th element in b and Λ, respectively.  It follows then directly from the expression in (6.22) that

the conditional correlation between the i’th and the j’th observation is given by,

 . (6.23)ρ
ij,t

/
b

i
b

j
σ

2

t*t&1 % λ
ij

(b
2

i σ
2

t*t&1 % λ
ii
)1/2 (b

2

j σ
2

t*t&1 % λ
jj
)1/2

Thus, provided that the corresponding factor loadings are of the same sign, or bi bj > 0, the
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conditional correlation implied by the model will increase toward unity as the volatility of the

factor increases.  That is, there is an empirically realistic built-in volatility-in-correlation effect.

Importantly, multivariate conditional covariance matrix forecasts are also readily constructed

from forecasts for the univariate factor variance.  In particular, assuming that the vector of returns

is serially uncorrelated, the conditional covariance matrix for the k-period continuously

compounded returns is simply given by,

, (6.24)Ω
t:t%k*t / Var(R

t%k
% ...%R

t%1
*ö

t
) ' bb )σ

2

t:t%k*t % kΛ

where .  Further assuming that the factor is directly observableσ
2

t:t%k*t / Var( f
t%k
% ...% f

t%1
*ö

t
)

and that the conditional variance for ft  is specified in terms of the observable information set,

, the forecasts for  may be constructed along the lines of the univariate GARCH classö
t&1

σ
2

t:t%k*t

of models discussed in Section 3.  If, on the other hand, the factor is latent or if the conditional

variance for ft  is formulated in terms of unobservable information, Tt-1, one of the more intensive

numerical procedures for the univariate stochastic volatility class of models discussed in Section

4 must be applied in calculating .  Of course, the one-factor model in (6.21) could easily beσ
2

t:t%k*t

extended to allow for multiple factors, resulting in obvious generalizations of the expressions in

(6.22) and (6.24).  As long as the number of factors remain small, the same appealing

simplifications hold true.

Meanwhile, an obvious drawback from an empirical perspective to the simple factor model in

(6.21) with homoskedastic innovations concerns the lack of heteroskedasticity in certain

portfolios.  Specifically, let Ψ={ψ | ψ’b = 0, ψ…0} denote the set of N×1 vectors orthogonal to

the vector of factor loadings, b.  Any portfolio constructed from the N original assets with

portfolio weights, w=ψ /(ψ1 +  . . .+ ψN ) where ψ0Ψ, will then be homoskedastic,

.Var(r
w,t
* ö

t&1
) / Var(w )R

t
*ö

t&1
) ' w )bb )wσ

2

t*t&1 % w )Λw ' w )Λw

Similarly, the corresponding multi-period forecasts defined in (6.24) will also be time invariant.

Yet, in applications with daily or weekly returns it is almost always impossible to construct

portfolios which are void of volatility clustering effects.  The inclusion of additional factors does

not formally solve the problem.  As long as the number of factors is less than N, the

corresponding null-set Ψ is not empty.  Of course, allowing the covariance matrix of the

idiosyncratic innovations to be heteroskedastic would remedy this problem, but that then raises

the issue of how to model the temporal variation in the N×N dimensional Λt matrix.  One

approach would be to include enough factors so that the Λt matrix may be assumed to be

diagonal, only requiring the estimation of N univariate volatility models for the elements in et.

Whether the rank deficiency in the forecasts of the conditional covariance matrices from the

basic factor structure and the counterfactual implication of no volatility clustering in certain

portfolios discussed above should be a cause for concern ultimately depends upon the uses of the

forecasts.  However, it is clear that the reduction in the dimension of the problem to a few

systematic risk factors may afford great computational simplifications in the context of large
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scale covariance matrix modeling and forecasting.

6.6  Realized Covariances and Correlations

The high-frequency data realized volatility approach for measuring, modeling and forecasting

univariate volatilities outlined in Section 5 may be similarly adapted to modeling and forecasting

covariances and correlations.  To set out the basic idea, let R(t,∆) denote the N×1 vector of

logarithmic returns over the [t-∆,t] time interval,

 . (6.26)R(t,∆) / P(t) & P(t&∆)

The N×N realized covariation matrix for the unit time interval, [t-1,t] , is then formally defined

by,

. (6.27)RCOV (t,∆) ' j
1/∆

j'1

R(t&1%j @∆,∆)R(t&1%j @∆,∆))

This directly parallels the univariate definition in (5.10).  Importantly, the realized covariation

matrix is symmetric by construction, and as long as the returns are linearly independent and

N<1/∆, the matrix is guaranteed to be positive definite.

In order to more formally justify the realized covariation measure, suppose that the evolution of

the N×1 vector price process may be described by the N dimensional continuous-time diffusion,

dP(t)   =   9(t) dt  +  E(t) dW(t) ,     t 0 [0,T] , (6.28)

where 9(t) denotes the N×1 instantaneous drifts, E(t) refer to the N×N instantaneous diffusion

matrix, and W(t) now denotes an N×1 dimensional vector of independent standard Brownian

motions.  Intuitively, for small values of ∆ > 0,

 , (6.29)R(t,∆) / P(t) & P(t&∆) • Μ(t&∆)∆ % Σ(t&∆)∆W(t)

where .  Of course, this latter expression directly mirrors∆W(t) / W(t)&W(t&∆) - N( 0 , ∆ I
N

)

the univariate equation (5.2).  Now, using similar arguments to the ones in Section 5.1, it follows

that the multivariate realized covariation in (6.27) will converge to the corresponding

multivariate integrated covariation for finer and finer sampled high-frequency returns, or ∆60, 

. (6.30)RCOV(t,∆) 6 m
t

t&1

Σ(s)Σ(s))ds / ICOV(t)

Again, by similar arguments to the ones in Section 5.1,  the multivariate integrated covariation

defined by the right-hand-side of equation (6.30) provides the true measure for the actual return

variation and covariation that transpired over the [t-1,t] time interval.  Also, extending the

univariate results in (5.12), Barndorff-Nielsen and Shephard (2004b) have recently shown that

the multivariate realized volatility errors, , are approximately1/∆ [RCOV(t,∆)& ICOV(t) ]

serially uncorrelated and asymptotically (for ∆60) distributed as a mixed normal with a random
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covariance matrix that may be estimated.  Moreover following (5.13), the consistency of the

realized covariation measure for the true quadratic covariation caries over to situations in which

the vector price process contains jumps. As such, these theoretical results set the stage for

multivariate volatility modeling and forecasting based on the realized covariation measures along

the same lines as the univariate discussion in Sections 5.2 and 5.3.

In particular, treating the ½N(N+1)×1 vector, vech[RCOV(t,∆)], as a direct observation (with

uncorrelated measurement errors) on the unique elements in the covariation matrix of interest,

standard multivariate time series techniques may be used in jointly modeling the variances and

the off-diagonal covariance elements.  For instance, a simple VAR(1) forecasting model,

analogues to the GARCH(1,1) model in (6.9), may be specified as,

, (6.31)vech[RCOV(t,∆) ] ' C % Avech[RCOV(t&1,∆) ] % u
t

where ut denotes an N×1 vector white noise process.  Of course, higher order dynamic

dependencies could be included in a similar manner.  Indeed, the results in Andersen, Bollerslev,

Diebold and Labys (2001, 2003), suggest that for long-run forecasting it may be important to

incorporate long-memory type dependencies in both variances and covariances.  This could be

accomplished through the use of a true multivariate fractional integrated model, or as previously

discussed an approximating component type structure.

Even though RCOV(t,∆) is positive definite by construction, nothing guarantees that the forecasts

from an unrestricted multivariate time series model along the lines of the VAR(1) in (6.31) will

result in positive definite covariance matrix forecasts.  Hence, it may be desirable to utilize some

of the more restrictive parameterizations for the multivariate GARCH models discussed in

Section 6.2, to ensure positive definite covariance matrix forecasts.  Nonetheless, replacing

 with the directly observable RCOV(t,∆), means that the parameters in the correspondingΩ
t*t&1

models may be estimated in a straightforward fashion using simple least squares, or some other

easy-to-implement estimation method, rather than the much more numerically intensive

multivariate MLE or QMLE estimation schemes.

Alternatively, an unrestricted model for the ½N(N+1) non-zero elements in the Cholesky

decomposition, or lower triangular matrix square-root, of RCOV(t,∆), could also be estimated. 

Of course, the non-linear transformation involved in such a decomposition means that the

corresponding matrix product of the forecasts from the model will generally not be unbiased for

the elements in the covariation matrix itself.  Following Andersen, Bollerslev, Diebold and Labys

(2003), sometimes it might also be possible to infer the covariances of interest from the variances

of different cross-rates or portfolios through appropriately defined arbitrage conditions.  In those

situations forecasts for the covariances may therefore be constructed from a set of forecasting

models for the corresponding variances, in turn avoiding directly modeling any covariances.

The realized covariation matrix in (6.27) may also be used in the construction of realized

correlations, as in Andersen, Bollerslev, Diebold and Labys (2001) and Andersen, Bollerslev,

Diebold and Ebens (2001).  These realized correlations could be modeled directly using standard
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time series techniques.  However, the correlations are, of course, restricted to lie between minus

one and one.  Thus, to ensure that this constraint is not violated, it might be desirable to use the

Fisher transform, , or some other similar transformation, to convertz ' 0.5 @ log[(1%ρ)/(1&ρ)]

the support of the distribution for the correlations from [-1,1] to the whole real line. This is akin

to the log transformation for the univariate realized volatilities employed in equation (5.14). 

Meanwhile, there is some evidence that the dynamic dependencies in the correlations between

many financial assets and markets are distinctly different from that of the corresponding

variances and covariances, exhibiting occasional “correlation breakdowns.”  These types of

dependencies may best be characterized by regime switching type models.  Rather than modeling

the correlations individually, the realized correlation matrix could also be used in place of  inê
t
ê
)

t

the DCC model in (6.19), or some generalization of that formulation, in jointly modeling all of

the elements in the conditional correlation matrix.

The realized covariation and correlation measures discussed above are, of course, subject to the

same market micro structure complications that plague the univariate realized volatility measures

discussed in Section 5.  In fact, some of the problems are accentuated with the possibility of non-

synchronous observations in two or more markets.  Research on this important issues is still very

much ongoing, and it is too early to draw any firm conclusions about the preferred method or

sampling scheme to employ in the practical implementation of the realized covariation measures. 

Nonetheless, it is clear that the realized volatility approach afford a very convenient and powerful

approach for effectively incorporating high-frequency financial data into both univariate and

multivariate volatility modeling and forecasting.

6.7  Further Reading

The use of historical pseudo returns as a convenient way of reducing the multivariate modeling

problem to a univariate setting, as outlined in Section 6.1, is discussed at some length in

Andersen, Bollerslev, Christoffersen and Diebold (2005).  This same study also discusses the use

of a smaller set of liquid base assets along with a factor structure as another computationally

convenient way of reducing the dimension of time-varying covariance matrix forecasting for

financial rate of returns.

The RiskMetrics, or exponential smoothing approach, for calculating covariances and associated

Value-at-Risk measures is discussed extensively in Christoffersen (2003), Jorion (2000), and

Zaffaroni (2004) among others.  Following earlier work by DeSantis and Gerard (1997),

empirically more realistic slower decay rates for the covariances in the context of exponential

smoothing has been successfully implemented by DeSantis, Litterman, Vesval and Winkelmann

(2003).

In addition to the many ARCH and GARCH survey papers and book treatments listed in Section

3, the multivariate GARCH class of models has recently been surveyed by Bauwens, Laurent and

Rombouts (2005).  A comparison of some of the available commercial software packages for the

estimation of multivariate GARCH models is available in Brooks, Burke and Persand (2003).

Conditions for the covariance matrix forecasts for the linear formulations discussed in Section
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6.2 to be positive definite was first established by Engle and Kroner (1995), who also introduced

the so-called BEKK parameterization.  Asymmetries, or leverage effects, within this same class

of models were subsequently studied by Kroner and Ng (1998).  The bivariate EGARCH model

of Braun , Nelson and Sunier (1995) and the recent matrix EGARCH model of Kawakatsu

(2005) offer alternative ways of doing so.  The multivariate GARCH QMLE procedures outlined

in Section 6.3 were first discussed by Bollerslev and Wooldridge (1992), while Ling and

McAleer (2003) provide a more recent account of some of the subsequent important theoretical

developments.  The use of a fat tailed multivariate student t-distribution in the estimation of

multivariate GARCH models was first considered by Harvey, Ruiz and Sentana (1992); see also

Bauwens and Laurent (2005) and Fiorentini, Sentana and Calzolari (2003) for more recent

applications of alternative multivariate non-normal distributions.  Issues related to cross-sectional

and temporal aggregation of multivariate GARCH and stochastic volatility models have been

studied by Nijman and Sentana (1996) and Meddahi and Renault (2004).

Several empirical studies have documented important temporal dependencies in asset return

correlations, including early contributions by Erb, Harvey and Viskanta (1994) and Longin and

Solnik (1995) focusing on international equity returns.  More recent work by Ang and Chen

(2002) and Cappiello, Engle and Sheppard (2004) have emphasized the importance of explicitly

incorporating assymmetries in the way in which the correlations respond to past negative and

positive return shocks.  Along these lines, Longin and Solnik (2001) report evidence in support

of more pronounced dependencies following large (extreme) negative return innovations.  A test

for the assumption of constant conditional correlations underlying the CCC model discussed in

Section 6.4 has been derived by Bera and Kim (2002).  Recent work on extending the DCC

model to allow for more flexible dynamic dependencies in the correlations, asymmetries in the

responses to past negative and positive returns, as well as switches in the correlations across

regimes, include Billio, Caporin and Gobbo (2003), Cappiello, Engle and Sheppard (2004),

Franses and Hafner (2003), and Pelletier (2005).  Guidolin and Timmermann (2005b) find large

variations in the correlation between stock and bond returns across different market regimes

defined as crash, slow growth, bull and recovery. Sheppard (2004) similarly finds evidence of

business cycle frequency dynamics in conditional covariances.  

The factor ARCH models proposed by Diebold and Nerlove (1989) and Engle, Ng and

Rothschild (1990) have been used by Ng, Engle and Rothschild (1992) and Bollerslev and Engle

(1993), among others, in modeling common persistence in conditional variances and covariances. 

Harvey, Ruiz and Shephard (1994) and King, Sentana and Wadhwani (1994) were among the

first to estimate multivariate stochastic volatility models.  More recent empirical studies and

numerically efficient algorithms for the estimation of latent multivariate volatility structures

include Aguilar and West (2000), Fiorentini, Sentana and Shephard (2004) and Liesenfeld and

Richard (2003).  Issues related to identification within heteroskedastic factor models have been

studied by Sentana and Fiorentini (2001).  A recent insightful discussion of the basic features of

multivariate stochastic volatility factor models, along with a discussion of their origins, is

provided in Shephard (2004).  The multivariate Markov-switching multifractal model of Calvet,

Fisher and Thompson (2005) may also be interpreted as a latent factor stochastic volatility model

with a closed form likelihood.  Other related relatively easy-to-implement multivariate
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approaches include the two-step Orthogonal GARCH model of Alexander (2001), in which the

conditional covariance matrix is determined by univariate models for a (small) set of the largest

(unconditional) principal components.

The realized volatility approach discussed in Section 6.6 affords a simple practically feasible way

for covariance and correlation forecasting in situations when high-frequency data is available. 

The formal theory underpinning this approach in the multivariate setting has been spelled out in

Andersen, Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen and Shephard (2004b). 

A precursor to some of these results is provided by the alternative double asymptotic rolling

regression based framework in Foster and Nelson (1996).  The benefits of the realized volatility

approach versus more conventional multivariate GARCH based forecasts in the context of asset

allocation have been forcefully demonstrated by Fleming, Kirby and Ostdiek (2003). 

Meanwhile, the best way of actually implementing the realized covariation measures with high-

frequency financial data subject to market micro structure frictions still remains very much of an

open research question. In a very early paper, Epps (1979) first observed a dramatic drop in high-

frequency based sample correlations among individual stock returns as the length of the return

interval approached zero; see also Lundin, Dacorogna and Müller (1998).  In addition to the

many mostly univariate studies noted in Section 4, Martens (2003) provides a recent assessment

and comparison of some of the existing ways for best alleviating the impact of market micro

structure frictions in the multivariate setting, including the covariance matrix estimator of De

Jong and Nijman (1997), the lead-lag adjustment of Scholes and Williams (1977), and the range-

based covariance measure of Brandt and Diebold (2005).

The multivariate procedures discussed in this section are (obviously) not exhaustive of the

literature.  Other recent promising approaches for covariance and correlation forecasting include

the use of copulas for conveniently linking univariate GARCH (e.g., Jondeau and Rockinger,

2005, and Patton, 2004) or realized volatility models; the use of shrinkage to ensure positive

definitness in the estimation and forecasting of very large dimensional covariance matrices (e.g.,

Jagannathan and Ma, 2003, and Ledoit and Wolf, 2003); and forecast model averaging

techniques (e.g., Pesaran and Zaffaroni, 2004).  It remains to be seen which of these, if any, will

be added to the standard multivariate volatility forecasting toolbox.

7.  Evaluating Volatility Forecasts

The discussion up until this point has surveyed the most important univariate and multivariate

volatility models and forecasting procedures in current use.  This section gives an overview of

some of the most useful methods available for volatility forecast evaluation. The methods

introduced here can either be used by an external evaluator or by the forecaster him/herself as a

diagnostic tool on the forecasting model. A more general discussion and review of the forecast

evaluation literature can be found in Diebold and Lopez (1996) and the chapter by West in this

Handbook.

Below, we will first introduce a general loss function framework and then highlight the particular
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issues involved when forecasting volatility itself is the direct object of interest. We then discuss

several other important forecasting situations where volatility dynamics are crucial, including

Value-at-Risk, probability, and density forecasting. 

7.1  Point Forecast Evaluation from General Loss Functions

Consider the general forecast loss function, , discussed in Section 2, in which theL(y
t%1

, ŷ
t%1|t

)

arguments are the univariate discrete-time real-valued stochastic variable, yt+1 , as well as its

forecast, . From the optimization problem solved by the optimal forecast,  must solveŷ
t%1|t

ŷ
t%1|t

the generic first order condition

(7.1)E
t

ML(y
t%1

,ŷ
t%1|t

)

Mŷ
' 0 .

The partial derivative of the loss function - the term inside the conditional expectation - is

sometimes referred to as the generalized forecast error. Realizations of this partial derivative

should fluctuate unpredictably around zero, directly in line with the standard optimality condition

that regular forecasts display uncorrelated prediction errors.

Specifically, consider the situation in which we observe a sequence of out-of-sample forecasts

and subsequent realizations, .  A natural diagnostic on (7.1) is then given by the{y
t%1

, ŷ
t%1|t

}
T

t'1

simple regression version of the conditional expectation, that is

 , (7.2)
ML(y

t%1
,ŷ

t%1|t
)

Mŷ
' a % b )x

t
% ε

t%1

where xt denotes a vector of candidate explanatory variables in the time t information set

observed by the forecaster, , and b is a vector of regression coefficients. An appropriatelyö
t

calibrated forecast should then have a = b = 0, which can be tested using standard t- and F-tests

properly robustified to allow for heteroskedasticity in the regression errors, εt+1. Intuitively, if a

significant coefficient is obtained on a forecasting variable, which the forecaster should

reasonably have known at time t, then the forecasting model is not optimal, as the variable in

question could and should have been used to make the generalized forecast error variance lower

than it actually is. 

If the forecasts arise from a known well-specified statistical model with estimated parameters

then the inherent parameter estimation error should ideally be accounted for. This can be done

using the asymptotic results in West and McCracken (1998) or the finite sample Monte Carlo

tests in Dufour (2004).  However, external forecast evaluators may not have knowledge of the

details of the underlying forecasting model (if one exists) in which case parameter estimation

error uncertainty is not easily accounted for.  Furthermore, in most financial applications the

estimation sample is typically fairly large rendering the parameter estimation error relatively

small compared with other potentially more serious model specification errors.  In this case

standard (heteroskedasticity robust) t-tests and F-tests may work reasonably well. Note also that
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in the case of, say, h-day forecasts from a daily model, the horizon overlap implies that the first

h-1 autocorrelations will not be equal to zero, and this must be allowed for in the regression.

As an example of the general framework in (7.2), consider the case of quadratic loss,

.  In this situationL(y
t%1

, ŷ
t%1|t

) ' (y
t%1

& ŷ
t%1|t

)2

, (7.3)
ML(y

t%1
,ŷ

t%1|t
)

Mŷ
' & 2(y

t%1
& ŷ

t%1|t
)

which suggests the forecast evaluation regression

. (7.4)(y
t%1

& ŷ
t%1|t

) ' a % b )x
t
% ε

t%1

While the choice of information variables to include in xt is somewhat arbitrary, one obvious

candidate does exist, namely the time t forecast itself.  Following this idea and letting ,x
t
' ŷ

t%1|t

results in the so-called Mincer and Zarnowitz (1969) regression, which can thus be viewed as a

test of forecast optimality relative to a limited information set. We write 

,(y
t%1

& ŷ
t%1|t

) ' a % b ŷ
t%1|t

% ε
t%1

or equivalently

. (7.5)y
t%1

' a % (b%1) ŷ
t%1|t

% ε
t%1

Clearly the ex-ante forecast should not be able to explain the ex post forecast error. For example,

if b is significantly negative, and thus (b+1)<1, then the forecast is too volatile relative to the

subsequent realization and the forecast should be scaled down. 

It is often of interest to compare forecasts from different models, or forecasters. This is easily

done by letting , where  denotes the alternative forecast.  The forecastx
t
' [ŷ

t%1|t
ŷ

A , t%1|t
] ŷ

A , t%1|t

evaluation regression then takes the form,

, (7.6)y
t%1

' a % (b%1) ŷ
t%1|t

% b
A

ŷ
A , t%1|t

% ε
t%1

where a failure to reject the hypothesis that bA = 0 implies that the additional information

provided by the alternative forecast is not significant.  Or, in other words, the benchmark forecast

encompasses the alternative forecast.

7.2  Volatility Forecast Evaluation

The above discussion was cast at a general level. We now turn to the case in which volatility

itself is the forecasting object of interest. Hence,  now refers to some form of ex-posty
t%1

/ σ
2

t:t%1

volatility measure, while  denotes the corresponding ex-ante volatility forecast.y
t%1*t / σ̂

2

t:t%1|t
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The regression-based framework from above then suggests the general volatility forecast

evaluation regression

, (7.7)σ
2

t:t%1 & σ̂
2

t:t%1|t ' a % b )x
t
% ε

t%1

or as a special case the Mincer-Zarnowitz volatility regression

,σ
2

t:t%1 ' a % (b%1) σ̂
2

t:t%1|t % εt%1

where an optimal forecast would satisfy a = b = 0.  Immediately, however, the question arises of

how to actually measure the ex-post variance?  As discussed at some length in Sections 1 and 5,

the “true” variance, or volatility, is inherently unobservable, and we are faced with the challenge

of having to rely on a proxy in order to assess the forecast quality.

The simplest proxy is the squared observation of the underlying variable, , which, when they
2

t%1

mean is zero, has the property of being (conditionally) unbiasedness, or . Thus,E
t
[y

2

t%1] ' σ
2

t:t%1

the accuracy of the volatility forecasts could be assessed by the following simple regression

. (7.8)y
2

t%1 ' a % (b%1) σ̂
2

t:t%1|t % εt%1

However, as illustrated by Figure 1.1, the squared observation typically provides a very noisy

proxy for the true (latent) volatility process of interest. We are essentially estimating the variance

each period using just a single observation, and the corresponding regression fit is inevitably very

low, even if the volatility forecast is accurate.  For instance, regressions of the form (7.8), using

daily or weekly squared returns as the left-hand-side independent variable, typically result in

unspectacular R2s of around 5-10%. We are seemingly stuck with an impossible task, namely to

precisely assess the forecastability of something which is itself not observed.

Fortunately, Figure 1.1 and the accompanying discussion in Sections 1 and 5 suggest a workable

solution to this conundrum. In financial applications observations are often available at very high

frequencies. For instance, even if the forecaster is only interested in predicting volatility over

daily or longer horizons, observations on the asset prices are often available at much finer

intradaily sampling frequencies, say 1/∆ >> 1 observations per “day” or unit time interval. 

Hence, in this situation following the discussion in Section 5.1, a proxy for the (latent) daily

volatility may be calculated from the intradaily squared return as

.RV(t%1,∆) / j
1/∆

j'1

[p(t% j@∆) & p(t% (j&1)@∆)]2

The resulting forecast evaluation regression thus takes the form,

, (7.9)RV(t%1,∆) ' a % (b%1) σ̂
2

t:t%1|t % εt%1

which coincides with (7.8) for ∆ = 1. However, in contrast to the low R2's associated with (7.8),

Andersen and Bollerslev (1998a) find that in liquid markets the R2 of the regression in (7.9) can
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be as high as 50% for the very same volatility forecast that produces an R2 of only 5%-10% in the

former regression!  In other words, even a reasonably accurate volatility forecasting model will

invariably appear to have a low degree of forecastability when evaluated on the basis of a noisy

volatility proxy. Equally important, it will be difficult to detect a poor volatility forecasting

model when a noisy volatility proxy is used. 

Reliable high-frequency information is, of course, not available for all financial markets. Still,

intra-day high and low prices, or quotes, are often available over long historical time periods.

Under idealized conditions - a Geometric Brownian motion with a constant diffusive volatility σ

- the expected value of the log range (the difference between the high and the low logarithmic

price) over the unit time interval is directly related to volatility of the process by the equation

 . (7.10)E [ (max{p(τ) * t#τ<t%1} & min{p(τ) * t#τ<t%1})2] ' 4log(2)σ2

Hence, a range-based proxy for the per-period volatility is naturally defined by

. (7.11)σ
2

r, t:t%1 '
1

4log(2)
(max{p(τ) * t#τ<t%1} & min{p(τ) * t#τ<t%1})2

It is readily seen that, under ideal conditions, this range-based volatility proxy is inferior to the

realized variance measure constructed with a large number of intraday observations, or ∆<<1.

However, as previously discussed, a host of market microstructure and other complications often

render practical situations less than ideal.  Thus, even when high-frequency data are available, the

range-based volatility forecast evaluation regression,

, (7.12)σ
2

r,t:t%1 ' a % (b%1) σ̂
2

t:t%1|t % εt%1

may still provide a useful robust alternative, or complement, to the realized volatility regression

in (7.9).

To illustrate, consider Figure 7.1, which graphs a simulated geometric Brownian motion price

process during a “24 hour,” or “288 five-minute,” period.  The “fundamental,” but unobserved,

price process is given by the dashed line.  In practice, however, we only observe this fundamental

price plus a random bid-ask spread, as indicated by the jagged solid line in the figure. The figure

conveys several important insights. First, notice that the squared daily return is small (close to

zero) even though there are large within-day price fluctuations. As such, the true but unobserved

volatility is fairly high, and poorly estimated by the daily squared return. Second, the bid-ask

bounces effect introduces artificial volatility in the observed prices. As a result, realized

volatilities based on very finely sampled high-frequency squared returns produce upward biased

volatility measures. As previously discussed, it is, of course, possible to adjust for this bias, and

several procedures for doing so have recently been proposed in the literature.  Nonetheless, the

figure highlights the dangers of using too small a value for ∆ in the realized volatility estimation

without accounting for the bid-ask spread effect. Third, the bid-ask spread only affects the range-

based measure (the difference between the two horizontal lines) twice as opposed to 1/∆ times

for every high-frequency return entering the realized volatility calculation. As such, the range
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affords a more robust (to market micro structure frictions) volatility measure.  Meanwhile, an

obvious drawback to the range-based volatility measure is that the multiplicative adjustment in

equation (7.11) only provides an unbiased measure for integrated volatility under the ideal, and

empirically unrealistic, assumption of a geometric Brownian motion, and the “right”

multiplication factor is generally unknown.  Moreover, extensions to multivariate settings and

covariance estimation is difficult to contemplate in the context of the range.

The preceding discussion highlights the need for tools to help in choosing the value of ∆ in the

realized volatility measure.  To this end Andersen, Bollerslev, Diebold and Labys (1999, 2000)

first proposed the “volatility signature plot,” as a simple indicative graphical tool. The signature

plot provides a graphical representation of the realized volatility averaged over multiple days as a

function of the sampling frequency, ∆, going from very high (say one-minute intervals) to low

(say daily) frequencies. Recognizing that the bid-ask spread (and other frictions) generally bias

the realized volatility measure, this suggests choosing the highest frequency possible for which

the average realized volatility appears to have stabilized. To illustrate, Figure 7.2 shows a

simulated example corresponding to the somewhat exaggerated market microstructure effects

depicted in Figure 7.1. In this situation the plot suggests a sampling frequency of around “120 to

180 minutes,” or “2 to 3 hours.” Meanwhile, the actual empirical evidence for a host of actively

traded assets indicate that fixing ∆ somewhere between 5 and 15-minutes typically works well,

but many other more refined procedures for eliminating the systematic bias in the simple realized

volatility estimator are now also available.

7.3  Interval Forecast and Value-at-Risk Evaluation

We now discuss situations where the dynamic volatility constitutes an important part of the

forecast, but the volatility itself is not the direct object of interest, leading examples of which

include Value-at-Risk and probability forecasts.  Specifically, consider the interval forecasts of

the form discussion in Section 2,

, (7.13)ŷ
t%1|t

/ {ŷ
L

t%1|t , ŷ
U

t%1|t}

where the lower and upper parts of the interval forecast are defined so that there is a (1 - p/2)

probability of the ex post realization falling below the lower interval and above the upper

interval, respectively. In other words, the forecast promises that the ex post outcome, yt+1, will

fall inside the ex ante forecasted interval with conditional probability, p.  This setting naturally

suggests the definition of a zero-one indicator sequence taking the value one if the realization

falls inside the predicted interval and zero otherwise. We denote this indicator by

. (7.14)I
t%1

/ I ( ŷ
L

t%1|t < y
t%1

< ŷ
U

t%1|t )

Thus, for a correctly specified conditional interval forecast the conditional probability satisfies,
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,P ( I
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*ö
t
) ' p

which also equals the conditional expectation of the zero-one indicator sequence,

. (7.15)E( I
t%1

*ö
t
) ' p @1 % (1&p) @0 ' p

A general regression version of this conditional expectation is readily expressed as,

, (7.16)I
t%1

&p ' a % b )x
t
% ε

t%1

where the joint hypothesis that a = b = 0 would be indicative of a correctly conditionally

calibrated interval forecast series.

Since the construction of the interval forecast depends crucially on the forecasts for the

underlying volatility, the set of information variables, xt , could naturally include one or more

volatility forecasts. The past value of the indicator sequence itself could also be included in the

regression as an even easier and potentially effective choice of information variable. If the

interval forecast ignores important volatility dynamics then the ex-post observations falling

outside the ex-ante interval will cluster corresponding to periods of high volatility. In turn, this

will induce serial dependence in the indicator sequence leading to a significantly positive b

coefficient for x
t
' (I

t
&p).

As noted in Section 2, the popular Value-at-Risk forecast corresponds directly to a one-sided

interval forecast, and the regression in (7.16) can similarly be used to evaluate, or backtest,

VaR’s. The indicator sequence in this case would simply be 

, (7.17)I
t%1

' I (y
t%1

< VaR
p

t%1|t )

where yt+1 now refers to the ex-post portfolio return. Capturing clustering in the indicator series

(and thus clustered VaR violations) is particularly important within the context of financial risk

management. The occurrence of, say, three VaR violations in one week is more likely to cause

financial distress than three violations scattered randomly throughout the year. Recognizing that

clusters in VaR violations likely are induced by neglected volatility dynamics again highlights

the importance of volatility modeling and forecasting in financial risk management.

7.4  Probability Forecast Evaluation and Market Timing Tests

The interval and VaR forecasts discussed above correspond to quantiles (or thresholds) in the

conditional distribution for a fixed and pre-specified probability of interest, p.  In Section 2 we

also considered probability forecasting in which the threshold of interest is pre-specified, with

the probability of the random variable exceeding the threshold being forecasted.  In this case the

loss function is given by
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where c denotes the threshold, and the optimal forecast equals  .  Theŷ
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generalized forecast error follows directly from (7.3), , resulting in the&2(I(y
t%1

>c)& ŷ
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)

corresponding forecast evaluation regression

, (7.19)I(y
t%1

>c)& ŷ
t%1|t

' a % b )x
t
% ε

t%1

where the hypothesis of probability forecast unbiasedness corresponds to a = 0 and b = 0. Again,

the volatility forecast as well as the probability forecast itself would both be natural candidates

for the vector of information variables. Notice also the similarity between the probability forecast

evaluation regression in (7.19) and the interval forecast and VaR evaluation regression in (7.16).

The probability forecast evaluation framework above is closely related to tests for market timing

in empirical finance. In market timing tests, yt+1 is the excess return on a risky asset and interest

centers on forecasting the probability of a positive excess return, thus c = 0.  In this regard,

money managers are often interested in the correspondence between ex ante probability forecasts

which are larger than 0.5 and the occurrence of a positive excess return ex post.  In particular,

suppose that a probability forecast larger than 0.5 triggers a long position in the risky asset and

vice versa.  The following regression

 , (7.20)I(y
t%1

>0)' a % bI(ŷ
t%1|t

>0.5) % ε
t%1

then provides a simple framework for evaluating the market timing ability in the forecasting

model underlying the probability forecast,  Based on this regression it is also possible toŷ
t%1|t

.

show that b = p+ + p- -1, where p+ and p- denote the probabilities of a correctly forecasted

positive and negative return, respectively. A significantly positive b thus implies that either p+ or

p- or both are significantly larger than 0.5.

7.5  Density Forecast Evaluation

The forecasts considered so far all predict certain aspects of the conditional distribution without

necessarily fully specifying the distribution over the entire support. For many purposes, however,

the entire predictive density is of interest, and tools for evaluating density forecasts are therefore

needed.  In Section 2 we explicitly defined the conditional density forecast as

.ŷ
t%1|t

' f
t%1|t

(y) / f(y
t%1
' y*ö

t
)

The Probability Integral Transform (PIT), defined as the probability of obtaining a value below

the actual ex post realization according to the ex ante density forecast,
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 , (7.21)u
t%1

/ m

yt%1

&4

f
t%1|t

(s)ds

provides a general framework for evaluating the predictive distribution.  As the PIT variable is a

probability, its support is necessarily between zero and one. Furthermore, if the density forecast

is correctly specified, ut+1  must be i.i.d. uniformly distributed,

. (7.22)u
t%1

~ i.i.d. U(0,1)

Intuitively, if the density forecast on average puts too little weight, say, in the left extreme of the

support then a simple histogram of the PIT variable would not be flat but rather have too many

observations close to zero. Thus, the PIT variable should be uniformly distributed. Furthermore,

one should not be able to forecast at time t where in the forecasted density the realization will fall

at time t+1. If one could, then that part of the density forecast is assigned too little weight at time

t. Thus, the PIT variable should also be independent over time.

 

These considerations show that it is not sufficient to test whether the PIT variable is uniformly

distributed on average. We also need conditional tests to properly assess whether the ut+1 's are 

i.i.d.  Testing for an i.i.d. uniform distribution is somewhat cumbersome due to the bounded

support.  Alternatively, one may more conveniently test for normality of the transformed PIT

variable,

, (7.23)ũ
t%1

/ Φ&1(u
t%1

) ~ i.i.d. N (0,1)

where  denotes the inverse cumulative density function of a standard normal variable. Φ&1(u)

In particular, the i.i.d. normal property in (7.23) implies that the conditional moment of any order

j should equal the corresponding unconditional (constant) moment in the standard normal

distribution, say . That isµ
j

. (7.24)E[ ũ
j

t%1*öt
] & µ

j
' 0

This in turn suggests a simple density forecast evaluation system of regressions

, (7.25)ũ
j

t%1&µ
j
' a

j
% b

)

j xj,t
% ε

j,t%1

where j determines the order of the moment in question.  For instance, testing the hypothesis that

 for j = 1, 2, 3, 4 will assess if the first four conditional (non-central) moments area
j
'b

j
'0

constant and equal to their standard normal values.
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Consider now the case where the density forecast specification underlying the forecast

supposedly is known,

. (7.26)y
t%1

' µ
t%1|t

% σ
t%1|t

z
t%1

, z
t%1

~ i.i.d. F

In this situation, it is possible to directly test the validity of the dynamic model specification for

the innovations,

. (7.27)z
t%1

' (y
t%1

&µ
t%1|t

) /σ
t%1|t

~ i.i.d. F

The i.i.d. property is most directly and easily tested via the autocorrelations of various powers, j,

of the standardized residuals, say Corr (z
j

t , z
j

t&k).

In particular, under the null hypothesis that the autocorrelations are zero at all lags, the Ljung-

Box statistics for up to Kth order serial correlation,

, (7.28)LB j(K ) / T (T%2)j
K

k'1

Corr2(z
j

t ,z
j

t&k ) / (T&k )

should be the realization of a chi-square distribution with K degrees of freedom.  Of course, this

K degree of freedom test ignores the fact that the parameters in the density forecasting model

typically will have to be estimated. As noted in Section 7.1, refined test statistics as well as

simulation based techniques are available to formally deal with this issue.

As previously noted, in most financial applications involving daily or weekly returns, it is

reasonable to assume that , so thatµ
t%1|t

. 0

.z
2

t%1 . y
2

t%1 /σ
2

t%1|t

Thus, a dynamic variance model can readily be thought of as removing the dynamics from the

squared observations.  Misspecified variance dynamics are thus likely to show up as significant

autocorrelations in  This therefore suggests setting  j = 2 in (7.28) and calculating the Ljung-z
2

t%1.

Box test based on the autocorrelations of the squared innovations,   This sameCorr (z
2

t , z
2

t&k).

Ljung-Box test procedure can, of course, also be used in testing for the absence of dynamic

dependencies in the moments of the density forecast evaluation variable from (7.23), .ũ
t%1

7.6  Further Reading

This section only scratches the surface on forecast evaluation.  The properties and evaluation of

point forecasts from general loss functions have recently been analyzed by Patton and

Timmermann (2003, 2004). The statistical comparison of competing forecasts under general loss

functions has been discussed by Diebold and Mariano (1995), Giacomini and White (2004), and

West (1996). Forecast evaluation under mean squared error loss is discussed in detail by West in

this Handbook. Interval, quantile and Value-at-Risk forecast evaluation is developed further in
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Christoffersen (1998), Christoffersen (2003), Christoffersen, Hahn and Inoue (2001),

Christoffersen and Pelletier (2004), Engle and Manganelli (2004) and Giacomini and Komunjer

(2005).  The evaluation of probability forecasts, sign forecasts and market timing techniques is

surveyed in Breen, Glosten and Jagannathan (1989), Campbell, Lo and MacKinlay (1997, chapter

2), and Christoffersen and Diebold (2003).  Methods for density forecast evaluation are

developed in Berkowitz (2001), Diebold, Gunther and Tay (1998), Giacomini (2002) and Hong

(2000), as well as the chapter by Corradi and Swanson in this Handbook.

White (2000) provides a framework for assessing if the best forecasting model from a large set of

potential models outperforms a given benchmark. Building on this idea, Hansen, Lunde and

Nason (2003, 2005) develop a model confidence set approach for choosing the best volatility

forecasting model. 

Meanwhile, combining a number of volatility forecasts may be preferable to choosing a single

best forecast. The general topic of forecast combination is discussed in detail in the chapter by

Timmermann in this Handbook. Volatility forecast combination has been found to work well in

practice by Hu and Tsoukalas (1999). 

Further discussion of volatility forecasting and forecast evaluation based on realized volatility

measures can be found in Andersen and Bollerslev (1998a), Andersen, Bollerslev and Meddahi

(2004, 2005), and Patton (2005). Andersen, Bollerslev, Diebold and Labys (1999), Aït-Sahalia,

Mykland, and Zhang (2005) and Bandi and Russel (2003, 2004), Bollen and Inder (2002), Curci

and Corsi (2004), Hansen and Lunde (2004b), Martens (2003), and Zhang, Aït-Sahalia and

Mykland (2005) all analyze the important choice of sampling frequency and/or the use of various

sub-sampling and other corrective procedures in the practical construction of unbiased (and

efficient) realized volatility measures.  Alizadeh, Brandt, and Diebold (2002) discuss the relative

merits of realized and range-based volatility. For early work on the properties of range-based

estimates, see Feller (1951) and Parkinson (1980).

Testing for normality of the transformed Probability Integral Transform (PIT) variable can be

done in numerous ways. A couple of interesting recent procedures for testing dynamic models for

correct distributional assumptions taking into account the parameter estimation error uncertainty

are given by Bontemps and Meddahi (2005) and Duan (2003) .

Several important topics were not explicitly discussed in this section. In the general forecasting

area they include covariance and correlation forecast evaluation (see, e.g., Brandt and Diebold,

2005), as well as related multivariate density forecast evaluation (see, e.g.,  Diebold, Hahn and

Tay, 1999). In the area of financial forecast applications, we did not discuss the evaluation of

time-varying betas (see, e.g., Ghysels, 1998), volatility-based asset allocation (see, e.g., Fleming,

Kirby and Ostdiek, 2001 and 2003), and option valuation models (see, e.g., Bates, 2003, and

Christoffersen and Jacobs, 2004a,b), to mention some. Nonetheless, the general volatility

forecast evaluation framework set out above is flexible enough so that it may easily be adapted to

each of these more specific situations.
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8.  Concluding Remarks

This chapter has focused on rigorous yet practical methods for volatility modeling and

forecasting.  The literature has obviously advanced rapidly and will almost surely continue to

thrive for the foreseeable future, as key challenges remain at least partially open.  Some of these,

such as large-dimensional covariance matrix modeling and practical ways in which to best make

use of the newly available ultra-high-frequency data have been touched upon .

Less obviously, and beyond the narrower realm of mathematical volatility models, the financial-

econometric volatility literature has impacted the financial landscape in additional and important

ways.  Most notably, the newly-entrenched awareness of large time variation and high persistence

in asset return volatility has led to the emergence of volatility as an asset class, with a variety of

vehicles now available for taking positions exclusively in volatility.  This contrasts with

traditional options-based instruments, the value of which varies, for example, with the price of

the underlying in addition to its volatility.  The new vehicles include both exchange-traded

products such as the Chicago Board Options Exchange’s VIX volatility index, which depends

directly on the one-month options implied volatility for the S&P500 aggregate market index, as

well as more specialized over-the-counter volatility and covariance swaps, which are essentially

futures contracts written on various realized volatility measures.

In addition to the obvious and traditional uses of such products, such as hedging volatility

exposure associated with running an options book, important new uses in asset allocation

environments are emerging, as portfolio managers add volatility to otherwise-standard portfolios. 

While large positions in volatility may be undesirable, because volatility reverts to a fixed mean

and hence has zero expected return in the long-run, small positions can provide a valuable hedge

against crisis episodes in which simultaneously plunging prices cause both correlations and

volatilities to increase.  This type of hedge, of course, can be very appealing in both private and

central bank asset-management environments.

Although it would be an exaggeration to claim that the mathematical volatility forecasting

models reviewed here are solely responsible for the emergence and deepening of financial

volatility markets, the development of the models nevertheless provided (and continue to

provide) a major push, the effects of which we predict will continue to evolve and resonate with

financial market practice for many years to come.



-82-

References

Aguilar, O. and M. West (2000), “Bayesian Dynamic Factor Models and Variance Matrix

Discounting for Portfolio Allocation,” Journal of Business and Economic Statistics, 18,

338-357.

Aït-Sahalia, Y. and M. Brandt (2001), “Variable Selection for Portfolio Choice,” Journal of

Finance, 56, 1297-1350.

Aït-Sahalia, Y., P.A. Mykland and L. Zhang (2005), “How Often to Sample a Continuous-Time

Process in the Presence of Market Microstructure Noise,” Review of Financial Studies,

forthcoming.

Alexander, C. (2001)  Market Models: A Guide to Financial Data Analysis.  Chichester, UK:

John Wiley and Sons, Ltd.

Alizadeh, S., M.W. Brandt, and F.X. Diebold (2002), “Range-Based Estimation of Stochastic

Volatility Models,” Journal of Finance, 57, 1047-1092.

Andersen, T.G. (1992), “Volatility,” Working Paper, Finance Department, Kellogg School,

Northwestern University.

Andersen, T.G. (1994), “Stochastic Autoregressive Volatility: A Framework for Volatility

Modeling,” Mathematical Finance, 4, 75-102.

Andersen, T.G. (1996), “Return Volatility and Trading Volume: An Information Flow

Interpretation of Stochastic Volatility,” Journal of Finance, 51, 169-204.

Andersen, T.G., L. Benzoni and J. Lund (2002), “An Empirical Investigation of Continuous-

Time Equity Return Models,” Journal of Finance, 57, 1239-1284.

Andersen, T.G. and T. Bollerslev (1997), “Heterogeneous Information Arrivals and Return

Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns,” Journal of

Finance, 52, 975-1005.

Andersen, T.G. and T. Bollerslev (1998a), “Answering the Skeptics: Yes, Standard Volatility

Models Do Provide Accurate Forecasts,” International Economic Review, 39, 885-905.

Andersen, T.G. and T. Bollerslev (1998b), “ARCH and GARCH Models,” in S. Kotz, C.B. Read

and D.L. Banks (eds), Encyclopedia of Statistical Sciences, Vol.II .  New York: John

Wiley and Sons.

Andersen, T.G. and T. Bollerslev (1998c), “DM-Dollar Volatility: Intraday Activity Patterns,

Macroeconomic Announcements, and Longer Run Dependencies,” Journal of Finance,



-83-

53, 219-265.

Andersen, T.G., T. Bollerslev, P.F. Christoffersen and F.X. Diebold (2005), “Practical Volatility

and Correlation Modeling for Financial Market Risk Management,” in M. Carey and R.

Stulz (eds.), Risks of Financial Institutions.  Chicago: University of Chicago Press for

National Bureau of Economic Research.

Andersen, T.G., T. Bollerslev and F.X. Diebold (2003a), “Parametric and nonparametric

Measurements of Volatility,” forthcoming in Y. Aït-Sahalia and L.P Hansen (eds.),

Handbook of Financial Econometrics, North Holland.

Andersen, T.G., T. Bollerslev and F.X. Diebold (2003b), “Some Like It Smooth and Some Like

It Rough: Untangling Continuous and Jump Components in Measuring, Modeling and

Forecasting Asset Return Volatility,” Working paper, Northwestern University, Duke

University and University of Pennsylvania. 

Andersen, T.G., T. Bollerslev, F.X. Diebold and H. Ebens (2001), “The Distribution of Stock

Return Volatility,” Journal of Financial Economics, 61, 43-76.

Andersen, T., T. Bollerslev, F.X. Diebold, and P. Labys (1999), “(Understanding, Optimizing,

Using and Forecasting) Realized Volatility and Correlation ,” Working Paper,

Northwestern University, Duke University and University of Pennsylvania.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2000), “Great Realizations,”Risk

Magazine, 18, 105-108.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2001), “The Distribution of Exchange

Rate Volatility,” Journal of the American Statistical Association, 96, 42-55.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2003), “Modeling and Forecasting

Realized Volatility,” Econometrica, 71, 579-625.

Andersen. T.G., T. Bollerslev, and N. Meddahi (2004), “Analytic Evaluation of Volatility

Forecasts,” International Economic Review, 45, 1079-1110.

Andersen. T.G., T. Bollerslev, and N. Meddahi (2005), “Correcting the Errors: Volatility

Forecast Evaluation Using High-Frequency Data and Realized Volatilities,”

Econometrica, 73, 279-296.

Andersen, T.G. and J. Lund (1997), “Estimating Continuous-Time Stochastic Volatility Models

of the Short term Interest Rate Diffusion,” Journal of Econometrics, 77, 343-377.

Andersen, T.G. and B.E. Sørensen (1996), “GMM Estimation of a Stochastic Volatility Model:

A Monte Carlo Study,” Journal of Business & Economic Statistics, 14, 328-352.



-84-

Andersen, T.G. and B.E. Sørensen (1997), “GMM and QML Asymptotic Standard Deviations in

Stochastic Volatility Models: Comments on Ruiz (1994),” Journal of Econometrics, 76,

397-403.

Ang, A. and J. Chen (2002), “Asymmetric Correlation of Equity Portfolios,” Journal of

Financial Economics, 63, 443-494.

Andreou, E. and E. Ghysels (2002), “Detecting Multiple Breaks in Financial Market Volatility

Dynamics,” Journal of Applied Econometrics, 17, 579-600.

Bachelier, L. (1900), “Théorie de la Spéculation,” Annales de l’Ecole Normale Supérieure, 3,

Paris: Gauthier-Villars. English translation in Cootner, P.H. ed. (1964), The Random

Character of Stock Market Prices, Cambridge, Massachusetts: MIT Press.

Baillie, R.T. and T. Bollerslev (1992), “Prediction in Dynamic Models with Time Dependent

Conditional Variances,” Journal of Econometrics, 52, 91-113.

Baillie, R.T., T. Bollerslev and H.O. Mikkelsen (1996), “Fractionally Integrated Generalized

Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 74, 3-30.

Bakshi, G, C. Cao and Z. Chen (1997), “Empirical Performance of Alternative Option Pricing

Models,” Journal of Finance, 52, 2003-2049.

Bandi, F. and J. Russell (2003), “Volatility or Microstructure Noise,” Working Paper, University

of Chicago.

Bandi, F. and J.R. Russell (2004), “Microstructure Noise, Realized Variance, and Optimal

Sampling,” Working paper, Graduate School of Business, University of Chicago.

Banerjee, A. and G. Urga (2005), “Modelling Structural Breaks, Long Memory and Stock Market

Volatility: An Overview,” Journal of Econometrics, forthcoming.

Barndorff-Nielsen, O.E. and N. Shephard (2001), “Non-Gaussian Ornstein-Uhlenbeck-based

Models and Some of their Uses in Financial Economics,” Journal of the Royal Statistical

Society, Series B, 63, 167-207.

Barndorff-Nielsen, O.E. and N. Shephard (2002), “Estimating Quadratic Variation Using

Realised Variance,” Journal of Applied Econometrics, 17, 457-477.

Barndorff-Nielsen, O.E. and N. Shephard (2004a), “Power and Bipower Variation with

Stochastic Volatility and Jumps,” Journal of Financial Econometrics, 2, 1-37.

Barndorff-Nielsen, O.E. and N. Shephard (2004b), “Econometric Analysis of Realized



-85-

Covariation: High Frequency Based Covariance, Regression and Correlation in Financial

Economics,” Econometrica, 72, 885-925.

Barone-Adesi, G., K. Giannopoulos and L. Vosper (1999), “VaR without Correlations for

Non-Linear Portfolios,” Journal of Futures Markets, 19, 583-602.

Barrett, C. (1999), “The effects of real exchange rate depreciation on stochastic producer prices

in low-income agriculture,” Agricultural Economics 20, 215-230.

Barucci, E. and R. Reno (2002), “On Measuring Volatility and the GARCH Forecasting

Performance,” Journal of International Financial Markets, Institutions and Money, 12,

182-200.

Bates, D.S. (1996), “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in

Deutsche Mark Options,” Review of Financial Studies, 9, 69-107.

Bates, D.S. (2003) “Empirical Option Pricing: A Retrospection,” Journal of Econometrics, 116,

387-404.

Battle, C. and J. Barquin (2004), “Fuel Prices Scenario Generation Based on a Multivariate

Garch Model for Risk Analysis in a Wholesale Electricity Market,” International Journal

of Electrical Power and Energy Systems, 26, 273-280.

Bauwens, L. and S. Laurent (2005), “A New Class of Multivariate Skew Densities with

Application to GARCH Models,” Journal of Business and Economic Statistics,

forthcoming.

Bauwens, L., S. Laurent and J.V.K. Rombouts (2005), “Multivariate GARCH Models: A

Survey,” Journal of Applied Econometrics, forthcoming.

Bauwens, L. and M. Lubrano (1998), “Bayesian Inference on GARCH models using the Gibbs

Sampler,” The Econometrics Journal, 1, 23-46.

Bauwens, L. and M. Lubrano (1999).  Bayesian Dynamic Econometrics. Oxford University

Press.

Bekaert, G. and G. Wu (2000), “Asymmetric Volatility and Risk in Equity Markets,” Review of

Financial Studies, 13, 1-42.

Bera, A.K. and S. Kim (2002), “Testing Constancy of Correlation and other Specifications of the

BGARCH Model with an Application to International Equity Returns,” Journal of

Empirical Finance, 7, 305-362.

Beran, J. (1994).  Statistics for Long-Memory Processes.  New York: Chapman & Hall.



-86-

Berkowitz, J. (2001), “Testing Density Forecasts with Applications to Risk Management”

Journal of Business and Economic Statistics, 19, 465-474.  

Berkowitz, J. and J. O'Brien (2002), “How Accurate are the Value-at-Risk Models at

Commercial Banks?” Journal of Finance, 57, 1093-1112.

Billio, M., M. Caporin and M. Gobbo (2003), “Block Dynamic Conditional Correlation

Multivariate GARCH Models,” Working Paper, Università di Venezia.

Black, F. (1976), “Studies of Stock Market Volatility Changes,” Proceedings of the American

Statistical Association, Business and Economic Statistics Section, 177-181.

Black, F. and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities,” Journal of

Political Economy, 81, 637-654.

Bollen, B. and B. Inder (2002), “Estimating Daily Volatility in Financial Markets Utilizing

Intraday Data,” Journal of Empirical Finance, 9, 551-562.

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of

Econometrics, 31, 307-327.

Bollerslev, T. (1987), “A Conditionally Heteroskedastic Time Series Model for Speculative

Prices and Rates of Return,” Review of Economics and Statistics, 69, 542-547.

Bollerslev, T. (1990), “Modeling the Coherence in Short-Run Nominal Exchange Rates: A

Multivariate Generalized ARCH Model,” Review of Economics and Statistics, 72, 498-

505.

Bollerslev, T., R.Y. Chou and K.F. Kroner (1992), “ARCH Modeling in Finance: A Selective

Review of the Theory and Empirical Evidence,” Journal of Econometrics, 52, 5-59.

Bollerslev, T. and R.F. Engle (1993), “Common Persistence in Conditional Variances,”

Econometrica, 61, 167-186.

Bollerslev, T., R.F. Engle and D.B. Nelson (1994), “ARCH Models,” in R.F. Engle and D.

McFadden (eds.), Handbook of Econometrics, Volume IV, 2959-3038.  Amsterdam: 

North-Holland.

Bollerslev, T., R.F. Engle and J.M. Wooldridge (1988), “A Capital Asset Pricing Model with

Time Varying Covariances,” Journal of Political Economy, 96, 116-131.

Bollerslev, T. and P.D. Jubinsky (1999), “Equity Trading Volume and Volatility: Latent

Information Arrivals and Common Long-Run Dependencies,” Journal of Business &



-87-

Economic Statistics, 17, 9-21.

Bollerslev, T. and H.O. Mikkelsen (1996), “Modeling and Pricing Long Memory in Stock

Market Volatility,” Journal of Econometrics, 73, 151-184.

Bollerslev, T. and H.O. Mikkelsen (1999), “Long-Term Equity Anticipation Securities and Stock

Market Volatility Dynamics,” Journal of Econometrics, 92, 75-99.

Bollerslev, T. and J.M. Wooldridge (1992), “Quasi-Maximum Likelihood Estimation and

Inference in Dynamic Models with Time Varying Covariances,” Econometric Reviews,

11, 143-172.

Bollerslev, T. and J.H. Wright (2001), “Volatility Forecasting, High-Frequency Data, and

Frequency Domain Inference,” Review of Economic and Statistics, 83, 596-602.

Bollerslev, T. and H. Zhou (2005), “Volatility Puzzles: A Simple Framework for Gauging

Return-Volatility Regressions,” Journal of Econometrics, forthcoming.

Bontemps, C. and N. Meddahi (2005), “Testing Normality: A GMM Approach,” Journal of

Econometrics, forthcoming.

Brandt, M.W. (1999), “Estimating Portfolio and Consumption Choice: A Conditional Euler 

Equations Approach,” Journal of Finance, 54, 1609-1646.

Brandt, M.W. (2004), “Portfolio Choice Problems,” in Y. Aït-Sahalia and L.P. Hansen (eds.),

Handbook of Financial Econometrics, forthcoming. 

Brandt, M.W. and F.X. Diebold (2005), “A No-Arbitrage Approach to Range-Based Estimation

of Return Covariances and Correlations,” Journal of Business, forthcoming.

Brandt, M.W. and C. Jones (2002), “Volatility Forecasting with Range-based EGARCH

Models,” Working Paper,  The Wharton School, University of Pennsylvania.

Braun, P.A., D.B. Nelson and A.M. Sunier (1995), “Good News, Bad News, Volatility, and

Betas,” Journal of Finance, 50, 1575-1603.

Breen, W., L.R. Glosten and  R. Jagannathan (1989), “Economic significance of predictable

variations in stock index returns,” Journal of Finance, 44, 1177-1189. 

Breidt, F.J. N. Crato and P.F.J. de Lima (1998), “On the Detection and Estimation of Long

Memory in Stochastic Volatility,” Journal of Econometrics, 83, 325-348.

Brooks, C. (1997), “GARCH Modelling in Finance: A Review of the Software Options,” The

Economic Journal, 107, 1271-1276.



-88-

Brooks, C. (2002) Introductory Econometrics for Finance.  Cambridge, UK: Cambridge

University Press.

Brooks, C., S.P. Burke and G. Persand (2001), “Benchmarks and the Accuracy of GARCH

Model Estimation,” International Journal of Forecasting, 17, 45-56.

Brooks, C., S.P. Burke and G. Persand (2003), “Multivariate GARCH Models: Software Choice

and Estimation Issues,” Journal of Applied Econometrics, 18, 725-734.

Buguk, C., D. Hudson and T. Hanson (2003), “Price Volatility Spillover in Agricultural Markets:

an Examination of U.S. Catfish Markets,” Journal of Agricultural and Resource

Economics, 28, 86-99.

Calvet, L. and A. Fisher (2002), “Multifractality in Asset Returns: Theory and Evidence,” Review

of Economics and Statistics, 84, 381-406.

Calvet, L. and A. Fisher (2004), “How to Forecast Long-Run Volatility: Regime Switching and

the Estimation of Multifractal Processes” Journal of Financial Econometrics, 2, 49-83.

Calvet, L.E., A.J. Fisher and S.B. Thompson (2005), “Volatility Comovement: A Multifrequency

Approach,” Journal of Econometrics, forthcoming.

Campbell, S. and F.X. Diebold (2005), “Weather Forecasting for Weather Derivatives,” Journal

of the American Statistical Association, 100, 6-16.

Campbell, J.Y. (1987) “Stock Returns and the Term Structure,” Journal of Financial Economics,

18, 373-399.

Campbell, J.Y. (2003) “Consumption-based Asset Pricing,” in: Constantinides, G.M., Harris, M.,

and Stulz, R. eds., Handbook of the Economics of Finance, Vol. 1B (North-Holland,

Amsterdam) 803-888.

Campbell, J.Y. and L. Hentschel (1992), “No News is Good News: An Asymmetric Model of

Changing Volatility in Stock Returns,” Journal of Financial Economics, 31, 281-318.

Campbell, J.Y., A.W. Lo and A.C. MacKinlay (1997) The Econometrics of Financial Markets. 

Princeton, NJ: Princeton University Press.

Cappiello, L., R.F. Engle and K. Sheppard (2004), “Asymmetric Dynamic in the Correlations of

Global Equity and Bond Returns,” Working Paper, NYU Stern School of Business.

Chacko, G. and L.M. Viceira (2003), “Spectral GMM Estimation of Continuous-Time

Processes,” Journal of Econometrics, 116, 259-292.



-89-

Chan, N.H. (2002)  Time Series: Applications to Finance.  New York: John Wiley and Sons, Inc.

Chernov, M., A.R. Gallant, E. Ghysels and G.E. Tauchen (2003), “Alternative Models for Stock

Price Dynamics,” Journal of Econometrics, 116, 225-257.

Chernov, M., and E. Ghysels (2000), “A Study Towards a Unified Framework for the Joint

Estimation of Objective and Risk Neutral Measures for the Purpose of Options

Valuation,” Journal of Financial Economics, 56, 407-458.

Christie, A.A. (1982), “The Stochastic Behavior of Common Stock Variances: Value, Leverage

and Interest Rate Effects,” Journal of Financial Economics, 10, 407-432.

Christoffersen, P. (1998), “Evaluating Interval Forecasts,” International Economic Review, 39,

841-862.

Christoffersen, P.F. (2003)  Elements of Financial Risk Management.  San Diego: Academic

Press.

Christoffersen, P.F., and F.X. Diebold, (1996), “Further Results on Forecasting and Model

Selection under Asymmetric Loss,” Journal of Applied Econometrics, 11, 561-572.

Christoffersen, P.F. and F.X. Diebold (1997), “Optimal Prediction under Asymmetric Loss,”

Econometric Theory, 13, 808-817. 

Christoffersen, P.F. and F.X. Diebold (2000) “How Relevant is Volatility Forecasting for

Financial Risk Management?” Review of Economics and Statistics, 82, 12-22.

Christoffersen, P.F. and F.X. Diebold (2003), “Financial Asset Returns, Direction-of-Change

Forecasting, and Volatility Dynamics,” Cambridge, Mass.: NBER Working Paper 10009.

Christoffersen, P., J. Hahn and A. Inoue (2001), “Testing and Comparing Value-at-Risk

Measures,” Journal of Empirical Finance, 8, 325-342.

Christoffersen, P. and K. Jacobs (2004a), “The Importance of the Loss Function in Option

Valuation,” Journal of Financial Economics, 72, 291-318.

Christoffersen, P. and K. Jacobs (2004b), “Which GARCH model for Option Valuation?”

Management Science,  50, 1204-1221. 

Christoffersen, P. and D. Pelletier (2004), “Backtesting Value-at-Risk: A Duration-Based

Approach,” Journal of Financial Econometrics, 2, 84-108.

Clark, P.K. (1973), “A Subordinated Stochastic Process Model with Finite Variance for

Speculative Prices,” Econometrica, 41, 135-156.



-90-

Cochrane, J. (2001), Asset Pricing, Princeton: Princeton University Press.

Comte, F. and E. Renault (1998), “Long Memory in Continuous-Time Stochastic Volatility

Models,” Mathematical Finance, 8, 291-323.

Corsi, F. (2003), “A Simple Long Memory Model of realized Volatility,” Working paper,

University of Southern Switzerland.

Corsi, F., G. Zumbach, U.A. Müller and M. Dacorogna (2001), “Consistent High-Precision

Volatility From High-Frequency Data,” Economic Notes, 30, 183-204.

Curci, G. and F. Corsi (2004), “A Discrete Sine Transform Approach for Realized Volatility

Measurement,” Working Paper, University of Pisa and University of Southern

Switzerland.

Dacorogna, M.M., U.A. Müller, R.J. Nagler, R.B. Olsen and O.V. Pictet (2001)  An Introduction

to High-Frequency Finance.  San Diego: Academic Press.

Danielsson, J. (1994), “Stochastic Volatility in Asset Prices: Estimation by Simulated Maximum

Likelihood,” Journal of Econometrics, 54, 375-400.

Danielsson, J. and J.F. Richard (1993), “Accelerated Gaussian Importance Sampler with

Application to Dynamic Latent variable Models,” Journal of Applied Econometrics, 8,

S153-S173.

Davidson, J. (2004), “Moment and Memory Properties of Linear Conditional Heteroskedasticity

Models, and a New Model,” Journal of Business and Economic Statistics, 22, 16-29.

De Jong, F. and T. Nijman (1997), “High Frequency Analysis of Lead-Lag Relationships

between Financial Markets,” Journal of Empirical Finance, 4, 259-277.

Deo, R. and C. Hurvich (2001), “On the Log Periodogram Regression Estimator of the Memory

Parameter in Long Memory Stochastic Volatility Models," Econometric Theory, 17, 686-

710.

DeSantis, G. and B. Gerard (1997), “International Asset Pricing and Portfolio Diversification

with Time-Varying Risk,” Journal of Finance, 52, 1881-1912.

DeSantis, G., R. Litterman, A. Vesval and K. Winkelmann (2003), “Covariance Matrix

Estimation,” in R. Litterman (ed.), Modern Investment Management: An Equilibrium

Approach.  London, UK: John Wiley and Sons, Ltd.

Dhaene, G. and O. Vergote (2004), “Asymptotic Results for GMM Estimators of Stochastic



-91-

Volatility Models,” Working Paper, Department of Economics, K.U. Leuven.

Diebold, F.X. (1988), Empirical Modeling of Exchange Rate Dynamics. New York:  Springer-

Verlag.

Diebold, F.X. (2004), “The Nobel Memorial Prize for Robert F. Engle,” Scandinavian Journal of

Economics, 106, 165-185.

Diebold, F.X., T. Gunther, T. and A. Tay (1998), “Evaluating Density Forecasts, with

Applications to Financial Risk Management,” International Economic Review, 39,

863-883. 

Diebold, F.X., J. Hahn, J. and A. Tay (1999), “Multivariate Density Forecast Evaluation and

Calibration in Financial Risk Management: High-Frequency Returns on Foreign

Exchange,” Review of Economics and Statistics, 81, 661-673. 

Diebold, F.X. and A. Inoue (2001), “Long Memory and Regime Switching,” Journal of

Econometrics, 105, 131-159.

Diebold, F.X. and J. Lopez (1995), “Modeling Volatility Dynamics,” in K. Hoover (ed.),

Macroeconometrics: Developments, Tensions and Prospects, 427-472.  Boston: Kluwer

Academic Press.

Diebold, F.X. and J. Lopez (1996), “Forecast Evaluation and Combination,” in G.S. Maddala and

C.R. Rao (eds.), Handbook of Statistics, Amsterdam: North-Holland, 241-268. 

Diebold, F.X. and R.S. Mariano (1995), “Comparing Predictive Accuracy,” Journal of Business

and Economic Statistics, 13, 253-265.

Diebold, F.X. and M. Nerlove (1989), “The Dynamics of Exchange Rate Volatility: A

Multivariate Latent Factor ARCH Model,” Journal of Applied Econometrics, 4, 1-21.

Ding, Z. and C.W.J. Granger (1996), “Modeling Volatility Persistence of Speculative Returns: A

New Approach,” Journal of Econometrics, 73, 185-215.

Ding, Z., C.W.J. Granger and R.F. Engle (1993), “A Long Memory Property of Stock Market

Returns and a New Model,” Journal of Empirical Finance, 1, 83-106.

Drost, F.C. and T.E. Nijman (1993), “Temporal Aggregation of GARCH Processes,”

Econometrica, 61, 909-927.

Drost, F.C. and B.J.M. Werker (1996), “Closing the GARCH Gap: Continuous Time GARCH

Modeling,” Journal of Econometrics, 74, 31-58.



-92-

Duan, J.-C. (1995), “The GARCH Option Pricing Model,” Mathematical Finance, 5, 13-32.

Duan, J.-C. (2003), “A Specification Test for Time Series Models by a Normality

Transformation,” Working Paper, Rotman School of Management, University of Toronto.

Duffie, D. and K.J. Singleton (1993), “Simulated Moments Estimation of Markov Models of

Asset Prices,” Econometrica, 61, 929-952.

Duffie, D., J. Pan and K.J. Singleton (2000), “Transform Analysis and Asset Pricing for Affine

Jump-Diffusions,” Econometrica, 68, 1343-1376.

Dufour, J.M. (2004), “Monte Carlo Tests with Nuisance Parameters : A General Approach to

Finite-Sample Inference and Nonstandard Asymptotics in Econometrics,” Working Paper,

Université de Montréal.

Elerian, O., S. Chib and N. Shephard (2001), “Likelihood Inference for Discretely Observed

Nonlinear Diffusions,” Econometrica, 69, 959-994.

Embrechts, P, C. Klüppelberg and T. Mikosch (1997)  Modelling Extremal Events for Insurance

and Finance.  Berlin: Springer Verlag.

Enders, W. (2004)  Applied Econometric Time Series.  Hoboken, NJ: John Wiley and Sons, Inc.

Engle, R.F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the

Variance of U.K. Inflation,” Econometrica, 50, 987-1008.

Engle, R.F. (1995)  ARCH: Selected Readings.  Oxford, UK: Oxford University Press.

Engle, R.F. (2001), “GARCH 101: The Use of ARCH/GARCH Models in Applied

Econometrics,” Journal of Economic Perspectives, 15, 157-168.

Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH

Models,” Journal of Business and Economic Statistics, 20, 339-350.

Engle, R.F. (2004), “Nobel Lecture.  Risk and Volatility: Econometric Models and Financial

Practice,” American Economic Review, 94, 405-420.

Engle, R.F. and T. Bollerslev (1986), “Modeling the Persistence of Conditional Variances,”

Econometric Reviews, 5, 1-50.

Engle, R.F. and G. Gonzalez-Rivera (1991), “Semiparametric ARCH Models,” Journal of

Business and Economic Statistics, 9, 345-360.

Engle, R.F., T. Ito and W.L. Lin (1990), “Meteor Showers or Heat Waves? Heteroskedastic



-93-

Intra-daily Volatility in the Foreign Exchange market” Econometrica, 58, 525-542. 

Engle, R.F. and F.K. Kroner (1995), “Multivariate Simultaneous Generalized ARCH,”

Econometric Theory, 11, 122-150.

Engle, R.F. and G.G.J. Lee (1999), “A Permanent and Transitory Component Model of Stock

Return Volatility,” in R.F. Engle and H. White (eds.), Cointegration, Causality, and

Forecasting: A Festschrift in Honor of Clive W.J. Granger, 475-497.  Oxford, UK:

Oxford University Press.

Engle, R.F., D.M. Lilien and R.P. Robbins, (1987), “Estimating Time Varying Risk Premia in the

Term Structure: The ARCH-M Model,” Econometrica, 55, 391-407.

Engle, R.F. and S. Manganelli (2004), “CAViaR: Conditional Autoregressive Value at Risk by

Regression Quantiles,” Journal of Business and Economic Statistics, 22, 367-381.

Engle, R.F. and V.K. Ng (1993), “Measuring and Testing the Impact of News on Volatility,”

Journal of Finance, 48, 1749-1778.

Engle, R.F., V.K. Ng and M. Rothschild (1990), “Asset Pricing with a Factor-ARCH Covariance

Structure: Empirical Estimates for Treasury Bills,” Journal of Econometrics, 45, 213-238.

Engle, R.F. and A.J. Patton (2001), “What Good is a Volatility Model?” Quantitative Finance, 1,

237-245.

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic

Conditional Correlation Multivariate GARCH,”  Working Paper, NYU Stern School of

Business.

Epps, T. (1979), “Comovements in Stock Prices in the Very Short Run,” Journal of the American

Statistical Association, 74, 291-298.

Eraker, B. (2001), “MCMC Analysis of Diffusions with Applications to Finance,” Journal of

Business & Economic Statistics, 19, 177-191.

Eraker, B. (2004), “Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and

Option Prices,” Journal of Finance, 59, 1367-1403.

Eraker, B., M. Johannes and N.G. Polson (2003), “The Impact of Jumps in Equity Index

Volatility and Returns,” Journal of Finance, 58, 1269-1300.

Erb, C., C. Harvey and T. Viskanta (1994), “Forecasting International Equity Correlations,”

Financial Analysts Journal, 50, 32-45.



-94-

Ewing, B.T., M.J. Piette and J.E. Payne (2003), “Forecasting Medical Net Discount Rates,”

Journal of Risk and Insurance, 70, 85-95.

Feller, W., (1951), “The Asymptotic Distribution of the Range of Sums of Random Variables,”

Annals of Mathematical Statistics, 22, 427-432.

Fiorentini, G. and E. Sentana (2001), “Identification and Testing of Conditionally

Heteroskedastic Factor Models,” Journal of Econometrics, 102, 143-164.

Fiorentini, G., E. Sentana and G. Calzolari (2003), “Maximum Likelihood Estimation and

Inference in Multivariate Conditionally Heteroskedastic Dynamic Regression Models

with Student-t Innovations,” Journal of Business and Economic Statistics, 21, 532-546.

Fiorentini, G., E. Sentana and N. Shephard (2004), “Likelihood-Based Estimation of Latent

Generalized ARCH Structures,” Econometrica, 72, 1481-1517.

Fleming, J. and C. Kirby (2003), “A Closer Look at the Relation between GARCH and

Stochastic Autoregressive Volatility,” Journal of Financial Econometrics, 1, 365-419.

Fleming, J. C. Kirby, and B. Ostdiek (2001) “The Economic Value of Volatility Timing,”

Journal of Finance, 56, 329-352.

Fleming, J. C. Kirby, and B. Ostdiek (2003) “The Economic Value of Volatility Timing Using

“Realized” Volatility,” Journal of Financial Economics, 67, 473-509. 

Foster, D.P. and D.B. Nelson (1996), “Continuous Record Asymptotics for Rolling Sample

Variance Estimators,” Econometrica, 64, 139-174.

Fouque, J.-P., G. Papanicolaou, and K.R. Sircar (2000), Derivatives in Financial Markets with

Stochastic Volatility. Princeton: Princeton University Press.

Franses, P.H. and C. Hafner (2003), “A Generalized Dynamic Conditional Correlation Model for

Many Asset Returns,” Working Paper, Erasmus University, Rotterdam.

Franses, P.H. and D. van Dijk (2000)  Non-Linear Time Series Models in Empirical Finance. 

Cambridge, UK: Cambridge University Press.

French, K.R., G.W. Schwert and R.F. Stambaugh (1987), “Expected Stock Returns and

Volatility,” Journal of Financial Economics, 19, 3-29.

Fridman, M. and L. Harris (1998), “A Maximum Likelihood Approach for Non-Gaussian

Stochastic Volatility Models,” Journal of Business & Economic Statistics, 16, 284-291.

Gallant, A.R., D.A. Hsieh and G.E. Tauchen (1997), “Estimation of Stochastic Volatility Models



-95-

with Diagnostics,” Journal of Econometrics, 81, 159-192.

Gallant, A.R., C.T. Hsu and G.E. Tauchen (1999), “Using Daily Range Data to Calibrate

Volatility Diffusions and Extract the Forward Integrated Variance,” Review of Economics

and Statistics, 81, 617-631.

Gallant, A.R., P.E. Rossi and G.E. Tauchen (1992), “Stock Prices and Volume,” Review of

Financial Studies, 5, 199-242.

Gallant, A.R. and G.E. Tauchen (1996), “Which Moments to Match,” Econometric Theory, 12,

657-681.

Gallant, A.R. and G.E. Tauchen (1997), “Estimation of Continuous-Time Models for Stock

Returns and Interest Rates,” Macroeconomic Dynamics, 1, 135-168.

Gallant, A.R. and G. Tauchen (1998), “Reprojecting partially Observed Systems with

Application to Interest Rate Diffusions,” Journal of the American Statistical Association,

93, 10-24.

Geweke, J. (1989a), “Bayesian Inference in Econometric Models Using Monte Carlo

Integration,” Econometrica, 57, 1317-1340.

Geweke, J. (1989b), “Exact Predictive Densities in Linear Models with ARCH Disturbances,”

Journal of Econometrics, 40, 63-86.

Ghysels, E. (1998), “On Stable Factor Structures in the Pricing of Risk: Do Time-Varying Betas

Help or Hurt?” Journal of Finance, 53, 549-573.

Ghysels, E., A.C. Harvey and E. Renault (1996), “Stochastic Volatility,” in Handbook of

Statistics, Volume 14; G.S. Maddala and C.R. Rao, eds., Amsterdam: North Holland.

Ghysels, E., P. Santa-Clara and Valkanov (2004), “Predicting Volatility: Getting the Most out of

Data Sampled at Different Frequencies,” Working Paper, University of North Carolina

and University of California, Los Angeles.

Giacomini, R. (2002), “Comparing Density Forecasts via Weighted Likelihood Ratio Tests:

Asymptotic and Bootstrap Methods” Boston College, Department of Economics Working

Paper 583. 

Giacomini, R. and I. Komunjer (2005), “Evaluation and Combination of Conditional Quantile

Forecasts,” Journal of Business and Economic Statistics, forthcoming. 

Giacomini, R. and H. White (2004), “Tests of Conditional Predictive Ability,” Working paper,

University of California, San Diego.



-96-

Giordani, P., and P. Soderlind (2003), “Inflation Forecast Uncertainty,” European Economic

Review, 47, 1037-1059.

Giraitis, L., P. Kokoszka and R. Leipus (2000), “Stationary ARCH Models: Dependence

Structure and Central Limit Theorem,” Econometric Theory, 16, 3-22.

Glosten, L.R., R. Jagannathan and D. Runkle (1993), “On the Relation Between the Expected

Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance,

48, 1779-1801.

Gourieroux, C. and J. Jasiak (2001)  Financial Econometrics.  Princeton, NJ: Princeton

University Press.

Gouriéroux, C., A. Monfort and E. Renault (1993), “Indirect Inference,” Journal of Applied

Econometrics, 8, S85-S118.

Granger, C.W.J. (1980), “Long Memory Relationships and the Aggregation of Dynamic

Models,” Journal of Econometrics, 14, 227-238.

Granger, C.W.J. (1969), “Prediction with a Generalized Cost of Error Function,” Operational

Research Quarterly, 20, 199-207. 

Granger, C.W.J., H. White and M. Kamstra, (1989), “Interval Forecasting: An Analysis Based on

ARCH - Quantile Estimators,” Journal of Econometrics, 40, 87-96. 

Gronke, P. and J. Brehm (2002), “History, heterogeneity, and presidential approval: a modified

ARCH approach,” Electoral Studies 21, 425–452.

Guidolin, M. and A. Timmermann (2005a), “Term Structure of Risk under Alternative

Specifications,” Journal of Econometrics, forthcoming.

Guidolin, M. and A. Timmermann, (2005b), “An Econometric Model of Nonlinear Dynamics in

the Joint Distribution of Stock and Bond Returns,” Journal of Applied Econometrics,

forthcoming.

Hamilton, J.D. (1994)  Time Series Analysis.  Princeton, NJ: Princeton University Press.

Hamilton, J.D. and G. Lin (1996), “Stock Market Volatility and the Business Cycle,” Journal of

Applied Econometrics, 11, 573-593.

Hansen, P.R. and A. Lunde (2004a), “A Realized Variance for the Whole Day Based on

Intermittent High-Frequency Data,” Working Paper, Department of Economics, Stanford

University.



-97-

Hansen, P.R. and A. Lunde (2004b), “An Unbiased Measure of Realized Variance,” Working

Paper, Department of Economics, Stanford University.

Hansen, P.R. and A. Lunde (2005), “A Forecast Comparison of Volatility Models: Does

Anything Beat a GARCH(1,1)?” Journal of Applied Econometrics, forthcoming.

Hansen, P.R., A. Lunde and J.M. Nason (2003), “Choosing the best Volatility Models: a Model

Confidence Set Approach,” Oxford Bulletin of Economics and Statistics, 65, 839-861.

Hansen, P.R., A. Lunde and J.M. Nason (2005), “Model Confidence Sets for Forecasting

Models.” Working Paper, Stanford University.

Harris, L. (1986), "Cross-security Tests of the Mixture of Distributions Hypothesis," Journal of

Financial and Quantitative Analysis, 21, 39-46. 

Harris, L. (1987), "Transactions Data Tests of the Mixture of Distributions Hypothesis," Journal

of Financial and Quantitative Analysis, 22, 127-141.

Harvey, A.C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge University Press.

Harvey, A.C. (1998), “Long Memory in Stochastic Volatility,” in eds. J. Knight and S. Satchell:

Forecasting Volatility in Financial Markets, 307-320. Oxford: Butterworth-Heineman.

Harvey, C.R. (2001), “The Specification of Conditional Expectations,” Journal of Empirical

Finance, 8, 573, 637.

Harvey, A.C. (2004), “Forecasting with Unobserved Components Time Series Models,” in eds.

Elliott, G., C.W.J. Granger, and A. Timmermann: Handbook of Economic Forecasting.

North Holland; forthcoming.

Harvey, A.C., E. Ruiz and E. Sentana (1992), “Unobserved Component Time Series Models with

ARCH Disturbances,” Journal of Econometrics, 52, 129-157.

Harvey, A.C., E. Ruiz and E. Shephard (1994), “Multivariate Stochastic Variance Models,”

Review of Economic Studies, 61, 247-264.

Harvey, A.C. and E. Shephard (1996), “Estimation of an Asymmetric Model of Asset Prices,”

Journal of Business & Economic Statistics, 14, 429-434.

Hentschel, L. (1995), “All in the Family: Nesting Symmetric and Asymmetric GARCH Models,”

Journal of Financial Economics, 39, 71-104.

Heston, S.L. (1993), “A Closed Form Solution for Options with Stochastic Volatility, with



-98-

Applications to Bond and Currency Options,” Review of Financial Studies, 6, 327-343.

Heston, S.L., and S. Nandi (2000), “A Closed-Form GARCH Option Valuation Model,” Review

of Financial Studies, 13, 585-625.

Hong, Y., (2000), “Evaluation of Out-of-Sample Density Forecasts with Applications to Stock

Prices,” Working Paper, Department of Economics and Department of Statistical Science,

Cornell University.

Hsieh, D.A. (1989), “Modeling Heteroskedasticity in Foreign Exchange Rates,” Journal of

Business & Economic Statistics, 7, 307-317.

Hu, M., and C. Tsoukalas (1999),  “Combining Conditional Volatility Forecasts Using Neural

Networks:  An Application to the EMS Exchange Rates,” Journal of International

Financial Markets, Institutions and Money, 9,  407-422.

Huang, X. and G.E. Tauchen (2004), “The Relative Contribution of Jumps to Total Price

Variance,” Working Paper, Duke University.

Hull, J. and A. White (1987), “The Pricing of Options on Assets with Stochastic Volatilities,”

Journal of Finance, 42, 281-300.

J. P. Morgan (1997)  RiskMetrics, Technical Documents, 4th Edition.  New York.

Jacquier, E., N.G. Polson and P.E. Rossi (1994), “Bayesian Analysis of Stochastic Volatility

Models,” Journal of Business & Economic Statistics, 12, 371-389.

Jagannathan, R. and T. Ma (2003), “Risk Reduction in Large Portfolios: Why Imposing the

Wrong Constraints Helps,” Journal of Finance, 1651-1684.

Jiang, G.J. and J.L. Knight (2002), “Efficient Estimation of the Continuous Time Stochastic

Volatility Model via the Empirical Characteristic Function,” Journal of Business &

Economic Statistics, 20, 198-212.

Johannes, M. and N.G. Polson (2003), “MCMC Methods for Continuous-Time Financial

Econometrics,” forthcoming in Handbook of Financial Econometrics; Y. Aït-Sahalia and

L.P. Hansen, eds., Amsterdam: North Holland.

Johannes, M., N. Polson and J. Stroud (2004), “Sequential Optimal Portfolio Performance:

Market and Volatility Timing,” Working Paper, Columbia University, University of

Pennsylvania, and University of Chicago.

Johnson, T.D., R.M. Elashoff and S.J.A. Harkema (2003), “Bayesian Change Point Analysis of

Electromyographic Data: Detecting Muscle Activation Patterns and Associated



-99-

Applications,” Biostatistics, 4, 143-164.

Johnson, H. and D. Shanno (1987), “Option Pricing when the Variance Is Changing,” Journal of

Financial and Quantitative Analysis, 22, 143-152.

Jondeau, E. and M. Rockinger (2005), “The Copula-GARCH Model of Conditional Dependence:

An International Stock Market Application,” Journal of International Money and

Finance, forthcoming.

Jorion, P. (2000) Value at Risk: The New Benchmark for Managing Financial Risk. New York:

McGraw-Hill. 

Karpoff, J.M. (1987), “The Relation between Price Changes and Trading Volume: A Survey,”

Journal of Financial and Quantitative Analysis, 22, 109-126.

Kawakatsu, H. (2005), “Matrix Exponential GARCH,” Journal of Econometrics, forthcoming.

Kim, S., N. Shephard and S. Chib (1998), “Stochastic Volatility: Likelihood Inference and

Comparison with ARCH Models,” Review of Economic Studies, 65, 361-393.

King, M., E. Sentana, and S. Wadhwani (1994), “Volatility and Links Between National Stock

Markets,” Econometrica, 62, 901-933.

Kroner, K.F. and V.K.  Ng (1998), “Modelling Asymmetric Comovements of Asset Returns,”

Review of Financial Studies, 11, 817-844.

Lamoureux, C.G. and W.D. Lastrapes (1990), “Persistence in Variance, Structural Change, and

the GARCH Model,” Journal of Business and Economic Statistics, 8, 225-234.

Lamoureux, C.G. and W.D. Lastrapes (1994), “Endogenous Trading Volume and Momentum in

Stock-Return Volatility,” Journal of Business & Economic Statistics, 14, 253-260.

Lastrapes, W.D. (1989), “Exchange Rate Volatility and US Monetary Policy: An ARCH

Application,” Journal of Money, Credit and Banking, 21, 66-77.

Ledoit O. and M. Wolf (2003), “Improved Estimation of the Covariance Matrix of Stock Returns

with an Application to Portfolio Selection,” Journal of Empirical Finance, 10, 603-621.

Ledoit O., P. Santa-Clara and M. Wolf (2003), “Flexible Multivariate GARCH Modeling with an

Application to International Stock Markets,” Review of Economics and Statistics, 85,

735-747.

Lee, S.W. and B.E. Hansen (1994), “Asymptotic Theory for the GARCH(1,1) Quasi-Maximum

Likelihood Estimator,” Econometric Theory, 10, 29-52.



-100-

Lettau, M. and S. Ludvigsson (2003), “Measuring and Modeling Variation in the Risk-Return

Tradeoff,” Working Paper, New York University and NBER.

Li, W.K., S. Ling and M. McAleer (2002), “Recent Theoretical Results for Time Series with

GARCH Errors,” Journal of Economic Surveys, 16, 245-269.

Liesenfeld, R. (1998), “Dynamic Bivariate Mixture Models: Modeling the Behavior of Prices and

Trading Volume, Journal of Business & Economic Statistics, 16, 101-109.

Liesenfeld, R. (2001), “A Generalized Bivariate Mixture Model for Stock Price Volatility and

Trading Volume,” Journal of Econometrics, 104, 141-178.

Liesenfeld, R. and J.F. Richard (2003), “Univariate and Multivariate Stochastic Volatility

Models: Estimation and Diagnostics,” Journal of Empirical Finance, 10, 505-531.

Ling, S. and M. McAleer (2003), “Asymptotic Theory for a Vector ARMA-GARCH Model,”

Econometric Theory, 19, 280-310.

Linn, S.C., and Z. Zhu (2004), “Natural Gas Prices and the Gas Storage Report: Public News and

Volatility in Energy Futures Markets,” Journal of Futures Markets, 24, 283-313.

Longin, F. and B. Solnik (1995), “Is the Correlation in International Equity Returns Constant:

1970-1990?” Journal of International Money and Finance, 14, 3-26.

Longin, F. and B. Solnik (2001), “Extreme Correlation of International Equity Markets,” Journal

of Finance, 56, 649-676.

Loretan, M. and P.C.B. Philllips (2004), “Testing Covariance Stationarity under Moment

Condition Failure with an Application to Stock Returns,” Journal of Empirical finance, 1,

211-248.

Lumsdaine, R.L. (1996), “Consistency and Asymptotic Normality of the Quasi-Maximum

Likelihood Estimator in GARCH(1,1) and Covariance Stationary GARCH(1,1) Models,”

Econometrica, 64, 575-596.

Lundin, M., M.M. Dacorogna and U.A. Müller (1998), “Correlation of High Frequency Financial

Time Series,” in P. Lequeux (ed.), The Financial Markets Tick by Tick.  London: John

Wiley & Sons.

Lütkepohl, H. (2004), “Forecasting with VARMA Models,” in eds. Elliott, G., C.W.J. Granger,

and A. Timmermann: Handbook of Economic Forecasting. North Holland; forthcoming.

Maestas, C. and R. Preuhs (2000), “Modeling volatility in political time series,” Electoral Studies

19, 95–110.



-101-

Marinova, D. and M. McAleer (2003), “Modeling trends and volatility in ecological patents in

the USA,” Environmental Modelling & Software 18, 195–203.

Markowitz, H. (1952), “Portfolio Selection”, Journal of Finance, 7, 77-91.

Marquering, W. and M. Verbeek (2004), “The Economic Value of Predicting Stock Index

Returns and Volatility,” Journal of Financial and Quantitative Analysis, 39, 407-429.

Martens, M. (2003), “Estimating Unbiased and Precise Realized Covariances,” Working Paper,

University of Rotterdam.

Martin-Guerrero, J.D., G. Camps-Valls, E. Soria-Olivas, A.J. Serrano-Lopez, J.J. Perez-Ruixo

and N.V. Jimenez-Torres (2003), “Dosage Individualization of Erythropoietin Using a

Profile Dependent Support Vector Regression,” IEEE Transactions on Biomedical

Engineering, 50, 1136-1142.

McCullough, B. and C. Renfro (1998), “Benchmarks and Software Standards: A Case Study of

GARCH Procedures,” Journal of Economic and Social Measurement, 25, 59-71.

McNeil, A.J. and R. Frey (2000), “Estimation of Tail-Related Risk Measures for Heteroskedastic

Financial Time Series: An Extreme Value Approach,” Journal of Empirical Finance, 7,

271-300.

Meddahi, N. (2001), “An Eigenfunction Approach for Volatility Modeling,” Working Paper,

University of Montréal.

Meddahi, N. and E. Renault (2004), “Temporal Aggregation of Volatility Models,” Journal of

Econometrics, 119, 355-379.

Meghir, C. and L. Pistaferri (2004), “Income Variance Dynamics and Heterogeneity,”

Econometrica, 72, 1-32.

Melino, A. and S.M. Turnbull (1990), “Pricing Foreign Currency Options with Stochastic

Volatility,” Journal of Econometrics, 45, 239-265.

Merton, R.C. (1969), “Lifetime Portfolio Selection Under Uncertainty: The Continuous-Time

Case,” Review of Economics and Statistics, 51, 247-257.

Merton, R.C. (1976), “Option Pricing When Underlying Stock Returns Are Discontinuous,”

Journal of Financial Economics, 3, 125-144.

Mikosch, T. and C. Starica (2004), “Nonstationarities in Financial Time Series, the Long Range

Dependence and the IGARCH Effects,” Review of Economics and Statistics, 86, 378-390.



-102-

Mills, T.C. (1993)  The Econometric Modelling of Financial Time Series.  Cambridge, UK:

Cambridge University Press.

Mincer, J. and V. Zarnowitz (1969), “The Evaluation of Economic Forecasts,” in J. Mincer (ed.),

Economic Forecasts and Expectations. New York: National Bureau of Economic

Research.

Monfardini, C. (1998), “Estimating Stochastic Volatility Models through Indirect Inference,” The

Econometrics Journal, 1, C113-C128.

Müller, U.A., M.M. Dacorogna, R.D. Davé, R.B. Olsen, O.V. Puctet, and J. von Weizsäcker

(1997), “Volatilities of Different Time Resolutions - Analyzing the Dynamics of Market

Components,” Journal of Empirical Finance, 4, 213-239.

Nelson, D.B. (1988), “Time Series Behavior of Stock Market Volatility and Returns,” Ph.D.

dissertation, MIT.

Nelson, D.B. (1990), “Stationarity and Persistence in the GARCH(1,1) Model,” Econometric

Theory, 6, 318-334.

Nelson, D.B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New Approach,”

Econometrica, 59, 347-370.

Nijman, T. and E. Sentana (1996), “Marginalization and Contemporaneous Aggregation in

Multivariate GARCH Processes,” Journal of Econometrics, 71, 71-87.

Ng, V.K., R.F. Engle and M. Rothschild (1992), “A Multi-Dynamic-Factor Model for Stock

Returns,” Journal of Econometrics, 52, 245-266.

O’Connell, P.E. (1971), “A Simple Stochastic Modelling of Hurst’s Law,” Proceedings of

International Symposium on Mathematical Models in Hydrology, 1, 169-187.

Pagan, A. (1996), “The Econometrics of Financial Markets,” Journal of Empirical Finance, 3,

15-102.

Palm, F. (1996), “GARCH Models of Volatility,” in C.R. Rao and G.S. Maddala (eds.)

Handbook of Statistics, Volume 14, 209-240.  Amsterdam: North-Holland.

Pan, J. (2002), “The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-

Series Study,” Journal of Financial Economics, 63, 3-50.

Parkinson, M. (1980), “The Extreme Value Method for Estimating the Variance of the Rate of

Returns,” Journal of Business 53, 61-65.



-103-

Pastor, L. and R. Stambaugh (2001), “The Equity Premium and Structural Breaks,” Journal of

Finance, 56, 1207-1245.

Patton, A. (2004), “Modeling Asymmetric Exchange Rate Dependence,”  Working Paper,

London School of Economics.

Patton, A. (2005), “Volatility Forecast Evaluation and Comparison Using Imperfect Volatility

Proxies,”  Working Paper, London School of Economics.

Patton, A. and A. Timmermann (2003), “Properties of Optimal Forecasts,” CEPR Discussion

Paper 4037.

Patton, A. and A. Timmermann (2004), “Testable Implications of Forecast Optimality,” Working

Paper, London School of Economics and University of California at San Diego.

Pelletier, D. (2005), “Regime Switching for Dynamic Correlations,” Journal of Econometrics,

forthcoming.

Perez-Quiros, G. and A. Timmermann (2000), “Firm Size and Cyclical Variations in Stock

Returns,” Journal of Finance, 55, 1229-1262.

Pesaran, M.H. and P. Zaffaroni (2004), “Model Averaging and Value-at-Risk based Evaluation

of Large Multi Asset Volatility Models for Risk Management,”  Working Paper,

Department of Economics, University of Cambridge.

Piazzesi, M. (2003), “Affine Term Structure Models,” in L.P. Hansen and Y. Aït-Sahalia (eds.),

Handbook of Financial Econometrics. Amsterdam:  North-Holland, forthcoming.

Praetz, P.D. (1972), “The Distribution of Share Price Changes,” Journal of Business, 45, 49-55.

Pritsker, M. (2001), “The Hidden Dangers of Historical Simulation,” Working Paper, Federal

Reserve Board.

Ramirez, O.A. and M. Fadiga (2003), “Forecasting Agricultural Commodity Prices with

Asymmetric Error GARCH Models,” Journal of Agricultural and Resource Economics,

28, 71-85.

Rich, R. and J. Tracy (2004), “Uncertainty and Labor Contract Durations,” Review of Economics

and Statistics, 86, 270-287.

Richardson, M. and T. Smith (1994), “A Direct Test of the Mixture of Distributions Hypothesis:

Measuring the Daily Flow of Information,” Journal of Financial and Quantitative

Analysis, 29, 101-116.



-104-

Robinson, P.M. (1991), “Testing for Strong Serial Correlation and Dynamic Conditional

Heteroskedasticity in Multiple Regression,” Journal of Econometrics, 47, 67-84.

Rossi, P.E. (1996)  Modeling Stock Market Volatility: Bridging the Gap to Continuous Time. 

San Diego: Academic Press, Inc.

Ruge Murcia, F.J. (2003), “Inflation Targeting under Asymmetric Preferences,” Journal of

Money, Credit and Banking, 35, 763-785.

Ruge Murcia, F.J. (2004), “The Inflation Bias When the Central Bank Targets the Natural Rate

of Unemployment,” European Economic Review, 48, 91-107.

Sandmann, G. and S.J. Koopman (1998), “Estimation of Stochastic Volatility models through

Monte Carlo Maximum Likelihood,” Journal of Econometrics, 87, 271-301.

Scholes, M. and J. Williams (1977), “Estimating Betas from Non-Synchronous Data,” Journal of

Financial Economics, 5, 309-327.

Schwert, G.W. (1989), “Why Does Stock Market Volatility Change Over Time?” Journal of

Finance, 44, 1115-1153.

Schwert, G.W. (1990), “Stock Volatility and the Crash of ‘87,” Review of Financial Studies, 3,

77-102.

Scott, L.O. (1987), “Option Pricing when the Variance Changes Randomly: Theory, Estimation

and an Application,” Journal of Financial and Quantitative Analysis, 22, 419-438.

Sentana, E. and G. Fiorentini (2001), “Identification, Estimation and Testing of Conditionally

Heteroskedastic Factor Models,” Journal of Econometrics, 102, 143-164.

Shanken, J.A. (1990), “Intertemporal Asset Pricing: an Empirical Investigation,” Journal of

Econometrics, 45, 99-120.

Sharpe, W. (1964), “Capital Asset Prices - A Theory of Market Equilibrium Under Conditions of

Risk,” Journal of Finance, 19, 425-442. 

Shawky, M.A., A. Marathe and C.L. Barrett (2003), “A First Look at the Empirical Relation

Between Spot and Futures Electricity Prices in the United States,” Journal of Futures

Markets, 23, 931-955.

Shephard, N. (1996), “Statistical Aspects of ARCH and Stochastic Volatility Models,” in D.R.

Cox, D.V. Hinkley and O.E. Barndorff-Nielsen (eds.) Time Series Models in

Econometrics, Finance and Other Fields, 1-67.  London: Chapman & Hall.



-105-

Shephard, N. (2004)  Stochastic Volatility: Selected Readings.  Oxford, UK: Oxford University

Press.

Sheppard, K. (2004), “Economic Factors and the Covariance of Equity Returns,” Working Paper,

University of California, San Diego.

Singleton, K.J. (2001), “Estimation of Affine Asset Pricing Models Using the Empirical

Characteristic Function,” Journal of Econometrics, 102, 111-141.

Smith, Jr., A.A. (1990), “Three Essays on the Solution and Estimation of Dynamic

Macroeconomic Models,” Ph.D. dissertation, Duke University.

Smith, Jr., A.A. (1993), “Estimating Nonlinear Time-series Models using Simulated Vector

Autoregressions,” Journal of Applied Econometrics, 8, S63-S84.

Tauchen, G. and M. Pitts (1983), “The Price Variability-Volume Relationship on Speculative

Markets,” Econometrica, 51, 485-505.

Taylor, S.J. (1986)  Modeling Financial Time Series.  Chichester, UK: John Wiley and Sons.

Taylor, S.J. (2004)  Asset Price Dynamics and Prediction.  Princeton, NJ: Princeton University

Press.

Taylor, J.W. and R. Buizza (2003), “Using Weather Ensemble Predictions in Electricity Demand

Forecasting,” International Journal of Forecasting, 19, 57-70.

Tiao, G.C. and R.S. Tsay (1994), “Some Advances in Non-Linear and Adaptive Modeling in

Time Series,” Journal of Forecasting, 14, 109-131.

Tsay, R.S. (2002)  Analysis of Financial Time Series.  New York: John Wiley and Sons, Inc.

Tse, Y.K. and A.K.C. Tsui (2002), “A Multivariate GARCH Model with Time-Varying

Correlations,” Journal of Business and Economic Statistics, 20, 351-362.

Tse, Y.K. and P.S.L. Yip (2003), “The Impacts of Hong Kong’s Currency Board Reforms on the

Interbank Market,” Journal of Banking and Finance, 27, 2273-2296.

Wang, L. (2004), “Investing when Volatility Fluctuates,” Working Paper, the Wharton School

and Singapore Management University.

Weiss, A.A. (1986), “Asymptotic Theory for ARCH Models: Estimation and Testing,”

Econometric Theory, 2, 107-131.



-106-

West, K.D. (1996), “Asymptotic Inference About Predictive Ability,” Econometrica, 64,

1067-1084.

West, K.D., and D. Cho (1995), “The Predictive Ability of Several Models of Exchange Rate

Volatility,” Journal of Econometrics, 69, 367-391.

West, K.D. and M.W. McCracken (1998) “Regression-Based Tests of Predictive Ability”,

International Economic Review, 39, 817-40.  

White, H. (2000), “A Reality Check for Data Snooping,” Econometrica, 68, 1097-1127.

Whitelaw, R.F. (1997), “Time-Varying Sharpe Ratios and Market Timing,” Working Paper,

NYU, Stern School of Business.

Wiggins, J.B. (1987), “Option Values under Stochastic Volatility: Theory and Empirical

Estimates,” Journal of Financial Economics, 19, 351-372.

Zaffaroni, P. (2004), “Estimating and Forecasting Volatility with Large Scale Models:

Theoretical Appraisal of Professional Practice,”  Working Paper, Banca d’Italia.

Zakoïan, J.-M. (1994), “Threshold Heteroskedastic Models,” Journal of Economic Dynamics and

Control, 18, 931-955.

Zhang, L., Y. Aït-Sahalia and P.A. Mykland (2005), “A Tale of Two Time Scales: Determining

Integrated Volatility with Noisy High-frequency Data,” Journal of the American

Statistical Association, forthcoming.

Zhou, B. (1996), “High-Frequency Data and Volatility in Foreign Exchange Rates,” Journal of

Business & Economic Statistics, 14, 45-52.



-107-

Figure 1.1

Different Volatility Concepts
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Figure 2.1 

Density Forecasts on High Volatility and Low Volatility Days
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Figure 2.2

Simulated Portfolio Returns with Dynamic Volatility and Historical Simulation VaRs
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Figure 7.1

Simulated Fundamental and Observed Intraday Prices

Notes to figure:  The smooth dashed line represents the fundamental, but unobserved, simulated

asset price. The jagged solid line solid represents the observed transaction prices reflecting bid or

ask driven transactions. The two horizontal lines denote the min and max prices observed within

the day.
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Figure 7.2

Volatility Signature Plot

Notes to figure:  The figure depicts the impact of the bid-ask spread for measuring realized

volatility by showing the unconditional sample means for the realized volatilities as a function of

the length of the return interval for the high-frequency data underlying the calculations.  The

simulated prices are subject to bid-ask bounce effects shown in Figure 7.1.
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Abstract

A structural break is viewed as a permanent change in the parameter vector of a model.
Using taxonomies of all sources of forecast errors for both conditional mean and conditional
variance processes, we consider the impacts of breaks and their relevance in forecasting
models: a] where the breaks occur after forecasts are announced; and b] where they occur
in-sample and hence pre-forecasting. The impact on forecasts depends on which features of
the models are non-constant. Different models and methods are shown to fare differently
in the face of breaks. While structural breaks induce an instability in some parameters of
a particular model, the consequences for forecasting are specific to the type of break and
form of model. We present a detailed analysis for cointegrated VARs, given the popularity
of such models in econometrics.

We also consider the detection of breaks, and how to handle breaks in a forecasting
context, including ad hoc forecasting devices and the choice of the estimation period. Finally,
we contrast the impact of structural break non-constancies with non-constancies due to non-
linearity. The main focus is on macro-economic, rather than finance, data, and on forecast
biases, rather than higher moments. Nevertheless, we show the relevance of some of the
key results for variance processes. An empirical exercise ‘forecasts’ UK unemployment after
three major historical crises.
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1 Introduction

A structural break is a permanent change in the parameter vector of a model. We consider
the case where such breaks are exogenous, in the sense that they were determined by events
outside the model under study: we also usually assume that such breaks were unanticipated
given the historical data up to that point. We do rule out multiple breaks, but because breaks
are exogenous, each is treated as permanent. To the extent that breaks are predictable, action
can be taken to mitigate the effects we show will otherwise occur. The main exception to
this characterization of breaks will be our discussion of non-linear models which attempt to
anticipate some shifts.

Using taxonomies of all sources of forecast errors, we consider the impacts of breaks and
their relevance in forecasting models: a] where the breaks occur after forecasts are announced;
and b] where they are in-sample and occurred pre-forecasting, focusing on breaks close to the
forecast origin. New generic (model-free) forecast-error taxonomies are developed to highlight
what can happen in general. It transpires that it matters greatly what features actually break
(e.g., coefficients of stochastic, or of deterministic, variables, or of other aspects of the model,
such as error variances). Also, there are major differences in the effects of these different forms
of breaks on different forecasting methods, in that some devices are robust, and others non-
robust, to various pre-forecasting breaks. Thus, although structural breaks induce an instability
in some parameters of a particular model, the consequences for forecasting are specific to the
type of break and form of model. This allows us to account for the majority of the findings
reported in the major ‘forecasting competitions’ literature. Later, we consider how to detect,
and how to handle, breaks, and the impact of sample size thereon. We will mainly focus on
macro-economic data, rather than finance data where typically one has a much larger sample
size. Finally, because the most serious consequences of unanticipated breaks are on forecast
biases, we mainly consider first moment effects, although we also note the effects of breaks in
variance processes.

Our chapter builds on a great deal of previous research into forecasting in the face of struc-
tural breaks, and tangentially on related literatures about: forecasting models and methods;
forecast evaluation; sources and effects of breaks; their detection; and ultimately on estimation
and inference in econometric models. Most of these topics have been thoroughly addressed
in previous Handbooks (see Griliches and Intriligator, 1983, 1984, 1986, Engle and McFadden,
1994, and Heckman and Leamer, 2004), and compendia on forecasting (see e.g., Armstrong,
2001, and Clements and Hendry, 2002a), so to keep the coverage of references within reasonable
bounds we assume the reader refers to those sources inter alia.

As an example of a process subject to a structural break, consider the data generating
process (DGP) given by the structural change model of e.g., Andrews (1993):

yt = (µ0 + α1yt−1 + · · · + αpyt−p) +
(
µ∗0 + α∗

1yt−1 + · · · + α∗
pyt−p

)
st + εt (1)

where εt ∼ IID
[
0, σ2

ε

]
(that is, Independently, Identically D istributed, mean zero, variance σ2

ε),
and st is the indicator variable, st ≡ 1(t>τ) which equals 1 when t > τ and zero when t ≤ τ .
We focus on breaks in the conditional mean parameters, and usually ignore changes in the
variance of the disturbance, as suggested by the form of (1). A constant-parameter pth-order
autoregression (AR(p)) for yt of the form:

yt = µ0,1 + α1,1yt−1 + · · · + αp,1yt−p + vt (2)
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would experience a structural break because the parameter vector shifts. Let φ = (µ0 α1 . . . αp)
′,

φ∗ =
(
µ∗0 α

∗
1 . . . α

∗
p

)′
and φ1 = (µ0,1 α1,1 . . . αp,1)

′. Then the AR(p) model parameters are
φ1 = φ for t ≤ τ , but φ1 = φ+ φ∗ for t > τ (in section 5, we briefly review testing for
structural change when τ is unknown). If instead, the AR(p) were extended to include terms
which interacted the existing regressors with a step dummy Dt defined by Dt = st = 1(t>τ),

the extended model (letting xt = (1 yt−1 . . . yt−p)
′):

yt = φ′
1,dxt +φ′

2,dxtDt + vt,d (3)

exhibits extended parameter constancy –
(
φ′

1,d φ
′
2,d

)
=
(
φ′ φ∗′

)
for all t = 1, . . . , T , matching

the DGP (see e.g., Hendry, 1996). Whether a model experiences a structural break is as much
a property of the model as of the DGP.

As a description of the process determining {yt}, equation (1) is incomplete, as the cause
of the shift in the parameter vector from φ to φ+ φ∗ is left unexplained. Following Bontemps
and Mizon (2003), equation (1) could be thought of as the ‘local’ DGP (LDGP) for {yt} –
namely, the DGP for {yt} given only the variables being modeled (here, just the history of yt).
The original AR(p) model is mis-specified for the LDGP because of the structural change. A
fully-fledged DGP would include the reason for the shift at time τ . Empirically, the forecast
performance of any model such as (2) will depend on its relationship to the DGP. By adopting
a ‘model’ such as (1) for the LDGP, we are assuming that the correspondence between the
LDGP and DGP is close enough to sustain an empirically relevant analysis of forecasting. Put
another way, knowledge of the factors responsible for the parameter instability is not essential
in order to study the impact of the resulting structural breaks on the forecast performance of
models such as (2).

LDGPs in economics will usually be multivariate and more complicated than (1), so to
obtain results of some generality, the next section develops a ‘model-free’ taxonomy of errors
for conditional first-moment forecasts. This highlights the sources of biases in forecasts. The
taxonomy is then applied to forecasts from a vector autoregression (VAR). Section 3 presents
a forecast-error taxonomy for conditional second-moment forecasts based on standard econo-
metric volatility models. Section 4 derives the properties of forecasts for a cointegrated VAR,
where it is assumed that the break occurs at the very end of the in-sample period, and so
does not affect the models’ parameter estimates. Alternatively, any in-sample breaks have been
detected and modeled. Section 5 considers the detection of in-sample breaks, and section 6
the selection of the optimal window of data for model estimation as well as model specification
more generally in the presence of in-sample breaks. Section 7 looks at a number of ad hoc

forecasting methods, and assesses their performance in the face of breaks. When there are
breaks, forecasting methods which adapt quickly following the break are most likely to avoid
making systematic forecast errors. Section 8 contrasts breaks as permanent changes with non-
constancies due to neglected non-linearities, from the perspectives of discriminating between
the two, and for forecasting. Section 9 reports an empirical forecasting exercise for UK unem-
ployment after three crises, namely the post-world-war double-decades of 1919–38 and 1948–67,
and the post oil-crisis double-decade 1975–94, to examine the forecasts of unemployment that
would have been made by various devices: it also reports post-model-selection forecasts over
1992–2001, a decade which witnessed the ejection of the UK from the exchange-rate mechanism
at its commencement. Section 10 briefly concludes. Two appendices, 11 and 12, respectively
provide derivations for the taxonomy equation (10) and for section 4.3.

4



2 Forecast-error taxonomies

2.1 General (model-free) forecast-error taxonomy

In this section, a new general forecast-error taxonomy is developed to unify the discussion
of the various sources of forecast error, and to highlight the effects of structural breaks on
the properties of forecasts. The taxonomy distinguishes between breaks affecting ‘determinis-
tic’ and ‘stochastic’ variables, both in-sample and out-of-sample, as well as delineating other
possible sources of forecast error, including model mis-specification and parameter-estimation
uncertainty, which might interact with breaks.

Consider a vector of n stochastic variables {xt}, where the joint density of xt at time t
is Dxt

(xt|X1
t−1,qt), conditional on information X1

t−1 = (x1, . . . ,xt−1), where qt denotes the
relevant deterministic factors (such as intercepts, trends, and indicators). The densities are
time dated to make explicit that they may be changing over time. The object of the exercise is
to forecast xT+h over forecast horizons h = 1, . . . ,H, from a forecast origin at T . A dynamic
model Mxt

[xt|Xt−s
t−1, q̃t,θt], with deterministic terms q̃t, lag length s, and implicit stochastic

specification defined by its parameters θt, is fitted over the sample t = 1, . . . , T to produce a
forecast sequence {x̂T+h|T }. Parameter estimates are a function of the observables, represented
by:

θ̂(T ) = fT

(
X̃1

T , Q̃
1
T

)
, (4)

where X̃ denotes the measured data and Q̃1
T the in-sample set of deterministic terms which

need not coincide with Q1
T . The subscript on θ̂(T ) in (4) represents the influence of sample size

on the estimate, whereas that on θt in Mxt
[·] denotes that the derived parameters of the model

may alter over time (perhaps reflected in changed estimates). Let θe,(T ) = ET [θ̂(T )] (where
that exists). As shown in Clements and Hendry (2002b), it is convenient, and without loss
of generality, to map changes in the parameters of deterministic terms into changes in those
terms, and we do so throughout.

Since future values of the deterministic terms are ‘known’, but those of stochastic variables
are unknown, the form of the function determining the forecasts will depend on the horizon:

x̂T+h|T = gh

(
X̃T−s+1

T , Q̃T
T+h, θ̂(T )

)
. (5)

In (5), X̃T−s+1
T enters up to the forecast origin, which might be less well measured than earlier

data: see e.g., Wallis (1993).1 The model will generally be a mis-specified representation of the
LDGP for any of a large number of reasons, even when designed to be congruent (see Hendry,
1995,p. 365).

The forecast errors of the model are given by eT+h|T = xT+h − x̂T+h|T with expected value:

ET+h

[
eT+h|T | X1

T , {Q∗∗}1
T+h

]
(6)

where we allow that the LDGP deterministic factors (from which the model’s deterministic
factors Q̃T

T+h are derived) are subject to in-sample shifts as well as forecast period shifts, denoted
by ∗∗ as follows. If we let τ date an in-sample shift (1 < τ < T ), the LDGP deterministic factors

1The dependence of
�

θ(T ) on the forecast origin is ignored below.
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are denoted by {Q∗∗}1
T+h =

[
Q1

τ , {Q∗}τ+1
T , {Q∗∗}T+1

T+h

]
. Thus, the pre-shift in-sample period is

1, . . . , τ , the post-shift in-sample period is τ+1, . . . , T , and the forecast period is T+1, . . . , T+h,
where we allow for the possibility of a shift at T . Absences of ∗∗ and ∗ indicate that forecast
and in-sample period shifts did not occur. Thus, {Q∗}τ+1

T = Qτ+1
T implies no in-sample shifts,

denoted by Q1
T , and the absence of shifts both in-sample and during the forecast period gives

Q1
T+h. Let {Q∗}1

T+h =
[
Q1

τ , {Q∗}τ+1
T+H

]
refer to an in-sample shift, but no subsequent forecast-

period shifts. The deterministic factors Q̃1
T in the model may also be mis-specified in-sample

when the LDGP deterministic factors are given by Q1
T (‘conventional’ mis-specification). Of

more interest, perhaps, is the case when the mis-specification is induced by an in-sample shift
not being modeled. This notation reflects the important role that shifts in deterministic terms
play in forecast failure, defined as a significant deterioration in forecast performance relative to
the anticipated outcome, usually based on the historical performance of a model.

We define the forecast error from the LDGP as:

εT+h|T = xT+h − ET+h

[
xT+h | X1

T , {Q∗∗}1
T+h

]
. (7)

By construction, this is the forecast error from using a correctly-specified model of the mean
of Dxt

(xt|X1
t−1,qt), where any structural change (in, or out, of sample) is known and incor-

porated, and the model parameters are known (with no estimation error). It follows that
ET+h[εT+h|T |X1

T , {Q∗∗}1
T+h] = 0, so that εT+h|T is an innovation against all available informa-

tion. Practical interest, though, lies in the model forecast error, eT+h|T = xT+h − x̂T+h|T . The
model forecast error is related to εT+h|T as given below, where we also separately delineate the
sources of error due to structural change and mis-specification, etc.

eT+h|T = xT+h − x̂T+h|T

=
(
ET+h

[
xT+h | X1

T , {Q∗∗}1
T+h

]
− ET+h

[
xT+h | X1

T , {Q∗}1
T+h

])
(T1)

+
(
ET+h

[
xT+h | X1

T , {Q∗}1
T+h

]
− ET

[
xT+h | X1

T , {Q∗}1
T+h

])
(T2)

+
(
ET

[
xT+h | X1

T , {Q∗}1
T+h

]
− ET

[
xT+h | X1

T , Q̃
1
T+h

])
(T3)

+
(
ET

[
xT+h | X1

T , Q̃
1
T+h

]
− ET

[
xT+h | XT−s+1

T , Q̃1
T+h,θe,(T )

])
(T4)

+
(
ET

[
xT+h | XT−s+1

T , Q̃1
T+h,θe,(T )

]
− ET

[
xT+h | X̃T−s+1

T , Q̃1
T+h,θe,(T )

])
(T5)

+
(
ET

[
xT+h | X̃T−s+1

T , Q̃1
T+h,θe,(T )

]
− gh

(
X̃T−s+1

T , Q̃1
T+h, θ̂(T )

))
(T6)

+εT+h|T . (T7)

(8)

The first two error components arise from structural change affecting deterministic (T1) and
stochastic (T2) components respectively over the forecast horizon. The third (T3) arises from
model mis-specification of the deterministic factors, both induced by failing to model in-sample
shifts and ‘conventional’ mis-specification. Next, (T4) arises from mis-specification of the sto-
chastic components, including lag length. (T5) and (T6) denote forecast error components
resulting from data measurement errors, especially forecast-origin inaccuracy, and estimation
uncertainty, respectively, and the last row (T7) is the LDGP innovation forecast error, which
is the smallest achievable in this class.
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Then (T1) is zero if {Q∗∗}1
T+h = {Q∗}1

T+h, which corresponds to no forecast-period de-
terministic shifts (conditional on all in-sample shifts being correctly modeled). In general the
converse also holds – (T1) being zero entails no deterministic shifts. Thus, a unique inference
seems possible as to when (T1) is zero (no deterministic shifts), or non-zero (deterministic
shifts).

Next, when ET+h [·] = ET [·], so there are no stochastic breaks over the forecast horizon,
entailing that the future distributions coincide with that at the forecast origin, then (T2) is
zero. Unlike (T1), the terms in (T2) could be zero despite stochastic breaks, providing such
breaks affected only mean-zero terms. Thus, no unique inference is feasible if (T2) is zero,
though a non-zero value indicates a change. However, other moments would be affected in the
first case.

When all the in-sample deterministic terms, including all shifts in the LDGP, are correctly
specified, so Q̃1

T+h = {Q∗}1
T+h, then (T3) is zero. Conversely, when (T3) is zero, then Q̃1

T+h

must have correctly captured in-sample shifts in deterministic terms, perhaps because there
were none. When (T3) is non-zero, the in-sample deterministic factors may be mis-specified
because of shifts, but this mistake ought to be detectable. However, (T3) being non-zero may
also reflect ‘conventional’ deterministic mis-specifications. This type of mistake corresponds
to omitting relevant deterministic terms, such as an intercept, seasonal dummy, or trend, and
while detectable by an appropriately directed test, also has implications for forecasting when
not corrected.

For correct stochastic specification, so θe,(T ) correctly summarizes the effects of X1
T , then

(T4) is zero, but again the converse is false – (T4) can be zero in mis-specified models. A
well-known example is approximating a high-order autoregressive LDGP for mean zero data
with symmetrically distributed errors, by a first-order autoregression, where forecasts are nev-
ertheless unbiased as discussed below for a VAR.

Next, when the data are accurate (especially important at the forecast origin), so X̃ = X,
then (T5) is zero, but the converse is not entailed: (T5) can be zero just because the data are
mean zero.

Continuing, (T6) concerns the estimation error, and arises when θ̂(T ) does not coincide
with θe,(T ). Biases in estimation could, but need not, induce such an effect to be systematic, as
might non-linearities in models or LDGPs. When estimated parameters have zero variances, so
x̂T+h|T = ET

[
xT+h|·,θe,(T )

]
, then (T6) is zero, and conversely (except for events of probability

zero). Otherwise, its main impacts will be on variance terms.
The final term (T7), εT+h|T , is unlikely to be zero in any social science, although it will

have a zero mean by construction, and be unpredictable from the past of the information in
use. As with (T6), the main practical impact is through forecast error variances.

The taxonomy in (8) includes elements for the seven main sources of forecast error, parti-
tioning these by whether or not the corresponding expectation is zero. However, several salient
features stand out. First, the key distinction between whether the expectations in question are
zero or non-zero. In the former case, forecasts will not be systematically biased, and the main
impact of any changes or mis-specifications is on higher moments, especially forecast error vari-
ances. Conversely, if a non-zero mean error results from any source, systematic forecast errors
will ensue. Secondly, and a consequence of the previous remark, some breaks will be easily
detected because at whatever point in time they happened, ‘in-sample forecasts’ immediately
after a change will be poor. Equally, others may be hard to detect because they have no impact
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on the mean forecast errors. Thirdly, the impacts of any transformations of a model on its
forecast errors depend on which mistakes have occurred. For example, it is often argued that
differencing doubles the forecast-error variance: this is certainly true of εT+h|T , but is not true
in general for eT+h|T . Indeed, it is possible in some circumstances to reduce the forecast-error
variance by differencing: see e.g., Hendry (2005). Finally, the taxonomy applies to any model
form, but to clarify some of its implications, we turn to its application to the forecast errors
from a VAR.

2.2 VAR model forecast-error taxonomy

We illustrate with a first-order VAR, and for convenience assume the absence of in-sample
breaks so that the VAR is initially correctly specified. We also assume that the n× 1 vector of
variables yt is an I (0) transformation of the original variables xt: section 4.1 considers systems
of cointegrated I (1) variables. Thus:

yt = φ+ Πyt−1 + εt,

with εt ∼ INn [0,Ωε], for an in-sample period t = 1, . . . , T . The unconditional mean of yt is
E [yt] = (In − Π)−1 φ ≡ ϕ, and hence the VAR(1) can be written as:

yt −ϕ = Π (yt−1 −ϕ) + εt.

The h-step ahead forecasts conditional upon period T are given by, for h = 1, . . . ,H:

ŷT+h − ϕ̂ = Π̂ (ŷT+h−1 − ϕ̂) = Π̂h (ŷT − ϕ̂) , (9)

where ϕ̂ = (In − Π̂)−1φ̂, and ‘∧’s denote estimators for parameters, and forecasts for random
variables. After the forecasts have been made at time T , (φ,Π) change to (φ∗,Π∗), where Π∗

still has all its eigenvalues less than unity in absolute value, so the process remains I (0). But
from T + 1 onwards, the data are generated by:

yT+h = ϕ∗ + Π∗ (yT+h−1 −ϕ∗) + εT+h

= ϕ∗ + (Π∗)h (yT −ϕ∗) +
h−1∑

i=0

(Π∗)i εT+h−i,

so both the slope and the intercept may alter. The forecast-error taxonomy for ε̂T+h|T =
yT+h − ŷT+h|T is then given by:

ε̂T+h|T '
(
In − (Π∗)h

)
(ϕ∗ −ϕ) (ia) equilibrium-mean change

+
(
(Π∗)h − Πh

)
(yT −ϕ) (ib) slope change

+
(
In − Πh

p

) (
ϕ−ϕp

)
(iia) equilibrium-mean mis-specification

+
(
Πh − Πh

p

)
(yT −ϕ) (iib) slope mis-specification

+
(
Πh

p + Ch

)
(yT − ŷT ) (iii) forecast-origin uncertainty

−
(
In − Πh

p

) (
ϕ̂−ϕp

)
(iva) equilibrium-mean estimation

−Fh

(
Π̂ − Πp

)ν

(ivb) slope estimation

+
∑h−1

i=0 (Π∗)i εT+h−i (v) error accumulation.

(10)
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The matrices Ch and Fh are complicated functions of the whole-sample data, the method of
estimation, and the forecast-horizon, defined in (70) and (71) below – see e.g., Calzolari (1981).
(·)ν denotes column vectoring, and the subscript p denotes a plim (expected values could be
used where these exist). Details of the derivations are given in Clements and Hendry (1999, ch
2.9), and are noted for convenience in Appendix A, section 11.

This taxonomy conflates some of the distinctions in the general formulation above (e.g., mis-
specification of deterministic terms other than intercepts) and distinguishes others (equilibrium-
mean and slope estimation effects). Thus, the model mis-specification terms (iia) and (iib) may
result from unmodeled in-sample structural change, as in the general taxonomy, but may also
arise from the omission of relevant variables, or the imposition of invalid restrictions.

In (10), terms involving yT − ϕ have zero expectations even under changed parameters
(e.g., (ib) and (iib)). Moreover, for symmetrically-distributed shocks, biases in Π̂ for Π will
not induce biased forecasts (see e.g., Malinvaud, 1970, Fuller and Hasza, 1980, Hoque, Magnus
and Pesaran, 1988, and Clements and Hendry, 1998, for related results). The εT+h have zero
means by construction. Consequently, the primary sources of systematic forecast failure are (ia),
(iia), (iii), and (iva). However, on ex post evaluation, (iii) will be removed, and in congruent
models with freely-estimated intercepts and correctly modeled in-sample breaks, (iia) and (iva)
will be zero on average. That leaves changes to the ‘equilibrium mean’ ϕ (not necessarily the
intercept φ in a model, as seen in (10)), as the primary source of systematic forecast error: see
Hendry (2000) for a detailed analysis.

3 Breaks in variance

3.1 Conditional variance processes

The autoregressive conditional heteroskedasticity (ARCH) model of Engle (1982), and its gen-
eralizations, are commonly used to model time-varying conditional processes: see inter alia

Engle and Bollerslev (1987), Bollerslev, Chou and Kroner (1992) and Shephard (1996); and
Bera and Higgins (1993) and Baillie and Bollerslev (1992) on forecasting. The forecast-error
taxonomy construct can be applied to variance processes. We show that ARCH and GARCH
models can in general be solved for long-run variances, so like VARs, are a member of the
equilibrium-correction class. Issues to do with the constancy of the long-run variance are then
discussed.

The simplest ARCH(1) model for the conditional variance of ut is ut = ηtσt, where ηt is a
standard normal random variable and:

σ2
t = ω + αu2

t−1 (11)

where ω, α > 0. Letting σ2
t = u2

t − vt, substituting in (11) gives:

u2
t = ω + αu2

t−1 + vt. (12)

From vt = u2
t−σ2

t = σ2
t

(
η2

t − 1
)
, E [vt|Yt−1] = σ2

t E
[(
η2

t − 1
)
|Yt−1

]
= 0, so that the disturbance

term {vt} in the AR(1) model (12) is uncorrelated with the regressor, as required. From the
AR(1) representation, the condition for covariance stationarity of

{
u2

t

}
is |α| < 1, whence:

E
[
u2

t

]
= ω + αE

[
u2

t−1

]
,
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and so the unconditional variance is:

σ2 ≡ E
[
u2

t

]
=

ω

1 − α
.

Substituting for ω in (11) gives the equilibrium-correction form:

σ2
t − σ2 = α

(
u2

t−1 − σ2
)
.

More generally, for an ARCH(p), p > 1:

σ2
t = ω + α1u

2
t−1 + α2u

2
t−2 + · · · + αpu

2
t−p (13)

provided the roots of
(
1 − α1z − α2z

2 + · · · + αpz
p
)

= 0 lie outside the unit circle, we can write:

σ2
t − σ2 = α1

(
u2

t−1 − σ2
)

+ α2

(
u2

t−2 − σ2
)

+ · · · + αp

(
u2

t−p − σ2
)
. (14)

where
σ2 ≡ E

[
u2

t

]
=

ω

1 − α1 − · · · − αp
.

The generalized ARCH (GARCH: see e.g., Bollerslev, 1986) process:

σ2
t = ω + αu2

t−1 + βσ2
t−1 (15)

also has a long-run solution. The GARCH(1, 1) implies an ARMA(1, 1) for
{
u2

t

}
. Letting

σ2
t = u2

t − vt, substitution into (15) gives:

u2
t = ω + (α+ β) u2

t−1 + vt − βvt−1. (16)

The process is stationary provided α+ β < 1. When that condition holds:

σ2 ≡ E
[
u2

t

]
=

ω

1 − (α+ β)
,

and combining the equations for σ2
t and σ2 for the GARCH(1, 1) delivers:

σ2
t − σ2 = α

(
u2

t−1 − σ2
)

+ β
(
σ2

t−1 − σ2
)
. (17)

Thus, the conditional variance responds to the previous period’s disequilibria between the
conditional variance and the long-run variance and between the squared disturbance and the
long-run variance, exhibiting equilibrium-correction type behavior.

3.2 GARCH model forecast-error taxonomy

As it is an equilibrium-correction model, the GARCH(1, 1) is not robust to shifts in σ2, but
may be resilient to shifts in ω, α and β which leave σ2 unaltered. As an alternative to (17),
express the process as:

σ2
t = σ2 + α

(
u2

t−1 − σ2
t−1

)
+ (α+ β)

(
σ2

t−1 − σ2
)
. (18)
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In either (17) or (18), α and β multiply zero-mean terms provided σ2 is unchanged by any shifts
in these parameters. The forecast of next period’s volatility based on (18) is given by:

σ̂2
T+1|T = σ̂2 + α̂

(
û2

T − σ̂2
T

)
+
(
α̂+ β̂

) (
σ̂2

T − σ̂2
)

(19)

recognizing that
{
α, β, σ2

}
will be replaced by in-sample estimates. The ‘ˆ’ on uT denotes this

term is the residual from modeling the conditional mean. When there is little dependence in the
mean of the series, such as when {ut} is a financial returns series sampled at a high-frequency,
uT is the observed data series and replaces û2

T (barring data measurement errors).
Then (19) confronts every problem noted above for forecasts of means: potential breaks

in σ2, α, β, mis-specification of the variance evolution (perhaps an incorrect functional form),
estimation uncertainty, etc. The 1-step ahead forecast-error taxonomy takes the following form
after a shift in ω, α, β to ω∗, α∗, β∗ at T to:

σ2
T+1 = σ2∗ + α∗

(
u2

T − σ2
T

)
+ (α∗ + β∗)

(
σ2

T − σ2∗
)
,

so that letting the subscript p denote the plim:

σ2
T+1 − σ̂2

T+1|T = (1 − (α∗ + β∗))
(
σ2∗ − σ2

)
long-run mean shift, [1]

+
(
1 −

(
α̂+ β̂

)) (
σ2 − σ2

p

)
long-run mean inconsistency, [2]

+
(
1 −

(
α̂+ β̂

))(
σ2

p − σ̂2
)

long-run mean variability, [3]

+ (α∗ − α)
(
u2

T − σ2
T

)
α shift, [4]

+ (α− αp)
(
u2

T − σ2
T

)
α inconsistency, [5]

+ (αp − α̂)
(
u2

T − σ2
T

)
variability, [6]

+α̂
(
u2

T − ET

[
û2

T

])
impact inconsistency, [7]

+α̂
(
ET

[
û2

T

]
− û2

T

)
impact variability, [8]

+ [(α∗ + β∗) − (α+ β)]
(
σ2

T − σ2
)

variance shift, [9]
+ [(α+ β) − (αp + βp)]

(
σ2

T − σ2
)

variance inconsistency, [10]

+
[
(αp + βp) −

(
α̂+ β̂

)] (
σ2

T − σ2
)

variance variability, [11]

+β̂
(
σ2

T − ET

[
σ̂2

T

])
σ2

T inconsistency, [12

+β̂
(
ET

[
σ̂2

T

]
− σ̂2

T

)
σ2

T variability, [13].

(20)
The first term is zero only if no shift occurs in the long-run variance and the second only if

a consistent in-sample estimate is obtained. However, the next four terms are zero on average,
although the seventh possibly is not. This pattern then repeats, since the next block of four
terms again is zero on average, with the penultimate term possibly non-zero, and the last zero
on average. As with the earlier forecast error taxonomy, shifts in the mean seem pernicious,
whereas those in the other parameters are much less serious contributors to forecast failure in
variances. Indeed, even assuming a correct in-sample specification, so terms [2], [5], [7], [10],
[12] all vanish, the main error components remain.
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4 Forecasting when there are breaks

4.1 Cointegrated vector autoregressions

The general forecast-error taxonomy in section 2.1 suggests that structural breaks in non-zero
mean components are the primary cause of forecast biases. In this section, we examine the
impact of breaks in VAR models of cointegrated I (1) variables, and also analyze models in first
differences, because models of this type are commonplace in macroeconomic forecasting. The
properties of forecasts made before and after the structural change has occurred are analyzed,
where it is assumed that the break occurs close to the forecast origin. As a consequence, the
comparisons are made holding the models’ parameters constant. The effects of in-sample breaks
are identified in the forecast-error taxonomies, and are analyzed in section 6, where the choice
of data window for model estimation is considered. Forecasting in cointegrated VARs (in the
absence of breaks) is discussed by Engle and Yoo (1987), Clements and Hendry (1995), Lin
and Tsay (1996) and Christoffersen and Diebold (1998), while Clements and Hendry (1996) (on
which this section is based) allow for breaks.

The VAR is a closed system so that all non-deterministic variables are forecast within the
system. The vector of all n variables is denoted by xt and the VAR is assumed to be first-order
for convenience:

xt = τ 0 + τ 1t+ Υxt−1 + νt (21)

where νt ∼ INn [0,Ω], and τ 0 and τ 1 are the vectors of intercepts and coefficients on the time
trend, respectively. The system is assumed to be integrated, and to satisfy r < n cointegration
relations such that (see, for example, Johansen, 1988):

Υ = In +αβ′,

where α and β are n × r matrices of rank r. Then (21) can be reparametrized as a vector
equilibrium-correction model (VECM):

∆xt = τ 0 + τ 1t+αβ′xt−1 + νt. (22)

Assuming that n > r > 0, the vector xt consists of I (1) variables of which r linear combinations
are I (0). The deterministic components of the stochastic variables xt depend on α, τ 0 and τ 1.
Following Johansen (1994), we can decompose τ 0 + τ 1t as:

τ 0 + τ 1t = α⊥ζ0 −αλ0 −αλ1t+α⊥ζ1t (23)

where λi = − (α′α)−1
α′τ i and ζi = (α′

⊥α⊥)−1
α′

⊥τ i with α′α⊥ = 0, so that αλi and α⊥ζi

are orthogonal by construction. The condition that α⊥ζ1 = 0 rules out quadratic trends in the
levels of the variables, and we obtain:

∆xt = α⊥ζ0 +α
(
β′xt−1 − λ0 − λ1t

)
+ νt. (24)

It is sometimes more convenient to parameterize the deterministic terms so that the system
growth rate γ = E [∆xt] is explicit, so in the following we will adopt:

∆xt = γ +α
(
β′xt−1 − µ0 − µ1t

)
+ νt (25)
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where one can show that γ = α⊥ζ0+αψ, µ0 = ψ+λ0 and µ1 = λ1 withψ =
(
β′α

)−1 (
λ1 − β′α⊥ζ0

)

and β′γ = µ1.
Finally, a VAR in differences (DVAR) may be used, which within sample is mis-specified

relative to the VECM unless r = 0. The simplest is:

∆xt = γ + ηt, (26)

so when α = 0, the VECM and DVAR coincide. In practice, lagged ∆xt may be used to
approximate the omitted cointegrating vectors.

4.2 VECM forecast errors

We now consider dynamic forecasts and their errors under structural change, abstracting from
the other sources of error identified in the taxonomy, such as parameter-estimation error. A
number of authors have looked at the effects of parameter estimation on forecast-error moments
(including, inter alia, Schmidt, 1974, 1977, Calzolari, 1981, 1987, Bianchi and Calzolari, 1982,
and Lütkepohl, 1991). The j-step ahead forecasts for the levels of the process given by x̂T+j|T =
E[xT+j |xT ] for j = 1, . . . ,H are:

x̂T+j|T = τ 0 + τ 1 (T + j) + Υx̂T+j−1|T =

j−1∑

i=0

Υiτ (i) + ΥjxT (27)

where we let τ 0 +τ 1(T + j− i) = τ (i) for notational convenience, with forecast errors ν̂T+j|T =
xT+j−x̂T+j|T . Consider a one-off change of (τ 0 : τ 1: Υ) to (τ ∗

0 : τ ∗
1 : Υ∗) which occurs either at

period T (before the forecast is made) or at period T + 1 (after the forecast is made), but with
the variance, autocorrelation, and distribution of the disturbance term remaining unaltered.
Then the data generated by the process for the next H periods is given by:

xT+j = τ ∗
0 + τ ∗

1 (T + j) + Υ∗xT+j−1 + νT+j

=
∑j−1

i=0 (Υ∗)i τ ∗ (i) +
∑j−1

i=0 (Υ∗)i νT+j−i + (Υ∗)j xT .
(28)

Thus, the j-step ahead forecast error can be written as:

ν̂T+j|T =

(
j−1∑

i=0

(Υ∗)i τ ∗ (i) −
j−1∑

i=0

Υiτ (i)

)
+

j−1∑

i=0

(Υ∗)i νT+j−i +
(
(Υ∗)j − Υj

)
xT . (29)

The expectation of the j-step forecast error conditional on xT is:

E
[
ν̂T+j|T | xT

]
=

(
j−1∑

i=0

(Υ∗)i τ ∗ (i) −
j−1∑

i=0

Υiτ (i)

)
+
(
(Υ∗)j −Υj

)
xT (30)

so that the conditional forecast error variance is:

V
[
ν̂T+j|T | xT

]
=

j−1∑

i=0

(Υ∗)i Ω (Υ∗)i′.
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We now consider a number of special cases where only the deterministic components change.
With the assumption that Υ∗ = Υ, we obtain:

E
[
ν̂T+j|T

]
= E

[
ν̂T+j|T | xT

]
=

∑j−1
i=0 Υi ([τ ∗

0 + τ ∗
1 (T + j − i)] − [τ 0 + τ 1 (T + j − i)])

=
∑j−1

i=0 Υi [(γ∗ − γ) +α (µ0 − µ∗
0) +α (µ1 − µ∗

1) (T + j − i)] .
(31)

so that the conditional and unconditional biases are the same. The bias is increasing in j due
to the shift in γ (the first term in square brackets) whereas the impacts of the shifts in µ0 and
µ1 eventually level off because:

lim
i→∞

Υi = In −α
(
β′α

)−1
β′ ≡ K,

and Kα = 0. When the linear trend is absent and the constant term can be restricted to the
cointegrating space (i.e. τ 1 = 0 and ζ0 = 0, which implies λ1 = 0 and therefore µ1 = γ = 0),
then only the second term appears, and the bias is O (1) in j. The formulation in (31) assumes
that Υ, and therefore the cointegrating space, remains unaltered. Moreover, the coefficient on
the linear trend alters but still lies in the cointegrating space. Otherwise, after the structural
break, xt would be propelled by quadratic trends.

4.3 DVAR forecast errors

Consider the forecasts from a simplified DVAR. Forecasts from the DVAR for ∆xt are defined
by setting ∆xT+j equal to the population growth rate γ:

∆x̃T+j = γ (32)

so that j-step ahead forecasts of the level of the process are obtained by integrating (32) from
the initial condition xT :

x̃T+j = x̃T+j−1 + γ = xT + jγ for j = 1, . . . ,H. (33)

When Υ is unchanged over the forecast period, the expected value of the conditional j-step
ahead forecast error ν̃T+j|T is:

E
[
ν̃T+j|T | xT

]
=

j−1∑

i=0

Υi [τ ∗
0 + τ ∗

1 (T + j − i)] − jγ+
(
Υj − In

)
xT . (34)

By averaging over xT we obtain the unconditional bias E [ν̃T+j ].
Appendix B, section 12, records the algebra for the derivation of (35):

E
[
ν̃T+j|T

]
= j (γ∗ − γ) + Ajα

[
(µa

0 − µ∗
0) − β′ (γ∗ − γa) (T + 1)

]
. (35)

In the same notation, the VECM results from (31) are:

E
[
ν̂T+j|T

]
= j (γ∗ − γ) + Ajα

[
(µ0 − µ∗

0) − β′ (γ∗ − γ) (T + 1)
]
. (36)

Thus, (36) and (35) coincide when µa
0 = µ0, and γa = γ as will occur if either there is no

structural change, or the change occurs after the start of the forecast period.
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4.4 Forecast biases under location shifts

We now consider a number of interesting special cases of (35) and (36) which highlight the
behavior of the DVAR and VECM under shifts in the deterministic terms. Viewing (τ 0, τ 1) as
the primary parameters, we can map changes in these parameters to changes in (γ,µ0,µ1) via
the orthogonal decomposition into (ζ0,λ0,λ1). The interdependencies can be summarized as
γ (ζ0,λ1), µ0 (ζ0,λ0,λ1), µ1 (λ1).

Case I τ ∗
0 = τ 0, τ

∗
1 = τ 1. In the absence of structural change, µa

0 = µ0 and γa = γ and so:

E
[
ν̂T+j|T

]
= E

[
ν̃T+j|T

]
= 0 (37)

as is evident from (35) and (36). The omission of the stationary I (0) linear combinations
does not render the DVAR forecasts biased.

Case II τ ∗
0 6= τ 0, τ

∗
1 = τ 1, but ζ∗0 = ζ0. Then µ∗

0 6= µ0 but γ∗ = γ:

E
[
ν̂T+j|T

]
= Ajα (µ0 − µ∗

0) (38)

E
[
ν̃T+j|T

]
= Ajα (µa

0 − µ∗
0) . (39)

The biases are equal if µa
0 = µ0; i.e., the break is after the forecast origin. However,

E [ν̃T+j] = 0 when µa
0 = µ∗

0, and hence the DVAR is unbiased when the break occurs
prior to the commencement of forecasting. In this example the component of the constant
term orthogonal to α (ζ0) is unchanged, so that the growth rate is unaffected.

Case III τ ∗
0 6= τ 0, τ

∗
1 = τ 1 (as in Case II), but now λ∗

0 = λ0 which implies ζ∗0 6= ζ0 and therefore
µ∗

0 6= µ0 and γ∗ 6= γ. However, β′γ
∗ = β′γ holds (because τ ∗

1 = τ 1) so that:

E
[
ν̂T+j|T

]
= j (γ∗ − γ) + Ajα (µ0 − µ∗

0) (40)

E
[
ν̃T+j|T

]
= j (γ∗ − γ) + Ajα (µa

0 −µ∗
0) . (41)

Consequently, the errors coincide when µa
0 = µ0, but differ when µa

0 = µ∗
0.

Case IV τ ∗
0 = τ 0, τ

∗
1 6= τ 1. All of µ0, µ1 and γ change. If β′γ

∗ 6= β′γ then we have (35) and
(36), and otherwise the biases of Case III.

4.5 Forecast biases when there are changes in the autoregressive parameters

By way of contrast, changes in autoregressive parameters that do not induce changes in means
are relatively benign for forecasts of first moments. Consider the VECM forecast errors given
by (29) when E [xt] = 0 for all t, so that τ 0 = τ ∗

0 = τ 1 = τ ∗
1 = 0 in (21):

ν̂T+j|T =

j−1∑

i=0

Υ∗iνT+j−i +
(
Υ∗j − Υj

)
xT . (42)

The forecasts are unconditionally unbiased, E
[
ν̂T+j|T

]
= 0, and the effect of the break is

manifest in higher forecast error variances:

V
[
ν̂T+j|T | xT

]
=

j−1∑

i=0

Υ∗iΩΥ∗i′ +
(
Υ∗j − Υj

)
xTx′

T

(
Υ∗j − Υj

)′
.
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The DVAR model forecasts are also unconditionally unbiased, from:

ν̃T+j|T =

j−1∑

i=0

Υ∗iνT+j−i +
(
Υ∗j − In

)
xT ,

since E
[
ν̃T+j|T

]
= 0 provided E [xT ] = 0.

When E [xT ] 6= 0, but is the same before and after the break (as when changes in the
autoregressive parameters are offset by changes in intercepts) both models’ forecast errors are
unconditionally unbiased.

4.6 Univariate models

The results for n = 1 follow immediately as a special case of (21):

xt = τ0 + τ1t+ Υxt−1 + νt (43)

The forecasts from (43) and the ‘unit-root’ model xt = xt−1+γ+υt are unconditionally unbiased
when Υ shifts provided E [xt] = 0 (requiring τ0 = τ1 = 0). When τ1 = 0, the unit-root model
forecasts remain unbiased when τ0 shifts provided the shift occurs prior to forecasting, demon-
strating the greater adaptability of the unit-root model. As in the multivariate setting, the
break is assumed not to affect the model parameters (so that γ is taken to equal its population
value of zero).

5 Detection of breaks

5.1 Tests for structural change

In this section, we briefly review testing for structural change or non-constancy in the para-
meters of time-series regressions. There is a large literature on testing for structural change.
See, for example, Stock (1994) for a review. Two useful distinctions can be drawn: whether
the putative break point is known, and whether the change in the parameters is governed by a
stochastic process. Section 8 considers tests against the alternative of non-linearity.

For a known break date, the traditional method of testing for a one-time change in the
model’s parameters is the Chow (1960) test. That is, in the model:

yt = α1yt−1 + · · · + αpyt−p + εt (44)

when the alternative is a one-off change:

H1 (π) : α =

{
α1 (π) for t = 1, 2, . . . , πT
α2 (π) for t = πT + 1, . . . , T

where α′ = (α1 α2 . . . αp), π ∈ (0, 1), a test of parameter constancy can be implemented as an
LM, Wald or LR test, all of which are asymptotically equivalent. For example, the Wald test
has the form:

FT (π) =
RSS1,T − (RSS1,πT +RSSπT+1,T )

(RSS1,πT +RSSπT+1,T ) / (T − 2p)
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where RSS1,T is the ‘restricted’ residual sum of squares from estimating the model on all the
observations, RSS1,πT is the residual sum of squares from estimating the model on observa-
tions 1 to πT , etc. These tests also apply when the model is not purely autoregressive but
contains other explanatory variables, although for FT (π) to be asymptotically chi-squared all
the variables need to be I (0) in general.

When the break is not assumed known a priori, the testing procedure cannot take the
break date π as given. The testing procedure is then non-standard, because π is identified
under the alternative hypothesis but not under the null (Davies, 1977, 1987). Quandt (1960)
suggested taking the maximal FT (π) over a range of values of π ∈ Π, for Π a pre-specified
subset of (0, 1). Andrews (1993) extended this approach to non-linear models, and Andrews
and Ploberger (1994) considered the ‘average’ and ‘exponential’ test statistics. The asymptotic
distributions are tabulated by Andrews (1993), and depend on p and Π. Diebold and Chen
(1996) consider bootstrap approximations to the finite-sample distributions.

Andrews (1993) shows that the sup tests have power against a broader range of alternatives
than H1 (π), but will not have high power against ‘structural change’ caused by the omission of
a stationary variable. For example, suppose the DGP is a stationary AR(2):

yt = α1yt−1 + α2yt−2 + εt

and the null is φ1,t = φ1,0 for all t in the model yt = φ1,tyt−1 + εt, versus H∗
1: φ1,t varies with t.

The omission of the second lag can be viewed as causing structural change in the model each
period, but this will not be detectable as the model is stationary under the alternative for all
t = 1, . . . , T . Stochastic forms of model mis–specification of this sort were shown in section 2.1
not to cause forecast bias.

In addition, Bai and Perron (1998) consider testing for multiple structural breaks, and Bai,
Lumsdaine and Stock (1998) consider testing and estimating break dates when the breaks are
common to a number of time series. Hendry, Johansen and Santos (2004) propose testing for
this form of non-constancy by adding a complete set of impulse indicators to a model using a
two-step process, and establish the null distribution in a location-scale IID distribution.

Tests for structural change can also be based on recursive coefficient estimates and recursive
residuals. The CUSUM test of Brown, Durbin and Evans (1975) is based on the cumulation of
the sequence of 1-step forecast errors obtained by recursively estimating the model. As shown
by Krämer, Ploberger and Alt (1988) and discussed by Stock (1994), the CUSUM test only
has local asymptotic power against breaks in non-zero mean regressors. Therefore, CUSUM
test rejections are likely to signal more specific forms of change than the sup tests. Unlike sup
tests, CUSUM tests will not have good local asymptotic power against H1 (π) when (44) does
not contain an intercept (so that yt is zero-mean).

As well as testing for ‘non-stochastic’ structural change, one can test for randomly time-
varying coefficients. Nyblom (1989) tests against the alternative that the coefficients follow a
random walk, and Breusch and Pagan (1979) against the alternative that the coefficients are
random draws from a distribution with a constant mean and finite variance.

From a forecasting perspective, in-sample tests of parameter instability may be used in a
number of ways. The finding of instability may guide the selection of the window of data to
be used for model estimation, or lead to the use of rolling windows of observations to allow for
gradual change, or to the adoption of more flexible models, as discussed in sections 6 and 7.
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As argued by Chu, Stinchcombe and White (1996), the ‘one shot’ tests discussed so far may
not be ideal in a real-time forecasting context as new data accrue. The tests are designed to
detect breaks on a given historical sample of a fixed size. Repeated application of the tests
as new data becomes available, or repeated application retrospectively moving through the
historical period, will result in the asymptotic size of the sequence of tests approaching one if
the null rejection frequency is held constant. Chu et al. (1996, p.1047) illustrate with reference
to the Ploberger, Krämer and Kontrus (1989) retrospective fluctuation test. In the simplest
case that {Yt} is an independent sequence, the null of ‘stability in mean’ is H0: E [Yt] = 0,
t = 1, 2, . . . versus H1: E [Yt] 6= 0 for some t. For a given n,

FLn = max
k<n

σ−1
0

√
n (k/n)

∣∣∣∣∣
1

k

k∑

t=1

yt

∣∣∣∣∣

is compared to a critical value c determined from the hitting probability of a Brownian motion.
But if FLn is implemented sequentially for n + 1, n + 2, . . . then the probability of a type 1
error is one asymptotically. Similarly if a Chow test is repeatedly calculated every time new
observations become available.

Chu et al. (1996) suggest monitoring procedures for CUSUM and parameter fluctuation
tests where the critical values are specified as boundary functions such that they are crossed
with the prescribed probability under H0. The CUSUM implementation is as follows. Define:

Q̃m
n = σ̂−1

m+n∑

i=m

ωi,

where m is the end of the historical period, so that monitoring starts at m+ 1, and n ≥ 1. The
ωi are the recursive residuals, ωi = ε̂i/

√
υi, where ε̂i = yi − x′

iβ̂i−1, and:

υi = 1 + x′
i




i−1∑

j=1

XjX
′
j




−1

xi,

with:

β̂i =




i∑

j=1

xjx
′
j




−1


i∑

j=1

xjyj


 ,

for the model:
yt = x′

tβ + εt,

where xt is k × 1, say, and Xj = (x1 . . . xj) etc. σ̂2 is a consistent estimator of E
[
ε2t
]

= σ2.
The boundary is given by:

√
n+m− k

√
c+ ln

(
n+m− k

m− k

)
,

(where c depends on the size of the test). Hence, beginning with n = 1,
∣∣∣Q̃m

n

∣∣∣ is compared to

the boundary, and so on for n = 2, n = 3 etc. until
∣∣∣Q̃m

n

∣∣∣ crosses the boundary, signalling a

rejection of the null hypothesis H0: βt = β for t = n + 1, n + 2, . . .. As for the one-shot tests,
rejection of the null may lead to an attempt to revise the model or the adoption of a more
‘adaptable’ model.
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5.2 Testing for level shifts in ARMA models

In addition to the tests for structural change in regression models, the literature on the detection
of outliers and level shifts in ARMA models (following on from Box and Jenkins, 1976) is
relevant from a forecasting perspective: see, inter alia, Tsay (1986, 1988), Chen and Tiao
(1990), Chen and Liu (1993), Balke (1993), Junttila (2001), and Sánchez and Peña (2003).
In this tradition, ARMA models are viewed as being composed of a ‘regular component’ and
possibly a component which represents anomalous exogenous shifts. The latter can be either
outliers or permanent shifts in the level of the process. The focus of the literature is on the
problems caused by outliers and level shifts on the identification and estimation of the ARMA
model, vis., the regular component of the model. The correct identification of level shifts
will have an important bearing on forecast performance. Methods of identifying the type and
estimating the timing of the exogenous shifts are aimed at ‘correcting’ the time series prior to
estimating the ARMA model, and often follow an iterative procedure. That is, the exogenous
shifts are determined conditional on a given ARMA model, the data are then corrected and
the ARMA model re-estimated, etc.: see Tsay (1988) (Balke, 1993, provides a refinement), and
Chen and Liu (1993) for an approach that jointly estimates the ARMA model and exogenous
shifts.

Given an ARMA model:
yt = f (t) + [θ (L) /φ (L)] εt,

where εt ∼ IN
[
0, σ2

ε

]
, θ (L) = 1 − θ1L − · · · − θqL

q, φ (L) = 1 − φ1L − · · · − φpL
p, and

[θ (L) /φ (L)] εt is the regular component. For a single exogenous shift, let:

f (t) = ω0

[
ω (L)

δ (L)

]
ξ
(d)
t ,

where ξ
(d)
t = 1 when t = d and ξ

(d)
t = 0 when t 6= d. The lag polynomials ω (L) and δ (L)

define the type of exogenous event. ω (L) /δ (L) = 1 corresponds to an additive outlier (AO),
whereby yd is ω0 higher than would be the case were the exogenous component absent. When
ω (L) /δ (L) = θ (L) /φ (L), we have an innovation outlier (IO). The model can be written as:

yt =
θ (L)

φ (L)

(
εt + ω0ξ

(d)
t

)
,

corresponding to the period d innovation being drawn from a Gaussian distribution with mean
ω0. Of particular interest from a forecasting perspective is when ω (L) /δ (L) = (1 − L)−1,
which represents a permanent level shift (LS):

yt = [θ (L) /φ (L)] εt, t < d

yt − ω0 = [θ (L) /φ (L)] εt, t ≥ d.

Letting π (L) = φ (L) /θ (L), we obtain the following residual series for the three specifications
of f (t):

IO:
et = π (L) yt = ω0ξ

(d)
t + εt
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AO
et = π (L) yt = ω0π (L) ξ

(d)
t + εt

LS
et = π (L) yt = ω0π (L) (1 − L)−1 ξ

(d)
t + εt.

Hence the least-squares estimate of an IO at t = d can be obtained by regressing et on ξ
(d)
t :

this yields ω̂0,IO = et. Similarly, the least-squares estimate of an AO at t = d can be obtained
by regressing et on a variable that is zero for t < d, 1 for t = d, −πk for t = d + k, k > 1, to
give ω̂0,AO. Similarly for LS.

The standardized statistics:

IOs
τIO (d) = ω̂0,IO (d) /σ̂ε;

AOs

τAO (d) = (ω̂0,AO (d) /σ̂ε)

√√√√
T∑

t=d

(
π (L) ξ

(d)
t

)2
;

LSs

τLS (d) = (ω̂0,LS (d) /σ̂ε)

√√√√
T∑

t=d

(
π (L) (1 − L)−1 ξ

(d)
t

)2
;

are discussed by Chan and Wei (1988) and Tsay (1988). They have approximately normal
distributions. Given that d is unknown, as is the type of the shift, the suggestion is to take:

τmax = max {τIO,max, τAO,max, τLS,max}

where τj,max = max1≤d≤T {τj (d)}, and compare this to a pre-specified critical value. Exceedence
implies an exogenous shift has occurred.

As φ (L) and θ (L) are unknown, these tests require a pre-estimate of the ARMA model.
Balke (1993) notes that when level shifts are present, the initial ARMA model will be mis-
specified, and that this may lead to level shifts being identified as IOs, as well as reducing the
power of the tests of LS.

Suppose φ (L) = 1 − φL and θ (L) = 1, so that we have an AR(1), then in the presence of
an unmodeled level shift of size µ at time d, the estimate of φ is inconsistent:

plim
T→∞

φ̂ = φ+

[
(1 − φ)µ2 (T − d) d/T 2

σ2
ε/ (1 − φ2) + µ2 (T − d) d/T 2

]
(45)

see, e.g., Rappoport and Reichlin (1989), Reichlin (1989), Chen and Tiao (1990), Perron (1990)
and Hendry and Neale (1991). Neglected structural breaks will give the appearance of unit
roots. Balke (1993) shows that the expected value of the τLS (d) statistic will be substantially
reduced for many combinations of values of the underlying parameters, leading to a reduction
in power.
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The consequences for forecast performance are less clear-cut. The failure to detect structural
breaks in the mean of the series will be mitigated to some extent by the induced ‘random-walk-
like’ property of the estimated ARMA model. An empirical study by Junttila (2001) finds that
intervention dummies do not result in the expected gains in terms of forecast performance when
applied to a model of Finnish inflation.

With this background, we turn to detecting the breaks themselves when these occur in-
sample.

6 Model estimation and specification

6.1 Determination of estimation sample for a fixed specification

We assume that the break date is known, and consider the choice of the estimation sample. In
practice the break date will need to be estimated, and this will often be given as a by-product
of testing for a break at an unknown date, using one of the procedures reviewed in section 5.
The remaining model parameters are estimated, and forecasts generated, conditional on the
estimated break point(s): see, e.g., Bai and Perron (1998).2 Consequently, the properties of
the forecast errors will depend on the pre-test for the break date. In the absence of formal
frequentist analyses of this problem, we act as if the break date were known.3

Suppose the DGP is given by:

yt+1 = 1(t≤τ)β
′
1xt +

(
1 − 1(t≤τ)

)
β′

2xt + ut+1 (46)

so that the pre-break observations are t = 1, . . . , τ , and the post-break t = τ + 1, . . . , T . There
is a one-off change in all the slope parameters and the disturbance variance, from σ2

1 to σ2
2.

First, we suppose that the explanatory variables are strictly exogenous. Pesaran and Tim-
mermann (2002b) consider the choice of m, the first observation for the model estimation
period, where m = τ + 1 corresponds to only using post-break observations. Let Xm,T be the
(T −m+ 1) × k matrix of observations on the k explanatory variables for the periods m to T
(inclusive), Qm,T = X′

m,TXm,T , and Ym,T and um,T contain the latest T −m+ 1 observations
on y and u respectively. The OLS estimator of β in:

Ym,T = Xm,Tβ (m)+vm,T

is given by:

β̂T (m) = Q−1
m,TX′

m,TYm,T

= Q−1
m,T

(
X′

m,τ : X′
τ+1,T

)( Ym,τ

Yτ+1,T

)

= Q−1
m,TQm,τβ1 + Q−1

m,TQτ+1,Tβ2 + Q−1
m,TX′

m,Tum,T

2In the context of assessing the predictability of stock market returns, Pesaran and Timmermann (2002a)
choose an estimation window by determining the time of the most recent break using reversed ordered CUSUM
tests. The authors also determine the latest break using the method in Bai and Perron (1998).

3Pastor and Stambaugh (2001) adopt a Bayesian approach that incorporates uncertainty about the locations
of the breaks, so their analysis does not treat estimates of breakpoints as true values and condition upon them.
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where e.g., Qm,τ is the second moment matrix formed from Xm,τ , etc. Thus β̂T (m) is a
weighted average of the pre and post-break parameter vectors. The forecast error is:

eT+1 = yT+1 − β̂T (m)′ xT (47)

= uT+1 + (β2 − β1)
′ Qm,τQ

−1

m,TxT − u′
m,TXm,TQ−1

m,TxT

where the second term is the bias that results from using pre-break observations, which depends
on the size of the shift δβ = (β2 − β1), amongst other things. The conditional MSFE is:

E
[
e2T+1 | IT

]
= σ2

2 +
(
δ′βQm,τQ

−1

m,TxT

)2
+ x′

TQ−1
m,TX′

m,TDm,T Xm,TQ−1
m,TxT (48)

where Dm,T = E
[
um,T u′

m,T

]
, a diagonal matrix with σ2

1 in the first τ −m + 1 elements, and

σ2
2 in the remainder. When σ2

2 = σ2
1 = σ2 (say), Dm,T is proportional to the identity matrix,

and the conditional MSFE simplifies to:

E
[
e2T+1 | IT

]
= σ2 +

(
δ′βQm,τQ

−1

m,TxT

)2
+ σ2x′

TQ−1
m,TxT .

Using only post-break observations corresponds to setting m = τ + 1. Since Qm,τ = 0 when
m > τ , from (48) we obtain:

E
[
e2T+1 | IT

]
= σ2

2 + σ2
2

(
x′

TQ−1
τ+1,TxT

)

since Dτ+1,T = σ2
2IT−τ .

Pesaran and Timmermann (2002b) consider k = 1 so that:

eT+1 = uT+1 + (β2 − β1) θmxT − vmxT (49)

where:

θm =
Qm,τ

Qm,T
=

∑τ
t=m x2

t−1∑T
t=m x2

t−1

and vm = u′
m,TXm,TQ

−1
m,T =

∑T
t=m utxt−1∑T
t=m x2

t−1

.

Then the conditional MSFE has a more readily interpretable form:

E
[
e2T+1 | IT

]
= σ2

2 + σ2
2x

2
T

(
σ2

2δ
2
βθ

2
m +

ψθm + 1
∑T

t=m x2
t−1

)

where ψ =
(
σ2

1 − σ2
2

)
/σ2

2 . So decreasing m (including more pre-break observations) increases
θm and therefore the squared bias (via σ2

2δ
2
βθ

2
m) but the overall effect on the MSFE is unclear.

Including some pre-break observations is more likely to lower the MSFE the smaller the
break, |δβ |; when the variability increases after the break period, σ2

2 > σ2
1 , and the fewer the

number of post-break observations (the shorter the distance T − τ). Given that it is optimal
to set m < τ + 1, the optimal window size m∗ is chose to satisfy:

m∗ = argmin
m=1,...,τ+1

{
E
[
e2T+1 | IT

]}
.
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Unconditionally (i.e., on average across all values of xt) the forecasts are unbiased for all m
when E [xt] = 0. From (49):

E [eT+1 | IT ] = (β2 − β1) θmxT − vmxT (50)

so that:
E [eT+1] = E (E [eT+1 | IT ]) = (β2 − β1) θmE [xT ] − vmE [xT ] = 0. (51)

The unconditional MSFE is given by:

E
[
e2T+1

]
= σ2 + ω2 (β2 − β1)

2 ν1 (ν1 + 2)

ν (ν + 2)
+

σ2

ν − 2

for conditional mean breaks (σ2
1 = σ2

2 = σ2) with zero-mean regressors, and where E
[
x2

t

]
= ω2

and ν1 = τ −m+ 1, ν = T −m+ 1.
The assumption that xt is distributed independently of all the disturbances {ut, t = 1, . . . , T}

does not hold for autoregressive models. The forecast error remains unconditionally unbiased
when the regressors are zero-mean, as is evident with E [xt] = 0 in the case of k = 1 depicted
in equation (51), and consistent with the forecast-error taxonomy in section 2.1. Pesaran and
Timmermann (2003) show that including pre-break observations is more likely to improve fore-
casting performance than in the case of fixed regressors because of the finite small-sample biases
in the estimates of the parameters of autoregressive models. They conclude that employing an
expanding window of data may often be as good as employing a rolling window when there are
breaks. Including pre-break observations is more likely to reduce MSFEs when the degree of
persistence of the AR process declines after the break, and when the mean of the process is
unaffected. A reduction in the degree of persistence may favor the use of pre-break observations
by offsetting the small-sample bias. The small-sample bias of the AR parameter in the AR(1)
model is negative:

E[β̂1] − β1 =
− (1 + 3β1)

T
+O

(
T− 3

2

)

so that the estimate of β1 based on post-break observations is on average below the true value.
The inclusion of pre-break observations will induce a positive bias (relative to the true post-
break value, β2). When the regressors are fixed, finite-sample biases are absent and the inclusion
of pre-break observations will cause bias, other things being equal. Also see Chong (2001).

6.2 Updating

Rather than assuming that the break has occurred some time in the past, suppose that the
change happens close to the time that the forecasts are made, and may be of a continuous nature.
In these circumstances, parameter estimates held fixed for a sequence of forecast origins will
gradually depart from the underlying LDGP approximation. A moving window seeks to offset
that difficulty by excluding distant observations, whereas updating seeks to ‘chase’ the changing
parameters: more flexibly, ‘updating’ could allow for re-selecting the model specification as well
as re-estimating its parameters. Alternatively, the model’s parameters may be allowed to ‘drift’.
An assumption sometimes made in the empirical macro literature is that VAR parameters evolve
as driftless random walks (with zero-mean, constant-variance Gaussian innovations) subject
to constraints that rule out the parameters drifting into non-stationary regions (see Cogley
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and Sargent, 2001, 2005, for recent examples). In modeling the equity premium, Pastor and
Stambaugh (2001) allow for parameter change by specifying a process that alternates between
‘stable’ and ‘transition’ regimes. In their Bayesian approach, the timing of the break points
that define the regimes is uncertain, but the use of prior beliefs based on economics (e.g., the
relationship between the equity premium and volatility, and with price changes) allows the
current equity premium to be estimated. The next section notes some other approaches where
older observations are down weighted, or when only the last few data points play a role in the
forecast (as with double-differenced devices).

Here we note that there is evidence of the benefits of jointly re-selecting the model specifica-
tion and re-estimating its resulting parameters in Phillips (1994, 1995, 1996), Schiff and Phillips
(2000) and Swanson and White (1997), for example. However, Stock and Watson (1996) find
that the forecasting gains from time-varying coefficient models appear to be rather modest. In
a constant parameter world, estimation efficiency dictates that all available information should
be incorporated, so updating as new data accrue is natural. Moreover, following a location
shift, re-selection could allow an additional unit root to be estimated to eliminate the break,
and thereby reduce systematic forecast failure, as noted at the end of section 5.2: also see
Osborn (2002, p.420-1) for a related discussion in a seasonal context.

7 Ad hoc forecasting devices

When there are structural breaks, forecasting methods which adapt quickly following the break
are most likely to avoid making systematic forecast errors in sequential real-time forecasting.
Using the tests for structural change discussed in section 5, Stock and Watson (1996) find
evidence of widespread instability in the postwar US univariate and bivariate macroeconomic
relations that they study. A number of authors have noted that empirical-accuracy studies of
univariate time-series forecasting models and methods often favor ad hoc forecasting devices
over properly specified statistical models (in this context, often the ARMA models of Box and
Jenkins, 1976).4 One explanation is the failure of the assumption of parameter constancy, and
the greater adaptivity of the forecasting devices. Various types of exponential smoothing (ES),
such as damped trend ES (see Gardner and McKenzie, 1985), tend to be competitive with
ARMA models, although it can be shown that ES only corresponds to the optimal forecasting
device for a specific ARMA model, namely the ARIMA(0, 1, 1) (see, for example, Harvey,
1992, ch. 2). In this section, we consider a number of ad hoc forecasting methods and assess
their performance when there are breaks. The roles of parameter estimation updating, rolling
windows and time-varying parameter models have been considered in sections 6.1 and 6.2.

7.1 Exponential smoothing

We discuss exponential smoothing for variance processes, but the points made are equally rele-
vant for forecasting conditional means. The ARMA(1, 1) equation for u2

t for the GARCH(1, 1)
indicates that the forecast function will be closely related to exponential smoothing. Equation

4One of the earliest studies was Newbold and Granger (1974). Fildes and Makridakis (1995) and Fildes
and Ord (2002) report on the subsequent ‘M-competitions’, Makridakis and Hibon (2000) present the latest
‘M-competition’, and a number of commentaries appear in the International Journal of Forecasting, vol 17.
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(17) has the interpretation that the conditional variance will exceed the long-run (or uncon-
ditional) variance if last period’s squared returns exceed the long-run variance and/or if last
period’s conditional variance exceeds the unconditional. Some straightforward algebra shows
that the long-horizon forecasts approach σ2. Writing (17) for σ2

T+j:

σ2
T+j − σ2 = α

(
u2

T+j−1 − σ2
)

+ β
(
σ2

T+j−1 − σ2
)

= α
(
σ2

T+j−1z
2
T+j−1 − σ2

)
+ β

(
σ2

T+j−1 − σ2
)
.

Taking conditional expectations:

σ2
T+j|T − σ2 = α

(
E
[
σs

T+j−1z
2
T+j−1 | YT

]
− σ2

)
+ β

(
E
[
σ2

T+j−1 | YT

]
− σ2

)

= (α+ β)
(
E
[
σ2

T+j−1 | YT

]
− σ2

)

using:

E
[
σ2

T+j−1z
2
T+j−1 | YT

]
= E

[
σ2

T+j−1 | YT

]
E
[
z2
T+j−1 | YT

]
= E

[
σ2

T+j−1 | YT

]
,

for j > 2. By backward substitution (j > 0):

σ2
T+j|T − σ2 = (α+ β)j−1 (σ2

T+1 − σ2
)

= (α+ β)j−1 [α
(
u2

T − σ2
)

+ β
(
σ2

T − σ2
)]

(52)

(given E
[
σ2

T+1 | YT

]
= σ2

T+1).Therefore σ2
T+j|T → σ2 as j → ∞.

Contrast the EWMA formula for forecasting T + 1 based on YT .

σ̃2
T+1|T =

1∑∞
s=0 λ

s

(
u2

T + λu2
T−1 + λ2u2

T−2 + · · ·
)

= (1 − λ)

∞∑

s=0

λsu2
T−s, (53)

where λ ∈ (0, 1), so the largest weight is given to the most recent squared return, (1 − λ), and
thereafter the weights decline exponentially. Rearranging gives:

σ̃2
T+1|T = u2

T + λ
(
σ̃2

T |T−1 − u2
T

)
.

The forecast is equal to the squared return plus/minus the difference between the estimate
of the current-period variance and the squared return. Exponential smoothing corresponds
to a restricted GARCH(1, 1) model with ω = 0 and α + β = (1 − λ) + λ = 1. From a
forecasting perspective, these restrictions give rise to an ARIMA(0, 1, 1) for u2

t . As an integrated
process, the latest volatility estimate is extrapolated, and there is no mean-reversion. Thus the
exponential smoother will be more robust than the GARCH(1, 1) model’s forecasts to breaks
in σ2 when λ is close to zero: there is no tendency for a sequence of 1-step forecasts to move
toward a long-run variance. When σ2 is constant (i.e., when there are no breaks in the long-run
level of volatility) and the conditional variance follows an ‘equilibrium’ GARCH process, this
will be undesirable, but in the presence of shifts in σ2 may avoid the systematic forecast errors
from a GARCH model correcting to an inappropriate equilibrium.

Empirically, the estimated value of α + β in (15) is often found to be close to 1, and
estimates of ω close to 0. α + β = 1 gives rise to the Integrated GARCH (IGARCH) model.
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The IGARCH model may arise through the neglect of structural breaks in GARCH models,
paralleling the impact of shifts in autoregessive models of means, as summarized in (45). For
a number of daily stock return series, Lamoureux and Lastrapes (1990) test standard GARCH
models against GARCH models which allow for structural change through the introduction of
a number of dummy variables, although Maddala and Li (1996) question the validity of their
bootstrap tests.

7.2 Intercept corrections

The widespread use of some macro-econometric forecasting practices, such as intercept cor-
rections (or residual adjustments), can be justified by structural change. Published forecasts
based on large-scale macro-econometric models often include adjustments for the influence of
anticipated events that are not explicitly incorporated in the specification of the model. But in
addition, as long ago as Marris (1954), the ‘mechanistic’ adherence to models in the generation
of forecasts when the economic system changes was questioned. The importance of adjusting
purely model-based forecasts has been recognized by a number of authors (see, inter alia, Theil,
1961, p.57, Klein, 1971, Klein, Howrey and MacCarthy, 1974, and the sequence of reviews by
the UK ESRC Macroeconomic Modelling Bureau in Wallis, Andrews, Bell, Fisher and Whitley,
1984, 1985, Wallis, Andrews, Fisher, Longbottom and Whitley, 1986, Wallis, Fisher, Longbot-
tom, Turner and Whitley, 1987, Turner, 1990, and Wallis and Whitley, 1991). Improvements
in forecast performance after intercept correction (IC) have been documented by Wallis et al.

(1986, table 4.8), Wallis et al. (1987, figures 4.3 and 4.4) and Wallis and Whitley (1991), inter

alia.
To illustrate the effects of IC on the properties of forecasts, consider the simplest adjustment

to the VECM forecasts in section 4.2, whereby the period T residual ν̂T = xT−x̂T = (τ ∗
0 − τ 0)+

(τ ∗
1 − τ 1)T + νT is used to adjust subsequent forecasts. Thus, the adjusted forecasts are given

by:
ẇT+h = τ 0 + τ 1 (T + h) + ΥẇT+h−1 + ν̂T (54)

where ẇT = xT , so that:

ẇT+h = x̂T+h +

h−1∑

i=0

Υiν̂T = x̂T+h + Ahν̂T . (55)

Letting ν̂T+h denote the h-step ahead forecast error of the unadjusted forecast, ν̂T+h = xT+h−
x̂T+h, the conditional (and unconditional) expectation of the adjusted-forecast error is:

E [ν̇T+h | xT ] = E [ν̂T+h − Ahν̂T ] = [hAh −Dh] (τ ∗
1 − τ 1) (56)

where we have used:
E [ν̂T ] = (τ ∗

0 − τ 0) + (τ ∗
1 − τ 1)T.

The adjustment strategy yields unbiased forecasts when τ ∗
1 = τ 1 irrespective of any shift in

τ 0. Even if the process remains unchanged there is no penalty in terms of bias from intercept
correcting. The cost of intercept correcting is in terms of increased uncertainty. The forecast
error variance for the type of IC discussed here is:

V [ν̇T+h] = 2V [ν̂T+h] +

h−1∑

j=0

h−1∑

i=0

ΥjΩΥi′ j 6= i (57)
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which is more than double the conditional expectation forecast error variance, V [ν̂T+h|xT ].
Clearly, there is a bias-variance trade-off: bias can be reduced at the cost of an inflated forecast-
error variance. Notice also that the second term in (57) is of the order of h2, so that this trade-off
should be more favorable to intercept correcting at short horizons. Furthermore, basing ICs
on averages of recent errors (rather than the period T error alone) may provide more accurate
estimates of the break and reduce the inflation of the forecast-error variance. For a sufficiently
large change in τ 0, the adjusted forecasts will be more accurate than those of unadjusted
forecasts on squared-error loss measures. Detailed analyses of ICs can be found in Clements
and Hendry (1996), Clements and Hendry (1998, Ch. 8) and Clements and Hendry (1999, Ch.
6).

7.3 Differencing

Section 4.3 considered the forecast performance of a DVAR relative to a VECM when there were
location shifts in the underlying process. Those two models are related by the DVAR omitting
the disequilibrium feedback of the VECM, rather than by a differencing operator transforming
the model used to forecast (see e.g., Davidson, Hendry, Srba and Yeo, 1978). For shifts in
the equilibrium mean at the end of the estimation sample, the DVAR could outperform the
VECM. Nevertheless, both models were susceptible to shifts in the growth rate. Thus, a natural
development is to consider differencing once more, to obtain a DDVAR and a DVECM, neither
of which includes any deterministic terms when linear deterministic trends are the highest
needed to characterize data.

The detailed algebra is presented in Hendry (2005), who shows that the simplest double-
differenced forecasting device, namely:

∆2xT+1|T = 0 (58)

can outperform in a range of circumstances, especially if the VECM omits important explana-
tory variables and experiences location shifts. Indeed, the forecast-error variance of (58) need
not be doubled by differencing, and could even be less than that of the VECM, so (58) would
outperform in both mean and variance. In that setting, the DVECM will also do well, as (in the
simplest case again) it augments (58) by αβ′∆xT−1 which transpires to be the most important
observable component missing in (58), provided the parameters α and β do not change. For
example, consider (25) when µ1 = 0, then differencing all the terms in the VECM but retaining
their parameter estimates unaltered delivers:

∆2xt = ∆γ +α∆
(
β′xt−1 − µ0

)
+ ξt = αβ′∆xt−1 + ξt. (59)

Then (59) has no deterministic terms, so does not equilibrium correct, thereby reducing the
risks attached to forecasting after breaks. Although it will produce noisy forecasts, smoothed
variants are easily formulated. When there are no locations shifts, the ‘insurance’ of differencing
must worsen forecast accuracy and precision, but if location shifts occur, differencing will pay.

7.4 Pooling

Forecast pooling is a venerable ad hoc method of improving forecasts: see inter alia Bates
and Granger (1969), Newbold and Granger (1974) and Granger (1989); Diebold and Lopez
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(1996) and Newbold and Harvey (2002) provide surveys, and Clemen (1989) an annotated
bibliography. Combining individual forecasts of the same event has often been found to deliver
a smaller MSFE than any of the individual forecasts. Simple rules for combining forecasts, such
as averages, tend to work as well as more elaborate rules based on past forecasting performance:
see Stock and Watson (1999) and Fildes and Ord (2002). Hendry and Clements (2004) suggest
that such an outcome may sometimes result from location shifts in the DGP differentially
affecting different models at different times. After each break, some previously well-performing
model does badly, certainly much worse than the combined forecast, so eventually the combined
forecast dominates on MSFE, even though at each point in time, it was never the best.

An improved approach might be obtained by trying to predict which device is most likely
to forecast best at the relevant horizon, but the unpredictable nature of many breaks makes its
success unlikely—unless the breaks themselves can be forecast. In particular, during quiescent
periods, the DDV will do poorly, yet will prove a robust predictor when a sudden change
eventuates. Indeed, encompassing tests across models would reveal the DDV to be dominated
over ‘normal’ periods, so it cannot be established that dominated models should be excluded
from the pooling combination.

Extensions to combining density and interval forecasts have been proposed by e.g., Clements
and Galvão (2005), Wallis (2005), and Hall and Mitchell (2005).

8 Non-linear models

In previous sections, we have considered structural breaks in parametric linear dynamic models.
The break is viewed as a permanent change in the value of the parameter vector. Non-linear
models are characterized by dynamic properties that vary between two or more regimes, or
states, in a way that is endogenously determined by the model. For example, non-linear models
have been used extensively in empirical macroeconomics to capture differences in dynamic
behavior between the expansion and contraction phases of the business cycle, and have also
been applied to financial time series (see, inter alia, Albert and Chib, 1993, Diebold, Lee and
Weinbach, 1994, Goodwin, 1993, Hamilton, 1994, Kähler and Marnet, 1994, Kim, 1994, Krolzig
and Lütkepohl, 1995, Krolzig, 1997, Lam, 1990, McCulloch and Tsay, 1994, Phillips, 1991,
Potter, 1995 and Tiao and Tsay, 1994, as well as the collections edited by Barnett, Hendry and
Hylleberg, 2000, and Hamilton and Raj, 2002). Treating a number of episodes of parameter
instability in a time series as non-random events representing permanent changes in the model
will have different implications for characterizing and understanding the behavior of the time
series, as well as for forecasting, compared to treating the time series as being governed by a
non-linear model. Forecasts from non-linear models will depend on the phase of the business
cycle and will incorporate the possibility of a switch in regime during the period being forecast,
while forecasts from structural break models imply no such changes during the future.5

Given the possibility of parameter instability due to non-linearities, the tests of parameter
instability in linear dynamic models (reviewed in section 5) will be misleading if non-linearities
cause rejections. Similarly, tests of non-linearities against the null of a linear model may be

5Pesaran, Pettenuzzo and Timmermann (2004) use a Bayesian approach to allow for structural breaks over
the forecast period when a variable has been subject to a number of distinct regimes in the past. Longer
horizon forecasts tend to be generated from parameters drawn from the ‘meta distribution’ rather than those
that characterize the lastest regime.
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driven by structural instabilities. Carrasco (2002) addresses these issues, and we outline some of
their main findings in section 8.1. Noting the difficulties of comparing non-linear and structural
break models directly using classical techniques, Koop and Potter (2000) advocate a Bayesian
approach.

In section 8.2, we compare forecasts from a non-linear model with those from a structural
break model.

8.1 Testing for non-linearity and structural change

The structural change (SC) and two non-linear regime-switching models can be cast in a com-
mon framework as:

yt = (µ0 + α1yt−1 + · · · + αpyt−p) +
(
µ∗0 + α∗

1yt−1 + · · · + α∗
pyt−p

)
st + εt, (60)

where εt is IID
[
0, σ2

]
and st is the indicator variable. When st = 1 (t ≥ τ), we have an SC

model in which potentially all the mean parameters undergo a one-off change at some exogenous
date, τ . The first non-linear model is the Markov-switching model (MS). In the MS model, st

is an unobservable and exogenously determined Markov chain. st takes the values of 1 and 0,
defined by the transition probabilities:

pij = Pr(st+1 = j | st = i),

1∑

j=0

pij = 1, ∀i, j ∈ {0, 1}. (61)

The assumption of fixed transition probabilities pij can be relaxed (see, e.g., Diebold, Rudebusch
and Sichel, 1993, Diebold et al., 1994, Filardo, 1994, Lahiri and Wang, 1994, and Durland and
McCurdy, 1994) and the model can be generalized to allow more than two states (e.g., Clements
and Krolzig, 1998, 2003).

The second non-linear model is a self-exciting threshold autoregressive model (SETAR: see,
e.g., Tong, 1983, 1995) for which st = 1(yt−d≤r), where d is a positive integer. That is, the
regime depends on the value of the process d periods earlier relative to a threshold r.

In section 5, we noted that testing for a structural break is complicated by the structural
break date τ being unknown – the timing of the change is a nuisance parameter which is
unidentified under the null that φ =

[
µ∗0 α

∗
1 . . . α∗

p

]′
= 0. For both the MS and SETAR models,

there are also nuisance parameters which are unidentified under the null of linearity. For the MS
model, these are the transition probabilities {pij}, and for the SETAR model, the value of the
threshold, r. Testing procedures for non-linear models against the null of linearity have been
developed by Chan (1990, 1991), Hansen (1992, 1996a), Garcia (1998) and Hansen (1996b).

The main findings of Carrasco (2002) can be summarized as:

a Tests of SC will have no power when the process is stationary, as in the case of the MS and
SETAR models (see Andrews, 1993) – this is demonstrated for the ‘sup’ tests.

b Tests of SETAR non-linearity will have asymptotic power of one when the process is SC or
MS (or SETAR), but only power against local alternatives which are T

1
4 , rather than the

usual T
1
2 .

Thus, tests of SC will not be useful in detecting parameter instability due to non-linearity,
whilst testing for SETAR non-linearity might be viewed as a portmanteau pre-test of instability.
Tests of SETAR non-linearity will not be able to detect small changes.
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8.2 Non-linear model forecasts

Of the two non-linear models, only the MS model minimum MSFE predictor can be derived
analytically, and we focus on forecasting with this model.6 To make matters concrete, consider
the original Hamilton (1989) model of the US business cycle. This posits a fourth-order (p = 4)
autoregression for the quarterly percentage change in US real GNP {yt} from 1953 to 1984:

yt − µ(st) = α1 (yt−1 − µ(st−1)) + · · · + α4 (yt−4 − µ(st−4)) + ut (62)

where εt ∼ IN[0, σ2
ε ] and:

µ(st) =

{
µ1 > 0 if st = 1 (‘expansion’ or ‘boom’),
µ0 < 0 if st = 0 (‘contraction’ or ‘recession’),

. (63)

Relative to (60),
[
α∗

1 . . . α∗
p

]
= 0 so that the autoregressive dynamics are constant across

regimes, and when p = 0 (no autoregressive dynamics) µ0+µ∗0 in (60) is equal to µ1. The model
(62) has a switching mean rather than intercept, so that for p > 0 the correspondence between
the two sets of ‘deterministic’ terms is more complicated. Maximum likelihood estimation of
the model is by the EM algorithm (see Hamilton, 1990).7

To obtain the minimum MSFE h-step predictor, we take the conditional expectation of yT+h

given YT = {yT , yT−1, . . .}. Letting ŷT+j|T = E [yT+j|YT ] gives rise to the recursion:

ŷT+h|T = µ̂T+h|T +

4∑

k=1

αk

(
ŷT+h−k|T − µ̂T+h−k|T

)
(64)

with ŷT+h|T = yT+h for h ≤ 0 and where the predicted mean is given by:

µ̂T+h|T =

2∑

j=1

µjPr(sT+h = j | YT ). (65)

The predicted regime probabilities:

Pr(sT+h = j | YT ) =

1∑

i=0

Pr(sT+h = j | sT = i)Pr(sT = i | YT ),

only depend on the transition probabilities Pr(sT+h = j|sT+h−1 = i) = pij , i, j = 0, 1, and
the filtered regime probabilities Pr(sT = i|YT ) (see e.g., Hamilton, 1989, 1990, 1993, 1994 for
details).

6Exact analytical solutions are not available for multi-period forecasts from SETAR models. Exact numer-
ical solutions require sequences of numerical integrations (see, e.g., Tong, 1995, §4.2.4 and §6.2) based on the
Chapman–Kolmogorov relation. As an alternative, one might use Monte Carlo or bootstrapping (e.g., Tiao
and Tsay, 1994, and Clements and Smith, 1999), particularly for high-order autoregressions, or the normal
forecast-error method (NFE) suggested by Al-Qassam and Lane (1989) for the exponential-autoregressive model,
and adapted by De Gooijer and De Bruin (1997) to forecasting with SETAR models. See also the chapter by
Teräsvirta in this volume.

7The EM algorithm of Dempster, Laird and Rubin (1977) is used because the observable time series depends
on the st, which are unobservable stochastic variables.
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The optimal predictor of the MS-AR model is linear in the last p observations and the last
regime inference. The optimal forecasting rule becomes linear in the limit when Pr(st|st−1) =
Pr(st) for st, st−1 = 0, 1, since then Pr(sT+h = j|YT ) = Pr (st = j) and from (65), µ̂T+h = µy,
the unconditional mean of yt. Then:

ŷT+h|T = µy +

4∑

k=1

αk

(
ŷT+h−k|T − µy

)
(66)

so to a first approximation, apart from differences arising from parameter estimation, forecasts
will match those from linear autoregressive models.

Further insight can be obtained by writing the MS process yt − µ (st) as the sum of two
independent processes:

yt − µy = µt + zt,

such that E[µt] = E[zt] = 0. Assuming p = 1 for convenience, zt is:

zt = αzt−1 + εt, εt ∼ IN
[
0, σ2

ε

]
,

a linear autoregression with Gaussian disturbances. µt represents the contribution of the Markov
chain:

µt = (µ2 − µ1)ζt,

where ζt = 1 − Pr(st = 0) if st = 0 and −Pr(st = 0) otherwise. Pr(st = 0) = p10/(p10 + p01) is
the unconditional probability of regime 0. Using the unrestricted VAR(1) representation of a
Markov chain:

ζt = (p11 + p00 − 1)ζt−1 + vt,

then predictions of the hidden Markov chain are given by:

ζ̂T+h|T = (p11 + p00 − 1)hζ̂T |T ,

where ζ̂T |T = E[ζT |YT ] = Pr(sT = 0|YT ) − Pr(sT = 0) is the filtered probability Pr(sT = 0|YT )
of being in regime 0 corrected for the unconditional probability. Thus ŷT+h|T − µy can be
written as:

ŷT+h|T − µy = µ̂T+h|T + ẑT+h|T

= (µ0 − µ1)(p00 + p11 − 1)hζ̂T |T + αh
[
yT − µy − (µ0 − µ1)ζ̂T |T

]

= αh (yT − µy) + (µ0 − µ1)
[
(p00 + p11 − 1)h − αh

]
ζ̂T |T . (67)

This expression shows how the difference between the MS model forecasts and forecasts from a
linear model depends on a number of characteristics such as the persistence of {st}. Specifically,
the first term is the optimal prediction rule for a linear model. The contribution of the Markov
regime-switching structure is given by the term multiplied by ζ̂T |T , where ζ̂T |T contains the
information about the most recent regime at the time the forecast is made. Thus, the contri-
bution of the non-linear part of (67) to the overall forecast depends on both the magnitude of
the regime shifts, |µ0 − µ1|, and on the persistence of regime shifts p00 + p11 − 1 relative to the
persistence of the Gaussian process, given by α.
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8.3 Empirical evidence

There are a large number of studies comparing the forecast performance of linear and non-linear
models. There is little evidence for the superiority of non-linear models across the board. For
example, Stock and Watson (1999) compare smooth-transition models (see, e.g., Teräsvirta,
1994), neural nets (e.g., White, 1992), and linear autoregressive models for 215 US macro time
series, and find mixed evidence – the non-linear models sometimes record small gains at short
horizons, but at longer horizons the linear models are preferred. Swanson and White (1997)
forecast nine US macro series using a variety of fixed-specification linear and non-linear models,
as well as flexible specifications of these which allow the specification to vary as the in-sample
period is extended. They find little improvement from allowing for non-linearity within the
flexible-specification approach.

Other studies focus on a few series, of which US output growth is one of the most popular.
For example, Potter (1995) and Tiao and Tsay (1994) find that the forecast performance of
the SETAR model relative to a linear model is markedly improved when the comparison is
made in terms of how well the models forecast when the economy is in recession. The reason
is easily understood. Since a majority of the sample data points (approximately 78%) fall
in the upper regime, the linear AR(2) model will be largely determined by these points, and
will closely match the upper-regime SETAR model. Thus the forecast performance of the two
models will be broadly similar when the economy is in the expansionary phase of the business
cycle. However, to the extent that the data points in the lower regime are characterized by a
different process, there will be gains to the SETAR model during the contractionary phase.

Clements and Krolzig (1998) use (67) to explain why MS models of post war US output
growth (such as those of Hamilton, 1989) do not forecast markedly more accurately than linear
autoregressions. Namely, they find that p00 + p11 − 1 = 0.65 in their study, and that the largest
root of the AR polynomial is 0.64. Because p00+p11−1 ' α in (67), the conditional expectation
collapses to a linear prediction rule.

9 Forecasting UK unemployment after three crises

The times at which causal-model based forecasts are most valuable are when considerable change
occurs. Unfortunately, that is precisely when causal models are most likely to suffer forecast
failure, and robust forecasting devices to outperform, at least relatively. We are not suggesting
that prior to any major change, some methods are better at anticipating such shifts, nor that
anyone could forecast the unpredictable: what we are concerned with is that even some time
after a shift, many model types, in particular members of the equilibrium-correction class, will
systematically mis-forecast.

To highlight this property, we consider three salient events, namely the post-world-war
double-decades of 1919–38 and 1948–67, and the post oil-crisis double-decade 1975–94, to ex-
amine the forecasts of the UK unemployment rate (denoted Ur,t) that would have been made by
a couple of forecasting devices. Figure 1 records the historical time-series of Ur,t from 1875–2001
within which our three episodes lie. The data are discussed in detail in Hendry (2001), and the
‘structural’ equation for unemployment is taken from that paper.

The dramatically different epochs pre World War I (panel a), inter war (b), post World War
II (c), and post the oil crisis (d) are obvious visually as each panel unfolds. The unemploy-
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ment rate time series seems distinctly non-stationary from shifts in both mean and variance
at different times, but equally does not seem to have a unit root, albeit there is considerable
persistence. Figure 2a records the changes in the unemployment rate.
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Figure 1: Shifts in unemployment

The difficulty in forecasting after the three breaks is only partly because the preceding
empirical evidence offers little guidance as to the subsequent behavior of the time series at each
episode, since some ‘naive’ methods do not have great problems after breaks. Rather, it is the
lack of adaptability of a forecasting device which seems to be the culprit.

The model derives the disequilibrium unemployment rate (denoted Ud
t ) as a positive function

of the difference between Ur,t and the real interest rate (Rl,t − ∆pt) minus the real growth
rate (∆yt). Then Ur,t and (Rl,t − ∆pt − ∆yt) = Rr

t are ‘cointegrated’ (using the PcGive test,
tc = −3.9∗∗: see Banerjee and Hendry, 1992, and Ericsson and MacKinnon, 2002), or more
probably, co-breaking (see Clements and Hendry, 1999, and Hendry and Massmann, 2005).
Figure 2b plots the time series of Rr

t . The derived excess-demand for labor measure, Ud
t , is the

long-run solution from an AD(2,1) of Ur,t on Rr
t with σ̂ = 0.012, namely:

Ud
t = Ur,t − 0.05

(0.01)

− 0.82
(0.22)

Rr
t (68)

T = 1875 − 2001

The derived mean equilibrium unemployment is slightly above the historical sample average of
4.8%. Ud

t is recorded in fig. 2d.
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Figure 2: Unemployment with fitted values, (Rl,t − ∆pt − ∆yt), and excess demand for labour

Technically, given (68), a forecasting model for Ur,t becomes a four-dimensional system for
Ur,t, Rl,t, ∆pt, and ∆yt, but these in turn depend on other variables, rapidly leading to a large
system. Instead, since the primary interest is illustrating forecasts from the equation for unem-
ployment, we have chosen just to model Ur,t and Rr

t as a bivariate VAR, with the restrictions
implied by that formulation. That system was converted to an equilibrium-correction model
(VECM) with the long-run solution given by (68) and Rr = 0. The full-sample FIML estimates
from PcGive (see Hendry and Doornik, 2001) till 1991 were:

∆Ur,t = 0.24
(0.07)

∆Rr
t − 0.14

(0.037)

Ud
t−1 + 0.16

(0.078)

∆Ur,t−1

∆Rr
t = − 0.43

(0.077)
Rr

t−1

σ̂Ur
= 1.27% σ̂Rr = 4.65% T = 1875–1991 (69)

χ2
nd(4) = 76.2∗∗ Far(8, 218) = 0.81 Fhet(27, 298) = 1.17.

In (69), σ̂ denotes the residual standard deviation, and coefficient standard errors are shown
in parentheses. The diagnostic tests are of the form Fj(k, T − l) which denotes an approximate
F-test against the alternative hypothesis j for: 2nd-order vector serial correlation (Far: see
Guilkey, 1974); vector heteroskedasticity (Fhet: see White, 1980); and a chi-squared test for joint
normality (χ2

nd(4): see Doornik and Hansen, 1994). ∗ and ∗∗ denote significance at the 5% and
1% levels respectively. All coefficients are significant with sensible signs and magnitudes, and the
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first equation is close to the OLS estimated model used in Hendry (2001). The likelihood ratio
test of over-identifying restrictions of the VECM against the initial VAR yielded χ2

Id(8) = 2.09.
Figure 2c records the fitted values from the dynamic model in (69).

9.1 Forecasting 1992–2001

We begin with genuine ex ante forecasts. Since the model was selected from the sample T =
1875–1991, there are 10 new annual observations available since publication that can be used
for forecast evaluation. This decade is picked purely because it is the last; there was in fact one
major event, albeit not quite on the scale of the other three episodes to be considered, namely
the ejection of the UK from the exchange rate mechanism (ERM) in the autumn of 1992, just
at the forecast origin. Nevertheless, by historical standards the period transpired to be benign,
and almost any method would have avoided forecast failure over this sample, including those
considered here. In fact, the 1-step forecast test over 10 periods for (69), denoted FChow (see
Chow, 1960), delivered FChow(20, 114) = 0.15, consistent with parameter constancy over the
post-selection decade. Figure 3 shows the graphical output for 1-step and 10-step forecasts of
Ur,t and Rr

t over 1992–2001. As can be seen, all the outcomes lie well inside the interval forecasts
(shown as ±2σ̂f ) for both sets of forecasts. Notice the equilibrium-correction behavior manifest
in the 10-step forecasts, as Ur converges to 0.05 and Rr to 0: such must occur, independently
of the outcomes for Ur,t and Rr

t .
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Figure 3: VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1992–2001

On all these criteria, the outcome is successful on the out-of-selection-sample evaluation.
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While far from definitive, as shown in Clements and Hendry (2003), these results demonstrate
that the model merits its more intensive scrutiny over the three salient historical episodes.

By way of comparison, we also record the corresponding forecasts from the differenced mod-
els discussed in section 7.3. First, we consider the VECM (denoted DVECM) which maintains
the parameter estimates, but differences all the variables (see Hendry, 2005). Figure 4 shows the
graphical output for 1-step forecasts of Ur,t and Rr

t and the 10-step forecasts of ∆2Ur,t and ∆2Rr
t

over 1992–2001 (throughout, the interval forecasts for multi-step forecasts from mis-specified
models are not adjusted for the–unknown–mis-specification). In fact, there was little discernible
difference between the forecasts produced by the DVECM and those from a double-difference
VAR (DDVAR: see Clements and Hendry, 1999, and section 7.3).
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Figure 4: DVECM 1-step forecasts of Ur,t, R
r
t , and 10-step forecasts of ∆2Ur,t, ∆2Rr

t , 1992–2001

The 1-step forecasts are close to those from the VECM, but the entailed multi-step levels
forecasts from the DVECM are poor, as the rise in unemployment prior to the forecast origin
turns to a fall throughout the remainder of the period, but the forecasts continue to rise: there
is no free lunch when insuring against forecast failure.

9.2 Forecasting 1919–38

Over this sample, FChow(40, 41) = 2.81∗∗, strongly rejecting the model re-estimated, but not
re-selected, up to 1918. The graphs in figure 5 confirm the forecast failure, for both 1-step
and 10-step forecasts of Ur,t and Rr

t . As well as missing the post-World-War I dramatic rise in
unemployment, there is systematic under-forecasting throughout the Great Depression period,
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consistent with failing to forecast the substantial increase in Rr
t on both occasions. Nevertheless,

the results are far from catastrophic in the face of such a large, systematic, and historically
unprecedented, rise in unemployment.
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Figure 5: VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1919–38

Again using our comparator of the DVECM, figure 6 shows the 1-step forecasts, with a
longer historical sample to highlight the substantial forecast-period change (the entailed multi-
step levels’ forecasts are poor). Despite the noticeable level shift in Ur,t, the differenced model
forecasts are only a little better initially, overshooting badly after the initial rise, but perform
well over the Great Depression, which is forecasting long after the earlier break. FChow(40, 42) =
2.12∗∗ is slightly smaller overall despite the initial ‘bounce’

9.3 Forecasting 1948–67

The model copes well with the post-World-War II low level of unemployment, with FChow(40, 70) =
0.16, with the outcomes shown in figure 7. However, there is systematic over-forecasting of the
level of unemployment, unsurprisingly given its exceptionally low level. The graph here empha-
sizes the equilibrium-correction behavior of Ur converging to 0.05 even though the outcome is
now centered around 1.5%.

The DVECM delivers FChow(40, 71) = 0.12 so is closely similar. The forecasts are also little
different, although the forecast intervals are somewhat wider.
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Figure 6: DVECM 1-step forecasts of Ur,t and Rr
t , 1919–38

9.4 Forecasting 1975–94

Finally, after the first oil crisis, we find FChow(40, 97) = 0.61, so surprisingly no forecast failure
results, although the outcomes are poor as figure 8 shows for both 1-step and 10-step forecasts
of Ur,t and Rr

t . There is systematic under-forecasting of the level of unemployment, but the
trend is correctly discerned as upwards.

Over this period, FChow(40, 98) = 0.53 for the DVECM, so again there is little impact from
removing the equilibrium-correction term.

9.5 Overview

Despite the manifest non-stationarity of the UK unemployment rate over the last century
and a quarter, with location and variance shifts evident in the historical data, the empirical
forecasting models considered here only suffered forecast failure occasionally, although they
were often systematically adrift, under- or over-forecasting. The differenced VECM did not
perform much better even when the VECM failed. A possible explanation may be the absence
of deterministic components from the VECM in (69) other than that embedded in the long-run
for unemployment. Since σ̂Ur

= 1.27%, a 95% forecast interval spans just over 5% points of
unemployment so larger shifts are needed to reject the model.

It is difficult to imagine how well real-time forecasting might have performed historically: the
large rise in unemployment during 1919–20 seems to have been unanticipated at the time, and
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Figure 7: VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1948–67

induced real hardship, leading to considerable social unrest. Conversely, while the Beveridge
Report (Social Insurance and Allied Services, HMSO, 1942, followed by his Full Employment

in a Free Society and The Economics of Full Employment, both in 1944) essentially mandated
UK Governments to keep a low level of unemployment using Keynesian policies, nevertheless
the outturn of 1.5% on average over 1946–66 was unprecedented. And the Thatcher reforms of
1979 led to an unexpectedly large upturn in unemployment, commensurate with inter-war levels.
Since the historical period delivered many unanticipated ‘structural breaks’, across many very
different policy regimes (from the Gold Standard, floating, Bretton Woods currency pegs, back
to a ‘dirty’ floating–just to note exchange-rate regimes), overall, the forecasting performance of
the unemployment model considered here is really quite creditable.

10 Concluding remarks

Structural breaks in the form of unforeseen location shifts are likely to lead to systematic
forecast biases. Other factors matter, as shown in the various taxonomies of forecast errors
above, but breaks play a dominant role. The vast majority of forecasting models in regular use
are members of the equilibrium-correction class, including VARs, VECMs, and DSGEs, as well
as many popular models of conditional variance processes. Other types of models might be
more robust to breaks. We have also noted issues to do with the choice of estimation sample,
and the updating of the models’ parameter estimates and of the model specification, as possible
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Figure 8: VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1975–94

ways of mitigating the effects of some types of breaks. Some ad hoc forecasting devices exhibit
greater adaptability than standard models, which may account for their successes in empirical
forecasting competitions. Finally, we have contrasted non-constancies due to breaks with those
due to non-linearities.
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11 Appendix A: Taxonomy derivations for equation (10)

We let δϕ = ϕ̂−ϕp, where ϕp = (In − Πp)
−1φp, δΠ = Π̂ −Πp, and ŷT − yT = δy.

First, we use the approximation:

Π̂h = (Πp + δΠ)h ' Πh
p +

h−1∑

i=0

Πi
pδΠΠh−i−1

p $ Πh
p + Ch. (70)

Let (·)ν denote a vectorizing operator which stacks the columns of an m × n matrix A in an
mn × 1 vector a, after which (a)ν = a. Also, let ⊗ be the associated Kronecker product, so
that when B is p × q, then A ⊗ B is an mp × nq matrix of the form {bijA}. Consequently,
when ABC is defined:

(ABC)ν = (A⊗ C′)Bν .

Using these, from (70):

Ch

(
yT −ϕp

)
=

(
Ch

(
yT −ϕp

))ν

=

(
h−1∑

i=0

Πi
p ⊗

(
yT −ϕp

)′
Πh−i−1′

p

)
δν

Π

$ Fhδ
ν
Π. (71)

To highlight components due to different effects (parameter change, estimation inconsistency,
and estimation uncertainty), we decompose the term (Π∗)h (yT −ϕ∗) into:

(Π∗)h (yT −ϕ∗) = (Π∗)h (yT −ϕ) + (Π∗)h (ϕ−ϕ∗) ,

whereas Π̂h(ŷT − ϕ̂) equals:
(
Πh

p + Ch

)
δy −

(
ϕ̂−ϕp

)
+
(
yT −ϕp

)

=
(
Πh

p + Ch

)
δy −

(
Πh

p + Ch

)
δϕ +

(
Πh

p + Ch

) (
yT −ϕp

)

$

(
Πh

p + Ch

)
δy −

(
Πh

p + Ch

)
δϕ

+Fhδ
ν
Π + Πh

p (yT −ϕ) − Πh
p

(
ϕp −ϕ

)
.

Thus, (Π∗)h (yT −ϕ∗) − Π̂h(ŷT − ϕ̂) yields:
(
(Π∗)h − Πh

p

)
(yT −ϕ) − Fhδ

ν
Π −

(
Πh

p + Ch

)
δy

− (Π∗)h (ϕ∗ −ϕ) + Πh
p

(
ϕp −ϕ

)
+
(
Πh

p + Ch

)
δϕ. (72)

The interaction Chδϕ is like a ‘covariance’, but is omitted from the table. Hence (72) becomes:

(
(Π∗)h − Πh

)
(yT −ϕ) +

(
Πh − Πh

p

)
(yT −ϕ)

− (Π∗)h (ϕ∗ −ϕ) + Πh
p

(
ϕp −ϕ

)

−
(
Πh

p + Ch

)
δy − Fhδ

ν
Π + Πh

pδϕ.
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The first and third rows have expectations of zero, so the second row collects the ‘non-central’
terms.

Finally, for the term ϕ∗ − ϕ̂ we have (on the same principle):

(ϕ∗ −ϕ) +
(
ϕ−ϕp

)
− δϕ.

12 Appendix B: Derivations for section 4.3

Since Υ = In +αβ′, for j > 0:

Υj =
(
In +αβ′

)j
= Υj−1

(
In +αβ′

)
= Υj−1 + Υj−1αβ′ = · · · = In +

j−1∑

i=0

Υiαβ′, (73)

so:
(
Υj − In

)
=

j−1∑

i=0

Υiαβ′ = Ajαβ
′ (74)

defines Aj =
∑j−1

i=0 Υi. Thus:

E
[(

Υj − In

)
wT

]
= AjαE

[
β′xT

]
= AjαfT (75)

where fT = E
[
β′xT

]
= µa

0 + β′γ
a (T + 1), say, where the values of µa

0 = µ0 and γa = γ if the
change occurs after period T , and µa

0 = µ∗
0 and γa = γ∗ if the change occurs before period T .

Substituting from (75) into (34):

E [ν̃T+j] =

j−1∑

i=0

Υi [γ∗ −αµ∗
0 −αµ∗

1 (T + j − i)] − jγ + AjαfT . (76)

From (73), as Υi = In + Aiαβ
′:

Aj =

j−1∑

k=0

Υk =

j−1∑

k=0

(
In + Akαβ

′
)

= jIn +

(
j−1∑

k=0

Ak

)
αβ′ = jIn + Bjαβ

′. (77)

Thus from (76), since β′γ = µ1 and β′γ∗ = µ∗
1:

E [ν̃T+j] = Ajγ
∗ − Ajαµ

∗
0 − Ajαβ

′γ
∗ (T + j) +

∑j−1
i=1 iΥ

iαβ′γ
∗ − jγ + AjαfT

= j (γ∗ − γ) + AjαfT − µ∗
0 − β′γ

∗T +
(∑j−1

i=1 iΥ
i − jAj + Bj

)
αβ′γ∗

= j (γ∗ − γ) + Ajα (µa
0 − µ∗

0 − β′ [γ∗ − γa] (T + 1)) + Cjαβ
′γ

∗

(78)

where Cj = (Dj + Bj − (j − 1)Aj) when Dj =
∑j−1

i=1 iΥ
i. However, Cjαβ

′ = 0 as follows.
Since Υj = In + Ajαβ

′ from (74), then:

jAjαβ
′ = jΥj − jIn,

and so eliminating jIn using (77):

(Bj − jAj)αβ
′ = Aj − jΥj .
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Also:

Dj =

j∑

i=1

iΥi − jΥj =

j∑

i=1

Υi − jΥj +

(
j−1∑

i=1

iΥi

)
Υ = AjΥ− jΥj + DjΥ.

Since Υ = In +αβ′:
Djαβ

′ = jΥj − Aj − Ajαβ
′.

Combining these results:

Cjαβ
′ = (Dj + Bj − (j − 1)Aj)αβ

′ = jΥj − Aj − Ajαβ
′ + Aj − jΥj + Ajαβ

′ = 0. (79)
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Abstract

This chapter is concerned with forecasting from nonlinear con-

ditional mean models. First, a number of often applied nonlinear

conditional mean models are introduced and their main properties dis-

cussed. The next section is devoted to techniques of building nonlinear

models. Ways of computing multi-step-ahead forecasts from nonlinear

models are surveyed. Tests of forecast accuracy in the case where the

models generating the forecasts may be nested are discussed. There is

a numerical example, showing that even when a stationary nonlinear

process generates the observations, future observations may in some

situations be better forecast by a linear model with a unit root. Fi-

nally, some empirical studies that compare forecasts from linear and

nonlinear models are discussed.
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1 Introduction

In recent years, nonlinear models have become more common in empirical
economics than they were a few decades ago. This trend has brought with it
an increased interest in forecasting economic variables with nonlinear models:
for recent accounts of this topic, see Tsay (2002) and Clements, Franses and
Swanson (2004). Nonlinear forecasting has also been discussed in books on
nonlinear economic modelling such as Granger and Teräsvirta (1993, Chap-
ter 9) and Franses and van Dijk (2000). More specific surveys include Zhang,
Patuwo and Hu (1998) on forecasting (not only economic forecasting) with
neural network models and Lundbergh and Teräsvirta (2002) who consider
forecasting with smooth transition autoregressive models. Ramsey (1996)
discusses difficulties in forecasting economic variables with nonlinear models.
Large-scale comparisons of the forecasting performance of linear and nonlin-
ear models have appeared in the literature; see Stock and Watson (1999),
Marcellino (2002) and Teräsvirta, van Dijk and Medeiros (in press) for ex-
amples. There is also a growing literature consisting of forecast comparisons
that involve a rather limited number of time series and nonlinear models as
well as comparisons entirely based on simulated series.

There exist an unlimited amount of nonlinear models, and it is not possi-
ble to cover all developments in this survey. The considerations are restricted
to parametric nonlinear models, which excludes forecasting with nonpara-
metric models. For information on nonparametric forecasting, the reader is
referred to Fan and Yao (2003). Besides, only a small number of frequently
applied parametric nonlinear models are discussed here. It is also worth
mentioning that the interest is solely focussed on stochastic models. This ex-
cludes deterministic processes such as chaotic ones. This is motivated by the
fact that chaos is less useful a concept in economics than it is in natural sci-
ences. Another area of forecasting with nonlinear models that is not covered
here is volatility forecasting. The reader is referred to Andersen, Bollerslev
and Christoffersen (2005) and the survey by Poon and Granger (2003).

The plan of the chapter is the following. In Section 2, a number of para-
metric nonlinear models are presented and their properties briefly discussed.
Section 3 is devoted to strategies of building certain types of nonlinear mod-
els. In Section 4 the focus shifts to forecasting, more specifically, to different
methods of obtaining multistep forecasts. Combining forecasts is also briefly
mentioned. Problems in and ways of comparing the accuracy of point fore-
casts from linear and nonlinear models is considered in Section 5, and a
specific simulated example of such a comparison in Section 6. Empirical
forecast comparisons form the topic of Section 7, and Section 8 contains final
remarks.
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2 Nonlinear models

2.1 General

Regime-switching is been a popular idea in economic applications of nonlinear
models. The data-generating process to be modelled is perceived as a linear
process that switches between a number of regimes according to some rule.
For example, it may be argued that the dynamic properties of the growth
rate of the volume of industrial production or gross national product process
are different in recessions and expansions. As another example, changes in
government policy may instigate switches in regime.

These two examples are different in nature. In the former case, it may
be assumed that nonlinearity is in fact controlled by an observable variable
such as a lag of the growth rate. In the latter one, an observable indicator for
regime switches may not exist. This feature will lead to a family of nonlinear
models different from the previous one.

In this chapter we present a small number of special cases of the nonlinear
dynamic regression model. These are rather general models in the sense that
they have not been designed for testing a particular economic theory propo-
sition or describing economic behaviour in a particular situation. They share
this property with the dynamic linear model. No clear-cut rules for choosing
a particular nonlinear family exist, but the previous examples suggest that in
some cases, choices may be made a priori. Estimated models can, however,
be compared ex post. In theory, nonnested tests offer such a possibility, but
applying them in the nonlinear context is more demanding that in the linear
framework, and few, if any, examples of that exist in the literature. Model
selection criteria are sometimes used for the purpose as well as post-sample
forecasting comparisons. It appears that successful model building, that is,
a systematic search to find a model that fits the data well, is only possible
within a well-defined family of nonlinear models. The family of autoregres-
sive − moving average models constitutes a classic linear example; see Box
and Jenkins (1970). Nonlinear model building is discussed in Section 3.

2.2 Nonlinear dynamic regression model

A general nonlinear dynamic model with an additive noise component can
be defined as follows:

yt = f(zt; θ) + εt (1)

where zt = (w′
t,x

′
t)

′ is a vector of explanatory variables,wt = (1, yt−1, ..., yt−p)
′,

and the vector of strongly exogenous variables xt = (x1t, ..., xkt)
′. Further-

more, εt ∼ iid(0, σ2). It is assumed that yt is a stationary process. Nonsta-
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tionary nonlinear processes will not be considered in this survey. Many of
the models discussed in this section are special cases of (1) that have been
popular in forecasting applications. Moving average models and models with
stochastic coefficients, an example of so-called doubly stochastic models, will
also be briefly highlighted.

Strict stationarity of (1) may be investigated using the theory of Markov
chains. Tong (1990, Chapter 4) contains a discussion of the relevant theory.
Under a condition concerning the starting distribution, geometric ergodicity
of a Markov chain implies strict stationarity of the same chain, and a set of
conditions for geometric ergodicity are given. These results can be used for
investigating strict stationarity in special cases of (1) , as the model can be
expressed as a (p + 1)-dimensional Markov chain. As an example (Example
4.3 in Tong, 1990), consider the following modification of the exponential
smooth transition autoregressive (ESTAR) model to be discussed in the next
section:

yt =

p∑
j=1

[φjyt−j + θjyt−j(1− exp{−γy2t−j})] + εt

=

p∑
j=1

[(φj + θj)yt−j − θjyt−j exp{−γy2t−j}] + εt (2)

where {εt} ∼ iid(0, σ2). It can be shown that (2) is geometrically ergodic if
the roots of 1−∑p

j=1(φj+θj)L
j lie outside the unit circle. This result partly

relies on the additive structure of this model. In fact, it is not known whether
the same condition holds for the following, more common but non-additive,
ESTAR model:

yt =

p∑
j=1

[φjyt−j + θjyt−j(1− exp{−γy2t−d})] + εt, γ > 0

where d > 0 and p > 1.
As another example, consider the first-order self-exciting threshold au-

toregressive (SETAR) model (see Section 2.4)

yt = φ11yt−1I(yt−1 ≤ c) + φ12yt−1I(yt−1 > c) + εt

where I(A) is an indicator function: I(A) = 1 when event A occurs; zero
otherwise. A necessary and sufficient condition for this SETAR process to
be geometrically ergodic is φ11 < 1, φ12 < 1 and φ11φ12 < 1. For higher-order
models, normally only sufficient conditions exist, and for many interesting
models these conditions are quite restrictive. An example will be give in
Section 2.4.
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2.3 Smooth transition regression model

The smooth transition regression (STR) model originated in the work of
Bacon and Watts (1971). These authors considered two regression lines and
devised a model in which the transition from one line to the other is smooth.
They used the hyperbolic tangent function to characterize the transition.
This function is close to both the normal cumulative distribution function
and the logistic function. Maddala (1977, p. 396) in fact recommended the
use of the logistic function as transition function, and this has become the
prevailing standard; see, for example, Teräsvirta (1998). In general terms we
can define the STR model as follows:

yt = φ′zt+θ′ztG(γ, c, st) + εt

= {φ+ θG(γ, c, st)}′zt + εt, t = 1, ..., T (3)

where zt is defined as in (1) , φ = (φ0, φ1, ..., φm)
′ and θ = (θ0, θ1, ..., θm)

′ are
parameter vectors, and εt ∼ iid(0, σ2). In the transition function G(γ, c, st),
γ is the slope parameter and c = (c1, ..., cK)

′ a vector of location parameters,
c1 ≤ ... ≤ cK. The transition function is a bounded function of the transition
variable st, continuous everywhere in the parameter space for any value of
st. The last expression in (3) indicates that the model can be interpreted
as a linear model with stochastic time-varying coefficients φ+ θG(γ, c, st)
where st controls the time-variation. The logistic transition function has the
general form

G(γ, c, st) = (1 + exp{−γ
K∏
k=1

(st − ck)})−1, γ > 0 (4)

where γ > 0 is an identifying restriction. Equation (3) jointly with (4)
define the logistic STR (LSTR) model. The most common choices for K
are K = 1 and K = 2. For K = 1, the parameters φ+ θG(γ, c, st) change
monotonically as a function of st from φ to φ+ θ. For K = 2, they change
symmetrically around the mid-point (c1 + c2)/2 where this logistic function
attains its minimum value. The minimum lies between zero and 1/2. It
reaches zero when γ → ∞ and equals 1/2 when c1 = c2 and γ < ∞. Slope
parameter γ controls the slope and c1 and c2 the location of the transition
function.

The LSTR model withK = 1 (LSTR1 model) is capable of characterizing
asymmetric behaviour. As an example, suppose that st measures the phase
of the business cycle. Then the LSTR1 model can describe processes whose
dynamic properties are different in expansions from what they are in reces-
sions, and the transition from one extreme regime to the other is smooth.
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The LSTR2 model is appropriate in situations where the local dynamic be-
haviour of the process is similar at both large and small values of st and
different in the middle.

When γ = 0, the transition function G(γ, c, st) ≡ 1/2 so that STR model
(3) nests a linear model. At the other end, when γ → ∞ the LSTR1 model
approaches the switching regression (SR) model, see Section 2.4, with two
regimes and σ2

1 = σ2
2. When γ → ∞ in the LSTR2 model, the result is a

switching regression model with three regimes such that the outer regimes
are identical and the mid-regime different from the other two.

Another variant of the LSTR2 model is the exponential STR (ESTR, in
the univariate case ESTAR) model in which the transition function

G(γ, c, st) = 1− exp{−γ(st − c)2}, γ > 0 (5)

This transition function is an approximation to (4) with K = 2 and c1 = c2.
When γ → ∞, however, G(γ, c, st) = 1 for st �= c, in which case equation (3)
is linear except at a single point. Equation (3) with (5) has been a popular
tool in investigations of the validity of the purchasing power parity (PPP)
hypothesis; see for example the survey by Taylor and Sarno (2002).

In practice, the transition variable st is a stochastic variable and very often
an element of zt. It can also be a linear combination of several variables. A
special case, st = t, yields a linear model with deterministically changing
parameters. Such a model has a role to play, among other things, in testing
parameter constancy, see Section 2.7.

When xt is absent from (3) and st = yt−d or st = ∆yt−d, d > 0, the
STR model becomes a univariate smooth transition autoregressive (STAR)
model. The logistic STAR (LSTAR) model was introduced in the time series
literature by Chan and Tong (1986) who used the density of the normal
distribution as the transition function. The exponential STAR (ESTAR)
model appeared already in Haggan and Ozaki (1981). Later, Teräsvirta
(1994) defined a family of STAR models that included both the LSTAR
and the ESTAR model and devised a data-driven modelling strategy with
the aim of, among other things, helping the user to choose between these two
alternatives.

Investigating the PPP hypothesis is just one of many applications of the
STR and STAR models to economic data. Univariate STAR models have
been frequently applied in modelling asymmetric behaviour of macroeco-
nomic variables such as industrial production and unemployment rate, or
nonlinear behaviour of inflation. In fact, many different nonlinear models
have been fitted to unemployment rates; see Proietti (2003) for references.
As to STR models, several examples of the its use in modelling money de-
mand such as Teräsvirta and Eliasson (2001) can be found in the literature.
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Venetis, Paya and Peel (2003) recently applied the model to a much in-
vestigated topic: usefulness of the interest rate spread in predicting output
growth. The list of applications could be made longer.

2.4 Switching regression and threshold autoregressive

model

The standard switching regression model is piecewise linear, and it is defined
as follows:

yt =
r+1∑
j=1

(φ′
jzt + εjt)I(cj−1 < st ≤ cj) (6)

where zt = (w′
t,x

′
t)

′ is defined as before, st is a switching variable, usually
assumed to be a continuous random variable, c0, c1, ..., cr+1 are threshold
parameters, c0 = −∞, cr+1 = +∞. Furthermore, εjt ∼ iid(0, σ2

j ), j = 1, ..., r.
It is seen that (6) is a piecewise linear model whose switch-points, however,
are generally unknown. A popular alternative in practice is the two-regime
SR model

yt = (φ′
1zt + ε1t)I(st ≤ c1) + (φ′

2zt + ε2t){1− I(st ≤ c1)}. (7)

It is a special case of the STR model (3) with K = 1 in (4).
When xt is absent and st = yt−d, d > 0, (6) becomes the self-exciting

threshold autoregressive (SETAR) model. The SETAR model has been
widely applied in economics. A comprehensive account of the model and
its statistical properties can be found in Tong (1990). A two-regime SE-
TAR model is a special case of the LSTAR1 model when the slope parameter
γ → ∞.

A special case of the SETAR model itself, suggested by Enders and
Granger (1998) and called the momentum-TAR model, is the one with two
regimes and st = ∆yt−d. This model may be used to characterize processes
in which the asymmetry lies in growth rates: as an example, the growth of
the series when it occurs may be rapid but the return to a lower level slow.

It was mentioned in Section 2.2 that stationarity conditions for higher-
order models can often be quite restrictive. As an example, consider the
univariate SETAR model of order p, that is, xt ≡ 0 and φj = (1, φj1, ..., φjp)

′

in (6). Chan (1993) contains a sufficient condition for this model to be
stationary. It has the form

max
i

p∑
j=1

|φji| < 1.
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For p = 1 the condition becomes maxi |φ1i| < 1, which is already in this
simple case a more restrictive condition than the necessary and sufficient
condition presented in Section 2.2.

The SETAR model has also been a popular tool in investigating the PPP
hypothesis; see the survey by Taylor and Sarno (2002). Like the STAR
model, the SETAR model has been widely applied to modelling asymme-
tries in macroeconomic series. It is often argued that the US interest rate
processes have more than one regime, and SETAR models have been fitted
to these series, see Pfann, Schotman and Tschernig (1996) for an example.
These models have also been applied to modelling exchange rates as in Henry,
Olekalns and Summers (2001) who were, among other things, interested in
the effect of the East-Asian 1997-1998 currency crisis on the Australian dol-
lar.

2.5 Markov-switching model

In the switching regression model (6), the switching variable is an observable
continuous variable. It may also be an unobservable variable that obtains
a finite number of discrete values and is independent of yt at all lags, as
in Lindgren (1978). Such a model may be called the Markov-switching or
hidden Markov regression model, and it is defined by the following equation:

yt =
r∑

j=1

α′
jztI(st = j) + εt (8)

where {st} follows a Markov chain, often of order one. If the order equals
one, the conditional probability of the event st = i given st−k, k = 1, 2, ..., is
only dependent on st−1 and equals

Pr{st = i|st−1 = j} = pij, i, j = 1, ..., r (9)

such that
∑r

i=1 pij = 1. The transition probabilities pij are unknown and
have to be estimated from the data. The error process εt is often assumed
not to be dependent on the ’regime’ or the value of st, but the model may
be generalized to incorporate that possibility. In its univariate form, zt =
wt, model (8) with transition probabilities (9) has been called the suddenly
changing autoregressive (SCAR) model; see Tyssedal and Tjøstheim (1988).

There is a Markov-switching autoregressive model, proposed by Hamilton
(1989), that is more common in econometric applications than the SCAR
model. In this model, the intercept is time-varying and determined by the
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value of the latent variable st and its lags. It has the form

yt = µst +

p∑
j=1

αj(yt−j − µst−j
) + εt (10)

where the behaviour of st is defined by (9) , and µst = µ(i) for st = i, such that
µ(i) �= µ(j), i �= j. For identification reasons, yt−j and µst−j

in (10) share the
same coefficient. The stochastic intercept of this model, µst −

∑p
j=1 αjµst−j

,

thus can obtain rp+1 different values, and this gives the model the desired
flexibility. A comprehensive discussion of Markov-switching models can be
found in Hamilton (1994, Chapter 22).

Markov-switching models can be applied when the data can be conve-
niently thought of as having been generated by a model with different regimes
such that the regime changes do not have an observable or quantifiable cause.
They may also be used when data on the switching variable is not available
and no suitable proxy can be found. This is one of the reasons why Markov-
switching models have been fitted to interest rate series, where changes in
monetary policy have been a motivation for adopting this approach. Mod-
elling asymmetries in macroeconomic series has, as in the case of SETAR and
STAR models, been another area of application; see Hamilton (1989) who
fitted a Markov-switching model of type (10) to the post World War II quar-
terly US GNP series. Tyssedal and Tjøstheim (1988) fitted a three-regime
SCAR model to a daily IBM stock return series originally analyzed in Box
and Jenkins (1970).

2.6 Autoregressive neural network model

Modelling various processes and phenomena, including economic ones, using
artificial neural network (ANN) models has become quite popular. Many
textbooks have been written about these models, see, for example, Fine
(1999) or Haykin (1999). A detailed treatment can be found in White
(in press), whereas the discussion here is restricted to the simplest single-
equation case, which is the so-called ”single hidden-layer” model. It has the
following form:

yt = β ′
0zt +

q∑
j=1

βjG(γ′
jzt) + εt (11)

where yt is the output series, zt = (1, yt−1, ..., yt−p, x1t, ..., xkt)
′ is the vector

of inputs, including the intercept and lagged values of the output, β ′
0zt is a

linear unit, and βj, j = 1, ..., q, are parameters, called ”connection strengths”
in the neural network literature. Many neural network modellers exclude the
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linear unit altogether, but it is a useful component in time series applications.
Furthermore, function G(.) is a bounded function called ”the squashing func-
tion” and γj, j = 1, ..., q, are parameter vectors. Typical squashing functions
are monotonically increasing ones such as the logistic function and the hyper-
bolic tangent function and thus have the same form as transition functions
of STAR models. The so-called radial basis functions that resemble density
functions are another possibility. The errors εt are often assumed iid(0,σ2).
The term ”hidden layer” refers to the structure of (11). While the output yt
and the input vector zt are observed, the linear combination

∑q
j=1 βjG(γ′

jzt)
is not. It thus forms a hidden layer between the ”output layer” yt and ”input
layer” zt.

A theoretical argument used to motivate the use of ANN models is that
they are universal approximators. Suppose that yt = H(zt), that is, there
exists a functional relationship between yt and zt. Then, under mild regular-
ity conditions for H, there exists a positive integer q ≤ q0 < ∞ such that for
an arbitrary δ > 0, |H(zt) −

∑q
j=1 βjG(γ′

jzt)| < δ. The importance of this
result lies in the fact that q is finite, whereby any unknown function H can
be approximated arbitrarily accurately by a linear combination of squashing
functions G(γ′

jzt). This has been discussed in several papers including Cy-
benko (1989), Funahashi (1989), Hornik, Stinchombe and White (1989) and
White (1990).

A statistical property separating the artificial neural network model (11)
from other nonlinear econometric models presented here is that it is only
locally identified. It is seen from equation (11) that the hidden units are
exchangeable. For example, letting any (βi, γ

′
i)

′ and (βj, γ
′
j)

′, i �= j, change
places in the equation does not affect the value of the likelihood function.
Thus for q > 1 there always exists more than one observationally equivalent
parameterization, so that additional parameter restrictions are required for
global identification. Furthermore, the sign of one element in each γj, the
first one, say, has to be fixed in advance to exclude observationally equivalent
parameterizations. The identification restrictions are discussed, for example,
in Hwang and Ding (1997).

The rich parameterization of ANN models makes the estimation of pa-
rameters difficult. Computationally feasible, yet effective, shortcuts are pro-
posed and implemented in White (in press). Goffe, Ferrier and Rogers (1994)
contains an example showing that simulated annealing, which is a heuristic
estimation method, may be a powerful tool in estimating parameters of these
models. ANN models have been fitted to various economic time series. Since
the model is a universal approximator rather than one with parameters with
economic interpretation, the purpose of fitting these models has mainly been
forecasting. Examples of their performance in forecasting macroeconomic
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variables can be found in Section 7.3.

2.7 Time-varying autoregressive model

A time-varying regression model is an STR model in which the transition
variable st = t. It can thus be defined as follows:

yt = φ′zt+θ
′ztG(γ, c, t) + εt, t = 1, ..., T (12)

where the transition function

G(γ, c, st) = (1 + exp{−γ
K∏
k=1

(t− ck)})−1, γ > 0. (13)

WhenK = 1 and γ → ∞ in (13) , equation (12) represents a linear regression
model with a break in parameters at t = c1. It can be generalized to a model
with several transitions:

yt = φ′zt+
r∑

j=1

θ′jztGj(γj, cj, t) + εt, t = 1, ..., T (14)

where transition functions Gj typically have the form (13) with K = 1.
When γj → ∞, j = 1, ..., r, in (14) , the model becomes a linear model with
multiple breaks. Specifying such models has recently received plenty of atten-
tion; see, for example, Bai and Perron (1998, 2003) and Banerjee and Urga
(in press). In principle, these models should be preferable to linear mod-
els without breaks because the forecasts are generated from the most recent
specification instead of an average one, which is the case if the breaks are ig-
nored. In practice, the number of break-points and their locations have to be
estimated from the data, which makes this suggestion less straightforward.
Even if this difficulty is ignored, it may be optimal to use pre-break obser-
vations in forecasting. The reason is that while the one-step-ahead forecast
based on post-break data is unbiased (if the model is correctly specified),
it may have a large variance. The mean square error of the forecast may
be reduced if the model is estimated by using at least some pre-break ob-
servations as well. This introduces bias but at the same time reduces the
variance. For more information of this bias-variance tradeoff, see Pesaran
and Timmermann (2002).

Time-varying coefficients can also be stochastic:

yt = φ′
tzt + εt, t = 1, ..., T (15)
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where {φt} is a sequence of random variables. In a large forecasting study,
Marcellino (2002) assumed that {φt} was a random walk, that is, {∆φt} was
a sequence of normal independent variables with zero mean and a known
variance. This assumption is a testable alternative to parameter constancy;
see Nyblom (1989). For the estimation of stochastic random coefficient mod-
els, the reader is referred to Harvey (in press). Another assumption, albeit
a less popular one in practice, is that {φt} follows a stationary vector au-
toregressive model. Parameter constancy in (15) may be tested against this
alternative as well: see Watson and Engle (1985) and Lin and Teräsvirta
(1999).

2.8 Nonlinear moving average models

Nonlinear autoregressive models have been quite popular among practition-
ers, but nonlinear moving average models have also been proposed in the
literature. A rather general nonlinear moving average model of order q may
be defined as follows:

yt = f(εt−1, εt−2, ..., εt−q; θ) + εt

where {εt} ∼ iid(0, σ2).A problem with these models is that their invertibility
conditions may not be known, in which case the models cannot be used for
forecasting. A common property of moving average models is that if the
model is invertible, forecasts from it for more than q steps ahead equal the
unconditional mean of yt. Some nonlinear moving average models are linear
in parameters, which makes forecasting with them easy in the sense that no
numerical techniques are required when forecasting several steps ahead. As
an example of a nonlinear moving average model, consider the asymmetric
moving average (asMA) model of Wecker (1981). It has the form

yt = µ+

q∑
j=1

θjεt−j +

q∑
j=1

ψjI(εt−j > 0)εt−j + εt (16)

where I(εt−j > 0) = 1 when εt−j > 0 and zero otherwise, and {εt} ∼
nid(0, σ2). This model has the property that the effects of a positive shock
and a negative shock of the same sizes on yt are not symmetric when ψj �= 0
for at least one j, j = 1, ..., q.

Brännäs and De Gooijer (1994) extended (16) to contain a linear au-
toregressive part and called the model an autoregressive asymmetric moving
average (ARasMA) model. The forecasts from an ARasMA model has the
property that after q steps ahead they are identical to the forecasts from a lin-
ear AR model that has the same autoregressive parameters as the ARasMA
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model. This implies that the forecast densities more than q periods ahead
are symmetric, unless the error distribution is asymmetric.

3 Building nonlinear models

Building nonlinear models comprises three stages. First, the structure of
the model is specified, second, its parameters are estimated and third, the
estimated model has to be evaluated before it is used for forecasting. The last
stage is important because if the model does not satisfy in-sample evaluation
criteria, it cannot be expected to produce accurate forecasts. Of course, good
in-sample behaviour of a model is not synonymous with accurate forecasts,
but in many cases it may at least be viewed as a necessary condition for
obtaining such forecasts from the final model.

It may be argued, however, that the role of model building in construct-
ing models for forecasting is diminishing because computations has become
inexpensive. It is easy to estimate a possibly large number of models and
combine the forecasts from them. This suggestion is related to thick mod-
elling that Granger and Jeon (2004) recently discussed. A study where this
has been a successful strategy will be discussed in Section 7.3.1. On the
other hand, many popular nonlinear models such as the smooth transition
or threshold autoregressive, or Markov switching models, nest a linear model
and are unidentified if the data-generating process is linear. Fitting one of
these models to linear series leads to inconsistent parameter estimates, and
forecasts from the estimated model are bound to be bad. Combining these
forecasts with others would not be a good idea. Testing linearity first, as a
part of the modelling process, greatly reduces the probability of this alter-
native. Aspects of building smooth transition, threshold autoregressive, and
Markov switching models will be briefly discussed below.

3.1 Testing linearity

Since many of the nonlinear models considered in this chapter nest a linear
model, a short review of linearity testing may be useful. In order to illustrate
the identification problem, consider the following nonlinear model:

yt = φ′zt+θ
′ztG(γ; st) + εt = (φ+ θG(γ; st))

′zt + εt (17)

where zt = (1, z̃′t)
′ is an (m × 1) vector of explanatory variables, some of

which can be lags of yt, and {εt} is a white noise sequence with zero mean
and Eε2t = σ2. Depending on the definitions of G(γ; st) and st, (17) can
represent an STR (STAR), SR (SETAR) or a Markov-switching model. The
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model is linear when θ = 0. When this is the case, parameter vector γ is not
identified. It can take any value without the likelihood of the process being
affected. Thus, estimating φ, θ and γ consistently from (17) is not possible
and for this reason, the standard asymptotic theory is not available.

The problem of testing a null hypothesis when the model is only identified
under the alternative was first considered by Davies (1977). The general idea
is the following. As discussed above, the model is identified when γ is known,
and testing linearity of (17) is straightforward. Let ST (γ) be the correspond-
ing test statistic whose large values are critical and define Γ= {γ : γ ∈Γ},
the set of admissible values of γ. When γ is unknown, the statistic is not
operational because it is a function of γ. Davies (1977) suggested that the
problem be solved by defining another statistic ST = supγ∈Γ ST (γ) that is
no longer a function of γ. Its asymptotic null distribution does not gener-
ally have an analytic form, but Davies (1977) gives an approximation to it
that holds under certain conditions, including the assumption that S(γ) =
plimT→∞ST (γ) has a derivative. This, however, is not the case in SR and
SETAR models. Other choices of test statistic include the average:

ST = aveST (γ) =

∫
Γ

ST (γ)dW (γ) (18)

whereW (γ) is a weight function defined by the user such that
∫
Γ
W (γ)dγ = 1.

Another choice is the exponential:

expST = ln(

∫
Γ

exp{(1/2)ST (γ)}dW (γ)). (19)

see Andrews and Ploberger (1994).
Hansen (1996) shows how to obtain asymptotic critical values for these

statistics by simulation under rather general conditions. Given the observa-
tions (yt, zt), t = 1, ..., T , the log-likelihood of (17) has the form

LT (ψ) = c− (T/2) ln σ2 − (1/2σ2)
T∑
t=1

{yt − φ′zt−θ′ztG(γ; st)}2

ψ= (φ′, θ′)′. Assuming γ known, the average score for the parameters in the
conditional mean equals

sT (ψ, γ) = (σ2T )−1

T∑
t=1

(zt ⊗
[
1 G(γ; st)

]′
)εt. (20)

Lagrange multiplier and Wald tests can be defined using (20) in the usual
way. The LM test statistic equals

SLM
T (γ) = T sT (ψ̃, γ)

′ĨT (ψ̃, γ)
−1sT (ψ̃, γ)
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where ψ̃ is the maximum likelihood estimator of ψ under H0 and ĨT (ψ̃, γ)
is a consistent estimator of the population information matrix I(ψ, γ). An
empirical distribution of SLM

T (γ) is obtained by simulation as follows:

1. Generate T observations ε
(j)
t , t = 1, ..., T for each j = 1, ..., J from a

normal (0,σ̃2) distribution, JT observations in all.

2. Compute s
(j)
T (ψ, γa) = T−1

∑T
t=1(zt ⊗

[
1 G(γa; st)

]′
)u

(j)
t where γa ∈

ΓA ⊂ Γ.

3. Set S
LM(j)
T (γa) = T s

(j)
T (ψ̃, γa)

′̃I
(j)
T (ψ̃, γa)

−1s
(j)
T (ψ̃, γa).

4. Compute S
LM(j)
T from S

LM(j)
T (γa), a = 1, ..., A.

Carrying out these steps once gives a simulated value of the statistic. By
repeating them J times one generates a random sample {S

LM(1)
T , ..., S

LM(J)
T }

from the null distribution of SLM
T . If the value of SLM

T obtained directly from
the sample exceeds the 100(1−α)% quantile of the empirical distribution, the
null hypothesis is rejected at (approximately) significance level α. The power
of the test depends on the quality of the approximation ΛA. Hansen (1996)
applied this technique to testing linearity against the two-regime threshold
autoregressive model. The empirical distribution may also be obtained by
bootstrapping the residuals of the null model.

There is another way of handling the identification problem that is ap-
plicable in the context of STR models. Instead of approximating the un-
known distribution of a test statistic it is possible to approximate the con-
ditional log-likelihood or the nonlinear model in such a way that the identi-
fication problem is circumvented. See Luukkonen, Saikkonen and Teräsvirta
(1988), Granger and Teräsvirta (1993) and Teräsvirta (1994) for discussion.
Define γ = (γ1, γ

′
2)

′ in (17) and assume that G(γ1, γ2; st) ≡ 0 for γ1 = 0.
Assume, furthermore, that G(γ1, γ2; st) is at least k times continuously dif-
ferentiable for all values of st and γ.

It is now possible to approximate the transition function by a Taylor
expansion and circumvent the identification problem. First note that due
to lack of identification, the linearity hypothesis can also be expressed as
H0 : γ1 = 0. Function G is approximated locally around the null hypothesis
as follows:

G(γ1, γ2; st) =
k∑

j=1

(γj
1/j!)δj(st) +Rk(γ1, γ2; st) (21)
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where δj(st) =
∂j

∂γj
1

G(γ1, γ2; st)|γ1=0, j = 1, ..., k. Replacing G in (17) by (21)

yields, after reparameterization,

yt = φ′zt+
k∑

j=1

θj(γ1)
′ztδj(st) + ε∗t (22)

where the parameter vectors θj(γ1) = 0 for γ1 = 0, and the error term
ε∗t = εt + θ′ztRk(γ1, γ2; st). The original null hypothesis can now be restated
as H′

0 : θj(γ1) = 0, j = 1, ..., k. It is a linear hypothesis in a linear model
and can thus be tested using standard asymptotic theory, because under
the null hypothesis ε∗t = εt. Note, however, that this requires the existence
of Eδj(st)

2ztz
′
t. The auxiliary regression (22) can be viewed as a result of a

trade-off in which information about the structural form of the alternative
model is exchanged against a larger null hypothesis and standard asymptotic
theory.

As an example, consider the STR model (3) and (4) and assume K = 1
in (4). It is a special case of (17) where γ2 = c and

G(γ1, c; st) = (1 + exp{−γ1(st − c)})−1, γ1 > 0. (23)

When γ1 = 0, G(γ1, c; st) ≡ 1/2. The first-order Taylor expansion of the
transition function around γ1 = 0 is

T (γ1; st) = (1/2)− (γ1/4)(st − c) +R1(γ1; st)θ
′zt. (24)

Substituting (24) for (23) in (17) yields, after reparameterization,

yt = (φ∗
0)

′zt+(φ∗
1)

′ztst + ε∗t (25)

where φ∗
1 = γ1φ

∗

1 such that φ
∗

1 �= 0. The transformed null hypothesis is thus
H′

0 : φ∗
1 = 0. Under this hypothesis and assuming that Es2tztz

′
t exists, the

resulting LM statistic has an asymptotic χ2 distribution with m degrees of
freedom. This computationally simple test also has power against SR model,
but Hansen’s test that is designed directly against that alternative, is of
course the more powerful of the two.

3.2 Building STR models

The STR model nests a linear regression model and is not identified when
the data-generating process is the linear model. For this reason, a natural
first step in building STR models is testing linearity against STR. There
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exists a data-based modelling strategy that consists of the three stages al-
ready mentioned: specification, estimation, and evaluation. It is described,
among others, in Teräsvirta (1998), see also van Dijk, Teräsvirta and Franses
(2002) or Teräsvirta (2004). Specification consists of testing linearity and,
if rejected, determining the transition variable st. This is done using testing
linearity against STR models with different transition variables. In the uni-
variate case, determining the transition variable amounts to choosing the lag
yt−d. The decision to select the type of the STR model (LSTR1 or LSTR2) is
also made at the specification stage and is based on the results of a short se-
quence of tests within an auxiliary regression that is used for testing linearity;
see Teräsvirta (1998) for details.

Specification is partly intertwined with estimation, because the model
may be reduced by setting coefficients to zero according to some rule and re-
estimating the reduced model. This implies that one begins with a large STR
model and then continues ’from general to specific’. At the evaluation stage
the estimated STR model is subjected to misspecification tests such as tests
of no error autocorrelation, no autoregressive conditional heteroskedasticity,
no remaining nonlinearity and parameter constancy. The tests are described
in Teräsvirta (1998). A model that passes the in-sample tests can be used
for out-of-sample forecasting.

The presence of unidentified nuisance parameters is also a problem in
misspecification testing. The alternatives to the STR model in tests of no
remaining nonlinearity and parameter constancy are not identified when the
null hypothesis is valid. The identification problem is again circumvented
using a Taylor series expansion. In fact, the linearity test applied at the
specification stage can be viewed as a special case of the misspecification test
of no remaining nonlinearity.

It may be mentioned that Medeiros, Teräsvirta and Rech (in press) con-
structed a similar strategy for modelling with neural networks. There the
specification stage involves, except testing linearity, selecting the variables
and the number of hidden units. Teräsvirta, Lin and Granger (1993) pre-
sented a linearity test against the neural network model using the Taylor
series expansion idea; for a different approach, see Lee, White and Granger
(1993).

In some forecasting experiments, STAR models have been fitted to data
without first testing linearity, and assuming the structure of the model known
in advance. As already discussed, this should lead to forecasts that are
inferior to forecasts obtained frommodels that have been specified using data.
The reason is that if the data-generating process is linear, the parameters
of the STR or STAR model are not estimated consistently. This in turn
must have a negative effect on forecasts, compared to models obtained by a
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specification strategy in which linearity is tested before attempting to build
an STR or STAR model.

3.3 Building switching regression models

The switching regression model shares with the STR model the property that
it nests a linear regression model and is not identified when the nested model
generates the observations. This suggests that a first step in specifying the
switching regression model or the threshold autoregressive model should be
testing linearity. In other words, one would begin by choosing between one
and two regimes in (6). When this is done, it is usually assumed that the
error variances in different regimes are the same: σ2

j ≡ σ2, j = 1, ..., r.
More generally, the specification stage consists of selecting both the switch-

ing variable st and determining the number of regimes. There are several ways
of determining the number of regimes. Hansen (1999) suggested a sequen-
tial testing approach to the problem. He discussed the SETAR model, but
his considerations apply to the multivariate model as well. Hansen (1999)
suggested a likelihood ratio test for this situation and showed how inference
can be conducted using an empirical null distribution of the test statistic
generated by the bootstrap. Applied sequentially and starting from a lin-
ear model, Hansen’s empirical-distribution based likelihood ratio test can in
principle be used for selecting the number of regimes in a SETAR model.

The test has excellent size and power properties as a linearity test, but
it does not always work as well as a sequential test in the SETAR case.
Suppose that the true model has three regimes, and Hansen’s test is used for
testing two regimes against three. Then it may happen that the estimated
model with two regimes generates explosive realizations, although the data-
generating process with three regimes is stationary. This causes problems in
bootstrapping the test statistic under the null hypothesis. If the model is a
static switching regression model, this problem does not occur.

Gonzalo and Pitarakis (2002) designed a technique based on model selec-
tion criteria. The number of regimes is chosen sequentially. Expanding the
model by adding another regime is discontinued when the value of the model
selection criterion, such as BIC, does not decrease any more. A drawback
of this technique is that the significance level of each individual comparison
(j regimes vs. j + 1) is a function of the size of the model and cannot be
controlled by the model builder. This is due to the fact that the size of
the penalty in the model selection criterion is a function of the number of
parameters in the two models under comparison.

Recently, Strikholm and Teräsvirta (2005) suggested approximating the
threshold autoregressive model by a multiple STAR model with a large fixed
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value for the slope parameter γ. The idea is then to first apply the linearity
test and then the test of no remaining nonlinearity sequentially to find the
number of regimes. This gives the modeller an approximate control over
the significance level, and the technique appears to work reasonably well
in simulations. Selecting the switching variable st can be incorporated into
every one of these three approaches; see, for example, Hansen (1999).

Estimation of parameters is carried out by forming a grid of values for
the threshold parameter, estimating the remaining parameters conditionally
on this value for each value in the grid and minimizing the sum of squared
errors.

The likelihood ratio test of Hansen (1999) can be regarded as a misspeci-
fication test of the estimated model. The estimated model can also be tested
following the suggestion by Eitrheim and Teräsvirta (1996) that is related
to the ideas in Strikholm and Teräsvirta (2005). One can re-estimate the
threshold autoregressive model as a STAR model with a large fixed γ and
apply misspecification tests developed for the STAR model. Naturally, in
this case there is no asymptotic distribution theory for these tests but they
may nevertheless serve as useful indicators of misspecification. Tong (1990,
Section 5.6) discusses ways of checking the adequacy of estimated nonlinear
models that also apply to SETAR models.

3.4 Building Markov-switching regression models

The MS regression model has a structure similar to the previous models in
the sense that it nests a linear model, and the model is not identified under
linearity. In that case the transition probabilities are unidentified nuisance
parameters. The first stage of buildingMS regression models should therefore
be testing linearity. Nevertheless, this is very rarely the case in practice. An
obvious reason is that testing linearity against the MS-AR alternative is
computationally demanding. Applying the general theory of Hansen (1996)
to this testing problem would require more computations than it does when
the alternative is a threshold autoregressive model. Garcia (1998) offers an
alternative that is computationally less demanding but does not appear to
be in common use. Most practitioners fix the number of regimes in advance,
and the most common choice appears to be two regimes. For an exception
to this practice, see Li and Xu (2002).

Estimation of Markov-switching models is more complicated than esti-
mation of models described in previous sections. This is because the model
contains two unobservable processes: the Markov chain indicating the regime
and the error process εt. Hamilton (1993) and Hamilton (1994, Chapter 22),
among others, discussed maximum likelihood estimation of parameters in
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this framework.
Misspecification tests exist for the evaluation of Markov-switching mod-

els. The tests proposed in Hamilton (1996) are Lagrange multiplier tests.
If the model is a regression model, a test may be constructed for testing
whether there is autocorrelation or ARCH effects in the process or whether
a higher-order Markov chain would be necessary to adequately characterize
the dynamic behaviour of the switching process.

Breunig, Najarian and Pagan (2003) consider other types of tests and
give examples of their use. These include consistency tests for finding out
whether assumptions made in constructing the Markov-switching model are
compatible with the data. Furthermore, they discuss encompassing tests
that are used to check whether a parameter of some auxiliary model can be
encompassed by the estimated Markov-switching model. The authors also
emphasize the use of informal graphical methods in checking the validity of
the specification. These methods can be applied to other nonlinear models
as well.

4 Forecasting with nonlinear models

4.1 Analytical point forecasts

For some nonlinear models, forecasts for more than one period ahead can be
obtained analytically. This is true for many nonlinear moving average mod-
els that are linear in parameters. As an example, consider the asymmetric
moving average model (16) , assume that it is invertible, and set q = 2 for
simplicity. The optimal point forecast one period ahead equals

yt+1|t = E{yt+1|Ft} = µ+ θ1εt + θ2εt−1 + ψ1I(εt > 0)εt + ψ2I(εt−1 > 0)εt−1

and two periods ahead

yt+2|t = E{yt+2|Ft} = µ+ θ2εt + ψ1EI(εt+1 > 0)εt+1 + ψ2I(εt > 0)εt.

For example, if εt ∼ nid(0, σ2), then EI(εt > 0)εt = (σ2/2)
√
π/2. For more

than two periods ahead, the forecast is simply the unconditional mean of yt :

Eyt = µ+ (ψ1 + ψ2)EI(εt > 0)εt

exactly as in the case of a linear MA(2) model.
Another nonlinear model from which forecasts can be obtained using an-

alytical expressions is the Markov-switching model. Consider model (8) and
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suppose that the exogenous variables are generated by the following linear
model:

xt+1 = Axt + ηt+1. (26)

The conditional expectation of yt+1, given the information up until t+1 from
(8) , has the form

E{yt+1|xt,wt} = E[
r∑

j=1

{yt+1|xt,wt, st+1 = j}] Pr{st+1 = j|xt,wt}

=
r∑

j=1

pj,t+1(α
′
1jAxt + α′

2jwt)

where pj,t+1=Pr{st+1 = j|xt,wt}, is the conditional probability of the process
being in state j at time t+1 given the past observable information. Then the
forecast of yt+1 given xt and wt and involving the forecasts of pj,t+1 becomes

yt+1|t =
r∑

j=1

pj,t+1|t(α
′
1jAxt + α′

2jwt). (27)

In (27) , pj,t+1|t = Pr{st+1 = j|xt,wt} is a forecast of pj,t+1 from p′
t+1|t = p′

tP

where pt = (p1,t, ..., pr,t)
′ with pj,t = Pr{st = j|xt,wt}, j = 1, ..., r, and

P =[pij] is the matrix of transition probabilities defined in (9).
Generally, the forecast for h ≥ 2 steps ahead has the following form

yt+h|t =
r∑

j=1

pj,t+h|t(α
′
1jA

hxt + α′
2jw

∗
t+h−1)

where the forecasts pj,t+h|t of the regime probabilities are obtained from the
relationship p′

t+h|t = p′
tP

h with pt+h|t = (p1,t+h|t, ..., pr,t+h|t)
′ and w∗

t+h−1 =

(yt+h−1|t, ..., yt+1|t, yt, ..., yt−p+h−1)
′, h ≥ 2.

As a simple example, consider the first-order autoregressive MS or SCAR
model with two regimes

yt =
2∑

j=1

(φ0j + φ1jyt−1)I(st = j) + εt (28)

where εt ∼ nid(0, σ2). From (28) it follows that the one-step-ahead forecast
equals

yt+1|t = E{yt+1|yt} = p′
tPφ0 + p′

tPφ1yt
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where φj = (φj1, φj2)
′, j = 0, 1. For two steps ahead, one obtains

yt+2|t = p′
tP

2φ0 + p′
tP

2φ1yt+1|t

= p′
tP

2φ0 + (p′
tP

2φ1)(p
′
tPφ0) + (p′

tP
2φ1)(p

′
tPφ1)yt.

Generally, the h-step ahead forecast, h ≥ 2, has the form

yt+h|t = p′
tP

hφ0 +
h−2∑
i=0

{
i∏

j=0

p′
tP

h−jφ1}p′
tP

h−i−1φ0

+
h∏

j=1

p′
tP

jφ1yt.

Thus all forecasts can be obtained analytically by a sequence of linear oper-
ations. This is a direct consequence of the fact that the regimes in (8) are
linear in parameters. If they were not, the situation would be different. This
would also be the case if the exogenous variables were generated by a nonlin-
ear process instead of the linear model (26). Forecasting in such situations
will be considered next.

4.2 Numerical techniques in forecasting

Forecasting for more than one period ahead with nonlinear models such as
the STR or SR model requires numerical techniques. Granger and Teräsvirta
(1993, Chapter 9), Lundbergh and Teräsvirta (2002), Franses and van Dijk
(2000) and Fan and Yao (2003), among others, discuss ways of obtaining such
forecasts. In the following discussion, it is assumed that the nonlinear model
is correctly specified. In practice, this is not the case. Recursive forecasting
that will be considered here may therefore lead to rather inaccurate forecasts
if the model is badly misspecified. Evaluation of estimated models by mis-
specification tests and other means before forecasting with them is therefore
important.

Consider the following simple nonlinear model

yt = g(xt−1; θ) + εt (29)

where εt ∼ iid(0, σ2) and xt is a (k× 1) vector of exogenous variables. Fore-
casting one period ahead does not pose any problem, for the forecast

yt+1|t = E(yt+1|xt) = g(xt; θ).

We bypass an extra complication by assuming that θ is known, which means
that the uncertainty from the estimation of parameters is ignored. Forecast-
ing two steps ahead is already a more complicated affair because we have to
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work out E(yt+2|xt). Suppose we can forecast xt+1 from the linear first-order
vector autoregressive model

xt+1 = Axt + ηt+1 (30)

where ηt = (η1t, ..., ηkt)
′ ∼ iid(0,Ση). The one-step-ahead forecast of xt+1 is

xt+1|t = Axt. This yields

yt+2|t = E(yt+2|xt) = Eg(Axt + ηt+1; θ)

=

∫
η1

...

∫
ηk

g(Axt + ηt+1; θ)dF (η1, ..., ηk) (31)

which is a k-fold integral and where F (η1, ..., ηk) is the joint cumulative dis-
tribution function of ηt. Even in the simple case where xt = (yt, ..., yt−p+1)

′

one has to integrate out the error term εt from the expected value E(yt+2|xt).
It is possible, however, to ignore the error term and just use

ySt+2|t = g(xt+1|t; θ)

which Tong (1990) calls the ’skeleton’ forecast. This method, while easy to
apply, yields, however, a biased forecast for yt+2. It may lead to substantial
losses of efficiency; see Lin and Granger (1994) for simulation evidence of
this.

On the other hand, numerical integration of (31) is tedious. Granger and
Teräsvirta (1993) call this method of obtaining the forecast the exact method,
as opposed to two numerical techniques that can be used to approximate
the integral in (31). One of them is based on simulation, the other one
on bootstrapping the residuals {η̂t} of the estimated equation (30) or the
residuals {ε̂t} of the estimated model (29) in the univariate case. In the latter
case the parameter estimates thus do have a role to play, but the additional
uncertainty of the forecasts arising from the estimation of the model is not
accounted for.

The simulation approach requires that a distributional assumption is
made about the errors ηt. One draws a sample of N independent error
vectors {η

(1)
t+1, ..., η

(N)
t+1} from this distribution and computes the Monte Carlo

forecast

yMC
t+2|t = (1/N)

N∑
i=1

g(xt+1|t + η
(i)
t+1; θ). (32)

The bootstrap forecast is similar to (32) and has the form

yBt+2|t = (1/NB)

NB∑
i=1

g(xt+1|t + η̂
(i)
t+1; θ) (33)
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where the errors {η̂
(1)
t+1, ..., η̂

(NB)
t+1 } have been obtained by drawing them from

the set of estimated residuals of model (30) without replacement. The dif-
ference between (32) and (33) is that the former is based on an assumption
about the distribution of ηt+1, whereas the latter does not make use of a
distributional assumption. It requires, however, that the error vectors are
assumed independent.

This generalizes to longer forecast horizons: For example,

yt+3|t = E(yt+3|xt) = E{g(xt+2; θ)|xt}
= E{g(Axt+1 + ηt+2; θ)|xt} = Eg(A2xt +Aηt+1 + ηt+2; θ)

=

∫
η
(2)
1

...

∫
η
(2)
k

∫
η
(1)
1

...

∫
η
(1)
k

g(A2xt +Aηt+1 + ηt+2; θ)

× dF (η
(1)
1 , ..., η

(1)
k , η

(2)
1 , ..., η

(2)
k )

which is a 2k-fold integral. Calculation of this expectation by numerical
integration may be a huge task, but simulation and bootstrap approaches
are applicable. In the general case where one forecasts h steps ahead and
wants to obtain the forecasts by simulation, one generates the random vari-
ables η

(i)
t+1, ..., η

(i)
t+h, i = 1, ..., N, and sequentially computes N forecasts for

yt+1|t, ..., yt+h|t, h ≥ 2. These are combined to a single point forecast for each
of the time-points by simple averaging as in (32). Bootstrap-based forecasts
can be computed in an analogous fashion.

If the model is univariate, the principles do not change. Consider, for
simplicity, the following stable first-order autoregressive model

yt = g(yt−1; θ) + εt (34)

where {εt} is a sequence of independent, identically distributed errors such
that Eεt = 0 and Eε2t = σ2. In that case,

yt+2|t = E[g(yt+1; θ) + εt+2|yt] = Eg(g(yt; θ) + εt+1; θ)

=

∫
ε

g(g(yt; θ) + ε); θ)dF (ε) (35)

The only important difference between (31) and (35) is that in the latter
case, the error term that has to be integrated out is the error term of the
autoregressive model (34). In the former case, the corresponding error term
is the error term of the vector process (30) , and the error term of (29) need
not be simulated. For an example of a univariate case, see Lundbergh and
Teräsvirta (2002).
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It should be mentioned that there is an old strand of literature on forecast-
ing from nonlinear static simultaneous-equation models in which the tech-
niques just presented are discussed and applied. The structural equations of
the model have the form

f(yt,xt, θ)= εt (36)

where f is an n×1 vector of functions of the n endogenous variables yt, xt is
a vector of exogenous variables, {εt} a sequence of independent error vectors,
and θ the vector of parameters. It is assumed that (36) implicitly defines a
unique inverse relationship

yt = g(εt,xt, θ).

There may not exist a closed form for g or the conditional mean and co-
variance matrix of yt. Given xt = x0, the task is to forecast yt. Different as-
sumptions on εt lead to skeleton or ”deterministic” forecasts, exact or ”closed
form” forecasts, or Monte Carlo forecasts; see Brown and Mariano (1984).
The order of bias in these forecasts has been a topic of discussion, and Brown
and Mariano showed that the order of bias in skeleton forecasts is O(1).

4.3 Forecasting using recursion formulas

It is also possible to compute forecasts numerically applying the Chapman-
Kolmogorov equation that can be used for obtaining forecasts recursively by
numerical integration. Consider the following stationary first-order nonlinear
autoregressive model

yt = k(yt−1; θ) + εt

where {εt} is a sequence of iid(0,σ2) variables and that the conditional
densities of the yt are well-defined. Then a special case of the Chapman-
Kolmogorov equation has the form, see for example Tong (1990, p. 346) or
Franses and van Dijk (2000, p. 119-120)

f(yt+h|yt) =
∫ ∞

−∞

f(yt+h|yt+1)f(yt+1|yt)dyt+1. (37)

From (37) it follows that

yt+h|t = E{yt+h|yt} =

∫ ∞

−∞

E{yt+h|yt+1}f(yt+1|yt)dyt+1 (38)

which shows how E{yt+h|yt} may be obtained recursively. Consider the case
h = 2. It should be noted that in (38) , f(yt+1|yt) = g(yt+1 − k(yt; θ)) =
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g(εt+1). In order to calculate f(yt+h|yt), one has to make an appropriate as-
sumption about the error distribution g(εt+1). Since E{yt+2|yt+1} = k(yt+1; θ),
the forecast

yt+2|t = E{yt+2|yt} =

∫ ∞

−∞

k(yt+1; θ)g(yt+1 − k(yt; θ))dyt+1 (39)

is obtained from (39) by numerical integration. For h > 2, one has to make
use of both (38) and (39) . First, write

E{yt+3|yt} =

∫ ∞

−∞

k(yt+2; θ)f(yt+2|yt)dyt+2 (40)

then obtain f(yt+2|yt) from (37) where h = 2 and

f(yt+2|yt+1) = g(yt+2 − k(yt+1; θ)).

Finally, the forecast is obtained from (40) by numerical integration.
It is seen that this method is computationally demanding for large values

of h. Simplifications to alleviate the computational burden exist, see De
Gooijer and De Bruin (1998). The latter authors consider forecasting with
SETAR models with the normal forecasting error (NFE) method. As an
example, take the first-order SETAR model

yt = (α01 + α11yt−1+ε1t)I(yt−1 < c) + (α02 + α12yt−1+ε2t)I(yt−1 ≥ c) (41)

where {εjt} ∼ nid(0, σ2
j ), j = 1, 2. For the SETAR model (41), the one-step-

ahead minimum mean-square error forecast has the form

yt+1|t = E{yt+1|yt < c}I(yt < c) + E{yt+1|yt ≥ c}I(yt ≥ c)

where E{yt+1|yt < c} = α01 + α11yt and E{yt+1|yt ≥ c} = α02 + α12yt. The
corresponding forecast variance

σ2
t+1|t = σ2

1I(yt < c) + σ2
2I(yt ≥ c).

From (41) it follows that the distribution of yt+1 given yt is normal with mean
yt+1|t and variance σ2

t+1|t. Accordingly for h ≥ 2, the conditional distribution

of yt+h given yt+h−1 is normal with mean α01+α11yt+h−1 and variance σ2
1 for

yt+h−1 < c, and mean α02 + α12yt+h−1 and variance σ2
2 for yt+h−1 ≥ c. Let

zt+h−1|t = (c − yt+h−1|t)/σt+h−1|t where σ2
t+h−1|t is the variance predicted for

time t+ h− 1. De Gooijer and De Bruin (1998) show that the h-steps ahead
forecast can be approximated by the following recursive formula

yt+h|t = (α01 + α11yt+h−1|t)Φ(zt+h−1|t) + (α02 + α12yt+h−1|t)Φ(−zt+h−1|t)

− (α11 − α21)σt+h−1|tφ(zt+h−1|t) (42)
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where Φ(x) is the cumulative distribution function of a standard normal
variable x and φ(x) is the density function of x. The recursive formula for
forecasting the variance is not reproduced here. The first two terms weight
the regimes together: the weights are equal for yt+h−1|t = c. The third term
is a ”correction term” that depends on the persistence of the regimes and
the error variances. This technique can be generalized to higher-order SE-
TAR models. De Gooijer and De Bruin (1998) report that the NFE method
performs well when compared to the exact method described above, at least
in the case where the error variances are relatively small. They recommend
the method as being very quick and easy to apply.

It may be expected, however, that the use of the methods described in
this subsection will lose in popularity when increased computational power
makes the simulation-based approach both quick and cheap to use.

4.4 Accounting for estimation uncertainty

In Sections 4.1 and 4.2 it is assumed that the parameters are known. In
practice, the unknown parameters are replaced by their estimates and re-
cursive forecasts are obtained using these estimates. There are two ways of
accounting for parameter uncertainty. It may be assumed that the (quasi)

maximum likelihood estimator θ̂ of the parameter vector θ has an asymptotic
normal distribution, that is,

√
T (θ̂ − θ)

D→ N(0,Σ).

One then draws a new estimate from the N(θ̂, T−1Σ̂) distribution and repeats
the forecasting exercise with them. For recursive forecasting in Section 4.2
this means repeating the calculations in (32) M times. Confidence intervals
for forecasts can then be calculated from the MN individual forecasts. An-
other possibility is to re-estimate the parameters using data generated from
the original estimated model by bootstrapping the residuals, call the esti-
mated model MB. The residuals of MB are then used to recalculate (33) ,
and this procedure is repeated M times. This is a computationally intensive
procedure and, besides, because the estimated models have to be evaluated
(for example, explosive ones have to be discarded, so they do not distort the
results), the total effort is substantial. When the forecasts are obtained an-
alytically as in Section 4.1, the computational burden is less heavy because
the replications to generate (32) or (33) are avoided.
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4.5 Interval and density forecasts

Interval and density forecasts are obtained as a by-product of computing
forecasts numerically. The replications form an empirical distribution that
can be appropriately smoothed to give a smooth forecast density. For surveys,
see Corradi and Swanson (in press) and Tay and Wallis (2002). As already
mentioned, forecast densities obtained from nonlinear economic models may
be asymmetric, which policy makers may find interesting. For example, if
a density forecast of inflation is asymmetric suggesting that the error of the
point forecast is more likely to be positive than negative, this may cause
a policy response different from the opposite situation where the error is
more likely to be negative than positive. The density may even be bi- or
multimodal, although this may not be very likely in macroeconomic time
series. For an example, see Lundbergh and Teräsvirta (2002), where the
density forecast for the Australian unemployment rate four quarters ahead
from an estimated STAR model, reported in Skalin and Teräsvirta (2002),
shows some bimodality.

Density forecasts may be conveniently presented using fan charts; see
Wallis (1999) and Lundbergh and Teräsvirta (2002) for examples. There are
two ways of constructing fan charts. One, applied in Wallis (1999), is to base
them on interquantile ranges. The other is to use highest density regions, see
Hyndman (1996). The choice between these two depends on the forecaster’s
loss function. Note, however, that bi- or multimodal density forecasts are
only visible in fan charts based on highest density regions.

Typically, the interval and density forecasts do not account for the es-
timation uncertainty, but see Corradi and Swanson (in press). Extending
the considerations to do that when forecasting with nonlinear models would
often be computationally very demanding. The reason is that estimating
parameters of nonlinear models requires care (starting-values, convergence,
etc.), and therefore simulations or bootstrapping involved could in many
cases demand a large amount of both computational and human resources.

4.6 Combining forecasts

Forecast combination is a relevant topic in linear as well as in nonlinear
forecasting. Combining nonlinear forecasts with forecasts from a linear model
may sometimes lead to series of forecasts that are more robust (contain fewer
extreme predictions) than forecasts from the nonlinear model. Following
Granger and Bates (1969), the composite point forecast from models M1 and
M2 is given by

ŷ
(1,2)
t+h|t = (1− λt)ŷ

(1)
t+h|t + λtŷ

(2)
t+h|t (43)
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where λt, 0 ≤ λt ≤ 1, is the weight of the h-periods-ahead forecast ŷ
(j)
t+h|t of

yt+h. Suppose that the multi-period forecasts from these models are obtained
numerically following the technique presented in Section 4.2. The same ran-
dom numbers can be used to generate both forecasts, and combining the
forecasts simply amounts to combining each realization from the two mod-
els. This means that each one of the N pairs of simulated forecasts from
the two models is weighted into a single forecast using weights λt (model
M2) and 1 − λt (model M1). The empirical distribution of the N weighted
forecasts is the combined density forecast from which one easily obtains the
corresponding point forecast by averaging as discussed in Section 4.2.

Note that the weighting schemes themselves may be nonlinear functions
of the past performance. This form of nonlinearity in forecasting is not
discussed here, but see Deutsch, Granger and Teräsvirta (1994) for an appli-
cation. The K-mean clustering approach to combining forecasts in Aiolfi and
Timmermann (in press) is another example of a nonlinear weighting scheme.
A detailed discussion of forecast combination and weighting schemes pro-
posed in the literature can be found in Timmermann (in press).

4.7 Different models for different forecast horizons?

Multistep forecasting was discussed in Section 4.2 where it was argued that
for most nonlinear models, multi-period forecasts had to be obtained numer-
ically. While this is not nowadays computationally demanding, there may be
other reasons for opting for analytically generated forecasts. They become
obvious if one gives up the idea that the model assumed to generate the ob-
servations is the data-generating process. As already mentioned, if the model
is misspecified, the forecasts from such a model are not likely to have any
optimality properties, and another misspecified model may do a better job.
The situation is illuminated by an example from Bhansali (2002). Suppose
that at time T we want to forecast yT+2 from

yt = αyt−1 + εt (44)

where Eεt = 0 and Eεtεt−j = 0, j �= 0. Furthermore, yT is assumed known.
Then yT+1|T = αyT and yT+2|T = α2yT , where α2yT is the minimum mean
square error forecast of yT+2 under the condition that (44) be the data-
generating process. If this condition is not valid, the situation changes. It is
also possible to forecast yT+2 directly from the model estimated by regress-
ing yt on yt−2, the (theoretical) outcome being y∗T+2|T = ρ2yT where ρ2 =

corr(yt, yt−2). When model (44) is misspecified, y∗T+2|T obtained by the direct
method may be preferred to yT+2|T in a linear least square sense. The mean
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square errors of these two forecasts are equal if and only if α2 = ρ2, that is,
when the data-generating process is a linear AR(1)-process.

When this idea is applied to nonlinear models, the direct method has
the advantage that no numerical generation of forecasts is necessary. The
forecasts can be produced exactly as in the one-step-ahead case. A disad-
vantage is that a separate model has to be specified and estimated for each
forecast horizon. Besides, these models are also misspecifications of the data-
generating process. In their extensive studies of forecasting macroeconomic
series with linear and nonlinear models, Stock and Watson (1999) and Mar-
cellino (2002) have used this method. The interval and density forecasts
obtained this way may sometimes differ from the ones generated recursively
as discussed in Section 4.2. In forecasting more than one period ahead, the
recursive techniques allow asymmetric forecast densities. On the other hand,
if the error distribution of the ’direct forecast’ model is assumed symmet-
ric around zero, density forecasts from such a model will also be symmetric
densities.

Which one of the two approaches produces more accurate point forecasts
is an empirical matter. Lin and Granger (1994) study this question by simu-
lation. Two nonlinear models, the first-order STAR and the sign model, are
used to generate the data. The forecasts are generated in three ways. First,
they are obtained from the estimated model assuming that the specification
was known. Second, a neural network model is fitted to the generated series
and the forecasts produced with it. Third, the forecasts are generated from
a nonparametric model fitted to the series. The focus is on forecasting two
periods ahead. On the one hand, the forecast accuracy measured by mean
square forecast error deteriorates compared to the iterative methods (32) and
(33) when the forecasts two periods ahead are obtained from a ’direct’ STAR
or sign model, i.e., from a model in which the first lag is replaced by a sec-
ond lag. On the other hand, the direct method works much better when the
model used to produce the forecasts is a neural network or a nonparametric
model.

A recent large-scale empirical study by Marcellino, Stock and Watson
(2004) addresses the question of choosing an appropriate approach in a linear
framework, using 171 monthly US macroeconomic time series and forecast
horizons up to 24 months. The conclusion is that obtaining the multi-step
forecasts from a single model is preferable to the use of direct models. This is
true in particular for longer forecast horizons. A comparable study involving
nonlinear time series models does not as yet seem to be available.
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5 Forecast accuracy

5.1 Comparing point forecasts

A frequently-asked question in forecasting with nonlinear models has been
whether they perform better than linear models. While many economic phe-
nomena and models are nonlinear, they may be satisfactorily approximated
by a linear model, and this makes the question relevant. A number of crite-
ria, such as the root mean square forecast error (RMSFE) or mean absolute
error (MAE), have been applied for the purpose. It is also possible to test
the null hypothesis that the forecasting performance of two models, measured
in RMSFE or MAE or some other forecast error based criterion, is equally
good against a one-sided alternative. This can be done for example by ap-
plying the Diebold-Mariano (DM) test; see Diebold and Mariano (1995) and
Harvey, Leybourne and Newbold (1997). The test is not available, however,
when one of the models nests the other. The reason is that when the data
are generated from the smaller model, the forecasts are identical when the
parameters are known. In this case the asymptotic distribution theory for
the DM statistic no longer holds.

This problem is present in comparing linear and many nonlinear models,
such as the STAR, SETAR or MS (SCAR) model, albeit in a different form.
These models nest a linear model, but the nesting model is not identified
when the smaller model has generated the observations. Thus, if the para-
meter uncertainty is accounted for, the asymptotic distribution of the DM
statistic may depend on unknown nuisance parameters, and the standard
distribution theory does not apply.

Solutions to the problem of nested models are discussed in detail in West
(in press), and here the attention is merely drawn to two approaches. Re-
cently, Corradi and Swanson (2002, 2004) have considered what they call
a generic test of predictive accuracy. The forecasting performance of two
models, a linear model (M0) nested in a nonlinear model and the nonlinear
model (M1), is under test. Following Corradi and Swanson (2004), define the
models as follows:

M0 : yt = φ0 + φ1yt−1 + ε0t

where (φ0, φ1)
′ = arg min(φ0,φ1)∈ΦEg(yt − φ0 − φ1yt−1). The alternative has

the form

M1 : yt = φ0(γ) + φ1(γ)yt−1 + φ2(γ)G(wt; γ) + ε1t (45)

where, setting φ(γ) = (φ0(γ), φ1(γ), φ2(γ))
′,

φ(γ) = argminφ(γ)∈Φ(γ)Eg(yt − φ0(γ)− φ1(γ)yt−1 − φ2(γ)G(wt; γ))
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Furthermore, γ ∈ Γ is a d×1 vector of nuisance parameters and Γ a compact
subset of Rd. The loss function is the same as the one used in the forecast
comparison: for example the mean square error. The logistic function (4)
may serve as an example of the nonlinear function G(wt; γ) in (45) .

The null hypothesis equals H0 : Eg(ε0,t+1) = Eg(ε1,t+1), and the alterna-
tive is H1 : Eg(ε0,t+1) > Eg(ε1,t+1). The null hypothesis corresponds to equal
forecasting accuracy, which is achieved if φ2(γ) = 0 for all γ ∈ Γ. This allows
restating the hypotheses as follows:

H0 : φ2(γ) = 0 for all γ ∈ Γ (46)

H1 : φ2(γ) �= 0 for at least one γ ∈ Γ.

Under this null hypothesis,

Eg′(ε0,t+1)G(wt; γ) = 0 for all γ ∈ Γ (47)

where

g′(ε0,t) =
∂g

∂ε0,t

∂ε0,t
∂φ

= − ∂g

∂ε0,t
(1, yt−1, G(wt−1; γ))

′.

For example,if g(ε) = ε2, then ∂g/∂ε = 2ε. if The values of G(wt; γ) are ob-
tained using a sufficiently fine grid. Now, equation (47) suggests a conditional
moment test of type Bierens (1990) for testing (46). Let

φ̂T = (φ̂0, φ̂1)
′ = argmin

φ∈Φ
T−1

T∑
t=1

g(yt − φ0 − φ1yt−1)

and define ε̂0,t+1|t = yt+1− φ̂′
tyt where yt = (1, yt)

′, for t = T, T +1, ..., T − 1.
The test statistic is

MP =

∫
Γ

mP (γ)
2w(γ)dγ (48)

where

mP (γ) = T−1/2
T+P−1∑
t=T

g′(ε̂0,t+1|t)G(zt; γ)

and the absolutely continuous weight function w(γ) ≥ 0 with
∫
Γ
w(γ)dγ = 1.

The (nonstandard) asymptotic distribution theory for MP is discussed in
Corradi and Swanson (2002).

Statistic (48) does not answer the same question as the DM statistic. The
latter can be used for investigating whether a given nonlinear model yields
more accurate forecasts than a linear model not nested in it. The former
answers a different question: ”Does a given family of nonlinear models have
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a property such that one-step-ahead forecasts from models belonging to this
family are more accurate than the corresponding forecasts from a linear model
nested in it?”

Some forecasters who apply nonlinear models that nest a linear model
begin by testing linearity against their nonlinear model. This practice is often
encouraged; see, for example, Teräsvirta (1998). If one rejects the linearity
hypothesis, then one should also reject (46) , and an out-of-sample test would
thus appear redundant. In practice it is possible, however, that (46) is not
rejected although linearity is. This may be the case if the nonlinear model
is misspecified, or there is a structural break or smooth parameter change in
the prediction period, or this period is so short that the test is not sufficiently
powerful. Their role in forecasts evaluation compared to in-sample tests has
been discussed in Inoue and Kilian (2004).

If one wants to consider the original question which the Diebold-Mariano
test was designed to answer, a new test, recently developed by Giacomini
and White (2003), is available. This is a test of conditional forecasting abil-
ity as opposed to most other tests including the Diebold-Mariano statistic
that are tests of unconditional forecasting ability. The test is constructed
under the assumption that the forecasts are obtained using a moving data
window: the number of observations in the sample used for estimation does
not increase over time. It is operational under rather mild conditions that
allow heteroskedasticity. Suppose that there are two models M1 and M2 such
that

Mj : yt = f (j)(wt; θj) + εjt, j = 1, 2

where {εjt} is a martingale difference sequence with respect to the informa-
tion set Ft−1. The null hypothesis is

E[{gt+τ(yt+τ , f̂
(1)
mt )− gt+τ(yt+τ , f̂

(2)
mt )}|Ft−1] = 0 (49)

where gt+τ(yt+τ , f̂
(j)
mt ) is the loss function, f̂

(j)
mt is the τ -periods-ahead forecast

for yt+τ from model j estimated from the observations t−m+1, ..., t. Assume
now that there exist T observations, t = 1, ..., T, and that forecasting is begun
at t = t0 > m. Then there will be T0 = T − τ − t0 forecasts available for
testing the null hypothesis.

Carrying out the test requires a test function ht which is a p× 1 vector.
Under the null hypothesis, owing to the martingale difference property of the
loss function difference,

Eht∆gt+τ = 0

for all F-measurable p × 1 vectors ht. Bierens (1990) used a similar idea
(∆gt+τ replaced by a function of the error term εt) to construct a general
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model misspecification test. The choice of test function ht is left to the user,
and the power of the test depends on it. Assume now that τ = 1. The GW
test statistic has the form

ST0,m = T0(T
−1
0

T0∑
t=t0

ht∆gt+τ)
′Ω̂−1

T0
(T−1

0

T0∑
t=t0

ht∆gt+τ) (50)

where Ω̂T0 = T−1
0

∑T0

t=t0
(∆gt+τ)

2hth
′
t is a consistent estimator of the covari-

ance matrix E(∆gt+τ)
2hth

′
t. When τ > 1, Ω̂T0 has to be modified to account

for correlation in the forecast errors; see Giacomini and White (2003). Under
the null hypothesis (49) , the GW statistic (50) has a χ2-distribution with p
degrees of freedom.

The GW test has not yet been applied to comparing the forecast ability of
a linear model and a nonlinear model nested in it. Two things are important
in applications. First, the estimation is based on a rolling window, but the
size of the window may vary over time. Second, the outcome of the test
depends on the choice of the test function ht. Elements of ht not correlated
with ∆gt+τ have a negative effect on the power of the test.

An important advantage with the GW test is that it can be applied to
comparing methods for forecasting and not only models. The asymptotic
distribution theory covers the situation where the specification of the model
or models changes over time, which has sometimes been the case in practice.
Swanson and White (1995,1997a,b) allow the specification to switch between
a linear and a neural network model. In Teräsvirta et al. (in press), switches
between linear on the one hand and nonlinear specifications such as the AR-
NN and STAR model on the other are an essential part of their forecasting
exercise.

6 Lessons from a simulation study

Building nonlinear time series models is generally more difficult than con-
structing linear models. A main reason for building nonlinear models for
forecasting must therefore be that they are expected to forecast better than
linear models. It is not certain, however, that this is so. Many studies, some
of which will be discussed later, indicate that in forecasting macroeconomic
series, nonlinear models may not forecast better than linear ones. In this
section we point out that sometimes this may be the case even when the
nonlinear model is the data-generating process.

As an example, we briefly review a simulation study in Lundbergh and
Teräsvirta (2002). The authors generate 106 observations from the following
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Figure 1 A realization of 2000 observations from model (51)

LSTAR model

yt = −0.19 + 0.38(1 + exp{−10yt−1})−1 + 0.9yt−1 + 0.4εt (51)

where {εt} ∼ nid(0, 1). Model (51) may also be viewed as a special case of
the neural network model (11) with a linear unit and a single hidden unit.
The model has the property that the realization of 106 observations tends
to fluctuate long periods around a local mean, either around −1.9 or 1.9.
Occasionally, but not often, it switches from one ’regime’ to the other, and
the switches are relatively rapid. This is seen from Figure 1 that contains a
realization of 2000 observations from (51) .

The authors fit the model with the same parameters as in (51) to a
large number of subseries of 1000 observations, estimate the parameters, and
forecast recursively up to 20 periods ahead. The results are compared to
forecasts obtained from first-order linear autoregressive models fitted to the
same subseries. The measure of accuracy is the ratio of the relative efficiency
(RE) measure of Mincer and Zarnowitz (1969), that is, the RMSFEs of the
two forecasts. It turns out that the forecasts from the LSTARmodel are more
efficient than the ones from the linear model: the RE measure moves from
about 0.96 (one period ahead forecasts) to about 0.85 (20 periods ahead).
The forecasts are also obtained assuming that the parameters are known: in
that case the RE measure lies below 0.8 (20 periods ahead), so having to
estimate the parameters affects the forecast accuracy as may be expected.

This is in fact not surprising, because the data-generating process is an
LSTAR model. The authors were also interested in knowing how well this
model forecasts when there is a large change in the value of the realization.
This is defined as a change of at least equal to 0.2 in the absolute value of
the transition function of (51) . It is a rare occasion and occurs only in about
0.6% of the observations. The question was posed, because Montgomery,
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Zarnowitz, Tsay and Tiao (1998) had shown that the nonlinear models of the
US unemployment rate they considered performed better than the linear AR
model when the unemployment increased rapidly but not elsewhere. Thus
it was deemed interesting to study the occurrence of this phenomenon by
simulation.

The results showed that the LSTAR model was better than the AR(1)
model. The authors, however, also applied another benchmark, the first-
order AR model for the differenced series, the ARI(1,1) model. This model
was chosen as a benchmark because in the subseries of 1000 observations
ending when a large change was observed, the unit root hypothesis, when
tested using the augmented Dickey-Fuller test, was rarely rejected. A look
at Figure 1 helps one understand why this is the case. Against the ARI(1,1)
benchmark, the RE of the estimated LSTAR model was 0.95 at best, when
forecasting three periods ahead, but RE exceeded unity for forecast horizons
longer than 13 periods. There are at least two reasons for this outcome.
First, since a large change in the series is a rare event, there is not very much
evidence in the subseries of 1000 observations about the nonlinearity. Here,
the difference between RE of the estimated model and the corresponding
measure for the known model was greater than in the previous case, and RE
of the latter model remained below unity for all forecast horizons. Second, as
argued in Clements and Hendry (1999), differencing helps construct models
that adapt more quickly to large shifts in the series than models built on
undifferenced data. This adaptability is demonstrated in the experiment of
Lundbergh and Teräsvirta (2002). A very basic example emphasizing the
same thing can be found in Hendry and Clements (2003).

These results also show that a model builder who begins his task by test-
ing the unit root hypothesis may often end up with a model that is quite
different from the one obtained by someone beginning by first testing linear-
ity. In the present case, the latter course is perfectly defendable, because
the data-generating process is stationary. The prevailing paradigm, testing
the unit root hypothesis first, may thus not always be appropriate when the
possibility of a nonlinear data-generating process cannot be excluded. For a
discussion of the relationship between unit roots and nonlinearity; see Elliott
(in press).
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7 Empirical forecast comparisons

7.1 Relevant issues

The purpose of many empirical economic forecast comparisons involving non-
linear models is to find out whether, for a given time series or a set of series,
nonlinear models yield more accurate forecasts than linear models. In many
cases, the answer appears to be negative, even when the nonlinear model
in question fits the data better than the corresponding linear model. Rea-
sons for this outcome have been discussed in the literature. One argument
put forward is that nonlinear models may sometimes explain features in the
data that do not occur very frequently. If these features are not present in
the series during the period to be forecast, then there is no gain from us-
ing nonlinear models for generating the forecasts. This may be the case at
least when the number of out-of-sample forecasts is relatively small; see for
example Teräsvirta and Anderson (1992) for discussion.

Essentially the same argument is that the nonlinear model can only be ex-
pected to forecast better than a linear one in particular regimes. For example,
a nonlinear model may be useful in forecasting the volume of industrial pro-
duction in recessions but not expansions. Montgomery et al. (1998) forecast
the quarterly US unemployment rate using a two-regime threshold autore-
gressive model (7) and a two-regime Markov switching autoregressive model
(8) . Both models, the SETAR model in particular, yield more accurate fore-
casts than the linear model when the forecasting origin lies in the recession.
If it lies in the expansion, both models, now the MS-model in particular, per-
form clearly less well than the linear AR model. Considering Wolf’s sunspot
numbers, another nonlinear series, Tong and Moeanaddin (1988) showed that
the values at the troughs of the sunspot cycle were forecast more accurately
from a SETAR than from a linear model, whereas the reverse was true for the
values around the peaks. An explanation to this finding may be that there is
more variation over time in the height of the peaks than in the bottom value
of the troughs.

Another potential reason for inferior performance of nonlinear models
compared to linear ones is overfitting. A small example highlighting this
possibility can be found in Granger and Teräsvirta (1991). The authors
generated data from an STR model and fitted both a projection pursuit re-
gression model (see Friedman and Stuetzle, 1981) and a linear model to the
simulated series. When nonlinearity was strong (the error variance small),
the projection pursuit approach led to more accurate forecasts than the lin-
ear model. When the evidence of nonlinearity was weak (the error variance
large), the projection pursuit model overfitted, and the forecasts of the linear
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model were more accurate than the ones produced by the projection pursuit
model. Careful modelling, including testing linearity before fitting a nonlin-
ear model as discussed in Section 3, reduces the likelihood of overfitting.

From the discussion in Section 6 it is also clear that in some cases, when
the time series are short, having to estimate the parameters as opposed to
knowing them will erase the edge that a correctly specified nonlinear model
has compared to a linear approximation. Another possibility is that even
if linearity is rejected when tested, the nonlinear model fitted to the time
series is misspecified to the extent that its forecasting performance does not
match the performance of a linear model containing the same variables. This
situation is even more likely to occur if a nonlinear model nesting a linear
one is fitted to the data without first testing linearity.

Finally, Dacco and Satchell (1999) showed that in regime-switching mod-
els, the possibility of misclassifying an observation when forecasting may lead
to the forecasts on the average being inferior to the one from a linear model,
although a regime-switching model known to the forecaster generates the
data. The criterion for forecast accuracy is the mean squared forecast error.
The authors give analytic conditions for this to be the case and do it using
simple Markov-switching and SETAR models as examples.

7.2 Comparing linear and nonlinear models

Comparisons of the forecasting performance of linear and nonlinear models
have often included only a limited number of models and time series. To take
an example, Montgomery et al. (1998) considered forecasts of the quarterly
US civilian employment series from a univariate Markov-switching model of
type (8) and a SETAR model. They separated expansions and contractions
from each other and concluded that SETAR and Markov-switching models
are useful in forecasting recessions, whereas they do not perform better than
linear models during expansions. Clements and Krolzig (1998) study the
forecasts from the Markov-switching autoregressive model of type (10) and
a threshold autoregressive model when the series to be forecast is the quar-
terly US gross national product. The main conclusion of their study was
that nonlinear models do not forecast better than linear ones when the cri-
terion is the RMSFE. Similar conclusions were reached by Siliverstovs and
van Dijk (2003), Boero and Marrocu (2002) and Sarantis (1999) for a variety
of nonlinear models and economic time series. Bradley and Jansen (2004)
obtained this outcome for a US excess stock return series, whereas there was
evidence that nonlinear models, including a STAR model, yield more accu-
rate forecasts for industrial production than the linear autoregressive model.
Kilian and Taylor (2003) concluded that in forecasting nominal exchange
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rates, ESTAR models are superior to the random walk model, but only at
long horizons, 2-3 years.

The RMSFE is a rather ”academic” criterion for comparing forecasts.
Granger and Pesaran (2000) emphasize the use of economic criteria that are
based on the loss function of the forecaster. The loss function, in turn, is
related to the decision problem at hand; for more discussion, see Granger and
Machina (in press) . In such comparisons, forecasts from nonlinear models
may fare better than in RMSFE comparisons. Satchell and Timmermann
(1995) focussed on two loss functions: the MSFE and a payoff criterion
based on the economic value of the forecast (forecasting the direction of
change). When the MSFE increases, the probability of correctly forecasting
the direction decreases if the forecast and the forecast error are independent.
The authors showed that this need not be true when the forecast and the
error are dependent of each other. They argued that this may often be the
case for forecasts from nonlinear models.

Most forecast comparisons concern univariate or single-equation models.
A recent exception is De Gooijer and Vidiella-i-Anguera (2004). The authors
compared the forecasting performance of two bivariate threshold autoregres-
sive models with cointegration with that of a linear bivariate vector error-
correction model using two pairs of US macroeconomic series. For forecast
comparisons, the RMSFE has to be generalized to the multivariate situation;
see De Gooijer and Vidiella-i-Anguera (2004). The results indicated that the
nonlinear models perform better than the linear one in an out-of-sample
forecast exercise.

Some authors, including De Gooijer and Vidiella-i-Anguera (2004), have
considered interval and density forecasts as well. The quality of such forecasts
has typically been evaluated internally. For example, the assumed coverage
probability of an interval forecast is compared to the observed coverage prob-
ability. This is a less than satisfactory approach when one wants to compare
interval or density forecasts from different models. Corradi and Swanson (in
press) survey tests developed for finding out which one of a set of misspecified
models provides the most accurate interval or density forecasts. Since this is
a very recent area of interest, there are hardly any applications yet of these
tests to nonlinear models.

7.3 Large forecast comparisons

7.3.1 Forecasting with a separate model for each forecast horizon

As discussed in Section 4, there are two ways of constructing multiperiod
forecasts. One may use a single model for each forecast horizon or construct
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a separate model for each forecast horizon. In the former alternative, gen-
erating the forecasts may be computationally demanding if the number of
variables to be forecast and the number of forecast horizons is large. In the
latter, specifying and estimating the models may require a large amount of
work, whereas forecasting is simple. In this section the focus is on a number
of large studies that involve nonlinear models and several forecast horizons
and in which separate models are constructing for each forecast horizon. Per-
haps the most extensive such study is the one by Stock and Watson (1999).
Other examples include Marcellino (2002) and Marcellino (2004). Stock and
Watson (1999) forecast 215 monthly US macroeconomic variables, whereas
Marcellino (2002) and Marcellino (2004) considered macroeconomic variables
of the countries of the European Union.

The study of Stock and Watson (1999) involved two types of nonlinear
models: a ”tightly parameterized” model which was the LSTAR model of
Section 2.3 and a ”loosely parameterized” one, which was the autoregressive
neural network model. The authors experimented with two families of AR-
NN models: one with a single hidden layer, see (11) , and a more general
family with two hidden layers. Various linear autoregressive models were
included as well as models of exponential smoothing. Several methods of
combining forecasts were included in comparisons. All told, the number of
models or methods to forecast each series was 63.

The models were either completely specified in advance or the number of
lags was specified using AIC or BIC. Two types of models were considered.
Either the variables were in levels:

yt+h = fL(yt, yt−1, ..., yt−p+1) + εLt

where h = 1, 6 or 12, or they were in differences:

yt+h − yt = fD(∆yt,∆yt−1, ...,∆yt−p+1) + εDt .

The experiment incuded several values of p. The series were forecast every
month starting after a startup period of 120 observations. The last observa-
tion in all series was 1996(12), and for most series the first observation was
1959(1). The models were re-estimated and, in the case of combined fore-
casts, the weights of the individual models recalculated every month. The
insanity filter that the authors called trimming of forecasts was applied. The
purpose of the filter was to make the process better mimic the behaviour of
a true forecaster.

The 215 time series covered most types of macroeconomic series from
production, consumption, money and credit series to stock returns. The
series that originally contained seasonality were seasonally adjusted.
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The forecasting methods were ranked according to several criteria. A gen-
eral conclusion was that the nonlinear models did not perform better than
the linear ones. In one comparison, the 63 different models and methods
were ranked on forecast performance using three different loss functions, the
absolute forecast errors raised to the power one, two, or three, and the three
forecast horizons. The best ANN forecast had rank around 10, whereas the
best STAR model typically had rank around 20. The combined forecasts
topped all rankings, and, interestingly, combined forecasts of nonlinear mod-
els only were always ranked one or two. The best linear models were better
than the STAR models and, at longer horizons than one month, better than
the ANN models. The no-change model was ranked among the bottom two
in all rankings showing that all models had at least some relevance as fore-
casting tools.

A remarkable result, already evident from the previous comments, was
that combining the forecasts from all nonlinear models generated forecasts
that were among the most accurate in rankings. They were among the top
five in 53% (models in levels) and 51% (models in differences) of all cases
when forecasting one month ahead. This was by far the highest fraction of
all methods compared. In forecasting six and twelve months ahead, these
percentages were lower but still between 30% and 34%. At these horizons,
the combinations involving all linear models had a comparable performance.
All single models were left far behind. Thus a general conclusion from the
study of Stock and Watson is that there is some exploitable nonlinearity in
the series under consideration, but that it is too diffuse to be captured by a
single nonlinear model.

Marcellino (2002) reported results on forecasting 480 variables represent-
ing the economies of the twelve countries of the European Monetary Union.
The monthly time series were shorter than the series in Stock and Watson
(1999), which was compensated for by a greater number of series. There were
58 models but, unlike Stock andWatson, Marcellino did not consider combin-
ing forecasts from them. In addition to linear models, neural network models
and logistic STAR models were included in the study. A novelty, compared
to Stock and Watson (1999), was that a set of time-varying autoregressive
models of type (15) was included in the comparisons.

The results were based on rankings of models performance measured using
loss functions based on absolute forecast errors now raised to five powers from
one to the three in steps of 0.5. Neither neural network nor LSTAR models
appeared in the overall top-10. But then, both the fraction of neural network
models and LSTAR models that appeared in top-10 rankings for individual
series was greater than the same fraction for linear methods or time-varying
AR models. This, together with other results in the paper, suggests that
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nonlinear models in many cases work very well, but they can also relatively
often perform rather poorly.

Marcellino (2002) also singled out three ’key economic variables’: the
growth rate of industrial production, the unemployment rate and the infla-
tion measured by the consumer price index. Ranking models within these
three categories showed that industrial production was best forecast by linear
models. But then, in forecasting the unemployment rate, both the LSTAR
and neural network models, as well as the time-varying AR model, had top
rankings. For example, for the three-month horizon, two LSTAR models
occupied the one-two ranks for all five loss functions (other ranks were not
reported). This may not be completely surprising since many European un-
employment rate series are distinctly asymmetric; see for example Skalin and
Teräsvirta (2002) for discussion based on quarterly series. As to the inflation
rate, the results were a mixture of the ones for the other two key variables.

These studies suggest some answers to the question of whether nonlinear
models perform better than linear ones in forecasting macroeconomic series.
The results in Stock and Watson (1999) indicate that using a large number
of nonlinear models and combining forecasts from them is much better than
using single nonlinear models. It also seems that this way of exploiting non-
linearity may lead to better forecasting performance than what is achieved
by linear models. Marcellino (2002) did not consider this possibility. His re-
sults, based on individual models, suggest that nonlinear models are uneven
performers but that they can do well in some types of macroeconomic series
such as unemployment rates.

7.3.2 Forecasting with the same model for each forecast horizon

As discussed in Section 4, it is possible to obtain forecasts for several pe-
riods ahead recursively from a single model. This is the approach adopted
in Teräsvirta et al. (in press). The main question posed in that paper was
whether careful modelling improves forecast accuracy compared to models
with a fixed specification that remains unchanged over time. In the case of
nonlinear models this implied testing linearity first and choosing a nonlin-
ear model only if linearity is rejected. The lag structure of the nonlinear
model was also determined from the data. The authors considered seven
monthly macroeconomic variables of the G7 countries. They were industrial
production, unemployment, volume of exports, volume of imports, inflation,
narrow money, and short-term interest rate. Most series started in January
1960 and were available up to December 2000. The series were seasonally
adjusted with the exception of the CPI inflation and the short-term interest
rate. As in Stock and Watson (1999), the series were forecast every month.
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In order to keep the human effort and computational burdens at manageable
levels, the models were only respecified every 12 months.

The models considered were the linear autoregressive model, the LSTAR
model and the single hidden-layer feedforward neural network model. The re-
sults showed that there were series for which linearity was never rejected. Re-
jections, using LM-type tests, were somewhat more frequent against LSTAR
than against the neural network model. The interest rate series, the inflation
rate and the unemployment rate were most systematically nonlinear when
linearity was tested against STAR. In order to find out whether modelling
was a useful idea, the investigation also included a set of models with a
predetermined form and lag structure.

Results were reported for four forecast horizons: 1, 3, 6 and 12 months.
They indicated that careful modelling does improve the accuracy of forecasts
compared to selecting fixed nonlinear models. The loss function was the root
mean square error. The LSTAR model turned out to be the best model
overall, better than the linear or neural network model, which was not the
case in Stock and Watson (1999) or Marcellino (2002). The LSTAR model
did not, however, dominate the others. There were series/country pairs for
which other models performed clearly better than the STAR model. Nev-
ertheless, as in Marcellino (2002), the LSTAR model did well in forecasting
the unemployment rate.

The results on neural network models suggested the need for model eval-
uation: a closer scrutiny found some of the estimated models to be explosive,
which led to inferior multi-step forecasts. This fact emphasizes the need
for model evaluation before forecasting. For practical reasons, this phase of
model building has been neglected in large studies such as the ones discussed
in this section.

The results in Teräsvirta et al. (in press) are not directly comparable to
the ones in Stock and Watson (1999) or Marcellino (2002) because the fore-
casts in the former paper have been generated recursively from a single model
for all forecast horizons. The time series used in these three papers have not
been the same either. Nevertheless, put together the results strengthen the
view that nonlinear models are a useful tool in macroeconomic forecasting.

8 Final remarks

This chapter contains a presentation of a number of frequently applied non-
linear models and shows how forecasts can be generated from them. Since
such forecasts are typically obtained numerically when the same model is
used for forecasting several periods ahead, forecast generation automatically
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yields not only point but interval and density forecasts as well. The latter are
important because they contain more information than the pure point fore-
casts which, unfortunately, often are the only ones reported in publications.
It is also sometimes argued that the strength of the nonlinear forecasting lies
in density forecasts, whereas comparisons of point forecasts often show no
substantial difference in performance between individual linear and nonlinear
models. Results from large studies reported in Section 7.3 indicate that fore-
casts from linear models may be more robust than the ones from nonlinear
models. In some cases the nonlinear models clearly outperform the linear
ones, but in other occasions they may be strongly inferior to the latter.

It appears that nonlinear models may have a fair chance of generating
accurate forecasts if the number of observations for specifying the model
and estimating its parameters is large. This is due to the fact, discussed in
Lundbergh and Teräsvirta (2002), that potential gains from forecasting with
nonlinear models can be strongly reduced because of parameter estimation. A
recent simulation-based paper by Psaradakis and Spagnolo (2005), where the
observations are generated by a bivariate nonlinear system, either a threshold
model or a Markov-switching one, with linear cointegration, strengthens this
impression. In some cases, even when the data-generating process is nonlinear
and the model is correctly specified, the linear model yields more accurate
forecasts than the correct nonlinear one with estimated parameters. Short
time series are thus a disadvantage, but the results also suggest that sufficient
attention should be paid to estimation techniques. This is certainly true for
neural network models that contain a large number of parameters. Recent
developments in this area include White (in press).

In the nonlinear framework, the question of iterative vs. direct forecasts
requires more research. Simulations reported in Lin and Granger (1994)
suggest that the direct method is not a useful alternative when the data-
generating process is a nonlinear model such as the STAR model, and a
direct STAR model is fitted to the data for forecasting more than one period
ahead. The direct method works better when the model used to produce the
forecasts is a neural network model. This may not be surprising because the
neural network model is a flexible functional form. Whether direct nonlinear
models generate more accurate forecasts than direct linear ones when the
data-generating process is nonlinear, is a topic for further research.

An encouraging feature is, however, that there is evidence of combination
of a large number of nonlinear models leading to point forecasts that are su-
perior to forecasts from linear models. Thus it may be concluded that while
the form of nonlinearity in macroeconomic time series may be difficult to
usefully capture with single models, there is hope for improving forecasting
accuracy by combining information from several nonlinear models. This sug-
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gests that parametric nonlinear models will remain important in forecasting
economic variables.
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Abstract 
 

Historically, time series forecasts of economic variables have used only a handful 

of predictor variables, while forecasts based on a large number of predictors have been 

the province of judgmental forecasts and large structural econometric models.  The past 

decade, however, has seen considerable progress in the development of time series 

forecasting methods that exploit many predictors, and this chapter surveys these methods.  

The first group of methods considered is forecast combination (forecast pooling), in 

which a single forecast is produced from a panel of many forecasts.   The second group of 

methods is based on dynamic factor models, in which the comovements among a large 

number of economic variables are treated as arising from a small number of unobserved 

sources, or factors.  In a dynamic factor model, estimates of the factors (which become 

increasingly precise as the number of series increases) can be used to forecast individual 

economic variables.  The third group of methods is Bayesian model averaging, in which 

the forecasts from very many models, which differ in their constituent variables, are 

averaged based on the posterior probability assigned to each model.  The chapter also 

discusses empirical Bayes methods, in which the hyperparameters of the priors are 

estimated.  An empirical illustration applies these different methods to the problem of 

forecasting the growth rate of the U.S. index of industrial production with 130 predictor 

variables. 
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1.  Introduction 
 

1.1  Many Predictors:  Opportunities and Challenges 

Academic work on macroeconomic modeling and economic forecasting 

historically has focused on models with only a handful of variables.  In contrast, 

economists in business and government, whose job is to track the swings of the economy 

and to make forecasts that inform decision-makers in real time, have long examined a 

large number of variables.  In the U.S., for example, literally thousands of potentially 

relevant time series are available on a monthly or quarterly basis.  The fact that 

practitioners use many series when making their forecasts – despite the lack of academic 

guidance about how to proceed – suggests that these series have information content 

beyond that contained in the major macroeconomic aggregates.  But if so, what are the 

best ways to extract this information and to use it for real-time forecasting? 

This chapter surveys theoretical and empirical research on methods for 

forecasting economic time series variables using many predictors, where “many” can 

number from scores to hundreds or, perhaps, even more than one thousand.  

Improvements in computing and electronic data availability over the past ten years have 

finally made it practical to conduct research in this area, and the result has been the rapid 

development of a substantial body of theory and applications.  This work already has had 

practical impact – economic indexes and forecasts based on many-predictor methods 

currently are being produced in real time both in the US and in Europe – and research on 

promising new methods and applications continues.  

Forecasting with many predictors provides the opportunity to exploit a much 

richer base of information than is conventionally used for time series forecasting.  

Another, less obvious (and less researched) opportunity is that using many predictors 

might provide some robustness against the structural instability that plagues low-

dimensional forecasting.  But these opportunities bring substantial challenges.  Most 

notably, with many predictors come many parameters, which raises the specter of 

overwhelming the information in the data with estimation error.  For example, suppose 

you have twenty years of monthly data on a series of interest, along with 100 predictors.  

A benchmark procedure might be using ordinary least squares (OLS) to estimate a 
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regression with these 100 regressors.  But this benchmark procedure is a poor choice.  

Formally, if the number of regressors is proportional to the sample size, the OLS 

forecasts are not first-order efficient, that is, they do not converge to the infeasible 

optimal forecast.  Indeed, a forecaster who only used OLS would be driven to adopt a 

principle of parsimony so that his forecasts are not overwhelmed by estimation noise.  

Evidently, a key aspect of many-predictor forecasting is imposing enough structure so 

that estimation error is controlled (is asymptotically negligible) yet useful information is 

still extracted.  Said differently, the challenge of many-predictor forecasting is to turn 

dimensionality from a curse into a blessing. 

 

1.2  Coverage of this Chapter 

This chapter surveys methods for forecasting a single variable using many (n) 

predictors.  Some of these methods extend techniques originally developed for the case 

that n is small.  Small-n methods covered in other chapters in this Handbook are 

summarized only briefly before presenting their large-n extensions.  We only consider 

linear forecasts, that is, forecasts that are linear in the predictors, because this has been 

the focus of almost all large-n research on economic forecasting to date. 

We focus on methods that can exploit many predictors, where n is of the same 

order as the sample size.  Consequently, we do not examine some methods that have been 

applied to moderately many variables, a score or so, but not more.  In particular, we do 

not discuss vector autoregressive (VAR) models with moderately many variables (see 

Sims and Zha (1996) for an application with n = 18).  Neither do we discuss complex 

model reduction/variable selection methods, such as is implemented in PC-GETS (see 

Hendry and Kolzig (1999) for an application with n = 18).   

Much of the research on linear modeling when n is large has been undertaken by 

statisticians and biostatisticians, and is motivated by such diverse problems as predicting 

disease onset in individuals, modeling the effects of air pollution, and signal compression 

using wavelets.  We survey these methodological developments as they pertain to 

economic forecasting, however we do not discuss empirical applications outside 

economics.  Moreover, because our focus is on methods for forecasting, our discussion of 
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empirical applications of large-n methods to macroeconomic problems other than 

forecasting is terse. 

The chapter is organized by forecasting method.  Section 2 establishes notation 

and reviews the pitfalls of standard forecasting methods when n is large.  Section 3 

focuses on forecast combining, also known as forecast pooling.  Section 4 surveys 

dynamic factor models and forecasts based on principal components.  Bayesian model 

averaging and Bayesian model selection are reviewed in Section 5, and empirical Bayes 

methods are surveyed in Section 6.  Section 7 illustrates the use of these methods in an 

application to forecasting the Index of Industrial Production in the United States, and 

Section 8 concludes. 

 

2.  The Forecasting Environment and Pitfalls of Standard 

Forecasting Methods 
 

This section presents the notation and assumptions used in this survey, then 

reviews some key shortcomings of the standard tools of OLS regression and information 

criterion model selection when there are many predictors. 

 

2.1  Notation and Assumptions 

Let Yt be the variable to be forecasted and let Xt be the n×1 vector of predictor 

variables.  The h-step ahead value of the variable to be forecasted is denoted by .  For 

example, in Section 7 we consider forecasts of 3- and 6-month growth of the Index of 

Industrial Production.  Let IPt denote the value of the index in month t.  Then the h-

month growth of the index, at an annual rate of growth, is 

h
t hY +

 
h

t hY +  = (1200/h)ln(IPt+h/IPt),     (1) 

 

where the factor 1200/h converts monthly decimal growth to annual percentage growth. 
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A forecast of  at period t is denoted by h
t hY + |

h
t h tY + , where the subscript |t indicates 

that the forecast is made using data through date t.  If there are multiple forecasts, as in 

forecast combining, the individual forecasts are denoted , |
h

i t h tY + , where i runs over the m 

available forecasts. 

The many-predictor literature has focused on the case that both Xt and Yt are 

integrated of order zero (are I(0)).  In practice this is implemented by suitable preliminary 

transformations arrived at by a combination of statistical pretests and expert judgment.  In 

the case of IP, for example, unit root tests suggest that the logarithm of IP is well 

modeled as having a unit root, so that the appropriate transformation of IP is taking the 

log first difference (or, for h-step ahead forecasts, the hth difference of the logarithms, as 

in (1)).   

Many of the formal theoretical results in the literature assume that Xt and Yt have a 

stationary distribution, ruling out time variation.  Unless stated otherwise, this assumption 

is maintained here, and we will highlight exceptions in which results admit some types of 

time variation.  This limitation reflects a tension between the formal theoretical results 

and the hope that large-n forecasts might be robust to time variation. 

Throughout, we assume that Xt has been standardized to have sample mean zero 

and sample variance one.  This standardization is conventional in principal components 

analysis and matters mainly for that application, in which different forecasts would be 

produced were the predictors scaled using a different method, or were they left in their 

native units. 

 

2.2  Pitfalls of Using Standard Forecasting Methods when n is Large 

OLS regression.  Consider the linear regression model  

 

Yt+1 = β′Xt + εt,     (2) 

 

where β is the n × 1 coefficient vector and εt is an error term.  Suppose for the moment 

that the regressors Xt have mean zero and are orthogonal with T-1
1

T
t tt

X X
=

′∑  = In (the n × 
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n identity matrix), and that the regression error is i.i.d. N(0, 2
εσ ) and is independent of 

{Xt}.  Then the OLS estimator of the ith coefficient, îβ , is normally distributed, unbiased, 

has variance 2
εσ /T, and is distributed independently of the other OLS coefficients.  The 

forecast based on the OLS coefficients is x′ β̂ , where x is the n × 1 vector of values of 

the predictors used in the forecast.  Assuming that x and β̂  are independently distributed, 

conditional on x the forecast is distributed N(x′β, (x′x) 2
εσ /T).  Because T-1

1

T
t tt

X X
=

′∑  = 

In,, a typical value of Xt is Op(1), so a typical x vector used to construct a forecast will 

have norm of order x′x = Op(n).  Thus let x′x = cn, where c is a constant.  It follows that 

the forecast x′ β̂  is distributed N(x′β, c 2
εσ (n/T)).  Thus, the forecast – which is unbiased 

under these assumptions – has a forecast error variance that is proportional to n/T.  If n is 

small relative to T, then E(x′ β̂  – x′β)2 is small and OLS estimation error is negligible.  If, 

however, n is large relative to T, then the contribution of OLS estimation error to the 

forecast does not vanish, no matter how large the sample size. 

Although these calculations were done under the assumption of normal errors and 

strictly exogenous regressors, the general finding – that the contribution of OLS 

estimation error to the mean squared forecast error does not vanish as the sample size 

increases if n is proportional to T – holds more generally.  Moreover, it is straightforward 

to devise examples in which the mean squared error of the OLS forecast using all the X’s 

exceeds the mean squared error of using no X’s at all; in other words, if n is large, using 

OLS can be (much) worse than simply forecasting Y  by its unconditional mean. 

These observations do not doom the quest for using information in many 

predictors to improve upon low-dimensional models; they simply point out that forecasts 

should not be made using the OLS estimator β̂  when n is large.  As Stein (1955) pointed 

out, under quadratic risk (E[( β̂  – β)′( β̂  – β)]), the OLS estimator is not admissible.  

James and Stein (1960) provided a shrinkage estimator that dominates the OLS estimator.  

Efron and Morris (1973) showed this estimator to be related to empirical Bayes 

estimators, an approach surveyed in Section 6 below.  
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Information criteria.  Reliance on information criteria, such as the Akaike 

information criterion (AIC) or Bayes information criterion (BIC), to select regressors 

poses two difficulties when n is large.  The first is practical: when n is large, the number 

of models to evaluate is too large to enumerate, so finding the model that minimizes an 

information criterion is not computationally straightforward (however the methods 

discussed in Section 5 can be used).  The second is substantive:  the asymptotic theory of 

information criteria generally assumes that the number of models is fixed or grows at a 

very slow rate (e.g. Hannan and Diestler (1988)).  When n is of the same order as the 

sample size, as in the applications of interest, using model selection criteria can reduce 

the forecast error variance, relative to OLS, but in theory the methods described in the 

following sections are able to reduce this forecast error variance further.  In fact, under 

certain assumptions those forecasts (unlike ones based on information criteria) can 

achieve first-order optimality, that is, they are as efficient as the infeasible forecasts 

based on the unknown parameter vector β. 

 

3.  Forecast Combination 
 

Forecast combination, also known as forecast pooling, is the combination of two 

or more individual forecasts from a panel of forecasts to produce a single, pooled 

forecast.  The theory of combining forecasts was originally developed by Bates and 

Granger (1969) for pooling forecasts from separate forecasters, whose forecasts may or 

may not be based on statistical models.  In the context of forecasting using many 

predictors, the n individual forecasts comprising the panel are model-based forecasts 

based on n individual forecasting models, where each model uses a different predictor or 

set of predictors. 

This section begins with a brief review of the forecast combination framework; 

for a more detailed treatment, see Chapter 4 in this Handbook by Timmerman.  We then 

turn to various schemes for evaluating the combining weights that are appropriate when n 

–here, the number of forecasts to be combined – is large.  The section concludes with a 

discussion of the main empirical findings in the literature. 
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3.1 Forecast Combining Setup and Notation 

Let { ,  i = 1,…,n} denote the panel of n forecasts.  We focus on the case in 

which the n forecasts are based on the n individual predictors.  For example, in the 

empirical work,  is the forecast of 

, |
h

i t h tY +

, |
h

i t h tY +
h

t hY +  constructed using an autoregressive 

distributed lag (ADL) model involving lagged values of the ith element of Xt, although 

nothing in this subsection requires the individual forecast to have this structure. 

We consider linear forecast combination, so that the pooled forecast is, 

 

|
h

t h tY +  = w0 + ,     (3) , |
1

n
h

it i t h t
i

w Y +
=
∑

 

where wit is the weight on the ith forecast in period t. 

As shown by Bates and Granger (1969), the weights in (3) that minimize the 

means squared forecast error are those given by the population projection of  onto a 

constant and the individual forecasts.  Often the constant is omitted, and in this case the  

the constraint  = 1 is imposed so that 

h
t hY +

1

n
iti

w
=∑ |

h
t h tY +  is unbiased when each of the 

constituent forecasts is unbiased.  As long as no one forecast is generated by the “true” 

model, the optimal combination forecast places weight on multiple forecasts.  The 

minimum MSFE combining weights will be time-varying if the covariance matrices of 

( , { }) change over time. |
h

t h tY + , |
h

i t h tY +

In practice, these optimal weights are infeasible because these covariance 

matrices are unknown.  Granger and Ramanathan (1984) suggested estimating the 

combining weights by OLS (or by restricted least squares if the constraints w0t = 0 and 

 = 1 are imposed).  When n is large, however, one would expect regression 

estimates of the combining weights to perform poorly, simply because estimating a large 

number of parameters can introduce considerable sampling uncertainty.  In fact, if n is 

proportional to the sample size, the OLS estimators are not consistent and combining 

using the OLS estimators does not achieve forecasts that are asymptotically first-order 

1

n
iti

w
=∑
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optimal.  As a result, research on combining with large n has focused on methods which 

impose additional structure on the combining weights. 

Forecast combining and structural shifts.  Compared with research on 

combination forecasting in a stationary environment, there has been little theoretical work 

on forecast combination when the individual models are nonstationary in the sense that 

they exhibit unstable parameters.  One notable contribution is Hendry and Clements 

(2003), who examine simple mean combination forecasts when the individual models 

omit relevant variables and these variables are subject to out-of-sample mean shifts, 

which in turn induce intercept shifts in the individual misspecified forecasting models.  

Their calculations suggest that, for plausible ranges of parameter values, combining 

forecasts can offset the instability in the individual forecasts and in effect serves as an 

intercept correction. 

 

3.2 Large-n Forecast Combining Methods1 

Simple combination forecasts.  Simple combination forecasts report a measure of 

the center of the distribution of the panel of forecasts.  The equal-weighted, or average, 

forecast sets wit = 1/n.  Simple combination forecasts that are less sensitive to outliers 

than the average forecast are the median and the trimmed mean of the panel of forecasts. 

Discounted MSFE weights.  Discounted MSFE forecasts compute the 

combination forecast as a weighted average of the individual forecasts, where the weights 

depend inversely on the historical performance of each individual forecast (cf. Diebold 

and Pauly (1987); Miller, Clemen and Winkler (1992) use discounted Bates-Granger 

(1969)) weights).  The weight on the ith forecast depends inversely on its discounted 

MSFE: 

 

wit = , where mit = ,  (4) 1

1

/
n

it jt
j

m m−

=
∑ 1− )

                                                

0

2
, |

ˆ(
t h

t h s h h
s h i s h s

s T

Y Yρ
−

− −
+ +

=

−∑

 

where ρ is the discount factor. 

 
1 This discussion draws on Stock and Watson (2004a). 

 9



Shrinkage forecasts.  Shrinkage forecasts entail shrinking the weights towards a 

value imposed a-priori, typically equal weighting.  For example, Diebold and Pauly 

(1990) suggest shrinkage combining weights of the form, 

 

wit = λ  + (1 – λ)(1/n),      (5) ˆ itw

 

where  is the ith estimated coefficient from a recursive OLS regression of ˆ itw h
s hY +  on 

1, |
ˆ h

s h sY + ,…,  for s = T0,…, t – h (no intercept), where T0 is the first date for the 

forecast combining regressions and where λ controls the amount of shrinkage towards 

equal weighting.  Shrinkage forecasts can be interpreted as a partial implementation of 

Bayesian model averaging (see Section 5). 

, |
ˆ h
n s h sY +

Time-varying parameter weights.  Time-varying parameter (TVP) weighting 

allows the weights to evolve as a stochastic process, thereby adapting to possible changes 

in the underlying covariances.  For example, the weights can be modeled as evolving 

according to the random walk, wit = wit+1 + ηit, where ηit is a disturbance that is serially 

uncorrelated, uncorrelated across i, and uncorrelated with the disturbance in the 

forecasting equation.  Under these assumptions, the TVP combining weights can be 

estimated using the Kalman filter.  This method is used by Sessions and Chatterjee 

(1989) and by LeSage and Magura (1992).  LeSage and Magura (1992) also extend it to 

mixture models of the errors, but that extension did not improve upon the simpler 

Kalman filter approach in their empirical application. 

A practical difficulty that arises with TVP combining is the determination of the 

magnitude of the time variation, that is, the variance of ηit.  In principle, this variance can 

be estimated, however estimation of var(ηit) is difficult even when there are few 

regressors (cf. Stock and Watson (1998)). 

Data requirements for these methods.  An important practical consideration is 

that these methods have different data requirements.  The simple combination methods 

use only the contemporaneous forecasts, so forecasts can enter and leave the panel of 

forecasts.  In contrast, methods that weight the constituent forecasts based on their 

historical performance require an historical track record for each forecast.  The 
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discounted MSFE methods can be implemented if there is historical forecast data, but the 

forecasts are available over differing subsamples (as would be the case if the individual X 

variables become available at different dates).  In contrast, the TVP and shrinkage 

methods require a complete historical panel of forecasts, with all forecasts available at all 

dates. 

 

3.3  Survey of the Empirical Literature 

There is a vast empirical literature on forecast combining, and there are also a 

number of simulation studies that compare the performance of combining methods in 

controlled experiments.  These studies are surveyed by Clemen (1989), Diebold and 

Lopez (1996), Newbold and Harvey (2002), and in Chapter 4 of this Handbook by 

Timmerman.  Almost all of this literature considers the case that the number of forecasts 

to be combined is small, so these studies do not fall under the large-n brief of this survey.  

Still, there are two themes in this literature that are worth noting.  First, combining 

methods typically outperform individual forecasts in the panel, often by a wide margin.  

Second, simple combining methods – the mean, trimmed mean, or median – often 

perform as well as or better than more sophisticated regression methods.  This stylized 

fact has been called the “forecast combining puzzle,” since extant statistical theories of 

combining methods suggest that in general it should be possible to improve upon simple 

combination forecasts. 

The few forecast combining studies that consider large panels of forecasts include 

Figlewski (1983), Figlewski and Urich (1983), Chan, Stock, and Watson (1999), Stock 

and Watson (2003, 2004a), Kitchen and Monaco (2003), and Aiolfi and Timmerman 

(2004).  The studies by Figlewski (1983) and Figlewski and Urich (1983) use static factor 

models for forecast combining; they found that the factor model forecasts improved 

equal-weighted averages in one instance (n = 33 price forecasts) but not in another (n =20 

money supply forecasts).  Further discussion of these papers is deferred to Section 4.  

Stock and Watson (2003, 2004a) examined pooled forecasts of output growth and 

inflation based on panels of up to 43 predictors for each of the G7 countries, where each 

forecast was based on an autoregressive distributed lag model with an individual Xt.  

They found that several combination methods consistently improved upon autoregressive 
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forecasts; as in the studies with small n, simple combining methods performed well, in 

some cases producing the lowest mean squared forecast error.  Kitchen and Monaco 

(2003) summarize the real time forecasting system used at the U.S. Treasury Department, 

which forecasts the current quarter’s value of GDP by combining ADL forecasts made 

using 30 monthly predictors, where the combination weights depend on relative historical 

forecasting performance.  They report substantial improvement over a benchmark AR 

model over the 1995-2003 sample period.  Their system has the virtue of readily 

permitting within-quarter updating based on recently released data.  Aiolfi and 

Timmerman (2004) consider time-varying combining weights which are nonlinear 

functions of the data.  For example, they allow for instability by recursively sorting 

forecasts into reliable and unreliable categories, then computing combination forecasts 

with categories.  Using the Stock-Watson (2003) data set, they report some improvements 

over simple combination forecasts.  

  

4.  Dynamic Factor Models and Principal Components Analysis 
 

Factor analysis and principal components analysis (PCA) are two longstanding 

methods for summarizing the main sources of variation and covariation among n 

variables.  For a thorough treatment for the classical case that n is small, see Anderson 

(1984).  These methods were originally developed for independently distributed random 

vectors.  Factor models were extended to dynamic factor models by Geweke (1977), and 

PCA was extended to dynamic principal components analysis by Brillinger (1964).   

This section discusses the use of these methods for forecasting with many 

predictors.  Early applications of dynamic factor models (DFMs) to macroeconomic data 

suggested that a small number of factors can account for much of the observed variation 

of major economic aggregates (Sargent and Sims (1977), Stock and Watson (1989, 

1991), Sargent (1989)).  If so, and if a forecaster were able to obtain accurate and precise 

estimates of these factors, then the task of forecasting using many predictors could be 

simplified substantially by using the estimated dynamic factors for forecasting, instead of 

using all n series themselves.  As is discussed below, in theory the performance of 

estimators of the factors typically improves as n increases.  Moreover, although factor 
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analysis and PCA differ when n is small, their differences diminish as n increases; in fact, 

PCA (or dynamic PCA) can be used to construct consistent estimators of the factors in 

DFMs.  These observations have spurred considerable recent interest in economic 

forecasting using the twin methods of DFMs and PCA. 

This section begins by introducing the DFM, then turns to algorithms for 

estimation of the dynamic factors and for forecasting using these estimated factors.  The 

section concludes with a brief review of the empirical literature on large-n forecasting 

with DFMs. 

 

4.1  The Dynamic Factor Model 

The premise of the dynamic factor model is that the covariation among economic 

time series variables at leads and lags can be traced to a few underlying unobserved 

series, or factors.  The disturbances to these factors might represent the major aggregate 

shocks to the economy, such as demand or supply shocks.  Accordingly, DFMs express 

observed time series as a distributed lag of a small number of unobserved common 

factors, plus an idiosyncratic disturbance that itself might be serially correlated: 

 

Xit = λi(L)ft + uit, i = 1,…,n,    (6) 

 

where ft is the q×1 vector of unobserved factors, λi(L) is a q×1 vector lag polynomial, 

called the “dynamic factor loadings,” and uit is the idiosyncratic disturbance.  The factors 

and idiosyncratic disturbances are assumed to be uncorrelated at all leads and lags, that is, 

E(ftuis) = 0 for all i, s. 

The unobserved factors are modeled (explicitly or implicitly) as following a linear 

dynamic process, 

 

Γ(L)ft = ηt,      (7) 

 

where Γ(L) is a matrix lag polynomial and ηt is a r×1 disturbance vector. 
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The DFM implies that the spectral density matrix of Xt can be written as the sum 

of two parts, one arising from the factors and the other arising from the idiosyncratic 

disturbance.  Because Ft and ut are uncorrelated at all leads and lags, the spectral density 

matrix of Xit at frequency ω is, 

 

SXX(ω) = λ(eiω)SFF (ω)λ(e–iω)′ + Suu(ω),   (8) 

 

where λ(z) = [λ1(z) … λn(z)]′ and SFF(ω) and Suu(ω) are the spectral density matrices of Ft 

and ut at frequency ω.  This decomposition, which is due to Geweke (1977), is the 

frequency-domain counterpart of the variance decomposition of classical factor models. 

In classical factor analysis, the factors are identified only up to multiplication by a 

nonsingular q×q matrix.  In dynamic factor analysis, the factors are identified only up to 

multiplication by a nonsingular q×q matrix lag polynomial.  This ambiguity can be 

resolved by imposing identifying restrictions, e.g. restrictions on the dynamic factor 

loadings and on Γ(L).  As in classical factor analysis, this identification problem makes it 

difficult to interpret the dynamic factors, but it is inconsequential for linear forecasting 

because all that is desired is the linear combination of the factors that produces the 

minimum mean squared forecast error. 

Treatment of Yt.  The variable to be forecasted, Yt, can be handled in two different 

ways.  The first is to include Yt in the Xt vector and model it as part of the system (6) and 

(7).  This approach is used when n is small and the DFM is estimated parametrically, as is 

discussed in Section 4.3.  When n is large, however, computationally efficient 

nonparametric methods can be used to estimate the factors, in which case it is useful to 

treat the forecasting equation for Yt as a single equation, not as a system. 

The single forecasting equation for Yt can be derived from (6).  Augment Xt in that 

expression by Yt, so that Yt = λY(L)ft + uYt, where {uYt} is distributed independently of {ft} 

and {uit}, i = 1,…,n.  Further suppose that uYt follows the autoregression, δY(L)uYt = νYt.  

Then δY(L)Yt+1 = δY(L)λY(L)ft+1 + νt+1 or Yt+1 = δY(L)λY(L)ft+1 + γ(L)Yt + νt+1, where γ(L) = 

L–1(1 – δY(L)).  Thus E[Yt+1|Xt, Yt, ft, Xt–1, Yt–1, ft–1,…] = E[δY(L)λY(L)ft+1 + γ (L)Yt + νt+1| 
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Yt, ft, Yt–1, ft–1,…] = β(L)ft + γ(L)Yt, where β(L)ft = E[δY(L)λY(L)ft+1|ft, ft–1,…].  Setting Zt = 

Yt, we thus have, 

 

Yt+1 = β(L)ft + γ(L)′Zt + εt+1,     (9) 

 

where εt+1 = νYt+1 +  (δY(L)λY(L)ft+1 – E[δY(L)λY(L)ft+1| ft, ft–1,…]) has conditional mean 

zero given Xt, ft, Yt and their lags.  We use the notation Zt rather than Yt for the regressor 

in (9) to generalize the equation somewhat so that observable predictors other than lagged 

Yt can be included in the regression, for example Zt might include an observable variable 

that, in the forecaster’s judgment, might be valuable for forecasting Yt+1 despite the 

inclusion of the factors and lags of the dependent variable. 

Exact vs.  approximate DFMs.  Chamberlain and Rothschild (1983) introduced a 

useful distinction between exact and approximate DFMs.  In the exact DFM, the 

idiosyncratic terms are mutually uncorrelated, that is,  

 

E(uitujt) = 0 for i ≠ j.      (10) 

 

The approximate DFM relaxes this assumption and allows for a limited amount of 

correlation among the idiosyncratic terms.  The precise technical condition varies from 

paper to paper, but in general the condition limits the contribution of the idiosyncratic 

covariances to the total covariance of X as n gets large.  For example, Stock and Watson 

(2002a) require that the average absolute covariances satisfy, 

 

limn→∞   < ∞.    (11) 1

1 1

| ( ) |
n n

it jt
i j

n E u u−

= =
∑∑

 

There are two general approaches to the estimation of the dynamic factors, the 

first employing parametric estimation using an exact DFM and the second employing 

nonparametric methods, either PCA or dynamic PCA.  We address these in turn. 
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4.2  DFM Estimation by Maximum Likelihood 

The initial applications of the DFM by Geweke’s (1977) and Sargent and Sims 

(1977) focused on testing the restrictions implied by the exact DFM on the spectrum of 

Xt, that is, that its spectral density matrix has the factor structure (8), where Suu is 

diagonal.  If n is sufficiently larger than q (for example, if q = 1 and n ≥ 3), the 

hypothesis of an unrestricted spectral density matrix can be tested against the alternative 

of a DFM by testing the factor restrictions using an estimator of SXX(ω).  For fixed n, this 

estimator is asymptotically normal under the null hypothesis and the Wald test statistic 

has a chi-squared distribution.  Although Sargent and Sims (1977) found evidence in 

favor of a reduced number of factors, their methods did not yield estimates of the factors 

and thus could not be used for forecasting. 

With sufficient additional structure to ensure identification, the parameters of the 

DFM (6), (7), and (9) can be estimated by maximum likelihood, where the likelihood is 

computed using the Kalman filter, and the dynamic factors can be estimated using the 

Kalman smoother (Engle and Watson (1981), Stock and Watson (1989, 1991)).  

Specifically, suppose that Yt is included in Xt.  Then make the following assumptions:  (1) 

the idiosyncratic terms follow a finite order AR model, δi(L)uit = νit; (2) (ν1t,…,νnt, 

η1t,…, ηnt) are i.i.d. normal and mutually independent; (3) Γ(L) has finite order with Γ0 = 

Ir;  (4) λi(L) is a lag polynomial of degree p; and (5) [λ′10 … λ′r0]′ = Ir.  Under these 

assumptions, the Gaussian likelihood can be constructed using the Kalman filter, and the 

parameters can be estimated by maximizing this likelihood. 

One-step ahead forecasts.  Using the MLEs of the parameter vector, the time 

series of factors can be estimated using the Kalman smoother.  Let ft|T and uit|T, i = 1,…, n 

respectively denote the Kalman smoother estimates of the unobserved factors and 

idiosyncratic terms using the full data through time T.  Suppose that the variable of 

interest is the final element of Xt.  Then the one-step ahead forecast of the variable of 

interest at time T+1 is YT+1|T = XnT+1|T = fT|T + unT|T, where  is the MLE of 

λn(L).2 

ˆ (L)nλ ˆ (L)nλ

                                                 
2 Peña and Poncela (2004) provide an interpretation of forecasts based on the exact DFM 
as shrinkage forecasts. 
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H-step ahead forecasts.  Multi-step ahead forecasts can be computed using either 

the iterated or the direct method.  The iterated h-step ahead forecast is computed by 

solving the full DFM forward, which is done using the Kalman filter.  The direct h-step 

ahead forecast is computed by projecting h
t hY +  onto the estimated factors and observables, 

that is, by estimating βh(L) and γh(L) in the equation,  

 
h

t hY +   = βh(L)′ft|t + γh(L)Yt + h
t hε +     (12) 

 

(where Lift/t = ft─i/t) using data through period T–h.  Consistent estimates of βh(L) and 

γh(L) can be obtained by OLS because the signal extraction error ft─i  – ft─i/t is 

uncorrelated with ft─j/t and Yt─j  for j ≥ 0.  The forecast for period T+h is then ′fT|T + ˆ (L)hβ

ˆ (L)hγ YT.  The direct method suffers from the usual potential inefficiency of direct 

forecasts arising from the inefficient estimation of βh(L) and γ h(L), instead of basing the 

projections on the MLEs. 

Successes and limitations.  Maximum likelihood has been used successfully to 

estimate the parameters of low-dimensional DFMs, which in turn have been used to 

estimate the factors and (among other things) to construct indexes of coincident and 

leading economic indicators.  For example, Stock and Watson (1991) use this approach 

(with n = 4) to rationalize the U.S. Index of Coincident Indicators, previously maintained 

by the U.S. Department of Commerce and now produced the Conference Board.  The 

method has also been used to construct regional indexes of coincident indexes, see 

Clayton-Matthews and Crone (2003).  (For further discussion of DFMs and indexes of 

coincident and leading indicators, see Chapter 15 by Marcellino in this Handbook.)  Quah 

and Sargent (1993) estimated a larger system (n = 60) by MLE.  However, the underlying 

assumption of an exact factor model is a strong one.  Moreover, the computational 

demands of maximizing the likelihood over the many parameters that arise when n is 

large are significant.  Fortunately, when n is large, other methods are available for the 

consistent estimation of the factors in approximate DFMs. 
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4.3  DFM Estimation by Principal Components Analysis 

If the lag polynomials λi(L) and β(L) have finite order p, then (6) and (9) can be 

written 

 

Xt = ΛFt + ut      (13) 

Yt+1 = β′Ft + γ(L)′Zt + εt+1,    (14) 

 

where Ft = [ft′  ft–1′ … ft–p+1′]′, ut = [u1t … unt], Λ is a matrix consisting of zeros and the 

coefficients of λi(L), and β is a vector of parameters composed of the elements of β(L).  

If the number of lags in β exceeds the number of lags in Λ, then the term β′Ft in (14) can 

be replaced by a distributed lag of Ft. 

Equations (13) and (14) rewrite the DFM as a static factor model, in which there 

are r static factors consisting of the current and lagged values of the q dynamic factors, 

where r ≤ pq (r will be strictly less than pq if one or more lagged dynamic factors are 

redundant).  The representation (13) and (14) is called the static representation of the 

DFM. 

Because Ft and ut are uncorrelated at all leads and lags, the covariance matrix of 

Xt, ΣXX, is the sum of two parts, one arising from the common factors and the other 

arising from the idiosyncratic disturbance: 

 

ΣXX = ΛΣFFΛ′ + Σuu,     (15) 

 

where ΣFF and Σuu are the variance matrices of Ft and ut.  This is the usual variance 

decomposition of classical factor analysis. 

When n is small, the standard methods of estimation of exact static factor models 

when n is fixed and T is to estimate Λ and Σuu by Gaussian maximum likelihood 

estimation or by method of moments (Anderson (1984)).  However, when n is large 

simpler methods are available.  Under the assumptions that the eigenvalues of Σuu are 
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O(1) and Λ′Λ is O(n), the first r eigenvalues of ΣXX are O(N) and the remaining 

eigenvalues are O(1).  This suggests that the first r principal components of X can serve 

as estimators of Λ, which could in turn be used to estimate Ft.  In fact, if Λ were known, 

then Ft could be estimated by (Λ′Λ)–1Λ′Xt: by (13), (Λ′Λ)–1Λ′Xt = Ft + (Λ′Λ)–1 Λ′ut.  

Under the two assumptions, var[(Λ′Λ)–1Λ′ut] = (Λ′Λ)–1Λ′ΣuuΛ(Λ′Λ)–1 = O(1/n), so that if 

Λ were known, Ft could be estimated precisely if n is sufficiently large. 

More formally, by analogy to regression we can consider estimation of Λ and Ft 

by solving the nonlinear least squares problem, 

 

1

1
,..., ,

1

min ( ) '( )
T

T

F F t t t t
t

T X F X F−
Λ

=

− Λ − Λ∑     (16) 

 

subject to Λ′

X−

Λ = Ir.  Note that this method treats F1,…, FT as fixed parameters to be 

estimated.3  The first order conditions for maximizing (16) with respect to Ft shows that 

the estimators satisfy  = .  Substituting this into the objective function 

yields the concentrated objective function, .  Minimizing 

the concentrated objective function is equivalent to maximizing  

t̂F 1ˆ ˆ ˆ( ) tX−′ ′Λ Λ Λ

1 1
1

[ ( ) ]T
t tt

T X I−
=

′ ′− Λ Λ Λ Λ∑

tr{(Λ′Λ)–1/2′ Λ′ ˆ
XXΣ Λ(Λ′Λ)–1/2, where ˆ

XXΣ  = 1
1

T
t tt

T X−
=

X ′∑   This in turn is equivalent to 

maximizing Λ′ ˆ
XXΣ Λ subject to Λ′Λ = Ir, the solution to which is to set  to be the first r 

eigenvectors of .  The resulting estimator of the factors is  = 

Λ̂

ˆ
XXΣ t̂F ˆ

tX′Λ , which is the 

vector consisting of the first r principal components of Xt.  The matrix  is 

diagonal with diagonal elements that equal the largest r ordered eigenvalues of .  The 

1
1

ˆ ˆT
t tt

T F−
=

′∑ F

                                                

ˆ
XXΣ

 
3 When F1,…, FT are treated as parameters to be estimated, the Gaussian likelihood for 
the classical factor model is unbounded, so the maximum likelihood estimator is 
undefined (see Anderson (1984)).  This difficulty does not arise in the least squares 
problem (16), which has a global minimum (subject to the identification conditions 
discussed in this and the previous sections). 
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estimators { } could be rescaled so that t̂F 1
1

ˆ ˆT
t tt

T F−
=

F ′∑  = Ir, however this is unnecessary 

if the only purpose is forecasting.  We will refer to { } as the PCA estimator of the 

factors in the static representation of the DFM. 

t̂F

PCA: large-n theoretical results.  Connor and Korajczyk (1986) show that the 

PCA estimators of the space spanned by the factors are pointwise consistent for T fixed 

and n → ∞ in the approximate factor model, but do not provide formal arguments for n, 

T →∞.  Ding and Hwang (1999) provide consistency results for PCA estimation of the 

classic exact factor model as n, T →∞, and  Stock and Watson (2002a) show that, in the 

static form of the DFM, the space of the dynamic factors is consistently estimated by the 

principal components estimator as n, T →∞, with no further conditions on the relative 

rates of n or T.  In addition, estimation of the coefficients of the forecasting equation by 

OLS, using the estimated factors as regressors, produces consistent estimates of β(L) and 

γ(L) and, consequently, forecasts that are first-order efficient, that is, they achieve the 

mean squared forecast error of the infeasible forecast based on the true coefficients and 

factors.  Bai (2003) shows that the PCA estimator of the common component is 

asymptotically normal, converging at a rate of min(n1/2, T1/2), even if ut is serially 

correlated and/or heteroskedastic. 

Some theory also exists, also under strong conditions, concerning the distribution 

of the largest eigenvalues of the sample covariance matrix of Xt.  If n and T are fixed and 

Xt is i.i.d. N(0,ΣXX), then the principal components are distributed as those of a noncentral 

Wishart;  see James (1964) and Anderson (1984).  If n is fixed, T → ∞, and the 

eigenvalues of ΣXX are distinct, then the principal components are asymptotically 

normally distributed (they are continuous functions of ˆ
XXΣ , which is itself asymptotically 

normally distributed).  Johnstone (2001) (extended by El Karoui (2003)) shows that the 

largest eigenvalues of  satisfy the Tracy-Widom law if n, T → ∞, however these 

results apply to unscaled Xit (not divided by its sample standard deviation). 

ˆ
XXΣ

 20



Weighted principal components.  Suppose for the moment that ut is i.i.d. N(0,Σuu) 

and that Σuu  is known.  Then by analogy to regression, one could modify (16) and 

consider the nonlinear generalized least squares (GLS) problem, 

 

1

1
,..., ,

1

min ( ) ' ( )
T

T

F F t t uu t t
t

X F X F−
Λ

=

− Λ Σ − Λ∑ .    (17) 

 

Evidently the weighting schemes in (16) and (17) differ.  Because (17) corresponds to 

GLS when Σuu is known, there could be efficiency gains by using the estimator that 

solves (17) instead of the PCA estimator. 

In applications, Σuu is unknown, so minimizing (17) is infeasible.  However, 

Boivin and Ng (2003) and Forni, Hallin, Lippi, and Reichlin (2003b) have proposed 

feasible versions of (17).  We shall call these weighted PCA estimators since they involve 

alternative weighting schemes in place of simply weighting by the inverse sample 

variances as does the PCA estimator (recall the notational convention that Xt has been 

standardized to have sample variance one).  Jones (2001) proposed a weighted factor 

estimation algorithm which is closely related to weighted PCA estimation when n is 

large. 

Because the exact factor model posits that Σuu is diagonal, a natural approach is to 

replace Σuu in (17) with an estimator that is diagonal, where the diagonal elements are 

estimators of the variance of the individual uit’s.  This approach is taken by Jones (2001) 

and Boivin and Ng (2003).  Boivin and Ng (2003) consider several diagonal weighting 

schemes, including schemes that drop series that are highly correlated with others.  One 

simple two-step weighting method, which Boivin and Ng (2003) found worked well in 

their empirical application to US data, entails estimating the diagonal elements of Σuu by 

the sample variances of the residuals from a preliminary regression of Xit onto a relatively 

large number of factors estimated by PCA. 

Forni, Hallin, Lippi, and Reichlin (2003b) also consider two-step weighted PCA, 

where they estimated Σuu in (17) by the difference between ˆ
XXΣ  and an estimator of the 

spectrum of the common component, where the latter estimator is based on a preliminary 
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dynamic principal components analysis (dynamic PCA is discussed below).  They 

consider both diagonal and non-diagonal estimators of Σuu.  Like Boivin and Ng (2003), 

they find that weighted PCA can improve upon conventional PCA, with the gains 

depending on the particulars of the stochastic processes under study. 

The weighted minimization problem (17) was motivated by the assumption that ut 

is i.i.d. N(0,Σuu).  In general, however, ut will be serially correlated, in which case GLS 

entails an adjustment for this serial correlation.  Stock and Watson (2005) propose an 

extension of weighted PCA in which a low-order autoregressive structure is assumed for 

ut.  Specifically, suppose that the diagonal filter D(L) whitens ut so that D(L)ut ≡  is 

serially uncorrelated.  Then the generalization of (17) is, 

tu

 

1

1
( ), ,..., ,

1

min [ ( ) ]' [ ( ) ]
T

T

t t uu tD L F F
t

D L X F D L X F−
Λ

=
t− Λ Σ − Λ∑ ,  (18) 

 

where  = D(L)Ft and  = E ′.  Stock and Watson (2005) implement this with 

 = In, so that the estimated factors are the principal components of the filtered series 

D(L)Xt.  Estimation of D(L) and { } can be done sequentially, iterating to convergence. 

tF uuΣ tu tu

uuΣ

tF

Factor estimation under model instability.  There are some theoretical results on 

the properties of PCA factor estimates when there is parameter instability.  Stock and 

Watson (2002a) show that the PCA factor estimates are consistent even if there is some 

temporal instability in the factor loadings, as long as the temporal instability is 

sufficiently dissimilar from one series to the next.  More broadly, because the precision of 

the factor estimates improves with n, it might be possible to compensate for short panels, 

which would be appropriate if there is parameter instability, by increasing the number of 

predictors.  More work is needed on the properties of PCA and dynamic PCA estimators 

under model instability. 

Determination of the number of factors.  At least two statistical methods are 

available for the determination of the number of factors when n is large.  The first is to 

use model selection methods to estimate the number of factors that belong in the 

forecasting equation (14).  Given an upper bound on the dimension and lags of Ft, Stock 
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and Watson (2002a) show that this can be accomplished using an information criterion.  

Although the rate requirements for the information criteria in Stock and Watson (2002a) 

technically rule out the BIC, simulation results suggest that the BIC can perform well in 

the sample sizes typically found in macroeconomic forecasting applications. 

The second approach is to estimate the number of factors entering the full DFM.  

Bai and Ng (2002) prove that the dimension of Ft can be estimated consistently for 

approximate DFMs that can be written in static form, using suitable information criteria 

which they provide.  In principle, these two methods are complementary:  full set of 

factors could be chosen using the Bai-Ng method, and model selection could then be 

applied to the Yt equation to select a subset of these for forecasting purposes. 

H-step ahead forecasts.  Direct h-step ahead forecasts are produced by regressing 

 against  and, possibly, lags of  and Yt, then forecasting h
t hY + t̂F t̂F h

t hY + . 

Iterated h-step ahead forecasts require specifying a subsidiary model of the 

dynamic process followed by Ft, which has heretofore not been required in the principal 

components method.  One approach, proposed by Bernanke, Boivin, and Eliasz (2005) 

models (Yt, Ft) jointly as a VAR, which they term a factor-augmented VAR (FAVAR).  

They estimate this FAVAR using the PCA estimates of {Ft}.  Although they use the 

estimated model for impulse response analysis, it could be used for forecasting by 

iterating the estimated FAVAR h steps ahead.   

In a second approach to iterated multistep forecasts, Forni, Hallin, Lippi, Reichlin 

(2003b) and Giannone, Reichlin, Sala (2004)) developed a modification of the FAVAR 

approach in which the shocks in the Ft equation in the VAR have reduced dimension.  

The motivation for this further restriction is that Ft contains lags of ft.  The resulting h-

step forecasts are made by iterating the system forward using the Kalman filter. 

  

4.4  DFM Estimation by Dynamic Principal Components Analysis 

The method of dynamic principal components was introduced by Brillinger 

(1964) and is described in detail in Brillinger’s (1981) textbook.  Static principal 

components entails finding the closest approximation to the variance matrix of Xt among 

all variance matrices of a given reduced rank.  In contrast, dynamic principal components 
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entails finding the closest approximation to the spectrum of Xt among all spectral density 

matrices of a given reduced rank. 

Brillinger’s (1981) estimation algorithm generalizes static PCA to the frequency 

domain.  First, the spectral density of Xt is estimated using a consistent spectral density 

estimator, ˆ ( )XXS ω , at frequency ω.  Next, the eigenvectors corresponding to the largest q 

eigenvalues of this (Hermitian) matrix are computed.  The inverse Fourier transform of 

these eigenvectors yields estimators of the principal component time series using 

formulas given in Brillinger (1981, Chapter 9). 

Forni, Hallin, Lippi, and Reichlin (2000, 2004) study the properties of this 

algorithm and the estimator of the common component of Xit in a DFM, λi(L)f t, when n is 

large.  The advantages of this method, relative to parametric maximum likelihood, are 

that it allows for an approximate dynamic factor structure, and it does not require high-

dimensional maximization when n is large.  The advantage of this method, relative to 

static principal components, is that it admits a richer lag structure than the finite-order lag 

structure that led to (13).   

Brillinger (1981) summarizes distributional results for dynamic PCA for the case 

that n is fixed and T → ∞ (as in classic PCA, estimators are asymptotically normal 

because they are continuous functions of ˆ ( )XXS ω , which is asymptotically normal).  

Forni, Hallin, Lippi, and Reichlin (2000) show that dynamic PCA provides pointwise 

consistent estimation of the common component as n and T both increase, and Forni, 

Hallin, Lippi, and Reichlin (2004) further show that this consistency holds if n, T → ∞ 

and n/T → 0.  The latter condition suggests that some caution should be exercised in 

applications in which n is large relative to T, although further evidence on this is needed. 

The time-domain estimates of the dynamic common components series are based 

on two-sided filters, so their implementation entails trimming the data at the start and end 

of the sample.  Because dynamic PCA does not yield an estimator of the common 

component at the end of the sample, this method cannot be used for forecasting, although 

it can be used for historical analysis or (as is done by Forni, Hallin, Lippi, and Reichlin 

(2003b)) to provide a weighting matrix for subsequent use in weighted (static) PCA 
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Because the focus of this chapter is on forecasting, not historical analysis, we do not 

discuss dynamic principal components further. 

 

4.5  DFM Estimation by Bayes Methods 

Another approach to DFM estimation is to use Bayes methods.  The difficulty 

with maximum likelihood estimation of the DFM when n is large is not that it is difficult 

to compute the likelihood, which can be evaluated fairly rapidly using the Kalman filter, 

but rather that it requires maximizing over a very large parameter vector.  From a 

computational perspective, this suggests that perhaps averaging the likelihood with 

respect to some weighting function will be computationally more tractable than 

maximizing it; that is, Bayes methods might be offer substantial computational gains. 

Otrok and Whiteman (1998), Kim and Nelson (1998), and Kose Otrok, and 

Whiteman (2003) develop Markov Chain Monte Carlo (MCMC) methods for sampling 

from the posterior distribution of dynamic factor models.  The focus of these papers was 

inference about the parameters, historical episodes, and implied model dynamics, not 

forecasting.  These methods also can be used for forecast construction (see Otrok, Silos, 

and Whiteman (2003) and Chapter 6 by Geweke and Whiteman in this Handbook), 

however to date not enough is known to say whether this approach provides an 

improvement over PCA-type methods when n is large. 

 

4.6  Survey of the Empirical Literature 

There have been several empirical studies that have used estimated dynamic 

factors for forecasting.  In two prescient but little-noticed papers, Figlewski (1983) (n = 

33) and Figlewski and Urich (1983) (n = 20) considered combining forecasts from a 

panel of forecasts using a static factor model.  Figlewski (1983) pointed out that, if 

forecasters are unbiased, then the factor model implied that the average forecast would 

converge in probability to the unobserved factor as n increases.  Because some 

forecasters are better than others, the optimal factor-model combination (which should be 

close to but not equal to the largest weighted principle component) differs from equal 

weighting.   In an application to a panel of n = 33 forecasters who participated in the 

Livingston price survey, with T = 65 survey dates, Figlewski (1983) found that using the 
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optimal static factor model combination outperformed the simple weighted average.  

When Figlewski and Ulrich (1983) applied this methodology to a panel of n = 20 weekly 

forecasts of the money supply, however, they were unable to improve upon the simple 

weighted average forecast. 

Recent studies on large-model forecasting have used pseudo out-of-sample 

forecast methods (that is, recursive or rolling forecasts) to evaluate and to compare 

forecasts.  Stock and Watson (1999) considered factor forecasts for U.S. inflation, where 

the factors were estimated by PCA from a panel of up to 147 monthly predictors.  They 

found that the forecasts based on a single real factor generally had lower pseudo out-of-

sample forecast error than benchmark autoregressions and traditional Phillips-curve 

forecasts.  Stock and Watson (2002b) found substantial forecasting improvements for real 

variables using dynamic factors estimated by PCA from a panel of up to 215 U.S. 

monthly predictors, a finding confirmed by Bernanke and Boivin (2003).  Boivin and Ng 

(2003) compared forecasts using PCA and weighted PCA estimators of the factors, also 

for U.S. monthly data (n = 147).  They found that weighted PCA forecasts tended to 

outperform PCA forecasts for real variables but not nominal variables. 

There also have been applications of these methods to non-U.S. data.  Forni, 

Hallin, Lippi, and Reichlin (2003b) focused on forecasting Euro-wide industrial 

production and inflation (HICP) using a short monthly data set (1987:2 – 2001:3) with 

very many predictors (n = 447).  They considered both PCA and weighted PCA forecasts, 

where the weighted principal components were constructed using the dynamic PCA 

weighting method of Forni, Hallin, Lippi, and Reichlin (2003a).  The PCA and weighted 

PCA forecasts performed similarly, and both exhibited modest improvements over the 

AR benchmark.  Brisson, Campbell, Galbraith (2002) examined the performance factor-

based forecasts of Canadian GDP and investment growth using two panels, one 

consisting of only Canadian data (n = 66) and one with both Canadian and U.S. data (n = 

133), where the factors were estimated by PCA.  They find that the factor-based forecasts 

improve substantially over benchmark models (autoregressions and some small time 

series models), but perform less well than the real-time OECD forecasts of these series.  

Using data for the U.K., Artis, Banerjee, and Marcelino (2001) found that 6 factors 

(estimated by PCA) explain 50% of the variation in their panel of 80 variables, and that 
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factor-based forecasts could make substantial forecasting improvements for real 

variables, especially at longer horizons. 

Practical implementation of DFM forecasting requires making many modeling 

decisions, notably to use PCA or weighted PCA, how to construct the weights if weighted 

PCA weights is used, and how to specify the forecasting equation.  Existing theory 

provides limited guidance on these choices.  Forni, Hallin, Lippi, and Reichlin (2003b) 

and Bovin and Ng (2005) provide simulation and empirical evidence comparing various 

DFM forecasting methods, and we provide some additional empirical comparisons are 

provided in Section 7 below. 

DFM-based methods also have been used to construct real-time indexes of 

economic activity based on large cross sections.  Two such indexes are now being 

produced and publicly released in real time.  In the U.S., the Federal Reserve Bank of 

Chicago publishes the monthly Chicago Fed National Activity Index (CFNAI), where the 

index is the single factor estimated by PCA from a panel of 85 monthly real activity 

variables (Federal Reserve Bank of Chicago (undated)).  In Europe, the Centre for 

Economic Policy Research (CEPR) in London publishes the monthly European 

Coincident Index (EuroCOIN), where the index is the single dynamic factor estimated by 

weighted PCA from a panel of nearly 1000 economic time series for Eurozone countries 

(Altissimo et. al. (2001)). 

These methods also have been used for non-forecasting purposes, which we 

mention briefly although these are not the focus of this survey.  Following Connor and 

Korajczyk (1986, 1988), there have been many applications in finance that use (static) 

factor model methods to estimate unobserved factors and, among other things, to test 

whether those unobserved factors are consistent with the arbitrage pricing theory; see 

Jones (2001) for a recent contribution and additional references.  Forni and Reichlin 

(1998), Bernanke and Boivin (2003), Favero and Marcellino (2001), Bernanke, Boivin, 

Eliasz (2005), Giannone, Reichlin, and Sala (2002, 2004) used estimated factors in an 

attempt better to approximate the true economic shocks and thereby to obtain improved 

estimates of impulse responses as variables.  Another application, pursued by Favero and 

Marcellino (2001) and Favero, Marcellino, and Neglia (2002), is to use lags of the 

estimated factors as instrumental variables, reflecting the hope that the factors might be 
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stronger instruments than lagged observed variables.  Kapetanios and Marcellino (2002) 

and Favero, Marcellino, and Neglia (2002) compared PCA and dynamic PCA estimators 

of the dynamic factors.  Generally speaking, the results are mixed, with neither method 

clearly dominating the other.  A point stressed by Favero, Marcellino, and Neglia (2002) 

is that the dynamic PCA methods estimate the factors by a two-sided filter, which makes 

it problematic, or even unsuitable, for applications in which strict timing is important, 

such as using the estimated factors in VARs or as instrumental variables.  More research 

is needed before clear recommendation about which procedure is best for such 

applications. 

 

5.  Bayesian Model Averaging 
 

Bayesian model averaging (BMA) can be thought of as a Bayesian approach to 

combination forecasting.  In forecast combining, the forecast is a weighted average of the 

individual forecasts, where the weights can depend on some measure of the historical 

accuracy of the individual forecasts.  This is also true for BMA, however in BMA the 

weights are computed as formal posterior probabilities that the models are correct.  In 

addition, the individual forecasts in BMA are model-based and are the posterior means of 

the variable to be forecast, conditional on the selected model.  Thus BMA extends 

forecast combining to a fully Bayesian setting, where the forecasts themselves are 

optimal Bayes forecasts, given the model (and some parametric priors).  Importantly, 

recent research on BMA methods also has tackled the difficult computational problem in 

which the individual models can contain arbitrary subsets of the predictors Xt.  Even if n 

is moderate, there are more models than can be computed exhaustively, yet by cleverly 

sampling the most likely models, BMA numerical methods are able to provide good 

approximations to the optimal combined posterior mean forecast. 

The basic paradigm for BMA was laid out by Leamer (1978).  In an early 

contribution in macroeconomic forecasting, Min and Zellner (1990) used BMA to 

forecast annual output growth in a panel of 18 countries, averaging over four different 

models.  The area of BMA has been very active recently, mainly occurring outside 

economics.  Work on BMA through the 1990s is surveyed by Hoeting, Madigan, Raftery, 
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and Volinsky (1999) and their discussants, and Chapter 6 by Geweke and Whiteman in 

this Handbook contains a thorough discussion of Bayesian forecasting methods.  In this 

section, we focus on BMA methods specifically developed for linear prediction with 

large n.  This is the focus of Fernandez, Ley, and Steele (2001a) (their application in 

Fernandez, Ley and Steele (2001b) is to growth regressions), and we draw heavily on 

their work in the next section. 

This section first sets out the basic BMA setup, then turns to a discussion of the 

few empirical applications to date of BMA to economic forecasting with many 

predictors. 

   

5.1 Fundamentals of Bayesian Model Averaging 

In standard Bayesian analysis, the parameters of a given model are treated as 

random, distributed according to a prior distribution.  In BMA, the binary variable 

indicating whether a given model is true also is treated as random and distributed 

according to some prior distribution.   

Specifically, suppose that the distribution of Yt+1 conditional on Xt is given by one 

of K models, denoted by  M1,…, MK.  We focus on the case that all the models are linear, 

so they differ by which subset of predictors Xt are contained in the model.  Thus Mk 

specifies the list of indexes of Xt contained in model k.  Let π(Mk) denote the prior 

probability that the data are generated by model k, and let Dt denote the data set through 

date t.  Then the predictive probability density for YT+1 is  

 

f(YT+1|DT) = 1
1

( | ) Pr( |
K

k T T k T
k

)f Y D M D+
=
∑ ,    (19) 

 

where fk(YT+1|DT) is the predictive density of YT+1 for model k and Pr(Mk|DT) is the 

posterior probability of model k.  This posterior probability is given by, 

 

Pr(Mk|DT) = 
1

Pr( | ) ( )
Pr( | ) ( )

T k k
K

T i ii

D M M
D M M

π
π

=∑
,     (20) 

 

 29



where Pr(DT|Mk) is given by, 

 

Pr(DT|Mk) = Pr( | , ) ( | )T k k k k kD M M dθ π θ θ∫ .    (21) 

 

where θk is the vector of parameters in model k and π(θk|Mk) is the prior for the 

parameters in model k. 

Under squared error loss, the optimal Bayes forecast is the posterior mean of YT+1, 

which we denote by .  It follows from (19) that this posterior mean is, 1|T TY +

 

1|T TY +  = ,    (22) , 1|
1
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where , 1|kM T TY +  is the posterior mean of YT+1 for model Mk. 

Comparison of (22) and (3) shows that BMA can be thought of as an extension of 

the Bates-Granger (1969) forecast combining setup, where the weights are determined by 

the posterior probabilities over the models, the forecasts are posterior means, and, 

because the individual forecasts are already conditional means, given the model, there is 

no constant term (w0 = 0 in (3)). 

These simple expressions mask considerable computational difficulties.  If the set 

of models is allowed to be all possible subsets of the predictors Xt, then there are K = 2n 

possible models.  Even with n = 30, this is several orders of magnitude more than is 

feasible to compute exhaustively.  Thus the computational objective is to approximate the 

summation (22) while only evaluating a small subset of models.  Achieving this objective 

requires a judicious choice of prior distributions and using appropriate numerical 

simulation methods. 

Choice of priors.  Implementation of BMA requires choosing two sets of priors, 

the prior distribution of the parameters given the model and the prior probability of the 

model.  In principle, the researcher could have prior beliefs about the values of specific 

parameters in specific models.  In practice, however, given the large number of models 

this is rarely the case.  In addition, given the large number of models to evaluate, there is 
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a premium on using priors that are computationally convenient.  These considerations 

lead to the use of priors that impose little prior information and that lead to posteriors 

(21) that are easy to evaluate quickly. 

Fernandez, Ley, and Steele (2001a) conducted a study of various priors that might 

usefully be applied in linear models with economic data and large n.  Based on theoretical 

consideration and simulation results, they propose a benchmark set of priors for BMA in 

the linear model with large n.  Let the kth model be, 

 

Yt+1 = ′βk + Zt′γ + εt,      (23) ( )k
tX

 

where  is the vector of predictors appearing in model k, Zt is a vector of variables to 

be included in all models, βk and γ  are coefficient vectors, and εt is the error term.  The 

analysis is simplified if the model-specific regressors  are orthogonal to the common 

regressor Zt, and this assumption is adopted throughout this section by taking  to be 

the residuals from the projection of the original set of predictors onto Zt.  In applications 

to economic forecasting, because of serial correlation in Yt, Zt might include lagged 

values of Y that potentially appear in each model.   

( )k
tX

( )k
tX

( )k
tX

 Following the rest of the literature on BMA in the linear model (cf. Hoeting, 

Madigan, Raftery, and Volinsky (1999)), Fernandez, Ley, and Steele (2001a) assume that 

{ , Zt} is strictly exogenous and εt is i.i.d. N(0,σ2).  In the notation of (21),  θk = [βk′  

γ′ σ]′.  They suggest using conjugate priors, an uninformative prior for γ and σ2 and 

Zellner’s (1986) g-prior for βk: 

( )k
tX
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With the priors (24) and (25), the conditional marginal likelihood Pr(DT|Mk) in 

(21) is 

 

Pr(Y1,…,YT|Mk) =  const×
1 1#
2 2( ) [ ( ) (1 ( )) ]

R
kM dfR

ka g a g SSR a g SSR
−

+ − U , (26) 

 

where a(g) = g/(1 + g), SSRR is the sum of squared residuals of Y from the restricted OLS 

regression of Yt+1 on Zt,  is the sum of squared residuals from the OLS regression of 

Y onto ( , Zt),  #Mk is the dimension of , dfR is the degrees of freedom of the 

restricted regression, and the constant is the same from one model to the next (see 

Raftery, Matigan, and Hoeting (1996) and Fernandez, Ley, and Steele (2001a)). 

U
kSSR

( )k
tX ( )k

tX

The prior model probability, π(Mk), also needs to be specified.  One choice for 

this prior is a multinomial distribution, where the probability is determined by the prior 

probability that an individual variable enters the model; see for example Koop and Potter 

(2004).  If all the variables are deemed equally likely to enter and whether one variable 

enters the model is treated as independent of whether any other variable enters, then the 

prior probability for all models is the same and the term π(θk) drops out of the 

expressions.  In this case, (22), (20), and (26) imply that, 
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Three aspects of (27) bear emphasis.  First, this expression links BMA and 

forecast combining:  for the linear model with the g-prior and in which each model is 

given equal prior probability, the BMA forecast as a weighted average of the (Bayes) 

forecasts from the individual models, where the weighting factor depends on the 

reduction in the sum of squared residuals of model Mk, relative to the benchmark model 

that includes only Zt. 
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Second, the weights in (27) (and the posterior (26)) penalize models with more 

parameters through the exponent #Mk/2.  This arises directly from the g-prior calculations 

and appears even though the derivation here places equal weight on all models.  A further 

penalty could be placed on large models by letting π(Mk) depend on #Mk. 

Third, the weights are based on the posterior (marginal likelihood) (26), which is 

conditional on { , Zt}.  Conditioning on { , Zt} is justified by the assumption that 

the regressors are strictly exogenous, an assumption we return to below. 

( )k
tX ( )k

tX

The foregoing expressions depend upon the hyperparameter g.  The choice of g 

determines the amount of shrinkage appears in the Bayes estimator of βk, with higher 

values of g corresponding to greater shrinkage.  Based on their simulation study, 

Fernandez, Ley, and Steele (2001a) suggest g = 1/min(T, n2).  Alternatively, empirical 

Bayes methods could be used to estimate the value of g that provides the BMA forecasts 

with the best performance. 

Computation of posterior over models.  If n exceeds 20 or 25, there are too many 

models to enumerate and the population summations in (27) cannot be evaluated directly.  

Instead, numerical algorithms have been developed to provide precise, yet numerically 

efficient, estimates of this the summation  

In principle, one could approximate the population mean in (27) by drawing a 

random sample of models, evaluating the weights and the posterior means for each 

forecast, and evaluating (27) using the sample averages, so the summations run over 

sampled models.  In many applications, however, a large fraction of models might have 

posterior probability near zero, so this method is computationally inefficient.  For this 

reason, a number of methods have been developed that permit accurate estimation of (27) 

using a relatively small sample of models.  The key to these algorithms is cleverly 

deciding which models to sample with high probability.  Clyde (1999a,b) provides an 

survey of these methods.  Two closely related methods are the stochastic search variable 

selection (SSVS) methods of George and McCulloch (1993, 1997) (also see Geweke 

(1996)) and the Markov chain Monte Carlo model composition (MC3) algorithm of 

Madigan and York (1995); we briefly summarize the latter. 

 33



The MC3 sampling scheme starts with a given model, say Mk.  One of the n 

elements of Xt is chosen at random; a new model, Mk′, is defined by dropping that 

regressor if it appears in Mk, or adding it to Mk if it does not.  The sampler moves from 

model Mk to Mk′  with probability min(1, Bk,k′), where Bk,k′ is the Bayes ratio comparing 

the two models (which, with the g-prior, is computed using (26)).  Following Fernandez, 

Ley, and Steele (2001a), the summation (27) is estimated using the summands for the 

visited models. 

Orthogonalized regressors.  The computational problem simplifies greatly if the 

regressors are orthogonal.  For example, Koop and Potter (2004) transform Xt to its 

principal components, but in contrast to the DFM methods discussed in Section 3, all or a 

large number of the components are kept.  This approach can be seen as an extension of 

the DFM methods in Section 4, where BIC or AIC model selection is replaced by BMA, 

where nonzero prior probability is placed on the higher principal components entering as 

predictors.  In this sense, it is plausible to model the prior probability of the kth principle 

component entering as a declining function of k. 

Computational details for BMA in linear models with orthogonal regressors and a 

g-prior are given in Clyde (1999a) and Clyde, Desimone, and Parmigiani (1996).  (As 

Clyde, Desimone, and Parmigiani (1996) point out, the method of orthogonalization is 

irrelevant when a g-prior is used, so weighted principal components can be used instead 

of standard PCA.)  Let γj be a binary random variable indicating whether regressor j is in 

the model, and treat γj as independently (but not necessarily identically) distributed with 

prior probability πj = Pr(γj = 1).  Suppose that 2
εσ  is known.  Because the regressors are 

exogenous and the errors are normally distributed, the OLS estimators { ˆ
jβ } are 

sufficient statistics.  Because the regressors are orthogonal, γj, βj, and ˆ
jβ  are jointly 

independently distributed over j.  Consequently, the posterior mean of βj depends on the 

data only through ˆ
jβ  and is given by, 

 

E(βj| ˆ
jβ , 2

εσ ) = a(g) ˆ
jβ  × Pr(γj = 1| ˆ

jβ , 2
εσ )    (28) 

 34



 

where g is the g-prior parameter (Clyde (1999)).  Thus the weights in the BMA forecast 

can be computed analytically, eliminating the need for a stochastic sampling scheme to 

approximate (27).  The expression (28) treats 2
εσ  as known.  The full BMA estimator can 

be computed by integrating over 2
εσ , alternatively one could use a plug-in estimator of 

2
εσ  as suggested by Clyde (1999). 

Bayesian model selection.  Bayesian model selection entails selecting the model 

with the highest posterior probability and using that model as the basis for forecasting;  

see the reviews by George (1999) and Chipman, George, and McCulloch (2001).  With 

suitable choice of priors, BMA can yield Bayesian model selection.  For example, 

Fernandez, Ley and Steele (2001a) provide conditions on the choice of g as a function of 

k and T that produce consistent Bayesian model selection, in the sense that the posterior 

probability of the true model tends to one (the asymptotics hold the number of models K 

fixed as T → ∞).  In particular they show that, if g = 1/T and the number of models K is 

held fixed, then the g-prior BMA method outlined above, with a flat prior over models, is 

asymptotically equivalent to model selection  using the BIC. 

Like other forms of model selection, Bayesian model selection might be expected 

to perform best when the number of models is small relative to the sample size.  In the 

applications of interest in this survey, the number of models is very large and Bayesian 

model selection would be expected to share the problems of model selection more 

generally. 

Extension to h-step ahead forecasts.  The algorithm outlined above does not 

extend to iterated multiperiod forecasts because the analysis is conditional on X and Z 

(models for X and Z are never estimated).  Although the algorithm can be used to produce 

multiperiod forecasts, its derivation is inapplicable because the error term εt in (23) is 

modeled as i.i.d., whereas it would be MA(h–1) if the dependent variable were , and 

the likelihood calculations leading to (27) no longer would be valid. 

h
t hY +

In principle, BMA could be extended to multiperiod forecasts by calculating the 

posterior using the correct likelihood with the MA(h–1) error term, however the 

simplicity of the g-prior development would be lost and in any event this extension seems 
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not to be in the literature.  Instead, one could apply the formulas in (27), simply replacing 

Yt+1 with ; this approach is taken by Koop and Potter (2004), and although the formal 

BMA interpretation is lost the expressions provide an intuitively appealing alternative to 

the forecast combining methods of Section 3, in which only a single X appears in each 

model. 

h
t hY +

Extension to endogenous regressors.  Although the general theory of BMA does 

not require strict exogeneity, the calculations based on the g-prior leading to the average 

forecast (27) assume that {Xt, Zt} are strictly exogenous.  This assumption is clearly false 

in a macro forecasting application.  In practice, Zt (if present) consists of lagged values of 

Yt and one or two key variables that the forecaster “knows” to belong in the forecasting 

equation.  Alternatively, if the regressor space has been orthogonalized, Zt could consist 

of lagged Yt and the first few one or two factors.  In either case, Z is not strictly 

exogenous.  In macroeconomic applications, Xt is not strictly exogenous either.  For 

example, a typical application is forecasting output growth using many interest rates, 

measures of real activity, measures of wage and price inflation, etc.;  these are 

predetermined and thus are valid predictors but X has a future path that is codetermined 

with output growth, so X is not strictly exogenous. 

It is not clear how serious this critique is.  On the one hand, the model-based 

posteriors leading to (27) evidently are not the true posteriors Pr(Mk|DT) (the likelihood is 

fundamentally misspecified), so the elegant decision theoretic conclusion that BMA 

combining is the optimal Bayes predictor does not apply.  On the other hand, the weights 

in (27) are simple and have considerable intuitive appeal as a competitor to forecast 

combining.  Moreover, BMA methods provide computational tools for combining many 

models in which multiple predictors enter;  this constitutes a major extension of forecast 

combining as discussed in Section 3, in which there were only n models, each containing 

a single predictor.  From this perspective, BMA can be seen as a potentially useful 

extension of forecast combining, despite the inapplicability of the underlying theory. 

 

5.2 Survey of the Empirical Literature 
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Aside from the contribution by Min and Zellner (1990), which used BMA 

methods to combine forecasts from one linear and one nonlinear model, the applications 

of BMA to economic forecasting have been quite recent. 

Most of the applications have been to forecasting financial variables.  Avramov 

(2002) applied BMA to the problem of forecasting monthly and quarterly returns on six 

different portfolios of U.S. stocks using n = 14 traditional predictors (the dividend yield, 

the default risk spread, the 90-day Treasury bill rate, etc.).  Avramov (2002) finds that the 

BMA forecasts produce RMSFEs that are approximately two percent smaller than the 

random walk (efficient market) benchmark, in contrast to conventional information 

criteria forecasts, which have higher RMSFEs than the random walk benchmark.  

Cremers (2002) undertook a similar study with n = 14 predictors (there is partial overlap 

between Avramov’s (2002) and Cremer’s (2002) predictors) and found improvements in 

in-sample fit and pseudo out-of-sample forecasting performance comparable to those 

found by Avramov (2002).  Wright (2003) focuses on the problem of forecasting four 

exchange rates using n = 10 predictors, for a variety of values of g.  For two of the 

currencies he studies, he finds pseudo out-of-sample MSFE improvements of as much as 

15% at longer horizons, relative to the random walk benchmark; for the other two 

currencies he studies, the improvements are much smaller or nonexistent.  In all three of 

these studies, n has been sufficiently small that the authors were able to evaluate all 

possible models and simulation methods were not needed to evaluate (27). 

We are aware of only two applications of BMA to forecasting macroeconomic 

aggregates.  Koop and Potter (2004) focused on forecasting GDP and the change of 

inflation using n = 142 quarterly predictors, which they orthogonalized by transforming 

to principal components.  They explored a number of different priors and found that 

priors that focused attention on the set of principal components that explained 99.9% of 

the variance of X provided the best results.  Koop and Potter (2004) concluded that the 

BMA forecasts improve on benchmark AR(2) forecasts and on forecasts that used BIC-

selected factors (although this evidence is weaker) at short horizons, but not at longer 

horizons.  Wright (2004) considers forecasts of quarterly U.S. inflation using n = 93 

predictors; he used the g-prior methodology above, except that he only considered 

models with one predictor, so there are only a total of n models under consideration.  
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Despite ruling out models with multiple predictors, he found that BMA can improve upon 

the equal-weighted combination forecasts. 

 

6.  Empirical Bayes Methods 
 

The discussion of BMA in the previous section treats the priors as reflecting 

subjectively held a-priori beliefs of the forecaster or client.  Over time, however, 

different forecasters using the same BMA framework but different priors will produce 

different forecasts, and some of those forecasts will be better than others:  the data can 

inform the choice of “priors” so that the priors chosen will perform well for forecasting.  

For example, in the context of the BMA model with prior probability π of including a 

variable and a g-prior for the coefficient conditional upon inclusion, the hyperparameters 

π and g both can be chosen, or estimated, based on the data.    

This idea of using Bayes methods with an estimated, rather than subjective, prior 

distribution is the central idea of empirical Bayes estimation.  In the many-predictor 

problem, because there are n predictors, one obtains many observations on the empirical 

distribution of the regression coefficients; this empirical distribution can in turn be used 

to find the prior (to estimate the prior) that comes as close as possible to producing a 

marginal distribution that matches the empirical distribution. 

The method of empirical Bayes estimation dates to Robbins (1955, 1964), who 

introduced nonparametric empirical Bayes methods.  Maritz and Lwin (1989), Carlin and 

Louis (1996), and Lehmann and Casella (1998, Section 4.6) provide monograph and 

textbook treatments of empirical Bayes methods.  Recent contributions to the theory of 

empirical Bayes estimation in the linear model with orthogonal regressors include George 

and Foster (2000) and Zhang (2003, 2005).  For an early application of empirical Bayes 

methods to economic forecasting using VARs, see Doan, Litterman, and Sims (1984). 

This section lays out the basic structure of empirical Bayes estimation, as applied 

to the large-n linear forecasting problem.  We focus on the case of orthogonalized 

regressors (the regressors are the principle components or weighted principle 

components).  We defer discussion of empirical experience with large-n empirical Bayes 

macroeconomic forecasting to Section 7. 
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6.1.  Empirical Bayes Methods for Large-n Linear Forecasting 

The empirical Bayes model consists of the regression equation for the variable to 

be forecasted plus a specification of the priors.  Throughout this section we focus on 

estimation with n orthogonalized regressors.  In the empirical applications these 

regressors will be the factors, estimated by PCA, so we denote these regressors by the 

n×1 vector Ft, which we assume have been normalized so that  = In.  We 

assume that n < T so all the principal components are nonzero; otherwise, n in this section 

would be replaced by n′ = min(n,T).  The starting point is the linear model, 

1
1

T
t tt

T F−
=

′∑ F

 

Yt+1 = β′Ft + εt+1     (29) 

 

where {Ft} is treated as strictly exogenous.  The vector of coefficients β is treated as 

being drawn from a prior distribution.  Because the regressors are orthogonal, it is 

convenient to adopt a prior in which the elements of β are independently (although not 

necessarily identically) distributed, so that βi has the prior distribution Gi, i = 1,…, n.  

If the forecaster has a squared error loss function, then the Bayes risk of the 

forecast is minimized by using the Bayes estimator of β, which is the posterior mean.  

Suppose that the errors are i.i.d. N(0, 2
εσ ), and for the moment suppose that 2

εσ  is known.  

Conditional on β, the OLS estimators, { îβ }, are i.i.d. N(0, 2
εσ /T); denote this conditional 

pdf by φ.  Under these assumptions, the Bayes estimator of βi is,  

 

ˆ B
iβ  = 

ˆ( )d ( )

)ˆ( )d (
i i

i i

x x G x

x G x

φ β

φ β

−

−
∫
∫

î= β  + 2
εσ ˆ( )i iβ ,    (30) 

 

where  = dln(mi(x))/dx, where mi(x) = ( )i x ( ) ( )ix dGφ β−∫ β  is the marginal distribution 

of îβ .  The second expression in (30) is convenient because it represents the Bayes 

 39



estimator as a function of the OLS estimator, 2
εσ , and the score of the marginal 

distribution (see for example Maritz and Lwin (1989)). 

Although the Bayes estimator minimizes the Bayes risk and is admissible, from a 

frequentist perspective it (and the Bayes forecast based on the predictive density) can 

have poor properties if the prior places most of its mass away from the true parameter 

value.  The empirical Bayes solution to this criticism is to treat the prior as an unknown 

distribution to be estimated.  To be concrete, suppose that the prior is the same for all i, 

that is, Gi = G for all i.  Then { îβ } constitute n i.i.d. draws from the marginal distribution 

m, which in turn depends on the prior G.  Because the conditional distribution φ is 

known, this permits inference about G.  In turn, the estimator of G can be used in (30) to 

compute the empirical Bayes estimator.  The estimation of the prior can be done either 

parametrically or nonparametrically. 

Parametric empirical Bayes.  The parametric empirical Bayes approach entails 

specifying a parametric prior distribution, Gi(X;θ), where θ is an unknown parameter 

vector that is common to all the priors.  Then the marginal distribution of îβ  is mi(x;θ) = 

( ) ( ;ix dG )φ β β−∫ θ .  If Gi = G for all i, then there are n i.i.d. observations on îβ  from the 

marginal m(x;θ), and inference can proceed by maximum likelihood or by method of 

moments. 

In the application at hand, where the regressors are the principal components, one 

might specify a prior with a spread that declines with i following some parametric 

structure.  In this case, { îβ } constitute n independent draws from a heteroskedastic 

marginal distribution with parameterized heteroskedasticity, which again permits 

estimation of θ.  Although the discussion has assumed that 2
εσ  is known, it can be 

estimated consistently if n, T → ∞ as long as n/T → const < 1. 

As a leading case, one could adopt the conjugate g-prior.  An alternative approach 

to parameterizing Gi is to adopt a hierarchical prior.  Clyde and George (2000) take this 

approach for wavelet transforms, as applied to signal compression, where the prior is 

allowed to vary depending on the wavelet level. 
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Nonparametric empirical Bayes.  The nonparametric empirical Bayes approach 

treats the prior as an unknown distribution.  Suppose that the prior is the same (G) for all 

i, so that  =  for all i.  Then the second expression in (30) suggests the estimator, i

 

ˆ NEB
iβ  = îβ  + 2

εσ ˆˆ( )iβ ,     (31) 

 

where  is an estimator of .  ˆ

The virtue of the estimator (31) is that it does not require direct estimation of G; 

for this reason, Maritz and Lwin (1989) refer to it as a simple empirical Bayes estimator.  

Instead, the estimator (31) only requires estimation of the derivative of the log of the 

marginal likelihood, ( )x  = dln(mi(x))/dx = (dm(x)/dx)/m(x).  Nonparametric estimation 

of the score of i.i.d. random variables arises in other applications in statistics, in particular 

adaptive estimation, and has been extensively studied.  Going into the details would take 

us beyond the scope of this survey, so instead the reader is referred to Maritz and Lwin 

(1989), Carlin and Louis (1996), and Bickel, Klaassen, Ritov, and Wellner (1993). 

Optimality results.  Robbins (1955) considered nonparametric empirical Bayes 

estimation in the context of the compound decision problem, in which there are samples 

from each of n units, where the draws for the ith unit are from the same distribution, 

conditional on some parameters, and these parameters in turn obey some distribution G.  

The distribution G can be formally treated either as a prior, or simply as an unknown 

distribution describing the population of parameters across the different units.  In this 

setting, given G, the estimator of the parameters that minimizes the Bayes risk is the 

Bayes estimator.  Robbins (1955, 1964) showed that it is possible to construct empirical 

Bayes estimators that are asymptotically optimal, that is, empirical Bayes estimators that 

achieve the Bayes risk based on the infeasible Bayes estimator using the true unknown 

distribution G as the number of units tends to infinity. 

At a formal level, if n/T → c, 0 < c < 1, and if the true parameters βi are in a 1/n1/2 

neighborhood of zero, then the linear model with orthogonal regressors has a similar 

mathematical structure to the compound decision problem.  Knox, Stock and Watson 

(2000) provide results about the asymptotic optimality of the parametric and 
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nonparametric empirical Bayes estimators.  They also provide conditions under which the 

empirical Bayes estimator (with a common prior G) is, asymptotically, the minimum risk 

equivariant estimator under the group that permutes the indexes of the regressors. 

Extension to lagged endogenous regressors.  As in the methods of Sections 3 – 

5, in practice it can be desirable to extend the linear regression model to include an 

additional set of regressors, Zt, that the researcher has confidence belong in the model; 

the leading case is when Zt consists of lags of Yt.  The key difference between Zt and Ft is 

associated with the degree of certainty about the coefficients:  Zt are variables that the 

researcher believes to belong in the model with potentially large coefficients, whereas Ft 

is viewed as having potentially small coefficients.  In principle a separate prior could be 

specified for the coefficients on Zt.  By analogy to the treatment in BMA, however, a 

simpler approach is to replace Xt and Yt+1 in the foregoing with the residuals from initial 

regressions of Xt and Yt+1 onto Zt.  The principal components Ft then can be computed 

using these residuals. 

Extensions to endogenous regressors and multiperiod forecasts.  Like BMA, the 

theory for empirical Bayes estimation in the linear model was developed assuming that 

{Xt, Zt} are strictly exogenous.  As was discussed in Section 5, this assumption is 

implausible in the macroeconomic forecasting.  We are unaware of work that has 

extended empirical Bayes methods to the large-n linear forecasting model with regressors 

that are predetermined but not strictly exogenous. 

 

7.  Empirical Illustration 
 

This section illustrates the performance of these methods in an application to 

forecasting the growth rate of U.S. industrial production using n = 130 predictors.  The 

results in this section are taken from Stock and Watson (2004b), which presents results 

for additional methods and for forecasts of other series. 

 

7.1  Forecasting Methods 

The forecasting methods consist of univariate benchmark forecasts, and five 

categories of multivariate forecasts using all the predictors.  All multi-step ahead 
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forecasts (including the univariate forecasts) were computed by the direct method, that is, 

using a single non-iterated equation with dependent variable being the h-period growth in 

industrial production, , as defined in (1).  All models include an intercept. h
t hY +

Univariate forecasts.  The benchmark model is an AR, with lag length selected 

by AIC (maximum lag = 12).  Results are also presented for an AR(4).  

OLS.  The OLS forecast is based on the OLS regression of h
t hY +  onto Xt and four 

lags of Yt. 

Combination forecasts.  Three combination forecasts are reported.  The first is 

the simple mean of the 130 forecasts based on autoregressive distributed lag (ADL) 

models with four lags each of Xt and Yt.  The second combination forecast is a weighted 

average, where the weights are computed using the expression implied by g-prior BMA, 

specifically, the weights are given by wit in (27) with g = 1, where in this case the number 

of models K equals n (this second method is similar to one of several used by Wright 

(2004)). 

DFM.  Three DFM forecasts are reported.  Each is based on the regression of h
t hY +  

onto the first three factors and four lags of Yt.  The forecasts differ by the method of 

computing the factors.  The first, denoted PCA(3,4), estimates the factors by PCA.  The 

second, denoted diagonal-weighted PCA(3,4), estimates the factors by weighted PCA, 

where the weight matrix Σuu is diagonal, with diagonal element Σuu,ii estimated by the 

difference between the corresponding diagonal elements of the sample covariance matrix 

of Xt and the dynamic principal components estimator of the spectral density matrix of 

the common components, as proposed by Forni, Lippi, Hallin, and Reichlin (2003b).  The 

third DFM forecast, denoted weighted PCA(3,4) is similarly constructed, but also 

estimates the off-diagonal elements of Σuu analogously to the diagonal elements.  

 BMA.  Three BMA forecasts are reported.  The first is BMA as outlined in 

Section with correlated X’s and g = 1/T.  The second two are BMA using orthogonal 

factors computed using the formulas in Clyde (1999a) following Koop and Potter (2004), 

for two values of g, g = 1/T and g = 1. 

Empirical Bayes.  Two parametric empirical Bayes forecasts are reported.  Both 

are implemented using the n principal components for the orthogonal regressors and 
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using a common prior distribution G.  The first empirical Bayes forecast uses the g-prior 

with mean zero, where g and 2
εσ  are estimated from the OLS estimators and residuals.  

The second empirical Bayes forecast uses a mixed normal prior, in which βj = 0 with 

probability 1 – π and is normally distributed, according to a g-prior with mean zero, with 

probability π.  In this case, the parameters g, π,  and the scale σ2  are estimated from the 

OLS coefficients estimates, which allows for heteroskedasticity and autocorrelation in the 

regression error (the autocorrelation is induced by the overlapping observations in the 

direct multiperiod-ahead forecasts). 

 

7.2  Data and comparison methodology 

Data.   The data set consists of 131 monthly U.S. economic time series (industrial 

production plus 130 predictor variables) observed from 1959:1 – 2003:12.  The data set is 

an updated version of the data set used in Stock and Watson (1999).  The predictors 

include series in 14 categories:  real output and income;  employment and hours;  real 

retail, manufacturing and trade sales;  consumption;  housing starts and sales;  real 

inventories; orders;  stock prices;  exchange rates;  interest rates and spreads;  money and 

credit quantity aggregates;  price indexes;  average hourly earnings;  and miscellaneous.  

The series were all transformed to be stationary by taking first or second differences, 

logarithms, or first or second differences of logarithms, following standard practice.  The 

list of series and transformations are given in Stock and Watson (2004b). 

Method for forecast comparisons.  All forecasts are pseudo out-of-sample and 

were computed recursively (demeaning, standardization, model selection, and all model 

estimation, including any hyperparameter estimation, was done recursively).  The period 

for forecast comparison is 1974:7 – (2003:12 – h).  All regressions start in 1961:1, with 

earlier observations used for initial conditions.  Forecast risk is evaluated using the mean 

squared forecast errors (MSFEs) over the forecast period, relative to the AR(AIC) 

benchmark.   

 

7.3  Empirical Results 

The results are summarized in Table 1.  These results are taken from Stock and 

Watson (2004b), which reports results for other variations on these methods and for more 

 44



variables to be forecasted.  Because the entries are MSFEs, relative to the AR(AIC) 

benchmark, entries less than one indicate a MSFE improvement over the AR(AIC) 

forecast.  As indicated in the first row, the use of AIC to select the benchmark model is 

not particularly important for these results:  the performance of an AR(4) and the 

AR(AIC) are nearly identical.  More generally, the results in Table 1 are robust to 

changes in the details of forecast construction, for example using an information criterion 

to select lag lengths.   

It would be inappropriate to treat this comparison, using a single sample period 

and a single target variable, as a horse race that can determine which of these methods is 

“best.”  Still, the results in Table 1 suggest some broad conclusions.  Most importantly, 

the results confirm that it is possible to make substantial improvements over the 

univariate benchmark if one uses appropriate methods for handling this large data set.  At 

forecast horizons of one through six months, these forecasts can reduce the AR(AIC) 

benchmark by 15% to 33%.  Moreover, as expected theoretically, the OLS forecast with 

all 130 predictors much performs much worse than the univariate benchmark. 

As found in the research discussed in Section 4, the DFM forecasts using only a 

few factors – in this case, three – improve substantially upon the benchmark.  For the 

forecasts of industrial production, there seems to be some benefit from computing the 

factors using weighted PCA rather than PCA, with the most consistent improvements 

arising from using the non-diagonal weighting scheme.  Interestingly, nothing is gained 

by trying to exploit the information in the additional factors beyond the third using either 

BMA, applied to the PCA factors, or empirical Bayes methods.  In addition, applying 

BMA to the original X’s does not yield substantial improvements.  Although simple mean 

averaging of individual ADL forecasts improves upon the autoregressive benchmark, the 

simple combination forecasts do not achieve the performance of the more sophisticated 

methods.  The more complete analysis in Stock and Watson (2004b) shows that this 

interesting finding holds for other horizons and for forecasts of other U.S. series:  low 

dimensional forecasts using the first few PCA or weighted PCA estimators of the factors 

forecast as well or better than the methods like BMA that use many more factors. 

A question of interest is how similar these different forecasting methods are.  All 

the forecasts use information in lagged Yt, but they differ in the way they handle 
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information in Xt.  One way to compare the treatment of Xt by two forecasting methods is 

to compare the partial correlations of the in-sample predicted values from the two 

methods, after controlling for lagged values of Yt.  Table 2 reports these partial 

correlations for the methods in Table 1, based on full-sample one-step ahead regressions.  

The interesting feature of Table 2 is that the partial correlations among some of these 

methods is quite low, even for methods that have very similar MSFEs.  For example, the 

PCA(3,4) forecast and the BMA/X forecast with g = 1/T both have relative MSFE of 

0.83, but the partial correlation of their in-sample predicted values is only 0.67.  This 

suggests that the forecasting methods in Table 2 imply substantially different weights on 

the original Xt data, which suggests that there could remain room for improvement upon 

the forecasting methods in Table 2. 

 

8.  Discussion 
 

The past few years have seen considerable progress towards the goal of exploiting 

the wealth of data that is available for economic forecasting in real time.  As the 

application to forecasting industrial production in Section 7 illustrates, these methods can 

make substantial improvements upon benchmark univariate models.  Moreover, the 

empirical work discussed in this review makes the case that these forecasts improve not 

just upon autoregressive benchmarks, but upon standard multivariate forecasting models. 

Despite this progress, the methods surveyed in this chapter are limited in at least 

three important respects, and work remains to be done.  First, these methods are those 

that have been studied most intensively for economic forecasting, but they are not the 

only methods available.  For example, Inoue and Kilian (2003) examine forecasts of U.S. 

inflation with n = 26 using bagging, a weighting scheme in which the weights are 

produced by bootstrapping forecasts based on pretest model selection.  They report 

improvements over PCA factor forecasts based on these 26 predictors.  As mentioned in 

the introduction, Bayesian VARs are now capable of handling a score or more of 

predictors, and a potential advantage of Bayesian VARs is that they can produce iterated 

multistep forecasts.  Also, there are alternative model selection methods in the statistics 

literature that have not yet been explored in economic forecasting applications, e.g. the 
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LARS method (Efron, Hastie, Johnstone, and Tibshirani (2004)) or procedures to control 

the false discovery rate (Benjamin and Hochberg (1995)). 

Second, all these forecasts are linear.  Although the economic forecasting 

literature contains instances in which forecasts are improved by allowing for specific 

types of nonlinearity, introducing nonlinearities has the effect of dramatically increasing 

the dimensionality of the forecasting models.  To the best of our knowledge, nonlinear 

forecasting with many predictors remains unexplored in economic applications. 

Third, changes in the macroeconomy and in economic policy in general produces 

linear forecasting relations that are unstable, and indeed there is considerable empirical 

evidence of this type of nonstationarity in low-dimensional economic forecasting models 

(e.g. Clements and Hendry (1999), Stock and Watson (1996, 2003)).  This survey has 

discussed some theoretical arguments and empirical evidence suggesting that some of 

this instability can be mitigated by making high-dimensional forecasts:  in a sense, the 

instability in individual forecasting relations might, in some cases, average out.  But 

whether this is the case generally, and if so which forecasting methods are best able to 

mitigate this instability, largely remains unexplored. 
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Table 1. 

 
Forecasts of U.S. Industrial Production Growth using 130 Monthly Predictors: 

Relative Mean Square Forecast Errors for Various Forecasting Methods 
 
 

Method 1 3 6 12 
Univariate benchmarks     

AR(AIC) 1.00 1.00 1.00 1.00 
AR(4) 0.99 1.00 0.99 0.99 

Multivariate forecasts     
(1) OLS  1.78 1.45 2.27 2.39 
(2) Combination forecasts     

Mean 0.95 0.93 0.87 0.87 
SSR-weighted average 0.85 0.95 0.96 1.16 

(3) DFM     
PCA(3.4) 0.83 0.70 0.74 0.87 

Diagonal weighted PC(3.4) 0.83 0.73 0.83 0.96 
Weighted PC(3.4) 0.82 0.70 0.66 0.76 

    
(4) BMA     

X’s, g = 1/T 0.83 0.79 1.18 1.50 
 Principal components, g = 1 0.85 0.75 0.83 0.92 

Principal components, g = 1/T 0.85 0.78 1.04 1.50 
(5) Empirical Bayes     

Parametric/g-prior 1.00 1.04 1.56 1.92 
Parametric/mixed normal prior 0.93 0.75 0.81 0.89 

 
Notes:  Entries are relative MSFEs, relative to the AR(AIC) benchmark.  All forecasts are 
recursive (pseudo out-of-sample), and the MSFEs were computed over the period 1974:7 
– (2003:12 – h).  The various columns correspond to forecasts of 1, 3, 6, and 12-month 
growth, where all the multiperiod forecasts were computed by direct (not iterated) 
methods.  The forecasting methods are described in the text. 
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Table 2. 

 
Partial Correlations between Large-n Forecasts, Given Four Lags of Yt 

 
 

Method (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
(1) Combination:  mean 1.00          
(2) Combination: SSR-wtd .63 1.00         
(3) PCA(3.4) .71 .48 1.00        
(4) Diagonal wtd PC(3.4) .66 .56 .90 1.00       
(5) Weighted PC(3.4) .78 .57 .82 .86 1.00      
(6) BMA/X’s, g = 1/T .73 .77 .67 .71 .71 1.00     
(7) BMA/PC’s, g = 1 .76 .61 .62 .61 .72 .82 1.00    
(8) BMA/PC’s, g = 1/T .77 .62 .68 .68 .77 .80 .95 1.00   
(9) PEB/g-prior .68 .56 .52 .50 .60 .77 .97 .85 1.00  
(10) PEB/mixed .79 .63 .70 .70 .80 .82 .96 .99 .87 1.00 
 
Notes:  The forecasting methods are defined in the text.  Entries are the partial 
correlations between the in-sample predicted values from the different forecasting 
models, all estimated using Yt+1 as the dependent variable and computed over the full 
forecast period, where the partial correlations are computed using the residuals from the 
projections of the in-sample predicted values of the two forecasting methods being 
correlated onto four lagged values of Yt. 
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Abstract

We examine the problems of dealing with trending type data when there is uncer-

tainty over whether or not we really have unit roots in the data. This uncertainty

is practical – for many macroeconomic and financial variables unit root tests fail to

reject. This means that there may be a unit root or roots close to the unit circle. We

examine forecast models that are univariate and multivariate, as well as regressions

where included regressors display persistence.

1 Introduction

In the seminal paper Granger (1966) showed that the majority of macroeconomic variables

have a typical spectral shape dominated by a peak at low frequencies. From a time domain

view this means that there is some relatively long run information in the current level of a

variable, or alternately stated that there is some sort of ’trending’ behavior in macroeconomic

(and many financial) data that must be taken account of when modelling these variables.

The flip side of this finding is that there is exploitable information for forecasting, today’s

levels having a large amount of predictive power as to future levels of these variables. The

difficulty that arises is being precise about what this trending behavior exactly is. By virtue

of trends being slowly evolving by definition, in explaining the long run movements of the

data there is simply not a lot of information in any dataset as to exactly how to specify this

trend, nor is there a large amount of information available in any dataset for being able to

distinguish between different models of the trend.
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This chapter reviews the approaches to this problem in the econometric forecasting lit-

erature. In particular we examine attempts to evaluate the importance or lack thereof of

particular assumptions on the nature of the trend. Intuitively we expect that the forecast

horizon will be important. For longer horizons the long run behavior of the variable will

become more important, which can be seen analytically. For the most part, the typical

approach to the trending problem in practice has been to follow the Box and Jenkins (1970)

approach of differencing the data, which amounts to the modelling of the apparent low fre-

quency peak in the spectrum as being a zero frequency phenomenon. Thus the majority of

the work has been in considering the imposition of unit roots at various parts of the model.

We will follow this approach, examining the effects of such assumptions.

Since reasonable alternative specifications must be ’close’ to models with unit roots, it

follows directly to concern ourselves with models that are close on some metric to the unit

root model. The relevant metric is the ability of tests to distinguish between the models of

the trend – if tests can easily distinguish the models then there is no uncertainty over the

form of the model and hence no trade-off to consider. However the set of models for this is

extremely large, and for most of the models little analytic work has been done. To this end we

concentrate on linear models with near unit roots. We exclude breaks, which are covered in

the chapter by Clements and Hendry in this volume. Also excluded are nonlinear persistent

models, such as threshold models, smooth transition autoregressive models. Finally, more

recently a literature has developed on fractional differencing, providing an alternative model

to the near unit root model through the addition of a greater range of dynamic behavior.

We do not consider these models either as the literature on forecasting with such models is

still in early development.

Throughout, we are motivated by some general ’stylized’ facts that accompany the pro-

fessions experience with forecasting macroeconomic and financial variables. The first is the

phenomenon of our inability in many cases to do better than the ’unit root forecast’, i.e. our

inability to say much more in forecasting a future outcome than giving today’s value. This

most notoriously arises in foreign exchange rates (the seminal paper is Meese and Rogoff

(1983)) where changes in the exchange rate have not been easily forecast except at quite dis-

tant horizons). In multivariate situations as well imposition of unit roots (or the imposition

of near unit roots such as in the Litterman vector autoregressions (VARs)) tend to perform
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better than models estimated in levels. The second is that for many difficult to forecast

variables, such as the exchange rate or stock returns, predictors that appear to be useful

tend to display trending behavior and also seem to result in unstable forecasting rules. The

third is that despite the promise that cointegration would result in much better forecasts,

evidence is decidedly mixed and Monte Carlo evidence is ambiguous.

We first consider the differences and similarities of including nonstationary (or near non-

stationary) covariates in the forecasting model. This is undertaken in the next section. Many

of the issues are well known from the literature on estimation of these models, and the results

for forecasting follow directly. Considering the average forecasting behavior over many repli-

cations of the data, which is relevant for understanding the output of Monte Carlo studies,

we show that inclusion of trending data has a similar order effect in terms of estimation

error as including stationary series, despite the faster rate of convergence of the coefficients.

Unlike the stationary case, however, the effect depends on the true value of the coefficients

rather than being uniform across the parameter space.

The third section focusses on the univariate forecasting problem. It is in this, the simplest

of models, that the effects of the various nuisance parameters that arise can be most easily

examined. It is also the easiest model in which to examine the effect of the forecast horizon.

The section also discusses the ideas behind conditional versus unconditional (on past data)

approaches and the issues that arise.

Given the general lack of discomfort the profession has with imposing unit roots, cointe-

gration becomes an important concept for multivariate models. We analyze the features of

taking cointegration into account when forecasting in section three. In particular we seek to

explain the disparate findings in both Monte Carlo studies and with using real data. Dif-

ferent studies have suggested different roles for the knowledge of cointegration at different

frequencies, results that can be explained by the nuisance parameters of the models chosen

to a large extent.

We then return to the ideas that we are unsure of the trending behavior, examining

’near’ cointegrating models where either the covariates do not have an exact unit root or the

cointegrating vector itself is trending. These are both theoretically and empirically common

issues when it comes to using cointegrating methods and modelling multivariate models.

In section five we examine the trending ’mismatch’ models where trending variables
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are employed to forecast variables that do not have any obvious trending behavior. This

encompasses many forecasting models used in practice.

In a very brief section six we review issues revolving around forecast evaluation. This

has not been a very developed subject and hence the review is short. We also briefly review

other attempts at modelling trending behavior.

2 Model Specification and Estimation

We first develop a number of general points regarding the problem of forecasting with non-

stationary or near nonstationary variables and highlight the differences and similarities in

forecasting when all of the variables are stationary and when they exhibit some form of

trending behavior.

Define Zt to be deterministic terms,Wt to be variables that display trending behavior and

Vt to be variables that are clearly stationary. First consider a linear forecasting regression

when the variable set is limited to {Vt}. Consider the linear forecasting regression is

yt+1 = βVt + ut+1

where throughout β will refer to an unknown parameter vector in keeping with the context

of the discussion and β̂ refers to an estimate of this unknown parameter vector using data

up to time T . The expected one step ahead forecast loss from estimating this model is given

by

EL(yT+1 − β̂
0
VT ) = EL(uT+1 − T−1/2{T 1/2(β̂ − β)0VT})

The expected loss then depends on the loss function as well as the estimator. In the case of

mean square error (MSE) and ordinary least squares (OLS) estimates (denoted by subscript

OLS), this can be asymptotically approximated to a second order term as

E[(yT+1 − β̂
0
OLSVT )

2 ≈ σ2u(1 +mT−1)

where m is the dimension of Vt.The asymptotic approximation follows from mean of the

term Tσ−2u (β̂OLS − β)0VTVT (β̂OLS − β) being fairly well approximated by the mean of a χ2m

random variable over repeated draws of {yt, Vt}T+11 . (If the variables VT are lagged dependent

variables the above approximation is not the best available, it is well known that in such

4



cases the OLS coefficients have an additional small bias which is ignored here). The first

point to notice is that the term involving the estimated coefficients disappears at rate T for

the MSE loss function, or more generally adds a term that disappears at rate T 1/2 inside the

loss function. The second point is that this is independent of β, and hence there are no issues

in thinking about the differences in ’risk’ of using OLS for various possible parameterizations

of the models. Third, this result is not dependent on the variance covariance matrix of the

regressors. When we include nonstationary or nearly nonstationary regressors, we will see

that the last two of these results disappear, however the first – against often stated intuition

– remains the same.

Before we can consider the addition of trending regressors to the forecasting model, we

first must define what this means. As noted in the introduction, this chapter does not

explicitly examine breaks in coefficients. For the purposes of most of the chapter, we will

consider nonstationary models where there is a unit root in the autoregressive representation

of the variable. Nearly nonstationary models will be ones where the largest root of the

autoregressive process, denoted as above by ρ, is ’close’ to one. To be clear, we require a

definition of close.

A reasonable definition of what we would mean by ’close to one’ is values for ρ that are

difficult to distinguish from one. Consider a situation where ρ is sufficiently far from one that

standard tests for a unit root would reject always, i.e. with probability one. In such cases,

there we clearly have no uncertainty over whether or not the variable is trending or not –

it isn’t. Further, treating variables with such little persistence as being ’stationary’ does not

create any great errors. The situation where we would consider that there is uncertainty over

whether or not the data is trending, i.e. whether or not we can easily reject a unit root in

the data, is the range of values for ρ where tests have difficulty distinguishing between this

value of ρ and one. Since a larger number of observations helps us pin down this parameter

more precisely, the range over ρ for which we have uncertainly shrinks as the sample size

grows.

Thus we can obtain the relevant range, as a function of the number of observations,

through examining the local power functions of unit root tests. Local power is obtained

by these tests for ρ shrinking towards one at rate T, i.e. for local alternatives of the form

ρ = 1−γ/T for γ fixed. We will use these local to unity asymptotics to evaluate asymptotic
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properties of the methods below. This makes ρ dependent on T , however we will suppress

this notation. It should be understood that any model we consider has a fixed value for ρ,

which will be understood for any sample size using asymptotic results for the corresponding

value for γ given T.

It still remains to ascertain the relevant values for γ and hence pairs (ρ, T ). It is well

known that our ability to distinguish unit roots from those less than one depends on a number

of factors including the initialization of the process and the specification of the deterministic

terms. From Stock (1994).the relevant ranges can be read from his Figure 2 (p2774-5) for

various tests and configurations of the deterministic component when initial conditions are

set to zero effectively,when a mean is included the range for γ over which there is uncertainty

is from zero to about γ = 20. When a time trend is included uncertainty is greater, the

relevant uncertain range is from zero to about γ = 30. Larger initial conditions extend the

range over γ for which tests have difficulty distinguishing the root from one (see Mueller and

Elliott (2001)). For these models approximating functions of sample averages with normal

distributions is not appropriate and instead these processes will be better approximated

through applications of the Functional Central Limit Theorem.

Having determined what we mean by trending regressors, we can now turn to evaluating

the similarities and difference with the stationary covariate models. We first split the trend-

ing and stationary covariates, as well as introduce the deterministics (as is familiar in the

study of the asymptotic behavior of trending regressors when there are deterministic terms,

these terms play a large role through altering the asymptotic behavior of the coefficients on

the trending covariates). The model can be written

yt+1 = β01Wt + β02Vt + u1t

where we recall thatWt are the trending covariates and Vt are the stationary covariates. In a

linear regression the coefficients on variables with a unit root converge at the faster rate of T.

(For the case of unit roots in a general regression framework, see Phillips and Durlauf (1986)

and Sims, Stock and Watson (1990), the similar results for the local to unity case follow

directly, see Elliott (1998) for example). We can write the loss from using OLS estimates of

the linear model as

L(yT+1−β̂
0
1,OLSWT−β̂

0
2,OLSVT ) = L(uT+1−T−1/2[T (β̂1,OLS−β1)0T−1/2WT+T

1/2(β̂2,OLS−β2)0VT ])
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where T−1/2WT and VT are 0p(1). Notice that for the trending covariates we divide each of

the trending regressors by the square root of T. But this is precisely the rate at which they

diverge, and hence these too are Op(1) variables.

Now consider the three points above. First, standard intuition suggests that when we mix

stationary and nonstationary (or nearly nonstationary) variables we can to some extent be

less concerned with the parameter estimation on the nonstationary terms as they disappear

at the faster rate of T as the sample size increases, hence they are an order of magnitude

smaller than the coefficients on the stationary terms, at least asymptotically. However this

is not true – the variables they multiply in the loss function grow at exactly this rate faster

than the stationary covariates, so in the end they all end up making a contribution of the

same order to the loss function. For MSE loss, this is that the terms disappear at rate T

regardless of whether they are stationary or nonstationary (or deterministic, which was not

shown here but follows by the same math).

Now consider the second and third points. The OLS coefficients T (β̂1,OLS−β1) converge

to nonstandard distributions which depend on the model through the local to unity parameter

γ as well as other nuisance parameters of the model. The form depends on the specifics of

the model, precise examples of this for various models will be given below. In the MSE

loss case, terms such as E[T (β̂1,OLS − β1)
0WTW

0
T (β̂1,OLS − β1) appear in the expected mean

square error.

Hence not only is the additional component to the expected loss when parameters are

estimated now not well approximated by the number of parameters divided by T but it

depends on γ through the expected value of the nonstandard term. Thus the OLS risk

is now dependent on the true model, and one must think about what the true model is

to evaluate what the OLS risk would be. This is in stark contrast to the stationary case.

Finally, it also depends on the covariates themselves, since they also affect this nonstandard

distribution and hence its expected value. The nature and dimension of any deterministic

terms will additionally affect the risk through affecting this term. As is common in the

nonstationary literature, whilst definitive statements can be made actual calculations will

be special to the precise nature of the model and the properties of the regressors. The upshot

is that it is not true that we can ignore the effects of the trending regressors asymptotically

when evaluating expected loss because of their fast rate of convergence, and that the precise

7



effects will vary from specification to specification.

This understanding drives the approach of the following. First, we will ignore for the

most part the existence and effect of ’obviously’ stationary covariates in the models. The

main exception is the inclusion of error correction terms, which are closely related to the

nonstationary terms and become part of the story. Second, we will proceed with a number

of ’canonical’ models – since the results differ from specification to specification it is more

informative to analyze a few standard models closely.

A final general point refers to loss functions. Numerical results for trade-offs and evalua-

tion of the effects of different methods for dealing with the trends will obviously depend on

the loss function chosen. The typical loss function chosen in this literature is that of mean

square error (MSE). If the h step ahead forecast error conditional on information available

at time t is denoted et+h|t this is simply E[e2t+h|t].In the case of multivariate models, multi-

variate versions of MSE have been examined. In this case the h step ahead forecast error

is a vector and the analog to univariate MSE is E[e0t+h|tKet+h|t] for some matrix of weights

K. Notice that for each different choice of K we would have a different weighting of the

forecast errors in each equation of the model and hence a different loss function, resulting

in numerical evaluations of any choices over modelling to depend on K. Some authors have

considered this a weakness of this loss function but clearly it is simply a feature of the real-

ity that different loss functions necessarily lead to different outcomes precisely because they

reflect different choices of what is important in the forecasting process. We will avoid this

multivariate problem by simply choosing to evaluate a single equation from any multivariate

problem.

There has also been some criticism of the use of the univariate MSE loss function in

problems where there is a choice over whether or not the dependent variable is written in

levels or differences. Consider a h step ahead forecast of yt and assume that the forecast

is conditional on information at time t, in particular. Now we can always write yT+h =

yT +
Ph

i=1∆yt+i. So for any loss function, including the MSE, that is a function of the
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forecast errors only we have that

L(et+h) = L(yt+h − yt+h,t)

= L

Ã
yt +

hX
i=1

∆yt+i − yt +
hX
i=1

∆yt+i,t

!

= L

Ã
hX
i=1

(∆yt+i −∆yt+i,t)

!

and so the forecast error can be written equivalently in the level or the sum of differences.

Thus there is no implication for the choice of the loss function when we consider the two

equivalent expressions of the forecast error1. We will refer to forecasting yT+h and yT+h−yT

as being the same thing given that we will always assume that yT is in the forecasters

information set.

3 Univariate Models

The simplest model in which to examine the issues, and hence the most examined model in

the literature, is the univariate model. Even in this model results depend on a large variety

of nuisance parameters. Consider the model

yt = φzt + ut t = 1, ..., T. (1)

(1− ρL)ut = vt t = 2, ..., T

u1 = ξ

where zt are strictly exogenous deterministic terms and ξ is the ’initial’ condition. We will

allow additional serial correlation through vt = c(L)εt where εt is a mean zero white noise

term with variance σ2ε. The lag polynomial describing the dynamic behavior of yt has been

factored so that ρ = 1 − γ/T corresponds to the largest root of the polynomial, and we

assume that c(L) is one summable.

1Clements and Hendry (1993)Clements and Hendry (1993) and (1998, p69-70)Clements and Hendry

(1998) argue that the MSFE does not allow valid comparisons of forecast performance for predictions across

models in levels or changes when h > 1. Note though that, conditional on time T dated information in both

cases, they compare the levels loss of E[yT+h− yT ]
2 with the difference loss of E[yT+h− yT+h−1]

2 which are

two different objects, differing by the remaining h− 1 changes in yt.
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Any result is going to depend on the specifics of the problem, i.e. results will depend

on the exact model, in particular the nuisance parameters of the problem. In the literature

on estimation and testing for unit roots it is well known that various nuisance parameters

affect the asymptotic approximations to estimators and test statistics. There as here nuisance

parameters such as the specification of the deterministic part of the model and the treatment

of the initial condition affect results. The extent to which there are additional stationary

dynamics in the model has a lessor effect. For the deterministic component we consider

zt = 1 and zt = (1, t) – the mean and time trend cases respectively. For the initial

condition we follow Mueller and Elliott (2003) in modelling this term asymptotically as

ξ = αω(2γ)−1/2T 1/2 where ω2 = c(1)2σ2ε and the rate T
1/2 results in this term being of the

same order as the stochastic part of the model asymptotically. A choice of a = 1 here

corresponds to drawing the initial condition from its unconditional distribution2. Under

these conditions we have

T−1/2(u[Ts])⇒ ωM(s) =

⎧⎨⎩ ωW (s) for γ = 0

ωαe−γs(2γ)−1/2 + ω
R s
0
e−γ(s−λ)dW (λ) else

(2)

where W (·) is a standard univariate Brownian Motion. Also note that for γ > 0

E[M(s)]2 = α2e−2γs/(2γ) + (1− e−2γs)/(2γ)

= (α2 − 1)e−2γs/(2γ) + 1/(2γ).

which will be used for approximating the MSE below.

If we knew that ρ = 1 then the variable has a unit root and forecasting would proceed

using the model in first differences, following the Box and Jenkins (1970) approach. The

idea that we know there is an exact unit root in a data series is not really relevant in

practice. Theory rarely suggests a unit root in a data series, and even when we can obtain

theoretical justification for a unit root it is typically a special case model (examples include

the Hall (1978) model for consumption being a random walk, also results that suggest stock

prices are random walks). For most applications a potentially more reasonable approach

2It is common in Monte Carlo analysis to generate pseudo time series to be longer than the desired

sample size and then drop early values in order to remove the effects of the initial condition. This, if

sufficient observations are dropped, is the same as using the unconditional distribution. Notice though that

α remains important – it is not possible to remove the effects of the initial condition for these models.
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both empirically and theoretically would be to consider models where ρ ≤ 1 and there is
uncertainty over its exact value. Thus there will be a trade-off between gains of imposing

the unit root when it is close to being true and gains to estimation when we are away from

this range of models.

A first step in considering how to forecast in this situation is to consider the cost of treat-

ing near unit root variables as though they have unit roots for the purposes of forecasting.

To make any headway analytically we must simplify dramatically the models to show the

effects. We first remove serial correlation.

In the case of the model in (1) and c(L) = 1

yT+h − yT = εT+h + ρεT+h−1 + ...+ ρh−1εT+1 + (ρ
h − 1)(yT − φ0zT ) + φ0(zT+h − zT )

=
hX
i=1

ρh−iεT+i + (ρ
h − 1)(yT − φ0zT ) + φ0(zT+h − zT )

Given that largest root ρ describes the stochastic trend in the data, it seems reasonable

that the effects will depend on the forecast horizon. In the short run mistakes in estimating

the trend will differ greatly from when we forecast further into the future. As this is the

case, we will take these two sets of horizons separately.

A number of papers have examined these models analytically with reference to forecasting

behavior. Magnus and Pesaran (1989) examine the model (1) where zt = 1 with normal

errors and c(1) = 1 and establish the exact unconditional distribution of the forecast error

yT+h − yT for various assumptions on the initial condition. Banerjee (2001) examines this

same model for various initial values focussing on the impact of the nuisance parameters on

MSE error using exact results. Some of the results given below are large sample analogs to

these results. Clements and Hendry (2001) follow Sampson (1991) in examining the trade-off

between models that impose the unit root and those that do not for forecasting in both short

and long horizons with the model in (1) when zt = (1, t) and c(L) = 1 where also their model

without a unit root sets ρ = 0. In all but the very smallest sample sizes these models are very

different in the sense described above – i.e. the models are easily distinguishable by tests

– so their analytic results cover a different set of comparisons to the ones presented here.

Stock (1996) examines forecasting with the models in (1) for long horizons, examining the

trade-offs between imposing the unit root or not as well as characterizing the unconditional

forecast errors. Kemp (1999) provides large sample analogs to the Magnus and Pesaran

11



(1989) results for long forecast horizons.

3.1 Short Horizons

Suppose that we are considering imposing a unit root when we know the root is relatively

close to one. Taking the mean case φ = µ and considering a one step ahead forecast, we

have that imposing a unit root leads to the forecast yT of yT+h (where imposing the unit

root in the mean model annihilates the constant term in the forecasting equation). Contrast

this to the optimal forecast based on past observations, i.e. we would use as a forecast

µ+ ρh(yT − µ). These differ by (ρh − 1)(yT − µ) and hence the difference between forecasts

assuming a unit root versus using the correct model will be large if either the root is far

from one or the current level of the variable is far from its mean.

One reason to conclude that the ’unit root’ is hard to beat in an autoregression is that

this term is likely to be small on average, so even knowing the true model is unlikely to yield

economically significant gains in the forecast when the forecasting horizon is short. The

main reason follows directly from the term (ρh − 1)(yT − µ) – for a large effect we require

that (ρh − 1) is large but as the root ρ gets further from one the distribution of (yT − µ)

becomes more tightly distributed about zero.

We can obtain an idea of the size of these affects analytically. In the case where zt = 1,

the unconditional MSE loss for a h step ahead forecast where h is small relative to the sample

size is given by

E[yT+h − yT ]
2 = E[εT+h + ρεT+h−1 + ...+ ρh−1εT+1 + (ρ

h − 1)(yT − µ)]2

= E[εT+1 + ρεT+h−1 + ...+ ρh−1εT+1]
2

+T−1
©
T 2(ρh − 1)2

ª
E[T−1(yT − µ)2]

The first order term is due to the unpredictable future innovations. Focussing on the second

order term, we can approximate the term inside the expectations by its limit and after then

taking expectations this term can be approximated by

σ−2ε T 2(ρh − 1)2E[T−1(yT − µ)2] ≈ 0.5h2γ(α2 − 1)e−2γ + h2γ

2
(3)

As γ increases, the term involving e−2γ gets small fast and hence this term can be ignored.

The first point to note then is that this leaves the result as basically linear in γ – the loss
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as we expect is rising as the imposition of the unit root becomes less sensible and the result

here shows that the effect is linear in the misspecification. The second point to note is that

the slope of this linear effect is h2/2, so is getting large faster and faster for any ρ < 1 the

larger is the prediction horizon. This is also as we expect, if there is mean reversion then the

further out we look the more likely it is that the variable has moved towards its mean and

hence the larger the loss from giving a ’no change’ forecast. The effect is increasing in h, i.e.

given γ the marginal effect of a predicting an extra period ahead is hγ, which is larger the

more mean reverting the data and larger the prediction horizon. The third point is that the

effect of the initial condition is negligible in terms of the cost of imposing the unit root3, as it

appears in the term multiplied by e−2γ. Further, in the case where we use the unconditional

distribution for the initial condition, i.e. α = 1, these terms drop completely. For α 6= 1

there will be some minor effects for very small γ.

The magnitude of the effects are pictured in Figure 1. This figure graphs the effect of

this extra term as a function of the local to unity parameter for h = 1, 2, 3 and α = 1.

Steeper curves correspond to longer forecast horizons. Consider a forecasting problem where

there are 100 observations available, and suppose that the true value for ρ was 0.9. This

corresponds to γ = 10. Reading off the figure (or equivalently from the expression above)

this corresponds to values of this additional term of 5, 20 and 45. Dividing these by the

order of the term, i.e. 100, we have that the additional loss in MSE as a percentage for the

unpredictable component is of the order 5%, 10% and 15% of the size of the unpredictable

component respectively (since the size of the unpredictable component of the forecast error

rises almost linearly in the forecast horizon when h is small).

When we include a time trend in the model, the model with the imposed unit root has a

drift. An obvious estimator of the drift is the mean of the differenced series, denoted by τ̂ .

Hence the forecast MSE when a unit root is imposed is now

E[yT+1 − yT − hτ̂ ]2 ∼= E[εT+h + ρεT+h−1 + ...+ ρh−1εT+1 +

T−1/2{T (ρh − 1) + h}(yT − µ− τT )− hT−1/2u1]
2

= E[εT+h + ρεT+h−1 + ...+ ρh−1εT+1]
2

+T−1E[{(T (ρh − 1) + h}2T−1/2(yT − µ− τT )− hT−1/2u1]
2]

3Banerjee (2001) shows this result using exact results for the distribution under normality.
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Figure 1: Evaluation of (3) for h = 1, 2, 3 in ascending order.

Again, focussing on the second part of the term we have

σ−2ε E[{(T (ρh − 1) + h}2T−1/2(yT − µ− τT )− hT−1/2u1]
2] (4)

≈ h2
£
(1 + γ)2

©
(α2 − 1)e−2γ/(2γ) + 1/(2γ)

ª
+ α2/(2γ)− (1 + γ)e−γ/γ

¤
Again the first term is essentially negligible, disappearing quickly as γ departs from zero,

and equals zero as in the mean case when α = 1. The last term, multiplied by e−γ/γ also

disappears fairly rapidly as γ gets larger. Focussing then on the last line of the previous

expression, we can examine issues relevant to the imposition of a unit root on the forecast.

First, as γ gets large the effect on the loss is larger than that for the constant only case. Here

there is are additional effects of in the cost, which is strictly positive for all horizons and

initial values. The additional term arises due to the estimation of the slope of the time trend.

As in the previous case, the longer the forecast horizon the larger the cost. The marginal

effect of increasing the forecast horizon is also larger. Finally, unlike the model with only

a constant, here the initial condition does have an effect, not only on the above effects but

also on its own through the term α2/2γ. This term is decreasing the more distant the root

is from one, however will have a nonnegligible effect for very roots close to one. The results

are pictured in Figure 2. for h = 1, 2 and 3. These differential effects are shown by reporting
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Figure 2: Evaluation of term in 4 for h = 1, 2, 3 in ascending order. Solid lines for a = 1 and

dotted lines for a = 0.

in Figure 2 the expected loss term for both α = 1 (solid lines) and for α = 0 (accompanying

dashed line).

The above results were for the model without any serial correlation. The presence of

serial correlation alters the effects shown above, and in general these effects are complicated

for short horizon forecasts. To see what happens, consider extending the model to allow the

error terms to follow an MA(1), i.e. consider c(L) = 1 + ψL. In the case where there is a

constant only in the equation, we have that

yT+h − yT = (εT+h + (ρ+ ψ)εT+h−1 + ...+ ρh−2(ρ+ ψ)εT+1) + [(ρ
h − 1)(yT − µ) + ρh−1ψεT ]

where the first bracketed term is the unpredictable component and the second term in square

brackets is the optimal prediction model. The need to estimate the coefficient on εT is not

affected to the first order by the uncertainty over the value for ρ, hence this adds a term

approximately equal to σ2ε/T to the MSE. In addition to this effect there are two other effects

here – the first being that the variance of the unpredictable part changes and the second

being that the unconditional variance of the term (ρh − 1)(yT − µ) changes. Through the

usual calculations and noting that now T−1/2y[T.] ⇒ (1 + ψ)2σ2εM(·) we have the expression
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for the MSE

E[yT+h − yT ]
2 ' σ2ε(1 + (h− 1)(1 + ψ)2 +

T−1[(1 + ψ)2{0.5h2γ(α2 − 1)e−2γ + h2γ

2
}+ 1]).

A few points can be made using this expression. First, when h = 1 there is an additional

wedge in the size of the effect of not knowing the root relative to the variance of the unpre-

dictable error. This wedge is (1+ψ)2 and comes through the difference between the variance

of εt and the long run variance of (1−ρL)yt, which are no longer the same in the model with
serial correlation. We can see how various values for ψ will then change the cost of imposing

the unit root. For ψ < 0 the MA component reduces the variation in the level of yT , and

imposing the root is less costly in this situation. Mathematically this comes through (1+ψ)2

< 1. Positive MA terms exacerbate the cost. As h gets larger the differential scaling effect

becomes relatively smaller, and the trade-off becomes similar to the results given earlier with

the replacement of the variance of the shocks with the long run variance.

The costs of imposing coefficients that are near zero to zero needs to be compared to

the problems of estimating these coefficients. It is clear that for ρ very close to one that

imposition of a unit root will improve forecasts, but what ’very close’ means here is an

empirical question, depending on the properties of the estimators themselves. There is no

obvious optimal estimator for ρ in these models. The typical asymptotic optimality result

when |ρ| < 1 for the OLS estimator for ρ, denoted ρ̂OLS, arises from a comparison of its

pointwise asymptotic normal distribution compared to lower bounds for other consistent

asymptotic normal estimators for ρ. Given that for the sample sizes and likely values for ρ

we are considering here the OLS estimator has a distribution that is not even remotely close

to being normal, comparisons between estimators based on this asymptotic approximation

are not going to be relevant. Because of this, many potential estimators can be suggested

and have been suggested in the literature. Throughout the results here we will write ρ̂ (and

similarly for nuisance parameters) as a generic estimator.

In the case where a constant is included the forecast requires estimates for both µ and

ρ. The forecast is yT+h|T = (ρ̂
h − 1)(yT − µ̂) resulting in forecast errors equal to

yT+h − yT+h|T =
hX
i=1

ρh−iεT+i + (µ̂− µ)(ρ̂h − 1) + (ρh − ρ̂h)(yT − µ)
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The term due to the estimation error can be written as

(µ̂− µ)(ρ̂h − 1) + (ρh − ρ̂h)(yT − µ) = T−1/2{T−1/2(µ̂− µ)T (ρ̂h − 1)

+T (ρh − ρ̂h)T−1/2(yT − µ)}

where T−1/2(µ̂− µ), T (ρ̂h − 1) and T (ρh − ρ̂h) are all Op(1) for reasonable estimators of the

mean and autoregressive term. Hence, as with imposing a unit root, the additional term in

the MSE will be disappearing at rate T. The precise distributions of these terms depend on

the estimators employed. They are quite involved, being nonlinear functions of a Brownian

motion. As such the expected value of the square of this is difficult to evaluate analytically

and whilst we can write down what this expression looks like no results have yet been

presented for making these results useful apart from determining the nuisance parameters

that remain important asymptotically.

A very large number of different methods for estimating ρ̂h and µ̂ have been suggested

(and in the more general case estimators for the coefficients in more general dynamic models).

The most commonly employed estimator is the OLS estimator, where we note that the

regression of yt on its lag and a constant results in the constant term in this regression being

an estimator for (1−ρ)µ. Instead of OLS, Prais andWinston (1954) and Cochrane and Orcutt
(1949) estimators have been used. Andrews (1993), Andrews and Chen (1994), Roy and

Fuller (2001) and Stock (1991) have suggested median unbiased estimators. Many researchers

have considered using unit root pretests (cf. Diebold and Kilian (2000)). We can consider

any pretest as simply an estimator, ρ̂PT which is the OLS estimator for samples where

the pretest rejects and equal to one otherwise. Sanchez (2002) has suggested a shrinkage

estimator which can be written as a nonlinear function of the OLS estimator. In addition

to this set of regressors researchers making forecasts for multiple steps ahead can choose

between estimating ρ̂ and taking the hth power or directly estimating ρ̂h.

In terms of the coefficients on the deterministic terms, there are also a range of estimators

one could employ. From results such as in Elliott et. al. (1996) for the model with y1 normal

with mean zero and variance equal to the innovation variance we have that the maximum

likelihood estimators (MLE) for µ given ρ is

µ̂ =
y1 + (1− ρ)

PT
t=2(1− ρL)yt

1 + (T − 1)(1− ρ)2
(5)
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Canjels and Watson (1997) examined the properties of a number of feasible GLS estimators

for this model. Ng and Vogelsang (2002) suggest using this type of GLS detrending and show

gains over OLS. In combination with unit root pretests they are also able to show gains from

using GLS detrending for forecasting in this setting.

As noted, for any of the combinations of estimators of ρ and µ taking expectations

of the asymptotic approximation is not really feasible. Instead, the typical approach in

the literature has been to examine this in Monte Carlo. Monte Carlo evidence tends to

suggest that GLS estimates for the deterministic components results in better forecasts that

OLS, and that estimators such as the Prais-Whinston, median unbiased estimators, and

pre-testing have the advantage over OLS estimation of ρ. However general conclusions over

which estimator is best rely on how one trades off the different performances of the methods

for different values for ρ.

To see the issues, we construct Monte Carlo results for a number of the leading methods

suggested. For T = 100 and various choices for γ = T (ρ−1) in an AR(1) model with standard
normal errors and the initial condition drawn so α = 1 we estimated the one step ahead

forecast MSE and averaged over 40000 replications. Reported in Figure 3 is the average of

the estimated part of the term that disappears at rate T. For stationary variables we expect

this to be equal to the number of parameters estimated, i.e. 2. The methods included were

imposing a unit root (the upward sloping solid line), OLS estimation for both the root and

mean (relatively flat dotted line), unit root pretesting using the Dickey and Fuller (1979)

method with nominal size 5% (the humped solid line) and the Sanchez shrinkage method

(dots and dashes). As shown theoretically above, the imposition of a unit root, whilst

sensible if very close to a unit root, has a MSE that increases linearly in the local to unity

parameter and hence can accompany relatively large losses. The OLS estimation technique,

whilst loss depends on the local to unity parameter, does so only a little for roots quite close

to one. The trade-off between imposing the root at one and estimating using OLS has the

imposition of the root better only for γ < 6, i.e. for one hundred observations this is for

roots of 0.94 or above. The pretest method works well at the ’ends’, i.e. the low probability

of rejecting a unit root at small values for γ means that it does well for such small values,

imposing the truth or near to it, whilst because power eventually gets large it does as well as

the OLS estimator for roots far from one. However the cost is at intermediate values – here
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Figure 3: Relative effects of various estimated models in the mean case. The approaches

are to impose a unit root (solid line), OLS (short dashes), DF pre-test (long dashes) and

Sanchez shrinkage (short and long dashes).

the increase in average MSE is large as the power of the test is low. The Sanchez method

does not do well for roots close to one, however does well away from one. Each method then

embodies a different trade-off.

Apart from a rescaling of the y-axis, the results for h set to values greater than one but

still small relative to the sample size result in almost identical pictures to that in Figure 3.

For any moderate value for h the trade-offs occurs at the local alternative.

Notice that any choice over which of the method to use in practice requires a weighting

over the possible models, since no method uniformly dominates any other over the relevant

parameter range. The commonly used ’differences’ model of imposing the unit root cannot

be beaten at γ = 0. Any pretest method to try and obtain the best of both worlds cannot

possibly outperform the models it chooses between regardless of power if it controls size

when γ = 0 as it will not choose this model with probability one and hence be inferior to

imposing the unit root.

When a time trend is included the trade-off between the measures remains similar to

that of the mean case qualitatively however the numbers differ. The results for the same
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experiment as in the mean case with α = 0 are given in Figure 4 for the root imposed to one

using the forecasting model yT |T+1 = yT + τ̂ , the model estimated by OLS and also a hybrid

approach using Dickey and Fuller t statistic pretesting with nominal size equal to 5%. As in

the mean case, the use of OLS to estimate the forecasting model results in a relatively flat

curve – the costs as a function of γ are varying but not much. Imposing the unit root on the

forecasting model still requires that the drift term be estimated, so loss is not exactly zero

at γ = 0 as in the mean case where no parameters are estimated. The value for γ for which

estimation by OLS results in a lower MSE is larger than in the mean case. Here imposition

of the root to zero performs better when γ < 11, so for T = 100 this is values for ρ of 0.9 or

larger. The use of a pre-test is also qualitatively similar to the mean case, however as might

be expected the points where pre-testing outperforms running the model in differences does

differ. Here the value for which this is better is a value for γ of over 17 or so. The results

presented here are close to their asymptotic counterparts, so these implications based on γ

should extend relatively well to other sample sizes. Diebold and Kilian (2000) examine the

trade-offs for this model in Monte Carlos for a number of choices of T and ρ. They note that

for larger T the root needs to be closer to one for pretesting to dominate estimation of the

model by OLS (their L model), which accords with the result here that this cutoff value is

roughly a constant local alternative γ in h not too large. The value of pretesting – i.e. the

models for which it helps – shrinks as T gets large. They also notice the ’ridge’ where for

near alternatives estimation dominates pretesting, however dismiss this as a small sample

phenomenon. However asymptotically this region remains, there will be an interval for γ

and hence ρ for which this is true for all sample sizes.

The ’value’ of forecasts based on a unit root also is heightened by the corollary to the

small size of the loss, namely that forecasts based on known parameters and forecasts based

on imposing the unit root are highly correlated and hence their mistakes look very similar.

We can evaluate the average size of the difference in the forecasts of the OLS and unit root

models. In the case of no serial correlation the difference in h step ahead forecasts for the

model with a mean is given by (ρ̂h−1)(yT−µ̂). Unconditionally this is symmetric around zero
– whilst the first term pulls the estimated forecast towards the estimated mean the estimate

of the mean ensures asymptotically that for every time this results in an underforecast when

yT is above its estimated mean there will be an equivalent situation where yT is below its
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Figure 4: Relative effects of the imposed unit root (solid upward sloping line), OLS (short

light dashes) and DF pre-test (heavy dashes).

estimated mean. We can examine the percentiles of the limit result to evaluate the likely

size of the differences between the forecasts for any (σ, T ) pair. The term can be evaluated

using a Monte Carlo experiment, the results for h = 1 and h = 4 are given in Figures 5 and

6 respectively as a function of γ. To read the figures, note that the chance that the difference

in forecasts scaled by multiplying by σ and dividing by
√
T is between given percentiles is

equal to the values given on the figure. Thus the difference between OLS and random walk

one step ahead forecasts based on 100 observations when ρ = 0.9 has a 20% chance of being

more than 2.4/
√
100 or about one quarter of a standard deviation of the residual. Thus there

is a sixty percent chance that the two forecasts differ by less than a quarter of a standard

deviation of the shock in either direction. The effects are of course larger when h = 4,

since there are more periods for which the two forecasts have time to diverge. However the

difference is roughly h times as large, thus is of the same order of magnitude as the variance

of the unpredictable component for a h step ahead forecast.

The above results present comparisons based on unconditional expected loss, as is typical

in this literature. Such unconditional results are relevant for describing the outcomes of the

typical Monte Carlo results in the literature, and may be relevant in describing a best

21



Figure 5: Percentiles of difference between OLS and Random Walk forecasts with zt = 1,

h = 1. Percentiles are for 20, 10, 5 and 2.5% in ascending order.

Figure 6: Percentiles of difference between OLS and Random Walk forecasts with zt = 1,

h = 4. Percentiles are for 20, 10, 5 and 2.5% in ascending order.
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procedure over many datasets, however may be less reasonable for those trying to choose a

particular forecast model for a particular forecasting situation. For example, it is known that

regardless of ρ the confidence interval for the forecast error in the unconditional case is in

the case of normal innovations itself exactly normal (Magnus and Pesaran (1989)). However

this result arises from the normality of yT − φ0zT and the fact that the forecast error is an

even function of the data. Alternatively put, the final observation yT − φ0zT is normally

distributed, and this is weighted by values for the forecast model that are symmetrically

distributed around zero so for every negative value there is a positive value. Hence overall

we obtain a wide normal distribution. Phillips (1979) suggested conditioning on the observed

yT presented a method for constructing confidence intervals that condition on this final value

of the data for the stationary case. Even in the simplest stationary case these confidence

intervals are quite skewed and very different from the unconditional intervals. No results are

available for the models considered here.

In practice we typically do not know yT − φ0zT since we do not know φ. For the best

estimates for φ we have that T−1/2(yT − φ̂
0
zT ) converges to a random variable and hence we

cannot even consistently estimate this distance. But the sample is not completely uninfor-

mative of this distance, even though we have seen that the deviation of yT from its mean

impacts the cost of imposing a unit root. By extension it also matters in terms of evaluating

which estimation procedure might be the one that minimizes loss conditional on the infor-

mation in the sample regarding this distance. From a classical perspective, the literature has

not attempted to use this information to construct a better forecast method. The Bayesian

methods discussed in the chapter by Geweke and Whiteman in this volume consider general

versions of these models.

3.2 Long Run Forecasts

The issue of unit roots and cointegration has increasing relevance the further ahead we

look in our forecasting problem. Intuitively we expect that ’getting the trend correct’ will

be more important the longer the forecast horizon. The problem of using lagged levels to

predict changes at short horizons can be seen as one of an unbalanced regression – trying

to predict a stationary change with a near nonstationary variable. At longer horizons this

is not the case. One way to see mathematically that this is true is to consider the forecast
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h steps ahead in its telescoped form, i.e. through writing yT+h − yT =
Ph

i=1∆yT+i. For

variables with behavior close to or equal to those of a unit root process, their change is close

to a stationary variable. Hence if we let h get large, then the change we are going to forecast

acts similarly to a partial sum of stationary variables, i.e. like an I(1) process, and hence

variables such as the current level of the variable that themselves resemble I(1) processes

may well explain their movement and hence be useful in forecasting for long horizons.

As earlier, in the case of an AR(1) model

yT+h − yT =
hX
i=1

ρh−iεT+i + (ρ
h − 1)(yT − φ0zT )

Before we saw that if we let h be fixed and let the sample size get large then the second term

is overwhelmed by the first, effectively (ρh − 1) becomes small as (yT − µ) gets large, the

overall effect being that the second term gets small whilst the unforecastable component is

constant in size. It was this effect that picked up the intuition that getting the trend correct

for short run forecasting is not so important. To approximate results for long run forecasting,

consider allowing h get large as the sample size gets large, or more precisely let h = [Tλ]

so the forecast horizon gets large at the same rate as the sample size. The parameter λ is

fixed and is the ratio of the forecast horizon to the sample size. This approach to long run

forecasting has been examined in a more general setup by Stock (1996) and Phillips (1998).

Kemp (1999) and Turner (2004) examine the special univariate case discussed here.

For such a thought experiment, the first term
hX
i=1

ρh−iεT+i =

[Tλ]X
i=1

ρ[Tλ]−iεT+i is a partial

sum and hence gets large as the sample size gets large. Further, since we have ρh = (1 +

c/T )[Tλ] ≈ ecλ then (ρh − 1) no longer becomes small and both terms have the same order
asymptotically. More formally we have for ρ = 1− γ/T that in the case of a mean included

in the model

T−1/2(yT+h − yT ) = T−1/2
hX
i=1

ρh−iεT+i + (ρ
h − 1)T−1/2(yT − µ)

⇒ σ2ε
©
W2(λ) + (e

−γλ − 1)M(1)
ª

where W2(.) and M(.) are independent realizations of Ornstein Uhlenbeck processes where

M(.) is defined in (2). It should be noted however that they are really independent (nonover-

lapping) parts of the same process, and this expression could have been written in that form.

There is no ’initial condition’ effect in the first term because it necessarily starts from zero.
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We can now easily consider the effect of wrongly imposing a unit root on this process in

the forecasting model. The approximate scaled MSE for such an approach is given by

E[T−1(yT+h − yT )
2] ⇒ σ2εE

©
W2(λ) + (e

−γλ − 1)M(1)
ª2

(6)

=
σ2ε
2γ

©
(1− e−2γλ) + (e−γλ − 1)2((α2 − 1)e−2γ + 1)

ª
=

σ2ε
2γ

©
2− 2e−γλ + (α2 − 1)e−2γ(e−γλ − 1)2

ª
This expression can be evaluated to see the impact of different horizons and degrees of mean

reversion and initial conditions. The effect of the initial condition follows directly from the

equation. Since e−2γ(e−γλ − 1)2 > 0 then α < 1 corresponds to a decrease the expected

MSE and α > 1 an increase. This is nothing more than the observation made for short run

forecasting that if yT is relatively close to µ then the forecast error from using the wrong

value for ρ is less than if (yT − µ) is large. The greater is α the greater the weight on initial

values far from zero and hence the greater the likelihood that yT is far from µ.

Noting that the term that arises through the termW2(λ) is due to the unpredictable part,

here we evaluate the term in (6) relative to the size of the variance of the unforecastable

component. Figure 7 examines, for γ = 1, 5 and 10 in ascending order this term for various

λ along the horizontal axis. A value of 1 indicates that the additional loss from imposing the

random walk is zero, the proportion above one is the additional percentage loss due to this

approximation. For γ large enough the term asymptotes to 2 as λ→ 1 – this means that

the approximation cost attains a maximum at a value equal to the unpredictable component.

For a prediction horizon half the sample size (so λ = 0.5) the loss when γ = 1 from assuming

a unit root in the construction of the forecast is roughly 25% of the size of the unpredictable

component.

As in the small h case when a time trend is included we must estimate the coefficient on

this term. Using again the MLE assuming a unit root, denoted τ̂ , we have that

T−1/2(yT+h − yT − τ̂h) = T−1/2
hX
i=1

ρh−iεT+i + (ρ
h − 1)T−1/2(yT − φ0zT )− T 1/2(τ − τ̂)(h/T )

⇒ σ2ε
©
W2(λ) + (e

−γλ − 1)M(1)− λ(M(1)−M(0))
ª
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Figure 7: Ratio of MSE of unit root forecasting model to MSE of optimal forecast as a

function of λ– mean case.

Hence we have

E[T−1(yT+h − yT )
2] ⇒ σ2εE

©
W2(λ) + (e

−γλ − 1)M(1)− λ(M (1)−M (0))
ª2

(7)

= σ2εE
©
W2(λ) + (e

−γλ − 1− λ)M(1) + λM(0)
ª2

=
σ2ε
2γ

©
(1− e−2γλ) + (e−γλ − 1− λ)2((α2 − 1)e−2γ + 1) + λ2α2

ª
=

σ2ε
2γ

⎧⎨⎩ 1 + (1 + λ)2 + λ2a2 − 2(1 + λ)e−γλ + (α2 − 1)((1 + λ)2e−2γ

+e−2γ(1+λ) − 2(1 + λ)e−γ(2+λ))

⎫⎬⎭
Here as in the case of a few periods ahead the initial condition does have an effect. Indeed,

for γ large enough this term is 1 + (1 + λ)2 + λ2a2 and so the level at which this tops out

depends on the initial condition. Further, this limit exists only as γ gets large and differs

for each λ. The effects are shown for γ = 1, 5 and 10 in Figure 8, where the solid lines are

for α = 0 and the dashed lines for α = 1. Curves that are higher are for larger γ. Here the

effect of the unit root assumption, even though the trend coefficient is estimated and taken

into account for the forecast, is much greater. The dependence of the asymptote on λ is

shown to some extent through the upward sloping line for the larger values for γ. It is also

noticeable that these asymptotes depend on the initial condition.
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Figure 8: As per Figure 7 for equation (7) where dashed lines are for α = 1 and solid lines

for α = 0.

This trade-offmust be matched with the effects of estimating the root and other nuisance

parameters. To examine this, consider again the model without serial correlation. As before

the forecast is given by

yT+h|T = yT + (ρ̂
h − 1)(yT − φ̂

0
zT ) + φ̂

0
(zT+h − zT )

In the case of a mean this yields a scaled forecast error

T−1/2(yT+h − yT+h|T ) = T−1/2ϕ(εT+h, ..., εT+1) + (ρ
h − ρ̂h)T−1/2(yT − µ)− (ρ̂h − 1)T−1/2(µ̂− µ)

⇒ σ2ε (W2(λ) + (e
γλ − eγ̂λ)M(1)− (eγ̂λ − 1)ϕ)

where W2(λ) and M (1) are as before, γ̂ is the limit distribution for T (ρ̂ − 1) which differs
across estimators for ρ̂ and ϕ is the limit distribution for T−1/2(µ̂−µ) which also differs over
estimators. The latter two objects are in general functions of M(.) and are hence correlated

with each other. The precise form of this expression depends on the limit results for the

estimators.

As with the fixed horizon case, one can derive an analytic expression for the mean square

error as the mean of a complicated (i.e. nonlinear) function of Brownian Motions (see Turner
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Figure 9: OLS versus imposed unit roots for the mean case at horizons λ = 0.1 and λ = 0.5.

Dashed lines are the imposed unit root and solid lines for OLS.

(2004) for the α = 0 case) however these analytical results are difficult to evaluate. We can

however evaluate this term for various initial conditions, degrees of mean reversion and

forecast horizon length by Monte Carlo. Setting T = 1000 to approximate large sample

results we report in Figure 9 the ratio of average squared loss of forecasts based on OLS

estimates divided by the same object when the parameters of the model are known for various

values for γ and λ = 0.1 and 0.5 with α = 0 (solid lines, the curves closer to the x-axis are for

λ = 0.1, in the case of α = 1 the results are almost identical). Also plotted for comparison

are the equivalent curves when the unit root is imposed (given by dashed lines). As for the

fixed h case, for small enough γ it is better to impose the unit root. However estimation

becomes a better approach on average for roots that accord with values for γ that are not

very far from zero – values around γ = 3 or 4 for λ = 0.5 and 0.1 respectively. Combining

this with the earlier results suggests that for values of γ = 5 or greater, which accords say

with a root of 0.95 in a sample of 100 observations, that OLS should dominate the imposed

unit root approach to forecasting. This is especially so for long horizon forecasting, as for

large γ OLS strongly dominates imposing the root to one.

In the case of a trend this becomes yT |T+h = ρ̂hyT +(1− ρ̂h)µ̂+ τ̂ [T (1− ρ̂h) + h] and the
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Figure 10: As per Figure 9 for the case of a mean and a trend.

forecast error suitably scaled has the distribution

T−1/2(yT+h − yT+h|T ) = T−1/2ϕ(εT+h, ..., εT=1) + (ρ
h − ρ̂h)T−1/2(yT − φ0zt)− (ρ̂h − 1)T−1/2(µ̂− µ)− T

⇒ σ2ε (W2(λ) + (e
γλ − eγ̂λ)M(1)− (eγ̂λ − 1)ϕ1 + (1 + λ− eγ̂λ)ϕ2

where ϕ1 is the limit distribution for T−1/2(µ̂ − µ) and ϕ2 is the limit distribution for

T 1/2(τ̂ − τ). Again, the precise form of the limit result depends on the estimators.

The same Monte Carlo exercise as in Figure 9 is repeated for the case of a trend in Figure

10. Here we see that the costs of estimation when the root is very close to one is much

greater, however as in the case with a mean only the trade-off is clearly strongly in favor of

OLS estimation for larger roots. The point at which the curves cut – i.e. the point where

OLS becomes better on average than imposing the root – is for a larger value for γ. This

value is about γ = 7 for both horizons. Turner (2004) computes cutoff points for a wider

array of λ.

There is little beyond Monte Carlo evidence on the issues of imposing the unit root (i.e.

differencing always), estimating the root (i.e. levels always) and pretesting for a unit root

(which will depend on the unit root test chosen). Diebold and Kilian (2000) provide Monte

Carlo evidence using the Dickey and Fuller (1979) test as a pretest. Essentially, we have

seen that the bias from estimating the root is larger the smaller the sample and the longer
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the horizon. This is precisely what is found in the Monte Carlo experiments. They also

found little difference between imposing the unit root and pretesting for a unit root when

the root is close to one, however pretesting dominates further from one. Hence they argue

that pretesting always seems preferable to imposing the result. Stock (1996) more cautiously

provides similar advice, suggesting pretests based on unit root tests of Elliott et. al. (1996).

All evidence was in terms of MSE unconditionally. Other researchers have run subsets of

these Monte Carlo experiments (Clements and Hendry (1999), Campbell and Perron (1991),

Cochrane (1991)). What is clear from the above calculations are two overall points. First,

no method dominates everywhere, so the choice of what is best rests on the beliefs of what

the model is likely to be. Second, the point at which estimation is preferred to imposition

occurs for γ that are very close to zero in the sense that tests do not have great power of

rejecting a unit root when estimating the root is the best practice.

Researchers have also applied the different models to data. Franses and Kleinbergen

(1996) examine the Nelson and Plosser (1982) data and find that imposing a unit root

outperforms OLS estimation of the root in forecasting at both short and longer horizons

(the longest horizons correspond to λ = 0.1). In practice, pretesting has appeared to ’work’.

Stock andWatson (1998) examined many USmacroeconomic series and found that pretesting

gave smaller out of sample MSE’s on average.

4 Cointegration and Short Run Forecasts

The above model can be extended to a vector of trending variables. Here the extreme cases

of all unit roots and no unit roots are separated by the possibility that the variables may

be cointegated. The result of a series of variables being cointegrated means that there exist

restrictions on the unrestricted VAR in levels of the variables, and so one would expect that

imposing these restrictions will improve forecasts over not imposing them. The other impli-

cation that arises from the Granger Representation Theorem (Engle and Granger (1987))

is that the VAR in differences – which amounts to imposing too many restrictions on the

model – is misspecified through the omission of the error correction term. It would seem

that it would follow in a straightforward manner that the use of an error correction model

will outperform both the levels and the differences models: the levels model being inferior

because too many parameters are estimated and the differences model inferior because too

30



few useful covariates are included. However the literature is divided on the usefulness of

imposing cointegrating relationships on the forecasting model.

Christofferson and Diebold (1998) examine a bivariate cointegrating model and show

that the imposition of cointegration is useful at short horizons only. Engle and Yoo (1987)

present a Monte Carlo for a similar model and find that a levels VAR does a little better at

short horizons than the ECM model. Clements and Hendry (1995) provide general analytic

results for forecast MSE in cointegrating models. An example of an empirical application

using macroeconomic data is Hoffman and Rasche (1996) who find at short horizons that a

VAR in differences outperforms a VECM or levels VAR for 5 of six series (inflation was the

holdout). The latter two models were quite similar in forecast performance.

We will first investigate the ’classic’ cointegrating model. By this we mean cointegrating

models where it is clear that all the variables are I(1) and that the cointegrating vectors are

mean reverting enough that tests have probability one of detecting the correct cointegrating

rank. There are a number of useful ways of writing down the cointegrating model so that

the points we make are clear. The two most useful ones for our purposes here are the error

correction form (ECM) and triangular form. These are simply rotations of the same model

and hence for any of one form there exists a representation in the second form. The VAR in

levels can be written

Wt = A(L)Wt−1 + ut (8)

whereWt is an nx1 vector of I(1) random variables. When there exist r cointegrating vectors

β0Wt = ct the error correction model can be written as

Φ (L) [I (1− L)− αβ0L]Wt = ut,

where α, β are nxr and we have factored stationary dynamics in Φ(L) so Φ(1) has roots

outside the unit circle. Comparing these equations we have (A(1) − In) = Φ(1)αβ0. In

this form we can differentiate the effects of the serial correlation and the impact matrix α.

Rewriting in the usual form with use of the BN decomposition we have

∆Wt = Φ(1)αct−1 +B(L)∆Wt−1 + ut

Let yt be the first element of the vector Wt and consider the usefulness in prediction that

arises from including the error correction term zt−1 in the forecast of yt+h. First think of the
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one step ahead forecast, which we get from taking the first equation in this system without

regard to the remaining ones. From the one step ahead forecasting problem then the value

of the ECM term is simply how useful variation in ct−1 is in explaining ∆yt. The value for

forecasting depends on the parameter in front of the term in the model, i.e. the (1, 1) element

of Φ(1)α and also the variation in the error correction term itself. In general the relevant

parameter here can be seen to be a function of the entire set of parameters that define the

stationary serial correlation properties of the model (Φ(1) which is the sum of all of the

lags) and the impact parameters α. Hence even in the one step ahead problem the usefulness

of the cointegrating vector term the effect will depend on almost the entire model, which

provides a clue as to the inability of Monte Carlo analysis to provide hard and fast rules as

to the importance of imposing the cointegration restrictions.

When we consider forecasting more steps ahead, another critical feature will be the serial

correlation in the error correction term ct. If it were white noise then clearly it will only be

able to predict the one step ahead change in yt, and will be uninformative for forecasting

yt+h − yt+h−1 for h > 1. Since the multiple step ahead forecast yt+h − yt is simply the sum

of the changes yt+i − yt+i−1 from i = 1 to h then it will have proportionally less and less

impact on the forecast as the horizon grows. When this term is serially correlated however

it will be able to explain the future changes, and hence will affect the trade-off between

using this term and ignoring it. In order to establish properties of the error correction term,

the triangular form of the model is useful. Normalize the cointegrating vector so that the

cointegrating vector β0 = (Ir,−θ0) and define the matrix

K =

⎛⎝ Ir −θ0

0 In−r

⎞⎠ .

Note that Kzt = (β
0Wt,W

0
2t) where W2t is the last n− r elements of Wt and

Kαβ0Wt−1 =

⎛⎝ β0α

α2

⎞⎠β0Wt−1

Premultiply the model by K (so that the leading term in the polynomial is the identity

matrix as per convention) and we obtain

KΦ (L)K−1K [I (1− L)− αβ0L]Wt = Kut,
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which can be rewritten

KΦ (L)K−1B(L)

⎛⎝ β0Wt

∆W2t

⎞⎠ = Kut (9)

where

B(L) = I +

⎛⎝ α1 − θα2 − 1 0

α2 0

⎞⎠L

This form is useful as it allows us to think about the dynamics of the cointegrating

vector ct, which as we have stated will affect the usefulness of the cointegrating vector in

forecasting future values of y. The dynamics of the error correction term are driven by the

value of α1−θα2−1 and the roots of Φ(L) and will be influenced by a great many parameters
in the model. This provides another reason for why Monte Carlo studies have proved to be

inconclusive.

In order to show the various effects, it will be necessary to simplify the models consid-

erably. We will examine a model without ’additional’ serial correlation, i.e. one for which

Φ (L) = I. We also will let both yt and W2t = xt be univariate. This model is still rich

enough for many different effects to be shown, and has been employed to examine the useful-

ness of cointegration in forecasting by a number of authors. The precise form of the model

in its error correction form is⎛⎝ ∆yt

∆xt

⎞⎠ =

⎛⎝ α1

α2

⎞⎠³ 1 −θ ´
⎛⎝ yt−1

xt−1

⎞⎠+
⎛⎝ u1t

u2t

⎞⎠ (10)

This model under various parameterizations has been examined by Engle and Yoo (1987),

Clements and Hendry (1995) and Christofferson and Diebold (1998). In triangular form the

model is ⎛⎝ ct

∆xt

⎞⎠ =

⎛⎝ α1 − θα2 + 1 0

α2 0

⎞⎠⎛⎝ ct−1

xt−1

⎞⎠+
⎛⎝ u1t − θu2t

u2t

⎞⎠
The coefficient on the error correction term in the model for yt is simply α1, and the serial

correlation properties for the error correction term is given by ρc = α1 − θα2 + 1 = 1+ β0α.

A restriction of course is that this term has roots outside the unit circle, and so this restricts

possible values for β and α. Further, the variance of ct also depends on the innovations to this

variable which involve the entire variance covariance matrix of ut as well as the cointegrating
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parameter. It should be clear that in thinking about the effect of various parameters on the

value of including the cointegrating vector in the forecasting model controlled experiments

will be difficult – changing a parameter involves a host of changes on the features of the

model.

In considering h step ahead forecasts, we can recursively solve (10) to obtain⎛⎝ yT+h − yT

xT+h − xT

⎞⎠ =

Ã
hX
i=1

ρi−1c

!⎛⎝ α1

α2

⎞⎠³ 1 −θ ´
⎛⎝ yT

xT

⎞⎠+
⎛⎝ ũ1T+h

ũ2t+h

⎞⎠ (11)

where ũ1T+h and ũt+h are unpredictable components. The result shows that the usefulness of

the cointegrating vector for the h step ahead forecast depends on both the impact parameter

α1 as well as the serial correlation in the cointegrating vector ρc which is a function of the

cointegrating vector as well as the impact parameter in both the equations. The larger the

impact parameter, all else held equal, the greater the usefulness of the cointegrating vector

term in constructing the forecast. The larger the root ρc also the larger the impact of this

term.

These results give some insight as to the usefulness of the error correction term, and show

that different Monte Carlo specifications may well give conflicting results simply through

examining models with differing impact parameters and serial correlation properties of the

error correction term. Consider the differences between the results4 of Engle and Yoo (1987)

and Christofferson and Diebold (1998). Both papers are making the point that the error

correction term is only relevant for shorter horizons, a point to which we will return. However

Engle and Yoo (1987) claim that the error correction term is quite useful at moderate

horizons, whereas Christofferson and Diebold (1998) suggest that it is only at very short

horizons that the term is useful. In the former model, the impact parameter is αy = −0.4
and ρz = 0.4. The impact parameter is of moderate size and so is the serial correlation,

and so we would expect some reasonable usefulness of the term for moderate horizons.

In Christofferson and Diebold (1998), these coefficients are αy = −1 and ρz = 0. The large

impact parameter ensures that the error correction term is very useful at very short horizons.

4Both these authors use the sum of squared forecast error for both equations in their comparisons. In the

case of Engle and Yoo (1987) the error correction term is also useful in forecasting in the x equation, whereas

it is not for the Diebold and Christofferson (1998) experiment. This further exacerbates the magnitudes of

the differences.
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However employing an error correction term that is not serially correlated also ensures that

it will not be useful at moderate horizons. The differences really come down to the features

of the model rather than providing a general notion for all error correction terms.

This analysis abstracted from estimation error. When the parameters of the model have

to be estimated then the relative value of the error correction term is diminished on average

through the usual effects of estimation error. The extra wrinkle over a standard analysis

of this estimation error in stationary regression is that one must estimate the cointegrat-

ing vector (one must also estimate the impact parameters ’conditional’ on the cointegrating

parameter estimate, however this effect is much lower order for standard cointegrating pa-

rameter estimators). We will not examine this carefully, however a few comments can be

made. First, Clements and Hendry (1995) examine the Engle and Yoo (1987) model and

show that using MLE’s of the cointegrating vector outperforms the OLS estimator used in the

former study. Indeed, at shorter horizons Engle and Yoo (1987) found that the unrestricted

VAR outperformed the ECM even though the restrictions were valid.

It is clear that given sufficient observations, the consistency of the parameter estimates

in the levels VAR means that asymptotically the cointegration feature of the model will still

be apparent, which is to say that in the overidentified model is asymptotically equivalent

to the true error correction model. In smaller samples there is the effect of some additional

estimation error, and also the problem that the added variables are trending and hence have

nonstandard distributions that are not centered on zero. This is the multivariate analog of

the usual bias in univariate models on the lagged level term and disappears at the same rate,

i.e. at rate T . Abidir et. al. (1999) examine this problem. In comparing the estimation error

between the levels model and the error correction model many of the trade-offs are the same.

However the estimation of the cointegrating vector can be important. Stock (1987) shows

that the OLS estimator of the cointegrating vector has a large bias that also disappears at

rate T. Whether or not this term will on average be large depends on a nuisance parameter

of the error correction model, namely the zero frequency correlation between the shocks

to the error correction term and the shocks to ∆xt. When this correlation is zero, OLS

is the efficient estimator of the cointegrating vector and the bias is zero (in this case the

OLS estimator is asymptotically mixed normal centered on the true cointegrating vector).

However in the more likely case that this is nonzero, then OLS is asymptotically inefficient
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and other methods5 are required to obtain this asymptotic mixed normality centered on the

true vector. In part, this explains the results of Engle and Yoo (1987). The value for this

spectral correlation in their study was -0.89, quite close to the bound of one and hence OLS is

likely to provide very biased estimates of the cointegrating vector. It is in just such situations

that efficient cointegrating vector estimation methods are likely to be useful, Clements and

Hendry (1995) show in a Monte Carlo that indeed for this model specification there are

noticeable gains.

The VAR in differences can be seen to omit regressors – the error correction terms –

and hence suffers from not picking up the extra possible explanatory power of the regressors.

Notice that as usual here the omitted variable bias that comes along with failing to include

useful regressors is the forecasters friend - this omitted variable bias is picking up at least

part of the omitted effect.

The usefulness of the cointegrating relationship fades as the horizon gets large. Indeed,

eventually it has an arbitrarily small contribution compared to the unexplained part of yT+h.

This is true of any stationary covariate in forecasting the level of an I(1) series. Recalling

that yT+h− yt =
Ph

i=1(yt+i− yt+i−1) then as h gets large this sum of changes in y is getting

large. Eventually the short memory nature of the stationary covariate is unable to predict the

future period by period changes and hence becomes a very small proportion of the difference.

Both Engle and Yoo (1987) and Diebold and Christoffersen (1998) make this point. This

seems to be at odds with the idea that cointegration is a ’long run’ concept, and hence should

have something to say far in the future.

The answer is that the error correction model does impose something on the long run

behavior of the variables, that they do not depart too far from their cointegrating relation.

This is pointed out in Engle and Yoo (1987), as h gets large β0WT+h,t is bounded. Note that

this is the forecast of zT+h, which as is implicit in the triangular relation above bounded as

ρz is between minus one and one. This feature of the error correction model may well be

important in practice even when one is looking at horizons that are large enough so that the

error correction term itself has little impact on the MSE of either of the individual variables.

Suppose the forecaster is forecasting both variables in the model, and is called upon to justify

a story behind why the forecasts are as they are. If they are forecasting variables that are

5There are many such methods. Johansen (1989) first provided an estimator that was asymptotically

efficient. Many other asymptotically equivalent methods are now available, see Watson (1994) for a review.
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cointegrated, then it is more reasonable that a sensible story can be told if the variables are

not diverging from their long run relationship by too much.

5 Near Cointegrating Models

In any realistic problem we certainly do not know the location of unit roots in the model,

and typically arrive at the model either through assumption or pre-testing to determine the

number of unit roots or ’rank’, where the rank refers to the rank of A(1) − In in equation

(8) and is equal to the number of variables minus the number of distinct unit roots. In the

cases where this rank is not obvious, then we are uncertain as to the exact correct model for

the trending behavior of the variables and can take this into account.

For many interesting examples, a feature of cointegrating models is the strong serial

correlation in the cointegrating vector, i.e. we are unclear as to whether or not the variables

are indeed cointegrated. Consider the forecasting of exchange rates. The real exchange rate

can be written as a function of the nominal exchange rate less a price differential between

the countries. This relationship is typically treated as a cointegrating vector, however there

is a large literature checking whether there is a unit root in the real exchange rate despite the

lack of support for such a proposition from any reasonable theory. Hence in a cointegrating

model of nominal exchange rates and price differentials this real exchange rate term may or

may not appear depending on whether we think it has a unit root (and hence cannot appear,

there is no cointegration) or is simply highly persistent.

Alternatively, we are often fairly sure that certain ’great ratios’ in the parlance of Watson

(1994) are stationary however we are unsure if the underlying variables themselves have unit

roots. For example the consumption income ratio is certainly bounded and does not wander

around too much, however we are uncertain if there really is a unit root in income and

consumption. In forecasting interest rates we are sure that the interest rate differential is

stationary (although it is typically persistent), however the unit root model for an interest

rate seems unlikely to be true but yet tests for the root being one often fail to reject.

Both of these possible models represent different deviations from the cointegrated model.

The first suggests more unit roots in the model, the competitor model being closer to having

differences everywhere. For example in the bivariate model with one potential cointegrating

vector, the nearest model to a highly persistent cointegrating vector would be a model with

37



both variables in differences. The second suggests fewer unit roots in the model. In the

bivariate case the model would be in levels. We will examine both, similar issues arise.

For the first of these models, consider equation (9)⎛⎝ β0Wt

∆W2t

⎞⎠ =

⎛⎝ β0α+ Ir

α2

⎞⎠β0Wt−1 +KΦ(L)−1ut

where the largest roots of the system for the cointegrating vectors β0Wt are determined by

the value for β0α+ Ir. For models where there are cointegrating vectors that are have near

unit roots this means that eigen values of this term are close to one. The trending behavior

of the cointegrating vectors thus depend on a number of parameters of the model. Also,

trending behavior of the cointegrating vectors feeds back into the process for ∆W2t. In a

standard framework we would require that W2t be I(1). However, if β
0Wt is near I(1) and

∆W2t = α2β
0Wt+noise then we would require that α2 = 0 for this term to be I(1). If α2 6= 0

then W2t will be near I(2). Hence under the former case the regression becomes⎛⎝ β0Wt

∆Wt

⎞⎠ =

⎛⎝ α1 + Ir

0

⎞⎠β0Wt +KΦ(L)−1ut

and β0Wt having a trend is α1 + Ir having roots close to one.

In the special case of a bivariate model with one possible cointegrating vector the autore-

gressive coefficient is given by ρz = α1+1. Hence modelling ρc to be local to one is equivalent

to modelling α1 = −γ/T. The model without additional serial correlation becomes⎛⎝ ∆ct

∆xt

⎞⎠ =

⎛⎝ ρc − 1 0

0 0

⎞⎠⎛⎝ ct−1

xt−1

⎞⎠+
⎛⎝ u1t − θu2t

u2t

⎞⎠
in triangular form and⎛⎝ ∆yt

∆xt

⎞⎠ =

⎛⎝ ρc − 1
0

⎞⎠³ 1 −θ ´
⎛⎝ yt−1

xt−1

⎞⎠+
⎛⎝ u1t

u2t

⎞⎠
in the error correction form. We will thus focus on the simplified model for the object of

focus

∆yt = (ρc − 1)ct−1 + u1t (12)

as the forecasting model.
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The model where we set ρc to unity here as an approximation results in the forecast equal

to the no change forecast, i.e. yT+h|T = yT .Thus the unconditional forecast error is given by

E[yT+1 − yfT ]
2 = E[(u1T+1)− (ρ− 1)(yT − θxT )]

2

≈ σ21

µ
1 + T−1

½
σ2c
σ21

¾
γ(1− e−2γ)

2

¶
where σ21 = var(u1t) and σ2c = var(u1t − θu2t) is the variance of the shocks driving the

cointegrating vector. This is similar to the result in the univariate model forecast when we

use a random walk forecast, with the addition of the component
n
σ2c
σ21

o
which alters the effect

of imposing the unit root. This ratio shows that the result depends greatly on the ratio of

the variance of the cointegrating vector vis a vis the variance of the shock to yt. When this

ratio is small, which is to say that when the cointegrating relationship varies little compared

to the variation in ∆yt, then the impact of ignoring the cointegrating vector is small for one

step ahead forecasts. This makes intuitive sense – in such cases the cointegrating vector

does not much depart from its mean and so has little predictive power in determining what

happens to the path of yt.

That the loss from imposing a unit root here – which amounts to running the model in

differences instead of including an error correction term – depends on the size of the shocks

to the cointegrating vector relative to the shocks driving the variable to be forecast means

that the trade-off between estimation of the model and imposing the root will vary with this

correlation. This adds yet another factor that would drive the choice between imposing the

unit root or estimating it. When the ratio is unity, the results are identical to the univariate

near unit root problem. Different choices for the correlation between u1t and u2t will result in

different ratios and different trade-offs. Figure 11 plots, for
n
σ2c
σ21

o
= 0.56 and 1 and T = 100

the average one step ahead MSE of the forecast error for both the imposition of the unit root

and also the model where the regression (12) is run with a constant in the model and these

OLS coefficients used to construct the forecast. In this model the cointegrating vector is

assumed known with little loss as the estimation error on this term has a lower order effect.

The figure graphs the MSE relative to the model with all coefficients known to γ on

the horizontal axis. The relatively flat solid line gives the OLS MSE forecast results for

both models – there is no real difference between the results for each model. The steepest

upward sloping line (long and short dashes) gives results for the unit root imposed model

where σ2c/σ
2
1 = 1, these results are comparable to the h = 1 case in Figure 1 (the asymptotic
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Figure 11: The upward sloping lines show loss from imposing a unit root for σ−21 σ2c = 0.56

and 1 for steeper curves respectively. The dashed line gives the results for OLS estimation

(both models).

results suggest a slightly smaller effect than this small sample simulation). The flatter curve

corresponds to σ2c/σ
2
1 < 1 for the cointegrating vector chosen here (θ = 1) and so the effect of

erroneously imposing a unit root is smaller. However this ratio could also be larger, making

the effect greater than the usual unit root model. The result depends on the values of the

nuisance parameters. This model is however highly stylized. More complicated dynamics

can make the coefficient on the cointegrating vector larger or smaller, hence changing the

relevant size of the effect.

In the alternate case, where we are sure the cointegrating vector does not have too much

persistence however we are unsure if there are unit roots in the underlying data, the model

is close to one in differences. This can be seen in the general case from the general VAR

form

Wt = A(L)Wt−1 + ut

∆Wt = (A(1)− In)Wt−1 +A∗(L)∆Wt−1 + ut

through using the Beveridge Nelson decomposition. Now let Ψ = A(1)− In and consider the
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rotation

ΨWt−1 = ΨK−1KWt−1

= [Ψ1,Ψ2]

⎛⎝ Ir θ

0 In−r

⎞⎠⎛⎝ Ir θ

0 In−r

⎞⎠⎛⎝ β0Wt

W2t

⎞⎠
= Ψ1β

0Wt−1 + (Ψ2 + θΨ1)W2t−1

hence the model can be written

∆Wt = Ψ1β
0Wt−1 + (Ψ2 + ΓΨ1)W2t−1 +A∗(L)∆Wt−1 + ut

where the usual ECM arises if (Ψ2+ΓΨ1) is zero. This is the zero restriction implicit in the

cointegration model. Hence in the general case the ’near to unit root’ of the right hand side

variables in the cointegrating framework is modelling this term to be near to zero.

This model has been analyzed in the context of long run forecasting in very general

models by Stock (1996). To capture these ideas consider the triangular form for the model

without serial correlation⎛⎝ yt − ϕ0zt − θxt

(1− ρxL)(xt − φ0zt)

⎞⎠ = Kut =

⎛⎝ u1t − θu2t

u2t

⎞⎠
so we have yT+h = ϕ0zT+h+ θxT+h+u1T+h− θu2T+h . Combining this with the model of the

dynamics of xt gives the result for the forecast model. We have

xt = φzt + u∗2t t = 1, ..., T.

(1− ρxL)u
∗
2t = u2t t = 2, ..., T

u∗21 = ξ

and so as

xT+h − xT =
hX
i=1

ρh−ix u2T+i + (ρ
h − 1)(xT − φ0zT ) + φ0(zT+h − zT )

then

yT+h−yT = θ

Ã
hX
i=1

ρh−iu2T+i + (ρ
h − 1)(xT − φ0zT ) + φ0(zT+h − zT )

!
−cT+ϕ0(zT+h−zT )+u1T+h−θu2T+h

>From this we can compute some distributional results.
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If a unit root is assumed (cointegration ’wrongly’ assumed) then the forecast is

yRT+h|T − yT = θφ0(zT+h − zT )− cT + ϕ0(zT+h − zT )

= (θφ+ ϕ)0(zT+h − zT )− cT

In the case of a mean this is simply

yRT+h|T − yT = −(yT − ϕ1 − γxT )

and for a time trend it is

yRT+h|T − yT = θφ0(zT+h − zT )− cT + ϕ0(zT+h − zT )

= (θφ2 + ϕ2)h− (yT − ϕ1 − ϕ2T − θxT )

If we do not impose the unit root we have the forecast model

yURT+h|T − yT = θ(ρh − 1)(xT − φ0zT ) + φ0(zT+h − zT )− cT + ϕ0(zT+h − zT )

= (θφ+ ϕ)0(zT+h − zT )− cT − γ(ρh − 1)(xT − φ0zT )

This allows us to understand the costs and benefits of imposition. The real discussion

here is between imposing the unit root (modelling as a cointegrating model) and not imposing

the unit root (modelling the variables in levels). Here the difference in the two forecasts is

given by

yURT+h|T − yRT+h|T = −γ(ρh − 1)(xT − φ0zT )

We have already examined such terms. Here the size of the effect is driven by the relative

size of the shocks to the covariates and the shocks to the cointegrating vector, although the

effect is the reverse of the previous model (in that model it was the cointegrating vector that

is persistent, here it is the covariate). As before the effect is intuitively clear, if the shocks

to the near nonstationary component are relatively small then xT will be close to the mean

and the effect is reduced. An extra wedge is driven into the effect by the cointegrating vector

θ. A large value for this parameter implies that in the true model that xt is an important

predictor of yt+1. The cointegrating term picks up part of this but not all, so ignoring the

rest becomes costly.

As in the case of the near unit root cointegrating vector this model is quite stylized and

models with a greater degree of dynamics will change the size of the results, however the

general flavor remains.
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6 Predicting Noisy Variables with Trending Regres-

sors

In many problems the dependent variable itself displays no obvious trending behavior, how-

ever theoretically interesting covariates tend to exhibit some type of longer run trend. For

many problems we might rule out unit roots for these covariates, however the trend is suf-

ficiently strong that often tests for a unit root fail to reject and by implication standard

asymptotic theory for stationary variables is unlikely to approximate well the distribution

of the coefficient on the regressor. This leads to a number of problems similar to those

examined in the models above.

To be concrete, consider the model

y1t = β00zt + β1y2t−1 + v1t (13)

which is to be used to predict y1t. Further, suppose that y2t is generated by the model in (1)

in section 3. The model for vt = [v1t, v2t]0 is then vt = b∗(L)η∗t where E[η
∗
tη
∗0
t ] = Σ where

Σ =

⎛⎝ σ211 δσ11σ22

δσ11σ22 σ222

⎞⎠
and

b∗(L) =

⎛⎝ 1 0

0 c(L)

⎞⎠
The assumption that v1t is not serially correlated accords with the forecasting nature of this

regression, if serial correlation were detected we would include lags of the dependent variable

in the forecasting regression.

This regression has been used in many instances for forecasting. First, in finance a great

deal of attention has been given to the possibility that stock market returns are predictable.

In the context of (13) we have yt being stock returns from period t − 1 to t and y2t−1 is

any predictor known at the time one must undertake the investment to earn the returns y1t.

Examples of predictors include dividend price ratio, earnings to price ratios, interest rates

or spreads (see for example Fama and French (1988), Campbell and Shiller (1988a,1988b)

Hodrick (1992)). Yet each of these predictors tends to display large amounts of persistence

despite the absence of any obvious persistence in returns (Stambaugh (1999)). The model

43



(13) also well describes the regression run at the heart of the ’forward market unbiasedness’

puzzle first examined by Bilson (1981). Typically such a regression regresses the change in

the spot exchange rate from time t− 1 to t on the forward premium, defined as the forward
exchange rate at time t−1 for a contract deliverable at time t less the spot rate at time t−1
(which through covered interest parity is simply the difference between the interest rates of

the two currencies for a contract set at time t−1 and deliverable at time t). This can be recast
as a forecasting problem through subtracting the forward premium from both sides, leaving

the uncovered interest parity condition to mean that the difference between the realized spot

rate and the forward rate should be unpredictable. However the forward premium is very

persistent (Evans and Lewis (1995) argue that this term can appear quite persistent due to

the risk premium appearing quite persistent). The literature on this regression is huge. Froot

and Thaler (1990) give a review A third area that fits this regression is use of interest rates

or the term structure of the interest rates to predict various macroeconomic and financial

variables. Chen (1991) shows using standard methods that short run interest rates and the

term structure are useful for predicting GNP.

There are a few ’stylized’ facts about such prediction problems. First, in general the

coefficient β often appears to be significantly different from one under the usual stationary

asymptotic theory (i.e. the t statistic is outside the ±2 bounds). Second, R2 tends to
be very small. Third, often the coefficient estimates seem to vary over subsamples more

than standard stationary asymptotic theory might predict. Finally, these relationships have

a tendency to ’break down’ – often the in sample forecasting ability does not seem to

translate to out of sample predictive ability. Models where β is equal to or close to zero

and regressors that are nearly nonstationary combined with asymptotic theory that reflects

this trending behavior in the predictor variable can to some extent account for all of these

stylized facts.

The problem of inference on the OLS estimator β̂1 in (13) has been studied in both

cases specific to particular regressions and also more generally. Stambaugh (1999) examines

inference from a Bayesian viewpoint. Mankiw and Shapiro (1986), in the context of pre-

dicting changes in consumption with income, examined these types of regressions employing

Monte Carlo methods to show that t statistics overreject the null hypothesis that β = 0

using conventional critical values. Elliott and Stock (1994) and Cavanagh, Elliott and Stock
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(1995) examined this model using local to unity asymptotic theory to understand this type

of result. Moriera and Jansson (2004) provide methods to test this hypothesis.

First, consider the problem that the t statistic overrejects in the above regression. Elliott

and Stock (1994) show that the asymptotic distribution of the t statistic testing the hypoth-

esis that β1 = 0 can be written as the weighted sum of a mixed normal and the usual Dickey

and Fuller t statistic. Given that the latter is not well approximated by a normal, the failure

of empirical size to equal nominal size will result when the weight on this nonstandard part

of the distribution is nonzero.

To see the effect of regressing with a trending regressor we will rotate the error vector vt

through considering ηt = Rvt where

R =

⎛⎝ 1 −δ σ11
c(1)σ22

0 1

⎞⎠
so η1t = v1t − δ σ11

c(1)σ22
v2t = v1t − δ σ11

c(1)σ22
η2t. This results in the spectral density of ηt at

frequency zero scaled by 2π equal to Rb∗(1)Σb∗(1)R0 which is equivalent to

Ω = Rb∗(1)Σb∗(1)R0 =

⎛⎝ σ222(1− δ2) 0

0 c(1)2σ211

⎞⎠
Now consider the regression

y1t = β0ozt + β1y1t−1 + v1t

= (β0o + φ0)zt−1 + β1(y2t−1 − φ0zt−1) + v1t

= β̃
0
0zt−1 + β1(y2t−1 − φ0zt−1) + v1t

= β0Xt + v1t

where β = (β̃
0
0, β1)

0 and Xt = (z
0
t, y1t−1 − φ0zt−1)

0.

Typically OLS is used to examine this regression. We have that

β̂ − β =

Ã
TX
t=2

XtX
0
t

!−1 TX
t=2

Xtv2t

=

Ã
TX
t=2

XtX
0
t

!−1 TX
t=2

Xtη2t + δ
σ22

c(1)σ11

Ã
TX
t=2

XtX
0
t

!−1 TX
t=2

Xtη1t
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since v2t = η2t + δ σ22
c(1)σ11

η1t.What we have done is rewritten the shock to the forecasting

regression into orthogonal components describing the shock to the persistent regressor and

the shock unrelated to y2t.

To examine the asymptotic properties of the estimator, we require some additional as-

sumptions. Jointly we can consider the vector of partial sums of ηt and we assume that this

partial sum satisfies a functional central limit theorem (FCLT)

T−1/2
[T•]X
t=1

ηt ⇒ Ω1/2

⎛⎝ W2.1(·)
M(·)

⎞⎠
whereM(·) is as before and is asymptotically independent of the standard Brownian Motion
W2.1(·).
Now the usefulness of the decomposition of the parameter estimator into two parts can

be seen through examining what each of these terms look like asymptotically when suitably

scaled. The first term, by virtue of η1t being orthogonal to the entire history of xt, will when

suitably scaled have an asymptotic mixed normal distribution. The second term is exactly

what we would obtain, apart from being multiplied at the front by δ σ22
σ11

, in the Dickey and

Fuller (1979) regression of xt on a constant and lagged dependent variable. Hence this

term has the familiar nonstandard distribution from that regression when standardized in

the same way as the first term. Also by virtue of the independence of η1t and ε2t each of

these terms is asymptotically independent. Thus the limit distribution for the standardized

coefficients is a weighted sum of a mixed normal and a Dickey and Fuller (1979) distribution,

which will not be well approximated by a normal distribution.

Now consider the t-statistic testing β = 0. The t statistic testing the hypothesis that

β1 = 0 when this is the null is typically employed to justify the regressors inclusion in the

forecasting equation. This t−statistic has an asymptotic distribution given by

tβ̂1=0 ⇒ (1− δ2)1/2z∗ + δDF

where z∗ is distributed as a standard normal and DF is the usual Dickey and Fuller t

distribution when c(1) = 1 and γ = 0 and a variant of it otherwise. The actual distribution

is

DF =
0.5(Md(1)2 −Md(0)2 − c(1)2)Z

Md(s)ds
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whereMd(s) is the projection ofM(s) on the continuous analog of zt. When γ = 0, c(1) = 1

and at least a constant term is included this is identical to the usual DF distribution with

the appropriate order of deterministic terms. When c(1) is not one we have an extra effect

through the serial correlation (cf Phillips (1987)).

The nuisance parameter that determines the weights, δ, is the correlation between the

shocks driving the forecasting equation and the quasi difference of the covariate to be included

in the forecasting regression. Hence asymptotically, this nuisance parameter along with the

local to unity parameter describe the extent to which this test for inclusion over rejects.

The effect of the trending regressor on the type of R2 we are likely to see in the forecasting

regression (13) can be seen through the relationship between the t statistic and R2 in the

model where only a constant is included in the regression. In such models we have that the

R2 for the regression is approximately T−1t2β1=0. In the usual case of including a stationary

regressor without predictive power we would expect that TR2 is approximately the square of

the t statistic testing exclusion of the regressor, i.e. is distributed as a χ21 random variable,

hence on average we expect R2 to be T−1.But in the case of a trending regressor t2β1=0 will

not be well approximated by a χ21 as the t statistic is not well approximated by a standard

normal. On average the R2 will be larger and because of the long tail of the DF distribution

there is a larger chance of having relatively larger values for R2. However, we still expect R2

to be small most of the time even though the test of inclusion rejects.

The extent of overrejection and the average R2 for various values of δ and γ are given

in Table 1 for a test with nominal size equal to 5%. The sample size is T = 100 and zero

initial condition for y1t was employed.

Table 1: Overrejection and R2 as a function of endogeneity
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δ = 0.1 0.3 0.5 0.7 0.9

0 % rej 0.058 0.075 0.103 0.135 0.165

ave R2 0.010 0.012 0.014 0.017 0.019

5 % rej 0.055 0.061 0.070 0.078 0.087

ave R2 0.010 0.011 0.011 0.012 0.013

10 % rej 0.055 0.058 0.062 0.066 0.071

ave R2 0.010 0.010 0.011 0.011 0.012

15 % rej 0.056 0.057 0.059 0.062 0.065

ave R2 0.010 0.010 0.011 0.011 0.011

20 % rej 0.055 0.057 0.059 0.060 0.063

ave R2 0.010 0.010 0.010 0.011 0.011
The problem is larger the closer y1t is to having a unit root and the larger is the long

run correlation coefficient δ. For moderate values of δ, the effect is not great. The rejection

rate numbers mask the fact that the tβ1=0 statistics can on occasion be far from ±2. A well
known property of the DF distribution is a long tail on the left hand side of the distribution.

The sum of these distributions will also have such a tail – for δ > 0 it will be to the left of

the mean and for δ > 0 to the right. Hence some of these rejections can appear quite large

using the asymptotic normal as an approximation to the limit distribution. This follows

through to the types of values for R2 we expect. Again, when γ is close to zero and δ is

close to one the R2 is twice what we expect on average, but still very small. Typically it

will be larger than expected, but does not take on very large values. This conforms with

the common finding of trending predictors appearing to be useful in the regression through

entering the forecasting regression with statistically significant coefficients however they do

not appear to pick up much of the variation in the variable to be predicted.

The trending behavior of the regressor can also explain greater than expected variability

in the coefficient estimate. In essence, the typically reported standard error of the estimate

based on asymptotic normality is not a relevant guide to the sampling variability of the

estimator over repeated samples and hence expectations based on this will mislead. Alter-

natively, standard tests for breaks in coefficient estimates rely on the stationarity of the

regressors, and hence are not appropriate for these types of regressions. Hansen (2000) gives

an analysis of break testing when the regressor is not well approximated by a stationary

process and provides a bootstrap method for testing for breaks.
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In all of the above, I have considered one step ahead forecasts. There are two approaches

that have been employed for greater than one step ahead forecasts. The first is to consider

the regression y1t = β00zt+β1y2t−h+ ṽ1t as the model that generates the h step ahead forecast

where ν̃1t is the iterated error term. In this case results very similar to those given above

apply.

A second version is to examine the forecastability of the cumulation of h steps of the

variable to be forecast. The regression is

hX
i=1

y1t+i = β0ozt + β1y2t + ṽ2t+h

Notice that for large enough h this cumulation will act like a trending variable, and hence

greatly increase the chance that such a regression is really a spurious regression. Thus when

y2t has a unit root or near unit root behavior the distribution of β̂1 will be more like that of a

spurious regression, and hence give the appearance of predictability even when there is none

there. Unlike the results above, this can be true even if the variable is strictly exogenous.

These results can be formalized analytically through considering the asymptotic thought

experiment that h = [λT ] as in Section 3 above. Valkonov (2003) explicitly examines this

type of regression for zt = 1 and general serial correlation in the predictor and shows the

spurious regression result analytically.

Finally, there is a strong link between these models and those of section 5 above. Compare

equation (12) and the regression examined in this section. Renaming the dependent variable

in (12) as y2t and the ’cointegrating’ vector y1t we have the model of this section.

7 Forecast Evaluation with Unit or Near Unit Roots

A number of issues arise here. In this handbook West examines issues in forecast evaluation

when the model is stationary. Here, when the data have unit root or near unit root behavior

then this must be taken into account when conducting the tests. It will also affect the prop-

erties of constructed variables such as average loss depending on the model Alternatively,

other possibilities arise in forecast evaluation. The literature that extends these results to

use of nonstationary data is much less well developed.

49



7.1 Evaluating and Comparing Expected Losses

The natural comparison between forecasting procedures is to compare the procedures based

on ’holdout’ samples – use a portion of the sample to estimate the models and a portion of

the sample to evaluate them. The relevant statistic becomes the average ’out of sample’ loss.

We can consider the evaluation of any forecasting model where either (or both) the outcome

variable and the covariates used in the forecast might have unit roots or near unit roots.

The difficulty that typically arises for examining sample averages and estimator behavior

when the variables are not obviously stationary is that central limit theorems do not apply.

The result is that these sample averages tend to converge to nonstandard distributions that

depend on nuisance parameters, and this must be taken into account when comparing out of

sample average MSE’s as well as in understanding the sampling error in any given average

MSE.

Throughout this section we follow the majority of the (stationary) literature and consider

a sampling scheme where the T observations are split between a model estimation sample

consisting of the observations t = 1, ..., T1, and an evaluation sample t = T1 + 1, ..., T. For

asymptotic results we allow both samples to get large, defining κ = T1/T. Further, we will

allow the forecast horizon h to remain large as T increases, we set h/T = λ. We are thus

examining approximations to situations where the forecast horizon is substantial compared

to the sample available. These results are comparable to the long run forecasting results of

the earlier sections.

As an example of how the sample average of out of sample forecast errors converges to

a nonstandard distribution dependent on nuisance parameters, we can examine the simple

univariate model of Section 3. In the mean case the forecast of yt+h at time t is simply yt

and so the average forecast error for the holdout sample is

MSE(h) =
1

T − T1 − h

T−hX
t=T1+1

(yt+h − yt)
2

Now allowing T (ρ− 1) = γ then using the FCLT and continuous mapping theorem we have
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that after rescaling by T−1 then

T−1MSE(h) =
T

T − T1 − h
T−1

T−hX
t=T1+1

(T−1/2yt+h − T−1/2yt)
2

⇒ σ2ε
1

1− λ− κ

Z 1−λ

κ

(M(s+ λ)−M(s))2ds

The additional scaling by T gives some hint to understanding the output of average out

of sample forecast errors. The raw average of out of sample forecast errors gets larger as

the sample size increases. Thus interpreting directly this average as the likely forecast error

using the model to forecast the next h periods is misleading. However on rescaling, it can

be considered in this way. In the case where the initial value for the process yt comes from

its unconditional distribution, i.e. α = 1, the limit distribution has a mean that is exactly

the expected value for the expected MSE of a single h step ahead forecast.

When the largest root is estimated these expressions become even more complicated

functions of Brownian Motions, and as earlier become very difficult to examine analytically.

When the forecasting model is complicated further, by the addition of extra variables in

the forecasting model, asymptotic approximations for average out of sample forecast error

become even more complicated, typically depending on all the nuisance parameters of the

model. Corradi, Swanson and Olivetti (2001) extend results to the cointegrated case where

the rank of cointegration is known. In such models the variables that enter the regressions are

stationary, and the same results as for stationary regression arise so long as loss is quadratic

or the out of sample proportion grows at a slower rate than the in sample proportion (i.e.

κ converges to one). Rossi (2005) provides analytical results for comparing models where

all variables have near unit roots against the random walk model, along with methods for

dealing with the nuisance parameter problem.

7.2 Orthogonality and Unbiasedness Regressions

Consider the basic orthogonality regression for differentiable loss functions, i.e. the regression

L0(et+h) = β0Xt + εt+h

(where Xt includes any information known at the time the forecast is made and L0(.) is the

first derivative of the loss function) and we wish to test the hypothesis H0 : β = 0. If some
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or all of the variables in Xt are integrated or near integrated, then this affects the sampling

distribution of the parameter estimates and the corresponding hypothesis tests.

This arises in practice in a number of instances. We have earlier noted that one popular

choice for Xt, namely the forecast itself, has been used in testing what is known as ’unbiased-

ness’ of the forecasts. In the case of MSE loss, where L0(et+h) = et+h/2 then unbiasedness

means that on average the forecast is equal to the outcome. This can be done in the context

of the regression above using

yt+h − yt,t+h = β0 + β1yt+h,t + εt+h

If the series to be forecast is integrated or near integrated, then the predictor in this regression

will have these properties and standard asymptotic theory for conducting this test does not

apply.

Another case might be a situation where we want to construct a test that has power

against a small nonstationary component in the forecast error. Including only stationary

variables in Xt would not give any power in that direction, and hence one may wish to

include a nonstationary variable. Finally, many variables that are suggested in theory to

be potentially correlated with outcomes may exhibit large amounts of persistence. Such

variables include interest rates etc. Again, in these situations we need to account for the

different sampling behavior.

If the variables Xt can be neatly split (in a known way) between variables with unit roots

and variables without and it is known how many cointegrating vectors there are amongst

the unit root variables, then the framework of the regression fits that of Sims, Stock and

Watson (1990). Under their assumptions the OLS coefficient vector β̂ converges to a non-

standard distribution which involves functions of Brownian motions and normal variates.

The distribution depends on nuisance parameters and standard tabulation of critical values

is basically infeasible (the number of dimensions would be large). As a consequence, finding

the critical values for the joint test of orthogonality is quite difficult.

This problem is of course equivalent to that of the previous section when it comes to

distribution theory for β̂ and consequently on testing this parameter. The same issues

arise. Thus orthogonality tests with integrated or near integrated regressors are problematic,

even without thinking about the construction of the forecast errors. Failure to realize the

impacts of these correlations on the hypothesis test (i.e. proceeding as if the t statistics
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had asymptotic normal distributions or that the F statistics have asymptotic chi-square

distributions) results in overrejection. Further, there is no simple method for constructing

the alternate distributions, especially when there is uncertainty over whether or not there is

a unit root in the regressor (see Cavanagh et. al. (1995)).

Additional issues also arise when Xt includes the forecast or other constructed variables.

In the stationary case results are available for various construction schemes (see the chapter

by West in this handbook). These results will not in general carry over to the problem here.

7.3 Cointegration of Forecasts and Outcomes

An implication of good forecasting when outcomes are trending would be that forecasts and

outcomes of the variable of interest would have a difference that is not trending. In this

sense, if the outcomes have a unit root then we would expect forecasts and outcomes to

be cointegrated..This has led some researchers have examined whether or not the forecasts

made in practice are indeed cointegrated with the variable being forecast. The expected

cointegrating vector is β = (1,−1)0 , implying that the forecast error is stationary. This
has been undertaken for exchange rates (Liu and Maddala (1992)) and macroeconomic data

(Aggarwal, Mohanty and Song (1995)). In the context of macroeconomic forecasts, Cheung

and Chinn (1999) also relax the cointegrating vector assumption that the coefficients are

known and estimate these coefficients.

The requirement that forecasts be cointegrated with outcomes is a very weak requirement.

Note that the forecasters information set includes the current value of the outcome variable.

Since the current value of the outcome variable is trivially cointegrated with the future

outcome variable to be forecast (they differ by the change, which is stationary) then the

forecaster has a simple observable forecast that satisfies the requirement that the forecast

and outcome variable be cointegrated. This also means that forecasts generated by adding

any stationary component to the current level of the variable will also satisfy the requirement

of cointegration between the forecasts and the outcome. Thus even forecasts of the change

that are uncorrelated with the actual change provided they are stationary will result in

cointegration between forecasts and outcomes.

We can also imagine what happens under the null hypothesis of no cointegration. Under

the null, forecast errors are I(1) and hence become arbitrarily far from zero with probability
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one. It is hard to imagine that a forecaster would stick with such a method when the forecast

becomes further from the current value of the outcome than typical changes in the outcome

variable would suggest are plausible.

That this weak requirement obviously holds in many cases has not meant that the hy-

pothesis has not been rejected. As with all testing situations, one must consider the test a

joint test of the proposition being examined and the assumptions under which the test is

derived. Given the unlikely event that forecasts and outcomes are truly becoming arbitrarily

far apart, as would be suggested by a lack of cointegration, perhaps the problem is in the

assumption that the trend is correctly characterized by a unit root. In the context of hy-

pothesis testing on the β parameters Elliott (1998) shows that near unit roots causes major

size distortions for tests on this parameter vector.

Overall, these tests are not likely to shed much light on the usefulness of forecasts.

8 Conclusion

Making general statements as to how to proceed with forecasting when there is trending

behavior is difficult due to the strong dependence of the results on a myriad of nuisance

parameters of the problem – extent of deterministic terms, initial values and descriptions of

serial correlation. This becomes even more true when the model is multivariate, since there

are many more combinations of nuisance parameters that can either reduce or enhance the

value of estimation over imposition of unit roots.

Theoretically though a number of points arise. First, except for roots quite close to one

estimation should outperform imposition of unit roots in terms of MSE error. Indeed, since

estimation results in bounded MSE over reasonable regions of uncertainty over the parameter

space whereas imposition of unit roots can result in very large losses it would seem to be

the conservative approach would be to estimate the parameters if we are uncertain as to

their values. This goes almost entirely against current practice and findings with real data.

Two possibilities arise immediately. First, the models for which under which the theory

above is useful are not good models of the data and hence the theoretical size of the trade-

offs are different. Second, there are features of real data that, although the above models

are reasonable, they affect the estimators in ways ignored by the models here and so when

parameters are estimated large errors make the results less appropriate. Given that tests
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designed to distinguish between various models are not powerful enough to rule out the

models considered here, it is unlikely that these other functions of the data – evaluations

of forecast performance – will show the differences between the models.

For multivariate models the differences are exacerbated in most cases. Theory shows that

imposing cointegration on the problem when true is still unlikely to help at longer horizons

despite its nature as a long run restriction on the data. A number of authors have sought to

characterize this issue as not one of imposing cointegration but imposing the correct number

of unit roots on the model, however these are of course equivalent. It is true however that it

is the estimation of the roots that can cause MSE to be larger, they can be poorly estimated

in small samples. More directly though is that the trade-offs are similar in nature to the

univariate model. Risk is bounded when the parameters are estimated.

Finally, it is not surprising that there is a short horizon/long horizon dichotomy in the

forecasting of variables when the covariates display trending behavior. In the short run we

are relating a trending variable to a nontrending one, and it is difficult to write down such a

model where the trending covariate is going to explain a lot of the nontrending outcome. At

longer horizons though the long run prediction becomes the sum of stationary increments,

allowing trending covariates a greater opportunity of being correlated with the outcome to

be forecast.

In part a great deal of the answer probably lies in the high correlation between the

forecasts that arise from various assumptions and also the unconditional nature of the results

of the literature. On the first point, given the data the differences just tend not to be huge

and hence imposing the root and modelling the variables in differences not greatly costly in

most samples, imposing unit roots just makes for a simpler modelling exercise. This type of

conditional result has not been greatly examined in the literature. Things brings the second

point – for what practical forecasting problems does the unconditional, i.e. averaging over

lots of data sets, best practice become relevant? This too has not been looked at deeply in

the literature. When the current variable is far from its deterministic component, estimating

the root (which typically means using a mean reverting model) and imposing the unit root

(which stops mean reversion) have a bigger impact in the sense that they generate very

different forecasts. The modelling of the trending nature becomes very important in these

cases even though on average it appears less important because we average over these cases
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as well as the more likely case that the current level of the variable is close to its deterministic

component.
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1 Introduction

Expectations formation is an integral part of the decision making process by households,

firms, as well as the private and public institutions. At the theoretical level the rational

expectations hypothesis as advanced by Muth (1961) has gained general acceptance as the

dominant model of expectations formation. It provides a fully theory-consistent framework

where subjective expectations of individual decision makers are set to their objective coun-

terparts, assuming a known true underlying economic model. Expectations can be in the

form of point expectations, or could concern the whole conditional probability distribution

of the future values of the variables that influence individual decisions, namely probability or

density expectations. Point expectations would be sufficient in the case of linear-quadratic

decision problems where the utility (or cost) functions are quadratic and the constraints

linear. For more general decision problems density expectations might be required.

From an empirical viewpoint, expectations formation is closely linked to point and density

forecasting and as such is subject to data and model uncertainty. Assuming that individ-

ual decision makers know the true model of the economy is no more credible than claiming

that economic forecasts made using econometric models will be free of systematic bias and

informational inefficiencies. This has led many investigators to explore the development

of a weaker form of the rational expectations hypothesis that allows for model uncertainty

and learning.1 In this process experimental and survey data on expectations play an im-

portant role in providing better insights into how expectations are formed. There is now a

substantial literature on survey expectations. Experimental data on expectations are also

becoming increasingly available and are particularly important for development of a better

understanding of how learning takes place in the expectations formation process.

As with many areas of applied econometrics, initial studies of survey data on expectations

tended to focus on the properties of aggregate summaries of survey findings, and their role

in aggregate time-series models. The first study of individual responses was published in

1983 and much of the more recent work has been focused on this. Obviously, when a survey

covers expectations of individual experience, such as firm’s sales or a consumer’s income, it is

desirable to assess the survey data in the light of the subsequent outcome for the individual.

This allows an assessment of the reported expectations in a manner which is not possible

using only time-series aggregates but it requires some form of panel data set. Even where

1Evans & Honkapohja (2001) provide an excellent account of recent developments of expectations forma-

tion models subject to learning.
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a survey collects information on expectations of some macro-economic aggregate, such as

the rate of inflation, it is likely that analysis of individual responses will provide richer and

more convincing conclusions than would be found from the time-series analysis of aggregated

responses alone.

This paper focusses on the analysis of survey expectations at the individual and at the

aggregate levels and discusses their uses in forecasting and for testing and modelling of

expectations. Most expectations data are concerned with point expectations, although some

attempts have been made to elicit density expectations, in particular expectations of second

order moments. Survey data are often compiled in the form of qualitative responses and their

conversion into quantitative measures might be needed. The elicitation process embodied

in the survey techniques also presents further problems for the use of survey expectations.

Since respondents tend to lack proper economic incentives when answering survey questions

about their expectations, the responses might not be sufficiently accurate or reliable. Finally,

survey expectations tend to cover relatively short horizons, typically 1 to 12 months, and their

use in long-term forecasting or impulse response analysis will be limited, and would require

augmenting the survey data with a formal expectations formation model for generation of

longer term expectations, beyond the horizon of the survey data. The literature on these

and on a number of other related issues will be covered. In particular, we consider the

evidence on the use of survey expectations in forecasting. The question of interest would

be to see if expectations data when used as supplementary variables in forecasting models

would lead to better forecasting performance. We note that many expectational surveys also

collect information about the recent past. Such data are potentially useful for “nowcasting”

because they are typically made available earlier than the “hard” official data to which they

are supposed to relate. While their study falls outside a synthesis of work on survey measures

of expectations, and is not discussed here, it is worth noting that many of the methods used

to analyse and test survey data about expectations of the future also apply with little or no

modification, to analysis of these retrospective data. In some circumstances, as we discuss in

section 3.3 , they may be required to assess the performance of surveys about expectations

of the future.

While we focus on survey expectations rather than the forecasting properties of partic-

ular statistical or econometric models, it is worth emphasizing that the distinction is more

apparent than real. Some surveys collate the forecasts of professional forecasters, and it is

likely that at least some of these are generated by formal forecasting models and forecasting

processes of various types. Even where information on such expectations is collected from
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the public at large, such expectations may be closely informed by the published forecasts of

professional forecasters. There are some circumstances where it is, however, unlikely that

formal models are implied. If consumers are asked about their expectations of their own

incomes, while these may be influenced by forecasts for the macro-economy, they are un-

likely to be solely the outcome of formal forecasting procedures. When businesses are asked

about how they expect their own sales or prices to change, the same is likely to be true. The

ambiguity of the distinction and the fact that some important issues are raised by surveys

which collect information from professional analysts and forecasters does mean, however,

that we give some consideration to such surveys as well as to those which are likely to reflect

expectations rather than forecasts.

Our review covers four separate but closely related topics and is therefore organized in four

distinct parts. In part one we address the question of concepts and models of expectations

formation. Part two looks at the development of measures of expectations including issues

arising in the quantification of qualitative measures of expectations. Part three considers the

use of survey expectations in forecasting, and part four considers how survey data are used in

testing theories with particular emphasis on models of expectations formation. Conclusions

follow.

We begin part one by introducing some of the basic concepts and the various models of

expectations formation advanced in the literature. In section 2.1 we introduce the rational

expectations hypothesis and discuss the importance of allowing for heterogeneity of expec-

tations in relating theory to survey expectations. To this end a weak form of the rational

expectations hypothesis which focusses on average expectations rather individual expecta-

tions is advanced. Other models of expectations formation, such as the adaptive expectations

hypothesis, are briefly reviewed in section 2.2. In section 2.3 we discuss some of the issues

involved in testing models of expectations. Section 2.4 further considers the optimality of

survey forecasts in the case where loss functions are asymmetric.

The introductory section to part two provides a historical account of the development

of surveys of expectations. As noted above, many of these surveys collect qualitative data;

section 3.1 considers ways of quantifying these qualitative expectations paying attention to

both the use of aggregated data from these surveys and to the use of individual responses.

In section 3.2 we discuss different ways of providing and interpreting information on uncer-

tainty to complement qualitative or quantitative information on expectations. In section

3.3 we discuss the analysis of individual rather than aggregated responses to surveys about

expectations.
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The focus of part three is on the uses of survey data in producing economic forecasts.

In section 4.1 we discuss the use of survey data in the context of forecast combination as a

means of using disparate forecasts to produce a more accurate compromise forecast. Section

4.2 considers how they can be used to indicate the uncertainty of forecasts and in section 4.3

we discuss the use of qualitative surveys to produce forecasts of quantitative macro-economic

aggregates.

Methods of testing models of expectation formation, discussed in part four are split

between analysis based on the results of quantitative surveys of expectations in section 5.1

and the analysis of qualitative disaggregated data in section 5.2. A substantial range of

econometric issues arises in both cases. Perhaps not surprisingly more attention has been

paid to the former than to the latter although, since many of the high-frequency expectations

surveys are qualitative in form, the second area is likely to develop in importance.

2 Part I: Concepts and Models of Expectations For-

mation

Expectations are subjectively held beliefs by individuals about uncertain future outcomes

or the beliefs of other individuals in the market place.2 How expectations are formed, and

whether they lend themselves to mathematical representations have been the subject of con-

siderable debate and discussions. The answers vary and depend on the nature and the source

of uncertainty that surrounds a particular decision. Knight (1921) distinguishes between

‘true uncertainty’ and ‘risk’ and argues that under the former it is not possible to reduce

the uncertainty and expectations to ‘an objective quantitatively determined probability’ (p.

321). Pesaran (1987) makes a distinction between exogenous and behavioural uncertainty

and argues that the former is more likely to lend itself to formal probabilistic analysis. In

this review we focus on situations where individual expectations can be formalized.

Denote individual i’s point expectations of a k dimensional vector of future variables,

say xt+1, formed with respect to the information set, Ωit, by Ei(xt+1|Ωit). Similarly, let

fi(xt+1|Ωit) be individual i’s density expectations, so that

Ei(xt+1|Ωit) =

∫
xt+1fi (xt+1|Ωit) dxt.

2It is also possible for individuals to form expectations of present or past events about which they are

not fully informed. This is related to “nowcasting” or “backcasting” in the forecasting literature mentioned

above.
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Individual i’s belief about individual j’s expectations of xt+1 may also be written as

Ei[Ej (xt+1|Ωjt) |Ωit].

Clearly, higher order expectations can be similarly defined but will not be pursued here.

In general, point expectations of the same variable could differ considerably across indi-

viduals, due to differences in Ωit (information disparity), and differences in the subjective

probability densities, fi(.) (belief disparity). The two sources of expectations heterogeneity

are closely related and could be re-inforcing. Information disparities could initiate and main-

tain disparities in beliefs, whilst differences in beliefs could lead to information disparities

when information processing is costly.3

Alternative models of expectations formation provide different characterizations of the

way subjective beliefs and the objective reality are related. At one extreme lies the rational

expectations hypothesis of Muth (1961) that postulates the coincidence of the two concepts,

with Knightian view that denies any specific links between expectations and reality. In what

follows we provide an overview of the alternative models, confining ourselves to expectations

formation models that lend themselves to statistical formalizations.

2.1 The Rational Expectations Hypothesis

For a formal representation of the rational expectations hypothesis (REH), as set out by

Muth, we first decompose the individual specific information sets, Ωit, into a public infor-

mation set Ψt, and an individual-specific private information set Φit such that

Ωit = Ψt ∪ Φit,

for i = 1, 2, ..., N. Further, we assume that the ‘objective’ probability density function of

xt+1 is given by f(xt+1|Ψt). Then the REH postulates that

HREH : fi(xt+1|Ωit) = f(xt+1|Ψt), for all i. (1)

Under the Muthian notion of the REH, private information plays no role in the expectations

formation process, and expectations are fully efficient with respect to the public informa-

tion, Ψt. In the case of point expectations, the optimality of the REH is captured by the

“orthogonality” condition

E(ξt+1|St) = 0, (2)

3Models of rationally heterogeneous expectations are discussed, for example, in Evans & Ramey (1992),

Brock & Hommes (1997) and Branch (2002). See also section 5.1.5 for discussion of evidence on expectations

heterogeneity.
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where ξt+1 is the error of expectations defined by

ξt+1 = xt+1 − E(xt+1|Ψt), (3)

and St ⊆ Ψt, is a subset of Ψt. The orthogonality condition (2) in turn implies that, under

the REH, expectations errors have zero means and are serially uncorrelated. It does not, for

example, require the expectations errors to be conditionally or unconditionally homoskedas-

tic. From a formal mathematical perspective, it states that under the REH (in the sense

of Muth) expectations errors form a martingale difference process with respect to the non-

decreasing information set available to the agent at the time expectations are formed. In

what follows we shall use the term ‘orthogonality condition’ and the ‘martingale property’

of the expectations errors interchangeably. The orthogonality condition is often used to test

the informational efficiency of survey expectations. But as we shall see it is neither necessary

nor sufficient for rationality of expectations if individual expectations are formed as optimal

forecasts with respect to general cost functions under incomplete learning.

Also, the common knowledge assumptions that underlie the rationality of individual ex-

pectations in the Muthian sense is rather restrictive, and has been relaxed in the literature

where different notions of the rational expectations equilibria are defined and implemented

under asymmetric and heterogeneous information. See, for example, Radner (1979), Gross-

man & Stiglitz (1980), Hellwig (1980) and Milgrom (1981), just to mention some of the early

important contributions.

In advancing the REH, Muth (1961) was in fact fully aware of the importance of allowing

for cross section heterogeneity of expectations.4 One of his aims in proposing the REH was

to explain the following stylized facts observed using expectations data

1. Averages of expectations in an industry are more accurate than naive models

and as accurate as elaborate equation systems, although there are considerable cross-

sectional differences of opinion.

2. Reported expectations generally underestimate the extent of changes that actu-

ally take place.Muth (1961)[p. 316]

One of the main reasons for the prevalence of the homogeneous version of the rational

expectations hypothesis given by (1) has been the conceptual and technical difficulties of

4Pigou (1927) and Keynes (1936) had already emphasized the role of heterogeneity of information and

beliefs across agents for the analysis of financial markets.
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dealing with rational expectations models under heterogeneous information.5 Early attempts

to allow for heterogeneous information in rational expectations models include Lucas (1973),

Townsend (1978) and Townsend (1983). More recent developments are surveyed by Hommes

(forthcoming) who argues that an important paradigm shift is occurring in economics and

finance from a representative rational agent model towards heterogeneous agent models.

Analysis of heterogeneous rational expectations models invariably involve the “infinite regress

in expectations” problem that arise as agents need to forecast the forecasts of others. A

number of different solution strategies have been proposed in the literature which in different

ways limit the scope of possible solutions. For example, Binder & Pesaran (1998) establish

that a unique solution results if it is assumed that each agent bases his/her forecasts of

others only on the information set that is common knowledge, Ψt.

When the heterogeneous rational expectations model has a unique solution, expectations

errors of individual agents continue to satisfy the usual orthogonality conditions. However,

unlike in models under homogeneous information, the average expectations error across

decision makers, defined as ξt+1 = xt+1 −
∑N

i=1 witE(xt+1|Ωit) is generally not orthogonal

with respect to the individual decision makers’ information sets, where wit is the weight

attached to the ith individual in forming the the average expectations measure. Seen from

this perspective a weaker form of the REH that focusses on ‘average’ expectations might be

more desirable. Consider the average density expectations computed over N individuals

f̄w(xt+1|Ωt) =
N∑

i≡1

witfi(xt+1|Ωit). (4)

The average form of the REH can then be postulated as

HREH : f̄w(xt+1|Ωt) = f(xt+1|Ψt), (5)

where Ωt = UN
i=1Ωit, and wit are non-negative weights that satisfy the conditions:

N∑
i≡1

wit = 1,
N∑

i≡1

w2
it = O

(
1

N

)
. (6)

In terms of point expectations, the average form of the REH holds if

Ēw(xt+1|Ωt) =
N∑

i≡1

witEi(xt+1|Ωit) = E(xt+1|Ψt), (7)

5For example, as recently acknowledged by Mankiw, Reis & Wolfers (2004), the fact that expectations

are not the same across individuals is routinely ignored in the macroeconomic literature.
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which is much weaker than the REH and allows for a considerable degree of heterogeneity

of individual expectations.

This version of the REH is, for example, compatible with systematic errors of expec-

tations being present at the individual level. Suppose that individual expectations can be

decomposed as

Ei(xt+1|Ωit) = HiE(xt+1|Ψt) + uit, (8)

where uit, i = 1, 2, ..., N, are the individual-specific components. The individual expectations

errors are now given by

ξi,t+1 = xt+1 − Ei(xt+1|Ωit) = ξt+1 + (Ik −Hi) E(xt+1|Ψt)− uit,

and clearly do not satisfy the REH if Hi 6= Ik, and/or uit are, for example, serially correlated.

Using the weights wit, the average expectations errors are now given by

ξ̄w,t+1 = ξt+1 +
(
Ik − H̄w

)
E(xt+1|Ψt)− ūwt,

where

ξ̄w,t+1 =
N∑

i=1

witξi,t+1, H̄wt =
N∑

i=1

witHi, ūwt =
N∑

i=1

wituit.

The conditions under which average expectations are ‘rational’ are much less restrictive as

compared to the conditions required for the rationality of individual expectations. A set of

sufficient conditions for the rationality of average expectations is given by

1. N is sufficiently large.

2. uit are distributed independently across i, and for each i they are covariance stationary.

3. the weights, wit, satisfy the conditions in (6) and are distributed independently of ujt,

for all i and j.

4. Hi are distributed independently of wit and across i with mean Ik and finite second

order moments.

Under these conditions (for each t) we have6

ξ̄w,t+1

q.m.→ ξt+1, as N →∞,

where
q.m.→ denotes convergence in quadratic means. Therefore, average, ‘consensus’ or market

rationality can hold even if the underlying individual expectations are non-rational in the

6For a proof, see Pesaran (2004)[Appendix A].
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sense of Muth.7 The above conditions allow for a high degree of heterogeneity of expectations,

and are compatible with individual expectations errors being biased and serially correlated

As we shall see this result is particularly relevant to tests of the REH that are based on

survey responses.

2.2 Extrapolative Models of Expectations Formation

In addition to the REH, a wide variety of expectations formation models has been advanced

in the literature with differing degrees of informational requirements. Most of these models

fall under the “extrapolative” category, where point expectations are determined by weighted

averages of past realizations. A general extrapolative formula is given by

Ei(xt+1|Ωit) =
∞∑

s=0

Φisxt−s, (9)

where the coefficient matrices, Φis, are assumed to be absolute summable subject to the

adding up condition
∞∑

s=0

Φis = Ik. (10)

This condition ensures that unconditionally expectations and observations have the same

means. For example, suppose that xt follows the first-order stationary autoregressive process

(unknown to the individuals)

xt = µ + Ψxt−1 + εt,

where all eigenvalues of Ψ lie inside the unit circle. It is then easily seen that

E [Ei(xt+1|Ωit)] =

(
∞∑

s=0

Φis

)
(Ik −Ψ)−1 µ,

and under the adding up condition, (10), yields, E [Ei(xt+1|Ωit)] = E (xt) = (Ik −Ψ)−1 µ.

Under (10), time averages of extrapolative expectations will be the same as the sample mean

of the underlying processes, an implication that can be tested using quantitative survey

expectations, if available.

The average (or consensus) version of the extrapolative hypothesis derived using the

weights, wit defined by (6), has also the extrapolative form

Ē(xt+1|St) =
∞∑

s=0

Φstxt−s, (11)

7The term consensus forecasts or expectations was popularized by Joseph Livingston, the founder of the

Livingston Survey in the U.S. See Section 3 for further details and references.
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where St contains xt,xt−1, ...; w1t, w2t, ...and

Φst =
N∑

i=1

witΦis.

It is clear that under extrapolative expectations individual expectations need not be ho-

mogeneous and could follow a number of different processes all of which are special cases

of the general extrapolative scheme. Once again, under the adding up condition, (10),

E
[
Ē(xt+1|St)

]
= E(xt), so long as

∑N
i=1 wit = 1.

2.2.1 Static Models of Expectations

The simplest form of an extrapolative model is the static expectations model considered by

Keynes (1936). In its basic form it is defined by

Ei (xt+1|Ωit) = Ē(xt+1|St) = xt,

and is optimal (in the mean squared error sense) if xt follows a pure random walk model. A

more recent version of this model, used in the case of integrated processes is given by

Ē(xt+1|St) = xt + ∆xt−1,

which is applicable when ∆xt+1 follows a random walk. This latter specification has the

advantage of being robust to shifts in the unconditional mean of the xt processes. Neither

of these specifications, however, allows for any form of adaptation to the changing nature of

the underlying time series.

2.2.2 Return to Normality Models

A simple generalisation of the static model that takes account of the evolution of the under-

lying processes is the ‘mean-reverting’ or the ‘return to normality’ model defined by

E (xt+1 | St) = (Ik −Λ)xt + Λx∗t , (12)

where Λ is a non-negative definite matrix, and x∗t represents the ‘normal’ or ‘the long-run

equilibrium’ level of xt. In this formulation, expectations are adjusted downward if xt is

above its normal level and vice versa if xt is below its normal level. Different specifications

of x∗t can be considered. For example, assuming

x∗t = (Ik−W)xt + Wxt−1,
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yields the regressive expectations model

E (xt+1 | St) = (Ik−ΛW)xt + ΛWxt−1,

where W is a weight matrix.

2.2.3 Adaptive Expectations Model

This is the most prominent form of extrapolative expectations, and can be obtained from

the general extrapolative formula, (11), by setting

Φs = Γ (Ik−Γ)s , s = 0, 1, ..

and assuming that all eigenvalues of Ik − Γ line inside the unit circle. Alternatively, the

adaptive expectations model can be obtained from the return to normality model (12), by

setting

x∗t = (I−W)xt + WE (xt | St−1) ,

which yields the familiar representation

Ē(xt+1|St)− Ē(xt|St−1) = Γ
[
xt−Ē(xt|St−1)

]
. (13)

Higher order versions of the adaptive expectations model have also been employed in the

analysis of expectations data. A general rth order vector adaptive model is given by

Ē(xt+1|St)− Ē(xt|St−1) =
r−1∑
j=0

Ψj

[
xt−j−Ē(xt−j|St−j−1)

]
. (14)

Under this model expectations are revised in line with past errors of expectations. In the

present multivariate setting, past expectations errors of all variables can potentially affect

the extent to which expectations of a single variable are revised. Univariate adaptive expec-

tations models can be derived by restricting Ψj to be diagonal for all j.

The univariate version of the adaptive expectations model was introduced into economics

by Koyck (1954) in a study of investment, by Cagan (1956) in a study of money demand in

conditions of hyper-inflation and by Nerlove (1958) in a study of the cobweb cycle. Adaptive

expectations were also used extensively in empirical studies of consumption and the Phillips

curve prior to the ascendancy of the REH in early 1970s.

In general, adaptive expectations need not be informationally efficient, and expectations

errors generated by adaptive schemes could be serially correlated. Originally, the adaptive

expectations hypothesis was advanced as a plausible ‘rule of thumb’ for updating and revising
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expectations, without claiming that it will be optimal. Muth (1960) was the first to show

that the adaptive expectations hypothesis is optimal (in the sense of yielding minimum mean

squared forecast errors) only if the process generating xt+1 has the following integrated, first-

order moving average representation (IMA(1)):

∆xt+1 = εt+1 − (Ik − Γ) εt, εt+1 |St ∼ IID(0,Σε).

In general, adaptive expectations need not be optimal and could perform particularly poorly

when the underlying processes are subject to structural breaks.

2.2.4 Error-Learning Models

The adaptive expectations hypothesis is concerned with one-step ahead expectations, and

how they are updated, but it can be readily generalised to deal with expectations formed over

longer horizons. Denoting the h-step ahead expectations by Ē(xt+h | St) , the error-learning

model is given by

Ē (xt+h | St)− Ē (xt+h | St−1) = Γh

[
xt − Ē (xt | St−1)

]
, (15)

which for h = 1 reduces to the simple adaptive expectations scheme. The error-learning

model states that revision in expectations of xt+h over the period t-1 to t is proportional to

the current error of expectations. Different expectations formation models can be obtained

assuming different patterns for the revision coefficients Γh . The error-learning models have

been proposed in the literature by Meiselman (1962), Mincer & Zarnowitz (1969) and Frenkel

(1975) and reduce to the adaptive expectations model if the revision coefficients, Γh, are

restricted to be the same across different horizons. Mincer & Zarnowitz (1969) show that

the revision coefficients are related to the weights Φj in the general extrapolations formula

via the following recursive relations:

Γh =
h−1∑

Φj

j=0

Γh−1−j, h = 1, 2, ..., (16)

when Γ0 = Ik. They demonstrate that the revision coefficients will be falling (rising) when

the weights Φj decline (rise) more than exponentially. The error-correction and the general

extrapolation model are algebraically equivalent, but the former is particularly convenient

when survey data is available on expectations over different horizons.
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2.3 Testable Implications of Expectations Formation Models

Broadly speaking there are two general approaches to testing expectations formation models.

‘Direct’ tests that make use of survey data on expectations, and the ‘indirect’ tests that

focus on cross equation parametric restrictions of the expectations formation models when

combined with a particular parametric economic model. The direct approach is applicable

to testing the REH as well as the extrapolative models, whilst the indirect approach has

been used primarily in testing of the REH. Given the focus of this paper we shall confine

our discussion to the direct tests.

2.3.1 Testing the REH

Suppose that quantitative expectations of xt+h are available on individuals, i = 1, 2, ..., N ,

formed at time t = 1, 2, ..., T , over different horizons, h = 1, 2, ..., H, and denote these by

tx
e
i,t+h. In the case of many surveys only qualitative responses are available and they need

to be converted into quantitative measures, a topic that we return to in section 3.1. The

realizations, xt+h, are often subject to data revisions that might not have been known to

the individuals when forming their expectations. The agent’s loss function might not be

quadratic. These issues will be addressed in subsequent sections. For the time being, we

abstract from data revisions and conversion errors and suppose that tx
e
i,t+h and the associated

expectations errors

ξi,t+h = xt+h − tx
e
i,t+h, (17)

are observed free of measurement errors. Under this idealized set up the test of the REH can

proceed by testing the orthogonality condition, (2), applied to the individual expectations

errors, ξi,t+h, assuming that

tx
e
i,t+h = Ei(xt+h|Ωit) =

∫
xt+hfi (xt+h|Ωit) dxt, (18)

namely that survey responses and mathematical expectations of individual’s density expec-

tations are identical. The orthogonality condition applied to the individual expectations

errors may now be written as

Ei

(
xt+h − tx

e
i,t+h|Sit

)
= 0, for i = 1, 2, .., N and h = 1, 2, ..., H, (19)

namely expectations errors (at all horizons) form martingale difference processes with re-

spect to the information set Sit, where Sit could contain any sub-set of the public information

set, Ψt, specifically xt, xt−1,xt−2, .., and the past values of individual-specific expectations,
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t−`x
e
i,t+h−`, ` = 1, 2, ... Information on other individuals’ expectations, t−`x

e
j,t+h−` for j 6= i

should not be included in Sit unless they are specifically supplied to the individual respon-

dents being surveyed. In such a case the test encompasses the concept that the explanatory

power of a rational forecast cannot be enhanced by the use of information provided by any

other forecast (Fair & Shiller 1990, Bonham & Dacy 1991). A test of unbiasedness of the

rational expectations can be carried out by including a vector of unity, τ = (1, 1, ..., 1)′

amongst the elements of Sit. As noted earlier, the REH does not impose any restrictions on

conditional or unconditional volatilities of the expectations errors, so long as the underlying

losses are quadratic in those errors.

The REH can also be tested using the time consistency property of mathematical expec-

tations, so long as at least two survey expectations are available for the same target dates

(i.e. H ≥ 2). The subjective expectations, Ei(xt+h|Si,t+`) formed at time t+` for period t+h

(h > `) is said to be consistent if expectations of Ei(xt+h|Si,t+`) formed at time t are equal

to Ei(xt+h|Sit) for all `. See Pesaran (1989) and Froot & Ito (1990). Clearly, expectations

formed rationally also satisfy the consistency property, and in particular

Ei [Ei(xt+h|Si,t+1)|Sit] = Ei(xt+h|Sit).

Therefore, under (18)

Ei

[(
t+1x

e
i,t+h − tx

e
i,t+h

)
|Sit

]
= 0,

which for the same target date, t, can be written as

Ei [(t−h+1x
e
it − t−hx

e
it) |Si,t−h] = 0, for h = 2, 3, .., H. (20)

Namely revisions in expectations of xt over the period t−h to t−h+1 must be informationally

efficient. As compared to the standard orthogonality conditions (19), the orthogonality

conditions in (20) have the added advantage that they do not necessarily require data on

realizations, and are therefore likely to be more robust to data revisions. Davies & Lahiri

(1995) utilize these conditions in their analysis of Blue Chip Survey of Professional Forecasts

and in a later paper (Davies & Lahiri 1999) they study the Survey of Professional Forecasters.

Average versions of (19) and (20) can also be considered, namely

Ē
(
xt+h − tx̄

e
t+h|St

)
= 0, for h = 1, 2, .., H, (21)

where

tx̄
e
t+h =

N∑
i=1

wi tx
e
i,t+h, (22)
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and St ⊆ Ψt. Similarly,

Ei [(t−h+1x̄
e
t − t−hx̄

e
t ) |St−h] = 0, for h = 2, 3, .., H. (23)

In using these conditions special care need be exercised in the choice of St−h. For example,

inclusion of past average expectations, t−hx̄
e
t , t−h−1x̄

e
t , .. in St−h might not be valid if infor-

mation on average expectations were not publicly released.8 But in testing the rationality

of individual expectations it would be valid to include past expectations of the individual

under consideration in his/her information set, Sit.

2.3.2 Testing Extrapolative Models

In their most general formulation, as set out in (9), the extrapolative models have only

a limited number of testable implications; the most important of which is the linearity of

the relationship postulated between expectations, Ē (xt+1 | St) , and xt,xt−1, .... Important

testable implications, however, follow if it is further assumed that extrapolative expectations

must also satisfy the time consistency property discussed above. The time consistency of

expectations requires that

Ē
{
Ē (xt+1 | St) | St−1

}
= Ē (xt+1 | St−1) ,

and is much less restrictive than the orthogonality condition applied to the forecast errors.

Under time consistency and using (11) we have

Ē (xt+1 | St−1) = Φ0Ē (xt | St−1) +
∞∑

s=1

Φsxt−s,

and hence

Ē (xt+1 | St)− Ē (xt+1 | St−1) = Φ0

[
xt − Ē (xt | St−1)

]
.

When losses are quadratic in expectations errors, under time consistency the survey expec-

tations would then satisfy the relationships

tx̄
e
t+1 − t−1x̄

e
t+1 = Φ0 (xt − t−1x̄

e
t ) , (24)

which states that revisions in expectations of xt+1 over the period t− 1 to t should depend

only on the expectations errors and not on xt or its lagged values. Under asymmetrical

losses expectations revisions would also depend on revisions in expected volatilities, and the

8The same issue also arises in panel tests of the REH where past average expectations are included as

regressors in a panel of individual expectations. For a related critique see Bonham & Cohen (2001).
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time consistency of the extrapolative expectations can be tested only if direct observations

on expected volatilities are available. The new testable implications discussed in Patton &

Timmermann (2004) are also relevant here.

Relation (24) also shows that extrapolative expectations could still suffer from systematic

errors, even if they satisfy the time consistency property. Finally, using the results (15) and

(16) obtained for the error learning models, time consistency implications of the extrapolation

models can be readily extended to expectations formed at time t and time t − 1 for higher

order horizons, h > 1.

As noted earlier, direct tests of time consistency of expectations require survey data on

expectations of the same target date formed at two different previous dates at the minimum.

In cases where such multiple observations are not available, it seems meaningful to test

only particular formulations of the extrapolation models such as the mean-reverting or the

adaptive hypothesis. Testable implications of the finite-order adaptive models are discussed

further in Pesaran (1985) and Pesaran (1987, Chapter 9) where an empirical analysis of the

formation of inflation expectations in British manufacturing industries is provided.

2.4 Testing the Optimality of Survey Forecasts under Asymmetric

Losses

The two orthogonality conditions, (19) and (20), are based on the assumption that individual

forecast responses are the same as conditional mathematical expectations. See (18). This

assumption is, however, valid if forecasts are made with respect to loss functions that are

quadratic in forecast errors and does not hold in more general settings where the loss function

is non-quadratic or asymmetric. Properties of optimal forecasts under general loss functions

are discussed in Patton & Timmermann (2004) where new testable implications are also

established. Asymmetric losses can arise in practice for a number of different reasons, such

as institutional constraints, or non-linear effects in economic decisions. In a recent paper

Elliott, Komunjer & Timmermann (2003) even argue that ‘on economic grounds one would,

if anything, typically expect asymmetric losses.’9 Once the symmetric loss function is

9In a related paper, Elliot, Komunjer & Timmermann (forthcoming) consider the reverse of the rationality

testing problem and derive conditions under which the parameters of an assumed loss function can be

estimated from the forecast responses and the associated realizations assuming that the forecasters are

rational.
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abandoned, as shown by Zellner (1986), optimal forecasts need not be unbiased 10. This

point is easily illustrated with respect to the LINEX function introduced by Varian (1975),

and used by Zellner (1986) in a Bayesian context. The LINEX function has the following

simple form

ϕi

(
ξi,t+1

)
=

2

α2
i

[
exp

(
αiξi,t+1

)
− αiξi,t+1 − 1

]
,

where ξi,t+1 is the forecast error defined by (17). To simplify the exposition we assume here

that ξi,t+1 is a scalar. For this loss function the optimal forecast is given by 11

tx
e
i,t+h = α−1

i log {Ei (exp (αixt+h) | Ωit)} .

In the case where individual ith conditional expected density of xt+h is normal we have

tx
e
i,t+h = Ei (xt+h | Ωit) +

(αi

2

)
Vi (xt+h | Ωit) ,

where Vi (xt+h | Ωit) is the conditional variance of individual ith expected density. The

degree of asymmetry of the cost function is measured by αi. When αi > 0, under-predicting

is more costly than over-predicting, and the reverse is true when αi < 0. This is reflected

in the optimal forecasts tx
e
i,t+h, that exceeds Ei (xt+h | Ωit) when αi < 0 and falls below it

when αi > 0.

It is interesting that qualitatively similar results can be obtained for other seemingly

different loss functions. A simple example is the so-called “Lin-Lin” function:

Ci

(
ξi,t+1

)
= aiξi,t+1I

(
ξi,t+1

)
− biξi,t+1I

(
−ξi.t+1

)
, (25)

where ai, bi > 0, and I (A) is an indicator variable that takes the value of unity if A > 0 and

zero otherwise. The relative cost of over and under-prediction is determined by ai and bi.

For example, under-predicting is more costly if ai > bi. The optimal forecast for this loss

function is given by

tx
e
i,t+h = arg min

x∗
{Ei [Ci (xt+h − x∗) | Ωit]} .

Since the Lin-Lin function is not differentiable a general closed form solution does not seem

possible. But, assuming that xt+h | Ωit is normally distributed the following simple solution

can be obtained12

tx
e
i,t+h = Ei (xt+h | Ωit) + κiσi (xt+h | Ωit) ,

10For further discussion, see Batchelor & Zarkesh (2000), Granger & Pesaran (2000) and Elliott et al.

(2003).
11For a derivation, see Granger & Pesaran (2000).
12See Christoffersen & Diebold (1997). An alternative derivation is provided in Appendix A.
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where

σi (xt+h | Ωit) =
√

Vi (xt+h | Ωit), κi = Φ−1

(
ai

ai + bi

)
,

and Φ−1 (·) is the inverse cumulative distribution function of a standard normal variate.

The similarity of the solutions under the LINEX and the Lin-Lin cost functions is striking,

although the quantitative nature of the adjustments for the asymmetries differ. Not surpris-

ingly, under symmetrical losses, ai = bi and κi = Φ−1 (1/2) = 0, otherwise, κi > 0 if ai > bi

and vice versa. Namely, it is optimal to over-predict if cost of over-prediction (bi) is low

relative to the cost of under-prediction (ai). The size of the forecast bias, κiσi (xt+h | Ωit),

depends on ai/ (ai + bi) as well as the expected volatility. Therefore, under asymmetric

cost functions, the standard orthogonality condition (19) is not satisfied, and in general we

might expect Ei

(
ξi,t+h | Ωit

)
to vary with σi (xt+h | Ωit). The exact nature of this relation-

ship depends on the assumed loss function, and tests of rationality need to be conducted

in relation to suitable restrictions on the expected density functions and not just its first

moments. At the individual level, valid tests of the ‘rationality’ hypothesis require survey

observations on forecast volatilities as well as on mean forecasts. Only in the special case

where forecast volatilities are not time varying, a test of informational efficiency of individual

forecasts can be carried out without such additional observations. In the homoskedastic case

where σi (xt+h | Ωit) = σih, the relevant orthogonality condition to be tested is given by

Ei

(
xt+h − tx

e
i,t+h|Sit

)
= dih,

where dih is given by − (αi/2) σ2
ih in the case of the LINEX loss function and by −κiσih in

the case of the Lin-Lin function. In this case, although biased survey expectations no longer

constitute evidence against rationality, statistical significance of time varying elements of Sit

as regressors do provide evidence against rationality.

The orthogonality conditions, (20), based on the time consistency property can also be

used under asymmetrical losses. For example, for the Lin-Lin loss function we have

Ei [(xt −t−h+1 xe
it) | Ωi,t−h+1] = −κiσi (xt | Ωi,t−h+1) ,

Ei [(xt −t−h+1 xe
it) | Ωi,t−h] = −κiσi(xt | Ωi,t−h),

and hence

Ei (t−h+1x
e
it −t−h xe

it | Si,t−h)

= −κi {E [σi (xt | Ωi,t−h+1) | Si,t−h]− E [σi (xt | Ωi,t−h) | Si,t−h]} .
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Once again, if σi (xt+h | Ωit) = σih we have

Ei (t−h+1x
e
it −t−h xe

it | Si,t−h) = −κi (σi,h−1 − σih) ,

and the rationality of expectations can be conducted with respect to the time-varying com-

ponents of Si,t−h.

Similarly modified orthogonality conditions can also be obtained for the consensus fore-

casts, when σi (xt+h | Ωit) = σih. Specifically, we have

Ei

(
xt+h − tx̄

e
t+h|Sit

)
= d̄h,

and

Ei (t−h+1x̄
e
t −t−h x̄e

t | St−h) = d̄h−1 − d̄h,

where d̄h =
∑N

i=1 widih.

In the more general case where expected volatilities are time varying, tests of rationality

based on survey expectations also require information on individual or average expected

volatilities, σi (xt+h | Ωit). Direct measurement of σi (xt+h | Ωit) based on survey expectations

have been considered in the literature by Demetriades (1989), Batchelor & Jonung (1989),

Dasgupta & Lahiri (1993) and Batchelor & Zarkesh (2000). But with the exception of

Batchelor & Zarkesh (2000), these studies are primarily concerned with the cross section

variance of expectations over different respondents, rather than σi (xt+h | Ωit), an issue which

we discuss further in section 4.2 in the context of the forecasts of event probabilities collated

by the Survey of Professional Forecasters. An empirical analysis of the relationship between

expectations errors and expected volatilities could be of interest both for shedding lights

on the importance of asymmetries in the loss functions, as well as for providing a more

robust framework for orthogonality testing. With direct observations on σi (xt+h | Ωit), say

tσ
e
i,t+1, one could run regressions of xt+h− tx

e
i,t+h on tσ

e
i,t+1 and other variables in Ωit, for

example xt,xt−1,.... Under rational expectations with asymmetric losses, only the coefficient

of tσ
e
i,t+1 should be statistically significant in this regression. Similar tests based on the time

consistency conditions can also be developed.

3 Part II: Measurement of Expectations: History and

Developments

The collection of data on future expectations of individuals has its roots in the development

of survey methodology as a means of compiling data in the years before the Second World
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War. Use of sample surveys made it possible to collect information on a range of topics

which could not be covered by administrative sources and full enumeration censuses; it was

natural that these began to extend themselves to covering questions about the future as well

as the past. It also has to be said that interest in measuring expectations was likely only

after economists had started to understand the importance expectations of future events as

determinants of the current decisions. This was a process which began in the 1920s with

discussions on the nature of risk and uncertainty (Knight 1921), expanded in the 1930s

through Keynes’ contributions and has continued to develop ever since.

The earliest systematic attempt to collect information on expectations which we have

been able to trace was a study carried out in 1944 by the United States Department of

Agriculture. This was a survey of consumer expectations attempting to measure consumer

sentiment (Katona 1975) with the latter calculated by aggregating the categorical answers

provided to a variety of questions. Dominitz & Manski (2005) present a statistical analysis

of the way in which the sentiment indicator is produced. Currently the survey is run by the

University of Michigan and is known as the Michigan survey, with many other similar surveys

conducted across OECD countries so as to provide up to date information on consumer

expectations. Questions on expectations are also sometimes included in panel surveys. The

British Household Panel Survey is one such example which asks questions such as whether

households expect their financial positions to improve or worsen over the coming year. Such

surveys, as well as offering an insight into how such expectations may be formed, do of

course make it possible to assess whether, or how far, such expectations are well-founded by

comparing the experiences of individual households with their prior expectations.

A key aspect of the Michigan survey, and of many other more recent surveys, is that some

of its questions ask for qualitative responses. Consumers are not asked to say what they think

their income next week or next year will be, by what percentage they expect it to change

from their current income or even to provide a range in which they expect the change in their

income to lie. Instead they are simply asked to provide a qualitative indication of whether

they expect to be better off or worse off. That this structure has been widely copied, in

surveys of both consumers and businesses is perhaps an indication that it is easier to obtain

reliable responses to qualitative questions of this sort than to more precise questions. In

other words there is believed to be some sort of trade-off between the loss of information

consequent on qualitative questions of this sort and the costs in terms of response rate and

therefore possible bias from asking more precise questions. It may also be that the answers

to more precise questions yield more precise but not necessarily more accurate answers. (the
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truth elicitation problem). For either reason the consequence is that a key research issue

in the use of expectational data is handling the link between the qualitative data and the

quantitative variables which indicate the outcomes of business and consumer decisions and

experiences. It is also the case that some surveys which collect qualitative information on

the future also collect qualitative information on the past; the question of linking these latter

data to quantitative variables also arises and many of the questions are the same as those

arising in the interpretation of prospective qualitative data.

Household surveys were later complemented with business surveys on the state of eco-

nomic activity. In the period before the Second World War a number of countries produced

reports on the state of business. These do not, however, appear to have collected any formal

indicators of sentiment. The United States enquiry into the state of business developed into

the Institute of Purchasing Managers Survey. This asks firms a range of questions about the

state of business including the level of order books and capacity utilisation. It does not ask

either about what is expected to happen in the future or about firms’ experiences of the very

recent past. However, the Institut für Wirtschaftsforschung in Munich in 1948 started to ask

manufacturing firms questions about their expectations of output growth and price increase

in the near future as well as questions about recent movement of these variables. They also

included a question about firms’ expectations of the evolution of the business environment.

The sort of questions covered in the Purchasing Managers’ Survey were also covered.

This survey structure has since been adopted by other countries. For example, the

Confederation of British Industry began to ask similar questions of the UK manufacturing

sector in 1958 and has continued to do so ever since. The Tankan surveys cover similar

grounds in Japan. Policy-makers and financial economists often rely on the results of these

surveys as indicators of both past and future short-term movements of the economic variables.

There has, moreover, gradually been a recognition that similar methods can be used to cover

other aspects of the economy; in the European Union, EC-sponsored surveys now cover

industrial production, construction, retail sales and other services.

Another type of survey expectations has also been initiated in the United States. In

1946 a journalist, Joseph Livingston started to ask a number of economists their expecta-

tions of inflation over the coming year and the coming five years. Quantitative rather than

qualitative survey data were collected, relating not to expectations of individual experiences

but regarding the macro-economy as a whole. Although people are being asked to produce

forecasts in both cases, the performance of forecasts about individual experiences can be

verified satisfactorily only if data are collected on how the circumstances of the individuals
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actually evolve over time. The performance of the second type of forecast can, by contrast,

be verified by direct comparisons with realized macroeconomic data.

The exercise gave rise to what has become known as the Livingston Survey (Croushore

1997, Thomas 1999) and has broadened in scope to collect information on expectations about

a range of economic variables including consumer and wholesale prices, the Standard and

Poor’s industrial share price index, real and nominal GNP (now GDP), corporate profits and

the unemployment rate from a number of economists. It is the oldest continuous survey of

economists’ expectations and is now conducted by the Federal Reserve Bank of Philadelphia.

In contrast to the consumer expectations questions, these respondents were expected

to provide point estimates of their expectations. No doubt this was more practical than

with the consumer expectations survey because the respondents were practising economists

and therefore might be assumed to be more capable of and more comfortable with providing

quantitative answers to the questions. After a survey of this type it is possible to calculate not

only the mean but also the standard deviation of the responses. The mean, though appealing

as a representation of the consensus, is unlikely to be the best prediction generated from the

individual forecasts.

Other surveys of macroeconomic forecasts include the Philadelphia Fed’s Survey of Pro-

fessional Forecasters13, the Blue Chip Survey of Professional Forecasters, and the National

Association of Business Economists (NABE) surveys that are produced quarterly and con-

sists of annual forecasts for many macroeconomic variables.14 The Goldsmith-Nagan Bond

and Money Market Letter, provides an aggregation of forecasts of the yield on 3-month US

Treasury Bills and other key interest rates from 30-40 analysts. Interest rates, unlike many

of the variables considered in the Livingston Survey are typically inputs to rather than out-

puts of macro-economic models and forecasts. In that sense the survey is probably reporting

judgements as to how individual expectations might differ from the pattern implied by the

yield curve rather than the outcome of a more formal forecasting process.

To the extent that there is a difference between opinions and formal forecasts produced

by some sort of forecasting model, this not made clear in the information collected in the

Livingston Survey. The Survey of Blue Chip Forecasters, on the other hand focuses on

organisations making use of formal forecasting models. As always it is unclear how far the

forecasts generated by the latter are the products of the models rather than the judgements

13This was formerly conducted by the American Statistical Association (ASA) and the National Bureau

of Economic Research (NBER). It was known as the ASA/NBER survey.
14The variables included in the Survey of Profesional Forecasters and other details are described in

Croushore (1993).
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of the forecasters producing them. But this survey, too, indicates the range of opinion of

forecasters and means and standard deviations can be computed from it.

The Survey of Professional Forecasters asks respondents to provide probabilities that

key variables will fall into particular ranges, instead of simply asking forecasters to provide

their forecasts. This does, therefore, make available serious information on the degree of

uncertainty as perceived by individual forecasters. The production and assessment of these

forecasts is discussed elsewhere in this volume. A range of other surveys (Manski 2004) also

asks questions about event probabilities from households and individuals about their per-

ceptions of the probabilities of events which affect them, such as job loss15, life expectancy16

and future income17. We discuss the importance of these subsequently in section 4.2.

Surveys similar to these exist for other countries although few collect information on

individual perceptions of uncertainty. Consensus Forecasts collates forecasts produced for a

number of different countries and Isiklar, Lahiri & Loungani (2005) use the average of the

forecasts for each country as a basis for an analysis of forecast revision. In the UK, HM

Treasury publishes its own compilation of independent economic forecasts. The Zentrum für

Europäische Wirtschaftsforschung (ZEW) collects data on the views of “financial experts”

about the German economy’s prospects. We provide a summary of key surveys in table 1.

A list of key references is presented in appendix B.

To the extent that the surveys report forecasts produced as a result of some forecasting

process, it is questionable how far such forecasts actually represent anyone’s expectations, at

least in a formal sense. Sometimes they are constructed to show what will happen if a policy

which is not expected to be followed is actually followed. Thus the forecasts produced by the

UK’s Monetary Policy Committee are usually based on two interest rate assumptions. The

first is that interest rates are held constant for two years and the second that they follow

the pattern implied by the yield curve. Both of these assumptions may be inconsistent with

the Monetary Policy Committee’s view of the economic situation. There is the separate

question of whether such forecasts contain predictive power over and above that of the

direct quantitative and qualitative information mentioned above; and the weaker question

of whether the predictive power of such forecasts can be enhanced by combining them with

15U.S. Survey of Economic Expectations (Dominitz & Manski 1997a, Dominitz & Manski 1997b)
16U.S. Health and Retirement Survey (Juster & Suzman 1995, Hurd & McGarry 2002)
17Italy’s Survey of Household Income and Wealth (Guiso, Japelli & Terlizzese 1992, Guiso, Japelli &

Pistaferri 2002), the Netherlands’ VSB Panel Survey(Das & Donkers 1999), the US Survey of Economic

Expectations (Dominitz and Manski, op.cit) and the U.S. Survey of Consumers (Dominitz & Manski 2003,

Dominitz & Manski 2004).
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official and other data sets based on past realizations. Obviously the answer to the latter

depends in part on whether and how forecasters use such information in the production of

their forecasts.

A third category of information on expectations is implied by prices of financial assets.

Subject to concerns over risk premia which are widely discussed (and never completely

resolved) long-term interest rates are an average of expected future short-term interest rates,

so that financial institutions are able to publish the future short-term rates implied by them.

Forward exchange rates and commodity prices have to be regarded as expectations of future

spot prices. In the case of the foreign exchange markets arbitrage, which should reinforce

the role of futures prices as market expectations, is possible at very low cost. In the case of

commodities which are perishable or expensive to store there is less reason to expect arbitrage

to ensure that the future price is a clearly defined market expectation. Such markets have

existed in the past, but since 1981 we have started to see the introduction of index-linked

government debt. With the assumption that the difference between the yield on nominal and

indexed debt represents expected inflation, it becomes possible to deduce a market series for

expectations of inflation in each period for which future values can be estimated for both

nominal and real interest rates. When using such estimates it must be remembered that

the markets for indexed debt are often rather thin and that, at least historically, the range

of available securities has been small, reducing the accuracy with which future real interest

rates can be predicted. The development of options markets has meant that it is possible to

infer estimates of interest rate uncertainty from options prices. The markets for options in

indexed debt have, however, not yet developed to the point at which it is possible to infer a

measure of the uncertainty of expected inflation.

We now proceed to a discussion of the quantification of qualitative survey data. This

then allows us to discuss the empirical issues concerning alternative models of expectations

formation.
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3.1 Quantification and Analysis of Qualitative Survey Data

Consider a survey that asks a sample of Nt respondents (firms or households) whether they

expect a variable, xi,t+1(if it is specific to respondent i), or xt+1 (if it is a macro-economic

variable) to “go up”
(
ue

i,t+1

)
, “stay the same”

(
se

i,t+1

)
, or “go down”

(
de

i,t+1

)
relative to the

previous period.18 The number of respondents could vary over time and tends to differ

markedly across sample surveys. The individual responses, ue
i,t+1, se

i,t+1 and de
i,t+1 formed

at time t, are often aggregated (with appropriate weights) into proportions of respondents

expecting a rise, no change or a fall, typically denoted by U e
t+1, S

e
t+1 and De

t+1, respectively.

A number of procedures have been suggested in the literature for converting these propor-

tions into aggregate measures of expectations19. We shall consider two of these methods in

some detail and briefly discuss their extensions and further developments. The conversion

techniques can be applied to aggregation of responses that concern an individual-specific

variable such as the output growth or price change of a particular firm. They can also be

applied when respondents are asked questions regarding the same common variable, typically

macro-economic variables such as the inflation, GDP growth or exchange rates. The main

conversion techniques are:

1. the probability approach of Carlson & Parkin (1975).

2. the regression approach of Pesaran (1984) and Pesaran (1987).20

Although motivated in different ways, the two approaches are shown to share a common

foundation. Consider each approach in turn.21

3.1.1 The probability approach

This approach was first employed by Theil (1952) to motivate the use by Anderson (1952)

of the so-called “balance statistic” (U e
t+1−De

t+1) as a method of quantification of qualitative

survey observations. The balance statistic, up to a scalar factor, provides an accurate mea-

sure of the average expected, or actual, change in the variable in question if the percentage

changes of falls and rises reported by the respondents remain constant and of the same order

of magnitudes for rises and falls over time.

18To simplify the notations we have suppressed the left-side t subscript of tu
e
i,t+1, ts

e
i,t+1, and etc.

19Nardo (2003) provides a useful survey of the issues surrounding quantification of qualitative expectations.
20A related procedure is the reverse-regression approach advanced by Cunningham, Smith & Weale (1998)

and Mitchell, Smith & Weale (2002), which we shall also be discussed briefly later.
21The exposition draws on Pesaran (1987) and Mitchell et al. (2002). For alternative reviews and extensions

of the probability and regression approaches see Wren-Lewis (1985) and Smith & McAleer (1995).
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The probability approach relaxes this restrictive assumption, and instead assumes that

responses by the ith respondent about the future values of xit (say the ith firm’s output)

are based on her/his subjective probability density function conditional on the available

information. Denote this subjective probability density function by fi(xi,t+1 | Ωit). It is

assumed that the responses are constructed in the following manner:

• if tx
e
i,t+1 ≥ bit respondent i expects a “rise” in output; ue

i,t+1 = 1, de
i,t+1 = se

i,t+1 = 0,

• if tx
e
i,t+1 ≤ −ait respondent i expects a “fall” in output; de

i,t+1 = 1, ue
i,t+1 = se

i,t+1 = 0,

• if −ait < tx
e
i,t+1 < bit respondent i expects “no change” in output; se

i,t+1 = 1, ue
i,t+1 =

de
i,t+1 = 0,

where as before tx
e
i,t+1 = E (xi,t+1 | Ωit) and (−ait, bit) is known as the indifference interval

for given positive values, ait and bit, that define perceptions of falls and rises in output.

It is clear that, in general, it will not be possible to derive the individual expectations,

tx
e
i,t+1, from the qualitative observations, ue

i,t+1 and de
i,t+1.

22 The best that can be hoped for

is to obtain an average expectations measure. Suppose that individual expectations, tx
e
i,t+1,

can be viewed as independent draws from a common distribution, represented by the density

function, g(tx
e
i,t+1), with mean tx

e
t+1 and the standard deviation, tσ

e
t+1. Further assume that

the perception thresholds ait and bit are symmetric and fixed both across respondents and

over time, ait = bit = λ, ∀i, t. Then the percentage of respondents reporting rises and falls by

U e
t+1 and De

t+1, respectively, converge to the associated population values (for a sufficiently

large Nt),

U e
t+1

p→ Pr(tx
e
i,t+1 ≥ λ) = 1−Gt+1(λ), as Nt →∞, (26)

De
t+1

p→ Pr(tx
e
i,t+1 ≤ −λ) = Gt+1(−λ), as Nt →∞, (27)

where Gt+1(·) is the cumulative density function of g(tx
e
i,t+1), assumed common across i.

Then, conditional on a particular value for λ and a specific form for the aggregate density

function, tx
e
t+1 = Ec

(
tx

e
i,t+1

)
can be derived in terms of U e

t+1 and De
t+1. Notice that expec-

tations are taken with respect to the cross section distribution of individual expectations.

It is also important to note that
(

tσ
e
t+1

)2
= Ec

[
tx

e
i,t+1 − Ec

(
tx

e
i,t+1

)]2
is a cross section

variance and measures the cross section dispersion of individual expectations and should

not be confused with the volatility of individual expectations that could be denoted by

22Note that se
i,t+1 = 1− ue

i,t+1 − de
i,t+1.
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V (xi,t+1 | Ωit). tσ
e
t+1 is best viewed as a measure of discord or disagreement across agents,

whilst V (xi,t+1 | Ωit) represents the extent to which the ith individual is uncertain about

his/her future point expectations.

The accuracy of the probability approach clearly depends on its underlying assumptions

and the value of Nt. As the Monte Carlo experiments carried out by Löffler (1999) show

the sampling error of the probability approach can be considerable when Nt is not suffi-

ciently large, even if distributional assumptions are satisfied. It is, therefore, important

that estimates of tx
e
t+1 based U e

t+1 and De
t+1 are used with care, and with due allowance

for possible measurement errors involved.23 Jeong & Maddala (1991) use the generalised

method of moments to deal with the question of measurement error. Cunningham et al.

(1998) and Mitchell et al. (2002) apply the method of reverse regression to address the same

problem. This is discussed further in Section 3.1.3. Ivaldi (1992) considers the question of

measurement error when analysing responses of individual firms.

The traditional approach of Carlson & Parkin (1975) assumes the cross section density

of tx
e
i,t+1 to be normal. From (26) and (27)

1− U e
t+1 = Φ

(
λ−t xe

t+1

σe
t+1

)
, (28)

De
t+1 = Φ

(
−λ−t xe

t+1

tσe
t+1

)
, (29)

where Φ(.) is the cumulative distribution function of a standard normal variate. Using (28)

and (29) we note that

re
t+1 = Φ−1

(
1− U e

t+1

)
=

λ−t xe
t+1

tσe
t+1

, (30)

f e
t+1 = Φ−1

(
De

t+1

)
=
−λ−t xe

t+1

tσe
t+1

, (31)

where re
t+1 can be calculated as the abscissa of the standard normal distribution correspond-

ing to the cumulative probability of (1 − U e
t+1), and f e

t+1 is the abscissa corresponding to

De
t+1. Other distributions such as logistic and the Student t distribution have also been used

in the literature. See, for example, Batchelor (1981).

We can solve for tx
e
t+1 and tσ

e
t+1

tx
e
t+1 = λ

(
f e

t+1 + re
t+1

f e
t+1 − re

t+1

)
, (32)

23Measurement errors in survey expectations their implications for testing of the expectations formation

models are discussed, for example, in Pesaran (1987), Jeong & Maddala (1991), Jeong & Maddala (1996)

and Rich, Raymond & Butler (1993).
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and

tσ
e
t+1 =

2λ

re
t+1 − f e

t+1

. (33)

This leaves only λ unknown . Alternative approaches to the estimation of λ have been pro-

posed in the literature. Carlson and Parkin assume unbiasedness of generated expectations

over the sample period, t = 1, ..., T and estimate λ by

λ̂ =
(∑T

t=1
xt

)
/

(∑T

t=1

(
f e

t + re
t

f e
t − re

t

))
,

where xt is the realizations of the variable under consideration. For alternatives see inter

alia Batchelor (1981), Batchelor (1982), Pesaran (1984) and Wren-Lewis (1985). Since λ is

a constant its role is merely to scale tx
e
t+1.

Further discussions of the Carlson and Parkin estimator of tx
e
t+1 can be found in Fishe

& Lahiri (1981), Batchelor & Orr (1988) and Dasgupta & Lahiri (1992). There is, however,

one key aspect of it which has not received much attention. The method essentially exploits

the fact that when data are presented in the trichotomous classification, there are two in-

dependent proportions which result from this. The normal distribution is fully specified by

two parameters, its mean and its variance. Thus Carlson and Parkin use the two degrees of

freedom present in the reported proportions to determine the two parameters of the normal

distribution. If the survey were dichotomous- reporting only people who expected rises and

those who expected falls, then it would be possible to deduce only one of the parameters,

typically the mean by assuming that the variance is constant at some known value.

A problem also arises if the survey covers more than three categories- for example if it

asks firms to classify their expectations or experiences into one of five categories, a sharp

rise, a modest rise, no change, a modest fall or a sharp fall. Taking a time series of such

a survey it is impossible to assume that the thresholds are constant over time; the most

that can be done is to set out some minimand, for example making the thresholds in each

individual period as close as possible to the sample mean. The regression approach which

follows is unaffected by this problem.

3.1.2 The regression approach

Consider the aggregate variable xt as a weighted average of the variables associated with the

individual respondents (c.f. (22))

tx̄
e
t+1 =

∑Nt

i=1
wit tx

e
i,t+1, (34)
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where wit is the weight of the ith respondent which is typically set to 1/Nt. Suppose now

that at time t respondents are grouped according to whether they reported an expectation

of a rise or a fall. Denote the two groups by Ut+1 and Dt+1 and rewrite (34) equivalently as

tx̄
e
t+1 =

∑
i∈Ut+1

w+
it tx

e+
i,t+1 +

∑
i∈Dt+1

w−
it tx

e−
i,t+1, (35)

where the superscripts + and − denote the respondent expecting an increase and a decrease,

respectively. From the survey we do not have exact quantitative information on xe+
i,t+1 and

tx
e−
i,t+1. Following Pesaran (1984), suppose that

xe+
i,t+1 = α + viα, and tx

e−
i,t+1 = −β + viβ, (36)

where α, β > 0 and viα and viβ are independently distributed across i with zero means and

variances σ2
α and σ2

β. Assume that these variances are sufficiently small and the distributions

of viα and viβ are appropriately truncated so that xe+
i,t+1 > 0 and tx

e−
i,t+1 < 0 for all i and t.

Using these in (35) we have (for sufficiently large elements in Ut+1 and Dt+1)
24

tx̄
e
t+1 ≈ α

∑
i∈

w+
it − β

∑
i∈Dt+1

w−
it , (37)

or simply

tx̄
e
t+1 ≈ αU e

t+1 − βDe
t+1, (38)

where U e
t+1 and De

t+1 are the (appropriately weighted) proportion of firms that reported an

expected rise and fall, respectively, and α and β are unknown positive parameters. The

balance statistic, U e
t+1 − De

t+1 advocated by Anderson (1952) and Theil (1952) is a special

case of (38) where a = β = 1. Pesaran (1984) allows for possible asymmetries and non-

linearities in the relationship that relates tx̄
e
t+1 to U e

t+1and De
t+1. The unknown parameters

are estimated by linear or non-linear regressions (as deemed appropriate) of the realized

values of xt (the average underlying variable) on past realizations Ut and Dt, corresponding

to the expected proportions U e
t+1 and De

t+1, respectively. As noted above, this approach

can be straigthtforwardly extended if the survey provides information on more than two

categories.

24Recent evidence on price changes in European economies suggest that on average out of every 100 price

changes 60 relate to price rises and the remaining 40 to price falls. There is also a remarkable symmetry in

the average sizes of price rises and price falls. These and other important findings of the Inflation Persistence

Network (sponsored by the European Central Bank) are summarized in Gadzinski & Orlandi (2004).
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3.1.3 Other conversion techniques - further developments and extensions

There have been a number of related contributions that construct models in which parameters

can vary over time. For example Kanoh & Li (1990) use a logistic model to explain the

proportions giving each of three categorical responses to a question about expected inflation

in Japan. They assume that expected inflation is a linear function of current and past

inflation. A model in which the parameters are time-varying is preferred to one in which

they are not. Smith & McAleer (1995) suggested that the thresholds in Carlson and Parkin’s

model might be varying over time, assuming that they were subject to both permanent shocks

and short-term shocks which were uncorrelated over time. The model was then estimated

using a Kalman filter technique finding that the time-series model is preferred to the standard

model.

Cunningham et al. (1998) and Mitchell et al. (2002) relate survey responses to official

data by regressing the proportions of firms reporting rises and falls on the official data. Cun-

ningham et al. (1998), however, take the view that the survey data represent some trans-

formation of the underlying latent variable with an additional error term added on arising

for perception and measurement reasons. For this reason it may seem more appropriate to

estimate regression equations which explain observed proportions, U e
t+1 and De

t+1 (or Ut and

Dt) rather than explaining output by the survey aggregates. This means that estimates

of the variable represented by the survey have to be derived by inverting each regression

equation. Since the number of independent regression equations is equal to the number of

categories less one, there are this number of separate estimates of the variable of interest

produced. Since, however, the covariance of the vector of these distinct estimates can be

estimated from the standard properties of regression equations, it is possible to produce a

variance-weighted mean of the different estimates to give a best estimate of the variable of

interest (Stone, Champernowne & Meade 1942).

Mitchell et al. (2002) extend this technique using the CBI survey data. Instead of explain-

ing the two survey proportions (the proportion reporting or expecting a rise in output and

the proportion reporting or expecting a fall) they look at the proportions reporting/expecting

rises or falls as proportions of those who had reported/expected rises, no change or falls in

the previous period25. This creates a system of six equations which can be estimated in the

same way. Mitchell, Smith and Weale describe this as a semi-disaggregate approach. They

found evidence suggesting that the thresholds which underpin both the regression and the

25These variables are not published but can, of course, be constructed from access to the firms’ individual

responses.
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reverse regression models, are functions of the responses in the previous period. While there

is some evidence of serial correlation in the relevant aggregate regressions, the evidence for

this is much weaker in the six semi-disaggregate regressions suggesting that the apparent

serial correlation may result from a failure to take account of the dependence of thresh-

olds on previous responses. The semi-disaggregate approach gave a better within-sample fit

than did the aggregate approach which Cunningham et al. found outperformed the usual

regression approach.

3.2 Measurement of Expectations Uncertainty

In Section 3.1.1 we discussed alternative methods of obtaining an estimate of cross sec-

tion mean and dispersion of individual expectations, and it was noted that the dispersion

measures of the type defined by (33), do not necessarily measure the uncertainty faced by in-

dividual respondents when forming their expectations. To measure expectations uncertainty

one needs further survey measurements where respondents are explicitly asked about the

degree of confidence they attach to their point expectations. There are only a few surveys

that address this issue of expectations uncertainty.

Surveys sometimes collect qualitative data on uncertainty. For example the Confederation

of British Industry’s survey asks respondents to indicate whether their investment plans are

constrained by demand uncertainty. Here respondents are being asked to report if they are

influenced by the second moment of their own sales growth. The impact of this could be

substantial even if there were very little difference between both the experience and the point

expectations of the individual respondents. With some modifications the approach set out

in Section 3.1.1 can be used to analyse these data.

There the analysis relied on the assumption that the underlying latent variable was

normally distributed, which is clearly not appropriate for quantification of higher order

moments of expected probability distributions. One possibility would be to assume that

the distribution of the logarithm of the variance is normally distributed. For example,

suppose that a firm reports being constrained by uncertainty if its own subjective variance

of future output growth, tσ
2
i,t+1, is greater than a threshold, σ̄2. In addition assume that

ln
(

tσ
2
i,t+1

)
∼ N (ln (σ̄2

t ) , ω2
t ), where ω2

t is the cross section variance of ln
(

tσ
2
i,t+1

)
which we

take to be fixed across i. Under these assumptions we have

P (tσ
2
i,t+1 > σ̄2) = 1− P (tσ

2
i,t+1 ≤ σ̄2) = 1− Φ

(
ln σ̄2 − ln (σ̄2

t )

ωt

)
,

where Pt = P (tσ
2
i,t+1 > σ̄2) and can be estimated by the proportion of respondents reporting
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their investment as being constrained by demand. This set up is analogous to the Carlson

and Parkin approach discussed above for quantification of point expectations and yields

σ̄2
t = σ̄2e−ωt Φ−1(1−Pt). (39)

Without some independent observation on subjective uncertainty it is not possible to go

further than this. Carlson and Parkin relied on actual measures of inflation to estimate their

threshold parameter, λ. Here in addition to σ̄2, which performs a role analogous to λ, we

also need to restrict ωt to be time invariant. Under these rather restrictive assumptions it is

possible to estimate ln (σ̄2
t ) consistently up to a linear transformation.

In other cases, as we have noted above, surveys ask respondents to provide probabilities

that variables will lie in particular ranges. In this case the variance of the expectation can

be estimated by fitting an appropriate density function to the event probabilities provided

by the respondents (Dominitz & Manski 1997b, Dominitz 1998).

3.3 Analysis of Individual Responses

The previous sections discuss ways of quantifying aggregated responses, such as the propor-

tion of respondents expecting a rise or a fall in the variable in question so as to be able

to make use of them either in interpreting the results of the surveys in real time or in the

more general use of such surveys in applied macro analysis. As we noted in the introduction,

however, analysis of individual responses, particularly in a panel context, is generally more

satisfactory.

A number of surveys, such as the surveys conducted by the Confederation of British In-

dustries, ask respondents to provide categorical information about some variable of interest,

both ex ante and ex post. Where these surveys are conducted from samples drawn afresh on

each occasion there is little that can be done beyond exploring the link between the ex ante

data and future income growth or the ex post data and past income growth using one of the

methods discussed in Section 3.1. But where the data are collected from a panel so that it

is possible to keep track of the expectations and outcomes as reported by individual respon-

dents, then it becomes possible to explore whether respondents’ expectations are consistent

with rationality according to a number of different definitions.

Nerlove (1983) was one of the first to discuss the problem of exploring the relationship

between individuals’ expectations and the associated realizations using two-way tables of

categorical data. Obviously this can be used to explore association between any pairs of

variables. The most obvious comparison is that between reports of expectations for period
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t made in period t − 1 and the subsequent out-turns reported ex post for period t. One

may also explore the relationship between expected or reported price rises and expected or

reported output growth, or the way in which expectations are linked to past realisations.

Gourieroux & Pradel (1986), Ivaldi (1992) and Das & Donkers (1999) discuss ways of testing

the rationality of expectations in such data.

In order to explore these issues further we first recap and extend our notation. Suppose

that there are m (taken to be an odd number) possible categories and respondent i is asked

to report ex ante which category is relevant to his/her expectation, tx
e
i,t+1, formed at the end

of period t of the variable whose outcome, xi,t+1 is realized in period t+1. The mid-category,

(m + 1) /2 is taken as the “no-change” category.

1. The prediction is denoted by the discrete random variables ye
i,t+1,j, j = 1, 2, ..,m where

ty
e
i,t+1,j = 1 if ce

j−1 < tx
e
i,t+1 ≤ ce

j ; and 0 otherwise. (40)

2. The outcome is denoted by the discrete random variable yi,t+1,j, j = 1, 2, ..,m defined

similarly as

yi,t+1,j = 1 if cj−1 < xi,t+1 ≤ cj; and 0 otherwise.

We follow convention and assume {ce
0, c0} = −∞ and {ce

m, cm} = ∞. Let

pe
j = Pr

(
ty

e
i,t+1,j = 1

)
; pj = Pr (yi,t+1,j = 1) ,

and

pjk = Pr
(

ty
e
i,t+1,j = 1 | yi,t+1,k = 1

)
,

and assume that pe
j , pj and pjk are invariant across i and t, and denote the estimates of these

probabilities by p̂e
j , p̂j and p̂jk, respectively. Under this set up p̂e

j , p̂j and p̂jk can be computed

consistently from the ex ante and ex post responses, assuming that individual responses are

independent draws from a common multivariate distribution.

Nerlove notes the distinction between an expectation and a forecast. If positive and

negative surprises are equally likely, then it would not be surprising to find a substantial

number of respondents expecting no change. On the other hand if everyone subsequently

experiences a sizeable shock, very few people will report an out-turn of no change. The

French and German surveys of past and expected future output growth (Germany) or past

and expected future demand (France) certainly exhibit this feature with more expectations

than subsequent responses falling in the no change category. Thus we generally observe

pe
(m+1)/2 > p(m+1)/2.
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Suppose now that the aim is to derive forecasts of the proportion of observations that

fall in a given category, j, which we denote by p∗j . By Bayes theorem and using the above

notations

p∗j =
m∑

k=1

pkpjk.

In general, the conditional probabilities, pjk, are not known and need to be estimated.

Nerlove suggests estimating pjk using past observations of the relationship between forecasts

and out-turns. This is, however, subject to a number of problems. The most important

of which is probably that past relationships between expectations and out-turns have been

affected by macro-economic shocks. If the effects of these can be removed or averaged out,

then the relationship is more likely to be satisfactory. Not surprisingly, the move from pe
j to

p∗j disperses the responses from the centre to the extremes of the distribution. Nerlove then

uses measures of association suggested by Goodman & Kruskal (1979) to identify patterns in

the two-way tables looking at links between expectations and previous out-turns and errors

in previous out-turns in order to explore how quickly expectations are influenced by the

past, as well as the link between expectations and the out-turns described by them. While

a number of interactions are identified, the exercise suffers from the problem that it does

not actually offer a means of exploring the performance of different expectational models,

except in the most general of terms.

Gourieroux & Pradel (1986) prove that, for expectations to be rational it must be that

pkk > maxj 6=k pjk, for k = 1, 2, ...,m. Ivaldi (1992) notes that a test of rationality based

on Gourieroux and Pradel criterion is likely to lack power and instead proposes a two-step

estimation method based on a latent variable model where in the first step, using the theory

of polychoric correlations, the correlation matrix of the latent variables are estimated, and

in the second step, under certain exact identifying assumptions, the estimated correlation

coefficients are used to obtain consistent estimates of the underlying parameters of the latent

variable model. This estimation approach is applied to business surveys of French manu-

facturing industry conducted by INSÉE that asks firms about their expectations of output

growth and the subsequent out-turns over four periods of three successive surveys during

1984-1985 (giving two estimates of the relationship between expectation and out-turn in

each period). The hypothesis of rational expectations is rejected in five out of eight cases.

However, Ivaldi argues that the test tends to over-reject when samples are large and therefore

the case against rationality is weaker than these findings suggest. The data, however, pass

an efficiency test in that he can accept the hypothesis that the influence of out-turns up to

period t on the expectation for t + 1 is the same as that on the out-turn for period t + 1.
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Das & Donkers (1999) point out that the respondents are not given precise instructions

about how to respond to the questions. There are a number of possible answers that in-

dividuals might give to a question about what they expect to happen. For example, they

might report the category in which lies the mean, the median or the mode and with a skewed

probability distribution these will differ. Using the multivariate normal distribution as the

limiting case of the polynomial distribution Das & Donkers (1999) show that, if the expec-

tations reported are those of the mode and if the ex post responses are drawn from the same

distribution √
Nk

2p̂kk

(p̂kk − p̂jk) −→ N(0, 1),

where Nk is the number of realizations that fall in the kth category. We note that the modal

assumption is awkward in the situation where the density function is symmetric and the

central category has low probability because the range [c(m+1)/2, c(m−1)/2) is small.

Where the reported category k is that in which the median value of the underlying

variable lies, then the most one can say is that

m∑
j=k+1

pjk 5 0.5, and
k−1∑
j=1

pjk 5 0.5,

which can again be tested using the normal distribution. If, however respondents report

their mean values, then Das & Donkers (1999) point out that without information on the

underlying variable and the thresholds, it is impossible to test that the initial expectations

are consistent with the underlying distribution.

4 Part III: Uses of Survey Data in Forecasting

Both qualitative and quantitative survey data on expectations could be potentially important

in forecasting, either on their own or in conjunction with other variables. Concern about

the future is widespread and the demand for forecasts is obvious. Where expectational data

are quantitative, as with the Livingston survey, their interpretation seems equally obvious.

Users nevertheless, are likely to be interested in whether they have any predictive power.

With qualitative data the same question arises but with the additional complication that

the performance of any indicator is bound to depend on the econometric methods used to

carry out the conversions.

Obviously in most circumstances survey data are not the only means of forecasting avail-

able. Unless other methods (such as time series methods) have no predictive power, it is
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likely that good forecasts will involve either the addition of survey data to time series models

or the use of forecast combination techniques to combine forecasts arising from surveys with

those generated by time-series techniques.

4.1 Forecast Combination

It is generally, and not surprisingly, found that combinations of forecasts produced by dif-

ferent bodies tend to be more accurate than forecasts produced by any individual. Granger

& Ramanathan (1984) show that, when the covariance structure of the forecasting errors

is stable, then the regression coefficients of an equation explaining the out-turn in terms of

the disparate forecasts provides the optimal combination of the different forecasts. Clearly,

the forecasts thus combined can be of different types and from different sources. Thus it is

perfectly possible to combine forecasts such as those presented in the Survey of Professional

Forecasters with those generated using similar approaches by public bodies such as the Fed-

eral Reserve Board and those which are the expectations of ‘experts’ rather than properly

worked out forecasts as such. A recent development of work of this type is provided by El-

liott & Timmermann (forthcoming). They show that the framework provided by a switching

model offers a means of forecast combination better than the traditional approach. They

also compare their results with other methods using time-varying weights (Zellner, Hong &

C-K Min 1991, Deutsch, Granger & Terasvirta 1994).

4.2 Indicating Uncertainty

Economists and policy-makers need to take an interest not only in expected future values

but also in the uncertainty that surrounds such expectations. As we noted above, there

is no reason to believe that the cross dispersion of point estimates is a good indication of

the uncertainty perceived by individual respondents. Survey data can, in principle, provide

information about subjective uncertainty as well as about some form of point expectations.

The topic is ignored in many surveys and not given much emphasis in others. As we have

noted above, the CBI survey does, however, ask respondents whether their investment plans

are limited by uncertainty about demand. This is plainly a question about second moments

which provides information about subjective views of uncertainty and, given an appropriate

quantification method, can be used to represent the latter. We have already discussed means

of doing this in section 3.2; it remains to be implemented.

There have, however, been a small number of attempts to infer income uncertainty in
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surveys of consumers. Thus Guiso et al. (1992) asked respondents to provide probabilities for

inflation in twelve months time and “your opinion about labour earnings or pensions [growth]

twelve months from now” falling into particular ranges, with the probabilities being designed

to sum to one.(p.332) These questions were included in the 1989 Survey of Household Income

and Wealth run by the Bank of Italy.

Dominitz & Manski (1997b) designed a survey specifically to elucidate information on

income uncertainty, as part of the University of Wisconsin’s Survey of Economic Expectations

and thereby produced an indication of subjective income uncertainty of households. They

concluded that the best way of collecting data on the subjective distribution was to ask people

the probabilities that their incomes over the next twelve months would be below each of four

thresholds, with the thresholds chosen in the light of reported realised income. Respondents

were also asked to report the lowest and highest possible amounts their household incomes

might be. Subsequent analysis of these data (Dominitz 1998) suggests that the measures

of expectation which can be reconstituted from these density functions are a reasonably

good guide to out-turns (Dominitz 2001), and that the estimates of uncertainty thus derived

correlate reasonably well with measures deduced from the Panel Survey of Income Dynamics

on the basis of the forecast performance of time-series models of incomes. On the basis

mainly of these findings Manski (2004) is optimistic about the ability of surveys of this type

to collect information on expectations and plans of individuals.

Rather more work has been done on the data collected in surveys of economists expec-

tations/forecasts of macro-economic variables, with particular use being made of the event

probabilities collated by the Survey of Professional Forecasters. Zarnowitz & Lambros (1987)

and Lahiri, Teigland & Zaporowski (1988) use this survey to compare the dispersion of point

forecasts of inflation and real GNP growth produced by economic forecasters in the United

States with the uncertainty that individual forecasters report for their forecasts. Zarnowitz

& Lambros (1987) find that the dispersion of point forecasts understates the uncertainty

of the predictive probability distribution, with some evidence that high inflation is associ-

ated with uncertainty about inflation. Confirmation of the importance of this distinction is

provided by the observation that, while the average variance of forecasters’ individual distri-

butions has little influence in an equation for the real rate of interest, the average measures

of skewness and kurtosis seemed to have a significant depressing influence on interest rates.

Bomberger (1996) suggested, comparing the dispersion of forecasts in the Livingston

survey with variance estimates of inflation generated by ARCH/GARCH processes, that

there was a close relationship between the two, although the latter was around four times
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the former. This work was criticised by Rich & Butler (1998) with a defence by Bomberger

(1999). The reader is, however left with the feeling that there is something unsatisfactory in

using the dispersion if an arbitrary scaling factor is required to relate it to a suitable statistical

measure. This malaise persists even if as Bomberger claims, the scaling factor is stable

over the period he considered. Giordani & Söderlind (2003), looking again at the results

of the Survey of Professional Forecasters, extend Bomberger’s analysis. They derive three

measures of uncertainty, (i) disagreement or dispersion of point forecasts, (ii) the average

of the estimated standard deviations of the individual forecasts (calculated from the event

probabilities presented in the Survey) and (iii) a measure of the aggregate variance derived

by aggregating the individual event probabilities to produce an aggregate probability density

function. They report a correlation between measures (i) and (ii) of 0.60 when looking at

inflation with a correlation of 0.44 when they consider output. The correlations between (i)

and (iii) are 0.75 in both cases. From these results they argue that “disagreement is a fairly

good proxy for other measures” despite the fact that it accounts for at most just over half

of the variation in the other measures. However, they found that estimates of uncertainty

generated by time-series GARCH methods did not match those generated from the survey

data. Lahiri & Liu (forthcoming) explore the changes in the pattern of the individual density

forecasts presented in the survey. They find less persistence in the uncertainty associated

with each individual forecast than studies based on aggregate data suggest and also that

past forecast error has little influence on reported forecast uncertainty. This is clearly an

important area for further research.

4.3 Aggregated Data from Qualitative Surveys

Despite the apparent advantages in using quantified surveys, qualitative surveys are widespread

and considerable attention is paid to them in the real-time economic debate. It is therefore

important also to consider at their performance as measures of the state of the macro-

economy.

4.3.1 Forecasting: Output Growth

As we have noted, qualitative surveys typically include questions about output prospects.

As is clear from section 3.1, the method of analysis is essentially the same as that used to

analyse responses to questions about past output movements. However, the relevant survey

response in period t is aligned to the actual out-turn in period t + 1 rather than anything

which is known in period t. Obviously when applying the reverse regression approach due
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attention has to be made of the fact that future output is unknown at the time the survey is

carried out, and an appropriate form of GMM such as instrumental variables must be used

to deal with this.

There is a wide range of studies addressing the capacity of prospective survey questions

to anticipate output movements. We discuss these before considering work on anticipating

inflationary expectations and predicting future price movements.

Öller (1990) finds balance statistics useful as a means of identifying cyclical turning

points in economic data. Entorf (1993) finds, however, looking at the question in the IFO

survey about expected future business conditions (rather than the expected output of the

respondent itself) that the proportion of respondents expecting business conditions to worsen

is a better predictor of future output changes than is the balance statistic. Cunningham

et al. (1998) examining surveys from the United Kingdom also find that use of the balance

statistic results in loss of information. Smith & McAleer (1995) use the survey collected

by the Confederation of Australian Industries to explore the capacity of six questions to

predict future movements in five variables, output, employment, prices, stocks of finished

goods and overtime. Here we focus on the results obtained on output, discussing price

movements in the next section. The survey is of form similar to those discussed above, with

categorical responses for “up”, “same”, “down” and a small “not available” category. The

authors explore the performance of different methods of quantifying the surveys and also test

whether expectations are rational, by exploring whether expectational errors are orthogonal

to expectations themselves (see Section 2.3). The performance of the models is assessed only

in-sample over the period, 1966Q2-1989Q2. In-sample the best-performing model is the time-

varying parameters model with a root mean square error lower than that of the probability

model and an ARIMA(2,1,0) model. Obviously the time-varying parameters model has

fewer degrees of freedom left than the probability model. Driver & Urga (2004) by contrast,

looking at out of sample performance for the UK find that a regression model based on

the balance statistic offers the best out of sample performance for interpreting retrospective

data about output, investment and employment. The best-performing model was therefore

different from that found for the retrospective analysis of the UK by Cunningham et al.

(1998). Comparison of these studies indicates that generalization about which method of

quantification works best is not possible. Although both Smith & McAleer (1995) and Driver

& Urga (2004) compare various approaches over long periods, they do not consider whether

for the series they investigate the performance ranking of the conversion procedures remain

stable across different sub-periods or variables.
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There have been a number of other studies looking at the performance of these prospective

measures of economic performance, often published by the bodies which produce the indica-

tors themselves. But in most cases they do not go beyond the general question of whether

the indicators have some ability to fit the data. Rahiala & Teräsvirta (1993) consider the

role of business surveys in predicting output growth in metal and engineering industries in

Finland and Sweden. Bergström (1995) explores the link between manufacturing output and

a range of business surveys in Sweden, and Madsen (1993) studies the predictive power of

production expectations in eight OECD countries. Klein & Moore (1991) look at the capac-

ity of diffusion indices26 constructed from the National Association of Purchasing Managers’

Surveys in the United States to predict turning points of the United States economy. Hild

(2002) uses the method of principal components to explore the inter-relationships between

variables in the French survey, but does not concern himself with the fact that polychoric

correlations should be used to evaluate the principal components while Bouton & Erkel-

Rousse (2002) look at the information contained in qualitative data on the service sector

for France. Gregoir & Lenglart (2000) use the survey to derive a coincident indicator based

on a two-state Markov process. Parigi & Schlitzer (1995) consider forecasts of the Italian

business cycle.

4.3.2 Forecasting: Inflation

As we have noted above, the question of the link between expectational data and inflation has

received more attention than that between expectational data and output movements, partly

because of the importance attached to inflationary expectations in a number of macroeco-

nomic models such as the expectations-augmented Philips curve and the assumption that

a real interest rate can be derived by deducting inflationary expectations from the nominal

interest rate. Thus both Carlson & Parkin (1975) and Pesaran (1984) developed their models

with specific reference to inflation expectations. We address the performance of qualitative

and quantitative expectations data in the context of models and theories in the next section.

Here we focus on the capacity of both types of expectations data to anticipate inflation, at

least to some extent.

Looking first at qualitative data Lee (1994) uses the probability method to explore the

link between firms’ expectations of price and cost increases and the response to the ret-

26Diffusion indices offer a means of combining a number of different but related indicators. They show the

proportion of indicators registering a rise rather than a fall in whatever variable each indicator happens to

report.

44



rospective questions about the same variables. He studied the period 1972Q2 to 1989Q4

which covered the very rapid price increases of the 1970s and the much lower rate of price

increase, particularly from 1983 onwards. He carried out his analysis for the nine subsectors

of manufacturing identified by the CBI survey as well as for the manufacturing sector as a

whole. He was able to reject the hypothesis that there was a unit root in unanticipated in-

flation of output prices for all sectors except electrical engineering on the basis of an ADF(4)

test statistic. Even for electrical engineering the test statistic of -2.35 makes it likely that

the process is I(0) rather than I(1). He found that expectations were conservative in that

changes in the actual rate of price increase are only partially reflected in changes in the

expected rate of price increase. Moreover a test for rationality of expectations (see section

2.1) suggested that the expectational error could be explained by information available at

the time the expectations were formed; in other words expectations were not rational. The

variables used to explain the errors were manufacturing output price increases, manufactur-

ing materials cost increases, manufacturing wage costs, the change in the exchange rate, the

growth of total output, the growth of the money stock and the aggregate unemployment rate

all lagged one quarter. Only for the chemical industry could the hypothesis of rationality be

accepted at a 5% significance level. He also found that the “conversion errors” the difference

between actual price increases and those deduced from the qualitative survey were explained

to some extent by the variables used to explain the expectational errors. This raised the

possibility that the rejection of rationality of expectations was a consequence of some flaw

in the conversion process rather than a defect with the expectations themselves. If the ex-

pectational errors are corrected for the conversion errors, then the position is more mixed,

with the rational expectations hypothesis rejected for five out of nine sectors. Compared to

the retrospective and prospective studies of output growth mentioned above, this takes us

further because it actually points to a failing of a particular conversion method- that the

conversion errors are predictable in terms of known variables- rather than simply offering a

comment on the performance of different methods.

4.3.3 Forecasting: Consumer Sentiment and Consumer Spending

As we noted in section 3, the first surveys to collect information on expectations were the

studies of consumer sentiment. Dominitz & Manski (1997b) provide a brief account of early

attempts to assess their value. They explain how the surveys acquired a poor reputation

because they seemed to have little capacity to explain future consumption. Early econo-

metric studies (Tobin 1959, Adams 1964) use methods which would now be regarded as
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unsuitable- such as estimation of relationships between variables which are probably I(1)-

without exploring issues of co-integration and dynamic adjustment.

The value of these surveys was questioned by Federal Reserve Consultant Committee on

Consumer Survey Statistics (1955) leading to a response from Katona (1957). Juster (1964)

also thought their value was limited and Dominitz & Manski (1997b) concluded that this

interchange left most economists with the feeling that qualitative expectational survey data

were of limited use. Nevertheless, the Michigan survey has continued and the European

Union supports the collection of similar data in its member states, perhaps because Praet &

Vuchelen (1984) found that they had some power to predict future movements in aggregate

consumption. We save our discussion of more recent work on disaggregated data for section

5.2.2 below.

5 Part IV: Uses of Survey Data in Testing Theories:

Evidence on Rationality of Expectations

An obvious role for expectational data is in the testing of models of the way in which

expectations are formed. Market mechanisms which might penalise people who form their

expectations ‘inefficiently’ are likely to be weak or could take a long time to work. Thus given

a number of competing models of the way in which people might actually form expectations,

such as those discussed in Part I, it is possible to use actual measures of expected future

out-turns to try to distinguish between different expectations formation models.

In many cases economic theories refer to the influence of expected future events on current

behaviour. Where there is no independent measure of expectations, then it is impossible to

test the theory independently of the assumption made about the way in which people form

their expectations. It is not possible to test this assumption independently of the model

of behaviour consequent on that assumption. Independent measures of expected future

values mean that it is possible to test theories contingent only on the assumption that the

expectational data do in fact represent people’s or firms’ expectations of the future.

Two examples can make this clear. The life-cycle model of consumer behaviour leads to

the conclusion that, at any age, people who have an expectation of a rapidly rising income

are likely to have lower asset levels than those who do not. If one makes an assumption that

people’s expectations of future income growth are based on some particular model (such as

reversion to the mean for their cohort appropriately adjusted for individual characteristics

such as education level), then it is possible to explore this question. But if expectations are
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in fact different, then the model may be rejected for the wrong reasons. Information from

individual households on their own expectations of how their financial situations are likely

to develop allows a cleaner assessment of the model in question.

Another obvious example where survey data on expectations can be used for testing a

theory concerns the role of uncertainty in limiting investment. Because firms always have the

choice of delaying irreversible investment until the future becomes clearer, high uncertainty

is likely to reduce investment. But, unless there is a direct measure of uncertainty available,

it is almost impossible to test the theory independently of the assumption made about the

determinants of uncertainty.

Manski (2004) discusses many other examples and similarly concludes

”Economists have long been hostile to subjective data. Caution is prudent,

but hostility is not warranted. The empirical evidence cited in this article shows

that, by and large, persons respond informatively to questions eliciting proba-

bilistic expectations for personally significant events. We have learned enough

for me to recommend, with some confidence, that economists should abandon

their antipathy to measurement of expectations. The unattractive alternative to

measurement is to make unsubstantiated assumptions.” p. 1370

In the remainder of this part we shall focus on the use of survey expectations for testing

the expectations formation process in economics and finance. We begin with an overview of

the studies that use quantitative (or quantified) survey responses, before turning to studies

that base their analysis directly on qualitative responses.

5.1 Analysis of Quantified Surveys, Econometric Issues and Find-

ings

On the face of it exploration of the results of quantified surveys is straightforward. Numerical

forecasts or expectations can be compared ex post with numerical out-turns and tests of the

orthogonality conditions, as discussed in Section 2.3, can be explored as a test for rationality.

One is also in a position to explore questions of non-linearity. There are, nevertheless, a

number of important econometric considerations which need to be taken into account in

carrying out such tests.
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5.1.1 Simple Tests of Expectations Formation: Rationality in the Financial

Markets

As we have noted above, some surveys cover the expectations of people involved in financial

markets. Dominguez (1986), looking at a survey run by Money Market Services Inc. of thirty

people involved in the foreign exchange markets, tested the hypothesis that expectations

were rational. She had weekly data for the period 1983-1985 for the exchange rates of

the US$ against sterling, the Deutsche Mark, the Swiss Franc and the Yen and looked

at the subperiods 1983-1984 and 1984-1985, using one-week and two-week non-overlapping

observations. She rejected the hypothesis of rationality at at least a 5% significance level in

all the cases she examined. Over longer horizons she rejected rationality at three months

but not at one month. Frankel & Froot (1987b) continued with the same theme, looking

at the exchange rate expectations of people involved in the foreign exchange markets and

comparing them with out-turns over the period 1976-1985. They found that expectations

were relatively inelastic and that expectational errors could often be explained statistically

by past forecasting errors. Thus the people they surveyed could be described as slow to

learn. Nevertheless, the nature of the departure of expectations from the pattern implied

by rationality depended on the period under consideration. Elliott & Ito (1999) found that,

although survey data for the Yen/US$ rate were worse than random-walk predictions in terms

of mean-square error, they could identify a profitable trading rule based on the subjective

forecasts compared to the forward rate; the profits were, however, very variable. Takagi

(1991) presents a survey of literature on survey measures of foreign exchange expectations.

The studies by Dominguez (1986) and Frankel & Froot (1987b) were time-series analyses

applied to the median response in each period of the relevant sample. Elliott & Ito (1999)

looked at the mean, minimum and maximum of the reported responses in each period.

However, we consider the issue of heterogeneity in more detail in section 5.1.5.

There is also the question whether and how far the departure from rationality can be

explained in terms of a risk premium, either constant or varying over time, rather than

systematic errors in expectations. We explore this in section 5.1.4.

5.1.2 Testing Rationality with Aggregates and in Panels

Tests of rationality and analysis of expectations formation have been carried out using the

mean of the forecasts produced by a number of different forecasters e.g. Pesando (1975),

Friedman (1980), Brown & Maital (1981) and Caskey (1985). While these can report on
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the rationality of the mean they cannot imply anything about the rationality of individual

forecasts (Keane & Runkle 1990, Bonham & Cohen 2001). It is perfectly possible that the

different forecasts have offsetting biases with the mean of these biases being zero or some

value not significantly different from zero. Thus the conclusion that the mean is unbiased

(or more generally orthogonal to the information set) does not make it possible to draw any

similar conclusion about the individual expectations/forecasts.

But it is also possible that the hypothesis of rationality might be rejected for the aggregate

when it is in fact true of all of the individuals, at least if the individual forecasts are produced

using both private and public information as Figlewski & Wachtel (1983) make clear. We

have, in section 2.1 distinguished the public information set, Ψt from the private information

set available to agent i, Φit. Suppose that yt ∈ Ψt and zit ∈ Φit, for i = 1, 2, ..., N such that

E (zit |Φjt ) = zit if i = j

= 0 if i 6= j,

and assume that each individual forms his/her expectations based on the same data gener-

ating process given by

xt+1 = γ ′yt + N−1

N∑
j=1

δ′jzjt + εt+1,

where εt+1 are martingale processes with respect to the individual information sets, Ωit =

Ψt ∪ Φit. Under this set up individual i’s expectations are given by

tx
e
i,t+1 = γ ′yt + N−1δ′izit,

and by construction the individual expectations errors

xt+1 − tx
e
i,t+1 = N−1

N∑
j=1, j 6=i

δ′jzjt + εt+1,

form martingale processes with respect to Ωit, namely E
(
xt+1 − tx

e
i,t+1 |Ωit

)
= 0.

Consider now the expectations errors associated with mean or consensus forecasts, tx̄
e
t+1 =

N−1
∑N

i=1 tx
e
i,t+1, and note that

ηt+1 = xt+1 − tx̄
e
t+1 =

(
1− 1

N

)
z̄t + εt+1,

where z̄t = N−1
∑N

i=1 δ′izit. Therefore, since tx̄
e
t+1 = γ ′yt + N−1z̄t, the orthogonality regres-

sion often carried out using the consensus forecasts:

xt+1 − tx̄
e
t+1 = α + β tx̄

e
t+1 + ut+1, (41)
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is likely to yield a biased inference for a given N > 1. In other words the hypothesis of

rationality, requiring α = β = 0 may be rejected even when true. Figlewski & Wachtel

(1983) refer to this as the private information bias.

If the mean forecast is unsuitable as a variable with which to explore rationality, use of

panel regression for this problem might not be satisfactory either. Consider the panel version

of (41),

xt+1 − tx̄
e
i,t+1 = αi + βi tx

e
i,t+1 + ui,t+1. (42)

If the regression equation errors are correlated across forecasters, so that Cov(ui,t+1, uj,t+1) 6=
0 when i 6= j, then estimating the equations jointly for all forecasters as a seemingly unrelated

set of regression equations will deliver estimates of the parameters more efficient than those

found by Ordinary Least Squares. But, as authors such as Pesaran & Smith (1995) have

pointed out in other contexts, the restrictions αi = α, βi = β for all i should not be imposed

without being tested. If the restrictions (described as micro-homogeneity) can be accepted

then regression (41) produces consistent estimates of α and β. If these restrictions do not

hold, then all of the forecasters cannot be producing rational forecasts, so the consensus

equation cannot be given any meaningful interpretation.

Having made these observations Bonham & Cohen (2001) develop a GMM extension of

the seemingly unrelated regression approach of Zellner (1962) in order to explore rationality

in the forecasts reported in the Survey of Professional Forecasters. They find that they reject

micro-homogeneity in most cases with the implication that the REH needs to be tested at

the level of individual forecasters, albeit taking account of the increased efficiency offered by

system methods.

5.1.3 Three-dimensional Panels

The work discussed above looks at the analysis of a panel of forecasts in which each forecaster

predicts a variable or variables of interest over the same given horizon. But Davies & Lahiri

(1995) point out that in many cases forecasters produce forecasts for a number of different

future target dates (horizons). At any date they are likely to forecast GDP growth in the

current year, the next year and possibly even in the year after that. Thus any panel of

forecasts has a third dimension given by the horizon of the forecasts. Davies and Lahiri

develop a GMM method for exploiting this third dimension; obviously its importance lies in

the fact that there is likely to be a correlation in the forecast errors of forecasts produced

by any particular forecaster for the same variable at two different horizons. People who are

optimistic about GDP growth in the near future are likely to be optimistic also in the more
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distant future. The three-dimensional panel analysis takes account of this.

5.1.4 Asymmetries or Bias

Froot & Frankel (1989) used survey data as measures of expectations to the explore whether

the apparent inefficiency in the foreign exchange market which they observed, could be

attributed to expectations not being rational or to the presence of a risk premium. They

rejected the hypothesis that none of the bias was due to systematic expectational errors, and

could not reject the hypothesis that it was entirely due to this cause. They also could not

reject the hypothesis that the risk premium was constant. MacDonald (2000) surveyed more

recent work in the same vein and discussed work on bond and equity markets. A general

finding in bond markets was that term premia were non-zero and tended to rise with time to

maturity. They also appeared to be time-varying and related to the level of interest rates.

There was also evidence of systematic bias in the US stock market (Abou & Prat 1995).

Macdonald drew attention to the heterogeneity of expectations across market participants,

evidence for the latter being the scale of trading in financial markets.

As we noted in section 2.4, in the presence of asymmetric loss functions, the optimal

forecast is different from the expectation. Since the loss function has to be assumed invariant

over time if it is to be of any analytical use, the offset arising from an asymmetric loss function

could be distinguished from bias only if the second moment of the process driving the variable

of interest changes over time. If the variance of the variable forecast is constant it is not

possible to distinguish bias from the effect of asymmetry, but if it follows some time-series

process, it should be possible to distinguish the two.

Batchelor & Peel (1998) exploit this to test for the effects of asymmetric loss functions

in the forecasts of 3-month yields on US Treasury Bills contained in the Goldsmith-Nagan

Bond and Money Market Letter. They fit a GARCH process to the variance of the interest

rate around its expected value, and assume that the individuals using the forecast have a

Lin-Lin loss function (section 2.4). They apply the analysis to the mean of the forecasts

reported in the survey despite the criticisms of the use of the mean identified above. The

Lin-Lin loss function provides a framework indicating how they should expect the offset of

the interest rate forecast from its expectation to vary over time. Batchelor and Peel find

that, although the GARCH process is poorly defined and does not enter into the equation

testing forecast performance with a statistically significant coefficient, its presence in the

regression equation means that one is able to accept the joint hypothesis that the forecast

is linked to the outcome with unit coefficient and zero bias. It is, of course, not clear how
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much weight should be placed on this finding, but the analysis does suggest that there is

some point in looking for the consequences of asymmetries for optimal forecasts when the

variances of the variables forecasted follow a GARCH process.

Elliott et al. (2003) devise an alternative method of testing jointly the hypothesis that

forecasts are rational and that offsets from expected values are the consequence of asymmetric

loss functions. They use the forecasts of money GDP growth collated by the Survey of

Professional Forecasters and assess the individual forecasts reported there instead of the

mean of these. Estimating equation (42), they reject the hypothesis of rationality at the 5%

level for twenty-nine participants out of the ninety-eight in the panel.

They then propose a generalised form of the Lin-Lin loss function. In their alternative a

forecaster’s utility is assumed to be a non-linear function of the forecast error. The function is

constructed in two stages, with utility linked to a non-linear function of the absolute forecast

error by means of a constant absolute risk aversion utility function, with the Lin-Lin function

arising when risk-aversion is absent. It is, however, assumed that the embarrassment arising

from a positive forecast error differs from that associated with a negative forecast error giving

a degree of asymmetry. Appropriate choice of parameters means that the specification is

flexible over whether under-forecasting is more or less embarrassing than over-forecasting.

The resulting loss function has the form

Li(ei,t+1) = {α + (1− 2α)I(−ei,t+1)} ep
i,t+1, (43)

where ei,t+1 = xt+1 −t x∗i,t+1 denoting the difference between the outcome and the forecast,

tx
∗
it+1, which is of course no longer equal to the expectation, and I() is the indicator function

which takes the value 1 when its argument is zero or positive and 0 otherwise. p = 1 and

0 < α < 1 deliver the Lin-Lin function.

The authors show that OLS estimates of βi in equation (42) are biased when the true

loss function is given by (43) and that the distribution of βi is also affected. It follows that

the F-test used to explore the hypothesis of rationality is also affected, with the limiting

case, as the number of observations rises without limit, being given by a non-central χ2

distribution. If the parameters of the loss function are known it is possible to correct the

standard tests, and ensure that the hypothesis of rationality can be appropriately tested.

Even where these are unknown the question can be explored using GMM estimation and the

J-test for over-identification.

When the joint hypothesis of symmetry and rationality is tested (setting p = 2), this is

rejected for 34/98 forecasters at a 5% level. However once asymmetry is allowed rationality
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is rejected only for four forecasters at the same significance level; such a rejection rate could

surely be regarded as the outcome of chance.

Patton & Timmermann (2004) develop a flexible approach designed to allow for the

possibility that different forecasters have different loss functions. This leads to testable im-

plications of optimality even if the loss functions of the forecasters are unknown. They

explore the consensus (i.e. mean) forecasts published by the Survey of Professional Fore-

casters for inflation and output growth (GNP growth before 1992) for 1983-2003. They find

evidence of suboptimality against quadratic loss functions but not against alternative loss

functions for both variables. Their work supports the idea that the loss functions of inflation

forecasters are asymmetric except at low levels of inflation.

5.1.5 Heterogeneity of Expectations

Many studies allow for the possibility that some individuals may be rational and others may

not. But they do not look at the mechanisms by which the irrational individuals might form

their expectations.

Four papers explore this issue.27 Ito (1990) looks at expectations of foreign exchange

rates, using a survey run by the Japan Centre for International Finance, which, unlike

the studies mentioned above (Dominguez 1986, Frankel & Froot 1987b) provides individual

responses. He finds clear evidence for the presence of individual effects which are invariant

over time and that these are related to the trades of the relevant respondents. Thus exporters

tend to anticipate a yen depreciation while importers anticipate an appreciation, a process

described by Ito as ‘wishful thinking’. These individual effects are due to fixed effects rather

than different time-series responses to past data. As with the earlier work, rationality of

expectations is generally rejected. So too is consistency of the form described in section

2.3. Frankel & Froot (1987a), Frankel & Froot (1987b), Frankel & Froot (1990a), Frankel &

Froot (1990b), Allen & Taylor (1990) and Ito (1990) also show that at short horizons traders

tend to use extrapolative chartist rules, whilst at longer horizons they tend to use more mean

reverting rules based on fundamentals.

Dominitz & Manski (2005) present summary statistics for heterogeneity of expectations

about equity prices. Respondents to the Michigan Survey were asked how much they thought

a mutual fund (unit trust) investment would rise over the coming year and what they thought

27In an interesting paper, Kurz (2001) also provide evidence on the heterogeneity of forecasts across the

private agents and the Staff of the Federal Reserve Bank in the U.S., and explores its implications for the

analysis of rational beliefs, as developed earlier in Kurz (1994).
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were the chances it would rise in nominal and real terms. The Survey interviews most

respondents twice. The authors classify respondents into three types, those who expect the

market to follow a random walk, those who expect recent rates of return to persist and

those who anticipate mean reversion. The Michigan Survey suggests that where people are

interviewed twice only 15% of the population can be thus categorised. It finds that young

people tend to be more optimistic than old people about the stock market , that men are

more optimistic than women and that optimism increases with education. The other two

papers we consider explore expectations formation in more detail.

Carroll (2003) draws on an epidemiological framework to model how households form

their expectations. He models the evolution of households’ inflationary expectations as

reported in the Michigan Survey with the assumption that households gradually form their

views from news reports and that these in turn absorb the views of people whose trade is

forecasting as represented in the Survey of Professional Forecasters. The diffusion process

is, however, slow, because neither the journalists writing news stories nor the people reading

give undivided attention to the matter of updating their inflationary expectations. Even

if the expectations of professional forecasters are rational this means that expectations of

households will be slow to change. Carroll finds that the Michigan Survey has a mean square

error almost twice that of the Survey of Professional Forecasters and also that the former

has a much lower capacity than the latter to predict inflation in equations which also allow

for the effects of lagged dependent variables. The Michigan Survey adds nothing significant

to an equation which includes the results of the Survey of Professional Forecasters but the

opposite is not true. Indeed the professional forecasts Granger-cause household expectations

but household expectations do not seem to Granger-cause professional forecasts.

Carroll assumes that there is a unit root or near unit root in the inflation rate- a propo-

sition which is true for some countries with some policy regimes but which is unlikely to be

true for monetary areas with clear public inflation targets- and finds that the pattern by

which Michigan Survey expectations are updated from those of professional forecasters is

consistent with a simple diffusion process similar to that by which epidemics spread. There

is, however, a constant term in the regression equation which implies some sort of residual

view about the inflation rate- or at least that there is an element in household expectations

which may be very slow indeed to change. Carroll also finds that during periods of intense

news coverage the gap between household expectations and those of professional forecasters

narrows faster than when inflation is out of the news. This of course does not, in itself

demonstrate that heavy news coverage leads to the faster updating; it may simply be that
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when inflation matters more people pay more attention to it. Nevertheless it is consistent

with a view that dissemination occurs from professional forecasters through news media to

households.

In a second paper, Branch (2004) explores the heterogeneity of inflation expectations as

measured by the Michigan Survey that covers the expectations reported by individuals rather

than by professional forecasters. He considers the period from January 1977 to December

1993 and, although the survey interviews each respondent twice with a lag of six months, he

treats each monthly observation as a cross-section and does not exploit the panel structure

of the data set. Unlike earlier work on testing expectations which sought to understand the

determination of the mean forecast, Branch explores the dispersion of survey responses and

investigates the characteristics of statistical processes which might account for that disper-

sion. With an average of just under seven hundred responses each month, the probability

density that underlies the forecasts is well-populated and it is possible to explore structures

more complicated than distributions such as the normal density.

The framework he uses is a mixture of three normal distributions. However, instead of

extending the methods surveyed by Fowlkes (1979) to find the parameters of each distribution

and the weight attached to each in each period, he imposes strong assumptions on the choice

of the models used to generate the means of each distribution from three relatively simple

specifications; first naive expectations where expected inflation of the ith respondent, πe
it,

is set equal to πt−1, the lagged realized of inflation, secondly adaptive expectations (with

the adaption coefficient determined by least squares over the data as a whole), and thirdly

a forecast generated from a vector autoregression. Branch assumes that the proportion of

respondents using each of the three forecasting mechanism depends on the ‘success’, Ujt,

associated with the choice of the jth forecast for j = 1, 2, 3. Success is calculated as the sum

of a constant term specific to each of the three methods (Cj, j = 1, 2, 3), and a mean square

error term, MSEj,t, calculated as an exponential decay process applied to current and past

mean square errors

MSEjt = (1− δ)MSEj,t−1 + δ(πe
it − πt)

2,

with

Ujt = −(MSEjt + Cj), (44)

The probability that an individual uses method j, njt is then given by a restricted logistic

function as

njt =
e−βUjt∑
j e−βUjt

. (45)
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Given the series of forecasts produced by the three methods and the standard deviation of the

disturbance around each point forecast added on to each point forecast by the individual who

uses that forecasting method, it is then possible to calculate the cost associated with each

method and thus the proportion of respondents who “should” use this means of forecasting.

Branch assumes that the standard deviation of the disturbance is time invariant and is also

the same for each of these three forecasting methods; these hypotheses are not tested and no

justification is given for the restrictions. He then finds that, conditional on the underlying

structure he has imposed, the model ‘fits’ the data, with the proportions of respondents

using each of the three forecasting methods consistent with (44) and (45) and that one can

reject the hypothesis that only one of the forecasting methods is used.

The evidence presented shows that heterogeneity of expectations in itself does not contra-

dict the rationality hypothesis in that people choose between forecasting methods depending

on their performance and their cost, and different individual could end up using different

forecasting models depending on their particular circumstances. The results do not, however,

provide a test of ‘rationality’ of the individual choices since in reality the respondents could

have faced many other model choices not considered by Branch. Also there is no reason

to believe that the same set of models will be considered by all respondents at all times.

Testing ‘rationality’ in the presence of heterogeneity and information processing costs poses

new problems, very much along the lines discussed in Pesaran & Timmermann (1995) and

Pesaran & Timmermann (2005) on the use sequential (recursive) modelling in finance.

Nevertheless, an examination of the raw data raises a number of further questions which

might be addressed. In figure 1 we show the density of inflation expectations in the United

States as reported by the Michigan Survey. The densities are shown averaged for three sub-

periods, 1978-1981, 1981-1991 and 1991-1999, and are reproduced from Bryan & Palmqvist

(2004). As they point out, there is a clear clustering of inflationary expectations, with 0%

p.a., 3% p.a. and 5% p.a. being popular answers in the 1990s. Thus there is a ques-

tion whether in fact many of the respondents are simply providing categorical data. This

observation and its implications for the analysis of expectations remain to be investigated.

5.2 Analysis of Disaggregate Qualitative Data

The studies surveyed above all, in various forms, provide interpretations of aggregated quali-

tative data. One might imagine, however, that both in terms of extracting an aggregate signal

from the data and in studying expectations more generally, that there would be substantial

gains from the use of individual responses and especially where the latter are available in
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Figure 1: The Density Function of Inflation Expectations as Identified in the Michigan

Survey

panel form. The main obstacle to their use is that the data are typically not collected by

public sector bodies and records are often not maintained to the standards which might be

expected in the public sector. We are, however, able to identify a number of studies which

make use of disaggregate data collected in wide-ranging surveys.

5.2.1 Disaggregate Analysis of Expectations of Inflation and Output

Horvath, Nerlove & Wilson (1992) examine the rationality of expectations of price increases

held by British firms, using the data from the Confederation of British Industry Survey. We

have drawn attention in section 5.2 of what can and cannot be done using categorical data in

a non-parametric framework. However, more detailed analysis is possible if one is prepared

to make use of parametric models. The idea is to explore the relationship between the latent

variables explaining the categorical responses to the questions about both expected future

price movements and past price changes conditional on a set of exogenous variables, zt−1.

For example, in the context of the following parametric model

xi,t+1 = αi + βi tx
e
i,t+1 + γ ′izt−1 + εi,t+1,

since only qualitative measurements are available on xi,t+1 and tx
e
i,t+1 it is necessary to infer

the regression relationship from what can be deduced about the polychoric correlations of
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the latent variables (Olsson 1979). In order to identify the model so as to test the hypothesis

of rationality it is necessary to make two further assumptions, first that expectations are on

average correct over the period and secondly that the thresholds involved in the categorisation

of expectations are the same as those involved in the categorisation of the out-turn (cp
j = cr

j

for all j). Having estimated their model in this way, the authors reject the restrictions

required by rationality. Kukuk (1994) used similar methods to explore the rationality of

both inflation and output expectations in the IFO survey. He too rejected the hypothesis of

rationality.

Mitchell, Smith & Weale (2005) addressed the question how one might produce aggre-

gate indicators of expected output change from an analysis of the disaggregated qualitative

responses to the CBI survey. They were therefore concerned with how to use the survey

for forecasting purposes rather than testing any particular economic hypothesis. In essence

therefore the issue they addressed was, that, while the conversion methods identified in sec-

tion 3.1 may be sensible ways of extracting aggregate signals from the surveys once they have

been consolidated, they may not be the best method of using the survey if one has access to

the individual responses. In other words, the conventional method of reporting the results

may itself be inefficient if the survey is intended to be used to provide a macro-economic

signal.

The method they used is applicable only to surveys which maintain a panel of respon-

dents. On the basis of the past relationship between each respondent’s answer and actual

output change, they gave each firm a score. This score can be estimated non-parametrically,

as simply the mean growth in output in those periods in which the firm gave the response

in question. Alternatively a probit model can be estimated to link the firm’s response to

output change. Given an aggregate forecasting model for output growth (such as a time-

series model) Bayes’ theorem can be used to derive expected output growth conditional on

the response of the firm.

To produce an estimate of aggregate output growth the mean of the individual scores

is taken. Experience showed that the resulting series, although strongly correlated with

output growth, was much less volatile and a regression equation was needed to align it

against actual output growth. Out of sample testing of the approach suggested that it

performed better than the more conventional methods based on the approaches discussed in

section 3.1. Nevertheless the results did not suggest that the survey was very informative as

compared to a simple time-series model.
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5.2.2 Consumer Expectations and Spending Decisions

Das & Donkers (1999) study the answers given by households to questions about expected

income growth collected in the Netherlands’ Socio-Economic Panel. Using the methods

of Section 5.2 they reject the hypothesis that the respondents have rational expectations

about their future income growth. Respondents to the survey are asked to give one of five

categorical responses to expectations of income growth over the coming twelve months and

also to report in the same way actual income growth over the past twelve months. The

categorical responses are: “Strong decrease”, “Decrease”, “No change”, “Increase”, and

“Strong increase”.

It was found that, for people who had expected a decrease the number actually experi-

encing no change was larger than those reporting a decrease ex post in all five of the years

considered and that the difference was statistically significant in four of the five years. For

those reporting category “Strong decrease” ex ante the condition for rationality was violated

in three of the five years but the violation was not statistically significant. For those report-

ing the last three the condition for rationality was not violated. Analysis on the assumption

that the reported expectations were medians similarly led to rejection of the assumption of

rationality for those expecting categories one and two. Analysis of the means was disrupted

by outliers and the authors imposed 5% upper and lower trims on the sample.

They explored the idea that expectations might be based on the means by using the actual

incomes reported by the households, with a weak condition being that the means of ex post

income growth for each ex ante category should be increasing in the categorical ordering.

Although this condition is violated sometimes for categories one and five, the violation is not

statistically significant. However real income growth was positive in three of the five years

for those expecting a decline in income and in two of the years the growth was significantly

above zero. This leads to the conclusion that, at least as reported in the survey from the

Netherlands, expectations were not rational and tended to be excessively pessimistic. Thus

greater ingenuity is needed to exploit the cross-section information contained in these data.

Souleles (2004) also uses data from the Michigan Survey and explores whether the survey

provides any information beyond that present in current consumption to predict future

consumption. The problem he faces is that the Michigan Survey does not collect data on

actual consumption and he deals with this problem by imputing information on expectations

from the Michigan Survey to the United States Consumer Expenditure Survey; the latter

collects consumption data from households four times in a year, providing information on

spending in four quarterly periods.
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Thus a discrete choice model was fitted to the Michigan Survey data to explain household

responses by demographic data and income with the effects of age and income being allowed

to vary over time, although no formal tests were presented for parameter stability. Given the

model parameters it was possible to impute the underlying continuous variables being the

responses to each of the five questions. It is then possible to explore the augmented Euler

equation for consumption

∆ ln ci,t+1 = b′0dt + b′1wi,t+1 + b2q̂it + ηi,t+1,

where dt is a full set of month dummies, wi,t+1 includes the age of the household head

and changes in the number of adults and children and q̂it is the fitted value of the latent

expectational variable imputed to household i in period t. Note that the augmentation of

the Euler equation to include demographic variables in an ad hoc fashion is done frequently

in micro-econometric studies of household spending. In fact, although changes in household

size should be expected to influence the change in household consumption, the impact of the

former is specified very tightly in the population-augmented Euler equation; the restrictions

implied by economic theory are rarely tested. Also the econometric specification imposes

slope homogeneity which could bias the estimates.

The survey asks about past income growth and expectations of future income growth. An

underlying latent variable can also be fitted to these as a function of time and demographic

characteristics. It then becomes possible to work out the revision to the underlying latent

variable for each household; the life-cycle model suggests that expectational errors such as

these should also be expected to have an impact on consumption growth and that, too can

be tested.

The study finds that non-durable consumption growth was sensitive to a number of

indicators from the Michigan Survey, both the expectation and realisation of the financial

position, business conditions over five years, expected income growth and expected inflation.

Some of these variables may be standing in for real interest rates, omitted from the Euler

equation but the study does offer prima facie evidence that current consumption is not a

sufficient statistic for future consumption. There is also evidence that consumption growth

is sensitive to expectational errors although, somewhat surprisingly, errors in expectations

of future income do not seem to play a role.

This study sheds light on the link between consumer sentiment, expectations and spend-

ing growth. While its research method is innovative, it has less to say than Branch (2004)

on the mechanisms by which expectations are formed. Readers are therefore unable to judge

why or how far the apparent inadequacy of the Euler equation model is associated with the
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failure of households to make efficient predictions of the future.

6 Conclusions

The collection of data on expectations about both macro-economic variables and individual

experiences provides a means of exploring mechanisms of expectations formation, linking

theory to expectation and identifying the forecasting power of those expectations. A number

of important issues arise. First of all there is the important question: what is the nature

of expectations and how do they relate to any particular loss function? Secondly, how

are expectations formed and to what extent do people learn from experience? Thirdly,

what is the relationship between assumptions standard to economic theory and expectations

formation in practice? Finally, how far can expectational data enhance the performance of

conventional forecasting methods such as time-series models.

The studies we have discussed have identified many of these questions to some extent.

However, it remains the case that the analysis of individual responses to such surveys, and

in particular to those which collect only qualitative information, is underdeveloped. We

expect that, as this literature develops, it will yield further valuable insights about the way

people form expectations and the link between those expectations and subsequent reality.

Most studies have focussed on point expectations, although studies which look at the Survey

of Professional Forecasters do often also consider the information provided on the density

function of expectations. By contrast there has been very little work done on qualitative

information on uncertainty even though surveys such as the Confederation of British Indus-

try’s have collected such data for many years. This appears to be another vein likely to yield

interesting results.

The utility of many of the data sets is limited by the fact that they are collected as

cross-sections rather than panels; such surveys are likely to be more informative if they are

run as well-maintained panels even if this results in a reduction in sample size. For those

surveys which collect expectational information from a large number of respondents (i.e. not

usually those of the forecasts of professional economists) we have not been able to find much

evidence of interplay between the design of the surveys and the analysis of the information

that they collect. In many countries the use made of such surveys in key decisions such as

interest rate setting, has increased considerably because of the perception that they provide

rapid economic information. There does not yet, however, appear to be a science of rapid

data collection relating the design of these surveys to the uses made of the data that they
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provide. Work on this topic is also likely to be of great value.

Separately there is the question how the surveys themselves might be expected to evolve.

As the tools and computing power needed to analyse panels have developed so the value of

surveys maintained as panels is likely to increase. At present some are and others are not,

but there appears to be no consensus developing yet about the merits of maintaining a panel,

even if it is one which rotates fairly rapidly. Secondly there is the issue of collecting event

probabilities rather than or in addition to quantitative or qualitative expectations. Studies

carried out to date suggest that such data are useful and one might expect that increasing

attention will be paid to this by data collectors.
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A Appendix A: Derivation of Optimal Forecasts under

a ‘Lin-Lin’ Cost Function

To simplify the notations we abstract from individual subscripts, i, and write the Lin-Lin
cost function, (25) for h = 1 as:
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where φ (·) is the probability density function of the standard normal variate, and

µt+1 =
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.

Hence,
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where Φ (·) is the cumulative distribution function of a standard normal variate. Therefore,
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where θ = a/ (a + b) . The first-order condition for minimization of the expected cost func-
tion is given by
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is globally minimized for

µ∗t+1 = Φ−1 (θ) , (47)

and hence the optimal forecast, tx
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t+1, is given by

tx
∗
t+1 = E (xt+1 |Ωt ) + σ (xt+1 |Ωt ) Φ−1

(
a

a + b

)
.

Also, using (47) in(46), the expected loss evaluated at tx
∗
t+1 can be obtained as

E∗ [C (ξt+1

)
|Ωt

]
= (a + b) σ (xt+1 |Ωt ) φ

[
Φ−1 (θ)

]
,

which is proportional to expected volatility. The expected cost of ignoring the asymmetric
nature of the loss function when forming expectations is given by
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which is an increasing function of expected volatility.

B Appendix B: References to the Main Sources of Ex-

pectational Data

1. CBI: Carlson & Parkin (1975), Cunningham et al. (1998), Demetriades (1989), Driver
& Urga (2004), Horvath et al. (1992), Lee (1994), Mitchell et al. (2002), Mitchell et al.
(2005),Pesaran (1984),Pesaran (1985), Pesaran (1987), Wren-Lewis (1985)

2. IFO: Anderson (1952), Entorf (1993), Hüfner & Schröder (2002), Kukuk (1994), Nerlove
(1983), Scholer, Schlemper & Ehlgen (1993a), Scholer, Schlemper & Ehlgen (1993b),
Theil (1952)
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(1985), Croushore (1997), Figlewski & Wachtel (1981), Figlewski & Wachtel (1983),
Pesando (1975), Rich & Butler (1998), Thomas (1999)

5. Michigan: Adams (1964), Branch (2004), Bryan & Palmqvist (2004), Carroll (2003),
Dominitz & Manski (1997b), Dominitz & Manski (2004),, Dominitz & Manski (2005),,
Fishe & Lahiri (1981), Katona (1957), Katona (1975), Maddala, Fishe & Lahiri (1983),
Rich et al. (1993), Souleles (2004)
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FORECASTING WITH REAL-TIME MACROECONOMIC DATA 
 

 Forecasts are only as good as the data behind them.  But macroeconomic data are 

revised, often significantly, as time passes and new source data become available and 

conceptual changes are made.  How is forecasting influenced by the fact that data are 

revised?   

 To answer this question, we begin with the example of the index of leading 

economic indicators to illustrate the real-time data issues.  Then we look at the data that 

have been developed for U.S. data revisions, called the “Real-Time Data Set for 

Macroeconomists” and show their basic features, illustrating the magnitude of the 

revisions and thus motivating their potential influence on forecasts and on forecasting 

models.  The data set consists of a set of data vintages, where a data vintage refers to a 

date at which someone observes a time series of data; so the data vintage September 1974 

refers to all the macroeconomic time series available to someone in September 1974.   

 Next, we examine experiments using that data set by Stark-Croushore (2002), to 

illustrate how the data revisions could have affected reasonable univariate forecasts.  In 

doing so, we tackle the issues of what variables are used as “actuals” in evaluating 

forecasts and we examine the techniques of repeated observation forecasting, illustrate 

the differences in U.S. data of forecasting with real-time data as opposed to latest-

available data, and examine the sensitivity to data revisions of model selection governed 

by various information criteria. 

 Third, we look at the economic literature on the extent to which data revisions 

affect forecasts, including discussions of how forecasts differ when using first-available 

compared with latest-available data, whether these effects are bigger or smaller 



 2 

depending on whether a variable is being forecast in levels or growth rates, how much 

influence data revisions have on model selection and specification, and evidence on the 

predictive content of variables when subject to revision.   

Given that data are subject to revision and that data revisions influence forecasts, 

what should forecasters do?  Optimally, forecasters should account for data revisions in 

developing their forecasting models.  We examine various techniques for doing so, 

including state-space methods. 

 The focus throughout this chapter is on papers mainly concerned with model 

development—trying to build a better forecasting model, especially by comparing 

forecasts from a new model to other models or to forecasts made in real time by private-

sector or government forecasters. 

 

I.  An Illustrative Example:  The Index of Leading Indicators  

Figure 1 shows a chart of the index of leading indicators from November 1995, 

which was the last vintage generated by the U.S. Commerce Department before the index 

was turned over to the private-sector Conference Board, which no longer makes the index 

freely available.  A look at the chart suggests that the index is fairly good at predicting 

recessions, especially those recessions that began in the 1960s and 1970s.  (For more on 

using leading indicators to forecast, see the chapter by Marcelino on “Leading Indicators” 

in this volume.) 

But did the index of leading indicators provide such a useful signal about the 

business cycle in real time?  The evidence suggests skepticism, as Diebold and 

Rudebusch (1991a, 1991b) suggested.  They put together a real-time data set on the 
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leading indicators and concluded that the index of leading indicators does not lead and it 

does not indicate!   

Leading Indicators, vintage November 1995
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Figure 1:  Leading Indicators , vintage November 1995 
This chart shows the last vintage of the index of leading indicators from the 
Commerce Department in November 1995 before the U.S. government sold the 
index to the Conference Board.  Note that the index declines before every 
recession and seems to provide a useful signal for the business cycle. 
Source:  Survey of Current Business (November 1995)   
 

To see what the real- time evidence is, examine Figure 2, which shows the values 

of the index of leading indicators, as reported by the Department of Commerce in its 

publication Business Conditions Digest in September 1974.   The index appears to be on 

a steady rise, with a few fits and starts.  But nothing in the index suggests that a recession 

is likely.  And the same is true if you examine any of the data vintages before September 

1974.  Unfortunately, a recession began in November 1973.  So, even ten months after 
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the recession began, the index of leading indicators gave no sign of a slowdown in 

economic activity. 

Leading Indicators, vintage Sept 1974
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Figure 2:  The Index of Leading Indicators, Vintage September 1974 

This diagram shows the value of the index of leading indicators from January 
1973 to August 1974, based on the data vintage of September 1974.  No recession 
is in sight.  But the NBER declared that a recession began in November 1973. 
Source:  Business Conditions Digest, September 1974  
 

Naturally, the failure to predict the recession led the Commerce Department to 

revise the construction of the index, which they did after the fact.  The data entering the 

index were revised over time, but more importantly so were the methods used to 

construct the index.  Figure 3 shows the original (September 1974 vintage) index of 

leading indicators and the revised index, as it stood in December 1989, over the sample 

period from January 1973 to August 1974.  The index of leading indicators looks much 
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better in the later vintage version; but in real time it was of no value.  Thus the revised 

index gives a misleading picture of the forecasting ability of the leading indicators. 

Leading Indicators, vintage Sept 1974 and Dec. 1989
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Figure 3:  The Index of Leading Indicators, Vintages September 1974 and 
December 1989 

This diagram shows the value of the index of leading indicators from January 
1973 to August 1974, based on the data vintages of both September 1974 and 
December 1989.  The revised version of the index predicts the recession nicely.  
But in real time, the index gave no warning at all. 
Source:  Business Conditions Digest, September 1974 and December 1989  

 

 

II.  The Real-Time Data Set for Macroeconomists 

 Until recently, every paper in the literature on real-time data analysis was one in 

which researchers pieced together their own data set to answer the particular question 

they wanted to address.  In the early 1990s, while working on a paper using real-time 

data, I decided that it would be efficient to create a single, large data set containing real-
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time data on many different macroeconomic variables.  Together with my colleague Tom 

Stark at the Federal Reserve Bank of Philadelphia, we created the Real-Time Data Set for 

Macroeconomists (RTDSM) containing real-time data for the United States.   

 The original motivation for the data set came from modelers who developed new 

forecasting models that they claimed produced better forecasts than the Survey of 

Professional Forecasters (a survey of forecasters around the country that the Philadelphia 

Fed conducted).  But there was a key difference in the data sets that the researchers used 

(based on latest available data that had been revised many times) compared with the data 

set that the forecasters used in real time.  Thus we hatched the idea of creating a set of 

data sets, one for each date in time (a vintage), consisting of data as it existed at that time.  

This would allow a researcher to test a new forecasting model on data that forecasters had 

available to them in real time, thus allowing a convincing comparison to determine if a 

model really was superior. 

 In addition to comparing forecasting models, the data set can also be used to 

examine the process of data revisions, test the robustness of empirical results, analyze 

government policy, and examine whether the vintage of the data matters in a research 

project.  The data set is described and the process of data revisions is explored in 

Croushore-Stark (2001) and many tests of empirical results in macroeconomics are 

conducted in Croushore-Stark (2003). 

 The RTDSM is made available to the public at the Philadelphia Fed’s web site:  

www.phil.frb.org/econ/forecast/reaindex.html.  The data set contains vintages from 

November 1965 to the present, with data in each vintage going back to 1947Q1.  Some 

vintages were collected once each quarter and others were collected monthly.  The timing 



 7 

of the quarterly data sets is in the middle of the quarter (the 15th day of the middle month 

of the quarter), which matches up fairly closely with the deadline date for participants in 

the Survey of Professional Forecasters.  The data set was made possible by numerous 

interns from Princeton University and the University of Pennsylvania (especially a 

student at Penn named Bill Wong who contributed tremendously to the data set’s 

development), along with many research assistants from the Federal Reserve Bank of 

Philadelphia.  In addition, some data were collected in real time, beginning in 1991.  The 

data are fairly complete, though there are some holes in a few spots that occurred when 

the government did not release complete data or when we were unable to find hard copy 

data files to ensure that we had the correct data for the vintage in question.  The data 

underwent numerous edit checks; errors are possible but are likely to be small.   

Variables included in RTDSM to date are:  Variables with Quarterly Observations 

and Quarterly Vintages:  Nominal output, real output, real consumption (broken down 

into durable, nondurable, and services), real investment (broken down into business fixed 

investment, residential investment, and change in business inventories), real government 

purchases (more recently, government consumption expenditures and gross investment; 

broken down between federal and state-and-local governments), real exports, real 

imports, the chain-weighted GDP price index, the price index for imports, nominal 

corporate profits after taxes, nominal personal saving, nominal disposable personal 

income, nominal personal consumption expenditures, and nominal personal income; 

Variables with Monthly Observations and Quarterly Vintages:  Money supply measures 

M1 & M2, money reserve measures (total adjusted reserves, nonborrowed reserves, and 

nonborrowed reserves plus extended credit; all based on Board of Governors’ 
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definitions), the adjusted monetary base (Board of Governors’ definition), civilian 

unemployment rate, and the consumer price index; Variables with Monthly Observations 

and Monthly Vintages:  payroll employment, industrial production, and capacity 

utilization.  New variables are being added each year. 

Studies of the revision process show that a forecaster could predict the revisions 

to some variables, such as industrial production.  Other variables, such as payroll 

employment, show no signs of predictability at all.  Some variables are revised 

dramatically, such as corporate profits, while others have very small revisions, such as 

the consumer price index. 

The data in RTDSM are organized in two different ways.  The data were initially 

collected in a setup in which one worksheet was created to hold the complete time series 

of all the variables observed at the vintage date.  An alternative structure, showing all the 

vintage dates for one variable, is shown in Figure 4.  In that structure, reading across 

columns shows you how the value of an observation changes across vintages.  Each 

column represents the time series that a researcher would observe at the date shown in the 

column header.  Dates in the first column are observation dates.  For example, the upper 

left data point of 306.4 is the value of real output for the first quarter of 1947, as recorded 

in the data vintage of November 1965.  The setup makes it easy to see when revisions 

occur.  In Figure 4, note that the large changes in values in the first row are the result of 

changes in the base year, which is the main reason that real output jumps from 306.4 in 

vintages November 1965, February 1966, and May 1966, to 1481.7 in vintage November 

2003, to 1570.5 in vintage February 2004. 
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DATA STRUCTURE 
 
 REAL OUTPUT 
 
Vintage: Nov65 Feb66 May66    . . . Nov03  Feb04 
Date 
47Q1 306.4 306.4 306.4   . . . 1481.7  1570.5  
47Q2 309.0 309.0 309.0   . . . 1489.4  1568.7  
47Q3 309.6 309.6 309.6   . . . 1493.1  1568.0  
   .       .        .         .   .  .  . 
   .       .       .       .   .  .  . 
   .       .       .       .   .  .  . 
65Q3 609.1 613.0 613.0   . . . 3050.7  3214.1  
65Q4    NA 621.7 624.4   . . . 3123.6  3291.8  
66Q1    NA    NA 633.8   . . . 3201.1  3372.3  
   .       .       .       .   .  .  . 
   .       .       .       .   .  .  . 
   .       .       .       .   .  .  . 
03Q2    NA    NA    NA     . . . 9629.4  10288.3 
03Q3    NA    NA    NA     . . . 9797.2  10493.1 
03Q4    NA    NA    NA     . . .     NA 10597.1  

 

 

Figure 4.  The Data Structure of the Real-Time Data Set for Macroeconomists 
Each column of data represents a vintage, so reading the column shows you what a 
researcher observing the data at the date shown in the column header would observe.  
Reading across any row of data shows how the data value for the observation date shown 
in the first column was revised over time.
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How Big Are Data Revisions? 
 
 If data revisions were small and random, we would not worry about how they 

affect forecasts.  But work with the RTDSM shows that data revisions are large and 

systematic, and thus have the potential to affect forecasts dramatically. 

 For example, suppose we consider the revisions to real output in the short run by 

looking at the data for a particular quarter.  Because of changes in the base year, we 

generally examine revisions based on growth rates.  To see what the revisions look like in 

the short run, consider Figure 5, which shows the growth rate (seasonally adjusted at an 

annual rate) of real output in 1977Q1, as recorded in every quarterly vintage of data in 

RTDSM from May 1977 to February 2004.   

Real Output Growth for 1977Q1
(as viewed from the perspective of 108 different vintages)

4

5

6

7

8

9

10

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

Vintage

P
er

ce
n

t

 

Figure 5.  Real Output Growth for 1977Q1 
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This graph shows how the growth rate (seasonally adjusted at an annual rate) of 
real output for the observation date 1977Q1 has changed over vintages, from the 
first release vintage of May 1977 to the vintage of February 2004. 

 
Figure 5 suggests that quarterly revisions to real output can be substantial.  

Growth rates vary over time from 4.9% in recent vintages, to 5.2% in the first available 

vintage (May 1977), to as high as 9.6% in vintages in 1981 and 1982.  Naturally, short-

term forecasts for real output for 1977 are likely to be greatly affected by the choice of 

vintage. 

Although Figure 5 shows that some short-run revisions may be extreme, smaller 

revisions associated with seasonal adjustment occur every year in the data.  To some 

extent, those revisions are predictable because of the government procedures for 

implementing seasonal adjustment, as described in the chapter by Ghysels-Osborn-

Rodrigues, “Forecasting Seasonal Times Series.”  

Though Figure 5 might be convincing for the short run, many economic issues 

depend not just on short-run growth rates but on longer-term growth rates.  If data 

revisions are small and average out to zero over time, then data revisions are not 

important for long-run forecasting.  To investigate the issue of how long-term growth 

rates are influenced by data revisions, Figure 6 illustrates how five-year average growth 

rates are affected across vintages.  In the table, each row shows the average growth rate 

over the period shown in the first column from the vintage of data shown in the column 

header.  Those vintage dates are the vintage dates just before a benchmark revision to the 

national income accounts, except for the last column which shows the data as of 

November 2001.   

 



 12 

Figure 6. 
Average Growth Rates Over Five Years  

For Benchmark Vintages 
Annualized percentage points 

 
Vintage Year: ‘75 ‘80 ‘85 ‘91 ‘95  ’01  
Period 
                Real Output 
49Q4 to 54Q4 5.2 5.1 5.1 5.5 5.5 5.3   
54Q4 to 59Q4 2.9 3.0 3.0 2.7 2.7  3.2 
59Q4 to 64Q4 4.1 4.0 4.0 3.9 4.0  4.2 
64Q4 to 69Q4 4.3 4.0 4.1 4.0 4.0  4.4 
69Q4 to 74Q4 2.1 2.2 2.5 2.1 2.3  2.6 
74Q4 to 79Q4 NA 3.7 3.9 3.5 3.4  4.0 
79Q4 to 84Q4 NA NA 2.2 2.0 1.9  2.5 
84Q4 to 89Q4 NA NA NA 3.2 3.0  3.5 
89Q4 to 94Q4 NA NA NA NA 2.3  2.4 
94Q4 to 99Q4 NA NA NA NA NA  3.9 
 
      Real Consumption 
49Q4 to 54Q4 3.6 3.3 3.3 3.7 3.9  3.8  
54Q4 to 59Q4 3.4 3.3 3.3 3.3 3.4  3.5 
59Q4 to 64Q4 4.1 3.8 3.8 3.7 3.8  4.1 
64Q4 to 69Q4 4.5 4.3 4.4 4.4 4.5  4.8 
69Q4 to 74Q4 2.3 2.6 2.6 2.5 2.6  2.8 
74Q4 to 79Q4 NA 4.4 4.4 3.9 3.9  4.2 
79Q4 to 84Q4 NA NA 2.8 2.5 2.5  2.8 
84Q4 to 89Q4 NA NA NA 3.2 3.1  3.7 
89Q4 to 94Q4 NA NA NA NA 2.3  2.4 
94Q4 to 99Q4 NA NA NA NA NA  4.0 
 
    Prices 
49Q4 to 54Q4  2.6  2.7 2.7 2.5 2.4  2.5  
54Q4 to 59Q4 2.6 2.6 2.6 2.9 2.9  2.5 
59Q4 to 64Q4 1.4 1.5 1.5 1.6 1.6  1.3 
64Q4 to 69Q4 3.6 3.9 3.9 4.1 4.1  3.7 
69Q4 to 74Q4 6.3 6.5 6.2 6.8 6.5  6.3 
74Q4 to 79Q4 NA 7.1 7.0 7.5 7.7  7.1 
79Q4 to 84Q4 NA NA 6.1 6.1 6.4  6.0 
84Q4 to 89Q4 NA NA NA 3.3 3.6  3.1 
89Q4 to 94Q4 NA NA NA NA 2.9  2.8 
94Q4 to 99Q4 NA NA NA NA NA  1.7 
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Vintage Year: ‘75 ‘80 ‘85 ‘91 ‘95  ’01 
Period 
               Nominal Output 
49Q4 to 54Q4 7.9 7.9 7.9 8.1 8.0  8.0  
54Q4 to 59Q4 5.6 5.6 5.7 5.7 5.7  5.7 
59Q4 to 64Q4 5.6 5.5 5.6 5.6 5.7  5.6 
64Q4 to 69Q4 8.0 8.1 8.2 8.3 8.2  8.3 
69Q4 to 74Q4 8.6 8.8 8.9 9.1 9.0  9.1 
74Q4 to 79Q4 NA          11.1           11.2           11.3           11.4           11.4 
79Q4 to 84Q4 NA NA 8.5 8.2 8.5  8.7 
84Q4 to 89Q4 NA NA NA 6.5 6.7  6.7 
89Q4 to 94Q4 NA NA NA NA 5.2  5.3 
94Q4 to 99Q4 NA NA NA NA NA  5.7 
 
Figure 6.  Average Growth Rates over Five Years for Benchmark Vintages 
This table shows the growth rates over the five year periods shown in the first column of 
four different variables (real output, real consumption, the price level, and nominal 
output) for each benchmark vintage shown in the column header. 

 

 

Figure 6 shows that even average growth rates over five years can be affected 

significantly by data revisions.  For example, for real output, note the large differences in 

the last two columns of the table.  Real output growth over five-year periods was revised 

by as much as 0.6 percentage points from the 1995 vintage (just before cha in weighting) 

to the newer vintage.  Real consumption spending is also revised significantly, similar to 

the changes in output.  Those differences arise in part because of revisions to the price 

index, as shown in the third section of the table.  Changes in the base year, especially 

under the fixed-weight structure used before 1996, caused significant changes in price 

inflation and thus growth rates of real variables.  In addition, redefinitions and changes in 

weights caused even nominal output growth to be revised, though the revisions to 

nominal output growth are of a smaller magnitude than the changes in the real variables. 
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 In summary, in both the short run and the long run, data revisions may affect the 

values of data significantly.  Given that data revisions are large enough to matter, we next 

examine how those revisions affect forecasts. 

 
III.  Why Are Forecasts Affected By Data Revisions? 
 
 Forecasts may be affected by data revisions for three reasons:  (1) revisions 

change the data input into the forecasting model; (2) revisions change the estimated 

coefficients; and (3) revisions lead to a change in the model itself (such as the number of 

lags). 

 To see how data revisions might affect forecasts, consider a forecasting model 

that is an AR(p).  The model is: 

  t

p

i
itit YY εφµ ++= ∑

=
−

1

.             (1) 

Suppose that the forecasting problem is such that a forecaster estimates this model 

each period, and generates forecasts of Yt for several periods ahead.  Because the 

forecasts must be made in real time, the data for the one variable in this univariate 

forecast are represented by a matrix of data, not just a vector, with a different column of 

the matrix representing a different vintage of the data.  As in Stark-Croushore (2002), 

denote the data point (reported by a government statistical agency) for observation date t 

and vintage v as vtY , .  The revision to the data for observation date t between vintages 

v – 1 and v is 1,, −− vtvt YY . 

 Now consider a forecast for date t one-period ahead (so that the forecaster’s 

information set includes vtY ,1− ) when the data vintage is v.  Then the forecast is: 
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  vitvi

p
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vvtt YY ,,

1
,1|

ˆˆ −
=

− ∑+= φµ .             (2) 

where the circumflex denotes an estimated parameter, which also needs a vintage 

subscript because the estimated parameter may change with each vintage. 

 Next consider estimating the same model with a later vintage of the data, w.  The 

forecast is: 

  witwi

p

i
wwtt YY ,,

1
,1|

ˆˆ −
=

− ∑+= φµ .             (3) 

 The change to the forecast is: 
 

)ˆˆ()ˆˆ( ,,,,
1

,1|,1| vitviwitwi

p

i
vwvttwtt YYYY −−

=
−− −+−=− ∑ φφµµ          (4) 

The three ways that forecasts may be revised can be seen in equation (4).  First, 

revisions change the data input into the forecasting model.  In this case, the data change 

from }...,,{ ,,,2,1 vptvtvt YYY −−− to }...,,{ ,,,2,1 vptvtvt YYY −−− .  Second, the revisions lead to changes 

in the estimated values of the coefficients from { vpvvv ,,2,1
ˆ,...,ˆ,ˆ,ˆ φφφµ } to 

{ wpwww ,,2,1
ˆ,...,ˆ,ˆ,ˆ φφφµ }.  Third, the revisions could lead to a change in the model itself.  

For example, if the forecaster were using an information criterion at each date to choose 

p, then the number of lags in the autoregression could change as the data are revised. 

How large an effect on the forecasts are data revisions likely to cause?  Clearly, 

the answer to this question depends on the data in question and the size of the revisions to 

the data.  For some series, revisions may be close to white noise, in which case we would 

not expect forecasts to change very much.  But for other series, the revisions will be very 
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large and idiosyncratic, causing huge changes in the forecasts, as we will see in the 

literature discussed in section IV. 

Experiments to illustrate how forecasts are affected in these ways by data 

revisions were conducted by Stark-Croushore (2002), whose results are reported here via 

a set of three experiments:  (1) repeated observation forecasting; (2) forecasting with real-

time versus latest-available data; and (3) experiments to test information criteria and 

forecasts. 

Before getting to those experiments, we need to first discuss a key issue in 

forecasting:  what do we use as actuals?  Because data may be revised forever, it is not 

obvious what data vintage a researcher should use as the “actual” value to compare with 

the forecast.  Certainly, the choice of data vintage to use as “actual” depends on the 

purpose.  For example, if Wall Street forecasters are attempting to project the first-release 

value of GDP, then we would certainly want to use the first-released value as “actual”.  

But if a forecaster is after the true level of GDP, the choice is not so obvious.  If we want 

the best measure of a variable, we probably should consider the latest-available data as 

the “truth” (though perhaps not in the fixed-weighting era prior to 1996 in the United 

States because chain-weighted data available beginning in 1996 are superior because 

growth rates are not distorted by the choice of base year, as was the case with fixed-

weighted data).  The problem with this choice of latest-available data is that forecasters 

would not anticipate redefinitions and would generally forecast to be consistent with 

government data methods.  For example, just before the U.S. government’s official 

statistics were changed to chain weighting in late 1996, forecasters were still forecasting 

the fixed-weight data, because no one in the markets knew how to evaluate chain-
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weighted data and official chain-weighted data for past years had not yet been released.  

So forecasters continued to project fixed-weight values, even though there would never 

be a fixed-weight actua l for the period being forecast. 

 One advantage of the Real-Time Data Set for Macroeconomists is that it gives a 

researcher many choices about what to use as actual.  You can choose the first release (or 

second, or third), the value four quarters later (or eight or twelve), the last benchmark 

vintage (the last vintage before a benchmark revision), or the latest-available vintage.  

And it is relatively easy to choose alternative vintages as actuals and compare the results. 

Experiment 1:  Repeated Observation Forecasting 

The technique of repeated observation forecasting was developed by Stark-

Croushore (2002).  They showed how forecasts for a particular date change as vintage 

changes, using every vintage available.  For example:  Forecast real output growth one 

step ahead using an AR(p) model on the first difference of the log level of real output, for 

each date from 1965Q4 to 1999Q3, using every vintage possible from November 1965 to 

August 1999 (136 vintages), using the AIC to choose p.  Then plot all the different 

forecasts to see how they differ across vintages. 

 Figure 7 shows many different repeated-observation forecasts from the first half 

of the 1970s.  For example, the first column of dots for 1970Q1 is made by forecasting 

with data from vintages February 1970 to August 1999, all using the same sample period 

of 1947Q1 to 1969Q4.  The second column of dots for 1970Q2 is made by forecasting 

with data from vintages May 1970 to August 1999, all using the same sample period of 

1947Q1 to 1970Q1.  The last column of dots shows forecasts for 1974Q4 made by 
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forecasting with data from vintages November 1974 to August 1999, all using the same 

sample period of 1947Q1 to 1974Q3. 

Figure 7.  One-Step Ahead Forecasts for Real Output Growth, 1970Q1 to 1974Q4 
Each column of points is one set of forecasts across vintages for a particular date.  On the 
horizontal axis, each number corresponds to an observation date, with 1 = 1970Q1, 2 = 
1970Q2, . . .  20 = 1974Q4.  Each column of dots shows forecasts for the corresponding 
date.  For example, the first column of dots for 1970Q1 is made by forecasting with data 
from vintages February 1970 to August 1999, all using the same sample period of 
1947Q1 to 1969Q4.  The vertical axis shows the forecasted growth rate of real output for 
that date. 
 
 

The range of the forecasts in Figure 7 across vintages is relatively modest.  But in 

other periods, with larger data revisions, the range of the forecasts in a column may be 

substantially larger.  For example, Figure 8 shows the same type of graph as Figure 7, but 

for the second half of the 1970s.  Note the increased range of forecasts in many of the 
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columns.  The increased range occurs because changes in base years affected the 

influence of changes in oil prices in those years, far more than was true earlier. 

 

Figure 8.  One-Step-Ahead Forecasts for Real Output Growth, 1975Q1 to 1979Q4 
This graph is set up as in Figure 7, but covers the second half of the 1970s.  The range of 
forecasts in the columns is much larger in many cases than in Figure 7. 
 
 

In Figure 8, we can see that oil price shocks led to big data revisions, which in 

turn led to a large range of forecasts.  In the fourth column, for example, the forecasts for 

1975Q4 range from 4.89 percent to 10.68 percent. 
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Based on repeated-observation forecasts, Stark-Croushore suggested that inflation 

forecasts were more sensitive to data revisions than output forecasts.  They found that the 

average ratio of the range of forecasts for output relative to the range of realizations was 

about 0.62, whereas the average ratio of the range of forecasts for inflation relative to the 

range of realizations was about 0.88.  Possibly, inflation forecasts are more sensitive than 

output to data revisions because the inflation process is more persistent.   

Another experiment by Stark-Croushore was to compare their results using the 

AIC to those of the SIC.  Use of AIC rather than SIC leads to more variation in the model 

chosen and thus more variability in forecasts across vintages.  The AIC chooses longer 

lags, which increases the sensitivity of forecasts to data revisions. 

To summarize this section, it is clear that forecasts using simply univariate 

models depend strongly on the data vintage. 

Experiment 2:  Forecasting with Real-Time Versus Latest-Available Data Samples 

Stark-Croushore’s second major experiment was to use the RTDSM to compare 

forecasts made with real-time data to those made with latest-available data.  They 

performed a set of recursive forecasts.  The real-time forecasts were made by forecasting 

across vintages using the full sample available at each date, while the latest-available 

forecasts were made by performing recursive forecasts across sample periods with just 

the latest data vintage. 

 A key issue in this exercise is the decision about what to use as “actual,” as we 

discussed earlier.  Stark-Croushore use three alternative actuals:  (1) latest available; (2) 
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the last before a benchmark revision (called benchmark vintages); and (3) the vintage one 

year after the observation date.   

A priori, using the latest-available data in forecasting should yield better results, 

as the data reflect more complete information.  So, we might think that forecasts based on 

such data would be more accurate.  This is true for inflation data, but perhaps not for 

output data, as the Stark-Croushore results show. 

 One result of these experiments was that forecasts for output growth were not 

significantly better when based on latest-available data, even when latest-available data 

were used as actuals.  This is a surprise, since such data include redefinitions and 

rebenchmarks, so you might think that forecasts based on such data would lead to more 

accurate forecasts.   

 However, Stark-Croushore showed that in smaller samples, there may be 

significant differences between forecasts.  For example, in the first half of the 1970s, 

forecasts of output growth based on real- time data were significantly better than forecasts 

of output growth based on latest-available data, which is very surprising.  However, in 

other short samples, the real-time forecasts are significantly worse than those using latest-

available data.  So, we can not draw any broad conclusions about forecasting output 

growth using real-time versus latest-available data. 

 Forecasts of inflation are a different matter.  Clearly, according to the Stark-

Croushore results, forecasts based on latest-available data are superior to those using real-

time data, as we might expect.  This is true in the full sample as well as sub-samples. 

 Stark-Croushore suggests then that forecasts can be quite sensitive to data vintage 

and that the vintage chosen and the choice of actuals matters significantly for forecasting 
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results.  When model developers using latest-available data find lower forecast errors 

than real-time forecasters did, it may not mean that their forecasting model is superior; it 

might only mean that their data are superior because of the passage of time. 

Experiment 3:  Information Criteria and Forecasts 

 In one final set of experiments, Stark-Croushore look at the choice of lag length in 

an ARIMA(p,1,0), comparing the use of AIC with the use of SIC.  They examine whether 

the use of real-time versus latest-available data matters for the choice of lag length and 

hence the forecasts made by each model.  Their results suggest that the choice of real-

time versus latest-available data matters much more for AIC than for SIC.   

 Elliott (2002) illustrated and explained some of the Stark-Croushore results.  He 

showed that the lag structures for real- time and revised data are likely to be different, that 

greater persistence in the latest-available series increases those differences, and that 

RMSEs for forecasts using revised data may be substantially less than for real- time 

forecasts.  Monte Carlo results showed that the choices of models made using AIC or 

BIC is much wider using real-time data than using revised data.  Finally, Elliott suggested 

constructing forecasting models with both real-time and revised data at hand, an idea we 

will revisit in section V. 

 

IV.  The Literature on How Data Revisions Affect Forecasts  

   In this section, we examine how data revisions affect forecasts, by reviewing the 

most important papers in the literature.  We being by discussing how forecasts differ 

when using first-available compared with latest-available data.  We examine whether 

these effects are bigger or smaller depending on whether a variable is being forecast in 
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levels or growth rates.  Then we investigate the influence data revisions have on model 

selection and specification.  Finally, we examine the evidence on the predictive content 

of variables when subject to revision.  The key question in this literature is:  do data 

revisions affect forecasts significantly enough to make one worry about the quality of the 

forecasts? 

How Forecasts Differ When Using First-Available Data Compared with Latest-

Available Data 

One way to illustrate how data revisions matter for forecasts is to examine a set of 

forecasts made in real-time, using data as it first became available, then compare those 

forecasts to those made using the same forecasting method but using latest-available data. 

The first paper to compare forecasts using this method was Denton-Kuiper 

(1965).  They used Canadian national income account data to estimate a six-equation 

macroeconomic model with two-stage- least-squares methods.  They used three different 

data sets:  (1) preliminary data (1st release); (2) mixed data (real time); and (3) latest-

available data.  Denton-Kuiper suggests eliminating the use of variables that are revised 

extensively, as they pollute parameter estimates.  But they were dealing with a very small 

data sample, from 1949 to 1958. 

 The next paper to examine real-time data issues is Cole (1969).  She examined the 

extent to which data errors contribute to forecast errors, focusing on data errors in 

variables that are part of an extrapolative component of a forecast (e.g., extrapolating 

future values of an exogenous variable in a large system).  Cole finds that:  (1) data errors 

reduce forecast efficiency (variance of forecast error is higher), (2) lead to higher mean 
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squared forecast errors because of changes in coefficient estimates, and (3) lead to biased 

estimates if the expected data revision is non-zero. 

Cole’s results were based on U.S. data from 1953 to 1963.  She examined three 

types of models:  (1) naïve projections, for which the relative root-mean-squared-error 

averages 1.55, and is over 2 for some variables, for preliminary data compared with 

latest-available data; (2) real-time forecasts made by professional forecasters, in which 

she regressed forecast errors on data revisions, finding significant effects for some 

variables and finding that data revisions were the primary cause of bias in about half of 

the forecasts, as well as finding a bigger effect for forecasts in levels than growth rates; 

and (3) a forecasting model of consumption (quarterly data, 1947–1960), in which 

coefficient estimates were polluted by data errors by 7 to 25 percent, depending on the 

estimation method, in which she found that forecasts were biased because of the data 

errors and that “the use of preliminary rather than revised data resulted in a doubling of 

the forecast error.” 

Cole introduced a useful technique, following these three steps:  (1) forecast using 

preliminary data on model estimated with preliminary data; (2) forecast using revised 

data on a model estimated with preliminary data; and (3) forecast using revised data on a 

model estimated with revised data.  Then comparing forecasts (1) and (3) shows the total 

effect of data errors; comparing forecasts (1) and (2) shows the direct effect of data errors 

for given parameter estimates; and comparing forecasts (2) and (3) shows the indirect 

effect of data errors through their effect on parameter estimates. 

 Given that data revisions affect forecasts in single-equation systems, we might 

wonder if the situation is better or worse in simultaneous-equation systems.  To answer 
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that question, Trivellato-Rettore (1986) showed how data errors contribute to forecast 

errors in a linear dynamic simultaneous-equations model.  They found that data errors 

affect everything:  estimated coefficients, lagged variables, and projections of exogenous 

variables.  They examined a small (4 equation) model of the Italian economy for the 

sample period 1960 to 1980. However, the forecast errors induced by data revisions were 

not large.  They found that for one-year forecasts, data errors led to biased coefficient 

estimates by less than 1% and contributed at most 4% to the standard error of forecasts.  

Thus, data errors were not much of a problem in the model. 

Another technique used by researchers is that of Granger causality tests.  Swanson 

(1996) investigate the sensitivity of such tests, using the first release of data compared 

with latest-available data and found that bivariate Granger causality tests are sensitive to 

the choice of data vintage.   

A common method for generating inflation forecasts is to use equations based on 

a Phillips curve in which a variable such as the output gap is the key measure of 

economic slack.  But a study of historical measures of the output gap by Orphanides 

(2001) found that such measures vary greatly over vintages—long after the fact, 

economists are much more confident about the size of the output gap than they are in real 

time.  To see how uncertainty about the output gap affects forecasts of inflation, 

Orphanides-van Norden (2005) used real-time compared with latest-available data to 

show that ex-post output gap measures are useful in forecasting inflation.  But in real 

time, out-of-sample forecasts of inflation based on measures of the output gap are not 

very useful.  In fact, although the evidence that supports the use of the output-gap 

concept for forecasting inflation is very strong when output gaps are constructed on 
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latest-available data, using the output gap is inferior to other methods in real-time, out-of-

sample tests.  Edge-Laubach-Williams (2004) found similar results for forecasting long-

run productivity growth. 

One of the most difficult variables to forecast is the exchange rate.  Some recent 

research, however, showed that the yen-dollar and Deutschemark-dollar exchange rates 

were forecastable, using latest-available data.  However, a real-time investigation by 

Faust-Rogers-Wright (2003) compared the forecastability of exchange rates based on 

real-time data compared with latest-available data.  They found that exchange-rate 

forecastability was very sensitive to the vintage of data used.  Their results cast doubt on 

research that claims that exchange rates are forecastable. 

 Overall, the papers in the literature comparing forecasts made in real time to those 

made with latest-available data imply that using latest-available data sometimes gives 

quite different forecasts than would have been made in real time. 

Levels versus  Growth Rates  

 A number of papers have examined whether forecasts of variables in levels are 

more sensitive or less sensitive to data revisions than forecasts of those variables in 

growth rates.  The importance of this issue can be seen by considering what happens to 

levels and growth rates of a variable when data revisions occur.  Using the log of the ratio 

between two successive observation dates to represent the growth rate for vintage v, it is: 

gt,v  = ln 
vt

vt

Y
Y
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,

−

. 

The growth rate for the same observation dates but with a different vintage of data w is: 
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How would these growth rates be affected by a revision to a previous observation in the 

data series?  Clearly, the answer depends on how the revision occurs.  If the revision is a 

one-time level shift, then the growth rate will be revised, as will the level of the variable.  

However, suppose the revision occurs such that vtwt YaY ,, )1( +=  and vtwt YaY ,1,1 )1( −− += .  

Then the level is clearly affected but the growth rate is not.  So, how forecasts of levels 

and growth rates are affected by data revisions is an empirical question concerning the 

types of data revisions that occurs.  (Most papers that study data revisions themselves 

have not been clear about the relationship between revisions in levels compared with 

growth rates.) 

Howrey (1996) showed that forecasts of levels of real GNP are very sensitive to 

data revisions while forecasts of growth rates are almost unaffected.  He examined the 

forecasting period 1986 to 1991, looking at quarterly data and using univariate models. 

He found that the variance of the forecasting error in levels was four times greater using 

real-time data than if the last vintage prior to a benchmark revision had been used.  But 

he showed that there is little (5%) difference in variance when forecasting growth rates.  

He used as “actual” values in determining the forecast error the last data vintage prior to a 

benchmark revision.  The policy implications of Howrey’s research are clear:  policy 

should feed back on growth rates (output growth) rather than levels (output gap).  This is 

consistent with the research of Orphanides-van Norden described above. 

Kozicki (2002) showed that the choice of us ing latest-available or real- time data 

is most important for variables subject to large level revisions.  She showed that the 

choice of data vintage is particularly important in performing real out-of-sample 

forecasting for the purpose of comparing to real-time forecasts from surveys.  She ran 
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tests of in-sample forecasts compared with out-of-sample forecasts using latest-available 

data compared with out-of-sample forecasts using real-time data and found that for some 

variables over short sample periods, the differences in forecast errors can be huge.  

Surprisingly, in-sample forecasts were not too much better than out-of-sample forecasts.  

In proxying expectations (using a model to try to estimate survey expectations), there is 

no clear advantage to using real-time or latest-available data; results vary by variable.  

Also, the choice of vintage to use as “actuals” matters, especially for real-time forecasts, 

where using latest-available data makes them look worse.   

In summary, the literature on levels versus growth rates suggests that forecasts of 

level variables are more subject to data revisions than forecasts of variables in growth 

rates. 

Model Selection and Specification 

We often select models based on in-sample considerations, or simulated out-of-

sample experiments using latest-available data.  But it is more valid to use real-time out-

of-sample experiments, to see what a forecaster would have projected in real time.  A 

number of papers in the literature have discussed this issue.  Experiments conducted in 

this area include those by Swanson-White (1997), who were the first to use real-time data 

to explore model selection, Harrison-Kapetanios-Yates (2002) who showed that forecasts 

may be improved by estimating the model on older data that has been revised, ignoring 

the most recent data (more on this idea later in this chapter), and Robertson-Tallman 

(1998), who showed how real-time data matter for the choice of model in forecasting 

industrial production using the leading indicators, but the choice of model for forecasting 

GDP is not affected much.   
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 Overall, this literature suggests that model choice is sometimes affected 

significantly by data revisions. 

Evidence on the Predictive Content of Variables 

 Few papers in the forecasting literature have examined the evidence of the 

predictive content of variables and how that evidence is affected by data revisions.  The 

question is, does the predictability of one variable for another hold up in real time?  Are 

forecasts based on models that show predictability based on latest available data useful 

for forecasting in real time?   

To address the first question, Amato-Swanson (2001) used the latest-available 

data to show that M1 and M2 have predictive power for output.  But using real-time data, 

that predictability mostly disappears; many models are improved by not including 

measures of money.   

 To address the second question, Croushore (2005) investigated whether indexes 

of consumer sentiment or confidence based on surveys matter for forecasting 

consumption spending in real time; previous research found them of marginal value for 

forecasting using latest-available data.  His results showed that consumer confidence 

measures are not useful in forecasting consumption; in fact, in some specifications, 

forecasting performance is worse when the measures are included.   

 In summary, the predictive content of variables may change because of data 

revisions, according to the small amount of research that has been completed in this area. 
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V.  Optimal Forecasting when Data Are Subject to Revision 

 Having established that data revisions affect forecasts, in this section we examine 

the literature that discusses how to account for data revisions when forecasting.  The idea 

is that a forecaster should deal with data revisions in creating a forecasting model.  The 

natural venue for doing so is a model based on the Kalman filter or a state-space model.  

(This chapter will not discuss the details of this modeling technique, which are covered 

thoroughly in the chapter by Harvey on “Unobserved Components Models” in this 

volume.) 

 The first paper to examine optimal forecasting under data revisions is Howrey 

(1978).   He showed that a forecaster could adjust for different degrees of revision using 

the Kalman filter.  He ran a set of experiments to illustrate. 

 In experiment 1, Howrey forecasted disposable income using the optimal 

predictor plus three methods that ignored the existence of data revisions, over a sample 

from 1954 to 1974.  He found that forecast errors were much larger for non-optimal 

methods (those that ignored the revision process).  He suggested that new unrevised data 

should be used (not ignored) in estimating the model, however, but the new data should 

be adjusted for bias and serial correlation.  In experiment 2, Howrey forecasted 

disposable income and consumption jointly, finding the same results as in experiment 1. 

 Harvey-McKenzie-Blake-Desai (1983) considered how to optimally account for 

irregular data revisions.  Their solution was to use state-space methods to estimate a 

multivariate ARMA model with missing observations.  They used U.K. data on industrial 

production and wholesale prices from 1965 to 1978.  Their main finding was that there 

was a large gain in relative efficiency (MSE) in using the optimal predictor rather than 
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assuming no data revisions, with univariate forecasts.  With multivariate forecasts, the 

efficiency gain was even greater.  The method used in this paper assumes that there are 

no revisions after M periods, where M is not large, so it may not be valid for all variables.  

 Other papers have found mixed results.  Howrey (1984) examined forecasts 

(using state-space methods) of inventory investment, and found that data errors are not 

responsible for much forecast error at all, so that using state-space methods to improve 

the forecasts yields little improvement.  Similarly, Dwyer-Hirano (2000) found that state-

space methods perform worse than a simple VAR that ignores revisions, for forecasting 

levels of M1 and nominal output.   

 One key question in this literature is that of which data set should a forecaster use, 

given so many vintages and different degrees of revision?  Koenig-Dolmas-Piger (2003) 

attempted to find the optimal method for real-time forecasting of current-quarter output 

growth.  They found that it was best to use first-release data rather than real-time data, 

which differs from other papers in the literature.  This is similar to the result found earlier 

by Mariano-Tanizacki (1995) that combining preliminary and revised data is sometimes 

very helpful in forecasting.  Patterson (2003) illustrated how combining the data 

measurement process and the data generation process improved forecasts, using data on 

U.S. income and consumption. 

 These papers suggest that there sometimes seems to be gains from accounting for 

data revisions, though not always.  However, some of the results are based on data 

samples from further in the past, when the data may not have been of as high quality as 

data today.  For example, past revisions to industrial production were clearly predictable 

in advance, but that predictability has fallen considerably as the Federal Reserve  
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Board has improved its methods.  If the predictability of revisions is low relative to the 

forecast error, then the methods described here may not be very helpful.  For example, if 

the forecastable part of data revisions arises only because seasonal factors are revised just 

once per year, then the gains from forecasting revisions are quite small.  Further, research 

by Croushore-Stark (2001) and (2003) suggests that the process followed by revisions is 

not easily modeled as any type of AR or MA process, which many models of optimal 

forecasting with data revisions require.  Revisions appear to be non-stationary and not 

well approximated by any simple time-series process, especially across benchmark 

vintages.  Thus it may be problematic to improve forecasts, as some of the literature 

suggests.  In addition, improvements in the data collection process because of 

computerized methods may make revisions smaller now than they were in the past, so 

using methods such as the Kalman filter may not work well. 

 One possible remedy to avoid issues about revisions altogether is to follow the 

factor model approach of Stock-Watson (1999), explained in more detail in the Stock-

Watson chapter on “Forecasting with Many Predictors” in this volume.  In this method, 

many data series, whose revisions may be orthogonal, and combined and one or several 

common factors are extracted.  The hope is that the revisions to all the data series are 

independent or at least not highly correlated, so the estimated factor is independent of 

data revisions, though Stock-Watson did not test this because they would have needed 

real-time data on for more variables than are included in the Real-Time Data Set for 

Macroeconomists.  The only test extant of this idea (comparing forecasts from a factor 

model based on real-time data compared with latest available data) is provided by 

Bernanke-Boivin (2003).  They found that for the subsample of data for which they had 
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both real-time and latest available data, the forecasts made were not significantly 

different, suggesting that the factor model approach is indeed promising for eliminating 

the effects of data revisions.  However, their results could be special to the situation they 

examined; additional research will be needed to see how robust their results are. 

 Another related possibility is for forecasters to recognize the importance of 

revisions and to develop models that contain both data subject to revision and data that 

are not subject to revision, such as financial market variables.  This idea has not yet been 

tested in a real- time context to see how well it would perform in practice.1 

 In summary, there are sometimes gains to accounting for data revisions; but 

predictability of revisions (today for US data) is small relative to forecast error (mainly 

seasonal adjustment).  This is a promising area for future research. 

 

V.  Summary and Suggestions for Further Research 

 This review of the literature on forecasting and data revisions suggests that data 

revisions may matter for forecasting, though how much they matter depends on the case 

at hand.  We now have better data sets on data vintages than ever before, and researchers 

in many other countries are attempting to put together real-time data sets for 

macroeconomists like that in the United States.  What is needed now are attempts to 

systematically categorize and evaluate the underlying determinants of whether data 

revisions matter for forecasting, and to develop techniques for optimal forecasting that 

are consistent with the data process of revisions.  This latter task may be most difficult, as 

characterizing the process followed by data revisions is not trivial.  A key unresolved 

                                                 

1 Thanks to an anonymous referee for making this suggestion. 
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issue in this literature is:  What are the costs and benefits of dealing with real-time data 

issues versus other forecasting issues?  
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1 Introduction

Since the pioneering work of Mitchell and Burns (1938) and Burns and Mitchell (1946), lead-
ing indicators have attracted considerable attention, in particular by politicians and busi-
ness people, who consider them as a useful tool for predicting future economic conditions.
Economists and econometricians have developed more mixed feelings towards the leading
indicators, starting with Koopmans’s (1947) critique of the work of Burns and Mitchell, con-
sidered as an exercise in “measurement without theory”. The resulting debate has stimulated
the production of a vast literature that deals with the different aspects of the leading indi-
cators, ranging from the choice and evaluation of the best indicators, possibly combined in
composite indexes, to the development of more and more sophisticated methods to relate
them to the target variable.
In this chapter we wish to provide a guide for the construction, use and evaluation of lead-

ing indicators and, more important, an assessment of the most relevant recent developments
in this field of economic forecasting.
We start in Section 2 with a discussion of the choice of the target variable for the leading

indicators, which can be a single variable, such as GDP or industrial production, or a com-
posite coincident index, and the focus can be in anticipating either future values of the target
or its turning points. We then evaluate the basic requirements for an economic variable to
be a useful leading indicator, which can be summarized as: (i) consistent timing (i.e., to
systematically anticipate peaks and troughs in the target variable, possibly with a rather
constant lead time); (ii) conformity to the general business cycle (i.e., have good forecasting
properties not only at peaks and troughs); (iii) economic significance (i.e., being supported
by economic theory either as possible causes of business cycles or, perhaps more importantly,
as quickly reacting to negative or positive shocks); (iv) statistical reliability of data collection
(i.e., provide an accurate measure of the quantity of interest); (v) prompt availability with-
out major later revisions (i.e., being timely and regularly available for an early evaluation of
the expected economic conditions, without requiring subsequent modifications of the initial
statements); (vi) smooth month to month changes (i.e., being free of major high frequency
movements).
Once the choice of the target measure of aggregate activity and of the leading indicators

is made, two issues emerge: first, the selection of the proper variable transformation, if any,
and, second, the adoption of a dating rule that identifies the peaks and troughs in the series,
and the associated expansionary and recessionary periods and their durations. The choice of
the variable transformation is related to the two broad definitions of the cycle recognized in
the literature, the so-called classical cycle and the growth or deviation cycle. In the case of
the deviation cycle, the focus is on the deviations of the target variable from an appropriately
defined trend rate of growth, while the classical cycle relies on the levels of the target variable.
There is a large technical literature on variable transformation by filtering the data, and in
Section 3 we review some of the key contributions in this area. We also compare alternative
dating algorithms, highlighting their pros and cons.
In Section 4 we describe simple non model based techniques for the construction of com-

posite coincident or leading indexes. Basically, each component of the index should be care-
fully selected on the basis of the criteria mentioned above, properly filtered to enhance its
business cycle characteristics, deal with seasonal adjustment and remove outliers, and stan-
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dardized to make its amplitude similar or equal to that of the other index components. The
components are then aggregated into the composite index using a certain weighting scheme,
typically simple averaging.
From an econometric point of view, composite leading indexes constructed following the

procedure sketched above are subject to several criticisms. For example, there is no explicit
reference to the target variable in the construction of the composite leading index and the
weighting scheme is fixed over time, with periodic revisions mostly due either to data issues,
such as changes in the production process of an indicator, or to the past unsatisfactory
performance of the index. The main counterpart of these problems is simplicity. Non model
based indexes are easy to build, easy to explain, and easy to interpret, which are very valuable
assets, in particular for the general public and for policy-makers. Moreover, simplicity is often
a plus also for forecasting.
Most of the issues raised for the non model based approach to the construction of com-

posite indexes are addressed by the model based procedures, which can be grouped into two
main classes: dynamic factor models and Markov switching models.
Dynamic factor models were developed by Geweke (1977) and Sargent and Sims (1977),

but their use became well known to most business cycle analysts after the publication of
Stock and Watson’s (1989) attempt to provide a formal probabilistic basis for Burns and
Mitchell’s coincident and leading indicators. The rationale of the approach is that a set of
variables is driven by a limited number of common forces, and by idiosyncratic components
that are uncorrelated across the variables under analysis. Stock and Watson (1989) estimated
a coincident index of economic activity as the unobservable factor in a dynamic factor model
for four coincident indicators: industrial production, real disposable income, hours of work
and sales.
The main criticism Sims (1989) raised in his comment to Stock and Watson (1989) is the

use of a constant parameter statistical model (estimated with classical rather than Bayesian
methods). This comment relates to the old debate on the characterization of business cycles
as extrinsic phenomena, i.e., generated by the arrival of external shocks propagated through
a linear model, versus intrinsic phenomena, i.e., generated by the nonlinear development
of the endogenous variables. The main problem with the latter view, at least implicitly
supported also by Burns and Mitchell that treated expansions and recessions as two different
periods, was the difficulty of casting it into a simple and testable statistical framework, an
issue addressed by Hamilton (1989).
Hamilton’s (1989) Markov switching model allows the growth rate of the variables (and

possibly their dynamics) to depend on the status of the business cycle, which is modelled
as a Markov chain. With respect to the factor model based analysis, there is again a single
unobservable force underlying the evolution of the indicators but, first, it is discrete rather
than continuous and, second, it does not directly affect or summarize the variables but rather
indirectly determines their behaviour that can change substantially over different phases of
the cycle.
As in the case of Stock and Watson (1989), Hamilton (1989) has generated an impressive

amount of subsequent research. Here it is worth mentioning the work by Diebold and Rude-
busch (1996), which allows the parameters of the factor model in Stock and Watson (1989)
to change over the business cycle according to a Markov process. Kim and Nelson (1998)
estimated the same model but in a Bayesian framework using the Gibbs sampler, as detailed
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below, therefore addressing both of Sims’ criticisms reported above. Unfortunately, both
papers confine themselves to the construction of a coincident indicator and do not consider
the issue of leading indicators.
In Sections 5 and 6 we review in detail the competing model based approaches to the

construction of composite indexes and discuss their advantages and disadvantages.
In Section 7 we illustrate the practical implementation of the theoretical results by con-

structing and comparing a set of alternative indexes for the US. We find that all model based
coincident indexes are in general very similar and close to the equal weighted ones. As a
consequence, the estimation of the current economic condition is rather robust to the choice
of method. The model based leading indexes are somewhat different from their non model
based counterparts. Their main advantage is that they are derived in a proper statistical
framework that, for example, permits the computation of standard errors around the index,
the unified treatment of data revisions and missing observations, and the possibility of using
time-varying parameters.
In Section 8 we evaluate other approaches for forecasting using leading indicators. In

particular, Section 8.1 deals with observed transition models, where the relationship between
the target variable and the leading indicators can be made dependent on a set of observable
variables, such as GDP growth or the interest rate. Section 8.2 considers neural network
and non-parametric methods, where even less stringent hypotheses are imposed on the rela-
tionship between the leading indicators and their target. Section 8.3 focuses on the use of
binary models for predicting business cycle phases, a topic that attracted considerable atten-
tion in the ’90s, perhaps as a consequence of the influential study by Diebold and Rudebusch
(1989). Finally, Section 8.4 analyzes forecast pooling procedures in the leading indicator con-
text since, starting with the pioneering work of Bates and Granger (1969), it is well known
that combining several forecasts can yield more accurate predictions than those of each of
the individual forecasts.
In Section 9 we consider the methodological aspects of the evaluation of the forecasting

performance of the leading indicators when used either in combination with simple rules to
predict turning points (e.g., Vaccara and Zarnowitz (1978)), or as regressors in a model for
(a continuous or discrete) target variable. We then discuss a set of empirical examples, to
illustrate the theoretical concepts.
A review of the recent literature on the actual performance of leading indicators is con-

tained in Section 10. Four main strands of research can be identified in this literature. First,
the consequences of the use of real time information on the composite leading index and
its components rather than the final releases. Second, the assessment of the relative perfor-
mance of the new more sophisticated models for the coincident-leading indicators. Third, the
evaluation of financial variables as leading indicators. Finally, the analysis of the behavior
of the leading indicators during the two most recent US recessions as dated by the NBER,
namely, July 1990 - March 1991 and March 2001 - November 2001.
To conclude, in Section 11 we summarize what we have learned about leading indicators

in the recent past, and suggest directions for further research in this interesting and promising
field of forecasting.
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2 Selection of the target and leading variables

The starting point for the construction of leading indicators is the choice of the target variable,
namely, the variable that the indicators are supposed to lead. Such a choice is discussed in
the first subsection. Once the target variable is identified, the leading indicators have to be
selected, and we discuss selection criteria in the second subsection.

2.1 Choice of target variable

Burns and Mitchell (1946, p. 3) proposed that:

”...a cycle consists of expansions occurring at about the same time in many eco-
nomic activities....”

Yet, later on in the same book (p. 72) they stated:

”Aggregate activity can be given a definite meaning and made conceptually mea-
surable by identifying it with gross national product.”

These quotes underlie the two most common choices of target variable: either a single indi-
cator that is closely related to GDP but available at the monthly level, or a composite index
of coincident indicators.
GDP could provide a reliable summary of the current economic conditions if it were

available on a monthly basis. Though both in the US and in Europe there is a growing
interest in increasing the sampling frequency of GDP from quarterly to monthly, the current
results are still too preliminary to rely on.
In the past, industrial production provided a good proxy for the fluctuations of GDP, and

it is still currently monitored for example by the NBER business cycle dating committee and
by the Conference Board in the US, in conjunction with other indicators. Yet, the ever rising
share of services compared with the manufacturing, mining, gas and electric utility industries
casts more and more doubts on the usefulness of IP as a single coincident indicator.
Another common indicator is the volume of sales of the manufacturing, wholesale and

retail sectors, adjusted for price changes so as to proxy real total spending. Its main drawback,
as in the case of IP, is its partial coverage of the economy.
A variable with a close to global coverage is real personal income less transfers, that

underlies consumption decisions and aggregate spending. Yet, unusual productivity growth
and favorable terms of trade can make income behave differently from payroll employment,
the other most common indicator with economy wide coverage. More precisely, the monitored
series is usually the number of employees on non-agricultural payrolls, whose changes reflect
the net hiring (both permanent and transitory) and firing in the whole economy, with the
exception of the smallest businesses and the agricultural sector.
Some authors focused on unemployment rather than employment, e.g., Boldin (1994) or

Chin, Geweke and Miller (2000), on the grounds that the series is timely available and subject
to minor revisions. Yet, typically unemployment is slightly lagging and not coincident.
Overall, it is difficult to identify a single variable that provides a good measure of current

economic conditions, is available on a monthly basis, and is not subject to major later
revisions. Therefore, it is preferable to consider combinations of several coincident indicators.
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The monitoring of several coincident indicators can be done either informally, for example
the NBER business cycle dating committee examines the joint evolution of IP, employment,
sales and real disposable income, see, e.g., Hall et al. (2003), or formally, by combining the
indicators into a composite index. A composite coincident index can be constructed in a non
model based or in a model based framework, and we will review the main approaches within
each category in Sections 4 and 5, respectively.
Once the target variable is defined, it may be necessary to emphasize its cyclical properties

by applying proper filters, and/or to transform it into a binary expansion/recession indicator
relying on a proper dating procedure. Both issues are discussed in Section 3.

2.2 Choice of leading variables

Since the pioneering work of Mitchell and Burns (1938), variable selection has rightly at-
tracted considerable attention in the leading indicator literature, see, e.g., Zarnowitz and
Boschan (1975a,b) for a review of early procedures at the NBER and Department of Com-
merce. Moore and Shiskin (1967) formalized an often quoted scoring system (see, e.g., Boehm
(2001), Phillips (1998-99)), based mostly upon (i) consistent timing as a leading indicator
(i.e., to systematically anticipate peaks and troughs in the target variable, possibly with
a rather constant lead time); (ii) conformity to the general business cycle (i.e., have good
forecasting properties not only at peaks and troughs); (iii) economic significance (i.e., being
supported by economic theory either as possible causes of business cycles or, perhaps more
importantly, as quickly reacting to negative or positive shocks); (iv) statistical reliability of
data collection (i.e., provide an accurate measure of the quantity of interest); (v) prompt
availability without major later revisions (i.e., being timely and regularly available for an
early evaluation of the expected economic conditions, without requiring subsequent modifi-
cations of the initial statements); (vi) smooth month to month changes (i.e., being free of
major high frequency movements).
Some of these properties can be formally evaluated at different levels of sophistication.

In particular, the peak/trough dates of the target and candidate leading variables can be
compared and used to evaluate whether the peak structure of the leading indicator system-
atically anticipated that of the coincident indicator, with a stable lead time (property i)
). An alternative procedure can be based on the statistical concordance of the binary ex-
pansion/recession indicators (resulting from the peak/trough dating) for the coincident and
lagged leading variables, where the number of lags of the leading variable can be either fixed
or chosen to maximize the concordance. A formal test for no concordance is defined below
in Section 9.1. A third option is to run a logit/probit regression of the coincident expan-
sion/recession binary indicator on the leading variable, evaluating the explanatory power of
the latter. The major advantage of this procedure is that several leading indicators can be
jointly considered to measure their partial contribution. Details on the implementation of
this procedure are provided in Section 8.3.
To assess whether a leading indicator satisfies property ii), conformity to the general

business cycle, it is preferable to consider it and the target coincident index as continuous
variables rather than transforming them into binary indicators. Then, the set of available
techniques includes frequency domain procedures (such as the spectral coherence and the
phase lead), and several time domain methods, ranging from Granger causality tests in
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multivariate linear models, to the evaluation of the marginal predictive content of the leading
indicators in sophisticated non-linear models, possibly with time varying parameters, see
Sections 6 and 8 for details on these methods. Within the time domain framework it is also
possible to consider a set of additional relevant issues such as the presence of cointegration
between the coincident and leading indicators, the determination of the number lags of the
leading variable, or the significance of duration dependence. We defer a discussion of these
topics to Section 6.
Property iii), economic significance, can be hardly formally measured, but it is quite

important both to avoid the measurement without theory critique, e.g., Koopmans (1947),
and to find indicators with stable leading characteristics. On the other hand, the lack of a
commonly accepted theory of the origin of business cycles, see, e.g., Fuhrer and Schuh (1998),
makes it difficult to select a single indicator on the basis of its economic significance.
Properties iv) and v) have received considerable attention in recent years and, together

with economic theory developments, underlie the more and more widespread use of financial
variables as leading indicators (due to their exact measurability, prompt availability and
absence of revisions), combined with the adoption of real-time datasets for the assessment
of the performance of the indicators, see Section 10 for details on these issues. Time delays
in the availability of leading indicators are particularly problematic for the construction of
composite leading indexes, and have been treated differently in the literature and in practice.
Either preliminary values of the composite indexes are constructed excluding the unavailable
indicators and later revised, along the tradition of the NBER and later of the Department of
Commerce and the Conference Board, or the unavailable observations are substituted with
forecasts, as in the factor based approaches described in Section 6.2. The latter solution
is receiving increasing favor also within the traditional methodology, see, e.g., McGuckin,
Ozyildirim and Zarnowitz (2003). Within the factor based approaches the possibility of
measurement error in the components of the leading index, due, e.g., to data revisions, can
also be formally taken into account, as discussed in Section 5.1, but in practice the resulting
composite indexes require later revisions as well. Yet, both for the traditional and for the
more sophisticated methods, the revisions in the composite indexes due to the use of later
releases of their components are minor.
The final property vi), a smooth evolution in the leading indicator, can require a care-

ful choice of variable transformations and/or filter. In particular, the filtering procedures
discussed in Section 3 can be applied to enhance the business cycle characteristics of the
leading indicators, and in general should be if the target variable is filtered. In general, they
can provide improvements with respect to the standard choice of month to month differences
of the leading indicator. Also, longer differences can be useful to capture sustained growth
or lack of it, see, e.g., Birchenhall et al. (1999), or differences with respect to the previous
peak or trough to take into consideration the possible non-stationary variations of values at
turning points, see, e.g., Chin et al. (2000).
As in the case of the target variable, the use of a single leading indicator is dangerous

because economic theory and experience teach that recessions can have different sources and
characteristics. For example, the twin US recessions of the early 80’s were mostly due to
tight monetary policy, that of 1991 to a deterioration in the expectations climate because of
the first Iraq war, and that of 2001 to the bursting of the stock market bubble and, more
generally, to over-investment, see, e.g., Stock and Watson (2003b). In the euro area, the
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three latest recessions according to the CEPR dating are also rather different, with the one
in 1974 lasting only three quarters and characterized by synchronization across countries and
coincident variables, as in 1992-93 but contrary to the longer recession that started at the
beginning of 1980 and lasted 11 quarters.
A combination of leading indicators into composite indexes can therefore be more useful

in capturing the signals coming from different sectors of the economy. The construction of a
composite index requires several steps and can be undertaken either in a non model based
framework or with reference to a specific econometric model of the evolution of the leading
indicators, possibly jointly with the target variable. The two approaches are discussed in
Sections 4 and 6, respectively.

3 Filtering and dating procedures

Once the choice of the target measure of aggregate activity (and possibly of the leading indi-
cators) is made, two issues emerge: first the selection of the proper variable transformation,
if any, and second the adoption of a dating rule that identifies the peaks and troughs in the
series, and the associated expansionary and recessionary periods and their durations.
The choice of the variable transformation is related to the two broad definitions of the

cycle recognized in the literature, the so-called classical cycle and the growth or deviation
cycle. In the case of the deviation cycle, the focus is on the deviations of the rate of growth
of the target variable from an appropriately defined trend rate of growth, while the classical
cycle relies on the levels of the target variable.
Besides removing long term movements as in the deviation cycle, high frequency fluctua-

tions can also be eliminated to obtain a filtered variable that satisfies the duration requirement
in the original definition of Burns and Mitchell (1946, p.3):

”... in duration business cycles vary from more than one year to ten or twelve
years; they are not divisible into shorter cycles of similar character with ampli-
tudes approximating their own.”

There is a large technical literature on methods of filtering the data. In line with the
previous paragraph, Baxter and King (1999) argued that the ideal filter for cycle measure-
ment must be customized to retain unaltered the amplitude of the business cycle periodic
components, while removing high and low frequency components. This is known as a band-
pass filter and, for example, when only cycles with frequency in the range 1.5-8 years are of
interest, the theoretical frequency response function of the filter takes the rectangular form:
w(ω) = I(2π/(8s) ≤ ω ≤ 2π/(1.5s)), where I(·) is the indicator function. Moreover, the
phase displacement of the filter should always be zero, to preserve the timing of peaks and
troughs; the latter requirement is satisfied by a symmetric filter.
Given the two business cycle frequencies, ωc1 = 2π/(8s) and ωc2 = 2π/(1.5s), the band-

pass filter is

wbp(L) =
ωc2 − ωc1

π
+

∞X
j=1

sin(ωc2j)− sin(ωc1j)
πj

(Lj + L−j). (1)

Thus, the ideal band-pass filter exists and is unique, but it entails an infinite number of leads
and lags, so in practice an approximation is required. Baxter and King (1999) showed that
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theK-terms approximation to the ideal filter (1) that is optimal in the sense of minimizing the
integrated squared approximation error is simply (1) truncated at lagK. They proposed using
a three year window, i.e., K = 3s, as a valid rule of thumb for macroeconomic time series.
They also constrained the weights to sum up to zero, so that the resulting approximation is
a detrending filter, see, e.g., Stock and Watson (1999a) for an application.
As an alternative, Christiano and Fitzgerald (1999) proposed to project the ideal filter on

the available sample. If ct = wbp(L)xt denotes the ideal cyclical component, their proposal
is to consider bct = E(ct|x1, ..., xT ), where xt is given a parametric linear representation, e.g.,
an ARIMA model. They also found that for a wide class of macroeconomic time series the
filter derived under the random walk assumption for xt is feasible and handy.
Baxter and King (1999) did not consider the problem of estimating the cycle at the

extremes of the available sample (the first and last three years), which is inconvenient for
a real-time assessment of current business conditions. Christiano and Fitzgerald (1999)
suggested to replace the out of sample missing observations by their best linear prediction
under the random walk hypothesis. Yet, this can upweight the last and the first available
observations.
As a third alternative, Artis, Marcellino and Proietti (2004, AMP) designed a band-pass

filter as the difference of two Hodrick Prescott (1997) detrending filters with parameters
λ = 1 and λ = 677.13, where these values are selected to ensure that ωc1 = 2π/(8s) and
ωc2 = 2π/(1.5s). The resulting estimates of the cycle are comparable to the Baxter and King
cycle, although slightly noisier, without suffering from unavailability of the end of sample
estimates
Working with growth rates of the coincident variables rather than levels, a convention

typically adopted for the derivation of composite indexes, corresponds to the application of a
filter whose theoretical frequency response function increases monotonically, starting at zero
at the zero frequency. Therefore, growth cycles and deviation cycles need not be very similar.
In early post-war decades, especially in Western Europe, growth was relatively persistent

and absolute declines in output were comparatively rare; the growth or deviation cycle then
seemed to be of more analytical value, especially as inflexions in the rate of growth of output
could reasonably be related to fluctuations in the levels of employment and unemployment.
In more recent decades, however, there have been a number of instances of absolute decline
in output, and popular description at any rate has focussed more on the classical cycle.
The concern that de-trending methods can affect the information content of the series in
unwanted ways, see, e.g., Canova (1999), has reinforced the case for examining the classical
cycle. The relationships among the three types of cycles are analyzed in more details below,
after defining the dating algorithms to identify peaks and troughs in the series and, possibly,
transform it into a binary indicator.
In the U.S., the National Bureau of Economic Research (http://www.nber.org) provides

a chronology of the classical business cycle since the early 1920s, based on the consensus of a
set of coincident indicators concerning production, employment, real income and real sales,
that is widely accepted among economists and policy-makers, see, e.g., Moore and Zarnowitz
(1986). A similar chronology has been recently proposed for the euro area by the Center for
Economic Policy Research (http://www.cepr.org), see Artis et al. (2003).
Since the procedure underlying the NBER dating is informal and subject to substantial

delays in the announcement of the peak and trough dates (which is rational to avoid later
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revisions), several alternative methods have been put forward and tested on the basis of their
ability to closely reproduce the NBER classification.
The simplest approach, often followed by practitioners, is to identify a recession with at

least two quarters of negative real GDP growth. Yet, the resulting chronology differs with
respect to the NBER in a number of occasions, see, e.g., Watson (1991) or Boldin (1994).
A more sophisticated procedure was developed by Bry and Boschan (1971) and further

refined by Harding and Pagan (2002). In particular, for quarterly data on the log-difference of
GDP or GNP (∆xt), Harding and Pagan defined an expansion terminating sequence, ETSt,
and a recession terminating sequence, RTSt, as follows:

ETSt = {(∆xt+1 < 0) ∩ (∆∆xt+2 < 0)}
RTSt = {(∆xt+1 > 0) ∩ (∆∆xt+2 > 0)}

(2)

The former defines a candidate point for a peak in the classical business cycle, which termi-
nates the expansion, whereas the latter defines a candidate for a trough. When compared
with the NBER dating, usually there are only minor discrepancies. Stock and Watson (1989)
adopted an even more complicated rule for identifying peaks and troughs in their composite
coincident index.
Within the Markov Switching (MS) framework, discussed in details in Sections 5 and 6,

a classification of the observations into two regimes is automatically produced by comparing
the probability of being in a recession with a certain threshold, e.g., 0.50. The turning
points are then easily obtained as the dates of switching from expansion to recession, or
vice versa. Among others, Boldin (1994) reported encouraging results using a MS model for
unemployment, and Layton (1996) for the ECRI coincident index. Chauvet and Piger (2003)
also confirmed the positive results with a real-time dataset and for a more up-to-date sample
period.
Harding and Pagan (2003) compared their non-parametric rule with the MS approach,

and further insight can be gained from Hamilton’s (2003) comments on the paper and the
authors’ rejoinder. While the non-parametric rule produces simple, replicable and robust
results, it lacks a sound economic justification and cannot be used for probabilistic state-
ments on the current status of the economy. On the other hand, the MS model provides a
general statistical framework to analyze business cycle phenomena, but the requirement of a
parametric specification introduces a subjective element into the analysis and can necessitate
careful tailoring. Moreover, if the underlying model is linear, the MS recession indicator is
not identified while pattern recognition works in any case.
AMP developed a dating algorithm based on the theory of Markov chains that retains

the attractive features of the non-parametric methods, but allows the computation of the
probability of being in a certain regime or of a phase switch. Moreover, the algorithm can
be easily modified to introduce depth or amplitude restrictions, and to construct diffusion
indices. Basically, the transition probabilities are scored according to the pattern in the series
xt rather than within a parametric MS model. The resulting chronology for the euro area is
very similar to the one proposed by the CEPR, and a similar result emerges for the US with
respect to the NBER dating, with the exception of the last recession, see Section 7 below for
details.
An alternative parametric procedure to compute the probability of being in a certain

cyclical phase is to adopt a probit or logit model where the dependent variable is the NBER
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expansion/recession classification, and the regressors are the coincident indicators. For ex-
ample, Birchenhall, Jessen, Osborn and Simpson (1999) showed that the fit of a logit model
is very good in sample when the four NBER coincident indicators are used. They also found
that the logit model outperformed a MS alternative, while Layton and Katsuura (2001)
obtained the opposite ranking in a slightly different context.
The in-sample estimated parameters from the logit or probit models can also be used in

combination with future available values of the coincident indicators to predict the future
status of the economy, which is useful, for example, to conduct a real time dating exercise
because of the mentioned delays in the NBER announcements.
So far, in agreement with most of the literature, we have classified observations into two

phases, recessions and expansions, which are delimited by peaks and troughs in economic
activity. However, multiphase characterizations of the business cycle are not lacking in the
literature: the popular definition due to Burns and Mitchell (1946) postulated four states:
expansion, recession, contraction, recovery; see also Sichel (1994) for an ex-ante three phases
characterization of the business cycle, Artis, Krolzig and Toro (2004) for an ex-post three-
phases classification based on a model with Markov switching, and Layton and Katsuura
(2001) for the use of multinomial logit models.
To conclude, having defined several alternative dating procedures, it is useful to return

to the different notions of business cycle and recall a few basic facts about their dating,
summarizing results in AMP.
First, neglecting duration ties, classical recessions (i.e., peak-trough dynamics in xt), cor-

respond to periods of prevailing negative growth, ∆xt < 0. In effect, negative growth is a
sufficient, but not necessary, condition for a classical recession under the Bry and Boschan
dating rule and later extensions. Periods of positive growth can be observed during a re-
cession, provided that they are so short lived that they do not determine an exit from the
recessionary state.
Second, turning points in xt correspond to ∆xt crossing the zero line (from above zero if

the turning point is a peak, from below in the presence of a trough in xt). This is strictly
true under the calculus rule, according to which ∆xt < 0 terminates the expansion.
Third, if xt admits the log-additive decomposition, xt = ψt + µt, where ψt denotes the

deviation cycle, then growth is in turn decomposed into cyclical and residual changes:

∆xt = ∆ψt +∆µt.

Hence, assuming that ∆µt is mostly due to growth in trend output, deviation cycle recessions
correspond to periods of growth below potential growth, that is ∆xt < ∆µt. Using the same
arguments, turning points correspond to ∆xt crossing ∆µt. When the sum of potential
growth and cyclical growth is below zero, that is ∆µt + ∆ψt < 0, a classical recession also
occurs.
Finally, as an implication of the previous facts, classical recessions are always a subset of

deviation cycle recessions, and there can be multiple classical recessionary episodes within a
period of deviation cycle recessions. This suggests that an analysis of the deviation cycle can
be more informative and relevant also from the economic policy point of view, even though
more complicated because of the filtering issues related to the extraction of the deviation
cycle.
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4 Construction of non model based composite indexes

In the non model based framework for the construction of composite indexes, the first ele-
ment is the selection of the index components. Each component should satisfy the criteria
mentioned in Section 2. In addition, in the case of leading indexes, a balanced representation
of all the sectors of the economy should be achieved, or at least of those more closely related
to the target variable.
The second element is the transformation of the index components to deal with seasonal

adjustment, outlier removal, treatment of measurement error in first releases of indicators
subject to subsequent revision, and possibly forecast of unavailable most recent observations
for some indicators. These adjustments can be implemented either in a univariate framework,
mostly by exploiting univariate time series models for each indicator, or in a multivariate
context. In addition, the transformed indicators should be made comparable to be included
in a single index. Therefore, they are typically detrended (using different procedures such as
differencing, regression on deterministic trends, or the application of more general band-pass
filters), possibly smoothed to eliminate high frequency movements (using moving averages
or, again, band pass filters), and standardized to make their amplitudes similar or equal.
The final element for the construction of a composite index is the choice of a weighting

scheme. The typical choice, once the components have been standardized, is to give them
equal weights. This seems a sensible averaging scheme in this context, unless there are
particular reasons to give larger weights to specific variables or sectors, depending on the
target variable or on additional information on the economic situation, see, e.g., Niemira and
Klein (1994, Ch.3) for details.
A clear illustration of the non model based approach is provided by (a slightly simplified

version of) the step-wise procedure implemented by the Conference Board, CB (previously
by the Department of Commerce, DOC) to construct their composite coincident index (CCI),
see www.conference-board.org for details.
First, for each individual indicator, xit, month-to-month symmetric percentage changes

(spc) are computed as xit spc = 200 ∗ (xit − xit−1)/(xit + xit+1). Second, for each xit spc a
volatility measure, vi, is computed as the inverse of its standard deviation. Third, each xit spc
is adjusted to equalize the volatility of the components, the standardization factor being
si = vi/

P
i vi. Fourth, the standardized components, mit = sixit spc, are summed together

with equal weights, yielding mt =
P

imit. Fifth, the index in levels is computed as

CCIt = CCIt−1 ∗ (200 +mt)/(200−mt) (3)

with the starting condition

CCI1 = (200 +m1)/(200−m1).

Finally, rebasing CCI to average 100 in 1996 yields the CCICB.
From an econometric point of view, composite leading indexes (CLI) constructed following

the procedure sketched above are subject to several criticisms, some of which are derived in a
formal framework in Emerson and Hendry (1996). First, even though the single indicators are
typically chosen according to some formal or informal bivariate analysis of their relationship
with the target variable, there is no explicit reference to the target variable in the construction
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of the CLI, e.g., in the choice of the weighting scheme. Second, the weighting scheme is
fixed over time, with periodic revisions mostly due either to data issues, such as changes
in the production process of an indicator, or to the past unsatisfactory performance of the
index. Endogenously changing weights that track the possibly varying relevance of the single
indicators over the business cycle and in the presence of particular types of shocks could
produce better results, even though their derivation is difficult. Third, lagged values of the
target variable are typically not included in the leading index, while there can be economic
and statistical reasons underlying the persistence of the target variable that would favor such
an inclusion. Fourth, lagged values of the single indicators are typically not used in the index,
while they could provide relevant information, e.g., because not only does the point value of
an indicator matter but also its evolution over a period of time is important for anticipating
the future behavior of the target variable. Fifth, if some indicators and the target variable
are cointegrated, the presence of short run deviations from the long run equilibrium could
provide useful information on future movements of the target variable. Finally, since the
index is a forecast for the target variable, standard errors should also be provided, but their
derivation is virtually impossible in the non model based context because of the lack of a
formal relationship between the index and the target.
The main counterpart of these problems is simplicity. Non model based indexes are easy

to build, easy to explain, and easy to interpret, which are very valuable assets, in particular
for the general public and for policy-makers. Moreover, simplicity is often a plus also for
forecasting. With this method there is no estimation uncertainty, no major problems of
overfitting, and the literature on forecast pooling suggests that equal weights work pretty
well in practice, see, e.g., Stock and Watson (2003a), even though here variables rather than
forecasts are pooled.
Most of the issues raised for the non model based composite indexes are addressed by

the model based procedures described in the next two Sections, which in turn are in general
much more complicated and harder to understand for the general public. Therefore, while
from the point of view of academic research and scientific background of the methods there
is little to choose, practitioners may well decide to base their preferences on the practical
forecasting performance of the two approaches to composite index construction.

5 Construction of model based composite coincident

indexes

Within the model based approaches for the construction of a composite coincident index
(CCI), two main methodologies have emerged: dynamic factor models and Markov switching
models. In both cases there is a single unobservable force underlying the current status of
the economy, but in the former approach this is a continuous variable, while in the latter
it is a discrete variable that evolves according to a Markov chain. We now review these two
methodologies, highlighting their pros and cons.
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5.1 Factor based CCI

Dynamic factor models were developed by Geweke (1977) and Sargent and Sims (1977), but
their use became well known to most business cycle analysts after the publication of Stock and
Watson’s (1989, SW) attempt to provide a formal probabilistic basis for Burns and Mitchell’s
coincident and leading indicators, with subsequent refinements of the methodology in Stock
and Watson (1991, 1992). The rationale of the approach is that a set of variables is driven
by a limited number of common forces and by idiosyncratic components that are either
uncorrelated across the variables under analysis or in any case common to only a limited
subset of them. The particular model that SW adopted is the following,

∆xt = β + γ(L)∆Ct + ut (4)

D(L)ut = et (5)

φ(L)∆Ct = δ + vt (6)

where xt includes the (logs of the) four coincident variables used by the CB for their CCICB,
the only difference being the use of hours of work instead of employment since the former
provides a more direct measure of fluctuations in labor input. Ct is the single factor driving all
variables, while ut is the idiosyncratic component; ∆ indicates the first difference operator,
L is the lag operator and γ(L), D(L), φ(L) are, respectively, vector, matrix and scalar
lag polynomials. SW used first differenced variables since unit root tests indicated that the
coincident indexes were integrated, but not cointegrated. The model is identified by assuming
that D(L) is diagonal and et and vt are mutually and serially uncorrelated at all leads and
lags, which ensures that the common and the idiosyncratic components are uncorrelated.
Moreover, ∆Ct should affect contemporaneously at least one coincident variable. Notice
that the hypothesis of one factor, ∆Ct, does not mean that there is a unique source of
aggregate fluctuations, but rather that different shocks have proportional dynamic effects on
the variables.
For estimation, the model in (4)-(6) is augmented by the identity

Ct−1 = ∆Ct−1 + Ct−2, (7)

and cast into state-space form. The Kalman filter can then be used to write down the
likelihood function, which is in turn maximized to obtain parameter and factor estimates, all
the details are presented in Stock and Watson (1991).
A few additional comments are in order. First, the composite coincident index, CCISWt,

is obtained through the Kalman filter as the minimum mean squared error linear estimator of
Ct using information on the coincident variables up to period t. Hence, the procedure can be
implemented in real time, conditional on the availability of data on the coincident variables.
By using the Kalman smoother rather than the filter, it is possible to obtain end of period
estimates of the state of the economy, i.e., Ct|T . Second, it is possible to obtain a direct
measure of the contribution of each coincident indicator in xt to the index by computing the
response of the latter to a unit impulse in the former. Third, since data on some coincident
indicator are published with delay, they can be treated as missing observations and estimated
within the state-space framework. Moreover, the possibility of measurement error in the first
releases of the coincident indicators can also be taken into consideration by adding an error
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term to the measurement equation. This is an important feature since data revisions are
frequent and can be substantial, for example as testified by the revised US GDP growth
rate data for 2001. Fourth, a particular time varying pattern in the parameters of the lag
polynomials D(L) and φ(L) can be allowed by using a time-varying transition matrix. Fifth,
standard errors around the coincident index can be computed, even though they were not
reported by SW.
The cyclical structure of CCISW closely follows the NBER expansions and recessions, and

the correlation of two quarters growth rates in CCISW and real GDP was about .86 over the
period 1959-87. Stock and Watson (1991) also compared their CCISW with the DOC’s one,
finding that the overall relative importance of the single indicators is roughly similar (but the
weights are different since the latter index is made up of contemporaneous indicators only),
the correlation of the levels of the composite indexes was close to 0.94, again over the period
1959-87, and the coherence of their growth rates at business cycle frequency was even higher.
These findings provide support for the simple averaging methodology originated at the

NBER and then further developed at the DOC and the CB, but they also question the
practical usefulness of the SW’s approach, which is substantially more complicated. Overall,
the SWmethodology, and more generally model based index construction, are worth their cost
since they provide a proper statistical framework that, for example, permits the computation
of standard errors around the composite index, the unified treatment of data revisions and
missing observations, the possibility of using time-varying parameters and, as we will see
in more detail in the next Section, a coherent framework for the development of composite
leading indexes.
A possible drawback of SW’s procedure is that it requires an ex-ante classification of

variables into coincident and leading or lagging, even though this is common practice in
this literature, and it cannot be directly extended to analyze large datasets because of com-
putational problems, see Section 6.2 for details. Forni, Hallin, Lippi and Reichlin (2000,
2001 FHLR henceforth) proposed an alternative factor based methodology that addresses
both issues, and applied it to the derivation of a composite coincident indicator for the Euro
area. They analyzed a large set of macroeconomic time series for each country of the Euro
area using a dynamic factor model, and decomposed each time series into a common and
an idiosyncratic component, where the former is the part of the variable explained by com-
mon Euro area shocks, the latter by variable specific shocks. The CCIFHLR is obtained as
a weighted average of the common components of the interpolated monthly GDP series for
each country, where the weights are proportional to GDP, and takes into account both within
and across-countries cross correlations.
More specifically, the model FHLR adopted is

xit = b
0
i(L)vt + ξit, i = 1, ..., N, t = 1, ..., T, (8)

where xit is a stationary univariate random variable, vt is a q × 1 vector of common shocks,
χit = xit − ξit is the common component of xit, and ξit is its idiosyncratic component. The
shock vt is an orthonormal white noise process, so that var(vjt) = 1, cov(vt, vt−k) = 0, and
cov(vjt, vst−k) = 0 for any j 6= s, t and k. ξN = {ξ1t, ..., ξNt}

0
is a wide sense stationary

process, and cov(ξjt, vst−k) = 0 for any j, s, t and k. bi(L) is a q × 1 vector of square
summable, bilateral filters, for any i. Notice that SW’s factor model (4) is obtained as a
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particular case of (8) when there is one common shock (q = 1), bi(L) = γi(L)/φ(L), and the
idiosyncratic components are assumed to be orthogonal.
Grouping the variables into xNt = {x1t, ..., xNt}

0
, FHLR also required xNt (and χNt, ξNt

that are similarly defined) to have rational spectral density matrices, Σx
N , Σ

χ
N , and Σξ

N ,
respectively. To achieve identification, they assumed that the first (largest) idiosyncratic
dynamic eigenvalue, λξN1, is uniformly bounded, and that the first (largest) q common dy-
namic eigenvalues, λχN1, ..., λ

χ
Nq, diverge when N increases, where dynamic eigenvalues are the

eigenvalues of the spectral density matrix, see, e.g., Brillinger (1981, Chap. 9). In words, the
former condition limits the effects of ξit on other cross-sectional units. The latter, instead,
requires vt to affect infinitely many units.
Assuming that the number of common shocks is known, FHLR suggested to estimate

the common component of χit, bχit, as the projection of xit on past, present, and future
dynamic principal components of all variables, and proved that, under mild conditions, bχit
is a consistent estimator of χit when N and T diverge. Once the common component is
estimated, the idiosyncratic one is obtained simply as a residual, namely, bξit = xit − bχit.
To determine the number of factors, q, FHLR suggested to exploit two features of the

model: (a) the average over frequencies of the first q dynamic eigenvalues diverges, while
the average of the q + 1th does not; (b) there should be a big gap between the variance of
xNt explained by the first q dynamic principal components and that explained by the q+1

th

principal component. As an alternative, an information criterion could be used, along the
lines of Bai and Ng (2002).
The methodology was further refined by Altissimo et al. (2001) and Forni et al (2003a)

for real time implementation, and it is currently adopted to produce the CEPR’s composite
coincident indicator for the euro area, Eurocoin (see www.cepr.org). In particular, they
exploited the large cross-sectional dimension for forecasting indicators available with delay
and for filtering out high frequency dynamics. Alternative coincident indexes for the Euro
area following the SW methodology were proposed by Proietti and Moauro (2004), while
Carriero and Marcellino (2005) compared several methodologies, finding that they yield very
similar results.

5.2 Markov Switching based CCI

The main criticism Sims (1989) raised in his comment to Stock and Watson (1989) is the use
of a constant parameter model (even though, as remarked above, their framework is flexible
enough to allow for parameter variation), and a similar critique can be addressed to FHLR’s
method. Hamilton’s (1989) Markov switching model is a powerful response to this criticism,
since it allows the growth rate of the variables (and possibly their dynamics) to depend on
the status of the business cycle. A basic version of the model can be written as

∆xt = cst +Ast∆xt−1 + ut, (9)

ut ∼ i.i.d.N(0,Σ) (10)

where, as in (4), xt includes the coincident variables under analysis (or a single composite
index), while st measures the status of the business cycle, with st = 1 in recessions and
st = 0 in expansions, and both the deterministic component and the dynamics can change
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over different business cycle phases. The binary state variable st is not observable, but the
values of the coincident indicators provide information on it.
With respect to the factor model based analysis, there is again a single unobservable force

underlying the evolution of the indicators but, first, it is discrete rather than continuous and,
second, it does not directly affect or summarize the variables but rather indirectly determines
their behaviour that can change substantially over different phases of the cycle.
To close the model and estimate its parameters, an equation describing the behaviour of

st is required, and it cannot be of autoregressive form as (6) since st is a binary variable.
Hamilton (1989) proposed to adopt the Markov switching (MS) model, where

Pr(st = j|st−1 = i) = pij , (11)

as previously considered by Lindgren (1978) and Neftci (1982) in simpler contexts. For
expositional purposes we stick to the two states hypothesis, though there is some empirical
evidence that three states can further improve the specification, representing recession, high
growth and normal growth, see, e.g., Kim and Murray (2002) for the US and Artis, Krolzig
and Toro (2004) for the Euro area.
In our business cycle context, the quantity of special interest is an estimate of the un-

observable current status of the economy and, assuming a mean square error loss function,
the best estimator coincides with the conditional expectation of st given current and past
information on xt, which in turn is equivalent to the conditional probability

ζt|t =

µ
Pr(st = 0|xt, xt−1, ..., x1)
Pr(st = 1|xt, xt−1, ..., x1)

¶
. (12)

Using simple probability rules, it follows that

ζt|t =

Ã
f(xt|st=0,xt−1,...,x1) Pr(st=0|xt−1,...,x1)

f(xt|xt−1,...,x1)
f(xt|st=1,xt−1,...,x1) Pr(st=1|xt−1,...,x1)

f(xt|xt−1,...,x1)

!
, (13)

where

Pr(st = i|xt−1, ..., x1) =
1X

j=0

pji Pr(st−1 = j|xt−1, ..., x1), (14)

f(xt|st = i, xt−1, ..., x1) =
1

(2π)T/2
|Σ|−1/2 exp[−(∆xt − ci −Ai∆xt−1)

0Σ−1(∆xt − ci −Ai∆xt−1)/2],

f(xt, st = i|xt−1, ..., x1) = f(xt|st = i, xt−1, ..., x1) Pr(st = i|xt−1, ..., x1),

f(xt|xt−1, ..., x1) =
1X

j=0

f(xt, st = j|xt−1, ..., x1), i = 0, 1.

Hamilton (1994) or Krolzig (1997) provide additional details on these computations, and
formulae to calculate ζt|T , i.e., the smoothed estimator of the probability of being in a given
status in period t. Notice also that the first and last rows of (14) provide, respectively, the
probability of the state and the density of the variables conditional on past information only,
that will be used in Section 6.3 in a related context for forecasting.
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For comparison and since it is rather common in empirical applications (see, e.g., Neimira
and Klein (1994) for the US and Artis et al. (1995) for the UK), it is useful to report Neftci’s
(1982) formula to compute the (posterior) probability of a turning point given the available
data, as refined by Diebold and Rudebusch (1989). Defining

Πt = Pr(st = 1|xt, ..., x1), (15)

the formula is

Πt =
A1

B1 + C1
, (16)

A1 = (Πt−1 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
B1 = (Πt−1 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
C1 = (1−Πt−1)(1− p01)f(xt|st = 0, xt−1, ..., x1).

The corresponding second element of ζt|t in (13) can be written as

Πt =
A2

B2 + C2
, (17)

A2 = (Πt−1 −Πt−1p01 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
B2 = (Πt−1 −Πt−1p01 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
C2 = ((1−Πt−1)(1− p01) +Πt−1p01)f(xt|st = 0, xt−1, ..., x1).

Since in practice the probability of transition from expansion to recession, p01, is very small
(e.g., Diebold and Rudebusch (1989) set it at .02), the term Πt−1p01 is also very small and
the two probabilities in (16) and (17) are very close. Yet, in general it is preferable to use
the expression in (17) which is based on a more general model. Notice also that when Πt = 1
the formula in (16) gives a constant value of 1 (e.g., Diebold and Rudebusch (1989) put an
ad-hoc upper bound of .95 for the value that enters the recursive formula), while this does
not happen with (17).
The model in (9)-(11) can be extended in several dimensions, for example to allow for

more states and cointegration among the variables, see, e.g., Krolzig, Marcellino and Mizon
(2002), or time-varying probabilities, as e.g., in Diebold, Lee and Weinbach (1994) or Filardo
(1994). The latter case is of special interest in our context when past values of the leading
indicators, y, are the driving forces of the probabilities, as in Filardo (1994), who substituted
(11) with

Pr(st = i|st−1 = j, xt−1, ..., x1, yt−1, ..., y1) =
exp(θyt−1)

1 + exp(θyt−1)
, (18)

so that the first row of (14) should be modified into

Pr(st = i|xt−1, ..., x1) = (19)

=
exp(θyt−1)

1 + exp(θyt−1)
Pr(st−1 = j|xt−1, ..., x1) +

1

1 + exp(θyt−1)
Pr(st−1 = i|xt−1, ..., x1).

Another example is provided by Filardo and Gordon (1998), who used a probit model rather
than a logistic specification for Pr(st = i|st−1 = j, xt−1, ..., x1, yt−1, ..., y1), while Ravn and17



Sola (1999) warned against possible parameter instability of relationships such as (18). Raj
(2002) provides a more detailed review of these and other extensions of the MS model.
Factor models and Markov switching specifications capture two complementary and fun-

damental features of business cycles, namely, the diffusion of slow-down and recovery across
many series and the different behavior of several indicators in expansions and recessions.
They are not only flexible and powerful statistical tools but can also be given sound jus-
tifications from an economic theory point of view, see, e.g., the overview in Diebold and
Rudebusch (1996). The latter article represents also one of the earliest attempts to combine
the two approaches, by allowing the factor underlying SW’s model to evolve according to
a Markov switching model. To provide support for their ideas, they fitted univariate and
multivariate MS models to, respectively, the DOC’s composite coincident indicator and its
components, finding substantial evidence in favor of the MS specifications. Yet, they did not
jointly estimate the factor MS model. Such a task was tackled by Chauvet (1998) and Kim
and Yoo (1995), using an approximated maximum likelihood procedure developed by Kim
(1994), and by Kim and Nelson (1998) and Filardo and Gordon (1999) using Gibbs sampler
techniques introduced by Albert and Chib (1993a), Carter and Kohn (1994), and Shepard
(1994).
In particular, Kim and Nelson (1998) substituted equation (6) in SW’s model with

φ(L)(∆Ct − µst − δ) = vt, (20)

µst = µ0 + µ1st,

where the transition probabilities are either constant or follow a probit specification. They
compared the (posterior) regime probabilities from the factor MS model estimated with the
four SW’s components with those from a univariate MS model for IP, concluding that the
former are much more closely related with the NBER expansion/recession classification. Yet,
such a result is not surprising since Filardo (1994) showed that time-varying probabilities are
needed for the univariate MS model to provide a close match with the NBER classification.
When the original SW’s model is estimated using the Gibbs sampling approach, the posterior
distributions of the parameters are very close to those obtained using (20) instead of (6), the
main difference being a slightly larger persistence of the estimated factor. Filardo and Gordon
(1999), focusing on the 1990 recession, also found a similar performance of the standard and
MS factor model, while a multivariate MS model with time-varying probabilities performed
best during the recessionary part of 1990 (but not significantly better in the remaining
months). Finally, Kim and Nelson (1998) also found a close similarity of their composite
coincident indicator and the equal weighted DOC’s one, with correlation in the growth rates
above .98.
Finally, notice that if the probability of the states is time varying, e.g., as in (18), and

the indicators in yt include a measure of the length of the current recession (or expansion),
it is possible to allow and test for duration dependence, namely, for whether the current
or past length of a business cycle phase influences its future duration. The test is based
on the statistical significance of the parameter associated with the duration indicator in an
equation such as (18). Earlier studies using non-parametric techniques, such as Diebold
and Rudebusch (1990) or Diebold, Rudebusch and Sichel (1993), detected positive duration
dependence for recessions but not for expansions. Such a finding was basically confirmed by
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Durland and McCurdy (1994) using a semi-Markov model with duration depending only on
calendar time, by Filardo and Gordon (1998) in a univariate Markov switching framework
that also relates duration to macroeconomic variables, and by Kim and Nelson (1998) in
their multivariate factor MS model. Therefore, another interesting question to be addressed
in Sections 6 and 8 is whether leading indicators can be used to predict the duration of a
business cycle phase.

In summary, no clear cut ranking of the multivariate model based approaches to CCI
construction emerges, but the resulting indexes are in general very similar and close to
the equal weighted ones, as we will see in the examples of Section 7. The positive aspect
of this result is that estimation of the current economic condition is rather robust to the
choice of method. Another implication is that pooling methods can be expected to yield no
major improvements because of high correlation of all the indicators, see, e.g. Carriero and
Marcellino (2005), but this is an issue that certainly deserves further investigation.

6 Construction of model based composite leading in-

dexes

Leading indicators are hardly of any use without a rule to transform them into a forecast for
the target variable. These rules range from simple non-parametric procedures that monitor
the evolution of the leading indicator and transform it into a recession signal, e.g., the three-
consecutive-declines in the CLICB rule (e.g. Vaccara and Zarnowitz (1978)), to sophisticated
non-linear models for the joint evolution of the leading indicators and the target variable,
which can be used to predict growth rates, turning points, and expected duration of a certain
business cycle phase. In this Section we discuss the methods that are directly related to those
reviewed in the previous Section in the context of CCIs. In particular, Section 4.1 deals with
linear models, 4.2 with factor based models, and 4.3 with Markov switching models. Examples
are provided in the next Section, while other approaches are considered in Section 8 below.

6.1 VAR based CLI

A linear VAR provides the simplest model based framework to understand the relationship
between coincident and leading indicators, the construction of regression based composite
leading indexes, the role of the latter in forecasting, and the consequences of invalid restric-
tions or unaccounted cointegration.
Let us group the m coincident indicators in the vector xt, and the n leading indicators in

yt. For the moment, we assume that (xt, yt) is weakly stationary and its evolution is described
by the VAR(1): µ

xt
yt

¶
=

µ
cx
cy

¶
+

µ
A B
C D

¶µ
xt−1
yt−1

¶
+

µ
ext
eyt

¶
, (21)µ

ext
eyt

¶
∼ i.i.d.

µµ
0
0

¶
,

µ
Σxx Σxy

Σyx Σyy

¶¶
.
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It immediately follows that the expected value of xt+1 conditional on the past is

E(xt+1|xt, xt−1, ...yt, yt−1, ...) = cx +Axt +Byt, (22)

so that for y to be a useful set of leading indicators it must be B 6= 0. When A 6= 0,
lagged values of the coincident variables also contain useful information for forecasting. Both
hypotheses are easily testable and, in case both A = 0 and B = 0 are rejected, a composite
regression based leading indicator for xt+1 (considered as a vector) can be constructed as

CLI1t = bcx + bAxt + bByt, (23)

where thebindicates the OLS estimator. Standard errors around this CLI can be constructed
using standard methods for VAR forecasts, see, e.g., Lütkepohl (2005). Moreover, recursive
estimation of the model provides a convenient tool for continuous updating of the weights.
A similar procedure can be followed when the target variable is dated t+ h rather than

t. For example, when h = 2,

CLI1h=2t = bcx + bAbxt+1|t + bBbyt+1|t (24)

= bcx + bA(bcx + bAxt + bByt) + bB(bcy + bCxt + bDyt).

As an alternative, the model in (21) can be re-written asµ
xt
yt

¶
=

µ ecxecy
¶
+

Ã eA eBeC eD
!µ

xt−h
yt−h

¶
+

µ eexteeyt
¶

(25)

where aeindicates that the new parameters are a combination of those in (21), and eext andeeyt are correlated of order h− 1. Specifically,µ ecxecy
¶
=

Ã
I +

µ
A B
C D

¶
+ ...+

µ
A B
C D

¶h−1
!µ

cx
cy

¶
, (26)Ã eA eBeC eD

!
=

µ
A B
C D

¶h

,

µ eexteeyt
¶
=

Ã
I +

µ
A B
C D

¶
+ ...+

µ
A B
C D

¶h−1
!µ

ext
eyt

¶
.

The specification in (25) can be estimated by OLS, and the resulting CLI written as

ĈLI1
h

t =
becx + beAxt + beByt. (27)

The main disadvantage of this latter method, often called dynamic estimation, is that a
different model has to be specified for each forecast horizon h. On the other hand, no model
is required for the leading indicators, and the estimators of the parameters in (25) can be
more robust than those in (21) in the presence of mis-specification, see, e.g., Clements and
Hendry (1996) for a theoretical discussion and Marcellino, Stock and Watson (2005) for an
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extensive empirical analysis of the two competing methods (showing that dynamic estimation
is on average slightly worse than the iterated method for forecasting US macroeconomic time
series). For the sake of simplicity, in the rest of the paper we will focus on h = 1 whenever
possible.
Consider now the case where the target variable is a composite coincident indicator,

CCIt = wxt, (28)

where w is a 1 ×m vector of weights as in Section 4. To construct a model based CLI for
the CCI in (28) two routes are available. First, and more common, we could model CCIt
and yt with a finite order VAR, sayµ

CCIt
yt

¶
=

µ
dCCI
dy

¶
+

µ
e(L) F (L)
g(L) H(L)

¶µ
CCIt−1
yt−1

¶
+

µ
uCCIt
uyt

¶
, (29)

where L is the lag operator and the error process is white noise. Repeating the previous
procedure, the composite leading index for h = 1 is

CLI2t = bdCCI + be(L)CCIt + bF (L)yt. (30)

Yet, in this case the VAR is only an approximation for the generating mechanism of (wxt, yt),
since in general the latter should have an infinite number of lags or an MA component.
The alternative route is to stick to the model in (21), and construct the CLI as

CLI3t = wCLI1t, (31)

namely, aggregate the composite leading indicators for each of the components of the CCI,
using the same weights as in the CCI. Lütkepohl (1987) showed in a related context that in
general aggregating the forecasts (CLI3) is preferable than forecasting the aggregate (CLI2)
when the variables are generated by the model in (21), while this is not necessarily the case if
the model in (21) is also an approximation and/or the x variables are subject to measurement
error, see also Lütkepohl (2005). Stock and Watson (1992) overall found little difference in
the performance of CLI2 and CLI3.
Both CLI2 and CLI3 are directly linked to the target variable, incorporate distributed

lags of both the coincident and the leading variables (depending on the lag length of the VAR),
the weights can be easily periodically updated using recursive estimation of the model, and
standard errors around the point forecasts (or the whole distribution under a distributional
assumption for the error process in the VAR) are readily available. Therefore, this simple
linear model based procedure already addresses several of the main criticisms to the non
model based composite index construction, see Section 4.
In this context the dangers of using a simple average of the y variables as a composite

leading index are also immediately evident, since the resulting index can provide an inefficient
forecast of the CCI unless specific restrictions on the VAR coefficients in (21) are satisfied.
In particular, indicating by in a 1 × n vector with elements equal to 1/n, the equal weight
composite leading index

CLIEWt = inyt (32)
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is optimal and coincides with CLI3 if and only if

wcx = 0, wA = 0, wB = in, (33)

which imposes 1+m+n restrictions on the parameters of the x equations in (21). In higher
order VARs, the product of the weights w and the coefficients of longer lags of x and y in
the x equations should also be equal to zero. Notice that these are all testable assumptions
as long as m + n is small enough with respect to the sample size to leave sufficient degrees
of freedom for the VAR parameter estimation. For example, in the case of the Conference
Board, m+n = 14 and monthly data are available for about 45 years for a total of more than
500 observations. Auerbach (1982) found that a regression based CLI in sample performed
better than the the equal weighted CLICB for industrial production and the unemployment
rate, but not out of sample.
If the restrictions in (33) are not satisfied but it is desired to use in any case CLIEW

(or more generally a given CLI) to forecast the CCI, it can be possible to improve upon
its performance by constructing a VAR for the two composite indexes CCI and CLIEW
(wxt, inyt), sayµ

CCIt
CLIEWt

¶
=

µ
fCCI
fCLIEW

¶
+

µ
e(L) f(L)
g(L) h(L)

¶µ
CCIt−1

CLIEWt−1

¶
+

µ
vCCIt
vCLIEW t

¶
(34)

and construct the new composite index as

CLI4t = bfCCI + be(L)CCIt + bf(L)CLIEWt. (35)

This is for example the methodology adopted by Kock and Rasche (1988), who analyzed a
VAR for IP, as a coincident indicator, and the equal weighted DOC leading index. Since CLI4
has a dynamic structure and also exploits past information in the CCI, it can be expected
to improve upon CLIEW . Moreover, since the VAR in (34) is much more parsimonious than
both (21) and (29), CLI4 could perform in practice even better than the other composite
indexes, in particular in small samples.
A point that has not gained attention in the literature but can be of importance is the

specification of the equations for the (single or composite) leading indicators. Actually, in all
the models we have considered so far, the leading variables depend on lags of the coincident
ones, which can be an unreliable assumption from an economic point of view. For example,
the interest rate spread depends on future expected short term-interest rates and the stock
market index on future expected profits and dividends, and these expectations are positively
and highly correlated with the future expected overall economic conditions. Therefore, the
leading variables could depend on future expected coincident variables rather than on their
lags. For example, the equations for yt in the model for (xt, yt) in (21) could be better
specified as:

yt = cy + Cxet+1|t−1 +Dyt−1 + eyt, (36)

where xet+1|t−1 indicates the expectation of xt+1 conditional on information available in period

t− 1. Combining these equations with those for xt in (21), it is possible to obtain a closed
form expression for xet+1|t−1, which is

xet+1|t−1 = (I −BC)−1(cx +Acx +Bcy +A2xt−1 + (AB +BD)yt−1). (37)
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Therefore, a VAR specification such as that in (21) can also be considered as a reduced form
of a more general model where the leading variables depend on expected future coincident
variables. A related issue is whether the coincident variables, xt, could also depend on their
future expected values, as it often results in new-Keynesian models, see, e.g., Walsh (2003).
Yet, the empirical evidence in Fuhrer and Rudebusch (2004) provides little support for this
hypothesis.
Another assumption we have maintained so far is that both the coincident and the leading

variables are weakly stationary, while in practice it is likely that the behaviour of most of
these variables is closer to that of integrated process. Following Sims, Stock and Watson
(1990), this is not problematic for consistent estimation of the parameters of VARs in levels
such as (21), and therefore for the construction of the related CLIs, even though inference
is complicated and, for example, hypotheses on the parameters such as those in (33) could
not be tested using standard asymptotic distributions. An additional complication is that
in this literature, when the indicators are I(1), the VAR models are typically specified in
first differences rather than in levels, without prior testing for cointegration. Continuing the
VAR(1) example, the adopted model would beµ

∆xt
∆yt

¶
=

µ
cx
cy

¶
+

µ
ext
eyt

¶
, (38)

rather than possiblyµ
∆xt
∆yt

¶
=

µ
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cy

¶
−
µµ

Im 0
0 In

¶
−
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C D

¶¶µ
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yt−1

¶
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¶
(39)

=

µ
cx
cy

¶
− αβ0

µ
xt−1
yt−1

¶
+

µ
ext
eyt

¶
,

where β is the matrix of cointegrating coefficients and α contains the loadings of the error
correction terms. As usual, omission of relevant variables yields biased estimators of the pa-
rameters of the included regressors, which can translate into biased and inefficient composite
leading indicators. See Emerson and Hendry (1996) for additional details and generaliza-
tions and, e.g., Clements and Hendry (1999) for the consequences of omitting cointegrating
relations when forecasting. As long as m + n is small enough with respect to the sample
size, the number and composition of the cointegrating vectors can be readily tested, see,
e.g., Johansen (1988) for tests within the VAR framework, and the specification in (39) used
as a basis to construct model based CLIs that also take cointegration into proper account.
Hamilton and Perez-Quiros (1996) found cointegration to be important for improving the
forecasting performance of the CLIDOC .
Up to now we have implicitly assumed, as it is common in most of the literature that

analyzes CCIs and CLIs within linear models, that the goal of the composite leading index is
forecasting a continuous variable, the CCI. Yet, leading indicators were originally developed
for forecasting business cycle turning points. Simulation based methods can be used to
derive forecasts of a binary recession/expansion indicator, and these in turn can be exploited
to forecast the probability that a recession will take place within, or at, a certain horizon.
Let us consider the model in (29) and assume that the parameters are known and the

errors are normally distributed. Then, drawing random numbers from the joint distribution
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of the errors for period t + 1, ..., t + n and solving the model forward, it is possible to get
a set of simulated values for (CCIt+1,∆yt+1), ..., (CCIt+n,∆yt+n). Repeating the exercise
many times, a histogram of the realizations provides an approximation for the conditional
distribution of (CCIt+1,∆yt+1), ..., (CCIt+n,∆yt+n) given the past. Given this distribution
and a rule to transform the continuous variable CCI into a binary recession indicator, e.g.,
the three months negative growth rule, the probability that a given future observation can
be classified as a recession is computed as the fraction of the relevant simulated future values
of the CCI that satisfy the rule.
A related problem that could be addressed within this framework is forecasting the be-

ginning of the next recession, which is given by the time index of the first observation that
falls into a recessionary pattern. Assuming that in period t the economy is in expansion,
the probability of a recession after q periods, i.e., in t + q, is equal to the probability that
CCIt+1, ...., CCIt+q−1 belong to an expansionary pattern while CCIt+q to a recessionary one.
The procedure can be easily extended to allow for parameter uncertainty by drawing

parameter values from the distribution of the estimators rather than treating them as fixed.
Normality of the errors is also not strictly required since re-sampling can be used, see, e.g.,
Wecker (1979), Kling (1987) and Fair (1993) for additional details and examples.
Bayesian techniques are also available for forecasting turning points in linear models,

see, e.g., Geweke and Whiteman (2005). In particular, Zellner and Hong (1991) and Zellner,
Hong and Gulati (1990) addressed the problem in a decision-theoretic framework, using fixed
parameter AR models with leading indicators as exogenous regressors. In our notation, the
model can be written as

xt = z
0
tβ + ut, ut ∼ i.i.d.N(0, σ2), (40)

where z
0
t = (xt−1, yt−1), xt is a univariate coincident variable or index, yt is the 1× n vector

of leading indicators, and β is a k × 1 parameter vector, with k = n+ 1.
Zellner et al. (1990, 1991) used annual data and declared a downturn (DT ) in year T +1

if the annual growth rate observations satisfy

xT−2, xT−1 < xT > xT+1, (41)

while no downturn (NDT ) happens if

xT−2, xT−1 < xT ≤ xT+1. (42)

Similar definitions were proposed for upturns and no upturns.
The probability of a DT in T + 1, pDT , can be calculated as

pDT =

Z xT

−∞
p(xT+1|A1, DT )dxT+1, (43)

where A1 indicates the condition (xT−2, xT−1 < xT ), DT denotes the past sample and prior
information as of period T , and p is the predictive probability density function (pdf) defined
as

p(xT+1|DT ) =

Z
θ

f(xT+1|θ,DT )π(θ|DT )dθ, (44)
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where f(xT+1|θ,DT ) is the pdf for xT+1 given the parameter vector θ = (β, σ
2) and DT , while

π(θ|DT ) is the posterior pdf for θ obtained by Bayes’ Theorem.
The predictive pdf is constructed as follows. First, natural conjugate prior distributions

are assumed for β and σ, namely, p(β|σ) ∼ N(0, σ2I × 106) and p(σ) ∼ IG(v0s0), where IG
stands for inverted gamma and v0 and s0 are very small numbers, see, e.g., Canova (2004,
Ch.9) for details. Second, at t = 0, the predictive pdf p(x1|D0) is a Student-t, namely,

tv0 = (x1 − z
0
1
bβ0)/s0a0 has a univariate Student-t density with v0 degrees of freedom, where

a20 = 1 + z
0
1z110

6 and bβ0 = 0. Third, the posterior pdfs obtained period by period using the
Bayes’ Theorem are used to compute the period by period predictive pdfs. In particular, the
predictive pdf for xT+1 is again Student-t and

tvT = (xT+1 − z
0
T+1

bβT )/sTaT (45)

has a univariate Student-t pdf with vT degrees of freedom, wherebβT = bβT−1 + (Z 0
T−1ZT−1)

−1zT (xT − z
0
T
bβT−1)/[1 + z

0
T (Z

0
TZT )

−1zT ],

a2T = 1 + z
0
T+1(Z

0
TZT )

−1zT+1,

vT = vT−1 + 1,

vT s
2
T = vT−1sT−1 + (xT − z

0
T
bβT )2 + (bβT − bβT−1)0Z 0

T−1ZT−1(bβT − bβT−1),
and Z

0
T = (zT , zT−1, ..., z1). Therefore, Pr(xT+1 < xT |DT ) = Pr(tvT < (xT−z

0
T+1

bβT )/sTaT |DT ),
which can be analytically evaluated using the Student-t distribution with vT degrees of free-
dom.
Finally, if the loss function is symmetric (i.e., the loss from wrongly predicting NDT in

the case of DT is the same as predicting DT in the case of NDT ), then a DT is predicted
in period T + 1 if pDT > 0.5. Otherwise, the cut-off value depends on the loss structure, see
also Section 8.3.
While the analysis in Zellner et al. (1990) is univariate, the theory for Bayesian VARs is

also well developed, starting with Doan, Litterman and Sims (1984). A recent model in this
class was developed by Zha (1998) for the Atlanta FED, and its performance in turning point
forecasting is evaluated by Del Negro (2001). In this case the turning point probabilities are
computed by simulations from the predictive pdf rather than analytically, in line with the
procedure illustrated above in the classical context.
To conclude, a common problem of VAR models is their extensive parameterization,

which prevents the analysis of large data sets. Canova and Ciccarelli (2001, 2003) proposed
Bayesian techniques that partly overcome this problem, extending previous analysis by e.g.,
Zellner, Hong and Min (1991), and providing applications to turning point forecasting, see
Canova (2004, Ch.10) for an overview. As an alternative, factor models can be employed, as
we discuss in the next subsection.

6.2 Factor based CLI

The idea underlying Stock and Watson’s (1989, SW) methodology for the construction of a
CCI, namely that a single common force drives the evolution of several variables, can also
be exploited to construct a CLI. In particular, if the single leading indicators are also driven
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by the (leads of the) same common force, then a linear combination of their present and past
values can contain useful information for predicting the CCI.
To formalize the intuition above, following SW, the equation (6) in Section 5.1 is substi-

tuted with
∆Ct = δC + λCC(L)∆Ct−1 + ΛCy(L)∆yt−1 + vct. (46)

and, to close the model, equations for the leading indicators are also added

∆yt = δy + λyC(L)∆Ct−1 + Λyy(L)∆yt−1 + vyt, (47)

where vct and vyt are i.i.d. and uncorrelated with the errors in (5).
The model in (4), (5), (46), (47) can be cast into state space form and estimated by

maximum likelihood through the Kalman filter. SW adopted a simpler two-step procedure,
where in the first step the model (4), (5), (6) is estimated, and in the second step the
parameters of (46), (47) are obtained conditional on those in the first step. This procedure
is robust to mis-specification of the equations (46), (47), in particular the estimated CCI
coincides with that in Section 5.1, but it can be inefficient when either the whole model is
correctly specified or, at least, the lags of the leading variables contain helpful information for
estimating the current status of the economy. Notice also that the “forecasting” system (46),
(47) is very similar to that in (29), the main difference being that here Ct is unobservable
and therefore substituted with the estimate obtained in the first step of the procedure, which
is CCISW . Another minor difference is that SW constrained the polynomials λyC(L) and
Λyy(L) to eliminate higher order lags, while λCC(L) and ΛCy(L) are left unrestricted, see SW
for the details on the lag length determination.
The SW composite leading index is constructed as

CLISW = bCt+6|t − Ct|t, (48)

namely, it is a forecast of the 6-month growth rate in the CCISW , where the value in t + 6
is forecasted and that in t is estimated. This is rather different from the NBER tradition,
represented nowadays by the CLICB that, as mentioned, aims at leading turning points in
the level of the CCI. Following the discussion in Section 3, focusing on growth rather than
on levels can be more interesting in periods of prolonged expansions.
A few additional comments are in order about SW’s procedure. First, the leading indi-

cators should depend on expected future values of the coincident index rather than on its
lags, so that a better specification for (47) is along the lines of (36). Yet, we have seen that
in the reduced form of (36) the leading indicators depend on their own lags and on those
of the coincident variables, and a similar comment holds in this case. Second, the issue of
parameter constancy is perhaps even more relevant in this enlarged model, and in particular
for forecasting. Actually, in a subsequent (1997) revision of the procedure, SW made the
deterministic component of (46), δC , time varying; in particular, it evolves according to a
random walk. Third, dynamic estimation of equation (46) would avoid the need of (47). This
would be particularly convenient in this framework where the dimension of yt is rather large,
and a single forecast horizon is considered, h = 6. Fourth, rather than directly forecasting the
CCISW , the components of xt could be forecasted and then aggregated into the composite
index using the in sample weights, along the lines of (31). Fifth, while SW formally tested
for lack of cointegration among the components of xt, they did not do it among the elements26



of yt, and of (xt, yt), namely, there could be omitted cointegrating relationships either among
the leading indicators, or among them and the coincident indicators. Finally, the hypothesis
of a single factor driving both the coincident and the leading indicators should be formally
tested.
Otrok and Whiteman (1998) derived a Bayesian version of SW’s CCI and CLI. As in

the classical context, the main complication is the non-observability of the latent factor. To
address this issue, a step-wise procedure is adopted where the posterior distribution of all
unknown parameters of the model is determined conditional on the latent factor, then the
conditional distribution of the latent factor conditional on the data and the other parameters
is derived, the joint posterior distribution for the parameters and the factor is sampled using
a Markov Chain Monte Carlo procedure using the conditional distributions in the first two
steps, and a similar route is followed to obtain the marginal predictive pdf of the factor,
which is used in the construction of the leading indicator, see Otrok and Whiteman (1998),
Kim and Nelson (1998), Filardo and Gordon (1999) for details and Canova (2004, Ch.11) for
an overview.
The SW’s methodology could also be extended to exploit recent developments in the

dynamic factor model literature. In particular, a factor model for all the potential leading
indicators could be considered, and the estimated factors used to forecast the coincident
index or its components. Let us sketch the steps of this approach, more details can be found
in Stock and Watson (2005).
The model for the leading indicators in (47) can be replaced by

∆yt = Λft + ξt, (49)

where the dimension of∆yt can be very large, possibly larger than the number of observations
(so that no sequential indicator selection procedure is needed), ft is an r×1 vector of common
factors (so that more than one factor can drive the indicators), and ξt is a vector containing
the idiosyncratic component of each leading indicator. Precise moment conditions on ft and
ξt, and requirements on the loadings matrix Λ, are given in Stock and Watson (2002a, 2002b).
Notice that ft could contain contemporaneous and lagged values of factors, so that the model
is truly dynamic even though the representation in (49) is static.
Though the model in (49) is a simple extension of that for the construction of SW’s

composite coincident index in (4), its estimation is complicated by the possibly very large
number of parameters, that makes maximum likelihood computationally not feasible. There-
fore, Stock and Watson (2002a, 2002b) defined the factor estimators, bft, as the minimizers
of the objective function

VnT (f,Λ) =
1

nT

nX
i=1

TX
t=1

(yit − Λift)
2. (50)

It turns out that the optimal estimators of the factors are the r eigenvectors corresponding
to the r largest eigenvalues of the T × T matrix n−1

Pn
i=1 yiy

0

i
, where y

i
= (yi1, ..., yiT ), and

these estimators converge in probability to the space spanned by the true factors ft. See Bai
(2003) for additional inferential results, Bai and Ng (2002) for results related to the choice
of the number of factors, r, Boivin and Ng (2003) for issues related to the choice of the
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size of the dataset (i.e., the number of leading indicators in our case), and Kapetanios and
Marcellino (2003) for an alternative (parametric) estimation procedure.
The factors driving the leading indicators, possibly coinciding with (leads of) those driving

the coincident indicators, can be related to the coincident composite index by replacing
equation (46) with

∆Ct = δC + λCC(L)∆Ct−1 + λCy(L)ft−1 + vct. (51)

Another important result proved by Stock and Watson (2002a, 2002b) is that the factors in

the equation above can be substituted by their estimated counterparts, bft, without (asymp-
totically) modifying the mean square forecast error, see also Bai and Ng (2003) for additional
results.
A forecasting procedure based on the use of (49) and (51), produced good results for

the components of the CCISW , Stock and Watson (2002a, 2002b), but also for predicting
macroeconomic variables for the Euro area, the UK, and the Accession countries, see, re-
spectively, Marcellino, Stock and Watson (2003), Artis, Banerjee and Marcellino (2005), and
Banerjee, Marcellino and Masten (2005). Yet, in these studies the set of indicators for factor
extraction was not restricted to those with leading properties, and the target variable was not
the composite coincident index. Camba-Mendez, Kapetanios, Smith and Weale (2001) used
only leading indicators on the largest European countries for factor extraction (estimating
iteratively the factor model cast in state-space form), and confirmed the good forecasting
performance of the estimated factors when inserted in a VAR for predicting GDP growth.
The alternative factor based approach by FHLR described in Section 5.1 can also be used

to construct a CLI. The leading variables are endogenously determined using the phase
delay of their common components with respect to CCIFHLR (the weighted average of the
common components of interpolated monthly GDP for Euro area countries). An equal weight
average of the resulting leading variables is the CLIFHLR. Future values of the CCIFHLR

are predicted with a VAR for CCIFHLR, CLIFHLR. Further refinements of the methodology
are presented in Forni et al. (2003a), with applications in Forni et al. (2003b).
All the factor based methods we have considered up to now focus on predicting continuous

variables. Therefore, as in the case of linear models, we now discuss how to forecast discrete
variables related to business cycle dynamics. In particular, we review the final important
contribution of SW, further refined in Stock and Watson (1992), namely, the construction of
a pattern recognition algorithm for the identification of recessions, and the related approach
for computing recession probabilities.
As mentioned in Section 3, a recession is broadly defined by the three Ds: duration, a

recession should be long enough; depth, there should be a substantial slowdown in economic
activity; and diffusion, such a slowdown should be common to most sectors of the economy.
Diffusion requires several series or a composite index to be monitored, and SW were in favor
of the latter option, using their CCI (which, we recall, in the cumulated estimate of ∆Ct in
equation (4)). Moreover, SW required a recession to be characterized by ∆Ct falling below a
certain boundary value, brt (depth), for either (a) six consecutive months or (b) nine months
with no more than one increase during the middle seven months (duration), where (b) is the
same as requiring ∆Ct to follow for seven of nine consecutive months including the first and
the last month. Expansions were treated symmetrically, with bet being the counterpart of
brt, and both brt and bet were treated as i.i.d. normal random variables.
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A particular month is classified as a recession if it falls in a recessionary pattern as
defined above. In particular, suppose that it has to be decided whether month t belongs to
a recessionary pattern. Because of the definition of a recessionary pattern, the longest span
of time to be considered is given by ∆Ct−8, ...,∆Ct−1 and ∆Ct+1, ...,∆Ct+8. For example, it
could be that ∆Ct is below the threshold brt and also ∆Ct−i < brt−i for i = 1, ..., 5; in this
case the sequence ∆Ct−5, ...,∆Ct is sufficient to classify period t as a recession. But it could
be that ∆Ct−i > brt−i for i = 1, ..., 8, ∆Ct < brt, ∆Ct+1 > brt+1, and ∆Ct+i < brt+i for i =
2, ..., 8, which requires to consider the whole sequence of 17 periods ∆Ct−8, ...∆Ct, ...,∆Ct+8

to correctly classify period t as a recession. Notice also that the sequence for ∆Ct has to be
compared with the corresponding sequence of thresholds, brt−8, ...brt, ..., brt+8.
The binary recession indicator, Rt, takes the value 1 if ∆Ct belongs to a recessionary

pattern, and 0 otherwise. The expansion indicator is defined symmetrically, but is also worth
noting that the definition of recession is such that there can be observations that are classified
neither as recessions nor as expansions. Also, there is no role for duration dependence or
correlation, in the sense that the probability of recession is independent of the length of the
current expansion or recession, and of past values of Rt.
The evaluation of the probability of recession in period t+ h conditional on information

on the present and past of the CCI and of the leading indicators (and on the fact that t+ h
belongs either to an expansionary or to a recessionary pattern), requires the integration of a
34-dimensional distribution, where 17 dimensions are due to the evaluation of an (estimated
and forecasted) sequence for∆Ct that spans 17 periods, and the remaining ones from integra-
tion with respect to the distribution of the threshold parameters. Stock and Watson (1992)
described in details a simulation based procedure to perform numerically the integration, and
reported results for their composite recession indicator, CRISW , that evaluates in real time
the probability that the economy will be in a recession 6-months ahead.
Though a rule that transforms the CRISW into a binary variable is not defined, high

values of the CRISW should be associated with realizations of recessions. Using the NBER
dating as a benchmark, SW found the in-sample performance of the CRI quite satisfactory,
as well as that of the CLI. Yet, out of sample, in the recessions of 1990 and 2001, both
indicators failed to provide strong early warnings, an issue that is considered in more detail
in Section 10.3.
To conclude, it is worth pointing out that the procedure underlying SW’s CRI is not

specific to their model. Given the definition of a recessionary pattern, any model that relates
a CCI to a set of leading indicators or to a CLI can be used to compute the probability of
recession in a given future period using the same simulation procedure as SW but drawing
the random variables from the different model under analysis. The simplest case is when the
model for the coincident indicator and the leading indexes is linear, which is the situation
described at the end of the previous subsection.

6.3 Markov Switching based CLI

The MS model introduced in Section 5.2 to define an intrinsic coincident index, and in 3 to
date the business cycle, can also be exploited to evaluate the forecasting properties of a single
or composite leading indicator. In particular, a simplified version of the model proposed by
Hamilton and Perez-Quiros (1996) can be written as
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∆xt − cst = a(∆xt−1 − cst−1) + b(∆yt−1 − dst+r−1) + uxt, (52)

∆yt − dst+r = c(∆xt−1 − cst−1) + d(∆yt−1 − dst+r−1) + uyt,

ut = (uxt, uyt)
0 ∼ i.i.d.N(0,Σ),

where x and y are univariate, st evolves according to the constant transition probability
Markov chain defined in (11), and the leading characteristics of y are represented not only
by its influence on future values of x but also by its being driven by future values of the state
variable, st+r.
The main difference between (52) and the MS model used in Section 5.2, equation (9),

is the presence of lags and leads of the state variable. This requires to define a new state
variable, s∗t , such that

s∗t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
3
...
2r+2

if st+r = 1, st+r−1 = 1, ..., st−1 = 1,
if st+r = 0, st+r−1 = 1, ..., st−1 = 1,
if st+r = 1, st+r−1 = 0, ..., st−1 = 1,

...
if st+r = 0, st+r−1 = 0, ..., st−1 = 0.

(53)

The transition probabilities of the Markov chain driving s∗t can be derived from (11), and in
the simplest case where r = 1 they are summarized by the matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 0 0 0 p11 0 0 0
p10 0 0 0 p10 0 0 0
0 p01 0 0 0 p01 0 0
0 p00 0 0 0 p00 0 0
0 0 p11 0 0 0 p11 0
0 0 p10 0 0 0 p10 0
0 0 0 p01 0 0 0 p01
0 0 0 p00 0 0 0 p00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (54)

whose ith, jth element corresponds to the probability that s∗t = i given that s∗t−1 = j.
The quantity of major interest is the probability that s∗t assumes a certain value given

the available information, namely,

ζt|t =

⎛⎜⎜⎜⎝
Pr(s∗t = 1|xt, xt−1, ..., x1, yt, yt−1, ..., y1)
Pr(s∗t = 2|xt, xt−1, ..., x1, yt, yt−1, ..., y1)

...
Pr(s∗t = 2

r+2|xt, xt−1, ..., x1, yt, yt−1, ..., y1)

⎞⎟⎟⎟⎠ , (55)

which is the counterpart of equation (12) in this more general context. The vector ζt|t and
the conditional density of future values of the variables given the past, f(xt+1, yt+1| s∗t+1,
xt, ..., x1, yt, ..., y1), can be computed using the sequential procedure outlined in Section 5.2,
see Hamilton and Perez-Quiros (1996), Krolzig (2004) for details. The latter can be used for
forecasting future values of the coincident variable, the former to evaluate the current status
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of the economy or to forecast its future status up to period t+r. For example, the probability
of being in a recession today is given by the sum of the rows of ζt|t corresponding to those
values of s∗t characterized by st = 1, while the probability of being in a recession in period
t+ r is given by the sum of the rows of ζt|t corresponding to those values of s

∗
t characterized

by st+r = 1. To make inference on states beyond period t+r, it is possible to use the formula

ζt+m|t = Pmζt|t, (56)

which is a direct extension of the first row of (14).
Hamilton and Perez-Quiros (1996) found that their model provides only a weak signal of

recession in 1960, 1970 and 1990. Moreover, the evidence in favor of the nonlinear cyclical
factor is weak and the forecasting gains for predicting GNP growth or its turning point are
minor with respect to a linear VAR specification. Even weaker evidence in favor of the MS
specification was found when a cointegrating relationship between GNP and lagged CLI is
included in the model. The unsatisfactory performance of the MS model could be due to
the hypothesis of constant probability of recessions, as in the univariate context, see, e.g.,
Filardo (1994). Evidence supporting this claim, based on the recession of 1990, is provided
by Filardo and Gordon (1999).
Chauvet (1998) found a good performance also for the factor MS model in tracking the

recession of 1990 using the proper version of ζt|t in that context. This is basically the only
forecasting application of the factor MS models described in Section 2.1, so that further
research is needed to close the gap. For example, SW’s procedure for the CLI construction
could be implemented using Kim and Nelson’s (1998) MS version of the factor model, or a
switching element could be introduced in the SW’s VAR equations (46) and (47).
The MS model can also be used to derive analytic forecasts of recession (or expansion)

duration. Suppose that xt follows the simpler MS model in (9)-(11) and that it is known
that in period t the economy is in a recession, i.e., st = 1. Then,

Pr(st+1 = 1|xt, ..., x1) = p11, (57)

Pr(st+2 = 1, st+1 = 1|xt, ..., x1) = Pr(st+2 = 1|st+1 = 1, xt, ..., x1) Pr(st+1 = 1|xt, ..., x1) = p211,

...

and the probability that the recession ends in period t+ n is

Pr(st+n = 0, st+n−1 = 1, ..., st+1 = 1|xt, ..., x1) = (1− p11)p
n−1
11 . (58)

Instead, if (11) is substituted with (18), i.e., the state probabilities are time-varying, then

Pr(st+n = 0, st+n−1 = 1, ..., st+1 = 1|xt, ..., x1) = (1− bp11,t+n)n−1Y
j=1

bp11,t+j (59)

with bp11,t+j = E

µ
exp(θyt+j−1)

1 + exp(θyt+j−1)

¯̄̄̄
xt, ..., x1, yt, ..., y1

¶
. (60)

It follows that an estimator of the expected remaining duration of the recession, τ , in
period t is given by

bτ = E(τ |st = 1) =
∞X
i=1

i(1− bp11,t+i)i−1Y
j=1

bp11,t+j, (61)
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which simplifies to

bτ = E(τ |st = 1) =
∞X
i=1

i(1− p11)p
i−1
11 , (62)

for constant probabilities. An interesting issue is therefore whether the leading indicators
are useful to predict τ or not.
To conclude, Bayesian methods for the estimation of Markov switching models were devel-

oped by Albert and Chib (1993a), Mc Cullock and Tsay (1994), Filardo and Gordon (1994)
and several other authors, see, e.g., Filardo and Gordon (1999) for a comparison of bayesian
linear, MS and factor models for coincident indicators, and Canova (2004, Ch.11) for an
overview. Yet, to the best of our knowledge, there are no applications to forecasting turning
points with Bayesian MS models while, for example, a bayesian replication of the Hamilton
and Perez-Quiros (1996) exercise would be feasible and interesting.

7 Examples of composite coincident and leading in-

dexes

In this Section we provide empirical examples to illustrate some of the theoretical methods
introduced so far. In particular, in the first subsection we compare several composite coinci-
dent indexes obtained with different methodologies, while in the second subsection we focus
on leading indexes.

7.1 Alternative CCIs for the US

In Figure 1 we graph four composite coincident indexes for the US over the period 1959:1-
2003:12: the Conference Board’s equal weighted non model based CCI, the OECD coincident
reference series which is a transformation of IP, the Stock and Watson’s (1989) factor model
based CCI, and the Kim and Nelson’s (1998) bayesian MS factor model based CCI computed
using the four coincident series combined in the CCICB. For the sake of comparability, all
indexes are normalized to have zero mean and unit standard deviation.

<Insert Figure 1 about here>
The Figure highlights the very similar behavior of all the CCIs, which in particular share

the same pattern of peaks and troughs. The visual impression is confirmed by the correlations
for the levels, and by those for the 6-month percentage changes reported in Table 1, the lowest
value being 0.916 for CCIKN and CCIOECD. These values are in line with previous studies,
see Section 5, and indicate that it is possible to achieve a close to complete agreement on the
status of the economy.

<Insert Table 1 about here>
In Figure 2 we consider dating the US classical and deviation cycles. In the upper panel

we graph the CCICB and the NBER expansion/recession classification. The figure highlights
that the NBER recessions virtually coincide with the peak-trough periods in the CCICB. In
the middle panel we graph the CCICB and the expansion/recession classification resulting
from the AMP dating. The results are virtually identical with respect to the NBER (see also
the first two columns of Table 3), with the noticeable difference that AMP identifies a double
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dip at the beginning of the new century with recessions in 2000:10-2001:12 and 2002:7-2003:4
versus 2001:3-2001:11 for the NBER. In the lower panel of Figure 2 we graph the HP band
pass filtered CCICB, described in Section 3, and the AMP dating for the resulting deviation
cycle. As discussed in Section 3, the classical cycle recessions are a subset of those for the
deviation cycle, since the latter capture periods of lower growth even if not associated with
declines in the level of the CCI.

<Insert Figure 2 about here>
Finally, in Figure 3 we report the (filtered) probability of recessions computed with two

methods. In the upper panel we graph the probabilities resulting from the Kim and Nelson’s
(1998) bayesian MS factor model applied to the four coincident series combined in the CCICB.
In the lower panel those from the AMP non-parametric MS approach applied to the CCICB.
The results in the two panels are very similar, and the matching of peaks in these probabilities
and NBER dated recessions is striking. The latter result supports the use of these methods
for real-time dating of the business cycle. It is also worth noting that both methods attribute
a probability close to 60% for a second short recession at the beginning of the century, in
line with the AMP dating reported in the middle panel of Figure 2 but in contrast with the
NBER dating.

<Insert Figure 3 about here>

7.2 Alternative CLIs for the US

We start this subsection with an analysis of the indicator selection process for Stock and
Watson’s (1989, SW) model based composite leading index, described in detail in Section
6.2, and of the construction of two non model based indexes for the US produced by official
agencies, the Conference Board, CLICB, and the OECD, CLIOECD.
SW started with a rather large dataset of about 280 series, yet smaller than Mitchell

and Burns’ original selection of 487 candidate indicators. The series can be divided into ten
groups: ”measures of output and capacity utilization; consumption and sales; inventories and
orders; money and credit quantity variables; interest rates and asset prices; exchange rates
and foreign trade; employment, earnings and measures of the labor force; wages and prices;
measures of government fiscal activity; and other variables”, SW (p.365).
The bivariate relationships between each indicator, properly transformed, and the growth

of the CCIDOC were evaluated using frequency domain techniques (the coherence and the
phase lead), and time domain techniques (Granger causality tests and marginal predictive
content for CCIDOC beyond that of CLIDOC). The choice of CCIDOC rather than CCISW as
the target variable can raise some doubts, but the latter was likely not developed yet at the
time, and in addition the two composite coincident indexes are highly correlated. Some series
were retained even if they performed poorly on the basis of the three criteria listed above,
because either economic theory strongly supported their inclusion or they were part of the
CLIDOC . After this first screening, 55 variables remained in the list of candidate components
of the composite leading index.
It is interesting that SW mentioned the possibility of using all the 55 series for the

construction of an index, but abandoned the project for technical reasons (at the time con-
struction of a time series model for all these variables was quite complicated) and because
it would be difficult to evaluate the contribution of each component to the index. About
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ten years later, the methodology to address the former issue became available, see Stock and
Watson (2002a, 2002b) and the discussion in Section 6.2 above, but the latter issue remains,
the trade-off between parsimony and broad coverage of the index is still unresolved.
The second indicator selection phase is based on a step-wise regression procedure. The

dependent variable is CCISWt+6 −CCISWt i.e., the six months growth rate in the SW com-
posite coincident index, that is also the target variable for SW composite leading index, see
Section 6.2. Different sets of variables (including their lags as selected by the AIC) are used
as regressors, variables in each set are retained on the basis of their marginal explanatory
power, the best variables in each original set are grouped into other sets of regressors, and
the procedure is repeated until a small number of indicators remains in the list.
At the end, seven variables (and their lags) were included in the composite index, as

listed in Table 1 in SW. They are: i) an index of new private housing authorized, ii) the
growth rate of manufacturers’ unfilled orders for durable goods industries, iii) the growth
rate in a trade weighted nominal exchange rate, iv) the growth rate of part-time work in
non-agricultural industries, v) the difference of the yield on constant-maturity portfolio of
10-years US treasury bonds, vi) the spread between interest rates on 6-months corporate
paper and 6-months US treasury bills, vii) the spread between the yield on 10-years and
1-year US Treasury bonds. The only change in the list so far took place in 1997, when
the maturity in vi) became 3 months. SW also discussed theoretical explanations for the
inclusion of these variables (and exclusion of others). The most innovative variables in SW’s
CLISW are the financial spreads, whose forecasting ability became the focus of theoretical
and empirical research in subsequent years. Yet, following an analysis of the performance
of their CLISW during the 1990 recession, see Section 10.3, Stock and Watson (1992) also
introduced a non-financial based index (CLI2SW ).
A potential problem of the extensive variable search underlying the final selection of index

components, combined with parameter estimation, is overfitting. Yet, when SW checked the
overall performance of their selection procedure using Monte Carlo simulations, the results
were satisfactory. Even better results were obtained by Hendry and Krolzig (1999, 2001) for
their automated model selection procedure, PcGets, see Banerjee and Marcellino (2005) for
an application to leading indicator selection for the US.
A final point worth noting about SW’s indicator selection procedure is the use of variable

transformations. First, seasonally adjusted series are used. Second, a stationarity transfor-
mation is applied for the indicator to have similar properties as the target. Third, some
series are smoothed because of high frequency noise, in particular, ii), iii), iv), and v) in the
list above. The adopted filter is f(L) = 1 + 2L + 2L2 + L3. Such a filter is chosen with
reference to the target variable, the 6-month growth of CCI, and to the use of first differ-
enced indicators, since f(L)(1 − L) is a band-pass filter with gains concentrated at periods
of four months to one year. Finally, if the most recent values of some of the seven indicators
are not available, they are substituted with forecasts in order to be able to use as timely
information as possible. Zarnowitz and Braun (1990), in their comment to SW, pointed out
that smoothing the indicators contributes substantially to the good forecasting performance
of SW’s CLI, combined with the use of the most up-to-date information.
The practice of using forecasts when timely data are not available is now supported also

for the CLICB, see McGuckin et al. (2003), but not yet implemented in the published version
of the index. The latter is computed following the same steps as for the coincident index,
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the CCICB described in Section 4, but with a different choice of components. In particular,
the single indicators combined in the index include average weekly hours, manufacturing;
average weekly initial claims for unemployment insurance; manufacturers’ new orders, con-
sumer good and materials (in 1996$); vendor performance, slower deliveries diffusion index;
manufacturers’ new orders, non-defense capital goods; building permits, new private housing
units; stock prices, 500 common stocks; money supply (in 1996$); interest rate spread, 10-
year Treasury bond less federal funds; and the University of Michigan’s index of consumer
expectations.
This list originates from the original selection of Mitchell and Burns (1938), but only two

variables passed the test of time: average weekly hours in the manufacturing sector and the
Standard and Poor’s stock index (that replaces the Dow Jones index of industrial common
stock prices), see Moore (1983) for an historical perspective. Both variables are not included
in the CLISW , since their marginal contribution in forecasting the 6-month growth of the
CCISW is not statistically significant. Other major differences in the components of the two
composite leading indexes are the inclusion in CLICB of M2 and of the index of consumer
expectations (the relationship of M2 with the CCISW is found to be unstable, while consumer
expectations were added to CLICB in the ’90s so that the sample is too short for a significant
evaluation of their role); and the exclusion from CLICB of an exchange rate measure and of
the growth in part time work (yet, the former has a small weight in the CLISW , while the
latter is well proxied by the average weekly hours in manufacturing and the new claims for
unemployment insurance).
The third CLI for the US we consider is the OECD composite short leading index,

CLIOECD (see www.oecd.org). Several points are worth making. First, the target is rep-
resented by the turning points in the growth cycle of industrial production, where the trend
component is estimated using a modified version of the phase average trend (PAT) method
developed at the NBER (see OECD (1987), Niemira and Klein (1994) for details), and the
Bry-Boschan (1971) methodology is adopted for dating peaks and troughs. All of these
choices are rather questionable, since industrial production is a lower and lower share of
GDP (though still one of the most volatile components), theoretically sounder filters such as
those discussed in Section 3 are available for detrending, and more sophisticated procedures
are available for dating, see again Section 3. On the other hand, since the OECD computes
the leading index for a wide variety of countries, simplicity and robustness are also relevant
for them.
Second, the criteria for the selection of the components of the index are broadly in line

with those listed in Section 2. The seven chosen indicators as listed in the OECD web site
include dwellings started; net new orders for durable goods, share price index; consumer
sentiment indicator; weekly hours of work, manufacturing; purchasing managers index; and
the spread of interest rates. Overall, there is a strong similarity with the elements of the
CLICB.
Third, as for CLICB, the components are first standardized and then aggregated with

equal weights. More precisely, each indicator is detrended with the PAT method; smoothed
according to its months for cyclical dominance (MCD) values to reduce irregularity (see
OECD (1987) for details); transformed to homogenize the cyclical amplitudes; standardized
by subtracting the mean from the observed values and then dividing the resulting difference
by the mean of the absolute values of the differences from the mean; and finally aggregated.
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When timely data for an indicator are not available, the indicator is not included in the
preliminary release of the composite leading index.
Finally, the composite index is adjusted to ensure that its cyclical amplitude on average

agrees with that of the detrended reference series. The trend restored version of the index is
also computed and published, to get comparability with the IP series.
A fourth CLI commonly monitored for the US is the Economic Cycle Research Institute’s

weekly leading index (see www.businesscycle.com). The precise parameters and procedu-
ral details underlying the construction of the CLIECRI are proprietary, the methodology is
broadly described in Boschan and Banerji (1990).
In Figure 4 we graph the four composite leading indexes for the US we have described:

the Conference Board’s leading index (CLICB), the OECD leading index (CLIOECD), the
ECRI’s weekly leading index (CLIECRI), and a transformation of Stock and Watson’s (1989)
composite leading index (TCLISW ), their leading index plus their coincident index that
yields a 6-month ahead forecast for the level of the coincident index, see Section 6.2. For
comparability, all indexes are normalized to have zero mean and unit standard deviation. In
the same figure we graph the NBER dated recessions (shaded areas).

<Insert Figure 4 about here>
Visual inspection suggests that the four indices move closely together, and their peaks

anticipate NBER recessions. These issues are more formally evaluated in Tables 2 and 3.
In Table 2 we report the correlations of the 6-month percentage changes of the four indices,
which are indeed high, in particular when the ’60s are excluded from the sample, the lowest
value being 0.595 for CLISW and CLIECRI .

<Insert Table 2 about here>
In Table 3 we present a descriptive analysis of the peak and trough structure of the four

leading indexes (obtained with the AMP algorithm), compared either with the NBER dating
or with the dating of the CCICB resulting from the AMP algorithm. The TCLISW has
the worst performance in terms of missed peaks and troughs, but it is worth recalling that
the goal of the CLISW is not predicting turning points but the 6-month growth rate of the
CCISW . The other three leading indexes missed no peaks or troughs, with the exception
of the 2002 peak identified only by the AMP dating algorithm. Yet, they gave three false
alarms, in 1966, 1984-85, and 1994-95. The average lead for recessions is about 9-10 months
for all indexes (slightly shorter for TCLISW ), but for expansions it drops to only 3-4 months
for CLIOECD and CLIECRI . Based on this descriptive analysis, the CLICB appears to yield
the best overall leading performance. Yet, these results should be interpreted with care since
they are obtained with the final release of the leading indicators rather than with real time
data, see Section 10.1.

<Insert Table 3 about here>
In Figure 5 we graph the HP band pass filtered versions of the four composite leading

indexes, with the AMP deviation cycle dating (shaded areas). Again the series move closely
together, slightly less so for the HPBP-TCLISW , and their peaks anticipate dated recessions.

<Insert Figure 5 about here>
From Table 4, the HPBP-TCLISW is the least correlated with the other indexes, corre-

lation coefficients are in the range 0.60 − 0.70, while for the other three indexes the lowest
correlation is 0.882.

<Insert Table 4 about here>
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From Table 5, the ranking of the indexes in terms of lead-time for peaks and troughs is
similar to that in Table 3. In this case there is no official dating of the deviation cycle, so
that we use the AMP algorithm applied to the HPBP-CCICB as a reference. The HPBP-
CLICB confirms its good performance, with an average lead time of 7 months for recessions,
10 months for expansions, and just one missed signal and two false alarms. The HPBP-
CLIECRI is a close second, while the HPBP-TCLISW remains the worst, with 3-4 missed
signals.

<Insert Table 5 about here>
Finally, the overall good performance of the simple non model based CLICB deserves

further attention. We mentioned that it is obtained by cumulating, using the formula in (3),
an equal weighted average of the one month symmetric percent changes of ten indicators. The
weighted average happens to have a correlation of 0.960 with the first principal component
of the ten members of the CLICB. The latter provides a non parametric estimator for the
factor in a dynamic factor model, see Section 6.2 and Stock and Watson (2002a, 2002b) for
details. Therefore, the CLICB can also be considered as a good proxy for a factor model
based composite leading indicator.

8 Other approaches for prediction with leading indica-

tors

In this section we discuss other methods to transform leading indicators into a forecast for
the target variable. In particular, Section 8.1 deals with observed transition models, 8.2 with
neural network and non-parametric methods, 8.3 with binary models, and 8.4 with forecast
pooling procedures. Examples are provided in the next Section, after having defined formal
evaluation criteria for leading indicator based forecasts.

8.1 Observed transition models

In the class of MS models described in Sections 5.2 and 6.3, the transition across states is
abrupt and driven by an unobservable variable. As an alternative, in smooth transition (ST)
models the parameters evolve over time at a certain speed, depending on the behavior of
observable variables. In particular, the ST-VAR, that generalizes the linear model in (21)
can be written as

∆xt = cx +A∆xt−1 +B∆yt−1 + (cx +A∆xt−1 +B∆yt−1)Fx + uxt, (63)

∆yt = cy + C∆xt−1 +D∆yt−1 + (cy + C∆xt−1 +D∆yt−1)Fy + uyt,

ut = (uxt, uyt)
0 ∼ i.i.d.N(0,Σ),

where

Fx =
exp(θ0 + θ1zt−1)

1 + exp(θ0 + θ1zt−1)
, Fy =

exp(φ0 + φ1zt−1)

1 + exp(φ0 + φ1zt−1)
, (64)

and zt−1 contains lags of xt and yt.
The smoothing parameters θ1 and φ1 regulate the shape of parameter change over time.

When they are equal to zero, the model becomes linear, while for large values the model
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tends to a self-exciting threshold model (see, e.g., Potter (1995), Artis, Galvao and Marcellino
(2003)), whose parameters change abruptly as in the MS case. In this sense the ST-VAR
provides a flexible tool for modelling parameter change.
The transition function Fx is related to the probability of recession. In particular, when

the values of zt−1 are much smaller than the threshold value, θ0, the value of Fx gets close
to zero, while large values lead to values of Fx close to one. This is a convenient feature in
particular when Fx only depends on lags of yt, since it provides direct evidence on the use-
fulness of the leading indicators to predict recessions. As an alternative, simulation methods
as in Section 6.1 can be used to compute the probabilities of recession.
Details on the estimation and testing procedures for ST models, and extensions to deal

with more than two regimes or time-varying parameters, are reviewed, e.g., by van Dijk,
Teräsvirta and Franses (2002), while Teräsvirta (2005) focuses on the use of ST models in
forecasting. In particular, as it is common with nonlinear models, forecasting more than
one-step ahead requires the use of simulation techniques, unless dynamic estimation is used
as, e.g., in Stock and Watson (1999b) or Marcellino (2003).
Univariate versions of the ST model using leading indicators as transition variables were

analyzed by Granger, Teräsvirta and Anderson (1993), while Camacho (2004), Anderson and
Vahid (2001) and Camacho and Perez-Quiros (2002) considered the VAR case. The latter
authors found a significant change in the parameters only for the constant, in line with the
MS specifications described in the previous subsection and with the time-varying constant
introduced by SW to compute their CLI.
Finally, Bayesian techniques for the analysis of smooth transition models were developed

by Lubrano (1995), and by Geweke and Terui (1993) and Chen and Lee (1995) for thresh-
old models, see Canova (2004, Ch.11) for an overview. Yet, there are no applications to
forecasting using leading indicators.

8.2 Neural networks and non-parametric methods

The evidence reported so far, and that summarized in Section 10 below, is not sufficient to
pin down the best parametric model to relate the leading to the coincident indicator, different
sample periods or indicators can produce substantially different results. A possible remedy is
to use artificial neural networks, which can provide a valid approximation to the generating
mechanism of a vast class of non-linear processes, see, e.g., Hornik, Stinchcombe and White
(1989), and Swanson and White (1997), Stock and Watson (1999b), Marcellino (2003) for
their use as forecasting devices.
In particular, Stock andWatson (1999b) considered two types of univariate neural network

specifications. The single layer model with n1 hidden units (and a linear component) is

xt = β00zt +
n1X
i=1

γ1ig(β
0
1izt) + et, (65)

where g(z) is the logistic function, i.e., g(z) = 1/(1 + e−z), and zt includes lags of the
dependent variable. Notice that when n1 = 1 the model reduces to a linear specification
with a logistic smooth transition in the constant. A more complex model is the double layer
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feedforward neural network with n1 and n2 hidden units:

xt = β00zt +
n2X
j=1

γ2jg

Ã
n1X
i=1

β2jig(β
0
1izt)

!
+ et. (66)

The parameters of (65) and (66) can be estimated by non-linear least-squares, and forecasts
obtained by dynamic estimation.
While the studies using NN mentioned so far considered point forecasts, Qi (2001) focused

on turning point prediction. The model she adopted is a simplified version of (66), namely,

rt = g

Ã
n1X
i=1

β2ig(β
0
1izt)

!
+ et, (67)

where zt includes lagged leading indicators in order to evaluate their forecasting role, and
rt is a binary recession indicator. Actually, since g(.) is the logistic function, the predicted
values from (67) are constrained to lie in the [0, 1] interval. As for (65) and (66), the model is
estimated by non-linear least-squares, and dynamic estimation is adopted when forecasting.
An alternative way to tackle the uncertainty about the functional form of the relationship

between leading and coincident indicators is to adopt a non-parametric specification, with
the cost for the additional flexibility being the required simplicity of the model. Based on
the results from the parametric models they evaluated, Camacho and Perez-Quiros (2002)
suggested the specification,

xt = m(yt−1) + et, (68)

estimated by means of the Nadaraya-Watson estimator, see also Hardle and Vieu (1992).
Therefore,

bxt = Ã TX
j=1

K

µ
yt−1 − yj

h

¶
xj

!,Ã
TX
j=1

K

µ
yt−1 − yj

h

¶!
, (69)

where K(.) is the Gaussian kernel and the bandwidth h is selected by leave-one-out cross
validation.
The model is used to predict recessions according to the two negative quarters rule. For

example,

Pr(xt+2 < 0, xt+1 < 0|yt) =
Z
yt+2<0

Z
yt+1<0

f(xt+2, xt+1|yt)dxt+2dxt+1, (70)

and the densities are estimated using an adaptive kernel estimator, see Camacho and Perez-
Quiros (2002) for details.
Another approach that imposes minimal structure on the leading-coincident indicator

connection is the pattern recognition algorithm proposed by Keilis-Borok, Stock, Soloviev
and Mikhalev (2000). The underlying idea is to monitor a set of leading indicators, comparing
their values to a set of thresholds, and when a large fraction of the indicators rise above the
threshold a recession alarm, At, is sent. Formally, the model is

At =

⎧⎪⎨⎪⎩ 1 if
NX
k=1

Ψkt ≥ N − b

0 otherwise

, (71)
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where Ψkt = 1 if ykt ≥ ck, and Ψkt = 0 otherwise. The salient features of this approach
are the tight parameterization (only N + 1 parameters, b, c1, ..., cN), which is in general a
plus in forecasting, the transformation of the indicators into binary variables prior to their
combination, (from ykt to Ψkt and then summed with equal weights), and the focus on the
direct prediction of recessions, At is a 0/1 variable.
Keilis-Borok et al. (2000) used 6 indicators: SW’s CCI defined in Section 5.1 and five

leading indicators, the interest rate spread, a short term interest rate, manufacturing and
trade inventories, weekly initial claims for unemployment, and the index of help wanted
advertising. They analyzed three different versions of the model in (71) where the parameters
are either judgementally assigned or estimated by non-linear least squares, with or without
linear filtering of the indicators, finding that all versions perform comparably and satisfactory,
producing (in a pseudo out-of-sample context) an early warning of the five recessions over
the period 1961 to 1990. Yet, the result should be interpreted with care because of the use of
the finally released data and of the selection of the indicators using full sample information,
consider, e.g., the use of the spread which was not common until the end of the ’80s.

8.3 Binary models

In the models we have analyzed so far to relate coincident and leading indicators, the de-
pendent variable is continuous, even though forecasts of business cycle turning points are
feasible either directly (MS or ST models) or by means of simulation methods (linear or
factor models). A simpler and more direct approach treats the business cycle phases as a
binary variable, and models it using a logit or probit specification.
In particular, let us assume that the economy is in recession in period t, Rt = 1, if the

unobservable variable st is larger than zero, where the evolution of st is governed by

st = β0yt−1 + et. (72)

Therefore,
Pr(Rt = 1) = Pr(st > 0) = F (β0yt−1), (73)

where F (.) is either the cumulative normal distribution function (probit model), or the lo-
gistic function (logit model). The model can be estimated by maximum likelihood, and the
estimated parameters combined with current values of the leading indicators to provide an
estimate of the recession probability in period t+ 1, i.e.,bRt+1 = Pr(Rt+1 = 1) = F (bβ0yt). (74)

The logit model was adopted, e.g., by Stock and Watson (1991) and the probit model
by Estrella and Mishkin (1998), while Birchenhall et al. (1999) provided a statistical jus-
tification for the former in a Bayesian context (on the latter, see also Zellner and Rossi
(1984) and Albert and Chib (1993b)). Binary models for European countries were investi-
gated by Estrella and Mishkin (1997), Bernard and Gerlach (1998), Estrella, Rodrigues and
Schich (2003), Birchenhall, Osborn and Sensier (2001), Osborn, Sensier and Simpson (2001),
Moneta (2003).
Several points are worth discussing about the practical use of the probit or logit models

for turning point prediction. First, often in practice the dating of Rt follows the NBER40



expansion/recession classification. Since there are substantial delays in the NBER’s an-
nouncements, it is not known in period t whether the economy is in recession or not. Several
solutions are available to overcome this problem. Either the model is estimated with data
up to period t − k and it is assumed that β remains constant in the remaining part of the
sample; or Rt is substituted with an estimated value from an auxiliary binary model for the
current status of the economy, e.g., using the coincident indicators as regressors, see, e.g.,
Birchenhall et al. (1999); or one of the alternative methods for real-time dating of the cycle
described in Section 2.2 is adopted.
Second, as in the case of dynamic estimation, a different model specification is required

for each forecast horizon. For example, if a h-step ahead prediction is of interest, the model
in (72) should be substituted with

st = γ0hyt−h + ut,h. (75)

This approach typically introduces serial correlation and heteroskedasticity into the error
term ut,h, so that the logit specification combined with nonlinear least squares estimation
and robust estimation of the standard errors of the parameters can be preferred over standard
maximum likelihood estimation, compare for example (67) in the previous subsection which
can be considered as a generalization of (75). Notice also that bγ0hyt−h can be interpreted as
a h-step ahead composite leading indicator. As an alternative, the model in (72) could be
complemented with an auxiliary specification for yt, say,

yt = Ayt−1 + vt (76)

so that

Pr(Rt+h = 1) = Pr(st+h > 0) = Pr(β
0Ah−1yt + ηt+h−1 + et+h > 0) = Fη+e(β

0Ah−1yt) (77)

with ηt+h−1 = β0vt+h−1 + β0Avt+h−2 + ... + β0Ah−1vt. In general, the derivation of Fη+e(.) is
quite complicated, and the specification of the auxiliary model for yt can introduce additional
noise. Dueker (2003) extended and combined equations (72) and (76) intoµ

st
yt

¶
=

µ
a B
c D

¶µ
st−1
yt−1

¶
+

µ
est
eyt

¶
, (78)

which is referred to as Qual-VAR because of its similarity with the models considered in
Section 6.1. The model composed of the equation for st alone is the dynamic ordered probit
studied by Eichengreen, Watson and Grossman (1985), who derived its likelihood and the
related maximum likelihood estimators. Adding the set of equations for yt has the main
advantage of closing the model for forecasting purposes. Moreover, Dueker (2003) showed
that the model can be rather easily estimated using Gibbs sampling techniques, and Dueker
andWesche (2001) found sizeable forecasting gains with respect to the standard probit model,
in particular during recessionary periods.
Third, the construction of the probability of a recession within a certain period, say t+2,

is complicated within the binary model framework. The required probability is given by
Pr(Rt+1 = 0, Rt+2 = 1) + Pr(Rt+1 = 1, Rt+2 = 0) + Pr(Rt+1 = 1, Rt+2 = 1). Then, either
from (75)

Pr(Rt+1 = 1, Rt+2 = 1) = Pr(st+1 > 0, st+2 > 0) = Pr(ut+1,1 > −γ01yt, ut+2,2 > −γ02yt), (79)41



or from (77)

Pr(Rt+1 = 1, Rt+2 = 1) = Pr(st+1 > 0, st+2 > 0) = Pr(β
0yt+et+1 > 0, β

0Ayt+β
0vt+1+et+2 > 0),

(80)
and similar formulae apply for Pr(Rt+1 = 0, Rt+2 = 1) and Pr(Rt+1 = 1, Rt+2 = 0). As long
as the joint distributions in (79) and (80) are equivalent to the product of the marginal ones,
as in this case assuming that vt are uncorrelated with et, and the error terms are i.i.d., an
analytic solution can be found. For higher values of h simulation methods are required. For
example, a system made up of the models resulting using equation (75) for different values
of h can be jointly estimated and used to simulate the probability values in (79). A similar
approach can be used to compute the probability that an expansion (or a recession) will have
a certain duration. A third, simpler alternative, is to define another binary variable directly
linked to the event of interest, in this case,

R2t =

½
0 if no recession in period t+ 1, t+ 2
1 if at least one recession in t+ 1, t+ 2

, (81)

and then model R2t with a probit or logit specification as a function of indicators dated up to
period t−1. The problem of this approach is that it is not consistent with the model for Rt in
equations (72), (73). The extent of the mis-specification should be evaluated in practice and
weighted with the substantial simplification in the computations. A final, more promising,
approach is simulation of the Qual-VAR model in (78), along the lines of the linear model in
Section 6.1.
Fourth, an additional issue that deserves investigation is the stability of the parameters

over time, and in particular across business cycle phases. Chin et al. (2000) proposed to
estimate different parameters in expansions and recessions, using an exogenous classification
of the states based on their definition of turning points. Dueker (1997, 2002) suggested
to make the switching endogenous by making the parameters of (72) evolve according to a
Markov chain. Both authors provided substantial evidence in favor of parameters instability.
Fifth, an alternative procedure to compute the probability of recession in period t consists

of estimating logit or probit models for a set of coincident indicators, and then aggregating
the resulting forecasts. The weights can be either those used to aggregate the indicators into
a composite index, or they can be determined within a pooling context, as described in the
next subsection.
Sixth, Pagan (2005) points out that the construction of the binary Rt indicator matters,

since it can imply that the indicator is not i.i.d. as required by the standard probit or logit
analysis.
Finally, as in the case of MS or ST models, the estimated probability of recession, brt+1,

should be transformed into a 0/1 variable using a proper rule. The common choices are of
the type brt ≥ c where c is either 0.5, a kind of uninformative Bayesian prior, or equal to
the sample unconditional recession probability. Dueker (2002) suggested to make the cutoff
values also regime dependent, say c0 and c1, and to compare the estimated probability with
a weighted combination of c0 and c1 using the related regime probabilities. In general, as
suggested e.g., by Zellner et al. (1990) and analyzed in details by Lieli (2004), the cutoff
should be a function of the preferences of the forecasters.
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8.4 Pooling

Since the pioneering work of Bates and Granger (1969), it is well known that pooling several
forecasts can yield a mean square forecast error (msfe) lower than that of each of the individual
forecasts, see Timmermann (2005) for a comprehensive overview. Hence, rather than selecting
a preferred forecasting model, it can be convenient to combine all the available forecasts, or
at least some subsets.
Several pooling procedures are available. The three most common methods in practice

are linear combination, with weights related to the msfe of each forecast (see, e.g., Granger
and Ramanathan (1984)), median forecast selection, and predictive least squares, where a
single model is chosen, but the selection is recursively updated at each forecasting round on
the basis of the past forecasting performance.
Stock and Watson (1999b) and Marcellino (2004a) presented a detailed study of the

relative performance of these pooling methods, using a large dataset of, respectively, US and
Euro area macroeconomic variables, and taking as basic forecasts those produced by a range
of linear and non-linear models. In general simple averaging with equal weights produces
good results, more so for the US than for the Euro area. Stock and Watson (2003a) focused
on the role of pooling for GDP growth forecasts in the G-7 countries, using a larger variety
of pooling methods, and dozens of models. They concluded that median and trimmed mean
pooled forecasts produce a more stable forecasting performance than each of their component
forecasts. Incidentally, they also found pooled forecasts to perform better than the factor
based forecasts discussed in Section 6.2.
Camacho and Perez-Quiros (2002) focused on pooling leading indicator models, in par-

ticular they considered linear models, MS and ST models, probit specifications, and the
non-parametric model described in Section 8.2, using regression based weights as suggested
by Granger and Ramanathan (1984). Hence, the pooled forecast is obtained as

bxt+1|t = w1bxt+1|t,1 + w2bxt+1|t,2 + ...+ wpbxt+1|t,p, (82)

and the weights, wi, are obtained as the estimated coefficients from the linear regression

xt = ω1bxt|t−1,1 + ω2bxt|t−1,2 + ...+ ωpbxt|t−1,p + ut (83)

which is estimated over a training sample using the forecasts from the single models to be
pooled, bxt|t−1,i, and the actual values of the target variable.
Camacho and Perez-Quiros (2002) evaluated the role of pooling not only for GDP growth

forecasts but also for turning point prediction. The pooled recession probability is obtained
as brt+1|t = F (a1brt+1|t,1 + a2brt+1|t,2 + ...+ apbrt+1|t,p), (84)

where F (.) is the cumulative distribution function of a normal variable, and the weights, ai,
are obtained as the estimated parameters in the probit regression

rt = F (α1brt|t−1,1 + α2brt|t−1,2 + ...+ αpbrt|t−1,p) + et, (85)

which is again estimated over a training sample using the recession probabilities from the
single models to be pooled, brt|t−1,i, and the actual values of the recession indicator, rt.
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The pooling method described above was studied from a theoretical point of view by Li
and Dorfman (1996) in a Bayesian context. A more standard Bayesian approach to forecast
combination is the use of the posterior odds of each model as weights, see, e.g., Zellner and
Min (1993). When all models have equal prior odds, this is equivalent to the use of the
likelihood function value of each model as its weight in the pooled forecast.

9 Evaluation of leading indicators

In this section we deal with the evaluation of the forecasting performance of the leading
indicators when used either in combination with simple rules to predict turning points, or
as regressors in one of the models described in the previous Sections to forecast either the
growth rate of the target variable or its turning points. In the first subsection we consider
methodological aspects while in the second subsection we discuss empirical examples.

9.1 Methodology

A first assessment of the goodness of leading indicators can be based on standard in-sample
specification and mis-specification tests of the models that relate the indicators to the target
variable.
The linear model in (21) provides the simplest framework to illustrate the issues. A first

concern is whether it is a proper statistical model of the relationships among the coinci-
dent and the leading variables. This requires the estimated residuals to mimic the assumed
i.i.d. characteristics of the errors, the parameters to be stable over time, and the absence of
non-linearity. Provided these hypotheses are not rejected, the model can be used to assess
additional properties, such as Granger causality of the leading for the coincident indicators,
or to evaluate the overall goodness of fit of the equations for the coincident variables (or for
the composite coincident index). The model also offers a simple nesting framework to eval-
uate the relative merits of competing leading indicators, whose significance can be assessed
by means of standard testing procedures. For a comprehensive analysis of the linear model
see, e.g., Hendry (1995).
The three steps considered for the linear model, namely, evaluation of the goodness of the

model from a statistical point of view, testing of hypotheses of interest on the parameters, and
comparison with alternative specifications should be performed for each of the approaches
listed in Sections 6 and 8. In particular, Hamilton and Raj (2002) and Raj (2002) provide
up-to-date results for Markov-switching models, van Dijk, Teräsvirta and Franses (2002)
for smooth transition models, while, e.g., Marcellino and Mizon (2004) present a general
framework for model comparison.
Yet, in-sample analyses are more useful to highlight problems of a certain indicator or

methodology than to provide empirical support in their favor, since they can be biased by
over-fitting and related problems due to the use of the same data for model specification,
estimation, and evaluation. A more sound appraisal of the leading indicators can be based
on their out of sample performance, an additional reason for this being that forecasting is
their main goal.
When the target is a continuous variable, such as the growth of a CCI over a certain
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period, standard forecast evaluation techniques can be used. In particular, the out-of-sample
mean square forecast error (MSFE) or mean absolute error (MAE) provide standard summary
measures of forecasting performance. Tests for equal forecast accuracy can be computed along
the lines of Diebold and Mariano (1995), Clark and McCracken (2001), the standard errors
around the MSFE of a model relative to a benchmark can be computed following West (1996),
and tests for forecast encompassing can be constructed as in Clark and McCracken (2001).
West (2005) provides an up-to-date survey of forecast evaluation techniques.
Moreover, as discussed in Section 6, simulation methods are often employed to compute

the joint distribution of future values of the CCI to produce recession forecasts. Such a joint
distribution can be evaluated using techniques developed in the density forecast literature,
see, e.g., Corradi and Swanson (2005).
When the target variable, Rt, is a binary indicator while the (out of sample) forecast

is a probability of recession, Pt, similar techniques can be used since the forecast error is a
continuous time variable. For example, Diebold and Rudebusch (1989) defined the accuracy
of the forecast as

QPS =
1

T

TX
t=1

2(Pt −Rt)
2, (86)

where QPS stands for quadratic probability score, which is the counterpart of the MSFE.
The range of QPS is [0, 2], with 0 for perfect accuracy. A similar loss function that assigns
more weight to larger forecast errors is the log probability score,

LPS = − 1
T

TX
t=1

((1−Rt) log(1− Pt) +Rt logPt) . (87)

The range of LPS is [0,∞], with 0 for perfect accuracy.
Furthermore, Stock and Watson (1992) regressed Rt+k − CRIt+k|t, i.e., the difference of

their indicator of recession and the composite recession index, on available information in
period t, namely

Rt+k − CRIt+k|t = ztβ + et, (88)

where the regressors in zt are indicators included or excluded in SW’s CLI. The error term
in the above regression is heteroskedastic, because of the discrete nature of Rt, and serially
correlated, because of the k-period ahead forecast horizon. Yet, robust t- and F-statistics
can be used to test the hypothesis of interest, β = 0, that is associated with correct model
specification when zt contains indicators included in the CLI, or with an efficient use of the
information in the construction of the recession forecast when zt contains indicators excluded
from the CLI. Of course, the model in (88) can also be adopted when the dependent variable
is a growth rate forecast error.
If the CRI or any probability of recession are transformed into a binary indicator, St,

by choosing a threshold such that if the probability of recession increases beyond it then the
indicator is assigned a value of one, the estimation method for the regression in (88) should
be changed, since the dependent variable becomes discrete. In this case, a logistic or probit
regression with appropriate corrections for the standard errors of the estimated coefficients
would suit.
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Contingency tables can also be used for a descriptive evaluation of the methodology in
the case of binary forecasts and outcomes. They provide a summary of the percentage of
correct predictions, missed signals (no prediction of slowdown when it takes place), and false
alarms (prediction of slowdown when it does not take place). A more formal assessment can
be based on a concordance index, defined as

IRS =
1

T

TX
t=1

[RtSt + (1− St)(1−Rt)] , (89)

with values in the interval [0, 1], and 1 for perfect concordance. Under the assumption that
St and Rt are independent, the estimate of the expected value of the concordance index is
2SR = 1−R− S, where R and S are the averages of Rt and St. Subtracting this quantity
from IRS yields the mean-corrected concordance index (Harding and Pagan (2002, 2005)):

I∗RS = 2
1

T

TX
t=1

(St − S)(Rt −R). (90)

AMP showed that under the null hypothesis of independence of St and Rt

T 1/2I∗RS → N(0, 4σ2), σ2 = γR(0)γS(0) + 2
∞X
τ=1

γR(τ)γS(τ), (91)

where γS(τ) = E[(St −E(St))(St−τ −E(St))] and γS(τ) is defined accordingly. A consistent
estimator of σ2 is

σ̂2 = γ̂R(0)γ̂S(0) + 2
lX

τ=1

³
1− τ

T

´
γ̂R(τ)γ̂S(τ), (92)

where l is the truncation parameter and γ̂R(τ) and γ̂S(τ) are the sample counterparts of
γR(τ) and γS(τ). As an alternative, Harding and Pagan (2002, 2005) proposed to regress Rt

on St, and use a robust t-test to evaluate the significance of St.
Notice that since the predictive performance of the leading indicators can vary over ex-

pansions and recessions, and/or near turning points, it can be worth providing a separate
evaluation of the models and the indicators over these subperiods, using any of the methods
mentioned so far. The comparison should also be conducted at different forecast horizons,
since the ability to provide early warnings is another important property for a leading indi-
cator, though difficult to be formally assessed in a statistical framework.
A final comment concerns the choice of the loss function, that in all the forecast evaluation

criteria considered so far is symmetric. Yet, when forecasting growth or a recession indicator
typically the losses are greater in case of a missed signal than for a false alarm, for example
because policy-makers or firms cannot take timely counteracting measures. Moreover, false
alarms can be due to the implementation of timely and effective policies as a reaction to
the information in the leading indicators, or can signal major slowdowns that do not turn
into recessions but can be of practical policy relevance. These considerations suggest that an
asymmetric loss function could be a more proper choice, and in such a case using the methods
summarized so far to evaluate a leading indicator based forecast or rank competing forecasts
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can be misleading. For example, a model can produce a higher loss than another model even
if the former has a lower MSFE or MAE, the best forecast can be biased, or an indicator
can be significant in (88) without reducing the loss, see, e.g., Artis and Marcellino (2001),
Elliott, Komunjer and Timmermann (2003), Patton and Timmermann (2003), and Granger
and Machina (2005) for an overview. More generally, the construction itself of the leading
indicators and their inclusion in forecasting models should be driven by the loss function and,
in case, take its asymmetry into proper account.

9.2 Examples

We now illustrate the methodology for model evaluation discussed in the previous subsection,
using four empirical examples that involve some of the models reviewed in Sections 6 and 8.
The first application focuses on the use of linear models for the (one-month symmetric

percent changes of the) CCICB and the CLICB. We focus on the following six specifications.
A bivariate VAR for the CCICB and the CLICB, as in equation (34). A univariate AR for
the CCICB. A bivariate ECM for the CCICB and the CLICB, as in equation (39), where one
cointegrating vector is imposed and its coefficient recursively estimated. A VAR for the four
components of the CCICB and the CLICB, as in equation (29). A VAR for the CCICB and
the ten components of the CLICB. Finally, a VAR for the four components of the CCICB
and the ten components of the CLICB, as in equation (21). Notice that most of these models
are non-nested, except for the AR which is nested in some of the VARs, and for the bivariate
VAR which is nested in the ECM.
The models are compared on the basis of their forecasting performance one and six month

ahead over the period 1989:1-2003:12, which includes the two recessions of July 1990 - March
1991 and March 2001 - November 2001. The forecasts are computed recursively with the first
estimation sample being 1959:1-1988:12 for one step ahead forecasts and 1959:1-1988:6 for
six step ahead forecasts, using the final release of the indexes and their components. While
the latter choice can bias the evaluation towards the usefulness of the leading indicators, this
is not a major problem when the forecasting comparison excludes the 70s and 80s and when,
as in our case, the interest focuses on the comparison of alternative models for the same
vintage of data, see the next Section for details. The lag length is chosen by BIC over the full
sample. Recursive BIC selects smaller models for the initial samples, but their forecasting
performance is slightly worse. The forecasts are computed using both the standard iterated
method, and dynamic estimation (as described in equation (25)).
The comparison is based on the MSE and MAE relative to the bivariate VAR for the

CCICB and the CLICB. The Diebold and Mariano (1995) test for the statistical significance
of the loss differentials is also computed. The results are reported in the upper panel of Table
6.

<Insert Table 6 about here>
Five comments can be made. First, the simple AR model performs very well, there are

some very minor gains from the VAR only six step ahead. This finding indicates that the
lagged behaviour of the CCICB contains useful information that should be included in a
leading index. Second, taking cointegration into account does not improve the forecasting
performance. Third, forecasting the four components of the CCICB and then aggregating
the forecasts, as in equation (31), decreases the MSE at both horizons, and the difference
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with respect to the bivariate VAR is significant one-step ahead. Fourth, disaggregation of the
CLICB into its components is not useful, likely because of the resulting extensive parameter-
ization of the VAR and the related increased estimation uncertainty. Finally, the ranking of
iterated forecasts and dynamic estimation is not clear cut, but for the best performing VAR
using the four components of the CCICB the standard iterated method decreases both the
MSE and the MAE by about 10%.
In the middle and lower panels of Table 6 the comparison is repeated for, respectively,

recessionary and expansionary periods. The most striking result is the major improvement of
the ECM during recessions, for both forecast horizons. Yet, this finding should be interpreted
with care since it is based on 18 observations only.
The second empirical example replicates and updates the analysis of Hamilton and Perez-

Quiros (1996). They compared univariate and bivariate models, with and without Markov
switching, for predicting one step ahead the turning points of (quarterly) GNP using the
CLICB as a leading indicator, named CLIDOC at that time. They found a minor role for
switching (and for the use of real time data rather than final revisions), and instead a positive
role for cointegration. Our first example highlighted that cointegration is not that relevant for
forecasting during most of the recent period, and we wonder whether the role of switching
has also changed. We use monthly data on the CCICB and the CLICB, with the same
estimation and forecast sample as in the previous example. The turning point probabilities
for the linear models are computed by simulations, as described at the end of Section 6.1,
using a two consecutive negative growth rule to identify recessions. For the MS we use
the filtered recession probabilities. We also add to the comparison a probit model where the
NBER based expansion/recession indicator is regressed on six lags of the CLICB. The NBER
based expansion/recession indicator is also the target for the linear and MS based forecasts,
as in Hamilton and Perez-Quiros (1996).
In Table 7 we report the MSE and MAE for each model relative to the probit, where the

MSE is just a linear transformation of the QPS criterion of Diebold and Rudebusch (1989),
and the Diebold and Mariano (1995) test for the statistical significance of the loss differentials.
The results indicate a clear preference for the bivariate MS model, with the probit a far second
best, notwithstanding its direct use of the target series as dependent variable. The turning
point probabilities for the five models are graphed in Figure 6, together with the NBER dated
recessions (shaded areas). The figure highlights that the probit model misses completely the
2001 recession, while both MS models indicate it, and also provide sharper signals for the
1990-91 recession. Yet, the univariate MS model also gives several false alarms.

<Insert Table 7 about here>
<Insert Figure 6 about here>
Our third empirical application is a more detailed analysis of the probit model. In partic-

ular, we consider whether the other composite leading indexes discussed in Section 7.2, the
CLIECRI , CLIOECD, and CLISW , or the three-month ten-year spread on the treasury bill
rates have a better predictive performance than the CLICB. The estimation and forecasting
sample is as in the first empirical example, and the specification of the probit models is as in
the second example, namely, six lags of each CLI are used as regressors (more specifically,
the symmetric one month percentage changes for CLICB and the one month growth rates
for the other CLIs). We also consider a sixth probit model where three lags of each of the
five indicators are included as regressors.
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From Table 8, the model with the five indexes is clearly favoured for one-step ahead
turning point forecasts of the NBER based expansion/recession indicator, with large and
significant gains with respect to the benchmark, which is based on the CLICB. The second
best is the ECRI indicator, followed by OECD and SW. Repeating the analysis for six month
ahead forecasts, the gap across models shrinks, the term spread becomes the first or second
best (depending on the use of MSE or MAE), and the combination of the five indexes remains
a good choice. Moreover, the models based on these variables (and also those using the ECRI
and OECD indexes) provided early warnings for both recessions in the sample, see Figures
7 and 8.

<Insert Table 8 about here>
<Insert Figure 7 about here>
<Insert Figure 8 about here>
The final empirical example we discuss evaluates the role of forecast combination as a tool

for enhancing the predictive performance. In particular, we combine together the forecasts
we have considered in each of the three previous examples, using either equal weights or
the inverse of the MSEs obtained over the training sample 1985:1-1988:12. The results are
reported in Table 9.

<Insert Table 9 about here>
In the case of forecasts of the growth rate of the CCICB, upper panel, the pooled forecasts

outperform most models but are slightly worse than the best performing single model, the
VAR with the CLICB and the four components of the CCICB (compare with Table 6).
The two forecast weighting schemes produce virtually identical results. For NBER turning
point prediction, middle panel of Table 9, pooling linear and MS models cannot beat the
best performing bivariate MS model (compare with Table 7), even when using the better
performing equal weights for pooling or adding the probit model with the CLICB index as
regressor into the forecast combination. Finally, also in the case of probit forecasts for the
NBER turning points, lower panel of Table 9, a single model performs better than the pooled
forecast for both one and six month horizons (compare Table 8), and equal weights slightly
outperforms MSE based weights for pooling.

10 Review of the recent literature on the performance

of leading indicators

Four main strands of research can be identified in the recent literature on the evaluation of the
performance of leading indicators. First, the consequences of the use of real time information
on the composite leading index and its components rather than the final releases. Second,
the assessment of the relative performance of the new models for the coincident-leading
indicators. Third, the evaluation of financial variables as leading indicators. Finally, the
analysis of the behavior of the leading indicators during the two most recent US recessions
as dated by the NBER, namely, July 1990 - March 1991 and March 2001 - November 2001
(see, e.g., McNees (1991) for results on the previous recessions). We now review in turn the
main contributions in each field, grouping together the first two.
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10.1 The performance of the new models with real time data

The importance of using real time data rather than final releases when evaluating the per-
formance of the composite leading indicators was emphasized by Diebold and Rudebusch
(1991a, 1991b). The rationale is that the composite indexes are periodically revised because
of a variety of reasons including changes in data availability, timing or definition, modifica-
tions in the standardization factors, but also the past tracking performance of the index or
some of its components, see Diebold and Rudebusch (1988), Swanson, Ghysels and Callan
(1998) for an assessment of the revision process for the DOC-CB CLI, and Croushore (2005)
for an updated overview on the use of real time data when forecasting. Therefore, an assess-
ment of the usefulness of a composite leading index, even in a pseudo-real time framework
but using the final release of the data, can yield biased results.
Diebold and Rudebusch (1991b) estimated a linear dynamic model for IP and the CLI,

using dynamic estimation, and evaluated the marginal predictive content of the CLI in
sample and recursively out of sample (for 1969-1988) using both finally and first released data
for the CLI. While in the first two cases inclusion of the CLI in the model systematically
reduces the MSFE, in the third one the results are not clear cut and depend on the lag-length
and the forecast horizon. A similar finding emerges using the CCI instead of IP as the target
variable, and when the Neftci’s (1982) algorithm is adopted to predict turning points in IP
(Diebold and Rudebusch (1991a)). Instead, using a MS model for predicting turning points,
Lahiri and Wang (1994) found the results to be rather robust to the use of historical or
revised data on the DOC CLI.
Filardo (1999) analyzed the performance of simple rules of thumb applied to the CLICB

and of the recession probabilities computed using Neftci’ (1982) formula, a linear model, a
probit model, and SW’s CRI, using both final and first released data over the period 1977-
1998. Overall, rules of thumb and the Neftci’s formula applied to the CLICB performed
poorly, better with ex-post data; probit and linear models were robust to the adoption of the
real-time data, because of the use of mostly financial variables as regressors, while SW’s CRI
was not evaluated in real time. Since the models were not directly compared on the same
grounds, a ranking is not feasible but, overall, the results point towards the importance of
using real-time data for the CLI also over a different and more recent sample than Diebold
and Rudebusch (1991a, 1991b).
Hamilton and Perez-Quiros (1996) evaluated the usefulness of the DOC-CB CLI using lin-

ear and MS VARs, with and without cointegration, finding that the best model for predicting
GDP growth and turning points over the period 1975-1993 is the linear VAR (cointegration
matters in sample but not out of sample), and in this framework the CLI appears to have
predictive content also with real-time data. A similar conclusion emerged from the analysis
of Camacho and Perez-Quiros (2002) for the period 1972-1998, even though they found that
non-linearity matters, the MS model was the best in and out of sample. Even better is a
combination of the MS model with the non-parametric forecast described in Section 8.2.
A few studies compared the models described in Sections 6 and 8 using the final release

of the data. Notice that this is less problematic in comparative analyses than in single
model evaluation since all the methods can be expected to be equally advantaged. Layton
and Katsuura (2001) considered logit and probit models, and a Filardo (1994) type time-
varying (static) MS model, using the ECRI coincident and leading indexes. The latter model
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performed best in a pseudo real time evaluation exercise over the period 1979-1999, and was
found to be quite useful in dating the business cycle in Layton (1998), confirming the findings
in Filardo (1994). Instead, Birchenall et al. (1999) found more support for the probit model
than for the MS specification.

10.2 Financial variables as leading indicators

Though financial variables have a long history as leading indicators, e.g., Mitchell and Burns
(1938) included the Dow Jones composite index of stock prices in their list of leading indi-
cators for the US economy, a systematic evaluation of their forecasting performance started
much later, in the ’80s, and since then attracted increased attention.
Stock and Watson (2003b) reviewed over 90 articles dealing with the usefulness of finan-

cial indicators for predicting output growth (and inflation), and we refer to them and to
Kozicki (1997) and Dotsey (1998) for details on single studies. They also provided their own
evaluation using several indicators for the G7 countries and, on the basis of the survey and
of their results, concluded that some asset prices have significant predictive content at some
times in some countries, but it is not possible to find a single indicator with a consistently
good performance for all countries and time periods. While pooling provided a partial solu-
tion to the instability problem, Stock and Watson (2003a) suggested that ”... the challenge is
to develop methods better geared to the intermittent and evolving nature of these predictive
relations” (p. 4).
The evidence reported in the previous and next subsection indeed points towards the

usefulness of models with time-varying parameters, and also confirms the necessity of a
careful choice of the financial variables to be used as leading indicators and of a continuous
monitoring of their performance. A rapid survey of the literature on the interest rate spreads
provides a clear and valuable illustration and clarification for this statement.
As mentioned in Section 7.2, Stock and Watson (1989) included two spreads into their

CLI, a paper-bill spread (the difference between the 6-month commercial paper rate and the
6-month Treasury bill rate) and a term spread (the difference between the 10-year and the
1-year Treasury bond rates.
The paper-bill spread tends to widen before a recession reflecting expectations of business

bankruptcies, corporations’ growing cash requirements near the peak of the business cycle,
and tighter monetary policy (the paper rate rises because banks deny loans due to the
restricted growth of bank reserves, so that potential borrowers seek funds in the commercial
paper marker). Yet, the paper bill-spread could also change for other reasons unrelated to
the business cycle, such as changes in the Treasury’s debt management policy, or foreign
central banks interventions in the exchange market since a large amount of their reserves
in dollars are invested in Treasury bills, see, e.g., Friedman and Kutnner (1998), who found
these reasons capable of explaining the bad leading performance of the paper-bill spread for
the 1990-91 recession, combined with the lack of a tighter monetary policy. The performance
for the 2001 recession was also unsatisfactory, the spread was small and declining from August
2000 to the end of 2001, see also the next subsection.
The term spread has two components, expected changes in interest rates and the term

premium for higher risk and/or lower liquidity. Therefore the commonly observed negative
slope of the term structure prior to recession, i.e., long term rates becoming lower than short
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term ones, can be due either to lower expected short term rates (signaling expansionary
monetary policy) or to lower term premia. Hamilton and Kim (2002) found both components
to be relevant for forecasting output growth, with the former dominating at longer forecast
horizons. The bad leading performance of the term spread for the 1990-91 recession is also
typically attributed to the lack of a tighter monetary policy in this specific occasion. The
term spread became instead negative from June 2000 through March 2001, anticipating the
recession of 2001, but the magnitude was so small by historical standards that, for example,
SW’s composite leading index did not signal the recession, see also the next subsection.
Gertler and Lown (2000) suggested to use the high-yield (junk) / AAA bond spread as

a leading indicator, since it is less sensitive to monetary policy and provides a good proxy
for the premium for external funds, i.e., for the difference between the costs of external
funds and the opportunity costs of using internal funds. The premium for external funds
moves countercyclically, since during expansions the borrowers’ financial position typically
improves, and this further fosters the aggregate activity, see, e.g., Bernanke and Gertler
(1989) for a formalization of this final accelerator mechanism. Therefore, a widening high-
yield spread signals a deterioration of economic conditions. Gertler and Lown (2000) found
that after the mid 80’s the high-yield spread had a better forecasting performance than both
the paper-bill and the term spreads for the US GDP growth, also providing a warning for the
1990-91 recession. Yet, as for the paper-bill spread, the high-yield spread can also change
for reasons unrelated with the business cycle, such as confidence crises in emerging markets.
In particular, Duca (1999) indicated that the widening of the spread prior to the 1990-91
recession could be an accidental event related with the thrift crisis and the associated sale of
junk bonds in an illiquid market.
A related question of interest is whether it is better to use a financial indicator in isolation

or as a component of a composite index. Estrella and Mishkin (1998) ran probit regressions
using the term-spread, the CLICB, the CLISW , and some of their components, concluding
that both in sample and out of sample the spread yields the largest forecasting gains. More-
over, addition of other regressors is in general harmful, except for the NYSE index returns.
Similar conclusions emerged from the analysis in Dueker (1997), who also used more compli-
cated versions of the probit model, allowing for dynamics and Markov switching parameters.
Qi (2001) also obtained a similar finding using the neural network model described in Sec-
tion 8.2. The CLISW was best at 1-quarter forecast horizon, but the term spread at 2- to
6-quarter horizon. Yet, she also detected substantial instability of the results over different
decades, namely, the ’70s, ’80s, and ’90s. Estrella, Rodrigues and Schich (2003) also found
some instability for the US, more so when the dependent variable is the GDP growth rate
than when it is a binary expansion/recession indicator.
Chauvet and Potter (2001a) detected substantial instability also in the probit model when

it is estimated with the Gibbs sampler. Moreover, the date of the break has a major role in
determining the predictive performance of the spread, for example the probability of a future
recession are about 45% in December 2000 when no break is assumed but increase to 90%
imposing a break in 1984. Unfortunately, there is considerable uncertainty about the break
date, so that the posterior mean probability of recession across all break dates is 32% with a
95% interval covering basically the whole [0, 1] interval. Chauvet and Potter (2001b) extended
the basic probit model to allow for parameter instability, using a time-varying specification,
and also for autocorrelated errors. Though the more complicated models performed better,
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along the lines of Dueker (1997), they provided a weaker signal of recession in 2001 in a
real-time evaluation exercise.
Finally, positive results on the leading properties of the term spread and other financial

variables for other countries were reported, e.g., by Davis and Henry (1994), Davis and Fagan
(1997), Estrella and Mishkin (1997), Estrella et al. (2003), and Moneta (2003). Yet, Moneta
(2003) found also for the Euro area a deterioration in the relative leading characteristics of
the spread after the ’80s, and an overall unsatisfactory performance in predicting the Euro
area recession of the early ’90s.

10.3 The 1990-91 and 2001 US recessions

Stock and Watson (1993) conducted a detailed analysis of possible reasons for the failure of
their CRI to produce early warnings of the 1990-91 recession. They could not detect any signs
of model failure or mis-specification and therefore concluded that the major problem was the
peculiar origin of this recession compared with its predecessors, namely, a deterioration in
the expectations climate followed by a drop in consumption. In such a case, the treasury bill
yield curve, exchange rates, and partly IP provided wrong signals. Only three other leading
indicators in their set gave moderate negative signals, part-time work, building permits and
unfilled orders, but they were not sufficiently strong to offset the other indicators.
Phillips (2003) compared the performance of the CRISW , and of the CLICB and the term

spread, transformed into probabilities of recession using Neftci’s (1982) formula, for forecast-
ing the 1990-91 recession using real time data. He found that that the CLICB produced the
best results. Moreover, the SW’s index modified to allow for longer lags on the term and
quality spreads worked better in sample but not for this recession.
Chauvet (1998) also used a real time dataset to produce recession forecasts from her

dynamic MS factor model, and found that the filtered probability of recession peaked beyond
0.5 already at the beginning of 1990 and then in May of that year.
Filardo and Gordon (1999) contrasted a linear VAR model, a MS model with time-varying

parameters, the SW’s model, and a MS factor model with time-varying parameters, along
the lines of Chauvet (1998). All models were estimated using Gibbs sampling techniques,
and compared on the basis of the marginalized likelihoods and Bayes factors in 1990, as
suggested by Geweke (1994), since these quantities are easily computed as a by-product
of the estimation. They found that all models performed comparatively over the period
January-June, but in the second part of the year, when the recession started, the MS model
was ranked first, the VAR second, and the factor model third, with only minor differences
between the two versions.
Filardo (2002), using the same models as in Filardo (1999) found that the two-month rule

on the CLICB worked well in predicting the 2001 recession, but sent several false alarms in the
’90s. A probit model with a 3-month forecast horizon and the term spread, corporate spread,
S&P500 returns and the CLICB as regressors also worked well, predicting the beginning of
the recession in January 2001 using a 50% rule. Instead, the CRISW did not perform well
using a 50% rule, while SW’s CRI−C (contemporaneous) worked better but was subject to
large revisions.
Stock and Watson (2003a) analyzed in details the reasons for the poor performance of the

CRI, concluding that is was mostly due to the particular origin of the recession (coming from
53



the decline in stock prices and business investment), which is not properly reflected by most
of the indicators in their CRI. In particular, the best indicators for the GDP growth rate
were the term spread, the short term interest rate, the junk bond spread, stock prices, and
new claims for unemployment. Notice that most of these variables are included in Filardo’s
(2002) probit models. Moreover, they found that pooled forecasts worked well, but less well
than some single indicators in the list reported above.
Dueker (2003) found that his Qual-VAR predicted the timing of the 2001 recession quite

well relative to the professional forecasters, while the evidence in Dueker and Weshe (2001)
is more mixed. Dueker (2002) noticed that a MS-probit model with the CLICB as regressor
worked also rather well in this occasion, providing a 6-month warning of the beginning of the
recession (but not in the case of the previous recession).
Overall, some differences in the ranking of models and usefulness of the leading indicators

emerged because of the choice of the specific coincident and leading variables, sample period,
criteria of evaluation, etc. Yet, a few findings are rather robust. First, indicator selection and
combination methods are important, and there is hardly a one fits all choice, even though
financial variables and the equal weighted CLICB seem to have a good average performance.
Second, the model that relates coincident and leading indicators also matters, and a MS fea-
ture is systematically helpful. Finally, pooling the forecasts produced good results whenever
applied, even though there is only limited evidence as far as turning points are concerned.

11 What have we learned?

The experience of the last two recessions in the US confirmed that these are difficult events to
predict, because the generating shocks and their propagation mechanism change from time to
time, and there is a very limited sample to fit the more and more complex models that try to
capture these time-varying features. Nonetheless, the recent literature on leading indicators
provided several new useful insights for the prediction of growth rates and turning points of
a target variable.
The first set of improvements is just in the definition of the target variable. In Section 5

we have seen that several formal procedures were developed to combine coincident indicators
into a composite index, which is in general preferable to monitoring a single indicator because
of its narrower coverage of the economy. In practice, the new model based CCIs are very
similar to the old-style equal averages of the (standardized) coincident indicators, such as the
CCICB, but they provide a sounder statistical framework for the use and evaluation of the
CCIs. More sophisticated filtering procedures were also developed to emphasize the business
cycle information in a CCI, as detailed in Section 3, even though substantial care should be
exerted in their implementation to avoid phase shifts and other distortions. New methods
were also developed for dating the peaks and troughs in either the classical or the deviation
cycle. They closely reproduce the NBER dating for the US and the CEPR dating for the
euro area, but are more timely and can also provide a probabilistic measure of uncertainty
around the dated turning points.
The second set of advances concerns the construction of leading indicators. While there

was general agreement on the characteristics of a good leading indicator, such as consistent
timing or conformity to the general business cycle, in Section 2 we have seen that there are
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now better methods to formally test the presence of these characteristics and assess their ex-
tent. Moreover, there were several developments in the construction of the composite leading
indexes, ranging from taking into explicit account data problems such as missing values or
measurement error, to an even more careful variable selection relying on new economic and
statistical theories, combined with sounder statistical procedures for merging the individual
leading indicators into a CLI, as described in Sections 6 and 7.
The third, and perhaps most important, set of enhancements is in the use of the leading

indicators. In Sections 6 and 8 we have seen that simple rules to transform a CLI into a
turning point forecast have been substituted with sophisticated non-linear and time-varying
models for the joint evolution of the coincident and leading indicators. Moreover, mainly
using simulation-based techniques, it is now rather easy to use a model to produce both
point and probability and duration forecasts.
The final set of improvements is in the evaluation of leading indicators. In Section 9

we have seen that formal statistical methods are now available to assess the forecasting
performance of leading indicators, possibly combined with the use of real time data to prevent
biased favorable results due to revisions in the composition of the CLIs. Moreover, the
overview in Section 10 of the forecasting performance over the two most recent recessions
in the US has provided some evidence in favor of the forecasting capabilities of CLIs, in
particular when simple weighting procedures are applied to a rather large set of indicators,
combined with sophisticated models for the resulting CLI and the target variable.
Notwithstanding the substantial progress in the recent years, there is still considerable

scope for research in this area. For example, it might be useful to achieve a stronger consen-
sus on the choice of the target variable, and in particular on whether the classical cycle is
really the target of interest or a deviation cycle could provide more useful information. The
collection of higher quality monthly series and the development of better methods to handle
data irregularities also deserve attention. But the crucial element remains the selection of
the leading variables, and of the weighting scheme for their combination into a CLI. Both
choices should be made endogenous and frequently updated to react to the changing shocks
that hit the economy, and further progress is required in this area. Forecast pooling could
provide an easier method to obtain more robust predictions, but very limited evidence is
available for turning point and duration forecasts. It is also worth mentioning that while in
this chapter we have focused on real activity as the target variable, other choices are possible
such as inflation or a stock market index, see, e.g., the contributions in Lahiri and Moore
(1991), and most of the developments we have surveyed could be usefully applied in these
related contexts.
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Figure 1: Composite Coincident Indexes 
 

 
 

Note: The figure reports the Conference Board’s composite coincident indicator (CCICB), the 
OECD reference coincident series (CCIOECD), Stock and Watson’s coincident index 
(CCISW), and the coincident index derived from the four components in CCICB modeled with 
a dynamic factor model as in Kim and Nelson (1998) (CCIKN). All indexes have been 
normalized to have zero mean and unit standard deviation. 
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Figure 2: Classical and deviation cycles 
 
 

 
 
 

Note: Upper panel: CCICB and NBER dated recessions (shaded areas). 
Middle panel: CCICB and recessions dated with Artis, Marcellino, Proietti (2004) algorithm 
(shaded areas). 
Lower panel: HP-band pass filtered CCICB and recessions dated with Artis, Marcellino, 
Proietti (2004) algorithm (shaded areas). 
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Figure 3: Probability of recession and NBER dated recessions 
 

 
 
 

Note: The upper panel reports the (filtered) probability of recession computed from a dynamic 
factor model for the four components in the CCICB using the Kim and Nelson’s (1998) 
methodology. 
The lower panel reports the (filtered) probability of recession computed using the algorithm 
in Artis, Marcellino, Proietti (2004) applied to the CCICB. 
The shaded areas are the NBER dated recessions. 
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Figure 4: Composite Leading Indexes 
 

 
 
 

Note: The figure reports the Conference Board composite leading index (CLICB), the OECD leading 
index (CLIOECD), a transformation of Stock and Watson’s leading index (TCLISW, see text), 
the ECRI leading index (CLIECRI), and the NBER dated recessions (shaded areas). All indexes 
have been normalized to have zero mean and unit standard deviation. 
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Figure 5: Filtered composite leading indexes with AMP dated  
recessions for deviation cycle of CCICB 

 

 
 

Note: The figure reports the HP-band pass filtered versions of the four CLIs in Figure 4, and the 
Artis, Marcellino, Proietti (2004) dating of the HP band pass filtered versions of the CCICB 
(shaded areas). 
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Figure 6: One month ahead recession probabilities 
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Note: The models are those in Table 7. Shaded areas are NBER dated recessions. 
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Figure 7: One month ahead recession probabilities for alternative probit models 
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Note: The models are those in Table 8. Shaded areas are NBER dated recessions. 
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Figure 8: Six months ahead recession probabilities for alternative probit models 
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Note: The models are those in Table 8. Shaded areas are NBER dated recessions. 
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Table 1: Correlation of composite coincident indexes (6-month percentage change) 
 
 

  CCICB CCIOECD CCISW CCIKN 
CCICB 1       
CCIOECD 0.941 1    
CCISW 0.979 0.969 1   
CCIKN 0.943 0.916 0.947 1 

 
 

Note: Common sample is 1970:01 – 2003:11. 
 
 
 
 
 
 
 
 
 
 

Table 2: Correlation of composite leading indexes (6-month percentage change) 
 
 

  CLICB CLIOECD CLIsw CLIECRI 
CLICB  1     
CLIOECD  0.891  1    
CLIsw  0.719  0.601  1   
CLIECRI  0.817  0.791  0.595  1 

 
 

Note: Common sample is 1970:01 – 2003:11. 
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Table 3: Classical cycles, dating of coincident and leading indexes 
 
 

Peak  Trough 
             

Coincident Leading (AMP)   Coincident Leading (AMP) 
NBER AMP CB OECD ECRI SW   NBER AMP CB OECD ECRI SW 

             
Apr 1960 May 1960 Jan 1959 *  Jan 1960 *  Jan 1959  Aug 1959 *  Feb 1961 Feb 1961 Mar 1960 Dec 1960 Oct 1960 May 1960 
     Jan 1962        Jun 1962  
   Apr 1966 Apr 1966 Apr 1966 Feb 1966     Dec 1966 Nov 1966 Dec 1966 Jul 1966 
Dec 1969 Nov 1969 May 1969 Jan 1969 Jan 1969 MISSING  Nov 1970 Nov 1970 Apr 1970 Apr 1970 Jul 1970 MISSING 
Nov 1973 Dec 1973 Feb 1973 Feb 1973 Jun 1973 Jan 1973  Mar 1975 Mar 1975 Jan 1975 Dec 1974 Jan 1975 Aug 1974 
Jan 1980 Feb 1980 Nov 1978 Aug 1978 Nov 1978 Jun 1979  Jul 1980 Jul 1980 Apr 1980 Apr 1980 May 1980 Aug 1981 
Jul 1981 Aug 1981 Nov 1980 Nov 1980 May 1981 MISSING  Nov 1982 Dec 1982 Jan 1982 Feb 1982 Aug 1982 MISSING 
    Feb 1984  Oct 1985      Sep 1984  Jun 1986 
   Jul 1988        Jun 1989    
Jul 1990 Jul 1990 Feb 1990 Mar 1990 Oct 1989 Feb 1990  Mar 1991 Mar 1991 Jan 1991 Dec 1990 Dec 1990 Jan 1991 
   Nov 1994 Dec 1994       May 1995 Apr 1995   
     May 1998        Oct 1998  
Mar 2001 Oct 2000 Feb 2000 Feb 2000 Feb 2000 MISSING  Nov 2001 Dec 2001 Mar 2001 Oct 2001 Oct 2001 MISSING 
 Jul 2002 MISSING May 2002 MISSING Feb 2002   Apr 2003 MISSING MISSING Apr 2003 MISSING 
             
  NBER  AMP NBER  AMP NBER  AMP NBER  AMP   NBER  AMP NBER  AMP NBER  AMP NBER  AMP 
Average Lead 10  |  11 9  |  9 9  |  10 7  |  8    9  |  9 4  |  4 3  |  3 8  |  9 
St. Dev.  4.23  |  4.28 4.30  |  5.31 5.13  |  4.75 3.78  |  2.50    4.30  |  5.31 2.89  |  3.04 1.11  |  1 5.38  |  5.80 
False Alarms 3  |  3 3  |  3 3  |  3 2  |  2    3  |  3 3  |  3 3  |  3 2  |  2 
Missing   0  |  1 0  |  0 0  |  1 2  |  4       0  |  1 0  |  0 0  |  1 3  |  4 

 
 

Note: Shaded values are false alarms, 'MISSING' indicates a missed turning point. Leads longer than 18 months are considered false alarms. 
Negative leads are considered missed turning points. * indicates no previous available observation. Based on final release of data. 
AMP: Dating based on algorithm in Artis, Marcellino, Proietti (2004). 
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Table 4: Correlations of HP band pass filtered composite leading indexes 
 
 

  HPBP-CLICB HPBP-CLIOECD HPBP-CLIECRI HPBP-CLISW
HPBP-CLICB  1    
HPBP-CLIOECD  0.919  1   
HPBP-CLIECRI  0.906  0.882  1  
HPBP-CLISW  0.703  0.595  0.645  1 

 
 

Note: Common sample is 1970:01 – 2003:11. 
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Table 5: Deviations cycles, dating of coincident and leading indexes 
 
 

Peak  Trough 
           

Coincident Leading   Coincident Leading 
CB CB OECD ECRI SW   CB CB OECD ECRI SW 

           
Mar 1960 May 1959 Feb 1960 Jul 1959 Sep 1959  Mar 1961 Nov 1960 Jan 1961 Oct 1960 Jan 1961 
May 1962 Jan 1962 Jan 1962 Dec 1961 MISSING  Jan 1964 Sep 1962 Nov 1962 Sep 1962 MISSING 
     Apr 1963       May 1964 
Jul 1967 Feb 1966 Mar 1966 Feb 1966 Jan 1967  Aug 1967 Feb 1967 Jan 1967 Dec 1966 Jan 1967 
Aug 1969 Feb 1969 Dec 1968 Feb 1969 Dec 1967  Mar 1971 Jul 1970 Jun 1970 Aug 1970 Jun 1970 
Dec 1973 Feb 1973 Jan 1973 May 1973 Jan 1973  Jun 1975 Feb 1975 Jan 1975 Jan 1975 Oct 1974 
Mar 1979 Sep 1978 Sep 1978 Dec 1978 May 1979  Jul 1980 May 1982 Apr 1980 Jun 1982 Feb 1980 
Jul 1981 MISSING Mar 1981 MISSING Sep 1980  Jan 1983 MISSING May 1982 MISSING Jun 1982 
Nov 1984 Jan 1984 Dec 1983 Oct 1983 Apr 1985  Jan 1987 Jan 1986 May 1985 Oct 1985 Aug 1987 
    Jun 1987       Apr 1988  
May 1990 Sep 1987 Aug 1987 Nov 1989 Jan 1990  Dec 1991 Dec 1990 Jan 1991 Nov 1990 Jul 1991 
   Feb 1993       Jul 1993   
Jan 1995 Jun 1994 Jun 1994 Oct 1993 Jan 1994  Mar 1997 Nov 1995 Aug 1995 Feb 1995 Oct 1994 
     Aug 1995       May 1997 
   Nov 1997       Oct 1998   
Aug 2000 Jan 2000 Mar 2000 Mar 2000 Jan 2001  Dec 2003 * May 2001 Dec 2003 * Dec 2003 * Nov 2003 * 
 May 2002       Dec 2003 *    
           
Aver. Lead 7 6 7 8   10 7 10 6 
St. Dev. 2.28 3.21 3.80 3.25   4.67 4.03 4.47 2.31 
False Alarms 2 2 1 2   1 4 2 1 
Missing 1 0 1 4     1 0 1 3 

 
 

Note: Shaded values are false alarms, 'MISSING' indicates a missed turning point. Leads longer than 18 months are considered false 
alarms. Negative leads are considered missed turning points. * indicates last available observation. Based on final release of data. 
AMP: Dating based on algorithm in Artis, Marcellino, Proietti (2004). 
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Table 6: Forecast comparison of alternative VAR models for CCICB and CLICB 
 

    1 step-ahead 6 step-ahead 
DYNAMIC 

6 step-ahead 
ITERATED 

    
Relative 

MSE 
Relative 

MAE 
Relative 

MSE 
Relative 

MAE 
Relative 

MSE 
Relative 

MAE 
  whole sample 
              
CCI + CLI VAR(2) 1  1  1  1  1  1  
CCI AR(2) 1.001  1.010  0.982  0.963 * 1.063  1.032  
CCI + CLI coint VECM(2) 1.042   1.074 * 1.067   1.052   1.115   1.100   
4 comp. of CCI + CLI VAR(2) 0.904 ** 0.976  0.975  0.973  0.854 ** 0.911 ** 
CCI + 10 comp. of CLI VAR(1) 1.158 *** 1.114 *** 1.035  1.017  1.133 ** 1.100 ***
4 comp. CCI + 10 comp. CLI VAR(1) 0.995  1.029  1.090  1.035  0.913  0.967  
                            
                       
  MSE MAE MSE MAE MSE MAE 
 VAR(2) 0.075 0.186 0.079 0.216 0.075 0.201 
                            
  recessions 
              
CCI + CLI VAR(2) 1  1  1  1  1  1  
CCI AR(2) 0.988  0.975  0.949  0.940  1.303 ** 1.154 ** 
CCI + CLI coint VECM(2) 0.681 *** 0.774 *** 0.744   0.882   0.478 *** 0.626 ***
4 comp. of CCI + CLI VAR(2) 0.703 * 0.784 ** 0.825  0.879  0.504 *** 0.672 ***
CCI + 10 comp. of CLI VAR(1) 1.095  1.009  1.151  1.131  1.274 * 1.117  
4 comp. CCI + 10 comp. CLI VAR(1) 0.947  0.852  1.037  1.034  0.614 *** 0.714 ***
                            
                        
  MSE MAE MSE MAE MSE MAE 
 VAR(2) 0.087 0.258 0.096 0.252 0.163 0.368 
                            
  expansions 
              
CCI + CLI VAR(2) 1  1  1   1   1  1  
CCI AR(2) 1.002  1.016  0.977   0.956 * 0.997  1.005  
CCI + CLI coint VECM(2) 1.090 * 1.123 *** 1.118   1.081   1.292 *** 1.206 ***
4 comp. of CCI + CLI VAR(2) 0.931 * 1.007  0.987   0.980   0.952  0.964  
CCI + 10 comp. of CLI VAR(1) 1.166 *** 1.132 *** 1.015   0.997   1.093 * 1.096 ** 
4 comp. CCI + 10 comp. CLI VAR(1) 1.001  1.058  1.087   1.029   0.997  1.023  
                            
                      
  MSE MAE MSE MAE MSE MAE 
 VAR(2) 0.074 0.177 0.076 0.208 0.065 0.183 
                            

 
 
Note: Forecast sample is: 1989:1 – 2003:12. First estimation sample is 1959:1 – 1988:12 (for 1 

step-ahead) or 1959:1 – 1988:6 (for 6 step-ahead), recursively updated. Lag length selection 
by BIC. MSE and MAE are mean square and absolute forecast error. VAR for CCICB and 
CLICB is benchmark. *, **, *** indicate significance at 10%, 5%, 1% of the Diebold-
Mariano test for the null hypothesis of no significant difference in MSE or MAE with 
respect to the benchmark. 
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Table 7: Turning point predictions  
 
 

Target Model 
Relative 

MSE 
Relative 

MAE 
     

univariate 1.0302  1.2685 *** 
univariate MS 1.3417  1.0431  
bivariate 1.0020  1.0512  
bivariate MS 0.6095  0.4800 *** 

NBER          
(1 step-ahead) 

probit CLI_CB 1  1  
           
      
  MSE MAE  
 probit 0.0754 0.1711  
           

 
 
Note: One-step ahead turning point forecasts for the NBER expansion/recession indicator. Linear 

and MS models (as in Hamilton and Perez-Quiros (1996)) for CCICB and CLICB. Six lags of 
CLICB are used in the probit model. *, **, *** indicate significance at 10%, 5%, 1% of the 
Diebold-Mariano test for the null hypothesis of no significant difference in MSE or MAE 
with respect to the benchmark. 
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Table 8: Forecasting performance of alternative CLIs using probit models  
for NBER recession/expansion classification 

 
 

Target Model 
Relative 

MSE 
Relative 

MAE 
      

CLI_CB 1  1  
CLI_SW 1.01  0.664 *** 
CLI_ECRI 0.588  0.597 *** 
CLI_OECD 0.719  0.714 *** 
termspread 0.952  0.937  

NBER         
(1 step-ahead) 

4 CLI+spread 0.565 ** 0.404 *** 
            

      
CLI_CB 1  1  
CLI_SW 1.085  0.956  
CLI_ECRI 0.888  0.948  
CLI_OECD 0.912  0.834 ** 
termspread 0.736 ** 0.726 *** 

NBER         
(6 step-ahead) 

4 CLI+spread 0.837 ** 0.692 *** 
            
      
  MSE  MAE  

CLI_CB 1 step-ahead 0.073  0.169  
 6 step-ahead 0.085  0.191  
            

 
 
Note: Forecast sample is: 1989:1 – 2003:12. First estimation sample is 1959:1 – 1988:12, 

recursively updated. Fixed lag length: 6 lags for the first four models and 3 lags for the 
model with all four CLIs (see text for details). MSE and MAE are mean square and absolute 
forecast error. Probit model for CLICB is benchmark. *, **, *** indicate significance at 10%, 
5%, 1% of the Diebold-Mariano test for the null hypothesis of no significant difference in 
MSE or MAE with respect to the benchmark. 
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Table 9: Evaluation of forecast pooling 
 

Combine 
Relative 

MSE 
Relative 

MAE 
Relative 

MSE 
Relative 

MAE 
 Predicting CCI_CB growth 
         
 MSE-weighted simple average 
         
6 linear models (1month) 0.9474 ** 0.9824  0.9418 ** 0.9781  
6 linear models (6month dynamic) 0.8873  0.9100  0.8863  0.9082  
6 linear models (6month iterated) 0.9352 ** 0.9776  0.9255 ** 0.9701  
                  
 Predicting NBER turning points 
         
 MSE-weighted simple average 
         
4 linear and MS models (1m) 0.8683  1.1512  0.6676  0.9607  
4 linear and MS models + probit (1m) 0.8300  1.0989  0.6695  0.9686  
                  
 Predicting NBER turning points 
         
 MSE-weighted simple average 
         
5 single index PROBIT (1m) 0.7423 ** 0.8028 *** 0.7014 ** 0.7844 ***
5 single index PROBIT + all (1m) 0.6900 ** 0.7579 *** 0.6395 ** 0.7234 ***
5 single index PROBIT (6m) 0.8863 *** 0.9069 ** 0.8667 *** 0.8956 ** 
5 single index PROBIT + all (6m) 0.8707 *** 0.8695 *** 0.8538 *** 0.8569 ***
                  

 
 
Note: Forecast sample is 1989:1 – 2003:12. The forecasts pooled in the upper panel are from the 

six models in Table 6 and the benchmark is the VAR(2). The forecasts pooled in the middle 
panel are from the models in Table 7, including or excluding the probit, and the benchmark is 
the probit model with 6 lags of CLICB as regressor. The forecasts pooled in the lower panel 
are from the models in Table 8, including or excluding the probit with all indicators, and the 
benchmark is as in the middle panel. *, **, *** indicate significance at 10%, 5%, 1% of the 
Diebold-Mariano test for the null hypothesis of no significant difference in MSE or MAE 
with respect to the benchmark. 
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1 Introduction

In their recent bestseller, Kotler et al. (2002, page x) state that ”Today’s businesses

must strive to satisfy customers’ needs in the most convenient way, minimizing the

time and energy that consumers spend in searching for, ordering, and receiving

goods and services”. Obviously, these authors see an important role for marketing

activities to support that objective.

At the same time this statement indicates that marketing activities can be tar-

geted at the level of an individual consumer’s level, and that time is an important

factor. Time can consider the speed at which consumers can respond, but it also

concerns the ability to evaluate the success or failure of marketing activities. For a

quick evaluation, one benefits from detailed data, observed at a high frequency, and

preferably including performance data of competitors. With the advent of advanced

data collection techniques, optic scanner data and web-based surveys, today’s deci-

sions on the relevant marketing activities can be supported by econometric models

that carefully summarize the data. These basically concern links between perfor-

mance measures like sales with marketing input like prices and advertising. Direct

mailings for example can now be targeted at specific individuals, bonus offers in

retail stores can be given to only a selected set of consumers, and the shelf position

of certain brands is chosen with meticulous precision.

One of the academic challenges in this area is to design econometric models

that adequately summarize the marketing data and that also yield useful forecasts,

which in turn can be used to support decision-making1. The last few decades have

witnessed the development of models that serve particular purposes in this area, and

this chapter will describe several of these.2 The second feature of this chapter is to

demonstrate how forecasts from these models can be derived. Interestingly, many

1This chapter will be dedicated to models and how to derive forecasts from these models.
The implementation of these forecasts into decision-making strategies is beyond the scope of this
chapter, see Franses (2005a,b) for further discussion. Also, there is no discussion of stability of
models, which could affect forecasting performance. Given the possibility that market conditions
change over time, this is an important topic for further research.

2Many models in marketing research amount to straightforward applications of models in applied
econometrics, like univariate time series models, multivariate time series models, dynamic regression
models, and so on, and these will not be discussed here.
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of these models specific to marketing are intrinsically non-linear, and as will be

seen below, so simulation-based techniques become mandatory, see also Teräsvirta’s

chapter in this Handbook on forecasting from non-linear time series models.

The outline of this chapter is as follows. Section 2 briefly reviews the type of

measures that are typically used to evaluate the performance of marketing efforts.

These performance measures are sales, market shares, purchases, choice and time

between events3. These variables are the outcomes of marketing activities that can

concern pricing strategies, promotional activities, advertising, new product intro-

duction, but can also concern the consequences of competitors’ actions. Section 3

discusses a few models that are typically used in marketing, and less so, if at all, in

other disciplines. Section 4 demonstrates how forecasts from these models can be

generated. This section adds to the marketing literature, where one often neglects

the non-linear structure of the models. Section 5 concludes this chapter with a few

further research topics. The aim of this chapter is to demonstrate that there is an

interesting range of econometric models used in marketing, which deserves future

attention by applied econometricians and forecasters.

2 Performance measures

One of the challenging aspects of marketing performance data is that they rarely

can be treated as continuous and distributed as conditionally (log) normal. Perhaps

sales, when measured as quantity purchased times actual price, can be assumed to

fit the classical assumptions of the regression model, but sales measured in units

might sometimes be better analyzed using a count data model. Other examples of

performance measures are market shares, with the property that they sum to 1 and

are always in between 0 and 1, and the amount or the percentage of individuals

who have adopted a new product. This adoption variable is also bounded from

below and from above (assuming a single adoption per consumer). One can also

3This chapter abstains for a discussion of how conjoint analysis, where stated preferences for
hypothetical products are measured, can help to forecast revealed preferences measuring actual
sales or adoption. This is due to the fact that the author simply has not enough experience with
the material.
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obtain data on whether an individual makes a purchase or not, hence a binomial

variable, or on whether s/he makes a choice amongst a range of possible products or

brands (multinomial data). Surveys using questionnaires can result in data that are

multinomial but ordered, like ranging from ”strongly disagree” to ”strongly agree”

on for example a 5-point scale. Finally, there are marketing data available which

measure the time between two events, like referrals to advertising cues or, again,

purchases.4

2.1 What do typical marketing data sets look like?

To narrow focus towards the models to be reviewed in the next section, consider a

few typical data sets that one can analyze in marketing.

Sales

Sales data can appear as weekly observed sales in a number of stores for one or

more chains in a certain region. The sales data can concern any available product

category, although usually one keeps track of products that are not perishable, or

at least not immediately. Typical sample sizes range from 2 to 8 years. Usually,

one also collects information on marketing instruments as ”display”, ”feature”, and

”price”. Preferably, the price variable can be decomposed into the regular price

and the actual price. As such, one can analyze the effects of changes in the regular

price and in price promotions (the actual price relative to the regular price). When

one considers product categories, one collects data on all brands and stock keeping

units (SKUs). Subsequently, these data can be aggregated concerning large national

brands, private label brands and a rest category including all smaller brands. The

data are obtained through optic scanners. With these data one can analyze the

short-run and long-run effects of, what is called, the marketing-mix (the interplay of

price setting, promotions, advertising and so on), and also the reactions to and from

competitors. A typical graph of such weekly sales data is given in Figure 1, where a

4Of course, as with any set of data in any discipline, marketing data can contain outliers,
influential data, missing data, censored data, and so on. This aspect is not considered any further
here.
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Figure 1: Sales of a brand and category sales, weekly data, 1989-1994, Dominick’s
Finer Foods

large amount of substantial spikes can be noticed. Obviously, one might expect that

these observations correspond with one-week promotions, and hence one should not

delete these data points.

An important area concerns the (dynamic) effects of advertising (or any other

instrument) on sales. How long do these effects last? And, what is most interesting to

econometricians, what is the appropriate data interval to estimate these effects? This

topic has important implications for marketers, policy makers, and legal scholars.

For managers, the duration of the advertising effects has implications for planning

and cost allocation. If the effects of advertising last beyond the current period, the

true cost of that advertising must be allocated over the relevant time period. And,

if the effects of advertising decay slowly and last for decades, advertising may have

to be treated as an investment rather than as an expense.

The duration of this so-called advertising carryover can have important legal

implications. If the effects of advertising last for decades, firms involved in deceptive

advertising would have to be responsible for remedies years and even decades after

4



such a deception occurred. Similarly, firms might be responsible for the advertising

they carried out several decades earlier.

The available data on sales and advertising often concern annual or at best

monthly data. Unfortunately, for the analysis of short-run and carry-over effects, one

may want to have data at a higher frequency. An intriguing data set is presented and

analyzed in Tellis, Chandy, and Thaivanich (2000). The advertiser in their study is a

medical referral service. The firm advertises a toll free number which customers can

call to get the phone number and address of medical service providers. Consumers

know the service by the advertised brand name that reflects the toll free number

that is advertised. When a customer calls the number, a representative of the firm

answers the call. The representative queries the customer and then recommends a

suitable service-provider based on location, preferences, and specific type of service

needed. Typically, the representative tries to connect the customer to the service-

provider directly by phone, again bearing in mind the quoted statement in Kotler

et al. (2000). Any resulting contact between a customer and the service provider is

called a referral. Customers do not pay a fee for the referral, but service providers

pay a fixed monthly fee for a specific minimum number of referrals a month. The firm

screens service providers before including them as clients. The firm began operations

in March 1986 in the Los Angeles market with 18 service providers and a USD 30,000

monthly advertising budget. Around 2000 it advertised in over 62 major markets

in the U.S., with a multi-million dollar advertising budget that includes over 3500

TV advertising exposures per month. The primary marketing variable that affects

referrals is advertising. A nice aspect of this data set is that it contains observations

per hour, and I will return to this particular data set below.5

Market shares

Market shares are usually defined by own sales divided by category sales. There

are various ways to do calculate market shares, where choices have to be made

5It should be mentioned that the nature of this data set precludes any permanent effects of
advertising on performance as the firm does not observe repurchases, and hence the firm does not
know which customers become regular users of the referred service.
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concerning how to measure sales and prices. Next, one might weight the sales of

competitors depending on the availability across outlets.

One reason to analyze shares instead of sales is that their time series properties

can be more easy to exploit for forecasting. Outlying observations in category sales

and in own sales might cancel out, at least approximately. The same holds for

seasonality, and even perhaps for trends of the unit root type. Indeed, various

empirical studies suggest that, at least for mature markets, market shares tend to

be stationary, while sales data might not be. A second reason to analyze market

shares is that it directly shows how well the own brand or product fares as compared

with competitors. Indeed, if category sales increase rapidly, and own sales only little,

then own market share declines, reflecting the descending power of the brand within

the category.

An argument against using market shares is that models for sales allow to in-

clude and jointly forecast category sales. Also, the introduction of new brands in the

observed sample period is more easy to handle than in market share models6. Fur-

thermore, another reason for analyzing sales instead of shares is the possible category

expansion effects of marketing actions such as advertising and price promotions.

It is important for the material below to reiterate the obvious relation between

market shares and sales, as it is a non-linear one. Take St as own sales and CSt as

category sales, then market share Mt is defined as

Mt =
St

CSt

. (1)

As the right hand side is a ratio, it holds that

E(Mt) 6= E(St)

E(CSt)
, (2)

where E denotes the expectations operator. Additionally, CSt contains St, and hence

the denominator and the numerator are not independent.

Typical graphs of weekly market shares appear in Figure 2. Again one can infer

various spikes in one series, and now also similar sized spikes but with different signs

for the competitive brands’ market shares.

6Fok and Franses (2004) provide a solution for the latter situation.
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Figure 2: Market shares for four brands of crackers (one is ”rest”), weekly data,
1989-1994, Dominick’s Finer Foods

New product diffusion

The data on the adoption of a new product, which usually concerns durable products

like computers, refrigerators, and CD-players, typically show a sigmoid shape. Often

the data concern only annual data for 10 to 20 years. See for example the data

depicted in Figure 3, which concern the fraction of music recordings that are sold

on compact discs, see Bewley and Griffiths (2003). This sigmoid pattern reflects a

typical product life cycle, which starts with early innovators to purchase the product,

and which ends with laggards who purchase a new product once almost everyone

else already has it.

If the diffusion process is measured in terms of fractions of households owning a

product, such data are bounded from below and from above. Hence, the model to

be used shall somehow need to impose restrictions also as the data span usually is

rather short and as one tends to want to make forecasts closer towards the beginning

of the diffusion process than towards the end.
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Figure 3: Market penetration of compact discs, 1983-1996

Panels with N and T both large

Finally, various data in marketing are obtained from observing a sample of N house-

holds over T periods. There are household panels with size N around 5000. These

keep track of what these households purchase as the households have optic scanners

at home, which they use again to document what they had bought on their latest

shopping trip. This way one can get information on the choice that individuals make,

whether they respond to promotions, and their time between purchases. A typical

graph of such interpurchase time appears in Figure 4. In fact, such data allow for a

full description of consumption behavior, see for example van Oest et al. (2002).

Retail stores keep track of the behavior of their loyalty program members and

keep track of everything they purchase (and not purchase). Charities store past

donation data of millions of their donators, and insurance firms keep track of all

contacts they have with their clients. Those contacts can be telephone calls made

by the client to ask for information, but can also be direct mailings sent to them.

Sometimes these data are censored or truncated, like in the case of a charity’s direct
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Figure 4: Histogram of the number of days between two liquid detergent purchases

mailing where only those who received a mailing can decide to donate a certain

amount or not to donate.

2.2 What does one want to forecast?

Usually, these performance measures are of focal interest in a forecasting exercise.

Depending on the data and on the question at hand, this can be done either for new

cross sections or for future time series data. For example, for new product diffusion

it is of interest to forecast whether a product that was recently launched in country

A, will also fly in country B. Another example concerns a new list of addresses

of potential donators to charity, which cannot all be mailed and a selection will

have to made. One then looks for those individuals who are most likely to donate,

where these individuals are somehow matched with similar individuals whose track

record is already in the database and who usually donate. Additionally, one wants

to forecast the effects of changes in marketing instruments like price and promotion

on own future sales and own market shares.
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Table 1: Typical models in marketing

Type of data Sampling frequency Model

Sales Monthly, weekly Regression
Koyck model

Market shares Weekly Attraction model

New product diffusion Annual Bass model

Consumer panels Monthly, Many households Multi-level model
Hierarchical Bayes

Latent Class

In at least two situations forecasting in marketing concerns a little less straight-

forward situation. The first concerns sales and market shares. The reason is that one

usually not only wants to forecast own sales and category sales, but preferably also

the response of all competitors to own marketing efforts. This entails that econo-

metric models will contain multiple equations, even in case the interest only lies in

own market shares.

A second typical forecasting situation concerns the adoption process of a new

product. Usually one wants to make a forecast of the pattern of new to launch prod-

ucts, based on the patterns of related products that have already been introduced.

This should also deliver a first guess value of the total amount of adoptions at the

end of the process. For that matter, one needs a certain stylized functional form

to describe a typical adoption process, with parameters that can be imposed onto

the new situation. Moreover, once the new product is brought to the market, one

intends to forecast the ”take-off” point (where the increase in sales is fastest) and

the inflection point (where the level of the sales is highest). As will be seen in the

next section, a commonly used model for this purpose is a model with just three pa-

rameters, where these parameters directly determine these important change points

in the process.
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3 Models typical to marketing

The type of data and the research question guide the choice of the econometric model

to be used. In various situations in marketing research, one can use the standard

regression model or any of its well-known extensions. For example, in the case

of time series data, one often uses vector autoregressive [VAR] time series models

and associated impulse response functions, see Dekimpe and Hanssens (2000), Nijs

et al. (2001) and Pauwels and Srinivasan (2004), among others. Also, one sees

a regular use of the logit or probit model for binomial data, and of the ordered

regression model for ordered data, and of the multinomial logit or probit model for

unordered multinomial data. Interestingly, the use of the, not that easy to analyze,

multinomial probit model is often seen, and this is perhaps due to the assumption

of the independence of irrelevant alternatives is difficult to maintain in brand choice

analysis. Furthermore, one sees models for censored and truncated data, and models

for duration and count data. Franses and Paap (2001) provide a summary of the

most often used models in marketing research. However, they do not address in

detail the econometric models that are specifically found in marketing, and less so

elsewhere. This is what I will do in this chapter. These models are the Koyck model

to relate advertising with sales, the attraction model to describe market shares, the

Bass model for the adoption of new products, and the multi-level regression model

for panels of time series. Each of these four types of models will be discussed in the

next four subsections.

3.1 Dynamic effects of advertising

An important measure to understand the dynamic effects of advertising, that is,

how long do advertising pulses last, is the so-called p-percent duration interval, see

Clark (1976), Tellis (1988), and Leone (1995), among others. A p-percent duration

interval measures the time lag between an advertising impulse and the moment that

p percent of its effect on sales has decayed.

Denote St as sales and At as advertising, and assume for the moment that there

are no other marketing activities and no competitors. A reasonable model to start
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with would be an autoregressive distributed lags model of order (p,m) (ADL(p,m)).

This model is written as

St = µ + α1St−1 + . . . + αpSt−p + β0At + β1At−1 + . . . + βmAt−m + εt. (3)

This model implies that

∂St

∂At

= β0

∂St+1

∂At

= β1 + α1
∂St

∂At

∂St+2

∂At

= β2 + α1
∂St+1

∂At

+ α2
∂St

∂At

...

∂St+k

∂At

= βk +
k∑

j=1

αj

∂St+(k−j)

∂At

where αk = 0 for k > p, and βk = 0 for k > m. These partial derivatives can be

used to compute the decay factor

p(k) =
∂St

∂At
− ∂St+k

∂At

∂St

∂At

(4)

Due to the very nature of the data, this decay factor can only be computed for dis-

crete values of k. Obviously, this decay factor is a function of the model parameters.

Through interpolation one can decide on the value of k for which the decay factor is

equal to some value of p, which is typically set equal to 0.95 or 0.90. This estimated

k is then called the p-percent duration interval.

Next to its point estimate, one would also want to estimate the confidence bounds

of this duration interval, taking aboard that the decay factors are based on non-linear

functions of the parameters. The problem when determining the expected value of

p(k) is that the expectation of this non-linear function of parameters is not equal to

the function applied to the expectation of the parameters, that is E(f(θ)) 6= f(E(θ)).

So, the values of p(k) need to be simulated. With the proper assumptions, for the

general ADL model it holds that the OLS estimator is asymptotically normal dis-

tributed. Franses and Vroomen (2003) suggest to use a large number of simulated

parameter vectors from this multivariate normal distribution, and calculate the val-

ues of p(k). This simulation exercise also gives the relevant confidence bounds.
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The Koyck model

Although the general ADL model seems to gain popularity in advertising-sales mod-

eling, see Tellis et al. (2000) and Chandy et al. (2001), a commonly used model still

is the so-called Koyck model. Indeed, matters become much more easy for the ADL

model if it is assumed that m is ∞, all α parameters are zero and additionally that

βj = β0λ
j−1, where λ is assumed to be in between 0 and 1. As this model involves

an infinite number of lagged variables, one often considers the so-called Koyck trans-

formation (Koyck, 1954). In many studies the resultant model is called the Koyck

model7.

The Koyck transformation amounts to multiplying both sides of

St = µ + β0At + β0λAt−1 + β0λ
2At−2 + . . . + β0λ

∞At−∞ + εt (5)

with (1− λL), where L is the familiar lag operator, to get

St = µ∗ + λSt−1 + β0At + εt − λεt−1. (6)

The short-run effect of advertising is β0 and the long-run or total effect is β0

1−λ
. As

0 < λ < 1, the Koyck model implies that the long-run effect exceeds the short-

run effect. The p-percent duration interval for this model has a convenient explicit

expression and it is equal to log(1−p)
log λ

.

Even after 50 years, the Koyck model is often used and still stimulates new

research, see Franses (2004). For example, the Koyck model involves the familiar

Davies (1987) problem. That is, under the null hypothesis that β0 = 0, the model

St = µ∗ + λSt−1 + β0At + εt − λεt−1, (7)

collapses into

St = µ∗ + εt, (8)

where λ has disappeared. Solutions based on the suggestions in Andrews and

Ploberger (1994) and Hansen (1996) are proposed in Franses and Van Oest (2004),

where also the relevant critical values are tabulated.

7Leendert Marinus Koyck (1918-1962) was a Dutch economist who studied and worked at the
Netherlands School of Economics, which is now called the Erasmus University Rotterdam.
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Temporal aggregation and the Koyck model

Temporal aggregation entails that one has to analyze data at a macro level while the

supposedly true link between sales and advertising happens at a higher frequency

micro level. This is particularly relevant nowadays, where television commercials

last for just 30 seconds, while sales data are available perhaps only at the daily

level. There has been substantial interest in handling the consequences of temporal

aggregation in the marketing literature, see Bass and Leone (1983), Assmus et al.

(1984), Clarke (1976), Leone (1995) and Russell (1988). These studies all impose

strong assumptions about the advertising process. A common property of all studies

is that they warn about using the same model for micro data and for macro data,

as in that case the duration interval will be overestimated, when relying on macro

data only.

Recently, Tellis and Franses (2006) argue that only a single assumption is needed

for the Koyck model parameters at the micro frequency to be retrievable from the

available macro data. This assumption is that the macro data are K-period sam-

pled micro data and that there is only a single advertising pulse at time i within

that K−period. The size of the pulse is not relevant nor is it necessary to know

the dynamic properties of the advertising process. This is because this particular

assumption for advertising entails that the K−period aggregated pulse data match

with the size of the single pulse within that period.

Consider again the K−period data, and assume that the pulse each time happens

at time i, where i can be 1, 2, or, K. It depends on the location of i within the K

periods whether the pulse will be assigned to AT or AT−1, where capital T indicates

the macro data. Along these lines, Tellis and Franses (2006) show that the Koyck

model for the micro data leads to the following extended Koyck model for K-period

aggregated data, that is,

ST = λKST−1 + β1AT + β2AT−1 + εT − λKεT−1, (9)

with

β1 = β0(1 + λ + ... + λK−i), (10)
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and

β2 = β0(λ
K−i+1 + ... + λK−1), (11)

and where β2 = 0 if i = 1.

As the parameters for ST−1 and εT−1 are the same, Franses and van Oest (2004)

recommend to use estimation by maximum likelihood. The total effect of advertising,

according to this extended Koyck model for K−period aggregated data, is equal to

β1 + β2

1− λK
=

β0(1 + λ + ... + λK−i) + β0(λ
K−i+1 + ... + λK−1)

1− λK
=

β0

1− λ
. (12)

Hence, one can use this extended model for the aggregated data to estimate the

long-run effects at the micro frequency. Obviously, λ can be estimated from λK , and

therefore one can also retrieve β0.

To illustrate, consider the Miami market with 10776 hourly data, as discussed in

Tellis, Chandy and Thaivanich (2000). Given the nature of the advertising data, it

seems safe to assume that the micro frequency is 30 seconds. Unfortunately, there

are no sales or referrals data at this frequency. As the hour is the least integer time

between the exposures, K might be equal to 120, as there are 120 times 30 seconds

within an hour. As the advertising pulse usually occurs right after the entire hour,

it is likely that i is close to or equal to K. The first model I consider is the extended

Koyck model as in (9) for the hourly data. I compute the current effect, the carry-

over effect and the 95 percent duration interval. Next, I estimate an extended Koyck

model for the data when they are aggregated up to days. In this case daily dummy

variables are included to capture seasonality to make sure the model fits adequately

to the data. The estimation results are summarized in Table 2.

Table 2 shows that the 95 percent duration interval at the 30 seconds frequency

is 1392.8. This is equivalent with about 11.6 hours, which is about half a day. In

sharp contrast, if I consider the Koyck model for daily data, I find that this duration

interval is about 220 days, or about 7 months. This shows that using the same model

for different frequencies can lead to serious overestimation of the duration interval.

Of course, the proper model in this case is the extended Koyck model at the hourly

frequency, which takes into account that the micro frequency is 30 seconds.
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Table 2: Estimation results for extended Koyck models for hourly and
daily data.

Parameter Hourly frequency1 Daily frequency2

Current effect (β0) 0.008648 1.4808

Carry-over effect ( β0

1−λ
) 4.0242 5.2455

95 per cent duration interval 1392.8 (30 seconds) 218.77 (days)

1 The model estimated for the hourly frequency assumes that the micro frequency
is 30 seconds, and that the aggregation level is 120, amounting to hours. The λ
parameter is estimated to be equal to 0.997851, as λ̂K is 0.772504. There are
10776 hourly observations. The parameter β2 is not significant, which suggests
that i is indeed close to or equal to K.

2 The model for the 449 daily data is again the extended Koyck model, which
includes current and lagged advertising. The model also includes 6 daily dummy
variables to capture deterministic seasonality. The λ parameter is estimated to
be equal to 0.9864.

3.2 The attraction model for market shares

A market share attraction model is a useful tool for analyzing competitive structure

across, for example, brands within a product category. The model can be used to

infer cross-effects of marketing-mix variables, but one can also learn about the effects

of own efforts while conditioning on competitive reactions. Various details can be

found in Cooper and Nakanishi (1988) and various econometric aspects are given in

Fok et al. (2002).

Important features of an attraction model are that it incorporates that market

shares sum to unity and that the market shares of all individual brands are in

between 0 and 1. Hence, also forecasts are restricted to be in between 0 and 1. The

model (which bears various resemblances with the multinomial logit model) consists

of two components. There is a specification of the attractiveness of a brand and a

definition of market shares in terms of this attractiveness.

First, define Ai,t as the attraction of brand i, i = 1, . . . , I at time t, t = 1, . . . , T .

This attraction is assumed to be an unobserved (latent) variable. Commonly, it
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assumed that this attraction can be described by

Ai,t = exp(µi + εi,t)
I∏

j=1

K∏

k=1

x
βk,j,i

k,j,t (13)

where xk,j,t denotes the k-th explanatory variable (such as price level, distribution,

advertising spending) for brand j at time t and where βk,j,i is the corresponding

coefficient for brand i. The parameter µi is a brand-specific constant. Let the

error term (ε1,t, . . . , εI,t)
′ be normally distributed with zero mean and Σ can be

non-diagonal. Note that data availability determines how many parameters can be

estimated in the end, as in this representation (13) there are I + I + I × I ×K =

I(2 + IK) parameters. The xk,j,t is assumed to be non-negative, and hence rates of

change are usually not allowed. The variable xk,j,t may be a 0/1 dummy variable to

indicate the occurrence of promotional activities for brand j at time t. Note that in

this case one should transform xk,j,t to exp(xk,j,t) to avoid that attraction becomes

zero in case of no promotional activity.

The fact that the attractions are not observed makes the inclusion of dynamic

structures a bit complicated. For example for the model

Ai,t = exp(µi + εi,t)A
γi

i,t−1

I∏
j=1

K∏

k=1

x
βk,j,i

k,j,t (14)

one can only retrieve γi if it is assumed that γ = γi for all i. Fok et al. (2002)

provide a detailed discussion on how to introduce dynamics into attraction models.

The second component of the model is simply

Mi,t =
Ai,t∑I
j=1 Aj,t

, (15)

which states that market share is the own attraction divided by total attraction.

These two equations complete the attraction model.

To enable parameter estimation, one simply takes one of the brands as the bench-

mark, say, brand I. Next, one divides both sides of (15) by MI,t, takes natural

logarithms of both sides to arrive at a (I − 1)-dimensional set of equations given by

log Mi,t − log MI,t = (µi − µI) +
I∑

j=1

K∑

k=1

(βk,j,i − βk,j,I) log xk,j,t + ηi,t (16)
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for i = 1, . . . , I − 1. Note that the µi parameters (i = 1, . . . , I) are not identified.

In fact, only the parameters µ̃i = µi − µI , and β̃k,j,i = βk,j,i − βk,j,I are identified.

This is not problematic for interpretation as the instantaneous elasticity of the k-th

marketing instrument of brand j on the market share of brand i is given by

∂Mi,t

∂xk,j,t

xk,j,t

Mi,t

= βk,i,j −
I∑

r=1

Mr,tβk,r,j (17)

= (βk,j,i − βk,j,I)(1−Mi,t)−
I−1∑

r=1∧r 6=i

Mr,t(βk,j,r − βk,j,I). (18)

The attraction model has often been applied in marketing, see Leeflang and Reuyl

(1984), Naert and Weverbergh (1981), Kumar (1994), Klapper and Herwartz (2000)

and several recent studies. Usually, the model is used for out-of-sample forecasting

and to evaluate competitive response, see Bronnenberg, Mahajan and Vanhonacker

(2000). Fok and Franses (2004) introduce a version of the model that can be used

to describe the consequences of a new entrant in the product category.

Despite the fact that the model is often used for forecasting, the proper way to

generate forecasts is not trivial, and in fact, rarely considered in detail. The reason

for this non-triviality is that the set of seemingly unrelated regression equations is

formulated in terms of the logs of ratios of market shares. However, in the end

one intends to forecast the market shares themselves. In the next section, I will

demonstrate how appropriate forecasts can be generated.

3.3 The Bass model for adoptions of new products

The diffusion pattern of adoptions of new products shows a typical sigmoid shape.

There are many functions that can describe such a shape, like the logistic function or

the Gompertz function. In marketing research, one tends to focus on one particular

function, which is the one proposed in Bass (1969). Important reasons for this are

that the model captures a wide range of possible shapes (for example, the logistic

function assumes symmetry around the inflection point while the Bass model does

not) and that the model parameters can be assigned a workable interpretation.

The Bass (1969) theory starts with a population of m potential adopters. For

each of these, the time to adoption is a random variable with a distribution function
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F (τ) and density f(τ), and a hazard rate assumed to be

f(τ)

1− F (τ)
= p + qF (τ), (19)

where τ refers to continuous time. The parameters p and q are associated with

innovation and imitation, respectively. In words, this model says that the probability

of adoption at time t, given that no adoption has occurred yet, depends on a constant

p, which is independent of any factor, hence innovation, and on a fraction of the

cumulative density of adoption, hence imitation.

The cumulative number of adopters at time τ , N(τ), is a random variable with

mean N̄(τ) = E[N(τ)] = mF (τ). The function N̄(τ) satisfies the differential equa-

tion

n̄(τ) =
dN̄(τ)

dτ
= p[m− N̄(τ)] +

q

m
N̄(τ)[m− N̄(τ)]. (20)

The solution of this differential equation for cumulative adoption is

N̄(τ) = mF (τ) = m

[
1− e−(p+q)τ

1 + q
p
e−(p+q)τ

]
, (21)

and for adoption itself it is

n̄(τ) = mf(τ) = m

[
p(p + q)2e−(p+q)τ

(p + qe−(p+q)τ )
2

]
, (22)

see Bass (1969) for details. Analyzing these two functions of τ in more detail reveals

that N̄(τ) indeed has a sigmoid pattern, while n̄(τ) is hump-shaped. Note that the

parameters p and q exercise a non-linear impact on the pattern of N̄(t) and n̄(t). For

example, the inflection point T ∗, which corresponds with the time of peak adoptions,

equals

T ∗ =
1

p + q
log(

q

p
). (23)

Substituting this expression in (21) and in (22), allows a determination of the amount

of sales at the peak as well as the amount of the cumulative adoptions at that time.

In practice one of course only has discretely observed data. Denote Xt as the

adoptions and Nt as the cumulative adoptions, where t often refers to months or

years. There are now various ways to translate the continuous time theory to models

19



for the data on Xt and Nt. Bass (1969) proposes to consider the regression model

Xt = p(m−Nt−1) +
q

m
Nt−1(m−Nt−1) + εt

= α1 + α2Nt−1 + α3N
2
t−1 + εt, (24)

where it is assumed that εt is an independent and identically distributed error term

with mean zero and common variance σ2. Note that (p, q, m) must be obtained from

(α1, α2, α3), but that for out-of-sample forecasting one can use (24), and hence rely

on ordinary least squares (OLS).

Recently, Boswijk and Franses (2005) extend this basic Bass regression model

by allowing for heteroskedastic errors and by allowing for short-run deviations from

the deterministic S-shaped growth path of the diffusion process, as implied by the

differential equation in (20). The reason to include heteroskedasticity is that, in the

beginning and towards the end of the adoption process, one should be less uncertain

about the variance of the forecasts than when the process is closer to the inflection

point. Next, the solution to the differential equation is a deterministic path, and

there may be various reasons to temporally deviate form this path. Boswijk and

Franses (2005) therefore propose to consider

dn(τ) = α
[
p[m−N(τ)] +

q

m
N(τ)[m−N(τ)]− n(τ)

]
dτ + σn(τ)γdW (τ), (25)

where W (τ) is a standard Wiener process. The parameter α in (25) measures the

speed of adjustment towards the deterministic path implied by the standard Bass

model. Additionally, by introducing σn(t)γ, heteroskedasticity is allowed. A pos-

sible choice is to set γ = 1. Boswijk and Franses (2005) further derive that the

discretization of this continuous time model is

Xt −Xt−1 = β1 + β2Nt−1 + β3N
2
t−1 + β4Xt−1 + Xt−1εt, (26)

where

β1 = αpm (27)

β2 = α(q − p) (28)

β3 = −α
q

m
(29)

β4 = −α, (30)
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which shows that all parameters in (26) depend on α.

Another empirical version of the Bass theory, a version which is often used in

practice, is proposed in Srinivasan and Mason (1986). These authors recognize that

the Bass (1969) formulation above may introduce aggregation bias, as Xt is simply

taken as the discrete representative of n(τ). Therefore, Srinivasan and Mason (1986)

propose to apply non-linear least-squares (NLS) to

Xt = m[F (t; θ)− F (t− 1; θ)] + εt, (31)

where θ collects p and q. Van den Bulte and Lilien (1997) show that this method is

rather unstable if one has data that do not yet cover the inflection point. How to

derive forecasts for the various models will be discussed below.

3.4 Multi-level models for panels of time series

It is not uncommon in marketing to have data on a large number of cases (households,

brands, SKUs) for a large number of time intervals (like a couple of years with weekly

data). In other words, it is not uncommon that one designs models for a variable

to be explained with substantial information over dimension N as well as T . Such

data are called a panel of time series. Hence, one wants to exploit the time series

dimension, and potentially include seasonality and trends, while preserving the panel

structure.

To set notation, consider

yi,t = µi + βixi,t + εi,t, (32)

where subscript i refers to household i and t to week t. Let y denote sales of a

certain product and x be price, as observed by that particular household (where a

household can visit a large variety of stores).

Hierarchical Bayes approach

It is not uncommon to allow the N households to have different price elasticities.

And, from a statistical perspective, if one were to impose βi = β, one for sure

would reject this hypothesis in most practical situations. On the other hand, the
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interpretation of N different price elasticities is also not easy either. Typically, one

does have a bit more information on the households (family life cycle, size, income,

education), and it might be that these variables have some explanatory value for

the price elasticities. One way to examine this would be to perform N regressions,

to retrieve the β̂i, and next, in a second round, to regress these estimated values on

household-specific features. Obviously, this two-step approach assumes that the β̂i

variables are given instead of estimated, and hence, uncertainty in the second step

is underestimated.

A more elegant solution is to add a second level to (32), that is for example

βi ∼ N(β0 + β1zi, σ
2), (33)

where zi is an observed variable for a household, see Blattberg and George (1991).

Estimation of the model parameters can require simulation-based techniques. An

often used method is termed Hierarchical Bayes (HB), see Allenby and Rossi (1999)

among various others.

An exemplary illustration of this method given in Van Nierop, Fok and Franses

(2002) who consider this model for 2 years of weekly sales on 23 items in the same

product category. The effects of promotions and distribution in xi,t are made a

function of the size of an item and its location on a shelf.

Latent class modeling

As segmentation is often viewed as an important reason to construct models in

marketing, another popular approach is to consider the panel model

yi,t = µi + βi,sxi,t + εi,t, (34)

where βi,s denotes that, say, household-specific price elasticity, can be classified into

J classes, within which the price elasticities obey βi,s = β(Si), where Si is element

of 1,2,...,J , with probability Pr(Si = j) = pj. In words, βi,s corresponds with

observation i in class j, with j = 1, 2, ..., J . Each household has a probability pj,

with p1 + p2 + ... + pJ = 1, to get assigned to a class j, at least according to the

values of βi,s. Such a model can be extended to allow the probabilities to depend
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on household-specific features. This builds on the latent class methodology, recently

summarized in Wedel and Kamakura (1999). As such, the model allows for capturing

unobserved heterogeneity.

This approach as well as the previous one involves the application of simulation

methods to estimate parameters. As simulations are used, the computation of fore-

casts is trivial. They immediately come as a by-product of the estimation results.

Uncertainty around these forecasts can also easily be simulated.

A multi-level Bass model

This section is concluded with a brief discussion of a Bass type model for a panel

of time series. Talukdar et al. (2002) introduce a two-level panel model for a

set of diffusion data, where they correlate individual Bass model parameters with

explanatory variables in the second stage.

Following the Boswijk and Franses (2005) specification, a panel Bass model would

be

Xi,t −Xi,t−1 = β1,i + β2,iNi,t−1 + β3,iN
2
i,t−1 + β4,iXi,t−1 + Xi,t−1εi,t. (35)

As before, the β parameters are functions of the underlying characteristics of the

diffusion process, that is,

β1,i = αipimi, (36)

β2,i = αi(qi − pi) (37)

β3,i = −αi
qi

mi

, (38)

β4,i = −αi. (39)

As the effects of p and q on the diffusion patterns are highly non-linear, it seems more

appropriate to focus on the inflection point, that is, the timing of peak adoptions,

T ∗
i , and the level of the cumulative adoptions at the peak divided by mi, denoted as

fi. The link between pi and qi and the inflection point parameters is given by

pi = (2fi − 1)
log(1− 2fi)

2T ∗
i (1− fi)

(40)

qi = − log(1− 2fi)

2T ∗
i (1− fi)

, (41)
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see Franses (2003a).

Fok and Franses (2005) propose to specify β1,i, . . . , β4,i as a function of the total

number of adoptions (mi), the fraction of cumulative adoptions at the inflection

point (fi), the time of the inflection point (T ∗
i ), and the speed of adjustment (αi) of

Xi,t to the equilibrium path denoted as βk,i = βk(mi, fi, T
∗
i , αi). The adoptions that

these authors study are the citations to articles published in Econometrica and in

the Journal of Econometrics. They relate mi, fi, T
∗
i , and αi to observable features

of the articles. In sum, they consider

Xi,t −Xi,t−1 = β1(mi, fi, T
∗
i , αi) + β2(mi, fi, T

∗
i , αi)Ni,t−1+

β3(mi, fi, T
∗
i , αi)N

2
i,t−1 + β4(mi, fi, T

∗
i , αi)Xi,t−1 + Xi,t−1εi,t, (42)

where εi,t ∼ N(0, σ2
i ) with

log(mi) = Z ′
iθ1 + η1,i, (43)

log(
2fi

1− 2fi

) = Z ′
iθ2 + η2,i, (44)

log(T ∗
i ) = Z ′

iθ3 + η3,i, (45)

αi = Z ′
iθ4 + η4,i, (46)

log σ2
i = Z ′

iθ5 + η5,i, (47)

where the Zi vector contains an intercept and explanatory variables.

This section has reviewed various models that are often applied in marketing,

and some of which seem to slowly diffuse into other economics disciplines.

4 Deriving forecasts

The previous section indicated that various interesting measures (like duration in-

terval) or models (like the attraction model) in marketing research imply that the

variable of interest is a non-linear function of variables and parameters. In many

cases there are no closed-form solutions to these expressions, and hence one has

to resort to simulation-based techniques. In this section the focus will be on the

attraction model and on the Bass model, where the expressions for out-of-sample
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forecasts will be given. Additionally, there will be a discussion of how one should

derive forecasts for market shares when forecasts for sales are available.

4.1 Attraction model forecasts

As discussed earlier, the attraction model ensures logical consistency, that is, market

shares lie between 0 and 1 and they sum to 1. These restrictions imply that (functions

of) model parameters can be estimated from a multivariate reduced-form model with

I − 1 equations. The dependent variable in each of the I−1 equations is the natural

logarithm of a relative market share, that is, log mi,t ≡ log
Mi,t

MI,t
, for i = 1, 2, . . . , I−1,

where the base brand I can be chosen arbitrarily, as discussed before.

In practice, one is usually interested in predicting Mi,t and not in forecasting the

logs of the relative market shares. Again, it is important to recognize that, first of

all, exp(E[log mi,t]) is not equal to E[mi,t] and that, secondly, E[
Mi,t

MI,t
] is not equal to

E[Mi,t]

E[MI,t]
. Therefore, unbiased market share forecasts cannot be directly obtained by

these data transformations.

To forecast the market share of brand i at time t, one needs to consider the

relative market shares

mj,t =
Mj,t

MI,t

for j = 1, 2 . . . , I, (48)

as m1,t, . . . , mI−1,t form the dependent variables (after log transformation) in the

reduced-form model. As MI,t = 1−∑I−1
j=1 Mj,t, it holds that

Mi,t =
mi,t∑I
j=1 mj,t

, (49)

for i = 1, 2, . . . , I.

Fok, Franses and Paap (2002) propose to simulate the one-step ahead forecasts

of the market shares as follows. First draw η
(l)
t from N(0, Σ̃), then compute

m
(l)
i,t = exp(µ̃i + η

(l)
i,t )

I∏
j=1

(
K∏

k=1

x
β̃k,j,i

k,j,t )

)
, (50)

with m
(l)
I,t = 1 and finally compute

M
(l)
i,t =

m
(l)
i,t∑I

j=1 m
(l)
j,t

for i = 1, . . . , I, (51)
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where l = 1, . . . , L denotes the simulation iteration. Each vector (M
(l)
1,t , . . . , M

(l)
I,t)

′

generated this way is a draw from the joint distribution of the market shares at time

t. Using the average over a sufficiently large number of draws one can calculate the

expected value of the market shares. This can be modified to allow for parameter

uncertainty, see Fok, Franses and Paap (2002). Multi-step ahead forecasts can be

generated along similar lines.

4.2 Forecasting market shares from models for sales

The previous results assume that one is interested in forecasting market shares based

on models for market shares. In practice, it might sometimes be more easy to make

models for sales. One might then me tempted to divide the own sales forecast by

a forecast for category sales, but this procedure leads to biased forecasts for similar

reasons as before. A solution is given in Fok and Franses (2001) and will be discussed

next.

An often used model (SCAN*PRO) for sales is

log Si,t = µi +
I∑

j=1

K∑

k=1

βk,j,ixk,j,t +
I∑

j=1

P∑
p=1

αp,j,i log Sj,t−p + εi,t, (52)

with i = 1, . . . , I, where εt ≡ (ε1,t, . . . , εI,t)
′ ∼ N(0, Σ) and where xk,j,t denotes the

k-th explanatory variable (for example, price or advertising) for brand j at time t

and where βk,j,i is the corresponding coefficient for brand i, see Wittink et al. (1988).

The market share of brand i at time t can of course be defined as

Mi,t =
Si,t∑I
j=1 Sj,t

. (53)

Forecasts of market shares at time t + 1 based on information on all explanatory

variables up to time t + 1, denoted by Πt+1, and information on realizations of the

sales up to period t, denoted by St, should be equal to the expectation of the market

shares given the total amount of information available, denoted by E[Mi,t+1|Πt+1,St],

that is,

E[Mi,t+1|Πt+1,St] = E

[
Si,t+1∑I
j=1 Sj,t+1

∣∣∣∣∣ Πt+1,St

]
. (54)
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Due to non-linearity it is therefore not possible to obtain market shares forecasts

directly from sales forecasts. A further complication is that it is also not trivial to

obtain a forecast of Si,t+1, as the sales model concerns log-transformed variables, and

it is well known that exp(E[log X]) 6= E[X]. See also Arino and Franses (2000) and

Wierenga and Horvath (2005) for the relevance of this notion when examining mul-

tivariate time series models. In particular, Wierenga and Horvath (2005) show how

to derive impulse response functions from VAR models for marketing variables, and

they demonstrate the empirical relevance of a correct treatment of log-transformed

data.

Fok and Franses (2001) provide a simulation-based solution, in line with the

method outlined in Granger and Teräsvirta (1993). Naturally, unbiased forecasts of

the I market shares should be based on the expected value of the market shares,

that is,

E[Mi,t+1|Πt+1,St] =∫ +∞

0

. . .

∫ +∞

0

si,t+1∑I
j=1 sj,t+1

f(s1,t+1, . . . , sI,t+1|Πt+1,St)ds1,t+1, . . . , dsI,t+1, (55)

where f(s1,t+1, . . . , sI,t+1|Πt+1,St) is a probability density function of the sales condi-

tional on the available information, and si,t+1 denotes a realization of the stochastic

process Si,t+1. The model defined in the distribution of St+1, given Πt+1 and St, is

log-normal, but other functional forms can be considered too. Hence,

(exp(S1,t+1), . . . , exp(SI,t+1))
′ ∼ N(Zt+1, Σ), (56)

where Zt = (Z1,t, . . . , ZI,t)
′ is the deterministic part of the model, that is,

Zi,t = µi +
I∑

j=1

K∑

k=1

βk,j,ixk,j,t +
I∑

j=1

P∑
p=1

αp,j,i log Sj,t−p . (57)

The I-dimensional integral in (55) is difficult to evaluate analytically. Fok and

Franses (2001) therefore outline how to compute the expectations using simulation

techniques. In short, using the estimated probability distribution of the sales, re-

alizations of the sales are simulated. Based on each set of these realizations of all

brands, the market shares can be calculated. The average over a large number of

replications gives the expected value in (55).
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Forecasting h > 1 steps ahead is slightly more difficult as the values of the lagged

sales are no longer known. However, for these lagged sales appropriate simulated val-

ues can be used. For example, 2-step ahead forecasts can be calculated by averaging

over simulated values M
(l)
i,t+2, based on draws ε

(l)
t+2 from N(0, Σ̂) and on draws S

(l)
i,t+1,

which are already used for the 1-step ahead forecasts. Notice that the 2-step ahead

forecasts do not need more simulation iterations than the one-step ahead forecasts.

An important by-product of the simulation method is that it is now also easy to

calculate confidence bounds for the forecasted market shares. Actually, the entire

distribution of the market shares can be estimated based on the simulated values.

For example, the lower bound of a 95% confidence interval is that value for which

it holds that 2.5% of the simulated market shares are smaller. Finally, the lower

bound and the upper bound always lie within the [0,1] interval, and this should be

the case for market shares indeed.

4.3 Bass model forecasts

The Bass model is regularly used for out-of-sample forecasting. One way is to have

several years of data on own sales, estimate the model parameters for that particular

series, and extrapolate the series into the future. As Van den Bulte and Lilien (1997)

demonstrate, this approach is most useful in case the inflection point is within the

sample. If not, then one might want to consider imposing the parameters obtained

for other markets or situations, and then extrapolate.

The way the forecasts are generated depends on the functional form chosen, that

is, how one includes the error term in the model. The Srinivasan and Mason (1986)

model seems to imply the most easy to construct forecasts. Suppose one aims to

predict Xn+h, where n is the forecast origin and h is the horizon. Then, given the

assumption on the error term, the forecast is

X̂n+h = m̂[F (n + h; θ̂)− F (n− 1 + h; θ̂)]. (58)

When the error term is AR(1), straightforward modifications of this formula should

be made. If the error term has an expected value equal to zero, then these forecasts

are unbiased, for any h.
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This is in contrast with the Bass regression model, and also its Boswijk and

Franses modification, as these models are intrisically non-linear. For one-step ahead,

the true observation at n + 1 in the Bass scheme is

Xn+1 = α1 + α2Nn + α3N
2
n + εn+1. (59)

The forecast from origin n equals

X̂n+1 = α̂1 + α̂2Nn + α̂3N
2
n (60)

and the squared forecast error is σ2. This forecast is unbiased.

For two steps ahead matters become different. The true observation is equal to

Xn+2 = α1 + α2Nn+1 + α3N
2
n+1 + εn+2, (61)

which, as Nn+1 = Nn + Xn+1, equals

Xn+2 = α1 + α2(Xn+1 + Nn) + α3(Xn+1 + Nn)2 + εn+2. (62)

Upon substituting Xn+1, this becomes

Xn+2 = α1 + α2(α1 + α2Nn + α3N
2
n + εn+1 + Nn)

+ α3(α1 + α2Nn + α3N
2
n + εn+1 + Nn)2 + εn+2. (63)

Hence, the two-step ahead forecast error is based on

Xn+2− X̂n+2 = εn+2 +α2εn+1 +α3(2α1εn+1 +2(α2 +1)Nnεn+1 +2α3N
2
nεn+1 + ε2

n+1).

(64)

This shows that the expected forecast error is

E(Xn+2 − X̂n+2) = α3σ
2. (65)

It is straightforward to derive that if h is 3 or more, this bias grows exponentially

with h. Naturally, the size of the bias depends on α3 and σ2, which both can be

small. As the sign of α3 is always negative, the forecast is upward biased.

Franses (2003b) points out that to obtain unbiased forecasts for the Bass-type

regression models for h = 2, 3..., one needs to resort to simulation techniques, the
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same ones as used in Teräsvirta’s chapter in this Handbook. Consider again the

Bass regression, now written as

Xt = g(Zt−1; π) + εt, (66)

where Zt−1 contains 1, Nt−1 and N2
t−1, and π includes p, q and m. A simulation-based

one-step ahead forecast is now given by

Xn+1,i = g(Zn; π̂) + ei, (67)

where ei is a random draw from the N(0, σ̂2) distribution. Based on I such draws,

an unbiased forecast can be constructed as

X̂n+1 =
1

I

I∑
i=1

Xn+1,i. (68)

Again, a convenient by-product of this approach is the full distribution of the fore-

casts. A two-step simulation-based forecast can be based on the average value of

Xn+2,i = g(Zn, Xn+1,i; π̂) + ei, (69)

again for I draws, and so on.

4.4 Forecasting duration data

Finally, there are various studies in marketing that rely on duration models to de-

scribe interpurchase times. These data are relevant to managers as one can try to

speed up the purchase process by implementing marketing efforts, but also one may

forecast the amount of sales to be expected in the next period, due to promotion

planning. Interestingly, it is known that many marketing efforts have a dynamic

effect that stretches beyond the one-step ahead horizon. For example, it has been

widely established that there is a so-called post-promotional dip, meaning that sales

tend to collapse the week after a promotion was held, but might regain their original

level or preferably a higher level after that week. Hence, managers might want to

look beyond the one-step ahead horizon.

In sum, one seems to be more interested in the number of purchases in the

next week or next month, than that there is an interest in the time till the next
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purchase. The modelling approach for the analysis of recurrent events in market-

ing, like the purchase timing of frequently purchased consumer goods, has, however,

mainly aimed at explaining the interpurchase times. The main trend is to apply a

Cox (mixed) Proportional Hazard model for the interpurchase times, see Seethara-

man and Chintagunta (2003) for a recent overview. In this approach after each

purchase the duration is reset to zero. This transformation removes much of the

typical behavior of the repeat purchase process in a similar way as first-differencing

in time series. Therefore, it induces important limitations to the use of time-varying

covariates (and also seasonal effects) and duration dependence in the models.

An alternative is to consider the whole path of the repeat purchase history on the

time scale starting at the beginning of the observation window. Bijwaard, Franses

and Paap (2003) put forward a statistical model for interpurchase times that takes

into account all the current and past information available for all purchases as time

continues to run along the calendar timescale. It is based on the Andersen and

Gill (1982) approach. It delivers forecasts for the number of purchases in the next

period and for the timing of the first and consecutive purchases. Purchase occasions

are modelled in terms of a counting process, which counts the recurrent purchases

for each household as they evolve over time. These authors show that formulating

the problem as a counting process has many advantages, both theoretically and

empirically. Counting processes allow to understand survival and recurrent event

models better (i) as the baseline intensity may vary arbitrary over time, (ii) as it

facilitates the interpretation of the effects of co-variates in the Cox proportional

hazard model, (iii) as Cox’s solution via the partial likelihood takes the baseline

hazard as a nuisance parameter, (iv) as the conditions for time-varying covariates

can be precisely formulated and finally, and finally (v) as by expressing the duration

distribution as a regression model it simplifies the analysis of the estimators.

5 Conclusion

This chapter has reviewed various aspects of econometric modeling and forecasting

in marketing. The focus was on models that have been developed with particular
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applications in marketing in mind. Indeed, in many cases, marketing studies just use

the same types of models that are also common to applied econometrics. In many

marketing research studies there are quite a number of observations and typically

the data are well measured. Usually there is an interest in modeling and forecasting

performance measures such as sales, shares, retention, loyalty, brand choice and

the time between events, preferably when these depend partially on marketing-mix

instruments like promotions, advertising, and price.

Various marketing models are non-linear models. This is due to specific struc-

tures imposed on the models to make them more suitable for their particular purpose,

like the Bass model for diffusion and the attraction model for market shares. Other

models that are frequently encountered in marketing, and less so in other areas (at

least as of yet) concern panels of time series. Interestingly, it seems that new econo-

metric methodology (like the Hierarchical Bayes methods) has been developed and

applied in marketing first, and will perhaps be more often used in the future in other

areas too.

There are two areas in which more research seems needed. The first is that

it is not yet clear how out-of-sample forecasts should be evaluated. Of course,

mean squared forecast error type methods are regularly used, but it is doubtful

whether these criteria meet the purposes of an econometric model. In fact, if the

model concerns the retention of customers, it might be worse to underestimate the

probability of leaving than to overestimate that probability. Hence the monetary

value, possibly discounted for future events, might be more important. The recent

literature on forecasting under asymmetric loss is relevant here, see for example,

Elliott, Komunjer and Timmermann (2005), and Elliott and Timmermann (2004).

Second, the way forecasts are implemented into actual marketing strategies is

not trivial, see Franses (2005a,b). In marketing one deals with customers and with

competitors, and each can form expectations about what you will do. The successful-

ness of a marketing strategy depends on the accuracy of stake-holders’ expectations

and their subsequent behavior. For example, to predict whether a newly launched

product will be successful might need more complicated econometric models than

we have available today.
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Granger, Clive W.J. and Timo Teräsvirta (1993), Modelling Nonlinear Economic

Relationships, Oxford: Oxford University Press.

Hansen, B.E. (1996), Inference when a nuisance parameter is not identified under

the null hypothesis, Econometrica, 64, 413-430.

Klapper, D. and H. Herwartz (2000), Forecasting market share using predicited

values of competitor behavior: Further empirical results, International Journal of

Forecasting , 16, 399–421.

Kotler, Ph., D.C. Jain, and S. Maesincee (2002), Marketing Moves. A New Ap-

proach to Profits, Growth, and Renewal, Boston: Harvard Business School Press.

Koyck, L.M. (1954), Distributed Lags and Investment Analysis, Amsterdam: North-

Holland.

Kumar, V. (1994), Forecasting performance of market share models: an assessment,

additional insights, and guidelines, International Journal of Forecasting, 10, 295-312.

36



Leeflang, P. S. H. and J. C. Reuyl (1984), On the predictive power of market share

attraction model, Journal of Marketing Research, 21, 211-215.

Leone, R.P. (1995), Generalizing what is known about temporal aggregation and

advertising carryover, Marketing Science, 14, G141-G150.

Naert, P. A. and M. Weverbergh (1981), On the prediction power of market share

attraction models, Journal of Marketing Research, 18, 146–153.

Nijs, V.R., M.G. Dekimpe, J.-B. E.M. Steenkamp and D.M. Hanssens (2001), The

category-demand effects of price promotions, Marketing Science, 20, 1-22.

Pauwels, K. and S. Srinivasan (2004), Who benefits from store brand entry?, Mar-

keting Science, 23, 364–390.

Russell, G.J. (1988), Recovering Measures of Advertising Carryover from Aggre-

gate Data: The Role of the Firm’s Decision Behavior, Marketing Science, 7, 252-270.

Seetharaman, P. B. and P. K. Chintagunta (2003), The proportional hazard model

for purchase timing: A comparison of alternative specifications, Journal of Business

and Economic Statistics, 21, 368-382.

Srinivasan, V. and C.H. Mason (1986), Nonlinear least squares estimation of new

product diffusion models, Marketing Science, 5, 169–178.

Talukdar, D., K. Sudhir and A. Ainslie (2002), Investigating new product diffu-

sion across products and countries, Marketing Science, 21, 97–114.

Tellis, G.J. (1988), Advertising exposure, loyalty and brand purchase: A two stage

model of choice, Journal of Marketing Research, 25, 134-144.

37



Tellis, G.J., R. Chandy and P. Thaivanich (2000), Which ad works, when, where,

and how often? Modeling the effects of direct television advertising, Journal of Mar-

keting Research, 37, 32-46.

Tellis, G.J. and P.H. Franses (2006), The optimal data interval for econometric

models of advertising, Marketing Science, to appear.

Van den Bulte, C. and G.L. Lilien (1997), Bias and systematic change in the param-

eter estimates of macro-level diffusion models, Marketing Science, 16, 338–353.

van Nierop, E., D. Fok and P.H. Franses (2002), Sales models for many items using

attribute data, ERIM Report Series Research in Management ERS-2002-65-MKT,

Erasmus University Rotterdam

Van Oest, R.D., R. Paap and P.H. Franses (2002), A joint framework for cate-

gory purchase and consumption behavior, Tinbergen Institute report series TI 2002-

124/4, Erasmus University Rotterdam

Wedel, M. and W.A. Kamakura (1999), Market segmentation : conceptual and

methodological foundations, Boston: Kluwer Academic Publishers.

Wieringa, J.E. and C. Horvath (2005), Computing level-impulse responses of log-

specified VAR systems, International Journal of Forecasting, 21, 279-289.

Wittink, D.R., M.J. Addona, W.J. Hawkes and J.C. Porter (1988), SCAN*PRO:

the estimation, validation, and use of promotional effects based on scanner data,

Working paper, AC Nielsen, Schaumburg, Illinois.

38



Forecasting Seasonal Times Series

Eric Ghysels
Department of Economics
University of North Carolina

Denise R. Osborn
School of Economic Studies
University of Manchester

Paulo M. M. Rodrigues
Faculty of Economics
University of Algarve

June 23, 2005



Contents

1 Introduction 3

2 Linear Models 5
2.1 SARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Forecasting with SARIMA Models . . . . . . . . . . . 7
2.2 Seasonally Integrated Model . . . . . . . . . . . . . . . . . . . 8

2.2.1 Testing for Seasonal Unit Roots . . . . . . . . . . . . . 9
2.2.2 Forecasting with Seasonally Integrated Models . . . . . 11

2.3 Deterministic Seasonality Model . . . . . . . . . . . . . . . . . 12
2.3.1 Representations of the Seasonal Mean . . . . . . . . . . 13
2.3.2 Forecasting with Deterministic Seasonal Models . . . . 15

2.4 Forecasting with Misspecified Seasonal Models . . . . . . . . . 15
2.4.1 Seasonal Random Walk . . . . . . . . . . . . . . . . . . 15
2.4.2 Deterministic Seasonal AR(1) . . . . . . . . . . . . . . 17
2.4.3 Monte Carlo Analysis . . . . . . . . . . . . . . . . . . . 19

2.5 Seasonal Cointegration . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Notion of Seasonal Cointegration . . . . . . . . . . . . 21
2.5.2 Cointegration and Seasonal Cointegration

23
2.5.3 Forecasting with Seasonal Cointegration Models . . . . 24
2.5.4 Forecast Comparisons . . . . . . . . . . . . . . . . . . 25

2.6 Merging Short- and Long-run Forecasts . . . . . . . . . . . . . 26

3 Periodic Models 28
3.1 Overview of PAR Models . . . . . . . . . . . . . . . . . . . . . 28
3.2 Modelling Procedure . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Testing for Periodic Variation and Unit Roots . . . . . 30
3.2.2 Order Selection . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Forecasting with Univariate PAR Models . . . . . . . . . . . . 32
3.4 Forecasting with Misspecified Models . . . . . . . . . . . . . . 34
3.5 Periodic Cointegration . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Empirical Forecast Comparisons . . . . . . . . . . . . . . . . . 36

4 Other Specifications 37
4.1 Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Threshold Seasonal Models . . . . . . . . . . . . . . . . 39

1



4.1.2 Periodic Markov Switching Regime Models . . . . . . . 40
4.2 Seasonality in Variance . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Simple Estimators of Seasonal Variances . . . . . . . . 45
4.2.2 Flexible Fourier Form . . . . . . . . . . . . . . . . . . . 46
4.2.3 Stochastic Seasonal Pattern . . . . . . . . . . . . . . . 47
4.2.4 Periodic GARCH Models . . . . . . . . . . . . . . . . . 49
4.2.5 Periodic Stochastic Volatility Models . . . . . . . . . . 50

5 Forecasting, Seasonal Adjustment and Feedback 51
5.1 Seasonal Adjustment and Forecasting . . . . . . . . . . . . . . 51
5.2 Forecasting and Seasonal Adjustment . . . . . . . . . . . . . . 53
5.3 Seasonal Adjustment and Feedback . . . . . . . . . . . . . . . 55

6 Conclusion 56

2



1 Introduction

Although seasonality is a dominant feature of month-to-month or quarter-to-
quarter fluctuations in economic time series (Miron, 1996, Franses, 1996), it
has typically been viewed as of limited interest by economists, who generally
use seasonally adjusted data for modelling and forecasting. This contrasts
with the perspective of the economic agent, who makes (say) production or
consumption decisions in a seasonal context (Ghysels, 1988, Osborn 1988).
In this chapter, we study forecasting of seasonal time series and its im-

pact on seasonal adjustment. The bulk of our discussion relates to the former
issue, where we assume that the (unadjusted) value of a seasonal series is to
be forecast, so that modelling the seasonal pattern itself is a central issue.
In this discussion, we view seasonal movements as an inherent feature of
economic time series which should be integrated into the econometric mod-
elling and forecasting exercise. Hence, we do not consider seasonality as
a separable component in the unobserved components methodology, which
is discussed elsewhere in this Handbook (see Harvey, 2004). Nevertheless,
such unobserved components models do enter our discussion, since they are
the basis of official seasonal adjustment. Our focus is then not on the sea-
sonal models themselves, but rather on how forecasts of seasonal time series
enter the adjustment process and, consequently, influence subsequent deci-
sions. Indeed, the discussion here reinforces our position that seasonal and
nonseasonal components are effectively inseparable.
Seasonality is the periodic and largely repetitive pattern that is observed

in time series data over the course of a year. As such, it is largely pre-
dictable. A generally agreed definition of seasonality in the context of eco-
nomics is provided by Hylleberg (1992, p.4) as follows: ‘Seasonality is the
systematic, although not necessarily regular, intra-year movement caused by
the changes of weather, the calendar, and timing of decisions, directly or in-
directly through the production and consumption decisions made by the agents
of the economy. These decisions are influenced by endowments, the expecta-
tions and preferences of the agents, and the production techniques available
in the economy’. This definition implies that seasonality is not necessarily
fixed over time, despite the fact that the calendar does not change. Thus, for
example, the impact of Christmas on consumption or of the summer holiday
period on production may evolve over time, despite the timing of Christmas
and the summer remaining fixed.
Intra-year observations on most economic time series are typically avail-
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able at quarterly or monthly frequencies, so our discussion concentrates on
these frequencies. We follow the literature in referring to each intra-year ob-
servation as relating to a “season”, by which we mean an individual month
or quarter. Financial time series are often observed at higher frequencies,
such as daily or hourly and methods analogous to those discussed here can
be applied when forecasting the patterns of financial time series that are as-
sociated with the calendar, such as days of the week or intradaily patterns.
However, specific issues arise in forecasting financial time series, which is not
the topic of the present chapter.
In common with much of the forecasting literature, our discussion assumes

that the forecaster aims to minimize the mean-square forecast error (MSFE).
As shown byWhittle (1963) in a linear model context, the optimal (minimum
MSFE) forecast is given by the expected value of the future observation yT+h
conditional on the information set, y1, ..., yT , available at time T, namelybyT+h|T = E(yT+h|y1, ..., yT ). (1)

However, the specific form of byT+h|T depends on the model assumed to be
the data generating process (DGP).
When considering the optimal forecast, the treatment of seasonality may

be expected to be especially important for short-run forecasts, more specif-
ically forecasts for horizons h that are less than one year. Denoting the
number of observations per year as S, then this points to h = 1, ..., S − 1
as being of particular interest. Since h = S is a one-year ahead forecast,
and seasonality is typically irrelevant over the horizon of a year, seasonality
may have a smaller role to play here than at shorter horizons. Seasonality
obviously once again comes into play for horizons h = S+1, ..., 2S−1 and at
subsequent horizons that do not correspond to an integral number of years.
Nevertheless, the role of seasonality should not automatically be ignored

for forecasts at horizons of an integral number of years. If seasonality is
changing, then a model that captures this changing seasonal pattern should
yield more accurate forecasts at these horizons than one that ignores it.
This chapter is structured as follows. In Section 2 we briefly introduce

the widely-used classes of univariate SARIMA and deterministic seasonality
models and show how these are used for forecasting purposes. Moreover, an
analysis on forecasting with misspecified seasonal models is presented. This
section also discusses Seasonal Cointegration, including the use of Seasonal
Cointegration Models for forecasting purposes, and presents the main con-
clusions of forecasting comparisons that have appeared in the literature. The
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idea of merging short- and long-run forecasts, put forward by Engle, Granger
and Hallman (1989), is also discussed.
Section 3 discusses the less familiar periodic models where parameters

change over the season; such models often arise from economic theories in a
seasonal context. We analyze forecasting with these models, including the
impact of neglecting periodic parameter variation and we discuss proposals
for more parsimonious periodic specifications that may improve forecast ac-
curacy. Periodic cointegration is also considered and an overview of the few
existing results of forecast performance of periodic models is presented.
In Section 4 we move to recent developments in modelling seasonal data,

specifically nonlinear seasonal models and models that account for seasonal-
ity in volatility. Nonlinear models include those of the threshold and Markov
switching types, where the focus is on capturing business cycle features in
addition to seasonality in the conditional mean. On the other hand, season-
ality in variance is important in finance; for instance, Martens, Chang and
Taylor (2002) show that explicitly modelling intraday seasonality improves
out-of-sample forecasting performance.
The final substantive section of this chapter turns to the interactions of

seasonality and seasonal adjustment, which is important due to the great
demand for seasonally adjusted data. This section demonstrates that such
adjustment is not separable from forecasting the seasonal series. Further,
we discuss the feedback from seasonal adjustment to seasonality that exists
when the actions of policymakers are considered.
In addition to general conclusions, Section 6 draws some implications

from the chapter that are relevant to the selection of a forecasting model in
a seasonal context.

2 Linear Models

Most empirical models applied when forecasting economic time series are
linear in parameters, for which the model can be written as

ySn+s = µSn+s + xSn+s (2)

φ (L)xSn+s = uSn+s (3)

where ySn+s (s = 1, ..., S, n = 0, ..., T − 1) represents the observable variable
in season (e.g. month or quarter) s of year n, the polynomial φ(L) contains
any unit roots in ySn+s and will be specified in the following subsections
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according to the model being discussed, L represents the conventional lag
operator, LkxSn+s ≡ xSn+s−k, k = 0, 1, ..., the driving shocks {uSn+s} of
(3) are assumed to follow an ARMA(p, q), 0 ≤ p, q < ∞ process, such as,
β(L)uSn+s = θ(L)εSn+s, where the roots of β(z) ≡ 1 −

Pp
j=1 βjz

j = 0 and
θ(z) ≡ 1 −Pq

j=1 θjz
j = 0 lie outside the unit circle, |z| = 1, with εSn+s ∼

iid(0, σ2). The term µSn+s represents a deterministic kernel which will be
assumed to be either i) a set of seasonal means, i.e.,

PS
s=1 δsDs,Sn+s where

Di,Sn+s is a dummy variable taking value 1 in season i and zero elsewhere, or
ii) a set of seasonals with a (nonseasonal) time trend, i.e.,

PS
s=1 δsDs,Sn+s +

τ (Sn+ s). In general, the second of these is more plausible for economic
time series, since it allows the underlying level of the series to trend over
time, whereas µSn+s = δs implies a constant underlying level, except for
seasonal variation.
When considering forecasts, we use T to denote the total (observed) sam-

ple size, with forecasts required for the future period T + h for h = 1, 2, ....
Linear seasonal forecasting models differ essentially in their assumptions

about the presence of unit roots in φ(L). The two most common forms
of seasonal models in empirical economics are seasonally integrated models
and models with deterministic seasonality. However, seasonal autoregressive
integrated moving average (SARIMA) models retain an important role as
a forecasting benchmark. Each of these three models and their associated
forecasts are discussed in a separate subsection below.

2.1 SARIMA Model

When working with nonstationary seasonal data, both annual changes and
the changes between adjacent seasons are important concepts. This moti-
vated Box and Jenkins (1970) to propose the SARIMA model

β (L) (1− L)(1− LS)ySn+s = θ(L)εSn+s (4)

which results from specifying φ(L) = ∆1∆S = (1 − L)(1 − LS) in (3). It
is worth noting that the imposition of ∆1∆S annihilates the deterministic
variables (seasonal means and time trend) of (2), so that these do not appear
in (4). The filter (1−LS) captures the tendency for the value of the series for
a particular season to be highly correlated with the value for the same season
a year earlier, while (1−L) can be motivated as capturing the nonstationary
nonseasonal stochastic component. This model is often found in textbooks,
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see for instance Brockwell and Davis (1991, pp. 320-326) and Harvey (1993,
pp. 134-137). Franses (1996, pp. 42-46) fits SARIMA models to various real
macroeconomic time series.
An important characteristic of model (4) is the imposition of unit roots at

all seasonal frequencies, as well as two unit roots at the zero frequency. This
occurs as (1−L)(1−LS) = (1−L)2(1+L+L2+ ...+LS−1), where (1−L)2

relates to the zero frequency while the moving annual sum (1 + L + L2 +
... + LS−1) implies unit roots at the seasonal frequencies (see the discussion
below for seasonally integrated models). However, the empirical literature
does not provide much evidence favoring the presence of two zero frequency
unit roots in observed time series (see e.g. Osborn, 1990 and Hylleberg,
Jørgensen and Sørensen, 1993), which suggests that the SARIMA model is
overdifferenced. Although these models may seem empirically implausible,
they can be successful in forecasting due to their parsimonious nature.
More specifically, the special case of (4) where

(1− L)(1− LS)ySn+s = (1− θ1L)(1− θSL
S)εSn+s (5)

with |θ1| < 1, |θS| < 1 retains an important position. This is known as
the airline model because Box and Jenkins (1970) found it appropriate for
monthly airline passenger data. Subsequently, the model has been shown to
provide robust forecasts for many observed seasonal time series, and hence
it often provides a benchmark for forecast accuracy comparisons.

2.1.1 Forecasting with SARIMA Models

Given that εT+h is assumed to be iid(0, σ2), and if all parameters are known,
the optimal (minimum MSFE) h-step ahead forecast of ∆1∆SyT+h for the
airline model (5) is, from (1),

∆1∆SbyT+h|T = −θ1E(εT+h−1|y1, ..., yT )− θSE(εT+h−S|y1, ..., yT )
+θ1θSE(εT+h−S−1|y1, ..., yT ), h ≥ 1 (6)

where E(εT+h−i|y1, ..., yT ) = 0 if h > i and E(εT+h−i|y1, ..., yT ) = εT+h−i if
h ≤ i. Corresponding expressions can be derived for forecasts from other
ARIMA models. In practice, of course, estimated parameters are used in
generating these forecast values.
Forecasts of yT+h for a SARIMA model can be obtained from the identity

E(yT+h|y1, ..., yT ) = E(yT+h−1|y1, ..., yT ) +E(yT+h−S|y1, ..., yT )
−E(yT+h−S−1|y1, ..., yT ) +∆1∆SbyT+h|T . (7)
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Clearly, E(yT+h−i|y1, ..., yT ) = yT+h−i for h ≤ i, and forecastsE(yT+h−i|y1, ..., yT )
for h > i required on the right-hand side of (7) can be generated recursively
for h = 1, 2, ...
In this linear model context, optimal forecasts of other linear trans-

formations of yT+h can be obtained from these; for example, ∆1byT+h =byT+h−byT+h−1 and ∆SbyT+h = byT+h−byT+h−S. In the special case of the airline
model, (6) implies that ∆1∆SbyT+h|T = 0 for h > S+1, and hence ∆1byT+h|T=
∆1byT+h−S|T and∆SbyT+h|T =∆SbyT+h−1|T at these horizons; see also Clements
and Hendry (1997) and Osborn (2002). Therefore, when applied to forecasts
for h > S + 1, the airline model delivers a “same change” forecast, both
when considered over a year and also over a single period compared to the
corresponding period of the previous year.

2.2 Seasonally Integrated Model

Stochastic seasonality can arise through the stationary ARMA components
β(L) and θ(L) of uSn+s in (3). The case of stationary seasonality is treated in
the next subsection, in conjunction with deterministic seasonality. Here we
examine nonstationary stochastic seasonality where φ(L) = 1− LS = ∆S in
(2). However, in contrast to the SARIMA model, the seasonally integrated
model imposes only a single unit root at the zero frequency. Application of
annual differencing to (2) yields

β(L)∆SySn+s = β(1)Sτ + θ(L)εSn+s (8)

since ∆SµSn+s = Sτ . Thus, the seasonally integrated process of (8) has a
common annual drift, β(1)Sτ, across seasons. Notice that the underlying
seasonal means µSn+s are not observed, since the seasonally varying compo-
nent

PS
s=1 δsDs,Sn+s is annihilated by seasonal (that is, annual) differencing.

In practical applications in economics, it is typically assumed that the sto-
chastic process is of the autoregressive form, so that θ(L) = 1.
As a result of the influential work of Box and Jenkins (1970), seasonal

differencing has been a popular approach when modelling and forecasting
seasonal time series. Note, however, that a time series on which seasonal
differencing (1− LS) needs to be applied to obtain stationarity has S roots
on the unit circle. This can be seen by factorizing (1 − LS) into its evenly
spaced roots, e±i(2πk/S) (k = 0, 1, ..., S−1) on the unit circle, that is, (1−LS)
= (1−L)(1+L)

QS∗
k=1(1−2 cos ηkL+L2) = (1−L)(1+L+ ...+LS−1) where
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S∗ = int[(S−1)/2], int[.] is the integer part of the expression in brackets and
ηk ∈ (0, π). The real positive unit root, +1, relates to the long-run or zero
frequency, and hence is often referred to as nonseasonal, while the remaining
(S − 1) roots represent seasonal unit roots that occur at frequencies ηk (the
unit root at frequency π is known as the Nyquist frequency root and the
complex roots as the harmonics). A seasonally integrated process ySn+s has
unbounded spectral density at each seasonal frequency due to the presence
of these unit roots.
From an economic point of view, nonstationary seasonality can be con-

troversial because the values over different seasons are not cointegrated and
hence can move in any direction in relation to each other, so that “winter can
become summer”. This appears to have been first noted by Osborn (1993).
Thus, the use of seasonal differences, as in (8) or through the multiplicative
filter as in (4), makes rather strong assumptions about the stochastic prop-
erties of the time series under analysis. It has, therefore, become common
practice to examine the nature of the stochastic seasonal properties of the
data via seasonal unit root tests. In particular, Hylleberg, Engle, Granger
and Yoo [HEGY] (1990) propose a test for the null hypothesis of seasonal
integration in quarterly data, which is a seasonal generalization of the Dickey-
Fuller [DF] (1979) test. The HEGY procedure has since been extended to
the monthly case by Beaulieu and Miron (1993) and Taylor (1998), and was
generalized to any periodicity S, by Smith and Taylor (1999).1

2.2.1 Testing for Seasonal Unit Roots

Following HEGY and Smith and Taylor (1999), inter alia, the regression-
based approach to testing for seasonal unit roots implied by φ(L) = 1− LS

can be considered in two stages. First, the OLS de-meaned series exSn+s =
ySn+s − µ̂Sn+s is obtained, where µ̂Sn+s is the fitted value from the OLS
regression of ySn+s on an appropriate set of deterministic variables. Provided
µSn+s is not estimated under an overly restrictive case, the resulting unit
root tests will be exact invariant to the parameters characterizing the mean
function µSn+s; see Burridge and Taylor (2001).

1Numerous other seasonal unit root tests have been developed; see inter alia Breitung
and Franses (1998), Busetti and Harvey (2000), Canova and Hansen (1995), Dickey, Hasza
and Fuller (1984), Ghysels, Lee and Noh (1994), Osborn, Chui, Smith and Birchenhall
(1988), Rodrigues (2002), Rodrigues and Taylor (2004a, 2004b) and Taylor (2002, 2003).
However, in practical applications, the HEGY test is still the most widely applied.
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Following Smith and Taylor (1999), φ(L) in (3) is then linearized around
the seasonal unit roots exp (±i2πk/S), k = 0, ..., [S/2], so that the auxiliary
regression equation

∆SexSn+s = π0ex0,Sn+s−1 + πS/2exS/2,Sn+s−1
+

S∗X
k=1

³
πα,kexαk,Sn+s−1 + πβ,kexβk,Sn+s−1´+ p∗X

j=1

β∗j∆SexSn+s−j + εSn+s (9)

is obtained. The regressors are linear transformations of exSn+s, namely
ex0,Sn+s ≡ S−1X

j=0

exSn+s−j, exS/2,Sn+s ≡ S−1X
j=0

cos[(j + 1)π]exSn+s−j,
exαk,Sn+s ≡ S−1X

j=0

cos[(j + 1)ωk]exSn+s−j, exβk,Sn+s ≡ − S−1X
j=0

sin[(j + 1)ωk]exSn+s−j,
(10)

with k = 1, ..., S∗, S∗ = int[(S − 1)/2]. For example, in the quarterly case,
S = 4, the relevant transformations are:

ex0,Sn+s ≡ (1 + L+ L2 + L3)exSn+s, ex2,Sn+s ≡ − ¡1− L+ L2 − L3
¢ exSn+s,

exα1,Sn+s ≡ ex1,Sn+s−1 = −L(1−L2)exSn+s, exβ1,Sn+s ≡ ex1,Sn+s = −(1−L2)exSn+s.
(11)

The regression (9) can be estimated over observations Sn + s = p∗ + S +
1, ..., T , with πS/2exS/2,Sn+s−1 omitted if S is odd. Note also that the autore-
gressive order p∗ used must be sufficiently large to satisfactorily account for
any autocorrelation, including any moving average component in (8).
The presence of unit roots implies exclusion restrictions for π0, πk,α, πk,β,

k = 1, ..., S∗ and πS/2 (S even), while the overall null hypothesis of seasonal
integration implies all these are zero. To test seasonal integration against sta-
tionarity at one or more of the seasonal or nonseasonal frequencies, HEGY
suggest using: t0 (left-sided) for the exclusion of ex0,Sn+s−1; tS/2 (left-sided) for
the exclusion of exS/2,Sn+s−1 (S even); Fk for the exclusion of both exαk,Sn+s−1
and exβk,Sn+s−1, k = 1, ..., S∗. These tests examine the potential unit roots
separately at each of the zero and seasonal frequencies, raising issues of the
significance level for the overall test (Dickey, 1993). Consequently, Ghysels,
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Lee and Noh (1994), also consider joint frequency OLS F -statistics. Specifi-
cally F1...[S/2] tests for the presence of all seasonal unit roots by testing for the
exclusion of exS/2,Sn+s−1 (S even) and {exαk,Sn+s−1,exβk,Sn+s−1}S∗k=1, while F0...[S/2]
examines the overall null hypothesis of seasonal integration, by testing for
the exclusion of ex0,Sn+s−1, exS/2,Sn+s−1 (S even), and {exαk,Sn+s−1,exβk,Sn+s−1}S∗k=1
in (9). These joint tests are further considered by Taylor (1998) and Smith
and Taylor (1998, 1999).
Empirical evidence regarding seasonal integration in quarterly data is

obtained by (among others) HEGY, Lee and Siklos (1991), Hylleberg, Jør-
gensen and Sørensen (1993), Mills and Mills (1992), Osborn (1990) and Otto
and Wirjanto (1990). The monthly case has been examined relatively in-
frequently, but relevant studies include Beaulieu and Miron (1993), Franses
(1991) and Rodrigues and Osborn (1999). Overall, however, there is little
evidence that the seasonal properties of the data justify application of the ∆s

filter for economic time series. Despite this, Clements and Hendry (1997) ar-
gue that the seasonally integrated model is useful for forecasting, because the
seasonal differencing filter makes the forecasts robust to structural breaks in
seasonality.2 On the other hand, Kawasaki and Franses (2004) find that im-
posing individual seasonal unit roots on the basis of model selection criteria
generally improves one-step ahead forecasts for monthly industrial produc-
tion in OECD countries.

2.2.2 Forecasting with Seasonally Integrated Models

As they are linear, forecasts from seasonally integrated models are generated
in an analogous way to SARIMAmodels. Assuming all parameters are known
and there is no moving average component (i.e. θ(L) = 1), the optimal
forecast is given by

∆SbyT+h|T = β(1)Sτ +

pX
i=1

βiE(∆SyT+h−i|y1, ..., yT )

= β(1)Sτ +

pX
i=1

βi∆SbyT+h−i|T (12)

2Along slightly different lines it is also worth noting that Ghysels and Perron (1996)
show that traditional seasonal adjustment filters also mask structural breaks in nonseasonal
patterns.
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where ∆SbyT+h−i|T = byT+h−i|T − byT+h−i−S|T and byT+h−S|T = yT+h−S for h−
S ≤ 0, with forecasts generated recursively for h = 1, 2, ....
As noted by Ghysels and Osborn (2001) and Osborn (2002, p.414), fore-

casts for other transformations can be easily obtained. For instance, the level
and first difference forecasts can be derived as

byT+h|T = ∆SbyT+h|T + byT−S+h|T (13)

and

∆1byT+h|T = byT+h|T − byT+h−1|T
= ∆SbyT+h − (∆1byT+h−1 +∆1byT+h−2 +∆1byT+h−3), (14)

respectively.

2.3 Deterministic Seasonality Model

Seasonality has often been perceived as a phenomenon that generates peaks
and troughs within a particular season, year after year. This type of effect
is well described by deterministic variables leading to what is conventionally
referred to as deterministic seasonality. Thus, models frequently encountered
in applied economics often explicitly allow for seasonal means. Assuming the
stochastic component xSn+s of ySn+s is stationary, then φ(L) = 1 and (2)/(3)
implies

β(L)ySn+s =
SX
i=1

β(L)µSn+s + θ(L)εSn+s (15)

where εSn+s is again a zero mean white noise process. For simplicity of
exposition, and in line with usual empirical practice, we assume the absence
of moving average components, i.e. θ(L) = 1. Note, however, that stationary
stochastic seasonality may also enter through β(L).
Although the model in (15) assumes a stationary stochastic process, it

is common, for most economic time series, to find evidence favouring a zero
frequency unit root. Then φ(L) = 1 − L plays a role and the deterministic
seasonality model is

β(L)∆1ySn+s =
SX
s=1

β(L)∆1µSn+s + εSn+s (16)
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where ∆1µSn+s = µSn+s−µSn+s−1, so that (only) the change in the seasonal
mean is identified.
Seasonal dummies are frequently employed in empirical work within a

linear regression framework to represent seasonal effects (see, for example,
Barsky and Miron, 1989, Beaulieu, Mackie-Mason and Miron, 1992 and
Miron, 1996). One advantage of considering seasonality as deterministic
lies in the simplicity with which it can be handled. However, consideration
should be given to various potential problems that can occur when treating a
seasonal pattern as purely deterministic. Indeed, spurious deterministic sea-
sonality emerges when seasonal unit roots present in the data are neglected
(Abeysinghe, 1991, 1994, Franses, Hylleberg and Lee, 1995, and Lopes, 1999).
On the other hand, however, Ghysels et al. (1993) and Rodrigues (1999) es-
tablish that, for some purposes, (15) or (16) can represent a valid approach
even with seasonally integrated data, provided the model is adequately aug-
mented to take account of any seasonal unit roots potentially present in the
data.
The core of the deterministic seasonality model is the seasonal mean ef-

fects, namely µSn+s and ∆1µSn+s , for (15) and (16) respectively. However,
there are a number of (equivalent) different ways that these may be repre-
sented, whose usefulness depends on the context. Therefore, we discuss this
first. For simplicity, we assume the form of (15) is used and refer to µSn+s.
However, corresponding comments apply to ∆1µSn+s in (16).

2.3.1 Representations of the Seasonal Mean

When µSn+s =
PS

s=1 δsDs,Sn+s, the mean relating to each season is constant
over time, with µSn+s = µs = δs (n = 1, 2, ..., s = 1, 2, ..., S). This is a con-
ditional mean, in the sense that µSn+s = E[ySn+s |t = Sn+ s ] depends on
the season s. Since all seasons appear with the same frequency over a year,
the corresponding unconditional mean is E(ySn+s) = µ = (1/S)

PS
s=1 µs.

Although binary seasonal dummy variables, Ds,Sn+s, are often used to cap-
ture the seasonal means, this form has the disadvantage of not separately
identifying the unconditional mean of the series.
Equivalently to the conventional representation based on Ds,Sn+s, we can

identify the unconditional mean through the representation

µSn+s = µ+
SX
s=1

δ∗sD
∗
s,Sn+s (17)
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where the dummy variables D∗
s,Sn+s are constrained to sum to zero over the

year,
PS

s=1D
∗
s,Sn+s = 0. To avoid exact multicollinearity, only S − 1 such

dummy variables can be included, together with the intercept, in a regres-
sion context. The constraint that these variables sum to zero then implies the
parameter restriction

PS
s=1 δ

∗
s = 0, from which the coefficient on the omitted

dummy variable can be retrieved. One specific form of such dummies is the
so-called centered seasonal dummy variables, which are defined as D∗

s,Sn+s =

Ds,Sn+s − (1/S)
PS

s=1Ds,Sn+s.
3 Nevertheless, care in interpretation is neces-

sary in (17), as the interpretation of δ∗s depends on the definition of D
∗
s,Sn+s.

For example, the coefficients of D∗
s,Sn+s = Ds,Sn+s − (1/S)

PS
s=1Ds,Sn+s do

not have a straightforward seasonal mean deviation interpretation.
A specific form sometimes used for (17) relates the dummy variables to

the seasonal frequencies considered above for seasonally integrated models,
resulting in the trigonometric representation (see, for example, Harvey, 1993,
1994, or Ghysels and Osborn, 2001)

µSn+s = µ+
S∗∗X
j=1

¡
γj cosλjSn+s + γ∗j sinλjSn+s

¢
(18)

where S∗∗ = int[S/2], and λjt =
2πj
S
, j = 1, ..., [S/2]. When S is even, the

sine term is dropped for j = S/2; the number of trigonometric coefficients
(γj, γ

∗
j) is always S − 1.

The above comments carry over to the case when a time trend is included.
For example, the use of dummies which are restricted to sum to zero with a
(constant) trend implies that we can write

µSn+s = µ+ τ (Sn+ s) +
SX
s=1

δ∗sD
∗
s,Sn+s (19)

with unconditional overall mean E(ySn+s) = µ+ τ (Sn+ s).

3These centered seasonal dummy variables are often offered as an alternative repre-
sentation to conventional zero/one dummies in time series computer packages, including
RATS and PcFiml.
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2.3.2 Forecasting with Deterministic Seasonal Models

Due to the prevalence of nonseasonal unit roots in economic time series,
consider the model of (16), which has forecast function for byT+h|T given by
byT+h|T = byT+h−1|T + β(1)τ +

SX
i=1

β(L)∆1δiDiT+h +

pX
j=1

βj∆1byT+h−j|T (20)

when µSn+s =
PS

s=1 δsDs,Sn+s + τ (Sn+ s) , and, as above, byT+h−i|T =
yT+h−i|T for h < i. Once again, forecasts are calculated recursively for
h = 1, 2, ... and since the model is linear, forecasts of other linear functions,
such as ∆SbyT+h|T can be obtained using forecast values from (20).
With β(L) = 1 and assuming T = NS for simplicity, the forecast function

for yT+h obtained from (20) is

byT+h|T = yT + hτ +
hX
i=1

(δi − δi−1). (21)

When h is a multiple of S, it is easy to see that deterministic seasonality
becomes irrelevant in this expression, because the change in a purely deter-
ministic seasonal pattern over a year is necessarily zero.

2.4 Forecasting with Misspecified Seasonal Models

From the above discussion, it is clear that various linear models have been
proposed, and are widely used, to forecast seasonal time series. In this sub-
section we consider the implications of using each of the three forecasting
models presented above when the true DGP is a seasonal random walk or a
deterministic seasonal model. These DGPs are considered because they are
the simplest processes which encapsulate the key notions of nonstationary
stochastic seasonality and deterministic seasonality. We first present some
analytical results for forecasting with misspecified models, followed by the
results of a Monte Carlo analysis.

2.4.1 Seasonal Random Walk

The seasonal random walk DGP is

ySn+s = yS(n−1)+s + εSn+s, εSn+s ∼ iid(0, σ2). (22)
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When this seasonally integrated model is correctly specified, the one-step
ahead MSFE is E

£
(yT+1 − byT+1|T )2¤ = E [(yT+1−S + εT+1 − yT+1−S)2] = σ2.

Consider, however, applying the deterministic seasonality model (16),
where the zero frequency nonstationarity is recognized and modelling is un-
dertaken after first differencing. The relevant DGP (22) has no trend, and
hence we specify τ = 0. Assume a researcher naively applies the model
∆1ySn+s=

PS
i=1∆1δiDi,Sn+s+ υSn+s with no augmentation, but (wrongly)

assumes υ to be iid. Due to the presence of nonstationary stochastic sea-
sonality, the estimated dummy variable coefficients do not asymptotically
converge to constants. Although analytical results do not appear to have
been derived for the resulting forecasts, we anticipate that the MSFE will
converge to a degenerate distribution due to neglected nonstationarity.
On the other hand, if the dynamics are adequately augmented, then serial

correlation is accounted for and the consistency of the parameter estimates
is guaranteed. More specifically, the DGP (22) can be written as,

∆1ySn+s = −∆1ySn+s−1 −∆1ySn+s−2 − ...−∆1ySn+s+1−S + εSn+s (23)

and, since these autoregressive coefficients are estimated consistently, the
one-step ahead forecasts are asymptotically given by ∆1byT+1|T = −∆1yT −
∆1yT−1− ...−∆1yT−S+2. Therefore, augmenting with S−1 lags of the depen-
dent variable (see Ghysels et al., 1993 and Rodrigues, 1999) asymptotically
implies E

£
(yT+1 − byT+1|T )2¤ = E(yT+1−S+εT+1− (yT −∆1yT −∆1yT−1− . . .

−∆1yT−S+2))2] = E [(yT+1−S + εT+1 − yT+1−S)2] = σ2. If fewer than S − 1
lags of the dependent variable (∆1ySn+s) are used, then neglected nonsta-
tionarity remains and the MSFE is anticipated to be degenerate, as in the
naive case.
Turning to the SARIMA model, note that the DGP (22) can be written

as
∆1∆SySn+s = ∆1εSn+s = υSn+s (24)

where υSn+s here is a noninvertible moving average process, with variance
E[(υSn+s)

2] = 2σ2. Again supposing that the naive forecaster assumes υSn+s
is iid , then, using (7),

E
£
(yT+1 − byT+1|T )2¤ = E

£
((yT+1−S + εT+1)−

¡
yT+1−S +∆SyT +∆1∆SbyT+1|T ¢)2¤

= E
£
(εT+1 −∆SyT )

2
¤

= E
£
(εT+1 − εT )

2
¤
= 2σ2
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where our naive forecaster uses ∆1∆SbyT+1|T = 0 based on iid υSn+s. This
represents an extreme case, since in practice we anticipate that some account
would be taken of the autocorrelation inherent in (24). Nevertheless, it is
indicative of potential forecasting problems from using an overdifferenced
model, which implies the presence of noninvertible moving average unit roots
that cannot be well approximated by finite order AR polynomials.

2.4.2 Deterministic Seasonal AR(1)

Consider now a DGP of a random walk with deterministic seasonal effects,
which is

ySn+s = ySn+s−1 +
SX
i=1

δ∗iDi,Sn+s + εSn+s (25)

where δ∗i = δi − δi−1 and εSn+s ∼ iid(0, σ2). As usual, the one-step ahead
MSFE is E

£
(yT+1 − byT+1|T )2¤ = σ2 when byT+1 is forecast from the correctly

specified model (25), so that byT+1|T = yT +
PS

i=1 δ
∗
iDi,T+1.

If the seasonally integrated model (12) is adopted for forecasting, appli-
cation of the differencing filter eliminates the deterministic seasonality and
induces artificial moving average autocorrelation, since

∆SySn+s = δ + S(L)εSn+s = δ + υSn+s (26)

where δ =
PS

i=1 δ
∗
i , S(L) = 1 + L + ... + LS−1 and here the disturbance

υSn+s = S(L)εSn+s is a noninvertible moving average process, with moving
average unit roots at each of the seasonal frequencies. However, even if this
autocorrelation is not accounted for, δ in (26) can be consistently estimated.
Although we would again expect a forecaster to recognize the presence of
autocorrelation, the noninvertible moving average process cannot be approx-
imated through the usual practice of autoregressive augmentation. Hence,
as an extreme case, we again examine the consequences of a naive researcher
assuming υSn+s to be iid. Now, using the representation considered in (13)
to derive the level forecast from a seasonally integrated model, it follows that

E
¡
yT+1 − byT+1|T ¢2 = E

"
(yT +

SX
i=1

δ∗iDi,T+1 + εT+1)−
¡
yT+1−S +∆SbyT+1|T ¢

#2
with yT+1−S = yT−S +

PS
i=1 δ

∗
iDi,T+1−S + εT+1−S. Note that although the

seasonally integrated model apparently makes no allowance for the deter-
ministic seasonality in the DGP, this deterministic seasonality is also present
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in the past observation yT+1−S on which the forecast is based. Hence, since
Di,T+1 = Di,T+1−S, the deterministic seasonality cancels between yT and
yT−S, so that

E
h¡
yT+1 − byT+1|T ¢2i = E[(yT + εT+1)− (yT−S + εT+1−S)]2

= E
£
(yT − yT−S − δ + εT+1 − εT+1−S)

2¤
= E[((εT + εT−1 + ...+ εT−S+1) + εT+1 − εT+1−S)

2]

= E
£
(εT+1 + εT + ...+ εT−S+2)2

¤
= Sσ2

as, from (26), the naive forecaster uses ∆SbyT+1 = δ. The result also uses (26)
to substitute for yT −yT−S. Thus, as a consequence of seasonal overdifferenc-
ing, the MSFE increases proportionally to the periodicity of the data. This
MSFE effect can, however, be reduced if the overdifferencing is (partially)
accounted for through augmentation.
Now consider the use of the SARIMA model when the data is in fact

generated by (25). Although

∆1∆SySn+s = ∆SεSn+s (27)

we again consider the naive forecaster who assumes υSn+s = ∆SεSn+s is iid.
Using (7), and noting from (27) that the forecaster uses ∆1∆SbyT+1 = 0, it
follows that

E
£
(yT+1 − byT+1|T )2¤ = E

ÃyT + SX
i=1

δ∗iDi,T+1 + εT+1 − yT+1−S +∆SyT

!2
= E

£
(εT+1 − εT+1−S)

2¤ = 2σ2.
Once again, the deterministic seasonal pattern is taken into account indi-
rectly, through the implicit dependence of the forecast on the past observed
value yT+1−S that incorporates the deterministic seasonal effects. Curiously,
although the degree of overdifferencing is higher in the SARIMA than in the
seasonally integrated model, the MSFE is smaller in the former case.
As already noted, our analysis here does not take account of either aug-

mentation or parameter estimation and hence these results or misspecified
models may be considered “worst case” scenarios. It is also worth noting
that when seasonally integrated or SARIMA models are used for forecasting
a deterministic seasonality DGP, then fewer parameters might be estimated
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in practice than required in the true DGP. This greater parsimony may out-
weigh the advantages of using the correct specification and hence it is plau-
sible that a misspecified model could, in particular cases and in moderate or
small samples, yield lower MSFE. These issues are investigated in the next
subsection through a Monte Carlo analysis.

2.4.3 Monte Carlo Analysis

This Monte Carlo analysis complements the results of the previous subsec-
tion, allowing for augmentation and estimation uncertainty. In all exper-
iments, 10000 replications are used with a maximum lag order considered
of pmax = 8, the lag selection based on Ng and Perron (1995). Forecasts
are performed for horizons h = 1, ..., 8, in samples of T = 100, 200 and 400
observations. The tables below report results for h = 1 and h = 8.
Forecasts are generated using the following three types of models:

M1 : ∆1∆4y4n+s =
p1P
i=1

φ1,i∆1∆4y4n+s−i + ε1,4n+s

M2 : ∆4y4n+s =
p2P
i=1

φ2,i∆4y4n+s−i + ε2,4n+s

M3 : ∆1y4n+s =
4P

k=1

δkDk,4n+s +
p3P
i=1

φ3,i∆1y4n+s−i + ε3,4n+s

The first DGP is the seasonal autoregressive process

ySn+s = ρyS(n−1)+s + εSn+s (28)

where εSn+s ∼ niid(0, 1) and ρ = {1, 0.9, 0.8} .
Panels (a) to (c) of Table 1 indicate that as one moves from ρ = 1

into the stationarity region (ρ = 0.9, ρ = 0.8) the one-step ahead (h = 1)
empirical MSFE deteriorates for all forecasting models. For h = 8, a similar
phenomenon occurs for M1 and M2, however M3 shows some improvement.
This behavior is presumably related to the greater degree of overdifferencing
imposed by models M1 and M2, compared to M3.
When ρ = 1, panel (a) indicates that model M2 (which considers the

correct degree of differencing) yields lower MSFE for both h = 1 and h = 8
than M1 and M3. This advantage for M2 carries over in relation to M1 even
when ρ < 1. However, in panel (c), as one moves further into the stationarity
region (ρ = 0.8) the performance of M3 is superior to M2 for sample sizes
T = 200 and T = 400.
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Our simple analysis of the previous subsection shows thatM3 should (as-
ymptotically and with augmentation) yield the same forecasts as M2 for the
seasonal random walk of panel (a), but less accurate forecasts are antici-
pated from M1 in this case. Our Monte Carlo results verify the practical
impact of that analysis. Interestingly, the autoregressive order selected re-
mains relatively stable across the three autoregressive scenarios considered
(ρ = 1, 0.9, 0.8). Indeed, in this and other respects, the "close to nonstation-
ary" DGPs have similar forecast implications as the nonstationary random
walk.
The second DGP considered in this simulation is the first order autore-

gressive process with deterministic seasonality,

ySn+s =
SX
i=1

δiDi,Sn+s + xSn+s, (29)

xSn+s = ρxSn+s−1 + εSn+s (30)

where εSn+s ∼ niid(0, 1), ρ = {1, 0.9, 0.8} and (δ1, δ2, δ3, δ4) = (−1, 1,−1, 1).
Here M3 provides the correct DGP when ρ = 1.
Table 2 shows that (as anticipated) M3 outperforms M1 and M2 when

ρ = 1, and this carries over to ρ = 0.9, 0.8 when h = 1. It is also unsurprising
that M3 yields lowest MSFE for h = 8 when this is the true DGP in panel
(a). Although our previous analysis indicates that M2 should perform worse
than M1 in this case when the models are not augmented, in practice these
models have similar performance when h = 1 and M2 is superior at h = 8.
The superiority of M3 also applies when ρ = 0.9. However, despite greater
overdifferencing, M2 outperforms M3 at h = 8 when ρ = 0.8. In this case,
the estimation of additional parameters in M3 appears to have an adverse
effect on forecast accuracy, compared withM2. In this context, note that the
number of lags used in M3 is increasing as one moves into the stationarity
region.
One striking finding of the results in Tables 1 and 2 is that M2 and M3

have similar forecast performance at the longer forecast horizon of h = 8,
or two years. In this sense, the specification of seasonality as being of the
nonstationary stochastic or deterministic form may not be of great concern
when forecasting. However, the two zero frequency unit roots imposed by the
SARIMA model M1 (and not present in the DGP) leads to forecasts at this
non-seasonal horizon which are substantially worse than those of the other
two models.
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At one-step-ahead horizon, if it is unclear whether the process has zero
and seasonal unit roots, our results indicate that the use of the deterministic
seasonality model with augmentation may be a more flexible tool than the
seasonally integrated model.

2.5 Seasonal Cointegration

The univariate models addressed in the earlier subsections are often adequate
when short-run forecasts are required. However, multivariate models allow
additional information to be utilized and may be expected to improve forecast
accuracy. In the context of nonstationary economic variables, cointegration
restrictions can be particularly important. There is a vast literature on the
forecasting performance of cointegrated models, including Ahn and Reinsel
(1994), Clements and Hendry (1993), Lin and Tsay (1996) and Christoffersen
and Diebold (1997). The last of these, in particular, shows that the incor-
poration of cointegration restrictions generally leads to improved long-run
forecasts.
Despite the vast literature concerning cointegration, that relating specif-

ically to the seasonal context is very limited. This is partly explained by
the lack of evidence for the presence of the full set of seasonal unit roots in
economic time series. If seasonality is of the deterministic form, with non-
stationarity confined to the zero frequency, then conventional cointegration
analysis is applicable, provided that seasonal dummy variables are included
where appropriate. Nevertheless, seasonal differencing is sometimes required
and it is important to investigate whether cointegration applies also to the
seasonal frequency, as well as to the conventional long-run (at the zero fre-
quency). When seasonal cointegration applies, we again anticipate that the
use of these restrictions should improve forecast performance.

2.5.1 Notion of Seasonal Cointegration

To introduce the concept, now let ySn+s be a vector of seasonally integrated
time series. For expositional purposes, consider the quarterly (S = 4) case

∆4y4n+s = η4n+s (31)

where η4n+s is a zero mean stationary and invertible vector stochastic process.
Given the vector of seasonally integrated time series, linear combinations
may exist that cancel out corresponding seasonal (as well as zero frequency)
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unit roots. The concept of seasonal cointegration is formalized by Engle,
Granger and Hallman (1989), Hylleberg, Engle, Granger and Yoo [HEGY]
(1990) and Engle, Granger, Hylleberg and Lee (1993). Based on HEGY, the
error-correction representation of a quarterly seasonally cointegrated vector
is4

β(L)∆4y4n+s = α0b
0
0y0,4n+s−1 + α11b

0
11y1,4n+s−1 + α12b

0
12y1,4n+s−2

+α2b
0
2y2,4n+s−1 + ε4n+s (32)

where ε4n+s is an iid process, with covariance matrix E[ε4n+sε
0
4n+s] = Σ

and each element of the vector yi,4n+s (i = 0, 1, 2) is defined through the
transformations of (11). Since each element of y4n+s exhibits nonstationarity
at the zero and the two seasonal frequencies (π, π/2), cointegration may
apply at each of these frequencies. Indeed, in general, the rank as well as the
coefficients of the cointegrating vectors may differ over these frequencies.
The matrix b0 of (32) contains the linear combinations that eliminate

the zero frequency unit root (+1) from the individual I(1) series of y0,4n+s.
Similarly, b2 cancels the Nyquist frequency unit root (−1), i.e. the nonsta-
tionary biannual cycle present in y2,4n+s. The coefficient matrices α0 and α2
represent the adjustment coefficients for the variables of the system to the
cointegrating relationships at the zero and biannual frequencies, respectively.
For the annual cycle corresponding to the complex pair of unit roots ±i, the
situation is more complex, leading to two terms in (32). The fact that the
cointegrating relations (b012, b

0
11) and adjustment matrices (α12, α11) relate to

two lags of y1,4n+s is called polynomial cointegration by Lee (1992).
Residual-based tests for the null hypothesis of no seasonal cointegration

are discussed by Engle, Granger, Hylleberg and Lee (1993) in the setup
of single equation regression models, while Hassler and Rodrigues (2004)
provide an empirically more appealing approach. Lee (1992) developed the
first system approach to testing for seasonal cointegration, extending the
analysis of Johansen (1988) to this case. However, Lee assumes α11 b011 = 0,
which Johansen and Schaumburg (1999) argue is restrictive and they provide
a more general treatment.

4The generalization for seasonality at any frequency is discussed in Johansen and
Schaumburg (1999).
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2.5.2 Cointegration and Seasonal Cointegration

Other representations may shed light on issues associated with forecasting
and seasonal cointegration. Using definitions (11), (32) can be rewritten as

β(L)∆4y4n+s = Π1y4n+s−1+Π2y4n+s−2+Π3y4n+s−3+Π4y4(n−1)+s+ε4n+s (33)

where the matrices Πi (i = 1, 2, 3, 4) are given by

Π1 = α0b
0
0 − α2b

0
2 − α11b

0
11, Π2 = α0b

0
0 + α2b

0
2 − α12b

0
12

Π3 = α0b
0
0 − α2b

0
2 + α11b

0
11, Π4 = α0b

0
0 + α2b

0
2 + α12b

0.
12. (34)

Thus, seasonal cointegration implies that the annual change adjusts to y4n+s−i
at lags i = 1, 2, 3, 4, with (in general) distinct coefficient matrices at each lag;
see also Osborn (1993).
Since seasonal cointegration is considered relatively infrequently, it is nat-

ural to ask what are the implications of undertaking a conventional cointe-
gration analysis in the presence of seasonal cointegration. From (33) we can
write, assuming β(L) = 1 for simplicity, that,

∆1y4n+s = (Π1 − I) y4n+s−1 +Π2 y4n+s−2 +Π3 y4n+s−3 + (Π4 + I)y4n+s−4 + ε4n+s

= (Π1 +Π2 +Π3 +Π4)y4n+s−1 − (Π2 +Π3 +Π4 + I)∆1y4n+s−1+

− (Π3 +Π4 + I)∆1y4n+s−2 + (Π4 + I)∆1y4n+s−3 + ε4n+s. (35)

Thus, (provided that the ECM is adequately augmented with at least three
lags of the vector of first differences), a conventional cointegration analysis
implies (35), where the matrix coefficient on the lagged level y4n+s−1 is Π1+
Π2 +Π3 +Π4. However, it is easy to see from (34) that

Π1 +Π2 +Π3 +Π4 = 4α0b
0
0, (36)

so that a conventional cointegration analysis should uncover the zero fre-
quency cointegrating relationships. Although the cointegrating relationships
at seasonal frequencies do not explicitly enter the cointegration considered
in (36), these will be reflected in the coefficients for the lagged first differ-
ence variables, as implied by (35). This generalizes the univariate result
of Ghysels, Lee and Noh (1994), that a conventional Dickey-Fuller test re-
mains applicable in the context of seasonal unit roots, provided that the test
regression is sufficiently augmented.
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2.5.3 Forecasting with Seasonal Cointegration Models

The handling of deterministic components in seasonal cointegration is dis-
cussed by Franses and Kunst (1999). In particular, the seasonal dummy vari-
able coefficients need to be restricted to the (seasonal) cointegrating space if
seasonal trends are not to be induced in the forecast series.
However, to focus on seasonal cointegration, we continue to ignore deter-

ministic terms. The optimal forecast in a seasonally cointegrated system can
then be obtained from (33) as

∆4byT+h|T = Π1byT+h−1|T +Π2byT+h−2|T +Π3 byT+h−3|T +Π4 byT+h−4|T
+

pX
i=1

βi∆4byT+h−i|T (37)

where, analogously to the univariate case, byT+h|T = E[yT+h |y1, ..., yT ] =byT+h−4|T + ∆4byT+h|T is computed recursively for h = 1, 2, .... As this is a
linear system, optimal forecasts of another linear transformation, such as
∆1byT+h, are obtained by applying the required linear transformation to the
forecasts generated by (37).
For one-step ahead forecasts (h = 1), it is straightforward to see that the

matrix MSFE for this system is

E[(yT+1 − byT+1|T )(yT+1 − byT+1|T )0] = E[εT+1ε
0
T+1] = Σ.

To consider longer horizons, we take the case of h = 2 and assume β(L) =
1 for simplicity. Forecasting from the seasonally cointegrated system then
implies

E[(yT+2 − byT+2|T )(yT+2 − byT+2|T )0]
= E[

©
Π1(yT+1 − byT+1|T ) + εT+2

ª©
Π1(yT+1 − byT+1|T ) + εT+2

ª0
]

= Π1ΣΠ01 + Σ (38)

with Π1 = (α0b
0
0 − α11 b

0
11 − α2 b

0
2). Therefore, cointegration at the seasonal

frequencies plays a role here, in addition to cointegration at the zero fre-
quency.
If the conventional ECM representation (35) is used, then (allowing for the

augmentation required even when β(L) = 1) identical expressions to those
just obtained result for the matrix MSFE, due to the equivalence established
above between the seasonal and the conventional ECM representations.
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When forecasting seasonal time series, and following the seminal paper
of Davidson, Hendry, Srba and Yeo (1978), a common approach is to model
the annual differences with cointegration applied at the annual lag. Such a
model is

β∗(L)∆4y4n+s = Πy4(n−1)+s + v4n+s (39)

where β∗(L) is a polynomial in L and v4n+s is assumed to be vector white
noise. If the DGP is given by the seasonally cointegrated model, rearranging
(23) yields

β(L)∆4y4n+s = (Π1 +Π2 +Π3 +Π4)y4(n−1)+s +Π1∆1y4n+s−1
+(Π1 +Π2)∆1y4n+s−2 + (Π1
+Π2 +Π3)∆1y4n+s−3 + ε4n+s. (40)

As with conventional cointegration modelling in first differences, the long
run zero frequency cointegrating relationships may be uncovered by such an
analysis, throughΠ1+Π2+Π3+Π4 = Π = 4α0b

0
0. However, the autoregressive

augmentation in ∆4y4n+s adopted in (39) implies overdifferencing compared
with the first difference terms on the right-hand side of (40), and hence
is unlikely (in general) to provide a good approximation to the coefficients
of ∆1y4n+s−i of (40). Indeed, the model based on (39) is valid only when
Π1 = Π2 = Π3 = 0.
Therefore, if a researcher wishes to avoid issues concerned with seasonal

cointegration when such cointegration may be present, it is preferable to use
a conventional VECM (with sufficient augmentation) than to consider an
annual difference specification such as (39).

2.5.4 Forecast Comparisons

Few papers examine forecasts for seasonally cointegrated models for observed
economic time series against the obvious competitors of conventional vector
error-correction models and VAR models in first differences. In one such
comparison, Kunst (1993) finds that accounting for seasonal cointegration
generally provides limited improvements, whereas Reimers (1997) finds sea-
sonal cointegration models produce relatively more accurate forecasts when
longer forecast horizons are considered. Kunst and Franses (1998) show that
restricting seasonal dummies in seasonal cointegration yields better forecasts
in most cases they consider, which is confirmed by Löf and Lyhagen (2002).
From a Monte Carlo study, Lyhagen and Löf (2003) conclude that use of the
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seasonal cointegration model provides a more robust forecast performance
than models based on pre-testing for unit roots at the zero and seasonal
frequencies.
Our review above of cointegration and seasonal cointegration suggests

that, in the presence of seasonal cointegration, conventional cointegration
modelling will uncover zero frequency cointegration. Since seasonality is es-
sentially an intra-year phenomenon, it may be anticipated that zero frequency
cointegration may be relatively more important than seasonal cointegration
at longer forecast horizons. This may explain the findings of Kunst (1993)
and Reimers (1997) that conventional cointegration models often forecast
relatively well in comparison with seasonal cointegration. Our analysis also
suggests that a model based on (40) should not, in general, be used for fore-
casting, since it does not allow for the possible presence of cointegration at
the seasonal frequencies.

2.6 Merging Short- and Long-run Forecasts

In many practical contexts, distinct models are used to generate forecasts at
long and short horizons. Indeed, long-run models may incorporate factors
such as technical progress, which are largely irrelevant when forecasting at
a horizon of (say) less than a year. In an interesting paper Engle, Granger
and Hallman (1989) discuss merging short- and long-run forecasting mod-
els. They suggest that when considering a (single) variable ySn+s, one can
think of models generating the short- and long-run forecasts as approximating
different parts of the DGP, and hence these models may have different spec-
ifications with non-overlapping sets of explanatory variables. For instance,
if ySn+s is monthly demand for electricity (as considered by Engle, Granger
and Hallman), the short-run model may concentrate on rapidly changing
variables, including strongly seasonal ones (e.g. temperature and weather
variables), whereas the long-run model assimilates slowly moving variables,
such as population characteristics, appliance stock and efficiencies or local
output. To employ all the variables in the short-run model is too complex and
the long-run explanatory variables may not be significant when estimation is
by minimization of the one-month forecast variance.
Following Engle, Granger and Hallman (1989), consider ySn+s ∼ I(1)

which is cointegrated with variables of the I(1) vector xSn+s such that zSn+s =
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ySn+s − α01xSn+s is stationary. The true DGP is

∆1ySn+s = δ − γzSn+s−1 + β0wSn+s + εSn+s, (41)

where wSn+s is a vector of I(0) variables that can include lags of ∆1ySn+s.
Three forecasting models can be considered: the complete true model given
by (41), the long-run forecasting model of ySn+s = α0+α01xSn+s+ ηSn+s and
the short-run forecasting model that omits the error-correction term zSn+s−1.
For convenience, we assume that annual forecasts are produced from the long-
run model, while forecasts of seasonal (e.g. monthly or quarterly) values are
produced by the short-run model.
If all data are available at a seasonal periodicity and the DGP is known,

one-step forecasts can be found using (41) as

byT+1|T = δ − (1 + γ)yT + γα01xT + β0 bwT+1|T . (42)

Given forecasts of x and w, multi-step forecasts byT+h|T can be obtained by
iterating (42) to the required horizon. For forecasting a particular season,
the long-run forecasts of wSn+s are constants (their mean for that season)
and the DGP implies the long-run forecast

byT+h|T ≈ α01bxT+h|T + c (43)

where c is a (seasonally varying) constant. Annual forecasts from (43) will
be produced by aggregating over seasons, which removes seasonal effects
in c. Consequently, the long-run forecasting model should produce annual
forecasts similar to those from (43) using the DGP. Similarly, although the
short-run forecasting model omits the error-correction term zSn+s, it will
be anticipated to produce similar forecasts to (42), since season-to-season
fluctuations will dominate short-run forecasts.
Due to the unlikely availability of long-run data at the seasonal frequency,

the complete model (41) is unattainable in practice. Essentially, Engle,
Granger and Hallman (1989) propose that the forecasts from the long-run
and short-run models be combined to produce an approximation to this DGP.
Although not discussed in detail by Engle, Granger and Hallman (1989), long-
run forecasts may be made at the annual frequency and then interpolated to
seasonal values, in order to provide forecasts approximating those from (41).
In this set-up, the long-run model includes annual variables and has noth-

ing to say about seasonality. By design, cointegration relates only to the zero
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frequency. Seasonality is allocated entirely to the short-run and is modelled
through the deterministic component and the forecasts bwT+h|T of the sta-
tionary variables. Rather surprisingly, this approach to forecasting appears
almost entirely unexplored in subsequent literature, with issues of seasonal
cointegration playing a more prominent role. This is unfortunate, since (as
noted in the previous subsection) there is little evidence that seasonal coin-
tegration improves forecast accuracy and, in any case, can be allowed for
by including sufficient lags of the relevant variables in the dynamics of the
model. In contrast, the approach of Engle, Granger and Hallman (1989)
allows information available only at an annual frequency to play a role in
capturing the long-run, and such information is not considered when the
researcher focuses on seasonal cointegration.

3 Periodic Models

Periodic models provide another approach to modelling and forecasting sea-
sonal time series. These models are more general than those discussed in
the previous section in allowing all parameters to vary across the seasons
of a year. Periodic models can be useful in capturing economic situations
where agents show distinct seasonal characteristics, such as seasonally vary-
ing utility of consumption (Osborn, 1988). Within economics, periodic mod-
els usually take an autoregressive form and are known as PAR (periodic
autoregressive) models.
Important developments in this field, have been made by, inter alia,

Pagano (1978), Troutman (1979), Gladyshev (1961), Osborn (1991), Franses
(1994) and Boswijk and Franses (1996). Applications of PARmodels include,
for example, Birchenhall et al. (1989), Novales and Flores de Fruto (1997),
Franses and Romijn (1993), Herwartz (1997), Osborn and Smith (1989) and
Wells (1997).

3.1 Overview of PAR Models

A univariate PAR(p) model can be written as
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ySn+s =
SX
j=1

£
µj + τ j (Sn+ s)

¤
Dj,Sn+s + xSn+s (44)

xSn+s =
SX
j=1

pjX
i=1

φijDj,Sn+sxSn+s−i + εSn+s (45)

where (as in the previous section) S represents the periodicity of the data,
while here pj is the order of the autoregressive component for season j, p =
max(p1, ..., pS), Dj,Sn+s is again a seasonal dummy that is equal to 1 in season
j and zero otherwise, and εSn+s ∼ iid(0, σ2s). The PAR model of (44)-(45)

requires a total of
³
3S +

PS
j=1 pj

´
parameters to be estimated. This basic

model can be extended by including periodic moving average terms (Tiao
and Grupe, 1980).
Note that this process is nonstationary in the sense that the variances

and covariances are time-varying within the year. However, considered as a
vector process over the S seasons, stationarity implies that these intra-year
variances and covariances remain constant over years, n = 0, 1, 2, .... It is this
vector stationarity concept that is appropriate for PAR processes.
Substituting from (45) into (44), the model for season s is

φs(L)ySn+s = φs(L) [µs + τ s (Sn+ s)] + εSn+s (46)

where φj(L) = 1−φ1jL− ...−φpj ,jL
pj . Alternatively, following Boswijk and

Franses (1996), the model for season s can be represented as

(1−αsL)ySn+s = δs+ωs(Sn+ s) +

p−1X
k=1

βks(1−αs−kL)ySn+s−k + εSn+s (47)

where αs−Sm = αs for s = 1, ..., S, m = 1, 2, ... and βj(L) is a pj − 1 order
polynomial in L. Although the parameterization of (47) is useful, it should
also be appreciated that the factorization of φs(L) implied in (47) is not,
in general, unique (del Barrio Castro and Osborn, 2004). Nevertheless, this
parameterization is useful when the unit root properties of ySn+s are isolated
in (1− αsL). In particular, the process is said to be periodically integrated
if

SY
s=1

αs = 1, (48)
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with the stochastic part of (1 − αsL)ySn+s being stationary. In this case,
(48) serves to identify the parameters of (47) and the model is referred to as
a periodic integrated autoregressive (PIAR) model. To distinguish periodic
integration from conventional (nonperiodic) integration, we require that not
all αs = 1 in (48).
An important consequence of periodic integration is that such series can-

not be decomposed into distinct seasonal and trend components; see Franses
(1996, Ch.8). An alternative possibility to the PIAR process is a conventional
unit root process with periodic stationary dynamics, such as

βs(L)∆1ySn+s = δs + εSn+s. (49)

As discussed below, (47) and (49) have quite different forecast implications
for the future pattern of the trend.

3.2 Modelling Procedure

The crucial issues for modelling a potentially periodic process are deciding
whether the process is, indeed, periodic and deciding the appropriate order
p for the PAR.

3.2.1 Testing for Periodic Variation and Unit Roots

Two approaches can be considered to the inter-related issues of testing for
the presence of periodic coefficient variation.

a) Test the nonperiodic (constant autoregressive coefficient) null hypoth-
esis

H0 : φij = φi, j = 1, ..., S, i = 1, ..., p (50)

against the alternative of a periodic model using a χ2 or F test (the
latter might be preferred unless the number of years of data is large).
This is conducted using an OLS estimation of (44) and, as no unit
root restriction is involved, its validity does not depend on stationarity
(Boswijk and Franses, 1996).

b) Estimate a nonperiodic model and apply a diagnostic test for periodic
autocorrelation to the residuals (Franses, 1996, pp.101-102). Further,
Franses (1996) argues that neglected parameter variations may surface
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in the variance of the residual process, so that a test for periodic het-
eroscedasticity can be considered, by regressing the squared residuals
on seasonal dummy variables (see also del Barrio Castro and Osborn,
2004). These can again be conducted using conventional distributions.

Following a test for periodic coefficient variation, such as (50), unit root
properties may be examined. Boswijk and Franses (1996) develop a general-
ization of the Dickey-Fuller unit root t−test statistic applicable in a periodic
context. Conditional on the presence of a unit root, they also discuss testing
the restriction αs = 1 in (47), with this latter test being a test of restrictions
that can be applied using the conventional χ2 or F -distribution. When the
restrictions αs = 1 are valid, the process can be written as (49) above. Ghy-
sels, Hall and Lee (1996) also propose a test for seasonal integration in the
context of a periodic process.

3.2.2 Order Selection

The order selection of the autoregressive component of the PAR model is ob-
viously important. Indeed, because the number of autoregressive coefficients
required is (in general) pS, this may be considered to be more crucial in this
context than for the linear AR models of the previous section.
Order specification is frequently based on an information criterion. Franses

and Paap (1994) find that the Schwarz Information Criterion (SIC) performs
better for order selection in periodic models than the Akaike Information
Criterion (AIC). This is, perhaps, unsurprising in that AIC leads to more
highly parameterized models, which may be considered overparameterized
in the periodic context. Franses and Paap (1994) recommend backing up
the SIC strategy that selects p by F -tests for φi,p+1 = 0, i = 1, ..., S. Having
established the PAR order, the null hypothesis of nonperiodicity (50) is then
examined.
If used without restrictions, a PAR model tends to be highly parameter-

ized, and the application of restrictions may yield improved forecast accuracy.
Some of the model reduction strategies that can be considered are:

• Allow different autoregressive orders pj for each season, j = 1, ..., S,
with possible follow-up elimination of intermediate regressors by an
information criterion or using statistical significance;
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• Employ common parameters for across seasons. Rodrigues and Gouveia
(2004) specify a PAR model for monthly data based on S = 3 seasons.
In the same vein, Novales and Flores de Fruto (1997) propose grouping
similar seasons into blocks to reduce the number of periodic parameters
to be estimated.

• Reduce the number of parameters by using short Fourier series (Jones
and Brelsford, 1967, Lund et al., 1995). Such Fourier reductions are
particularly useful when changes in the correlation structure over sea-
sons are not abrupt.

• Use a layered approach, where a "first layer" removes the periodic
autocorrelation in the series, while a “second layer" has an ARMA(p, q)
representation (Bloomfield, Hurd and Lund, 1994).

3.3 Forecasting with Univariate PAR Models

Perhaps the simplest representation of a PAR model for forecasting purposes
is (47), from which the h-step forecast is given by

byT+h|T = αsbyT+h−1|T + δs+ωs (T + h) +

p−1X
k=1

βks(byT+h−k|T −αs−kbyT+h−k−1|T )
(51)

when T + h falls in season s. This expression can be iterated for h = 1, 2, ....
Assuming a unit root PAR process, we can distinguish the forecasting im-
plications of y being periodically integrated (with

QS
i=1 αi = 1, but not all

αs = 1) and an I(1) process (αs = 1, s = 1, ..., S).
To discuss the essential features of the I(1) case, an order p = 2 is

sufficient. A key feature for forecasting nonstationary processes is the im-
plications for the deterministic component. In this specific case, φs(L) =
(1− L)(1− βsL), so that (46) and (47) imply

δs + ωs(T + h) = (1− L)(1− βsL)[µs + τ s(T + h)]

= ∆µs − βs∆µs−1 + τ s(T + h)− (1 + βs)τ s−1(T + h− 1)
+βsτ s−2(T + h− 2)

and hence

δs = ∆µs − βs∆µs−1 + τ s−1 + βsτ s−1 − 2βsτ s−2
ωs = τ s − (1 + βs)τ s−1 + βsτ s−2.
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Excluding specific cases of interaction5 between values of τ s and βs, the
restriction ωs = 0, s = 1, ..., S in (51) implies τ s = τ , so that the forecasts
for the seasons do not diverge as the forecast horizon increases. With this
restriction, the intercept

δs = ∆µs − βs∆µs−1 + (1− βs)τ

implies a deterministic seasonal pattern in the forecasts. Indeed, in the spe-
cial case that βs = β, s = 1, ..., S, this becomes the forecast for a deterministic
seasonal process with a stationary AR(1) component.
The above discussion shows that a stationary periodic autoregression in

an I(1) process does not essentially alter the characteristics of the forecasts,
compared with an I(1) process with deterministic seasonality. We now turn
attention to the case of periodic integration.
In a PIAR process, the important feature is the periodic nonstationar-

ity, and hence we gain sufficient generality for our discussion by considering
φs(L) = 1− αsL. In this case, (51) becomes

byT+h|T = αsbyT+h−1|T + δs + ωs (T + h) (52)

for which (46) implies

δs + ωs(T + h) = (1− αsL)[µs + τ s(T + h)]

= µs − αsµs−1 + τ s(T + h)− αsτ s−1(T + h− 1)
and hence

δs = µs − αsµs−1 + αsτ s−1
ωs = τ s − αsτ s−1.

Here imposition of ωs = 0 (s = 1, ..., S) implies τ s − αsτ s−1 = 0, and hence
τ s 6= τ s−1 in (44) for at least one s, since the periodic integrated process
requires not all αs = 1. Therefore, forecasts exhibiting distinct trends over
the S seasons are a natural consequence of a PIAR specification, whether
or not an explicit trend is included in (52). A forecaster adopting a PIAR
model needs to appreciate this.
However, allowing ωs 6= 0 in (52) enables the underlying trend in byT+h|T

to be constant over seasons. Specifically, τ s = τ (s = 1, ..., S) requires ωs =

5Stationarity for the periodic component here requires only |β1β2...βS | < 1.
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(1 − αs)τ , which implies an intercept in (52) whose value is restricted over
s = 1, ..., S. The interpretation is that the trend in the periodic difference (1−
αsL)byT+h|T must counteract the diverging trends that would otherwise arise
in the forecasts byT+h|T over seasons; see Paap and Franses (1999) or Ghysels
and Osborn (2001, pp.155/156). An important implication is that if forecasts
with diverging trends over seasons are implausible, then a constant (nonzero)
trend can be achieved through the imposition of appropriate restrictions on
the trend terms in the forecast function for the PIAR model.

3.4 Forecasting with Misspecified Models

Despite their theoretical attractions in some economic contexts, periodic
models are not widely used for forecasting in economics. Therefore, it is rele-
vant to consider the implications of applying an ARMA forecasting model to
periodic GDP. This question is studied by Osborn (1991), building on Tiao
and Grupe (1980).
It is clear from (44) and (45) that the autocovariances of a stationary

PAR process differ over seasons. Denoting the autocovariance for season s
at lag k by γsk = E(xSn+sxSn+s−k), the overall mean autocovariance at lag
k is

γk =
1

S

SX
s=1

γsk. (53)

When an ARMA model is fitted, asymptotically it must account for all
nonzero autocovariances γk, k = 0, 1, 2, .... Using (53), Tiao and Grupe (1980)
and Osborn (1991) show that the implied ARMA model fitted to a PAR(p)
process has, in general, a purely seasonal autoregressive operator of order p,
together with a potentially high order moving average.
As a simple case, consider a purely stochastic PAR(1) process for S = 2

seasons per year, so that

xSn+s = φsxSn+s−1 + εSn+s, s = 1, 2

= φ1φ2xSn+s−2 + εSn+s + φs−1εSn+s−1 (54)

where white noise εSn+s has E(ε2Sn+s) = σ2s and φ0 = φ2. The correspond-
ing misspecified ARMA model that accounts for the autocovariances (53)
effectively takes a form of average across the two processes in (54) to yield

xSn+s = φ1φ2xSn+s−2 + uSn+s + θuSn+s−1 (55)
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where uSn+s has autocovariances γk = 0 for all lags k = 1, 2.... From known
results concerning the accuracy of forecasting using aggregate and disaggre-
gate series, the MSFE at any horizon h using the (aggregate) ARMA repre-
sentation ( 54) must be at least as large as the mean MSFE over seasons for
the true (disaggregate) PAR(1) process.
As in the analysis of misspecified processes in the discussion of linear

models in the previous section, these results take no account of estimation
effects. To the extent that, in practice, periodic models require the estimation
of more coefficients than ARMA ones, the theoretical forecasting advantage
of the former over the latter for a true periodic DGP will not necessarily
carry over when observed data are employed.

3.5 Periodic Cointegration

Periodic cointegration relates to cointegration between individual processes
that are either periodically integrated or seasonally integrated. To concen-
trate on the essential issues, we consider periodic cointegration between the
univariate nonstationary process ySn+s and the vector nonstationary process
xSn+s as implying that

zSn+s = ySn+s − α0sxSn+s, s = 1, ..., S, (56)

is a (possibly periodic) stationary process, with not all vectors αs equal over
s = 1, ..., S. The additional complications of so-called partial periodic coin-
tegration will not be considered. We also note that there has been much
confusion in the literature on periodic processes relating to types of cointe-
gration that can apply. These issues are discussed by Ghysels and Osborn
(2001, pp.168-171).
In both theoretical developments and empirical applications, the most

popular single equation periodic cointegration model [PCM] has the form:

∆SySn+s =
SX
s=1

µsDs,Sn+s +
SX
s=1

λsDs,Sn+s (ySn+s−S − α0sxSn+s−S)

+

pX
k=1

φk∆SySn+s−k +
pX

k=0

δ0k∆SxSn+s−k + εSn+s (57)

where ySn+s is the variable of specific interest, xSn+s is a vector of weakly
exogenous explanatory variables and εSn+s is white noise. Here λs and α0s are
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seasonally varying adjustment and long-run parameters, respectively; the
specification of (57) could allow the disturbance variance to vary over sea-
sons. As discussed by Ghysels and Osborn (2001, p.171) this specification
implicitly assumes that the individual variables of ySn+s, xSn+s are seasonally
integrated, rather than periodically integrated.
Boswijk and Franses (1995) develop a Wald test for periodic cointegration

through the unrestricted model

∆SySn+s =
SX
s=1

µsDs,Sn+s +
SX
s=1

(δ1sDs,Sn+sySn+s−S + δ02sDs,Sn+sxSn+s−4)

+

pX
k=1

βk∆SySn+s−k +
pX

k=0

τ 0k∆SxSn+s−k + εSn+s (58)

where under cointegration δ1s = λs and δ2s = −α0sλs. Defining δs = (δ1s, δ02s)0
and δ = (δ01, δ

0
2, ..., δ

0
S)
0, the null hypothesis of no cointegration in any season

is given by H0 : δ = 0. Because cointegration for one season s does not
necessarily imply cointegration for all s = 1, ..., S, the alternative hypothesis
H1 : δ 6= 0 implies cointegration for at least one s. Relevant critical values
for the quarterly case are given in Boswijk and Franses (1995), who also con-
sider testing whether cointegration applies in individual seasons and whether
cointegration is nonperiodic.
Since periodic cointegration is typically applied in contexts that implicitly

assume seasonally integrated variables, it seems obvious that the possibility
of seasonal cointegration should also be considered. Although Franses (1993,
1995) and Ghysels and Osborn (2001, pp.174-176) make some progress to-
wards a testing strategy to distinguish between periodic and seasonal coin-
tegration, this issue has yet to be fully worked out in the literature.
When the periodic ECM model of (57) is used for forecasting, a separate

model is (of course) required to forecast the weakly exogenous variables in x.

3.6 Empirical Forecast Comparisons

Empirical studies of the forecast performance of periodic models for eco-
nomic variables are mixed. Osborn and Smith (1989) find that periodic
models produce more accurate forecasts than nonperiodic ones for the ma-
jor components of quarterly UK consumers expenditure. However, although
Wells (1997) finds evidence of periodic coefficient variation in a number of
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US time series, these models do not consistently produce improved forecast
accuracy compared with nonperiodic specifications. In investigating the fore-
casting performance of PAR models, Rodrigues and Gouveia (2004) observe
that using parsimonious periodic autoregressive models, with fewer separate
“seasons" modelled than indicated by the periodicity of the data, presents
a clear advantage in forecasting performance over other models. When ex-
amining forecast performance for observed UK macroeconomic time series,
Novales and Flores de Fruto (1997) draw a similar conclusion.
As noted in our previous discussion, the role of deterministic variables is

important in periodic models. Using the same series as Osborn and Smith
(1989), Franses and Paap (2002) consider taking explicit account of the ap-
propriate form of deterministic variables in PAR models and adopt encom-
passing tests to formally evaluate forecast performance.
Relatively few studies consider the forecast performance of periodic coin-

tegration models. However, Herwartz (1997) finds little evidence that such
models improve accuracy for forecasting consumption in various countries,
compared with constant parameter specifications. In comparing various vec-
tor systems, Löf and Franses (2001) conclude that models based on seasonal
differences generally produce more accurate forecasts than those based on
first differences or periodic specifications.
In view of their generally unimpressive performance in empirical forecast

comparisons to date, it seems plausible that parsimonious approaches to pe-
riodic ECM modelling may be required for forecasting, since an unrestricted
version of (57) may imply a large number of parameters to be estimated.
Further, as noted in the previous section, there has been some confusion in
the literature about the situations in which periodic cointegration can ap-
ply and there is no clear testing strategy to distinguish between seasonal
and periodic cointegration. Clarification of these issues may help to indicate
the circumstances in which periodic specifications yield improved forecast
accuracy over nonperiodic models.

4 Other Specifications

The previous sections have examined linear models and periodic models,
where the latter can be viewed as linear models with a structure that changes
with the season. The simplest models to specify and estimate are linear (time-
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invariant) ones. However, there is no a priori reason why seasonal structures
should be linear and time-invariant. The preferences of economic agents may
change over time or institutional changes may occur that cause the seasonal
pattern in economic variables to alter in a systematic way over time or in
relation to underlying economic conditions, such as the business cycle.
In recent years a burgeoning literature has examined the role of nonlinear

models for economic modelling. Although much of this literature takes the
context as being nonseasonal, a few studies have also examined these issues
for seasonal time series. Nevertheless, an understanding of the nature of
change over time is a fundamental prerequisite for accurate forecasting.
The present section first considers nonlinear threshold andMarkov switch-

ing time series models, before turning to a notion of seasonality different from
that discussed in previous sections, namely seasonality in variance. Consider
for expository purposes the general model,

ySn+s = µSn+s + ξSn+s + xSn+s (59)

ψ(L)xSn+s = εSn+s (60)

where µSn+s and ξSn+s represent deterministic variables which will be pre-
sented in detail in the following sections, εSn+s ∼ Γ(0, ht), Γ is a probability
distribution and ht represents the assumed variance which can be constant
over time or time varying.
In the following section we start to look at nonlinear models and the im-

plications of seasonality in the mean, which will be introduced through µSn+s
and ξSn+s, considering that the errors are i.i.d.N (0, σ

2) ; and in Section 4.2
proceed to investigate the modelling of seasonality in variance, considering
that the errors follow GARCH or stochastic volatility type behaviour and
allowing for the seasonal behavior in volatility to be deterministic and sto-
chastic.

4.1 Nonlinear Models

Although many different types of nonlinear models have been proposed, per-
haps those used in a seasonal context are of the threshold or regime-switching
types. In both cases, the relationship is assumed to be linear within a regime.
These nonlinear models focus on the interaction between seasonality and the
business cycle, since Ghysels (1994b), Canova and Ghysels (1994), Matas-Mir
and Osborn (2004) and others have shown that these are interrelated.
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4.1.1 Threshold Seasonal Models

In this class of models, the regimes are defined by the values of some variable
in relation to specific thresholds, with the transition between regimes being
either abrupt or smooth. To distinguish these, the former are referred to
as threshold autoregressive (TAR) models, while the latter are known as
smooth transition autoregressive (STAR) models. Threshold models have
been applied to seasonal growth in output, with the annual output growth
used as the business cycle indicator.
Cecchetti and Kashyap (1996) provide some theoretical basis for an inter-

action between seasonality and the business cycle, by outlining an economic
model of seasonality in production over the business cycle. Since firms may
hit capacity restrictions when production is high, they will reallocate pro-
duction to the usually slack summer months near business cycle peaks.
Motivated by this hypothesis, Matas-Mir and Osborn (2004) consider the

seasonal TAR model for monthly data given as,

∆1ySn+s = µ0 + η0ISn+s + τ 0(Sn+ s)

+
SX
j=1

[µ∗j + η∗jISn+s + τ ∗j(Sn+ s)]D∗
j,Sn+s

+

pX
i=1

φi∆1ySn+s−i + εSn+s (61)

where S = 12, εSn+s ∼ iid(0, σ2), D∗
j,Sn+s is a seasonal dummy variable and

the regime indicator ISn+s is defined in terms of a threshold value r for the
lagged annual change in y. Note that this model results from (59) and (60)

by considering that µSn+s = δ0 + γ0(Sn+ s) +
SP
j=1

£
δj + γj(Sn+ s)

¤
Dj,Sn+s,

ξSn+s =

"
α0 +

SP
j=1

αjDj,Sn+s

#
ISn+s and ψ(L) = φ(L)∆1 is a polynomial of

order p+1. The nonlinear specification of (61) allows the overall intercept and
the deterministic seasonality to change with the regime, but (for reasons of
parsimony) not the dynamics. Systematic changes in seasonality are permit-
ted through the inclusion of seasonal trends. Matas-Mir and Osborn (2004)
find support for the seasonal nonlinearities in (61) for around 30 percent of
the industrial production series they analyze for OECD countries.
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A related STAR specification is employed by van Dijk, Strikholm and
Terasvirta (2003). However, rather than using a threshold specification which
results from the use of the indicator function ISn+s, these authors specify the
transition between regimes using the logistic function

Gi(ϕit) = [1 + exp{−γi(ϕit − ci)/σsit]
−1, γi > 0 (62)

for a transition variable ϕit. In fact, they allow two such transition functions
(i = 1, 2) when modelling the quarterly change in industrial production for
G7 countries, with one transition variable being the lagged annual change
(ϕ1t = ∆4yt−d for some delay d), which can be associated with the business
cycle, and the other transition variable being time (ϕ2t = t). Potentially
all coefficients, relating to both the seasonal dummy variables and the au-
toregressive dynamics are allowed to change with the regime. These authors
conclude that changes in the seasonal pattern associated with the time tran-
sition are more important than those associated with the business cycle.
In a nonseasonal context, Clements and Smith (1999) investigate the

multi-step forecast performance of TAR models via empirical MSFEs and
show that these models perform significantly better than linear models par-
ticularly in cases when the forecast origin covers a recession period. It is no-
table that recessions have fewer observations than expansions, so that their
forecasting advantage appears to be in atypical periods.
There has been little empirical investigation of the forecast accuracy of

nonlinear seasonal threshold models for observed series. The principal avail-
able study is Franses and van Dijk (2004), who consider various models of
seasonality and nonlinearity for quarterly industrial production for 18 OECD
countries. They find that, in general, linear models perform best at short
horizons, while nonlinear models with more elaborate seasonal specifications
are preferred at longer horizons.

4.1.2 Periodic Markov Switching Regime Models

Another approach to model the potential interaction between seasonal and
business cycles is through periodic Markov switching regime models. Special
cases of this class include the (aperiodic) switching regime models consid-
ered by Hamilton (1989, 1990), among many others. Ghysels (1991, 1994b,
1997) presented a periodic Markov switching structure which was used to
investigate the nonuniformity over months of the distribution of the NBER
business cycle turning points for the US. The discussion here, which is based
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on Ghysels (2000) and Ghysels, Bac and Chevet (2003), will focus first on
a simplified illustrative example to present some of the key features and el-
ements of interest. The main purpose is to provide intuition for the basic
insights. In particular, one can map periodic Markov switching regime mod-
els into their linear representations. Through the linear representation one is
able to show that hidden periodicities are left unexploited and can potentially
improve forecast performance.
Consider a univariate time series process, again denoted {ySn+s}. It will

typically represent a growth rate of, say, GNP. Moreover, for the moment, it
will be assumed the series does not exhibit seasonality in the mean (possibly
because it was seasonally adjusted) and let {ySn+s} be generated by the
following stochastic structure :

(ySn+s − µ [(iSn+s,v)]) = φ (ySn+s−1 − µ [(iSn+s−1,v− 1)]) + εSn+s (63)

where |φ| < 1, εt is i.i.d.N (0, σ2) and µ [·] represents an intercept shift func-
tion. If µ ≡ µ̄, i.e., a constant, then (63) is a standard linear stationary
Gaussian AR(1) model. Instead, following Hamilton (1989), we assume that
the intercept changes according to a Markovian switching regime model.
However, in (63) we have xt ≡ (it,v), namely, the state of the world is de-
scribed by a stochastic switching regime process {it} and a seasonal indicator
process v. The {iSn+s} and {v} processes interact in the following way, such
that for iSn+s ∈ {0, 1}6:

0 1
0 q (v) 1− q (v)

1 1− p (v) p (v)

(64)

where the transition probabilities q (·) and p (·) are allowed to change with the
season. When p (·) = p̄ and q (·) = q̄, we obtain the standard homogeneous
Markov chain model considered by Hamilton. However, if for at least one
season the transition probability matrix differs, we have a situation where a
regime shift will be more or less likely depending on the time of the year.
Since iSn+s ∈ {0, 1}, consider the mean shift function:

µ [(it,v)] = α0 + α1iSn+s , α1 > 0. (65)

6In order to avoid too cumbersome notation, we did not introduce a separate notation
for the theoretical representation of stochastic processes and their actual realizations.
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Hence, the process {ySn+s} has a mean shift α0 in state 1 (iSn+s = 0) and
α0+α1 in state 2. These above equations are a version of Hamilton’s model
with a periodic stochastic switching process. If state 1 with low mean drift
is called a recession and state 2 an expansion, then we stay in a recession or
move to an expansion with a probability scheme that depends on the season.
The structure presented so far is relatively simple, yet as we shall see,

some interesting dynamics and subtle interdependencies emerge. It is worth
comparing the AR(1) model with a periodic Markovian stochastic switch-
ing regime structure and the more conventional linear ARMA processes as
well as periodic ARMA models. Let us perhaps start by briefly explain-
ing intuitively what drives the connections between the different models.
The model with ySn+s typically representing a growth series, is covariance
stationary under suitable regularity conditions discussed in Ghysels (2000).
Consequently, the process has a linear Wold MA representation. Yet, the
time series model provides a relatively parsimonious structure which deter-
mines nonlinearly predictable MA innovations. In fact, there are two layers
beneath the Wold MA representation. One layer relates to hidden periodic-
ities, as described in Tiao and Grupe (1980) or Hansen and Sargent (1993),
for instance. Typically, such hidden periodicities can be uncovered via aug-
mentation of the state space with the augmented system having a linear rep-
resentation. However, the periodic switching regime model imposes further
structure even after the hidden periodicities are uncovered. Indeed, there is
a second layer which makes the innovations of the augmented system nonlin-
early predictable. Hence, the model has nonlinearly predictable innovations
and features of hidden periodicities combined.
To develop this more explicitly, let us first note that the switching regime

process {iSn+s} admits the following AR(1) representation :
iSn+s = [1− q (vt)] + λ (vt) it−1 + vSn+s (v) (66)

where λ (·) ∈ ©λ1, . . . , λSª with λ (v) ≡ −1 + p (v) + q (v) = λs for v = v.
Moreover, conditional on it−1 = 1,

vSn+s (v) =

½
(1− p (v)) with probability p (v)
−p (v) with probability 1− p (vt)

(67)

while conditional on it−1 = 0,

vSn+s (v) =

½ − (1− q (v)) with probability q (v)
q (v) with probability 1− q (vt)

. (68)
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Equation (66) is a periodic AR(1) model where all the parameters, in-
cluding those governing the error process, may take on different values every
season. Of course, this is a different way of saying that the “state-of-the-
world” is not only described by {iSn+s} but also {v} . While (66) resembles
the periodic ARMA models which were discussed by Tiao and Grupe (1980),
Osborn (1991) and Hansen, and Sargent (1993), among others, it is also fun-
damentally different in many respects. The most obvious difference is that
the innovation process has a discrete distribution.
The linear time invariant representation for the stochastic switching regime

process iSn+s is a finite order ARMA process, as we shall explain shortly. One
should note that the process will certainly not be represented by an AR(1)
process as it will not be Markovian in such a straightforward way when it
is expressed by a univariate AR(1) process, since part of the state space is
“missing”. A more formal argument can be derived directly from the analy-
sis in Tiao and Grupe (1980) and Osborn (1991).7 The periodic nature of
autoregressive coefficients pushes the seasonality into annual lags of the AR
polynomial and substantially complicates the MA component.
Ultimately, we are interested in the time series properties of {ySn+s} .

Since
ySn+s = α0 + α1iSn+s + (1− φL)−1 εSn+s, (69)

and εSn+s was assumed Gaussian and independent, we can simply view
{ySn+s} as the sum of two independent unobserved processes: namely, {iSn+s}
and the process (1− φL)−1 εSn+s. Clearly, all the features just described
about the {iSn+s} process will be translated into similar features inherited
by the observed process ySn+s, while ySn+s has the following linear time series
representation :

wy (z) = α21wi (z) + 1/
£
(1− φz)

¡
1− φz−1

¢¤
σ2/2π. (70)

This linear representation has hidden periodic properties and a stacked skip
sampled version of the (1− φL)−1 εSn+s process. Finally, the vector repre-
sentation obtained as such would inherit the nonlinear predictable features
of {iSn+s} .

7Osborn (1991) establishes a link between periodic processes and contemporaneous
aggregation and uses it to show that the periodic process must have an average forecast
MSE at least as small as that of its univariate time invariant counterpart. A similar result
for periodic hazard models and scoring rules for predictions is discussed in Ghysels (1993).
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Let us briefly return to (69). We observe that the linear representation
has seasonal mean shifts that appear as a “deterministic seasonal” in the
univariate representation of ySn+s. Hence, besides the spectral density prop-
erties in (70), which may or may not show peaks at the seasonal frequency,
we note that periodic Markov switching produces seasonal mean shifts in the
univariate representation. This result is, of course, quite interesting since in-
trinsically we have a purely random stochastic process with occasional mean
shifts. The fact that we obtain something that resembles a deterministic
seasonal simply comes from the unequal propensity to switch regime (and
hence mean) during some seasons of the year.

4.2 Seasonality in Variance

So far our analysis has concentrated on models which account for seasonality
in the conditional mean only, however a different concept of considerable in-
terest, particularly in the finance literature, is the notion of seasonality in the
variance. There is both seasonal heteroskedasticity in daily data and intra-
daily data. For daily data, see for instance Tsiakas (2004b). For intra-daily
see e.g. Andersen and Bollerslev (1997). In a recent paper, Martens, Chang
and Taylor (2002) present evidence which shows that explicitly modelling in-
traday seasonality improves out-of-sample forecasting performance; see also
Andersen, Bollerslev and Lange (1999).
The notation needs to be slightly generalized in order to handle intra-daily

seasonality. In principle we could have three subscripts, like for instance m,
s, and n, referring to the mth intra-day observation in ‘season’ s (e.g. week
s) in year n. Most often we will only use m and T, the latter being the total
sample. Moreover, since seasonality is often based on daily observations we
will often use d as a subscript to refer to a particular day (with m intra-daily
observations).
In order to investigate whether out-of-sample forecasting is improved

when using seasonal methods, Martens, Chang and Taylor (2002) consider a
conventional t-distribution GARCH(1,1) model as benchmark

rt = µ+ εt

εt|Ψt−1 ∼ D(0, ht)

ht = ω + αε2t−1 + βht−1

where Ψt−1 corresponds to the information set available at time t− 1 and D
represents a scaled t-distribution. In this context, the out-of-sample variance
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forecast is given by bhT+1 = bω + bαε2T + bβhT . (71)

As Martens, Chang and Taylor (2002) also indicate, for GARCHmodels with
conditional scaled t− distributions with υ degrees of freedom, the expected
absolute return is given by

E|rT+1| = 2
√
υ − 2√
π

Γ [(υ + 1) /2]

Γ [υ/2] (υ − 1)
qbhT+1

where Γ is the gamma-function.
However, as pointed out by Andersen and Bollerslev (1997, p.125), stan-

dard ARCHmodelling implies a geometric decay in the autocorrelation struc-
ture and cannot accommodate strong regular cyclical patterns. In order to
overcome this problem, Andersen and Bollerslev suggest a simple specifi-
cation of interaction between the pronounced intraday periodicity and the
strong daily conditional heteroskedasticity as

rt =
MX

m=1

rt,m = σt
1

M1/2

MX
m=1

vmZt,m (72)

where rt denotes the daily continuous compounded return calculated from
the M uncorrelated intraday components rt,m, σt denotes the conditional
volatility factor for day t, vm represents the deterministic intraday pattern
and Zt,m ∼ iid(0, 1), which is assumed to be independent of the daily volatil-
ity process {σt} . Both volatility components must be non-negative, i.e. ,
σt > 0 a.s. for all t and vm > 0 for all m.

4.2.1 Simple Estimators of Seasonal Variances

In order to take into account the intradaily seasonal pattern, Taylor and Xu
(1997) consider for each intraday period the average of the squared returns
over all trading days, i.e., the variance estimate is given as,

v2m =
1

D

NX
t=1

r2t,m, n = 1, ...,M (73)

where N is the number of days. An alternative is to use

v2d,m =
1

Md

X
k∈Td

r2k,m
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where Td is the set of daily time indexes that share the same day of the
week as time index d, and Md is the number of time indexes in Td. Note
that this approach, in contrast to (73), takes into account the day of the
week. Following the assumption that volatility is the product of seasonal
volatility and a time-varying nonseasonal component as in (72), Andersen
and Bollerslev (1997, 1998) compute the seasonal variances as

v2d,m = exp

"
1

Md

X
k∈Td

ln
¡
(rk,m − r)2

¢#

where r is the overall mean taken over all returns.
The purpose of estimating these seasonal variances is to scale the returns,

ert ≡ erd,m ≡ rd,m
vd,m

in order to estimate a conventional GARCH(1,1) model for the scaled returns,
and hence, forecasts of ehT+1 can be obtained in the conventional way as in
(71). To transform the volatility forecasts for the scaled returns into volatility
forecasts for the original returns, Martens, Chang and Taylor (2002) suggest
multiplying the volatility forecasts by the appropriate estimate of the seasonal
standard deviation, vd,m.

4.2.2 Flexible Fourier Form

The Flexible Fourier Form (FFF) (see Gallant, 1981) is a different approach
to capture deterministic intraday volatility pattern; see inter alia Andersen
and Bollerslev (1997, 1998) and Beltratti and Morana (1999). Andersen and
Bollerslev assume that the intraday returns are given as,

rd,m = E (rd,m) +
σdvd,mZd,m

M1/2
(74)

where E (rd,m) denotes the unconditional mean and Zd,m ∼ iid(0, 1). From
(74) they define the variable,

xd,m ≡ 2 ln [|rd,m −E (rd,m) |]− lnσ2d + lnM = ln v2d,m + lnZ
2
d,m.

Replacing E (rd,m) by the sample average of all intraday returns and σd by
an estimate from a daily volatility model, bxd,m is obtained. Treating bxd,m as
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dependent variable, the seasonal pattern is obtained by OLS as

bbxd,m ≡
JX

j=0

σjd

"
µ0j + µ1j

m

M1
+ µ2j

n2

M2
+

lX
i=1

λijIt=dt

+

pX
i=1

µ
γij cos

2πin

M
+ δij sin

2πin

M

¶#
,

where M1 = (M + 1)/2 and M2 = (M + 1)(M + 2)/6 are normalizing con-
stants and p is set equal to four. Each of the corresponding J + 1 FFFs
are parameterized by a quadratic component (the terms with µ coefficients)
and a number of sinusoids. Moreover, it may be advantageous to include
time-specific dummies for applications in which some intraday intervals do
not fit well within the overall regular periodic pattern (the λ coefficients).
Hence, once bbxd,m is estimated, the intraday seasonal volatility pattern can

be determined as (see Martens, Chang and Taylor, 2002),

bvd,m = exp³bbxd,m/2´
or alternatively (as suggested by Andersen and Bollerslev, 1997, p.153),

bvd,m = T exp
³bbxd,m/2´

[T/M ]P
d=1

MP
n=1

exp
³bbxd,m/2´

which results from the normalization
P[T/M ]

d=1

MP
n=1

vd,m ≡ 1, where [T/M ] rep-
resents the number of trading days in the sample.

4.2.3 Stochastic Seasonal Pattern

The previous two subsections assume that the observed seasonal pattern
is deterministic. However, there may be no reason that justifies daily or
weekly seasonal behavior in volatility as deterministic. Beltratti and Morana
(1999) provide, among other things, a comparison between deterministic and
stochastic models for the filtering of high frequency returns. In particular, the
deterministic seasonal model of Andersen and Bollerslev (1997), described
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in the previous subsection, is compared with a model resulting from the
application of the structural methodology developed by Harvey (1994).
The model proposed by Beltratti and Morana (1999) is an extension of

one introduced by Harvey, Ruiz and Shephard (1994), who apply a stochas-
tic volatility model based on the structural time series approach to analyze
daily exchange rate returns. This methodology is extended by Payne (1996)
to incorporate an intra-day fixed seasonal component, whereas Beltratti and
Morana (1999) extend it further to accommodate stochastic intra-daily cycli-
cal components, as

rt,m = rt,m + σt,mεt,m = rt,m + σεt,m exp

µ
µt,m + ht,m + ct,m

2

¶
(75)

for t = 1, ..., T, n = 1, ...,M ; and where σ is a scale factor, εt,m ∼ iid(0, 1),
µt,m is the non-stationary volatility component given as µt,m = µt,m−1 +
ξt,m, ξt,m ∼ nid(0, σ2ξ), ht,m is the stochastic stationary acyclic volatility
component, ht,m = φht,m−1 + ϑt,m, ϑt,m ∼ nid(0, σ2ϑ), |φ| < 1, ct is the
cyclical volatility component and rt,m = E [rt,m] .
As suggested by Beltratti and Morana, squaring both sides and taking

logs, allows (75) to be rewritten as,

ln (|rt,m − rt,m|)2 = ln
·
σεt,m exp

µ
µt,m + ht,m + ct,m

2

¶¸2
,

that is,
2 ln |rt,m − rt,m| = ι+ µt,m + ht,m + ct,m + wt,m

where ι = lnσ2 +E
£
ln ε2t,m

¤
and wt,m = ln ε

2
t,m − E

£
ln ε2t,m

¤
.

The ct component is broken into a number of cycles corresponding to
the fundamental daily frequency and its intra-daily harmonics, i.e. ct,m =P2

i=1 ci,t,m. Beltratti and Morana model the fundamental daily frequency,
c1,t,m, as stochastic while its harmonics, c2,t,m, as deterministic. In other
words, following Harvey (1994), the stochastic cyclical component, c1,t,m, is
considered in state space form as

c1,t,m =

·
ψ1,t,m
ψ∗1,t,m

¸
= ρ

·
cosλ sinλ
− sinλ cosλ

¸ ·
ψ1,t,m−1
ψ∗1,t,m−1

¸
+

·
κ1,t,m
κ∗1,t,m

¸
where 0 ≤ ρ ≤ 1 is a damping factor and κ1,t,m ∼ nid(0, σ21,κ) and κ∗1,t,m ∼
nid(0, σ∗21,κ) are white noise disturbances withCov(κ1,t,m, κ

∗
1,t,m) = 0.Whereas,

c2,t,m is modelled using a flexible Fourier form as,
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c2,t,m = µ1
m

M1
+ µ2

n2

M2
+

pX
i=2

(δci cos iλn+ δsi sin iλn) .

It can be observed from the specification of these components that this
model encompasses that of Andersen and Bollerslev (1997).
One advantage of this state space formulation results from the possibility

that the various components may be estimated simultaneously. One impor-
tant conclusion that comes out of the empirical evaluation of this model, is
that it presents some superior results when compared with the models that
treat seasonality as strictly deterministic; for more details see Beltratti and
Morana (1999).

4.2.4 Periodic GARCH Models

In the previous section we dealt with intra-daily returns data. Here we
return to daily returns and to daily measures of volatility. An approach
to seasonality considered by Bollerslev and Ghysels (1996) is the periodic
GARCH (P-GARCH) model which is explicitly designed to capture (daily)
seasonal time variation in the second-order moments; see also Ghysels and
Osborn (2001, pp.194-198). The P-GARCH includes all GARCH models in
which hourly dummies, for example, are used in the variance equation.
Extending the information set Ψt−1 with a process defining the stage of

the periodic cycle at each point, say to Ψs
t−1, the P-GARCH model is defined

as,

rt = µ+ εt

εt|Ψs
t−1 ∼ D(0, ht)

ht = ωs(t) + αs(t)ε
2
t−1 + βs(t)ht−1 (76)

where s(t) refers to the stage of the periodic cycle at time t. The periodic
cycle of interest here is a repetitive cycle covering one week. Notice that
there is resemblance with the periodic models discussed in Section 3.
The P-GARCH model is potentially more efficient than the methods de-

scribed earlier. These methods (with the exception of Beltratti and Morana,
1999) first estimate the seasonals, and after deseasonalizing the returns, es-
timate the volatility of these adjusted returns. The P-GARCH model on the
other hand, allows for simultaneous estimation of the seasonal effects and the
remaining time-varying volatility.
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As indicated by Ghysels and Osborn (2001, p.195) in the existing ARCH
literature, the modelling of non-trading day effects has typically been limited
to ωs(t), whereas (76) allows for a much richer dynamic structure. However,
some caution is necessary as discussed in Section 3 for the PAR models, in
order to avoid overparameterization.
Moreover, as suggested by Martens, Chang and Taylor (2002), one can

consider the parameters ωs(t) in (76) in such a way that they represent: (a)
the average absolute/square returns (e.g. 240 dummies) or (b) the FFF.
Martens, Chang and Taylor (2002) consider the second approach allowing
for only one FFF for the entire week instead of separate FFF for each day of
the week.

4.2.5 Periodic Stochastic Volatility Models

Another popular class of models is the so-called stochastic volatility models
(see e.g. Ghysels, Harvey and Renault (1996) for further discussion). In
a recent paper Tsiakas (2004a) presents the periodic stochastic volatility
(PSV) model. Models of stochastic volatility have been used extensively
in the finance literature. Like GARCH-type models, stochastic volatility
models are designed to capture the persistent and predictable component of
daily volatility, however in contrast with GARCH models the assumption of
a stochastic second moment introduces an additional source of risk.
The benchmark model considered by Tsiakas (2004a) is the conventional

stochastic volatility model given as,

yt = α+ ρyt−1 + ηt (77)

and
ηt = εtυt, εt ∼ NID(0, 1)

where the persistence of the stochastic conditional volatility υt is captured by
the latent log-variance process ht, which is modelled as a dynamic Gaussian
variable,

υt = exp(ht/2)

and
ht = µ+ β0Xt + φ(ht−1 − µ) + σ t, t ∼ NID(0, 1). (78)

Note that in this framework εt and t are assumed to be independent and
that returns and their volatility are stationary, i.e., |ρ| < 1 and |φ| < 1,
respectively.
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Tsiakas (2004a) introduces a PSV model in which the constants (levels)
in both the conditional mean and the conditional variances are generalized
to account for day of the week, holiday (non-trading day) and month of the
year effects.

5 Forecasting, Seasonal Adjustment and Feed-
back

The greatest demand for forecasting seasonal time series is a direct conse-
quence of removing seasonal components. The process, called seasonal ad-
justment, aims to filter raw data such that seasonal fluctuations disappear
from the series. Various procedures exist and Ghysels and Osborn (2001,
Chap. 4) provide details regarding the most commonly used, including the
U.S. Census Bureau X-11 method and its recent upgrade, the X-12-ARIMA
program and the TRAMO/SEATS procedure.
We cover three issues in this section. The first subsection discusses how

forecasting seasonal time series is deeply embedded in the process of seasonal
adjustment. The second handles forecasting of seasonally adjusted series and
the final subsection deals with feedback and control.

5.1 Seasonal Adjustment and Forecasting

The foundation of seasonal adjustment procedures is the decomposition of a
series into a trend cycle, and seasonal and irregular components. Typically
a series yt is decomposed into the product of a trend cycle ytct , seasonal y

s
t ,

and irregular yit. However, assuming the use of logarithms, we can consider
the additive decomposition

yt = ytct + yst + yit. (79)

Other decompositions exist (see Ghysels and Osborn, 2001), yet the above
decomposition has been the focus of most of the academic research. Seasonal
adjustment filters are two-sided, involving both leads and lags. The linear
X-11 filter will serve the purpose here as illustrative example to explain the
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role of forecasting.8 The linear approximation to the monthly X-11 filter is:

νMX−11(L) = 1− SMC(L)M2(L){1−HM(L)

×[1− SMC(L)M1(L)SMC(L)]}
= 1− SMC(L)M2(L) + SMC(L)M2(L)HM(L)

−SM3
C(L)M1(L)M2(L)HM(L)

+SM3
C(L)M1(L)M2(L), (80)

where SMC(L) ≡ 1 − SM(L), a centered thirteen-term MA filter, namely
SM(L) ≡ (1/24)(1+L)(1+L · · ·+L11)L−6, M1(L) ≡ (1/9)(LS +1+L−S)2

with S = 12. A similar filter is the “3 × 5” seasonal moving average filter
M2(L) ≡ (1/15)(

P1
j=−1 L

jS)(
P2

j=−2 L
jS) again with S = 12. The procedure

also involves a (2H + 1)-term Henderson moving average filter HM(L) (see
Ghysels and Osborn, 2001, the default value is H = 6, yielding a thirteen-
term Henderson moving average filter).
The monthly X-11 filter has roughly 5 years of leads and lags. The origi-

nal X-11 seasonal adjustment procedure consisted of an array of asymmetric
filters that complemented the two-sided symmetric filter. There was a sepa-
rate filter for each scenario of missing observations, starting with a concurrent
adjustment filter when on past data and none of the future data. Each of
the asymmetric filters, when compared to the symmetric filter, implicitly
defined a forecasting model for the missing observations in the data. Unfor-
tunately, these different asymmetric filters implied inconsistent forecasting
models across time. To eliminate this inconsistency, a major improvement
was designed and implemented by Statistics Canada and called X-11-ARIMA
(Dagum, 1980) that had the ability to extend time series with forecasts and
backcasts from ARIMAmodels prior to seasonal adjustment. As a result, the
symmetric filter was always used and any missing observations were filled in
with an ARIMA model-based prediction. Its main advantage was smaller re-
visions of seasonally adjusted series as future data became available (see, e.g.,
Bobbitt and Otto, 1990). The U.S. Census Bureau also proceeded in 1998 to
major improvements of the X-11 procedure. These changes were so important
that they prompted the release of what is called X-12-ARIMA. Findley et al .
(1998) provide a very detailed description of the new improved capabilities of

8The question whether seasonal adjustment procedures are, at least approximately,
linear data transformations is investigated by Young (1968) and Ghysels, Granger, and
Siklos (1996).
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the X-12-ARIMA procedure. It encompasses the improvements of Statistics
Canada’s X-11-ARIMA and encapsules it with a front end regARIMA pro-
gram, which handles regression and ARIMAmodels, and a set of diagnostics,
which enhance the appraisal of the output from the original X-11-ARIMA.
The regARIMA program has a set of built-in regressors for the monthly case
(listed in Table 2 of Findley et al., 1998). They include a constant trend,
deterministic seasonal effects, trading-day effects (for both stock and flow
variables), length-of-month variables, leap year, Easter holiday, Labor day,
and Thanksgiving dummy variables as well as additive outlier, level shift,
and temporary ramp regressors.
Goméz and Maravall (1996) succeeded in building a seasonal adjustment

package using signal extraction principles. The package consists of two pro-
grams, namely TRAMO (Time Series Regression with ARIMA Noise, Miss-
ing observations, and Outliers) and SEATS (Signal Extraction in ARIMA
Time Series). The TRAMO program fulfills the role of preadjustment, very
much like regARIMA does for X-12-ARIMA adjustment. Hence, it performs
adjustments for outliers, trading-day effects, and other types of intervention
analysis (following Box and Tiao, 1975).
This brief description of the two major seasonal adjustment programs

reveals an important fact: seasonal adjustment involves forecasting seasonal
time series. The models that are used in practice are the univariate ARIMA
models described in Section 2.

5.2 Forecasting and Seasonal Adjustment

Like it or not, many applied time series studies involve forecasting seasonally
adjusted series. However, as noted in the previous subsection, pre-filtered
data are predicted in the process of adjustment and this raises several issues.
Further, due to the use of two-sided filters, seasonal adjustment of historical
data involves the use of future values. Many economic theories rest on the
behavioral assumption of rational expectations, or at least are very careful
regarding the information set available to agents. In this regard the use of
seasonally adjusted series may be problematic.
An issue rarely discussed in the literature is that forecasting seasonally ad-

justed series, should at least in principle be linked to the forecasting exercise
that is imbedded in the seasonal adjustment process. In the previous subsec-
tion we noted that since adjustment filters are two-sided, future realizations
of the raw series have to be predicted. Implicitly one therefore has a predic-
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tion model for the non-seasonal components ytct and irregular y
i
t appearing in

equation (79). For example, howmany unit roots is ytct assumed to have when
seasonal adjustment procedures are applied, and is the same assumption used
when subsequently seasonally adjusted series are predicted? One might also
think that the same time series model either implicitly or explicitly used for
ytct + yit should be subsequently used to predict the seasonally adjusted se-
ries. Unfortunately that is not the case, since the seasonally adjusted series
equals ytct + yit + et, where the latter is an extraction error, i.e. the error
between the true non-seasonal and its estimate. However, this raises another
question scantly discussed in the literature. A time series model for ytct +
yit, embedded in the seasonal adjustment procedure, namely used to predict
future raw data, and a time series model for et, (properties often known and
determined by the extraction filter), implies a model for ytct + yit + et. To
the best of our knowledge applied time series studies never follow a strategy
that borrows the non-seasonal component model used by statistical agencies
and adds the stochastic properties of the extraction error to determine the
prediction model for the seasonally adjusted series. Consequently, the model
specification by statistical agencies in the course of seasonal adjusting a se-
ries is never taken into account when the adjusted series are actually used in
forecasting exercises. Hence, seasonal adjustment and forecasting seasonally
adjusted series are completely independent. In principle this ought not to be
the case.
To conclude this subsection, it should be noted, however, that in some

circumstances the filtering procedure is irrelevant and therefore the issues
discussed in the previous paragraph are also irrelevant. The context is that
of linear regression models with linear (seasonal adjustment) filters. This
setting was originally studied by Sims (1974) and Wallis (1974), who consid-
ered regression models without lagged dependent variables; i.e. the classical
regression. They showed that OLS estimators are consistent whenever all
the series are filtered by the same filter. Hence, if all the series are adjusted
by, say the linear X-11 filter, then there are no biases resulting from filtering.
Absence of bias implies that point forecasts will not be affected by filtering,
when such forecasts are based on regression models. In other words, the
filter design is irrelevant as long as the same filter is used across all series.
However, although parameter estimates remain asymptotically unbiased, it
should be noted that residuals feature autocorrelation induced by filtering.
The presence of autocorrelation should in principle be taken into account in
terms of forecasting. In this sense, despite the invariance of OLS estimation

54



to linear filtering, we should note that there remains an issue of residual
autocorrelation.

5.3 Seasonal Adjustment and Feedback

While the topic of this Handbook is ‘forecasting’, it should be noted that in
many circumstances, economic forecasts feed back into decisions and affect
future outcomes. This is a situation of ‘control’, rather than ‘forecasting’,
since the prediction needs to take into account its effect on future outcomes.
Very little is said about the topic in this Handbook, and we would like to
conclude this chapter with a discussion of the topic in the context of seasonal
adjustment. The material draws on Ghysels (1987), who studies seasonal
extraction in the presence of feedback in the context of monetary policy.
Monetary authorities often target nonseasonal components of economic

time series, and for illustrative purpose Ghysels (1987) considers the case
of monetary aggregates being targeted. A policy aimed at controlling the
nonseasonal component of a time series can be studied as a linear quadratic
optimal control problem in which observations are contaminated by seasonal
noise (recall equation (79)). The usual seasonal adjustment procedures as-
sume however, that the future outcomes of the nonseasonal component are
unaffected by today’s monetary policy decisions. This is the typical fore-
casting situation discussed in the previous subsections. Statistical agencies
compute future forecasts of raw series in order to seasonally adjusted eco-
nomic time series. The latter are then used by policy makers, whose actions
affect future outcomes. Hence, from a control point of view, one cannot sep-
arate the policy decision from the filtering problem, in this case the seasonal
adjustment filter.
The optimal filter derived by Ghysels (1987) in the context of a monetary

policy example is very different fromX-11 or any of the other standard adjust-
ment procedures. This implies that the use of (1) a model-based approach,
as in SEATS/TRAMO, (2) a X-11-ARIMA or X-12-ARIMA procedure is
suboptimal. In fact, the decomposition emerging from a linear quadratic
control model is nonorthogonal because of the feedback. The traditional sea-
sonal adjustment procedure start from an orthogonal decomposition. Note
that the dependence across seasonal and nonseasonal components is in part
determined by the monetary policy rule. The degree to which traditional
adjustment procedures fall short of being optimal is difficult to judge (see,
however, Ghysels, 1987, for further discussion).
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6 Conclusion

In this chapter, we present a comprehensive overview of models and ap-
proaches that have been used in the literature to account for seasonal (pe-
riodic) patterns in economic and financial data, relevant to forecasting con-
text. We group seasonal time series models into four categories: conventional
univariate linear (deterministic and ARMA) models, seasonal cointegration,
periodic models and other specifications. Each is discussed in a separate
section. A final substantive section is devoted to forecasting and seasonal
adjustment.
The ordering of our discussion is based on the popularity of the methods

presented, starting with the ones most frequently used in the literature and
ending with recently proposed methods that are yet to achieve wide usage.
It is also obvious that methods based on nonlinear models or examining sea-
sonality in high frequency financial series generally require more observations
than the simpler methods discussed earlier.
Our discussion above does not attempt to provide general advice to a user

as to what method(s) should be used in practice. Ultimately, the choice of
method is data-driven and depends on the context under analysis. However,
two general points arise from our discussion that are relevant to this issue.
Firstly, the length of available data will influence the choice of method.

Indeed, the relative lack of success to date of periodic models in forecasting
may be due to the number of parameters that (in an unrestricted form)
they can require. Indeed, simple deterministic (dummy variable) models
may, in many situations, take account of the sufficient important features of
seasonality for practical forecasting purposes.
Secondly, however, we would like to emphasize that the seasonal proper-

ties of the specific series under analysis is a crucial factor to be considered.
Indeed, our Monte Carlo analysis in Section 2 establishes that correctly ac-
counting for the nature of seasonality can improve forecast performance.
Therefore, testing of the data should be undertaken prior to forecasting. In
our context, such tests include seasonal unit root tests and tests for periodic
parameter variation. Although commonly ignored, we also recommend ex-
tending these tests to consider seasonality in variance. If sufficient data are
available, tests for nonlinearity might also be undertaken. While we are scep-
tical that nonlinear seasonal models will yield substantial improvements to
forecast accuracy for economic time series at the present time, high frequency
financial time series may offer scope for such improvements.
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It is clear that further research to assess the relevance of applying more
complex models would offer new insights, particularly in the context of mod-
els discussed in Sections 3 and 4. Such models are typicially designed to
capture specific features of the data, and a forecaster needs to be able to
assess both the importance of these features for the data under study and
the likely impact of the additional complexity (including the number of pa-
rameters estimated) on forecast accuracy.
Developments on the interactions between seasonality and forecasting, in

particular in the context of the nonlinear and volatility models discussed in
Section 4, are important areas of work for future consideration. Indeed, as
discussed in Section 5, such issues arise even when seasonally adjusted data
are used for forecasting.
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Appendix: Tables
Table 1 - MSFE when the DGP is (28)

h T M1 M2 M3 M1 M2 M3 M1 M2 M3

(a) ρ = 1 (b) ρ = 0.9 (c) ρ = 0.8
100 1.270 1.035 1.136 1.347 1.091 1.165 1.420 1.156 1.174

1 200 1.182 1.014 1.057 1.254 1.068 1.074 1.324 1.123 1.087
400 1.150 1.020 1.041 1.225 1.074 1.044 1.294 1.123 1.058
100 2.019 1.530 1.737 2.113 1.554 1.682 2.189 1.579 1.585

8 200 1.933 1.528 1.637 2.016 1.551 1.562 2.084 1.564 1.483
400 1.858 1.504 1.554 1.942 1.533 1.485 2.006 1.537 1.421

Average number of Lags
100 5.79 1.21 3.64 5.76 1.25 3.65 5.81 1.39 3.71
200 6.98 1.21 3.64 6.94 1.30 3.67 6.95 1.57 3.79
400 7.65 1.21 3.62 7.67 1.38 3.70 7.68 1.88 3.97

Table 2 - MSFE when the DGP is (29) and (30)

h T M1 M2 M3 M1 M2 M3 M1 M2 M3

(a) ρ = 1 (b) ρ = 0.9 (c) ρ = 0.8
100 1.426 1.445 1.084 1.542 1.472 1.151 1.626 1.488 1.210

1 200 1.370 1.357 1.032 1.478 1.387 1.092 1.550 1.401 1.145
400 1.371 1.378 1.030 1.472 1.402 1.077 1.538 1.416 1.120
100 7.106 5.354 4.864 6.831 4.073 3.993 5.907 3.121 3.246

8 200 7.138 5.078 4.726 6.854 3.926 3.887 5.864 3.030 3.139
400 7.064 4.910 4.577 6.774 3.839 3.771 5.785 2.986 3.003

Average number of Lags
100 2.64 4.07 0.80 2.68 4.22 1.00 2.86 4.27 1.48
200 2.70 4.34 0.78 2.76 4.46 1.24 3.16 4.49 2.36
400 2.71 4.48 0.76 2.81 4.53 1.72 3.62 4.53 4.02
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Abstract

Structural time series models are formulated in terms of components,
such as trends, seasonals and cycles, that have a direct interpretation.
As well as providing a framework for time series decomposition by signal
extraction, they can be used for forecasting and for �nowcasting� . The
structural interpretation allows extensions to classes of models that are
able to deal with various issues in multivariate series and to cope with non-
Gaussian observations and nonlinear models. The statistical treatment is
by the state space form and hence data irregularites such as missing obser-
vations are easily handled. Continuous time models o¤er further �exibility
in that they can handle irregular spacing. The paper compares the fore-
casting performance of structural time series models with ARIMA and
autoregressive models. Results are presented showing how observations
in linear state space models are implicitly weighted in making forecasts
and hence how autoregressive and vector error correction representations
can be obtained. The use of an auxiliary series in forecasting and now-
casting is discussed. A �nal section compares stochastic volatility models
with GARCH.

KEYWORDS: Cycles; continuous time; Kalman �lter; non-Gaussian
models; state space; stochastic trend; stochastic volatility .
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1 Introduction

The fundamental reason for building a time series model for forecasting is that
it provides a way of weighting the data that is determined by the properties
of the time series. Structural time series models (STMs) are formulated in
terms of unobserved components, such as trends and cycles, that have a direct
interpretation. Thus they are designed to focus on the salient features of the
series and to project these into the future. They also provide a way of weighting
the observations for signal extraction, so providing a description of the series.
This chapter concentrates on prediction, though signal extraction at the end
of the period - that is �ltering - comes within our remit under the heading of
�nowcasting�.
In an autoregression the past observations, up to a given lag, receive a weight

obtained by minimising the sum of squares of one step ahead prediction errors.
As such they form a good baseline for comparing models in terms of one step
ahead forecasting performance. They can be applied directly to nonstationary
time series, though imposing unit roots by di¤erencing may be desirable to force
the eventual forecast function to be a polynomial; see the chapter by Elliot. The
motivation for extending the class of models to allow moving average terms is
one of parsimony. Long, indeed in�nite, lags can be captured by a small number
of parameters. The book by Box and Jenkins (1976) describes a model selection
strategy for this class of autoregressive-integrated-moving average (ARIMA)
processes. Linear STMs have reduced forms belonging to the ARIMA class.
The issue for forecasting is whether the implicit restrictions they place on the
ARIMA models help forecasting performance by ruling out models that have
unattractive properties.

1.1 Historical background

Structural time series models developed from ad hoc forecasting procedures1 , the
most basic of which is the exponentially weighted moving average (EWMA). The
EWMA was generalised by Holt (1957) and Winters (1960). They introduced a
slope component into the forecast function and allowed for seasonal e¤ects. A
somewhat di¤erent approach to generalising the EWMA was taken by Brown
(1963), who set up forecasting procedures in a regression framework and adopted
the method of discounted least squares. These methods became very popular
with practitioners and are still widely used as they are simple and transparent.
Muth (1960) was the �rst to provide a rationale for the EWMA in terms of a

properly speci�ed statistical model, namely a random walk plus noise. Nerlove
and Wage (1964) extended the model to include a slope term. These are the
simplest examples of structural time series models. However, the technology of
the sixties was such that further development along these lines was not pursued
at the time. It was some time before statisticians became acquainted with the
paper in the engineering literature by Schweppe (1965) which showed how a

1The procedures are ad hoc in that they are not based on a statistical model.
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likelihood function could be evaluated from the Kalman �lter via the prediction
error decomposition. More signi�cantly, even if this result had been known, it
could not have been properly exploited because of the lack of computing power.
The most in�uential work on time series forecasting in the sixties was carried

out by Box and Jenkins (1976). Rather than rationalising the EWMA by a
structural model as Muth had done, Box and Jenkins observed that it could
also be justi�ed by a model in which the �rst di¤erences of the variable followed
a �rst-order moving average process. Similarly they noted that a rationale for
the local linear trend extension proposed by Holt was given by a model in which
second di¤erences followed a second-order moving average process. A synthesis
with the theory of stationary stochastic processes then led to the formulation of
the class of ARIMA models, and the development of a model selection strategy.
The estimation of ARIMA models proved to be a viable proposition at this
time provided it was based on an approximate, rather than the exact, likelihood
function.
Harrison and Stevens (1976) continued the work within the framework of

structural time series models and were able to make considerable progress by
exploiting the Kalman �lter. Their response to the problems posed by parameter
estimation was to adopt a Bayesian approach in which knowledge of certain key
parameters was assumed. This led them to consider a further class of models
in which the process generating the data switches between a �nite number of
regimes. This line of research has proved to be somewhat tangential to the
main developments in the subject, although it is an important precursor to the
econometric literature on regime switching.
Although the ARIMA approach to time series forecasting dominated the

statistical literature in the 1970s and early 1980s, the structural approach was
prevalent in control engineering. This was partly because of the engineers�
familiarity with the Kalman �lter which has been a fundamental algorithm
in control engineering since its appearance in Kalman (1960). However, in a
typical engineering situation there are fewer parameters to estimate and there
may be a very large number of observations. The work carried out in engineering
therefore tended to place less emphasis on maximum likelihood estimation and
the development of a model selection methodology.
The potential of the Kalman �lter for dealing with econometric and sta-

tistical problems began to be exploited in the 1970s, an early example being
the work by Rosenberg (1973) on time-varying parameters. The subsequent
development of a structural time series methodology began in the 1980s; see
the books by Young (1984), Harvey (1989), West and Harrison (1989), Jones
(1993) and Kitagawa and Gersch (1996). The book by Nerlove, Grether and
Carvalho (1979) was an important precursor, although the authors did not use
the Kalman �lter to handle the unobserved components models that they �tted
to various data sets.
The work carried out in the 1980s, and implemented in the STAMP pack-

age of Koopman et al (2000), concentrated primarily on linear models. In the
1990s, the rapid developments in computing power led to signi�cant advances in
non-Gaussian and nonlinear modelling. Furthermore, as Durbin and Koopman
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(2000) have emphasised, it brought classical and Bayesian approaches closer
together because both draw on computer intensive techniques such as Markov
chain Monte Carlo and importance sampling. The availability of these methods
tends to favour the use of unobserved component models because of their �exi-
bility in being able to capture the features highlighted by the theory associated
with the subject matter.

1.2 Forecasting performance

Few studies deal explicitly with the matter of comparing the forecasting per-
formance of STMs with other time series methods over a wide range of data
sets. A notable exception is Andrews (1994). In his abstract, he concludes:
�The structural approach appears to perform quite well on annual, quarterly,
and monthly data, especially for long forecasting horizons and seasonal data.
Of the more complex forecasting methods, structural models appear to be the
most accurate.� There are also a number of illustrations in Harvey (1989) and
Harvey and Todd (1983). However, the most compelling evidence is indirect
and comes from the results of the M3 forecasting competitions; the most re-
cent of these is reported in Makridakis and Hibon (2000). They conclude (on
p 460) as follows: �This competition has con�rmed the original conclusions of
M-competition using a new and much enlarged data set. In addition, it has
demonstrated, once more, that simple methods developed by practicing fore-
casters (e.g., Brown�s Simple and Gardner�s Dampen (sic) Trend Exponential
Smoothing) do as well, or in many cases better, than statistically sophisticated
ones like ARIMA and ARARMA models�. Although Andrews seems to class
structural models as complex, the fact is that they include most of the simple
methods as special cases. The apparent complexity comes about because es-
timation is (explicitly) done by maximum likelihood and diagnostic checks are
performed.
Although the links between exponential smoothing methods and STMs have

been known for a long time, and were stressed in Harvey (1984, 1989), this point
has not always been appreciated in the forecasting literature. Section 2 of this
chapter sets out the STMs that provide the theoretical underpinning for EWMA,
double exponential smoothing and damped trend exponential smoothing. The
importance of understanding the statistical basis of forecasting procedures is
reinforced by a careful look at the so-called �theta method�, a new technique,
introduced recently by Assimakopoulos and Nikolopoulos (2000). The theta
method did rather well in the last M3 competition, with Makridakis and Hibon
(2000, p 460) concluding that: �Although this method seems simple to use....and
is not based on strong statistical theory, it performs remarkably well across
di¤erent types of series, forecasting horizons and accuracy measures�. However,
Hyndman and Billah (2003) show that the underlying model is just a random
walk with drift plus noise. Hence it is easily handled by a program such as
STAMP and there is no need to delve into the details of a method the description
of which is, in the opinion of Hyndman and Billah (2003, p 287), �complicated,
potentially confusing and involves several pages of algebra�.
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1.3 State space and beyond

The state space form (SSF) allows a general treatment of virtually any linear
time series models through the general algorithms of the Kalman �lter and
the associated smoother. Furthermore it permits the likelihood function to
be computed. Section 6 reviews the SSF and presents some results that may
not be well known but are relevant for forecasting. In particular it gives the
ARIMA and autoregressive (AR) representations of models in SSF. For multi-
variate series this leads to a method of computing the vector error correction
model (VECM) representation of an unobserved component model with com-
mon trends. VECMs were developed by Johansen (1995) and are described in
the chapter by Lutkepohl.
The most striking bene�ts of the structural approach to time series mod-

elling only become apparent when we start to consider more complex problems.
The direct interpretation of the components allows parsimonious multivariate
models to be set up and considerable insight can be obtained into the value
of, for example, using auxiliary series to improve the e¢ ciency of forecasting a
target series. Furthermore the SSF o¤ers enormous �exibility with regard to
dealing with data irregularities, such as missing observations and observations
at mixed frequencies. The study by Harvey and Chung (2000) on the measure-
ment of British unemployment provides a nice illustration of how STMs are
able to deal with forecasting and nowcasting when the series are subject to data
irregularities. The challenge is how to obtain timely estimates of the underlying
change in unemployment. Estimates of the numbers of unemployed according to
the ILO de�nition have been published on a quarterly basis since the spring of
1992. From 1984 to 1991 estimates were published for the spring quarter only.
The estimates are obtained from the Labour Force Survey (LFS), which consists
of a rotating sample of approximately 60,000 households. Another measure of
unemployment, based on administrative sources, is the number of people claim-
ing unemployment bene�t. This measure, known as the claimant count (CC),
is available monthly, with very little delay and is an exact �gure. It does not
provide a measure corresponding to the ILO de�nition, but as �gure 1 shows it
moves roughly in the same way as the LFS �gure. There are thus two issues to
be addressed. The �rst is how to extract the best estimate of the underlying
monthly change in a series which is subject to sampling error and which may
not have been recorded every month. The second is how to use a related series
to improve this estimate. These two issues are of general importance, for exam-
ple in the measurement of the underlying rate of in�ation or the way in which
monthly �gures on industrial production might be used to produce more timely
estimates of national income. The STMs constructed by Harvey and Chung
(2000) follow Pfe¤ermann (1991) in making use of the SSF to handle the rather
complicated error structure coming from the rotating sample. Using CC as an
auxiliary series halves the RMSE of the estimator of the underlying change in
unemployment.
STMs can also be formulated in continuous time. This has a number of

advantages, one of which is to allow irregularly spaced observations to be han-
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Figure 1. LFS Unemployed and Claimant Count for Great Britain (Seasonally Adjusted )

0

50 0

10 00

15 00

20 00

25 00

30 00

35 00

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

(T
ho

us
an

ds
)

Claimant Count LFS ILO Unemployed

Figure 1: Annual and quarterly observations from the British labour force survey
and the monthly claimant count

dled. The SSF is easily adapted to cope with this situation. Continuous time
modelling of �ow variables o¤ers the possibility of certain extensions such as
making cumulative predictions over a variable lead time.
Some of the most exciting recent developments in time series have been in

nonlinear and non-Gaussian models. The �nal part of this survey provides an
introduction to some of the models that can now be handled. Most of the em-
phasis is on what can be achieved by computer intensive methods. For example,
it is possible to �t STMs with heavy-tailed distributions on the disturbances,
thereby making them robust with respect to outliers and structural breaks. Sim-
ilarly, non-Gaussian models with stochastic components can be set up. However,
for modelling an evolving mean of a distribution for count data or qualitative
observations, it is interesting that the use of conjugate �lters leads to simple
forecasting procedures based around the EWMA.

2 Structural time series models

The simplest structural time series models are made up of a stochastic trend
component, �t; and a random irregular term. The stochastic trend evolves over
time and the practical implication of this is that past observations are discounted
when forecasts are made. Other components may be added. In particular a
cycle is often appropriate for economic data. Again this is stochastic, thereby
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giving the �exibility needed to capture the type of movements that occur in
practice. The statistical formulations of trends and cycles are described in
the sub-sections below. A convergence component is also considered and it is
shown how the model may be extended to include explanatory variables and
interventions. Seasonality is discussed in a later section. The general statistical
treatment is by the state space form described in section 6.

2.1 Exponential smoothing

Suppose that we wish to estimate the current level of a series of observations.
The simplest way to do this is to use the sample mean. However, if the purpose of
estimating the level is to use this as the basis for forecasting future observations,
it is more appealing to put more weight on the most recent observations. Thus
the estimate of the current level of the series is taken to be

mT =
T�1
�
j=0

wjyT�j (1)

where the wj�s are a set of weights that sum to unity. This estimate is then
taken to be the forecast of future observations, that is

ŷT+ljT = mT ; l = 1; 2; ::: (2)

so the forecast function is a horizontal straight line. One way of putting more
weight on the most recent observations is to let the weights decline exponentially.
Thus

mT = �
T�1
�
j=0

(1� �)j yT�j (3)

where � is a smoothing constant in the range 0 < � 6 1: (The weights sum to
unity in the limit as T ! 1): The attraction of exponential weighting is that
estimates can be updated by a simple recursion. If expression (3) is de�ned for
any value of t from t = 1 to T; it can be split into two parts to give

mt = (1� �)mt�1 + �yt; t = 1; :::; T (4)

with m0 = 0: Since mt is the forecast of yt+1; the recursion is often written
with ŷt+1jt replacing mt so that next period�s forecast is a weighted average of
the current observation and the forecast of the current observation made in the
previous time period. This may be re-arranged to give

ŷt+1jt = ŷtjt�1 + �v̂t; t = 1; :::; T

where v̂t = yt � ŷtjt�1 is the one-step-ahead prediction error and ŷ1j0 = 0:
This method of constructing and updating forecasts of a level is known

as an exponentially weighted moving average (EWMA) or simple exponential
smoothing. The smoothing constant, �; can be chosen so as to minimise the sum
of squares of the prediction errors, that is S (�) =

P
v̂2t .
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The EWMA is also obtained if we take as our starting point the idea that
we want to form an estimate of the mean by minimising a discounted sum of
squares. Thus mT is chosen by minimising S (!) =

P
!j(yT�j �mT )

2 where
0 < ! � 1: It is easily established that ! = 1� �:
The forecast function for the EWMA procedure is a horizontal straight line.

Bringing a slope, bT , into the forecast function gives

ŷT+ljT = mT + bT l; l = 1; 2; ::: (5)

Holt (1957) and Winters (1960) introduced an updating scheme for calculating
mT and bT in which past observations are discounted by means of two smoothing
constants, �0 and �1, in the range 0 < �0; �1 < 1: Let mt�1 and bt�1 denote
the estimates of the level and slope at time t� 1. The one-step-ahead forecast
is then

ŷtjt�1 = mt�1 + bt�1 (6)

As in the EWMA, the updated estimate of the level, mt, is a linear combination
of ŷtjt�1 and yt: Thus

mt = �0yt + (1� �0) (mt�1 + bt�1) (7)

From this new estimate of mt, an estimate of the slope can be constructed as
mt�mt�1 and this is combined with the estimate in the previous period to give

bt = �1 (mt �mt�1) + (1� �1) bt�1 (8)

Together these equations form Holt�s recursions. Following the argument given
for the EWMA, starting values may be constructed from the initial observations
as m2 = y2 and b2 = y2 � y1: Hence the recursions run from t = 3 to t = T .
The closer �0 is to zero, the less past observations are discounted in forming a
current estimate of the level. Similarly, the closer �1 is to zero, the less they
are discounted in estimating the slope. As with the EWMA, these smoothing
constants can be �xed a priori or estimated by minimising the sum of squares
of forecast errors.

2.2 Local level model

The local level model consists of a random walk plus noise,

yt = �t + "t; "t � NID
�
0; �2"

�
; t = 1; :::; T (9)

�t = �t�1 + �t; �t � NID(0; �2�); (10)

where the irregular and level disturbances, "t and �t respectively, are mutually
independent and the notation NID

�
0; �2

�
denotes normally and independently

distributed with mean zero and variance �2. When �2� is zero, the level is
constant. The signal-noise ratio, q = �2�=�

2
"; plays the key role in determining
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how observations should be weighted for prediction and signal extraction. The
higher is q; the more past observations are discounted in forecasting.
Suppose that we know the mean and variance of �t�1 conditional on obser-

vations up to and including time t � 1; that is �t�1 j Yt�1 � N(mt�1; pt�1):
Then, from (10), �t j Yt�1 � N(mt�1; pt�1 + �2�). Furthermore yt j Yt�1 �
N(mt�1; pt�1 + �2� + �2") while the covariance between �t and yt is pt�1 + �2�:
The information in yt can be taken on board by invoking a standard result on
the bivariate normal distribution2 to give the conditional distribution at time t
as �t j Yt � N(mt; pt); where

mt = mt�1 + [(pt�1 + �
2
�)=

�
pt�1 + �

2
� + �

2
"

�
](yt �mt�1) (11)

and
pt = pt�1 + �

2
� �

�
(pt�1 + �

2
�)
2=
�
pt�1 + �

2
� + �

2
"

��
(12)

This process can be repeated as new observations become available. As we will
see later this is a special case of the Kalman �lter. But how should the �lter
be started? One possibility is to let m1 = y1; in which case p1 = �2". Another
possibility is a di¤use prior in which the lack of information at the beginning of
the series is re�ected in an in�nite value of p0: However, if we set �0 � N(0; �),
update to get the mean and variance of �1 given y1 and let � ! 1; the result
is exactly the same as the �rst suggestion.
When updating is applied repeatedly, pt becomes time invariant, that is

pt ! p. If we de�ne p�t = ��2" pt; divide both sides of (12) by �2" and set
p�t = p�t�1 = p� we obtain

p� =
�
�q +

p
q2 + 4q

�
=2; q � 0; (13)

and it is clear that (11) leads to the EWMA, (4), with3

� = (p� + q)=(p� + q + 1) =
�
�q +

p
q2 + 4q

�
=2 (14)

The conditional mean, mt; is the minimum mean square error estimator
(MMSE) of �t: The conditional variance, pt; does not depend on the observa-
tions and so it is the unconditional MSE of the estimator. Because the updating
recursions produce an estimator of �t which is a linear combination of the ob-
servations, we have adopted the convention of writing it as mt: If the normality
assumption is dropped, mt is still the minimum mean square error linear esti-
mator (MMSLE).

2 If y1 and y2 are jointly normal with means �1 and �2 and covariance matrix�
�21 �12
�12 �22

�
the distribution of y2 conditional on y1 is normal with mean �2 + (�12=�

2
1)(y1 � �1) and

variance �22 � �212=�21:
3 If q = 0; then � = 0 so there is no updating if we switch to the steady-state �lter or use

the EWMA.
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The conditional distribution of yT+l; l = 1; 2; :::is obtained by writing

yT+l = �T +
lX

j=1

�T+j + "T+l = mT + (�T �mT ) +
lX

j=1

�T+j + "T+l:

Thus the l � step ahead predictor is the conditional mean, ~yT+ljT = mT ; and
the forecast function is a horizontal straight line which passes through the �nal
estimator of the level. The prediction MSE, the conditional variance of yT+l; is

MSE
�eyT+ljT � = pT + l�

2
� + �

2
" = �2"(p

�
T + lq + 1); l = 1; 2; : (15)

This increases linearly with the forecast horizon, with pT being the price paid
for not knowing the starting point, �T . If T is reasonably large, then pT ' p.
Assuming �2� and �

2
" to be known, a 95% prediction interval for yT+l is given

by ~yT+ljT � 1:96�T+ljT where �2T+ljT = MSE(~yT+ljT ) = �2"pT+ljT : Note that
because the conditional distribution of yT+l is available, it is straightforward to
compute a point estimate that minimises the expected loss; see sub-section 6.7.
When a series has been transformed, the conditional distribution of a future

value of the original series, yyT+l; will no longer be normal. If logarithms have
been taken, the MMSE is given by the mean of the conditional distribution of
yyT+l which, being lognormal, yields

E
�
yyT+l j YT

�
= exp

�
~yT+ljT + 0:5~�

2
T+ljT

�
; l = 1; 2; ::: (16)

where ~�2T+ljT = �2"pT+ljT is the conditional variance. A 95% prediction interval

for yyT+l, on the other hand, is straightforwardly computed as

exp
�
~yT+ljT � 1:96~�2T+ljT

�
6 yyT+l 6 exp

�
~yT+ljT + 1:96~�

2
T+ljT

�
The model also provides the basis for using all the observations in the sample

to calculate a MMSE of �t at all points in time. If �t is near the middle of a
large sample then it turns out that

mtjT w
�

2� �
X
j

(1� �)jjjyt+j

Thus there is exponential weighting on either side with a higher q meaning that
the closest observations receive a higher weight. This is signal extraction; see
Harvey and de Rossi (2005). A full discussion would go beyond the remit of
this survey.
As regards estimation of q; the recursions deliver the mean and variance

of the one-step ahead predictive distribution of each observation. Hence it is
possible to construct a likelihood function in terms of the prediction errors,
or innovations, �t = yt � ~ytjt�1: Once q has been estimated by numerically
maximising the likelihood function, the innovations can be used for diagnostic
checking.
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2.3 Trends

The local linear trend model generalises the local level by introducing into (9)
a stochastic slope, �t; which itself follows a random walk. Thus

�t = �t�1 + �t�1 + �t; �t � NID(0; �2�);
�t = �t�1 + �t; �t � NID(0; �2�);

(17)

where the irregular, level and slope disturbances, "t; �t and �t, respectively,
are mutually independent. If both variances �2� and �

2
� are zero, the trend is

deterministic:When only �2� is zero, the slope is �xed and the trend reduces to a
random walk with drift. Allowing �2� to be positive, but setting �

2
� to zero gives

an integrated random walk trend, which when estimated tends to be relatively
smooth. This model is often referred to as the �smooth trend�model.
Provided �2� is strictly positive, we can generalise the argument used to

obtain the local level �lter and show that the recursion is as in (7) and (8) with
the smoothing constants de�ned by

q� =
�
�20 + �

2
0�1 � 2�0�1

�
= (1� �0) and q� = �20�

2
1= (1� �0)

where q� and q� are the relative variances �2�=�
2
" and �

2
�=�

2
" respectively; see

Harvey (1989, ch4). If q� is to be non-negative it must be the case that �1 �
�0=(2 + �0); equality corresponds to the smooth trend. Double exponential
smoothing, suggested by the principle of discounted least squares, is obtained
by setting q� = (q�=2)

2
:

Given the conditional means of the level and slope, that is mT and bT ; it is
not di¢ cult to see from (17) that the forecast function for MMSE prediction is

~yT+ljT = mT + bT l; l = 1; 2; ::: (18)

The damped trend model is a modi�cation of (17) in which

�t = ��t�1 + �t; �t � NID(0; �2�); (19)

with 0 < � � 1: As regards forecasting

eyT+ljT = mT + bT + �bT + � � �+ �l�1bT = mT +
��
1� �l

�
= (1� �)

�
bT

so the �nal forecast function is a horizontal line at a height of mT +bT = (1� �) :
The model could be extended by adding a constant, �; so that

�t = (1� �)� + ��t�1 + �t:

2.4 Nowcasting

The forecast function for local linear trend starts from the current, or �real
time�, estimate of the level and increases according to the current estimate of
the slope. Reporting these estimates is an example of what is sometimes called
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�nowcasting�. As with forecasting, a UC model provides a way of weighting
the observations that is consistent with the properties of the series and enables
MSEs to be computed.
The underlying change at the end of a series - the growth rate for data in

logarithms - is usually the focus of attention since it is the direction in which
the series is heading. It is instructive to compare model-based estimators with
simple, more direct, measures. The latter have the advantage of transparency,
but may entail a loss of information. For example, the �rst di¤erence at the
end of a series, �yT = yT � yT�1; may be a very poor estimator of underlying
change. This is certainly the case if yt is the logarithm of the monthly price
level: its di¤erence is the rate of in�ation and this �headline��gure is known
to be very volatile. A more stable measure of change is the r � th di¤erence
divided by r; that is

b
(r)
T = (1=r)�ryT = (yT � yT�r)=r: (20)

It is not unusual to measure the underlying monthly rate of in�ation by sub-
tracting the price level a year ago from the current price level and dividing by
twelve. Note that since �ryt =

Pr�1
j=0�yt�j ; b

(r)
T is the average of the last r

�rst di¤erences.
Figure 2 shows the quarterly rate of in�ation in the US together with the

�ltered estimator obtained from a local level model with q estimated to be 0.22.
At the end of the series, in the �rst quarter of 1983, the underlying level was
0.011, corresponding to an annual rate of 4.4%. The RMSE was one �fth of the
level. The headline �gure is 3.1%, but at the end of the year it was back up to
4.6%.
The e¤ectiveness of these simple measures of change depends on the prop-

erties of the series. If the observations are assumed to come from a local linear
trend model with the current slope in the level equation4 , then

�yt = �t + �t +�"t; t = 2; : : : T

and it can be seen that taking�yT as an estimator of current underlying change,
�T ; implies a MSE of �

2
� + 2�

2
". Further manipulation shows that the MSE of

b
(r)
T as an estimator of �T is

MSE(b
(r)
T ) = V ar

n
b
(r)
T � �T

o
=
(r � 1) (2r � 1)

6r
�2� +

�2�
r
+
2�2"
r2

(21)

When �2" = 0, the irregular component is not present and so the trend is
observed directly. In this case the �rst di¤erences follow a local level model
and the �ltered estimate ~�T is an EWMA of the �yt�s. In the steady-state,
MSE(~�T ) is as in (15) with �

2
" replaced by �

2
� and q = �2�=�

2
�. Table 1 shows

some comparisons.

4Using the current slope, rather than the lagged slope, is for algebraic convenience.
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Figure 2: Quarterly rate of in�ation in the U.S. with �ltered estimates
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Table 1: RMSEs of r� th di¤erences, b(r)T ; as estimators of underlying change,
relative to RMSE of corresponding estimator from the local linear trend model

q = �2�=�
2
�

r 0.1 0.5 1 10
1 1.92 1.41 1.27 1.04
3 1.20 1.10 1.20 2.54
12 1.27 1.92 2.41 6.20

Mean lag 2.70 1 0.62 0.09

Measures of change are sometimes based on di¤erences of rolling (moving)
averages. The rolling average, Yt; over the previous � time periods is

Yt = (1=�)
��1X
j=0

yt�j : (22)

and the estimator of underlying change from r � th di¤erences is

B
(r)
T = (1=r)�rYT ; r = 1; 2; ::: (23)

This estimator can also be expressed as a weighted average of current and past
�rst di¤erences. For example, if r = 3, then

B
(3)
T = (1=9)�yT + (2=9)�yT�1 + (1=3)�yT�2 + (2=9)�yT�3 + (1=9)�yT�4:

The series of B(3)0T s is quite smooth but it can be slow to respond to changes.

An expression for the MSE of B(r)T can be obtained using the same approach

as for b(r)T . Some comparisons of MSEs can be found in Harvey and Chung
(2000). As an example, in table 1 the �gures for r = 3 for the four di¤erent
values of q are 1.17, 1.35, 1.61 and 3.88.
A change in the sign of the slope may indicate a turning point. The RMSE

attached to a model-based estimate at a particular point in time gives some
idea of signi�cance. As new observations become available, the estimate and
its (decreasing) RMSE may be monitored by a smoothing algorithm; see, for
example, Planas and Rossi (2004).

2.5 Surveys and measurement error

Structural time series models can be extended to take account of sample survey
error from a rotational design. The statistical treatment using the state space
form is not di¢ cult; see Pfe¤ermann (1991). Furthermore it permits changes
over time that might arise, for example, from an increase in sample size or a
change in survey design.
UK Labour force survey - Harvey and Chung (2000) model quarterly LFS as

a stochastic trend but with a complex error coming from the rotational survey
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Figure 3: Weights used to construct estimates of the current level and slope of
the LFS series

design. The implied weighting pattern of �rst di¤erences for the estimator of
the underlying change, computed from the SSF by the algorithm of Koopman
and Harvey (2003), is shown in �gure 3 together with the weights for the level
itself. It is interesting to contrast the weights for the slope with those of B(3)T
above.

2.6 Cycles

The stochastic cycle is24  t

 �t

35 = �

24 cos�c sin�c

� sin�c cos�c

3524  t�1

 �t�1

35+
24 �t

��t

35 ; t = 1; :::; T; (24)

where �c is frequency in radians, � is a damping factor and �t and ��t are two
mutually independent Gaussian white noise disturbances with zero means and
common variance �2�: Given the initial conditions that the vector ( 0;  

�
0)
0 has

zero mean and covariance matrix �2 I; it can be shown that for 0 � � < 1,
the process  t is stationary and indeterministic with zero mean, variance �

2
 

= �2�=(1� �2) and autocorrelation function (ACF)

�(�) = �� cos�c� ; � = 0; 1; 2; ::: (25)

For 0 < �c < �; the spectrum of  t displays a peak, centered around �c, which
becomes sharper as � moves closer to one; see Harvey (1989, p60). The period
corresponding to �c is 2�=�c:
Higher order cycles have been suggested by Harvey and Trimbur (2003). The

nth order stochastic cycle,  n;t; for positive integer n, is�
 1;t
 �1;t

�
= �

�
cos�c sin�c
� sin�c cos�c

� �
 1;t�1
 �1;t�1

�
+

�
�t
��t

�
; (26)

17



�
 i;t
 �i;t

�
= �

�
cos�c sin�c
� sin�c cos�c

� �
 i;t�1
 �i;t�1

�
+

�
 i�1;t�1
 �i�1;t�1

�
; i = 2; :::; n

The variance of the cycle for n = 2 is �2 = f(1 + �2)=(1 � �2)3g�2�; while the
ACF is

�(�) = �� cos(�c�)[1 + f(1� �2)=(1 + �2)g� ]; � = 0; 1; 2; ::: (27)

The derivation and expressions for higher values of n are in Trimbur (2005).
For very short term forecasting, transitory �uctuations may be captured by

a local linear trend. However, it is usual better to separate out such movements
by including a stochastic cycle. Combining the components in an additive way,
that is

yt = �t +  t + "t; t = 1; ::; T; (28)

provides the usual basis for trend-cycle decompositions. The cycle may be
regarded as measuring the output gap. Extracted higher order cycles tend to
be smoother with more noise consigned to the irregular.
The cyclical trend model incorporates the cycle into the slope by moving it

from (28) to the equation for the level:

�t = �t�1 +  t�1 + �t�1 + �t (29)

The damped trend is a special case corresponding to �c = 0:

2.7 Forecasting components

A UC model not only yields forecasts of the series itself, it also provides forecasts
for the components and their MSEs.
US GDP A trend plus cycle model, (28), was �tted to the logarithm of

quarterly seasonally adjusted real per capita US GDP using STAMP. Fig 4
shows the forecasts for the series itself with one RMSE on either side, while
�gures 5 and 6 show the forecasts for the logarithms of the cycle and the trend
together with their smoothed values since 1975.Figure 7 shows the annualised
underlying growth rate (the estimate of the slope times four) and the fourth
di¤erences of the (logarithms of the) series. The latter is fairly noisy, though
much smoother than �rst di¤erences, and it includes the e¤ect of temporary
growth emanating from the cycle. The growth rate from the model, on the
other hand, shows the long term growth rate and indicates how the prolonged
upswings of the 1960s and 1990s are assigned to the trend rather than to the
cycle. (Indeed it might be interesting to consider �tting a cyclical trend model
with an additive cycle). The estimate of the growth rate at the end of the series
is 2.5%, with a RMSE of 1.2%, and this is the growth rate that is projected into
the future.
Fitting a trend plus cycle model provides more scope for identifying turning

points and assessing their signi�cance. Di¤erent de�nitions of turning points
might be considered, for example a change in sign of the cycle, a change in sign
of its slope or a change in sign of the slope of the cycle and the trend together.
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Figure 4: US GDP per capita and forecasts with 68% prediction interval

2.8 Convergence models

Long-run movements often have a tendency to converge to an equilibrium level.
In an autoregressive framework this is captured by an error correction model
(ECM). The UC approach is to add cycle and irregular components to an ECM
so as to avoid confounding the transitional dynamics of convergence with short-
term steady-state dynamics. Thus

yt = �+ �t +  t + "t; t = 1; :::; T (30)

with
�t = ��t�1 + �t; or ��t = (�� 1)�t�1 + �t;

Smoother transitional dynamics, and hence a better separation into convergence
and short-term components, can be achieved by specifying �t in (30) as

�t = ��t�1 + �t�1; t = 1; :::; T; (31)

�t = ��t�1 + �t;

where 0 � � � 1; the smooth trend model is obtained when � = 1: This second-
order ECM can be expressed as

��t = �(1� �)2�t�1 + �2��t�1 + �t
showing that the underlying change depends not only on the gap but also on
the change in the previous time period. The variance and ACF can be obtained
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Figure 7: Smoothed estimates of slope of US per capita GDP and annual dif-
ferences.

from the properties of an AR(2) process or by noting that the model is a special
case of the second order cycle with �c = 0.
For the smooth convergence model the `�step ahead forecast function, stan-

dardised by dividing by the current value of the gap, is (1 + c`)�`; ` = 0; 1; 2; ::
where c is a constant that depends on the ratio, !; of the gap in the current
time period to the previous one, that is ! = e�T =e�T�1jT . Since the one-step
ahead forecast is 2�� �2=!; it follows that c = 1� �=!; so

e�T+`jT = (1 + (1� �=!)`)�`e�T ; ` = 0; 1; 2; ::

If ! = �; the expected convergence path is the same as in the �rst order model.
If ! is set to (1 + �2)=2; the convergence path evolves in the same way as
the ACF. In this case, the slower convergence can be illustrated by noting, for
example, that with � = 0:96; 39% of the gap can be expected to remain after
50 time periods as compared with only 13% in the �rst-order case. The most
interesting aspect of the second-order model is that if the convergence process
stalls su¢ ciently, the gap can be expected to widen in the short run as shown
later in �gure 10.
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3 ARIMA and autoregressive models

The reduced forms of the principal structural time series models5 are ARIMA
processes. The relationship between the structural and reduced forms gives
considerable insight into the potential e¤ectiveness of di¤erent ARIMA models
for forecasting and the possible shortcomings of the approach.
From the theoretical point of view, the autoregressive representation of STMs

is useful in that it shows how the observations are weighted when forecasts are
made. From the practical point of view it indicates the kind of series for which
autoregressions are unlikely to be satisfactory.
After discussing the ways in which ARIMA and autoregressive model selec-

tion methodologies contrast with the way in which structural time series models
are chosen, we examine the rationale underlying single source of error STMs.

3.1 ARIMA models and the reduced form

An autoregressive-integrated-moving average model of order (p; d; q) is one in
which the observations follow a stationary and invertible ARMA (p; q) process
after they have been di¤erenced d times. It is often denoted by writing, yt
� ARIMA (p; d; q) : If a constant term, �0; is included we may write

�dyt = �0 + �1�
dyt�1 + � � �+ �p�dyt�p + �t + �1�t�1 + � � �+ �q�t�q (32)

where �1; :::; �p are the autoregressive parameters, �1; :::; �q are the moving av-
erage parameters and �t � NID

�
0; �2

�
: By de�ning polynomials in the lag

operator, L;
� (L) = 1� �1L� � � � � �pLp (33)

and
� (L) = 1 + �1L+ � � �+ �qLq (34)

the model can be written more compactly as

� (L)�dyt = �0 + � (L) �t (35)

A structural time series model normally contains several disturbance terms.
Provided the model is linear, the components driven by these disturbances can
be combined to give a model with a single disturbance. This is known as the
reduced form. The reduced form is an ARIMA model, and the fact that it is
derived from a structural form will typically imply restrictions on the parameter
space. If these restrictions are not imposed when an ARIMA model of the
implied order is �tted, we are dealing with the unrestricted reduced form.

5Some econometricians are unhappy with the use of the term �structural� in this context.
It was introduced by Engle (1978) to make the point that the reduced form, like the reduced
form in a simultaneous equations model, is for forecasting only whereas the structural form
attempts to model phenomena that are of direct interest to the economist. Once this is
understood, the terminology seems quite reasonable. It is certainly better than the epithet
�dynamic linear models�favoured by West and Harrison (1989).
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The reduced forms of the principal structural models are set out below,
and the restrictions on the ARIMA parameter space explored. Expressions for
the reduced form parameters may, in principle, be determined by equating the
autocovariances in the structural and reduced forms. In practice this is rather
complicated except in the simplest cases. An algorithm is given in Nerlove et al.
(1979, pp. 70-78). General results for �nding the reduced form for any model
that can be put in state space form are given in section 6.
Local level/random walk plus noise models The reduced form is ARIMA(0,1,1).

Equating the autocorrelations of �rst di¤erences at lag one gives

� =
h�
q2 + 4q

�1=2 � 2� qi =2 (36)

where q = �2�=�
2
": Since 0 6 q 6 1 corresponds to �1 6 � 6 0; the MA

parameter in the reduced form covers only half the usual parameter space. Is
this a disadvantage or an advantage? The forecast function is an EWMA with
� = 1+� and if � is positive the weights alternate between positive and negative
values. This may be unappealing.
Local linear trend The reduced form of the local linear trend is an ARIMA(0,2,2)

process. The restrictions on the parameter space are more severe than in the
case of the random walk plus noise model; see Harvey (1989, p. 69).
Cycles The cycle has an ARMA(2,1) reduced form. The MA part is subject

to restrictions but the more interesting constraints are on the AR parameters.
The roots of the AR polynomial are ��1 exp (�i�c) : Thus, for 0 < �c < �;
they are a pair of complex conjugates with modulus ��1 and phase �c, and
when 0 6 � < 1 they lie outside the unit circle. Since the roots of an AR(2)
polynomial can be either real or complex, the formulation of the cyclical model
e¤ectively restricts the admissible region of the autoregressive coe¢ cients to
that part which is capable of giving rise to pseudo-cyclical behaviour. When a
cycle is added to noise the reduced form is ARMA(2,2).
Models constructed from several components may have quite complex re-

duced forms but with strong restrictions on the parameter space. For example
the reduced form of the model made up of trend plus cycle and irregular is
ARIMA(2; 2; 4): Unrestricted estimation of high order ARIMA models may
not be possible. Indeed such models are unlikely to be selected by the ARIMA
methodology. In the case of US GDP, for example, ARIMA(1; 1; 0) with drift
gives a similar �t to the trend plus cycle model and hence will yield a similar
one-step ahead forecasting performance; see Harvey and Jaeger (1993). The
structural model may, however, forecast better several steps ahead.

3.2 Autoregressive models

The autoregressive representation may be obtained from the ARIMA reduced
form or computed directly from the SSF as described in the next section. For
more complex models computation from the SSF may be the only feasible option.
For the local level model, it follows from the ARIMA(0,1,1) reduced form
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that the �rst di¤erences have a stationary autoregressive representation

�yt = �
1X
j=1

(��)j�yt�j + �t (37)

Expanding the di¤erence operator and re-arranging gives

yt = (1 + �)
1X
j=1

(��)j�1yt�j + �t (38)

from which it is immediately apparent that the MMSE forecast of yt at time
t � 1 is an EWMA. If changes in the level are dominated by the irregular, the
signal-noise ratio is small and � is close to minus one. As a result the weights
decline very slowly and a low order autoregression may not give a satisfactory
approximation. This issue becomes more acute in a local linear trend model as
the slope will typically change rather slowly. One consequence of this is that
unit root tests rarely point to autoregressive models in second di¤erences as
being appropriate; see Harvey and Jaeger (1993).

3.3 Model selection in ARIMA, autoregressive and struc-
tural time series models

An STM sets out to capture the salient features of a time series. These are often
apparent from the nature of the series - an obvious example is seasonal data -
though with many macroeconomic series there are strong reasons for wanting
to �t a cycle. While the STM should be consistent with the correlogram, this
typically plays a minor role. Indeed many models are selected without consulting
it. Once a model has been chosen, diagnostic checking is carried out in the same
way as for an ARIMA model.
ARIMA models are typically more parsimonious model than autoregressions.

The MA terms are particularly important when di¤erencing has taken place.
Thus an ARIMA(0,1,1) is much more satisfactory than an autoregression if
the true model is a random walk plus noise with a small signal-noise ratio.
However, one of the drawbacks of ARIMA models as compared with STMs is
that a parsimonious model may not pick up some of the more subtle features
of a time series. As noted earlier, ARIMA model selection methodology will
usually lead to an ARIMA(1,1,0) speci�cation, with constant, for US GDP. For
the data in sub-section 2.7, the constant term indicates a growth rate of 3.4%.
This is bigger than the estimate for the structural model at the end of the series,
one reason being that, as �gure 7 makes clear, the long-run growth rate has been
slowly declining over the last �fty years.
ARIMA model selection is based on the premise that the ACF and related

statistics can be accurately estimated and are stable over time. Even if this
is the case, it can be di¢ cult to identify moderately complex models with the
result that important features of the series may be missed. In practice, the
sampling error associated with the correlogram may mean that even simple
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ARIMA models are di¢ cult to identify, particularly in small samples. STMs are
more robust as the choice of model is not dependent on correlograms. ARIMA
model selection becomes even more problematic with missing observations and
other data irregularities. See Durbin and Koopman (2001, pp 51-3) and Harvey
(1989, pp 80-1) for further discussion.
Autoregressive models can always be �tted to time series and will usually

provide a decent baseline for one-step ahead prediction. Model selection is
relatively straightforward. Unit root tests are usually used to determine the
degree of di¤erencing and lags are included in the �nal model according to
statistical signi�cance or a goodness of �t criterion.6 The problems with this
strategy are that unit root tests often have poor size and power properties and
may give a result that depends on how serial correlation is handled. Once
decisions about di¤erencing have been made, there are di¤erent views about
how best to select the lags to be included. Should gaps be allowed for example?
It is rarely the case that �t-statistics�fall monotonically as the lag increases, but
on the other hand creating gaps is often arbitrary and is potentially distorting.
Perhaps the best thing is to do is to �x the lag length according to a goodness of
�t criterion, in which case autoregressive modelling is e¤ectively nonparametric.
Tests that are implicitly concerned with the order of di¤erencing can also be

carried out in a UC framework. They are stationarity rather than unit root tests,
testing the null hypothesis that a component is deterministic. The statistical
theory is actually more uni�ed with the distributions under the null hypothesis
coming from the family of Cramér-von Mises distributions; see Harvey (2001).
Finally, the forecasts from an ARIMA model that satis�es the reduced form

restrictions of the STM will be identical to those from the STM and will have
the same MSE. For nowcasting, Box, Pierce and Newbold (1987) show how the
estimators of the level and slope can be extracted from the ARIMA model.
These will be the same as those obtained from the STM. However, an MSE can
only be obtained for a speci�ed decomposition.

3.4 Correlated components

Single source of error (SSOE) models are a compromise between ARIMA and
STMs in that they retain the structure associated with trends, seasonals and
other components while easing the restrictions on the reduced form. For example
for a local level we may follow Ord et al (1997) in writing

yt = �t�1 + �t; t = 1; :::; T (39)

�t = �t�1 + k�t; �t � NID
�
0; �2

�
: (40)

Substituting for �t leads straight to an ARIMA(0; 1; 1) model, but one in which
� is no longer constrained to take only negative values, as in (36). However,
invertibility requires that k lie between zero and two, corresponding to j�j < 1.

6With US GDP, for example, this methodology again leads to ARIMA(1,1,0).
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For more complex models imposing the invertibility restriction7 may not be
quite so straightforward.
As already noted, using the full invertible parameter space of theARIMA(0; 1; 1)

model means that the weights in the EWMA can oscillate between positive and
negative values. Chat�eld et al (2001) prefer this greater �exibility, while I
would argue that it can often be unappealing. The debate raises the more
general issue of why UC models are usually speci�ed to have uncorrelated com-
ponents. Harvey and Koopman (2000) point out that one reason is that this
produces symmetric �lters for signal extraction, while in SSOE models smooth-
ing and �ltering are the same. This argument may carry less weight for fore-
casting. However, the MSE attached to a �ltered estimate in an STM is of some
value for nowcasting; in the local level model, for example, the MSE in (15)
can be interpreted as the contribution to the forecast MSE that arises from not
knowing the starting value for the forecast function.
In the local level model, an assumption about the correlation between the

disturbances - zero or one in the local level speci�cations just contrasted - is
needed for identi�ability. However, �xing correlations between disturbances is
not always necessary. For example, Morley, Nelson and Zivot (2003) estimate
the correlation in a model with trend and cycle components.

4 Explanatory variables and interventions

Explanatory variables can be added to unobserved components, thereby provid-
ing a bridge between regression and time series models. Thus

yt = �t + x
0
t� + "t; t = 1; :::; T (41)

where xt is a k � 1 vector of observable exogenous8 variables, some of which
may be lagged values, and � is a k� 1 vector of parameters. In a model of this
kind the trend is allowing for e¤ects that cannot be measured. If the stochastic
trend is a random walk with drift, then �rst di¤erencing yields a regression
model with a stationary disturbance; with a stochastic drift, second di¤erences
are needed. However, using the state space form allows the variables to remain
in levels and this is a great advantage as regards interpretation; compare the
transfer function models of Box and Jenkins (1976).
Spirits -The data set of annual observations on the per capita consumption

of spirits in the UK, together with the explanatory variables of per capita income
and relative price, is a famous one, having been used as a testbed for the Durbin-
Watson statistic in 1951. The observations run from 1870 to 1938 and are in
logarithms. A standard econometric approach would be to include a linear
or quadratic time trend in the model with an AR(1) disturbance; see Fuller

7 In the STM invertibility of the reduced form is automatically ensured by the requirement
that variances are not allowed to be negative.

8When xt is stochastic, e¢ cient estimation of � requires that we assume that it is inde-
pendent of all disturbances, including those in the stochastic trend, in all time periods; this
is strict exogeneity.
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Figure 8: Multi-step forecasts for UK spirits from 1930

(1996, p 522). The structural time series approach is simply to use a stochastic
trend with the explanatory variables. The role of the stochastic trend is to
pick up changes in tastes and habits that cannot be explicitly measured. Such a
model gives a better �t than one with a deterministic trend and produces better
forecasts. Figure 8 shows the multi-step forecasts produced from 1930 onwards,
using the observed values of the explanatory variables. The lower graph shows
a 68% prediction interval (� one RMSE): Further details on this example can
be found in the STAMP manual, Koopman et al (2000, p64-70).
US Teenage Unemployment In a study of the relationship between teenage

employment and minimum wages in the US, Bazen and Marimoutou (2002, p
699) show that a structural time series model estimated up to 1979 �...accu-
rately predicts what happens to teenage unemployment subsequently, when the
minimum wage was frozen after 1981 and then increased quite substantially in
the 1990s.�They note that ..�previous models break down due to their inability
to capture changes in the trend, cyclical and seasonal components of teenage
employment.�
Global warming Visser and Molenaar (1995) use stationary explanatory vari-

ables to reduce the short term variability when modelling the trend in northern
hemisphere temperatures.
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4.1 Interventions

Intervention variables may be introduced into a model. Thus in a simple sto-
chastic trend plus error model

yt = �t + �wt + "t; t = 1; :::; T (42)

If an unusual event is to be treated as an outlier, it may be captured by a pulse
dummy variable, that is

wt =

�
0 for t 6= �
1 for t = �

(43)

A structural break in the level at time � may be modelled by a level shift dummy,

wt =

�
0 for t < �
1 for t � �

or by a pulse in the level equation, that is

�t = �t�1 + �wt + �t�1 + �t

where wt is given by (43). Similarly a change in the slope can be modelled in
(42) by de�ning

wt =

�
0 for t � �

t� � for t > �

or by putting a pulse in the equation for the slope. A piecewise linear trend
emerges as a special case when there are no disturbances in the level and slope
equations.
Modelling structural breaks by dummy variables is appropriate when they

are associated with a change in policy or a speci�c event. The interpretation of
structural breaks as large stochastic shocks to the level or slope will prove to be
a useful way of constructing a robust model when their timing is unknown; see
sub-section 9.4.

4.2 Time-varying parameters

A time-varying parameter model may be set up by letting the coe¢ cients in
(41) follow random walks, that is

�t = �t�1 + �t; �t � NID(0;Q)

The e¤ect of Q being p.d. is to discount the past observations in estimating
the latest value of the regression coe¢ cient. Models in which the parameters
evolve as stationary autoregressive processes have also been considered; see, for
example, Rosenberg (1973). Chow (1984) and Nicholls and Pagan (1985) give
surveys, while Wells (1996) investigates applications in �nance.
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5 Seasonality

A seasonal component, t; may be added to a model consisting of a trend and
irregular to give

yt = �t + t + "t; t = 1; :::; T; (44)

A �xed seasonal pattern may be modelled as

t =
sX
j=1

jzjt

where s is the number of seasons and the dummy variable zjt is one in season
j and zero otherwise. In order not to confound trend with seasonality, the
coe¢ cients, j ; j = 1; :::; s; are constrained to sum to zero. The seasonal pattern
may be allowed to change over time by letting the coe¢ cients evolve as random
walks as in Harrison and Stevens (1976, pp. 217-18). If jt denotes the e¤ect
of season j at time t, then

jt = j;t�1 + !jt; !t � NID(0; �2!); j = 1; :::; s (45)

Although all s seasonal components are continually evolving, only one a¤ects
the observations at any particular point in time, that is t = jt when season j
is prevailing at time t: The requirement that the seasonal components evolve in
such a way that they always sum to zero is enforced by the restriction that the
disturbances sum to zero at each point in time. This restriction is implemented
by the correlation structure in

V ar (!t) = �2!
�
I� s�1ii0

�
(46)

where !t = (!1t; :::; !st)
0
; coupled with initial conditions requiring that the

seasonals sum to zero at t = 0: It can be seen from (46) that V ar (i0!t) = 0:
In the basic structural model (BSM), �t in (44) is the local linear trend of

(17), the irregular component, "t, is assumed to be random, and the disturbances
in all three components are taken to be mutually uncorrelated. The signal noise
ratio associated with the seasonal, that is q! = �2!=�

2
"; determines how rapidly

the seasonal changes relative to the irregular. Figure 9 shows the forecasts,
made using the STAMP package of Koopman et al (2000), for a quarterly series
on the consumption of gas in the UK by �Other �nal users�. The forecasts for
the seasonal component are made by projecting the estimates of the 0jT s into
the future. As can be seen, the seasonal pattern repeats itself over a period
of one year and sums to zero. Another example of how the BSM successfully
captures changing seasonality can be found in the study of alcoholic beverages
by Lenten and Moosa (1999).

5.1 Trigonometric seasonal

Instead of using dummy variables, a �xed seasonal pattern may by modelled
by a set of trigonometric terms at the seasonal frequencies, �j = 2�j=s; j =
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Figure 9: Trend and forecasts for �Other �nal users�of gas in the UK
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1; :::; [s=2] ; where [:] denotes rounding down to the nearest integer. The seasonal
e¤ect at time t is then

t =
[s=2]

�
j=1

�
�j cos�jt+ �j sin�jt

�
(47)

When s is even, the sine term disappears for j = s=2 and so the number of
trigonometric parameters, the �j�s and �j�s, is always s� 1. Provided that the
full set of trigonometric terms is included, it is straightforward to show that
the estimated seasonal pattern is the same as the one obtained with dummy
variables.
The trigonometric components may be allowed to evolve over time in the

same way as the stochastic cycle, (24). Thus

t =
[s=2]

�
j=1

jt (48)

with

jt = j;t�1 cos�j + 
�
j;t�1 sin�j + !jt

�jt = �j;t�1 sin�j + �j;t�1 cos�j + !�jt

�
; j = 1; :::; [(s� 1) =2] (49)

where !jt and !�jt are zero mean white-noise processes which are uncorrelated
with each other with a common variance �2j for j = 1; :::; [(s� 1) =2]. The
larger these variances, the more past observations are discounted in estimating
the seasonal pattern. When s is even, the component at j = s=2 reduces to

t = j;t�1 cos�j + !jt; j = s=2 (50)

The seasonal model proposed by Hannan, Terrell and Tuckwell (1970), in which
�j and �j in (47) evolve as random walks, is e¤ectively the same as the model
above.
Assigning di¤erent variances to each harmonic allows them to evolve at vary-

ing rates. However, from a practical point of view it is usually desirable9 to let
these variances be the same except at j = s=2: Thus, for s even, V ar (!jt) =
V ar

�
!�jt
�
= �2j = �2!; j = 1; :::; [(s� 1) =2] and V ar

�
!s=2;t

�
= �2!=2: As

shown in Proietti (2000), this is equivalent to the dummy variable seasonal
model, with �2! = 2�

2
!=s for s even and �

2
! = 2�

2
!= (s� 1) for s odd.

A damping factor could very easily be introduced into the trigonometric
seasonal model, just as in (24). However, since the forecasts would gradually
die down to zero, such a seasonal component is not capturing the persistent
e¤ects of seasonality. In any case the empirical evidence, for example in Canova
and Hansen (1995), clearly points to nonstationary seasonality.

9As a rule, very little is lost in terms of goodness of �t by imposing this restriction.
Although the model with di¤erent seasonal variances is more �exible, Bruce and Jurke (1996)
show that it can lead to a signi�cant increase in the roughness of the seasonal factors.
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5.2 Reduced form

The reduced form of the stochastic seasonal model is

t = �
s�1
�
j=1

t�j + !t (51)

with !t following anMA(s�2) process. Thus the expected value of the seasonal
e¤ects over the previous year is zero. The simplicity of a single shock model, in
which !t is white noise, can be useful for pedagogic purposes. The relationship
between this model and the balanced dummy variable model based on (45) is
explored in Proietti (2000). In practice, it is usually preferable to work with the
latter.
Given (51); it is easy to show that the reduced form of the BSM is such that

��syt �MA (s+ 1) :

5.3 Nowcasting

When data are seasonally adjusted, revisions are needed as new observations
become available and the estimates of the seasonal e¤ects near the end of the
series change. Often the revised �gures are published only once a year and the
changes to the adjusted �gures can be quite substantial. For example, in the
LFS, Harvey and Chung (2000) note that the �gures for the slope estimate b(3)T ;
de�ned in (20), for February, March and April of 1998 were originally -6.4, 1.3
and -1.0 but using the revised data made available in early 1999 they became 7.9,
22.3 and -16.1 respectively. It appears that even moderate revisions in levels can
translate into quite dramatic changes in di¤erences, thereby rendering measures
like b(3)T virtually useless as a current indicator of change. Overall, the extent
and timing of revisions casts doubt on the wisdom of estimating change from
adjusted data, whatever the method used. Fitting models to unadjusted data
has the attraction that the resulting estimates of change not only take account
of seasonal movements but also re�ect these movements in their RMSEs.

5.4 Holt-Winters

In the BSM the state vector is of length s + 1; and it is not easy to obtain
analytic expressions for the steady-state form of the �ltering equations. On
the other hand, the extension of the Holt-Winters local linear trend recursions
to cope with seasonality involves only a single extra equation. However, the
component for each season is only updated every s periods and an adjustment
has to be made to make the seasonal factors sum to zero. Thus there is a price
to be paid for having only three equations because when the Kalman �lter is
applied to the BSM, the seasonal components are updated in every period and
they automatically sum to zero. The Holt-Winters procedure is best regarded as
an approximation to the Kalman �lter applied to the BSM; why anyone would
continue to use it is something of a mystery. Further discussion on di¤erent
forms of additive and multiplicative Holt-Winters recursions can be found in
Ord, Kohler and Snyder (1997).
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5.5 Seasonal ARIMA models

For modelling seasonal data, Box and Jenkins (1976, ch. 9) proposed a class of
multiplicative seasonal ARIMA models; see also the chapter by Ghysels, Osborn
and Rodrigues. The most important model within this class has subsequently
become known as the �airline model�since it was originally �tted to a monthly
series on UK airline passenger totals. The model is written as

��syt = (1 + �L) (1 + �L
s) �t (52)

where �s = 1 � Ls is the seasonal di¤erence operator and � and � are MA
parameters which, if the model is to be invertible, must have modulus less than
one. Box and Jenkins (1976, pp. 305-6) gave a rationale for the airline model
in terms of EWMAs at monthly and yearly intervals.
Maravall (1985), compares the autocorrelation functions of ��syt for the

BSM and airline model for some typical values of the parameters and �nds them
to be quite similar, particularly when the seasonal MA parameter, �, is close to
minus one. In fact in the limiting case when � is equal to minus one, the airline
model is equivalent to a BSM in which �2� and �

2
! are both zero. The airline

model provides a good approximation to the reduced form when the slope and
seasonal are close to being deterministic. If this is not the case the implicit link
between the variability of the slope and that of the seasonal component may be
limiting.
The plausibility of other multiplicative seasonal ARIMA models can, to a

certain extent, be judged according to whether they allow a canonical decom-
position into trend and seasonal components; see Hillmer and Tiao (1982). Al-
though a number of models fall into this category the case for using them is
unconvincing. It is hardly surprising that most procedures for ARIMA model-
based seasonal adjustment are based on the airline model. However, although
the airline model may often be perfectly adequate as a vehicle for seasonal ad-
justment, it is of limited value for forecasting many economic time series. For
example, it cannot deal with business cycle e¤ects.
Pure AR models can be very poor at dealing with seasonality since seasonal

patterns typically change rather slowly and this may necessitate the use of
long seasonal lags. However, it is possible to combine an autoregression with a
stochastic seasonal component as in Harvey and Scott (1994).
Consumption A model for aggregate consumption provides a nice illustration

of the way in which a simple parsimonious STM that satis�es economic consid-
erations can be constructed. Using UK data from 1957q3 to 1992q2, Harvey
and Scott (1994) show that a special case of the BSM consisting of a random
walk plus drift, �; and a stochastic seasonal not only �ts the data but yields
a seasonal martingale di¤erence that does little violence to the forward-looking
theory of consumption. The unsatisfactory nature of an autoregression is illus-
trated in the paper by Osborn and Smith (1989) where sixteen lags are required
to model seasonal di¤erences. As regards ARIMA models, Osborn and Smith
(1989) select a special case of the airline model in which � = 0: This contrasts
with the reduced form for the structural model which has �sct following an
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MA(s�1) process (with non-zero mean). The seasonal ARIMA model matches
the ACF but does not yield forecasts satisfying a seasonal martingale, that is
E[�sct+s] = s�:

5.6 Extensions

It is not unusual for the level of a monthly time series to be in�uenced by calen-
dar e¤ects. Such e¤ects arise because of changes in the level of activity resulting
from variations in the composition of the calendar between years. The two main
sources of calendar e¤ects are trading day variation and moving festivals. They
may both be introduced into a structural time series model and estimated along
with the other components in the model. The state space framework allows them
to change over time as in Dagum, Quenneville and Sutradhar (1992). Methods
of detecting calendar e¤ects are discussed in Busetti and Harvey (2003). As
illustrated by Hillmer (1982, p. 388), failure to realise that calendar e¤ects
are present can distort the correlogram of the series and lead to inappropriate
ARIMA models being chosen.
The treatment of weekly, daily or hourly observations raises a host of new

problems. The structural approach o¤ers a means of tackling them. Harvey,
Koopman and Riani (1996) show how to deal with a weekly seasonal pattern by
constructing a parsimonious but �exible model for the UK money supply based
on time-varying splines and incorporating a mechanism to deal with moving
festivals such as Easter. Harvey and Koopman (1993) also use time-varying
splines to model and forecast hourly electricity data.
Periodic or seasonal speci�c models were originally introduced to deal with

certain problems in environmental science, such as modelling river �ows; see
Hipel and McLeod (1994, ch. 14). The key feature of such models is that sep-
arate stationary AR or ARMA model are constructed for each season. Econo-
metricians have developed periodic models further to allow for nonstationarity
within each season and constraints across the parameters in di¤erent seasons;
see Franses and Papp (2004) and the chapter by Ghysels, Osborn and Ro-
drigues. These approaches are very much within the autoregressive/unit root
paradigm. The structural framework o¤ers a more general way of capturing
periodic features by allowing periodic components to be combined with compo-
nents common to all seasons. These common components may exhibit seasonal
heteroscedasticity, that is they may have di¤erent values for the parameters in
di¤erent seasons. Such models have a clear interpretation and make explicit the
distinction between an evolving seasonal pattern of the kind typically used in
a structural time series model and genuine periodic e¤ects. Proietti (1998) dis-
cusses these issues and gives the example of Italian industrial production where
August behaves so di¤erently from the other months that it is worth letting it
have its own trend. There is further scope for work along these lines.
Krane and Wascher (1999) use state space methods to explore the interac-

tion between seasonality and business cycles. They apply their methods to US
employment and conclude that seasonal movements can be a¤ected by business
cycle developments.
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Stochastic seasonal components can be combined with explanatory variables
by introducing them into regression models in the same way as stochastic trends.
The way in which this can give insight into the speci�cation of dynamic regres-
sion models is illustrated in the paper by Harvey and Scott (1994) where it is
suggested that seasonality in an error correction model be captured by a sto-
chastic seasonal component. The model provides a good �t to UK consumption
and casts doubt on the speci�cation adopted in the in�uential paper of David-
son et al (1978). Moosa and Kennedy (1998) reach the same conclusion using
Australian data.

6 State space form

The statistical treatment of unobserved components models can be carried out
e¢ ciently and in great generality by using the state space form (SSF) and the
associated algorithms of the Kalman �lter and smoother.
The general linear state space form applies to a multivariate time series,

yt; containing N elements. These observable variables are related to an m� 1
vector, �t, known as the state vector, through a measurement equation

yt= Zt�t+dt+"t; t = 1; :::; T (53)

where Zt is an N �m matrix, dt is an N � 1 vector and "t is an N � 1 vector
of serially uncorrelated disturbances with mean zero and covariance matrix Ht;
that is E ("t) = 0 and V ar ("t) = Ht:
In general the elements of �t are not observable. However, they are known

to be generated by a �rst-order Markov process,

�t= Tt�t�1 + ct+Rt�t; t = 1; :::; T (54)

where Tt is an m�m matrix, ct is an m� 1 vector, Rt is an m� g matrix and
�t is a g � 1 vector of serially uncorrelated disturbances with mean zero and
covariance matrix, Qt; that is E (�t) = 0 and V ar (�t) = Qt: Equation (54)
is the transition equation.
The speci�cation of the state space system is completed by assuming that

the initial state vector, �0, has a mean of a0 and a covariance matrix P0; that
is E (�0) = a0 and V ar (�0) = P0; where P0 is positive semi-de�nite, and
that the disturbances "t and �t are uncorrelated with the initial state, that
is E ("t�00) = 0 and E (�t�

0
0) = 0 for t = 1; ; :::; T: In what follows it will

be assumed that the disturbances are uncorrelated with each other in all time
periods, that is E ("t�0s) = 0 for all s; t = 1; :::; T , though this assumption may
be relaxed, the consequence being a slight complication in some of the �ltering
formulae.
It is sometimes convenient to use the future form of the transition equation,

�t+1= Tt�t + ct+Rt�t; t = 1; :::; T; (55)

as opposed to the contemporaneous form of (54). The corresponding �lters are
the same unless "t and �t are correlated.
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6.1 Kalman �lter

The Kalman �lter is a recursive procedure for computing the optimal estimator
of the state vector at time t, based on the information available at time t. This
information consists of the observations up to and including yt: The system
matrices, Zt;dt;Ht;Tt; ct;Rt and Qt; together with a0 and P0 are assumed
to be known in all time periods and so do not need to be explicitly included in
the information set.
In a Gaussian model, the disturbances "t and �t; and the initial state, are

all normally distributed. Because a normal distribution is characterised by its
�rst two moments, the Kalman �lter can be interpreted as updating the mean
and covariance matrix of the conditional distribution of the state vector as
new observations become available. The conditional mean minimizes the mean
square error and when viewed as a rule for all realizations it is the minimum
mean square error estimator (MMSE). Since the conditional covariance matrix
does not depend on the observations, it is the unconditional MSE matrix of the
MMSE. When the normality assumption is dropped, the Kalman �lter is still
optimal in the sense that it minimises the mean square error within the class of
all linear estimators; see Anderson and Moore (1979, p 29-32).
Consider the Gaussian state space model with observations available up to

and including time t � 1: Given this information set, let �t�1 be normally
distributed with known mean, at�1; and m�m covariance matrix, Pt�1. Then
it follows from (54) that �t is normal with mean

atjt�1 = Ttat�1 + ct (56)

and covariance matrix

Ptjt�1 = TtPt�1T
0
t +RtQtR

0
t; t = 1; :::; T

These two equations are known as the prediction equations. The predictive
distribution of the next observation, yt; is normal with mean

eytjt�1 = Ztatjt�1+dt (57)

and covariance matrix

Ft = ZtPtjt�1Z
0
t +Ht; t = 1; :::; T (58)

Once the new observation becomes available, a standard result on the mul-
tivariate normal distribution yields the updating equations,

at = atjt�1 +Ptjt�1Z
0
tF

�1
t (yt � Ztatjt�1 � dt) (59)

and
Pt = Ptjt�1 �Ptjt�1Z0tF�1t ZtPtjt�1;

as the mean and variance of the distribution of �t conditional on yt as well as
the information up to time t� 1; see Harvey (1989, p 109).
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Taken together (56) and (59) make up the Kalman �lter. If desired they
can be written as a single set of recursions going directly from at�1 to at or,
alternatively, from atjt�1 to at+1jt: We might refer to these as, respectively, the
contemporaneous and predictive �lter. In the latter case

at+1jt = Tt+1atjt�1 + ct+1 +Kt�t (60)

or
at+1jt = (Tt+1 �KtZt)atjt�1 +Ktyt + (ct+1 �Ktdt) (61)

where the gain matrix, Kt, is given by

Kt = Tt+1Ptjt�1Z
0
tF

�1
t ; t = 1; :::; T (62)

The recursion for the covariance matrix,

Pt+1jt = Tt+1(Ptjt�1 �Ptjt�1Z0tF�1t ZtPtjt�1)T
0
t+1 +Rt+1Qt+1R

0
t+1; (63)

is a Riccati equation.
The starting values for the Kalman �lter may be speci�ed in terms of a0 and

P0 or a1j0 and P1j0. Given these initial conditions, the Kalman �lter delivers
the optimal estimator of the state vector as each new observation becomes avail-
able. When all T observations have been processed, the �lter yields the optimal
estimator of the current state vector, and/or the state vector in the next time
period, based on the full information set. A di¤use prior corresponds to setting
P0 = �I; and letting the scalar � go to in�nity.

6.2 Prediction

In the Gaussian model, (53) and (54), the Kalman �lter yields aT , the MMSE of
�T based on all the observations. In addition it gives aT+1jT and the one-step-
ahead predictor, eyT+1jT : As regards multi-step prediction, taking expectations,
conditional on the information at time T; of the transition equation at time
T + ` yields the recursion

aT+ljT= TT+laT+l�1jT+cT+l l = 1; 2; 3; ::: (64)

with initial value aT jT = aT . Similarly

PT+ljT= TT+lPT+l�1jTT
0
T+l +RT+lQT+lR

0
T+l; l = 1; 2; 3; ::: (65)

with PT jT = PT : Thus aT+ljT and PT+ljT are evaluated by repeatedly applying
the Kalman �lter prediction equations. The MMSE of yT+l can be obtained
directly from aT+ljT : Taking conditional expectations in the measurement equa-
tion for yT+l gives

E (yT+l j YT ) = eyT+ljT = ZT+laT+ljT + dT+l; l = 1; 2; ::: (66)
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with MSE matrix

MSE
�eyT+ljT � = ZT+lPT+ljTZ0T+l +HT+l; l = 1; 2; ::: (67)

When the normality assumption is relaxed, aT+ljT and ~yT+ljT are still minimum
mean square linear estimators.
It is often of interest to see how past observations are weighted when forecasts

are constructed: Koopman and Harvey (2003) give an algorithm for computing
weights for aT and weights for eyT+ljT are then obtained straightforwardly.
6.3 Innovations

The joint density function for the T sets of observations, y1; :::;yT ; is

p (Y; ) =
TY
t=1

p (yt j Yt�1) (68)

where p (yt j Yt�1) denotes the distribution of yt conditional on the information
set at time t � 1, that is Yt�1 = fyt�1;yt�2; :::;y1g : In the Gaussian state
space model, the conditional distribution of yt is normal with mean eytjt�1 and
covariance matrix Ft: Hence theN�1 vector of prediction errors or innovations,

�t = yt � ~ytjt�1; t = 1; :::; T; (69)

is serially independent with mean zero and covariance matrix Ft; that is �t �
NID(0;Ft):
Re-arranging (69), (57) and (60) gives the innovations form representation

yt = Ztatjt�1 + dt + �t (70)

at+1jt = Ttatjt�1+ct+Kt�t

This mirrors the original SSF, with the transition equation as in (55), except that
atjt�1 appears in the place of the state and the disturbances in the measurement
and transition equations are perfectly correlated. Since the model contains only
one disturbance vector, it may be regarded as a reduced form with Kt subject
to restrictions coming from the original structural form. The SSOE models
discussed in sub-section 3.4 are e¤ectively in innovations form but if this is the
starting point of model formulation some way of putting constraints on Kt has
to be found.

6.4 Time-invariant models

In many applications the state space model is time-invariant. In other words the
system matrices Zt;dt;Ht;Tt; ct;Rt and Qt are all independent of time and so
can be written without a subscript. However, most of the properties in which
we are interested apply to a system in which ct and dt are allowed to change
over time and so the class of models under discussion is e¤ectively

yt = Z�t + dt + "t; V ar ("t) = H (71)
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and
�t = T�t�1 + ct +R�t; V ar (�t) = Q (72)

with E ("t�0s) = 0 for all s; t and P1j0; H and Q p.s.d.
The principal STMS are time invariant and easily put in SSF with a mea-

surement equation that, for univariate models, will be written

yt = z
0�t + "t; t = 1; :::; T (73)

with V ar("t) = H = �2": Thus state space form of the damped trend model,
(19) is:

yt = [1 0]�t + "t (74)

�t =

�
�t
�t

�
=

�
1 1

0 �

��
�t�1
�t�1

�
+

�
�t
�t

�
(75)

The local linear trend is the same but with � = 1:
The Kalman �lter applied to the model in (71) is in a steady state if

the error covariance matrix is time-invariant, that is Pt+1jt= P: This implies
that the covariance matrix of the innovations is also time-invariant, that is
Ft = F = ZPZ

0+H: The recursion for the error covariance matrix is therefore
redundant in the steady state, while the recursion for the state becomes

at+1jt= Latjt�1+Kyt + (ct+1 �Kdt) (76)

where the transition matrix is de�ned by

L = T�KZ (77)

and K = TPZ0F�1:
Letting Pt+1jt= Ptjt�1= P in (63) yields the algebraic Riccati equation

P�TPT0 +TPZ0F�1ZPT0�RQR0= 0 (78)

and the Kalman �lter has a steady-state solution if there exists a time-invariant
error covariance matrix, P; that satis�es this equation. Although the solution to
the Riccati equation was obtained for the local level model in (13), it is usually
di¢ cult to obtain an explicit solution. A discussion of various algorithms can
be found in Ionescu, Oara and Weiss (1997).
The model is stable if the roots of T are less than one in absolute value, that

is j�i (T)j < 1; i = 1; :::;m and it can be shown that

lim
t!1

Pt+1jt = P (79)

with P independent of P1j0. Convergence to P is exponentially fast provided
that P is the only p.s.d. matrix satisfying the algebraic Riccati equation. Note
that with dt time invariant and ct zero the model is stationary. The stability
condition can be readily checked but it is stronger than is necessary. It is
apparent from (76) that what is needed is j�i (L)j < 1; i = 1; :::;m, but,
of course, L depends on P: However, it is shown in the engineering literature
that the result in (79) holds if the system is detectable and stabilisable. Further
discussion can be found in Anderson and Moore (1979, section 4.4) and Burridge
and Wallis (1988).
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6.4.1 Filtering weights

If the �lter is in a steady-state, the recursion for the predictive �lter in (76) can
be solved to give

at+1jt =
1X
j=0

LjKyt�j +
1X
j=0

Ljct+1�j +
1X
j=0

LjKdt�j (80)

Thus it can be seen explicitly how the �ltered estimator is a weighted average
of past observations. The one-step ahead predictor, eyt+1jT ; can similarly be
expressed in terms of current and past observations by shifting (57) forward
one time period and substituting from (80). Note that when ct and dt are
time-invariant, we can write

at+1jt = (I� LL)�1Kyt + (I� L)�1 (c�Kd) (81)

If we are interested in the weighting pattern for the current �ltered estima-
tor, as opposed to one-step ahead, the Kalman �ltering equations need to be
combined as

at= L
yat�1+K

yyt +
�
ct �Kydt

�
(82)

where Ly = (I�KyZ)T and Ky = PZ0F�1: An expression analogous to (81) is
then obtained.

6.4.2 ARIMA representation

The ARIMA representation for any model in SSF can be obtained as follows.
Suppose �rst that the model is stationary. The two equations in the steady-state
innovations form may be combined to give

yt = �+ Z(I�TL)�1K�t�1 + �t (83)

The (vector) moving-average representation is therefore

yt = �+	(L)�t (84)

where 	(L) is a matrix polynomial in the lag operator

	(L) = I+ Z(I�TL)�1KL (85)

Thus, given the steady-state solution, we can compute that MA coe¢ cients.
If the stationarity assumption is relaxed, we can write

jI�TLjyt=
h
jI�TLj I+ Z (I�TL)yKL

i
�t (86)

where jI�TLj may contain unit roots. If, in a univariate model, there are
d such unit roots, then the reduced form is an ARIMA (p; d; q) model with
p + d 6 m: Thus in the local level model, we �nd, after some manipulation of
(86), that

�yt = �t � �t�1 + k�t�1 = �t � (1 + p)�1�t�1 = �t + ��t�1 (87)

con�rming that the reduced form is ARIMA (0; 1; 1) :
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6.4.3 Autoregressive representation

Recalling the de�nition of an innovation vector in (69) we may write

yt = Zatjt�1 + d+ �t

Substituting for atjt�1 from (81), lagged one time period, gives

yt = � + Z
1X
j=1

Lj�1Kyt�j + �t; V ar(�t) = F (88)

where
� = (I� Z(I� L)�1K)d+ Z(I� L)�1c (89)

The (vector) autoregressive representation is therefore

�(L)yt = � + �t (90)

where �(L) is the matrix polynomial in the lag operator

�(L) = I� Z(I� LL)�1KL

and � = �(1)d+ Z(I� L)�1c:
If the model is stationary, it may be written as

yt = �+�
�1(L)�t (91)

where � is as in the moving-average representation of (84). This implies that
��1(L) = 	(L) : hence the identity

(I� Z(I� LL)�1KL)�1 = I+ Z(I�TL)�1KL:

6.4.4 Forecast functions

Running the Kalman �lter up to time T gives the current estimate of the state
vector. This contains the starting values for the forecast functions of the various
components and the series itself. The forecast function or multi-step predictor
for the series can be written as

eyT+ljT = ZaT+ljT = ZTlaT ; l = 1; 2; ::: (92)

This is the MMSE of yT+` in a Gaussian model. The weights assigned to
current and past observations may be determined by substituting from (80).
Substituting repeatedly from the recursion for the MSE of aT+ljT gives

MSE
�eyT+ljT � = ZTlPTT0lZ0+Z�l�1�

j=0
TjRQR0T0j

�
Z0+H (93)

It is sometimes more convenient to express eyT+ljT in terms of the predictive
�lter, that is as ZTl�1aT+1jT : A corresponding expression for the MSE can be
written down in terms of PT+1jT :
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Local linear trend The forecast function is as in (18), while from (93), the
MSE is�
p
(1;1)
T + 2lp

(1;2)
T + l2p

(2;2)
T

�
+l�2�+

1

6
l (l � 1) (2l � 1)�2�+�2"; l = 1; 2; ::: (94)

where p(i;j)T is the ij-th element of the matrix PT : The third term, which is
the contribution arising from changes in the slope, leads to the most dramatic
increases as l increases. If the trend model were completely deterministic both
the second and third terms would disappear. In a model where some compo-
nents are deterministic, including them in the state vector ensures that their
contribution to the MSE of predictions is accounted for by the elements of PT
appearing in the �rst term.

6.5 Maximum likelihood estimation and the prediction er-
ror decomposition

A state space model will normally contain unknown parameters, or hyperpa-
rameters, that enter into the system matrices. The vector of such parameters
will be denoted by  : Once the observations are available, the joint density in
(68) can be reinterpreted as a likelihood function and written L ( ) : The ML
estimator of  is then found by maximising L ( ) : It follows from the discussion
below (68) that the Gaussian likelihood function can be written in terms of the
innovations, that is

logL ( ) = �NT
2
log 2� � 1

2

T

�
t=1
log jFtj �

1

2

T

�
t=1
�0tF

�1
t �t (95)

This is sometimes known as the prediction error decomposition form of the
likelihood.
The maximisation of L ( ) with respect to  will normally be carried out by

some kind of numerical optimisation procedure. A univariate model can usually
be reparameterised so that  =

�
 0� �2�

�0
where  � is a vector containing n�1

parameters and �2� is one of the disturbance variances in the model. The Kalman
�lter can then be run independently of �2� and this allows it to be concentrated
out of the likelihood function.
If prior information is available on all the elements of �0, then �0 has a

proper prior distribution with known mean, a0; and bounded covariance matrix,
P0: The Kalman �lter then yields the exact likelihood function. Unfortunately,
genuine prior information is rarely available. The solution is to start the Kalman
�lter at t = 0 with a di¤use prior. Suitable algorithms are discussed in Durbin
and Koopman (2001, ch 5).
When parameters are estimated, the formula for MSE

�
~yT+ljT

�
in (67) will

underestimate the true MSE because it does not take into account the extra
variation, of 0

�
T�1

�
; due to estimating  : Methods of approximating this ad-

ditional variation are discussed in Quenneville and Singh (2000). Using the
bootstrap is also a possibility; see Sto¤er and Wall (2004).
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Diagnostic tests can be based on the standardised innovations, F�1=2t �t:
These residuals are serially independent if  is known, but when parameters are
estimated the distribution of statistics designed to test for serially correlation
are a¤ected just as they are when an ARIMA model is estimated. Auxiliary
residuals based on smoothed estimates of the disturbances "t and �t are also
useful; Harvey and Koopman (1992) show how they can give an indication of
outliers or structural breaks.

6.6 Missing observations, temporal aggregation andmixed
frequency

Missing observations are easily handled in the SSF simply by omitting the updat-
ing equations while retaining the prediction equations. Filtering and smoothing
then go through automatically and the likelihood function is constructed using
prediction errors corresponding to actual observations. When dealing with �ow
variables, such as income, the issue is one of temporal aggregation. This may be
dealt with by the introduction of a cumulator variable into the state as described
in Harvey (1989, sub-section 6.3). The ability to handle missing and temporally
aggregated observations o¤ers enormous �exibility, for example in dealing with
observations at mixed frequencies. The unemployment series in �gure 1 provide
an illustration.
It is sometimes necessary to make predictions of the cumulative e¤ect of a

�ow variable up to a particular lead time. This is especially important in stock
or production control problems in operations research. Calculating the correct
MSE may be ensured by augmenting the state vector by a cumulator variable
and making predictions from the Kalman �lter in the usual way; see Johnston
and Harrison (1986) and Harvey (1989, pp 225-6). The continuous time solution
described later in sub-section 8.3 is more elegant.

6.7 Bayesian methods

Since the state vector is a vector of random variables, a Bayesian interpretation
of the Kalman �lter as a way of updating a Gaussian prior distribution on the
state to give a posterior is quite natural. The mechanics of �ltering, smoothing
and prediction are the same irrespective of whether the overall framework is
Bayesian or classical. As regards initialization of the Kalman �lter for a non-
stationary state vector, the use of a proper prior is certainly not necessary from
the technical point of view and a di¤use prior provides the solution in a classical
framework.
The Kalman �lter gives the mean and variance of the distribution of future

observations, conditional on currently available observations. For the classical
statistician, the conditional mean is the MMSE of the future observations while
for the Bayesian it minimises the expected loss for a symmetric loss function.
With a quadratic loss function, the expected loss is given by the conditional
variance. Further discussion can be found in the chapter by Geweke and Whit-
man.
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The real di¤erences in classical and Bayesian treatments arise when the
parameters are unknown. In the classical framework these are estimated by
maximum likelihood. Inferences about the state and predictions of future ob-
servations are then usually made conditional on the estimated values of the
hyperparameters, though some approximation to the e¤ect of parameter un-
certainty can be made as noted at the end of sub-section 6.5. In a Bayesian
set-up, on the other hand, the hyperparameters, as they are often called, are
random variables. The development of simulation techniques based on Markov
chain Monte Carlo (MCMC) has now made a full Bayesian treatment a feasible
proposition. This means that it is possible to simulate a predictive distribu-
tion for future observations that takes account of hyperparameter uncertainty;
see, for example, Carter and Kohn (1994) and Frühwirth-Schnatter (2004). The
computations may be speeded up considerably by using the simulation smoother
introduced by de Jong and Shephard (1995) and further developed by Durbin
and Koopman (2002).
Prior distributions of variance parameters are often speci�ed as inverted

gamma distributions. This distribution allows a non-informative prior to be
adopted as in Frühwirth-Schnatter (1994, p196). It is di¢ cult to construct
sensible informative priors for the variances themselves. Any knowledge we
might have is most likely to be based on signal-noise ratios. Koop and van Dijk
(2000) adopt an approach in which the signal-noise ratio in a random walk plus
noise is transformed so as to be between zero and one. Harvey, Trimbur and van
Dijk (2003) use non-informative priors on variances together with informative
priors on the parameters �c and � in the stochastic cycle.

7 Multivariate models

The principal STMs can be extended to handle more than one series. Simply
allowing for cross-correlations leads to the class of seemingly unrelated times
series equation (SUTSE) models. Models with common factors emerge as a
special case. As well as having a direct interpretation, multivariate structural
time series models may provide more e¢ cient inferences and forecasts. They
are particularly useful when a target series is measured with a large error or is
subject to a delay, while a related series does not su¤er from these problems.

7.1 Seemingly unrelated times series equation models

Suppose we have N time series. De�ne the vector yt = (y1t; ::; yNt)0 and simi-
larly for �t; t and "t. Then a multivariate UC model may be set up as

yt= �t+ t+"t; "t � NID(0;�"); t = 1; :::; T; (96)

where �" is an N �N positive semi-de�nite matrix. The trend is

�t = �t�1+�t�1+�t; �t � NID(0;��) (97)

�t = �t�1+�t; �t � NID(0;��)
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The similar cycle model is24  t

 �t

35 =
24�
24 cos�c sin�c

� sin�c cos�c

35
 IN
3524  t�1

 �t�1

35+
24 �t

��t

35 ; t = 1; :::; T;

(98)
where  t and  

�
t are N � 1 vectors and �t and ��t are N � 1 vectors of the

disturbances such that

E(�t�
0
t) = E(��t�

�0
t ) = ��; E(�t�

�0
t ) = 0; (99)

where �� is an N �N covariance matrix. The model allows the disturbances to
be correlated across the series. Because the damping factor and the frequency,
� and �c; are the same in all series, the cycles in the di¤erent series have similar
properties; in particular their movements are centred around the same period.
This seems eminently reasonable if the cyclical movements all arise from a sim-
ilar source such as an underlying business cycle. Furthermore, the restriction
means that it is often easier to separate out trend and cycle movements when
several series are jointly estimated.
Homogeneous models are a special case when all the covariance matrices,��;�� ;�",

and ��; are proportional; see Harvey (1989, ch 8, section 3). In this case, the
same �lter and smoother is applied to each series. Multivariate calculations are
not required unless MSEs are needed.

7.2 Reduced form and multivariate ARIMA models

The reduced form of a SUTSE model is a multivariate ARIMA (p; d; q) model
with p; d and q taking the same values as in the corresponding univariate case.
General expressions may be obtained from the state space form using (86).
Similarly the VAR representation may be obtained from (88).
The disadvantage of a VAR is that long lags may be needed to give a good

approximation and the loss in degrees of freedom is compounded as the number
of series increases. For ARIMA models the restrictions implied by a structural
form are very strong - and this leads one to question the usefulness of the whole
class. The fact that vector ARIMA models are far more di¢ cult to estimate
than VARs means that they have not been widely used in econometrics - unlike
the univariate case, there are few, if any compensating advantages.
The issues can be illustrated with the multivariate random walk plus noise.

The reduced form is the multivariate ARIMA(0,1,1) model

�yt = �t +��t�1; �t � NID(0;�) (100)

In the univariate case, the structural form implies that � must lie between zero
and minus one in the reduced form ARIMA(0,1,1) model. Hence only half the
parameter space is admissible. In the multivariate model, the structural form
not only implies restrictions on the parameter space in the reduced form, but
also reduces its dimension. The total number of parameters in the structural
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form is N (N + 1) while in the unrestricted reduced form, the covariance matrix
of �t consists of N (N + 1) =2 di¤erent elements but the MA parameter matrix
contains N2: Thus if N is �ve, the structural form contains thirty parameters
while the unrestricted reduced form has forty. The restrictions are even tighter
when the structural model contains several components.10

The reduced form of a SUTSE model is always invertible although it may
not always be strictly invertible. In other words some of the roots of the MA
polynomial for the reduced form may lie on, rather than outside, the unit circle.
In the case of the multivariate random walk plus noise, the condition for strict
invertibility of the stationary form is that �� should be p.d. However, the
Kalman �lter remains valid even if �� is only p.s.d. On the other hand, ensuring
that � satis�es the conditions of invertibility is technically more complex.
In summary, while the multivariate random walk plus noise has a clear in-

terpretation and rationale, the meaning of the elements of � is unclear, certain
values may be undesirable and invertibility is di¢ cult to impose.

7.3 Dynamic common factors

Reduced rank disturbance covariance matrices in a SUTSE model imply com-
mon factors. The most important cases arise in connection with the trend and
it is this aspect of dynamic factors that the section focusses on. However, it is
possible to have common seasonal components and common cycles. The com-
mon cycle model is a special case of the similar cycle model and is an example
of what Engle and Kozicki (1993) call a common feature.

7.3.1 Common trends and co-integration

With �� = 0 the trend in (97) is a random walk plus deterministic drift, �. If
the rank of �� is K < N , the model can be written in terms of K common
trends, �yt ; that is

y1t = �yt + "1t (101)

y2t = ��yt + �+ "2t

where yt is partitioned into a K � 1 vector y1t and an R � 1 vector y2t, "t is
similarly partitioned, � is an R�K matrix of coe¢ cients and the K�1 vector
�yt follows a multivariate random walk with drift

�yt= �
y
t�1+�

y + �
y
t ; �yt � NID(0;�y�); (102)

10No simple expressions are available for � in terms of structural parameters in the mul-
tivariate case. However, its value may be computed from the steady-state by observing that
I�TL = (1�L)I and so, proceeding as in (86), one obtains the symmetric N � N moving
average matrix, �; as K� I = �L =� (P+ I)�1:
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with �yt and �
y being K � 1 vectors and �y� a K �K positive de�nite matrix.

The presence of common trends implies co-integration. In the local level
model, (119), there exist R = N �K co-integrating vectors. Let A be an R�N
matrix partitioned as A = (A1;A2): The common trend system in (119) can
be transformed to an equivalent co-integrating system by pre-multiplying by an
N �N matrix �

IK 0
A1 A2

�
(103)

If A = (��; IR) this is just

y1t = �
y
t + "1t;

y2t = �y1t + �+ "t; (104)

where "t = "2t��"1t: Thus the second set of equations consists of co-integrating
relationships, Ayt; while the �rst set contains the common trends. This is a
special case of the triangular representation of a co-integrating system.
The notion of co-breaking, as expounded in Clements and Hendry (1998), can

be incorporated quite naturally into a common trends model by the introduction
of a dummy variable, wt; into the equation for the trend, that is

�yt= �
y
t�1+�

y + �wt + �
y
t ; �yt � NID(0;�y�); (105)

where � is a K � 1 vector of coe¢ cients. Clearly the breaks do not appear in
the R stationary series in Ayt:

7.3.2 Representation of a common trends model by a vector error
correction model (VECM)

The VECM representation of a VAR

yt = � +
1X
j=1

�jyt�j+�t (106)

is

�yt = � +�
�yt�1 +

1X
r=1

��r�yt�r + �t; V ar(�t) = � (107)

where the relationship between the N �N parameter matrices, ��r ; and those
in the VAR model is

�� = �� (1) =
1X
k=1

�k � I; ��j = �
1X

k=j+1

�k; j = 1; 2; : : : (108)

If there are R co-integrating vectors, contained in the R�N matrix A; then ��

contains K unit roots and �� = �A; where � is N � R; see Johansen (1995)
and the chapter by Lutkepohl.

47



If there are no restrictions on the elements of � they contain information on
the K � 1 vector of common slopes, ��; and on the R � 1 vector of intercepts,
��; that constitutes the mean of Ayt: This is best seen by writing (107) as

�yt = A?�
� + �(Ayt�1 � �

�) +
1X
r=1

��r(�yt�r �A?�
�) + �t; (109)

where A? is an N �K matrix such that AA? = 0; so that there are no slopes
in the co-integrating vectors. The elements of A?�

� are the growth rates of the
series. Thus11

� =(I�
1X
j=1

��j )A?�
����� (110)

Structural time series models have an implied triangular representation as
we saw in (104). The connection with VECMs is not so straightforward. The
coe¢ cients of the VECM represention for any UC model with common (random
walk plus drift) trends can be computed numerically by using the algorithm of
Koopman and Harvey (2003). Here we derive analytic expressions for the VECM
representation of a local level model, (101), noting that, in terms of the general
state space model, Z = (I;�0

)
0. The coe¢ cient matrices in the VECM depend

on the K �N steady-state Kalman gain matrix, K; as given from the algebraic
Riccati equations. Proceeding in this way can give interesting insights into the
structure of the VECM.
From the vector autoregressive form of the Kalman �lter, (88), noting that

T = IK ; so L = IK�KZ; we have

yt = � + Z(IK�(IK�KZ)L)
�1Kyt�1 + �t; V ar(�t) = F (111)

(Note that F and K depend on Z;�� and �" via the steady-state covariance
matrix, P:) This representation corresponds to a VAR with �t = �t and F = �:
The polynomial in the in�nite vector autoregression, (106), is therefore

�(L) = IN � Z [IK � (IK �KZ)L]�1KL

The matrix
�(1) = IN � Z (KZ)�1K (112)

has the property that �(1)Z = 0 and K�(1) = 0: Its rank is easily seen to be
R, as required by the Granger representation theorem; this follows because it is
idempotent and so the rank is equal to the trace.
The expression linking � to � and �y is obtained from (89) as

� =
h
IN � Z (KZ)�1K

i �
0
��

�
+ Z (KZ)

�1
�y (113)

11 If we don�t want time trends in the series, the growth rates must be set to zero so we must
constrain � to depend only on the R parameters in �� by setting � = ����: In the special
case when R = N , there are no time trends and � = ���� is the unconditional mean.
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since d = (00;�)0: The vectors �� and �y contain N non-zero elements between
them; thus the components of both level and growth are included in �.
The coe¢ cient matrices in the in�nite VECM, (107), are �� = ��(1) and

��j = �Z [IK �KZ]
j
(KZ)

�1
K; j = 1; 2; ::: (114)

The VECM of (109) is given by setting A? = Z = (I;�
0
)
0 and �� = �y: The

A matrix is not unique for N �K = R > 1; but it can be set to [��; IR] and
the � matrix must then satisfy �A = ��: However, since A(00;�0)0 = ��; this
choice of A implies � = ��: Hence it follows from (110) and (113) that � is
given by the last R columns of ��:

7.3.3 Single common trend

For a single common trend we may write

yt= z�
y
t+"t; t = 1; : : : ; T; (115)

where z is a vector and �yt is a univariate random walk. It turns out that optimal
�ltering and smoothing can be carried out exactly as for a univariate local level
model for

=
yt = �2"z

0��1" yt with q = �2�=�
2
"; where �

�2
" = z

0
��1" z: This result,

which is similar to one in Kozicki (1999), is not entirely obvious since, unless
the diagonal elements of �" are the same, univariate estimators would have
di¤erent q0s and hence di¤erent smoothing constants. It has implications for
estimating an underlying trend from a number of series. The result follows by
applying a standard matrix inversion lemma, as in Harvey (1989, p108), to F�1t
in the vector kt = ptjt�1z

0F�1t to give

kt = [p
�
tjt�1=(p

�
tjt�1 + 1)]�

2
"z
0��1" (116)

where p�tjt�1 = ��2" ptjt�1 Thus the Kalman �lter can be run as a univariate �lter

for
=
yt: In the steady state, p

� is as in (13) but using q rather than q: Then from
(116) we get k = [(p� + q)=(p� + q + 1)]�2"z

0��1" :
As regards the VECM representation, IK �KZ = 1 � k0z is a scalar and

the coe¢ cients of the lagged di¤erences, the elements of the ��0j s; all decay at
the same rate. Since k0z = (p� + q)=(p� + q + 1)

��j = �(1=k0z)(1�k0z)
j
zk0 = � (p� + q + 1)�j �2"zz0��1" ; j = 1; 2; :::

Furthermore
�(1) = ��� = I�(1=k0z)zk0= I��2"zz0��1" : (117)

If wk is the weight attached to yk in forming the mean, that is wk is the k �
th element of the vector �2"z

0��1" ; the i�th equation in the VECM can be
expressed12 as

�yit = �i �
�
yi;t�1 � zi

=
yt�1

�
� zi

N

�
k=1

wk
1
�
j=1

�
��
�j
�yk;t�j + vit; (118)

12 In the univariate case
=
yt = yt and so (118) reduces to the (unstandardised) EWMA of

di¤erences, (37).
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where �i is a constant, � = �1=(p�+q+1) depends on q and the v0its are serially
uncorrelated disturbances. The terms yi;t�1 � zi

=
yt�1 can also be expressed as

N �1 co-integrating vectors weighted by the elements of the last N �1 columns
of ��: The most interesting point to emerge from this representation is that the
(exponential) decay of the weights attached to lagged di¤erences is the same for
all variables in each equation.
The single common trends model illustrates the implications of using a VAR

or VECM as an approximating model. It has already been noted that an au-
toregression can be a very poor approximation to a random walk plus noise
model, particularly if the signal-noise ratio, q, is small. In a multivariate model
the problems are compounded. Thus, ignoring �� and �y, a model with a single
common trend contains N parameters in addition to the parameters in �": The
VECM has a disturbance covariance matrix with the same number of parame-
ters as �": However the error correction matrix �� is N �N and on top of this
a su¢ cient number of lagged di¤erences, with N �N parameter matrices, ��j ;
must be used to give a reasonable approximation.

7.4 Convergence

STMs have recently been adapted to model converging economies and to pro-
duce forecasts that take account of convergence. Before describing these models
it is �rst necessary to discuss balanced growth.

7.4.1 Balanced growth, stability and convergence

The balanced growth UC model is a special case of (96):

yt = i�
y
t+�+ t+"t; t = 1; :::; T; (119)

where �yt is a univariate local linear trend, i is a vector of ones, and � is an
N � 1 vector of constants. Although there may be di¤erences in the level of the
trend in each series, the slopes are the same, irrespective of whether they are
�xed or stochastic.
A balanced growth model implies that the series have a stable relationship

over time. This means that there is a full rank (N �1)�N matrix, D; with the
property that Di = 0; thereby rendering Dyt jointly stationary. If the series
are stationary in �rst di¤erences, balanced growth may be incorporated in a
vector error correction model (VECM) of the form (109) by letting A = D
and A? = i: The system has a single unit root, guaranteed by the fact that
Di = 0: The constants in � contain information on the common slope, �; and
on the di¤erences in the levels of the series, as contained in the vector �. These
di¤erences might be parameterised with respect to the contrasts in Dyt�1: For
example if Dyt has elements yit � yi+1;t; i = 1; ::; N � 1; then �i; the i � th
element of the (N �1)�1 vector �; is the gap between yi and yi+1: In any case,
� =(I�

Pp
j=1�

�
j )i����: The matrix � contains N(N�1) free parameters and

these may be estimated e¢ ciently by OLS applied to each equation in turn.

50



However, there is no guarantee that the estimate of � will be such that the
model is stable.

7.4.2 Convergence models

A multivariate convergence model may be set up as

yt = �+�it+ �t + t+"t; t = 1; :::; T (120)

with  t and "t de�ned as (96) and

�t = ��t�1 + �t; V ar(�t) = �� (121)

Each row of � sums to unity, �i = i: Thus setting � to one in (� � �I)i = 0;
shows that � has an eigenvalue of one with a corresponding eigenvector consist-
ing of ones. The other roots of � are obtained by solving j�� �Ij = 0 ; they
should have modulus less than one for convergence.
If we write

�
0
�t = �

0
��t�1 + �

0
�t

it is clear that the N � 1 vector of weights, �; which gives a random walk must
be such that �

0
(�� I) = 00. Since the roots of �0 are the same as those of �;

it follows from writing ��
0
= �

0
that � is the eigenvector of �0 corresponding

to its unit root. This random walk, ��t = �
0
�t; is a common trend in the sense

that it yields the common growth path to which all the economies converge.
This is because limj!1�

j = i�
0
: The common trend for the observations is a

random walk with drift, �.
The homogeneous model has� =�I+ (1��)i�0; where i is an N�1 vector of

ones, � is a scalar convergence parameter and � is an N�1 vector of parameters
with the property that �

0
i =1. (It is straightforward to con�rm that � is the

eigenvector of �0 corresponding to the unit root). The likelihood function is
maximized numerically with respect to � and the elements of �; denoted �i; i =
1; :::; N ; the �t vector is initialised with a di¤use prior. It is assumed that
0 � � � 1; with � = 1 indicating no convergence. The �

0
is are constrained to

lie between zero and one and to sum to one.
In a homogeneous model, each trend can be decomposed into the common

trend and a convergence component. The vector of convergence components
de�ned by is �yt = �t � i��t and it is easily seen that

�yt = ��yt�1 + �
y
t ; t = 1; :::; T: (122)

where �yt = �t � i��t: The error correction form for each series

��yit = (�� 1)�
y
i;t�1 + �

y
it; i = 1; :::; N;

shows that its relative growth rate depends on the gap between it and the
common trend. Substituting (122) into (120) gives

yt = �+�it+ i��t + �
y
t + t+"t; t = 1; :::; T
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Once convergence has taken place, the model is of the balanced growth form,
(119), but with an additional stationary component �yt .
The smooth homogeneous convergence model is

yt = �+ �t + t+"t; t = 1; :::; T (123)

and

�t = ��t�1 + �t�1; �t = ��t�1 + �t; V ar(�t) = �� ;

with � =�I+ (1��)i�0 as before. Using scalar notation to write the model in
terms of the common trend, ��;t; and convergence processes, �

y
it = �it���;t; i =

1; :::; N; yields

yit = �i + ��;t + �
y
it +  it + "it; i = 1; :::; N; (124)

where ��i = 0; the common trend is

��;t = ��;t�1 + ��;t�1; ��;t = ��;t�1 + ��;t

and the convergence components are

�yit = ��yi;t�1 + �
y
it; �yit = ��yi;t�1 + �

y
it; i = 1; :::; N

The convergence components can be given a second-order error correction rep-
resentation as in sub-section 2.8. The forecasts converge to those of a smooth
common trend, but in doing so they may exhibit temporary divergence.
US regions Carvalho and Harvey (2005) �t a smooth, homogeneous absolute

convergence model, (124) with �i = 0; i = 1; :::; N to annual series of six US
regions. (NE and ME were excluded as they follow growth paths that, especially
for the last two decades, seem to be diverging from the growth paths of the
other regions.). The similar cycle parameters were estimated to be � = 0:79
and 2�=� = 8:0 years, while the estimate of � was 0.889 and the weights, �i,
were such that the common trend is basically constructed by weighting Great
Lakes two-thirds and Plains one third. The model not only allows a separation
into trends and cycles but also separates out the long-run balanced growth
path from the transitional (converging) regional dynamics, thus permitting a
characterisation of convergence stylised facts. Figure 10 shows the forecasts of
the convergence components for the six regional series over a twenty year horizon
(2000-2019). The striking feature of this �gure is not the eventual convergence,
but rather the prediction of divergence in the short run. Thus, although Plains
and Great Lakes converge rapidly to the growth path of the common trend,
which is hardly surprising given the composition of the common trend, the Far
West, Rocky Mountains, South East and South West are all expected to widen
their income gap, relative to the common trend, during the �rst �ve years of
the forecast period. Only then do they resume their convergence towards the
common trend and even then with noticeable di¤erences in dynamics. This
temporary divergence is a feature of the smooth convergence model; the second-
order error correction speci�cation not only admits slower changes but also,
when the convergence process stalls, allows for divergence in the short run.
.
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Figure 10: Forecasts for convergence components in US regions.
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7.5 Forecasting and nowcasting with auxiliary series

The use of an auxiliary series that is a coincident or leading indicator yields
potential gains for nowcasting and forecasting. Our analysis will be based on
bivariate models. We will take one series, the �rst, to be the target series while
the second is the related series. With nowcasting our concern is with the reduc-
tion in the MSE in estimating the level and the slope. We then examine how
this translates into gains for forecasting. The emphasis is somewhat di¤erent
from that in the chapter by Marcelino where the concern is with the information
to be gleaned from a large number of series.
We will concentrate on the local linear trend model, that is

yt= �t+"t; t = 1; : : : ; T; "t � NID (0;�") (125)

where yt and all the other vectors are 2� 1 and �t is as in (97). It is useful to
write the covariance matrices of �t as

�� =

�
�21� ���1��2�
���1��2� �22�

�
(126)

where �� is the correlation and similarly for the other disturbance covariance
matrices, where the correlations will be �" and �� :
When �� = �1 there is then only one source of stochastic movement in the

two slopes. This is the common slopes model. We can write

�2t =
�� + ��1t; t = 1; :::; T (127)

where � = sgn(��)�2�=�1� and �� is a constant. When �� = 0; the model has
proportional slopes. If, furthermore, � is equal to one, that is �2� = �1� and
�� positive, there are identical slopes.
The series in a common slopes model are co-integrated of order (2,1). Thus,

although both y1t and y2t require second di¤erencing to make them stationary,
there is a linear combination of �rst di¤erences which is stationary. If, in addi-
tion, �� = �1; and, furthermore, �2�=�1� = �2�=�1� ; then the series are CI(2,2),
meaning that there is a linear combination of the observations themselves which
is stationary. These conditions mean that �� is proportional to ��; which is a
special case of what Koopman et al (2000) call trend homogeneity.

7.5.1 Coincident (concurrent) indicators

In order to gain some insight into the potential gains from using a coincident
indicator for nowcasting and forecasting, consider the local level model, that is
(125) without the vector of slopes, �t: The MSE matrix of predictions is given
by a straightforward generalisation of (15), namely

MSE
�eyT+ljT � = PT + l�� +�"; l = 1; 2; :::

The gains arise from PT as the current level is estimated more precisely. How-
ever, PT will tend to be dominated by the uncertainty in the level as the lead
time increases.
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Assuming the target series to be the �rst series, interest centres on RMSE(e�1T ):
It might be thought that high correlation between the disturbances in the two
series necessarily leads to big reductions in this RMSE. However, this need not
be the case. If �� = q�"; where q is a positive scalar, the model as a whole
is homogeneous, and there is no gain from a bivariate model (except in the
estimation of the factors of proportionality). This is because the bivariate �lter
is the same as the univariate �lter; see Harvey (1989, pp 435-42). As a simple
illustration, consider a model with �2" = �1" and q = 0:5: RMSEs were cal-
culated from the steady-state P matrix for various combinations of �" and ��.
With �" = 0:8, RMSE(e�1T ) relative to that obtained in the univariate model
is 0:94; 1 and 0:97 for �� equal to 0; 0:8 and 1 respectively. Thus there is no
gain under homogeneity and there is less reduction in RMSE when the levels
are perfectly correlated compared with when they are uncorrelated. The biggest
gain in precision is when �" = �1 and �� = 1: In fact if the levels are identical,
(y1t + y2t)=2 estimates the level exactly. When �" = 0; the relative RMSEs are
1; 0:93 and 0:80 for �� equal to 0; 0:8 and 1 respectively.
Observations on a related series can also be used to get more accurate esti-

mates of the underlying growth rate in a target series and hence more accurate
forecasts. For example, when the target series contains an irregular component
but the related series does not, there is always a reduction in RMSE(e�1T ) from
using the related series (unless the related series is completely deterministic).
Further analysis of potential gains can be found in Harvey and Chung (2000).
Labour Force Survey- The challenge posed by combining quarterly survey

data on unemployment with the monthly claimant count was described in the
introduction. The appropriate model for the monthly CC series, y2t; is a lo-
cal linear trend with no irregular component. The monthly model for the LFS
series is similar, except that the observations contain a survey sampling error
as described in sub-section 2.5. A bivariate model with these features can be
handled within the state space framework even if the LFS observations are only
available every quarter or, as was the case before 1992, every year. A glance
at �gure 1 suggests that the underlying trends in the two series are not the
same. However, such divergence does not mean that the CC series contains no
usable information. For example it is plausible that the underlying slopes of
the two series move closely together even though the levels show a tendency
to drift apart. In terms of model (125) this corresponds to a high correlation,
�� ;between the stochastic slopes, accompanied by a much lower correlation for
the levels, ��: The analysis at the start of this sub-section indicates that such
a combination could lead to a considerable gain in the precision with which the
underlying change in ILO unemployment is estimated. Models were estimated
using monthly CC observations from 1971 together with quarterly LFS observa-
tions from May 1992 and annual observations from 1984. The last observations
are in August 1998. The proportional slopes model is the preferred one. The
weighting functions are shown in �gure 11.
Output gap - Kuttner (1994) uses a bivariate model for constructing a timely

and economically sensible estimate of potential output by exploiting the cycli-
cal relationship between in�ation and the output gap. Planas and Rossi (2004)
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Figure 11: Weights applied to levels and di¤erences of LFS and CC in estimating
the current underlying change in LFS

extend this idea further and examine the implications for detecting turning
points. Kuttner�s model combines the equation for the trend-cycle decomposi-
tion of GDP, yt; in (28) with a Phillips curve e¤ect that relates in�ation to the
lagged change in GDP and its cycle,  t; that is

�pt = �p + �yt�1 + � t�1 + ut;

where pt is the logarithm of the price level, �p is a constant and ut is a moving
average disturbance. If such an equation is stable, it may help to estimate the
output gap.

7.5.2 Delayed observations and leading indicators

Suppose that the �rst series is observed with a delay. We can then use the second
series to get a better estimate of the �rst series and its underlying level than
could be obtained by univariate forecasting. For the local level, the measurement
equation at time T is

y2;T = (0 1)�T + "2;T

and applying the KF we �nd

m1;T = m1;T jT�1 +
p1;2;T jT�1

p2;T jT�1 + �
2
"2

(y2;T � ey2;T jT�1)
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where, for example, p1;2;T jT�1 is the element of PT jT�1 in row one, column two.
The estimator of y1;T is given by the same expression, though the MSE�s are
di¤erent. In the homogeneous case it can be shown that the MSE is multiplied
by 1��2; where � is the correlation between the disturbances; see Harvey (1989,
p 467). The analysis of leading indicators is essentially the same.

7.5.3 Preliminary observations and data revisions

The optimal use of di¤erent vintages of observations in constructing the best
estimate of a series, or its underlying level, at a particular date is an example of
nowcasting; see Harvey (1989, pp337-41) and the chapter by Croushore. Using
a state space approach, Patterson (1995) provides recent evidence on UK con-
sumers� expenditure and concludes (p54) that �..preliminary vintages are not
e¢ cient forecasts of the �nal vintage.�
Benchmarking can be regarded as another example of nowcasting in which

monthly or quarterly observations collected over the year are readjusted so as
to be consistent with the annual total obtained from another source such as a
survey; see Durbin and Quenneville (1997). The state space treatment is similar
to that of data revisions.

8 Continuous time

A continuous time model is more fundamental than one in discrete time. For
many variables, the process generating the observations can be regarded as
a continuous one even though the observations themselves are only made at
discrete intervals. Indeed a good deal of the theory in economics and �nance is
based on continuous time models.
There are also strong statistical arguments for working with a continuous

time model. Apart from providing an elegant solution to the problem of irreg-
ularly spaced observations, a continuous time model has the attraction of not
being tied to the time interval at which the observations happen to be made.
One of the consequences is that, for �ow variables, the parameter space is more
extensive than it typically would be for an analogous discrete time model. The
continuous time formulation is also attractive for forecasting �ow variables, par-
ticularly when cumulative predictions are to be made over a variable lead time.
Only univariate time series will be considered here. We will suppose that

observations are spaced at irregular intervals. The � � th observation will be
denoted y� , for � = 1; :::; T; and t� will denote the time at which it is made,
with t0 = 0. The time between observations will be denoted by �� = t� � t��1.
As with discrete time models the state space form provides a general frame-

work within which estimation and prediction may be carried out. The �rst
sub-section shows how a continuous time transition equation implies a discrete
time transition equation at the observation points. The state space treatment
for stocks and �ows is then set out.
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8.1 Transition equations

The continuous time analogue of the time-invariant discrete time transition
equation is

d� (t)= A� (t) dt+RQ1=2dW� (t) (128)

where the A and R are m�m and m� g respectively, and may be functions of
hyperparameters,W� (t) is a standard multivariate Wiener process and Q is a
g � g psd matrix.
The treatment of continuous time models hinges on the solution to the dif-

ferential equations in (128). By de�ning �� as � (t� ) for � = 1; :::; T; we are
able to establish the discrete time transition equation,

�� = T����1+�� � = 1; :::; T; (129)

where
T� = exp (A�� ) = I+A��+

1

2!
A2�2�+

1

3!
A3�3�+ � � � (130)

and �� is a multivariate white-noise disturbance term with zero and covariance
matrix

Q� =

Z ��

0

eA(���s)RQR0eA
0(���s)ds (131)

The condition for � (t) to be stationary is that the real parts of the char-
acteristic roots of A should be negative. This translates into the discrete time
condition that the roots of T = exp (A) should lie outside the unit circle. If
� (t) is stationary, the mean of � (t) is zero and the covariance matrix is

V ar [� (t)] =

Z 0

�1
e�AsRQR0e�A

0sds (132)

The initial conditions for � (t0) are therefore a1j0= 0 and P1j0=V ar [� (t)] :
The main structural components are formulated in continuous time in the

following way.
Trend In the local level model, the level component, � (t) ; is de�ned by

d� (t) = ��dW� (t) ; where W� (t) is a standard Wiener process and �� is a
non-negative parameter. Thus the increment d� (t) has mean zero and variance
�2�dt:
The linear trend component is�

d� (t)

d� (t)

�
=

�
0 1

0 0

��
� (t) dt

� (t) dt

�
+

�
��dW� (t)

��dW� (t)

�
(133)

where W� (t) and W� (t) are mutually independent Wiener processes.
Cycle The continuous cycle is�

d (t)
d � (t)

�
=

�
log � �c
��c log �

��
 (t) dt

 � (t) dt

�
+

�
��dW� (t)

��dW �
� (t)

�
(134)
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where W� (t) and W �
� (t) are mutually independent Wiener processes and ��;

� and �c are parameters, the latter being the frequency of the cycle. The
characteristic roots of the matrix containing � and �c are log � � i�c, so the
condition for  (t) to be a stationary process is � < 1:
Seasonal The continuous time seasonal model is the sum of a suitable num-

ber of trigonometric components, j (t), generated by processes of the form (134)
with � equal to unity and �c set equal to the appropriate seasonal frequency �j
for j = 1; :::; [s=2] :

8.2 Stock variables

The discrete state space form for a stock variable generated by a continuous time
process consists of the transition equation (129) together with the measurement
equation

y� = z
0� (t� ) + "� = z

0�� + "� ; � = 1; :::; T (135)

where "� is a white-noise disturbance term with mean zero and variance �2" which
is uncorrelated with integrals of � (t) in all time periods. The Kalman �lter can
therefore be applied in a standard way. The discrete time model is time-invariant
for equally spaced observations, in which case it is usually convenient to set ��
equal to unity. In a Gaussian model, estimation can proceed as in discrete time
models since, even with irregularly spaced observations, the construction of the
likelihood function can proceed via the prediction error decomposition.

8.2.1 Structural time series models

The continuous time components de�ned earlier can be combined to produce a
continuous time structural model. As in the discrete case, the components are
usually assumed to be mutually independent. Hence the A and Q matrices are
block diagonal and so the discrete time components can be evaluated separately.

Trend For a stock observed at times t� , � = 1; :::; T; it follows almost
immediately that if the level component is Brownian motion then

�� = ���1 + �� ; V ar (�� ) = ���
2
� (136)

since

�� = � (t� )� � (t��1) = ��

Z t�

t��1

dW� (t) = ��(W� (t� )�W� (t��1)):

The discrete model is therefore a random walk for equally spaced observations.
If the observation at time � is made up of � (t� ) plus a white noise disturbance
term, "� ; the discrete time measurement equation can be written

y� = �� + "� ; V ar ("� ) = �2"; � = 1; :::; T (137)

and the set-up corresponds exactly to the familiar random walk plus noise model
with signal-noise ratio q� = ��2�=�

2
" = �q:
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For the local linear trend model�
��
��

�
=

�
1 ��
0 1

��
���1
���1

�
+

�
��
��

�
(138)

In view of the simple structure of the matrix exponential, the evaluation of the
covariance matrix of the discrete time disturbances can be carried out directly,
yielding

V ar

�
��
��

�
= ��

26664
�2� +

1
3�
2
��

2
�

... 1
2���

2
�

� � � � � � � � � � � � � � �
... � � � � � � � � �

1
2���

2
�

... �2�

37775 (139)

When �� is equal to unity, the transition equation is of the same form as the
discrete time local linear trend (17). However, (139) shows that independence
for the continuous time disturbances implies that the corresponding discrete
time disturbances are correlated.
When �2� = 0; signal extraction with this model yields a cubic spline. Harvey

and Koopman (2000) argue that this is a good way of carrying out nonlinear
regression. The fact that a model is used means that the problem of making
forecasts from a cubic spline is solved.

Cycle For the cycle model, use of the matrix exponential de�nition together
with the power series expansions for the cosine and sine functions gives the
discrete time model�

 �
 ��

�
= ��

�
cos�c�� sin�c��
� sin�c�� cos�c��

��
 ��1
 ���1

�
+

�
��
���

�
(140)

When �� equals one, the transition matrix corresponds exactly to the transition
matrix of the discrete time cyclical component. Specifying that � (t) and �� (t)
be independent of each other with equal variances implies that

V ar

�
��
���

�
=
�
�2�= log �

�2� �1� �2�� � I
If � = 1; the covariance matrix is simply �2���I:

8.2.2 Prediction

In the general model of (128), the optimal predictor of the state vector for any
positive lead time, l; is given by the forecast function

a (tT + l j T ) = eAlaT (141)

with associated MSE matrix

P (tT + l j T ) = TlPTT0l+RQlR
0; l > 0 (142)
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where Tl and Ql are, respectively (??) and (??) evaluated with �� set equal to
l:
The forecast function for the systematic part of the series,

�y (t)= z0� (t) (143)

can also be expressed as a continuous function of l; namely

e�y (tT + l j T ) = z0eAlaT
The forecast of an observation made at time tT + l, is

~yT+1jT = e�y (tT + l j T ) (144)

where the observation to be forecast has been classi�ed as the one indexed
� = T + 1; its MSE is

MSE
�
~yT+1jT

�
= z0P (tT + l j T ) z+ �2"

The evaluation of forecast functions for the various structural models is
relatively straightforward. In general they take the same form as for the cor-
responding discrete time models. Thus the local level model has a forecast
function

~y (tT + l j T ) = m (tT + l j T ) = mT

and the MSE of the forecast of the (T + 1)-th observation, at time tT + l; is

MSE
�
~yT+1jT

�
= pT + l�

2
� + �

2
"

which is exactly the same form as (15).

8.3 Flow variables

For a �ow

y� =

Z ��

0

z0� (t��1 + r) + �"

Z ��

0

dW"(t��1 + r); � = 1; :::; T (145)

whereW" (t) is independent of the Brownian motion driving the transition equa-
tion. Thus the irregular component is cumulated continuously whereas in the
stock case it only comes into play when an observation is made.
The key feature in the treatment of �ow variables in continuous time is the

introduction of a cumulator variable, yf (t), into the state space model. The
cumulator variable for the series at time t� is equal to the observation, y� , for
� = 1; :::; T; that is yf (t� ) = y� : The result is an augmented state space system�

��
y�

�
=

�
eA� 0
z0W (�� ) 0

� �
���1
y��1

�
+

�
I 0
00 z0

� �
��
�f�

�
+

�
0

"f�

�
(146)
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y� = [0
0 1]

�
��
y�

�
; � = 1; :::; T

with V ar
�
"f�
�
= ���

2
";

W (r) =

Z r

0

eAsds (147)

and

V ar

�
��
�f�

�
=

Z ��

0

26664
eArRQR0eA

0r
... eArRQR0W0 (r)

� � � � � � � � � � � � � � �
... � � � � � � � � �

W (r)RQR0eA
0r

... W (r)RQR0W0 (r)

37775 = Qy
�

Maximum likelihood estimators of the hyperparameters can be constructed
via the prediction error decomposition by running the Kalman �lter on (146).
No additional starting value problems are caused by bringing the cumulator
variable into the state vector as yf (t0) = 0:
An alternative way of approaching the problem is not to augment the state

vector, as such, but to treat the equation

y� = z
0W (�� )���1+z

0�f� + "
f
� (148)

as a measurement equation. Rede�ning ���1 as ��� enables this equation to be
written as

y� = z
0
��

�
� + "� ; � = 1; :::; T (149)

where z0� = z
0W (�� ) and "� = z0�f�+"

f
� . The corresponding transition equation

is
���+1 = T�+1�

�
� + �� ; � = 1; :::; T (150)

where T�+1 = exp (A�� ). Taken together these two equations are a system of
the form (53) and (55) with the measurement equation disturbance, "� , and
the transition equation disturbance, �� ; correlated. The covariance matrix of
[�0� "� ]

0 is given by

V ar

�
��
"�

�
=

�
Q� g�
g0� h�

�
=

�
I 0

00 z0

�
Qy
�

�
I 00

0 z

�
+

�
0 0

0 ���2"

�
(151)

The modi�ed version of the Kalman �lter needed to handle such systems is
described in Harvey (1989, sub-section 3.2.4). It is possible to �nd a SSF in
which the measurement error is uncorrelated with the state disturbances, but
this is at the price of introducing a moving average into the state disturbances;
see Bergstrom (1984) and Chambers and McGarry (2002, p 395).
The various matrix exponential expressions that need to be computed for the

�ow variable are relatively easy to evaluate for trend and seasonal components
in STMs.
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8.3.1 Prediction

In making predictions for a �ow it is necessary to distinguish between the total
accumulated e¤ect from time t� to time t� + l and the amount of the �ow in a
single time period ending at time t� + l: The latter concept corresponds to the
usual idea of prediction in a discrete model.
Cumulative predictions Let yf (tT + l) denote the cumulative �ow from

the end of the sample to time tT + l: In terms of the state space model of
(146) this quantity is yT+1 with �T+1 set equal to l: The optimal predictor,
~yf (tT + l j T ) ; can therefore be obtained directly from the Kalman �lter as
~yT+1jT : In fact the resulting expression gives the forecast function which we can
write as

~yf (tT + l j T ) = z0W (l)aT ; l > 0 (152)

with

MSE
�
~yf (tT + l j T )

�
= z0W (l)PTW

0 (l) z+ z0V ar
�
�f�
�
z+ V ar

�
"fT+1

�
(153)

For the local linear trend,

~yf (tT + l j T ) = lmT +
1

2
l2bT ; l > 0

with

MSE
�
~yf (tT + l j T )

�
= l2p

(1;1)
T + l3p

(1;2)
T +

1

4
l4p

(2;2)
T +

1

3
l3�2� +

1

20
l5�2� + l�

2
"

(154)
where p(i;j)T is the ij-th element of PT . Because the forecasts from a linear trend
are being cumulated, the result is a quadratic. Similarly, the forecast for the
local level, lmT ; is linear.
Predictions over the unit interval Predictions over the unit interval

emerge quite naturally from the state space form, (146), as the predictions of
yT+l; l = 1; 2; ::: with �T+l set equal to unity for all l: Thus

~yT+ljT = z
0W (1)aT+l�1jT ; l = 1; 2; ::: (155)

with
aT+l�1jT = eA(l�1)aT ; l = 1; 2; ::: (156)

The forecast function for the state vector is therefore of the same form as in
the corresponding stock variable model. The presence of the term W (1) in
(155) leads to a slight modi�cation when these forecasts are translated into
a prediction for the series itself. For STMs, the forecast functions are not
too di¤erent from the corresponding discrete time forecast functions. However,
an interesting feature is that pattern of weighting functions is somewhat more
general. For example, for a continuous time local level, the MA parameter in
the ARIMA(0,1,1) reduced form can take values up to 0.268 and the smoothing
constant in the EWMA used to form the forecasts is in the range 0 to 1.268.
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8.3.2 Cumulative predictions over a variable lead time

In some applications, the lead time itself can be regarded as a random variable.
This happens, for example, in inventory control problems where an order is put
in to meet demand, but the delivery time is uncertain. In such situations it
may be useful to determine the unconditional distribution of the �ow from the
current point in time, that is

p
�
yfT

�
=

Z 1

0

p
�
yf (tT + l j T

�
p (l) dl (157)

where p (l) is the p.d.f. of the lead time and p
�
yf (tT + l j T )

�
is the distribution

of yf (tT + l) conditional on the information at time T . In a Gaussian model,
the mean of yf (tT + l) is given by (152), while its variance is the same as the
expression for the MSE of yf (tT + l) given in (153). Although it may be di¢ cult
to derive the full unconditional distribution of yfT , expressions for the mean and
variance of this distribution may be obtained for the principal structural time
series models. In the context of inventory control, the unconditional mean might
be the demand expected in the period before a new delivery arrives.
The mean of the unconditional distribution of yfT is

E
�
yfT

�
= E[~yf (tT + l j T )] (158)

where the expectation is with respect to the distribution of the lead time. Sim-
ilarly, the unconditional variance is

V ar
�
yfT

�
= E

�
~yf (tT + l j T )

�2 � hE �eyfT�i2 (159)

where the second raw moment of yfT can be obtained as

E
�
~yf (tT + l j T )

�2
=MSE

�
~yf (tT + l j T )

�
+
�
~yf (tT + l j T )

�2
The expressions for the mean and variance of yfT depend on the moments of the
distribution of the lead time. This can be illustrated by the local level model.
Let the j�th raw moment of this distribution be denoted by �0j ; with the mean
abbreviated to �: Then, by specialising (154),

E
�
yfT

�
= E (lmT ) = E (l)mT = �mT

and
V ar

�
yfT

�
= m2

TV ar (l) + ��
2
" + �

0
2pT +

1

3
�03�

2
� (160)

The �rst two terms are the standard formulae found in the operational research
literature, corresponding to a situation in which �2� is zero and the (constant)
mean is known. The third term allows for the estimation of the mean, which now
may or may not be constant, while the fourth term allows for the movements in
the mean that take place beyond the current time period.
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The extension to the local linear trend and trigonometric seasonal compo-
nents is dealt with in Harvey and Snyder (1990). As regards the lead time
distribution, it may be possible to estimate moments from past observations.
Alternatively, a particular distribution may be assumed. Snyder (1984) argues
that the gamma distribution has been found to work well in practice.

9 Nonlinear and non-Gaussian models

In the linear state space form set out at the beginning of section 6 the system
matrices are non-stochastic and the disturbances are all white noise. The system
is rather �exible in that the system matrices can vary over time. The additional
assumption that the disturbances and initial state vector are normally distrib-
uted ensures that we have a linear model, that is, one in which the conditional
means ( the optimal estimates) of future observations and components are linear
functions of the observations and all other characteristics of the conditional dis-
tributions are independent of the observations. If there is only one disturbance
term, as in an ARIMA model, then serial independence of the disturbances is
su¢ cient for the model to be linear, but with unobserved components this is
not usually the case.
Non-linearities can be introduced into state space models in a variety of ways.

A completely general formulation is laid out in the �rst sub-section below, but
more tractable classes of models are obtained by focussing on di¤erent sources
of non-linearity. In the �rst place, the time-variation in the system matrices
may be endogenous. This opens up a wide range of possibilities for modelling
with the stochastic system matrices incorporating feedback in that they depend
on past observations or combinations of observations. The Kalman �lter can
still be applied when the models are conditionally Gaussian, as described in
sub-section 9.2. A second source of nonlinearity arises in an obvious way when
the measurement and/or transition equations have a nonlinear functional form.
Finally the model may be non-Gaussian. The state space may still be linear
as for example when the measurement equation has disturbances generated by
a t�distribution. More fundamentally non-normality may be intrinsic to the
data. Thus the observations may be count data in which the number of events
occuring in each time period is recorded. If these numbers are small, a normal
approximation is unreasonable and in order to be data-admissible the model
should explicitly take account of the fact that the observations must be non-
negative integers. A more extreme example is when the data are dichotomous
and can take one of only two values, zero and one. The structural approach
to time series model-building attempts to take such data characteristics into
account.
Count data models are usually based on distributions like the Poisson and

negative binomial. Thus the non-Gaussianity implies a nonlinear measurement
equation that must somehow be combined with a mechanism that allows the
mean of the distribution to change over time. Sub-section 9.3.1 sets out a class
of models which deal with non-Gaussian distributions for the observations by
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means of conjugate �lters. However, while these �lters are analytic, the range of
dynamic e¤ects that can be handled is limited. A more general class of models
is considered in sub-section 9.3.2. The statistical treatment of such models
depends on applying computer intensive methods. Considerable progess has
been made in recent years in both a Bayesian and classical framework.
When the state variables are discrete, a whole class of models can be built up

based on Markov chains. Thus there is intrinsic non-normality in the transition
equations and this may be combined with feedback e¤ects. Analytic �lters are
possible in some cases such as the autoregressive models introduced by Hamilton
(1989).
In setting up nonlinear models, there is often a choice between what Cox

calls �parameter driven�models, based on a latent or unobserved process, and
�observation driven� models in which the starting point is a one-step ahead
predictive distribution. As a general rule, the properties of parameter driven
models are easier to derive, but observation driven models have the advantage
that the likelihood function is immediately available. This survey concentrates
on parameter driven models, though it is interesting that some models, such as
the conjugate ones of sub-section 9.3.1, belong to both classes.

9.1 General state space model

In the general formulation of a state space model, the distribution of the obser-
vations is speci�ed conditional on the current state and past observations, that
is

p(ytj�t;Yt�1) (161)

where Yt�1 = fyt�1;yt�2;::::g: Similarly the distribution of the current state is
speci�ed conditional on the previous state and observations so that

p(�tj�t�1;Yt�1) (162)

The initial distribution of the state, p(�0) is also speci�ed. In a linear Gaussian
model the conditional distributions in (161) and (162) are characterised by their
�rst two moments and so they are speci�ed by the measurement and transition
equations.
Filtering The statistical treatment of the general state space model requires

the derivation of a recursion for p(�tjYt), the distribution of the state vector
conditional on the information at time t. Suppose this is given at time t � 1:
The distribution of �t conditional on Yt�1 is

p(�tjYt�1) =

Z 1

�1
p(�t;�t�1jYt�1)d�t�1

but the right-hand side may be rearranged as

p(�tjYt�1) =

Z 1

�1
p(�tj�t�1;Yt�1)p(�t�1jYt�1)d�t�1 (163)
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The conditional distribution p(�tj�t�1;Yt�1) is given by (162) and so p(�tjYt�1)
may, in principle, be obtained from p(�t�1jYt�1).
As regards updating,

p(�tjYt) = p(�tjyt;Yt�1) = p(�t;ytjYt�1)=p(ytjYt�1) (164)

= p(ytj�t;Yt�1)p(�tjYt�1)=p(ytjYt�1)

where

p(ytjYt�1) =

Z 1

�1
p(ytj�t;Yt�1)p(�tjYt�1)d�t (165)

The likelihood function may be constructed as the product of the predictive
distributions, (165), as in (68).

Prediction Prediction is e¤ected by repeated application of (163), starting
from p(�T jYT ); to give p(�T+ljYT ): The conditional distribution of yT+l is
then obtained by evaluating

p(yT+ljYT ) =

Z 1

�1
p(yT+lj�T+l;YT )p(�T+ljYT )d�T+l (166)

An alternative route is based on noting that the predictive distribution of yT+l
for l > 1 is given by

p (yT+l j YT ) =

Z
� � �
Z lY

j=1

p (yT+j j YT+j�1) dyT+j :::dyT+l�1 (167)

This expression follows by observing that the joint distribution of the future
observations may be written in terms of conditional distributions, that is

p (yT+l;yT+l�1; :::;yT+1 j YT ) =

lY
j=1

p (yT+j j YT+j�1)

The predictive distribution of yT+l is then obtained as a marginal distribution
by integrating out yT+1 to yT+l�1: The usual point forecast is the conditional
mean

E(yT+ljYT ) = E
T
(yT+l) =

Z 1

�1
yT+lp (yT+ljYT ) dyT+l (168)

as this is the minimum mean square estimate. Other point estimates may be
constructed. In particular the maximum a posteriori estimate is the mode of the
conditional distribution. However, once we move away from normality, there is a
case for expressing forecasts in terms of the whole of the predictive distribution.
The general �ltering expressions may be di¢ cult to solve analytically. Linear

Gaussian models are an obvious exception and tractable solutions are possible in
a number of other cases. Of particular importance is the class of conditionally
Gaussian models described in the next sub-section and the conjugate �lters
for count and qualitative observations developed in the sub-section afterwards.
Where an analytic solution is not available, Kitagawa (1987) has suggested using
numerical methods to evaluate the various densities. The main drawback with
this approach is the computational requirement: this can be considerable if a
reasonable degree of accuracy is to be achieved.
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9.2 Conditionally Gaussian models

A conditionally Gaussian state space model may be written as

yt = Zt (Yt�1)�t + dt (Yt�1) + "t; "t j Yt�1�N (0;Ht (Yt�1)) (169)

�t = Tt (Yt�1)�t�1 + ct (Yt�1) +Rt (Yt�1)�t; �t j Yt�1�N (0;Qt (Yt�1))
(170)

with �0�N (a0;P0) : Even though the system matrices may depend on obser-
vations up to and including yt�1; they may be regarded as being �xed once we
are at time t�1: Hence the derivation of the Kalman �lter goes through exactly
as in the linear model with atjt�1 and Ptjt�1 now interpreted as the mean and
covariance matrix of the distribution of �t conditional on the information at
time t� 1: However, since the conditional mean of �t will no longer be a linear
function of the observations, it will be denoted by ~�tjt�1 rather than by atjt�1:
When ~�tjt�1 is viewed as an estimator of �t; then Ptjt�1 can be regarded as
its conditional error covariance, or MSE, matrix. Since Ptjt�1 will now depend
on the particular realisation of observations in the sample, it is no longer an
unconditional error covariance matrix as it was in the linear case.
The system matrices will usually contain unknown parameters,  : However,

since the distribution of yt; conditional on Yt�1, is normal for all t = 1; :::; T;
the likelihood function can be constructed from the predictive errors, as in (95).
The predictive distribution of yT+l will not usually be normal for l > 1:

Furthermore it is not usually possible to determine the form of the distribu-
tion. Evaluating conditional moments tends to be easier, though whether it
is a feasible proposition depends on the way in which past observations enter
into the system matrices. At the least one would hope to be able to use the
law of iterated expectations to evaluate the conditional expectations of future
observations thereby obtaining their MMSEs.

9.3 Count data and qualitative observations

Count data models are usually based on distributions such as the Poisson or
negative binomial. If the means of these distributions are constant, or can be
modelled in terms of observable variables, then estimation is relatively easy;
see, for example, the book on generalised linear models (GLIM) by McCullagh
and Nelder (1983). The essence of a time series model, however, is that the
mean of a series cannot be modelled in terms of observable variables, so has to
be captured by some stochastic mechanism. The structural approach explicitly
takes into account the notion that there may be two sources of randomness, one
a¤ecting the underlying mean and the other coming from the distribution of the
observations around that mean. Thus one can consider setting up a model in
which the distribution of an observation conditional on the mean is Poisson or
negative binomial, while the mean itself evolves as a stochastic process that is
always positive. The same ideas can be used to handle qualitative variables.
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9.3.1 Models with conjugate �lters

The essence of the conjugate �lter approach is to formulate a mechanism that
allows the distribution of the underlying level to be updated as new observations
become available and at the same time to produce a predictive distribution of
the next observation. The solution to the problem rests on the use of natural-
conjugate distributions of the type used in Bayesian statistics. This allows
the formulation of models for count and qualitative data that are analogous to
the random walk plus noise model in that they allow the underlying level of the
process to change over time, but in a way that is implicit rather than explicit. By
introducing a hyperparameter, !; into these local level models, past observations
are discounted in making forecasts of future observations. Indeed it transpires
that in all cases the predictions can be constructed by an EWMA, which is
exactly what happens in the random walk plus noise model under the normality
assumption. Although the models draw on Bayesian techniques, the approach is
can still be seen as classical as the likelihood function can be constructed from
the predictive distributions and used as the basis for estimating !. Furthermore
the approach is open to the kind of model-�tting methodology used for linear
Gaussian models.
The technique can be illustrated with the model devised for observations

drawn from a Poisson distribution. Let

p (yt j �t) = �ytt e
��t=yt!; t = 1; :::; T: (171)

The conjugate prior for a Poisson distribution is the gamma distribution. Let
p
�
�t�1 j Yt�1

�
denote the p.d.f. of �t�1 conditional on the information at time

t� 1: Suppose that this distribution is gamma, that is

p (�; a; b) =
e�b��a�1

� (a) b�a
; a; b > 0

with � = �t�1; a = at�1 and b = bt�1 where at�1 and bt�1 are computed
from the �rst t � 1 observations, Yt�1. In the random walk plus noise with
normally distributed observations, �t�1 � N (mt�1; pt�1) at time t� 1 implies
that �t�1 � N

�
mt�1; pt�1 + �

2
�

�
at time t � 1. In other words the mean of

�t j Yt�1 is the same as that of �t�1 j Yt�1 but the variance increases. The
same e¤ect can be induced in the gamma distribution by multiplying a and b by
a factor less than one. We therefore suppose that p (�t j Yt�1) follows a gamma
distribution with parameters atjt�1 and btjt�1 such that

atjt�1 = !at�1 and btjt�1 = !bt�1 (172)

and 0 < ! 6 1: Then

E (�t j Yt�1) = atjt�1=btjt�1 = at�1=bt�1 = E
�
�t�1 j Yt�1

�
while

V ar (�t j Yt�1) = atjt�1=b
2
tjt�1 = !�1V ar

�
�t�1 j Yt�1

�
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The stochastic mechanism governing the transition of �t�1 to �t is therefore
de�ned implicitly rather than explicitly. However, it is possible to show that it
is formally equivalent to a multiplicative transition equation of the form

�t = !�1�t�1�t

where �t has a beta distribution with parameters !at�1 and (1 � !)at�1; see
the discussion in Smith and Miller (1986).
Once the observation yt becomes available, the posterior distribution, p (�t j Yt) ;

is obtained by evaluating an expression similar to (164). This yields a gamma
distribution with parameters

at = atjt�1 + yt and bt = btjt�1 + 1 (173)

The initial prior gamma distribution, that is the distribution of �t at time t = 0,
tends to become di¤use, or non-informative, as a; b! 0, although it is actually
degenerate at a = b = 0 with Pr (� = 0) = 1: However, none of this prevents
the recursions for a and b being initialised at t = 0 and a0 = b0 = 0. A
proper distribution for �t is then obtained at time t = � where � is the index
of the �rst non-zero observation. It follows that, conditional on Y� ; the joint
density of the observations y�+1; :::; yT can be constructed as the product of
the predictive distributions. For Poisson observations and a gamma prior, the
predictive distribution is a negative binomial distribution, that is

p (yt j Yt�1) =
�
�
atjt�1 + yt

�
� (yt + 1)�

�
atjt�1

�batjt�1tjt�1
�
1 + btjt�1

��(atjt�1+yt) (174)

Hence the log-likelihood function can easily constructed and then maximised
with respect to the unknown hyperparameter !.
It follows from the properties of the negative binomial that the mean of the

predictive distribution of yT+1 is

E (yT+1 j YT ) = aT+1jT =bT+1jT = aT =bT =
T�1
�
j=0

!jyT�j=
T�1
�
j=0

!j (175)

the last equality coming from repeated substitution with (172) and (173). In
large samples the denominator of (175) is approximately equal to 1= (1� !)
when ! < 1 and the weights decline exponentially, as in (7) with � = 1 � !.
When ! = 1, the right-hand side of (175), is equal to the sample mean; it is
reassuring that this is the solution given by setting a0 and b0 equal to zero.
The l-step-ahead predictive distribution at time T is given by

p (yT+l j YT ) =
Z 1

0

p
�
yT+l j �T+l

�
p
�
�T+l j YT

�
d�T+l

It could be argued that the assumption embodied in (172) suggests that p
�
�T+l j YT

�
has a gamma distribution with parameters !laT and !lbT : This would mean
the predictive distribution for yT+l was negative binomial with a and b given
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by !laT and !lbT in the formulae above. Unfortunately the evolution that this
implies for �t is not consistent with what would occur if observations were made
at times T +1; T +2; :::; T + l� 1: In the latter case, the distribution of yT+l at
time T is

p (yT+l j YT ) =
X

yT+l�1

� � �
X
yT+1

lY
j=1

p (yT+j j YT+j�1) (176)

This is the analogue of (166) for discrete observations. It is di¢ cult to derive a
closed form expression for p

�
yT+ljT

�
from (176) for l > 1 but it can, in principle,

be evaluated numerically. Note, however, by the law of iterated expectations,
E (yT+l j YT ) = aT =bT for l = 1; 2; 3; :::; so the mean of the predictive distrib-
ution is the same for all lead times, just as in the Gaussian random walk plus
noise.
Goals scored by England against Scotland Harvey and Fernandes (1989) mod-

elled the number of goals scored by England in international football matches
played against Scotland in Glasgow up 1987. Estimation of the Poisson-gamma
model gives ~! = 0:844: The forecast is 0.82; the full one-step-ahead predictive
distribution is shown in Table 1. (For the record, England won the 1989 match,
two-nil).

Table 1 Predictive probability distribution of goals in next match

Number of goals
0 1 2 3 4 >4
0.471 0.326 0.138 0.046 0.013 0.005

Similar �lters may be constructed for the binomial distribution, in which
case the conjugate prior is the beta distribution and the predictive distribution
is the beta-binomial, and the negative binomial for which the conjugate prior
is again the beta distribution and the predictive distribution is the beta-Pascal.
Exponential distributions �t into the same framework with gamma conjugate
distributions and Pareto predictive distributions. In all cases the predicted level
is an EWMA.
Boat race The Oxford-Cambridge boat race provides an example of mod-

elling qualitative variables by using the �lter for the binomial distribution. Ig-
noring the dead heat of 1877, there were 130 boat races up to and including
1985. We denote a win for Oxford as one, and a win for Cambridge as zero.
The runs test clearly indicates serial correlation and �tting the local Bernoulli
model by ML gives an estimate of ! of 0.866. This results in an estimate of
the probability of Oxford winning a future race of .833. The high probability
is a re�ection of the fact that Oxford won all the races over the previous ten
years. Updating the data to 2000 gives a dramatic change as Cambridge were
dominant in the 1990s. Despite Oxford winning in 2000, the estimate of the
probability of Oxford winning future races falls to .42. Further updating can be
carried out13 very easily since the probability of Oxford winning is given by an
13Cambridge won in 2001 and 2004, Oxford in 2002 and 2003; see

www.theboatrace.org/therace/history
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EWMA. Note that because the data are binary, the distribution of the forecasts
is just binomial (rather than beta-binomial) and this distribution is the same
for any lead time.
A criticism of the above class of forecasting procedures is that when simu-

lated the observations tend to go to zero. Speci�cally, if ! < 1; �t ! 0 almost
surely, as t ! 1 ; see Grunwald, Hamza and Hyndman (1997). Nevertheless
for a given data set, �tting such a model gives a sensible weighting pattern-
an EWMA - for the mean of the predictive distribution. It was argued in the
opening section that this is the purpose of formulating a time series model.
The fact that a model may not generate data sets with desirable properties is
unfortunate but not fatal.
Explanatory variables can be introduced into these local level models via the

kind of link functions that appear in GLIM models. Time trends and seasonal
e¤ects can be included as special cases. The framework does not extend to
allowing these e¤ects to be stochastic, as is typically the case in linear structural
models. This may not be a serious restriction. Even with data on continuous
variables, it is not unusual to �nd that the slope and seasonal e¤ects are close
to being deterministic. With count and qualitative data it seems even less likely
that the observations will provide enough information to pick up changes in the
slope and seasonal e¤ects over time.

9.3.2 Exponential family models with explicit transition equations

The exponential family of distributions contains many of the distributions used
for modelling count and quantitative data. For a multivariate series

p(ytj�t) = expfy0t�t � bt(�t) + c(yt)g; t = 1; :::; T

where �t is an N � 1 vector of �signals�, bt(�t) is a twice di¤erentiable function
of �t and c(yt) is a function of yt only. The �t vector is related to the mean
of the distribution by a link function, as in GLIM models. For example when
the observations are supposed to come from a univariate Poisson distribution
with mean �t we set exp(�t) = �t: By letting �t depend on a state vector that
changes over time, it is possible to allow the distribution of the observations to
depend on stochastic components other than the level. Dependence of �t on
past observations may also be countenanced, so that

p(ytj�t) = p(ytj�t;Yt�1)

where �t is a state vector. Explanatory variables could also be included. Unlike
the models of the previous sub-section, a transitional distribution is explicitly
speci�ed rather than being formed implicitly by the demands of conjugacy. The
simplest option is to let �t = Zt�t and have �t generated by a linear transition
equation. The statistical treatment is by simulation methods. Shephard and
Pitt (1997) base their approach on Markov chain Monte Carlo (MCMC) while
Durbin and Koopman (2001) use importance sampling and antithetic variables.
Both techniques can also be applied in a Bayesian framework. A full discussion
can be found in Durbin and Koopman (2001).

72



Van drivers Durbin and Koopman (2001, p 230-3) estimate a Poisson model
for monthly data on van drivers killed in road accidents in Great Britain. How-
ever, they are able to allow the seasonal component to be stochastic. (A sto-
chastic slope could also have been included but the case for employing a slope
of any kind is weak). Thus the signal is taken to be

�t = �t + t + �wt;

where �t is a random walk and wt is the seat belt intervention variable. The
estimate of �2! is, in fact, zero so the seasonal component turns out to be �xed
after all. The estimated reduction in van drivers killed is 24.3% which is not far
from the 24.1% obtained by Harvey and Fernandes (1989) using the conjugate
�lter.
Boat race Durbin and Koopman (2001, p 237) allow the probability of an

Oxford win, �t; to change over time, but remain in the range zero to one by
taking the link function for the Bernouilli (binary) distribution to be a logit.
Thus they set �t = exp(�t)=(1 + exp(�t)) and let �t follow a random walk.

9.4 Heavy-tailed distributions and robustness

Simulation techniques of the kind alluded to in the previous sub-section, are
relatively easy to use when the measurement and transition equations are lin-
ear but the disturbances are non-Gaussian. Allowing the disturbances to have
heavy-tailed distributions provides a robust method of dealing with outliers
and structural breaks. While outliers and breaks can be dealt with ex post by
dummy variables, only a robust model o¤ers a viable solution to coping with
them in the future.

9.4.1 Outliers

Allowing "t to have a heavy-tailed distribution, such as Student�s t; provides
a robust method of dealing with outliers. This is to be contrasted with an
approach where the aim is to try to detect outliers and then to remove them
by treating them as missing or modeling them by an intervention. An outlier
is de�ned as an observation that is inconsistent with the model. By employing
a heavy-tailed distribution, such observations are consistent with the model
whereas with a Gaussian distribution they would not be. Treating an outlier as
though it were a missing observation e¤ectively says that it contains no useful
information. This is rarely the case except, perhaps, when an observation has
been recorded incorrectly.
Gas consumption in the UK Estimating a Gaussian BSM for gas consump-

tion produces a rather unappealing wobble in the seasonal component at the
time North Sea gas was introduced in 1970. Durbin and Koopman (2001, p
233-5) allow the irregular to follow a t-distribution and estimate its degrees of
freedom to be 13. The robust treatment of the atypical observations in 1970
produces a more satisfactory seasonal pattern around that time.
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Another example of the application of robust methods is the seasonal ad-
justment paper of Bruce and Jurke (1996).
In small samples it may prove di¢ cult to estimate the degrees of freedom.

A reasonable solution then is to impose a value, such as six, that is able to
handle outliers. Other heavy tailed distributions may also be used; Durbin
and Koopman (2001, p 184) suggest mixtures of normals and the general error
distribution.

9.4.2 Structural breaks

Clements and Hendry (2003, p305) conclude that �..shifts in deterministic terms
(intercepts and linear trends) are the major source of forecast failure�. However,
unless breaks within the sample are associated with some clearly de�ned event,
such as a new law, dealing with them by dummy variables may not be the best
way to proceed. In many situations matters are rarely clear cut in that the
researcher does not know the location of breaks or indeed how many there may
be. When it comes to forecasting matters are even worse.
The argument for modelling breaks by dummy variables is at its most ex-

treme in the advocacy of piecewise linear trends, that is deterministic trends
subject to changes in slope modelled as in sub-section 4.1. This is to be con-
trasted with a stochastic trend where there are small random breaks at all points
in time. Of course, stochastic trends can easily be combined with deterministic
structural breaks. However, if the presence and location of potential breaks are
not known a priori there is a strong argument for using heavy-tailed distrib-
utions in the transition equation to accommodate them. Such breaks are not
deterministic and their size is a matter of degree rather than kind. From the
forecasting point of view this makes much more sense: a future break is virtually
never deterministic - indeed the idea that its location and size might be known
in advance is extremely optimistic. A robust model, on the other hand, takes
account of the possibility of future breaks in its computation of MSEs and in
the way it adapts to new observations.

9.5 Switching regimes

The observations in a time series may sometimes be generated by di¤erent mech-
anisms at di¤erent points in time. When this happens, the series is subject to
switching regimes. If the points at which the regime changes can be determined
directly from currently available information, the Kalman �lter provides the ba-
sis for a statistical treatment. The �rst sub-section below gives simple examples
involving endogenously determined changes. If the regime is not directly ob-
servable but is known to change according to a Markov process we have hidden
Markov chain models, as described in the book by MacDonald and Zucchini
(1997). Models of this kind are described in later sub-sections.
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9.5.1 Observable breaks in structure

If changes in regime are known to take place at particular points in time, the SSF
is time-varying but the model is linear. The construction of a likelihood function
still proceeds via the prediction error decomposition, the only di¤erence being
that there are more parameters to estimate. Changes in the past can easily be
allowed for in this way.
The point at which a regime changes may be endogenous to the model, in

which case it becomes nonlinear. Thus it is possible to have a �nite number of
regimes each with a di¤erent set of hyperparameters. If the signal as to which
regime holds depends on past values of the observations, the model can be set
up so as to be conditionally Gaussian. Two possible models spring to mind.
The �rst is a two-regime model in which the regime is determined by the sign
of 4yt�1: The second is a threshold model, in which the regime depends on
whether or not yt has crossed a certain threshold value in the previous period.
More generally, the switch may depend on the estimate of the state based in
information at time t�1: Such a model is still conditionally Gaussian and allows
a fair degree of �exibility in model formulation.
Business cycles In work on the business cycle, it has often been observed

that the downward movement into a recession proceeds at a more rapid rate
than the subsequent recovery. This suggests some modi�cation to the cyclical
components in structural models formulated for macroeconomic time series. A
switch from one frequency to another can be made endogenous to the system
by letting

�c =

�
�1 if ~ tjt�1 � ~ t�1 > 0
�2 if ~ tjt�1 � ~ t�1 6 0

where ~ tjt�1 and ~ t�1 are the MMSEs of the cyclical component based on the

information at time t � 1: A positive value of ~ tjt�1 � ~ t�1 indicates that the
cycle is in an upswing and hence �1 will be set to a smaller value than �2: In
other words the period in the upswing is larger. Unfortunately the �ltered cycle
tends to be rather volatile, resulting in too many switches. A better rule might
be to average changes over several periods using smoothed estimates, that is to
use ~ tjt�1 � ~ t�mjt�1 =

Pm
j=0

~ t�jjt�1:

9.5.2 Markov chains

Markov chains can be used to model the dynamics of binary data, that is yt =
0 or 1 for t = 1; :::; T: The movement from one state, or regime, to another
is governed by transition probabilities. In a Markov chain these probabilities
depend only on the current state. Thus if yt�1 = 1; Pr (yt = 1) = �1 and
Pr (yt = 0) = 1��1; while if yt�1 = 0; Pr (yt = 0) = �0 and Pr (yt = 1) = 1��0:
This provokes an interesting contrast with the EWMA that results from the
conjugate �lter model.14

14 Having said that it should be noted that the Markov chain transition probabilities may
be allowed to evolve over time in the same way as a single probability can be allowed to change
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The above ideas may be extended to situations where there is more than
one state. The Markov chain operates as before, with a probability speci�ed for
moving from any of the states at time t� 1 to any other state at time t:

9.5.3 Markov chain switching models

A general state space model was set up at the beginning of this section by
specifying a distribution for each observation conditional on the state vector, �t,
together with a distribution of �t conditional on �t�1: The �lter and smoother
were written down for continuous state variables. The concern here is with a
single state variable that is discrete. The �lter presented below is the same as the
�lter for a continuous state, except that integration is replaced by summation.
The series is assumed to be univariate.
The state variable takes the values 1,2,...,m; and these values represent each

of m di¤erent regimes. (In the previous sub-section, the term �state�was used
where here we use regime; the use of �state�for the value of the state variable
could be confusing here.) The transition mechanism is a Markov process which
speci�es Pr (�t = i j �t�1 = j) for i; j = 1; :::;m: Given probabilities of being in
each of the regimes at time t � 1; the corresponding probabilities in the next
time period are

Pr (�t = i j Yt�1) =
m

�
j=1

Pr (�t = i j �t�1 = j) Pr (�t�1 = j j Yt�1) ; i = 1; 2; :::;m;

and the conditional PDF of yt is a mixture of distributions given by

p (yt j Yt�1) =
m

�
j=1

p (yt j �t = j) Pr (�t = j j Yt�1) (177)

where p (yt j �t = j) is the distribution of yt in regime j: As regards updating

Pr (�t = i j Yt) =
p (yt j �t = i) � Pr (�t = i j Yt�1)

p (yt j Yt�1)
; i = 1; 2; :::;m

Given initial conditions for the probability that �t is equal to each of its m
values at time zero, the �lter can be run to produce the probability of being
in a given regime at the end of the sample. Predictions of future observa-
tions can then be made. If M denotes the transition matrix with ijth element
equal to Pr (�t = i j �t�1 = j) and ptjt�k is the m� 1 vector with ith element
Pr (�t = i j Yt�k) ; k = 0; 1; 2; :::; then

pT+ljT =M
lpT jT ; l = 1; 2; :::

and so
p (yT+l j YT ) =

m

�
j=1

p (yT+l j �T+l = j) Pr (�T+l = j j YT ) (178)

The likelihood function can be constructed from the one-step predictive distrib-
utions (177). The unknown parameters consist of the transition probabilities in

in a conjugate binomial model ; see Harvey (1989, p 355).
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the matrix M and the parameters in the measurement equation distributions,
p (yt j �t = j) ; j = 1; :::;m:
The above state space form may be extended by allowing the distribution of

yt to be conditional on past observations as well as on the current state. It may
also depend on past regimes, so the current state becomes a vector containing
the state variables in previous time periods. This may be expressed by writing
the state vector at time t as �t = (st; st�1; :::; st�p)

0
; where st is the state

variable at time t:
In the model of Hamilton (1989), the observations are generated by an AR (p)

process of the form

yt = � (st) + �1 [yt�1 � � (st�1)] + ::::+ �p [yt�p � � (st�p)] + "t (179)

where "t � NID
�
0; �2

�
: Thus the expected value of yt; denoted � (st) ; varies

according to the regime, and it is the value appropriate to the corresponding lag
on yt that enters into the equation. Hence the distribution of yt is conditional
on st and st�1 to st�p as well as on yt�1 to yt�p: The �lter of the previous
sub-section can still be applied although the summation must now be over all
values of the p+ 1 state variables in �t: An exact �lter is possible here because
the time series model in (179) is an autoregression. The is no such analytic
solution for an ARMA or structural time series model. As a result simulation
methods have to be used as in Kim and Nelson (1999) and Luginbuhl and de
Vos (1999).

10 Stochastic Volatility

It is now well established that while �nancial variables such as stock returns are
serially uncorrelated over time, their squares are not. The most common way
of modelling this serial correlation in volatility is by means of the GARCH class
in which it is assumed that the conditional variance of the observations is an
exact function of the squares of past observations and previous variances. An
alternative approach is to model volatility as an unobserved component in the
variance. This leads to the class of stochastic volatility (SV) models. The topic
is covered in the chapter by Andersen et al. so the treatment here will be brief.
Earlier reviews of the literature are to be found in Taylor (1994) and Ghysels et
al. (1996), while the edited volume by Shephard (2004) contains many of the
important papers.
The stochastic volatility model has two attractions. The �rst is that it is

the natural discrete time analogue ( though it is only an approximation) of the
continuous time model used in work on option pricing; see Hull andWhite (1987)
and the review by Hang (1998). The second is that its statistical properties
are relatively easy to determine and extensions, such as the introduction of
seasonal components, are easily handled. The disadvantage with respect to the
conditional variance models of the GARCH class is that whereas GARCH can
be estimated by maximum likelihood, the full treatment of an SV model requires
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the use of computer intensive methods such as MCMC and importance sampling.
However, these methods are now quite rapid and it would be wrong to rule out
SV models on the grounds that they make unreasonably heavy computational
demands.

10.1 Basic speci�cation and properties

The basic discrete time SV model for a demeaned series of returns, yt, may be
written as

yt = �t"t = �e0:5ht"t; "t � IID(0; 1); t = 1; :::; T; (180)

where � is a scale parameter and ht is a stationary �rst-order autoregressive
process, that is

ht+1 = �ht + �t; �t � IID(0; �2�) (181)

where �t is a disturbance term which may or may not be correlated with "t: If
"t and �t are allowed to be correlated with each other, the model can pick up
the kind of asymmetric behaviour which is often found in stock prices.
The following properties of the SV model hold even if "t and �t are contem-

poraneously correlated. Firstly yt is a martingale di¤erence. Secondly, station-
arity of ht implies stationarity of yt. Thirdly, if �t is normally distributed, terms
involving exponents of ht may be evaluated using properties of the lognormal
distribution. Thus, the variance of yt can be found and its kurtosis shown to be
�" exp( �2h) > �" where �" is the kurtosis of "t: Similarly, the autocorrelations
of powers of the absolute value of yt; and its logarithm, can be derived; see
Ghysels et al (1996).

10.2 Estimation

Squaring the observations in (180) and taking logarithms gives

log y2t = ! + ht + �t; (182)

where �t = log "
2
t � E log "2t and ! = log �

2 + E log "2t ; so that �t has zero mean
by construction. If "t has a t��distribution, it can be shown that the moments
of �t exist even if the distribution of "t is Cauchy, that is � = 1: In fact in this
case �t is symmetric with excess kurtosis two, compared with excess kurtosis
four and a highly skewed distribution when "t is Gaussian.
The transformed observations, the log y20t s; can be used to construct a lin-

ear state space model. The measurement equation is (182) while (181) is the
transition equation. The quasi maximum likelihood (QML) estimators of the
parameters �, �2� and the variance of �t, �

2
� , are obtained by treating �t and �t

as though they were normal in the linear SSF and maximizing the prediction
error decomposition form of the likelihood obtained via the Kalman �lter; see
Harvey, Ruiz and Shephard (1994). Harvey and Shephard (1996) show how the
linear state space form can be modi�ed so as to deal with an asymmetric model.
The QML method is relatively easy to apply and, even though it is not e¢ cient,

78



it provides a reasonable alternative if the sample size is not too small; see Yu
(2005).
Simulation based methods of estimation, such as Markov chain Monte Carlo

and e¢ cient method of moments, are discussed at some length in the chapter
by Andersen et al. Important references include Jacquier, Polson and Rossi
(1994, p 416), Kim, Shephard and Chib (1998), Watanabe (1999) and Durbin
and Koopman (2000).

10.3 Comparison with GARCH

The GARCH(1,1) model has been applied extensively to �nancial time series.
The variance in yt = �t"t is assumed to depend on the variance and squared
observation in the previous time period. Thus

�2t =  + �y2t�1 + ��
2
t�1; t = 1; :::; T: (183)

The GARCH(1,1) model displays similar properties to the SV model, particu-
larly if � is close to one ( in which case �+� is also close to one). Jacquier et al
(1994, p373) present a graph of the correlogram of the squared weekly returns
of a portfolio on the New York Stock Exchange together with the ACFs implied
by �tting SV and GARCH(1,1) models. The main di¤erence in the ACFs seems
to show up most at lag one with the ACF implied by the SV model being closer
to the sample values.
The Gaussian SV model displays excess kurtosis even if � is zero since yt

is a mixture of distributions. The �2� parameter governs the degree of mixing
independently of the degree of smoothness of the variance evolution. This is
not the case with a GARCH model where the degree of kurtosis is tied to the
roots of the variance equation, � and � in the case of GARCH(1,1). Hence,
it is very often necessary to use a non-Gaussian distribution for "t to capture
the high kurtosis typically found in a �nancial time series. Kim, Shephard and
Chib (1998) present strong evidence against the use of the Gaussian GARCH,
but �nd GARCH�t and Gaussian SV to be similar. In the exchange rate data
they conclude on p 384 that the two models �...�t the data more or less equally
well.� Further evidence on kurtosis is in Carnero, Pena and Ruiz (2004).
Fleming and Kirby (2003) compare the forecasting performance of GARCH

and SV models. They conclude that �.. GARCH models produce less precise
forecasts ....�, but go on to observe that �... in the simulations, it is not clear that
the performance di¤erences are large enough to be economically meaningful.�On
the other hand, section 5.5 of the chapter by Andersen et al describes a decision
theoretic application, concerned with foreign currency hedging, in which there
are clear advantages to using the SV model.

10.4 Multivariate models

The multivariate model corresponding to (180) assumes that each series is gen-
erated by a model of the form
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yit = �i"ite
0:5hit ; t = 1; :::; T; (184)

with the covariance (correlation) matrix of the vector "t = ("1t; :::; "Nt)0 being
denoted by �" : The vector of volatilities, ht, follows a VAR(1) process, that is

ht+1= �ht+�t; �t�IID(0;��);

This speci�cation allows the movements in volatility to be correlated across dif-
ferent series via ��. Interactions can be picked up by the o¤-diagonal elements
of �: A simple nonstationary model is obtained by assuming that the volatili-
ties follow a multivariate random walk, that is � = I: If �� is singular, of rank
K < N , there are only K components in volatility, that is each hit in (184) is
a linear combination of K < N common trends. Harvey, Ruiz and Shephard
(1994) apply the nonstationary model to four exchange rates and �nd just two
common factors driving volatility. Other ways of incorporating factor structures
into multivariate models are described in the Andersen et al. chapter.

11 Conclusions

The principal structural time series models can be regarded as regression models
in which the explanatory variables are functions of time and the parameters are
time-varying. As such they provide a model based method of forecasting with an
implicit weighting scheme that takes account of the properties of the time series
and its salient features. The simplest procedures coincide with ad hoc methods
that typically do well in forecasting competitions. For example the exponentially
weighted moving average is rationalised by a random walk plus noise, though
once non-Gaussian models are brought into the picture, exponentially weighting
can also be shown to be appropriate for distributions such as the Poisson and
binomial.
Because of the interpretation in terms of components of interest, model

selection of structural time series models does not rely on correlograms and
related statistical devices. This is important, since it means that the models
chosen are typically more robust to changes in structure as well as being less
susceptible to the distortions caused by sampling error. Furthermore plausible
models can be selected in situations where the observations are subject to data
irregularities. Once a model has been chosen, problems like missing observations
are easily handled within the state space framework Indeed, even irregularly
spaced observations are easily dealt with as the principal structural time series
models can be set up in continuous time and the implied discrete time state
space form derived.
The structural time series model framework can be adapted to produce fore-

casts - and �nowcasts�- for a target series taking account of the information in
an auxiliary series - possibly at a di¤erent sampling interval. Again the free-
dom from the model selection procedures needed for autoregressive-integrated-
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moving average models and the �exibility a¤orded by the state space form is of
crucial importance.
As well as drawing attention to some of the attractions of structural time

series models, the chapter has also set out some basic results for the state space
form and derived some formulae linking models that can be put in this form with
autoregressive integrated moving average and autoregressive representations. In
a multivariate context, the vector error correction representation of a common
trends structural time series model is obtained.
Finally, it is pointed out how recent advances in computer intensive methods

have opened up the way to dealing with non-Gaussian and nonlinear models.
Such models may be motivated in a variety of ways: for example by the need to
�t heavy tailed distributions in order to handle outliers and structural breaks
in a robust fashion or by a complex nonlinear functional form suggested by
economic theory.
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